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SUMMARY

This thesis is'concernéd with the measurement of the characteristics
of nonlinear systemslby crosscorrelation, using pseudorandom input
signals baéed on m sequences, The systems are characterised by
Volterra éeries, and analytiéal expressions relating the rth order
Volterra kernel to r-dimensional crosscorrelation measurements are

derived.

It is shown that the two-dimensional crosscorrelation measurements
are related to the corresponding second order kernel values by a set
of equations which may be structured into a number of independent
subsets., The m sequence properties determine how the maximum order
of the subsets for off-diagonal values is related to the upper bound
of the arguments for nonzero kernei values, The upper bound of the
arguments is used as a performance index, and the performance of
antisymmetric pseudorandom binary, ternary and quinary signals is

investigated.

The performance indices obtained above are small in relation to
the periods of the corresponding signals. To achieve higher performance
with ternary signals, a method is proposed for combining the -estimates
of the second order kernel values so that the effects of some of the
undesirable nonzero values in the fourth order autocorrelation function

of the input signal are removed.

The idéntification of the dynamics of two-input, single-output -
systems with multiplicative nonlinearity is investigated. It is shown
that the characteristics of such a system may be determined by
crosscorrelation experiments using phase-shifted versions of a common
signal as inputs. The effects of nonlinearities on the estimates of

system weighting functions obtained by crosscorrelation are also




investigated.

Results obtained by correlation testing of an industrial process

are presented, and the differences between theoretical and experimental

# results discussed for this case.
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(iii)

prime

Galois field

elements of GF(p)

m sequence in CF(p)

period of 'Si

characteristic polynomial of { Si}
reciprocal polynomial of £(D)
related polynomial of £(D)

related polynomial of f*(D)‘

order of f(D)

real number mapped from I in GF(p)
pseudorandom sequence

period of { xi}

pseudoréndom signal, system input signal
system output sequence

system output signal

integers

time

sampling period

time delay

time constants

.th :

j " -order Volterra kernel of system

upper limit of il,iz,...,ij for nonzero

wj(llT,lsz...,le)

. . th . .
,1j) = j order autocorrelation function of {xi}
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.th . .
j order autocorrelation function of

x(t).

crosscorrelation measurement of wz(JT,KT)

‘number of dependent e(JT,KT)

performance index in direct crosscorrelation

upper limit of Rr’ diagonal limit

performance index in combined

crosscorrelation
upper limit of Qr
matrix or vector |
T x v matrix

unit matrix

= first order Volterra kernel, weighting

function

estimate of wl(IT)

error due to secdnd order nonlinearity
error due to third order nonlinearity
increment of k

weighting function estimates
postulated output signal

poétulated output sequences

weighted crosscorrelation between the

postulated output and the test sequence
Kronecker delta function

unit step function
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1. INTRODUCTION

1.1 Nonlinear Systems

The techniques of identification of linear systems are
now well developed, but unfortunately no physical system is
linear over a sufficiently wide operating range. Thefe are two
main methods of describing a monlinear system: either in terms of
its differential equation or as an explicit expression of the
output in functional fofm. Direct differential equation solutions
give little insight into the behaviour of systems other than the
specific system analysed. Functional methods, on the other hand,
apply to a large class of systems.

In the functional representatiom, the response, y(t), of
a time invariant nonlinear system‘to an input, x(t), can be

expressed as:

+ ff wz('rl,wz)x(t-Tl),k(t-rz)dTldr_z

+ [ fjw&(Tl;rz,Té)x(t-wl)x(t-12)x(t~r3)dTld12dT3

+ ecs e v s o0 s o0

-

j=1

j~~—8

7 }° ﬁJ.(rl,rz,...,Tj)x(t-ml)xu-r ))eex(t=T,) drydge.

...de (1.1)
In this form Qf representation, the system is characterised by the
set of functionms, Wj(flﬂ 2,...,Tj), known as the Volterra kernels of
the system. The kernels are properties of the system alone and are
not dependent on the nature of the input. Once the kernels are

determined, then the system is completely characterised; the




output may be computed for amy given input.

The uéé of the Volterra series in the analysis of
nonlinear systems ig a generalisation of the well known convolution
integral used in linear system analysis. The Volterra functional
technique is a powerful method for nonlinear system analysis and
synthesis because of its generality and the explicit input-output

relations expressed by a functional.




1.2 Historical Review

The properties of functionals were first studied by
Volterral at the beginning of the twentieth century. Volterra
himself applied functionals to the theory of elasticity.

Wiener ’

used functional theory in the solution of a
Brownian motion and circuit problems. A systemﬁstic attempt to
apply functional methods to nonlinear systems stems from the more
recent work_of Wiener4, who used them to obtain a canonical
representation of nonlinear systems.

cq s 5 . . . s
Brilliant~ gave a rigorous mathematical description of

the theory of Volterra functionals. He introduced an algebra of

functionals and also indicated how the kernels might be measured

in practice.

George6 developed the relétion between the Volterra
kernels of combined systems comprised of cascading, multiplying
addlng or a feedback combination of any two systems and the Volterra
kernels of the two individual systems. He introduced the use of
the association of variables when multidimensional Laplace transform
is employed.

Z.ames7 used the operator algebra to consider general
feedback systéms and he obtained an iterative expansion of the
feedback operator. He later used these reults to study nonlinear
distortions in feedback amplifiersg.

Barrett9 used functional power seriss to analyse systems
subjected to transient, steady state and random inputs. He
outlined the uses of multidimensional transform theory and applied
this to the analysis of cascade and inverse filters as well as to

the analysis of feedback circuits.




Flake10 developed a method of solution applicable to
nonlinear systems with or without zero jinitial conditions. This
work has been extended by Bahsalll, who has also developed a
general theory for the analysis of time-varying systems.

Stark12 characterised the human pupil, a complex
neurological system, by the first two Volterra kernels and
experimentally evaluated the response of the pupil tdla pseudorandom
light excitation. Some of his results merely confirmed known facts
but others led to the formulation of new theories that are likely
to give deeper insight into the pupillary system. Stark's work
has shown that bioengineers may find functional approach a
valuable method in the analysis and synthesis of diverse biological
systems.

More recent work on the applications of functional
methods includes those of Narayananl3 who used the Volterra series
to study the intermodulation distortion of transistor feedback
amplifiers, and Goldman14 who presented), with- the aid of the Volterra
series analysis, a géneral mathematical description of the crosstalk
interference created in a communications system and subsequently

isolated the intelligible portionbof the crosstalk.
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1.3 Kernel Measurement

One of the main problems in the application of the
functional theory is the explicit determination of the kernels.
Ahalytical procedures for evaluating these kernels have been
considered by McFee¥5, George6 and Flakelo. An experimental
method for measuring the Wiener kernels, suggested by Wiener
himself4 and developed by Lee and Schetzen16, involves cross-
correlation using GCaussian white noise input. The orthogonality
property of the Wiener G-functionals makes it possible to
determine the jth order kernel by crosscorrelating the output
signal with a j-dimensional product formed from the input.

The crosscorreiation technique of Lee and Schetzen will
be explored in the subsequent work but neither the Wiener
representation of nonlinear systems nor the input Gaussian white
noise will be used. The Volterra series is preferred because it
requires less terms to represent a given nonlinear system than the
Wiener series. Furthermore, it is easier to interpret Volterra
kernels in physical terms than the corresponding Wiener kernels.
In fact, the only justification for the use of the Wiener kernels
is the orthogonality of their outputs for a Gaussian white noise
input.

Although Volterra series representation of a nonlinear
system is an infinite one, most physical systems of practical
importance can be characterised by the first few terms of the series.
If the system is linear, all the terms of the Volterra series are
zero except the first, and the series reduces to a convolution

integral. In this case, the first order Volterra kernel or system




weighting function may be computed from the results of step or
sinusoidal testing or by crosscorrelating the output signal with
an appropriate input perturbation, as shown schematically in
fig. 1.1. The crosscorrelation experiment, which may be
performed on~1ineAwithout significantly affecting the normal
operation of the system, giﬁes better results than the step test
when noise is present, and it is'in'theory faster than sine
wave testing.

'If the system under investigation is not linear, the
first order kernel may stiil be obtained by crosscorrelating the
output signal with the input signal. The second orde; kernel may
be obtained by crosscorrelating the output signal with a two-
dimensional product formed from the input, and the third order kernel
may be obtained by crosscorrelating the output signal with a three-
dimensional product formed from the input. In general, the jth order
kernel may be measured by crosscorrelating the output signal with
a j-dimensional product formed from the input as shown schematically
in fig. 1.2. The values of any kernels determined in this manner
will not normally be accurate due to correlation between the input
signal and the contributions to thé output of other kernels present
in the system, The accuraéy of the results is therefore dependent

on the nature of the nonlinearity and on the input signal.
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Fig. 1.2, Evaluation of the jth order kernel
by crosscorrelation.




1.4 The Input Signal

The higher order autocorrelation function properties of
Gaussian white noise make it an ideal input signal for correlation
experiments, but unfortunately, no white noise, whose power
spectrum is flat for all frequencies, is physically realisable
and therefore band limited noise has to be used. Such signals
have been successfully used in system identification12’17.

However, although approximate white noise genérators can be constru-
cted from certain thsical sources, it is difficult to generate a
flat power spectrum at low frequencies, and it is not easy to
subject a random waveform to a constant delay.A The requirement

of an accurate wideband.analogue multiplier presents further
difficulties. For accurate and consistent results, a lengthy
period of integration is required. These difficulties which are
encountered with conventional physical noise sources have led to

a search for possible substitutes.

0f the known white noise signal approximantslg, the
pseudorandom signals based on maximal length (m) sequences are the
most suitable for system identification. These signals and their
delayed versions are simpie tb generate. They are pefiodic and
therefore it is sufficient to carry out the correlation only over
the signal period. Moreover since the signals always assume a
constant value over a known interval of fime, multiplication can be
repiaced by algebraic addition. These advantages have made
pseudorandom signals very popular in linear system identification ?

For nonlinear systems, the pseudorandom signals present

serious problems due to the fact that their higher order

e s oSt N SR
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autocorrelation functions, unlike those of white noise, contain
undesirable nonzero.values. This behaviour, which was first

observed by Gyftopoulos and Hoopeer’zz, has been investigated by

. 23 24
- Simpson”~ and Ream” but the most important contribution in this

field was made by Barker and Pradisthayonzs, who presented
analytical expressions for calculating the higher order auto-
correlation functions of pseudorandom signals of any number of
levels. The undesirable nonzero values were shown to exist
whenever there was linear dependence between members of the m

sequence.
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1.5 OQutstanding Problems

Although it is well known that in the measurement of system
weighting functionsby crosscorrelation, the presence of higher
order kernels introduces errors in the result4, and this has been
manifest in many practical crosscorrelation e#periment326’27’28’20,
the exact nature of these errofs, which are due to correlation
between the.input signal and the higher order terms of the Volterra
series, has not hitherto been explained. This is probably due to
the fact that until recently, analytical expressions for the
higher order correlation moments of pseudorandom signals were not
available.

One of the most important conclusions from the discovery of
Barker and Pradisthayon25 is that some pseudorandom signals are
better than others in the identification of nonlinear systems. A
need therefore exists to isolate and tabulatevthese superior signals.

There is still a tendency to assume that the higher order
autocorrelatioﬁ functions of pseudorandom signals are the same as
those of Gaussian white noisezg. While this assumption greatly
simplifies the mathematics involved in the computation of the Volterra
kernels, it may lead to serious errors.

The expressions for the higher order autocorrelation functions
of pseudorandom signals are cumbersome mginly because of the
undesirable nonzero values. Any correlation technique which will
eliminate or even reduce the effects of these monzero values is
therefore useful.

Many practical systems have more than one input and one

output. An extension of the correlation techniques to nonlinear
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multi-variable systems is also a useful contribution.
Accurate identification of a number of engineering

processes such as gas’chromatography3o and direction dependent

systems31 has not yet been achieved, and therefore further work

in these areas is necessary.
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1.6 The Scope of the Present Investigation

The present work aims at solving some of the problems
mentioned in section 1.5. The known expressions for the higher
order autocorrelation functions of pseudorandom signals have been
adapted to give results whieh are useful in system identification.
The pseudorandom signals which yieldeoptimum performance are
identified and tabulated, and new properties of these signals are
derived and used to obtain improved performance in the measurement
of the second order Volterra kernels. The use of pseudorandom
signals to identify tﬁo-input systems, which has been hitherto
confined to linear processeé, is extended to nonlinear systems.

The effects of nonlinearities on the estimatioﬁ of system weighting
function by crosscorrelation using pseudorandom binary oOT ternary
signals are studied in detail and the general_results obtained are
used to explain breviously unexplained effects in continuous gas
chromatography experiments, and to identify a system with direction
dependent dynamic characteristics. The first and second order
kernels of a nonlinear, noisy industrial process are also

successfully identified.
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CHAPTER 2

THEORY OF IDENTIFICATION OF NONLINEAR SYSTEMS BY CROSSCORRELATION

USING PSEUDORANDOM SIGNALS

2.1 Introduction
2.2 Pseudorandom signals based on m sequences
2.3 The preferred types of signals

2.3.1 Pseudorandom binary and antisymmetric pseudorandom

binary signals
2.3.2 Pseudorandom ternary signals
2.3.3 Pseudorandom quinary signals
2.4 Higher order autocorrelation functions
9.5 r-dimensional crosscorrelation function
2.5.1 Continuous crosscorrelation
2.5.2 Discrete crosscorrelation
2.6 Correlation expressions for the systems investigated
2.6.1 One dimensional crosscorrelation

2.6.2 Two dimensional crosscorrelation - single input
system
2.6.3 Two dimensional crosscorrelation - two input

system
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2. THEORY OF IDENTIFICATION OF NONLINEAR SYSTEMS BY

CROSSGORRELATION USING PSEUDORANDOM BIGNALS

2.1 Introduction

This chapter describes how pseudorandom signals based on
maximal length (m) sequences are derived from the Galois field
elements, Emphasis is given to binary and ternary signals which
have greater practical importance than others. The higher order
autocorrelation functions of a pseudorandom signal and its
corresponding sampled-data are defined, and the relationship
between the two correlation moments is established.

The general_expression for an r-dimensional crosscorrelation
function from which the rth order Volterra kernel may be obtained
is derived, and shown to be the same for either‘discrete or
continuous crosscorrelation. The one- and two-dimensional
crosscorrelations are treated in greater depth. Analyticgal
expressions for the errors encountered in the measurement of the
first order kernel are given. The limitations of pseudorandom
signals in the measurement of second order kerpels of both single;
input and two-input nonlinear systems are diséussed and their

performance in these applications.established.

|
ti
L
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2.2 Pseudorandom signals based on m sequences

When q = p" 2.1
where p is a prime and m is a positive integer, a Galois field,
GF(q) with q elements al,az,...,aq may be defined. If Si and

Cj are elements of GF(q), the recurrence relationship

CyS; + CySgq + eee C S5 =0 CCy?O 2.2

defines a sequence {Si}'which has the characteristic polynomial
n

£(D) = CO + ClD + .00 F CnD

2.3
When éhis polynomial is irreducible and the seqﬁence has the
maximum possible period

N=q -1 2.4
then f(D) is said to.be primitive -and {Si} is known as a
maximal-length or m sequence32.

If each field element 2y of GF(q) is mapped into a real

number X(a ), then { S. } is mapped into the pseudorandom sequence

{ X4 }in the set of real numbers X(a ), X(a )....X(a ). The

corresponding pseudorandom signal x(t), with value xs in the interval

iTstS(i+1)T is defined by means of the unit step function U(t) as
x(t) = Z XiE](t;iT) - U(t-<i+l>Tﬂ 2.5
j==® - .

2.3 The preferred types of signals

The three main types of signals which will be considered as

approprlate test signals are the pseudorandom binary signals and

the antisymmtric pseudorandom binary and ternary signals based on

m sequences. These signals, by comparison with the five or higher

level pseudorandom signals based on m sequences, are simple to
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generate and use. Moreover, as will be shown in Chapter 3, the
performance of ternary signals in the measuremeht of second
orderikernels is supefior tovthat of quinary signals of comparable
period, and the performance of higher level signals will be
.~ even worse because the undesirable nonzero values in the higher
order autocorrelation functions of pseudorandom signals become
more numerous as the number of levels éf the signal increases.

2.3.1 Pseudorandom binary and antisymmetxic pseudorandom binary

signals

When m=1 and p=2 in equation 2.1, the elements 0,1 of
GF(2) may be mapped into real numbers X(0) and X(1) so that
X(0) =-X(1). If x, = X(Si) then {S,} is mapped into the
pseudorandom binary sequence {xi}:with period P=N=2n-l,23 but if
X, = (-1)iX(Si), {8;} is mapped into the antisymmetric pseudorandom
binary sequence {xi} with period P=2N.24 The corresponding
pseudorandom signals are obtained by passing the sequences through

a zero order hold.

2.3.2 Pseudorandom ternary signals

When m=1 and p=3, the elements of GF(3) may be taken as
-1,0,1 and mapped into real numbers X(-1), X(0) and X(1) so that

X(-1) = -X(1) and X(0) = 0. If x; = X(8;) then {s;} is mapped into

' ‘ . . : n 25
the antisymmetric ternary sequence-[xi} with period P=N=3 -1.

2.3.3 Pseudorandom quinaxry signals

When m=1 and ‘p=5, the elements of GF(5) may be taken as
-2,-1,0,1,2 and mapped into real aumbers X(=2), X(-1), X(0), X(1)
and X(2) so that X(-2) = -X(2), X(-1) = =X(1) and X(0) = 0. If
| {Si} is mapped into {xﬁ-, the latter becomes an éntisymmetrig quinary

. n, 25
sequence with period p=N=5 -1,
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2.4 Higher order autocorrelation functions

th
The r order autocorrelation function of a pseudorandom
sequence‘[xi} is defined by

P-1
2.6

gl
X
»
»

B(ipsiyseneri)=

i=0

th
and the r = order autocorrelation function of a pseudorandom signal

x(t) is defined by

PT
= L :
8(.TsTyyee e T)= 57 ,(I;x(t- ©)x(e-T,) o x(t=T)dt 2.7

These two correlation moments are equal at the sampling
instants T=iT; furthermore since x(t) is constant in any interval
iTstS(i+l)T, the continuous autocorrelation function is linear in

any Tj in any interval iTSTjgsg(i + 1)T, so from equations 2.5, 2.6,and

2.7,
e('Tl,TZ,ooo,Tr)':z z .-»z ¢(il,iz,c.o,ir)
= immwi =
T Crk—ikT)
x kfl 1 - = U(rk-<1k—l>T)fU&k-<1k+l>T) 2.8

2.5 r-dimensional crosscorrelation function

The rth order kernel of a nonlinear system may be determined by

crosscorrelating the system output with an r-dimensional product

formed from the input. As shown below, if the input is delayed by

multiples of the sampling interval, both continuous and discrete

crosscorrelations yield the same result.
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2.5.1 Continuous crosscorrelation

The crosscorrelation function 6f the output signal y(t)
and the r-dimensional product of the input signal delayed by
multipyles of T, x(t-JlT)x(t—JzT)...x(t-JrT), is obtained from
equations 1.1, 2.7 and 2.8 as |
T

r
y(t) T x(t-J,T)dt
h=1 ‘

f f f wJ.(Tl,Tz,...,TJ.)

x(t—JﬁT)dt

T
X hgl x(t-JhT)dt dTldTZ...de

[+

= z J lf...fwiCrl,

. ; "."Tj)e(Tl’}tZ’."’Tj’JlT’
J

T

1"00"90 = ®©

oo T.
JZT,...,JrT)dT'ldTZ' d J

w¢ (il,izy---aij ’Jl’JZ"”’Jr)l

J=]_ 1:.00 2-— -0 =
j T 3
x o0 o0 OOW (T T v T ) l - ( k 1kT)
j I'-' j‘ j l’ 2’ ’ j ]'I T
- 00 = 00 - 0 =1

.<i =1>T)-U( T =< TdT...dT,
x| Uy - <4, = 1>T)=U( T i +1>T) | a ]

k 1" 2
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= 2 Z Z L 2 ¢(il,iz,-o.,ij,J1,J2,ooo,Jr)
J=]- 1l=_.oo 12=..co -j_j:_ ©
(i #1)T  (i,+1)T (1,+1)T i
J f i
. J A
x cee wj(Tl;fz’...,Tj) I .1- T

(il-l)T (iz-l)T (ij-l)T . k=1

drydty -d

The above expression gives a weighted estimate of
Wj(’ﬁ,Tz,.oo,Tj). The weighting is symmetrical about ilT,iZT,...,ijT,
so if the kernel is expressed as a Taylor series about this point and
if T is sufficiently small for the second and higher terms in the

Taylor series to be ignored, then

PT T

1

7 f y(t) I x(t-JhT)dt
0 h=1

¢ (il’iZ"” ,ij 9J19J27'~- ,Jr)
x wj(ilT,izT,...,ijT) 2.9

For physical systems, wj(ilT’iZT""’ijT)=0 for il’iz""’ij<0’
and since the input pseudorandom signal is chosen such that
Wj(ilT,izT,..;,ijT)=0 for i T,1 T,..;,ijT?RT where R<N, the lower
and upper limits in the inner summation signs in equation 2.9 can
be changed from -« to 0 and from +w to R. Physical systems will
also contain a‘finite numbér of terms and therefore the upper limit

in the outer summation sign Will be n, the number of terms in the

. Volterra series.
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2.5.2 Discrete crosscorrelation

Assuming that the output sequence {yi} is obtained by
intersampling the signal y(t) so that

y; = y(«i+ssT) 2.10
then, from Barker's synchronous sampling theorem for nonlinear

33 . . . .
systems, the discrete equivalent of equation 1.1 is

. ® oo o (i 45T (i 45)T  (i.45)T
N S S R S A
j=l dy==2iy=-® 1,57 (i-0)T (i,-9)T (=0T
j
wJ.(Tl,TZ,-.-,TJ.). i xi_ikdrk 2,11

From equations 2.1l and 2,6, the crosscorrelation between the -

output sequence y; and the r-dimensional product formed from the

input sequence is given by

P-1 T
= Y. X, _
P 120 i hel i Jh
(1 H)T (14T (i+)T
P-1 . - ,
- SOy J / I
ok R D S N R o
i=0 J=1 il=-°°i2=-°° 1j=-°° (11'15)‘1‘ (12“15)’1‘ (lj";ﬁ)T
. T
. oo.T.) X. = dT n X.
wJ(Tl’T 2°°°°7 30 1 i-i, k.21 i-J.

s 4T (i .45 i.+5)T
(11+2)T (12+2)T (1J+2)

I o

- O TR, i -l .,-;" T
(11 5)T (12 5)T (1'J 2)’

j=1 iy=->1 = 1j

[
~8
©~

D

*

B o>~ 8

—_—

Topel ]

-
w. (T ) 5 m ox, . d I x,_
J(_l’TZ’ "’FjAPi=O =1 i-i, Tkh=1 1Jh
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o e e e GT (T (T
D R A J L

jel 4= e imm e ggme (3BT (DT ()T

Wj (T ].’TZ"'.’Tj)q)(il’iZ’.“’ij ,Jl,‘Jz,--o,Jr)dTldTZ...d Te

i
-7 1 I .1 o R e Jyseeesd)
j=1 ll=-°°i2=-°° 1J—- ©

(1 )T (LT (LT
f [ o j ijr1,12,...,Tj)dTld’E...de

2.12
The weighting i§ again symmetrical about ilT,izT,...,ijT.

If T is sufficiently small for second variations in
wj(Tl;rz,...,Tj) to be ignored in regions of dimension T abou;

any point, then for physical systems,.equation 2.12 reduces to

P-1 T
P 2 yi I i-Jy
i=0 h=1
n ; R R : R
= Z »T ,Z z... Z ) (11’12""’1j’Jl’JZ"'°Jr)Wﬁ<lIT’lZT’"'1jT)
j=1 1l=0 i,= 1j—0

2.13
This is the same as the expression obtained for continuous
crosscorrelation.

2.6 Correlation expressions for the systems investigated

 The expression for the r-dimensional crosscorrelation
function given in equation 2.13 involves all the kernels of the
system. The ease with which the rth order kernel is extracted from

this equation depends on the nature of the system and on the higher
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order autocorrelation function properties of the input signal.

2.6.1 One-dimensional crosscorrelation

When a system is represented by more than the first two terms
of the Volterra series, it is not possible to make an error-free
measurement of the first order kernel by simply crosscorrelating the
output signal with any input pseudorandom signal. These errors are
fully investigated in chapter 6. The systems considered are those
which can be represented by the first three terms of the Volterra
series but in the case of antisymmetric binary and ternary input
signals, the results presented are valid no matter how many even
order Volterra terms are present. This is because all the odd-order
correlation moments of antisymmetric pseudorandom signals are zero.

In the estimation of the first order kermel or weighting
function of a system in which it is assumed that all the kernels
decay to zero after a time RT, where R is less than the period of
binary signals or half the period of antisymmetric Binary or termary
signals, continuous crosscorrelation measurements are denoted by

: PT
e(IT) = ——— [ y(t)x(t-IT)dt 2.14

2
PT " $(0,0) O
and discrete crosscorrelation measurements are denoted by

P-1
S — 2.15
e(IT) = PT¢(0,0) Z Yi¥i-1
’ i=0 '

so from equations 2.9 and 2.13,
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3

1 sel R R. R
e(IT) = —F77—=% J
.=l i, = 1 = L —
J 11 0 12 0 1j_.0
LI COTE PYTRRFLITLY wj(ilT,izT,.f,,ijT)
3
=2 eJ'(IT) 2.16
j=1
where
R R R
RN S R ) y
e.(IT) = ———=—= T . s .
J( ) d)(0’0) LI d)(ll,lz,..o,lj,l)
11=O 12=Q 1j=0

X Wj(llT,lzT,...,le)

When the second and third order kermels are absent,
equation 2.16 reduces to the well known expressibn for evaluating
the impulse response of linear systems. If the second order
autocorrelation function of the input sequence is zero within the

range RT except at i1=I=0, then from equation 2.16, the first

order kernel wl(IT) is given by

R
1 . . ;
e, (IT) = 375,00 zo wy (1yT) ¢ (1)
1
R
1 e
i, =0
1
= Wl(IT) 2.17

while eZ(IT) which isvgiven by




R
T . o ..
eZ(IT) = %0.0) ¥ ¥ Wz(llT,lZT) ¢ (11,12,1) 2.18

2

R R
I s s L. .
e3(IT) = ¢(0,0) Z Z w3(11T,12T,13T) ¢(11,12,13,I)
= '3:

2.19

are errors due to second and third order nonlinearities respectively.

2.6.2 Two dimensional crosscorrelation - single input system

Antisymmetric pseudorandom signals are used for the measurement
of second order kernels because the odd-order autocorrelation
functions of such‘signals are zero and therefore the effects of the
first and higher odd-order kernels are absent from the crosscorrelation
result. Furthermore, if the system under investigation contains no
even order kernels except the second, the two-dimensional
crosscorrelation involves the second term alone. If JT and KT are

the amount by which the input signal is delayed, then from eqns. 2.9

and 2.13,
PT
%ﬁ:— [ y(£)x(t-IT)x(e-KT)dt
0
R R
2 . s
= T" . Z : z $ (11,12,J,K)w2€11T,12T)
1l=0 12=Q
P-1
_L o}
=7 " Yi%igNiek 2.20
i,=0

Now continuous two-dimensional crosscorrelation measurements are

denoted by
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PT
e (JK,KT) = ——— ¢ (£)x(£-IT)x(£-KT)dt 2.21
2PT" ¢(J,K,J,K) f .
0

and discrete two-dimensional crosscorrelation measurements are

denoted by
P-1
1
e (JK,KT) = Y ooy.x, X, 2.22
2pT% §(J,K,J,K) o 171-J71-K
So from eqn. 2.20,
R R
1 .. .o
e(JT,KT) = TR0, ) Z ¢(11,12,J,K)w2(11T,12T) 2.23
: 1l=O 12=O
1" "2 1 72
where ij is the kronecker delta eqn. 2.23 becomes
R R
1
eWT,KD) = 337 T 0 I L 6w,ka,K)
ifOifO
x(8. s v F6 . 8 W (L,T,1,T)
11J6121< i,K%,J 271772
= %[§Z(JT,KT) + WZ(KT,JTi]
= wé(JT,KT) by symmetry ' 2.25

_Thus provided eqn. 2.24 is satisfied, each crosscorrelation
measurement e(JK,KT) yields the corresponding value WZ(JT,KT) of

a second order kernel directly. Since the fourth order
autocorrelation functibn of a pseudorandom signal is dependent on
the characteristic polynomial,25 signals of the same level and order

obey eqn. 2.24 for different values of il’iZ’J’K° The index of




performance of a signal with the criterion that each crosscorrelation
measurement yields the corresponding kernel directly may be
defined as the upper bound Ry of R beyond which eqn. 2.24 cannot
be satisfied. By comparing the values of R, for all signals of
a particular class, those pseudorandom signals for which Rl is
greatest may be seiected as most suitable for second order kernel
measurements.

Unfortuna?ely the greatest value of R1 for any class of
signals is small in relation to the signal period. This difficulty
may be partly overcome by extending eqm. 2.24 to include the nonzero
off-diagonal values in the fourth order autocorrelation functioms.
The simplest extension is to allow pairs of off-diagonal measurements
e(JlTJKlT), e<J2T’K2T) to yield corresponding pairs of values
wz(JlT,KlT), W2<J2T’K2T) of second order kernel. From equation

2.23, this requires that

+68. 8. 1)
1K) 1,9,

+¢(J yK.,J, 5K >((S. S . + 6. 1)
22727171 11J2 12K2 11K2

.o )
12J2

6 (1)51,5050K)) = $ILK T KD Gy 565 g T 85 k81 )

1”1 2™

+¢(J9K9J9K)<5- § . +§. S . )
227227272 lIJZ 12K2 11K2 12J2

2.26

for all 0511212,J1#K1#J2#K2$R, in which case

P
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e(J,T,K,T) _, w, (I, 75K, T) wz(JlT,KlT) o e(3 T,k T)
=4, and there- = Z2
e(JZT,KzT) wz(JzT,KZT) fore wz(Jl’[‘,KlT) e(JZT,Kz’I‘)
Z _ ¢ (JZ,KZ’J]_’K]_)
where 2= 1

-t

e —

The upper bound R2 of R beyond which eqn. 2.26 cannot be satisfied
is the index of performance with the criterion that pairs of off-
diagonal measurements yield corresponding pairs of second order
kernel values, except when the matrix’Z2 is singular, in which case,
the values WZ(JlT’KlT) and WZ(JZT’KZT) are not seperable, and

the performance index R, is equal to R;.

In general, the criterion that sets of ¢ off-diagonal
measurements yield corresponding sets of r values of a second order
kernel gives a performance index Rr’ which is the upper bound of R
in

T

¢ (ll’lz’Jj ’-Kj>= Z
' k=1

0(J, K ,J.,K.)6E . 16 5 +6. w6+ 1) 2.27
k Kk 'J j 11Jk 12Kk llKk 12Jk

j = 1,2,.0.,T
for all 0511,12,J1#K1¢J2#K2#...#Jr#KrsR provided that the r x r
matrix

Z _ ¢(Jk’Kk’Jj ’Kj)
. =

J.,K,,J.,K,

¢(,J’ A J--)

2,28

0 (T oKy T3 0K3)
HK, 5 J. 5K,
¢(JJ J JJ KJ)

with element in the jth row and Kth column is

not singular.
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¢ (Jk’Kk’Jj’Kj> is nonzero when a linear relationship

S =0 2.29
1 1-J 1- 3 1-J a4 i-K, :
Kk 3
exists between S. J , 1- and Si-K for nonzero
[ Kk ‘ j
a;,a,,85,8, in GF(P). i

f [E(J'T’KjTE] is the r vector with element e(JjT,KjT)
in the jth row, and if E%Z(JjT’KjT§J is the corresponding ¥

vector with element WZ(JjT’KjT) in the j  row, then

E(JjT,KjTEl ,iv (J T,K, T:[ and Ea (J T,K. T] [(J T,K, T:l

2.3
<
OSJI#K1¢J2¢K2#...#Jr#KrsR Rr

1f Zr is singular, the values wz(JlT,KlT), WZ(JZT’KZT)""’
w (JrT’KrT) are not separable and the performance index R is
simply given by Rr=Rr-1'

Since diagonal terms of ¢(il,i2,J ,K) with i,=i, are excluded

from equation 2.27, off-diagonal terms cannot appear in

¢(il,i2,J,J) for any Ogil,¢i2’JSRr’ S0

R

. . T
¢(119129J,J) = Z ¢ (k,ksJ,J>6i Ksi K
k=0 1”2

and diagonal measurements with J=K in equatioms 2.21, 2.22 and

2.23 give

R
e(JT,JT) = m % $ (K,K,J,3)w, (KT, KT)

J=O,l,.oo,R$Rr

If e(JT,JTz] is the R+1 vector with element e(JT,JT) in the

(J+l)th TOW aﬁd if [%Z(JT,JT?] is the corresponding R+l vector with




PR R PO N e S T

- 30 -

element wz(JT,JT) in the (J+1)th row, and if the matrix Y
defined by
¢ o | 8(K,K,T,7) )31
: [Zq;(J,J,J,J) . .

. ¢ K,K,J, . :
with element Zi(J,Jfsz) in the (J+l)th row and (K+l)th column

is not singular,

E(JT,JTE{ =Y EZ(JT,JTﬂ and EZ(JT,JTE] = Y-lE('JT,JT_S]

2.32
1f Y is singular, then the diagonal values W2<0,0), W2<T,T),...,

WZ(RT,RT) are not sepgrable.

2.6.3 Two dimensional crosscorrelation - two input system

A block diagram of a system with a single output y(t) and
two inputs xl(t) and xz(t) is shown in fig. 2.1l. Provided that
the nonlinearity of this system does not exceed the second order
the input-output relationship may be given by the Volterra series
as

©

p©) =] (i (e1)aT + [ wp(Txy (e AT,

+ }o wz Wl(T ]_,Tz)xl(t-'rl)xl(t--'rz)d'rld-[2

[++]

+ ) w-oyz(Tl,Tz)xz(t-Tl)xz(t-Tz)dr1d12

+ wlzérl,Tz)xl(t-rl)xz(t-Tz)drldrz 2.33

- 00 e= ©O

where wl(rl), wzﬁ-z), Wl(Tl,'b), wzérl,TZ) and wlz(Tl;rz) are

- the system kernels. Equation 2.33 is the most general case of

this type; subsequent work will be confined to systems with only

-~




x, (t)
—
y(t)
x, ()
_F_
Fig. 2.1. Two—input; single-output system
x, (£) '
. T
e Wl( 1)
y(t)

» w2( Tz)

Fig.2.2.

o A

System with multiplicative nonlinearity.




multiplicative nonlinearity, a typical example of which is shown
invfig. 2.2. This consists of two linear dynamics followed by

a multiplier and another linear system. The output y(t) of the
system of fig. 2.2 is given by

y(t) = f f:lz('rl, 'cz)x(t-rtl),x(t-'cz)d'c ldTZ 2.34

-0 o

where the second order kermel wlz(il;rz) is given by
T %% T

Wi (st gy) = {) Wy 0w (o l-A)v'vz(Tz-'x)d'A 2.35

To determine this second order kernel by crosscorrelation, the
same pseudorandom signal may be used in the two input channels
except that one will be a delayed version of the other. If x(t)
and x(t-VT) are the input signals, then two-dimensional

crosscorrelation gives

, | N\
= [y(t)x(t-IT)x(t-VI-KT)
PT
_ , B R
or =,T _z z le(llT,lzT)
1l=0 12=O
.P-zl
1
P, Yi¥123%1-V-K
= / (11,1 ,H7,3,KHV)

2.36
The estimates e(JT,KT) of the second order kernel wlz(JT;KT) are
therefore obtained by continuous or discrete crosscorrelation as
1 R ‘
e(JT,KT) =5 (3,KH,3,KH) ) . )

Wy, (1 T,1,TH (1_1,12+V,J,K+V)

2,37




3 381K 2.38

If ¢(il,iz+V,J,K+V) =¢ (J,K+V,J,K+V)$
. )

0si J,KR

l’i2’
then e(JT,KT) = wlz(JT,KT). | 2.39
Thus the dynamics of a two-input, one-output ‘system with
multiplicgtive.nonlinearity can be accurately determined by
crosscorrelation provided eqn. 2.38 is satisfied. The index of
perfqrmance of a signal with the criterion that each crosscorrelation‘
measurement e(JT,KT) gives the corresponding kernel WlZ(JT’KT)
directly may be defined as the upper bound RTl of R beyond which
_eqn. 2.38 cannot be satisfied. The most suitable signals in this
application are those with highest values of RTl’

Equation 2.38 implies that no three or four term linear
relationships must exist within the regions 0 to R and V to VHR.
It is possible to remove this restriction. For example, a three
term linear relationship involving the arguments Jl, K1+V and

K2+V may be allowed provided

¢(il,iz+V,J 1<1+v) = ¢(J K FV,T 1<+v)<s 8,

’ ’
1 1 17; 1K
+ ¢(J,,K +V,J.,K +v)(s
1’2 1 11J1 9 2
and
¢ (11,12+V,JI,K2+V) = ¢(J1,K1+V,J1,K +v)<s 784
A 1 1 1%
+ ¢(J,,K,4V,T,,K, +v)<s i 2.40
172 1 - 1J1 X9

0si ,1,,0,,K KSR
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in which case, from egmns. 2.37 and 2.40,

pommann

h—
‘ o ¢(J1,K2+V,J1,K1+V)
J.T,K.T
e(J,T,K)T) _ 1 33 KV, K H) Wy, (3 T5K T
e(J,T,K,T) w. (J,T,K T)
L #(J. K. 4V,J. ,K +V) 1277172
1’1 1’72 L
¢(J1,K2+V,J1,K2+V)
—  —
2,41

The kernels wlZ(JlT’KlT) and wlz(JlT,KzT) are easily obtained
by solving eqn. 2.4l. If a four term linear relationship

involving the arguments Jl’JZ’K1+V’K2+V is allowed, then provided

that

¢(1l,12+v,Jl,Kl+v) = (I K H,T K )

+ ¢ (J,,K;+7,7,,K 8

207 1?
and

J i K

.¢(il’12+V’J2’K +V) —(b(Jl’KI+V J2,K +V)Y . 11 Y

+¢ (3,,K)+V,J

2V Z’K +V) §.

6
1,3,74,K,

081 ,1,,7,,K 57, 5KsR 2.42

the pairs of second order kernel values wlz(JlT,KlT) and
W12(J2T’K2T) are obtained from the measurements e(JlT,KlT) and

e(JZT,KzT) as

.

T N §(J, K4V, T K ) -1 -

Wy, (3, T,K ) 1 A 3K HY) e(JlT’KlT')
, ) § (T 5K HY, 3K, H) .

w. (J.T,K.T 1 e(J.T,K,T)

F12°727 72 ¢(J2,K2+V,J2,K2+V) IRt

The upper limit of R for which either eqn. Z.Za-or 2.42, but not

both, is satisfied is the performance index RTZ'
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3., SECOND ORDER KERNEL MEASUREMENT - DIRECT METHOD

3.1 Introduction

The performance criteria and indices of pseudorandom
signals in the measurement of second order Volterra kernels of
single-input, single-output nonlinear-systéms were defined in the
preceding chapter. The performance indices are governed by the
undesirabie nonzero values or the so-called anomalies in the
fourth order autocorrelation functions of the input signal. These
nonzero values are determined by polymomial division.

In this chapter, methods of‘evaluating the performance
indices are explained. These involve numerous lengthy polynomial
divisions and other mathematical manipulations but_it is shown
that the task may be facilitated by the exploitation of some
useful propertiés of pseudorandom signals. The performance indices
of all pseudoraﬁdom.binafy,'ternary and quinary signals which are
likely to be used in practice have been calculated and the signals
with superior performance are tabulated.

All the relevant relationships of the m sequence members for
one of the tabulated polynomials’ﬁere derived to show how the
second order kernel values could be obtained by the proposed
technique. A nonlinear system of known dynamics was simulated in
a digital computer and perturbed in turn by two éseudorandom ternary
signals having different pefformance indices. The second order
kernel values of the system were obtained by twovdimensional cross-
correlation and the results obtained with the two signals compared.
All the crosscorrelation functions were in agreement with theoretical
predictions. The importance of choosing appropriate signals for

satisfactory identification of nonlinear systems is demonstrated by

these results.

-
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3.2 Binary Signals

The fourth order correlation moment of an antisymmetric

i +i +J+K
4 12
(-1

pseudorandom binary signal has the value (X(1)y

when S, . , S, . , S. and S,
1- 1=

are linearly dependent and the
iy i=J

K

4 it SRR /
value {X(1)} (-1) N when they are not. For sufficiently

large N, the latter value may be neglected and the fourth order
éutocorrelation fuﬁctions may then be divided into a number of
subsets as given in eqn. 2.27.

| The value of r is not necessarily the same for each subset
,but.since the matrix 2z in eqn; 2.28 is equal to (-l)JK&KK*JJ+KJ
which is singular except when r=1, Rl is the only index of
pérformance for antisymmetric Binary signals. Rl is the upper
bound of R béyond which eqn. 2.27 cannot be satisfied when r=1,
in which‘case, eqn. 2.29 can have no solutions other than j=k=l.
The values of aj, 2,5 a5 and a, in eqn. 2.29 are unity for binary
signals. The performance index Rl is therefore obtained by ensuring
that there is no linear relationship of the form

S. + S,
l—

+ S, + S, = 0 mod 2 3.1
i-J i-

K L i-1

for O5J#K#L< I <Ry g N-1

The required performance index is equal to T . where I .,
: “mi min

n-1
is the minimum value of I given by eqn. 3.1 for O <J#K#L <Ig N-1.
All the linear relationships in the form of egqn. 3.1 are obtained by
dividing the polynomial DJ+DK+DLby the charaéteristic.polynomial
f(D) until a single term remainder D; is obtained.34

To illustrate the polynomial division method, suppose it is
desired to find the value of I given that J=0, K=l, L=9 and.
f(D)=l+D3+D5. The polynomial division may be performed as shown in

fig. 3.1.
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1 0 1 1 0 0

1 0 0 1 0 1
1 0 0 1 0] O
1 0 0 1 0 1

] .

Figure 3.1. Division of DO+D1+-D9 by the characteristic polynomial

£f(D) = 1 + D3 + D5

The single term remainder occurs at the thh delay and therefore
Si+si-l+si-9+si-12=0'

Determination of performance indices is a time consuming
operation. Complete solution of equation 3.1 requires (N=3) (N=2) (N=-1)
polynomial divisions. Thus to determine R1 for a binary signal of
order 11, over eight thousand million polynomial divisions are needed.

Fortunately this number can be drastically reduced by exploiting

some properties of maximal length pseudorandom signals.
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In the first place, the number of polynomial divisions can
be reduced by a sixth by making use of the commutative law, for

if the equation Si- = § + S + is satisfied for

I i-A i-B Si-C
A=J, B=K and C=L, the same equation is also satisfied for the
following cases: A=J, B=L, C=K; A=K, B=J, C=L; A=K, B=L, C=J;
A=L, B=J, C=K; and A=L, B=K, C=J. It is therefore sufficient to
solve equation 3.1 for 0<J< K<Lg N-2.

Secondly, by the shift and add property, if

Si-I = Si-J + Si-K + Si-L then for any positive integer M,

Si-(I+M) = Si-(J+M) + Si-(K+M) + Si-(L+M)‘ Since the minimum value

of I is of interest and since (I+M) is always greater than I, it is
sufficient to.consider only casés for which J=d. In other words,

no polynomial divisions need be performed with the shifted values of
J, K and L, in which case, the number of polynomial divisions is
reduced to (N-2)(N-3)/2.

In fact, this figure can be further reduced by taking as the
upper limit of equation 3.1 a variable R which assumes an'initial
value of N-1 but decreases as the calculations. proceed. Another way
of minimising the computational time is to terminate the polynomial
division as Sobn as it becomes obvious thét the answer will lie
outside the limit imposed by the previous calculations. For instance,
if the first two values of K and L, say Kl, KZ and Ll’ L2 in
equation 3.14 yield the reSults

S. + S, + S, =S,
i 1-Kl i Ll i Il

S. + S, + S, = S._
i 1-K2 1-L2 i I2

then since the minimum value of I is required, if 12 is greater than

1., the second equation is of no relevance. Unfortunately, there is

l’
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no way of telling before commencing the polynomial division whethér
Il will be‘less than 12, but this fact can be established during
the division, and as.soon as it is known, the calculations are
discontinued for the particular values of K and L.

If R is the minimum of all previous I, only subsequent values
‘of 1 less than R are of interest. The upper limit of L is now
R-2 and therefore evaluation of R1 requires solving the equation

Si + Si-K + Si-L + Si-I =0 mod 2 3.2

I<K<L<I<RgN -1
The possible steps which can be adopted in determining Rl are
summarised below:

Step 1: The variables R, Kand L are assigned initial values of
N~1l, 1 and 2 respectively.

Step 2: The Yalue of I, if any, satisfying equation 3.2 is obtained
by dividing the polynomial D0+DK'+DL by the characteristic
polynomial f(D) until a single term remainder is obtained. .
If 1 is outside the required region, Step 3 is performed;

" otherwise, before Step 3, R is made equal to I.
Step 3: If L is less than R-1, L is incremented by one and Step 2
| is repeated. If L is equal to R-1 and K is less than R-2,
K is incremented by ome, L is assigned the value of K+l and
the procedure is repeated starting from Step 2. When L is
equal to R-1 and K is equal to R-2, the process is terminated
and the performance index is given by R1=R-1,
To illustréte the technique, 'suppose R1 is required for a
pseudorandom sigqpl whose characteristic pélynomial is given by
1+D3+D5. When K=1 and'L=2,3..., the following relationships are

obtained




Further increment of L is not
equation above, R=10.
When K=2 and L=3,4,5,..

obtained
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necessary because from the third

.,9, the following equations are

It is not necessary to perform more divisions for higher values of

I because from equation 1 abo
The remaining relevant

results

.
s+S,  +S .t Sis

It is obvious from the above

ve, R=7.

values of K and L yield the following

relations that R is still 7 and
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therefore the performance index Rl is given by

S,

A program for computing Rl for any pseudorandom binary s{éﬁ;l
is given in Appendix 1l.1l. Since the pgrformance index of a
sequence { Si} is equal to that of the reverse sequencef S_i} R
which is also an m sequence, for which the characteristic polynomial,
f*(D), is the reciprocal polynomial of f£(D) given by

v _ n
£ (D) = C_+C D +eeut CD 3.3

only half of all m sequences of a particular order are investigated.

The performance index Rl has been computed for all antisymmetric
pseudorandom binaryvsignals with characteristic polynomials of order
2 to 11, and the characteristic polynomials of each order for which
the performance indices Rl are greatest are given in Table 3.1.

Since the matrix Y in equation 2.31 is equal to[j%:]which is
singular except when J=K=0, the diagonal values of a éecond—order
kernel are not separable by antisymmetric pseudoranddm binary signals.
The use of these signals in this application is therefore restricted

to the measurement of off-diagonal values.

3.3 Ternary Signals

The ternary signals' fourth order autocorrelation functions
¢(il,iz,J,K) for O« il,iz,J#KS Rg Rm, where Rm is a limit beyond
which diagonal terms appear, may be divided into a number of
subsets given by eqn. 2.27. The fourth order correlation moments

are zero except when eqn. 2.29 is satisfied, in which case,




Table 3.1
Characteristic Polynomials of Antisymmetric Pseudorandom Binary

Signals with Greatest Performance Indices.

Coefficients of characteristic . Performance
Order polynomials £(D), £ (D) ' Period Indices A
' v
n CO c1 02 c3 c4 c5 c6 c7 c8 c9 clO c11 2N Rm Rl
2 1 1 1 6 1 1
3 1 0 1 1 14 2 3
4 1 0 0 1 1 30 3 4
1 0 1 1 1 1 7 5
> 1100 10 1 62 L6
1 1.0 0 1 1 1 ) 10 6
6 1 0110 11 ' 126 7 8
1 1. 0 01 0 1 1 20 9
7 1 0 1 0 0 1 1 1 254 13 10
0 0 11 1 0 9 10
1 1L 0 0 0 0 1 11 26 8
1 1 1. 0 0 1 1 11 A 26 8
8 1 01 0 0 11 0 1 510 22 13 ’
1 00 0 1 1 1 01 20 13.
1 0 01 01 0 11 12 13-
1 0 00 1 1 001 1 1022 60 12
9 1 0 1 0 0 0 0 1 1 1 18 19
0 1 1L 0 01 00 1 1 11 2046 82 19
1 o 1 1 1 1 1 1011 25 27
1 0 1 1101 1 0 1 11 142 26
11 1 0 1 1 1 0 1 0 1 1 11 4094 38 36

The performance index Rﬁ is defined in Chapter 6.




5 x 3™ % (]
N

J.,K.,J.,K,) = .
¢ ( 52Kg095 J> 3.4
and
n-2 4
2 x 3%% [x)
J, ,K ,J.,K,) =
o ( LSREIY J) S a,a,a,8, 3.5

If the matrix Zr in eqn. 2.28 is not singular, the
perfor@ance index Rr is obtained as the upper bound of R beyond
which eqn. 2.27 cannot be satisfied for the lérgest subset of
) (il,iz,J,K) with T members. In this situation, eqn. 2.29 may
have at most r solutions K=1,2,...,T for any j=l,2,...,T.

Since diagonal terms are excluded from egn. 2.27, it is

necessary that for all subsets, no linear relationship of the

form

aJSi-J + aKsi-K + aLSi-L =0 mod 3 3.6
exist between any Si-J’ Si-K and Si-L for nonzero ayy ag and ap
in GF(3) for 0 gJ#K#LE RrS Rhf %-. The diagonal limit'Rm is

given by R =L . -1 where L . is the minimum value of L given by
7 "m “min min ‘

S. + a_S. = a_S
1 1~

4 Ki-K Loi-L mod 3 3.7

1 (K<L<Rg5 =1

The above equation is solved by dividing the polynomiai a0D0+aKDK
by the characteristic polynomial £(D) until a single term
remainder aLDL is obtained. Of the four'possible combinations
of nonzero ayr ag in egqn. 3.7, only two yield non-redundant
equations, so for each value of K, it is sufficient to consider
only two polynomials DO+DK and DO-DK.

A'general computer program for calculating Rm is given in

Appendix 1.2 and the values of Rm for some pseudorandom ternary

signals of order 2 to 8 are given in table 3.2,
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The first step in evaluating Rr is to obtain all relationships

of the form

S, +
a; 1'J1 aZSi-Kl + aBSi-Jj + al}Si_Kj 0 mod 3

5= 2,3,000sT 3.8

<
0 Jl#Kl#Jj#st Rm

The coefficient a, and the integer Kj are obtained by dividing

J K J
1 .
alD + azD L + a3D J by the characteristic polynomial until a

single term remainder is obtained.
Of the eight possible combinatiomns of nonzero a,, a,, and

a. in eqn. 3.8, only four of them result in non-redundant equatioms.

3

Therefore for each set of Jl, Kl and J,,division is performed only

J Jl Kl

K .. .
on the four polynomials D 1 +pl+DpJ, D "+D " =D J,

J K J. J K J.
Dl-Dl+DJanle-Dl-DJ.

In view of the shift and add property and the commutative law,
polynomial divisions need only be performed for Jl=0 and
1z K1¢Jj< st Eﬁn' To illustrate this point, all the non-shifted a
values of JI’ Kl which are linearly dependent on Jj, Kj are given
in table 3.3 for a pseudorandom ternary signal whose characteristic
polynomial is 1+D2-D3-D4+D5 and whose diagonal limit is 14. Let
the notati&n

(Jl,Kl)-+(J2,K2) (J3,K3)...(Jr,Kr)
denote the fact that the pair Jl’Kl is 1inear1y dependent on the
pairs Jj,Kj; j=23350003F0

For all the shifted values of leand Kl’ the corresponding
values of J. and'K_j are obtainable from table 3.3. For instance,
suppose dependent pairs are required for J1=é and Kl=9’ table 3.3

gives the result for Jl = 4=4 = 0 and K; = 9-4 = 5 as (0,5) ~(8,11)

(3,14). Therefore by the shift and add property
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-

ol 3 11819 |11]5]| 14

01 5 8 11} 3 14
0] 6 4 1.9 1} 10| 11f 13

0t 7 4 1 8 11| 12

0 104421411619 12
0 1]l 51813917 12§ 6 131 1 | 14

o121 |2}9|1wf7]1l

Table 3.3 Ternary Sequence with Characteristic Polynomial

L+D2-D3-D4+D5;Values of Jl,Kl Linearly Dependent

on J,,K..
J° ]
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(4,9)> (12,15) (7,18)-
Since at least one of the arguments in each pair (12,15) and
(7,18) is greater than Rm; none of the pairs gives rise to a
four term linear relationship within the required fegion.
Howevef from line 1 of table 3.3,(0,1) +(3,8) so by the shift
and add property and the commutative law, (4,9)~> (1,2). Also
from line 6, (0,6) ~(4,9) so by the commutative law, (4,9)+ (0,6).
Therefqre fof J1=4 and Kl=9, the Jj and K.j values in the required
region are given by

(4,9)* (1,2) (0,6) -
Once all the values of Kj which ére dependent on
Jl, Kl and Jj are found, R_ can be calculated by finding the
maximum value of R for which |
(JK,KK)'+(J1,K1) (JZ’KZ)"'(Jr’Kr)
K=1,2,e00,T
0 sjl#KiaéJz#Kz...#Jr#K;s R $R_

For instance, suppose R3 is required for a ternary signal with
characteristic polynomial L+D2-D3-D4+D5. It is obvious from line
1 of table 3.3 that if the above relationship is to be satisfied
for Jl=0 and Kl=1, R must be.reduced from R.m to 11, in which case,

(0,1) *(0,1) (3,8) (6,10)

(3,8) ~ (0,1) (3,8) -

(6,10) ~(0,1) - - (6,10)
which satisfies the required criterion. The test must now be

carried out for all the shifted values of (0,1). The first shift

gives
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(1,2)> (1,2) (4,9) (6,11)

(4,9)> (1,2) (4,9) - (0,6)

s AR SR O T AN o R

6,11~ (1,2) - (6,11) =

(036) > - (4,9) - - (1310)
(1,10y > -~ - - (0,6) (1,10) (5,7) .
(5’7) > - - - = (1,10) (5,7) )

Thus within R=11, there are 6 paifs of values. To reduce this
number to 3, R mﬁst be decreased to 9, in which case,

(1,2)> (1,2) (4,9) -

(4,9)> (1,2) (4,9) (0,6)

(0,6)* - (4,9) (0,6)
which satisfies the criterion.

It can be shown that eqn. 2.29 is satisfied for the
remaining shifted valﬁes of (0,1) which are (2,3), (3,4)ee.5(8,9).
The other nonshifted values of (Jl’Kl) which are (6,2), (0,3)..,(0,9)
and all their shifted counterparts also satisfy the criterion.
Therefore for the sequence under consideration, R3=9.

A computer program for calculating the performance indices
is given in Appendix 1.3, and the performance indices Rr for values
of r from 1 to 20 have been computed for allAternary signals with
characteristic polynbmials of orderFZ to 8; the characteristic
pol&nomials of each order for which each performance index is
greatest are giveh in table 3.2. The reciprocal polynomials f*(D)
give exactly the same performance indices as £(D) and are mnot
tabulated. |

| The off-diagonal values of a 2nd-order kerﬁél for which
R SRr in eqn. 2.23 are obtained from the corresponding off-diagonal

measurements using eqn. 2.30 for each subset. The diagonal values of
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such a kernel are obtained from the corresponding diagonal
measurements using eqn. 2.32, which reduces to a simple form
for a ternary signal. Since ¢ (J,J,J,J) is given by25

n-1 L : n-1

4 2 x 3 4
) { x(1) 2" = &5 {x(1)} 3.9

Il=-l

3

¢ (J,J3,7,J) = N

and ¢ (K,K,J,J) is given by egn. 3.4, -then

¢ (K,K,J,J) B A I B IS
7 0(3,3,3,3) 6 3
so that, since the matrices are (R+l).x (R+1),
-1
¢ (KK, J,J) P N I v
270 (3,3,7,0) 7R+3 '

and therefore eqn. 2.32 reduces to

12

T3 e(KT,KT) _ 3.10

w, (JT,JT) = 6e(JT,JT) -
K=0

J=O,l,ooo,R

3.4 Quinary Signals

The performance of antisymmetric pseudorandom quinary
signal depends..en the properties of the fourth order autocorrelation
function of the corresponding pseudorandom Sequencé which have
been considereé by Barker and Pradisthayon.25 The performance
indices Rr are obtained by procedures based on polynomial division
in a similar way to that described in section 3.3, and have been
computed for values of r from 1 to 20 for all quinary signals with
characteristic polynomials of order 2 to 5. The characteristic
polynomials of each order for which each performance index is

greatest are given in Table 3.4.
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3.5 Example : General Nonlinear System

In the following example, relationships are obtained for
the determination of the values wZ(JT,KT) of a 2nd-order kernel

Wz(Tl,TZ) for which

T,T =
w,(T,T,)) =0 T T,20, T, T,>13T

by means of an antisymmefric pseudorandom ternary signal x(t)
with levels X(1), 0 and -X(1), period 728T and characteristic
polynomial

£(D) = 1+D+ p? - p* 4+ - 0°

From eqns., 2.21, 2.22 and 3.4, off-diagonal measurements e(JT,KT)

with J#K are obtained by continuous or discrete crosscorrelation

as
. 728T
e(JT,KT) = 3 | y(t)x(t-JT)x(t-KT)dt
648T> {x(1)} 0
or 3.11
727
1
e(JT,KT) ) Yi¥i-0%i-K

) 4
648T" Lx(1)} 7

All linear relationships in the form of eqn. 2.29 for

0 sJk,Kk,Jj,K,S 13, are given by changes of order in each equation of

3

s, +5,.,%S; ¢S50 = O
S " Sip*tSiatSin 7O
Sl - S1—5 - Si-lO- S1-12 =0
S, L+ S+ Sy TS T O
Sio1 ™ Sio3 T Sia ¥ 812 T 0
S3-1  Sig ~ Sge11” Si-13 T 0
Sio3 = Sie3 T Sis S T O
Siz = Sio4 T 815+ Sias T O
S, .+, , +S, o+S = 0
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and from eqns. 3.4 and 3.5, eqn. 2.30 may then be obtained for

each subset. For 1 subset with &4 members, the required relationships

are
e(T,6T) 2 1 0-~1 WZCT,6T)
e(0,10T) 1 2-1 0 w,(0,10T) i
=% ‘
e(5T,12T) 0-1 2 O w2(5T,12T)
e(11T,13T) -1 0 0 2 Wz(llT,l3T)
L—— i e — PUSRES
N —— e _— —
WZ(T,6T) 6 -4 -2 3 e(T,6T) '
w2(0,lOT) 9 -4 6 3 2 e(0,10T)
w2(5T,12T) > -2 3 4 -1 ‘e(ST,12T)
wz(llT,l3T) 3-2-1 4 e(11T,13T)
L — L N I —
For 6 subsets with 3 members, the required relationships are of
the form
— —— ———— — — —-—‘ e —— —— S
e(0,3T) 20 -1 w2(0,3T) w2(0,3T) 3 -1 2| {e(0,3T)
e(T,7T) =51 02 1 wz(T,7T) wz(T,7T) =k{-1 3 -2| |e(T,7T)
e(2T,11T) -11 2|fw. (2T,11T)| |w,(2T,11T) 2 -2 4| |e(2T,11T)
L___’.—a L.. .__-s_—z -—-..-—-2- ———— L— —-—-JL——..’...—.
eee3.12
the other Bsubsets obtained by relationships identical to eqn. 3.12
being
o — p— — p— — — g— et
w2(0,llT) WZ(T,AT) wz(T,lZT) w2(2T,5T) W2(6T,13T)
w2(8T,12T) w2(2T,8T) ' w2(9T,l3T) W2(3T;9T) wZ(ZT,7T)
w,(2T,3T) w. (31,12T)| |w,(3T,4T) w. (4T,13T)| {w,(T,11T)
2 ’ 2 2 2 2
- — — L= —1 = _ ]

For 7 subsets wit

form

e(0,2T)
e(3T,llT)

2 -1
L _
-1 2

w2(0,2T)> wz(O,ZT)
w, (3T, 117) w, (3T, 11T)

21
=
12

h 2 members, the required relationships are of the

e(0,2T)
e(3T,11T)
3 13




the other subsets obtained by relationships identical to

eqn. 3.13 being

— — . , ‘
w,(T,3T) w, (2T, 4T) w,(0,5T) wz(aT,ST) w2(5T,10T) w2(6T,llT)
W2(4T,12T) w, (5T,13T) wz(lOT,lzT) w2)2T,13T) w2(0,12T) wz(T,l3T)

For 5 subsets with 2 members, the required relationships are of the

form

e(0,T) . 21 'WZ(O,T) WZ(O,T) 2 =1{ {e(0,T)
=y = ‘
e(6T,10T) 1 2| |w,(6T,10T)| |w,(6T,10T) -1 2| le(6T,10T)

‘..3.14
the other subsets obtained by relationships identical to eqn. 3.14

being

w, (T, 1T) w,(0,6T) | |w,(3T,8T) |, (4T,9T)
w, (7T,11T) | |w,(T,10T) w,(2T,12T) | |w,(3T,13T)

For the 45 remaining values WZ(JT,KT) with J< K, WZ(JT,KT)=e(JT,KT).
For the 91 symmetrical values WZ(JT,KT) with J#.K, WZ(JT,KT)=WZ(KT,JT),
From eqns. 2.21, 2.22 and 3.9, diagonal measurements are obtained

by continuous or discrete crosscorrelation as

728T
1 : 2
e(JT,JT) = 3 A [ y(t)| x(t-JT) | “dt
9727~ { X(1)}
0.
or
727
e(Jr,JT) = 7 : 4 ) yi(xi-J)Z
’ 972T7“{ X(1)} _
~ i=0
and from egn. 3.10, 13
: 12
WZ(JT,JT) = 6e(JT,JT) - ) e (KT ,KT)

=0
J=0,1’.I.,l3




3.6 Example: Simulated Second Order System

To test the validity of the equations developed in the

preceding sections, the system shown in Fig. 3.2 was simulated

on a digital computer. The second order kernel of this system was

T A

determined by two-dimensional crosscorrelation and compared with

o

o

the theoretical result which may be shown to be:

2 -T/T 9 -(J+K—2)T/Tl

w,(JT,KT) = A (1 - e L2 3.15

J,K=1,2,3,...

The linear component of the system shown in Fig. 3.2 is

given by
Al -t/'Tl
w, (t) = =— e t> 0 3.16
1 T
1
= 0 otherwise

. A e e T3

where Tl is a time constant and Al is .a constant. The Z transform

of the zero-order-hold and the linear component is given by

U(z) _ z-1 Z Ay /Ty
x(z) z S(S+ l/Tl)

~T/T
Al(l~e

—T/Tl

)

1 3.17

—T/Tl -T/Tl 5
where Cl = Al(l-e ) and C2 = e .

The simulation diagram of the system of Fig. 3.2 is therefore as

shown in Fig. 3.3.

All the tests were catriedout using two of the pseudorandom

ternary signals given in table 3.2 so as to show the desirability

of a judicious choice of signal in system identification. The first
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X, u. y.
i x(t) i i
Zero-ord i
— order > Linear p—— Squarer > ,
Fig. 3.2 Block diagram of the system to be investigated.

Input
signal

output

Fig.3.3 Simulation diagram of the system shown in Fig.3.2.




signal was derived from a sequence with characteristic polynomial
fA(D) given by

£,D) = 14D - p> - p*-p® 3,18

and the second signal was derived from an m sequence with
characteristic polynomial, fB(D), given by

£,(D) =1+D -0 -0 - p® - p® 3.19

The constant Al and the sampling interval T were taken as unity.
The computer program which was used for the simulation of the
nonlinear system and the éubsequent crosscorrelation is given in
Appendix l.4. |
The results were plotted along lines parallel tb the
diagonal as suggested by Kadri.35 This was achieved by making K
in wz(JT,KT) equal to J+c where ¢ is a constaﬁt. When the results
are plotted in this way, rather than along lines parallel to the time
delay axis, less 'anomalies® are encountered, and the errors due to
these undesirable nonzero values in the fourth order autocorrelation
functions of the input pseudorandom signal vary in a smooth manner
as the delay point moves along an axis pafallel to the diagonal.
Provided WZ(JT, <J4+c>T) = 0 for JT,< J+c> T>;RT, error-free
identification of WZ(JT, <J+c >T) can be achieved if eqn. 3.8
is not satisfied within the shaded and unshaded areas shown in
Fig. 3;4. Any ‘anomalies’ in the unshaded area are forwérd or
positive values which lie within the region 0 to N/2, while those in
the shaded area are backward to negative values which lie within the

region N/2 + 1 to N. The backward values may be obtained from the

forward values by the shift and add property.




Area required to be free of 'anomalies' for correct

Fig.3.4.
identification of second order kernels.
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'llllllll, popb i pr i it JR
. 10
- 10 —
—
/ R |
/ A
7/ - 10 _7
f
Lé -R
=1:f(D)=1+D—D3_D4_D6

Fig. 3.5. 'Anomalies' for C




Equation 3.8 may be rewritten as

S. 4+ -
a8 37 25 (gte) T 2355k TS 0 3.20

" It is sufficient to consider only the cases for which J=0 since
all the other results may be obtained by shifting. If all the
points J, J+c, K and L occur within the significant portion of
the second order kernel, they will result on a bias whose sign is
obtained from eqn. 3.5 as the product of a,, éz, az and a,. If
three of the points occur within the significant portion of the
kernel and the fourth, say L, occurs outside the settling time,
there will be a positive or negative spike at the point LT. This
point corresponds to (L-c)T on the susequent graphs since these
have assumed c as the origin.

The second order kernel values computed by two-dimensiénal
crosscorrelation are shown in dotted lines and for the purpose of
comparison, the true second order kernel values calculated from
eqn. 3.15 are shown on continuous lines.

Fig. 3.6 which shows the results obtained with the polynomial
fA(D) and time constant Tl = 5 sec, contains plots of the second order
kernel for c=1,2,...,10. The differences between the kernel values
obtained by two-dimensional crosscorrelation and the true values
calculated from eqn. 3.15 are due to the existence of linear
relationships in the form of eqn. 3.20. A computer program for
computing these reiationships is given in Appendix l.5. For J=Q,
the relevant values of ¢,K,L,a;,a5,84 and a, which satisfy eqn. 3.20
are shown in Table 3.5. The significant nonzero values in the fourth

order autocorrelation functions of the input signal which cause the
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Table 3.5

Values of c; K, L, ays a,, a and a

3 4 which Satisfy the Relationship

a,S.+a,S.

3

15112,5; _tasS; +a,S; (=0 for the Polynomial 1+D-D -p*-p® used

in Example 3.6.

. | shifted . Sign of
c al a2 a3 a4 I=L~c ala2a3a4 c+K+L
10] 16 1y -1] -1 1 15 + odd
1 2] -6 1 11 -1} -1 ‘
7 6 8 1 1 11 -1 - odd
91 12 1 1| -1 -1 10 - odd
2 1| -6 1] -1 1 -1
8 6 7 1{ -1 1 1 - odd
3 91 14 11 -1 1] -1 11 + even
4 81 14 1j -1 1 1 10 - even
151 16 1} -1} -1 1 12 4+ odd
1] 18 1 1 1] -1 13 - even
5 81 20 1] -1 1 1 15 - odd
101 17 1] -1{ ~1 1 12 + even
6 7 8 1 1 1 -1 2 - odd
101 19 1] -1 1] -1 13 4+ odd
21 f| 1] 1 -1 14 + even
7 6 8 1 1 1{ -1 1 - odd
12| 16 1} -1y -1} -1 9 - odd
5] 20 1 1] -1 1 12 - odd
6 7 1} -1 1 1 o - odd
8 9] 21 1l 1] -1} 1 13. - even
41 14 1 1] -1 1 6 - even
2] 12 1l -1y 14 1 3 - odd
9 31 14 1 1] =11 -1 5 + even
8121 1} -1} 1] 1 12 - even -
121 21 1} -1} -1} =1 11 - odd
61 19 1 1{ -1] -1 9 + odd
10 5{ 17 1] -1} -1 1 7 + even
11 16 1] -1{ -1 1 6 + odd
71| -2 1 1! -1} =1
12 2] 9 1 1 11 -1 - odd
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computed curves to differ from the true ones may be obtained from
this table. For c=1, the two principal relationships given
in table 3.5 are shown in Fig. 3.5.

The 'anomaly' at A causes a negative exponential to commence
at the point (-6+c)T or -5T and this exponential biases the second
order kernel negatively. The 'anomaly' at B causes a positive
exponential to start at the point (16-¢c)T or 15T. Since the true
second order kernel has decayed to zero by this point, only the
‘anomalous’ effects will be observed from the point 15T. All the
other discrepancies between the experimental and theoretical results
can be similarly explained.

For the polynomial fﬁ(D), which as shown in Table 3.2 has
better performance indices than fA(D), the only significant
relationship within the region of interest is

S _S -S =0 3-2].

;7 Si- 7 Si-11 7 Pi-16
Therefore the computed second order kernels should be the same as
the theoretical ones except for the case when c=8. These predictions
are borne out by the graphs shown in Fig. 3.7.

Figs. 3.8 and 3.9 show the g;aphs obtained by doubling the
time constant. .These curves are generally worse than the previous
ones because of the intrusion of more ‘anomalies'.

3.7 Conclusions

The secondAordef kernels WZ(Tl’EZ) of nonlineér systems "
described by Volterra series in which no other even-order kernels
y be measured without interaction with the odd-order

are present ma

kernels by continuous oOT discrete crosscorrelation using antisymmetric

signals based on antisymmetric pseudorandom sequences with sampling

-~




Normalised second order kernels, WZ(JT,< J+C> T)

1.0 o - 63 - 1.0

0,7 _ 0.7

c=9 - . c =10

15 _ - 15
Time, JI secs. .

Fig. 3.7. Second order kernel measurements of the sysgem of
of fig.3.2 using the polynomial 14+D-D3~-p*-p°-p8

and T1 = 5 seconds.

theoretical result, ...... . experimental values.
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Normalised second order kernels, wz(JT, <JHC>T)
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Fig.3.8 gecond order kernel measurements of the S§Stem of
fig.3.2 using the polynomlal 1+D-D3-p%-D® and

T1 10 seconds.

theoretical result, ....... experimental values.




Normalised second order kernels, WZ(JT, <J+C;’T)

0

0,24 ' -0,2%— _ .

Time, JT secs.
Fig.3.9. gecond order kernel measurements of the gsystem of
) fig.3.2 using the'polynomial 14+D-D3-D%-D _DS and
T, = 10 seconds. ‘

theoretical result,  ceeeees experimental values.
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period T. Indices of performance for a signal in this application

are the upper limits Rr of J and K for which the set of all off
diagonal values WZ(JT,KT)-of'a second order kernel may be obtained
in subsets of not more than r mémbers from corresponding subsets

in the set of off-diagonal measurements e(JT,KT). The set of
diagonal values.wz(JT,JT) is then obtained from the corresponding
set of diagonal measurements e(JT,JT) for all Og J SRT’

Pseudofandom»signals of the same level andvorder vary
widely iﬁ their performance. To facilitate the selection of
suitable signals, the characteristic polynomials of all binary,
ternary and quinary antisymmetric pseudorandom signals with periods
less than 8000T which have the greatest performance indices Rr for
values of r from 1 to 20 have been tabulated. The methods of
obtaining these performance indices have been fully described.

The performance indices R1 represent an absolute limit of
performance for binary signals; furthermore these signals canmnot
measure the diagonal values of second order kernels, and therefore,
their use in this application is deprecated. The performance indices
for quinary signals.are all less than those for tefnary signals of
comparable period becausé of the increased density of nonzero‘values in
their fourth order correiation moments, and the performance indices
for pseuddrandom_signals with more than five levels are likely to be
even less for the same reasom. It is therefore recommended that
ternary>signals with characteristic polynomials chosen from those
tabulated here be used in this application.

One of the tabulated ternary signals was used to illustrate the

application of the proposed technique, and the results of a simulated

nonlinear  system were in complete agreement with theory.
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4, SECOND ORDERVKERNEL MEASUREMENT - COMBINED METHOD

4.1 Introduction

In this chapter, a method is proposed for obtaining improved
performance in the measurement of 2nd ordef Volterra kérnel by
combining the results of crbsscorrelation experiments using related
pseudorandom ternary signals so as to cancel the effects of some of
the undesirable values in their 4th order autocorrelatioﬁ functions.
Relationships between'pairs‘of pséudorandom ternary signals, and
their 4th order autocorrelation functions which make them suitable
for this purpose, are established, and their performance in this
application is investigated. The performance with this combined
crosscorrelation method is shown to be generally superior to that
with the direct crosscorfelation;method, within common limits imposed

by the intrusion of nonzero diagonal values.

4.2 Related Pseudofandom Ternary Signals

The 2nd order autocorrelation function of the pseudorandom

ternary sequence {xi} is

N-1
't 1 n-ll: ] 2, \T
¢ (J,K) =g X Xk TN 2% X(1) | (1) S 3Kkt N 4.1
i=0 2
and, for the related ternary sequence {ui }, defined by
= - i ) 4.2
u, (-1) x, | ,
the 2nd order autocorrelation function is therefore
1 N-1
PR =g T UiagYiek
120
N-1
1, (JHK ]
= -ﬁ(-l) xi—in-‘K

i=0
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L n-l[ ]2 JHGH
==2x3 X(1 -1 T
N (1) | “(-1) GJK’l‘EIE
2
1, . gnel r(1F N/2)
- 1o x x| 2 ; .3
N IR N .

2

Now the half period N/2 is even or odd with n, and so

1
¢u(J’K) = ﬁ x 37 l[:X(l)] JK+ for n odd
or
_ l n-1 2 T
¢u(J,K) =5 2x 3 [X(l)] (-1) %K'f N

<§(J,K) for n even A

Therefore, when n is even, as is subsequently assumed, hli} is
also a pseudorandom ternary sequence, and, from the derivation
of such sequences as describéd in section 2.3, if {xi} has the
characteristic polynomial

2 n
£(D) =< +¢,D +.02D +...+:c D 4.5

then { ui} has the characteristic polynomial

cq - c,D +‘c.2D2 oot ’(-1)nann = f(-D) - ’ 4.6
This shows that when a polynomial £(D) in GF(3) is of even order
and primitive, so is the polynomial f(fD).

The importance of the éeqﬁences {xi }and{lli} in this
application lies in the relationship between their &4th order

autocorrelation functions ¢u(i1’iZ’J’K) and <bx(il,iz,J,K),

given by
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¢ (E1r1ysT,K) =

|
Z—
0~
[ort

. i+ 2+J+I< -1
=N (-1) Z X,

1I+12+J+K

(-‘1) ¢x(il,i2,J,K) 4.7

4.3 Combined Crosscorrelation

Estimates eu(JT,KT) of the 2nd order kernel values
WZ(JT,KT) may be obtained by croéscorrelation using the pseudorandom
ternary signal u(t) as the input signal. The performance of u(t)
is similar to that of x(t) except that their fourth order
autocorrelation functions, which afe always equal in magnitude, are
opposite.invsign when the sum of the arguments is odd.

If the eétimates e*(JT,KT) and eu(JT,KT) are combined to give

an average estimate e(JT,KT), then, from eqns. 3.4, 2.23 and 4.7,

%[:ex(JT,KT) + eu(JT,KT{}

R R : .
N - [ . -
) A ) L% ¢x(11,12,J,K)+¢ u(ll,lz,J,KZl
S ELCS) 1,0
l .

X Wz(llT,lzT)

e(JT,KT)

R R
w(l si, 90, K)W (1 T,i T)
n‘z[x(l)] Z Z .

0
4,8

where ‘P(il,iz,J,K> =% l:ggc(il"iZ’J’K)-*- ¢u(i1,iz3JaK)]

1o AR g g |
ylen 2 :I¢x(11’12’J’K) 49
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The function ¥ (i,,1,,J,K) is therefore structurally equivalent

to the 4th order autocorrelation functions ¢ (il,i J,K) and
X

2)

¢ (11,12,J K), except that it is zero when 1l+12+J+K is odd.

The set of functions ¥ (il’iz’J’K) for 0 11,12,J#K5 R <Q
where Qm is a limit beyond which nonzero diagonal terms appear
in y (i;,1,,J, K) at some i,=i,, may be divided into a number of

subsets of the form

w(l yi,J aK )="v{ (J J. K )( . -6, ) .
1012 K_Zl Ko J5 61,3, sz 11Kk 1,9, )

j = l’z’..o’q

O0¢i

Jk+Kk+Jj+Kj even 4,10

and Ip(Jk,Kk,Jj,Kj) is nonzero when S, "Si-Kk’ Si-J.’ Si-K,
. k ] N
are all linearly dependent and Jk+Kk+Jj+Kj is even.

The value of q is not necessarily the same for each subset,
and an'index of performance for the pseudorandom ternary signals
u(t) and x(t) in the combined crosscorrelation method is the upper
bound Q_ of R for which all q<r. The second order kernel values

T -

for which R<Q_s Q_ are then obtained by inverting subsets of not
r . .

more than r equations of the form.

q
e(JjT,KjT) “'ZEX(D:]L’ ) w. (J Kk J.,K )w (J T,KkT)

4,11
j=1,2,ooo’q
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or, for diagonal values, from

R

_ 8
wz(JT,JT) = 4e(JT,JT) - R Z e (KT,KT) 4,12

k=0

J=0,1,...,RS Qm

4.4 Evaluation of Performance Indices

The performance index Rm is the upper limit of il, iz,
J#K beyond which nonzero diagonal terms appear in ¢x(il,iz,J,K)
at some il=i2, and'the performance index Qm is the upper limit of
il,iz,J#K, beyond which nonzero diagonal terms appear in
w‘(il,iz,J;K) at some il=iz. The function ¢ x(L,L,J,K) is therefore
zero for all Og L,J#Kg Rm; and y (L,L,J,K) must also be zero for
all 0 ¢L,J#K sR, s0 Q3 R. ¢X(L,L,J,K) must be nonzero for some
0<L,J#K sRm+l, and this can only bécur when two 'mémbers of J, K
and L take the extreme values 0 and Rmfl, while the third member
takes some intermediate value Pm, so that
¢X(O,Pm,Rm+l,Rm+l) ¢ 0
_ -¢X(O,Rm+1,Pm,PIﬁ) #0  0<P sR ‘ 4.13

¢X(Pm,Rm+1,'0»,O) #0

From equation 4.9,

. P ’ .
. m
P (O,Pm,Rm+l,Rm+1) =% [1+(-1) ] ¢X(0,Pm,Rm+1,Rm+l) 4,14

. R +1 :
! m
] (O,Rm'l'l,Pm,Pm') = ;2’ [;H—(-l) ¢X(O,Rm+l,Pm,Pm) 4,15
Pm+an+l
U] (Pm,Rm'l'l,'O,O) = ;2' l+("l) . ¢X(Pm’Rm+l’0’0) . 4,16

and, whatever the values of P and R , at least one of the equations

4,14 to 4.16 is nonéerb, so ¥ (L,L,J,K) is nonzero for some
05L,J#K <R +1 and therefore

Qm=Rm.

The performance of the combined crosscorrelation method is therefore
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the same as that of the normal crosscorrelation method in respect
‘of the exclusion of diagonal values, and the performance indices
Rr and Qr of each method have the common upper bound Rm.

The performance index Qr is the upper bound of ﬁ for
which all q<r in equation 4.10. Nonzero w(Jk,Kk,Jj,Kj), which
are the same as those of ¢(Jk,Kk,Jj,Kj) given in equations 3.4 and
3.5, occur‘when eqn. 2.29 is satisifed and Jk+Kk+Jj+Kjvis even. The
performance indiccs Qr are obtained by procedures based on polynomialv
division. In view of the relatiomship between x(t) and u(t), the
computer program used to determine Rr can, with minor modificatioms,
also be used to‘calculace Qr'

'The performance indices Qr’ for values of r from one to 20
havc been computed for all pseudorandom ternaryAsignals based on
m sequences with characteristic polynomials of order four, six
an eight, cnd the characteristic polynomials and'perfqrmance indices
of all éseudorandom ternary signals for which the performance indices
Qr are greatest are given in table 4.1. The performance indices of |
ternary signals with characteristic polynomials f*(D) and f#(-D) are
the same as those of f(D) and £f(~D).

Table 4,1 shows that, by appropriate chcice cf the input
pseudorandom ternary sighals, improved performance in cases likely to
be of practical interest may be obtained by means of the combined
crossco;relation method. This is particularly important in view of
the fact that improvements in performance obtained by increasing r

beyond eight or nine are unlikely to justify the concomitant increases

in the complexity of obtaining the 2nd order kexnel values from the

estimates.,




£8
139
194
189
9¢
(A8
£9
G9

601
Sy

8¢
€5
09
16
9¢
4
€9
%9
st
<

V44
81
G1
9¢

4
81
ST
s?

b

20

a

S80TpuUT 3dUBWIOJA3d

1-1=-0 0 0 T 1T 0 1 {1-1 0 0 O T~1 0O 1
1-1-1-1 1-1 1-1 1T }|1-1 1= 1=1-1-1- 11
1-1-0 1 1 0 0 0 1T |1-1T 0 1-1 0 0 O 1
-1 0 1 1-1 0 O 1T {1-1-0 1-1-1-0 O 1
09¢9 -1-1-1-0 1 1-1 1T |{1-1T 1-1 0 1~ 1-1-1 8
1-1-1 0 1 0 0 T T |11 1T O 1:0 O 1-1
i1-0 1-1 1-1 1=-0 T {1-0 1= 1-1-1-1-0 1
-1-1 1 0 1T 1-1T 1 {1-1 1 1-0 1-1-1-1
1-0 1-0 1=1-0 1 T {1-0 1=0 1-1T O 1-1
-1 0 1 0 1 1-0 1 [1-7T-0 1~0 1-1-0 1
1-1-0 1-0 0 1 -1 01 0 0 1
- - 1= 1= 1-0 1-1 -1 1-17 0 1 1 9
-1 1 0 1 1-1 1-1-1 0 1 1 1
-0 I-1T 0 1-1 -0 1-1-0 1 1
08 -1 1 1-1 1-1-1 1 1 Vi
N wu \.U ®U mu QU mu NU AU OO w.u \.U ou mu .wu mu NU HU u
(a=)3 : @z
poTiag sTetwoud1od 9T3STIPIVEBIBYD JO SAUITITII0H 13p1Q

soo1pur souewrojiad 3sajesa8 yitm sTeudrs Aaeural wopueiopnasd peoje[al Jo syeIwoudiod oﬂumﬂumuwmymco

1'% o1qel



- 75 -

4.5 Combined Crosscorrelation with other Pseudorandom Signals

The combined crosscorrelation method is applicable to all
three or higher level pseudorandom signals., For a quinary signal
with characteristic polynomial, f(D), for e#ample, a related
pseudorandom quinary signal with characteristic polynomial f(-D)
exists when f(D) is of any order, and further related signals with
characteristic polynomials £(2D) and f(-2D) exist when £f(D) is of
even order., Although it is possible, by combined crosscorrelation
using two or more related pseudorandom signals with more than three
levels, to cancel the effects of more undesirable nonzero values in
their 4th order'autocorrelation functions than is possible with
pseudorandom térnary signéls, these values are so dense that the
resulting performance indices never exceed the greatest performance
indices of ternary.signals of comparable period. It is therefore-
concluded that signals with more than three levels are not to be

preferred to pseudorandom ternary signals in this application,

4,6 Example - General Nonlinear System

In this example, relationships are obtained for the

determination of the values wz(JT,KT) of a 2nd order kernel

T..T ich
w.( 1’ 2) for whic

2

4,17
T, T,” ST

by means of the combined crosscorrelation method using pseudorandom

ternary signals x(t) and u(t) with levels X(1), x(0), X(-1),

periods 6560T and characteristic polynomials.

2 3 .5,.6.7 8.

£(D) = 1-D-D"=D’-D"4D+D"-D

)]

4,18

5,6 7 8
£(<D) = 1+D-D>4D+D™4D =D’ -D

!
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Estimates obtained by continuous or discrete crosscorrelation,
‘using x(t) and u(t) as the input signals, are given by eqn. 3.11
with e(JT,KT) replaced by ex(JT,KT) or eu(JT,KT). The combined
crosscorrelation estimates are then given by eqn. 4.8.

All linear relationships in the form of eqn. 2.29 for
0 SJk’Kk’Jj’KjS 57 and Jk+Kk+-Jj+-K.j even are given by changes of

order in each equation of

Si'P*si-p-l+Si-p-40+Si-p-43 =0 p=0,1,...,14
852q1-q-18"51-g-19"51-g-27 = ° q=0,1,...,30
S:781-43"5 5448557 = 0
S;55-25"51-52%55.57 = 0
83ptS1op-2"Sip-11%51-p-23 = O p=0,1,...,34
Si-q'si-q-18+Si-q-4o’si-q-5z =0 q=0,1,...55
S ;#8526 S1oprar Siopetd = p=0,1,0008
Si-q+si-q-14'Si-q-28'si-q-54 =0 q=0,15...,3
83 #5pn6™1-po9™S1opetsl = O p=0,1,.#.,16
Si—q+si-q-3o'si-q-33"si-q-55 =0 | q=°’1’2»
Sy opSimp25" 1mp=51" 1-p-56 ° p=0,1 -
81 S1equS1mq-22"01-039 0 q=0,1,...,18
Si-p-si-p-8+si-p-23+si-p-43 =0 p=0,1,...,14
0 q¥0,l,...,6

+S, =
Si-q+si-q-17+si-q-42 i-q-51
4.19

Equation 4.11 and its jnverse are obtained for each subset as follows:
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(a) 13 subsets with 4 members

For four subsets with four members, the required relationships

are
REGXEN 2 a1 0 o] —;;(47T,49TT
e(0,28T) ~y |-l 210 |w,(0,28T)
e (14T, 54T) 0 121 | |w,(14T,54T)
e(15T,57T) 0 012/ |w (15T,57T) 4,20
_ _ 0 U
- — . —
w, (47T, 49T) 3 -2 1| |e(47T,49T)
w, (0, 28T) =_§_ 3 64 2||e(0,28T)
w, (14T, 54T) -2 -4 6 =3 | | e(14T,54T)
w, (15T, 57T) 1 2 -3 &4]|]|e(15T,57T)
L _ L — L _

the other subsets obtained by relationships identical to eqn.

4,20 being
w,pT, < p+49 > T)
W2(< p+28> T, <pt47> T) ~ p=0,1,2

W2(< pt46> T, <pt+55 >T)

w, (< pt4 >T, <p+2l>T)

—

O

The second order kernels for the remaining 9 subsets with 4 members

are obtained by solving the equations:

- —_ i —_ —_
 e(51T,56T) 2-1 00 W2(51T,56T)
e(0,25T) 21 2-1 0 |w,(0,25T)
‘e(52T,57T) T 0-1 2-1 w2(52T,57T)
e(T,26T) 0 0-1 2 wz(T,st)
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e —y

e(16T,22T) 2-10 ? ;;(16T,22’m
e(25T,57T) -y |71 2-1-1} |w,(25T,57T)
e(18T,40T) 0-1 2 1| |w,(18T,40T)
L_e_(O,SZT)__ L_O -1 1 _2_ L__Z(O 52T)
I —_— I —_— — —
e (44T ,57T) 2-1 00 w2(44T,57T)
e(0,43T) o | 1 2-1 1) (1w, (0,43T)
e(8T,23T) 0 -1 2-1| |w,(8T,23T)
e(T,40T) L_?- 1 -1 2 LYE(T,L}OT)

-\-"—‘ prmc— __1 pr——— .._,—..1
e( <p+29 >T, <p+31>T) 2100 |w,(<pr29>T,< p3l> T)
e( <pr40 >T, <p+52>T) ) 1210 |wy(<prs0>T,< pt52> T)
e( <pF, <p+l8 >T) 0121 |wy(pT,< prl8>T)
e( <p¥l9 >T, <pr27>T) 0012 |w,(<pt >T,< pt27> T)
L. — - -1 L= —
p = 0,1,...,5
(b) 89 subsets with 3 members
For 30 subsets with 3 members, the required relationships are of
the form
T [ [ ]
e(l+3T,l+l+T_)T 2 1 -—ﬂ wz(_asT, 44T)
e(25T,52T) | =% 1 2 -1 w2(25T,52T)
e(0,57T) -1 -1 2 w2(0,57T) B
T - 4.21
w, (43T, 44T) 3 -1 1| |e(43T,44T)
w, (25T, 52T) =5 | -1 3 1 e(25T,52T)
1 1 3 e(0,57T)
:7_2-(0,57T)_a L_ 3 ’ |
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the other subsets obtained by relationships identical to

equation 4.21 being

W2(< pt2> T,< ptll> T) | . w2( <q+2 >T,< q+4al> %;1

W2(< pT, < p+23> T) w2( <q+l >T, < q+44> T)

w2(< p+8> T,< p+43 >T) wz( <q+9 > T, < q+24> T)

- | |

p = 0,1,...,14 ) q = O’l,-o.,l3

For 14 subsets with 3 members, the required relationships are of

the form

t(l7T,42'1:;_1 2 1 0] ;2(1713,421.‘_)_1

e(0,51T) =% 1 2-1f |w,(0,51T)

e(25T,56T) 0-1 2| [|w,(25T,56T)

L ] L ] L2 |

4,22

—;2-(17T,42’m "3 .2 o1 [e(urT,s2m) |

w2(0,51T) =k | -2 4 21 {e(0,511)

w, (25T, 56T) 12 3| |e(25T,56T)

the other subsets obtéined’by relationships identical to eqn. 4.22

being

w, (18T,431) | |wy(< p+15> To0 pt55 >T) | [y (<426 > T < atd7> gl
w, (T,52T) w, (< ptl >T, <pt29 >T) Wy < q¥28 > T, < gH49> )
2

w, (261,570 |wy(< pra8 T, <pr50>T i wy( < aTy < qh47> )
|2 e B . _

p = 0,1’2 ) q = 0,1,.-.,8

For 23 subsets with 3 members the required relationships are
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Ry

— —
e(42T,51T) 2 1 1 w, (42T,51T)
e(0,17T) =bs 1 2 0 w,(0,17T)

_ifZAT,43Tz_‘ __} 0 2 w2(24T,43T)

- B 4,23
w2(42T,51T) 4 =2 :;7 e(42T,51T)
w2(0,17T) =5 | -2 3 1 e(0,17T)
w (24T 43T) - 1=2 1 3 e(24T,43T)

e po—— I, —— PO, ——]

the other subsets obtained by relationships identical to eqn. 4.23

being
— —

wz( <p+43 >T, < p+52> T) w2(< qtl8> T,< qt+27 >'f;T

w,( <p+l>T,< ptlg> 1) w, (< qT, <qHi9 >T)

WZ( <p+25 >T, < pt44> T) W2(< q+l6> T,< q+39 >T)

L —1 L —
p= 1,2,3 . q='0,l,.o-,18

For 16 subsets with 3 members the required relationships are

e(0,6T) ' 2-1 0 wz(o;eT)-—W
e(9T,41T) | =% |-1 2 -1 | [w,(9T,41T)
e(2T, 24T) 0 -1 2| |w,(2T,24T)
[ SE— J— S pu—— S ———
4,24
___ . . —_ — .
wz(o,sr) 3 2 1 e(0,6T)
w, (9T, 41T) | =% 9 4 2| | e(9T,41T)
w, (2T,24T) 1 2 3| [e(2T,24T)

the other subsets obtained by relationships identical to eqn.

4,24 being

-~

Ly




W2( <ptl>T,< pt+7 >T)

w, < ptl0 > T, < pta2> T)

w2( <p+3> T,< p+25> T)

1’2’000,15

o]
1]

—

For 6 subsets with 3 members the required relationships are

.

e(18T,52T) 2 1 174. w2(18T,52T)
e(0,40T) | =% | 1 2 1| |w,(0,40T)
e(T,43T) 1 1 2 wz(T,43T)
— — - —_ ' —
4.25
_ _ - o .
w, (18T, 52T) 3 -1 -1 |e(18T,52T)
w,(0,40T) | =k | -1 3 -1| |e(0,40T)
w, (T,43T) -1 -1 3| |e(T,s43m)
| ] L N |

the other subsets obtained by relationships identical to
eqﬁation 4,25 being

—;;(< p+19> T, <p+53 >f;—
w2(< pt+1 QT, <pt4l >T) p = 1’2’”.,5’

w2(< p+2 >T, <p+4s >T)

ared

TR,

(c) 240 subsets with 2 members.

For 167 subsets with 2 members the required relationships are

_ . . - .
e(17T,26T) 2 1 .w2(17T,26T)
=k |
T, 38T : .
e(15T,38T) 1 %_ _YE<1S , S_E_ o 26
] - .1 ]
:;;(17T,26T) 9 -1| |e(17T,26T)
=% ,
W2(15T,38T) -1 2 e (15T, 38T)
po I —d
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the other subsets obtained by relationships identical to

equation &4.26 being

w, (17T, 51T) 1w, (pT, < p+l4> T) | |w,(< ptlds> T,c pt28> T)
w,(0,42T) wy( <pt28 >T, <pt54>T)|  |w,(< pT,< p+54> T)
L

o

p = 0,1,..0,3

WZ( < q+39> T,< q+33> T) WZ( <q+33 >T, < q+55> T)

W, (<q+30> T <.q+55>T)

wz(qT,< q+55 > T) wzl<qT,< q+30%T) wz(qT, <qt33>T)

b

q=0,1,2.

w2(< pHab> T,<pts5 >T) w2( p+37> T,< ptab >T) W, (< p+H195Ty pH4l > T)

w2(< pF+26 >T,¢pt+53 >T) w2(< p+19> T,< p+38> T) W, ( <p+l>T,<p+53 >T)

p ? 0,1,-.0,4

W, (< ptl9> T,< ptas ST W, ( <qt6 >T, <qt46>T w2(< mT,<mtl > T)
T)

WZ(- <p+2s T,< pt+53 >T) (< qt7 >T, < q+49 > w2(<m+40>T,< mt+43>T)

L

p = 091300034 q = 0’1""’7 m = 0,1,..0,14

[ — | > T _
w,( < p+l8>Ts ptl9 >T) | |wy(< pF25 >TS 33 p=0,15...,24
| wz( <pt6 >>T"< pt24” T)

wz(pT,< p+27 >T)

L= U [
_;;(mT,< m+11> T) v (qT < q+2> T) m=0,1,.00525
w (<m2> Ty< mi23 >T)f | Wy <qll>T, <q+23>T) q=0,1,...,28

| © ____L__.

For 73 subsets with 2 members the rvequire:d relationships are

[ o(s3T,57T) | 2 -1 rv;-(431r,57T) |
= 0,44T)
e(0,44T) » -1 2 2(
— — - - = — 4.27
._..(43T 57-51 0 1| (43’1‘ 57TI
=%
w, (0,44T) 1 2 e(0,44T)
27 ] L L ]
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the other subsets obtained by relationships identical to

equationv4.27 being

W2(7T,22T) W2( <ptSl>T,< pt53> T) ’ WZ( < q+6> T,< q+9 >T)
w,(0,39T) w,( <pth >T, <pt32> T) w, (0, <q+41’>T)
p=0,1,...54 q=0,1,...,16

e

wz(mT,< w+9 >T)

wz(mT,<rw+22> T) w2(<m+25>T,<m+51;T)

wz(g mt6 >T, <mt4l>T) w2(<m+7 >T, <m+39> T) WZ(mT’< mt+56 >T)

m.= 0,1
wy( <p+23 5T, < p+38> T)| |w,(< q¥31> T, <q+50 >T) p=0,1,2
W, ( <p+16 >T, < p+55> T) w, (< qt3 >T, <qt52 >T) q=0,1,..0,5
Wz(pT,< pt8 >T) ] wz(qT, <q+7> T) p=0,1,...,14
wz( <p+23 >T, < pt43> T) w2(< qt22 >T,< q+39 >T) q=0,1,...,18
— -

For the 854 remaining values of WZ(JT,KT) with J <K,
wy(JT,KT) = e(JT,KD) | 4.28

For the 1653 symmetrical values, wz(JT,KT) with J> K,
WZ(JT,KT) = WZ(KT,JT) A 4,29

For the 58 diagonal values wz(JT,JT), from equation 4.12,
57 : '
w, (JT,JT) = 4e(JT,JT) - 8 _ ) e (KT ,KT) 4.30
117 2o : ‘

J=0"]-"I'. ’57

Determination of the values of the same 2nd order kernel

by direct crosscorrelation using either of these pseudorandom ternary
ation. For 1451 of the

signals . involves considerably more calcul

e
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1653 values, WZ(JT,KT), with Jk:K, it is necessary to establish
relationships for 3 subsets with 16 members, 1 sﬁbset with 15 members,
1 subset with 13 members, 2 subsets with 12 members, 5 subsefs

with 11 members, 11 subsets with 10 members, 13 subsets with 9
members, 10 subsets with 8 members, 34 subsets with 7 members, 20.
subsetsvwith 6 members, 43 subsets with 5 members, 28 subsets with

4 members, 56 subsets with 3 members.and 68 subsets with 2 members.
The 202 remaining values of this type, the 1653 symmetrical values and

the 58 diagonal values are determined through equations analogous

to eqns. 4.28 ~ 4.,30.

4.7 Example - Simulated Second Order System
These tests were conducted with the system and polynomials
employed in Chapter 3, section 3.6. vThe related polynomials of
_ those of equations 3.18 and 3.19 are given respectively by

3 p% - pS

I

fA(-D) ‘1 -D+D

and
8
1-p+D -D"=D" =D

fB(-D)

The computer program that performs the nonlinear simulation and

combined crosscorrelation is given in Appendix l.4. Theory

indicates that combined crosscorrelation would eliminate the

'anomalous' effects present in Figs. 3.6, 3.7, 3.8 and 3.9 when

J+J+c+K4L in eqn. 3.20 (table 3.5) is odd. This is confirmed by the

graphs in figs. 4.1, 4,2, 4.3 and 4.4 which show that with the combined

method, all the second order kernels can be accurately identified when
’

signals based on the polynomials fB(D) and fB(-D) are used, and that

a marked improvement in the neasurement of the kernels is achieved
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when signals derived from the polynomials fA(D) and fA(_D) are
employed. The superiority of the combined crosscorrelatién
method over the direct méthod can be seen by comparing these
graphs with the corresponding curves in séction 3.6.

4.8 Conclusions

When the polynomial £(D) in GF(3) is of eveﬁ order and
primitive, so 1is the polynomial £(-D), and the pseudorandom termary
sequences and signals of which these are the characteristic polynomials
afe closely related. In particular, one sequence may be obtained from
the other by reversing the sign of every other member, aﬁd the fourth
order correlation moment of one sequence has the same structure as that
‘of the other, the values of these functions being equal whén the sum
of the arguments is even, and equal in magnitude but opposite in sign
when the sum of the arguments is odd.

If estimates of the values of the second order kernel of a
nonlinear system are obtained by crosscorrelation experiments in which
related pseudorandom ternary signals are used as the system input
signal, then addition of these estimates results in the cancellation of
the effects of those undesirable nonzero values of the fourth order
autocorrelation functions for which the sum of the arguments is odd.
This combined crosscorrelation therefore results in improved performance
without a concomitént increase in the compléxity of obtaining the
second order kernel values from the estimates.

Although the upper bound of the indices of performance for the
combined crosscorrélation method are the same as those for the direct
crosscorrelation method, Significant improvements of performance may be
obtained within these limits,

The characteristic polynomials and performance indices of those

as demonstrated by the two examples given.

P
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pseudorandom ternary signals for which the performance indices are

greatest have been tabulated.
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5. TWO~INPUT, SINGLE-OUTPUT SYSTEMS

5.1 Introduction

The majority of the work on identification using pseudorandom
signals has been confined to single-input, single-output linear
systems. Many practical systems however are multivariable. Some
systems have two or more desired inputs and one or more desired
outputs. Others have a single desired input signal but one or more
undesirable input signals; when this unwanted disturbance is of
sufficient magnitude, it adversely affects the system performance.
Determination of the dynamics of multivariable systems using
pseudorandom signals has been hitherto limited to linear systems.43’44’45

The case considered here is a two-input, one-output system with
multiplicative nonliﬁearity. Both inputs are the same pseudorandom
ternary signal except that ome is a delayed version of the other. It
was shown in Chapter 2 that if the délay is carefully chosen, each
crosscorrelation measurément yields the corresponding kernel directly
provided that the system settling time does not exceed a
predetermined value: but this valuemay be increased by allowing three
or four term linear relationships to exist between the m sequence
members within the region of interest. The combined crosscorrelation

method is also investigated and compared with the direct method. The’

most suitable pseudorandom ternary signals for these measurements

are tabulated.

A
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5.2 Direct Crosscorrelation Method

When a pseudorandom ternary signal x(t) and its delayed
counterpart x(t-VT) are the perturbations of a two-input, single-
output system.with multiplicative nonlinearity, the system dynamics
may be determined by crosscorrelating the output sighal ﬁith a
product of the two input signals. As shown in section 2.6.3,each
crosscorrelation ﬁeasurement yields the corresponding kernel directly
provided equatioﬁ 2.38 is obeyed. This equation is satisfied if the

following linear relationships do not exist:

a.S 4+ a,S

Siop FaSigtasSimyy T 0 | | 5.1

= .2
a5 (m4v) T 8,5 _(g4v) asS; g =0 . : 5

~a,S 0 5.3

+ a, s, =
1Sio1 ¥ 2% + a5, (gv)” 2Ci-(L4Y)

0¢ I,J,K,L <R
The performance index RTl is the maximum value of R for which
nbne of the above equations is satisfied. RTl may be determined

in two stages.

5.2.1 Three term linear dependence

The first stage in the evaluation of the performance index

RTl and the delay, V is to determiﬁe two regions 0 sA¢R and

V <Bg< VR which are free of three term linear dependence. This
case is illustrated in fig. 5.1.

Regions'A and B are free of three term linear dependence if

the following two conditioms are satisfied:

(i) No one value in B ;s linearly dependent on amy two values in A.

(ii) No one value in A ;s linearly dependent on any two values in B.
As a consequence of the shift and add property of pseudorandom

ternary signals, condition (ii) is satisfied if no one value in

.
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region C is linearly dependent on any two values in region A,

i.e. if novoneivalue in region D is linearly dependent on two

values in region A. Thus conditions (i) and (ii) may be expressed

in the following manner:

(iii) No two values in A must be linearly dependent on a value in
B or D. When calculating the performance indices, a considerable
saving of effort is achieved by using condition (iii) rather
than (i) and (ii).

The investigation must be conducted for all possible values
oflthé delay, V. The least value of V is R+l; as V increases
region B moves right while region D moves left and they coincide
when V = %. Thus it is only necessary to take V=R+l,R+2,...,%,
since if a solution is found for V an identical solution also
exists for % - V.

The values of R and V which satisfy condition (iii) may

be found by determining all values of K which obey the equation

: = L] 4
alsi-I + aZSi-J + a3Si_K 0 5

0gI#Ig R
and ensuring that these K values do not lie in regions B or D. It
is the V values corresponding to the greatest R that are of
importance and these may be obtained as follows:
Step 1: A reasonable value of R is chosen.
. 1,.J I.J .

Step 2: For I=0, the polynomials D4D” and D -D” are divided by

the characteristic polynomial, £f(D), until single term

K
remainders alD L and aZD 2 are found. These are kept for

subsequent useé.

-
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Step 3: The K1 énd K2 values for all the other comginations of
I and J in eqn. 5.4 are obtained by Shifting the appropriate
values in step 2.

Step 4: For V=R+l, R+2,...,%, the regions B and D (fig. 5.1) are
examined to see whether they contain any values of Kl or
Kz. If three term linear depéndence exists for all values
of V, a lower value of R is chosen and the procedure is
repeated starting from step 2.

Step 5: If any values of V satisfy condition (iii), R is incremented
by one; step 2 and subsequent steps are repeated. In this
way, the greatest value of R, RV’ which obeys condition
(iii) and the corresponding values of V are obtained. These

are used in the next stage of the investigation.

5.2.2 Four term linear dependence

For all the values of V obtained in section 5.2.1, it is
necessary to ensure that no pairs of values in region A are
linearly dependent on pairs of values in region B. This is achieved

by ensuring that mno relationship of the type

S. . =0 5.5
a)S; 1+ 255 F 2%k + a5

exists for all 0 <I#J R <Ry

Cand V gK#L g VR ¢ VAR,
The value of L may be determined by dividing the polynomial

. L . .
alDI+a2DJ+a3DK by £(D) until a single term remainder a, D~ 1s obtained.

However, a more efficient procedure may be adopted by splitting the

four term linear dependence into two pairs, a pair of which lies in

region A and the other in B.

PO
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Suppose
a8 1 T35 % 35Sy
0 $IAT <R 5.6
and
a38; kv 2550 T %Si-n
V s K#L ¢ VAR 5.7
then if ag = -ag and M = N, equations 5.6 and 5.7 give

alsi-I + aZSi-J + a3Si_K + ahsi-L =0

which is the same as equation 5.5. Thus four term linear
dependence may be determined by dividing the polynomials
. ‘

a,D + azDJ and a3DK + aaDL by £(D); if the single term remainders

M and N are equal then Si—I’ Si-J’ S. and Si-

i-K are linearly

L
dependent, if M is not equal to N, no linear dependence exists.
The elegance of this technique is that the time consuming polynomial
division need not be performed at all, for all the values of I, J,
M, K, L and N can easily be obtained by shifting the values stdred
in step 2 of section 5.2.1.

The performance index Rp1 is the maximum value of R for which
all M and N in éqUations 5.6 and 5.7 are unequal for all I, J, K
and L in egn. 5.5. By means of the computer pfogram in Appendix 1.6,
the performance index RTl and the corresponding delay, V were
computed for all pseudorandom ternary signals of order 5, 6, 7 and 8,

and the signals with superior performance are given in table 5.1.

x
The reciprocal polynomials, £ (D) have the same performance as £(D)

_and are not tabulated.

The performance index RTZ is the maximum value of R for which

aﬁy one of the following conditions is met:

-
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(a) One value in region A is linearly dependent on two values
in region B.
(b) One value in region B is linearly dépendent on two values
in region A.
(c) Two values in region A are linearly dependent on two values
in region B. |
The shifted counterparts, if any, of the above values are not
regarded as additional rglatibnships. RT2 and the corresponding
delays V are computed by procedures similar to those employed in
dgtermining RTl' The pseudorandom ternary signals whose RT2 are
greatest are also given in table 5.1.

5.3 Combined Crosscorrelation Method

The performance indices RTl and RTZ may be too small for
certain applications. 1In such cases, combined crosscorrelation
method involving two related pseudorandom ternary signals with
characteristic polynomials'f(D) and £(-D) may be used. If the
signal x(t) is injécted snto one of the two system inputs and the
delayed signal x(t-VT) into the other, the estimate ex(JT,KT) of the
system kernel is obtained By two dimensional crosscorrelétion as
" indicated invsection 2.6.3. Using related signals u(t) and
u(t-VT) defined by u. —( l) X; the estlmate e, (Jr, KT) may be similarly
obtained. By averaging the two results, an estimate e(JT KT) of .

‘the system kernel wlz(JT,KT) is obtained from eqns. 2.37, 3.4 and

4.7 as _
e(JT,KT) = % l}.x(JT,KT)‘+ eu(JT,KT)]
' ' R R |
- nNz 4 ) ‘P(ilv12+VaJaK+V)W12(ilT,iZT)
a3 (1) 3,70 1,70

5.8

.
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where

Y (1,1,4V,3,K4V)

)

¢ [:¢x(il.,iz+V,J,K+v)
+ ¢u(il,iz+V,J,K+V)]

i+ HTHK
5 | 1+(-1) p o (1114, T, KEV)

5.9

The function y (il,i2+V,J,K+V) is the same as the function

¢x(il,i2+V,J,K+V) except that the former is zero when
il+iz+V+J+K+V is odd. Therefore the combined method will at worst
give the same pérformance as the direct method and at best result
in significant improvement.

The performance index Qpq» which is the upper bound of R for
which each combined crosscorrelation measurement gives the
éorresponding kernel directly, and the performance index QTZ’ which

is the ﬁpper bound of R for which pairs of combined crosscorrelation
measurements yield corresponding kernels, have been computed for all
pseudorandom ternary signals of order 6 and 8. The signals witﬁ
best performancé indices are given in table 5.1. The.reciprocal
polynomials f*(D) and f*(-D) have the same performance as f(D) and
f(-D) and are not tabulated.

Table 5.1 shows that useful additions to -the direct~method
performance indices are achieved by fhe combined crosscorrelation
method. In both methods, however, the improvements obtained by
including'the three or four term linear relationships are very small

and are unlikely to offset the effort involved in obtaining the

kernels from the estimates.

-~
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5.4 Conclusions

It has been shown that if a two-input, single-output system
is tested with a pseudorandom ternary signal in one input and the
same signal delayed by a certain amount at the other input, the
system dynamics may be determined by two dimensional crosscorrelation.
The accuracy of the result is affected by the undesirable nonzero
values in the fourth order autocorrelation functions of the input
signal. Since these nonzérovvalues are not the same for all
signals, some pseudorandom termary signals will give better results
than others. These signals with superior performance have been
identified and tabulated. The combined crosscorrelation method
involving two related pseudorandom ternary signals was also considered
and shown to be a useful method of determining the characteristics
of systems which could not be correctly identified by the direct

crosscorrelation method.

-~
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6 EFFECTS OF NONLINEARITIES ON THE MEASUREMENT OF WEIGHTING

FUNCTIONS.

6.1 Introduction

In the measurement of linear system weighting functions by
crosscorrelation, it is well known that the presence of nonlinearities
introduces errors in the estimates.4 This is clearly evident from
the experimental results presented in the next chapter, which is
typical of many results obtained in a diverse number of practical
plants.19’20 Although the identification of these nonlinearities
has been the subject of considerable study36, the investigation of
these effects on the linear estimates when pseudorandom signals are
used has been restricted to a few specific cases. 1,37

A more general form of problem, in which it is assumed that the
behaviour of a system which includes nonlineafities may be represented
by a Volterra functional series, is considered here. Explicit results
are given for systems with second and third order nonlinearities which
are tested by pseudorandom signals derived from binary and ternary m
sequences. As shown in section 2.6.1, these results are dependent on
" the second, .third and fourth order autocorrelation functions of the
input signal.

It is shown that the principal errors are of two distinct
types, a systematic error which is the same for all pseudorandom
signals of'a common type, and an unsystematic error which depends on
relationships between members of the m sequence from which the
pseudorandom signal ;s derived. The unsystematic error may be removed
from a range of interest extending over the settling time of the system

by an appropriate choice of test signal, and those pseudorandom signals

.
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most suitable for this purpose are identified. Three examples,

one of which is taken from results obtained in a practical system,

are used to illustrate and validate the analytical expressions

obtained.

6.2 Estimation using Pseudorandom Binary Signals

The second order autocorrelation function of a pseudorandom

binary sequence mapped from the elements of GF(2) as indicated

in section 2.3.1 is given by

2, ..
X°(1) i,=1,
S Wippiy) = 0 5ij,i,< N

2

=X . 4.
v 17,

Xz(l) n

= - = 1 - 2 51 : 0511,12< N 6.1
12 ‘

The third order autocorrelation function is given by

3 : -
| -X(1) 8,y *S;; *tS;y <0
¢ (i ,i.,i,) = 1 2 3
1°72°73 (1)
o T All other cases.
= (1) l'vznzd'JGiKﬁiH | 6.2
N S e A )

where the summation is taken over all J,K,H for which

S, + S, + S, =0 mod 2 6.3

0 £ J#K#H <N

-
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The fourth order autocorrelation function is given by

(T
1l=12=13=i4

1l=12,13=i4#il

. e e s 4 e e s s s
¢(ll’12’13’14) =*X (L) 1l=13,12=14#11

Sl_i + Sl_l + Si_1 + Sl_. =0
— 1 2 "3 Ty
4
X (1
| C_ é all other cases
4
X (1
o é : 1 - zn{( Gi i 61 i-Fal i 61 i
172 374 173 24
§. + & Y = 28. : 8: 5 &1 s
+ 1114 1213 1112 1113 1114
+7 8 5 8; g O; 161 6.4
11J 12K 13L 14H }

where the summation.is taken over all J,K,L,H for which

Si—J + Si-K + si-L + si-H =0 mod 2

0 § J#KALAH< N ' ’ 6.5

The weighting function estimates and errors due to gecond

and thirdlorder.nonlinearities are obtained by substituting eqns.
6.1, 6,2 and 6.4 into eqn. 2.16., The constant term (-1)j Xj+l(1)/N

in¢ (i ,iz,.. ,i.,I) . results in a constant bias inrej(IT) which

1

is given by

i1 R R R
b. = - _{:-Tl(-él)—l-— D ) wj(ilT,iZT,...,ijT)
J il=0 iz=0 1j=0

6‘6

—
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6.2.1 Linear estimate

The linear estimate obtained from eqns. 2.16, 6.1 and 6.6

is the well known result

n

2
e (IT) = b, + 5 w (IT) . 0SISN 6.7

and it is necessary to remove the constant bias bl to obtain the

required value wl(IT).

6.2.2 Error due to second order nonlinearities

This is obtained from eqns. 2.16, 6.2 and 6.6 as

n
= _-2—- Z < I<
e, (IT) = b, - 5= TX(1) £ w,(JT,KT) 0SISN 6.8

where the summation is taken over O05J,K<R for which

Si—J + Si—K + Si-I‘= 0 mod 2 6.9

Since J and K may be taken in any order, eqn. 6.8 may be written
as -
o0

ez(IT) =b, -

, = % TX(1) 2 Jw,(JT,KT)

0TI <N 6.10

where the summation is now taken over 0< J <K< R in eqn. 6.9.

Apart from the bias, the error due to the second order
nonlinearities 1is ﬁnsystématic because the values of J, K and I
for which egn. 6.9 is satisfied are dependent on the characteristic
polynomial of the pseudorandom sequence. Furthermore the existence
ér non-existence of solutions of eqn. 6.9 for a particular value of I
does not mecessarily imply the existence or non-existence of solutions

for adjacent values of I,:and therefore the error does not vary -

smoothly with I.

o
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Since the values of Wl(iT) are required only for 0g I <R,
.if eqn. 6.9 is not satisfieq for any I within this range of
interest, the error due to second order nonlinearities is reduced to
the constant Bias b2 which may be removed with the constant bias
bl of the linear estimate. For a given m sequence, the upper bound
Rm of R beyond which eqn. 6.9 becomes satisfied for some 0f I §R is
a measure of the limit beyond which unsystematic erfors due to
second order nonlinearities cannot be eliminated when the corresponding
pseudorandom binary signal is used for determining the first order
kernel. Rm is obtained by polynomial division techniques which are
described in Chapter 3, and a computer program for this purpose is
given in Appendix 1.7. The characteristic éolynomials of order 2 to 11
corresponding to the pseudorandom binary signals for which the value
of Rm is greatest are given in table 3.1. The recip;ocal polynomials
f*(D) have the same performance as f(D) and are not tabulated.

6.2.3 Error due to third order nonlinearities

From eqns. 2.16, 6.4 and 6.6,

e3(IT)

2™ 2 R ,
b, + % [TX(l):l 37 w3(IT,jT,j~T)
3 , =0

- 2w3~(]iT,1T,IT) + ZWS(JT,KI’,LT)

<]
n 2
- TX(l)]. [,—f,— £W3(IT,T,T)dT

37N
- 2w, (IT,IT,IT) + Zw3(JT,Kr,LT)]
0< I <N v : " 6.11

Whefe the summation is taken over 0 < J#K#L <R for which

s. .+s,  +8S, . +S. 17 0 mod 2 6.12

-
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Since the first three terms of eqn. 6.12 may be taken in any order,

eqn. 6.11 may be written as

2'[1 ©
e3(IT) = b, + 5 [%X(lg}z [:% jo W3<IT’T,T)dT

-

- 2w, (IT,IT,IT) + 6 Zw3(JT,KT,LT)]

08 I<N 6.13

where the summation is now taken over 0 $J< K <Ls R in eqn. 6.12.
The first term in eqn. 6.13 is a constant bias, the second and
third terms are systematic errors which are always present irrespective
of the characteriétic polynomial of the input signal, while the
last term is the unsystematic error which may be reduced to zero if
eqn. 6.12 is not satisfied within the settling time of the system.

The characteristic polynomials éf Qrder 2 to 11 corresponding
to the pseudorandom binary signals for which the value of Rl’ the
upper bound of R beyond which eqn. 6.12 becomesvsatisfied for some

0 ¢I< R, is greatest are given in table 3.1.

6.3 Estimation using Antisymmetric_ Pseudorandom Binary Signals
The sécond, third and fourth order autocorrelation functions of
antisymmetric pseudorandom binary sequences mapped from the elements

of GF(2) as indicated in section 2.3.1 are given respectively by

%2 (1) _ i=i,
0 (i ,i,) = ) il+12/ o 0< il,-iz< N
12 5 SIEPICS DR NS L
) i+ .
_ -x'(blj)(-l) 1 - 2“51 ; 0% i),i,<N 6.14
‘ 172

¢(il,iz,13) =0 6.15
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1.
4 11—12=13=14
X7(1) il=12,13=14¢11
¢ (il,i2,13’i4) = . . . . .
. 4 11—13,12—14¢11
i =i ,i. =i #i
— 1 4°72 "3°71
4 i 4i +i 41 :
1’23
X (1)(-1) > S, S, ; +S, . 45, . =0
1 2 T3 Th,
4 ll+12+l3+14
_X(W(-1) . . ,
—ﬁ‘-“ all other cases
\ .
4 i 41 i 4i
= - XN(].) (_1:) 1 2 3 4 -vzn {(6. . 6. .
1112 1314
+Giiéii+c§.6..)-26..6..6..
113 2ta T1ta To's 1Yy M3 ity
i i i 41
- 1"y ] |
- S S S
+(1)_ i.J i.K i.L i,H} 6.16

1 2 3 4
where the summation is taken over all J,K,L,H in egn. 6.5
Since the third order correlation moment is zero, there is

no error due to second order monlinearities. The term

1l+12+...+1.+I

_Xh(l)(-l) /N in ¢~(il’i2""’ij’1> for odd values of j

results in a term (—1)I Bj in ej(ITj where % is a constant given

by
L ., R R R i+ .
= o = J- -1) . . .
Bj S [TX(I):I ) ) (_ v Wj(llT,lzT,...,le)
il=0 12=0 lJ=0
j odd 6.17
6.3.1 Linear estimate
From eqns. 2.16, 6.14 and 6.17,
n .
1 2 :
= - A — IT 6.18
e, = (-0 g +5 WD

To obtain the weighting function wl(IT) it is necessary to remove
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. . ) I .
the oscillatory term (-1) B; which is very small in comparison
to wl(IT).

6.3.2 Exrror due to third order nonlinearities

From eqns. 2.16, 6.16 and 6.17, the error due to third

order nonlinearities is given by

I - n ©
e3(IT) = (-1)7B3 + %— TX(l):lz % -L w3(IT,T,T)dT

JHKHLA+T

- 2w3(1T,IT,IT) +6) (-1) w, (JT,KT,LT)

osI<N 6.19
where the summation is taken over 0< J <K< L <R in eqn. 6.12.
The systematic error obtained when usipg antisymmetric
pseudorandom binary signalg is identical to that givén by the ordinary
binary signals while the unsystématic error components have the same

magnitude but may take the opposite sign. The conditions under which

unsystematic errors may be removed are the same for both signals, so

the antisymmetric pseudorandom binary signals with superior performance
in this respect are those for which the value of R, is greatest in

table 3.1.

6.4 Estimation using Ternary Signals

For pseudorandom sequences mapped from the elements of GF(3)

as stated in section 2.3.2, all odd-order autocorrelation functions

are zero and therefore there is mo erTor due to the second or any

other even-order nonlinearities. The second and fourth order

correlation moments are given respectlvely by

n-1

2.3 2 .
P il) = N 12 0si i, <>
) (11,12) = 1’72 2
0 )

.
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n-~-1 :
2.3 2
= == X"(1) §. . <i i <X .
N i, 0 1,1,°5 6.20
and //
n-2
6.3~ 4
X =1 =1 =1
N (]-) 11 12 13 14'
i)=1p,8,=1, 71, )
n-2 ‘
4.3 4 1 =1 =1 1
r— X (D R L A
1)=i,,1,=1571,
2372 4
i,,1 i, - X =
¢ (i dpd ) =5 (Daja,a; a;S;,. +a,8; ; +a8; ; +5; ; =0 (a)
: 1 2 3 4
23" x*(1)a,a -a S. . -a.S, . +S, . S, . =0,i.=i, (b
N 8485 a,5; 5 "agS;y TS5.5 TOiag TVt )
1 2 3 4
n-2
2.3 4
X' (l)a aS. . -a.S., ., -a.S. . +S, . =0,i =i, (c)
N 4 4 1--1l 5 1-12 5 1-13 i 14 2 73
n-2 ‘
2.3 4 L
v X (Dag ~a,8;.5 ~2Sig TasSiy S5 =0+1;71,(d)
1 2 3 4
( 0 all other cases | 6.21
'Equation 6.21 may be written as
‘ n-2.4
e . 377X s 8
$(i yi,in,i,) =—% (s, . 86, . + O . O .
127227374 N i1, 13}4 ii, 1,1,
+ 5. s 8s = ) =668, . 6. . S, . -
1114 1213 1112 1113 1114
| ) s 6
+ 2 Va.a,a,6, . 8: o 8: 18, + 2)a,a. 8, 6. . ,
2:1 273 11J 12K. 13L 14Hv 475 11M 12N 13G 14G
' s & & 8
+22av 8. v O s & S, +22a , . . .
_ b 11M 12N 13N 146 5 11M 12M 13N 14G
6.22

where the summations are taken over all J,K,L,H,M,N,G,al,az,a3,a4,a5 for

which
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a;8;_s+a,S; gtesS; 15y =0 mod 3 6.23

0 <J#K#L#FH < R

5;_g=0 mod 3 6.24

ahsi-M+aSSi-N+
0 € M#EN#£G< R

6.4.1 Linear estimate

The linear term obtained from eqns..2.16 and 6.20 is the
‘well known result
e, (IT) = w, (IT) | 6.25

6.4.2 Error due to third order nonlinearities

Substituting eqn. 6.22 into eqn; 2.19 and noting that the
first three terms in eqns. 6.21(a) and 6.21(b) may be ordered in
six distinct ways but that those in egqns. 6.21(c) and 6.21(d) may be
ordered in only three distinct ways, the error due to third order

nonlinearities is obtained as
22 [7 |
e. (IT) = | TX(1) — w,(IT,T,)dt - W (IT,IT,IT)
3 : T 0 3 3

+2 Za1a2a3w3(JT,KT,LT) + 2 Ja,a.w,(MT,NT,IT)

+] a5, (MI,NT,NT) +7 a5w3(MT,MT,NT)]

051<3§- 6.26

where the summations are taken over J,K,L,M,N,al,az,a3,a4,a5 for

which
. ‘ S. =0
alSi-J+aZSi-K+a3Si-ﬁ+ i-1
=0
a,5; ytasS; i1

0 SJ<K <L€R, 0 <M< NsR; J,K,L,MNAT 6.27

—~

by




- 113 ~

The first two terms in eqn. 6.26 are systematic errors and
the rest are unsystematic errors. Since the last three terms of
eqn. 6.26 add up to zero when a4‘and ac are both negative, three
‘term linear dependence in the form of eqn. 6.24 does not always
result in an error. All unsystematic errors may be removed from
the region of interest by a judicious choice of the input signal.

For a given ternary signal, the upper bound R, of R beyond.which

1
eqn. 6.27 becomes satisfied for 0¢ I <R is a measure of the limit
below which unsystematic errors due to third order nonlinearities
are eliminated. The characteristic polynomials of order 2 to 8

cbrresponding to the pseudorandom ternary signals for which the

value of Rl is greatest is given in table 3.2.

6.5 Examples

The validity of the results derived in this chapter will be
demonstrated by three example;. The first is a simple hypothetiéal
System chosen so as to show clearly the systematic andvunsystematic
errors, and thé precise structural dependence of the latter on
fundamental m sequence properties. The second example analyses a
process with direction dependent dynamic characteristics>and shows
that such a process is a particular case of the general nonlinear
system represented by Volferra series. The third example explains. the
nonlinearities observed in continuous gas chromatography experiments.

6.5.1 System with a simple weighting function

The system chosen is shown in fig. 6.1l. The weighting function,

which is shown in fig. 6.2, has the equation

b .
wj('r T T,) = 0.3 EJ(Tk-O.S)-U(Tk-L}.S)] j=1,2,3
=]

o
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yl(t)

% (t) T y(t)
w( 1) C )X/

-

Fig.6.1. ~ System used in example 6.5.1.
i
:
|
Y
w(t)

0.3

0.2 j=

0.1 |

. | |
| | } | -:' ] | ] L.—J—_T

, 3 &4 5 6 7 8 9 10

Fig.6.2. Weighting function used in example 6.5.1
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where U( T ) is the unit step function. For both binary and ternary

pseudorandom signals, the bit interval, T, and the amplitude X(1) of

the signal x(t) are equal to unity. The linear estimate and errors

due to second and third order nonlinearities are obtained by
separately crosscorrelating the.outputs yl(t), yz(t) and y3(t)

of fig. 6.1 with x(t) using the computer programs in Appendices 1.8,

1.9 and 1.10.
(a) Pseudorandom binary input signal.

For the signal with characteristic polynomial

2 5 6
1+D " +D +D + D7, the results are as shown in fig. 6.3.

The linear component e (I) has the predicted bias

4x0.3  _ X | 126
- 137 = -0,01 with a value of 127 x 0.30 added when I=1,2,3,4 as

expected. The error e (I) due to the second order nonllnearlty has

(4x0 3)
127

the predicted value - %%% X 2 x 0.32 = -0.18 added when I=15,16,17,29,

the predicted bias = 0,01, with unsystematic errors with

30,38. Since Rm is 13 for this signal and wz(J,K)#O for‘J,K=l,2,3,4
only, no unsystematic errors are expected when I=0,1,...,13, and none
occur. The occurrence of unsystematic errors for the other values of I
may be predicted from the following relationships which exist between

the m sequence members:
-0  j=0,1,2
Sio1-3 ¥ 54-2- ¥ Pi-15-3 3=0,1,
=0 k=0,1
S; 1kt Si-3-k T Si-19k ’

=0 ‘ mod 2
S;.1 7 Sian T 5ia38

The error e (I) due to the third order nonlinearity has the predicted

4x0. 3) =-0, 01, with systematic errors w1th the predicted value
127

(3x4x0. 33-2x0 3 ) 0. 27 added when I=1,2,3,4 as expected, and

bias =~

128
127

.
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unsystematic errors with the pfedicted value %%% x 6 x 0.33 = 0.16
added when I1=24,25,81,98, Since Rl is 10 for this signal, and
w3(J,K,L)#O for J,K,L=1,2,3,4 only, no unsystematic errors are
expected when I=0,1,...,10, and none occur. The occurrence of
unsystematic errors for the other values of I may be predicted from the

following relationships which exist between the m sequence members

s, + s, + s

1-1-5 T S1-2-5 T S5a3a5 T S1o04m5 7 0 j=0,1
S + S =

1ol TS5 T8 T S8 70

S + S, + S, + = 0 ' mod 2

(b) Antisymmetric pseudorandom binary signals.

When the input is an antisymmetric pseudorandom binary
signal with the characterstic polynomial given in the preceding section,
the results are as shown in fig. 6.4, except that the error eé(I) aue
to the second order nonlinearity is zero as expected, and is omitted.

The oscillatory term of the 1ine5r component is zero as
predicted for the _particular wl('T) used ip'this case, and the first
order kernel vélues of 0.3 occur whenAI=l,2,3,4 as expected.

In the error e3(I) due tgbthird order nonlinearity, the
oscillatoryterm ié zero as ﬁredicted'for the particular w3( Ty T oo 13)
used in this case. The systematic errors with the predicted value of
0.27 occur when I=1,2,3,4 as expected, and uns&stématic errors with
the predicted value of 0.16 occur when 1=24,25,81 and 88 as expected.

(¢) Pseudorandom ternary input signal.

When the input is a pseuddrandom ternary input signal with

2 3 4 5 .
characteristic polymomial 1 +p“-D° -D + D7, the results are as

shown in fig. 6.5, except that the error eZ(I) due to the second order

~.r
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nonlinearity is zero as expected and is omitted.

The linear component, el(I) has the valuev0.3 when
1=1,2,3,4 and zero elsewhere as expected.

The error e3(I) due to the third order nonlinearity consists
of the systematic component with the predicted value 2x420.33-o.33=0.19
when I=1,2,3,4, and unsystematic component with the predicted values
'-.i-'2x0.33 = f0.5 when I=9,13,14,16,17,20,21,45,59,63,75,77,80,81,83,88,
‘ 96,97,101,102,103,113. Since the value of Rl for this signal is 7 and
w3(J,K,L)¢O for J,K,L=1,2,3,4 only, no unsystematic errors are
expected when 1=0,1,...,7, and none occur. The occurrence of
unsystematic errors for the other values of I may be predicted from

the following relationships which exist betweenn the m sequence members:

-85 .1753.9%81.4%55.9 = 0
8y 105S5e0e g 13y 015y O i =0,1
Si-1-k+SiQ2-k+$i-3-k+si-zo-k =0 k =0,1
8;1781.5"85-4"S145 7 °
Si»l—si-2+$i—4+si-63 =0
-8;1753.5%854%8575 7 °
-85 1¥83.585 #8597 7 °
=83 1-5"51-2-551-3-3"01-80-5 * 0 j=01
-8;.1755-3753.4"55-83 7 °
-85 1+5;.5753.4"51-88 7 °
. =0 k= 0,1

=S PS5k S 13-k 01-96-k

s - =0
S;1785.2"55-4751-113

—
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"S1-1-551-3-5"1-16-5 = © j=0,1
S;118;.4151.59 = O
i1~k Si-2-kSi 101k = © k=0,1,2

‘There are only 6 other relationships of the required form which
exist for 0 £J,K,LS 4 and 0S1I €121, and these are

“5;1y*S

i-3-3%51-50-5 = © j=0,1
=S; 11852k Si-71-k = O k=0,1,2

5421751475190 7 °

but in all the above cases, the unsystematic error is predicted to

be zero for the particular wz(Tl, 5, T3) used in this case, and
therefore no unsystematic errors are expected when I=50,51,71,72,73,90
and none occur.

'6.5.2 Processes with direction dependent dynamic responses

In this section, the use of a pseudorandom binary signal with
levels X(0) = -1 and X(1) = 1 and characteristic polynomial l+D3+D5 to
identify the characteristics of a first order system whose dynamics
is dependent on the direction of the input signal is investigated. It
is shown that the result which is_obtained by direct crosscorrelation
can be achieved analytically by the uee of the formulae derived in this
chapter. The analytical approach results in a better understanding of
the behaviour of this particular. type of nonlineaf system.

The system investigated, which is the same as that considered by

Godfrey and Briggs3l, is described byvthe equations

T }'r +y=xX y positive ‘ 6.28
u .

X y negative ' ‘ 6.29

I

Ty+y

where x is the input, y is the output and Tu’ TD are time constants.

-
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Since the input signal level is tl, eqns. 6.28 and 6.29 can be
combined into a single equation

1

= +tw 7 ty=x 6.30

where r = %(T_ - =) and

The block diagram of eqn. 6.30, which is given in fig. 6.6, represents
a nonlinear system which may be represented by Volterra series. 1If
the fourth and higher order terms are negligible, then the system is
characterised by the first three Volterra kernels given in the S

domain byll

. S
wi(s)=1-g5

rS2

w.(S.,S,) =
271772 | (32+w)(Sr+Sz+w>

6.31

(S.,S.,5.) 3
3{512992°3 (5 ) (5,75 ;1) (578 ,¥5 %)

or in the Z domain by38

Z-1
-wT
e

w.(Z2). =1~
1 7=

rTe‘WT(zz-l)

= 6..32
WZ(ZI’ZZ) :

R T
(Zz—e )(ZlZZ-e )

2.2 -wT

T
T e (23-1)(2223 + e )

wo(Z. ,2.,2,) = - _ -
3*71°72°73 -wT _-wT __=wT
2(23-e _)(2223 g )(212223 e ")

The corresponding time domain exXpressSions are

-~
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i
X(s)
X 1 —
S Y, (8;)
+ Y,(8;58,)
+ Y3(Sl,82,83)
+ e
W
Fig.6.6. Block diagram of a system with direction dependent

dynamic characteristics.




- 124 -

(i,-1)wT
Wl(ilT) =(1-e"he ! i,>0
. . T - -wT =(1,-1)wT
Wz(llT,lzT) = - (1 - e Ye 1 i > iZ> 0 ‘
) . ) r2T2 _w;]:‘ (ll ]_)W’I‘ ..6.33
w3(1lT,12T,13T) = (1 - e .il> 12313 >0
2.2 ~iwTl
, . . _ T 1 .
w3(11T,11T,1lT) =-73 e .1l>0
From the pfeceding equations, the bias, linear term and
errors due to the second and third order nonlinearities can be
computed.
(a) Constant bias.
 From egns. 6.6 and 6.33, the constant bias is given by
- j-1 - R R R
l—TX 1 I . . .
bj = - 3 (1) : z z ces z Vﬁ(llT,lzT,...%le)
) ll=0 12=0 1j=0
O-l )
!—TX(I)IJ
I e o Z-
N Wj(zl’zz’ H J)
» Zl—Zz...—Zj—l
1 .
- :[:]- J=]-
= 6.34
0 j> 1 ‘
(b) The linear component.
This is obtained from eqnS. 6.7 and 6.33 as
0 .
~wT, =(I-1)wT <
el(IT) = - -I]f]- +-2-'[:]- (1L - e )e 0 I<N 6.35

and is plotted in fig. 6.7 for 'T=1, r=%, w=%, N=31 and n=5. These

parameter values are used in all the subsequent graphs.

e
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(c) Error due to 2nd order nonlinearity.

This error is obtained from eqns. 6.8 and 6.34 as

20" |
ez(IT) - - N ZWZ(JT’KT) 6.36

where the summation is taken over 0 J <K& R in eqn. 6.9.
For each value of I satisfying eqn. 6.9, there is a contribution

eé(IT) to Fhe second order'honlinearity obtained from eqns. 6.36

and 6.33 as
e3(11) = N 2Per? (1-e e (VT
-(k~1
= p e (kDT 6.37
where F2 = N-lanTz(l-e-WT)

The values of J, K and I which obey eqn. 6.9 may be
divided into two groups, namely the main terms and the shifted or
subsidiary terms. Once the main terms are evaluated by polynomial
division, the subsidiary terms are easi1y obtained by using the
shift and add property of pseudorandom signals. The main terms
which contribute significantly to the total second order nonlinearity
in the present example are given by

‘ =0 , 6.38
Siap t St Si-Ik |

where-k=2,3,..f,13 and Ik=15,29,6,26,4;11,17,20,25,7,24 and 21 respect-
ively. For each main relationship in the form of eqn.l6.38, there

are N-k-1 subsidiary relations.. Taking a typical case of k=10,

the main relationship |

R =0
;.1 + Sia10 T S1-25

-9T
contributes the value eé(ZST) = er to the second order

nonlinearity while the 20 shifted relations

o .—"-'0 ‘=12.oc 20
‘ Si-l-j + Si-lO-j.+ Si-25—J =14, ’
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1l

. : -10 -

contribute the values eé(26T) = er T, e§(27T) er 11T,...,
=147 ~15T -

ey (30T) = Foe , €,(0) = F,e yessres(13T) = Fpe 28T

respectively. This case is shown graphically in fig. 6.8. The

total second order nonlinearity which is plotted in fig. 6.7 is
the sum of all such contributions.
(d) Error due to 3rd order nonlinearity.

From eqns. 6.13, 6.32 and 6.33, the systematic error is

obtained as

2" 2 .
e, (IT) =5 T3 ) wB(IT,jT,jT)-ZwB(IT,IT,IT)
S j=0
L.
n.2 | 2.2 -wT
_ 207 | 1 Lhe - 1(1-e""Ty - (I-1wr, 2,2 ~TT
N 2 LT .

n 2 4 T | .
2l [%-WT Sli%;f-l - (I-l)(l-e-wfie-<l-l)WT
l-e

6.39
and the unsystematic error is given by
n.2
e (IT) | = é:%%jl- ) w, (JT,KT,LT) , 6.40

u

where the summation is taken over 0. J<K< LSR in eqn. 6.12.
For every value of I obeying eqn. 6.12,there is a contribution
{:e“(IT):] to the unsystematic 3rd order nonlinearity which is
3 : i
u

obtained from eqns. 6.40 and 6.33 as
g
[e?)(IT)]
u

where F3

- T\ _=(L-1)wT
whor 2t (1-e e (L-1)

F3e'(L'1)WT 6.41

N Lo

i}

2

Th(l-e—WT)
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The main relationships which give significant contribution to the
unsystematic component in the problem under consideration are

Si-l + Si-K + ,S:l'.-LK + Si-IK.= 0 6.42

where K=2’394,5,6’798’99

L2=3,4,...,10 and 12=23,27,1l,30,26,24,19,13 respectively

L3=4,5,...,1O and I_=8,14,17,22,4,21,18 resﬁectively

3
L4=5,7,8,9 and 14=19,20,3,ll respectively

Ly=6,7...,10 and Ig

L6=7,8,9,10 and I6=9,29,7,14 respectively

=18,15,25,27,17 respectively

L.=8,9,10 and I.,=13,6,24 respectively

7 7
L8=9,10 and 18=28,26-re3pectively
L9=10 and 19=16

For each main relationship in the form of eqn. 6.42, there are
N=LK-1 subsidiary relations, In a typical case of L3=4, the main
relationship

Si—l + Si-3 + Si-4 + Si-B =0

contributes the ternlv {:e;(BT)j] = F3e-3WT while the 26 shifted

relations
' .. =0
S; 1op T Sia3er T Simher T 0181

r = 1,2,..0,26

contribute the following values:

Eé(w)] = "‘“’T [e (10T)j = F3e_5WT,...,

u

Egom:)] = '25‘”7 [ (0>:] ,..V.,_[egm)]
u u

. =29wT
- F3e .

.t
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This case is illustrated in fig. 6.8. The total unsystematic

cubic error is the sum of all the contributions due to the four
term relatignships in eqn. 6.42 and their shifted values. The
total cubic nonlinear effect is the sum of the systematic and
unsystematic components. These are plotted in fig. 6.9.

‘The sum of the linear, quadratic and cubic terms which is
shown in fig. 6.7 compares favourably with the result obtained by
injecting the pseudorandom signal into the direction dependent
system and crosscorrelating the output signal with the input signal.
This fact is illustrated very clearly by table 6.1. Column 2 of
table 6.1(a) is the response of the direction dependent system to
the input pseudorandom binary signal. The next three columns, which
are obtained by simulating eqn. 6.32 iﬁ the manner suggested by
Schetzen39, are the responses of the linear, quadratic and cubic
components. The sixth, seventh and eighth columns are the errors
obtained if it is assumed that the system is represented by the first,
the first two and the first three terms of the Volterra series
respectively. Columns two to five of table 6.1(b) are obtained
by crosscorrelating the corresponding data in‘table 6.1(a) with the
input signal. The linear, quadratic and cﬁbic‘terms.shown in table
6.1(b) are the same as the theoretical resﬁlts of fig. 6.7. The
computer program which was used to obtain the data in table 6.1 is
given in Appendix 1.11,

An important feature of this system and many other practical

processes subjected to pseudorandom signal testing is the error due

‘to systematic cubic nonlinearity which, in this example, contributes

-up to 10% of the total crosscorrelation function. Since this

contribution varies smoothly with time, it is all too easy when

Y
L]
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Fig.6.9. Direction dependent system: error due to cubic
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POLYNOMIAL 147181
OUTPUT OF DIRECTION DEPENDENT SYSTEM

NO TOTAL LINEAR QUADRATIC CUBIC ERROR ERROR  ERROR

e __T__ __E _____ @ . C L L+0 L+0+C
? 8:23; 3:322 3-229 0.038 0.341 0.042 0.0039
> 0623 < «323 -0.007 P.317 ~-0.006 2.0011

D35S P.303 -0.038 9.2 -
a 0 770 2. 557 o oes .268 3.035 2.0031
A ﬁ.86] @,696 0‘21 ”00055 GrZIS ’@o049 0-@@66
5 @.9]6 g.791 @’]73 '00@63 00]66 “0'053 000100
: o 200 0 o . -3.064 0.125 =0.051 2.0123
.  0.275 -0.019 P.261 -0.014 2.0052
7 D.162 ~0.154 0.295 0.017 0.316 P.021 0.0041
9 P.336 P.025 P.311 =~0.003 P.311 -0.000 0.0024
10 2.597 .330 8.298 -0.034 2.267 -0.030 9.0035
11 D244 -0.086 0.319 D.009 9.330 P.011 P.0016
12 0.541 D.254 2.312 -0.027 0.288 =-0.025 P.0021
13 p.722 0.487 D279 -0.049 0.235 -0.044 2.0052 (a)
14 2.831 D.647 D.236 =~0.061 0.184 =-0.052 2.0087 *
15 D.426 P.132 2.304 -0.012 P.294 ~-D.D10 P.0029
16 B.652 BeAB4 0.283 =-0.839 P.248 =B.035 2.0045
17 . 0.287 =-0.835 2.315 2.005 .32 0.007 2.0018
18 0.567 0.288 0.306 =~0.029 P.279 -0.027 A.0026
- 19 B.221 <-0.114 0.321 0.013 0.335 P.014 P.0013
20 -B.049 -0.391 0.296 .04l @.342 D.045 0.0042
21 ~P.260 <-0.582 0.256 9.057 9.322 P.066 ?.008¢
22 -0.423 -0.713 B.212 0.063 B.289 P.077 2.8137
23 P.137 =-0.1177 0.293 .016 0.314 P.021 P.0046
24 «P.115 =-0.434 g.272 0.041 0.320 B.048  D.0069
25 -0.311 =-0.611 0.235 B.054 2.301 ?.065 0.0108
26 2.205 =0.107 0.300 0.008 B.312 P.012 2.0037
27 -B.061 =-0.387 0.283 0.036 0.325 B.042 D.0BSS
29 B.610 0.345 0.297 -0.837 B.264 -0.033 2.0037
39 2.253 -0.076 0.320 2.008 2.329 2.009 P.0015
31 -0.824 -0.365 ?.299 0.058 2.341 B.042 P.0039

POLYNOMIAL 100101
CROSSCORRELATION FUNCTION OF DIRECTION DEPENDENT SYSTEM
NO TOTAL LINEAR GUADRATIC CuBIC ERROR ERROR ERROR

T L e C L L+8 L+8+C
@ -90.019 -0.032 0.011 2.002 2.013 0.002 0.0001
1 2.270 0.291 0.008 -8.028 -0.021 -0.028 -0.0001
2 0.178 0.190 2.085 -0.018 -0.012 -0.017  0.0001
3 0.114 92.120 0.004 -0.010 -0.006 -0.818  0.0004
4  8.075 ©.873  0.009 -0.006 2.003 <-0.006 -0.0000
S  Q.043  0.040 P.006 -0.0803 2.003 -0.003. 0.0003
A 0.032 0.017 0.017 -0.001 0.015 -0.002 -0.0006
7  B.014 0.002 2.013 -0.000 0.012 -0.001 -0.0001
8 0.002 =-0.009 0.009 0.0602 2.011 0.002 0.08001
9 -0.008 <-0.016 0.006 0.002 2.009 0.002 0.0004
10 -@.015 —3-021 - 00@@4 0.@02, @00@7 @c@@Q g.ﬁ@@7
11 -0.014 -0.825 0.007 ©0.003 2.010 ~0.003 0.0004 (b)
12 -0.019 -0.027 2.005 0.002 2.008  0.002 0.0007
13 -0.022 -0.029 0.003 0.002 0.006 ©0.003 0.0028
14 -0.024 -0.030 0.002 0.003 0.006 ©.084 0.00€3
i5 -p.000 -0.031 2.029 ©0.003 2.530 0.001 -0.0018
16 -0.010 -0.831 2.020 0.202 0.022 ©0.201 -0.00038
17 -0.013 -0.03] 0.017 ©.003 2.019 ©8.002 -0.0005
18 -0.017 =-0.032 2.012 0.003 2.014 0.003 02.0000
19 -0.020 -0.0832 0.008 0.003 2.012 ©0.804  0.0003
20 -0.021 -0.032 0.008 ~0.003 2.011 ©0.003 ©0.0004
21 -0.023 -0.032 2.006 0.003 2.009 0.003  0.0006
22 -3.025 =-0.032 @.004 0.002 2.007 ©0.063 0.0008
23 -p.025 =-0.032 0.003 0.004 2.008 0.005 ©0.0007
04 -p.025 =-0.032 0.003 ﬁoQGS 0.227 0-904 0.0008
55 -0.025 =-0.032 0.003 @.00¢3  0.007 0.004 ©0.0008
26 -0.018 ~0e032 P.011 P.003 P.014 0.003 J.0001
57 -p.g20 -0.032 0.008 0.004 0.012 0.004  0.0003
58 -0.023 -0.922 2.005 ©0.003 2.009 0.004 0.0085
59 -p.0G8 -0.032 2.023 ©0.003 0.024 0.002° -0.0010
90 -0.014 <-0.032 2.016 ©0.003 2.018 0.002 <-0.0003
3] -0.019 -0.032 g.011  0.002 9.213 0.002 0.0001

ting function estimates..

- 11 £ 1 nﬁtput gequences and weigh
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interpreting experimental crosscorrelation results to overlook it
and assume, in the absence of any appreciable unsystematic errors,
that the system under investigation is linear.

6.5.3 Gas chromatography

This section explains the second order ﬁonlinear effects
observed by Godfrey and Devenish30 in.their continuous gas
chromatography experiments using a 127 bit pseudorandom binary signal
whose characteristic polynomial is L+D3+D4+D5+D7. One of the results
for the argon carrier and air sample which is reproduced in fig. 6.10(b),
shows two main peaks due to the presence of oxygen and nitrogen in
the air sample and other subsidiary peaks due to nonlinearity. The
true system weighting function given in fig. 6.10(a), shows that
significént valueé of the oxygen peak occur from digit‘57 to 62 and
those of nitrogen peak from digit 74 to 82. Since the two biggest
values of the weighting function of fig. 6.10(a) occur at diéits

77 and 78 and since

S;_97 + S;_7g * Sig7 = ©

a significant second order nmonlinear effect should exist in digit 87
of fig. 6. lO(b) and this in fact is the case. The other nonlinear

effects at digits 14, 20,42, 70,97, 104 and 117 may be accounted for by

the following linear relationships

S;60 * Si-79 * Si-14 7 °
=0
S 3-597 Si-go ¥ S1-20
-0
Si-77 * Sig0 T Pi-42
[ ]
S +S, . +S =0

-
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Fig..6.10. Weighting function estimates of a continuous

gas chromatography with argon carrier and air sample.

(By courtesy,Of Godfrey and Keveqish, reference 30,

page 230, figs. 6 and 7).

.
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S. + S, +

It is essential to eliminate nonlinear effectsvfrom the

crosscorrelation functions obtained in continuous gas chromatography
tests because these effects present two major problems. In the first
place, they alter the size and distort the shape of the weighting |
function which consists of a number of peaks. Since the position - 1
and magnitude of these peaks are measures of the substances present
and their relative proportions, nonlinearity may lead to incorrect
identification of the substances. Secondly nonlinearity may result
in the appearance of additional peaks which may be erroneously
interpreted as due to some substances present in the gas being Analysed. |
It is hoped that the use of signals with superior perfbrmance given
in tables 3.1 and 3.2 together with the results of this chapter will
obviate these problems.
6.6 Conclusions

The effects of nonlinearities on system weighting function
estimates obtained by crosscorrelation using pseudorandom signals
depend on the kernels in a Volterra series repre§entationvof the !
nonlinearities, and on ;he higher order éutocorrelation functions of
the signals. Explicit results have been given for systems with second
and third order nonlinearities which are tested by pseudorandom binary,

antisymmetric pseudorandom binary and ternary signals.'
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With a pseudorandom binary signal, both second and third
order nonlinearities give errors in the weighting function estimate.
The error due to second order nonlinearities consists of a constant
bias, similar to that observed in purelyblinear systems, together
with an error which is unsystematic in the sense that it depends
on relationships between members of the m sequence from which the
signal is derived and is therefore neither smoéthly varying nor the
same for any other signal. By a judicious choice of signél, this
unsystematic error may be removed from a.range of interest which
;xtends over the system settling time. This ﬁnexpected result could
be extremely useful in certain applications, The error due to third
order nonlinearities consists of a coﬁstant bias, a systematic error
which is the same for all pseudorandom binary signals with common
amplitude and bit interval, and another unsystematic error, which may
also be removed from the range of interest-.r
With an antisymmetric.pseudorandom binary signél, only ‘third
_order‘nonlinearities give an error in the weighting function estimate,
and this consists of an oscillatory term, similar to that observed in
purely linear systems, a systematic error which is identigal to that
" obtained with the cofresponding pseudorandom binary.signal, and an
unsystem#tic error with‘components which have the same magnitude as
those'obtainedVWith the corresponding pseudorandom binary signal, but
which may take the opposite sign. The performance of an antisymmetric

pseudorandom -binary signal in removing the unsystematic error from the

range of interest is identical to that of the corresponding !

pseudorandom binary signal.

With an antisymmetric pseudorandom ternary signal, only third

order nonlinearities give an error in the weighting function estimate,

and this consists of a systematic and an unsystematic error.

-~
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The systematic error is similar in nature, but not identical, to that
obtained with an antisymmetric pseudorandom binary signal with the i

same amplitude and bit interval, while the unsystematic error

consists of components which are much more numerous than those

.

obtained with a binary signal,
In all cases, the results obtainéd have considerable significance, .

both for the design of correlation experiments so as to remove

unsystematic errors from the range of interest, and for the
interpretation of estimates obtained from correlation experiments in
which the effects of nonlinearities are present.

Three illustrative exémples have been given: the first was '
chosen 'so as to demonstrate ciearly the nature of the errors due
to thé nonlinearities, while the second and third examplés show how ;
the results of this chapter could help‘in the correct identification

of industrial processes.
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CHAPTER 7

IDENTIFICATION OF THE DYAMICS OF A CHEMICAL PLANT

7.1 Introduction

7.2 Syétems description

7.3 Experimental design

7.4 First order kernel measurement
7.5 Second order kernel measurement
7.6 Conclusions
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7 IDENTIFICATION OF THE DYNAMICS OF A CHEMICAL PLANT

7.1 Introduction

This chapter describes the practical determination of the
‘dynamics of an ammonium nitrate synthesising process using the data

obtained by Mr. M. Connell as part of an undergraduate project under

.

the supervision of Professor H.A., Barker. The experiment had been
performed before the theoretical results of Chapters 2, 3 and 6 were

known, and therefore the input pseudorandom signal used was not.one

of those with superior performance. Nevertheless, the pH measurements
obtained from the plant are adequate for illustrating how the
characteristics of a practical nonlinear process may be determined

by crosscorrelation, and the importance of choosing appropriate input

signal for correlation experiments.
Since the relationship between the input variable,.ammonia/nitric
acid flow ratio, and the output variable, reactor vapour pH, was
‘inherently nonlinear, the input variable was perturbed by a
pseudorandom test signal based on a ternary m sequence in order that its
antisymmetric property would, in the subsequent determination of the
system weighting function by one-dimensibnal crosscorrelation,
automatically remove the effects of»eyen-order nonlinearities.4o Low
frequency noise in the form of constant, linear quadratic and cubic
drifts was eliminated by crosscorrelating over two periods of the
reference phase of the input signal,vusing a linear weighting which
involved the ratio of the characteristic constants of the reference
phase defined through its correlation with quadratic and ;ubic signals.41
.The resulting weighting function estimates exhibited structural

deviations due to unwanted components but these were largely accounted
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for by a component due to a cubic nonlinearity,

The use of antisymmetric pseudorandom ternary signal also

made the determination of the system's second order kernels possible.22

These kernels were computed by two-dimensional crosscorrelation but

they contained errors due mainly to the presence of numerous
undesirable nonzero values in the fourth order autocorrelation functions
of the input signal,

7.2 System Description

The system investigated was the neutralisation process of an
ammonium nitrate synthesising plant at the Nobel Division of
Imperical Chemical Industries Limited, Those features of the process
with which the investigation was concerned are shown in fig. 7.1l.

A neutralising vessel of 8600 kg capacity is supplied with 60% strength
nitric acid at 8800 kg/hr and ammonia gas at 1300 kg/hr. The

prodnct, 807 strength ammonium nitrate liquor, leaves the vessel
through an overflow.

The pH of the liquor must be maintained nithin the range & to 35;
at lower values the mixture becomes explosive while at higher values
ammonia boils off and therefore the process becomes uneconomic. In .
addition, it is imnortant to maintain a constant pH if the composition
of the final product is to be homogeneous, There are practical
difficulties‘in measuring the liquor pH directly; theréfore this is
obtained by inference through measurements of the pH of the neutraliser
vent gases dissolved in wster. Under constant operating conditions,
this is directlykrelated to the liquor pH, but because of the
enrichment.of the ammonia vapour at 1iquor/vapour‘interface, the pH

measurement by this method is required to be maintained within the

range 10 to 10,8
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During normal operatiﬁn, the required pH value is maintained
by a control system in which proportional feedback of the pH
measurement is used to change the ratio of ammonia to nitric acid
flowrate by means of a flow ratio controllerAin the ammonia supply.
For the purposes of the investigation, this feedbacg was removed
and the test signal inserted as a perturbation of the flow ratio;
since the nitric acid flow rate was nominally constant during the
experiment, this is equivalént to a perturbation of the ammonia
flowrate;

The perturbation of ammonia flo&rate results in fluctuation
of the pH, and it is the dynamic relationship between these which is
of interest. The logarithmic relationship between pH and ion
concentration makes the output variable a mnonlinear funétion of the
input variable. The. pH measurement.is also corrupted by mnoise which,
as expected in a'pfocess of this naturé, is considerable and contains
pronounced low frequency components in the form of drift,

7.3 Experimental Design

The determination of the first order kernel in a system where
the output contains a'significant contribution from nonlinearities and
a considerable amount of noise presents a difficult problem. The
approach adopted here is to use asAthe‘test signal a pseudorandom
ternary signal based on a ternary m sequence; the in&erse-repeat
property of such a signal ensures that in the subsequent estimation of
the weightihg function by one-dimensional crosscorrelation, the effect
of all even order nonlinearities is automatically removed. The use of

such a signal also provides the possibility of determining the second

-t
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order kernels by two-dimensional crosscorrelation,

One of the important requireménts for accurate system
jdentification by correlation is that the half-period of the ternary
signal must exceed the system's settling time which, in this case, was

estimated from a step test to be about 30 minutes. A pseudorandom

D

ternary signal with a half-period of 36.4 minutes was therefore

selected, This was achieved by choosing a 728 length sequence with a

bit interval of 6 seconds.

The characteristic polynomial, f(D), of the sequence is given

by

£D) = 1 - 0% - D>+ D" - p° - p° 7.1

and a six.stage shift register for generating the sequence is shown

" schematically in fig. 7.2. Tﬁe initial states of the register were
chosen so that the signal started at a desired reference phase. A
digital computer was programmed to generate the pseudorandom sequences,

and a number of periods of the signal were transcribed onto a channel

éf a magnetic tape recorder through a digital-analogue converter. A
portion of the signal is shown in fige 7.3.

The input signal was applied.through an‘electro-pneumatic
transducer to the flow ratio controller in the ammonia supply to the

neutraliser, and the signal amplitude adjusted so that the resulting pH

measurements did not exceed the permitted range of .10 to 10.8. A

perturbation of BATA: kg/hr about the nominal ammonia flowrate of 1300 kg/hr

was found to be suitable.

After steady-state conditions were established, five successive

periods of pH measurements, for which a proportional electrical signal

was available, were recorded on to another chanmel of the magnetic tape
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recorder., An analogue-digital converter was then used to sample the

signal for subsequent analysis by digital computer.

antisymmetric thus indicating the presence of even-order nonlinearities,

- l46 -

recorded data at the 6 seconds bit interval of the input pseudorandom

The five cycles'of pH deviations due to the pseudorandom signal

perturbation are shown in fige 7.4. This output signal is not

-~

and the presence of noise in the system is shown by dissimilarities

between successive periodic output values,

7.4 Determination of the First Order Kernel

The pH measurements shown in fig. 7.4 are in discrete form
so the fi:st order kernel or weighting function is obtained in the form
of samples at 6 seconds interval by one-dimensional crosscorrelation,
Since all the odd-order autocorrelation funcfions of a ternary sequence
are zero, the effects of all even-order nonlinearities are absent from
the crosscorrelation function., The errors due to éonstant, linear,
quadratic and cubic drifts‘are removed or minimised by commencing' the
correlation at the reference phase of the input sequence and by using
drift-correction techniques.41’42 If { Xi} is the ternary sequence of
the'test signal reference phase samples, a weighted reference phase
sequence { ri} of twice the period of { xi} may be obtained by the

following relation:

/ , |
Xi[0.3584 + —l.'_ i= 0,1,2,-‘00,727

= 728,729,000 51455
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The weighting function estimates { Wj} are then obtained from eqnse.

2.15 and 6.20 as
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1455
3 ) ’
W, = .¥.,- 7.3
o 12 im0 LAt
» 5= 0,1,25000,2184

where { yi} is the sequence of input samples. A computer program
to evaluate { Wj} from eqns. 7.3 and 7.2 is given in Appendix 1l.12,
Since there are five cycles of pH measurements, performing the

correlation over two cycles results in three periods of crosscorrelation

function but because of the antisymmetric property of the input
pseudorandom ternary sequence, these three periods in fact yield six

weighting function estimates, with every alternate function reversed

in sign. The six weighting function estimates are shown in fig. 7.5,
Although these functions extend over the half period of the input
ternary signal, which is 363 x 6 seconds, they have been truncated
at 140 x 6 seconds; the'remaining values of the estimates are not
significant because the system settling time is evidently less than
the assessed value. The weighting function estimates have a
‘substantial common form of structure which may be envisaged as a
small variétion about a smooth curve, This variaﬁion is due to the

effects of residual odd-order nonlinearities.

!
i

To proceed further with the analysis, it is necessary to

postulate a specific structure for the system, If it is assumed that

the greater part of the nonlinear effects are due to low order terms,
E then the plant dynamics may belrepresented by the first three terms of

the Volterra series. Since the most significant nonlinear effects

occur as a result of the instantaneous nonlinear relationship between
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pH and ion concentration which follows the reaction dynamics, a
possible model for the system is shown in fig. 7.6. It is assumed

that the second and third order kermels are given by

wpl Tya Tp) =k (1w ()

7.4

T

%

wy (1w CTwy (1)

wal Tys Ty T3) =k

An expression for the first order kernel which might be reasonably
expected for a system of this nature and which is generally in
conformity with the graphs of fig. 7.5 is given by

- T /T - T/T
w (1) = KUCT - ) (e 171 o 12 7.5

where: T is time, s

wl(‘rl) is the proposed weighting functionm, pH/kg

U('rl) is the unit step function

K, is a constant, pH/kg
T is a time delay, s

. I3 >
Tl’TZ are time constants, s, with Tl T2°

The part of the system output which comtributes to the weighting

function estimates is given by
13

o]

2(t) = ggop [ (e T Ty 56 b CTRILICIPL R

7.6
where T, is time, s
Z(t) is thevpostulated output, pH
x(t) is the ternaxy test signal, kg/hr

K is a constant, pH-
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x(t)
—— Wl( T-l)
i
Fig. 7.6. Structure of postulated nonlinear model.

Fig. 7.7." Simulation diagfam for the postulated
nonlinear system with the quadratic term

omitted.
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The quadratic term is omitted from eqn. 7.6 because the third order
autocorrelation function of the input ternary signal is zero.

Since the plant output data is in sampled form, the
postulated output must, for meaningful comparisons, also be available
at the same sampling interval, The sequence of postulated output
samples { zi} may be obtained by injecting the pseudorandom ternary
sequence, which is generated in a digital computer, into the
simulated system model, 6nly that part of the nonlinear model which
contributes to the weighting function estimates need be considered.

The Z transform of the linear dynamics and the zero=-order-hold is

- given by
z-1 wy (s)
wl(z) -z s
1 1
K (3= - &)
_z-1 1T, T
z
s(s+ %—)(S+ %—)
1 2
(z-1) .1 1,| 215 2T,
= dzml) g - ) '
Z T2 Tl z=1 1 1 --T/T2
’ (7= - 7)(z=e )
2 1
le
B =T
1 T
A - Dz 1M
2 1
c 2l 2"
1 2
= 1. -2 7.7
l-c32 +c4z
where T = sampling period

-
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-T/Tl ~-T/T
Cl = Kl Tl(l"'e i ) - Tz(l-e )
—T/Tl —T/T2 -T/T2 -T/Tl
c, = Kl Tze (1-e ) - Tle (l-e )
-T/Tl -T/T2
c, = e + e
3
(- + 39)
c, = e 1 2
4

A simulation diagram for calculating the output samples which
contribute to the weighting function estimates is therefore as
shown in fig. 7.7,

The weighted crosscorrelation { wj} between the postulated

output {zi} and the test sequence is given by

1455
w, = 2 X 7.8
2 729 .
J = 0,1,2,004,140
The optimum values of the parameters Kl’ TD, Tl’TZ and K3 are

obtained by two curve-fitting programs which match the crosscorrelation

{wj} to each weighting function estimate ‘[Wj } until the percentage

error .
140 :
2
W.-w.
) (W =)
j=0
100 ”
1
Z W%
j
j=0
L. —

becomes a minimum., The program of Appendix l.13 optimises each
parameter in an iterative fashion until it is mo longer possible

to improve the result by varying any of the parameters. More accurate

-~
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values of Kl’ Tl, T2 and K3 are obtained by the program in

Appendix 1.1l4, which calculates the squared error for each of the

. . . + +
81 possible combinat - -
P . ations of Tl, Tl A'Tl, TZ’ T2 ATZ’ Kl’
+ +
Kl - A Kl’ K3, K3 - AK3; the set that gives minimum error is used

for the next iteration, and the iterations are terminated when an
absolute minimum error is achieved. | |

The optimum values of K., T, T., T, and K, are given in

1’ 'p’ 1’ 2 -3

table 7.1. A comparison shown in fig. 7.8 illustrates how the
characteristic structure oflthe weighting function eétimates is
largely accounted for by the proposed form of linear dynamics plus
the cubic nonlinearity, with appropriate choice of parameters. The
linear system component or the first order kernel and the error due
to cubic honlinearity are shown seperately in fig. 7.9. Also shown
in the same figure is a small residual error, the presence of which
could not be explained. A more sophisticated nonlinear model might
possibly accoﬁnt for ﬁost of this residual error} The error due to
cubic nonlinearity is made up of systematic and unsystematic components

and'thesevaré shown on the enlarged graphs in fig. 7.10.

-7.5 Determination of the Second Qrder Kernel
The second order Volterra kernels may be determined by

crosscorrelating the pH measurements with two-dimensional product
formed from the input sequénce. In this operation, the linear and
cubic terms of the Volterra series are respectively multiplied by‘the
third and fifth order autocorrelation functions of the imput
pseudorandbm ternary sequence and "since these correlation.moments are.
Zero, thé two~-dimensional crosscorrelation involves the 2nd term alone.

An alternative approach which is adopted here, involves the extraction
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Linear dynamic parameters [Quadratic Cubic
Estimate 7% Errors
Kb | T Tl T ) K3
1 0.151 1541 29.2 11.2 5.4
2 0.174 146| 30.6 10.3 6.3
3 0.194 150] 32.0 6.3 5.5
12 ) -3.49
4 0.207 | 149 34.2 7.4 5.0
5 0.208 155 32.6 5.8 4.7
6 0.194 " 166] 30.2 | 4| 4.8

Table 7.1 Optimum Parameter Values
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of even order components from the pH measurements before the two-
dimensional crosscorrelation. This approach has two main advantages.

Since only a half cycle of even order data is required for
determining the second order kernels, the five cycles of pH measurements
may be>reduced to a half cycle of even order terms by a procedure
that elimingtes most of the drift present in the original data.
Furthermore, by comparing this even-order data with the quadratic
output from the plant model (fig. 7.6), the falidity of the assumption
that. the plant dynamics can be representedvby the first three Volterra
kernels éan be ascertained.

From the five periods of pH measurements {yi} ~, four and
a half cycles of even-order data { fi} were obtained from the

~relationship:

= 1 !
£ 2 [Yi + yi+364:\ 7.9

i=1,2,3,...,3276
No odd-order terms are present in the output values {fi} and, if
there were no drift and other errors, the nine half cycles which make
up {fi} would have been identical. Only four cycles of data were
needed in the subsequent analysis so the last four cycles of { fi}
Were‘used since they contained less unwanted éomponents than the first
four cycles. The four periods of even order data were reduced, in three

steps, to a drift free half period by using the weighting

i

. v i ) .
g, = e Mt (L 3663 V143640 7.10

1,2,3,...,364]

where J

i
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fi+36l+ when J=4

and hi =
previous values of g; when J=2

If the assumptién that the second order Volterra kernmel is the only
significant even order term is correct, then apart from a constant
bias, the even-order output‘datav{ gi} should be neafly the same as.
the quadratic output of fig. 7.6. By means of the curve fitting
program of Appendix 1.13, these two output data were found to have™

the best fit when K, =- 3.49. A comparison shown in fig; 7.11

2
illustrates how the quadratic component of the postulated nonlinear
model nearly matchés the even-order compoments of the pH measurements.
The difference between the two, which is quite small, is possibly due
to a quértic nonlinearity.

From equations 2.22 and 3.4, the estimates e(JT,KT) of the
second order kermel WZ(JT,KT) are obtained from the half cycle of

even-order output sequences '{gi-} by two-dimensional crosscorrelation-

as
363

e(JT,KT) = — 7 g.X, X._ 7.11
8x34T2X4(1) 1=0 i"i-J7i-K

These estimates, which were calculated using the computer program

in Appendix 1.15, are plotted in dotted lines in Fig. 7.12 for
J=0,1,2,...,60, and K=J4+C where Cc=1,2,...,16. The second order
kernelsbof the postulated ndnlinear model also shown in fig. 7.12 in
~continuous lines, are obtained from equatiénsr7.4 and 7.5 as

WZ(JT, < JHC >. T) = KZWI(JT)W1< <JHC> T) ‘ 7.12
where

/T, -(3-L)T/T; -T/TZ -(3-1)T/T,
wl(JT) = KlTl(l-e e v -Ksz(l-e Ye
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Second order kernels, wz(JT, <«J+C> T)
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. -T/T -(J+C;1)T/T
w (€ FHCT) = KT (l-e Lye 1

-T/T

v -(J+C-1)T/T2
-Ksz(l-e

2>e

There are considerable discrepancies between the second order kernel
estimates of the ammonium nitrate plant obtained by two-dimensional
crosscorrelation and the corresponding kernels of the postulated
model calculated from equation 7.12. These differences are mainly due
to the undesirable nonzero values in the fourth order autocorrelation
functions of the input ternary sequence. This fact is supported by
the curves ih fig. 7.13 which are enlargements of the graphs of
fig. 7.12 for C=2 and 4, except that the two-dimensional crosscorrelation
function between the input sequence and the postulated second order
output is also plotted. This function is ﬁearly the same as the
corresponding result obtained using the even-order plant data. The
difference between these and the true'kernels of the postulated
mddel given.by eqn. 7.12 may be accounted for'by the undesirable
nonzero values in the fourth order autocorrelation functions of the
‘input sequence which can be determined by polynomial division.

Since the performance indices Rl and Rm of the input pseudorandom
ternary signal are only 8 and 16 respectively, these nonzero values
are quite numerous within the settling time of the second order kernel,
for instance, when C=2, the major nonzero values are given by the
following relationships:

S; =852 " Si-17 7 0

. - . - 0
S; + 8597 547 Si-3s

P54
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i " Si-2 " Sic12 T Siv18 T

., - S, ~ S, - =
Sl i-2 S1+3 S i+22 0

It is therefore not surprising that some of the experimental second
order kernels bear little resemblance to the true values. A far
better rgsult could have been obtained if a signal with superiof
performance indices had been used to perturb the ammonium flowrate.
7.6 Conclusions

Estimates of tﬁe.linear dynamics of a neutralisation process
in which the output contains significant contributions from both
nonlinearities and noise, have been obtaiﬁed by the method described.
The effects of even order nonlinearities and the principal components
of low frequency drift were removed by the use of a pseudorandom
test signal based on a ternary m Sequence, together with the use of
a weighted crosscorrelation based on the reference phase of.the test
signal. The resulting estimates nevertheless contained structural
- deviations, ﬁo account for which it was postulated that the estimafes
were due to‘a’particular»form of linear dynamics together with a cubic
nonlinearity. By aﬁpropriate choice of parameters, the postulated
crosscorrelationS'were matched to the weighting function estimates
to a reasonable degree of accﬁracy.

The form of linear dynamics which largely accounted for the
behaviour of the system consisted of a delay of 12 seconds and two
cascaded lags with time constants of about 30 seconds and 150 seconds.
Both the delay, whicﬁ may be attributed to the tramsport time of
liquor and vapour in pipes, and the.shorter time constant, which may
_'be-attributed to a lag in pH measurement due to the method of

dissolving the neutraliser vent gases in water, have values of the
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order expected. The longer time constant however is about twenty
times less than that which would be expected for the dynamic

response of a neutraliser with 8600 kg capacity at a production

rate of 10100 kg/hr. This implies that the response of vapour pH

in the neutraliser to changes in ammonia flowrate is very much faster
than the corresponding response of liquor pH, an unexpected result
which might be used to advantage in improving the control of the
system, and possibly that of similar systems.

The second order output components of the proposed model
were shown to be mearly the same as the even-order components of
the plant output dafa from which the second order kermels of the
system were computeé by two-dimensional crosscorrelation. The
crosscorrelation functions were however at variance with the true
second order kernels due to the numerous undesirable nonzero values
in the fourth order autocorrelation functioms of the input signal.
These results re-enforce the point élready made concerning ﬁhelneed

for a judicious choice of signal in nonlinear system identification.

.
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CHAPTER 8

CONCLUSIONS .

»New and improved techniques have been developed for the
identifigation of nonlinear systems which can be represented by
Volterra series, using aé the input pseudorandom signals based on
m sequences. Exact analytical expressions relating the Volterra

kernels to the crosscorrelation measurements have been obtained.

The indices of performance for antisymmetric pseudorandom
signals in the measurement of second order kernels of single-input,
single-output nonlinear systems are the upper limits Rr 6f J and K
for which the set of all off-diagonal values wz(JT, KT) of a second
order kernel may be obtained in subsets of not more than r members
from corresponding subsets in the set of off-diagonal measurements
e(JT, KT). - The set of diagonal values wz(JT, JT) is then obtained
from the corfesponding set of diagonal measurements e(JT, JT) for

all 0 J §R .
T

There are wide variations in performance of antisymmetric

'pseudorandom signals, even between signals with the same number of

levels and with characteristic polynomials of the same order. It
is therefore essential that the most suitable signals be chosen for
the second order kernel measurements. To facilitate this choice,
the performance indices of all the 336 antisymmetric binary signals
of order 2 to 11, all the 560 ternary signals of order 2 to 8 and

all the 352 quinary signals of order 2 to 5 have been calculated,

'and the signals with the greatest performance indices Rr for values

of r from 1 to 20 have been tabulated. The results obtained indicate
that the pseudorandom ternary signals surpass all the others in this

application.

g
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It has been shown that for every even order ﬁseudorandom ternary
sequence with characteristic polynomial f(D), there is a related
sequence with primitive polynomial £(-D). These related polynomials
have been used to improve the performance of pseudorandom ternary
signals in the measurement of second order Volterra kernels by
partly o&ercoming the limitations imposed by the undesirable nonzero

values in the fourth order autocorrelation.functions of ternary signals.

One of the properties of the sequences derived from f(D) and
£(-D) is that their fourth order autocorrelation functions are always
equal in magnitude but they are opposite in sign when the sum of the
arguments is odd. Thus if estimates of the values of the second order
kernel of a nonlinear system are obtainedby crosscorrelation experiments
in which related ternary signals are used as the system input signal,
then addition of these estimates results in the cancellation of the
effects of those undesirableeyalues of the fourth order autocorrelation
functions for which the sum of the arguments is odd. Although the
upper limits of the indices of performance for the combined cross-
correlation method are the same as thpse for the direct.crosscorrelation

method, significant -improvements in performance are obtained within

these limits.

The performance indices of all the 376 ternary and related ternary
signals of order 4, 6 and 8 have been calculated and the signals with

the best performance tabulated. The superiority of the combined

crosscorrelation method over the direct method has been demonstrated
by two examples.

The identification of two-input, single-output systems, hitherto

confined to linear systems, has been extended to nonlinear systems.

It has been shown that the characteristics of a two-input system with

e
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multiplicative nonlinearity may be determined by crosscorrelation
experiments in which the two input signals have different phases but
are derived from the same characteristic polynomial, and that each
crosscorrelation measurement yields the corresponding kernel directly
if certain requirements are met. The use of related pseudorandom
ternary signals has also been considered, and the most suitable signals

for the combined or direct crosscorrelation method have been identified.

The effects of nonlinearities on system weighting function estimates
obtained by crosscorrelation have been investigated, and explicit results
have been given for systems with second and third order nonlire arities
which are tested by pseudorandom binary, anfisymmetric pseudorandom

binary and ternary signals.

For pseudorandom binary signals, the error due to second order
nonlinearities consists of a small constant bias togetﬁer with an error
which is unsystematic in the sense that it depends on relationships
between members Qf the m sequence from which the signal is derived and
therefore is neither smoothly varying nor the same for any other signal.
By a judiéious choice of signal, this unsystematic error may be removed
from a range of interest which extends over the system settling time,

an unexpected result which could be useful in certain applications.

The error due to third order nonlinearities for all the three
groups of signals consists of a small constant or oscillatory term,
an unsystematic'error which may be removed from the region of interest

by choosing a suitable test signal, and a systematic error which cannot

be removed before crosscorrelation.

The conditions under which all unsystematic errors may be removed
have been given, and the signals with the greatest rejection of these

errors have been isolated. The significance of the results obtained

may be seen from the few illustrative examples given, which include

e
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accurate identification of a system whose dynamics is dependent on the
direction of the input signal, and the explanation of the nonlinear

effects observed in gas chromatography experiments.

The first and second order kernels of a neutralisation process
which was perturbed by a pseudorandom ternary signal have been obtained
by the correlation methods described. The one-dimensional cross-
correlation function contained errors due mainly te systematic and
unsystematic third order nonlinearities, and the two-dimensional
crosscorrelation functions were imperfect chiefly because of the
undesirable nonzero values in the fourth order autocorrelation
functions of the input ternary signal. Removal of these errors

resulted in accurate values of the kernels of the chemical process.

The applications of the results preseﬁted in this thesis include
. the following areas: accurate identification of the second order
Volterra kernels of single-input or two-input nonlinear systems by
direct or combined crosscorrelation method, designing correlation
experiments so as to remove unsystematic errors from the weigﬁting
function estimates, interpretation of the weighting function estimétes
obtained from crosscorrelation experiments in which the effects of

nonlinearities are present, and choosing the most suitable signals for

correlation tests.

A furtﬁer~developmént of this project, which maybresult in a
simplified method for kernel measurements; is the identification of
higher order kernels'by‘one—dimensional‘crosscorrelation. This
possibility, which was first suggested by Kadrizg, is confirmed by
the results of chapter six.  Other developments of this project
include the determination of the third and higher order Volterra kernels

by direct and combined crosscorrelation, extension of the work on

L e
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multivariable systems to cover more nonlinearities and a greater
number of inputs and outputs, and a continuing search for deterministic
signals whose higher order autocorrelation function properties are as

close as possible to those of Gaussian white noise.

-
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PROGRAM FA
COMPUTATION OF R1 FOR BINARY SIGNALS
INTEGER R,G,H,P
DIMENSION P(2,12)
1C0=0
WRITE (2, 4)
FORMAT (//27H FOUR TERM INDEPENDENT AREA/
4H  NO,3X,2HRi,2X,10HPOLYNOMIAL/
4H === 32X, 3H===,2X, 1 @H=m=c=ccnmn )
READ (3,8) N2,(P(1,1),1=1,N2)
FORMAT (13,1X,1211)
N=N2 -1
NP=2**N~1
DO 86 JJ=1,2
GOTO0(24,12),JJ
RECTPROCAL POL YNOMIAL
DO 16 IR=i,N
MAN=P (1,N2)
1S=N2+1
1S=1S-1
PC1,1S)=P(1,1S-1)
IFCCIS-1).NE.IR) GOTO 14
P(1,1S-1)=MAN
R=NP
POLYNOMIAL DIVISION - 4 TERM RELATION
G=1
G=G+1
IF(G.GT.+(R-2)) GOTO &2
b=G
H=H+ 1
IF(H.GT«(R-1)) GOTO 34
INK=0
DO 52 1=2,N2
P(2,1)=0

S P(2,1)=1

IF(G.LE.NZ) P(2,G)=1

IF(H.LE.N2)Y P(2,H)=1

CONT INUE

IF(P(2,1).NE.D) GOTO 64

INK= INK+1

DO S8 1=2,N2

P(2,1-1)Y=P(2,1)

P(2,N2)=0

JIFCC(G.EQe (INK+N2)).ORe (H.EQe CINK+N2))) P(2,N2)=1
GOTO S6

Jz=0

DO 72 I=1,N2
P(2,1)=P(2,1)-P(1,1)+2
IF(P(2,1%.L.T.2) GOTO 68
p(2)l)=P(2’I)’2

GOTO 66 _

IF(P(2,13.FQ.0B)Y GOTO 72

Jz=1z2+1

KN=TNK+1

CONT INUE

IFCCJ7.EQ-0)+0Rs (KN.GT.R)) GOTO 38
IF CCJ7+GTo1)s0R (KNsLToH)) GOTO 56
R=KN

GOTO 38

ICO=1CO+1

R=R-2 -

WRITE(2,84) ICO>R»(PC1,1),I=1,N2)

FORMAT (14,15,2X,1211)
CONT INUE

GOTO 6

STOP

K I
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APPENDIX 1.2

52
53

S4

55

12
13
14

34
36

46
48

25

44

45
46

47

PROGRAMS FA31 & FA32

TERNARY SIGNAL 1 DIAGONAL LIMIT

INTEGER F,G,P1,P2,0

DIMENSION MAC(12)

COMMCN MA,N2,LS

LS=3

GOTO S2

WRITE(2,4)

FORMAT(////74H NQO,S5X,1HF,5Xs10HPOLYNOMIAL/
AH ~e=,4X,3H=-==,4%X, 1BHracmmne===/)
READ(3,8) ICOUNT,NUM,N2

FORMAT (313)

READ(3,53) N2, (MACI),I=1,N2)
FORMAT(11,911)

WRITE(2,54) (MACI), I=1,N2)
FORMAT(/////7/7775X, 1BHPOLYNOMIAL,2X,911)
WRITE(2,55)

FORMAT ¢/ 1X,3H1D1,3X,AHAD G,A4X,AHBD J,3X,11H(N/2+146=-J)/
AH === ,3X;SHow===y3X,SH-====,2Xs11Hmm=mccc===/)
N=N2-1

NP=3%2N-1

GOTO 13

DO 48 1S=1,NUM

F=NP/2

READ(3,12) (MACI),I=1,N2)

FORMAT (1211)

G=1

G=G+1

IF(G+G1+(NP/2)) GOTO 52

CALL SUB3(1,G,P1,P2)

GOTO 14
F=MIN@(F,P1,P2,NP/2414G-P1,NP/2414G-P2)
GOTO 14

G=6~2 :

IF(F.LT.G) F=C

F=F-2

ICOUNT=ICOUNT+1

FORMAT(14,16,5%X,1211)

WRITE(2,46) ICOUNT,F,(MACI),I=1,N2)
GOTO 6

STOP

END

SUBROUTINE SUB3(KX,KY»KP1,KP2)
DIMENSION MA(12),MB(4321),KN(2)
COMMON MA,N2,LS
N=N2-1

LZ=LS~1

NP=LS**N-1

NFP=NP/LZ

KB=1

KA=8

DO 46 ICYCLE=l,2
KA=KA+1

KM=NP

DO 4 I=1,KM

MB(I)=0

MB(KX)=KA

MB(KY)=KB

KL=KX

IF (KLoLToKY) KL=KY
KK=KX

IF(KK.GTKY) KK=KY
KK=KK~1

KK=KK+1

IF (MB(KK).EQ.8) GOTO 6
KM=N2+KK-1

CJ=0

L=0

JL=MB(KK)

DO 44 I=KK,KM

L=L+1

MB(CI1)=MB(I)-JL#MAC(L)+LS*LS
IF(MB(1).LT.LS) GOTO 25
MB(I)=MB(I)-LS

GOTO 16

IF(MB(I).EQ.E&) GOTO 44

J=J+1

KNCICYCLE)=1

KD=MB (1)

CONTINUE

[F(J«GT+1) GOTO 6

IF CKNCICYCLE ) «GToNFP) KNCICYCLE)=KNCICYCLE)~NFP
KNT7=KNCICYCLE)

KAY=NP/2+1+KY-KN7

WRITE(€2,45) KB,KXsKhsKY>KD,KNT,KAY
FORMATCI2,1HD,11,3H + ,11,1HD,13,3H = ,11,1HD,13,18)
CONT INUE

WRITE(2,47)

FORMATC )

KP1=KNC1)

KP2=KN(2)

RETURN

END
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APPENDIX 1.3

[0 3

14
16
17
18
22
24
25
26

28

32

34

36
38

42

44
46

48

54

56

S8

62

64

PROGRAM U1

M SEQUENCES - COMPUTATION OF PERFORMANCE INDICES
INTEGER G,Z,W

DIMENSION W(90,84),2(3,112),MA(12),MB(149)
COMMON W,Z,MA,MB

LAB=90

LA9=84

LS=2

LAD=LS-1

LID=LAD*LAD

READ(3,6) N2,L,(MACIR),IR=1,N2)
FORMAT(213,1X,1211)

NOM=1

NO2=2 *NOM

NOP=NO2+2

WRITE(2,8) (MACIR),IR=1,N2)
FORMAT(///75X, 12HPOLYNOMIAL,3X,911)
L=L+2

D0 14 IS=1,NOP

D0 14 IT=1,L

WCIT,1S)=L

DO 16 1T=1,3

DO 16 1S=1,112

ZCIT,IS)=L

WRITE(2,17)

FORMAT ¢(/28X, 1 3HSTORED VALUES/20X,3H~=-+==~=~ —e==)
G=1

G=G+1

DO 24 1S=1,NOP

Z(1,18)=L

IKS=G-1

WRITE(2,25) IXG, (WCIKG,»IR)Y»IR=1,N02)
FORMAT(/4H G =;I$;4X,8(2I3.1X)/llX,8(213,lX)/lIX,8(213.1X))
IF(G+GT+(L-1)) GOTO 124

1=1

I=1+1

IFCI.EQ.G) GOTO 62

CASE OF 1 LESS THAN G

1J1=1

16A=G

KAL=1

IRA=1

TEST OF STORED VALUES FOR *ANOMALIES®
NA=NOP

NEW=L

DO 36 IS=2,N02,2
IFC(WCIJI,1S).EQ.IGA) NEW=W(IJI,IS-1)
IFCHCIJI,1S~1).E8.IGA) NEW=W(IJISIS)
IF(NEW.LE.IJI) GOTO0(36,36,34,34),KAL
IF(NEW.GE.L) GOTO 36

NA=NA+2

IF(NA.GT.I12) GOTO 198

ZC(IRALNA-1)=1

ZC(IRA,NA)=NEW

NEW=L

IF(NA.EQ.NOP) GOT0(28,42,118,148),KAL
ARRANGEMENT OF °*ANOMALIES® IN ASCEND ING ORDER
JCO=NA

DO 46 1S=2,NA,2

PO 44 1T=2,JC0,2

12=1T+2

IF (ZCIRA,12)«GEZC(IRALIT)) GOTO 44
KH1=ZC(IRA,IT-1)

KH2=Z CIRA,IT)
ZCIRA,1T-1)=ZCIRA,12~1)

ZCIRA, IT)=Z(IRA,12)

ZCIRA,12-1)=KKI

ZCIRA, I2)=KH2

CONTINUE

JCo=JC0-2

L=MINBCZ(IRA,NOP),L)

GOTO (AB,48,116,156),KAL

IF(L.LE.G) GOTO 102

TRANSFER OF *ANOMALIES® INTO W ARRAY
DO 58 1S=2,N02,2
IFCZ(1,IS)«BGE.W(G,15)) GOTO 58
IFC(IS.EQ.NO2) GOTO 56

NO3=N02

% (G,NO3»=W(G,NO3-2)
W(G,NO3~-1)=W(G,NO3-3)

NO3=NO3-2

"IF (NO3.GT.IS) GOTO 54

W(G,1S)=2(1,18)

W(G,15-1)=1

IF(W(G,ISY+GE.L) W(G,IS-1)=W(G,1S>
CONT INUE

GOTO(28,62),KAL

CASE OF 1 GREATER THAN G
POLYNGMIAL DIVISION PERFORMED
I1=1+1

IFC1.6T.(L-2)) GOTO 22
Li2=L+12

KAx 1

KUT=0@

PO 84 KXB=x=1,LAD

DO 82 KC=1,LAD

DO 64 1S=1,Li2

MB(I3)=0




64

66

68

12

74

76

78
82
84

94

96

182
104

186

112

114

216

218
221
222

113
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PROGRAM Ul (CONTINUED)
MB(1S)=0

MG (1)=KA

MB(G )=KB

MB(I)=KC

KR=@

KL=MAXB(G,1)

KR=aKR+1

IF(MB(KR)+EQ.8) GOTO 66
KM=N2+KR-1

JZ=0

M=

JL=MB (KR)

DO 74 1S=KR,KM

MJsMJ+ L
MB(IS):MB(IS)-JL?MA(MJ)*LS#LS
FF(MBC(IS).LT.LS) GOTO 72
MB(IS)=MB(IS)-LS

GOTO 68

IF(MBCIS).EQ.8) GOTO 74
JZ=JZ+1)

KN=1S

KD=MB(IS)

CONT INUE
IF(KR.GT.¢L-1)) GOTO 76
IFCCJZ.GT+1).0R.(KM.LT.KL)) GOTO 66
IFCJZ.GT.1) KN=999
IF(JZ.EQ.B) KN=888
IFC(KM.LT.KL) KN=777
GOTO 78 .

FOR NO CANCELLATION GOTO 78
IF(KN.GE.L) GOTO 78
TU1=14G+I+KN
1U2=TU1-CTU1/2)%2
IFCIU2.EQ.8) GOTO 78
KN=666

KUT=KUT+1

Z(2,KUT)I=KN

CONTINUE

MIN=L+L

DO 94 1S=1,LID
MIN=MINBCZ(2,IS)>MIN)
IFCCMIN.LT+I1)+OR«(MIN.GT.L)) GOTO 62
NA=NOP

DO 96 IS=1,LID
IFCZ¢2,15).GT.L) GOTL 96
NA=NA+2

IF(NA.GT.92) GOTO 198
Z(1,NAY=Z(2,15)

CONT INUE

KAL=2

IRA=1

GOTO 42

L=G

G=1

LA3=8

IF (NOM.E@.0) GOTO 192
G=G+1

IF¢G.GT.(L-1)) GOTO 192
DO 108 1S=1,NOP
Z€1,18)=W(G,IS)
z(2,1)=1

2(2,2)=6

1=1

LG=G

LA7=1

GOTO 216

1=1+41

LG=LG+1

IFCLG.GT.(L-1)) GOTO 106
z(2,1)=1

2(2,2)=L6

DO 114 IS=1,NOP
ZC1,18)=2ZC1,153+1

LAT=2

CONT INUE

IF (LA3.EQ.0) GOT0(122,113),LA7
LA1=0

LA2=LAY9

DO 222 IM=1,LA3
LAI=LAl+1
IF(LA1.LE.LAB)Y GOTO 218
LA1=LA1-LASB

LA2=LA2-2

"CONT INUE

IF((Z(Z:I)-EQ-H(LAI;LAZ-I))oAND.(1(2:2)-EQ.N(LA!.LAZ)))GOTOI|2
CONT INUE

GOT0¢122,113)5LA7

141=1

-IGA=LG

KAL=3

IRA=1

GOTO 32

1F(L.GT.LG) GOTO 118

L=LG

GOTO 186

CONT INUE

NET=8

LIA=1

DO 124 1S=2,N02,2
IFCZL1,1S).LT.L) NET=NET+1
no 128 1S=1,N02
Z(2,15+2)=2(1,15)
IF¢z¢2,2).GE.L) GOTO 112
CONT INUE
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PROGRAM Ul (CONTINUED)
131  CONTINUE
MIK-0
DO 132 1S=2,NOP,2
132 IF(Z2(2,1S).GE.L) MIK=MIK+!
GOTO 136
GOTO(136,133),L1A
133 WRITE(2,134) (Z(2,IR),1R=1,NOP?
134 FORMAT(/9(213,1X)/9(213,1X)/9(C213,1X))
136 1E=0 :
LLA=1
142 1E=1E+2
IF(Z(2,1E)+GE.L) GOTO 188
144 16=Z(2,1E)-Z(2,1E-1)+]
1D=1
DO 146 1S=1,NOP
146 Z(3,1S)=W(1G,1S)

147 LTE=L

148 IF(I1G.EQ.2(2,1E)) GOTO 158
ID=1D+1
1G=1G+1

DO 152 1S=1,NOP
152 Z(3,1S)=Z(3,15)+1
1J1=1D
1GA=1G
KAL=4
IRA=3
GOTO 32
156 1F(L.LT.IG) L=IG
GOTO 148
158 CONTINUE
165 IF(L.N".LTE) GOTO 179
166 DO 168 iS=2,N02,2
IFCZ(3,1S).LT.L) GOTO 169
168 CONTINUE
Z(2,1E)=L
Z(2,1E~-1)=1
GOTO 136
169 LLA=2
GOTO(C172,178),LIA
1780 WRITE(2,171) ID,1G,.(Z¢3,1R),IR=1,N02)
171 FORMAT(14,1X,13,2H =,8(213;tx)/lﬂx:8(213;lX)/lGX;8(213‘IX))
172 DO 188 1S=2,N02,2
IFC(Z(3,1S).GE.L) GOTO 188
PO 174 IT=2,NOP,2
IF¢IT.EQ.IE) GOTO 174
IF((Z(3;IS)-EQ-Z(2,IT)).AND-(Z(GslS-l)-EQ-Z(2:]T‘1)))GOT0188
174 CONTINUE
IF(MIK.NE.B) SOTO 184
GOTO(€176,175),LIA
175 WRITE(2,134) (Z(2,IR),IR=1,NOP)
176 L=Z(3,15)
DO 178 IW=2,NOP,2
178 L=MAXB(Z(2,1IW),L)
179 GOTO(126,181),LIA
181 WRITE(2,182) L
182 FORMAT (/2X, 1SHAREA REDUCED T0,14/)
GOTO 126
184 DO 186 1T=2,NOP,2
IFCZ(2,1T)«LT.L) GOTO 186
2¢2,1T)=2(3,1S)
Z(2,1T-1)=Z2(3,158~1)
MIK=MIK-1
GOTO 188
186 CONTINUE
188 CONTINUE
IFCIE.LT.NOP) GOTO 142
GOTOC112,191),LLA
189 WRITE(2,198)
190 FORMAT (1H®)
191 CONTINUE
LA1=LA3
LA2=LA9
DO 232 IM=4,NOP.,2
1IF¢Z(2,IM).GE.L) GOTO 232
226 1FC(CLA1+1).LE.LA8) GOTO 228
1F (LA2.EQ. (NOP+2)) GO10 112
LAl=LAl-LAB
LA2=LA2-2
GOTO 226
228 LAl=LAl1+]
LA3=LA3+]
W(LA1,LA2)=Z(2,1IM)
WCLA1,LA2-1)=Z(2,IM-1)
232 CONTINUE
GOTO 112
192 L=L-2
NOM=NOM+1
. WRITE(2,194) NOM,L
194 FORMAT (SX,»1HR,» 12,2H =,13777)
IF (NOM.EQ.1) GOTO 4
NOM=NOM-2
NO2=2#NOM
NOP=NO2+2
L=L+2
Gzl
196 G=G+1
IF(G.GT+CL~1)) GOTO 184
L=MINO@(W(G,NOP),L)
IFCL.GT.G) GOTO 196
GOTO 102
198 STOP
END
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APPENDIX 1.4

PROGRAM CCM

2ND ORDER KERNEL, LINEAR-SQUARE SYSTEM
DIRECT AND COMBINED CROSSCORRELATION METHOD
POLYNOMIALS 110220202 AND 1208120202, N=6560
R1=15,Q1=33,RM=185, USE T1=5T AND T1=10T
POLYNOMIALS 1102202 AND 1281202, N=728,R1=7,01=13,RM=36
INTEGER U,A,P,FB,C

DIMENSION U(2,33808),A€2,33803,P(8),B(2)
COMMON U,A,P,B

AMP=50.0

T=loﬁ

T1=6.0

READ(3,6) T1,KAY1,KAY2

FORMAT(F5.1,213)

C2=EXP(~-T/T1)

C1=AMP*(1.8-C2)

DEN=4.0%3,0%%4

TS=T1*T1

WN=C1*C!*EXP(-T/T1)

N0 26 NN=1,2

X1A=0.0

DO 8 1=1,6

PCI)=1

GENERATION OF PRS

DO 26 J=1,928

PONE=P (1)

IF(NN.EQ@.2) GOTO 11
FB=P(1)+P(2)-P(4)-P(5)+6

GOTO 12

FB=P(1)-P(2)+P(4)~P(5)+6

IF(FB.LT.2) GOTO 14

FB=FB-3

GOTO 12

CALCULATION OF THE OUTPUT

X1B=PONE +X1A*C2

JJ=J~364

IFC(JJ.LT.1) GOTO 24

Y=CC1 *X1A) **2%*TS

UCNN, JJI=P(1)

A(NN,JJI)=Y

X1A=X1B

DO 25 L=1,5

P(LY=P(L+1)

P(6)=FB

CONTINUE

‘CROSSCORRELATION OVER A HALF PERIOD

PO 46 C=KAY1,KAY2

WRITE(2,28) C,T1

FORMAT ¢//2X541H2ND ORDER KERNEL OF LINEAR-SQUARE SYSTEM.»»
4H C =,12,4H T1=,F4.1/ .
4H N0,2X.5HFIRST’SX,6HSECOND:4X»8HCOMBINED:2X,IGHCALCULATED/
6X,8HESTIMATE.2X:8HESTIMATE,2X,8HESTIMATE,2X.6HRESULT/
4H -‘,2X:8H """"" )2X:8H ------ ,2X)8H ------- 2
2Xs10Hwmmmmm = )

FORMULA UCTI*UCI+CIXACI+C+J)

Do 46 JJ=1,21

J=JJ-1

DO 34 NN=1,2

Y=0.0

DO 32 I=1,364

IF((U(NN:I).EQ-Q).OR.(U(NN:I+C)-E0-0)) GOTO 32
LY=U(NN:I)*U(NN,I+C)*A(NN’I+C+J)

YL=FLOAT(LY)/TS

Y=Y+YL

CONT INUE

Y=CY/DEN)/WN

B(NN)=Y

BC=(B(I)+B(2))/2.B

CALCULATED VALUE

W=0.0

IF CJ.EO.0) GOTO 36

JC=2#%J+C-2

cJ=JC

N=Cl*Cl*EXP(-CJ*T/T1)/WN

WRITE (2,38) JsB(1),B(2),BC,W

FORMAT(IA:F9.3:3FI@.3)

CONTINUE

GOTO 4

STOP

END
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PROGRAM PDN

POLYNOMIAL DIVISION: 3 CR 4 TERM RELATIONSHIP
INTEGER C

DIMENSION MA(2,9),MG(2,3)

LS=3

LAD=LS~1 .
READ(3,6) N2,LP,L0,(MAC1,IR),IR=1,N2
FORMAT(12,213,1X,911)
NPF=(LS*%(N2-1)-1)/2

WRITE(2,8) (MA(1,IR),IR=1,N2)
FORMAT(//7/7/72X, 12HPOLYNOMIAL =,1X,911)
DO 58 JC=2,LP

C=JC-1

MG(1,1)=1

MG (1,2)=JC

DO 5S4 I1C=1,L@Q

MG(1,3)=1IC

DO 48 KB=1,LAD

DO 47 KC=1,LAD

MG(2,1)=1

MG (2,2)=KB

MG (2, 3)=KC

INK=@

DO 22 IR=1,N2

MA(2, IR)=0

DO 26 IR=1,3

IF(MGC1,IR)Y.GT.N2) GOTO 26
MG1=MG (1, IR)

MAC2,MG1))=MG (2, IR)

CONTINUE

CONTINUE

IF (MA(2,1).NE.2) GOTO 34
INK=INK+1

/0 28 IR=2,N2

MAC2, IR-1)=MA(2,IR)

DO 32 IR=1,3

IF (MG (15, IR)Y«NE. CINK+N2)) GOTG 32
MA(2,N2)=MG(2,IR)

GOTO 27

CONTINUE

MA(2,N2)=0

GOTO 27

JzZ=0

MA1=MA(2,1)

DO 42 IR=1,N2

MA €2, IR)Y=MA(2, IR)-MA1*MA(1, IR)+9
IF (MAC2,IR)«LT.LS) GOTO 38

MA(2, IR)=MA%2,IR)~LS

GOTO 36

IF (MA(2,IR).EQ.B) GOTO 42
JZ=JZ+1

KD=MA (2, IR)

KN=INK+IR

CONT INUE

IFC(KN.GT.CLA+1)) GOTO a1
lF((JZoGTol)oOR-((INK+N2)oLToMAXﬂ(JC:IC))) GOTO 27
JN=KN-1

KID=1C-1

IF¢JZ.EQ.1) GOTO 45

WRITE(2,43) KB,C,KC,KID

FORMAT (1X,6H1D 8 +,12,1HD,13,2H +,12,1HD,I3,4H = B
GOTO 47 ‘
WRITE(2,46) KB»CsKC,KID»KD» N
FORMAT(1X,6H1D B +5,12,1HD,13,2H +,12,1HD,13:2H =,12,1HD,13)
CONT INUE

CONT iNUE

CONTINUE

WRITE(2,56)

FORMAT (/)

CONTINUE

GOTO 4

STOP

END
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c PROGRAM MNA
c TWO INPUT SYSTeM - PERFORMANCE INDICES
INTEGER G,R,Q,21,22
DIMENSION MA(2,9),M1(81,41),M2(81,41),21(543,2),22(543)
COMMON MA,M1,M2,21,22
LS23 -
. 4 READ(3,6) N2,R, (MAC1,IR),IR=1,N2)
6 FORMAT(213,1X,911)
RzR+1
NPF=(LS**(N2-1)-1)/2
NHA= (NPF +1)/2
LY=92
WRITE(2,8) (MAC1,IR),IR=1,N2)
8 FORMAT (///2X,10HPOLYNOMIAL,2X,911)
c POLYNOMIAL DIVISION
KAL=1
MAN=S
Gzl
14 G=G+1
16 CONTINUE
WRITE(2,9)
9 FORMAT (/)
17 DO 46 KB=1,2
18 INK=@
DO 22 IR=1,N2
22 MA(2,1R)=0
MAC(2,1)=1
IF(G.LE.N2) MA(2,G)=KB
24 JF(MA(2,1)«NE.3) GOTO 32
INK=INK+1
DO 26 IR=2,N2
26 MA(2,1F-1)=MA(2,IR)
MA(2,N2,=0
IF(G.EQs CINK+N2)) MA(2,N2)=KB
GOTO 24
32 Jz=9
MAI=MA(2,1)
DO 38 IR=1,N2
MA(2, IR)=MA(2, IR)~MA1 *MA(1,IR)+9
34 IF(MA(2,IR).LT.LS) GOTO 36
MAC2,IR)=MA(2,IR)-LS
GOTO 34
36 IF(MA(2,IR)+EQ.0) GOTO 38
Jz=Jz+1
KD=MA (2, IR}
KN=INK+IR
38 CONTINUE
1F CCJZ.GT+1).0Re CCINK+N2).LT.G)) GOTO 24
IF (KN.LE.NPF) GOTO 42
KN=KN=~NPF
KD=LS-KD
42 CONTINUE
IF (MAN.NE.S) GOTO 46
WRITE (2,44) KB,G,KD,KN
44 FORMAT(2X,4HID 1,3H + »11,1HD,12,3H = ,11,1HD,14)
46 M1(KB,G)I=KN
IF(G.ER.R) 60T0(62,212),KAL
c SHIFTED VALUES
A8 LIM=(R-G+1)#2
DO S4 IR=3,LIM
IRH=CIR+1)/2
IG=IRH+G~1
M3 CIR,GI=M1 (IR=2,G)+1
IF (M1 CIR»G)+GT.NPF) M1(IR,G)=M1 (IR,G)-NPF
GOTO 5S4
WRITE(2,52) IRH,16G,MICIR,G)
52 FORMAT(3X,1HD,12,3H + »1X,1HD,12,3H = »1Xs1HD,14)
54 CONTINUE

GOTO 14
c 3 TERM RELATION
62 @=R-1
KAT=0
64 0z0+1

READ(3,63) @
63 FORMAT(IS)
65 IF(Q.GT.NHA) GOTO 4
66 J1=0+1
J2=J1+R-1
K1=NPF-Q+1
K2=K1+R-1
. . GOTO (68,216),KAL
68 JAN=D
MR=(R-1)*2
DO 78 G=2,R
PO 76 IR=1,MR
IF CCM1 CIR,G)+GEoJ1 )+ AND. (M1 (IR,G)+LE.J2)) GOTO 69
; IF (M3 CTR,G)+LToK1).0Rs (M1 (IRG).GT+K2)) GOTO 76
: 69 CONTINUE
IRH=(IR+1)/2
16=IRH+G~-1
IF (MAN.NE.S) GOTO 74
i WRITE(2,72) LY»R,0,IRH,1G,M1C(IR,G)
i ) 72  FORMAT(/2X,1HR,12,2H =,13,5H, @ 3,15/
; 1 2X,1HD,14,4H + D,14,4H = D,I5)
| 74  JAN=JAN+1
J IF (JAN.EQ.LY) GOTO 64
| . coTO 78
76 CONTINUE
‘ 78 FR=MR~2
; c @ OR M2 ARRAY
i 84 MR=(R-1)#2
DO B8 G=2,R
pn R6 IR=1,MR
M2 CIR,G)=M1 CIR,G)+@
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PROGRAM MNA (CONTINUED)

M2CIR,GY=MI (IR,G)+0

IF (M2CIR,G)GT MPF) M2(IR,G)=M2(1R,G)~NPF
CONTINUE

MRz=Mx =2

GOTO(1@2,242),KAL

4 TERM RELATION .
DO 118 KEY=2,R

DO 118 IS=1,2

MRz (R-1)#2

DO 118 G=2.R

DO 116 1R=1,MR

litMl(IS.KEY).NE.Math»G)) GOTO 116

Li=t

IF (MAN.NE.S) GOTO 108

L2=KEY

L3=5(IR+1)/2+0Q

LA=L34+4G~1

" WRITE(2,106) L1,L2,L3,L4

FORMAT(2H D,13,4H + D,13,4H = D,14,4H + D,14)
JAN=JAN+ ]

IF (JAN.EQ.LY) GOTO 64

CONT INUE

MR=MR-2

COMBINATIONS OF SHIFTED M1 ARRAY
MRG=R~-1

DO 128 KEY=2,R

DO 12g 1S=t,2

MR=(R=1)%*2

DO 128 G=2,MRG

p0 126 IR=3,MR

IF (M2 (1S,KEY).NE.M1(IR,G)) GOTO 125
IF (MAN.NE.S) GOTO 124
LA1=(IR+1)/2

L2=LAl+u-1

L3=0+1

LA=L3+KEY-1

WRITE(2,106) LA1,L2,L3,L4
JAN=JAN+1

IF (JANLEQ.LY) GOTO 64

CONTINUE

CONTINUE

MR=MR=-2

KAT=KAT+1

Z1(KAT,1)=8

Z1(KAT,2)=JAN

GOTO 64

FINAL RESULT

CONT INUE

IR=R=-1

IF (KAT.NE.B) :0TO 162

IF (KAL.E®.1) GOTO 152

IR=R-2

WRITE(2,144) LY,IR,€Z2(IS),IS=1,KATE)
FORMAT (/2X,1HR,12,2H =,147€1016))
GOTO 150

WRITE (2,9)

LY=LY+1

IF(LY.GT.2) GOTO 4

KAL=1

R=R=-1

GOTO 62

R=R-2

IR=R-1

GOTO 62

WRITE(2,154) IR
FORMAT (/2X, 1 SHAREA REDUCED TO,I4)
GOTO 62

KAL=2

KATE=KAT

DO 166 IR=1,KAT

22CIR)=Z1CIR, 1)

GOTO 172

WRITE(2,168) KAT:IR;((Z!(IR,IS):IS=1o2)‘IR=1:KAT)
FORMAT (72X, 6HKATE =,13,4X,3HR =,13/¢1016))
INCREMENT OF AREA

MR=R*»2

IRP=R+1

DO 178 G=2,R

IRH=MR/2

1S=MR~-1

DO 176 IR=IS,MR.
MICIR,G)I=M1(IR-2,G)+1

IF (M1 C(IR,G).CT.NPF) M1 C(IR,G)Y=M1 (IR,G)-NPF
GOTO 176

WRITE (2,52) IRH, IRP,M1 C(IR,G)
CONTINUE

MR=MR~2

R=R+1

G=R

GOTO 16

IMI=0

KAT=0

IMI=IMI+]1

IFCIMI+GT.KATE) GOTO 142
PxZ1C(IMIL 1)

IF(Q.LT.R) GOTO 214

JANsZ1 (IMI,2)

GOTO 66

3 TERM TEST

CONTINUE

MR1=R-1

DO 220 KEY=2,MR!

DO 220 IS=1,2

IF (M1 C1S,KEY)EQ.J2) GOTG 217

{F (M1 {{S,KEY) NE.K2) GOTO 220

1F (MAN.NE.5) GOTO 218
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217
218

229

221

222

223

224
226

240

246
248

312

316
318

253
254
256
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2l0

263
264
266
268
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PROGRAM MNA (CLNTINUED)

IF (MAN.NE.S) GOTO 218

WRITE(2,72) LY,R»Q,L1,KEY,MICIS,KEY)

JAN=JAN+1

IF(JAN.EQ.LY) GOTO 214

CONT INUE

MR=(R-1)x*2

DO 226 G=2,R

1S=MR-1

DO 224 IR=1S,MR

IFCC(MI CIR,G)«GE. J1 )+ AND. (M1 CIR,G)«LE.J2)) GOTO 221
IFCCMICIR,G)«LT.K1)eOR. (M1 CIR,G)eGT.K2)) GOTO 224
IFCIR.LT.3) GOTC 222

1F ((M1CIR-2,G)«GE.J1 ) AND+ (M1 CIR-2,G).LE.J2)) GOTO 224
IF C(M3 CIR-2,G)«GE«K1).AND. (M1 (IR-2,G).LE.K2)) GOTO 224
CONTINUE

IRH=(IR+1)/2

IG=1RH+G-1

IF (MANJ.NE.S5) GUTO 223

WRITE(2,72) LY,R,0,IRH,IG,M1 (IR,G)

JAN=JAN+1

IF C(JAN.EQ.LY) GOTO 214

CONTINUE

MR=MR=-2

GOTO 84

€ OR M2 ARRAY

CONT INUE

4 TERM TEST - PART ONE

MR=(R=1)%2

DO 248 G=2,R

DO 246 S=1,2

DO 246 1R=1,MR

IF(MICIS,R)«NEM2C(IR,G)) GOTO 246

IF (MAN.NE.5} GOTO 240

"L3=C(IR+1)/72480

LA=L3+G~1

WRITE(2,1096) L1,R,L3,LA
JAN=JAN+1

IF CJANJ.EQ.LYY GOTO 214
CONT INUE

MR=MR-2

4 TERM TEST - PART TWO
MR1=R~1

MR=(R=-1)%2

DO 318 G=2,MR1

DO 316 1S=1,2

DO 316 IR=1,MR .
IF (M2C(1S,RY.NE.M1(CIR,G)) GOTO 316
IF (MAN.NE.S) GOTO 312
LAl=CIR+1Y/2

L2-LA1+G-1

L3=G+1

LA=L34+R-1

WRITE(2,106) LA1,L2,L3,LA4
JAN=JAN+1

IF (JAN.EQ.LY) GOTO 214
CONTINUE

MR=MR-2

4 TERM TEST - PART THREE
DO 258 KEY=2,MR1

DO 258 IS=1,2

MR=(R-1)%2

DO 256 G=2,MR1

MIS=MR-1

DO 254 IR=MIS,MR

IF (M1 CIS,KEY>eNEJM2C(IR,G)) GOTO 253
IF (MANJNE.S) GOTO 259
L3=CIR+1)72+6

LA=L34G-1

WRITE(2,106) L1,KEY,L3,L4
JAN=JAN+1

1F CJAN.EQ.LY) GOTO 214
CONTINUE

CONTINUE

MR=MR~-2

CONT INUE

A4 TERM TEST - PART FOUR
DO 268 KEY=2,MRI1

DO 268 IS=1,2

MR=(R-1)%2

DO 266 G=2,MR"

MIS=MR-1

DO 264 IR=MIS,MR

IF (M2 C1S,KEY)oNE.M) (IR,G)) GOTO 263
IF (MAN.NE.S) GOTO 2689
LAl1=CIR+1)/72

L2=LA14G-1

L3=0+1

LA=L3+4KEY-1

WRITE(2,1086) LA1,L2.L.3,L4
JAN= JAN+1

IF CJAN.EQ.LY) GOTO 214
CONTINUE

CONT INUE

MR=MR=-2

CONTINUE

KAT=KAT+1

Z1C(KAT,1)5=8

21 CKAT,2)=JAN

GoTO 214

STOP

END
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PROGRAM DV

BINARY SIGNALS: PERFORMANCE INDEX, RO
INTEGER F,G,P

DIMENSION MA(2,12)

1C0=0

WRITE (2, 4)

FORMAT (//25H DIAGONAL VALUES FOR PRBS/
25H ---ececececcacnccccananan- /
4H  NO,3X,1HF ,3X,18HPOL YNOMIAL/
AH «==,2X,3H===,2X, 10H===mmmm=m )
READ(3,8) N2,(MAC(1,IR),IR=1,N2)
FORMATC(I3,1X,1211)

N=N2~-1

NP =2 %*N~-1

DO 64 JJ=1,2

GOTN(13,9),JJ

RECIPROCAL POLYNOMTIAL

DO 12 IR=i,N

MAN=MA(1,N2)

1S=N2+1

1S=1S-1

MAC1,1S)=MAC1,1S5-1)
IFCCIS-1).NE.IR) GOTO 18

MAC1, 1S~-1)=MAN

F=31

G=1

G=G+1

1IF(G.GT.(F-1)) GOTO 52

INK=©

DO 22 IR=2,N2

MA(2, IR)=0

MAC(2,1)=1

IF(G.GT.N2) GOTO &6

MA(2,G3=1

CONTINUE

IF(MA(2,1).NE.B) GOTO 34
INK=INK+1

DO 28 IR=2,N2
MA(Q’IR-1)=MA(2’IR)

MA(2,N2)=0

IF(G.EQ. CINK+N2)) MA(2,N2)=1
GOTO 26

Jz=0

DO 42 IR=1,N2

MA (2, IRY=MA(2,IR)=MA(1,IR)+2
IF(MAC2,IR)«LT.2) GOTO 38

MAC2, IR)=MA(2,IR)-2

GOTO 36

IF (MAC2,IR).EQ.8) GOTO 42
JZ=JZ+1

KD=MA (2, IR)

KN=INK+IR

CONTINUE '
IF((JZ.GT-I)-OR.(KN.LT-G)) GOTO 26
IF (KN.GT «NP) KN=KN~-NP
WRITE(2551) GsKN

FORMAT (3H D1,3H + QIHD’IQ’SH = ,1HD,I13)
GOTO 14

F=F-2

GOTO0(54,58)>JJ

ICO=1CO+1

WRITE (2,56) 1CO,F,(MAC1,IR),IR=1,N2)
FORMAT(I4;I5r2XplZII)

GOTO 64

WRITE (2,62) F,(MAC1,IR)»IR=1,N2)
FORMAT(I9,2X91211)

CONT INUE

GOTO 6

STOP

END
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PROGRAM RT

RECTANGUI AR TNPUT - BINARY M SEQUENCE

INTEGER X,A,P,FD,FB .

DIMEMSION X(1538),Y(1538),A(510),8(518),P(11),FD(12)

COMMCN X,Y,A,B

READ(3,4) NS2,LAY,(FND(IR)Y, IR=1,NS2)

FORMAT (212,1%,1211)

NS=NS2~-1

NG1=NS~-1

NP =2 *+#NS~1

INK=3*NP

AK=0.3

T=1.0

DC 6 J=1,NS

P(JY=]

GENERATION OF PRBS - FULL AND HALF BITS

CO 32 J=1,INK

NJ=P (1)

IF(NJ.EQ«D) NJ=-1

I=J*2

FULL BIT

X(I-1)=NJ

HALF BIT

XC(I1)Y=NJ

FB=0

DO 22 IR=1,NS

IFB=FD(IR)+1

GOTO(22,18),IFB

FB=FB+P(IR)

CONT INUE

IF(FB.LT.2) GOTO 26

FB=FB-2

GOTO 24

DO 28 L=2,NS

P(L-1)=P(L)

P(NS)=FB

CALCULATION OF THE OUTPUT

INK=5 #NP

LA=2+LAY+]

DO 54 J=1,INK

MR=0

DO 52 IR=2,LA

I=J+IR

MR=MR+X (1)

Y(JY=AK#T/2.8*FLOAT (MR)

CONT INUE

DATA FOR CORRELATION

INK=A4*NP

1=0

DO 56 J=231NK12

I=1+1

ACTII=XCT)

B(I)=Y(J~1)

CONT INUE

WRITE (2558) (FDC(IR)»IR=1,N52)

FORMAT (£2X, 1 @HPOLYNOMTAL »1X51211)

WRITE(2,59) LAY,AK
'FORMAT(IX,36HCROSSCORRELATION - BINARY M SEQUENCE/

1 1X,32HINPUT-RECTANGULAR WAVE OF WIDTH, 12,2HT; , 6HHEIGHT,F 5.1/

2 3X;2HNO;1X;6HLINEAR,IX,9HQUADRATIC,2X.SHCUBIC/
3 AXs2H==s 1 Xs6H-===~~ »I1X)9Hr = ce e == 32X s SHe=w==)
CROSSCORRELATION

L.START=1

DO 84 J=1,NP

JJ=J-1 '

Y1=0.0

Y2=0.0"

Y3=0.0

DO 68 L=1,NP
LTEST=A(LSTART)*2
GOTO(64;68,66),LTEST
Yi=Y1-B(L)

Y2=Y2-B(L)Y**2

Y3=Y3-B(L)**3

GOTO 68

Yi=Y1+B(L)

Y2=Y2+B (L) **2

Y3=Y3+B(L)**3

LSTART=L START +1
Y1=Y1/FLOAT(NP)
Y2=Y2/FLOAT(NP)
Y3=Y3/FLOAT(NP)

WRITE(2,74) JJ;Y‘»YQ:Ya;AfJ)
FORMAT(IS,F7-2;F8-2:F9.2.16)
LSTART=J+1

CONT INUE

WRITE(2,86)

FORMAT(//////)

GOTO 2

STOP

END
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PROGRAM R12

-16"7~-

RECTANGULAR INPUT - INVERSE REPEAT PRBS

INTEGER X,P,FD,FB

DIMENSION X(2848),Y(1020),P(11),FD(12)

YC1DZ20)=Y(2%*NP)
COMMON X,Y

READ(3,4) NS2,LAY,(FDC(IR)>IR=1,NS2)

FORMAT (212,1X,1211)
NS=NS2-1
NPF =2 **NS-1

NP=NPF +NPF

INK=2 *NP

AK=0.3

T=1.6

DO 6 J=1,NS

PCJI=1

GENERATION OF PRBS - FULL AND HALF BITS

DO 32 J=1,INK

NJ=P (1)

IFI(NJ.EQ.8) NJ=-1
INVERSE REPEAT PROPERTY

IFCC(J=-CJ/2)%2).EQ.8) NJ=-NJ

I=J*2
FULL BIT
XCI-1)=NJ
HALF BIT
X(1Y=NJ

.FB=8

DO 22 IR=1,NS
JIFB=FD(IR)+1
G0T0(22,18),IFB
FB=FB+P(IR)

CONT INUE

JF(FB.LT.2) GOTO 26
¥FB=FB-2

GOTO 24

DO 28 L=2,NS
P(L-1)=P(L)

PI(NS)Y=FB

CALCULATION OF OUTPUT
LA=2*LAY+1

DO 54 J=1,1INK

MR=0

DO 52 IR=2,LA

I1=J+1IR

MR=MR+X(I)

Y (J)=AK*T/2.8*FLOAT (MR)
CONTINUE

WRITE(2,56) (FDC(IR),IR=1,N52)

FORMAT (/2X, 10HPOLYNOMIAL,1X,1211)

WRITE(2,58) LAY,AK

FORMAT (1X,37HCROSSCORRELATION - ANTISYMMETRIC PRBS/
1X»32HINPUT-RECTANGULAR WAVE OF WIDTH »12,2HT,,6HHEIGHT,FS.1/
3X;2HNO:3X;6HLINEAR:2X;9HQUADRATIC:2X:SHCUBIC/
3Xs2H-=53Xs6H~==~-~ »2X,9H

CROSSCORRELATION
LSTART=2

DO 84 J=1,NPF
JJ=J-1

Yl=000

Y2=0.0

Y3=0.0

DO 68 L=15,INK»2
LTEST=X(LSTART)+2
GOTO(645,68,66),LTEST
Y1=Y1-Y(L)
Y2=Y2-Y(L)**2
Y3=Y3-Y(L)**3
GOTO 68
Y1=Y1+Y(L)
Y2=Y2+Y (L) **2
Y3=Y3+Y(L)**3
LSTART=LSTART+2
PN=NP

Y1=Y1/PN
y2=Y2/PN
Y3=Y3/PN

J2=J*2
WRITE(2,74) JJsY1,Y25Y3
FORMAT (15,3F9.3)
LSTART=J242
CONTINUE

WRITE (2,86)
FORMAT(//////)
GOTO 2

STOP

END

------- w=32XsSHem===)

R R SR e S
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PROGKAM R13

RECTANGULAR WEIGHTING FUNCTION - TERNARY SIGNAL
INTEGER X,P,FD,FB,FE

DIMENSION X(2912),Y(1456),P(8),FD(9),FE(8)
COMMON X,Y

READ(3,4) NS2,LAY,(FDCIR), IR=1,NS2)
FORMAT(212,1X,911)

NS=NS2-1

NP=3%%NS-1

NPF =NP/2

DO 92 IR=1,NS

FECIRI=FD(IR)

LAST TERM IN POLYNOMIAL MUST BE TWO
IF (FD(NS2).EQ.2) GOTO 96

DO 94 IR=1,NS

FECIR)=FEC(IR)*2

IF(FECIR).EQ+4) FECIR)=1

CONT INUE

INK=2%NP

AK=0.3

T=1.0

DO 6 J=1,NS

P(I=1

GENERATION OF SEQUENCE - FULL AND HALF BITS
DO 32 J=1,INK

NJ=P(1)

I=J%2

FULL BIT

XC(I-1)=NJ

KHALF BIT

XC1)=NJ

FB=2

DO 22 IR=1,NS

IFB=FE (IR)+1}

GOT0(22,18,19),1FB

FB=FB+P (IR)

GOTO 22

FB=FB-P(IR)

CONT INUE

FB=FB+9

IF(FB.LT.2) GOTO 26

FB=FB-3

GOTO 24

DO 28 L=2,NS

P(L-1)=P(L)

P(NS)=FB

CALCULATION OF OUTPUT

LA=2*LAY+1

DO 54 J=1,INK

MR=0

DO 52 IR=2,LA

I1=J+1IR

MR=MR+X (1)

Y(J)=AK*T/2.8*FLOAT (MR)

CONT INUE

WRITE(2,56) (FDCIR),IR=1,NS2)
FORMAT ¢/2X, 1@HPOLYNOMIAL,1X,911)
WRITE(2,58) LAY,AK

FORMAT (1 X,33HCROSSCORRELATION - TERNARY SIGNAL/

R B

1X»32HINPUT~-RECTANGULAR WAVE OF WIDTH ,12,2HT,,6HHEIGHT,FS.1/

3Xp2HNO;3X.6HLINEAR.2X.9HQUADRATIC,2X;5HCUBIC/
3X,2H—-,3X.6H “““ -32Xs9Hm o momemw- 92X sSHew ="~ )
CROSSCORRELATION
LSTART=2

DO 84 J=1sNPF

JJ=J-1

Y1=0.0

Y2=0.0

Y3=0.0

DO 68 L=1, INK,2
LTEST=X(LSTART>+2
GOTO€64,685,66),LTEST
Yi=Y1-Y(L)
Y2=Y2-Y(L)**2
Y3=Y3-Y (L) **3

GOTO 68

Y1=Y1+Y (L)
Y2=Y2+Y (L) *%2
Y3=Y3+Y (L) **3
L.START=LSTART +2
PN=2.D*3.E**(NS'1 )
Y1=Y1/PN

Y2=Y2/PN

Y3=Y3/PN

Je=J*2

J3=J2+NP

WRITE(2,74) JJsY1,Y2,Y3,X(J2)5XCJI3)
FORMAT(IS,:JF?’;S. 16, 13)
LSTART=J2+2

CONT INUE

WRITE(2,86)
TORMAT(/77777)

C0TO 2

STOP

END
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PROGRAM DDS4

DIRECTION DEPENDENT SYSTEM
INTEGER U,FB,P,FD

DIMENSION U(382)5,Y(4,391),P(11),FD(12),KD(12)

COMMON U,Y

READ IN 6 120101
READ(3,4) NS2,(FD(IR)Y,IR=1,NS2)
FORMAT(I2,1X,1211)
RECIPROCAL POLYNOMIAL
K=NS2

DO 7 I=1,NS2
KDC(I)Y=FD(K)

K=K=1

NS=NS2~1

NP =2 **NS-1

NP1=NP+1

NP2=NP+NP+2

NP3=3%NP

T-':loﬁ

W=3.0/(8.0%T)
R=1.0/(8.0%T)
C1=EXP(~-W*T)

- GENERATION OF PRBS

DO 14 J=1,NS

PCJ)=1

DO 32 J=1,NP3

NJ=P (1)

IF(NJ.EQ.0) NJ==~1
UcJr=NJ

FB=0

DO 22 IR=1,NS
IFB=KD(IR)Y+1

GOTO (22,18),IFB
FB=FB+P (IR)
CONTINUE
IF(FB.LT.2) GOTO 26
FB=FB-2

GOTO 24

DO 28 L=2,NS
PC(L-1)=P(L)
P(NS)=FB
CALCULATION OF OUTPUT
INITIAL CONDITION OF STATE VARIABLES
XAB=0.0

X1A=@.0

Y1A=0.0

Y2A=0.0

Z1A=0.0

Z2A=0.0

Z3A=0.0

DO 58 ICYCLE=1,3

FE=0.0

DO 56 J=1,NP3

uJ=ucJd

TOTAL OUTPUT

IF(J.EQ.1) GOTO 38
IFCUCII.EQ.UCJ-1)) GOTO 38
XAB=Y(1,J)

FE=0¢0

FE=FE+1.0

IFB=UC(J)+2

GOTO (€44,46,42),1FB
Y(l:J+l)=UJ-(UJ-XAB)*EXP(-(W+R)*T*FE)
GOTO 46 )
Y(l:J+l)=UJ-(UJ-XAB)*EXP(-(W-R)*T*FE)
CONT INUE

CONT INUE

FIRST ORDER TERM
X1B=UJ+X1A*C1
Y(2;J)=(]-0-C1)*X]A
X1A=X1B

SECOND ORDER TERM
Y2B=UJ+Y2A*C!
YlB=(Y28-Y2A)*UJ+YlA*Cl
Y(3:J)=R*T*CI*Y1A

YiA=Y1B

Y2A=Y2B
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PROGRAM DDS4 (CONTINUED)
Y2A=Y2B

THIRD ORDER TERM
Z3B=UJ+C1%*Z3A
Z2B=(Z3B~-Z3A)Y*UJ+C1 %x72A
Z1B=(Z2B+C1%Z2A)Y*UJ+C1%Z1A
YC4, J)=-R*R*T*T*C1%Z1A/2.0
Z1A=Z1B

Z2A=22B

Z3A=Z3B

CONTINUE

XAB=Y(1,NP+1)
Y(1,1)=Y(1,NP+1)

CONTINUE

PRINTOUT OF THE OUTPUT
WRITE(2,6%) (FDCIR),IR=1,NS52)

FORMAT(//11H POLYNOMIAL,2X,1211)

WRITE(2,62)

FORMAT (37H OUTPUT OF DIRECTION DEPENDENT SYSTEM)
WRITE(E,64) v

FORMATC(4H NO,3X-.SHTOTAL,2X,6HLINEAR,2X, FHQUADRATIC,2X,
SHCUBIC, 4X, SHERROR,»3X,SHERROR, 3X» SHERROR/

9X,1HT 56X 1HL» 99X, 1HO 58X, 1HC» 8X»1HL,6X5s3HL+0,4X, SHL+Q+C/

4H ===,3Xs5H====~ 22Xs6Hewm == 22XsIHmweecmmcw- 32Xs SHe===~ P
AXySHe===-= 23XsSH-===-= 23XsS5Hw==== )

DO 68 J=1,NP1

JJ=J-1

Y2=YC(1,J)-Y(2, )

Y3=2Y2-Y(3,.J)

YA=Y3-Y(4, )

WRITE(2566) JJs (¥ C1,3)5,1=1,4),Y2,Y3,5Y4
FORMAT(14:27803;Flﬂo3;F8.3;F903:F803’F9o4)
CONTINUE

CROSSCORRELATION

WRITE(2,61) (FDC(IR),IR=1,NS52)
WRITE(2,74)

FORMAT (39K CROSSCORRELATION FUNCTION OF DIRECTION,
17H DEPENDENT SYSTEM)
WRITE(2,64)

LSTART=1

PN=NP

DO 98 J=1,NP1

JJd=J=1

Yi=0.0

Y2=0.0

Y3=0.9

Y4=g o0

DO 88 L=1,NP

LTEST=UCL)+2
GOTO(84,88,86),LTEST
Yi=Yi-Y(1,LSTART)
Y2=Y2-Y(2,LSTART)
Y3=Y3-Y(3,LSTART)
Y4a=YA4-Y(4,LSTART)

GOTO 88

Yi=Y1+Y(1,LSTART)
Y2=Y2+Y(2,LSTART)
Y3=Y3+Y(3,LSTART)
Y4=Y4+Y(4’LSTART)
LSTART=LSTART+1

Y1=Y1/PN

Y2=Y2/PN

Y3=Y3/PN

YAa=YA/PN

YS5=Y1-Y2

Y6=Y5-Y3

Y1=Y6-Y4

WRITE(2,66) JJ:YI:Ya:YS:Y4:Y5:Y6:Y7
LSTART=J+1

CONTINUE

STOP

END
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PROGRAWN TV .
CHEMICAL PLANT DATA: VEIGHTING FUNCTION ESTIMATES
WETGHTING TC REMOVE CUBIC DRIFT
INTEGER A,P,FB
DIMENSION A(3640),S¢1456),P(6)
COMMON A,S
READ(3,7) A
FORMAT (1415)
TO CONVERT DATA TO PH, DIVIDE BY 1900.0
STEADY STATE PH VALUE = 10.54
PCid=1
P(2)=0
P(3)=0.
PC4)=0
P(S)Y=0
P(6)=1
AMPL ITUDE OF INPUT .SIGNAL = 142.88!4 = 143 KG/HR
GENERATION OF 2 PERIODS OF WEIGHTED PRS
DO 28 J=1,1456
1IF(J.GT.728) GOTO 12
SCJ)=FLUATC(PC1))*(P+3584+4FLOAT(J-1)2/728.0)
GOTO 14
SCJ)=FLOAT(P(1))*(1.6416-FLOAT (J-T729)/728.0)
FB=-P({(6)+P(4)-P(3)+P(5)+P(i)+6
IFC(FB.LT.2) GOTO 18
FB=FB~-3
GOTO 16

18
22
28

DO 22 L=155
PCLY=P(L+1)
P(6)=FB
LROSSCORRELATION
L START=1

‘DO 36 J-1,2184

Y=0.0
DO 34 L=1:1456

Y=Y+FLOAT CACLSTART))»*S(L)
LSTART=LSTART+1
ACII=IFIXC(Y/T29.0)%15.8)

TO CONVERT TO PH/XG» DIVIDE BY 9049.1604

36

38

40
41
42

53
55

NN WK -

LSTART=J+1

DO 38 N=1,364
N3=T28+N
NS=1456+N
ACNI=~-ACN)
ACN3)=-ACN3)
ACNS)I==-ACND)
GOTO 41

WRITE (4,40) (ACIR),IR=1,2184)

FORMAT (1X,1415)
WRITE (2,42)

FORMAT (17H IMPULSE RESPONSE/
OVE CUBIC DRIFT/

3OH mm-e-mmmememmmo-em-==-s--osooos
4H NO» 6X,1Hl:7X:lH2,7X,1H3,7X,1H4;

4H —~-,4X,5H ----- »3X»5H

32H WEIGHTING TO REM

SHe ===~ »3XsSH=====/)
K=364

DO 55 N=1,K

N2=N+K

N3=N2+K

N4=N3+K

NS=MN4+K

N6=NS5+K .
FORMAT(14,618)

WRITE(2,53) N,A(N),A(N2),A(NS).A(NA),ATNS),A(N6)

STOP
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‘CT2=1.0-EXP(-T/T2)
Ci=T1*CT1-T2*CT2
.C2=T2*CT2*EXP(-T/T])-Tl*CTl*EXP(—T/TQ)

APPENDIX 1.13

PROGRAM CF | |
CURVE FITTING ’ o
INTEGER U,P,FB,A

DIMENSION A(6,364),B€1456),UC728),P(6),C(4),D(4),N(364),H(6,4)
COMMON A,B,U,N

READ(3,5) ((HC(IR,JR),JR=1,4),1R=1,6)
FORMAT (4F 9.4)

PAUSE

P(1)=1

P(2)Y=0

P(3)=D

PC4Y=0

P(5)=0

P(6)=1

DO 18 J=1,728

Ucdry=pPa1)

FB==P(6)-P(4)-P(3)4P(5)+P(1)+6

IF(FB.LT.2) GOTO 14

FB=FB-3

GOTO i2

DO 16 L=1,5

P(L)Y=P(L+1)

P(6)=FB

READ(3,22) ((ACIR»JR)»JR=1,364),1IR=1,6)
FORMAT (1415) ’
DC1)=@.1

D(2)=1.0

D(3)=0.0002

DC4rY=p.2

DO 84 1IT=1,6

DO 2 KT=]:4

CeKTI=HCIT,KT)

C(1),C(3)=LINEAR,CUBIC GAINS; C(2),C(4)=TIME CONSTANTS
DC(J)=AMOUNT BY WHICH C(J) INCREASES
GAIN VALUES IN THE TEXT ARE OBTAINED AS FOLLOWS:
LINEAR GAIN=C(1)*36C0+.0/(143.0%1900.0)
CUBIC GAIN=C(3)%1900.0*%2/ (C(1)*%3)
INI=1

JEC=140

T=6.0

E2=0.0

EMIN=3640000.0

DO 82 1U=1.,4

CAT=1.0

IC=1

CONTINUE

GOTO (42,38), INI

C(IU)=C(IU)fD(IU)*CAT

Ti=C(2)

T2=C (4) )

CT1=1.3-EXP(-T/T1)

K =3

C3=EXP(-T/T1)+EXP(-T/T2)
CA=EXP(-T/T1-T/T2)
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. C PROGRAM CF (CONTINUED)
C4=EXP(-T/T1=-T/T2)
X1A=0.0
X2A=B.0
DO 48 J=1,728
X1B=X2A
X2B=~C4%X1A+C3*X2A+FLOAT (UCJ))
J1=J-364
IFC(J1.LE.®) GOTO 44
| B1=C2#X1A+C1%*X2A
N B(J1)=-B1l
o 5 B(J1+364)=B1
(ST - B(J1+728)=-8B1
B(Jj1+1092)=81
44 %X1A=X1B
X2A=X2B
48 CONTINUE
i LSTART=1
T c CROSSCORRELATION
miid DO 64 J=1,JEC
Y=®.@
DO 56 L=1,728
B1=B(LSTART)
LTEST=UCL)+2
GOTO (52,56,54),LTEST .
5o  Y=Y-C(1)*B1-C(3)*B1+B1*Bl

GOTO 56
54 Y=Y+CC(1)*B1+C(33*B1*B1*B1
e s 56 LSTART=LSTART+!
L Y=(Y/729.0)*30.0
- NCIY=Y ‘

62 LSTART=J+1
64 - CONTINUE
E1=E2
E2=0.0
DO 66 IR=2,JEC
J1=IR+2 _
66 Eo=E2+FLOAT CCACIT,J1)=NCIR))I**2)
E2=E2/FLOAT (JEC-1)
WRITE(2,68) (CC(IR)Y,IR=1,4),E2
68 FORMAT(2F9.2,F9.4,2F9.2)
 GOTO(78,72),INT
72 IF(E2-E1) 76,82,74
74 E2=E1 '
: CCIUY=CCIUY-DCTUI*CAT
| : IF ¢(IC.EQ.2) GOTO 82
—en CAT=-1.0
i 76 1C=2

78 INI=2

'--—--i GOTO 36
_ : g2 CONTINUE

IF ((EMIN-E2).LT.8.0001> GOTO 84
EMIN=EZ2
GOTO 34

S ‘84 CONTINUE

. STOP
END
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PROGRAM ACF

CURVE FITTING - MORE ACCURATE MF.THOD
INTEGER U,P,FB,A
DIMENSION U(728),P(6),N(160),A(364),D(4a),C(4),B(1456)
DIMENSION Q(€4,30),CJ(8108),H(6,4)
COMMON A,B,P,U,N,CJ,0
READ (3,4) ((HC(IR:JR)»JR=1,4),IR=1,6)
READ(3,5) JI
4 FORMAT(4F9.4)
S FORMAT(14)
PAUCE
8 P1)=1
P(2)=0
P(3)=0
PCa)=0
P(5)=0
P(6)=1
DO 18 J=1,728
ucdiI=rPq1)
FB==P(6)-P(4)-P(3)+P(5)+P(1)+6
12 IF(FB.LT.2) GOTO 14
FB=FB~-3 i
GOTO 12
14 DO 16 L=1,5
16. P(LY=P(L+1)
18 P(6)=FB
ITI=0
19 DO 22 1S=1,J1
READ(3,20) A
20 FORMAT(1415)
: ITI=ITI+1
22 CONTINUE
DO 23 KT=1,4
23 Q(KT»2)=HCITI,KT)
24 1COUNT=0
ICT=0
FMIN=1000000.0
EMIN=100¢000.0
INI=~1
JAY=2
DC(1)=0.1
D(2)=1.0 g
D(3)=0.2002 N
D(4)=0.2 8
25 JA=JAY-1
INI=INI+1
DO 26 IT=1,4
QCIT,»JAY=1)=0CIT,JAY)-D(IT)
) QCIT,JAY+1)=QCIT,JAY)+DCUIT)
26 CONTINUE
WRITE(2,32)
32 FORMAT (/)
T=6.0
E2=0.0
JA3=JA+2
DO 72 1A=JA,JA3
DO 72 1B=JA,JA3
134 DO 72 IC=JA,JA3
DO 72 1D=JA,JA3
128 IFC(INI.EG.®) GOTO 38
KA=1
NET=0
DO 36 KAL=1,INI
KA3=KA+2
DO 34 M1=KA»KA3
DO 34 M2=KA,KA3
114 DO 34 M3=KA,KA3
DO 34 M4=KA,KA3
118 NET=NET+1
IF(Q(]:M])-NE-Q(]:IA)) GOTO 34
IF(Q(2;M2).NE~Q(2,IB)) GOTO 34
124 'IF(Q(3;M3).NE.Q(3:IC)) GOTO 34
IF(Q(A:MA)-NE.Q(A:ID)) GOTO 34
128 E2=CJ(NET)
GOTO 65
34 CONTINUE
36 KA=KA+3
38 T1=8(2,1B)
T2=6C4,1D)
CT1=1.0-EXP(=T/T1)
CT2:].0-EXP(-T/T2)
C1=T1%CT1-T2*CT2
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PROGRAM ACF (CONTINUED)
C1=T1*CT1-T2xCT2
C2=T2*CT2*EXP(~T/T1)~T1*CT1*EXP(~T/T2)
C3=EXP(~T/T1)+EXP(-T/T2)
CA=EXP(-T/Ti-T/T2)

X1A=0.0

X2A=0.0

DO 48 J=1,728

X1B=X2A
X2B=-C4%*X1A+C3*X2A+FLOAT (U(J))
J1=J-364

IF(J1.LE.0) GOTO 44
B1=C2%X1A+C1%X2A

B(J1)=-B1

B(J1+364)=B1

B(J1+728)=-B1

B(J1+1092)=B1

X1A=X1B

X2A=X2B

CONT INUE

LSTART=1

DO 64 J=1,140

Y=0.0

DO 56 L=1,728

B1=B(LSTART)

LTEST=UCL)+2

GOTO (52,56,54),LTEST
Y=Y-Q(1,IA)*B1-Q¢3,IC)*B1*B1xB1
GOTO 56
Y=Y+Q(1,1A)*B1+Q(3,1C)*B1*B1*Bl
LSTART=1.START +1
Y=(Y/729.0)%30.0

NCII=Y

LSTART=J+1

CONT INUE

E1=E2

E2=0.0

DO 66 IR=2,148

J1=1R+2
E2=E2+FLOAT((ACJ1)-NCIR) I**2)
E2=E2/139.0

ICT=ICT+1

CJCICT)=E2

IF(E2.GE.EMIN) GOTO 67
EMIN=E2

CC1)=0(1,1A)

C(2)=0¢2,1B)

C(3)>=0¢3,1C)

CC4)=Q(4,1D)

IMI=ICT

WRITE (2,68) ICT,Q(1,1A),0(2,IB)»Q8(3,1C)»0(4,1D),E2
FORMAT (15,2F 942,F9+4,2F942)
CONT INUE .

IF CABSCEMIN-FMIN).LT.0.00001) GOTO 99
FMIN=EMIN

WRITE(2,82) IMI,(CC(IR),IR=1,4),EMIN
FORMAT (/15,2F9+42,F9.4,2F9.2/)
ICOUNT=ICOUNT+1 ‘
IF CICOUNT.LE.9) GOTO 83

DO 87 IR=1,4

Q(IR,2)=C(IR)

GOTO 24

JAY=JAY+3

DO 84 IR=1,4

Q@ (IR, JAY)=C(IR)

GOTO 25

J1=1

ITI=0

GOTO 19

STOP

END
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APPENDIX 1.15

PROGRAM SOKM
AMMONTUM NITRATE DATA
SECOND ORDER KERNEL MEASUREMENT
INTEGER U,P,FB,C :
DIMENSION A(364),U(1456),P(6),K(364)
COMMON A,K,U,P,N
T=6.0
SA=142.8814/73600.0
DEN=(8+0*%3 0 %%4) %xSA**4xT % %2
READ(3,8) K
8 FORMAT(1415)
DO 254 1=1,364
254 AC(I)=FLOAT(K(I))/120080.08
GOTO 9
. DO 1B I=1,362
10 ACII=FLOAT(K(I+2))/1900.0
A(363)=-0.0634875
A(364)=-0.0471278
9 P(l)=1
P(2)=0
P(3)=0
PC4Y=0
P(5)=0
P(6)=1
DO 18 J=1,1820
JJ=J~364
IF(JJ.L.Te1) GOTO 11
ucJdJy=prPcl)
11 FB==P(6)-P(4)=-P(3)Y+P(5)+P(]1)+6
12 IF(FB.LT.2) GOTO 14
FB=I'B-3
. GOTO 12
14 DO 16 L=1,s5
16 PLY=P(L+1)
18 P((6)=FB
CKOSSCORRELATION
DO 46 KC=1,16
C=KC
FORMULA UCI-0)*UCI=-C-J)*ACD)
WRITE(2,24) C
24 FORMAT(//2Xs41HAMMONTUM NITRATE PLANT - 2ND ORDER KERNEL,
-1 SH, C =,12)
DO 46 JJ=1,61
J=JJ-1
Y=0.0
DO 34 1=1,364 _
IF((U<I+728-J).EO.®).OR.(U(I+728-C-J).EQ.®)) GOTO 34
YLzFLoAT(U(1+728-J))*SA*FLOAT(U(I+728-CfJ))*SA*A(I)
Y=Y+YL
34 CONTINUE
Y=(Y/DEN)
WRITE(2,38) .JsY
38 FOKMAT(I4,F12.6)
46 CONTINUE
STOP
£END

o
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Indexing tevms: Identification, Nonlinear systems, Corvelation methods
ABSTRACT ’

The paper is concerned with the measurement of the 2nd-
nonlinear system by continuous or discrete crosscorrelat
derived from an m sequence. It is shown that the crossco
-ing kernel values by a set of equations which may be stru
sequence properties determine how the maximum order o:
upper bound of the arguments for nonzero kernel values, which is used as an‘index of performance. The per-
formance of signals derived from binary, ternary and quinary m sequences is investigated, and the characteristic’
polynomials and performance indexes of signals with superior performance are tabulated. Comparison of the

results obtained demonstrates the advantages of ternary signals in this application, and an eéxample is used to "
illustrate the solution of a typical problem. ) : : ‘ T

order kernel in a Volterra-series representation'of a
ion using an antisymmetric pseudorandom input signal - -
rrelation measurements are related to the correspond- ¢
ctured into a number of independent subsets, The m-
f the subsets for off-diagonal values is related to the
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