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The detectlon of signals in the presence of noise 1is ¢

of the most basic and 1mportant problems encountered by

communication engineers. Although the llterature abounds with
analyses of communications in Gaussian noise, relatively little
work has appeared dealing with communications in non-Gaussian

noise. In this thesis several digital communication systems

\

@f'iurbed by non-Gaussian noise are analysed. The thesis is
divided into two main parts.

In the first part, a filtered-Poisson impulse noise model
is utilized to calulate error probability characteristics of a
linear receiver operating in additive impulsive noise. Firstly
the effect that non-Gaussian interference has on the performance
of a receiver that has been optimiZed for Gaussian noise is
determined. The factors affecting the choice of modulation soheﬁe
so as to minimize the deterimental effects of non—Gaussian
noise are then discussed.

In the second part, a new theoretical model of impulsive
“noise that fits well with the observed statistics of noise in
radio channels below 100 MHz has been developed. This empirical
noise model is applied to the detection of known signals in the
presence of noise to determine the optimal receiver structure.

The performance of such a detector has been assessed and is foﬁnd'
to depend on the signal shape, the time-bandwidth product, as wellg;
as the signal-to-noise ratio. The optimal signal to minimize J
the probability of error of the detector is determined. Attehtioﬂ
is then’turned to the problem of threshold detection. Detector
structure, large sample performance and robustness against-erro;s

in the detector parameters are examined.



Finally, estimators’of such parameters[agmﬁJ\ L1.u

of an impulse and the parameters in an empirical noise model

are developed for the case df;aﬁaadéptivefsystem with slowly

varying conditions.
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CHAPTER 1

INTRODUCTION

1.1. INTRODUCTION
In the past decade, we have witnessed an enormous growth
of computer usage and of the computer industry itself. Advances‘
in solid-state techniques, large scale memory units, speed
of computations in arithmetic units and in programming
confributed to this overwhelming success of digital computing
machines, and resulted in their application to industry,
business and military data processing and control. Scientific
and engineering computations also can be carried out at
speeds hitherto unattainable.
It was found out rather early in this development that,
due to their bulkiness and strict envifonmental requirements,
large scale digital computers do not lend themselves very well
to transportation. In a large number of cases, however, the
physical locations of data acquisition, usage, distribution
and processing are not the same. Means had to be developed
for transporting the data at speeds comparable in magnitude
with those of computer's peripheral equipment, sometimes even
at speeds equal to its arithmetic calculations.
Moreover, in certain cases it is mahdatory that the
computer be used on a time-shared basis, due mostly to economic
considerations. All these problemsAbrought forward ﬁhe question
of digitél data transmission over some kind of communication

channel. In any communication system, mobile or otherwise,

electrical noise within the receiver is the limiting factor
that determines satisfactory reception. As a consequence, the

type of signal transmitted, the transmission medium, the



quality of reception all hinge on qugnﬁitaﬁivé anaié#aiitafivef7
knowledge of such noise. | v . | |

In radio communication systeﬁs, thé noisé éxternailto,theu‘
receiving antenna of a communication system is composed of
emission from natural sources and electromagnetic pollution of
man-made origin. In addition to the thermal radiationvfrom the
local environment, natural noise consists of atmospheric
radio noise, galactic radio noise, and solar noise. On the
‘other hand, the causes of man-made electromagnetic pollution
are automotive ignition systems, power lines and radiated
interference from a variety of electrical equipment. Clearly,
the contribution of each class of sources depends on the
radiation spectrum and the number of sources of that class
present in the specific environment.

The characteristics of the noise generated by various
types of sources have been studied extensivély[ﬂ —[3]and the
relative field strengths, statistical characteristics,
frequency and distance dependence of these noise fieldé have
been reported comprehensively in several papers[4]—[lq.

There is therefore no need to describe them in detail here.

What needs to be emphasized, however, is the fact that
the atmospheric radio noise and the man-made noise are
constituted by noqdeterministic impulsive waveforms of
freguent occurrence: to be precise, the area of the impulses
and their arrival times can be considered as random variables.

The levels of the impulsive noise (IN) (either atmospheric
or man-made noise) are often much larger than that of the
usual Gaussian noise, as can be seen from Fig. 1.1 , where the
median operating noise power Fam is shown in ¢&B above kT . B (k

0

is the Boltmann's constant, T, is 288.0K and B is the effective

noise bandwidth of the receiving system in Hz).
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Fig. 1.1 shows man-made noise sQurceS’tcgethér Withjﬂ§turaip=j if

noise sources, and these values are the levels expected from
an omnidirectional, short, loss-less, vertical antenna near the

surface[lﬂ.

From the figure one can see that in the VHF and UHF regions-

the mammade IN is generally predominant while on the other hand
at low frequencies both the atmospheric and the man-made noise
are significant.

The transmission of digital information over the switched
telephone network has also been the subject of many
investigations in recent years[l@-[2q. In general, the noise
on the switched network consists of background thermal noise,
crosstalk, hum, impulses due to switching, multifrequéncy
pulsing tones and other miscellaneous distufbances. As such it
can broadly be described as the independent superposition of
'burst noise' (bursts of,high amplitude)'ana the lower amplitude
'background noise' (Gaussian noise). The independence of the
two processes is due to the independence of the sources which
_generate them. It ha§ also been determined that bursts occur
"at random considerably more often than is predicted b? the rms
values of the Gaussian background noise. When one of these
bursts is viewed on an oscilloscope, it appears somewhat like
an impulse response of a narrowband channel. In the work to
follow, no mention is made of the capabilities of the switched
telephone netwérk for data transmission. For a cbmplete
discussion of this subject, see Alexander, Gryb and Nast [Zﬂ.

The use of the above channels for data transmssion, with
the possibility of data impairment, has made the problem of
detéction of digital signals in non-Gaussian noise of increasing
relevance and importance. |

ctudies of digital communication system performance im.




impulsive background noisé;!in contrast'Withfétddiés of!theitg

performance in Gaussian nolse, are comparatlvely few.:mieg
the main reason for this is that even the 51mpler models of

IN lead to mathematical difficulties when applied to the
problem of communication system analysis. The output statistics
of any system, even a linear syétem, are difficult to calculate
if the input contains non-Gaussian noise. A few of the more
recent studies of digital system performance in impulsive

interference are summarized in the following section.

1.2. BACKGROUND

The various IN models proposed in the literature differ
from each other in several respects. All IN, however, is
characterized by brief periods of large amplitude excursions,
separated by intervals of quiescent conditions. The relatively
new area of IN analysis sufferéifrom the problems of non- |
standardization and incompletness. It isvdifficult to compare
the results of two authors, and impossible té obtain comparison
of the major binary signalling techniques, because of the
multitude of noise models, signal sets, analytical methods and
simplifying assumptions. The problem of immunizing a
communication system against IN has been examined by many
authors and has almost as many 'solutions', each depending on

the initial assumptions made. °

Two different approaches are available for detection in non-

Gaussian noise. The first approach assumes the non-Gaussian noise

probability density function (pdf) is of a certain form with éll

known parameters. Using an appropriate eriteriion, the 'best'
‘or ‘optimum' receiver 1is derived. Usually the receiver is

rather complicated and thus difficult to implement. However.

‘apsf,«




suboptimum detectors are used to counteract eithér:theilange

amplitude or the aperiodic nature of the non-Gaussian~no;$ewgﬁﬁ¢yfQ}

and will be classified as either a time or an amplitude based H\

modification to existing receivers.

The second approach involves using a nonparametric detector.

This type of detector is robust, that is,/the detector is, in
most cases, not very sensitive to the pdf form. However, the
false alarm probability, i.e., the probability of deciding the
'signal is present when it is not, is constant regardless of |
the noise distribution. Since most of the proposed detectors
in this éategoryvare of rank type, which require complicated
ordering, these prdcedures are not practicable in real-time
communication systems.

The time-based modifications exploit the aperiodic and
frequéncy spectrum properties of the IN. Exgmples of this
technique are smearing-desmearing and swept—-frequency
modulation systems. The communicétion system based on this
technique is illustrated in Fig. 1.2. The smear-desmear
system consists of shaping Y(w) in such a way that the
transmitted waveformflooks,quite different frbm the IN. The
receiver filter H(w) will, therefore, discriminate readily
between signal and noise. No loss of signalling rate occurs
so long as thetotal response, Y(w)H(w), is satisfactory. This
technique is used by Sussman [28], Wainwright [29]and Lerner
[30]. Winkler [Bl]and J. C. Dute and C. A. Hine[32]
accomplish a similar result with a swept frequency system
using a chirp radar techniqgue [33], which was analysized for
a simplified case by Engle[34]. His signalling rate is slower
than the bandwidth permits; but some further overlapping of

signals appears to be possible and could correct this. The




n(t)

s, (B— " Y(o) H(w) ._‘“_,.éi'(t)“

Fig. 1.2
A model of communication system using smear-desmear technique

smear~desmear téchnique arrives at the filter shapes rather
intuitively, with little attention given to the procedure for
determining the shapes. Richter[BS]evaluates the use of this
technique of filtering, which is shown to be helpful at high
signal—to—noise ratios (SNRS) and hurtful at low SNRs. However,
this technique has not been employed extensively because of

its poor performance[36],[37]. One possible explanation for
poor performance is that the true characteristics of IN are

not represented by a model where amplitude peaks are caused

by a phase relationship of noise components. Another time-
based modification, used by Black[Bﬂ ’ Brillant[39], and Baghdady
[4d , uses the property that a noise impulse will produce the
same response in several adjacent channels having the same
impulse response. An impulse response from a channel adjacent
to the channel of interest can then be subtracted from the
desired signai—plus—impulse noise, leaving only the signal.
This assumes that there are no signals in the adjacent channel,
which would produce worse effects, or that a spare channel

is made available to cancel IN in several other channels.

| The amplitude-based modifications act to suppress the

large amplitude excursions of the IN by including a nonlinear




device in the receiver. A schematlc dlégrém‘of(suéh a system
is shown in Fig. 1.3. Such a receiver structure is developedu
on the intuitive notion that since the isoiated;highéamplitude
impulses contain much of the energy in IN a simple clipping
circuit in the recéiver can remove most of the energy in the
noise without significantly reducing the signal enérgy [41]
[48]. If the limiter is set to a value just above the peak
value of the signal, bursts of very high amplitude noise

are clipped and, after spreading, will not cause as many errors
as they would have without limiting. A precise analysis of the

effect of limiting prior to spreading is not practicable.

n(t)

Si(t -f b ﬁb;/\“ # linear e
. ‘ filter s; (%)

non-linear
element

AF;%aéa i} communication system using amplitude-based Modification
The process is nonlinear, and the résponse of the combined
limiter-filter depends strongly on the noise burst amplitude

and its time of occurrence. The exact evaluation of the
improvement by analytical means does not appear feasible.

However, an upper bound on the improvement can be found, as

a result of the following reasoning.

When a noise burst occurs with polarity opposite to that
of the data signal at the time of its occurence, and is of
sufficient amplitude to cause an error in the bit during which
it occurs, the limiting will not prevent the error. Limiting

cannot reduce the effect of the noise on the bit during whiti




gti‘

it occurs. The most that the limi£ing'cah do iS £Q~PreVé?tfmA_

the burst from causing errors in other"biﬁé; évén7afteﬁW@”
spreading, and this is an upper bound on its effectiveness.
Experiments with various nonlinearities have indicated
that clippers like the hard limiter are effective-and practical
[49H§l]. An important aspect of such nonlinear proceSsing is
the preclipping filtering. For maximum prbcessing efficiency,
the impulsive nature of the noise must be maintained despite
the dispersive effects of the transmitting channel. The
processing bandwidth must therefore be considerably wider than
the signal bandwidth. An entirely different and more complex
épproach is taken by Rappaport and Kurz [54, Hall[4], Modestino
[53], and Snyder[54]. They assume an approximate conditional
Gaussian pdf for the IN in the presence of each signalling
element , and then use decision theory to synthesize the optimum
receiving system. Hall's [4]'log—correlator' was designed with
the same parameters as an existing conventional system and
showed an error-rate considerably better, but he reduced-the
data signalling rate below what the bandwidth will permit. He
blaims advantages ove£ other methods of combating IN. His
basis for claiming superior performance over the smear-desmear
system (Hall [4}) is that the smear-desmear system attempts to
make the non-Caussian noise appear Gaussian and then uses the
optimum receiver for Gaussian noise. However, his technique
optimizes directly the non-Gaussian noise. Because Gaussian
noise gives the lowest channel capacity for a given noise
variance (or highest entropy ) [55], his system is therefore
capable of giving better performance. Since he does not prove
tﬁat'he has actually attained the optimum receiver, it is
not really clear where his receiver stands in relation to

- smear-desmear. Rappaport and Kurz [52] and also



Snydér[54}derive nonlinear receivers/éimilar,tQ'Haliisf_bu@;ff~

they also signal at a rate slower.fhah.the banawidth,pQle@s W
and/or do not take into account the bandwidth_of.the channél
at the nonliqear element. These approaches do not take into
account the nature of IN defined above, and hence tend to be

insensitive to the impulse response of the receiving filter.

1.3. OUTLINE OF WORK
| The thesis is divided into two main parts. 1In Part A

(Chapters 2-4) wé utilize a filtered Poisson impulse noise

(FPIN) model to calculate error probability characteristics

of a linear receiver operating in an additive combination

of impulsive and Gaussian noise. Naturally, this method of
data processing is no longer optimum if the noise is non-

Gaussian. Two questions which might be asked in this event

are:

(1) What effect does non-Gaussian interference have on the
performance of a receiver that has been optimized for
Gaussian noise (matched filter)?

(2) Can the choice of modulation scheme be ja@iq@@ﬁsﬁﬁfmade SO
as to minimize the detrimental effects of the non-Gaussian
noise?

The first question is dealt with in Chapter 3 and the
latter question in Chapter 4. No attempt is made here to )
introduce a non-linear device in the receiver to improve o~
its characteristics.

Chapter 2 gives the derivation of the pdf for the linearly
filtered narrowband Poisson process. Here we confine our

attention to the first-order case only. The approach is

canonical, in that the results are, in form, independent of




o

the particular emitted waveform, ]} ‘onditidn;/source

distributions and beam patterns, as lbﬁ§ aé thé'interféréﬁ§ef@fyﬁ”
is narrow-band following the RF stages of.a typical'feceiﬁéf.
This is by fqr the most common case in application.

The performance analysis for a band-limited channel using
a linear receiver in the presence of FPIN is presentéd in
Chapter 3. Only the binary signal set is considered in this
chapter. At the end of the chapter we look at the case of
a fading channel, which one frequently encounters in data
transmission ovér HF radio links[56L[57].

In Chapter 4 a method of modulation is described which

gives a particularly goel error-rate performance, in comparison

to the conventional M -ary P.S.K. system, in the presence of

IN. - The modulation scheme is an hybrid arrangement of phase

and amplitude-modulation techniques. .
Part B (Chapters 5-9) briefly describes the development

of a new model of IN that fits well with observed probability

distributions of noise. The main object of this part is to

apply this new model to the detection of known signals in the

presence of noise. It will be seen from the analysis that
the linear matched filter alone is a rather poor receiver choice
for IN. It is shown that the use of nonlinear
transformation combined with the linear matched filter leads
to the design of a superior receiving system in IN.

In Chapter 5 a semiempirical, but more analytically
tractable,model 1is constructed similar to that introduced

by Hall[4]for impulsive atmospheric noise, but used here for

independent sources. This model is represented by X{t) =
A(t)G'(t), where A, G' are independent processes, both zero

mean, and G'(t) is regarded as generalized Gaussian. The



first-order probability den51ty of X(t) lS determlned
empirically for.large X,which in turn sPec1fles the para.meters“”f'  j
of the first-order probability density of A. At the end4of
the chapter, the model is justified by comparison with absefved
probability distributions.

In Chapter 6 this noise model is applied to the detection
of known signals in the presence of noise to determine the
optimal receiver structure (Likelihood receiver) and 1its
performance. We can observe, from the upper band on the
probability of error, that the receiver performance depends on
the SNR, the time-bandwidth product, and the particular signal
used. Consequently, a solution for an‘optimal signal to achieve
"the minimum probability of error is derived from the solution
of thewnonlinear differential equations.

Chapter 7 formulates the threshold detection problem

for channels with additive impulsive and Gaussian noise.
Following this, the case of coherent, completely known, signals
is analyzed. The.assumptionsmade lead us to a relatively
simple detector structure consisting of a zero-memory non-
vlinearity folloWed by a linear filter whose output is then
compared with some threshold. To illustrate the form these
nonlinearities can take, plots are given for a mixture noise.
It is shown that a fairly simple nonlinearity can give good
performance without keing over sensitive to parameter error
(robustness of the detectors).

In Chapter 8, maximum likelihood estimators are developed
for various noise parameters of the impulse distribution. A
robust procedure is presented and evaluated for estimating
the occurrence of an impulse.

Finally, in Chapter 9, some conclusions are given. The

reader is reminded of the limitation of the preéent work




and topics are suggested for.futuré/£ééearch; aimea a£  .fo'
rémoving some of these limitations. | ‘

It should be noted at this point that, for simplicity,
attention is~confinea to the discrete-time case. Moreover,
as in most other treatments of detection of signals in non-
Gaussian noise, such as references[58] through[6ﬂ , Wwe assume
that the received samples are statistically independent.

Some work has been done with dependent samples, for example
that in references [4],[54],[69],[70] , and should be kept in
mind since our assumption of independent samples does not
always hold true. Fbr example, Watt and Maxwell[ll] have
shown experimentally that the statistics of received VLF
atmospheric noise pulses are usually dependent on the values
of the preceding pulses. However, the specification of a
physically meaningful multivariate non-Gaussian noise
distribution is not simple, and no results on dependent

samples are included here.
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CHAPTER 2

POISSON IMPULSE NOISE MODEL

This chapter defines filtered Poisson-plus-Gaussian and
unfiltered Poisson-plus-Gaussian noise processes at the
receiver input. Asymptotic expressions for the probability
density functions of the decision variable at the linear
receiver output are derived for the limiting cases when the

input noise is very impulsive and guasi-Gaussian.

2.1. INTRODUCTION
In this chapter we construct an analytically tractable,
statistical model of the very broad class of non-Gaussian
channels based on the Poisson postulate of independent évents
occulring ih time. If we.let Vi(t) be a typical waveform from
the ithsource, after processing by the receiver's aperture;

then

n(t) = i vyt s x)

is the total received disturbance, and

{n} = UV, (£ 5 X))
i
is the total received Poisson process, where ; represents a
set of (time-invariant) random parameters descriptive of
waveform level and structure.

The waveform description of IN dépends on the noise
source, the coupling media, and the characteristics of the
channel under observation. For example, capacitive and
inductive coupling of switching transients between adjacent

channels comprises the major cause by which IN is introduced




in a wire system. The determination of the noise waveforms

can be a time-consuming and eXpensivé‘process.' Thé'hﬁﬁbé‘“
of different waveforms encountéredvéan be Verytlarge,”aha
normally the measuring equipment must have large bandwidth
and a capability for handling aperiodic waveforms'[lﬂ .
Kurland and Molony[l9]experimentally determined and ranked
the error performance for 15 different noise waveforms at
various SNRs. No pattern appears to exist in the relatiwve
standing of the various waveforms as the SNR was changed.
Fennick [20],[2ﬂ has reported on specific switched telephone
lines where 2000 distinct waveforms have been analyzed. The
result was widely varying amplitude and phase spectra
characteristics. However, when a subset of approximately

200 of the waveforms were added together, the composite noise

spectrum appears to approximate the channel transfer

characteristic. This would suggest that a weighted unit-impulse

response of the channel could be used as a tyéical noise
waveforﬁ.

The model chosen therefore is the Poisson IN model by
Rice [71], for which the times of arrival of individual noise
pulses are determined by the Poisson distribution, and the
random amplitude are independently determined by a selectable
distribution, [72] . The filtered IN output then is the sum of
impulse responses of the channel filter or RF filter,
appropriately weighted by amplitude and time of arrival. This
noise model has been used by Richter [35], Ziemer [Sg]and
Huynh [59] in studies of digital communications systems.
However, the analyse€s presented in the above references
assﬁmed an unfiltered Poisson noise process at the receiver's

input ( i.e. the effect of RF filter is neglected) .



"The work in this chapter’ié'an/ekténéion of fhejtheérYi{f

of Bello and Esposito [41],[42], and MooT .,["60]"4;0 perturblng

noise modelled as the mixture of FPIN and-a white Gaﬁésiéﬁ‘”w‘
process of known spectral density. This mbdel ié a more |
realistic representation of ambient ana reverberant acoustic
fields in under-water sound [l pt. ﬂ , man-made interference
phenomena generally [5], atmospheric noise [7}and clutter

(in radar) [73].

2.2 NOISE MODEL

The noise process at the input of a narrowband receiver
is considered to be a time sequence of amplitude distributed
impulses that occur within an observation interval of
duration Ty- If t represents the instant of observation and
ifrthe interval commences at time (t—TO), the input-noise
process, n(t), can be expressed as

N :
n(t) = :§L=l a; 6(t-—ti) (2.1)

th impulse, ti is the

where a; is the amplitud of the i
occurrence time of the ith impulse, N is the number of pulses
occurring within the observation interval T, and 6(t) is a
unit-impulse function. If the impulses arrive at the receiver

with a rate v, then N can be taken to be a Poisson-distributed

random variable of which the distribution parameter is vTO,i.e.,

(vTO)N exp (—vTO) , (2.2)
Bp (M) = =1
0
The .assertion of a Poisson process then implies that the

individual pulses are independent and that the arrival times,




t;, are uniformally dlstrlbuted in (t-TO,vt);‘ The:amplitﬁdééﬁf A 

a; are assumed to be statistically independent of each other f)“x’ﬁ

and of the occurrence times, and to have 1dent1ca1 pdf pA(a).

Given a filter transfer function HR(jm), the response

of such a filter to IN (2.1) is simply

i
Note, however, that if n(t) is the input to a filter with

complex response envelope hCR(t), the complex output

“envelope will be

Z(t) = i a;h p(t-t;) exp (3v;) (2.4)
i.e., an additional random phase wi will have to be introduced
. i

to measure the phase difference between the excitation due

to a random phase and a reference phase. This situation

arises when the detector is preceeded by a frequency selective

network which passes only a band of frequencies, narrow

compared to the centre frequency of the band. This is not

only desirable in order to discriminate against unwanted signals

in other frequency bands, but is:simultaneously more or less

inescapable because of the inherent characteristics of the

elements of which the receiver is built. Thus, although the

noise at the input of the receiver may be, and usually is,

of relatively constant strength over a wide band of frequencies,

the noise presented to the detector is narrow-band because

of its passage through the frequency selective parts of the

receiver.



2.3 pdf DERIVATION OF THE DECISION‘VARIABﬁE ATiTHE;QUTPﬁm¥QF'E“g

A LINEAR FILTER AT THE END OF EVERY.SIGNALLING-EERiOwa,r}h

The first - (and higher) order pdf's for the Poisson

. random variables,

Y = I a/hp(T-t,) , (2.5a)
1 . -
and
Z = ? aiG(ti) cosq)i (2.5b)
i L
where

at the output of the detector (derived in the next chapter
i.e., (3.23a)) at the end of every signalling period of |
duration T, are obtained by starting with the corresponding
characteristic functions (CFs). Here we shall confine our
attention to the first-order cases only. Accordingly, we

begin with the well known relation[7ﬂ ,[72]

¢, (jE) = exP{v{ dt<exp(jgahp(t)) -1> 1 (2.6)

for the CF of the random variable Y, where o> denotes the
statistical average with respect to variable a, and the
integration is carried over the observation time. The above

equation can be rewritten in a closed form as

0y (38) = exp (vf at[ e, (5eng(®) -1]}




where

&, (3)

variable Z

2, (3E)

where JO(.)

‘order. The

appropriate
Py
and
Pz(zf

2.4 MOMENT

I

<exp(j£a)>a,‘

Extending the analysis further we obtain the CF of the random

as (see(a.7) of Appendix A)

o(EaG (1)) -1>_3 (2.7)

= exp{vf dt<J
t

is the Bessel function of the first kind of zero

desirdd pdfs are then formally obtained by the

Fourier transforms:

o<}

d ) .
[_2._% exp{-j&y +\)£ dt<exp(]gahR(t)) —l>a}

«©

(2.8a)

T de exp{-jEz+v[dt<I,(£aG(t)) -1>_},  (2.8D)
21 - t

-0

I

S

The various moments <yk>, <zk> (k>1) are of practical

interest:fr
estimates o

for the des

om measurements of these moments we can obtain
. 2
f the basic parameters v,<a >_-.-..-. etc. needed

cription of the pdf. First, it is readily shown
2k 2k
>

that all even moments of Y and’Z exist, e.g., <y >,<2Z

<o and that odd moments <y2k+ls, <z

The 2kth

2k+l>.= 0.

cumulant A, (semi-invariants) [71] of Y are

réadily obtained by expanding the inner exponential of (2.8a),

yielding




2k ¢ .2k
7a { Py

. e . L
t- B

Agg TV <@

In order to deduce the relation between the moments <y2k>

and the semi-invariants A K’ we use the identity [74]

2

) o
I 4 §<X 2 (56)%% = exp[ § 2k (55)%K] (2.10)
k=1(2k) ! k=1 (2k) !

in a purely formal way, without paying any attention to the

questions of existence of moments or convergence of series.

2k

It is seen that A is a polynomial in <y2>, <y4>,....<y >

2k
and conversely <y2k> is a polynomial in>12,>k4, veesdgy In

particular we have

<y2>. = }\2,<y4>v = }\4 + 3)\3 ,i ....... etc. - (2.11)

(where we have used the fact <y2k+l>v= O for k =0, 1, 2, ...
...). The general recursion relation between moments and

cumulants is [75],

k
k k-1 2-1
<y > =12 (2_1)Ak—z+l Y o2 (2.12)
2=1
where
(t—i - (k=1): (Binomial coefficient).

(2=1)¢ (k=-2):

Moments of Z are readily obtained, most easily by expressing

the CF (2.7) as the power series




Kook . |
(-1) "x, . & - ' .
(— 2 ) ® - piin)

(k1) 222K

&

0, (35) =

= ™8
‘w8

Py
i
'—l

(this form is obtained be expanding the exponential and the
Bessel function in a series form). Using the well-known

relation between the CF and its moments [72]

2k
_<zzk>.= (-1% & ¢, (3€) l
we have
2
A A 3
2 -T2 4 3
<Z >- = -z-—— ; <z >_ = -z. —% 4 42 R
6 516 45 MMy 151,
<z > = -é- 8—-— + —2——- 8 + 8 ,...etc.
where (2.14)
_xzk(k=l,2 ..... ) is defined by (2.9).

2.5 ASYMPTOTIC BEHAVIOURS OF CFs (2.6) AND (2.7)
The parameter of the Poisson ensemble which has most

influence in determining the general features of the noise

is the density v. As the noise density increases, the noise

distribution tends towards the Gaussian. When the density is

small, the noise pulses overlap only slightly so that the
noise has the attributes of a deterministic, interfe;iné,
signal, whose time-structure is esseﬁtially that of a single
typical impulse. These two limiting regions are important,
since the exact distributions are usually too complex to be

used analytically, and must be approximated differently in



each of the two cases.

In accordance with the statistical features-of"impulsévef-‘

noise; the 'tails' (|y|+~, |z|+=) of the pdfs pi(y)} Py (z)
fall off less rapidly than Gaussian. Conversely, for small
amplitudes (|y|,|z|>0) or, equivalently, large ||, the CFs
(2.6) and (2.7) accordingly reduces to exp(-2vT), so that
the Fourier transform yiel&sPY(y)'= exp(-2vT) s (y-0) and
va(z)~= exp (-2vT) § (z-0) : these show the expected 'gaps-in-
time', typical of impulsive interference. T defines the
period of observation (or bit interval). To see how the CF
for lg[#o is obtained for ¢ (y), we demonstrate this with the
case where PA(a) is Gaussian. Using QAFjE)-z exp(—<a2>a£2/2)
in (2.6) and assuming hp(t)® O for |t]>T yields.

T 2 5,
o, (y) = exp{v{T dt [exp(-£ <a >ahR(t)/2)-1]}.

For large £ , the method of Laplace may be applied to the
integral [76]. Subdivide the interval (-T,T) such that one
zero crossing occurs at ti in each subdivision. Redefine

hR (t) outside each subinterval such that
i

exp(—g2<a2>a hé'(t)/2)= o .
i

Then, making use of the property that for large &, the

exponential is approximately zero except for hR ()= O
i

n -T+ti+l
QY(Y)»= exp [v{-2T + I

, dt exp (—52<a2> °
i=-n —T+ti a

2 (t)/2)}]

i



n e
o= exp[v{-2T +2 f S dt exp(
Vj_:—n —00

> 2
-z fa_>ahRi Qt)/Z)}].

Using Taylor series expansion about ti and using the fact at

=t hRi(t)_= O we obtain after integrating

n
@Y(y)_= exp{v (-2T + L 3 /2m

g| i=n<a ;ZiﬁR(ti)[

)}

where ﬁR(ti) is the first derivative of hR(ti)° This summation

in the exponent is a constant, say U, therefore for large &,
oy (y) = exp{v (-2T + U/ |&|)}.

For E»=, as expected @Y(y)+ exp(-2VvT) .
The pdf then always contains 'dc component', a delta function

at the origin of area exp(-2vT).
2.5.1 SERIES EXPANSION OF THE pdfs (2.8)

Many authors ﬁave treated the series expansion of the
pdf pY(y) (2.8a). Among them are Richter [35], Ziemer [58],
Rice [71], Middleton [77] andMullen and Middleton .[78]. The
series expansion usually used is the Gram Charlier Type A Or
rearrangeiaseulEdgeworthexpansion{74], [79]. This is useful
for representing a non-Gaussian, but near Gaussian, noise
probability density. These series have been obtained as

follows: assume

6" (x) (2.15)

p(x) = T c
L

with



0 = o= Lo exp(=x%/2) = (-1)me_(x)6°(x),

¢
cg's are constants and Hen are Hermite polynomials. To find

the coefficients c, we make use of the orthogonality relation

Multiplying both sides of (2.15) by Hen(x) and integrating

over (=e«,» ) to obtain

c, = (-1)7 [ p(x) He_(x) dx. (2.16)

00

The low-order relation in terms of cumulants (2.9) are [74],[79]

c,=x,. + lOA2 ............ etc., (2.17)

Since it is desired to vary v while keeping X, constant (=1),

it is necessary tojscale the rms value of the random variable

a. 1i.e.,

<éz> = l/\)2

where
a 2 5
\,'z.-{\)th(t) dat }° .

t

This can always be obtained by making a transformation in pdf

of a,i.e.,

p,(av) = 5 pA(av)}



25

The standardized cumulants are

AR | (2.18)

Using (2.17) and (2.18) in (2.15) yields

o A e3(x) A 64(x) A 8° (x)
p(x) = 0%(x) + =2 + 4 -2 +
| 3 4 )
3!<a2> w2 41<a’s 2 53<a2> w2
a a a
' 2
6 A 10X
g0 06 L3y 4 o(e (%))
61 2 ~3 3
c<a™> v v
a
(2.19)
By rearranging the terms so that they are monotonic in GU/Z

instead of monotonic with en(x), the Edgeworth series results.

This series has a remainder with ever-decreasing order as the

number of terms is increased:

o 2587 (x) 28" (x) 10226 ° (%)
p(x) =86 (x)+—-————«——§+{ + I+
Il<a™> 32 4!<a2> 32 6!<a2> 33
a a
3
&S 2 N
+ O(v 7). (2.20)

Note: each A contains v as a factor. Clearly as G+m, (2.19)
and (2.20) tend towards Gaussian, as anticipated.' The non-
Gaussian noise model which results by considering the first
few terms of (2.20) was studied recently by Bodharamik et al

[Gl]. This series approach therefore will not be studied in

this thesis.
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2.5.2 LOW v-CASE (VERY IMPULSIVE)

The low v-case is that for which éssehtiélly no overl

in impglse response occurs. A natural approach in this case

is the consideration of the expansion of (2.8a) and (2.8b) as

a series in powers of v:

1 2

py(y) = > fmdg exp(-jgy){l+v{ dt[@A(jghR(t))—1]+o(v )}
(2.21a)
and
p,(z) = —%;{:dg eXP(—jgz){l+v{ dtedy(zac(t)) -1>, 10 (v}
(2.21b)

2.6 ADDITIVE COMBINATION OF POISSON AND GAUSSIAN NOISE

The situation of greatest interest includes a Gaussian
background noise, attributable usually to a very large number
of effectively weak s comparable interfering sources, in
addition to the relatively few large sources (v small). The

-

desired CFs (2.6) and (2.7) are readily extended, to give

2€2

o
exp{- ~g§~— + vf dt<eXp(ajgahR(t))~l>a}
t

it

by, (pvg) %)

(2.22a)

and
o 252
Ly -9 7 4 of at<J. (£aG(t))-1
Qzl(P+G)(jg)’ exp{ 5 v{ <J,(gaG(t))-1>_}
(2.22b)

where 02 is the variance of the Gaussian noise with zero mean.
g



Now, of course, there are no 'gaps—in—timer\§'
Pyl(y):# §(y-0), etc., for any v>0. For large\v the asymptqfi¢  S
normal forms are obtained from the usual expansion of" |

<JO(.)>

a and_the method suggested in the previous section.
The associated pdfs are then found, as noted above, by Fourier

inversion similar to (2.8).

MOMENTS

Using similar arguments to those used before in section

2k
1

=Oi

(2.4) we can readily show that all even moments <y12k>, <z

exist (<«) and that all odd moments <y12k+l> and <212k+1>

' i - . .
The cumulants X, ('AZk) of ¥, can easily be obtained from

(2.9) for k=2,3...... For k=1 the cumulant is given by

Ay = oy ¥ vea >a{ he (t)-dt. (2.23)
: 202
Defining R = (1+ _Tg ) , various moments of Z; are
-2
A A
2. _ M2 4. _ 3 M4 2.2
<zy"> = —5 R, <Z; > =3 (2 + A5 Ry ),
5
6 1 6 , 45 3,3
<z > = §‘(—E— f 5 A214Rn + 15A2Rn ), «...etc.(2.24)

where A2k are defined by (2.9). In the next chapter this noise

model is applied to detection of known signals in the presence

of Poisson IN.
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CHAPTER 3

'PERFORMANCE OF LINEAR RECEIVERS IN POISSON IMPULSIVE

NOISE CHANNEL [131]

This chapter studies the influence of generalized
stationary Poisson4IN on the receiver, optimized for white
Gaussian noise (matched filters). No attempt is made to
introduce a limiter in order to improve its characteristics.
Approximate results for the error probability tf aP.S.K. system
are obtained by taking the noise parameter v to be either
very large or very small (i.e., quasi-Gaussian or impulsive

noise cases).
3.1 INTRODUCTION

In this chapter the effects of the IN on communication

receivers are analysed in a way which separat es the effects of

the noise parameters from those of the parameters of the receiver.

Measurements of the IN statistical characteristics can thus

be made and applied to the study of any receiver performance
and, conversely, a receiver characteristic can be obtained

and used to determine its performance for any IN.

Much of the work in theliterature is somewhat heuristic in
nature, since a distributién is often assumed for the amplitude
of the detected IN quite independently of the specific system
configuration. Thus, for example, no explicit dependence is
generally found between the probability of error and the shape

of the bandwidth of the RF filter used in radio receivers or

the channeling filtefs used in wire links. Bello and Esposito



[41],[42] and conti et al [62]'howéver;/défined_for%thé recei§ér 
a hierarchy of functionS called the Receiver Impulse ‘;”" o
Characteristics (RICs) and for the noise a hierarchy of tiﬁé;f
amplitude distribution. Under rather broad conditions the

RICs can be computed a priori, i.e., without reference to

any IN, and the noise distribution functions can be measured
without reference to any particular receiver. It is important

to point out that Bello and Esposito [41] did not make any

specific assumption on the RF filter, but they analyzed the
effects on the shape and the bandwidth of the RF filter on
the RIC and consequently the error probability of the
communication system.

Another interesting paper by Valfbein et al [80] deals
with the problem of finding the error probability as an
average of an appropriate function, which depends on the
modulation 5ys£em used, over the normalized maximum value of
the IN voltage. However, they assumed an ideal RF filter
and therefore their results did not take into account the
shape of the RF fi;ter.

~The model of IN studied in this chapter consists of
considering the perturbing additive noise as a mixture of
a) a train of Dirac functions with an appropriate amplitude-
time probability structure,
b) a white Gaussian noise with known spectral density
and multiplicative noise introduced by the random channel.
calculations of error pfobability of digital data systems
operating over fading channels have generally assumed that
the additive noise 1is normally distributed. Exceptions to
this occurs in two papers by Bello [56],[57] where he uses

an empirical noise model for the atmospheric noise. More




general calculations are needed, howevér} becausevﬁhe
additive interference in fading channels can be of a'moré
general nature. Here we treat in detail the case of the P.SiK. 5

binary system, but the method is applicable to any digital

modulation system.
3.2 PROBLEM FORMULATION

A block diagram of the communication system studied is
shown in Fig. 3.1. This is the well-known coherent receiver of
P.S.K.signals, except for the appearance of 'the RF filter. The
receiver is optimum for a purély Gaussian interference and
presupposes a knowledge of the carrier phase of the incoming
signal (since the fading considered here is assumed to be slow,
it .should be possible to derive a suitable,and essentially
noiseless phase reference for an ideal P.S.K.systen{81]).At
the input to the RF filter we are assuming the presence of
two types of noise, namely, Gaussian noise nG(t) ag@ Poisson
IN n(t).

The‘Gaussian noise nG(t) is modelled in the usual fashion
as a zero-mean Gaussian process having flat power-spectrum

density over the RF filter bandwidth .

N
0

Sglie) =5~ (3.1)

where N is the spectral height in joules.
The IN (defined by (2.1)) fed 1into the RF filter has

an essentially flat spectrum over the RF bandwidth B, and thus

each noise pulse produces an output of the same shape as the

impulse response of that filter. However, since the energies

in the noise pulses are raiidom and the occurrence times of the

pulses bear no relation to the phase of the centre frequency
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of the RF filter, the complex envéldpehof the RF filferi ’
response to an impulse must be modelled as thé‘brédﬁéf'of’a,\\‘
complex random gain by the complex envelope of the filter
impulse response. Thus if the complex envelope of the RF

filter impulse response is hCR(t), the output of the RF filter

Z(t) due to the IN can be characterized as

7 (t) = athR(t—tk) exp (39, (2.4)

z
k
where a, is a réndom amplitude, y, is a random phase and{tk}
are the occurrence times of the input noise pulses.

We assume that the data to be transmitted is presented
to the transmitter in a sequence of binary digits which can
be denoted by zeros and ones appearing at a rate of every T
seconds. If the mth position of the séquence is one, the
system transmits the signal waveform Sl(t) during the interval
mT¢ t ¢ (m+l)T; if it is a zero, the transmitted signal is
So(t). We also assume these signals representing the elements
of the binary sequence are statistically independent, and each
signal will be assuﬁéd to be restricted to a duration of T
seconds. Having observed the received.waveform R(t)(=Si(t,SF)

+ nG(t) + n(t)) during the signal duratipn T, the receivér
is to choose between two hypotheses. Hl(signal Sl(t) was
sent) and Hg (signal So(t) was sent) . S is the random gain
due to the multiplicative noise. We are mainly concerned
with the evaluation of the probability of an error occurring
in the receiver estimate.

Before beginning the detailed discussion of the problem

formulated above, it is profitable to have an overview of the

performance of the linear detector operating in unfiltered




Poisson IN (without RF filter in Fig. 3.1) and without any
multiplicative noise [35],[58]. This case is considered in

the next section.

3.3.  PERFORMANCE OF LINEAR DETECTORS IN UNFILTERED POISSON

NOISE CHANNEL
3.3.1 ADDITIVE POISSON IMPULSE NOISE

In this section we do not consider the effect of the RF

filter and multiplicative noise. The block diagram of the system

studied in this section is shown in Fig. 3.2. The composite

signal plus noise at the input to the linear filter may be

written as

R(t) =5, (t) +n(t) , i= 0,1. (3.2)

The noise n(t)is the Poisson IN model described in Chapter 2

(2.1). Since the processiné channel is linear, we shall be
justified in dealing with signal and noise separately. When
no signal is present the pdf of the noise variable X for a
high IN ( %<1), at time t=kT (k=1,2..... ), at the output of

_the filter was obtained in the last chapter (2.21a) as

15 . . 2
pX(X)sz_i dgexp(—]EX){l+v{ dtle, (Fehp (£))-1]+0 (v},

(3.3)

- Evaluating the above integral with respect to £ and using

the fact

(2]

pA(a)_= 5% fexp(-jga)@A(jg)dg

00

we obtain
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€y Pal

Py (x) = (1-y) 6 (x) [/2 dt
R
T/2

e (t)} A3

where we have assumed

hp(t) =0 for|t]|>T/2 and [7Ing () |dt<e

as the physical realization and stability constraints on the
filter, y=vI 1s the number of impulses in time T and §(x)
the Kronecker delta. For pA(a) symmetrical the mean can be

shown to be zero.

With antipodal signals, i.e., So(t)bz «Sl(t) the output

at the end of a bit interval under no noise condition is simply

T i+l
= (-1) S, (1)hp(T-v)dr, 1i=0,1 . (3.5)

l -

If Sl(t) was sent, the filtered output variable at time T,

due to the noise plus signal, is D = Dsl+X while if Sb(t)

was transmitted it is*Dy=~DS + X. The decision variable D %
has the same statistics as X? fluctuating about DS. rather

than zero. Its pdf is given by (3.4). If D<O(>O)lthe

decision is that So(t){Sl(t)} was sent. Thus it follows that an

error would be made when —Dg + X>0 and DS + X<C i.e.,
0 1

Pe, = Pr(—DSO+ X>O);_Pe2.= Pr(DSl+ ¥<0) (3.6)

where Pr(.) denotes the probability of the event inside the

: : : mmetrical noise distributi
parenthesis tzking place.For Sy : t tions

the two kinds of errors are equal, i.e., Pe, Pe2. The



35

average probability of error Pe, is then

. - o B
Pe; = fp Py (%), ‘ (3.
S , .
1
Since it is of interest to calculate the performance of the
system in the presence of an IN burst only, the average

probability of error Pe_ using (3.4) in‘(3.7) yields

I

- X " T dt X '
PeI_ T ]Dsix IO»TH;TETT pA{T;;?;;T}. (3.8)
Absolute values occur since only symmetrical distributions
for pA(a)are considered.

Further simplification of the error probability requires
a knowledge of the filter characteristics. By way of
illustration, we shall now apply the results obtained to the
evaluation of Pe; when hR(t) is a matched filter. For P.S.K.

s ignalling, the ith transmitted signal, which occurs with a

priori probability 0.5, is of the form

- 3
—{ (—l)l(%% cos w_t, OstsT

s, (&) = = (3.9)
* l O Otherwise 1 0,1
where E is energy of the signal, mc_; 2ﬂn0/? (no is an integer) .
The matched filter then has impulse response
1
2 2
( = )cosw (T-t) , OstsT
’ . (3.10)

h_(t) = .
R ' 0 Otherwise.

Using (3.9), (3.10) in (3.8) and making a change in variable

6 = 27n(T-t)/T we obtain

/2 -
pe. = 2Y [ as [ , _pa(d da (3.11)
I ™ 7o ET? 1
(f_)cose



.Amvdm sypd epnafrdwe SnoTIeA I0J SIDATOODI ARSUTT I03 suoTssaidxe 10119 3Tq JOo A3ITTIqeqoad €°¢ *b1g
mﬂmmzu 2y3 JO g 3Ixed UT PoATISP ST Ipd STUL «
.uvANmp:v dxa \lmh = *XJ I0xx® Jo juawaTdwo) = (X) oFId (28] =xF =umred = (%)
® ﬁmm_ uoizouny e3ioag o939Tdwoourl = ( )d $s0D/Ap G< ChE1 Y
(T-9) ¥
P +T (3) SA.H mVA es>gz ot . AAHIva e>7 v“_ .
vz S T [l Y () 1 (T-8) <, BT
Iimlii.l (d)de a p m:f._ LZ fL Z B Y
) [578)8 Tmi:h ( T %9 e (58] pﬂ x T (k +9)
xDITOTNIJAH QEZITVIEANID 12
0 a
6T Au.vNL AN.m.v o) 1z ANmV Ava
¢p (2/.v,z-)dx® ap{ -)dxs [ & ( -) dxs
A4 Nm\ T Sq e\ A 722 = Te]
HOTIHTAYA €
0 < MV <_®> <_®e>7
ép AeqHNtv&xm / W Ip{ uIPli vmxm R Wm (=] w Ay dxe L!Wlﬂkp
¢4
TYILNINOAXA (4
p<
(3) Y=< _e> 0 < _e>7 <_®e>ug
¢p AW\\G<HNvOMH® %thm_.. 3P { 3 }o3ae H%.n ( .Imn.mll. Iv&xw "hu.ﬂnnm.
2/ Sap. A ¢ t
NYISSOYD T
I93TFd POYDIBNW ~ Toa I93TFd Iesuf] - Isa 0> > wm Amvd




IR

s

pA(a)= Gaussian

______ Exponential
Generalized Hyperbolic
e . _Generalized Hyperbolic
a =2.0,8=3.5
Rayleigh

z

%

y=Poisson impulse noise parameter.

Fig.3.4 Averace probability of bit errvor (Pe )as &

for P,5,K. s
with wvarious

m cperating

15 . 20 25 30
% in dbs —p

RN

i

[

!

(no. of impulses per bit interval (1))

i

function of SHR (%)

in alditive unfiltered Poisson impulse noie
amplitude pdIs (pq(a)) -



where we have substituted for DSV=/E by using (3.9) and (3.10)
, : : 1 Frled e Uha BOLBS . Prpled
in (3.5). To complete the analysis of our example, we must -

assign the pdf of the noise amplitude. Various distributions
are considered and the final error expressions are tabulated

in Fig. 3.3. The SNR ZI used in Fig. 3.3 is defined as

Z; = YE/), (3.12)

where A, is defined by (2.9).

| At this point it might be asked what is the optimum filter
that minimizes the error expression of (3.8) under constraint
of transmitted power? Using calculus of variation technigues

[112La complicated integral eguation can be derived whose

<
A

solution producesthe optimum filter. The sclution depends
on the Lagrange multiplier,SNRS and signal shape. Solution
of these eguations appears to be a substantial problem and

beyond the scope of the work covered in this thesis.

DISCUSSION
- Using the expreésions given in Fig.3.3 the numerical results

for probability of error Pe. against SNR Z_ defined by (3.12),

I

with y as a parameter, for various amplitude pdf pA(a) have

been calculated and are plotted in Fig. 3.4. The ' - &

results show an interesting behaviour. For low SNR, the

mean error probability tends towards a limit 0.5y, for which

the following explanation can be offered. The pulses being

much larger in amplitude than the signal, the detector will

. - w#i1ll have been transmitted whenever a noise
decide that Sl(t)‘_

pulse has occurred in the transmission interval. For 0.5 of the

time, the decision will be wrong and, as the mean number of
I

noise pulses is Y, the error probability must tend towards




O0.5v.

SO( as y becomes smaller (which increases the noise pulse

amplitude); the error probability becomes less sensitivé‘tol}
the SNR over a wide range. It can also be observed that Pe,
is larger for large SNRfs if pA(a) is exponential than if it
is Gaussian, the probability for large noise impulses being

greater for the former pdf than for the latter.

In practice, the measured values of PeI for small SNR's

- are much larger than the theory predicts, a possible
eXplanation for this being that the generated noise for these
conditions 4ig actually better modelled by an additive
combination of Gaussian and IN because of the thermal noise
added by amplification{s58] . We now modify the theory to

take this into account.

3.3.2 ADDITIVE COMBINATION ‘OF GAUSSIAN AND UNFILTERED POISSON
NOISE

For an input consisting = of additive signal and noise, i.e.,

R(t) = si(t) + nG(t) + n(t), where n(t) and nG(t) are éample

. functions from zero mean white impulsive (2.1), and white

Caussian noise processes, respectively , it follows that the

linear filter output at time t=T may be written as

(3.13)

where DS is defined by (3.5), X and ne are the noise components

i

of the output. The pdf of the decision variable D = n. + X

G2

at the ouptut may be obtained by convolving px(;) with the pdf

of pG(;) (Gaussian), i.e-.
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Using pX(C) from (3.4) and

pG(C)_= ——— exp (- ——)
2, % 2
(2wo _7) 20
g : g
in (3.14) yields
_ 1 2 % .
a) for p.(a) = —35—x exp[~( ) ?la] ] (exponential)
A : 2 .\ % 2
(2<a >) <a >
2 T
(1-v) X Y ' at
p. (x) = —=—571 exp(~ )+ T
P (210 %) * 26 2 m(2<a>) %0 MrY)
g g
o , 5 x
e expl 2,2 o b [expl-( ; ) hP(t)}erf{E_ -
R <a“> b g
L o 1
2 ,° g 2 ? x X
- ) } +expl( ) ——~lerfc{=— +
<a2> hR(t) <a2> hR‘t) Og
2 % Pg ,
+ ) 1 ' (3.15a)
<32 hp (£) .
and
1 a2
b) pA(a) = ———5 exp (- ) (Gaussian) :
(2m<a“>)* 2<a‘>
T
pD(x) = (1=y) rexp (- X+ A L [ adte
(21 o2 ) ° 2 o2 T(21) % 0
g g
expl e }

2 .2 2
2(0g +hR(t)<a >)

(3.15b)

L
{o 2+h2(t)<a2>}2
g R

For P.S.K. signals and matched filter described by (3.9) and
(3.10), respectively, and using (3,15)%the probability error
expressions become

a) pA(a) exponential

YR, AE
“ e TN e , 172, . B
keE = (1 ’)elfb(ZI+GRl) N Wéﬁé d¢A¢Chp(;;)§



)o

o | {exp(- 7%-~)erf.(gRl - —%) + éxpv(A

21+ R /R
. s
serf gRl +'R*)} d & ) : (3.16a)
b) pA(a) Gaussian
_ _ 2y /2 RiZqy
PeG— (1 Y)erfC(ZI+G + Rl) + ;l f erfec( ~—£—E—%— do
0 {1+ 2R/A¢}/2
(3.16Db)
where N
7 = SNR = /B/(024+1.) 3 (A, =<a’>y/T(2.9))
I+G - g "2° " "2 ¥ : !
= /y/cos¢ ,
= Y1+R
and
R = IN variance to Gaussian noise variance ratio = Xz/Ug
DISCUSSION

The probability of error expression of .(3.16b) Pe, is
piotted in Fig. 3.5 against SNR ZI+G(3.17) with R and y as
parameters. The most striking feature of the results is that
even a small amount of Gaussian noise has a considerable effect‘bi'
on the probability of error at low SNRwhile on the other hand
at high SNR the effect of Gaussian noise is negligiably small Tn{
practice the Gaussian noise is .always present due to the tnermal
noise added by the amplification. The effect of each noise -

component, therefore, on the probability of error PeG may
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roughly be considered as acting seperately.

Thevanalysis presented upto this point dées ndt take'inﬁb
account any effect of the bandlimiting of the noise, which is
usually the case in practice. In the next section we present
the analysis which includes the effects of bandlimitihg of thé
noisevby placing a bandpass filter prior to the matched filter.
We also consider the;case‘when the multiplicative noise is
present.

3.4 ERROR PROBABILITY DUE TO FLAT FADING AND FILTERED IMPULSIVE

PLUS GAUSSIAN NOISE

Analysis of the detection of an incoming radio éignal that
is subject to fading requires an extenéion of the theory used
in the last section. The transmitted signal, in this case,
first passés through a linear medium which fades in a
frequency-nonselective way. That is to say, the whole band
of freguencies occupied by the two signals is acted on uniformly
by the medium; there is no possibility of simultaneous
constructive interference at one frequency and destructive
interference at anoéher. Put another way, if there is more
than one transmission path, the difference of delays of any
pair of paths must be much less than the reciprocal of the
width of the band of frequencies occupied by the gquantity. in
this section, the assumption of 'slow fading' is made, i.e..
the fading bandwidth is assumed to be small compared to the
signal information bandwidth. The same assumption implies that
while the signal may still be regarded as a constant amplitude
sinusoid in formulating and solving detection problems, the
be regarded as a random variable at the

amplitude must NOW

receiver . ToO calculate error probabilities with fading signals,



we must know the amplitude pdf associated with fading.“The

error probabilities calculated in the above section, whichfl
appear as functions of SNR, must now be averaged over the N
possible range of SNR's using the fading amplitude pdf in the
averaging process. Because of the ‘'slow fading', we need not
consider the change in the processing filters, only in the
calculation of errcr probabilities, assuming the game processing
filters as would have been used in the nonfading case.

After passing through the fading medium, the transmitted
signal is further perturbed by additive noise, which we éssume
is white Gaussian, plus impulsive, and statistically independent
of fading medium. The resultant signal R(t)is the received
signal. Thus if Si(t,SF) represents the signal of duration T
received in the time interval O<t<T for a unity gain channel
and no additive noise, the above channel assumptions amount to.
a statement that the recei&ed signalling element R(t), including

fading and additive noises, is given by
R(t)=Si(t,SF) +n(t) + nG(t), i=0,1; 0O<t«<T 43.17)

where S, (t,Sp) = (wl)i+l/7SFcoswct, Sp is the random path -
transmission factor,essentially a non-negative quantity which
remains constant in the interval (0,T). Note: we hawve assumed
for simplicity VE/T = 1 in (3.9) and adjﬁst the received signal
energy by changing the characteristics of the fading process,

i.e., its variance (SF)'

If h, (t) is the impulse response of the RF filter, which
R

is assumed to be physically rea}izable, the signal ¥(t) at the

output of the RF filter is simply



r(t) = é hog(2) 8, (t-z,8p) dc+[ h R(c)ﬁg(?f;)dc o

o C

+§ athR(t—tk) exp (jwk). (3.18)
Assuming the bandwidth of the RF filter is large compared to
the signal, the signal Si(t’SF) comes out of the RF filter
undistorted.

~
The second term is still Gaussian signal nG(t) with zero

mean and variance:
(ty dt. - : (3.19)

The third term is due to the IN, which was discussed in

the previous chapter. Multiplying (3.18) by V2 coswct and

integrating with respect to t between O and T gives the decision
random variable at time T as (neglecting all higher-order

frequency terms)

D =D + 2 + D i=0,1 (3.20)

GI

where DS ; 2 and DG are due to the signal fading with pdf
i

p x), filtered Poisson IN with pdf pz(x), and Gaussian noise

g
with pdf pG(x) respectively.
The process Z(t), which occurs before the integrator as

a result of the filtered IN, is obtained by using the complex

notation for the impulse response of the RF filter [84] i.e.,

Il

hog (E-t,) = 2Relh p (E=t,) exp =3y, +ju_t) ]

)
g

%]
it
Meprirt®

i

2hCR(t=tk) cos (mct ~wk> {



CR(.) = complex envelope of the impulse response

in h) athR(t—tk) so that

Z(t) = 2a ﬁ kt—tk)pos(wct—wk). (3.22)

z

Multiplying the above equation by v2cosw t and integrating
: c
with respect to t between O and T yields the random variable

(neglecting the higher frequency terms)

i AkG(tk)coswk (3.23)

N
Il

at time T where

T - _
G(tk)_/ij hop(t=ty)dt  and A =a, /T. (3.23a)
0]
DG is the Gaussian random variable with zero mean and wvariance

N

2 = 52 ¢ (z)ag. (3.24)

co

\'%8

The random variable DSi, Z; Dy are all independent with pdfs Pp
p%(x), Qs(x) and CFs ¢, (J&), ¢,(J€) and ¢,(JE) respectively.

(x)
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3.4.1 PROBABILITY_OF ERROR .

The decision variable D can be written as
D=W, +U, i=o0,1 - (3.25)

where Wi is the component due to the wanted signal,'with the
pdf pF(X) and U 1s the component due to the 'unwanted' signal
(additive noise), characterised by the pdf pU(x), assumed to
be an even function. Because of the uniform distribution of
the phase y , binary symmetric operation will exist, and
therefore we can.assume that Sl = 1 was transmitted without
any loss in generality. An error would be made if D<O. Since

the fading process does not change the sign of the signal, the

| probability of error can be written as

o)

_ -X .

Peprag = J Ppx) fm p, (u) du dx. (3.26)
0 .

The above equation can easily be rewritten in terms of the

CFs as

1 1 oo . . dg
Periic =5 7 5% {m GRS ICMCIID I (3.27)

where Im{.} is the imaginary part of {.} .

Since U is the sum of two independent random variables

Zz and DG we have

2

: . 2
Ppl3t) = 9, (08) 2,(58) = ¢, (3e)exp(-c%07/2).  (3.28)

Substituting the above equation in (3.27) for PeFI+G we

Obtain



2.2
11 ° , ‘ CEBROL
Perrve T2 7 57 [t 4SO Wmle D)) exp (- 5T £5
(3.29)

For ai Statistically independent of one another it was shown

in the previous chapter that the CF of IN can be written as

(2.7)

o, (J€) = exp {v{ <JO(gAG(t))~1>adt}.

Introducing the normalizing time T=t/T the above equation

becomes

0, (38) = exply[lar<y_(gaG(1))-1> ). (3.30)

-~ 0O

QUASI-GAUSSIAN NOISE (y>>1)

As the number of impulses y in the interval T becomes
large (y>>1) the noise tends to become Gaussian. By virtue

of the relation [82}

(-1)7 x

0 (k:)Z 22k

(o]
J (x) =%
o K=

(3.30) takes the form

1 k
0 - 2 2
by e zexplyl f (ér;; @’ GG Pary. Gl

Introducing the normalized variables

A (t) = L
A = 7 1.2 2
“(j]:z’:;)”% { [76“(r)ar}




and using

2

Cy<A%>
21T 62 gyat

<'22> =
‘ 2T -“w

from (2.14),(3.31) becomes

2k 2
o _1 kK <ATT> £Ekz3k A
o, (3&) = exp{l (=1) 2 ) lGZk(T)dT}.
Z k=1 (k!)z Yk—l 2 ~£
(3.32)

In order to specialize the analysis to a specific filter,
where a compact analytical expression for PeFI+G can be
obtained, we shall assume the RF filter to be an RCL filter

whose equivalent low-pass impulse response has an envelope of

the form ( Figs. 3.8 and 3.9) [41]

P
L
i
¢
i
i

(o

_ 1 -
RC(t) = Zexp (-t /C) (3.33)

where C is the normalissd filter time constant. Similar results .
of increasing analytical complexity can also be obtained, for

instance, for Butterworth filters. The function G(t) of (3.23a)

12

is in this case

.1‘ l _ _ l f
. f 1 expl iE_l%__ }dt = exp (%){l~exp(— /C)},T<O

é G(1)= ] ) . ]

é fl %e { izél—}dt = l=-exp (- ol + E)’ o<1kl

‘é 0, w1 (3.34)

C in terms of bandwidth B and the signal duration T is given by




&

;
3
-
i

L
TTB®

Substituting (3.32) and (

to be Rayleigh distributed with pdf

2
2x '
pF(x) = gi-exp (- 55 )
F St
and CF
_Ezsé T %
o 1/ ..

where lFl( ) is confluent hypergeometric function [85], we obtain

1 ZfI+G * 2
Perric™ 3~ ——— [ exp [ (- %5 (2
V2T 0]
v ¥ c0* Fae 1%k
=1 . TR 2 (1+R)
2
where
S
, F
7 = SNR = ;
FI+G /ol .2,
2 (k-1) (2k-1) ' (-1)%
Foy =C I
2=0 T (2k-2) 2! (2k-1-2)
and
[
F, = l—C+Cexp(—l/C)f

{exp (-

.(3.35)

3.34) in (3.29) and assuming pF(X)

(3.36)

2.2
-

2

A
1+R

] dx

2k=1~

1

)

+

(3.37)

)- 1}-1

(3.37a)

For y+~ the probability of error expression tends towards

Pe = 3[1-{1+ 1}

FI+G (y+>)

(3.38)



which is the well-known expression for the coherent P.S.K.

system bperating in Gaussian noise with Rayleigh fading [86].

IMPULSIVE NOISE (y<<1)

For low y case, expanding the CF expression of (3.30) and

neglecting all higher terms in Y except linear, yields

¢, (J8) = l+Yfl<JO{€AG(T) }~lng+O(Y2) . (3.39)

-0

Substituting above équation in (3.29) we obtain, after integrating

the first term, as

2 =P + 2(—'S—l*?fmd {"“22 (6%+52 }e
SFI+GT " CFI+G (y-+w) = b texpl =5 (0 +5g
ojl<1-Jo{gAG(T)}>adr (3.40)

haade o}

where

Pe
FI+G(y>«) is defined by (3.38).

To achieve the desired form, we use a steepest-descent

approximation of JO{EAG(T)}, and write <JO{£AG(T)}>a as [8] :

< {EAG (1) }>_= exp{-£°G” (1) <a®>_/a},

Lk
o1+ % -i?i§; %% (g6 (1)) e
2

}
k=2 (k! a

2k

(3.41)

where

k

2/ 2 o , -
C =(-1)"k! <_F (~k:l;a€/<a“>a)> + (k=2,3,....) and A="/T,
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The first few coefficients C2k are

2.2

C >
a

o 4 2.2
4~{<a > ~2<a >a}/<a

={<a6>a—9<a4>a§a2

> +l2<a2>3}/<a2>3
a a a

6

?8={<a8>a~l6<a6>a<a2>a+72<a4>a<a2>2—72<a2>i}/<a2>i

etc.
These coefficients, involving the higher moments of the
envelope a, are progressively critical in determining the
shape of the distiibutions at the higher amplitudes, e.g. for
the 'rare' event waveforms away from the zero magnitudes.‘

It is now a straightforward matter to determine the desired
probability of error expression. We shall present here only the

dominant terms in (3.41), viz. we omit terms O(£4):

<JO{£AG(T)}>aZ exp{—E2G2(T)<A2>a/4}. (3.42)

Note: the above eguation is still exact provided the amplitude

pdf pA(a) obeys the Rayleigh distribution

py(a) = —22- exp (- —35-)-
A <g > <a >

The kth moment then becomes

<ak> =<a2>k/2 T ( -}2£+ l)
a a -

The coefficients Ck(k:4,6,,..) in (3.41) become: zero.

Substituting (3.42) in (3. 29 for Periic and integrating

with respect to g andr yields



1 Y 1 ; =
= {1~ =
Peprig™ 2(1 §}+ 5 {m{l - % %}dT (3.43)
(r,G" (1) +1]
where
A 5
z ={1+ 1 5 }
(1+R) 2 FI+G
and
r = R X

2

FI+G }

2y (1-CKI{1+(1+R)Z

The second term in (3.43) can now be integrated to obtain

1 oL .Y
f{1- 21 Ydt= C[log{%+% (14T K2)2}+ L{l—(l+r ) )+
1 Z C Z
L bt
L
-y 1+ (14T ) *
+(1+T ) “log 2 5 %]
1+T K+ (1+T ) * (14T _K%)
V4 Z Z
(3.44)
where Z_ . . and R are defined by (3.37a), and K=l-exp(-1/C),

In order to compare“thé results obtained here with the
nonfading case, we next obfain the error probability
expression for the system shown in Fig. 3.1 when the -
multiplicative noise is absent. To simplify the analysis we
also assume the Gaussian noise to be absent. The analysis can,
however, be extended by using the arguments used in sec.
(3.3.2) when the Gaussian noise is present.

Starting with (2.8b) and using the arguments of sec.

(3.3.1) the error probability expression can be written as

(oo}

L ae {-jex+ <J_(£aG(t))-1> dt}.
Pe, = 77 5@@x£igexp jEx th oléa 1>,



Since the expression (2.8b) is even in x, integrating the

above equation with respect to x yields

Pe

H

N}

f sizE/E Xp{th(<JO(€ag(t))>a—l)dt}d€.

l\.)}l—'

(3.45)

For pA(a) Rayleigh distributed,

using (3.42), (3.45) reduces to

1, o
PeFI="2“- %—T—T-f Slng/—_ xp{\(f dt[exp( £ <a2> G (t)/4) l]}dé’:.

(3.46)

For y sufficiently small, the approximation exp (y)=1+y

can be applied, and the integrals in the exponent of the CF

can become an algebric function, letting (3.46) become

___J_' 1.0 sinf VE Y qlng/—_
Per =27 37 { — A o £dt£m—-§—-~—dg
- Lfaef SR Eep (62?62 (1) /4)a

The final expression for PeFI after integrating the above equation

with respect to & reduces to

2F Ly 1 .dt.
. — [
Pep = YferﬁcL( 5 ) G(t)}

t <a >a

. (3.47)

For the high Q RLC filter described by (3.33) ,using (3.34) and

(2.14) in the probability of error expression (3.47)and changing

the variable £ = 1/t reduces to

1
o erfclrz {2y (1-CK)}"? N
. CY'I erfc[CZFIt J ] dz (3.48)
e =
FI l/K Z;-l




where

N g

Zop = SNR = | B S (3.49)

2 ,
<a”>_y(1-CK)

and

K=1-exp (-1/ .¢) .

DISCUSSIONS

Equation (3.48) for Pers is plotted in Fig. 3.6 as a functién
of SNR ZFI defined by (3.49) with y, C, R as parameters.
Comparing these results with the unfiltered Poisson process of
Fig. 3.4 we note that, due to the RF filter, the probability of

error for filtered Poisson noise, for all y, at same SNR, has

increased. At unity SNR, the probability of error for the unfiltered

Poisson process PeI for vy = 0.1 is 0.027, while for the
filtered Poisson process PeFI is 0.15. At high SNR's, the
difference is small. A possible explanation for this is that
not only impulses falling within (O,T) are responsible for an
error in that bit (as is the case for the unfiltered process)
but also impulses that are sufficiently near (O,T) and
sufficiently large that the tails of the RF filter impulse
response overlaps (0,T) with sufficient strength.

Using (3.44) in (3.43), PeFI+G is plotted in Fig. 3.7 as

a function of SNR Z defined by (3.37a) with y = 0.1, C and

FI+G
From Figs 3.6 and 3.7 we can observe that by

R as parameters.
increasing C, normalized filter time constant, the error
probability becomes smaller. This should be the case since C

is invérsely proportional +o the bandwidth of the receiver

(seé'(3.35)). " In practicé the maximum value of C is determined

by the bandwidth requiréd for the signal to pass through without
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any distortion.

For fading cases, the probability of error decreases only Q
linearly for large SNR's while for non-fading cases the probabiiity
of error decreases exponéntially. This is logical. Regardless
of how large the average received signal becomeé, during a deep
fade the probability of error is equal or nearly equal to 0.5.
Even though this does not occur often, its occurrence keeps the
PeFI+G from improving exponentially.

Finally the reader is reminded that all the results
presented above (for fading cases) are premised upon the
assumption of slow, non-selective and purely Rayleigh fading.
This model is useful in that it covers (to first-order) a
practically meaningful regime for HF comﬁunicationsk The
theoretical and experimental investigations [57],[87] reveal
that by using time or space diversity (g.g., sending the signal
over several independent Rayleigh channels in parallel), or
feedback communication schemes [88) and the linear filter
detector, we can achieve a probability of error which

exponentially decreases with increasing SNR Z_, . ..

3.5 EXPERIMENTAL MEASUREMENTS OF PROBABILITY OF ERROR PeFI

AND PeFI+G

The motivation for carrying out experimental measurements
a simulated system as discussed in this
of PeFI and PeFI+G on %
section was to check the validity of the approximations made in

the theoretical analysis.
Fig.3.7 shows a block diagram of the experimental setup,
the receiver being simulated by multipliers and gated integrators.

The output of thé intégrators was sampled at the end of the

signalling intervals and the samples fed into a threshold device
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followed by a counter. Thé'conditional ppdbability bf‘wang 
reception was then given approximately by the ratio of the
number of counts on this counter to the total number of
transmitted signals. The accuracy of this approximation was

improved by increasing the measurement time so that many errors

occured.

RCL (high Q) FILTER [81]
The bandpass RLC network is shown in Fig. 3.8. The open-
circuit voltage transfer function for this circuit can be shown

to be
JWRy
(jw)2+ij

Hog (J0) = (3.50)

l/L+1/LC

By factoring the denominator of (3.50), HCR(jw) can be expressed
in the form of a partial-fraction expansion

. *
A A

Hp (30) = L N L (3.51)
jw+Rl/2L_jAL jw+Rl/2L+jAL
where
(-R +jA. )R
L0 2~% 1/2L73°L" "1
A. = [ 1/Lc - (R ) “] A, =
L [ 1/2L v 81 5218

and A* denotes the complex conjugate. The band-centre frequency
w of this bandpass filter is given exactly by wc:AL' For the
narrow-band condition 1//LC >>Ry o (i.e., for a high 'Q' circuit)
w_is closely given by wc=l//LC . Applying the narrow-band

c

condition, the constant Al reduces to Al-= Rl/ZLZ Using the
definition for the positive frequency Zlobe of HCR(jw), we have

0 Ryor

HcR(Jw*jwc)_— Ry o1, * 3 (w-w,)




and the transfer function of the equivalent lowpass system‘is'

given by

B
R, +jw2L  °

H . (5)
H jm e
CR y

The equivalent lowpass system function H (jw) can be

CR
recognized easily in this case as an RlL network compesed of a
resistor Ry and an inductance 2L, as shown in Fig. 3.9. The unit

impulse response hRC(t) of the equivalent lowpass system is

therefore

R

(t) = ?fli exp (-R,t/2L) , t> O.  (3.52)

o

POISSON SOURCE WITH AMPLITUDES GAUSSIANLY DISTRIBUTED

This type of Poisson IN was derived from Gaussian generators.
The block diagram is shown in Fig. 3.10. Each time the noise
crosses a preset level in the positive direction, an impulse
was obtained. It was found that as the level was increased,

away from the mean of the noise,

Gaussian Comparator

Generator (Var. Thresh)
Gaussian > o/p
Generator Switch

Fig.3.l0. Poisson IN genérator with amplitude Gaussianly

distributed.
the impulses became less correlated, eventually approaching

a Poisson process. TO obtain the low impulse rates desired,
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the 10 KHz Gaussian noisé‘générator was filtered by a simple
lowpass filter. The impulsés obtained were thén.used to sample
the output of another Gaussian noise generator. The sample
durations were very short in comparison to the signal durations
and were therefore good approximations to ideal delta functions.

It should be stressed here that no theory was developed concerning

this source.

DISCUSSIONS

Figures 3.6 and 3.7 show measured probability of error as
a function of the SNR for steady and fading channels respectively.
On both the figures the performance of the system in Gaussian
noise is also given. The purpose of this test was to check
the performance of the system before obtaining the results in
IN. The experimental data shown in Fig. 3.6 correspond to values
of y ranging from 4 x 163 to 151 while in Fig. 3.7 only
Yy = 2 % 162 is used. For steady channel (no mﬁltiplicative noise),
the simuiated results for large SNR's and small y's agrees
with the theoretical results. The main reason why the simulated

results for large y(70.1) do not agree with the theoretical

one is because the noise pulses (at this rate) do not obey the
Poisson distribution. For small SNRs: the measured values of
PeFI are much larger than the theory predicts, a possible

explanation for this being that the generated noise for these
conditions was actually modelled by an additive combination

of Caussian and IN because of the thermal noise added by
amplification. For the fading channel, a close agreement between
the simulated and the theoretical results 1s: obtained (this

is because only high SNRs and small values of v are

considered) .




CHAPTER 4

PERFORMANCE OF HYBRID MODULATION SYSTEM [128], [129]

Signal sets employing a combination of amplitude and phase
keying (A.P.K.) are useful for large alphabet systems because
they are economical in the use-of bandwidth and do not require
as high a SNR as the equivalent P.S.K. system to give the same
probability of error. In this chapter a method of selection of
the signal coordinates 1s described which minimises the
probability of error in an unfiltered Poisson IN channel for
a given average signal power constraint. Selected sets are
cémpared on the basis of a symbol-error probability for average

SNR.
4.1 INTRODUCTION

In the search for improved modulation formats for'highm
speed data transmission, attention has recently been turned to
the family of suppressed carrier two-dimensional signal sets,
of which quadrature amplitude modulation is an example. If the
channel is Gaussian, it has been shown [89]-[97] that a hybrid
modulation A.P.K. requires less power than P.S.K. for the same
error probability and alphabet size.

In the early work, the authors were primarily concerned

with specific regular types of A.P.K. signal structure, i,e.;_

the signals were constrained to lie on a grid [89] or a triangular

configuration [90] or concentric circles with [91] or without
[92], [93] constraining the signals on each circle to lie on a
ray from ghe origin. The more general question of what is

optimum (in the sense of minimum error probability for a given



average SNR) relation between phase and amplitude among the

members of signal set is still open to answer. The difficulty

in finding an optimum constéllation is partly that of integrating
conditional pdfs over thé'compléménts of mathematically
inconvenient decision regions, and partly that of minimizing the
sum of these integrals.

To assist in signal-set design and performance evaluation
in Poisson IN channel, an asymptotic expression is obtained for
the probability of symbol error at high SNRs for signal sets
with unequal energies and any dimensionality. While this
expression for error probability has not yet led to a solution
of the theoretically optimum design for A.P.K. signal sets, it
does permit an accurate comparison of candidate designs. In this
study only an unfiltered Poisson IN process is considered. The
analysis can, however, be extended to the filtered Poisson noise
case using the results of Chapter 3.

In the following sections the candidate signal designs are
described. Curves of.symbol error probability versus average
SNR with y as a parameter are shown for the 8-ary designs. The
technique can, however, be extended to any signal-set size or
dimension. Finally, we answer the question: How close can these
theoretical results be realised in the laboratory with actual
hardware? The two-dimensional nature of A.P.K. leads to modem
implementations that are significantly different from P.S.K. or
A.S.K. In selecting a signal-set, there are many other factors
that are important other than just minimizing error probability.
The cost and ease of implementation, the efficiency of symbol
to bit encoding and the dynamic range of amplitudes required of

the transmitter are but a few of these factors. We present
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experimental results for a circular constellation signal set as

an example.

4.2 SYSTEM MODEL

An A.P.K. signal set of alphabet size M can be viewed
mathematically as M two-dimensional signal vectors. Binary data

are mapped into one of M two-tuples ( a )« The numbers

Uk’ Py

of each pair amplitude modulate in-phase and guadrature

carriers respectively to generate the transmitted signal

Sk(t),= awkwc(t)+ bwkws(t), kzl,z,..f..M (4.1)
o<t<T
where
2, % .
Wc(t)‘z (T)zcos w Ws(t).= (%)%51nwct (4.2)

over the 5ymboi period T. It wiil be assumed that the two tuples
are equiprobable. The simplified two-dimensional M-ary
synchronous data communication system is shown in Fig.4.l1.

The received signal plus Poisson IN over the symbol period,
assuming no channel distortion is given by
(t) + n(t) (4.3)

R(t) = a (t) + b

wkwc kas

where n(t) is Poisson IN defined by (2.1l). The noise can be
defined as

n(t) = ny (D)¥_(£) + ny (£1Y (£), o<t<r.  (4.4)

Using the results of Ziemer [58] it can be shown (Appendix B)

that the joint pdf at time T of the normalized unfiltered

Poisson IN components at the output of the matched filters



R

6 . . .. -~ :
X, = X, /Ay, i=1,2 . (4.5)

where ), (defined by (2.9) = y<a2>ﬁlé/T for matched filters

defined by (3.10)) is the variance of X; is given by (b.1) i.e.,

‘ 5
& & Yy TAZ .
P ¢ (xpxy)=(1-v) 8 (x) 8 (xy)+ ‘w'f[ 2 jl
12 2(Xl + x2)
TA N
° pA{[-——Zz(xi + x;)]z} (4.6)

where Gi(x) are Kronecker deltas and pA(a) is the pdf of the
impulse amplitudes. It can be observed from the above eguation
that for y<<l the joint pdf of two-dimensional unfiltered
Poisson IN is approximately radial. At high SNR, the 'sphere-
packing' arguments from Gaussian noise ﬁherefore will hold
(approximately for y<<1l) for IN also. For example, contours of
constant error are circles, and system performance can be upper
bounded simply by how well the system 'packs' circular decision
regions around the origin [94],[95].

In what follows we suppress the time index k, and the
problem can then be reduced to the simple two-dimensional model.
Since it is of interest to calculate the performance of the
system only in the presence of an impulse noise burst, the
joint density may be taken to be given by the second term on
the right hand side of (4.6). The sampled receiver output at
time T is the point D = (Dy, DZ)' where D, = awk+ X, and

D2\= b¢k+ X2, and the random variables Xl and X2 are uncorrelated,

zero means and equal variances‘kz. The average SNR is defined as
M
1 2 2 Yy
= L ] a + b )o (4‘7)
SNR, v 2M) i=l (g bk
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4.3 A.P.K. SIGNAL SETS

Theoretical work in signal design related to A.P.K. was:
performed by a number of authors [89]~[97], as they extended
the work of Weber [91] and Balakrishnan [96]. The authors were
primarily concerned with the performance of A.P.K. modulation
systems in Gaussian channels, The question of what is the optimum
relation between phase and amplitude among the members of the
signal set is still open to answer.

The approach employed in this investigation has been to
use the above results as guidelines in an empirical search for
good designs in IN channels. The optimum performance should not
be greatly superior to that of the best candidate considered, if
a large class of designs is tested. Most signal sets fall into
four basic categories: those with signals arranged on concentric
circles, and those with triangular, rectangular or hexagonal
grid patterns. We consider here 8-ary signal sets only. The
analysis can, however, be extended to all alphabet sizes that
are powers of two. The 8-ary signal sets considered are shown
in Fig. 4.2. The éets are scaled such that the average signéi
power is unity.

The first design is a quadrature A.S.K. where the signal
array is a rectangular grid. This is an obvious candidate for
selection because it combines good sphere-packing with ease of
implementation. The second is a triangular set which has a
structure based on ccncentric triangles around the origin. The
third is a double circle with four signals per circle (4,4) which

Lucky and Hancock {92] calculate to be the optimum 8-ary design

in Caussian noise under an average power constraint. The ratio

of outer to inner circle is 1.935. 1In order to avoid complexity

and implement the data transmission system in simpler form, the
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power in the outer signals can be expanded slightly‘[90}

giving the ratio of outer to the inner circle of 240. The
fourth design is a circle set (1,7) consisting of a seven-signal
circle surrounding a signal at the origin. The signal at the
origin implies that for certain bit sequences, the transmitter
must be turned off. Attempting to turn a transmitter on and

off at the data rate could pose problems in certain applicaticns.
Additionally, receiver autcmatic-gain-contrel design will be
complicated by this factor. The remaining candidate is a

modification of (1,7). The co-ordinates of the signal points

are
0.88 -0.48 1.44 -0.28 -1.36 0.037 -0.85 0.61
1.34 1.53 0.092 -1.98 0.49 0.26 -0.76 -0.97

The extra point in this case is placed outside the circle of

6 points, and the centre of mass of the whole constellation is
placed'at the origin. Using the gradient-search algoritm this
signal array is shown[97ii]to minimize the probability of
error in Gaussian noise under the average power constraint and

phase jitter.
4.4 ERROR PROBABILITY PERFORMANCE

In order to assess the applicability of A.P.K. signal sets

esgential

m

inthe design of practical communication systems, it 1

to compute their average symbol error probability performance.

e

After this has been done, one can then weigh the savings in

3

s

P

15
:]

oo
bl

over the conventional has

error probability performance

En

’l

signal set (or other A.F.K. signal sets) against other cos

6




effective considerations and thereby arrive at a final signal

design.

Consider the arbitrary signal constellation shown in Fig.

4.3, where the decision regions are denoted by d The detector,

K*
which is specified by the decision regions, will declare that
signal S, has been transmitted if and only if the demodulated
vector D falls inside dk. Because of various practical
considerations, principally ease of implementation, the
mathematically optimum detector will not always be the one

which is built.

The probability of error is given by

M
Pe = 1r p.Pe (4.8)
ko1 K K

where the by s are the (taken to be equal) a priori probabilities
and Pek is the conditional error rate. The conditional error
rate is just the probability that D falls outside dk when

Sk is transmitted, i.e.,

Pe, = Pr(D¢dk/Sk). | (4.9)

Since the decision regions are polygon in shape then, in
mathematical terms,we are required to evaluate a double integral
of a two-dimensional pdf (4.6) where the region of integration
is the area outside a given polygon. This problem is,in general,
mathematically intractable: hence, clcsed form expressions for
the average probability performance of A.P.K. signal sets are
not likely. We desire, however, to compute the exact error
probability performance, since different upper bounds (e.g., the

union bound [94] or the Gilbert bound [98],[99]) on average symbol

error probability performance, when applied to a variety of other
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signal sets, yields different results with regard to the relative

ranking of these sets.

The conditional error probability may be calculated

numerically as follows. The signal space (see Fig. 4.3) can
be subdivided into ncnoverlapping regions R n=l,..c... Ny
where Nk is the number of sides in the polygon Rk and ikn denotes

the region outside the nth side. Thus the conditional erxror

rate can be written as

N, , |

Pe, = Zu Pe, (4.10)

n=1 ‘

where

Pe, = [~ p21’22(xl,x2)dxldx2 C(4.11)

Rin

and ps & (x,,x,) is defined by -(4.6). Transforming the joint

Xl,XZ 17772

pdf (4.6) into polar coordinates and using Fig. 4.3 the above

equation- becomes

AT a o AT o
- XY (D27 kn (2 y 1 3.4
Pe = L (—Z—) [2 pAd ) P dr dé +
kn T 2 é { A 2 | ’ )
kn
2coscb
B - AST _ _
+ J knf . pA{r( g, ) z}drd¢] ® (4612)
%n  fxn |

7. Ccos
A o)

Using (4.12) in (4.10), the final error probability can be obtained

)
L

{

from (4.8) by using (4.10).
In what follows we assume that the pdf of IN amplitude

p. (a) 1is ST I  qierr+ibuted with zero mean and variance
pyla) is norrally distributed with e
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pA(a) =] Mu}az‘-——;; exp (“‘“ “"*‘2‘) ® ' ) (4:13)
(2ﬂOa)' 20

In principle, any choice for pA(a) may be made (i.e. see Fig.,
3.3) which is consistaent with experimental measurements of the

statistical properties of IN occurring in nature.

4.4.1 SIGNAL SET COMPARISON WITH M=8

For M=8, the performance of each signal set in Fig. 4.2
has been evaluated by means of (4.8). The results are shown in

Fig. 4.4 as a function of average SNR d

D
(]
I_I
=
M
o]
o

g
.
.
o
-

and vy
as a parameter. The minimum error Signal constellation (for
Gaussian noise plus phase jitter [97] } is the best of the
five A.P.K. designs for average SNR in Pcisson IN. It offers
an advantage of 2.2 dbs and 1.6.dbs over P.S.K. at PeAPK=156
for y=0.1 and 0.0l respectively. The relative performance
of candidate designs from the curves is summarized in Figa4;5
which gives the avérage symbol SNR required to achieve a
symbol error probability of 16°.

Finally, it remains tc verify the theoretical analysis with
experimen£al results. For convenience a basic signalling
rate of 800 bauds was used, operating over an ideal linear
channel in the freguency range of 600-3000 Hz. Due to the ease

1al set

m

—

of implementation the circular (4,4;r2/r1‘= 2.0) sig
shown in Fig. 4.2c was implemented. Details of the circultry
are given in reference [IOO] .  The configuration shown in Pig.

4.1 was used to evaluate the error performance of the signal

format in the presence of additive IN.
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Fig. 4.6 shows the polar plots, generated by attaching the
gwk and gwk (see Fig. 4.1) to the horizontal and vertieal
inputs of an oscilloscope. Z-axis inténsification at ﬁhe
sampling instant produced the point in signal space. Fig.

4.6 b 1is obtained when the IN is absent. The displacement
of the signal points is due to the thermal noise added by
amplification. Fig.4.6¢c shows the spread of signal points
when Poisson IN is present.

Since timing jitter and phase offset are not included in the.
thecry, timing phase and coherent carrier phase were adjusted
manually at the receiver.

The experimental results are shown in Fig. 4.4.

Correspondence between predicted and measured performance 1is

seen to be guite good.

4.5 CONCLUSION

A.P.K. with M~ary alphabets is an attractive method of
reducing the bandwidth required for transmission of digital
information. The bandwidth is exchanged for power but A.P.K.
achieves a much more efficient exchange than M-ary P.S.K..
Performance of A,P.K. signal sets in an IN channel is analysed.
The A.P.K. sets studied in this investigation were'empirically
genérated but included the regular grid, triangular, and
hexagonal lattice designs, as well as various circular
configurations.

An important conclusion about A.P.K. signal selection and
performance which can be drawn for the compariscn of signal sets

summarized in Fig. 4.5 is, on an average SHNR basis, the circular

sets are best for M=8,




The technique employed to obtain the performance of

8

-point signal constellations is amenable for use in higher

order signal design problems.
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CHAPTER 5
SEMIEMPIRICAL IMPULSE NOISE MODEL [lBO]

This chapter formulates and justifies a class of non-
Gaussian random processes that can servc as a ncise model for
'impuisiVe rhenomena observed in radio communicaticn channels
below 100 MEz. The model is applied, in the rest of the thesis,
to the detecticn of known signals in the presence of additive

noise.
5.1 INTRODUCTION

The empirical mcdels differ fundamentally in their concept
from the filtered-impulse models in that they result from an
attempt to construct a mathematical expression that fits the
observed data without regard for the physics of the noise scource.
In(every case, these empirical models consist of mathematical
expressions constructed in an attempt to fit the measured data
of the first-order statistics of the envelope of the received
noise.

In view of the great influx of large amplitude pulses,

Omura and others [63],[64] formulated log-normal models‘of ncise.
One of the models includes Rayleigh distributed atmcspheric radio
noise at low levels and log-normal distribution at high levels.
Beckmann [9] has given a physical argument which supports this
empirical noise model, particularly in the situation where thers
is little thunder-storm activity. It is noted that several
workers have proposed models similar to that considered by
Beckmann, although they differ in regard to how the two

distributions should be combined to give the best resultant
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model. Recently, Hall [4] postﬁlated a descriptive mathematical
model for atmospheric ncise as a narrow-band Gaussian process
which is modulated by a slowly varying stochastic process.
This postulaticn leads to the so called 't' noise model for
which the pdf of the atmospheric noise is a modified Student's
't' distribution. This mocel explains some bf the observed
properties of the noise. 2 model of gimilar form has also been
found by Giordano and Haker [7] from different considerations.
A recent summary of the various empirical models that have been
proposed is presented by Ibuken [10].

In view of the shortcomings of the models menticned above,
a new model has been derived taking into consideration the
known properties of the burst form of atmospheric radio noise.
This model is then compared with the atmospheric data for

verification.
5.2 IMPULSE NCISE MCLDEL

In order to incorporate the impulse Dature of the noice
with large dynamic-range in the model it is proposed to predict

the clustering of atmospheric pulses by

X(t) = A(t) G' (t) (5.1)
where A(t) is a ccmparatively broad-band random process,
slowly varying vis-a-vie G'(t), and which effectively sets
therunit, or scale of Gf(t).

The statistical properties of A(t) are tc be determined
empirically. This is dene to begin with by choosiﬁg pA<a);
the first-order pdf of x(t) for large amplitudes, as is cbserved

empirically. G'(t) is a zero mean generalised Gausslan process
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[65], independent of A(t),with pdf

P (g) = 2 — 9 )% : (5.2)
G. 2/5?(&33)0' /2at
where
2 1
. o F(a) £
R - N ,
2F(a)

0,a are distribution constants and I'(x) is a gamma function of
X. For o=2 this density reduces to the Gaussian density, whereas
for a=1 it becomes the Laplace density. Furthermore, according
to Algazi and Lerner [66], densities representative of certain
atmospheric IN can be obtained by picking 0.1<a<0.6. This
distribution is plotted in Fig. 5.1 for different values of o.

For large amplitudes of X(t) it is known empirically that
the pX(x), the pdf of X(t) at ti(i=l,2...), falls off much more
slowly than it would if X(t) were Gaussian only. This is because
of the more or less discrete large impulsive transients that
greatly exceed the background noise and tend to take on the
amplithde distributions of the transients themselves. To generate
a class of first-order pdf in A(t) that yields the proper
behaviour at large amélitudes in X(t), we follow the procedure
suggested by Hall [4]'for his 't' model. Accordingly, we consider

the reciprocal non-Gaussian random process

o(t) = |a(t) | (5.3)

The first order pdf of Q(t) is assumed to be

o .
p.(q) = * !qlaguleXp(* lglw), —o<g <o (5.4)
Q7 ayFrp)




2-0

Fig.

5.2 Ceneralized chi-probability density function (y=1.0)
only 4ye values of g are shown.
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with parameters o, B,y. For @:2;pQ(q) is a «h
with 2B degrees of freedom. Using (5.4) in (5.3) one can
readily show that the pdf of A(t) is

p, (a)= —~§g~—— la'luaBeXp(— L

2y T (B) ylal®

)' —lg<®, (5-5)

For large values of a, the distribution behaves as

(a) = lim la|l~OCB for y>0, (5.5a)

a+o arw
which is the desired form of large amplitude dependence for X(t),
sincelal+» implies x+®. It is seen that the hyperbolic distribution
specified by the above equation is asymptotically identical in
form to perhaps the simplest of the empirical modgls [22];[66]
proposed from observation of méasured data on the envelope of
received atmospheric noise [lO]. Thus it is concluded that the
above equation gives a reasonable specification of the asymptotic
behaviour of the first-order statistics of A(t). Depenaence
of parameters. a and B. on the distribution, specified by (5.4),

is shown in Fig.5.2 for y=1.0.

To obtain the pdf of X(t) = A(t)G'(t) we make use of[lOl]

Py (%) = foor:pQ(Z;)pGx(xc)dC, ®w<g <o, (5.6)

w0

Substituting values of pG,(xg) and pQ(t) from (5.2) and (5.4)

respectively in the above-equation and making a change in

variable §=ca yields

- o (gf+1)/a-1 T
(x) = o 'f/g exp (-
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where

' -1
K(x).:'{ging + %} .

Referring to standard integral tables [82] i.e.,

[ wCexp (-w/d)dw=d
o

S*lp(cr1)

the pdf of process X(t) becomes

. 1
- (B+ =)
px(X)=K(a,8)ogB{ xla+og} &, —mcx<e (5.7)
where we have defined
1y O . 1
o‘g = i}/-z—_._—q—_)-— and K(a,B)z ﬂi@—iﬂi—) . (5.8)
Y ZT(B)F(E)

Equation (5.7)déscribe the pdf of IN component of the atmospheric
noise below 100 MHz. This density function will be called
generalisad hyperbolic distribution. To illustrate thevdensity
of (5.7), a set of.ﬁurves is given in Figs 5.3 and 5.4 for

B=2 and B=10 respectively and cozl.o, 0=1.0,2.0,3.0,4.0. Random
numbers were generated on the digital computer for a=1,2;

B=1,5; oo=l.O and are plotted in Figs.5.5 and 5.6. The impulsive
nature of the noise can be observed from these plots.

Evidence that the generalised density of (5.7) is a
reasonable one to consider in communication problems is provided
by the densities proposed'by Hall [4] and Mertz [22] for the
amplitude distribution of IN. Mertz assuﬁed that the noise
amplitude is given by

EEE (]x|+h)

(8+1)
(x) = -5 !

_oo<x<oo
Pu
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where h is a small constant and B ranges from just over 2 to
about 5. This equation is precisely the pdf of (5.7) with

a=1 and Uo=h. For d=2 and B=0.5 we have a Caﬁchy density. This
density function has been used in several previous papers; such

as Rappaport and Kurz [52], to represent severe noise.
5.2.1 MOMENTS OF GENERALISED HYPERBOLIC DISTRIBUTICN

Since the pdf of X(t) is an even function, all odd moments
are zero. The various even moments, when they exist, are found

most easily from

Using (5.7) in the above eguation yields

) a 1
om 2o k(a8 [ FLEDY w117 Bax,
o} O O

Changing the variable §={l+(x/oo)a}_l and using [85]

jl §p-l(l_§)q"ld§: I(p)I(q) (Beta function)

O I' (p+q)

in the above eguation yields
k+l)

k k .
K OOF(B—“&)F( 3 (5.9)

<X >=
| T )

The validity of the integral is if af>k. For k=2 the above

equation reduces to

B> 2 (5.9a)
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In practice it usually happens that the model fits the data

very closely for stZ, which indicates that the noise has

very large average powér. ~ This agréés in principle with the
results of Mandelbrot [102] in which he notes that intermittent
phenomena often appear to havé barély convergent, or even

divergent, second moments, dependent strongly on sample size.

5.2.2 CUMULATIVE DISTRIBUTION

The cumulative distribution ;PX(X) can easily be obtained

from

Utilizing (5.7) and performing the integration yields

1 2 INE 1
Py (x)= $[12{1- ZK(o,B)B(B, 5| — =) 1] (5.10)
1+ (=)
o
o
where ¥ refers to x30 ; B( ) is an incomplete Beta function
[85] and K(a,B) is defined by (5.8).
5.2.3 CHARACTERISTIC FUNCTION
The CF is given by
® 1| Cagy (B D) 8B 4
@X(jg)sK(a,B)Lm expv(jgx){‘xl +0 o’ o X

which, since sin(xg) 1is an odd function ,reduces to

-

’ i
@X(jg):K(d,B)Iwcos(gx) {!X1a+ Oz}~(8+ "&) Cgﬁ dx (5.11)

- CO

The above integral can be evaluated in a series form by using




TS
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the complex integral method. A closed form can, however, be

obtained when 0=2.0: Using [85]

L S
Kv(XZ)>= £i2%~i> (2Z)vf cos (xz){§2+22}~(v+%)d;
}/?Y'X e}
in (5.11) yields
0, (38) = ok, (o )£ r(p) 2T (5.12)

K.(.) is the modified Bessel function of the second kind.

8

5.3 FIRST-ORDER DISTRIBUTION OF ENVELOPE

Since the noise is always observed through the passband
of some receiver filter, we now develop the first-order
distribution of the envelope of the noise. If the receiverx
is sufficiently narrow-band, the noise at the receiver. output
can reasonably be assumed to be modelled well as a Gaussian
process. - This follows from the fact that narrow-band filtered
noise is the sum of contributions from many independent lightning.
discharges, none of which is dominant at the filter output.‘
Experimental data indicate, however, that the bandwidth required
to achieve this condition at VLF is less than 50 Hz, so a
Gaussian assumption is not always physically viable at VLF. The

modelling problem can be simplified by noting that for

communication applications the receiver bandwidth is substantially

smaller than the band centre frequency. This fact enables the

receiveo atmospheric noise to be regarded as a narrow-band random

process. This assumption is always satisfied for communlcatlgn

oblems and is not nearly as strong as 4 Gaussian assumption.

r
. tal data [lO]—[l4] have been

Almost all the available experimen

¥

obtained in narrow-band conditions.
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The statistical independence of A(t) and G'(t) requires,
at least, that their spectra do not noticeably overlap. As
mentioned before, A(t) will bé of qﬁite low frequéncy, while
G'(t) is comparatively narrow-band, centred about some carrier
frequency w,r even when a radio frequency stage which 1is broad
compared to usual communication practice is used in the receiver.

The resulting process X(t) is, therefore, narrow-band

and can be expressed as

X(t) = Gi(t)A(t)coswct + Gé(t)A(t)sinwct
= x'(t)coswct + §(t)sinwct
= [a(e) |G (t)cos (w t+¢)

- E(t)cos(wct+¢) (5.13)

where

!

X (t) and Gé(t)_— quadrature component corresponding to X (t)

and G'(t) respectively

il

X' (t) and Gi(t)

in phase component corresponding to X(t)

and G'(t) respectively

G2(t).= Gi 2(t) + Gé 2(t) is the envelope of process
G'(t) (20)
E(t) = G(t)[A(t)l (30) is the envelope of X(t)
¢ = tan”l(Gé(t)/Gi(t)) is the phase
W, = 2ch carrier fregquency in rad/sec.

X' (t) and g(t) at the instant t are independent and identically
distributed random variables.

For general integer values of o it is impossible to obtain
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a closed form expression for the pdf of the envelope. However,
for o=2 a closed form can be obtained. In what follows we
assume that a=2: Q(t) reduces to chi-density and G'(t) to

Gaussian density. Since G'(t) is Gaussian, Gi(t) and Gé(t) are

also Gaussian processes, the phase ¢ must in the first-order be
uniformly distributed over 2m.  The envelope G(t) will

likewise have a Rayleigh distribution in the first-order, but

the envelope E(t) will, in general, not. For-A(t) ='{Q(t)}_l

the pdf of A(t) is [103]

Using (5.4) and a=2 in the above equation yields

1,28+1

1 -1
pA(a)= T(B) 8 (3) exp (-—5). (5.14)

Ya
The joint pdf of X'(t) and X(t) is easily obtained by using

A D — ]
pX' ’X(X‘ ,X)' = pAG' ,AGzl (X !ﬁ)

o0

=f — p, (¢ )pg: (/0)pgi (R /T)dc.  (5.15)

RS c l 2
Substituting
: x' 2
(%' /)= expl-(———)"}:
Pei ™ ey /30t
. SO )
A 1 (X }
X/ = expl-( ')
P, we) /26T (%) /2a't

2 2, 2
and p, (x') from (5.14) and defining e"=x'" + x7, we get
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K(e) = (e2420'2/y) 1202

- Using (5.8) and evaluating the integral yields

N 28
(x',x) = %@ﬂ—)—%—{oz + g2 pmB+L) (5.16)

Pyt O
XX r2(y)T(g) ©

The joint probability density of envelope and phase of the

narrow-band received noise is given by

PE,¢(e,¢)_= epx,lg(x',ﬁ).

Using (5.16) in the above equation to obtain

28
1‘(8+l)oO

e{02 + ez}“(8+l)

p (e,¢) =
E, ¢ r2\%)T (8)

Since the phase is uniformly distributed over 2w, the pdf of

the envelope E(t) is

B 2,-(B+1
pple) = 2805 e{02+e y~ (8 ), 0§e<m- (5.17)

Equation (5.17) is plotted in Fig. 5.7 for various values

of 8 and ¢ = 1.0. It is important to note, in support of
o

the model derived, the asymptotic forms of pE(é):-




which has precisely the desired behaviour specified by (5.5a).

For e~ o the distribution behaves as:

lim (e) 2Be lim e ~e?
evo FE =T33 T o 7 e ()
g o} 20
o e e
2 2 C s . :
where 0, = oo/ 28. This is of course in agreement with both

experimental results énd intuition, since the noise at low levels
is expected to be the resultant contributions from a large
number of independent noise sources, and hence behaves as if it
were Rayleigh distributed. The noise model‘recently proposed
by Shinde et al [104] for HF atmospheric noise can be obtained
from (5.17) by substituting 8=1.5 and 0-=1.0.

The various first-order moments of the envelope are easily

obtained directly from

<ek>=26028f ek+l{og+e2}—(8+l)de
O .
=pofr(a-5)r (B4 /T (B41)  for o>k (5.18)

The probability Po(e) that the envelope intensity exceeds
level e is given by

.. Co

'[epE(C) dg

Po(e)'= l—PE(e)

(5.19)

it

e

2B, 2, 2,78
o lote }
5.4 COMPARISON OF THE NOISE MODEL WITH MEASURED DATA

Since we are attempting to develop a model for a random
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process, the measurements required to check the validity of
the model fall into two catégoriés: |

a) measurements of probability of the envelope of the
received noise (since all measured data are obtained
on a narrow-band channel)

b) measurements of the average number of level crossings
per unit time of a fixed level by the envelope of the
received noise.

The seccnd measurement is of interest, because it bears
out the experimental fact that the average number of level
crossings per unit time for the case of non-Gaussian noise is
not giveh by the product of the pdf of the envélOpe with a
suitable bandwidth product, as it would be if the noise were
a Gaussian process [71].

The probability P,(e) that the envelope intensity exceeds

level e was derived in the last section and is given by (5.19).

This model is compared with experimental results [4], [12],
[104] in Figs. 5.8 and 5.9 (note that in these figures log|log
p_(e)]| is plotted vs. log e. This choice of scale has the
interesting property that the Rayleigh~distributed envelope
plots as a straight line). The figures show that by using -
suitable values of B and 0 in the noise model (5.17) a close
agreement with the observed values can be obtained.

As for the distribution of envelope level crossings, we

. C o a0 s .
assume that the observed non-Gausslan noise is bandlimited by

the receiver to an RF bandwidth 2B, it follows that the envelope

of the received noise 1is pandlimited to a frequency band of
width 2B centred about zero freguency [105]. " Thus it can be
shown [106} that this bandlimited envelope E(t) is

approximately described in the time interval [O,TO] by its
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2BT_ independent equidistant samples provided 2BT >>1.

Let T be defined as the interval bétwééﬂ a down-crossing

of the level Eo by the envelope of the received noise, and the
next up-crossing of the same level. (This is the quantity whose
statistics have been measured by Watt and Maxwell [ll]). The

probability that T, exceeds T, is given by [107]

BT - .
p () = pri{E(t)<g_}*°To7t. (5.20)
Using (5.17) in the above equation yields
o Bo 2 -gy2T B-1 |
P (T.) = [1-{(z=)"+2} 19707 . (5.21)

0]

Special cases of this result corresponding to g=0.5 and 1.0
are plotted in Fig. 5.10 along with experimental results[4],

[ll]. The pdf of spacing between successive envelope crossings

is given by the derivative of PO(TO) as

g+1)

| ~2, Foy 2, .y
p, (T,) = 2BE_(2BT -1)0 {(E;) +1}

E
’ {1—{(59§+1}'B]2BT0”2. (5.22)
(@]

The maximum value of pO(TO) occurs when T_ 1s

o 2B _E - . 5.23
1og(1—{{59)2+1} 3 ( )
@]

Thus the occurrence of maximum value of p,(T,) indicates that

the noise pulses are dependent and they have a tendency to cluster.

This result is in agreemént with the observed correlation

between pulses [ll].'
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5.5 DISCUSSION

In this chapter we were mainly concerned with thé
development of an analytical model for ‘'impulsive' phénoména
and with verification of the applicability of this model as a

description of received non-Gaussian noise. The model proposed

here takes the received IN X(t) to be given by X(t)=A(t)G' (%)

i : ~ ) » »
where G'(t) is a zero-mean generalised Gaussian process

independent of A(t), and A(t) is a stationary slowly varying random
process, independent of G'(t), which modulates X(t). This
modulating process is further described as A(t)=1/Q{(t) where

the first-order statistics of Q(t) are specified by the
generalised 'two-sided' chi-distribution with parameters o,8,Y.
The probability distribution of the envelope of the noise model
(¢=2.0) is in good agreement with experimental results, with

this agreement being particularly good at VLF and HF. This is

demonstrated in Figs. 5.8 and 5.9.

Even though it is established empirically that B8=1.0

(or less), and conseguently the power of the process A(t) and

X(t)>», the model may still be used. Physically of course,
<X2> must be finite. What probably occurs in reality is that
not one, but at least two laws for A(t) are required at large
amplitudes, up to some very high but finite level, at and above
which there is not only possible saturation at the front end
of the receiver, but also a modification of B, now larger than
1.0, to ensure the necessary finiteness of <x2>.

The higher order statistics of the noise ére given by
(5.21) and (5.22) for PO(TO) and pO(TO) respectively, which is

verified for LF and VLF radio channels.

Finally, the parameters dg and B are to be determined

empirically. We expect that they will show secular variations
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with the time of day, week, etc. They may also vary with

the urban region chosen for study. They will certainly depend
on the bandwidth and freguency allocation of the receiver |
used. In any case, they are a part of the experimental data
to be investigated in any overall study. This problem is

considered further in Chapter 8.
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CHAPTER 6

OPTIMUM DETECTION AND SIGNAL DESIGN FOR NON-GAUSSIAN
CHANNELS [130]

In this chapter, explicit receiver structure for the
optimum detection of binary signals in non-Gaussian noise
environments ig determined. The resulting optimum structure,
while shown to bear some resemblancé to that which would have
been obtained in the presence of Gaussian noise alone, exhibits
an interesting nonlinear behaviour. The performance of the
detector, specified by the upper bound on the probébility of
error, is assessed and is seen to depend on the signal shape,
the time-bandwidth product, and SNR. Consequently, a solution
for an optimal signal to achieve the minimum probability of

error ié derived.
6.1 SIGNAL DETECTION
6.1.1 INTRCDUCTION

In order to optimize the detection process a knowledge of
all higher order pdfs of the interference is required. If the
interference is Gaussian, a second-order statistic implies all
the higher order statistics, so that solutions for optimal
detection are guite simple. This is not always true for non-
Gaussian noise. Moreover, in practice when one meets non-

Gaussian noise it is in general non-staticnary, for example

its statistics may depend on many factors including geography

and the time of day [15]~

In order to circumvent this difficulty we assume:

1) the samples of the input process are statistically independent,
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i.e., the correlation time of thé noiséxis Small.compared‘to

the duration of a signal to bé détected (thé noise bandWidth

is large compared to the signal bandwidth)

2) The noise is considered to be quasi-stationary with statistics
which remain constant over a period which is long compared
to the signal interval.

With these two assumptions made, the multi-variate probability

density of the noise samples can be represented by the product

of univariate probability densities, i.e.,

N M
py(x) = T py (%)
i=1 i
where
Xy
Xy
3 = . ( a vector).
XM

This representation is fully justified if the interference is

a Markov-type process and if the samples of the input process

are separated in time by an interval longer than the correlation

time of the noise [108]. It it also known that any stationary

random process can be approximated by a Markov-process

(univariate or multi-variate) with an arbitrary degree of accuracy.
Consider the binary communication system shown in Fig.6.1l.

Si(t) (i=0,1) are deterministic signals of duration T seconds;

and X(t) is assumed to be a sample function from a non-Gaussian

random process whose pdf 1is specified by a generalised hyperbolic

distribution. In each signalling interval the encoder selects

either S_(t) or S 1(t). Theapriori probability of achieving

signal S_(t) or %_(t)’is assumed to be equally probable; and
o .




each element of the transmitted sequenée is independent of all
other elements. At the end of éach signalling interval, the

receiver, which is in perfect synchronizaticn

. _TRANSMITTER
MESSAGE 0,1 - mi}
SOURCE | RECETVER |
(1=0,1)
{mi}

Fig. 6.1 System model
with the transmitter, must decide on the basis of the received
data which of the two signals was transmitted. In this case

the decision problem reduces to choosing between the two

hypotheses:
Ho :+ R(B)=5_(t) + X(¢t)
Hl : R(tv) =Sl(t) + X(t), _ O<t<T.

We recall from the discussion in section 5.3 that in practice

attention can be restricted to the situation in which the

-receiver bandwidth is® substantially less than the band centre

frequency. Thus the decision problem can be written directly
in term of the slowly varying complex envelcpes of R(t) and
X(t). 1In terms of these complex envelopes, the decision

problem becomes that of choosing between the two hypotheses

H : r(t) = s (t) + x(t)
Hy @ r(t) = s, (t) + x(t)v, 0<t<T (6.1)
where R(t) = Ré{r(t)exp(jwct)}. (r(t) = slowly varying complex

envelope of R(t)).
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To simplify the analysis, assume that there is a discrete
representation of the problém; whéfhér obtained from sampling

or orthonormal expansions. Although this is a severe restriction,
it still leads to useful results. Therefore, with M the

dimen sion of the discrete representation space, the receiver

observes
H ; = g + x
o) ay o)
H > > ++
R | X . (6.2)

The number of samples M is dependent on the bandwidth in which

signal of duration T is observed.

6.1.2 LIKELIECCD RATIC

Since A(t)=1/Q(t) is a slowly varying random process, we can
write x(t) = A(t)g(t) {see (5.1) }, where g(t) is the complex
envelcope of G'(t). Since g(t) is the complex envelope of a

Gaussian process, it follows that it is a complex Gaussian

process with pdf

(%) L F”E_‘? } | (6.3)
Py () = ——53 exp -
g (21r0'2)lvL ngz

where gtv:[%!gZ""'ng and * denotes the complex conjugate.

The conditional pdf p;(;lQ)can now be obtained from

M
>, > 2 _ Lo .
p;(r]Q)'z kgl Qk pa(gi—Qiri’ i 1,.c00...M),

where use has been made of the fact that in terms of real variables
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pgi(gi),= PGi(Gi) o PGé(Gé)

so that the Jaccbian of the transformation is J(g»xr) = Q2

Using (6.3) the joint pdf beccmes

expl- —t

P (r19)
r (2Tro‘2)M 20!

2

Using (5.4), (6.4) and [82]

* M+1 M+1
f CMeXp(—pzcz)dc_= [ (=5=)/2p

O

in the above equafion and perferming the M fold integration

yields

1
4[|, |*+o

M
> 28M
p;(r)'={ %’Go% E 2]B+l (6.5)

c

where 0 is defined by (5.8)-

The conditional pdf of the received signal under hypctheses

Hi{i=o,l } is given by
-5 &> >
pz(r/Hi)>: p;(r—si).

' 3 + . s b
The likelihood ratio A(r) is glven Y



* sT@uueRyd JTA I0JF xeaTtooax unwilzdo z°9 *HTJ

(g
( ) °Lad
- *ANH
e .AE"SMAI'I] o<
v -I

. (3)x
m A v = *Lad
— *ANJ

(3)%




111

> M
H
- py (/0 - B+1
= (+ . = I wA v (rg) - (6.6)
- =]
pr(x/H)) =1 V
where
2 =02+[r -s.. |%, i=1,2 ; k=1 (6.7
By 0ot IT TS 1Ty =2 k=l e M -7
and
bplrg) = Eoe/F1y
Thus by Bayes rule we choose ﬁ=sl(t)v= my if
M M
2 2 2 2
izllog[ooﬂr2 Slzl ] > EleOg[co+]r2—sozl ] (6.8)

where m is the estimate of the transmitted signal. When the
sample size M is large enough (6.8) can be approximately

represented in integral form as follows:

.
ITlog[Ug 4|z (t)-s) (1) |*]des [ 1og[o? +r(e)-s_ (1) |?]at
O

(6.9)

where T is the signalling interval. The receiver structure
which implements this rule is shown in Fig.6.2 . It is seen
that the non-linear receiver agrees with intuition, since

it suppresses the received signal at those times when the
received signal is predominantly due to a pulse of noise,

and bases its decision strongly on the received signal at

those times when the noise sample is small. Thus, the receiver
ignores the received signal when it is largely the result of

a pulse of noise and bases its decision on the relatively

quiet periods between the occurrence of these noise pulses.




112
6.2 PERFORMANCE OF OPTIMUM COFERENT DETECTCR

In many cases of interést, thé test likelihood ratio
can be derived, but an exact performance calculation is
sometimes impossible. For our noise model we encounter this
difficulty. Therefore, it is useful to search for another
measure that may be weaker than the-probability of érror,but
that is easier to evaluate. We shall use the upper bound given
by Chernoff [109]. The probability of error for equally likely

signals is

Pe = Prilogh(r) = I 4, (r)>0/H }.

=1

A ™M=

To simplify the analysis ve assume, in what follows, that
B=1.0 in the noise model (6.5) and so(t)=O, s, (t)= g(t)coswct.
The analysis can, however, be extended to any value of B
using a similar argument.

The quantities wA(rz) are statistically independent. Using
the Chernoff bound the Pe expression becomes

<¢Xo (r.)> (6.10)

rd
o)
N
g
o)
i

o ==

where Ao is a constant which is chosen to make the upper

bound exponentially tight. To find'Ao we solve the equation

1 a A
<o Y Gl o - (6.11
=1 > N e )

B> o

Using (6.5) and (6.7) when =1 yields

2
O & N A=2 =A | ,
<wk(rﬂ)?:ﬁgf fdr'dr {z s } (6.12)

o4 12
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where 512 are defined by (6.7). Using (6.12) and SO=O in
(6.11) it is seen that the solution is obtained when the

numerator of the resulting equation is zéro. (The denominator

is always positive for all values of A). The only way the

numerator can be zero is by having_ko=l.0; since then the

numerator becomes an odd function of r' and hence when integrated
| becomes zero. It can also be shown, by differentiating the
numerator of the resulting equation with respect to A and showing
that it has always a positive gradien£ far all A, that the
solution obtained is unique. |

Utilizing A _=1.0, (6.10) becomes

o 2
_ _© t =
Perhax = g=l m [wdrziir 2{1/“02“12}'

Solving the inner integral by. contour integration techniques

and introducing new variables

A2 A
_ 2 , 2 L2 4,2
cﬂ—rz/{r 2+co}, U= 12/400
E
yields
M g,V
1 1 2%
Pe =1 = f {1575~ ldg, .
max £=1U2+L o ZVCQ 9

Using standard integral tables [85] the above equation can be

expressed in series form:

M e S v, -
o | 6.13)
pe =1 —7 I 7551 ( Tho (
max 2=l u2+l ksoz )

For M>>1 (6.13) can be expressed in the following integral form




T/2 v L T )
' [log{i~02i+l(l+jgti)k}~logfw(t)+l}]dt,

logPem

ax 1
7/

2BT
-T/2

(6.14)

For small values of vu(t) (<l1) the above equation can be

simplified to

log (Pe__ )~ a,F(s)  (6.15)
where
T/2
4 2
F(s) = [ {s;(t)-as](t)}dt,
) __T/2 1 1 (6.158.)

a = 602 and a, = B/lBo4 .
o o)

From the error probability expressions it is seen that
the performance depends not only on the signal power, as in
the case of Gaussian noise, but also on the particular signal
as well as the time-bandwidth product 2BT. These bounds have
obvious significancé in assessing detector performance. Perhaps
less obvious is the fact that, since it is known that the
particular signal—which minimizes the upper bound on the
probability of error is also the signal which minimizes the
actual probability of error [61],[110], the formula . for error

bound may be used to determine an optimal signal. Since the

transmitted signal must generally have finite energy, an average

energy constraint
T/2

agy 2
p2p = [ §°(t)cos u t dt
L1/2
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will be required. For any chosen signalling waveform, a

plot of the normalized paramétér on the right hand side (R.H.S.)
of (6.14) as a function of (P/do)2 can therefore be obtained.
For given (P/Go)z, the signalling waveform that maximizes the
R.H.S. of (6.14) is optimal. 1In order to obtain an idea of
the effect of the signalling waveform on system performance,
several basic waveforms will be considered. The details for

the signal optimization will then be presented in section 6.3.

1) SQUARE SIGNALS

h~
S(t) .
P A P,|t]< /5
S(t) = (6.16)
0, |t]>%/2
-T/2 o T/2 t
Substituting (6.16) in (6.14) yields
logPe A © 1 s )
max P
- T = log(P+l) - log[l oy (st 1 6am
where
A 2, 2
P = P"/40 .
2) TRIANGULAR SIGNALS
ba 0 |
/3P .
| N /3P (1-2 lt] /1), | t]< T/2
s(t) ={ : '
0, ] > T/2
- T/2 Ot
e / (6.18)

Using (6.18) in (6.14) and using a substitution z=2t/T yields




where

L)

_ an2q 202, 2
Pl(c)_~ 3P° (1-¢%) /40O

3) HALF-WAVE SINUSOIDAL SIGNALS

Ao '
/2P Sie) N /ipcos(ﬂ%), t]|<T/2
S(t)={
0 e>T/2
. (6.20)

-T/2 o  T/2  t

Using (6.20) in (6.14) and using a substitution z=2t/T yields

quPemaX 1 N ]
28T é [Logie, (£)+1}-
(r L2 )k}] d" (6.21)
~loglZ = C .2
k=0 241 T T

P_(z) = PZCOSZ(HC/Z)/ZGé .

Equation (6.17), (6.19) and (6.21) are plotted in Fig. 6.3
which shows the uniformly superior performance of square signals
for systems of equal time-bandwidth products. The advantage
is most pronounced for large SNR (P/oo)z. It should be
realized, however, that square signals generally require more
bandwidth than other signals. This point will be discussed
further in developing an optimal signal in the next section.

From (6.14) and Fig. 6.3 it is seen that for largé 2BT,

the optimum receiver performance is significantly superior to
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the performance of an optimal matched-filter receiver in the

presence of additive Gaussian noise with the same average noise
power. This supefiority is consistent with the notion £hat

a channel perturbed by additivé atmospheric noise has a higher
capacity than an otherwise similar channel perturbed by additive

Gaussian noise having the same avérage power.
6.2.1 UPPER BOUNDS FOR INCOHERENT DETECTION

A straightforward method to evaluate the upper bound on
the probability of error when the carrier phase of the received
signal is unknown seems to be unavailable. However, the
difficulty can be avoided if one realises that for fixed
random phase 6 the problem actually reduces to that of the problem
of finding Pemax for the case of coherent reception; then the
results obtained above can be utilized.

Let Pemax/e be the upper bound on the probability of

error when 6 is fixed. For the transmitting system the

solution of Pe is readily obtained by using (6.15) of

max/ 0

which the signal sl(t) is replaced by sl(t,e) i.e.,

T/2

- expla, | (4, (t,0)-aF(t,0)) at].

Pemax/B" /2

To obtain Pe . oOne has to average Pe... /5 over the entire

range of B[O,Zﬁ]. Thus
2w

' 1
= j de
Pelax =~ 21 o — max/®

where we have assumed the phase is uniformly distributed. We
T

2
i function of [ s T(t;0)dt as well as
o?serve the Pemax/e is a fo L Ve

.jofﬁ(t’ p)dt. Therefore, it;is necessary to evaluate these
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A
two t erms. Using Sl=S(t)cos{wct+6(t)} we get

T A 5 o T
f s%(t)cos®{u_t+e(t) tar=Lf §%(¢)at
o 2wo
and
Ta - T
. 4 4 A
[ 8% (t)cos u_t+o(t) Jar= 3f s (v at.
. 87
Here we assume the integral of the double frequency terms is
negligible.
The results from the above equation indicate that Pe
max/o
is independent of §. Consequently, the error bounds for coherent
and incoherent detectors appears to be the same. However, it
is important to note that the probability of error for both
cases are different; obviously, due to the completely known
received signal, the coherent system should have better performance

than the incoherent system. The optimum signal derived in the

next section applies to this case also.

6.3 SIGNAL DESIGN

In this section we consider the problem of minimizing the
upper bound on the probability of error by a choice of transmitting
signal. We shall develop the optimal signal design, subject to

some physically meaningful constraints. 1In the first case we

minimize the Pe with only an energy constraint. The second
max

case considered is to minimize Pe subject to energy and the

mean-square bandwidth.

Here we define the energy and the mean-square bandwidth

of the envelope signals as
T/2

E={ §%(t)at (6.22)
=1,




(6.23)

respectively. As shown by Abramson [111], the mean-square
bandwidth is the bandwidth that contains the major part of
the signal énerqgy. Since the Ooptimal signal is difficult to
obtain using the actual probability of error bound (6.14), we
consider an asymptotic expression of error bound for small
s(t)/crO (6.15). This is justified since optimality is usually
no longer the primary concern at stronger input signal levels.
From (6.15), it is obvious that to minimize PemaX we need
to minimize the performance index F(s). We first consider the
simpler case when the mean-square bandwidth w2 is allowed to take
any value and the signal energy is required to be finite.
To carry out the minimizdtion, using the calculus of

variation technique [112], we let

S(t) = 8 () + €S, (x) (6.24)

A

. .
where SO (t) is the optimal signal envelope and SA(t) is an
p

arbitrary function. We impose the energy constraint (6.22).
From (6.15) the index that we have to minimize becomes

T/2

~
F,(s) = | st (t)at. (6.25)
1 : ,

-T/2

Using the standard technique in constrainsd minimization theory

[112], we define the function

T/2

I(s) = F.(S) + xl['j §%(pat - ], (6.26)
. 1 . L1/ |




A

where ~Al is a Lagrange multiplier, and E is the energy. Then

on substituting (6.24) in (6.26) and carrying out

41 (S)

=0 6.27
e ( )

€=0
the final result becomes
T/2

f SA(t)[Alsop(t)+253p(t)]dt -0 . (6.28)
~1/2

AN
Since SA(t) is arbitrary, the terms in the brackets must be

identically zero, in which case

A -

&3 T T
Aisop(t) + ZSOp(t)=O, -t /2<t<T /2. (6.29)

We use the given constraint on E of (6.22) to evaluate the

Lal
constraint}\l as —2S§p(t). Finally the solution for optimal
signal, found by integrating Al=~2E/T and substituting for
1 into (6.29); becomes
5o (t) = E/mE o<ty (6.30)

The optimal signal, for this case, is a rectangular signal with

given energy E and w? of (6.23) = « . This is shown in Fig. 6.4.

Note that the signals considered in the last section agree with
the results obtained here. However, it is obvious that the

rectangular signal never exists in practice at the receiver,

owing to the band limited nature of any phyisical communication

channel. Actually, the transmitting signal appears distorted due

to loss of high freguency components.

The problem of signal optimization is more meaningful if we
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S

T

Fig. 6.4 Optimal signal with energy constraint

Fig. 6.5 Phase-plane trajectories.
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. A
constrain both the energy and bandwidth of S(t). We define the
band width as in (6.23) and the energy as in (6.22) and then

assume that both are bounded by fixed finite values. We require,

in addition, the end point assumption

Sop(iT/Z)_= J (6.31)

in order to avoid discontinuities at the end points. Then, for

this case, the index I(S) for minimization is

T/2A
I(s)=F (s)+), [[ s°
~T/2

(t)dt-E]+

T/2 A
2
+1,[f {égégl } at-w?) (6.32)

~T/2

Wnere A,,\, are Lagrange multipliers and F(s)is defined by (6.15a) .

1772

The details of the minimization process are similar to the

first case. Using the calculus of variations with the boundary
L)

condition (6.31) we cbtain the eqguation that specifies SO (t) in

P

the following form

2 A ~ ~
4 S__(t)+uS, (£) =pS>_(t) (6.33)

dt2 op jo op

where

ﬁ=f*1/*2 and  p=2/1, -

This is the non-linear differential equation that is known as

Duffing's equation [113], Integrating the above eguation with

respect to t yields
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P
2

4

6.34
op(t) ( )

S () }2+ps? S

op Op(t)=A+

where A is an integration constant. For Ax0, real solutions exist
only for A> 0O and these are illustrated in Fig. 6.5.

The origin is a singular trajectory (a centre), while the
nontrival solutions are represented by a family of concentric
closed paths. The latter represents the periodic solution of (6.33).
From the phase-plane trajectories in Fig. 6.5 and (6.34), it is
clear that §Op(t) is an even function, with maximum value h (see
Fig. 6.5). The absolute value of the slope §0p(t) takes the

maximum value at the end points (t=*T/2) and monotonically decreaseg

reaching the minimum value of zero at t=0. If the slope at

' the end points VA increases, h increases regardless of pand D

and vice versa. This implies that the trajectory is unigue for

given T,E and Wz.

Using (6.34), (6.33)can be expressed in the following form
afs_ (t)}
dt=+ op . ) p<O. (6.35)
[A—psop(t) +2sop(t) ]

In general, the above equation will involve elliptic integrals

and elliptic functions. Reduction to astandard form can be easily

carried out with the help of Appendix C. As seen from the

Appendix, the solution depends on the values of u and p. Since

an analytical solution to yield p and p in terms of the constraint

parameters E and W2 seems impossible, in practice p and p are

: 2 . .
chosen to meet the required energy E and bandwidth W® using trial

and error.

For |pl|small we could use the method of perturbation to
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obtain an approximate solution of (6.33). For p=0, (6.33)

possesses the periodic solution;

A

S, (1) =2 cosViit (6.36)

where the constants A and u can be determined from the constraint
equations (6.22) and (6.23). Let us characterize (6.36) as the

solution of the initial-value problem

A

_ d & .y -
Sop (£) = 2, It Sop(t) =0 (6.37)

for t=0. 1If we apply the Poincare theorem [114], we know that

for sufficiently small [p|, the solution of (6.33) satisfying

(6.37) may be expressed as.a power series in p. Let
A 2 :
SOP(T) = Sa(wt) +pr(wt) + Sc(wt) e (6.38)
be the expansion, where S_r Sb ...... is to be a periodic functionocf

T=wt of period 2m. The guantity w is introduced as the true
fundamental frequency and will be an analytic function of P

To determine w, we introduce an expansion of the form
F et (6.39)

where the first term is unity since the fundamental frequency

reduces to unity for p=0. In terms of the new variable T=wt,

(6.33) becomes.

N

w2 958 () + s (1) = pS3 (7). (6.40)
2 “op op

at
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If we substitute (6.38) and (6.39) in (6.40) and equate

coefficients of corresponding powers of p, we obtain a sequence

of nested differential eqguations in Sa(t), Sb(t); ..... . The
first three are
.az
:5 Sa(T) + }Jsa(T)_ = 0 (6.41)
T
d2 s (1) - ' 3( dzsa(T)
— T) + uS, (1) = S_ (1) - 2w — (6.42)
dT2 b b a 1 dT2
12 2
8% 5 (1) + us (1) = 38%(0)s. (1) - (02 + 20.)-L SalT)
4 2 “cC c a b 1 2 2
T dart
d2
. - 2wlg~§ Sb(r) (6.43)
. T
etc.

Solutions of the above differential equations are

Sa(T) = A cosyurt ' (6.44)

. 3 |
s, (1) = o {cosyput - cos 3Yut} (6.45) j
S (1) = —ééi— [2} JUT - cos 3Yut + l~Ac055/ﬁr1 |
'\t = 7 lagcosvut H 24 M-

128y

(6.46)

In obtaining the above solutions we have eliminated all the

secular terms by imposing

2 1
o = 3B . 0. = - =2 s - (6.47)
1 gu 2 2561

In a similar manner, the remaining terms of the two expansions

(6.38) and (6.39) are determined by the initial conditions and
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the requirement of periodicity.

It should be noted that the convergence of (6.38) will
not be uniform in t for all t unless w is exact, although it may
be uniform in Tt=wt for all T.

Using (6.44), (6.45) and (4.46) in (6.38) and using the
two integral constraints (6.22) and (6.23) the optimal signal
for given signal energy, signal duration and given mean-square
bandwidth can be computed. For given energy E, mean-square
bandwidth W and the signal duration T, the optimal signal 1is
unique. Some typical optimal signals with equal energy, equal
bandwidth and equal duration are shown in Figs. 6.6,6.7,6.8
respectively. The relation between the signal energy E and
signal duration for given bandwidth is shown in Fig. 6.9.
Another property of the Optimal‘signal §0p(t)’ which is useful

in the calculations of system performance, is that

F =.g(TE (6.48)

F = s (v)at (6.49)
-T/2

and g(T) is a function of T. Fig. 6.10 shows the straight line

plots of F/E vs. E for various values of T.

6.4 DISCUSSION

In this chapter a special case of the generalised hyperbolic

distribution has been applied to the detection of known signals

in the presence of noise to determine the optimal-receiver
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structure. The important result suggested by the model is that
the performance of an optimal receiver in the presence of non-
Gaussian interference is sensitive to the signal shape. We
have developed a signal designAonly for the case of small SNRs.
This is justified since the optimality is usually no longer the

primary concern at stronger SNRs. It is also observed that the
in the presence of IN

optimum receiver perfOfmaﬁEé}is significantly superior to the
performance of an optimal matched-filter receiver in the
presence of additive Gaussian noise with the same average noise

power.
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CHAPTER 7
LIKELIHOOD DETECTION OF SMALL SIGNALS IN NOISE

In this chapter, the problem of threshold de£ection where
the intensity cf the accompanying noise is comparable to, or |
even much greater than that of the signal, is considered. Using
the criterion of asymptotic relative efficiency (ARE), the
performance of the optimum ( and suboptimum) detector is compared
with that of the correSpdnding detector which is optimum for
Gaussian noise. Both broad and narrow~béné communication systems

are considered.
7.1 INTRODUCTION

Recent investigations [41]—[45] have shown that, forAthe
problem of detecting deterministic signals, the incorporation of
a light limitef*structure into the usual optimal Gaussian detector
structure results in robust detectors for broad classes of
heavy~-tailed non-Gaussian noise densities.

In this chapter, we look at the optimum detectors when the

-

éignals are very weak compared to the arbitrary noise added
by the channel. Let R(t) denote a stochastic process {R(t);

O<t<T} and R, (&4=1,..... M) a finite sequence of random variables.

)
We assume, as in the previous chapters, that the random variables

are mutually independent, and that {R(t)} is stationary, then

R R is a set of independent and identically distributed
..... M

random variables. The pdf of Rz will be denoted by pR(r) and will

comprise a complete statistical description of R(t). In order

to obtain a proad family of pdfs we take the noise pdf pN(x)

to be of the form

* The light limiter is

- s T tee 70T T7Y
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= (1-€)pg(x) + epy (x), D<e<l (7.1)

where pG(X) is the Gaussian pdf and px(x) is the generalised
hyperbolic pdf. Density functions of the mixture form (7.1)
have proven useful in modelling some non-Gaussian densities

occurring in practice [115]-[117].

The detection problem involves the testing of the hypothesis
HO that the observed process R(t) is noise alone, versus the
aiternative H, that the process R(t) consists of signal plus
noise. The decision rule is based on samples Ry which belong
to the noise distribution or toc the distribution of a mixture
of signal and néise. We shall compare the resulting non-
linear detector performance on the basis of a decision rule with
the aid of the so-called ccefficient of asymptotic relative
efficiency (ARE), proposed by Pitman [118}.

An exact definitioﬂ of ARE is‘given in Appendix D. The
reference detector considered is the linear detector which is
Optimum'for Gaussian noise.

Since ARE is used to compare the resulting nonlinear

detectors with the linear detectors, this chapter is largely

concerned with large sample detector‘performanceT

7.2 BASE-BAND SYSTEM

According to the Neyman-Pearson lemma [119], the likelihood

ratio for an ON-OFF keying system {see (6.6)!}

M M
‘A(;)v= exp | logpg (r,=S,) - I long(rz)]
- g=1

is calculated for the input data R and is compared to a threshold

, _ R
L . If A(;)<LO, then we accept HJ 'noise only'. If A(r);LO,

)




then we accept Hl, 'signal and noise'. Using the Taylor

series expansion around r, for the first summation on the right

hand side of the above eguation yields [43]

o k M Lk

> ~1) k 4
A(r) = exp[ = ( S lo (r,)7]- (7.2)
k=1 k! g=1 ‘ar,” ¢ Pri%y)] -

For weak signals, neglecting second and higher order terms in

S the above equation reduces to

2
CA(r) = expl i:lsngPt[rz]} (7.2)
where
__d _ prt¥)
gopt[r]»" - gr togpglr) = - po () (7.4)

and pR(r) is the first derivative of pdf pR(r) with respect
to r. The detector structure (for small signal case) is therefore

a non linear lagless section followed by a matched filter

shown in Fig. 7.1.

e g

S I . ;

| L |
I //L\_ |
( 2 Lo

LT

H, (Signal

i
S 1 Present)
nonlinear
element YES
R d
R(t) ) Matche
e m Yopt ] MFrilter-

(No signal)

@)

Fig. 7.1 Optimum detector structure for non-Gaussian noise.
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The optimum character of the combination of the nonlinear
element and the matched filter creates the impréssion that
the noplinear element transforms the input heavy-tailed noise

into Gaussian statistics. A check based on several examples,

however, shows that the nonlinear transformation device is not

a normalizing link. For example, for lOgafithmically normal-

noise whose pdf is

py (%) = *~i—-'exp[ —lOg X

X 2WO

the characteristic gopt[x] has the form {using (7.4)}

1 log x
gopt[x]_ = {1+ —3%-— }

i

while the normalization transformation is log x. It is
seen that gopt[x]# log x and conseguently the nonlinear
element does not normalize the input process.’

When the nordinear detector is used, the general
expression of ARE when the reference detector is the linear

filter was given recently by Miller et al [67] and Antonov et

al [44]. A similar calculation partially based on the work done
by Rudnick [120] also appears in Helstrom [121]. The
expression is given Dby
2_. 2
GN<g[X]> (7.5)
ARE = — 5
<g”[x]>-<g[x]>
2 ; i a o<gi<o ) and §[x] = dg[x]/dx
where o2is the noise variance (0<0yg gix] g .

N .
The maximum value of ARE, denoted by u, 1s obtained by using

(7.4) in (7.5) as




|
b
-
|

W = max (ARE) = o2f

where we hav

hypothesis Ho'
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T2,

*w‘pR(X)

7.3 NARROW--BAND SYSTEM

In this section we are interested in ARE

shown in Fig. 7.2

dx

(7.6)

€ assumed that pR(X) is an even function in x under

ng ©f the system

, Which consists of a series connection of a

nonlinear section and a matched filter.

l(Signal
present)

L.P.
Filter

YES

E cos{w t+6(t)}
s c

R(t Y (t) Zonal
-——-P. .
g - B-Pu
NB[ ] Filter
Fig. 7.2 -

(No signal)

Nonlinear detector under investigation

The input to the system consists of a narrow-band signal

and additive narrcw-kand non-Gaussian noise and can be written

as

R(t)

Es(t)cos{wct+6(t)}+En(t)cos{wct+¢(t)} (7.7)

where Es(t), En(t) and 6(t), ¢(t) are the envelopes and phases of

the signal and noise respectively.

We assume that the signal

and noise, both of which are amplitude and/or phase modulated and

centred on the same carrier freqguency wc, are uncorrelated. The

phases 6 and ¢ are independenF of the envelopes ES and E

respectively.

<

We can express (7.7) as




R(t) =

<
rt
i

w.t + a(t),

5 _
e(t) = [Es(t) + Ei(t) + ZES(t)En(t)cos{¢(t)-6(t)}]%

and

(7.9)

1 [E_(t)sin6(t) + E_(t)sin¢ (t
a(t) = tan l[ S n 't Sind )] .

Es(t)cos 6(t)+ En(t)cos¢(t)

We assume that e(t) and a(t) of the process (7.8) change slowly
in comparison with cosuw_t. This assumption is justified for

most practical cases.

The output of the nonlinear element is given by

= gpR(B]. _ (7.10)

Expanding gNB[R(t)] into a Fourier series as a periodic function

of the argument Y (t) the above equation can be expressed as

Y(t) = I Kz[e(t)JCOSQW(t). (7.11)
o oe=l

To find the constants Kz[e(t)] , we multiply through by

cosfy (t) and integrate over [—ﬂ,n]. All terms on the R.H.S.

vanish except the Kz[e(t)]term, since

i
>j cosiy (t)cosky(t)dp(t) = O for ifk.

=T

Using (7.8), (7.10) and (7.11) this gives us




Kz[e = ~f gNB[ t)cosP(t)] cosy(t)dy(t

2=1,2..... (7.12)

From (7.11), the output of the zonal band-pass filter is

(neglecting higher frequency terms)
Yo (t) = Ky [e(t)]cosp(t) (7.13)

where K,[e(t)] is defined by (7.12){ whenf =1} . Multiplying
(7.13) by Es(t)COS{QCt+e(t)} and integrating with respect to t
between O and T yields the decision variable

T
D = [ E_(t)K;[e(t)]cos{a(t)-6(t)}dt (7.14)
o]

where we have neglected all higher frequency terms. Assuming the
integrand of the above equation has a bounded spectrum, the

above equation can be written in a discrete form as [122]

M
% % ) %
D = izlES(§§)Kl[e(§§)]cos{a(§§)~e(55)} (7.14a)
or
M
D = At EzlESQKl[e21cos{a2~82} (7.14b)

where E_=E (t,) 1is the ch sample, B is the bandwidth, At=1/2B

s "s
is the interval between the readings and M:T/At is the number of
samples taken (M is assumed to be large). The crucial point in
the sampling method is as follows: in (7.l4a) let M>® and B»=
simultaneously, sO that M=2BT remains valid. Then the sum in

(7.14a), by definition 6f an: integral in the Reimann sense, 1is

equal, in the limit as M>*, to (7.14).




As the number of samples M becomes large the pdf of the

random variable D approachés Gaussian (central limit theorem).
The density is therefore fully characterized by its mean <D> (when
a signal is present) and the variance <D2>.
When the nonlinear element at the input of the detector
is not present, the output SNR is given by E/(NO/Z), where E
is the energy of the signal and NO is the spectral density of the
input noise (uniform spectrum due to white noise). The ARE for

NB
the detector of Fig. 7.2 can then be written as

e
ARE ., = — (7.15)
2
2E<D">

where <D>2/<D2> is the SNR at the output of the nonlinear detector.

Using the results of Appendix E the above equation can be written

as

. (7.16)

Note that 02 is the variance of the low-pass process. For

N
Vth law devices i.e.,

v
ae ez0
gy le]= (7.17)
v
—ale|”, e<O,
Using (7.12) in (7.16) the ARENB reduces to
2.2 v—l>2
_ (v+1l) GN<e o ' (7.18)
AREyp = 2v ,
2<e é’

This agrees with the results obtained by Berglund [l23]. For a

Rayleigh distributed envelope i.e.,
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pﬁ(e)b= E% exp (—e2/2g2),

and v=0 in (7.17) {hard limiter} , ARE o takes the value of /4

which is in agreement with the well known result [1051' For the

case of strong, unmodulated sine-wave interference (7.16), reduces

to
ARE, . = 4/(v+l)?
NB .

‘The maximum degradation due to this type of interference is 6 db,
occurring when the nonlinear amplifier is an ideal limiter.

The maximum value of ARE 5, denoted by HNB is obtained
when the nornlinear function K,[e] {which specifies the

optimum nornlinearity gNB,opt[e]} is chosen as (see Appendix F)

(7.19)

where Bc is an arbitrary gain constant. For optimum non-

linearity, using (7.19) in (7.16), HNB becomes
2
o p. (e) :
N d n 2
= _— —_— .20
TR 5 <l5s log[—= ]3%> (7.20)

7.4 NONLINEAR ELEMENT FOR OPTIMUM DETECTORS

7.4.1 BASE-BAND SYSTEM

Using (7.1) in (7.4) and substituting for

- (B+1/a)
o
px(x).z K(a,B)UzB{lXI +OZ - (5.8)
and
1 expl —x2/262‘}, —w <X <o (7.21)
PG(X) = ——5—f ©¥P g

(2ﬂ0g)
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the nonlinear element for the mixture noise becomes

A

_ NUM1
GggOpt[Xl~ DENL (7.22)

where |
= ot ’ ' AN aml . (B4 /0 I
NUML = (l-e)xe® + eK(a,B) (¢B8+1)sgn(x) |x]| £ R
X x
DENL = (l-g)e® + & A= (B+1/a)
. (1 E)eX + 7% K(OL,B)fX
A
X = x/og (normalized»variable)
£ = 1+ (x/VR)"
R' = R—(OH—l)/Z
7.23)
a1 a2 (
ey = 757 exp{ -x“/2}
R = Gi/oé (Impulse noise variance to Gaussian noise

variance ratio)

K(a,B) is defined by (5.8)

A " A
sgn(x) = signum function (=1 for x20; = -1 for x<£0).
Figs 7.3 - 7.6 give plots of the optimum nonlinearity using

' (7.22) for values of'R‘= 0.1,2.0. In each of the six figures,
plots are given for € = 0.0, 0.01, 0.1, 0.5, 0.99, 1.0;

o = 1.0, 2.0, for each B = 3.0, 10.0.

Note that the degenerate case of €=0 (Gaussian background

A

A
noise only), g ,[x] is a linear function of x . Such must be

opt
the case, of course. For values of € strictly between O and 1,

the mixture is nondegenerate, and gopt[x] has the general shape

Lal
of a piecewise linear function for small |x| (with a discontinuity

~
at %£=0) and of a limiter for large |x|. The larger the values

of R, the ratio of non-Gaussian to Gaussian noise variances, the
7

more limiting the structure becomes. This result is also not
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surprising. For €>0.0, on keeping o and B fixed and

;, one has

A

Sopt (%] 1im| %5570

whatever the finite, positive values of the parameter o

8 in the non-Gaussian density, the corresponding optimum non-

linearity apprecaches zero as[x]approaches infinity. The way it

approaches thils asymptotic value depends,however,on the values of

% .and B. substituting the density . (7.1) and the expressions for

pG(X)

gives

where

For €

and pX(x) from (7.21) into the expression for u of (7.6)

oo

NUM2

= 2{(l+€)+8<xz>/gé}./dY(DENz) (7.24)
o}
NUM2 = (1-g)% 2 12(1-e)v¥% T.f _(BJraﬂl~ 1),,2,2(a-1) , —2(B+%+1) :
DEN2 = (l—g)ey + €K(;,8) fy—(8+1/a)
r, = eK (o, 8) (aB+1) /{r} (¥F1)/2

<x2>,f and e are defined by (5.9) and (7.23) respectively.
Y '

=0 (IN only) a closed form expression of (7.24) can be

obtained as

3 | 2 2 1
- re- Sr1er 21 e+l T8+ DT - )

o , aB>2
2 2,1 1
r? (81T (1T (B+2+ )
O , aBs2 (7.25)
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a =1.0
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(Non-Gaussian noise
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p il
1 1 { 1 1 ' s | ; ,
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Fig. 7.8 Maximum asymptotic relative efficiency p vs. th%
fraction of time the noise contains IN ¢ (R - IN

variance to Gaussian noise variance ratio).




151
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Fig. 7.9 Maximum asymptotic relative efficiency p vs. the
fraction of tine tne ncise contains IN € (R - IN

variance to Gaussian noise variance ratio).
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The above eqﬁation is plotted against 8 in Fig. 7.7 for
various values of a. From the figure, we see that ﬁ approaches
1l as B (for all d) increases. This must be the case, since as
B>, the process becomes less impulsive and hence the optimum
nonlinearity tends to become linear. The performance of this
nonlinearity compared to the matched filter would therefofe be
the same. For 0=1.0,2.0,3.0 y becomes infinity at 8=2.0,1.0
and 0.67 respectively because at these values the variance of
the IN process becomes infinity (little limiting in this
situation would give a great improvement in performance over
the matched filter).

For various combinations of R and € the R.H.S. of (7.24)
was integrated numerically. The results are plotted in Figs.
7.8, 7.9. It is apparent from these curves that for all E[O,l],
u is large for both extremely small and extremely large values
of R (i.e. R2<l and R>>1) in comparison to its value for values
of R near to unity. It also seems that, for intermediate values
of 6(20;5), arbitrarily large values of pu can be obtained by
letting either R*0 or R*>». This situation arises when OO+O or
0g+O. This can be seen when either 0, or ngo, although this is
not a physically realistic situatien. Assuming that the pdf
pG(x) is to have zero mean, the requirement Og=O implies that
pG(x)_= s(x), that is, the density of the background noise is a
Dirac delta function located at the origin. Let A denote the
event that the noise is in state £=0 {background noise with pdf
py (X) = §(x)} during at least oﬁe of the M sample times. With
probability one, no false-alarms or false-dismissals are made if
event A occurs. Furthermore, since the M samples are independent,

~ AN
M -
l—gM and Pr(4¢a) =¢ . Let Pg and P4 denote the false

I

Pr(A)
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alarm and detection probabilities, resPectively, that would be

obtained with only IN having density px(x){ e=1 in (7.1)7} .

The false-alarm and detection probabilities that are obtained

A

A
with the mixture of (7.1) are then, in terms of Pf and Pq

MA A
P_.=¢ P and P =EMP + (l—aM)

f d d

respectively. Since ARE is obtained by letting the signal

strength go to zero and the number of samples M approach infinity,

let us consider what happens to these detection and false-alarm

probabilities as M»>». We have for any positive signal strength,

any € strictly less than one, and an optimum nonlinear detector,
lim _ lim

Miorco Pf = O and Moroo Pd.= 1.

This simultaneous false—alarm probability of O and detection

probability of 1 cannot be obtained for signals of finite

energy in additive noise of density

pN(X)~= (1-e) 8 (x) + pr(x) (7.26)

with any linear detector no matter how many samples are used,
unless e=0. Hence, for noise having the density of (7.26)

with €>0, ARE will equal infinity.

In practice, one would not have R=0 or R=» but a case of

great physical interest is R»>1. For example, a value of Rx100
means that the IN power 1is ZO‘db greater than the background
noise power, a not unreasonable situation for atmospheric noise.
The large values of ﬁ (and ARE for various suboptimum non-

linearities) obtained for 0<e<l and R>>1 thus indicate that
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considerable improvement in large sample detector performance

in the presence of IN may be achieved by fully exploiting

the mixture model of (7.1).

7.4.2 NARROW-BAND SYSTEM

When the noise is narrow-band, the mixture pdf takes the

form
pn(e)_= (1-e)p;(e) + ep, (e) (7.27)
where
pE(e)_: —%exP (—e2/203) (Rayleigh distribution) (7.28)
o
g
and
_ 2B 2 2.~-(B+1) - }
pE(e)>— 2800 e{co + e} . O<ex< (5.17)

To obtain the optimum = nNoOnlinear element INB Opt[e], we need
7

to solve the following nonlinear equation {see(f.15)}

_ (e) T
d Py _ 1
=B *‘109[ e } T {Wg[ec]dg (7.29)

gNB,Opt[e}zg[e}

for g[e] where B, is a constant. In this work we do not
try to solve this equation. However, if the optimum norinearity
is used the max ARE denoted by Hyp can be obtained by using

(7.27); (5.17) and (7.28) in (7.20) as

N\ZN

f (1-€ pE(e) + EpE(e)} ®
o
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1 medpg(e) + EpL(e)y2
*le N de (7.30)
(l—E)pE(e) + EpE(e)
whére Oé is the noise variance {=(l—€)0§+ <x2>}. A closed

form can be obtained when €=1.0. 1In this case HNE reduces to

Hyg = 1 2/(82 +8 -2), B> 1. (7.31)

The above equation is plotted against 8 in Fig. 7.10. On the
same graph, using (7.25), p for the low-pass process when
a=2.0 is also plotted for comparison purposes. The general
shape of the two graphs is the same. The reason why Hyg is
lower than u is because we have neglected all higher carrier
frequency terms in deriving (7.16).

In view of the complexity of equipment associated with
the use of the 'optimum' nonlinearities gopt[.] and gNB,Opt[']
in an operational system, we look, in the next sectidn, at the
. nonlinearities that retain the key gualitative features and

performance of g__ [.] or g opt['] , but which would be
14

opt

'simpler to implement operationally.

7.5 SUBOPTIMUM DETECTORS

7.5 .1 BASE-BAND SYSTEMS

The four suboptimum nonlinearities illustrated in Fig.
7.11 will now be considered in order of increasing complexity.
These four nonlinearities were chosen in a more or less ad hoc
fashion as being progressively better approximations to the
optimum nonlinearities of Figs. 7.3 - 7.6 . All the non-

linearities considered in this section can easily be realised



pssATeuer seT3TiesurTuou unwriidoans TT L *BTa
!

AjaTaxesuTTuou TeIDUSDH (P (zoyound 8T0Y) I33URTd (O

[x]%%

CaeyTwIT-x9TITTdUV  (q U0z peSp Y3ITM I93TWTIT-DPIRH (®

o= - - ¥

O - —

- -7

AR )




158

in practice.

The simplest nonlinearity is the hard-limiter with

dgad~zone as shown in Fig. 7.1la. It has the characteristic

C x>d :
X )
g, ,[x] : (7.32)
~C2, x<—d£
Using (7.1), (5.8), (7.21) and (7.32) in the expression for

ARE of (7.5) gives

2[(l*€)+ E—<x2>][(l_€)ea+ €K(Q,B)fa—(8+l/a)J2

2
ARE _ Og v R d
he —
(l-g) {l-erf(d) }+ Eﬁiﬁéﬁl{ B(B,iAE%)}
aiTg
(7.33)
where
A -
d = dz/og (normalized dead zone),
fq and ey are defined by (7.23).
A A .
For e€=0 and d=0 we obtain the desired values of AREh2
of 2/m. For values of € between O and 1, it is clear that

AREh2+w as R, This.behaViOur is due to the same reason given
in section (7.4.1). For a=2.0; B=1.5, 3.0 and £=0.05, 0.1,
Ll
ARE o is plotted for different values of d and R as a parameter.
This is illustrated in Fig. 7.12. The maximum value of ARE, ,
A . . .
occurs at d=0.5. Using this value of d for which ARE, o is a

maximum, (7.33) is plotted in Fig. 7.13 for various values of

£, where it can be compared with the maximum value of ARE(=u)
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which is also plotted on the same graph using (7.24).

The next simplest nonlinearity that might prove effective
for the mixture noise model is the amplifier-limiter non-
linearity which we denote by gag[x] and is illustrated in

Fig. 7.11b. It has the characteristic

X, O<x<d2
C,, xd
g [x] =— * * (7.34)
-X, —d£<x<0
.._C,Q,' X<‘:-d'é,".

Martin and Schwartz [116] showed that a detector using this
non linearity will have a guaranteed minimum level of
performance when used to detect éufficiently large signals in
mixtures (7.1) of Gaussian noise haﬁing density pG(x) with
small amounts, (e<<l), of other noise having any arbitrary
density px(x), After substituting the non linearity of (7.34)

and the mixture noise mocdel of (7.1),(5.8)and (7.21) into the

expression of (7.5) for ARE, one finds that

_ NUM3 (7.35)
ARE o = DEN3
where
2
~ K{o,B) 1,1
NUM3 = %7[(1—5){erf(d)—0.5}+ 5 - E*~E~—*B(Br§1fa)]
d .
and
” K(a,B) 1)1
DEN3 = (l-¢) {l-erf(d)}+ ﬁ—i%~§—{B(6,af§§ by
2 3
+ EK(G,’\%) o) Q - B(g_,(_x_'_&_l _f_g)] +

T
od " r gt <)
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l-¢. ” . A
+ —~x—2~ {erf(d) - 0.5 - de* }.
- d
d .
eqr fd’ K(a,B) are defined by (7.23). The above equation,

which 1s independent of parameter C is plotted in Fig. 7.14

Q!
against the normalized limiter breakpoint g for a=2.0, 6=l.5,f
€=0.05, 0.15 and R as a parameter. The limiter breakpoint
that maximizes the value of AREaz for values of €=0.05, 0.15
and R=100.0 is approximately 1.5. Using this value of a,
AREaR Vs. € is plotted in Fig. 7.13 for various values of a,B
along with similar curves for the other non linearities

considered,

The next nordinearity to be considered is

X, O<x<dR

apg[x] =+ o, [x]>q, . (7.36)

-X, ¢d£<x<0

which is shown in Fig. 7.1lc. This nonlinearity, which has
often been proposed to combat IN interference, starting with

. the original paper by Lamb [124], is known as the noise blanker.

Using(7.36),(7.1),(5.8) and (7.21) one can show from (7.5) that

_ NUM4 ‘
ARE, o = DENZ - (7.37)
where
eRT (B- 2)T(2) R
NUM4 = 2[(l-g)+ 2 1[(1-¢) {erf(d) -0.5} +
' T(Blrﬂa)
e
+ eK(a,B){ o - B(B,i 1%7 )} -
o 1 & Tty
T (p+ a)
A “(B+l/C¢) 2
- d{(1-erey + SKIB) 4o 1] %

/R




AREb£

TR

1

a,B - noise varameters

€ — fraction of time the noise contains IN

R — IN variance to Gaussian noise variance ratio.

- e = 0.05
e = 0.15
151 1 ' ' 1 1 1 1 | i
0.0 1.0 2.0 3.0 4.0 5.0 -~ 6.0 7.0
g —

Fig.7.14 asymptotic relative efficiency vs. the normalized break point

for amplifier limiter (Fig. 7.11b)

20
R - — R=100.0

10
105

i i/ _ _ -

- K e = 0.15, o 2.0, B8 3.0

! / _/ T

11/
- 1 1 ] 1 ] 1 f]
10 0.0 1.0 2_0‘ 3.0 4.0 5.0 a_" 6.0 7.0

Fig. 7.15 Asyrptotic relative efficiency vs.
point for blanker limiter (Fig. 7.1llc)

the normalized break
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)

N
DEN4 = (l-e) {erf(d)~-de} - 0.5 I+
e 2. n,3 - : :
- I(B- =)I' (=) |
LR K(Z'B)[ o . o _ pp- 2, él L )].
Mg+ =) o T ol g

Q

A

ed’ K(a,B), R, fa and 5 are defined by (7.23). Curves of
ARE, , VS. the normalized blanking level 3 using (7.37) are
given in Fig. 7.15 for a=2.0, £=3.0, 1.5, q=l.O,B=3,0,

€=0.15, 0.2 and R=10, 50, 100. The optimum normalized blanking
level 3 is again essentially independent of R and is about

2.8, a result in accordance with the value of three Gaussian
noise standard deviations above the signal level found by
Ziemer and Fluchel [45] in their error probability simulation
for a similar detection problem. Using §=2.8, (7.37) is plotted
against € in Fig.7.13,along with.similar curves for the other
nonlinearities considered.

The final suboptimal nonlinearity considered is denoted

by ggz[x1 and is shown in Fig. 7.11d. This nonlinearity is

specified mathematically as

AQ’ O<x<a2
B ~A A b - a,B
(b2~ R)X + 2b£~ a2 2' a2<x<b2
272 27 %
g [x]»= — (7.38)
9y le .b2<x<d2
L Dz’ x%d2

Using (7.38) for ggz[X] and (7.1), (5.8) and (7.21) for

pN(X) in (7.5) for ARE yields'

_ NUMS O (7.39)
ARE o = DENS 2
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where
2...3 ‘ .
QRT(B—- —-)F(——-) A A A L’ 2
NUMS = 2[ (1-e)+ T +[A(x)+(D-B) (1) +6(1,)] ,
F(B)T(a)
‘DEN5 = 22(1 )+§2(1 )+32(1 )+22(1 )+2EA(I )+A2 I,)
4 5 6 7)Tebe gt idg),
A A AA Aa
° _B-A  ~_ Ab-aB
) ARTX 1 ,C— TETTATT ¢
b-a b-a
_ l-¢ eK(a,B)
Ltsm ot TR
-(R+1/a)
— A €K((X,B) A
I2— (l-—e)ed + R fd ’
= (1- 5) —erf(a) )+ EK(a,B8) 11 1,1
I,= (l-¢){erf(b)-erf(a)}+ s B8 lf:)*B(B,al f§>},
r(g) T (d)
- N 1 eX(a,B) o 1, 1
I, = (1-¢){erf(a)- 3}+ e BLf ~B(B,~[ == )|
4 2 o " or (gt %) o’ £q J
~ 2 K (o, 1,1 1,1
I, = (1-e){erf(d)-erf(pb)}- FL&:Blip g, 2 -8l
I, = (l-¢) {l-erf(d)}+ eRle.B) (gL %—g)} ,
I7 = (l-e){geg~£eg+erf(g)—erf(g)} +
s eK(Z:B)._— R[B(8-2 ,éi <) -B(8-2 , 2| L0,
a b
1, = (1-e) (eg-efts LREK B fpp L2 0y p(p- L2 %;)‘J,
. a
A N
Ty = (1-e) (exf (b -erf(a) by SEELBE, DT (] £
a

. la)
and f;' e; , K(a,B), R, x are defined by (7.23).

4

A A
Note: for A=a=0 al

of (7.37).

N A A

B

A A A A

, B=D and b=d yields ARE of (7.35) while for
AN

A=a=0, D=0 and b=d

yields ARE,

Instead of computing AREg£ specified by (7.39) for various
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S A ~ A A A
values of A, B, D, a, b, and d, which cannot be easily

calcﬁlated without substantial computation, we shall investigate
the nonlinearity given in Fig. 7.16 which is a special case of
(7.38). The semi-optimum nonlinearity of Fig. 7.16 is obtained
by adding a hard - limiting charactersitic for large |x| to

the noise blanker to avoid the problem of the nonlinearity
disappearing as its blanking level goes to zero. This non-

linearity has been used by many authors in the past [60] for

combating 1IN,

Igy %]

Y

foe----4-1.0

Fig. 7.16 Semi-optimum nonlinearity.

The ARE due to this semi-optimum nonlinearity can easily be
S

L
obtained by substituting A=0,a=0,b=d in(7.39). The ARE_, Vs. the

A A

A
normalized break-point d for values of £=0.0l15, 0.1l5 and hard

"

limiting values of D =0.2, 0.8 times the maximum value of the

linear portion of the characteristic is plotted in Fig. 7.17.

The ARE is also plotted in Fig. 7.13 for various values of ¢.
S

2
~ -
The nonlinear parameteﬁiused for this plot are D=.0.2, d=3.0,

R=100. Note that the value of d=3.0 is that which

Ea)

A . .
maximizes ARE . for D=0.2 (see Fig. 7.l17a). Values of d which
s
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20~ D = 0.2
@ ee- b= R = 100.0
o
T L. R — IN variance to Gaussian noise
s variance ratio
S -
0 € — fraction of time the noise contains
§ u IN. :
< .
a)
Iy i [ 1 1 1 1 1 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
201 -
. +d
i1’
T <L /
= s '
nw b € = 0.05
5 F € = 0.15 -
< L D = 0.8
b)
6’ i ; 1 1 1 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
. ”~
PR d
Fig. 7.17 Asymototic relative efficiency for semi-optimum

%2)

nonlinearity (ARE
(d) {Fig. 7.16} (

P

vs. the normalized break point
arametars o=2.0, B=1.5).
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A .
minimize ARE_, vary with D as expected. Usually the higher
A A -
the values of D the lower values are for d. This can be seen

from Fig. 7.17.

7.5.2 NARROW-BAND SYSTEMS

The nonlinearity shown in Fig. 7.l1lla (hard limiter with
dead zone) will now be considered for the narrowband system.
Changing the variable ecosy=§ in (7.12) for Kl[e] and using

(7.32) for ghg[e] yields

e
2C 2¢C
B L § _cTe 2 20k
Ryle] = —= [ —5—5, 45 = —g(e"-dy) (7.40)
Substituting for
2
2C a
y d % 5,
K, [e]= 35 K [e] = — 5L
1 de "1 re? (e2-a2)%

and using (7.27), (7.28), (5.17) and (7.40) in (7.16) for

AREhQ,NB yields
-~ NUMb 7.41)
AREhL,NB ~ DENG6 ( ,
o 2% ) rem e,
N r,2,° 2 e (R-1 I'(B/2 +
NUM6 = ——_-2‘[(;) (l-e)exp (-d/2)+ R ;—-—('qui-)—“‘{i‘* } ],
4og 5
- N L
pENg = 2 [ (1-€) {exp(-4/2) - 5= Bi(d /2) }+
) ™
~2 E.':l" A 1 ©0
rel(1+ $) 7 *““—"—“dz(gd) f B (B+1 )‘/2 1
£ = - N +1
R R 78 s5(1489)°"
—R .
where B = 2g+1 and
Ei (x) :'f exp (-7)dz/C (Integral exponential function)’[as].

X

N
The above eqguation is plotted against d for @=2.0,B=3.0 and
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~
R=1.0, 10.0, 100.0 in Fig. 7.18. The optimum break point 4
is again essentially independent of R and is about 0.7. It
will be recalled that for the equivalent low-pass process the

. A
optimum break point d was equal to 0.5 and was independent of

R'
Similarly the other nonlinearities of Fig. 7.11 can be

considered, but these will not be investigated here.

7.6 DISCUSSION

In this chapter, for the case of binary signals, the
optimal performance is obtained with a detector consisting
of a nonlinear lagless (no-memory) element followed by a matched
filter. Since the derivation of an ‘'optimum' nonlinearity
is complex and critically dependent upon the model assumed for
the noise process (Figs. 7.3 - 7.6), it is shown that a fairly
simple, realisable, sub-optimality (Fig. 7.11) can give good
large-sample performance while at the same time not being over
sensitive to measurement on parameter errors (Fig. 7.13).

Such a receiver structure can also be developed on the
intuitive notion that since the isolated high-amplitude impulses
contain much of the energy in noise, a simple clipping circuit
in the receiver can removemost of these pulses and thereby reduce
the energy in the noise considerably without significantly
reducing the signal energy; Experiments with the various
nonlinearities (hard-limiter, amplifier-limiter, blanker) have
indicated that the amplifier-limiter is effective and practical
[49]—[51]. " Within experimental accuracy, the amplifier-limiter
has performed as well as more accurate approximations to an
Unlike the 'optimum' nonlinearity or

optimal nonlinearity.

'hole puncher' (blanker), the amplifier-limiter performance
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is not sensitive to thireshold settings. By dynamically
adjusting the threshold to clip a fixed percentage of time
(~50%) , near optimal results have been obtained [49]-[51].

This performance has been typically between 1 to 2 db better
than the hard limiter (d£=O in Fig. 7.1la). It is also shown
that the blanker affords no more than 1 to 2 db improvement in
system performance over that achievable with the amplifier-
limiter. These results agree remarkably well with the results
plotted in Fig. 7.13, when the fraction of time IN is present,e¢
is small. For large values of ¢ the hard-limiter is expected

to perform much better than the amplifier-limiter or the
blanker. One final remark about the performance of the amplifier-
limiter from Fig. 7.14 is that one clearly loses less by setting

the break point d, too low (which is equivalent to estimating

2
the background noise standard deviation Ug to be lower than it
really is) than by setting it too high (estimating Og too high).
The reason is that with the mixture noise distribution it is
preferable to make an error in the direction of a hard-limiter
(d£=O) than in the direction of a linear detector (d£=w).

To have a simplé nonlinearity which would perform better
for all values of &(0<e<l) a semi—optimal nonlinearity of
Fig. 7.16 is suggested. This new nonlinearity is obtained by
adding a hard-limiting characteristic for large lx[ to the
noise blanker to avoid the problem of the nonlinearity
disappearing as its blanking level goes to zero. Since the

semi-optimal nonlinearity becomes an amplifier-limiter when

D,=1.0 and a noise blanker when D,=0, one can obviously achieve

any desired tradeoff between the performance of the-amplifier~

limiter and the blanker by proper choice of D, (see Fig. 7.13).

The effect of a nonlinear device on the SNR has been used
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here as the criterion of improvement or degradation, and only
long—térm .averages have been considered. A question arises
about the validity of ARE as a measure of system performance for
a small sample M where alternative and hypothesis are not
necessarily close. Relatively little work appears to have been
published along these lines. However, studies involving both

computer simulation and actual impl ementation [65] indicate that

the ARE converges rather rapidly for the detector considered
here with IN whose pdf pN(x) is given bya generalised Gaussian

density (5.2).
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CHAPTER 8
AN ADAPTIVE SYSTEM : ESTIMATION OF PARAMETERS

This chapter is devoted to some basic aspects concerning
the estimation of states and parameters for an adaptive
communication system. A simple procedure is presented and
evaluated for estimating the occurrence of an impulse. In

estimating the unknown parametersof generalised hyperbolic pdf,

maximum likelihood estimators are used.
8.1 INTRODUCTION

Throughout the discussion in the preceeding chapters we
'Vhave assumed that the noise process is stationary. In practice,
it frequently happens that the non-Gaussian noise is non-
stationary; the noise statistics vary according to locations
and times of day [15]. Under these éircumstances it seems
reasonable to build a system to operate efficiently in an unknown
or changing environmenf. By allowing the system to measure
the noise parametefs (e. g B, og in the generalised hyperbolic
noise density) and then utilising these measurements to adjust
its decision structure, the performance can be improved over
that of a fixed system. Such a system would consist of an
estimator and a detector.

The chapter is divided into two sections. The problem in
the first section can be stated very briefly as, given k
(k=1,2;..;..) samples from the observation time To’ we want to
decide which noise f{either IN with pdf py(x) or Gaussian noise
with pdf pG(x)} is active in that interval. In the second section
an effective algorithm for computing maximum likelihood (ML)

éstimates of the parameters in the IN model is derived.
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8.2 ESTIMATING AN ACTIVE NOISE IN THE BIT INTERVAL

In this section we find the optimum thre%hold for
sélecting the IN pdf if, out of k samples, ko samples cross
the given threshold L+ Before looking at this general case
we find the optimum threshold for selecting the IN pdf if we
take one sample from the observation interval TO and test if
it is greater then the threshold level Ll(this method would be
quite effective in the very IN case i.e. for generalised .
hyperbolic pdf with a=1, B8=1). ‘

We assume that under hypothesis H, the IN is active with

1
pdf px(x) and under HO the Gaussian noise is active with pdf
pGix). We obtain one sample from the input waveform within the
observation interval To- We compare this with the threshold

Ll and from this we have to decide which hypothesis is true,
depending upon the amplitﬁdé,of the sample. Assuming that
hypothesis Hl(HO) is active, the condition for correct decoding

would be when the sample is greater (smaller) than the threshold

level Ll' Let the apriori probabilities of having HO be €4

_and Hy be (l~€l). Therefore probability of correctly decoding
the hypothesis HO or Hl would be
© Ll
Pc = ele py (x)dx + (l-e1)f © pg (x)dx. (8.1)
l e

Since the decoder can only base its decision on the
volatge amplitude of the sample taken, it is apparent that the
only possible way to adjust Pc or to optimize the system is to
vary the threshold level Li at which the decision is made. An

optimum choice of Ll corresponds to maximum Pc, according to

our criterion. Since Pc is a function of Ll, we simply
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Ll = Ll/og B o el
R 1.0 10.0 100.0
3.7754 3.0805 2.8958 3.0
1.0
. 3.6605 2.8881 2.9283 10.0
i : 0.1
.- 3.8687 2.7551 2.9716 3.0
2.0
- 4,1615 2.7380" 2.9959 6.0
..2.854 1.8091 1.8138 3.0
1.0
2.474¢6 1.6234 1.9593 10.0
0.5
2.6080 1.5445 2.0877 3.0
2.0
2.4150 1.5749 2.1268 6.0
i

Fig. 8.1 Optimum threshold level for comparing single sample

for various values of o,B and R.

2.6175 1.235 1.0

2.5988 1.287 2.0

Fig. 8.2 Optimum thfeshold level for comparing k=6 samples.

{IN present if 4 samples exceeds the threshold level

(ko=4)}
where R - the ratio of IN variance to Gaussian noise variance
£ - the normalized threshold level when % samples are

£
taken in the observation interval.

d,B - impulse noise parameters

€.~ a priori probability of have IN.

1

4




differentiate with respect to L, to find the optimum level.

In particular we then have

= 0 = -epy (L)) + (1-e1)pg (Ly) (8.2)

by invoking the usual rules of differentiation with respect to
integrals. It is thus apparent that the optimum threshold

level Ll (in the sense of maximizing probability of correct
decoding) depends on the form of the two conditional density

functions, as well as the apriori probability €+ Using

(5.8) and (7.21) for pX(x) and pG(x) respectively in (8.2)

yields
A2 n
(L-¢,) L € L - (B+1/a)
—m-l——exp(— 55 = 2K (a, ) [(5) %+1] (8.3)
where £l_= Ll/og, K(a,B) and R are defined by (7.23) and (5.8)

"N

respectively. The above equation has to be solved for L,. L,

is computed for various values of IN parameters «,B8,R and is
shown in Fig. 8.1.

Now consider k samples obtained from the observation time
Ty- Each one is compared to a threshold L, . If ko(<k)
samples are found to be greater then L, ., then we ask for the
distribution of the samples which are greater than the threshold
and those that are not among the k samples. In particular,
what is the probability of obtaining no samples greater than
L, (and hence k samples smaller than L), one sample greater

thanLk, etc? In this case let the space include all possible

combinations of samples greater than L and samples less than

Lk‘ For simplicity's sake let the random variable zi=£,2=0,l,..K.

~
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Since the samples are independent, the probability of having

k samples greater than L, would be given by

k 2 -
Pr(z,=8) = Cyp (l'“p)k g (Binomial distribution)

where

c. . k!
o= grpeopT )

p = 1is the probability that an event will happen in any

single trial.

The probability that z,<m is then just the sum of the probabilities

k
0

L k-
C,p” (1-p) L

m
Pr(zism) = 7
.21:

Using the arguments given for k=1, the probability of correctly

decoding the hypothesis Hy would be

ko—l k -k
k 2 k-2 o k 2 k-2
Pc = ¢, C,p, (1-p;) + (l-e,)Z c,p, (1-p,)
T, 1 V0 a2 2
(8.4)
where

Lk o
plzf pX(x)dx and p2=f pG(X)dX- (8.5)

177 3

k

Note: for k=1 and ko=l, (8.4) becomes (8.1).

An optimum choice of L, corresponds to maximum Pc. For

maximum to occur

dPc _ 4. (8.6)

Differentiating (8.4) with respect to L, yields




ko-1 k- -1
: k L k-2-1 O "k -1 k-2
€1Py (Iy) [i-—o Cp (2=k)p] (1-p;) I fcphpy(1-py) +
L= 2=0 :
k-kq ‘ k-k 9-1
_ k 3 k-g-1 ok 2
+(1-e;)p, (L) |2 Cy (k=2)p (1-p,) 5 o) (=2)p5
A= 2=0
k-z} |
l— ® y
(opy) | (8.7)

Given a,B,R,k,ko, and €, we can obtain L, by usigg (8,7)

k
in (8.6) and solving (8.6). Consider a special case for k=6;

k_=4. Using (8.7) in (8.6) yields

2

6 3 6 2 3
hnd :4 -— —
381 C3pX(L6)pl(l pl) . (1 el) C2pG(L6)p2(l p2)

Using (5.8) and (7.21) for p,(x) and p,(x) respectively and
(8;5) for Py and Py the above equation can be solved to obtain
the threshold value L6' For €=0.1, B=3.0 and various values

of a and R the optimum threshold L is computé&. The results

are given in Fig. 8.2. Similarly, the result for L, can be

computed for various other values of k,ko,a,S,R and el.




8.3 PARAMETER ESTIMATION OF GENERALISED HYPERBOLIC DISTRIBUTION

8.3.1 INTRODUCTION

Let Xl’ ..... X be a set of M independent random samples
drawn from a given population. The population is characterized
by a pdf p§(§;§). % are the parameters of the population |
distribution. For independent samples, the likelihood

function A is defined by the relation

CA(X;6)= py (%18 - (8.8)

The method of maximum likelihood (ML) is one of selecting an

2%
estimate 68 for 8 which will maximize the likelihood function

A . Since logh is a monotonic function and attains its

maximum when A is a maximum,.- (8.8) is usually solved for the

A
estimate 6 by considering the simpler expression

3 3 |
L-logh=0=2 I log py (x,;0) (8.9)
Q=

38 38 =1

"rather than the usual“more cumbersome form of

p. (x ;g).
-1 X 7L

it

O

Il
@ loJ

¥
o =

Any solution 6 for 6 which satisfies (8.9) and is not
identically a constant is called a ML estimate of §. Eqguation
(8.9) is called the likelihood equation.

The theoretical problems inherent in ML estimates are
primarily those concerning the variance properties of the
estimates, particularly forysmall sample sizes. For large

sample size, the theory has been fairly well developed, and a

~
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host of theories exist for asymptotic characteristics of

the éstimates as wéll as for the variances of estimates. Under
reasonable general conditions the following may be pfoved. The
likelihood equation has a solution which converges in probahility
to the true value, as M>». This solution is an asymptotically
normal and asymptotically efficient estimate. Rigorous proof

on these lines is given by Cramer [74].

In the general case, where there is not necessarily a set
of k sufficient statistics for the k parameters, the joint ML
estimators have similar optimum properties, in large samples,
to those in the single parameter case. Further, it may be shown
that the joint ML estimates tend, under regularity conditions,
to a multivariate normal distribution, with dispersion matrix
whose inverse is given by [791

-1
|

2
3" logh
Ok,Q, >

aekaez

| =-< (8.10)

These properties all deal with the behaviour of ML estimates
“for large M. They provide some motivation for using the ML
estimate even when an efficient estimate does not exist. We
now turn to discussion of the case bf estimating the parameters

G,B,Og in the generalised hyperbolic distribution

B o, o ~(B+1/a)
py (x) = K(a,8)dg {x]"+o ) , —o<x<e.  (B.7)

8.3.2 LIKELIHOOD EQUATIONS

Using (5.7) the logarithm of the likelihood function

becomes

logA(§;a,3,gz) =E[ loga+lOgF(8+a)“log2*logf(g)—log(%) +



: 1, L
+ 5~ logo, - (B+&) log{]x£!a+og/2 H,

2 .
where 02 = Oo . Using the above equation, the three likelihood

equations are

X :
s—lOgA =0= M{ +——10gT(B+—) lOgF( )+ §10g0 }o-

M _
d 1 o, o/2
—a-[(8+ =) %_ log{lle +02/_ o, (8.11a)
=1
9 togh=0=m{Z; 510 I (8+3) - 2xlogl (8)+ Floga,}~
38 g g a 35 og OgO
M N a/2 |
-3 1og{|x2[ +o, T (8.11b)
=1
and
30, o 20, a =1 2 72 { XQL»+02 }
(8.11c)
where g, = ci. Even though the density function (5.7) depends

on three parameteré, we may be interested in estimating any
number of them from 1 to 3, the others being known. Under
regularity conditions, the ML estimators of the parameters
concerned will be obtained by selecting an appropriate subset
of the three likelihood equations and solving them. By the
nature of this process, it is not to be expected that the ML
estimator of a particular parameter will be unaffected by
knowledge of the other parameters of the distribution. The form
of the ML estimator depends on the company it keeps, as is
made cléar from the following analysis.

Suppose first that we wish to estimate)d2 alone, thé

other two parameters o,8 being known. We then solve (8.1llc)




182

alone. From (8.1llc) we have

M ) . L e
-0 = 1 a/2 o _ a/2, -1 aB
Iv= © = x i=102 {lle +o, % - (8.12)

which has to be solved for 0,. Obviously the equation has M

solutions, but only one out of M is a positive root. This

can be seen by taking the derivative of (8.12) with respect
to 0,. Since g, is positive with probability 1 for all
0,2 o, Iy is monotonic in 0, and so possesses an inverse. The

ML estimator problem becomes that of finding the positive root
A

of (8.12) and then setting the estimated o.=(0,) equal to this

2 2

positive root.

For two unknown parameters B and o, and one known

parameter o, two simultaneous equations to be solved are

specified by (8.11b) and (8.1lc). Using [85]

. . e k i .
3 _ I(B) _ lim _ -1
FELoaT (8) = $gy = yowllog k §=o(8+l) } (8.13)

(8.11b) simplifies to

Limf% i +io+1) ]+ Zlogo -
ooz ((e+1) (g+ia |+ $1090,
i=1
M
1% 1ogllx,|%0s %/ 21=0. (8.14)
Mop=1 e o

From (8.1llc) B8 is specified in terms of 02 as

C{a(l-C)}—l (8.15)

™
il

where

Mo 0/2, -1
Z Ua/z{lx !a+0 /}
4 2 2 2 .

=1
Moy
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Fig. 8.3 Likelihoodg function (gy) vs. the generalised hyperbolic

pdf parameter (O
parameter.
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Fig. 8.4 Likelihood function (g,) vs. the generalised hyperbolic
pdf parameter 1o?=go) with the sample size (M) as a variable
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185

Using (8.15) in (8.14) yields

lim [% 2 , -1
o |2 0(1-2) " {(g+ia(l-2)) (1+ia(1-2))} +
1=0
o 1 i 2
+ 21ogo.,- = & logl|x,|%+o °/2y o (8.16)
2 2 M > 2 2 »
2=1
which has to be solved for Oy Once o, is estimated, this wvalue
is used in (8.14) to obtain the estimate of B. The analysis

can be extended to three unknowns in a similar way but the algebra
becomes cumbersome and will not be treated here.
Generating random numbers with given a and B and
normalised oo=l, (8.12) is plotted against o, with M as a
parameter in Figs. 8.3 and 8.4. From the figures it is noted
that a reasonable estimate can be obtained for M»10,000. Due
to the computer time, (8.l6f‘was not solved. However, the
method similar to the one used for single unknown parameter

can be used in this case also.
8.3.3 ASYMPTOTIC ERROR VARIANCE
SINGLE UNKNOWN : ©

Since the estimate of 0, computed here is a ML estimate,
it tends to a Gaussian random variable as the number of

samples M approaches infinity. From [86]

2
A - -1
var{cz—oz}'= - <E—§ log pX(X)> e (8.17)

Using (5.7) in (8.17) and performing the differentation and

-

averaging yie lds

var{s,-o,} = 4o§(a8+a+l)(Ma26)“l (8.18)

2
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£
H

where we have used the fact

2

2% {2, %6221 7! = MaB {20, (6+1/0) )

from (8.1llc). Use of (8.17) allows an assessment of the value

A

of M for which asymptotic behaviour of ¢, is approached.

2

TWO UNKNOWNS : 02(=Oi) and B.

Using (8.10), the dispersion matrix is given by

) 2 2
< 9 lggA S < g %ogA s
38 B30,
-1 :
[o,0] = (8.19)
5°1ogh 2
—< 9 logh - B logh
0B 90
L 2 802 |

Using (5.7) in (8.11b) and (8.llc) it can be shown that

2 2 2
<3 lOgZA ,>:M{a 2logF(B+ %)—Q—-‘E]_Ogr(g)}r
3210gA

PRSI ELEN =Mu{252(a8+l)

-1
}
88802

and

2 _
<9 logh > = —Ma28{40§(a8+d+l)} L (8.20)

805

Using (8.13) and (8.20) in (8.19) and inverting the matrix

yields the variances as:

oA 2 2% L -1
var{B‘B}=402gZ{Mu gg}

and
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-1

oA . _ :
.var{62~02}v= B{M(a8+a+l)gz} (8.21)

where

al{2(R+2)+ %}{(B+z)2(a8+l+za)2} -1

and

A -

2
Iy

Bgz{a8+a+l}_l - {aB+1} “.

8.4 DISCUSSION

In this chapter, a technique for evaluating the occurrence
of an impulse by setting a threshold is presented. If the
noise sample magnitude exceeds the threshold it is impulsive.
The value of the threshold depends on the apriori probability
of an occurrence of an impulse and the parameters of the noise
pdf.

Means of monitoring the parameters of the generalised
hyperbolic density function by means of ML estimators is also
presented. The estimators require iteration to yield the value
of the estimate. Newton's method for root finding can be used
successfully in the case of one unknown parameter. A simulation
indicates that the number of independent samples of IN should be
greater than 10,000 for satisfactory parameter estimates for a
single unknown parameter.

These techniques, used in conjunction with the coherent
detéction scheme described in Chapter 6, yield a more complete

model for the detector in generalised hyperbolic noise.
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CHAPTER 9
SUMMARY AND INDICATION OF POSSIBLE FUTURE RESEARCH

This chapter summarizes the major results of the thesis

and points out some important subjects for future work.

9.1 SUMMARY

In this thesis two main types of noise processes have been

analysed and the summary will be divided acccrdingly.

9.1.1 PART A

The purpose of the analysis presented in the first part
was firstly, to characterize filtered Poisson IN, and secondly,
to find the CF of the ocutput cf a linear filter excited by IN.

Chapter 2 derived the pdf for the linearly filtered
narrow-band Poisson process. Attention was cqnfined to the
first-order case only. The apprcach was canonical in that
the results are, in form, independent of the particular emitted
waveforms, propagation conditions, source distributions and
beam patterns, as long as the interference is narrow-band
following the RF stages of a typical receiver.

In Chapter 3 theoretical expressions for the average
prbbability of bit error for binary ccherent P.S.K. systems in
Poisson IN environments have been obtained for certain limiting
cases (y<<l, y>>1). To check the validity of the assumptions
made in deriving the theoretical expressions, experimenteal

measurements cf error probability were carried out. The results

are shown in Figs.3.6 and 3I7.
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Finally, in Chapter 4, a method of .modulation is described
which gives a particularly gecod error-rate performance, in
comparison to the convention M-ary P.S.K. system, in the presence
of Poisson IN. The modulation scheme is a hybrid arrangement
of phase and amplitude mcdulated technigues. Only 8-ary signal
sets are ccnsidered. Fig. 4.2 shows varicus hybrid modulation
schemes analysed. The theoretical and experimental bit error

probabilities are plotted in Fig. 4.4.

9.1.2 PART B

In the second part, Chapter 5 derived and justified a
semiempirical, but more analytically tractable IN model. The
process was described by the random variable whose pdf was
given by a generalised hyperbolic distribution.

The development of detectioﬁ theory in Chapter 6 results
in the structure of optimal detection which, in general, consists
of nonlinear elements. The results illustrated that, although
we can find the optimum processor, the exact performance may
be difficult to caiculate. This difficulty motivated the
discussion of the upper-bound on the probability of error Pe .
I+ was observed that the system performance specified by Pemax
depended on the SNR, the time-bandwidth prcduct and also the
particular signal used. Aséociated with this fact, the signal
design problem was introduced and discussed for the case of
weak SNRs. This is justified since the optimality is usually
no longer the primary concern at stronger SNRs. The optimal
-signal shapes were plotted for some particular signal energies,
signal bandwidths and signal durations as shown in Figs. 6.5

to 6.7.

In Chapter 7, it was seen that for weak signals the optimum
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nonlinear element depended quite critically on the noise
density (Figs. 7.3 to 7.6). This dependence led to the
question of how much the performance is degraded by small
errors in the assumed suboptimal detection. Some specific
results relating to this question were discussed. In general
it was found that the relatively simple nonlinearities of

Fig. 7.11 can give good large-sample performance (Fig. 7.13).

Finally, in Chapter 8 estimates of various unknown parameters

in the generalised hyperbelic distribution were derived using
maximum likelihood estimators. Also derived was a technique to
estimate the location and duration of an impulse based on the

knowledge of the parametersof the noise pdf (i.e., o, B, OO).
9.2 RECOMMENDATIONS FOR FUTURE RESEARCH

It is well known that the solution of the detection problem
in non-Gaussian noise is still in its developing state and
thus a great many problems.still remain unsolved.

In the first part of the thesis, the analysis was confined
to the linear receivers only. No attempt has been made in this
investigation to obtain the optimum (maximum likelihood) receiver
for IN. Indeed, the general problem of optimum detection in
Poisson IN is unsolvedand will probably remain so for some
time to come. A possible means for finding out more about the
structure of the optimum receiver is the use of generalised
Hermite polynomial or Jordan series expansions for the pdf of
the noise along the line indicated by Stratonovich [108] or
Blake [126] respectively. Such investigations might suggest
simpler (suboptimum) methods of combating the harmful effects of
IN than the one pursued in this study.

The Poisson distribution of noise impulse reoccurrence

.
)
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times could be modified to some other types of time distribution
which woﬁld represent the true noise statistics in low-frequency
radio channels. An analysis of this might considér a compound
Poisson process in which the average repetition rate is
statistically amplitude modulated.

In the second part of the thesis, we have obtained
analytical solutions of the upper bounds on the probability of
error. It might be interesting to know hpw well the actual system
performance is theoretically predicted. vFor- this purpose,
the digital data communication system of Fig. 6.2 could be
simulated on a digital computer and the experimental probability
of error can be determined andAcompared with the theoretical
results.

The development of the optimal detection schemes in this
section was based entirely upon binary signals. The analysis
could be generalised to take into acébunt an M-ary system.

Finally, some comments should be made on the applicability
to a real-world situation of the model that was used here for
the received data. First, we did not consider the effect of
a restricted receiver bandwidth. With only a limited
bandwidth available, the minimum possible sampling rate of the
received analogue waveform is in turn fixed. 1In such a case,
the assumption of independent noise samples may be violated and
the structure of the optimum detectwor could differ considerably
from those discussed here. Much more work remains to be done in
the general area of detection of signals in non-Gaussian noise
with dependent samples. The requirement for such work would be,
of course, to find additional methods of describing the higher-

order statistics of non-Gaussian random variables.
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APPENDIX A

The purpose of this appendix is to outline the derivation

of .the characteristic function (CF) of the random variable

=oaiG(ti) coswi (a.l)

N
il
B 2

where ai's, ti’s and wi's are independent random variables.

Assuming that N noise impulses have occurred, the conditional

CF is given by [72]

N
(jg/N) = <e ; )
@Z JE/N) <expl{j& ;_ aiG(t) Coswi}>t,¢,a (a.2)
i=0
where the averagings are with respect to t,y and a. Since t,'
1-

are uniformly distributed in the observation interval T
its density equals l/TO within the observation interval and

zero elsewhere; hence the above eguation becomes

dat,

. . N :
@Z(jE/N) = <f —Ti exp{jagG(ti) cosy}> acosy - (a.3)
T 0
0
The CF is then given by
¢Z(j€)_= lim Z” PT (N)QZ(jE/N)- (a.4)

If (2.2) for PT (N) is substituted in (a.4) along with (a.2)
O

for @Z(jg/N), and performing the summation yields

8, (38) = exp{-v [ dt (1-¢ (3EG(£)))}. (a.5)

aco
+ acosy

By assuming that ¢ is independent of a and uniformly

S




distributed in the range .(0,2w), ¢ (§eG(t)) can be written

acosy

as

@acosw(jEG(t))_= <pacos¢(acosw)eXp(—jgacos¢G(t))>a,
A
= <IO:%% exp (-ancOSwG(t))>a

Identifying the integral on y as JO(aEG(t)) the above equation

reduces to

(JeG(£)) = <T (agG(t))> . (a.6)

Qacos¢ a

Substituting (a.6) in (a.5) yields
Qz(j€)~= exp{v{ dt<JO(£aG(t))—l>a}. (a.7)

@z(jg) can be identified as the Hankel transform of the

resultant envelope of (a.l).



APPENDIX B

This appendix establishés that for vy<<l the joint pdf
of two-dimensicnal unfiltered Pcisson IN; at the output of the
matched filters at time t=T, is approximately radial. The
~joint pdf of §i(=Xi/A2, i=l,2..)j with n(t) consﬁituting Poisscn
IN defined by (2.1), is impossible to compute in closed form.
An approximation can be obtained via the joint CF (as shown
in Chapter 2). It is well known [72]that the joint CF of a

linearly filtered proccess is

T 52
®§1' gz(jgl,jgz)zexP[%<é atlexp (355 1 Eyhpy (E)-13> ]

where th(t), k=1,2 are lirear filters (taken here to be

matched filters). Using expression for h

rk (B (=¥y

0<t<T), and defining polar co-ordinates r,§ by the equation

(r-t), k=1,2;

gl=rcos§, £2=rsin §, (O<r<w,0<§<2T)

one finds that ®5 ¢ (r,8) has the form
X%
> o (r,8)=ex [y<J {ar(~2~)%}ml> ]
Xy, %, 1 o X, a

vhere Jo is a BRessel function of zero-order.

For y<<l (highly IN case), expanding the exponential in the
above expressicn and neglecting higher order terms (in vy), one
obtains an approximation for the CF of the form
dA — ey 2\

g (r,5)=exp( v)[1 + y<J lar (F5=) °) }>a]

Xl’ 5 Tkz



The corresponding joint pdf, using the linear Fourier

transformaticn

-1 ;7
ps ¢ (r,§8)=(2m) ® (r,§)J (Rr)dr
X X000 é ﬁl,ﬁz o

where R is the radius vectcr defined by the equaticn

xl=Rcose, x2=Rsine (O<R<w,0<6§2ﬂ),

is obtained as

1
ST T, 1
pd 3 (%x,,%x,) = (1-y)8(x)8(x,)+= | ——5— | -
Xl'X2 1772 1 2 m {2(Xi+X2) }
T
. pllp2 (x24x2) B)] (b.1)

where we have used the relaticnship [85]

Ak | rJo(kr)Jo(ﬂr)dr = 6§ (k-Kk) .
O



APPENDIX C

In this appendix we show that the integral

S(t)

T
0 {l+a§2+b§4}2

(c.1l)

can be represented in terms of the functions cos t and cosh t
or in terms of the Jacobian functions. Specifically, we show
that, for b=0, it can be expressed in terms of cos t {sin t)
or cosh t (sinh t) and that, for b #¥ 0, it can be expressea
in terms of the Jacobian funcéions.

If b=O;{wh;ch only occurs when the constraints (6.22) and
(6.23) are related such that W2T2=H2E where W2 is the mean-
square bandwidth, T the signal duration and E the signal
energyl and a# O, then l+a§2 can be written in the form

1+Q“z“, where 2>0. Introducing a new variable y=Qr, (c.1l)

1 QS (t) a
(1xy™)
O .
From this we have either S(t)= icoth or S(t)= icosth.

: Q Q
For b# 0, it is natural to reguire that the polynomial

£f(z)y =1 + acz + bc4

in (c.l) shall not be a perfect square, otherwise /f723will be
of the form 1 + qCZ, and the integral (c.1l) Qill be expressed
either in terms of arc tangent (g>0) or in terms of the
logarithm of a linear fractional function. (g<O).In each of these
cases, examination of the inverse function would yield nothing

new. Therefore, in what folloWs, we shall assume that a2#4b.



For b0, and a2#4b we have twq cases:
1)  a’<4b
This situation does not arise for the problem with which
"we are concerned; and hence will not be treated here.
2) a2>4b
Here, the roots Y and Yo of the equation y2+ay+b=O are
real and distinct. We have
y +ay+b = (y-y1) (y=y,) .
or, if we replace y with l/gz,
1+az?+bz” = (1-y;2%) (1-y,52).
At this point we need to consider three subcases:
a) ¥y and Y, both positive
b) Yy and Y of opposite sign
c) Y1 and Y, both negative.
a) We can assume that y, anq Y, have the values 72 and VZ,

where T>V>0. Then,

l+a;2+bc4= (1—T2c2)(1—v2§2).

Using the above eguation in (c.l) and changing the variable

§=Tr yields

§
£=7J ey, 0Pl
{(1-8%) (1-K"87) } "
o
2
where K = V2/T2. Thus, in this subcase, using the substitution

sin¢ = §, we obtain [82]

t = L F(¢,K) (c.2)

-3 [

where



F(oK) = f _
» 2 . 2.2
o {1-K%sin“¢}

b) We assume that yl=T2 and Y,= ~v? where T and V are both
positive. We obtain the following factors of £(Z):

4::

l+a;2+bc_ (1—T2c2)(l+v2c2).

Using the above equation in (c.l) and introducing a new

1
variable §=(1-T°z%)7 yields

o~ ; .
K—(T2+V2)2t=[ 5 ds 55— : O<K<1
o {(1-87) (1-K"§7)}"
where
1
- dx : v
K= f_ T and K= —5"5TT -
S Lex%) (1-k%x%py ] {724y} %

Using the substitution ¢= cos_l(ﬁ/V), the above equation

simplified to

£=(1%47%) 5K R (4,8) } (c.3)

c) When vy = —T? and Y,y = —V2,'and assuming T>V>0, £(g) can
be expressed as
2
l+ac2+bc4=(l+T2c2)(l+V2c )«

Using the above equation in (c.l) and introducing a new variabkle

2.2 0%
§=Tg/(1+77¢"7) * yields



ds

l .
t= = O<K<1L

T /- 2 2.2,1,% '

.ox{(l_§ ) (L-K"§7)} 7
2 2% . . -1 .
where K = {T"-V"}?/T. From this, using ¢= tan — (§/V) yields

1 .

t = 7 F($,K). (cf4)

In this appendix we have shown that the integral (c.1)
with b7#0 can be expressed in terms of the Jacobian functions with
appropriate modulus K and, for b=0, in terms of the circular

or hyperbolic sine.
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APPENDIX D

ASYMPTOTIC RELATIVE EFFICIENCY (ARE)

A detector based on the test statistics Ll can be

compared to the detector based on the test statistics L2 on the

basis of the asymptotic relative efficiency defined as:

ARE = M, /M
L;.,L, 2771

where M2 and Ml are the independent samples required by L2 and

by L, respectively, for the detection of the same signal in the

same environment and with the same false alarm probability Pf

and false dismissed probability Pi-

It should be clear that ARE is a function of P_., S
(signal strength), My and M2; and it may be difficult to

£ S, Ml and M2. It is often simplest

1 and M2 approach infinity. Since in such a case the

probability of detection will approach unity (for consistent

evaluate for arbitrary P

to let M

tests against fixed alternatives), it is necessary to allow the
“alternative hypothesis Hy to approach the hypothesis Hy in such

a way that the probability of detection Py remains constant as

My and M2+W. The ARE of detector L, with respect to detector

L., therefore becomes

2
MZ(Pf,Pd,S)
ARE. =
7
1 25+o Ml(Pf,Pd,S).
M, >
M%—%oo

A convenient choice for the reference detector is the linear
detector in which the signal samples " are simply summed and

compared to the threshold L. The linear detector is about as



simple a detector as one can use for the problem of using Ho

versus H and moreover if the noise is Gaussian both the

17
optimum and threshold detectors for this problem are equivalent
to it. 1In this thesis the subscripts attached to the ARE will
be dropped ana it is assumed that the detector under
investigation is compared to the linear detector. However,
in cases of ambiguity only the first subscript will be used.

It can also be shown [i27] that the ARE is a measure of
relative information rate. For the sampling rate l/To samples
per second, the interrogation intervals required by L, and L, are

T2=M21'o and Tl=MlTo,reSpectively. Thus, the maximum rate at which

symbols can be transmitted by the source and still maintain
false-alarm probability Pe and false dismissal probability Pl

when detectors L, and L, are utlized are l/MZTo and l/MlTo

2 1

symbols per second, respectively.

B R ek i et e LA



efficiency for the narrow-band system ARE

where we have used the fact a-0=¥

APPENDIX E

DERIVATION OF ASYMPTOTIC RELATIVE EFFICIENCY

FOR THE NARROW-BAND SYSTEMS

In this appendix, we derive the asymptotic relative

N <D>2
o

NB oE<p?s>

ARE

(defined in section 7.3)

M
D = At§=?ngl[e2]cos(ag—6£),

T
E = | E2 (t)cos®{w_t+8(t)}dt = At ?Ez
: s c ) S2
o 2
(signal energy)
e 2 2 3

8 ={EJ + E_ +2E_ E ,cosx,} ,

E_,siny
+ tan—l[ sk L J

En£+EszcosxQ

ay, =%y

X':q)_e ’

¢ and 6 are noise and signal phases,

NB

defined by

(7.15)

(7.14Db)

(e.l)

(e.2)

(e.3)

Kl[eg] is a function of ey (Fourier coefficient)

Esz and Enﬁ

respectively at time t=t2.

2

2 2 M
fD >= (At) <{i=lEs£Kl[eQ]COSX£}

Co1Xyg

are the signal and the noise samples

The variance of the random variable D is given by

when the signal is absent



g
process are independent and the phase is uniformly distributed

(6,=0). Assuming that the envelope and the phase of the noise

between O and 271 the above equation reduces to

2
2. (At)
<D= o=

=

2 2 :
ES <k [e ]> - (e.4)
=1 sf T1l:7Q e2

o™

where we have also assumed the samples to be independent.
To evaluate the mean of the random variable D we make the

following approximations for SRR Kl[e£] and cos (« (We

2700 -

assume the signal E_, is weak).

L

a) eyt

Rewritting (e.2) as

E o 2E ¥ -
e = [l-;-(__ﬁ.&) + S'Q'cosx EnR,
L B E 2

ng ni

and expanding the square root using Binomial theorem we obtain

the required form as

E
~ : si E
i {l+ mccsxz} ni (6.5)

where we have neglected all the higher order terms in ESQ'

For weak signal, (e.3) can be written as

' -1,
o = ¢ +tan {E1551nxg} .

For Small (Esz/Enz) sinxz, the above equation reduces to

-
o sl .
a,= %+EEESLnX2. - (e.6)



c) Kl[eQJ:Kl[En£+ESQCOSX2] {using (e.5)}

Using Taylor's series the above equation becomes

-~ - o 2
Kl[e ]~ Kl[EnJ+ES cosy Kl[En]+ O(ES ) . (e.7)
Es
d) cos (a-8) = cos (x+§—sinx) {using (e.6) andx=¢-6 }.
n
Es
Expanding cos (a—€) and using cos(E—sinX):l for small ES/En
E E n
and sin(Egsinx)=E§sinx the above equation can be written as
n n
Es 2
cos (a-8) Icos y+ 7 sinx. (e.8)
n

The mean of the variable D is given by

M )
<D>=At<¥ EszKl[ezjcos(az—e

) >
a=1 L

ez,xz.

Using (e.7) and (e.8) in the above equation yields

M K [E ]
1~ ™n .2
<D>= At<I E_,[<K, [E,Jcosy,> F— E_,sin“y yp
o=1 s 1 , 2 Enlxl Eng s %

. 2
+< KlE%ﬂJEszcos x2>].

Averaging the above equation with respect tozgl and Xy yields

M . K, [e,]
At 2 1t7¢
@>BE B2k [e,]+ it (e.9)
772 2=l sZ» 1472 eg vez

Using (e.l), (e.4) and (e.9) in (7.15) for ARENB yields
. K, [e,] 2
2 <K [e ]+ ~}—~£—>
Oy 1t-g e2 e,
ARE, . = — (e.10)

2
<Kl[e2]>e2

+
nQ'XQ



where G;-: No/At is the variance (power) of the noise process.



APPENDIX F

MAXIMUM ASYMPTOTIC RELATIVE EFFICIENCY

FOR THE NARROW-BAND SYSTEMS

For a fixed noise pdf, the larger the value of ARE the

NB’
better-suiteq (asymptotically) is the corresponding nonlinear
detector for detecting a constant signal in that particular noise.
Naturally it is of interest to know if for each noise pdf

there is a best (or worst) nonlinearity in the sense of
maximizing (or minimizing) the expression for ARE p. Let the

maximum ARENB, obtained when the optimum detector is used, be

denoted by Myp then

K [e] .
2 71 2
05 < - + Kl[e]>e
ARENB= 5 < U NB (7.16)
2<Kl[e]>e

Cross-multiplying and then collecting terms in (7.16) gives the

function of Kl[.] of which we seek an extremum as

X
or K. [e] . 2

- N1 + K, [e]> £ 0 (f.1)
ZHNB e 1 e

K=<k}[e]>,

with equality on the right hand side if and only if we actually
have an extremum. To carry out the maximization, using the

calculus of variation technigue [112], we let

A

K [.] =x.[.] _ﬂAKl[.] (£.2)

where

El['] - 1s the optimum ncnlinear function which specifies



the nonlinear element.

A - is the Lagrange multiplier
and AKl[;] w- is some arbitrary function of Kl[.].

Substituting (f£.2) in (f.l1) and carrying out

ax | =o
ax |r=o
yields
[K, (e)-B_(2 - S10g p_(e)3]p (e) = O (£.3)
1 cle 7 de°9 Pq Pp B .

where B, is a constant defined by

A

_ 1 d ~
B, = <Ky (e) [S + (- gzlog p ()P . (£.4)
Since pn(e) is not zero, the quanfity in the square brackets

of (f£.3) must be zero i.e.,

Py (e)
} (£.5)

l[e] =B { d o109 P, (e)}——BCgelOg{

Since the nonlinear element gNB['] is defined in terms of Kl[e] as

P‘i)

[e]= 2 f gypletlzdz | (7.12)
-

the nonlinearity for the optimum detector .can be obtained by

solving the following integro-differential equation

A Nl
K, [e] = %{ﬂgNB[eC} (£.6)

’ INB ,opt [X] =g [X]

for gNB[x]. Moreover, on substituting (£.5) in (7.16) one finds

the maximum ARENB as
2
o p. (e) 2
N ,d n
Hoo= —<{=— lOg[ ]} > . C(£.7)
NB 5 de e o



