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Sunmary

An experimental method is esteblished to deduce the transfer function
relating crystal radius to power changes in a Czochralski crystal
growth system, The experimental method employs pseudo-randonm signal
injection into the power controller of a gellium phosvhide crystal
puller and uses crystal radius measurements mede on the cold crystal
after growth is complete. This is the first known application of
pseudo~random signal testing to crystal growth. Novel dates processing
techniques ere developed to convert the crystal redius measuvencnts to
samples at equal time iutervels. Fast Fourier traunsform processing is
used to compute frequency responses for the process. An algorithm is
developed to fit transfer functions to modulus frequency response data.
A theoretical derivation of the transfer function is performed. This
is based on the heat balance equation ai the solid-liquid iunterfece.
Due to lack of data on gallium phosphide, the exrcr bounds o the
prediction are wide but it is shown that they may bDe reduced by using
the peasured transfer function. The work has applicetion to the
design of control systems for crystal growth and to & mere fundamental
understending of the crystal growth process. This is the first knowp
description of a theoretical analysis of Czochralski crystal growmih

dypamics.
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INTRODUCTION

1.1 GENERAL CZOCHRALSKI GROWTH

Crystal growing has been described as a craft, (Brice 1973)1 and
inasmich as the process cannot be entirely predicted from theoretical
or empirical considerations, this is an accurate description. One of
the more important crystal growth methods is that due to Czochralski2
in which the crystal is pulled from the melt at constant temperature.
The normal crystal growing procedure with this method is to dip a
seed into the melt and wait for thermal equilibrium. Then, while
slowly withdrawing the seed from the melt, the melt temperature is
inoreased, causing the growing orystal to decrease in diameter t0o as
emall a value as will be able to support the fully grown crystal.

The purpose of this "neck in" portion of crystal growth is to
eliminate crystalline imperfections that were developed at the
initial solid-liquid interface when the seed was dipped into the
melt. From this point, the melt temperature is slowly reduced while
the crystal continues to be withdrawn from the melt. The reduction
in melt temperature causes the diameter of the growing crystal to
increase. This is continued until the required crystal diameter is
reached, at which time the melt temperature is maintained relatively
constant. The radial temperature gradient along the surface of the
melt must be maintained such that the usual random temperature
fluctuations due to imperfect temperature control will not cause the
outer edge of the melt to solidify while the centre of the melt is too
hot for proper crystal growth.

There are two possible rate-limiting steps in crystal growth, First
is the time required for atoms within the liquid to migrate to a
lattice site. This time is very short and although it affects the
impurity distribution, it does not affect the crystal growing rate.
Secondly, and most important, is the requirement for the removal of

the latent heat of fusion. This heat is removed in three ways: by

conduction through the crystal pull mechanism, by convection and
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radiation from the body of the growing crystal itself and by conduction
through the melt and the crucible support mechanism.

Crystal growing apparatus normally has three means of control: melt
temperature control, seed and/or crucible rotation control, and crystal
pull speed control. Figure 1.1 shows a cross section through a
typical, pressurised Czochralski crystal puller and Figure 1.2 shows
an enlarged section of the crucible with a growing crystal. During
crystal growth a number of process variables must be monitored and
controlled:

1. melt temperature must be precisely maintained to obtain the
desired rate of solidification for the growing crystal. This is
accomplished mainly by varying the power input to the heater.

2. crystal pull speed must be contrclled because of its
obvious effect on the rate of crystal growth.

3. crystal rotation speed has a shaping effect on the growing
crystal and also has a great influence on stirring of the melt.

4. crucible 1ift speed: this is optional, to mairntain the
melt level at the same position relative to the heater as the

crystal grows.

Be crucible rotation speed has a gignificant effect on the melt
stirring which influences the temperature distribution in the melt.

6. cooling water flow rate affects the rate of heat removal from

the process.

Te inert gas atmosphere, particularly at high pressures, is a
significant convection medium to remove heat from the growing

crystal.
s I | Application afld Cbjectives of Czochralski Growth
The Czochralski method has applicability to a wide range of materials,
For instance Ga, with a melting point of 30C has been grown by
Zimema.n3 and La A‘IO3 with a melting point of 2080C has been grown by
Fay & Srandle”. An important extension to the method was made by
Metz et al” when they introduced liquid encapsulated Czochralski (LEC)

growth. This enabled compounds to be grown where one or more of the

constituents was volatile. In particulsr this enabled the III-V
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compcunds to be grown. One of the more difficult of these inter-
metallic materials, GaP, requires an inert gas pressure above the
encapsulant of greater than 35 atmospheres (Bass & Oliver)é. Therefore
it will be evident that the growth conditions in Czochralski growth
systems are almost as diverse as the range of materials grown in them.
In growing a Czochralski crystal there are usually several objectives:

a. to produce a single, strain free crystal
b. to produce a uniform diameter crystal
Ce to produce uniform impurity distribution
d. to produce a low dislocation density

In practice, if the first two objectives are met, the last two will be
satisfied. The most common method of Czochralski growth is to with-
draw the crystal at constant speed and regulate the power input to the
heater to produce an approximately uniform diameter crystal.

1.1.2 Automatic Growth

There have been numerous methods employed in attempts to transplant
crystal growth from its status of that of an art to that of a science
by using closed loop control techniques. The demand for single crystal
gilicon increased enormously in the late 1950s and much effort was
spent on devising automatic production facilities. Levinson7 described
a control system for Czochralski growth which used a weight signal from
either the growing crystal or the crucible to effect diameter control.
Other weighing methods have been published by Reinert and Yatskoe,

J 10, 11 have derived the

Zinnes, Nevis and Brandle” and Bardsley et al
relationship between the apparent crystal weight and crystal diameter
(albeit a non-unique relationship). Other control systems have
exploited the fact that silicon has a high heat of fusion which results
in a bright ring at the solid-liquid interface which is detectible by
infra red sensors. This method has been published by Jen, Slocum and
Valentino12, Corburn, Seksinsky and TUCker13, Patzner, Dessauer and

Poponiak14, and Digges, Hopkins end Seidensticker15. An optical method

using a laser beam to reflect off the meniscus curve at the interface
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- has been published by Gross and Kerstan16. 0'Kane et 9.11T describe an
infra red TV system with electronic processing of the TV signal to
give a direct measure of the crystal diameter. Similar systems, but
using visible TV methods are described by Bachmann et a118 and
Gartner et al19. Possibly the most direct method of diameter control
is to use an X-ray imaging technique. This was the subject of a

20 2

patent by Phillips™" and descriptions by Van Dijk et al d and Pruett

and Lien22. In a rather different category, since it is only a means
of varying the diameter and not of measuring it as well, is a
description by Vojdani et 3125, of a method of extracting heat from

the interface region by Peltier cooling. It will be evident that of
the above methods, only the weighing and the X-ray systems can have any
application to encapsulated crystal growth since all the others rely on
& line of sight to the solid-liquid interface. The weighing method is
restricted in that for certain materials, notably GaP, Ge, InP which
expand on freezing it is not possible to obtain a unique value of
diameter from the weight signal except at very low growth rates10’24.
The X-ray techniques all need very high energy beams in view of the
necessary pressure chamber wall thickness and thus are not viable
production methods.

1.2 CRYSTAL GROWTH DYNAMICS

In none of the literature referenced above has there been any mention
of the Czochralski crystal growth system dynamics in either an empirical
or o theoretical sense. This is a serious gap and one that this thesis
sets out to bridge. The difficulty of making on line diameter measure-
mentis for encapsulated growth would be less serious if a system model
~could be set up hence enabling a model-reference control system to be
implemented. A further advantage of having a knowledge of the dynamics
of Czochralski crystal growth systems in general would be that crystal
diemeter could be controlled by a strategy that would be least likely

to cause grown-in stress concentrations or cause twinning.



1.2.1

Test Signal Injection

The system dynamics, as developed in Appendix 1, are shown in

Figure 1.3. It will be evident that the only externally accessible

parts are the power input and the diameter output. There is a noise

input, due to changing convection patterns around the crystal, changing

emissivity of the melt surface due to impurities and changes in coolant

flow

rates. This input point is however only conceptual and there

would be little point in actually identifying the dynamics between it

and the diameter output. There is therefore a requirement to inject

some

form of test signal into the power controller in order to be able

to identify the complete system. The choice of this signal is

discussed in Chapter 3.

1.2.2

Special Identification Problems

The nature of the Czochralski process introduces some special problems

into

" This

the system identification procedure:

1. As it is a batch process, only a limited amount of data will
be available for each crystal.

2, Because the thermal conditions change from the beginning to
the end of a run the dynamics are likely to vary over the run, ie
they will be non-stationary.

e The process is non-linear, but it is intended to make a
linear estimate, Test signals will thus need to be resiricted in
amplitude with attendant problems of having a poor signal to noise
ratio at the output.

4. The crystal diameter will have to be measured from the cold
crystal afterwards. In order to process the input/output records
it will be necessary to convert the diameter samples (measured at
equal distances along the crystal) into samples at equal time

intervals and then to synchronise the two sequences.

thesis is concerned with the system identification of a GaP LEC

crystal growth system, kindly made available by Metals Research Ltd.f

/# Metals Research Ltd, Melbourn, Royston, Herts, England.

13



FIGURE 1 .1
Cross Section Through & Typical Pressurised Czochralski Crystal Puller
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FIGURE 1.2
Cross Section Through Crucible With Growing Crystal
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FIGURE 1.3 CRYSTAL GROWTH SYSTEM DYNAMICS
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2.

THEQRETICAL DYNAMICS

2.1 INTRODUCTION
The dynamics of the Czochralski crystal growth system have received

scant attention in the literature. This is surprising in view of the

9,10,12,14,25

interest in automatic control systems There is also

considerable literature on both experimental and analytical aspects

24,26-34 . nearest approach to a

dynamic analysis of the Czochralski process is by PBardsley et a110,

of steady state Czochralski growth

but this is only concerned with the dynamic relationship between
apparent crystal weight and diame#er.

In this chapter a transfer function is developed that relates diameter
changes to power changes based on heat balances at the solid-liquid
interface. This follows the approach already published by Steel and
H11135. The dynamics may be conveniently divided into three sections:
Power to temperature, temperature to radius, and radius to temperature
as shown in Figure 4 of Appendix 1.

2,2 HEAT TRANSFER PROCESSES

The anzlysis is based on heat transfer mechanisms at the interface.
These are very complex, due to the high pressure atmosphere, stirring
effects in the melt and the presence of an encapsulant. The steady
state temperature field in the crystal has been fairly comprehensively
documented. The steady state heat conduction equation has been solved
numerically by Sakharov et a134. Shaskov et alB%xtend the analysis to
include reflected radiation and then use experimental observations to
further refine the solution obtained. Experimental observations of

the temperature field in a growing Si crystal have been made by

~ Shaskov and Grishin30 by means of a grown-in thermocouple. Numerical

calculations relating particularly to the temperature field at the

solid-liquid interface have been made by Arizumi &nd Kobayash136’37.
Analytical solutions to the thermal diffusion equation in the solid
are obtained by Bricese. Kuo and Wilcox59 derive analytic solutions

for the temperaiure gradient at the interface. Despite these efforts,
16



the crystal growth conditions are mainly influenced by the hydro-
dynamics of the melt and of the growth atmosphere. Kobayashi and
Arizum129’40 perform numerical calculations to derive the solid-liquid
interface shape under steady state conditions. They take into account
the melt temperature distribution for the cases of rotating crystal

and rotating crucible. The same authors also perform a more
comprehensive analysis of the hydrodynamics in the me1t41. Experimental
evidence is availabla42, that the crystal growth interface is not
stable, even in the short term, with rapid tilt and vertical displace-

ments occurring under steady state growth. N’ygren43

also gives
experimental evidence that the growth interface can be either concave
or convex to the melt, depending upon the thermal growth conditions.

35 regarding a flat

Thus although the assumpticns made in the analysis
interface and cylindrical interface are at variance with actuality,
the errors so introduced are minimised by linearising the radius error
about its nominal, steady state value and restricting the applicability
to small deviations.
Since Appendix 1 was published, the paper by Kobayashi and Arizumi41
has appeared. This consists of a numerical solution to the Navier-
Stokes equations which govern the forced convection in the melt.
Natural convection will also occur, but with normal crucible and
erystal rotation rates it will be dominated by the forced convection.
The resulis show that the time for complete circulation of the melt
is very small, supporting the assumption made in Appendix 1 that the
dynamic lag between power input to the crucible and temperature at
the interface may be neglected.
2.3 MNENISCUS CURVATURE CONSTANT

2.3.1 General

The meniscus curvature constant, K, is of importance in the time

linearisation operation that is performed on the raw crystal

data (see Chapter 4), and alsc in the overall transfer function

derived in Appendix 1.

17



It is shown to be given by:

K - %.—E; sssnesa 201
H (from Appendix 1)

This is a linearised approximation and a need exists to establish

44

its range of validity. Newman and Searle”" and Matejevic45 show

that Laplace's capilliary equation leads to:

%— —l = /?-ll. sessvsnn 202
w L o
where Rm = meniscus radius
r = crystal radius

re = MOp = PFp = density difference between melt
and encapsulant

h = meniscus height

o = surface tension of melt
As it is intended to arrive at a linear approximation to the
relationship between the crystal growth angle and the position of
the solid-liquid interface, it is first necessary to assume that
the-% term of equation 2.2 is neglible. That is, the family of
meniscus curves implied in equation 2.2 are reduced to one
corresponding to that given against a flat plate. The problem
will be approached in two stages. In the first, the limits on r
to ensure the validity of the "flat plate" approximation will be
established. In the second part, the value of the meniscus
curvature will be derived together with limits for its validity.
2,3.2 TFlat Plate Approximation
Expressing the meniscus curvature in terms of cartesian co-

ordinates and using Figure 3 of Appendix 1 as a reference:

a’n
p ! ax® el 28
R 51 ,,Eah’fﬁxz
. dx) )



2
dh e dq dq
then "_dx 2 s = q ah

substituting into equation 2.2 and integrating both sides with

respect to h yields:

-1 h O n?
r

! - = e + Cc sesessee 2.4
(140°)

o

where C is a constant of integration

i i
when h = 0, =0 and C=-1. Letﬂ:(z_o-)2
p

with =0, dh = cot ¥
ax

Thus equation 2.4 leads to:

%
% = -E-H? + Eﬁz + 1 - _""—_1 2 % CRCR NI ) 2-5
4r (14cot™¥)®)
writing this more concisely
Bio _d=% g2 2 |
H 3 + (_4- + U) eeseene 2.6

where g = %

and U = 1-(1+cot2}{)-%

Equation 2.6 is plotted in Figure 2.1 as ﬁ'against % for several
values of ¥ . From these curves it may be seen that little error
arises in assuming that h is independent of r for values of ﬁ
greater than 3.

46

Antonov'  has observed values of ¥ of 10° to 20° for GaP and

Gibbons47 has observed a steady state value for h of 4mm for GaP.

(4] ]
Using ¥ = 15 and = 3 in equation 2.5 yields %,: 71,

Hence r = 16+9mm
Thus the approximation to a single meniscus curve independent of

erystal radius is valid for GaP crystals of greater radius than 16.9mm

19



2.3.3 Range of Values

Having established the range of validity using the meniscus curve
formed by the melt against a flat plate, the range of values of
the meniscus curvature constant, K, will be evaluated.

From equation 16 of Appendix 1:

Sin(B-l-X) = Hz-hz LR R 2-7

H2
2

H -h2
... ‘tan(9+X) = (2H2h2-h4)5 LR ) 2.8
From equations 21 and 22 of Appendix 1, assuming negligible hs

tan © = K(ho"h) cesenee 2.9

Note that ho differs from H only as a function of the contact
angle, ¥ (equation 17 of Appendix 1). As a first order
approximation, equation 2.9 will be modified to include the
contact angle, ¥ .

tan(6+Y) = K(H-h) savesse 2510
Combining equations 2.10 and 2.8 yields:

H+h

K = TR ‘2.1‘1

2(282-n2)?
Re-writing this in the form:

1+W

KH = T '! ceeennoe 2.12
w(2—w2)

Where W = -}-I;- and re-writing equation 2.10 in the form:

tan(0+Y) = KH(1-W) sissees Bals
enables a grarh of Ki against (6 +Y¥ ) %o be plotted (Pigure 2.2).
This shows that over a range of 8+ ¥ between -20° and 500,
KH = 2+06 within 7%. Hence if H = 4.65mm, within this range of

e+Yy 5 K -43mm‘1.

20



2.4 SYSTEM PARAMETERS

The system constants and derived parameters for Ge, Si and GaP are
shown in Table 2.1 together with their error bounds. This is a more
comprehensive version of Table 1 in Appendix 1. The error bounds on
the GaP parameters are necessarily wider than for the other materials
since its physical properties have not been as extensively investigated
as with Si or Ge. Also, values of the temperature gradients G, and

G; are not available for GaP. The values in table 2.1 are therefore
estimates. The surface tension for GaP was not available, but this is
not necessary since an experimental observation was available for the
meniscus height, h .

The error bounds for the various derived parameters are calculated as
follows:

From equation 40 of Appendix 1,

M = M—-— sesssss 214
Om~ €4

if the error in M due to errasing,, e, and g; of (g.s §gp

andSei is S, then

S/U_ = M'SBS 4 M' Sern * M-S gi sesss e 215
BBS agm ag_
This leads to (for worst case errors):
g&. = {{14,&}89”1 *N-Sgi *89 ss e 216
S 6§~8m 5
From equation 27 of Appendix 1:
2
Pi = Trr km Gi B B B N 217

go the error in Pi is given simply by

k G
8_Fi_ = §‘—-m'- + §-—-—j:- LR NN 218
Pi km Gy

From equaticn 14 of Appendix 1:

2
PO = ;?I'o k'.s GO sescenss 219
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Hence:

6P° =6k +5G' essssce 220
P 8 o
o k G
3 (o]

Fron equation 25 of Appendix 1:

2
Pf ='}TI‘O JV,OS esvssee 221
60
Hence;
§_I.’£ =8J + §.0, ' Seasner2at
Pf J /s

The power radiated, Pr’ is given from the heat balance equation at

the interface,

Pr = Pi 'l"Pf het Po esscsse 223
Hence:
SPr =5Pi -I-SPf +6PO esseene 221}
Pr Pi"Pf"Po

The power density ratio, Q is given by equation 41 of Appendix 1,

Q = 2h0Pi eeveveo 225
rOPr
Thus:
6_8 =6h° "'SPi +6Pr sresnse 226
ho Pi Pr

The final derived parameter, §, is given, from equation 44 of
Appendix 1 as:

@ =°C+2Gikmi}__}1(q~1) ‘| emsco0s 227
G k_|ar, (% )2+Q(p+1 )-1 J
(o]

Which leads to:

o

ks Yo Sty

§0 =& %Ak (Giékm-ekESquGikm 5 ksﬂikmSGo) 426,k 6h
0O 8

426,k ((0-1)B(naB~1 o (@1 Ju°B% i~ 1 )8Q)

2
Goks roQ
Where A = ho 71(Q'1)B-

Qr

(o}
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B =(,Ry2 +Q(u+)-1)"" | ehvens 228
(2 ;

The transfer function error bounds may now be calculated from
equations 4 and 45 of Appendix 1:

1
n =£Gokaxv@;’ sosupne 929
roJ/%

A o 56, +8k, 46K 458 457 450
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The large variances on Q, ﬁ »N, § and Ko ere primarily due to the

temperature difference terms, ; and es-ea , the errors being

© -0,
unavoidable due to differences 'betweei li-rge nuwbers. This, together
with the uncertainty on the values of Gm ’Qi ,98 and 9& tends to make
the derived transfer functions rather speculative. The accuracy of the
parameters may be improved however by using the measured transfer
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function. The approach relies on the assumption that the measured
transfer function parameters have smaller error bounds than the most
unrelisble of the derived parameters of Table T2.1. Equetion 419
indicates thatN=.21 rad/min, $=1.14 and K = 45.91 Using this observed
value of N in equation 229 and re-arranging for {) yields a modified
value for § of § =1.59. Using this value of § and the measured value of
§ in equation 231 yields a modified value for Q of Q'=0.951. This is
unrealistic, since as indicated by equation 42 of Appendix 1, a value
less than unity implies an unstable mode in the power to diameter
transfer function., However, the calculation has served to indicate that
the actual value of Q lies somewhe;re below the value of 2,78 that the
analytical derivation indicates. Note that Q is also given by the ratio
of power transfer densities at the interfacé end the surface. The lower
value would indicate that more heat loss occurs at the surface than the

interface. -



TABLE T2.1

Typical parameter velues

System constants G, 2q s, b c,P « oA G,P i
r  crystel radius (em) 1. |* |9 * |9 * N.5 [*

R crucible radius (cm) 2:3 |* |46 |* & LA »

V growth rate (cm/min) 0e17|* |0630 |* |[4033|* [.033|*

J latent heat (J/g) 443 |1 (1800 |1 [1500{10 {500 |10
k_ conductivity (W/em K) 0e2:{1 030 |1 o3 |1 (3 |4

km conductivity (W/em K) 07111 1067 |1 17 3. k7T H

«, density (g/cn’) 503211 |2.3% |1 |het |2 Bt |2

¥ engle of contact (deg) 20 [10 |20 [10 |20 |10 |20 |10
o surface tension (dyne/cm) 620 |5 |720 |5

o gradient veriation factor 15 [33 |15 [33 (145 |33 [15 (33
G, gradient in crystal (°c/cnm) 103 [10 |110 |10 |100 |20 |100 |20
G, gredient in melt (°c/cm) 30 |10 |35 |10 [50 |20 |50 |20
©, fusion temperature (°c) 937 |+3 |1410 | .2 |1470].2 [1470]|.2
©_melt tempersture (°c) 5 | o3 [1430 | «2 [1490].2 |1490].2
98 susceptor temperature (°C) 960 | o5 (1457 | o5 |1545] 5 [1545]«5
©_eambient tempersture (°c) 300 |10 |200 [10 {300 {10 |300 {10
Derived parameters

h_ meniscus height (cm) o [10 [0.6 [10 [.5 [10 [5 o

K mneniscus curvature constant (cm-1) 342 [3s5]|2.0 (35143 [3:504e3 (3.5
p differential temperature ratio 1488/130{1+35 |60 [2.8 (45 [2.8 15

Pi power input from melt (W) 67.0[11 |73.7 |11 [110 |21 |247 |21
P_ power input to crystal (W) 77.7|11 [103.7[11 |9%.2|21 212 |24
Pf power due to fusion (W) 21.5|2 |[66.2 |2 [10.6]12 [23.9]12
P power radiated (V) 10.8[150(36.2 |58 |26.4]167|59.2/169
Q power density ratio 4..96| 171|244 |79 |4017| 19812781200
¢ dimensionless paraneter 0.95/219|147 |51 |1+11|130]4.08151

Transfer function parameters

1. natural frequency (rad/min) 0.58|147[{0.70 |34 |21 |78 |17 |93

§ damping ratio 0419/ 300{020 |124] 40 | 202| 46 |314
Ko gain constant 49 (420]23 35 |40 |310] 35.8]309

% gpecified parametecrs
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FIGURE 21
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FIGURE 2.2
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EXPERIMENTAL PROCEDURE

3.1  ARRANGEMENT OF CRYSTAL PULLER
A type MSR6 pressurised crystal puller was made available by Metals
Research Ltd for the experimental work. This was an RF heated puller,
capable of taking a charge of 250gm. A systematic diagram of the
puller is shown in Figure 3.1 and a picture of the puller in Figmwe 3.2.
As can be seen from the picture, the viewing ports are inclined at
approximately 300 to the vertical which gives a very restricted view
of the growing crystal. Since encapsulation is used, the encapsulant,
3203, very soon becomes opaque thereby obscuring the.interface region
of the growing crystal. Only one thermocouple is fitted, this being
positioned in the base of the susceptor, 1mm from the bottom of the
crucible. The pull rod has a position indicator with s digital read-
out in units of +0238mm and can be zeroed (eg at seed on). A contact
device is fitted which enables contact between the seed crystal and
the melt to be sensed. The pressure chamber is filled with nitrogen
at a typical running pressure of 8::106 N/mz. This pressure is not
automatically controlled but for the duration of a typical crystal
growth run it remains within 5% of its initial value. Crucible lift
and rotation facilities are available although 1lift is not normally
required, and was not used in eny of the experiments. The pull bar
also has 1ift and rotation facilities. Both the crucible and the pull
bar movements are controlled by constant speed servo systems. The
RF power input to the susceptor is controlled by a "Wattmaster"
constant power regulator. This is fitted with a control potentiometer
and may also be remotely controlled by a voltage signal. A closed
circuit TV system exists for monitoring the progress of growth, the
camera is pointed down one of the viewing ports.
3.2 EXPERIMENTAL SYSTEM

3.2.1 Fguipment

This consisted of pseudo-random signal injection equipment., A

special purpose signal generator had been built by the staff of
0



the University of Aston. This provided facilities for generating
binary, inverse repeat binary and ternary pseudo-random sequences.
The characteristic polynomials for the sequences could be
specified. This signal generator required an external clock
signal and this was provided by a Servomex LF141 signal generator.
An interface unit to provide variable amplitude and variable off-
set facilities for the pseudo-random signal generator was designed
and built. These three items are shown in Figure 3.3. A
Solartron JM1861 pseudo-random signal generator was also available.
This had a more restricted range of facilities and could only
Produce binary or inverse repeat binary pseudo-random sequences.
It had an internal clock generator but this had widely spaced,
fixed frequencies.

3.2.2 Choice of Test Signal

The necessity to inject some form of test signal into the system
has been established in Chapter 1. There remains the choice of
test signal to be made. Step or impulse inputs are precluded
immediately in that any attempt to perform a linear system
estimation about a mean operating point would fail because of the
large input needed. (Such a signal injection of sufficient
amplitude to be measurable in the output could well be fatal for
the growth process). Sine wave testing is precluded with a batch
process such as this; numerous crystals would need to be grown
with different frequency inputs just to produce one frequency
response. 'Gaussian' noise injection is precluded by the batch
process limitations on the time that data can be gathered. The
one remaining class of input signal, a pseudo-random sequence47,
is eminently suitable. The crystal growing process is a classic
example of a requirement for pseudo~random signal testing in that
a low amplitude of disturbance is mandatory snd the time in which
data can be collected is limited. However, most of the literature

describing the use of pseudo-random sequences has been on
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1 :
continuous processes49’50’5. Provided that enough data can be

collected during the batch process then there is effectively no
difference between the two cases. However, it is likely to be the
case that in order to arrive at a reliable system estimate more
data is required than is available. An ergodic hypothesis must
therefore be adopted and the results from several runs regarded

as an ensemble, with which the system estimate may be computed.
3.2.3 Model Structure

The crystal growth system dynamics are shown in block diagram form
in Figure 1.3. The only intermediate stage in the dynamics is
that of power to melt temperature. It is possible to perform a
separate identification of this part of the dynamics by relating
temperature changes to power changes. Unfortunately, the other
half of the dynamics, temperature to diameter, is not separately
identifiable. However, its dynamics may be deduced by measuring
the overall dynamics and then subtracting the power to melt
temperature dynamics. Note that if temperature measurements are
made without a growing crystal present, then the diameter to
temperature dynamics will not influence the result. There is
therefore a case for performing a system identification experiment
on the crystal puller without a crystal. However note that the
melt temperature itself is not measurable, although it may be
approximated by the temperature measured at the base of the
susceptor. A further possibility exists, that of performing tests
on the crucible both with and without a charge of GaP and
encapsulant, The thermal capacity of the crucible would be
expected to be increased by the presence of the charge and its
heat dissipation characteristics would be expected to be influenced
by the presence of the 3203 layer.

3.2.4 Test on Crucible Alone

Although an empty crucible was being used (but with normal gas

pPressure and coolant flow rates etc), the dynamics would still be
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expected to exhibit non-linear behaviour due to the mode
dependence of the thermal response . (The crucible is likely to
cool with a shorter time constant than that with which it heats
up). Accordingly, an anti-symmetric sequence was chosen because
of the property of non-correlation with even order harmonicssz.
This would enable a linear estimate to be made of a non-linear
system. The transient of temperature produced by a step-change
in power input had been observed to be settled in 5 minutes. To
give ample time for the system impulse response to have decayed,
a gequence of 10 minutes period was chosen. To provide an upper
identifiable frequency that w;uld reasonably be above any system
noise, a bit frequency of +3Hz was chosen. The sequence was now
defined, since the inverse repeat sequence nearest to these two
parameters has 2(2?-1) bits (= 254). 1In this initial experiment,
there was no limit to the length of data that could be collected.
(Unlike the later experiments, where the data was to be limited
by the length of crystal that could be grown). The pseudo-random
signal generator was coupled directly into the power controller
of the crystal ﬁuller. The peak to peak amplitude was set to 5.25
% of mean power. (This was considerably higher than the change
used for the growth of a normal crystal). The test signal was run
for three complete periocds after a settling time of a half-period
and the thermocouple output was recorded on a chart recorder for
subsequent analysis. (It was thought that the high RF fields
ambient to the crystal puller would make the use of a digital data
logger impractical). The resultant analogue chart recording was
hand digitised on to standard PDP9 punched tape, the thermocouple
output being sampled at the bit frequency of the test signal, and
in synchronism with it. The method of overlapping segment fast
Fourier transformation was employed, (Carter, Knapp and NuttalsB),

to evaluate the mean frequency response function from one period

of inverse repeat pseudo-random signal and from three periods of
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system output. An overlap fraction of 0+5 was used, yielding
effectively five periods of overlapped data. The frequency
response function so produced was then compensated for the effects
of being preceded by a zero order hold, thus providing an estimate
of the frequency response of the continuous system represented by
sampled data. The resultant frequency response function (gain
and phase) is shown in Figures 3.4.1 and 3.4.2. The coherence
function is shown in Figure 3.5. The phase and the coherence
function together indicate a very low correlation between the
input and output signals above +02Hz. The (almost) linear phase
characteristic up to this frequency indicates the presence of a
time lag between the input and output signals. In view of these
factors a transfer function was fitted to the data by the method
of fitting to modulus only, described in Chapter 5. The phase
information was replaced by a negative-going, linear phase
characteristic (initial phase), in order to start the iteration.
The resultant fitted frequency responses are shovm in Figuves 3.6.1
and 3.6.2. The (first order) transfer function that was fitted
was scaled to have units of °C/% change of power and was:
Bl 560 sessess 301
52,085 +1
with a sum of squares of error of fit = 0:061. (See description
of FFIT in Chapter 5). The measured phase characteristic
indicated a delsy texrm of e oBS

3.2.5 Test on Crucible With Charge
A second experiment was devised to measure the dynamics

of the susceptor and crucible with a melt present. It was further
planned to go on to grow a crystal with a test signal superimposed.
Since the first experiment had indicated that frequency components
of the test signal above +02 Hz were not detectable in the output
and the presence of the melt would be expected to lower the natural
frequency of the system, a longer bit period was indicated. The

next increment of bit period that was available on the JM1861 was
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0.1 Hz. This, with the same sequence as for the first experiment,
but peak to peak emplitude of 3% of mean power , gave a sequencé of
duration 42.7 minutes. The sequence was run for a half period, as
settling time, then for a further two periods. The data was processed
in the same manner as for the first experiment except that since only
two periods of data were aveileble, only 3 overlapping segments could
be used?? with an overlap fraction of 0.5. The frequency response
function is shown in Figures 3.7.1 and 3.7.2 and :I:he coherence
function is shown in Figure 3.8. A first order lag was fitted to

the modulus, as for the first experiment, and the delay term was
eveluated from the measured phase characteristic. The transfer
function fitted was scaled to have units of °C/% change of power

end was: H(B) = :.55 escacee 302
49.758+

with a sum of squares of error of fit = 0.120. The delay term was

e 18 mhe pitted frequency response is shown in Figures 3.9.1 and
3+e9+2. The delay terms were evalueted at the lowest frequency in
the empty crucible test sequence,(.00118Hz). The difference between
the measured and the fitted dynamics was assumed to be due to the
delay term. The differences in gain between the two cases are
possibly an indication of the non-linearity of the thermal process,
the larger input signal for the empty crucible giving a lower gain,
A further factor which could increase the gain would be the
jnsulation afforded by the B0, layer, ensbling a higher steady
state temperature to be attained at a given power level. However,
the 3203 would also be expected to influence the time constant of
the system, this is not evident between the two delays of the empty
and full crucibles. It is concluded that the effect of the melt and
3203 is insignificant, the differences in gain being due to non-
linearity. The delay times must be comsidered unrelisble since they

ere based on only 1 observation. The longer delsy time with the

smeller input signal is consistent with non-linear thermal behaviour.
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3+2.6 Test on Crystal Growth

An initial crystal growth experiment was devised to measure the
dynamics between power input and crystal radius. The same
inverse repeat binary pseudo-random sequence was used as for the

tests on the crucible. A crystal was seeded and at a pull speed
of 2em/hr was necked out to approximately 1cm diameter under
manual power control. At this point the pseudo-random input
signal vas applied at 2.62% peak to peak amplitude Input power
control was retained, (with the PRS superimposed), until the
crystal finally broke at its seed-on point 141 minutes after
starting the PRS. The resultant crystal showed no evidence at all
of a diameter perturbation of high enough frequency to link it
with the power perturbation. It was concluded that the bit period
of the PRS used was too short for the dynamics of the cryatal
growth process to respond to it. 1In the choice of test signal, =&
dichotomy of interests exists, in that the low frequency end of
the range should be taken down as low as possible in order to
"illuminate" the dominant modes, while the period of the test
signal should be as short as possible for two reasons:

1. The test signal should, at worst, be short enough to
allow a half period settling time and one full period in
the duration of the crystal run.

2. 1If possible, several periods of test signal should be
accommodated in the crystal length to allow the dynamics to
be separately identified at the beginning and end of the run.

A typical crystal grown in the MSR6 puller could take approximately
three hours to grow (at 2cm/hour). Obviously the smaller the
crystal dizmeter, the longer the growth time but in practice
manual control to produce thin crystals is very difficult, the
system seems to have an inbuilt bias to grow crystals of
approximately 3cm diemeter. The maximum length test sequence

that can be accommodated on the crystal is therefore two hours,

This leaves half & period as settling time and the remaining two
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hours for identification. It has been demonstrated that a bit
period of 10 seconds was too short for the crystal dynamics and
theoretical considerations (Chapter 2) have indicated that a
Nyquist frequency one tenth that given by a ten second bit period
would be adequate, It was thought to be advantageous to use a
ternary pseudo-random sequence. This gave the possibility of
performing a non-linear estimation of the system at some later
date (Barker, Obidegwu54). The overall period and bit frequency
requirements were met by a fourth order ternary sequence with a
bit period of 90 seconds. (Tpis is 80 bits long and hence a
complete period lasts 120 minutes). The magnitude of perturbation
necessary to produce a measurable response was difficult to
estimate, this being limited by the need to operate in the linear
range without impairing the general growth conditions. A further
point in favour of using a ternary sequence is that with a
seventh order inverse repeat sequence, the longest time spent in
one state is 8 bits but a fourth order ternary sequence only
spends a maximum of four bits at an extreme. At this stage, no
further systematic approach could be used to specify a 'safe’
amplitude, so on purely empirical grounds the amplitude was set
at a level that an experienced crystal grower thought was the
maximum possible without causing the crystal to melt off or
freeze out. Thus the next crystal was grown in the same manner
as the first, but with a ternary pseudo-random power perturbation
of 1.5°% peak to peak amﬁlitude. There was very little
evidence of diameter fluctuations. There were visible striae on
the crystal but these were immeasurable by the dial gauge method
(see Section 3.2.7). However, more seriously there was not a
complete period of data available. Lamb and Rees55 have shown
that serious errors are introduced into system frequency response

estimates by truncating or increasing the length of data streams

obtained from pseudo-random sequences so that there was little
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information to be gained from this crystal other than that the
power perturbation was still too small. For the next crystal the
power perturbation was increased to 2.75% peak to peak. This

level of perturbation was satisfactory as a measursble signal was

produced on the diameter profile of the finished crystal.

However, as shown in Chapter 4 there was still insufficient data
available to enable a transfer function estimate to be made. A
subsequent crystal was grown at a slower growth rate and this
yielded enough data to enable a transfer function to be estimated.
A photograph of these last two crystals is shown in Figure 3.10.
3.2.7 Measurement of Crystal Diameter

The profile of the cold c¢rystals was measured by means of a dial
gauge and a lathe. The method is shown in Figure 3.11. The lathe
provided a convenient vehicle for mounting the crystal and
enabling the dial gauge to be incremented along the length of the -
crystal. The probe of the dial gauge was especially ground to a
radius of +Olcm. The dial gauge itself was calibrated in
increments of +003%cmn but the reading could be estimated to -000%cm.
‘Readings were taken along the length of the crystal at intervals
of «005cm, starting at the seed-on point. The measured profile
was then converted to diameter values by measuring the largest
diameter on the crystal with a micrometer and applying a datum

shift to the other profile measurements.
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FIGURE 3.1

Crystal Puller Systematic Diagram
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FIGURE 3.2
Crystal Puller Picture
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FIGURE 3.3 PSEUDO-RANDOM SIGNAL INJECTION EQUIPMENT
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Figure 3.4.2

Frequency Response of Empty Crucible ﬁmwm..mmy
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Figure 3.8

Coherence Function of Full Crucible
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FIGURE 3.10

Crystals Number 3 and 4
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FIGURE 3.11

Crystal Diameter Measurement
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DATA PROCESSING

4.1

THERMOCOUPLE DATA

4e1.1 General Processing

The input signal used for the first two experiments, (power to
temperature runs) was an inverse repeat binary pseudo-random

sequence derived from a seventh order characteristic polynomial:

P(ZJ = 1 0 zs 9 z? seesaan 401
where @ indicates modulo 2 addition.
There were therefore 2(27-1) = 254 bits in each sequence. It may
52

be shown”" that even order harmonics are absent so that any
frequency response estimates produced from the output data can
only exist at odd order harmonics. It is highly desirable to
remove any drift that is present in the output sequen0e52, but the
recommended method, that of data-differencine is wasteful of datza
80 in this case polynomial drift elimination was used. This
involved the fitting of a polynomial to the ocutput data by least
squares regression and using the perturbations about the fitted
curve es the drift corrected data. In this case a first order
polynomial fit was used. Bendat and Peirsol’show that for a
limited amount of data, the spectral resolution varies inversely
with the segment length. However the bias and variance of spectral
estimates vary inversely with the number of segments. There is
therefore a conflict between long segment lengths and large
numbers of segments. Carter, Knapp and Nuttallf53 show how both the
number of segments and the segment length may be increased by the
use of overlapped fast Fourier transform processing. This method
together with Hanning windowiné%;was used to produce averaged auto
and cross power spectra from which an averaged frequency response
estimate and a magnitude squared colierence (MSC) function for the

system were calculated (see Chapter 5).
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4.1.2 Errors

The errors involved in the estimation of a frequency response
function may be categorised into two broad types: 1. Bias errors
and 2, Random errors. Bias error is illustrated in Figure 4.1.

It arises due to the unavoidable use of a finite width spectral
window which can be caused by some or all of the following reasoégz
1. Inherent bias in the estimation procedure. 2. Bias due to
false linearity assumptiona; but note that the frequency response

A

estimator used, A(f) = & (f) : gives a least squares optimal

f
xx

estimate of a non linear system. 3. Bias already present in
spectral density estimates. 4. Bias due to measurement noise

at the input. 5. Bias due to inputs correlated with the test
signal. Errors from the first cause are usually neglible compared
with errors from the other causes but it can be shown that

E[ﬁ(f)] —=H(f) as either n = 2B,T —s00 or 2{;—@1 if no
other bias errors are present. (Eﬁﬁtiﬂ = expected value of

ﬁ(f), n = number of degrees of freedom of each estimate,

B, = estimation bandwidth, T = 1length of data). Errors from
source 2 may be minimised by ensuring the linearity of the process
being measured by restricting the amplitude of perturbation.

Source 3 may be minimised in a similar manner to 1, by using a
narrow enough spectral window to accurately follow any spectral
pPeaks in the power and cross spectra. The fourth source is perhaps
rather obvious, in that if an estimate is made on the wrong
assumption that the spectral density of the input was higher than
it actvally was, then the estimate of the system frequency response
will be biased downwards by about the same amount. The final
source of bias errors is in some sense the opposite of 4. in that
it is due to noise present at the input that is not measured. If

this noise is completely uncorrelated with the test signal then no

bias errors will result. (Random errors will however).

Sk



Barker and Davy52 show that in the absence of noise, system
frequency response estimates obtained by the use of pseudo-random
signals are deterministic, as opposed to estimates made by using
random noise. This feature eliminates the need for large sample
sizes and frequency smoothing techniques as described by Bendat
and Peirsol’®, Errors that are still present can be classified
in five types:

1« Input errors, where for instance the input PRS is
modified by the input transducer. In this case, because
the power perturbation is a relatively 'clean' signal and
the bit rate of the PRS is far below the cut off frequency
of the power controller, this source of error can be

neglected.

2., Output errors. These are principally due to aliasing.
A general rule is .r_z:j.\anen52 that errors due to this source
will be neglible if ]H(fj of the system frequency response
is decreasing at 40dB per decade for w ;zfif‘. A preferable
method of aliasing reduction would be to oversample, then
use a low-pass digital filter and finally re-sample at the

required frequency.

3 Noise errors. This includes the effects of disturbtences
and quantisation error. (In the crystal growing context,
disturbances are likely to be the largest source of error).
The magnitude error as a result of noise will be greatest at
small phase estimates, while the phase error will be greatest
at small magnitude errors. The disturbances in a crystal
growing system are due to numerous factors, but are virtually

impossible to quantify.

4. Drift errors. These will produce bias errors, but are
easily avecided by using drift correction techniques on the

raw data.

5. Non-linearity errors. As mentioned before, these are
minimised by restricting the amplitude of the test signal
and further reduced (avoiding even order non-linearities) by

using an anti-gymmetric test signal.
The noise errors can still be reduced by using more than one

period of data for the spectral density estimates and averaging,
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4.2

or, alternatively if several separate data streams are available,
by adopting an ergodic hypothesis and averaging spectral
estimates for each of the data streams to increase the number of
degrees of freedom of the resultant frequency response estimate.
This second method is preferable because it does not increase the
estimation bandwidth, B, and this has been shown to be desirable
to reduce bias errors. Be is a parameter that needs to be chosen
with care to provide an optimal trade-off between random errors
and bias errors. The overlapping segment method of Carter et a1
falls into this second category. However, because the segments
are overlapped, then the estimates produced from each segment are
not entirely independeht. A purely heuristic approach indicates

that the number of degrees of freedom will be increased by a

factor p:
where P = m(1-q) essesee 405
with m = number of overlapped segments

overlap fraction

CRYSTAL DATA
4.2.1 Crystal Time Linearisation
As described in Chapter 3, crystal diameter measurements are
available at equal sample spacings a2long the length of the grown
crystal. The only datum is the seed-on point and even this is
subject to an uncertainty of Sn. Before any frequency domain
processing can be contemplated the diameter samples, D(%), must be
converted into diameter samples at equal time intervals, D(t).
Figure 4.2 shows the interface region of the growing ecrystal.

L = melt level at which the crystal was seeded and growth
commenced

7 = present position of the seed from L

y = distance of the interface from the seed

M = présent melt level position from L

r = present crystal radius

R = crucible radius

BY in.spection, y = 1‘1 + M L h tses s 406
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.gzdndeh

. dat = at dat "'H X 407
now %%" is the pull rate, v , which is constant during the
growth cycle
aM (dy , dn
at is the melt level drop rate, = q(dt dt; esssess 408
2
with qQq = 32& eessces 409
R /Om

where (Os = density of solid
Om = density of melt

Now it can be shown from the meniscus geometry (Chapter 2), that

dr = dy K(H-h)
dt dt LN 410

where = meniscus curvature constant
= Height to vertice of meniscus curve

K
H
d Ed_r.; . K
d

hence t dy at trssvnae 411
dh _M
substituting for T and into equation 407 and re-arranging
for —-yields:
(-1 (1-q) __.d_( )
dt d( [ EE R R NN 412

In a short time interval A t, the distance through which the pull
rod moves is VAt and from Figure 4.2:

A = (1-q)|:3y-%ﬂ{] casaren A1y

where A, is the change in surface slope, %§ over the interval.
This comprises an algorithm for computing the incremental slice
thickness. N

The summation Z = égiiaqj gives a quantity which is directly
proportional to the crystal growth time. The next part of the
algorithm is required to divide Z into m equal divisions where m
is the recuired sample time interval. This process is illustrated
in Figure 4.3, Observe that %—does not in general yield a sample
interval that is in synchronism with the sample interval of = M.
Linear interpolation is performed hetween the nearest two points
of this function to give the sample number at which the diameter
is required. Again, in general this sample number will be non-

integer. A further linear interpolation is performed on the
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measured crystal diameter to yield the required diameter at the
linear time sample point. The flowchart and graphic illustrations
of the time-linearisation algorithm are shown in Figure 5.6.

Some special points about equation 413 need emphasising. The term

A is in effect a second derivative and as such is liable to be

s
subject to high noise levels unless special precautions are taken.
If% As > AY, then a negative slice thickness is computed,
implying that crystal melt back has occurred. The effect of this
on the time linearisation algorithm would be to produce a
discontinuity in the modified diameter profile. This is unavoid-
able since if melt back had occurred, information would have been

: lost and it would be hardly surprising that the algorithm could
not replace it. Maximising A y minimises the danger of a computed
melt back for any particular slice but A y cannot be increased
indefinitely as resolution would be lost. An optimum value of Ay
must therefore exist, large enough to preclude melt back but small
enough to maintain the bandwidth of the resultant diameter profile.
The crystal diameter measurements that were available had been
made at as close a spacing as possible and were spaced at +0051cm
along each of the useable crystals. This was far higher than the
pseudo-random ternary sequence bit rate demanded and hence gave
the option of low pass filtering and then re-sampling before time
linearisation. This is a highly desirable operation to carry out
in any case to reduce aliasing in subsequent speciral estimates.
The second derivative term, A, needs special attention, as
indicated, to minimise the noise that will be amplified in the
derivative operation. Accordingly a Lanczos 'low noise' digital
differentiator was used. This is described by Kuo and Kaisersr.
Strictly, an epproximation is involved in assuming that the change
of %% over a time interval At is given by the second derivative

of r with respect to y. However this is only a second order

errvor, it could be iteratively eliminated by computing a better
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estimate of A, from the time linearised profile that was
produced using equation 413, However the error was considered
small enough to be neglible. A seventh order Lanczos filter was
chosen, having a differentiator cuttoff f;equency of «15f . The
crystal perturbations in the frequency range of interest were
therefore differentiated while the higher, (noise) frequencies
were attenuated. Second derivative action was achieved by passing
the crystal data through the differentiator twice. Since the
Lanczos low noise differentiator is & non-recursive filter and it
is not being used on 'on line' data then it is possible to centre
its impulse response about zero time. The filter will not then
produce any phase shift between the input and output sequences.
This is the same principle as was used for the more conventional
low-pass digital filters that were designed within the DPPP soft-
ware package. (See Chapter 5). It was found that in order to
avoid negative slice thicknesses being computed from equation 413,
the slice thickness, Ay needed to be approximately three times
as great as the basic, measured crystal slice., In summary

the time linearisation strategy that has evolved is as follows:

1. Low pass filter the raw crystal profile
2. Re-sample and perform time linearisation

3 Low pass filter and re-sample to give crystal samples
at bit rate of FRS.

while using a lowpass second derivative of the crystal profile in
the time linearisation algorithm.
4.2,2 Time Synchronisation

Once the linear time profile has been produced, the problem remains

of synchronising it with the injected PRS. Re-arranging
equation 406:

n = y=-M4+h seseese 414
The time from seed-on to the start and finish of the PRS is I
accurately known.

Let M, = grown crystal mass and g = melt density
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then the volume of liquid GaP removed from the crucible during
growth, VL is given by:

- Mc sevsnee 415

Cm
It has been shown in Appendix 2 that the depth of liquid in a

A3

round bottomed crucible is given by:

3 2
hc - 3Rhc + BVL = 0 sessesnne 416

m
Also, from the geometry of the crucible, the maximum depth possible
in the curved part is given by:

A

h = (2 -\3)Rr

c

giving a maximum volume in the curved part of:

- 3

vV, = ILR(343-5) sonwene 417

3

Hence the depth of melt in the crucible may be calculated in two
stages, that in the curved portion, and the remainder occupying
the cylindrical part. Similarly, M, the drop in melt level that
occurred as a result of growing the crystal may be calculated. If
the interface height, h is assumed neglible compared with the
length of crystal, then equation 414 may now be used to calculate
the pull bar movement, . The time taken to grow the measured
length of crystal is now established since the pull bar lift rate
is controlled at a constant value. The time axis of the diameter/
time curve may now be calibrated.
4.2.3 Crystal Results
The measured crystal profiles for crystal nos 3 and 4 are shown in
Figures 4.4 and 4.5 respectively. The intermediate stages involved
in the time linearisation process are shown in Figures 4.6 and 4.7
respectively for crystals nos 3 and 4. The relevant parameters in
the data processing operations are shown in Table 4.1. The final
decimation factors were set at integers which allowed the initial
decimation factors to be as near to 3 as possible for reasons

discussed above. (The computer programs were arranged to allow
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non integer decimation within the time linearisation program but
only integer decimation within the digital filter program). As
can be seen from the table, the length of data available for
crystal No 3 was insufficient to accommodate a complete sequence
of the PRS. It was reluctantly concluded that there was little
point in proceeding any further with the data processing for this
crystal. The final 80 data points for crystal No 4 were drift
corrected by a second order polynomial curve fit and a transfer
function, H(s) was calculated using the 'SPECTA' package as
described in Chapter 5. (A Hanning window was used and zero order
hold correction was applied té the resultant frequency response).
The frequency response is shown in Figures 4.8.1 and 4.8.2, The
fitted curves shown in these graphs are the result of 'FFIT! (see
Chapter 5), fits to modulus only. The transfer function was found

to be:
* 71707

14579+038-26201s°

H(s) = ssesees 418

with a sum of squares of error of fit = +00851
Note that H(s) has a right hand half s plane pole. This was
considered to be unrealistic since the crystal did grow in a quite
stable manner. It was concluded that the apparent unstable trans-
fer function that was fitted by the 'FFIT' algorithm was purely as
a2 result of excessive variance on the transfer function,
particularly at high frequencies. A possible contribution to this
variance was made by the fact that the data used for the Fourier
transform was not settled. (The recommended half period settling
time before data was collected could not be met due to lack of data)
Although this factor threw doubt on the validity of the data, an
attempt was made to fit a more meaningful transfer function by
truncating the points on the modulus curve above the seventh. (At
this point the variance becomes visibly large). The resultant

frequency responses together with fitted transfer functions,
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(" (s)) are shown in Figures 4.9.1 and 4.9.2.

with H’(S) = '7455 ssensee 419
14641+538478,821s°

with a sum of squares of error of fit = +00244.

The value of .7455 for the gein has units of inches diameter

per 1.375% mean power. When normalised to cm/cm raedius/per unit
power change, a value for Ko of 45.91 is obtained. By comparison
with the standard form of second order transfer function,

F(s) =

k™
W +25WS+5
respectively are obtained. By comparing the measured phase lag

values for 3 and ), of 1.14 and 0.214 rad/min

at .000972 Hz with the phase lag given from the fitted iransfer
function at the same frequency, a phase difference of 146.4°
remains, If this attributeble to dead time then this term is
e % At the growth rate used, this represents 0.26 cm along
the crystal.
4.2 Crystal Conclusions.
This magnitude of dead time is feasible since it may have
contributions from three sources:
1) Uncertainty on the exsct seed-on position on the cold crystal.
2) Dead time between power changes and temperature changes in
the melt. (The power to temperature experiments heve indicated
& dead time of up to 90 seconds, but the temperature measured
was not in the melt itself).
3) A possible delay in the temperature to radius dynemics.
Most of the dead time is likely to be the result of source 1), as
the seed-on position could only be identified to within 0.2cm.
The measured natural frequency of .21 red/min is 2,% above the
theoretically predicted value, well within the erTor bounds of
the prediction. The damping factor is 145% ebove prediction and
the gein constent is 28% above. The theoreticel transfer function

has been derived on the assumption of small deviations ebout a
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mean radius. However the crystal that was grown exhibited
comparatively large deviations about a mean. The two sets of
Parameters for GaP shown in Table T2.1 indicate the likely change
of parameters with changes of radius. These changes are
comparatively small but the violation of the small signal
assumption is more serious since other parameters, assumed
constant, will vary. For example, the gradient variation factor,
o, that relates the crystal temperature gradient to the radius
implies that the gradient increases with radius. This will not
be the case because the crystal will be heated more by the walls
of the crucible as it grows larger. This will tend to reduce the
gradient. Similarly, the power radiated from the interface will
be influenced by the aspect of the interface to the walls of the
crucible. The radiation from the interface will also be influenced

by the depth of B 0, at eny instant. Lerger radii of crystal will

203
cause & deeper lsyer of encapsulant, further tending to reduce the
power radiated and also reducing the orystal temperature gradient.
The effect, apart from that reported by Rygren""} where the crystal
shielding causes & rapid reduction in radius, will be to decrease
the damping factor. ZEquation 233 indicates that the gain, Ko will
be increased under these circumstances in that Go and em-ei will
be decreased. This is possibly an explanation of the observed
difficulty of achieving uniform radius crystal growth in
encepsulated systems under manual control. With the increased
gain and reduced damping it is very easy to over-correct a large
crystal.

To summardise, the transfer function that has been identified from
only one set of results is well within the error bounds of the
predicted transfer function. However the prediction is necessarily

widely defined due %o lack of parameters. The accuracy of the

derived parameters has been improved by using the measured treansfer
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function (Section 2.4). The qualitative effects of deviations
from the assumptions made in the analysis have been examined.



TABLE T4.1 Crystal Processing Parameters

i Parameter

Crystal 3 |Crystal 4

Number of samples at «0051cm 1290 1025
Pull bar speed (cm/hr) 2+3919 14857
Mass of crystal (gm) 245 228
Drop in melt level (cm) 1+685 16557
Time represented on linear time graph
(min) from | 2548 62+ 40

to 136453 182.52
Number of samples per PRS bit 172 128
Pre filter cuttoff E{;—zg 145 156
Initial decimation factor
(in linear time) Ie44 i
Final filter cuttoff E%%; 1 «125
Final decimation factor 5 4
Time linearisation 'K'(mm-1} L.3 L3
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Figure 4.1 Illustration of Bias Frrors
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Figure 4.3 Time Linearisation Interpolation
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COMPUTER PROCRAM PACKAGES

5.1  GENERAL DESCRIPTION
All the programs used in this project were assembled into 3 distinct
packages. They were designed to run on a PDP9 with 24k of store and
the following peripherals

Teletype

Incremental Graph Plotter

3 Dec-Tape units

Paper tape punch and reader

D-A convertor (2 channels)
The 3 packages perform

a. General data manipulation
b. Spectral analysis of time series
c. Freguency response calculation and

transfer function fitting
The 3 packages were designed to interface data into each other by
means of paper tape or magnetic tape. For example, a frequency
response function produced by b. could be output to a file on

magnetic tape which could then be accessed by c.

5.2 DPPP - GENERAL DATA MANIPULATION PACKAGE

This consists of a short main program to read in data and enable a
choice of subroutines to be made. The flowchart for DPPP is shown
in Fig 5.1. The data may be input from any of the PDP9 input devices
listed in section 5.1. Data is read into an array which may be
rotated to enable, for instance, a mid-section of the data stream to
be processed. With the core available, storage for 1300 single
precision data points is possible. A further array of 200 is
available for storage of digital filter coefficients or polyncmial
coefficients. Program control is effected by means of conversation
with the teletype and by means of the accumulator switches. The sub-
routines are selected via the teletype and after their execution a

further subroutine may be selected.
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The subroutines available are

DRITF -'adds polynomials to data stream

FILTUR = non recursive, zero phase digital filter

FILD - non recursive, low pass digital filter design progfam

POLLY =~ fits curves to data by least squares regression

ENTRER - enables entry of coefficients

DIMOD3 - crystal time linearisation program

PUTOUT - general data output program

TRANS - transforms low pass digital filters to highpass or
bandpass.

5.2.1 DRITF
The flowchart for this subroutine is shown in Fig 5.2. Note that if
this subroutine is selected immediately after loading DPPP, no poly-
nomial coefficients will exist. To avoid this, DRITF checks for the
number of coefficients, N, to be non zero. If this test is not
satisfied, an error message is output on the teletype and control
returns to the main DPPP program. The drift polynomial may be added
or subtracted from the data stream, the polarity being selected by
means of the teletype.

If the data stream is a sequence Exg , of m elements and the drift
polynomial is represented by a sequence EY%, of n elements in
descending order, then the drift correction is effected by the
algorithm

n-i

n
I ) PR for j=1,m cwn 501
J iy

5.2.2 FILTUR

The structure of this program is shown in Fig 5.3. The coefficients
are stored in the same array as was used for the polynomial
coefficients in DRITF. They must either be entered by hand or calcu-
lated with program FILD. The structure of FILTUR is a non-recursive
digital filter. The weighting function is convolved with the data
stream. A special feature of this particular implementation is that

the filtered sequence has zero phase shift at all frequencies. In a
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Physical system this would be unrealiseable since it requires the
existence of a unit advance operator (z). In this off line case
however, the entire data sequence is available simultaneously so that
at a given point on the sequence, data can be both predicted and
recalled. The convolution of the filter weighting function with
the data stream is illustrated in Fig 5.4. Note that at each end of
the data stream the weighting function overlaps into zeros, so that
the filter has a settling time of half the width of the weighting
function at each end of the data stream. In order to minimise the
storage necessary, the program uses an auxiliary storage array of the
same length as the filter coefficient array. This temporary storage
is filled up from the original input data and convolution takes place
between the temporary storage and the filter coefficients. The
original data is replaced point by point as the temporary data frame
is scanned along the input data. This method effectively avoids
having storage for an extra 1300 points. When the convolution is
completed, the filtered data sequence may be re-sampled at every Lth
point. L is specified on the teletype and the new length of the data
sequence is output on the teletype.

5.2.3 FILD

This program designs a digital filter approximation to an ideal low
pass frequency response. The design is by the 'window' method, as
described by Ackroydﬁ? For convenience, a brief description of
the method is given here. An ideal lowpass frequency response is set
up with a cut-off frequency fc, assuming the approximation to be
composed of n points and to have a clock frequency of f. These

3 parameters are specified during conversation. This frequency
response is then transformed to the time domain using the fast fourier

transform algorithm by Singletongg

This transformed frequency
response is now the 'ideal' impulse response of the filter. However,

this impulse response is necessarily truncated since it follows from
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the Fourier transformation that the transform of a finite function
will be an infihite function. The effects of this truncation are that
the stop band attenuation of the filter will be limited and the
frequncy response will have a ripple superimposed on it. Both these
effects may be ameliorated by multiplying the truncated impulse
response by a window function. By this means it is possible to
improve the stop band attenuation at the expense of roll-off rate.

For a given window the stop band attenuation is improved by increasing
the width of the window (up to a limit of n). Of the 3 windows avail-
able within this program, the Blackman provides the greatest stop-band
attenuation and the rectangular the converse. The Hamming window
falls mid way. The window type and length are specified during
conversation. The resultant windowed impulse response is the final
set of coefficients for the digital filter. They are stored in array
COEFF for use by other programs. The coefficients are also copied
into a temporary storage array which is then transformed back to the
frequency domain. The gain and phase response of the actual filter
are output on the graph plotter,so that a comparison can be made
between the ideal required and the actual realised frequency response.
Note that a non-recursive digital filter will always have a phase
characteristic that is linear with frequency since it is composed of
a linear sum of weighted signal components that have been passed
through unit delay (or advance) operators. It is therefore possible
to shift the impulse response of the filter so that it is centred
about zero time and hence produce a phase characteristic that is

zero at all frequencies. The flowchart for FILD is shown in Fig 5.5
5.2.4 POLLY

This program fits polynomials to data by least squares regression.

The maximum order of polynomial is ten. This is specified via the
teletype. If n data points are to be fitted, the independent variable,

X,ranges from 1 to n. The fitted coefficients are output on the
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teletype and stored in array COEFF, in descending order, fo; further
use. The actual least squares regression is performed by sub-
routine STPLRG which is an adaptation of the Honeywell program
STPLRG

5.2.5 ENTRER

This program permits entry of coefficients into array COEFF for use
by other programs. The number of coefficients is requested via the
teletype and they may be entered via either the teletype or the
paper tape reader, the particular device being specified on the
teletype.

5.2.6 DIKOD 3

This is a special purpose data transformation program intended to
convert crystal diameter measurements made at equal distance incre-
ments along the crystal into diameter measurements made at equal time
intervals while the crystal was growing. The flowchart for DINCD 3
is shown in Fig 5.6. Note that as well a2s the measured diameter
profile of the crystal, the program also requires its second
derivative, this being in a file on magnetic or paper tape in the
same format as the diameter. The algorithm used for the transform-
ation is derived in the chapter on data processing. Note that in
order.to allow a data output representing diameter at time increments
of nAt it is necessary to be able to specify a non-integer data
sampling interval. The operation of this facility is illustrated in
the flow chart. The algorithm is very noise sensitive, in that if
due to noise on the second derivative, the slice thickness is
calculated as being negative (ie computed melt back), a discontinuity
will be produced on the output crystal profile. For this reason it
has been found to be necessary to use as large as possible an
incremental slice thickness, so that random noise does not produce
negative thicknesses. The program uses internal storage for all

calculations, after completion of time linearisation, the original
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data input array is over-written with the modified profile and its
length variable set to the new (re-sampled) length.

H5«2.7 . FUTOUT

This is a general purpose data output program. It outputs the data
in array DATA (the length being automatically specified by the
variable IR). It allows inspection of the data on a 'scope
connected to the D-A channels of the PDP 9 and/or on the graph
plotter. Initial option selection is via the accumulator switches,
as shown in the flowchart of Fig 5.7. The normal operating procedure
within DPPP would be to set up the accumulator switches before
selecting PUTOUT. If 'Output Data' is selected, PUTOUT requests on
which data channel the output is required. If Dectape i= selected
then the filename is required. Data is written in serial form on
the specified device (ie teletype, paper punch, Qr Dectape).

5.2.8 TRANS

This program transforms the coefficients of 2 non-recursive, lowpass
digital filter into the coefficients of either

e Highpass
e Randpass
5 Bandstop

non-recursive digital filter. The transformations used are due to
Constantinidfméa The coefficients of 2 in the lowpass digital
filter are transformed to F(z).

For each of the 3 cases respectively

1. P(3) a =&
2, Plo) = E°
5, F(z) = z7°

Note that in the case of the bandpass and bandstop transformations
the number of coefficients are doubled, albeit by the insertion of

zero valued coefficients.
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If FN = DNyquist frequency of lowpass prototype
FL = Cut-off frequency of lowpass prototype
FO = Centre frequency
F1 = Lower frequency

F2 = Upper frequency

Then for

Highpass FO = FN - FL

Bandpass F1 = FN/2 - FL/2
F2 = FN/2 + FL/2
FO = FN/2

Bandstop F1 = FL/2
F2 = FN - FL/2
FO = FN/2

These 3 transformations are illustrated in Fig 5.8.

5.3 SPECTA - SPECTRAL ANALYSIS PACKAGE

SPECTA consists of a main program, GHOST, which is responsible for .
inputing data, calling the processing subroutines and enabling the

output of data. The flowchart for GHOST is shown in Fig 5.11. In

general the package computes 5 functions, these are

a. Power spectrum of data file 'A' (decibels)

b. Power spectrum of data file 'B' (decibels)

Co Cross power spectrum of 'A' and 'B' (decibels and degrees)
d. System frequency response based on input of 'A' and output
: of 'B' (decibels and degrees)

Ee Coherence function of input and output of system
The data may be input from the teletype, paper tape reader or from
Dectape, the particular device being chosen by selecting a data
channel via the teletype immediately after program loading. Four
different output devices may be selected at run time. Selection is
by means of the accumulator switches. The 4 output devices are

a. Scope output
b. Graph plotter
Co Paper tape
d. Dectape.
SPECTA is dimensioned to accept data files 'A' and 'B' of 508 real

numbers each.
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The kernel of this package is a fast Fourier transform algorithm by
Singleton?g This is a mixed radix transform and can handle data
streams containing prime numbers up to and including 127. Data is
read into 2 arrays, XIN and XOUT. The data remains untouched in these
arrays throughout any program function, until new data is read in.
Temporary internal arrays hold the data that is actually transformed
and allow the phase of the input and output data streams to be
adjusted. (To enable any system dead time to be trimmed out before
transformation and hence allow better resolution of the phase
characteristic).

5e3a1 POWER SPECTRA - Gxx’ ny, ny
If U(k) and V(k) with k = 1, n are arrays storing n data points of the
system input and output and U,(k1) and V’(k1) with k, = 1, % are the

fast Fourier transformed arrays, then let

k, =n+2-k et e
A, = e5(U7(k,) + U (x,)) e ER
B, = 50V () - V(Ky)) asaxags Sk
K, = o5(v7(ky) + v (k,)) T
?k1 = +5(U7(ky) - U (k,)) osies. 506
then
2 2
Gxx(k.!) =Ak1 +Bk1 essesss 9507
e T I 508
Dot K .
CpfE Kb Y B cevsnes 509
Gl =T 4 - e B, i B0

For odd harmonics k1 increments from 2,'% by 2, for odd and even

56
harmonics k1 increments by 1 (reference Bendat and Peirsoll
The power spectra are converted to dB and degrees before output on to

the graph plotter, paper tape, magnetic tape or the C.R.0, as specified.
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Be sl SYSTEM TRANSFER FUNCTION
Again, following Bendat and Peirsol?6 the system transfer
function, H(f) is estimated from the input power spectrum and the

cross power spectrum.

H(f) = EH_(_f) ssenies J11
()

where G__(f) and G__(f) are smoothed estimates.
yx xx

Hence the gain and phase factors of the system transfer function are

given by
e R T ) teieees 512
Gy (0)
g(r) - otan ﬁG xlmg el
o=

5.3.3 COHERENCE FUNCTION

The ordinary coherence function between 2 stationary time records is

defined by,s6

= 2

o) = o) e
I EIINE))

In terms of digital estimates of power spectras,
2

A 2 g (f)

Xk K lyx kI LR B L 515
Cox (£ )Gy (£y)

Note that the spectras must be smoothed estimates, ie derived from
more than one block of data. Otherwise the coherency will always be
unity. The computed coherency may be output on the graph plotter,
paper tape, magnetic tape or the teletype, as before.

The structure of the program permits the use of overlapped fast
Fourier transform processing, which together with the use of a
Hanning data window reduces the variance of the coherency estimate for

53
a given amount of data. (Carter, Knapp and Nuttall)
Heded HANNING WINDOW
The measured data may be multiplied by a Hanning window as shown in

Fig 5.13 and defined below
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W(nT) = -5(1-005(3-32)) 0 < nT<a
W(nT) = 1 a € nT<(b-a) dereasy 96
W(nT) = - 5{] -Cos E:zTg (b-a)g nT<b

The percentage taper, P may be specified and is defined by

p . J100(2a) et Bl

b
5.3.5 ZERO ORDER HOLD CORRECTION
Since a continuous system is being represented by a sampled data
sequence, an implicit zero order hold is introduced at the system
input. The subsequent estimation of the overall frequency response
function will therefore include the frequency response of this zero
order hold. An option is available within the package to remove this
modification to the actual frequency response.
5.4 FITF - FREQUENCY RESPONSE CURVE FITTING PACKAGE
This package has 2 inter-related functions

5 To prcduce a graphical output of frequency response, (gain

and phase) from a system transfer function

2, To fit transfer functions to frequency response data.
One of these modes is selected via the teletype immediately after
program loading is completed. The overall flowchart is shown in
Fig 5.9. The major segments of this flowchart are described in the
following sections.
S«4.1 FREPIC
This subroutine calculates the modulus and phase from transfer
functions which may be specified in any of 3 different forms. These

are a. Ratios of polynomials in s
b. Poles and zeros with a gain constant

(. Time constants with a gain constant
Frequency responses are calculated at 200 logarithmically spaced
frequencies between limits that are specified on the teletype. Where
the characteristic polynomial of a transfer function is input, a

check is made to see if the Routh stability criterion is met, If it
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is not (ie RH half poles exist), then a message to this effect is
output on the teletype. Computation then proceeds as normal. The
actual frequency response computation is performed by subroutines
QUFREQ, given polynomials, or PZFREQ given poles and zeros or time
constants. Conversion from real and imaginary components to modulus
and phase is performed by subroutine RIVMP. There is storage for up

to 10 numerator coefficients and 10 denominator coefficients.

5.4.2 QUFREQ

This subroutine accepts arrays of coefficients for the system transfer
X, (s)

%)

accepts a frequency array, of the frequencies at which the transfer

function in the form where X are polynomials ins.. It also

function is to be evaluated. It calculates the vector numerator and
denominator separately and then combines them into a rational vector

quantity at each frequency. If the system transfer function is

defined as
I
a
H(S) = x = 1=0 JS ssssnee 518
¥
G S asd
j=o ?
- 3 23
then Re(x1) = j%a ("1) 32jw LR A 519
n 3 2j+1 _
Im(x1) - j%é (_1) a2j+1w sesene 520

(similar expressions for Xz) '
Re(X;) R (X5) + 1 (%) 1 (X,) e k2

R()° + 1 (y)°

R (%) In(X) = 1 (%) R, (%)

2 2 LR R ) 522
Re(X5)" + I.(Xp)

I, (B) =
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5+4.3  PZFREQ

This subroutine accepts arrays of poles and zeros and a frequency
. s

array. It produces arrays of gain and phase in dB~ and degrees.

If the transfer function is in the form

n
A kJE(s+aj)

| }ft(s+bj)

the subroutine calculates modulus and phase thus

sesen e 523

H| = 10%2 log, oK + ﬁlog,lo(ag + w2) - ﬁlogm(bg + u;?)g
( j=1 j=1
: ssvesse 52k
(n b, )
arg(H) - J%Eéatan(f-) - gatanf%)gg tsseess 525
: J

5¢4.4 FFIT

The basis of this subroutine is a complex curve fitting algorithm as
described by Sanathanan and Koerner61, which is itself an iterative
form of the algorithm described by Levyso. Both these forms suffer
from the disadvantage that transfer functions are fitted to vector,
(real and imaginary) frequency responses. Their convergence is
seriously affected if the frequency responses are corrupted by noise,
which generally has a greater influence on the phase characteristic
than the modulus. A better fit would be obtained if fitting to
modulus cnly were performed. It will be shown that an analytical
solution for the minimisation of the cost function of sum of squares
of error does not exist for the case of a fit to modulus only,
However the method of Sanathanan and Koerner has been adapted to

provide an iterative method of fitting to modulus only,
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To recap on the approach of Levy
If the measured frequency response is
F = R+jI E R 526

and the approximation to the measured frequency response is

el H LRCIC I B 527
Ha D

with N and D being polynomials in §.
Under steady state conditions, replace S by jWw and re-group the

polynomials thus

EPSPILNr SN —ht)d 1
it o (&,-A,W +h, W J+iw (4, AgW “+A W ) veeee 528
i (B.-B L.J2+B wh- <+ )+jW(B,-B W48 us-)

6 2 4 el S 5
N = =< + jWEB >
D 0' + jw'r 8 s a0 5 9

at each freguency, the error of fitting is therefore
E = F e H LI 530
o+ JW

E = (R"‘jI) — (0__‘_ jw._c s esese 531
DE = RO‘-C&J'EI—OC +j(w‘tR+O’I -'QJ,E) CR R 552

Define E as the sum of squares of 516, summed over all frequency points

B = éBRkoic._wk Ticlx '“k)z + (Wi Tk Rk * Ikcit_{*‘kﬁkﬂ
esescss 533

The unknown coefficients of the fitted transfer function may now be
derived by differentiating E with respect to the coefficients and
equating to zero, thus minimising E. Observe that a set of linear
simultaneous equations results from this procedure.
Note that in equation 532 it has been necessary to multiply out by D,
the denominator polynomial. The result of this is that the error
criterion that is minimised is in fact a weighted error, with a
greater weighting to the higher frequency measured frequency response

o show how this weighting may be

points.Sanathanan and Koerner
'
effectively removed by minimising a modified error criterion E , and

using an iterative technique.
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E . i((Bk“k“’fcliclk"oﬁ)z*(“itknk*lkdk'“i:’i)z)w@ coves 534
k=0

where

1

ka = D 2 .-.-.;-535

with L being the Eteration count.

Observe that for both Levy and Sanathman and Koerner the crucial
step in obtaining linear simultaneous equations to solve for the
polynomial coefficients has occurred at equation 532. If a fit to
modulus was required, then the error at each frequency would be
defined as the difference between the moduli of the measured and

fitted frequency responses, thus

gl s I¥l - || ixhsany DB

S s P2 ol o ot wal ™ sy, 537

there is no way that g”can be weighted to yield, when differentiated,
a set of linear simultaneous equa&ions. A hill climbing technique
could be used to solve for the unknown coefficients. Since the
dimensionality of such a hill climb could scon prove unweildy for
high orders of fit, a new iterative technique has been developed.
The error criterion of equation 534 is used, but with modified
"measured" frequency response points, ie R£ and Ii. After the first
set of transfer Ffunction coefficients has been produced, via
equation 534, the phase information implied in R, and Ik is updated
to the phase implied in H (preserving the modulus). This is
illustrated in Fig 5.10. It has been found that convergence of the
algorjthm is improved if the initial phase information of the
measured frequency response is entered as a linear phase

characteristic, from O to —1800, even for higher order fits.
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5.5 ILLUSTRATION OF OPERATION
The operation of FITF is illustrated in Figures 5.14.1 and 5.14.2.
These are frequency responses computed within the package from a

transfer function:

H (s) = 135135-1351350462370s°~173250°431500%+3785%4285°~s7 ....... 538

135135+13513584623708°+173255°+31508 4 3788242855 57
This function was computed at 200 logarithmically spaced points over
a frequency range from <01 to 10Hz. |
The data was then fitted with a 7/7th order fit to modulus with
10 iterations. The sum of squares of error of fit was 8°09x10-5.
The fitted frequency responses are in fact superimposed on the
original curves in Figures 5.14.1 and 5.14.2.
The operation of DPPP and SPECTA are illgstrated in the following
examples. Figure 5.15 shows the transform of a digital filter

designed within DPPP. Its parameters are as follows:

Initial length 100 points
f

cuttoff 001

felock

Hamming windowed down to 8 points5Z

This filter was then used to filter two periods of a ternary pseudo-
random sequence. The input and output sequences are shown in

Figure 5.16. Both these sequences were then read into SPECTA and their
power spectras compu*ed. These are shown in Figure 5.17 (complete

periods from the centres of the original sequences were used).
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FIGURE 5.2
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FIGURE 5.3
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Figure 5.15

Frequency Response of Designed Digital Filter
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6.

CONCLUSIONS

6.1 MAIN FEATURES OF METHOD

An experimental method has been established to measure the
dynamics of Czochralski crystel growth systems, relating crystal
radius to changes of heater power. This has involved the use of
special techniques of data processing which are believed to be
novel and original. The method involves the injection of a pseudo
-rendom sequence into the power controller of the crystal pulling
system, Subsequently, radius measurements are made along the
length of the cold crystal. A new processing technique has been
developed to enable the radius measurements made at equal distance
intervels to be converted to radius measurements made at equal
time intervals in order to perform frequency domain processing
using the fast Fourier transform. This is believed to be the
first application of pseudo-random signal testing to crystal
grewth systems.

A new method of transfer function curve fitting has been developed
that enables transfer functions to be fitted to modulus data only.
This method is of general application to systems having transport
delay that would produce wide ranges of phase, A theoretical
analysis of the Czochralski crystal growth process has been
carried out and, within the limits of the experimental end
theoretical accuracy, agreement has been achieved between the

theoretical and practical results.

6.2 RELEVANCE AND LIMITATIONS

The experimental method that has been estsblished is relevant to
all Czochralski crystal growth systems. The limitations are:
1) The crystel must grow for long enough to enable at least one
preriod of valid data to be collected.
2) Tho magnitude of the radius variation must be limited to

ensure the validity of the assumption that the meniscus curve
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between the melt and the crystal does not vary with crystal

radius,
Since the Czochralski method is essentially a batch process and
frequency domain processing requires averaged estimates obtained
from several periods of data, there is a requirement to be able
to grow at least five similar crystals with the seme perturbation
superimposed. The limited length of data from each crystal also
meéna that the resultant transfer function will be a stationary
approximation to a time varying process. The data limitation
will in  general not pernit separate transfer function estimates
to be made at 'l:he‘beginninge;.ndendofam'ystal growth run.
In view of the above factors, the measured transfer function of
the USRS crystal puller must be regarded as an illustration of
the experimental method rather than a finalised measurement.
More similar crystals are required for this,
The theoretical analysis is more restricted than the experimental
method in that it assumes relatively slow growth and high thermal
conductivity materials such as Si, Ge or GeP, (It is not
appliceble to oxide growth), The analysis shows how peremeters
from measurements on the steady state temperature fields in the
crystal and the melt may be incorporated into the prediction of
dynanic performance. The accuracy of the prediction for GaP has
been limited by the lack of measurements for this material, It
has been shovm how the accuracy of the parameters involved in the
Prediction may be improved by using the measured transfer function.
This work provides a basis for making comparisons between control
systems for Czochralski crystal growth for different materials
and configurations. The results have indicated that a significant

dynamic lag exists between the melt temperature and the crystal
radius.
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6.3 SUGGESTIONS FOR FURTHER WORK
The most pressing requirement is to grow more GaP crystals to
enable a reliable transfer function estimate to be made. It would
be advantageous to grow a material such as Si in view of its
considerably better documented parameters. This would also offer
advantages of being easier to grow under manual control and
crystals can also be produced at a higher growth rete. An ideal
situation would be to use an automatically diameter controlled
Si puller which would enable a particuler nominal radius to be
achieved. The effects of the 3205 layer in GeP growth could be
similated by the addition of a suitable encapsulant. This would
allow the theoretical structure described in Chapter 2 to be
more positively verified.
A further area of work is in the measurement of the thermal field
in the melt and GaP crystal. This could be achieved by the use
of grown-in thermocouples.
Since a limitation of existing pressurised Czochralski crystal
Pullers is the lack of instrumentation, a useful application of
the measured overall transfer function would be to a model
reference control system. Any commanded power changes are fed to
a real-time simulation of the process so that their likely effect
can be examined. Such a simulation could be readily achieved
with the use of a microprocessor.
Another possible area of work would be in the extension of the
power to diameter transfer function to include the effects of
& variable pull speed. This could find use in a control systen
in which rapid, short terr adjustments were made to the pull speed
but longer term control action was echieved by heater power

variation.
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A transfer function relating the crystal radius to the heater power is derived assuming small deviations from the steady
state growth conditions. The derivation is based on the conditions of heat balance in the zone near the growth interface.
The transfer function is cxpressed in terms of the physical constants of the material being grown tegether with values of
the steady state temperature gradients in the crystal and the melt, which can be measured experimentally. It is shown that
the dynamics of heat transfer in the interface zone represent a significant lag in the overall transfer function. The results
also provide a means of estimating the effect of changes in the growth conditions on the dynamic response and of com-

paring the behaviour of different materials,

1. Introduction

The analysis of the dynamic response of the crystal
growth process is of interest in forming the basis for
the study of the design of closed-loop control systems.
Such systems for the control of crystal diameter have
been implemented in a variety of ways. Commonly the
heater power or the pull speed have been used zs con-
trolling variables [1,2]. In each case the closed-loop
system is formed by deriving a signal representing the
crystal diameter and subtracting this from a signzal in-
dicating the required diameter to form the diameter
error signal. This ercor signal is then used to activate a
controller which manipulates the controlling variable.
The need to measure the crystal diameter has been
met by techniques which use a laser beamn to monitor
the movement of the meniscus [2]. Alternatively an
indirect indication has been obtained by using a load
cell to measure the changing weight of either the crys-
tal or the crucible [1].

In order to design the controller for such a system
by systematic analysis it is necessary to define the
dynamic response characteristics ol the erystal growth
process. [For this purpose the most generally useful
- description of the process dynamics is obtained by
identifying the transfer function relating the crystal
diameter to the controlling variable. The transfer func-
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tion is defined as the ratio of the Laplace Transforms
of the output and input variables [3]. This function is
derived from the differential equations of the process
which must be such that the changss in the input and
output varizbles are linearly related. For nonlinear
processes a linear relationship can be usually obtained
by restriction cf the range of variation of the variables
to small changes ebout the nominal operating values.

The following analysis shows how the transfer func-
tion relating the changes of crystz! radius and the
heater power may be derived. The analysis is based on
approximations to the thermal transfer conditions in
the system. Previous work in this fizld has generally
been restricted to studies of the steady state conditions
in the melt [4,5] and in the crystal [6—8]. 1t is neces-
sary to extend this work to include transient conditions
and such an extension is‘enly possible if a number of
simplifying assumptions are made about the otherwise
intricate therma! transfer conditions. To this extent
the results derived here represent a first approximation
with a limited ranpe of applicability. Nevertheless they
form a useful basis for comparison of different growth
conditions.

The problem is approached in three stages. In the
first stage the relationship between the crystal radivs
and the melt temperature is examined. This is done in
terms of the heat balance abtained in the zone close to
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the growth interface. The second stage takes account
to the effect of the crystal radius and the heater
power on the melt temperature and in the final stage
these results are combined to give an overall view of
the process dynamics.

2. The influence of melt temperature on crystal radius

The heat balance conditions in the zone near the
growth interface may be used to formulate the trans-
fer function relating crystal radius error to the melt
temperature. In this instance the melt temperature re-
ferred to is the value at the surface of the boundary
layer below the solid/liquid interface.

The interface zone is shown diagramatically in fig. 1
where pg is the power transferred to the crystal, p; is
the power released due to fusicn, p; is the power trans-
ferred from the melt and p, is the power lost from the
meniscus surface. It will be assumed that the interface
is flat and that the meniscus can be approximated by
a cylinder. The heat balance requires that

Pi*Pg=Potp,. . (1

The determining features of each of the terms in this
relationship are now considered. Linearised approxi- d
mations will be obtained by defining the radius error

e=r—rgy, 2

where rq is the nomial radius value, and assuming that
a is small enough for terms in a2 to be neglected.

2.1, Power transferred to the crystal

If G is the temperature gradient in the crystal close

S
. W
|
fb— T -—’- 4 1
’ .
l. erystal
P
/ ie
hT Pe meniscus
Py melt

Fig. 1. Interface zone.

* Sec section 7.'list of symbols.
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to the interface we have
po =1k G, 3)

where k is the thermal conductivity of the solid. In
order to determine how Py varies with the radius it js
necessary to observe that G is in general a function of
the radius. Evidence of this can be found from analysis
of the steady state thermal field in the crystal.

Transient changes in the radius will also set up
transients in the thermal field. The fluctuations will
propagate away from the interface zone with a delay
corresponding approximately to a time constant
szsc/ks, where c is the specific heat and L is the dis-
tance from the interface. Materials of good conductivi-
ty, such as germanium and silicon, show high values of
diffusivity k /p.c and the delay is then comparatively
short; the rate of propagation of the thermal transients
being large compared with the growth rate. In these
cases we may assume that the changes of radius occur
slowly in relation to the transients in the thermal field
and the results of steady state analysis may be used.

Theoretical analyses of the temperature distribution
in the crystal have shown that analytical results are
available [6,7]. In terms of the numenclature used
here, Kuo and Wilcox [7] derive the following expres-
sion for the temperature gradient on the axis at the in-
terface

G=(0,-0))r (25)2

(By/B) cosh x + (2/B)YY2 siwh A
” .

— @
(By/B) sinh \ + /B2 éosh

where B is the Biot number er/k and A is the dimen-
sionless crystal length given by

A=(L/D) R, )

The more general results obtained by Brice [6] take
account of the radial variation of the gradient. These
show that the above expression is applicable to the
gradient at the outer surface and is valid for materials
of low Biot number. The range of validity has been
given as B <0.2 [7].

The value of ; is determined by the heat transfer
conditions at the top of the crystal. For 2 crystal which
starts growth at the nominal radius rg and subsequently
varies slowly from this value, the boundary conditions
at the top correspond to writing B; = erg/k, i.e.
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keeping B; constant under changes in radius zlong the
crystal.

Typical values of B for a semiconductor material of
high conductivity such as germanium is 0.005, which is
small enough for the following approximation to be
used,

G=0, o)[& + 2 tann :\] ©)

for a short crystal, Lypically L/r <5, we may approx-

imate with tanh X = X and on differentiating eq. (6) we

then have

% 2

dG LA ] :
—0 P : 7

9 0, -0 [+ i )

which indicates the variation in G with radius changes.

1t is useful to write this in the form

55"‘“ s _ (8)

to show that the fractional change in G has the same
magnitude as the fractional change in r and the oppo-
site sign. Thus if Gy is the nomial value of the gradient

G =Gyl ~afry) ©)

which shows the gradient as a function of the radius
deviation a.

The main assumptions used in arriving at this result
are that the crystal length is short and that the radius
is substantially constant throughout the length. Thus
the approximation will be valid in the early stages of
growth.

At the other extreme we may consider the effect of

a change of radius near to the interface of a long crystal.

The diagram of [ig. 2 indicates a simplified view of this
situation.

L !
8, {ambient)

Fig. 2. Long crystal.
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In the upper section the gradient G* is given by an
expression of the form shown in eq. (4) with the lower
boundary temperature 8; replaced by 8. The gradient
G*is therefore proportional to (8 — 8,) and the
change in G* with 85 may be expressed as

dG* 1

= i (10)
0 GO 0 “a

This show that if L, is short compared with Ly, so that

(@ — 0,) is large, the gradient G* is insensitive to

changes in 0 and therefore the total heat flow into the

upper section remains substantially constant. Again

for a material of low Biot number most of the heat is

transferred by conduction rather than radiation in the

lower section and therefore the total heat flow into

.the lower section is alse constant. The gradient G in

the lower section is then inversely proportional to r2
and hence,

aG r

&G -2 (11)

which leads to,

G=Gy(1- 2a/r°) N (1.2)

If we compare tliis with eq. (9) it is appropnate to de-
fine

G=Gy{l—aafry), (13)

where o is a gradient variation factor, which varies be-

tween unity, in the initial stages of growth, and 2 in

the final stages. It will be assumed that a value of 1.5

is representative of the general intermediate conditions.
When eq. (13) is used in conjuaction with eq. (2)

and terms in 22 neglected we get,

Py =Py(1 —aafry) + 2Pyafr, (14)

where P = wr%ksGo is the nomial value of py.
2.2. Power due io fusion

Under steady state conditions the mass converted
from the liquid to solid states is proportional to the
interface area and the pull speed. But changes of
radius are associated with changes in the meniscus
height and there is a variation in the solidification
rate with the movement of the interface relative to
the melt surface. To examine this effect it is first nec-
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essary to relate the changes of radius to the meniscus
height.

2.2.1. Meniscus variations

~ The shape of the meniscus formed between a liquid
surface and a cylindrical solid has been analysed with
the assumption of zero contact angle [9]. It may be
inferred from this that though the curvature of the
meniscus is in general a function of the radius of the
cylinder, it becomes substantially constant for large
values of radius. The approximation to a constant cur-
vature is valid when the radius exceeds /4 where H is
the capillary constant given by

H=(20lpg)"? , (15)

where ¢ is the surface tension coefficients, pis the
liquid density and g is the gravitational constant.

At large radius values the meniscus shape ap-
proaches that produced against a flat piate. The rela-
tionship between the height & and the surface angle
may then be shown to be [10]

h=H[1-sin(d +v)] V2 (16)

where 7 is the contact angle and 6 is the surface angle
as shown in fig. 3. Here H is seen to be the height at
which the meniscus surface becomes vertical. When the
solid surface is vertical 6 =0 and the height is then

" given by

hgy = H(1 —sin )2 . an
When angles 6 and 7 are small, eqs. (16) and (17)

LR LN

Fig. 3. Meniscus,
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may be combined to give
sin 0 = (211 ,/H?) (hy—h), (18)

which expresses the slope of the solid surface in terms
of the deviation of the meniscus height from the value
at which parallel growth is maintained.

2.2.3. Movement of ihe interface

The diagram fig. 3 shows that the velocity of the
interface relative to the crystalisv — & — R The
melt surface height 1, changes at the nominal rate

fig, = ~v1/(1 < q), (19)
with
2
gv (20)
R P

From the diagram we also have
F=@-h—h )Ytano. (21)

For small values of 0, tan @ = sin 0, and using eqs. (18),
(19) and (21) with the restriction that / is small, we pet

F=KV(hy - h), (22)
in which ¥ is the effective growth rate given by

K= uln _Q) 3 (23)
and :

K=2h/H? . (24)

Eq. (22) represents the required general relationship
between meniscus height and the crystal radius and is
valid provided that the rate of change of radius is
small compared with the growth rate.

2.2.4. Heat of fusion

The power released in the form of latent heat is
given by pe=nr’p J(v — - k) where J is the latent
heat coefficient in J/g. On substituting for A in terms
of , obtained by differentiation of eq. (22), and ap-
proximating to small radius changes we get

pf=Pf+?(-;ar-l--KV 4. (25)
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where Py is the nomial value of the power released
under steady state conditions.

2.3. Power transferred from the melt

The power transferred through the boundary layer
is given approximately by,

p;= (ke 18)(6,, —0)nr? (26)

which shows the general dependence on the radius
and the melt temperature. However the boundary
layer thickness § has been shown to be a function of
the radius r and also to vary with the radial position
under the interface [6]. The temperature at the
boundary layer surface also varies. This interaction of
effects complicates the interpretation of eq. (26).

Alternatively p; can be expressed in terms of the
temperature gradient in the boundary layer G, so
that

p;= nrzkmc-‘i S ) @7

Experimental measurements of the temperature field
in the melt have been made during the growth of sili-
con crystals over a wide range of conditions [4]. It is
evident from these results that the gradient near the
interface does not change significantly with changes
of the crystal radius. Hence eq. (27) shows clearly the
relationship between the power transferred and the
radius while eq. (20) expresses the effect of changes
in the melt temperature, in as much as these are due
to factors other than radius changes; for example
due to changes of the heater power input.

On combining these features and assuming small
radius variations we get

8
splysy B
pi Pl(l "rﬁ +€m‘0i), (28)

where §  is a small change in the melt temperature and
Py is the nomial value of the power transferred.

2.4. Power transferred from the meniscus

It is clearly difficult to be precise in evaluating the
power radiated from the meniscus in view of the com-
plex geometry involved. However it may be assumed
that th~ total power is proportional to the surface
area, which is in turn proportional to 2Zn7h. The surface

13

temperature is assumed to ve constant at the fusion
temperature.

The relationship between the radiated power p, and
the radius then follows as

2 29

i & e
P =R 1%3 KVn, *

0
in which only terms corresponding to 2 first order va-
riation in / and r have been included and eq. (22) is
used to eliminate 4. Here also P, is the nomial value
of the total power radiated.

To avoid the problem of computing P, from the
surface geometry, it is proposed to derive a value from
the heat balance condition expressed in eq. (1) once
the values of Py, P; and P; have been established. This
further ensures that the parameter values used in any
derived results will be consistent with the steady state
heat balance condition.

2.5. Heat balance equation

The heat balance condition has been formulated in
eq. (1) and the separate terms evaluated in eqs. (14),
(25), (28) and (29). When these expressions are sub-
stituted, the steady state values cancel to leave the in-
cremental terms in the following differential equation,

2
il i 1 (P’ MP")a ok a+ W‘}Jp"'& (30)
6,-6 \ 7o KvVhy" " KV

This linear equation defines the mode of variation of

- the radius in response to changes in the melt tempera-

ture. The transfer function relating the two variables
is then derived by taking the Laplace transform of the
equation with zero initial conditions. The result may
be written in the form

afs_ =-DJ(A +Bs+Cs?), @1
where @ and gm are transforms and the parameters are

A=(P +aPlry, B=P/KVh,, (32)

C=ur3ip KV, D=PJ@®_~8).

3. Effect of heater power changes

It is required to relate changes in the melt temper-
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ature to changes in the heater power input. This rela-
tionship involves the heat trznsfer conditions in the
melt.

The factors affecting the steady state temperature
field in the melt have been examined [5], but due to
the complex hydrodynamic effects induced by cruci-
ble and crystal rotation general analytical results are
not available. Some useful experimental results have
been obtained in silicon [4] and germanium [5]
growth systems. For the present purposes an approxi-

-mate view of the relationship between temperature
and power flow may be developed as follows.

If p}, is the power input from the heater to the sus-
ceptor and 6 is the susceptor temperature then

0,—0,=ZyPy» (33)

where Z is the steady state value of the thermal im-
pedance of heat transfer from the susceptor. In the
absence of any heat loss from the surface of the meit
the melt temperature would rise to 2qual the suscep-
tor temperature in the steady state. If then power p
is removed from the melt surface

os—'gm:ZZps ’

(34)

where Z, is the steady state value of the thermal im-
pedance presented to heat transfer through the melt.
We note that in practice py, is very much greater than
Py so that 6 is independent of p.

Eliminating 6 from egs. (33) and (34) the relation-
ship between small changes 8, in py, §4in pgand &
in @, is found to be
8 =28, —Z,8,.

m

(35)

This is the steady state rclationship but changes of
power do not have an immediate effect on the temper-
ature; there is a transient delay due to thermal storage
in the susceptor and the melt. If we define f,(s) to be
the transfer function expressing the delay in response .
of the susceptior temperature to heater power changes
and similarly f5(s) represents the delay between the
melt temperature and the power loss from the surface,
eq. (35) may be transformed to give

5. =8.2,1,0)-8.2,5,(). (36)

Now p consists of the power lost from the surface of
the melt by radiation and that due to conduction to
the crystal. Explicitly,
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I 2
p,=mRo +ur*(o; —a),

@37
where o;and g, arc the power transfer densities at the
interface and the surface respectively, i.c.

0,=¢c0,—-0,), o=k, l0)@ -0), (38)

for small changes in the melt temperature and the
radius this leads to

& % = i

0. % :'Tr% Bm_*-é: 8, +2ury(o; —o0)a. (39)

Eliminating & between eqs. (36) and (39) and col-
lecting terms in &, we get an expression of the form

8,=F®)3,-F,6a, (40)
where
: 6.0 pOf5(s) -1
A (s S oy g o)
=5 ﬁﬁ)b+uumﬂ+g—r]
206,-0.) @ - 11, ()
F2(5)= 7 [ > z ; ] s
0 : (R/ro) +Q [14 #fz(s)] i _

p=@,-0)0, -0),

Q= “i/"s 5

The value of the power transfer density ratio @ may be
obtained by assuming that the emission at the meniscus
is the same as over the rest of the melt surface so that

Q=2hPfro P, . @n

Eq. (40)- now defines the required transfer functions
relating the melt temperature to the heater power and
the crystal radius.

4. Overall transfer function

The overall transfer function relating the radius to
the heater power may be found by combining the re-
sults of sections 2 and 3. 1t is helpful to visualise the
relationships in terms of the block diagram fig. 4 where
F| and F) are as delined in eq. (40) and —F5 is the
function given in eq. (31). This block diagram clearly
indicates the feedback effect by means of which the
radius affects the melt temperature. Feedback occurs
when the power density at the interface o;is different
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Fig. 4. Block diagram.

from that at the surface o as expressed by the param-
_cter Q. We note also that the sign of the feedback term
depends on whether Q is greater or less than unity.
From fig. 4 the overall transfer function is seen to

be
a8, = —F(s) F5(s) [L = F(s) Fys)] . (42)

5. Transfer function under typical growth conditions

The form of the transfer function given by eq. (42)
is complicated by the presence in /) and ', of terms
£y and f, expressing the delay with which the melt
temperature follows power changes. The function f;
gives the delay between the heater power and the sus-
ceptor temperature and experimental results show that
this involves time constants of one or two minutes in
if heated systems. The function £, relates the melt
temperature to changes in the surface power loss and

- although this delay is difficult to measure experimen-
tally it may be reliably taken to be less than in f;.
Under typical conditions the delay involved in the
term £ is considerably greater than in either £ or
F, and it is therefore proposed to examine the signif-
icance of the results on the assumption that the delays
in I} and F, are negligible. _

When this is done eq. (42) can be reduced to the
form !

ifs, = ~Koo/Py)

= ) 43
1+2¢Q7 s + 022 g

indicating a sccond order lag with natural frequence
and damping ratio {, The values of these parameters are
given by

12
s :[Euksf(lif] /
rolog

Gk
= L
§=-5" lrgTp,Gok KV V2, (2)
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The gain constant K has been defined to express the
ratio of the per-unit change in radius (a/r) to the per-
unit change in heater power (8;,/P;) and takes the
value

Gk. 0.0 s

Ryma g = “[H 1Y ] . (45)
oks® 0, —fi (R/r0)2 +0 -1

These expressions are now in a form from which they

may be evaluated using data obtainable from steady
state measurements of the thermal field in the melt

Table 1

Typical parameter values

System constants Ge Si

rg crystal radius (cm) 1 1

R crucible radius (cm) 23 46
v growih rate (cm/min) 0.17 0.30
J latent heat (J/g) 443 1800
kg conductivity (W/em K) 0.24 0.30
k.,  conductivity (W/cm K) 0.71 0.67
pg  density (g/em) 532 2.34
Y angle of contact (deg) 20 20

o surface tension (dynefem) 620 720
a gradient variation factor 15 1
Gy gradient in crystal (°C/cm) 103 110
G;  gradient in melt (°C/em) 30 35

0; fusion temperature (°C) 937 1420
8,,  melttemperature (°C). 945 1430
R susceptor temperature (°C) 960 1457

Derived parameters

hg  meniscus height (cm) 04 06

K meniscus curvature constant (cm“l) S22 D

B differential temperature ratio 1.88 1.35
Py power input from melt (W) 67.0 73.7
Pg  power input to crystal (W) 77.7 103.7
Py power due to fusion (W) 21.5 66.2
By power radiated (W) 10.8 36.2
[0} power density ratio 4.96 2.44
@ dimensionless parameter 095 1.74

Transfer function parameters

(9] natural frequency (rad/min) 0.58 0.70
¢ damping ratio 0.19 0.20
Ko  eain constant 49 23
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and the crystal. As an example, values for typical sili-
con and grrmanium growth systems have been com-
puted and are shown in table 1.

The data for the silicon system were obtained from
results given by Shashkov [4,8] and for germanium
the results of Brice [6] were used.

The calculated values are generally in line with
what has been observed in dynamic measurements
,made on growing crystals with the exception of K.
The calculated values are approximately three times
the observed values. This is attributable to the fact
that in eq. (33) linearity has been assumed between
the susceptor temperature and the heater power. In
the presence of a substantial heat loss by radiation
this is clearly an approximation which over estimates
the sensitivity of the temperature to power changes.
It is better to base Ky on a measurement of the sensi-
tivity and it can be shown that if y is the ratio of the
susceptor temperature change to the per-unit change
of heater power,

k, = ik =V [1 + 1Y)
9 Goke® 6, — % (R/r0)2 +0 -1

Values of ¢ of the order of 500 C° have been ob-
served in practice.

]_l . 46)

6. Conclusions

The results derived here represent a first approxi-
mation to the transfer function relating the crystal
radius to changes of the heater power. They are valid
provided that the changes of radius occur slowly and
are small. Approximations to the changes in the ther-
mal field in the crystal have been made which are ade-
quate for materials such as germanium and silicon
which have a low Biot number. This implies that the

 results are particular to materials showing high ther-
mal conductivity.

With these limitations they offer a means of re-

lating the dynamic response of a puller to the physical
parameters of the material being grown. It has also
been shown how data from steady state measurernents
on the temperature field in the melt and the crystal
can be incorporated into the analysis.

Results of this type are important to the design of
diameter control systems and the present work offers
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a means of making comparisons of the control system
performance for different materials and system config-
urations. It is also possible to relate the required set-
tings of controller parameters to the physical censtants
of the system and avoid the need for empirical 2djust-

~ ment.

Research is at present in progress leading to im-
proved methods of measuring the dynamic response of
crystal growth processes and in due course comparison
between measured and thecretical results will be re-
ported.

qgwqﬂhmﬂa

7. List of symbols
a Crystal radius
fvf F Fy Transfer function
G, G, G, Temperature gradients
Meniscus height
H Capillary constant
J Latent heat coefficient
kg, ko, Thermal conductivitics
K * Meniscus curvature constant
Ky Overall gain constant
Py Pp Pr. P, P, P, Powers
P, PoP,Fy P, Steady state powers
Power transfer density ratio
Crystal radius
Crucible radius
Laplace transform variabla
Time _
Pull speed
Growth rate
Gradient variation factor
Angle of contact
) Boundary layer thickness
0,0 Increments of py, and p,
8. Increment of §
(5 Heat transfer coefficients
¢ Damping ratio
06, @ 6, Temperatures
i Differential temperature ratio
By Py Densities
o Surface tension coefficient
0;, 0 Power transfer densities
(<] Dimensionless parameter
1 Gain constant of susceptor
Q Natural frequency
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APPENDIX II

MELT LEVEL IN SPHERICAL CRUCIBLES

It is required to find the depth of liquid that occupies a given volume in

the bottom of a spherical bottomed crucible

P
s
\ Fo
™~ ! ¢5Y
he ; G
I
volume of elemental slice = SyTT x 2 seses. A2O

.*. total volume in depth he,V, is found by integrating equation 4201

R
-
v, e S‘Tf‘ dy ceees A202
R-he
but since Xz = Re- yz seene A203
R
2 3
VB = ‘n‘[ﬂ y -x} Quootm
3 Ir-n,
2 3
A = TORhS _TChS wseve A20B

re-arranging A205

h?. ez 3I‘h‘,_2 + zv_’s_ = 0 LR N ] .A.206
i3

which may be solved for h as a cubic.
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APPENDIX 3
COMPUTER PROGRAM LISTINGS

A3-1 _DPPP
DPP
COMMON DATAC1303),F (1308),COEFF (200),N»IR,FNAM(2)
N==1
S WRITE(C1,13)
13 FORMAT ('* DATA CHAN FOR INPUT?'™)

READ (2, INC
WRITE(1,3)

3 FORMAT (" FILE LENGTH?'")
READ(2,)LF
IF(NC.GT.2)G0 TO 17
DO 16 J=1,LF

16 DATA(J)=0.0
IR=LF
GO 10, 11

17 IF(NC.LT.6) GO TO 15

14 WRITEC1,1) .

1 FORMAT ("' DATA INPUT FILENAME?')
READ (2,2)FNAM

2 FORMAT (A5,A4)

CALL FSTAT(NC,FNAM,J)
IF(J.EQ.Q) GO TO 14
CALL SEEXK(NC,FNAM)

15 READ(NC, ) (DATACJ) 5> J=1,5LF)
CALL CLOSE(NC)

6 WRITE(1,4)

4 FORMAT (" DATA FROM,TO?")

READ(2,)ISTRT, IFIN
IR=IFIN-ISTRT+1
IFC(IR.GT.LF) GO TO 6

DO 7 J=1,IR
DATAC(J)=DATACISTRT+J-1)

11 WRITE(1,8)

8 FORMAT (' SPECIFY PROGRAM'™)
IFCITOG(32)) GO TO 9
WRITE(1,18)

10 FORMAT (" 1",T6,"ADD POLLY"/" 2",Té6,'"IMPLEMENT DIGIFILTER"/" 3
1"DESIGN DIGITAL FILTER"/'" 4",T6,"FIT POLLY"/'" S",T6,"ENTER
2COEFFS"™/" 6",T6,"TIME LINEARISATION'/" 7",T6,"OUTFUT"/" B",T
3"NEW DATA'"/'" 9",T6,"TRANSFORM DIGIFILTER"//

3" FUNCTIONS OF ACS ARE AS FOLLOWS:"//

4" 12",T6,"SUPPRESS THIS PRINTOUT'"/*" 13",T6,"SELECT DATA

S OUTPUT'"/" 14",T6,"RE READ ACS 13,15,16"/" 15",T6,"SELECT

6 GRAPH PLOTTER"/'" 16" ,T6,"SELECT GRAPHICS OUTPUT"/" 17",Té6,
7"TERMINATE GRAPHICS OUTPUT'/)

9 READ(2,)1S5W
IFC(ISW.EQ.1) CALL DRITF
IFCISW.EQ.2) CALL FILTUR
IFCISW.EQ.3) CALL FILD
IFCISW.EQ.4) CALL POLLY
IFCISW.EQ@.5) CALL ENTRER
IFCISW.EQ@.6) CALL DIMOD3
IFCISW.EQ.7) CALL PUTOUT
IFCISW.EQ.8YGO TO S
G0 T, 11
END
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DRITF

SUBROUTINE DRITF

COMMON DATAC(1300),F(1300),COEFF (208)sN, IR,FNAM(2)
IF(N.GE.1) GO TO 3

WRITE(1,4)

4 FORMAT (" NO COEFFICIENTS PRESENT")
RETURN N :

3 WRITE(1,5)

5 FORMAT (" ADD (+1) OR SUBTRACT (-1)")

READC(1,)ISN
DO 1 J=1,1IR
FJ=FLOATCJ)
Al=0.0
DO 2 K=1,N
M2=N=-K
2 Al1=A1+COEFF (K)*F J**M2
1 DATACJ)=DATACJI+ISN*A1
RETURN
END

FILD

C PROGRAM TO DESIGN OFF LINE FINITE IMPULSE RESPONSE
C BRICKWALL LOWPASS DIGITAL FILTERS BY THE WINDOW METHOD
SUBROUTINE FILD
DOUBLE PRECISION ACC
REAL IDEALR(102), IDEALI(102)
COMMON DATA(1300),F (1309),COEFF (200),N, IR,FNAM(2)
14 WRITEC(1,1)
FORMAT (" CLOCK FRE® (HZ)>?"™)
READ (1, )CF

WRITE(1,2)

2 FORMAT (" NUMBER OF POINTS?")
READ (1, )NP

33 WRITE(1,3)

3 , FORMAT (" CUTOFF FRE@ (HZ)?"™)

READ(1,)FC
C PRODUCE BRICKWALL LOWPASS FREQ RESPONSE

DO 4 J=1,NP
IDEALRC(JY=0.0

4 IDEALIC(J)=0.0
CN=FC/CF *NP
NC=CN+1
IF(NP-NC+2.LT.1) GO TO 33
IDEALRC1)=1.0
DO 5 J=2,NC
IDEALR(J)=1.0

5 IDEALR(NP=J+2)=1.0

C CALC IDEAL IMPULSE RESPONSE

CALL FFTIACIDEALR, IDEALI,NP>NPsNP,1)
DO 40 J=1,NP
IDEALRCJI=IDEALRCJI/NP

40 IDEALICJ)=IDEALICJ)/NP
CALL GRUPARC(CIDEALR, IDEALI,COEFF,NP,1)

. C WINDOW IDEAL IMPULSE RESPONSE

WRITE(1,6)

6 FORMAT (" WINDOW TYPE:-RECTANGULAR(1),HAMMING(Q)»BLACKMANC-1
READ(1,)IWIND
WRITEC(1,7)

7 FORMAT (' LENGTH OF WINDOW?2')
READC1,)L
CALL WINDOWC(NPsLsCOEFF,IWIND)
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FILD (continued)
C SCALE TO GIVE GAIN OF 1 IN PASSBAND

A=0.0
DO 11 J=1,NP,2
11 A=A+COEFF ¢J)
DO 12 J=1,NP
12 COEFF (J)=COEFF (J)/A

CALL GRUPAR(IDEQLR;IDEALI:COEFF:NP:@)
C STORE COEFFS IN ARRAY COEFF
CALL FFT1ACIDEALR,IDEALI,NP,NP,sNP,~-1)
Nl=NP/2
C CALC DB,DEG OF WINDOWED SEQUENCE
CALL RIMPC(IDEALR,IDEALI,N1,1)
C CALC FREG® ARRAY. i
N1=N1=-1
DO 8 J=1,NI
F(J)=FLOAT(J)*CF /NP
IDEALRCJI=IDEALRCJ+1)

8 IDEALICJ)=IDEALIC(J+1)
WRITE(1,9)
9 FORMAT (" GRAPH OF GAIN (DB)")

CALL PLTFRGCIDEALRsF,N1,0,AL)
WRITE(1,18)

10 FORMAT ('* GRAPH OF PHASE (DEG)"™)
CALL PLTFRG(IDEALI,F,N1,0,AL)

C ROTATE FILTER COEFFICIENTS AND STORE IN ARRAY COEFF

LL=L~-1
N=LL
L2=NP-L/2+1
DO 20 J=1,LL
L3=L2+J
IF(L3.GT«NP) L3=L3-NP

20 IDEALR(J)=COEFF (L3*2-1)
DO 27 J=1,LL

217 COEFF (J)=IDEALRC(J)
WRITE(!,26)

26 FORMAT (** PAPER TAPE OF COEFFS?")
READ(1,)J
IF(J.NE.1) GO TO 21
WRITE(4,21)CIDEALR(J), J=1,LL)
CALL CLOSE (4)

C OUTPUT FILTER COEFFS ON PP

21 FORMAT(1X,1PE15.7)
RETURN
END
POLLY

C SUBROUTINE TO FIT POLYNOMIALS OF DEG N TO DATA

SUBROUTINE POLLY
REAL A(132)
COMMON DATAC1300),F(1300),CO0EFF (208),N,IR;FNAM(2)
WRITE(1,2)

2 FORMAT ('* ORDER OF POLY?'")
READ(1,)N
IF(N.LT.8) RETURN
DO 6 J=1,1R

é Fci)=J
CALLL STPLRG(IR,F,DATA:N,COEFF,,IFLAGsA)
IFCIFLAG.NE.1) WRITE(1,3)

3 FORMAT (' POLY NOT FOUND'")
N=N+1
WRITEC(1,)(COEFF (J),J=1,N)
RETURN
END
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DIMOD3

C SUBROUTINE TO MODIFY N EQUI-SPACED OBSERVATIONS TO M EQUI
C TIME SPACED OBSERVATIONS (RE GAP XTALS)

12

SUBROUTINE DIMOD3

REAL X1C(1300@)

COMMON DATAC130W@)»F(1300)>COEFF(200)., N:IR:FNQM(Q)
ROM=4.5

ROS=4.1

DCRU2=9. 3*ROM/ROS

IFCITOGC16))RETURN

WRITE(l»1)

FORMAT('" MENISCUS CONST? SLICE THICKNESS (IN>?'")
READ(1,)FKsXINC

WRITEC1,5)

FORMAT (" SAMPLE DATA INPUT EVERY?")
READ(2s ) FKS

KS=FKS

WRITE(1,6)

FORMAT("™ ENTER 2ND DERIVATIVE FILENAME"
READ(2, 7) FNAM

FORMATC(AS,A4)

WRITE(1-18)

FORMAT('" DATA CHANNEL? LENGTH? FROM? TO?'")
READ(2,)ICHAN,L,»ISTRT»IFIN
IR1=IFIN-ISTRT+1

IF(IR1«.NE«IR) GO TO 11

CALL FSTAT(ICHAN,FNAMsJ)

IFC(J«EQ«3) GO TO 11

CALL SEEXC(ICHAN,FNAM)

READCICHANS) (X1(J)sJ=1,-L)

CALL CLOSE(CICHAN)
KL=IFIX(FLOATCIR)/FKS)

DO 4 J=1,1IR

X1(D)=X1(J+ISTRT=-1)/(XINC)

F(J)=d

XINC=XINC*FKS

FK2=+5/FK

C CALC MODIFIED SLICE THICKNESS

14

FJ=2.0

FJ=FJ+FKS

IFCIFIX(FJ)«GE-.KL) GO TO 2
J=IFIX(FJ)

I1=(J=-2)Y*%FKS+FKS/2
EXT=XINC-FK2*X1(I1)
X1(J=1)=(1«2-(DATACI1)*%2)/DCRU2)*EXT
GO TO 14

CONTINUE

WRITEC1-8)

FORMAT('" GRAPH OF SLICE THICKNESS')
IFCITOG(2))CALL PICTUR(F»X1>KL-1,1)
CALL PLOT3(X1,KL-1,1)

C INTEGRATE SLICE THICKNESS

3

9

DO 3 J=3sKL

X1(J=1)=X1(J=-23+X1(J-1)

WRITEC1-9)

FORMAT(' GRAPH OF INTEGRATED SLICE THICKNESS')
IF(ITOGC(2))CALL PICTUR(CF»X1sKL-151)

CALL PLOT3(X1sKL=-1»1)

C FI=EQUI-TIME INTERVAL ON X1
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DIMOD3 (continued)

FI=X1(KL-1)/(KL-1)
C LIN INTERPOLATE DATA FOR EQUI-TIME

K=1
J=2

16 FlJ=FI*FLOAT(J=-1)
IF(FIJsLE«X1(K)) GO TO 17
K=K+1
IF(K-KL)16518518

18 K=1
F(Jd)=0.0
J=J+1]

- IF(J-KL)16516513

17 TECFIJ=X1(K=12)/CX 1 CK)=X1CK=1))
TKS=T*FLOAT(KXS5)
ITKS=TKS
TKS1=TKS-ITKS
FCJ)=DATACK*KS+ITKS)+TKS1*(DATA(K*KS+ITKS+1)-DATACK*KS+ITKS)

J=J+1
IF(J.LE.KL) GO TO 16
13 DO 19 J=25KL
19 DATACJI=F(J)
IR=KL
LENGTH=KL
WRITEC1,)LENGTH
RETURN
END

PUTOUT

SUBROUTINE PUTOUT
COMMON DATAC1300),F(1300),COEFF (200),N,IR,FNAM(2)
DO 6 J=1,IR

6 FdJi=J

10 IFCITOG(2))CALL PICTURCF sDATA,IR,1)
IFCITOG(4))CALL PLOT3(DATA,IR,1)
IFCITOG(8))GO TO 10
IFCITOGC16)) GO TO 7

RETURN
WRITEC(1,1)
1 FORMAT (" DATCHAN FOR OUTPUT?2'")

READ (2, )IK
IFCIK.LT.6) GO TO S
WRITE(C1,2)
2 FORMAT (" FILENAME?")
READ (2, 3)FNAM
3 FORMAT (A5,A4)
CALL ENTERCIK,FNAM)
S WRITEC(IK»4) (DATACJ)»J=1,1IR)
IF (IK+GT«3) CALL CLOSECIK)
4 FORMAT (1X51PE1547)
IF CITOG(8))GO TO 10
RETURN
END
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EILTUR

SUBROUTINE FILTUR
DOUBLE PRECISION ACC
REAL IDEALR(10@),IDEALIC1B0)
COMMON DATA(1309),F(1300),COEFF (280)sNs IR,FNAM(2)
IF(N.GE«®) GO TO 1
WRITE(1,2)
2 FORMAT (" NO COEFFICIENTS PRESENT"™)
RETURN «
1 LL=N
L=N+1
La=L/2~-1
C INITIALISE DATA STORE
L5=L/2 :
DO 9 J2=1,LL
Kl=IR+L4-J2+1
IF(K1.GT.IR) GO TO 10
IDEALI ¢(J2)=DATAC(K1)
GO TO 9
10 IDEALI(J2)=0.0
9 CONT INUE
DO 19 Jl=1,IR
J=IR=J1+1
J2=J-LS
ACC=0.0
C IMPLEMENT DIGIFILTER
PO 18 K=1,LL
18 ACC=ACC+IDEALI (K)*COEFF (K)
DATA(JY=ACC
C ROTATE TEMP DATA STORE
DO 23 J@=2,LL
23 IDEALIC(JB-1)=IDEALI(JB)
IF(J2.LT.1) GO TO 24
IDEALICLL)Y=DATACJ2)

GO TO 19
24 IDEALIC(LL)=0.0
19 CONT INUE

C DECIMATE FILTERED DATA
WRITE(1,22)

22 FORMAT ¢ SAMPLE OUTPUT EVERY ?2'")
READ (1, )NS
LENGTH=IR/NS

DO 25 J=1,LENGTH

25 DATACJ)=DATAC(J*NS)
WRITEC1,)LENGTH
IR=LENGTH
RETURN
END

ENTRER

SUBROUTINE ENTRER
COMMON DATAC(C1300),F(1300),COEFF (208),N, IR,FNAM(2)
WRITEC1,51)

1 FORMAT (** NUMBER OF COEFFICIENTS?'")
READ(1,)N '
WRITE(1,3)
3 FORMAT (" INPUT COEFFS ON PAPER READER (3), OR TELETYPE (23"

READ(2,)IN
WRITEC1,2)

2 FORMAT (' ENTER COEFFICIENTS IN DESCENDING ORDER®)
READCIN, ) (COEFF (J)sJ=1,N)
RETURN
END
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GRUPAR

SUBROUTINE GRUPAR(REAL, IMAG,COMPLXsN» IFLAG)
C SUBROUTINE TO CONVERT TwO ARRAYS INTO ONE COMPLEX ARRAY OR TO
C CONVERT ONE COMPLEX ARRAY INTO TWO ARRAYS.
REAL » IMAG=TWO ARRAYS
COMPLX=COMPLEX ARRAY
N=LENGTH OF EACH OF TwD ARRAYS.
IFLAG=@ FOR 2«1
IFLAG=1 FOR 1+2
REAL REAL(1),IMAG(1),COMPLXC1)
IFCIFLAG)2,3,2
2 DO 1 J=1,N
COMPLX (J*2-1)=REAL ¢J)
1 COMPLX(J*2)=IMAG(J)
RETURN
3 DO 4 J=1,N’
REALCJ)=COMPLX(J*2=-1)
4 IMAG(J)=COMPLX(J*2)
RETURN
END

eNoNoNoNe

WINDOW
SUBROUTINE WINDOW(N,L,H, IWIND)

C

C SUBROUTINE APPLIES A WINDOW OF TOTAL LENGTH L TO A COMPLEX
C ARRAY

C INPUTS ARE: N=LENGTH OF INPUT/OUTPUT ARRAY.

C IWIND=-1 FOR BLACKMAN WINDOW

c =@ FOR HAMMING WINDOW

C =1 FOR RECTANGULAR WINDOW

C L=LENGTH OF WINDOW REGUIRED.

C H=ARRAY OF DATA TO BE WINDOWED.

c
c
C

OUTPUT RETURNED IN ARRAY H

REAL H(1)
L2=L/2
IFCIWIND)1,156
1 DO 5 1=2,L2
A=8.0*ATANC1 .@)*FLOAT(I-1)/FLOAT (L)
IFCIWIND)3,2,2

2 W=e54+.46*%COSA)
GO TO 4
3 W=:42+.5+%CO0SCAY+.0B2COS(2.0*A)
4 HOI#2=-1)=HC(I*2~1) %W
H(I*2)=0.0
J=N=-14+2
HOJ*2-1)=H(J*2-1) %l
5 H(J*2)=06.0
6 L3=L2+1
N3=N-L/2+1

‘DO 7 I=L3,N3

H(I*2-1)=0.0
7 H(1%2)=0.0

RETURN

END
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TRANS

SUBROUTINE TRANS
C TRANSFORMS LOWPASS DIGIFILTER PROTOTYPES TO HIGHPASS,BANDPASS
C OR BANDSTOP. FOR FINITE IMPULSE RESPONSE FILTERS.
COMMON DATAC1308),F (1300),COEFF (208)5N, IR,FNAM(2)
IF(N.GE.1) GO TO 2
WRITE(1,3)

3 FORMAT (" NO COEFFICIENTS PRESENT")
RETURN
2 WRITEC(1,1)
1 FORMAT (" TRANSFORM LOWPASS PROTOTYPE DIGIFILTER INTO:"/

1" 1",T6,""HIGHPASS"/" @'",T6,"BANDPASS"/" -1, T6»""BANDSTOP'"/ 3}
READ(2,)1IT
DO S J=1sN

S F (J)=COEFF (J)
IFCIT.LT«1)IN=N*2-1
INC=2
IFCIT.EQ.1)INC=1
DO 6 J=1,N,INC
Ji=J
IFCINC.EQ.2)J1=(J+1)/2
ISN=1
IF(ITOGE-B)ISN=('10)**J1
COEFF (J)=1SN*F (J1)
IFCIT.EQ.1) GO TO 6
COEFF(J+1)=0.0

6 CONTINUE
RETURN
END



A3-2 SPECTA

GHOST

C PROGRAM TO PRODUCE SPECTRUM OF SYSTEM FROM INPUT AND OUTPUT
C 170 DATA FROM FILES ON DATSLOT 7/6

C CALLS SUBROUTINES BACH»(FFT1AsHANN)» SEGMENsOUTPUT» (PICTUR» (GRAFIX»

C ITOG).PLTFRQ

3l

44

i8

32

INTEGER OSTRT
REAL ALAB(9),BLAB(9),CLB(9),GL(7)»
1DC(9)»,E(9),F(508)»FTEMP(S08),FTI(254),FTO0(254)

COMMON TEMPI(254),TEMPO(254),XINC508),X0UT(568)»FILEN(2)

DATA ALAB(1),ALAB(2)/5HFREQ »SH(HZ) 7/
DATA ALAB(4),ALAB(S5)/S5HMOD (»5HDB)Y 7/
DATA ALAB(7),ALAB(8):ALAB(9)/5HFREQ »SHRESPO,»SHNSE 7/
DATA BLAB(1),BLAB(2)/5HFREQ »SH(HZ) /
DATA BLAB(&),BLAB(5)/5HPHI (,SHDEG) /
DATA BLAB(7)»BLAB(B)sBLAB(9)/5HFREQ »S5SHRESPO,SHNSE /
DATA CLB(1),CLB(2)/SHFREQ »5H(HZ) /
DATA CLB(4>:CLB(5)sCLB(6)/5HGAMMA,S5H SQUA»,SHRED 7/
DATA CLB(7),CLB(8),CLB(9)/5HCOHERs SHENCE »SHFUNCT/
DATA DC1)sD(2)/5HFREQ »S5HC(HZ) /
DATA D(4),D(5)/5SHMOD (,SHDB) 7/
DATA D(7)>D(8)5D(9)/SHPOWER,» 5H SPEC»SHTRUM /
DATA E(1),E(2)/SHFREQ »S5H(HZ) 7/
DATA E(4),E(5)/5HPHI (,5HDEG) 7/
DATA EC(7)5sE(8)2E(9)/5HPOVER, SH SPEC,»SHTRUM /

DATA GLC1)»,GL(2)»GLC3),GLC4)/5HGXX »5HGYY »SHGYXPH»SHGYXDE

DATA GL(S5)»GL(6)»GLC7)/SHGAMSQs SHMOD Hs SHPHI H/
RAD=45e3/ATAN2(1 D5 1+0)
Pl=180.0/RAD
DO 6 J=1,508
XINCJII=D .0

C X0UICJI=0e0

WRITEC1»1)

READC1,) 1IN
READ(2,2)FILEN
WRITE(1210)

READ(1,» )Xl

WRITE(1,3?

READC)1»LIN

WRITE(1,286)
READ(1,)1IL,ISTRT
IFCILGT.LIN)Y GO TO 44
J=1

IFCIN<GT=5) CALL FSTATC(IN,FILEN,J)
IF(JeEQe®) GO TO 6

CALL SEEXK(IN.,FILEN)
READCIN J(XINCJI)sJ=1L1IN)
CALL CLOSE(IN)
WRITEC1,17)

READ(1.31ID2
IFC(ID2=-129218,21
WRITE(1:,4)

READ(2,2>FILEN

YRITEC(1,5)

READC(1,2L00UT

J=i

IFCINGTe«5) CALL FSTATC(IN,FILEN,J?
lF(JtEQoB? GO TO 18
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43

21

GHOST (continued)

CALL SEEK(IN,FILEN)

READCIN, ) (XO0UT(J)»J=1,LOUT)

CALL CLOSECIN)

VRITE(1.23)

READ(1,)0STRT

WRITE(1,12)

READC1,)INC

CALL BACHC(FTIsFTO»ILsINCoF»FTEMP»OSTRT»ISTRTALIN,LOUT)
IL2=(IL+1)/2

IL4=]1L27INC

C CALC GXX(DB)»GYY(DB) (ARRAYS TEMPI,TEMPO)» AND GYX(DB).»
C GYX(DEG)(ARRAYS FTI»FTO)e (SUBROUTINE SEGMEN USED FOR CHAIN)

CALL SEGMENC(TEMPIs>TEMPO»ILsX1sFTO»FTI>F»INC)

C OUTPUT GXX»GYY

CALL OUTPUT(TEMPI.TEMPO,F»IL4,GL(1)»D)
IF(ID2«EQe2) GO TO 9 :
CALL OUTPUT(TEMPO>TEMPI»F»ILA»GL(2),D)

C OUTPUT GYXRE,GYXIM (DB,DEG)

29

CALL OUTPUTC(FTI»FTO»F»1LA4»GL(4)5D)
CALL OUTPUT(FTO»FT1»F»ILA»GL(3)HE)

C CALC MODC(H) AND CUTPUT TOGETHER WITH PHASE

32

WRITE(1,25)

READC1,)KU

DO 32 J=2,ILZ2,INC

IXnJ/INC+INC=}
FTEMP(IX)=FTICIX)=-TEMPIC(CIX)

IFCKU«EQ«2) GO TO 32
Al=PI1*#FLOAT(IX)/FLOATC(IL)
FTEMP(IX)=FTEMP(IX)+26.0%AL0GIGC(AL/SINCAL)Y)
FTOCIX)=FTOCIX)+RAD*A]

CONTINUE

FTEMP(1)=FTEMP(2)

CALL QUTPUT(FTEMP»FTO0»F»IL4»,GL(6),ALAB)
CALL QUTPUT(FTO,FTEMP»F»IL4»GL(T)»BLAB)

C CALC GAMSQ AND OUTPUT

49
33

42

10

26

17 .

e3
25
12

DO 33 J=2,1L2,1INC

IXsJ/INC+INC~1

Aloe 1 ¥ (2.0*%FTICIX)-TEMPICIX)=-TEMPOCIX))
IF(AleLEe~32) GO TO 49
FTEMPC(IX)=1D.0%%(Al)

GO TO 33

FTEMP(IX)=0.0

CONTINUE

FTEMP(1)=FTEMP(2)

CALL OUTPUT(FTEMP.X0UT,F»I1L4,GL(5)Y-CLB)
IFCITOGCGA)) 4259542

IFCID2=1) 9,43,9

FORMAT(*" INPUT CHANNEL?:INPUT FILENAME?")
FORMATC(AS»A4)

FORMAT(*" SAMPLE T7")

FORMAT(* TOTAL INPUT LENGTH?'"™

FOEMAT(®™ INPUT DATA BLOCK LENGTH? STARTING AT?"™)
FORMAT('" WANT 2ND DATA FILE?*)

FORMAT (" SYSTEM OUTPUT FILINAMEZ'")
FORMAT(* TOTAL OUTPUT LENGTH?")

FORMAT(* QUTPUT DATA STARTING AT?"™)
FORMAT(* ZOH CORRECTION ON TF?®)

FORMAT("™ ALL? (1) ODD ONLY? (2> HARMONICS*)

"END
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SEGMEN

C SEGMENT OF GHOST FOR CHAIN SEGMENTATION PURPOSES.

35
36

37

a7

46
28

SUBROUT INE SEGMEN(TEMPILTEMPO,IL»X1,FTO,FTI,F,INC)
REAL TEMPIC1),TEMPOC1I)LFTOC1),L,FTIC1),F (1)
RAD=45.0/ATAN2(1.80,1.0)

IL2=CIL+1)/2

CALL ERRSET (@)

DO 28 J=2,1L2,INC

IX=J/7INC+INC~-1

IF(TEMPI(J).LE.B.80) GO TO 35
TEMPICIX)=10.0*ALOGIACTEMPI (J))

GO TO 36

TEMPIC(IX)==-200.0

IF(TEMPO(J).LE.B.8) GO TO 37
TEMPOC(IX)=10.0*AL0GIO(TEMPO ¢J))

GO TO 47

TEMPO(CIX)=~-200.0

FOIX)=CJ=-1)/7 (X1 *IL)

Al=FTI (D)

IF(Al .EQ.B+P.AND.FTO(J).EQ.Q.8) GO TO 46
FTICIX)=5.0*AL0G1D (A1 *A1+FTOCII*FTOCJ))
GO TO 28 '
FTICIX)=-200.0
FTOCIX)=RAD*ATAN2(FTO(J)»A1)

CALL ERRSET(1)

F(1)=F(2)

.C REMOVE PHASE DISCONTINUITIES

7
1

13

11

16
20

WRITEC1,1)

FORMAT (" PHASE DISCONTINUITY DETECTION THRESHOLD?'")
READ(2,)FDDT

KU=9p

KFLAG=0

IL4=11271INC

Nl=1L4-1

DO 11 J=2,N1
IFCFTOC(J+1)-FTOCJ)«GT.FDDT) KU=-1
IF(FTOC(J+1)-FTOC(J).LT.=-FDDT) KU=1
IF(KU.NE.B) KFLAG=J+1
IF(KFLAG.NE.B) GO TO 16

CONTINUE

60 TO 19

DO 20 J=KFLAG,IL4

FTOCII=FTO (J)+KU*360.0

C INFINITE LOOP ESCAPE

19

IFCITOGCI28))GO TO 19

GO TO 13

CALL PICTUR(F,FTO,IL451)
IFCITOG(C128)) GO TO 2
TEMPIC1)Y=TEMPI (2)

TEMPO C1)=TEMPO (2)
FTIC1)=FTI(2)
FTOC1)=FTO (2)

RETURN

END

HANN

SUBRCUTINE HANN{AsK.PCT)
REAL A(1?
PI=40%ATANZ(1 021 0)
LPCTi=IFIX((PCT*K)/200+0)=1
FaPI/LPCTI}

DO 1 J=8,LPCY1
Plue5*(1+8-COSIF%J))
ALJ21)=ACJ+] I%P]
AlK=J)=A(K=J)*P]

RETURN
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BACH

SUBROUTINE BACH(GYXREsGYXIMsKMs 1K, FFRFF15,I0STRT»ISTRT,LIN
C SUBROUTINE TO CALC 1) POWER SPECTRUM OF INPUT ,LOUT)

c 2) POVER SPECTRUM OF OUTPUT
Cc 3) CROSS POWER SPECTRUM
C U=ARRAY FOR SYSTEM INPUT
c V=ARRAY FOR SYSTEM OUTPUT
C
Cc GYXRE=ARRAY TO RETURN REAL CROSSSPECTRUM
C GYXIM=ARRAY TO RETURN IMAG CROSSSPECTRUM
C GXX=ARRAY TO RETURN INPUT POWER SPECTRUM
C GYY=ARRAY TO RETURN OUTPUT POWER SPECTRUM
C FFR=ARRAY FOR INTERNAL USE
C FFI=ARRAY FOR INTERNAL USE
C KM=LENGTH OF DATA
C IK=]1] FOR ALL HARMONICS
C IK=2 FOR ODD HARMONICS ONLY
Cc I0STRT=ADDRESS OF V AT WHICH DATA STREAM STARTSe.
C ISTRT=ADDRESS OF U AT WHICH DATA STREAM STARTS.
C LIN=TOTAL AVAILABLE U DATAe
Cc LOUT=TOTAL AVAILABLE V DATA.
Cc SEGMENTATION» SEGMENT AVERAGINGsHANNING ALL OPTIONIALLY DONE
REAL FFRC1)>FFIC1),GYXREC1)»GYXIM(1)
COMMON GXX(254),GYY(254),U(588),V(588)
KM2=KM/2
DO 6 J=1s,KM2
GXX(J)=00
GYY(J)=0.:0
GYXRE(J)=0+9
6 GYXIM(JI=D .0 :
IHANI=D
LS=sKM
Bug.0
VRITE(1:,2)
READ(1,)NS»IHAN
IFC(IHANeNE«1) GO TO 9
WRITEC(L1>T)
READ(15)PsIHANI
9 IF(NS<EQei) GO TO 10
LS=(KM+] ) /NS
VRITE(1,3?
READ(1:,)2B
10 O=(l.8-B)*LS

LSH=(LS+1)/2
N=sIFIX{((=B+NS)/(1.G-B)?
.DO 1 K=1,N
KH1=ISTRT=1+IFIX(C(K=1)%0)
KK2=JOSTRT=1*IFIXC((K=-1)%0)
DO 5 J=isLS
Kl =J+KK]
K2mJ+KK2
IFCKL1«GT«LIN) Kl=sKl-LIN
IF(K2.CT:LOUT) K2=K2-L0OUT
FFR{J)=UCKL)

5 FFICJ)Y=U(K2)

. IFCIHANI<EQe}) CALL HANNC(FFRs2LSsP)

IFC(IHAN«EG«1) CALL HANNCFFIJ,LS»P?

C TRANSFORM AND CALCULATE GEES
CALL FFTIA(FFRsFFI-LSsLS2).55=1)
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BACH (continued)

21 DO 1 I=2,LSH,IK
Kl=l
K2=aLS~1+2
A=« 5% (FFR(K]1)+FFR(K2))
Bme S*¥(FFI(K1)=FFI(K2))
X=2e S¥(FFI(K2)+FFI(K1)>)
Y=e S®(FFR(K2)~FFR(K1))
GXX(I)=A%«A+B*B+GXX(I)
GYYCI)=X*+X+Y%Y¢GYY(])
GYXRE(I)=X*A+Y*B+GYXRE(CI)

1 GYXIM(I)=Y*A-X*B+GYXIM(I)
DO 8 J=2,LSHsIK
GXX(J)=GXX(JI/N
GYY(J)=GYY(J)/N
GYXRE(J)=sGYXRECJ)/N
8 GYXIMCJ)=GYXIMCJI/N
KM=LS
2 FORMAT(* NUMBER OF SEGMENTS? HANNING?')
7 FORMAT('" ZTAPER ON WINDOW? HANN INPUT AS WELL?"™)
3 FORMAT('" OVERLAP FRACTION?"™)
RETURN
END

QUTPUT

SUBROUTINE OUTPUT(A»BsFsKsALsBL)
REAL A(1)sBC(1)>F(1)5sBL(1)sFIL(2)
WRITE(1,1)AL

1 FORMAT(1X»A5)
READC1,)1G
1FCIGeNEe]l1) RETURN
3 IFCITCG(2))13514:213
13 CALL PICTUR(F:-A»K»1)
14 IFCITOGC(4))152,16215
15 CALL PLTFRQ(A:F»K»0,BL)
16 IFC(ITOG(8)Y)455,4
4 WRITEC4:6)(F(J)sACDI2B(J) s Ja2, K)

CALL CLOSE(4)

6 FORMAT(1X23E17+5)

S IFCITOG(16))728-7

7 WRITE(1-9)

9 FORMAT(* QUTPUT FILENAME?')
READ(1,10)FIL

10 FORMAT(2AS5)

. CALL ENTER(6,FIL)

WRITE(G6,6)(F(J2,A(J)sBLlUY»J=2,K)
CALL CLOSE(6&)

8 IFCITOGC(322)32,12,3
12 RETURN
END
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A3:3 FIIF

C MASTER PROGRAM FUOR FREQUENCY RESPONSE PACKAGE

C PACKAGE HAS TWO MODES A AND B

C

C CALLS SUBROUTINES FREPIC,QUFREQ»PZFREQ>ROUTH»RIMP>FFIT>MATRIX» INVMX
CMXP»ADJ»PLTFRQ>SCPROD> PICTUR» GRAFIX» ITUG

=G

C MUDE A READS FREQ@ RESPO DATA IN VECTOR.OR POLAR FORM FROM

C TT»PR-»DT1,DT2. DRAWS BUODE PLOTS OF DATA. FITS POLYNOMIALS

CIN S. DRAWS BODE PLOTS OF FITTED FUNCTIUNS.

C CALCULATES COMPLEX POLES,ZEROS OF FUNCTIONS.

MODE B DRAWS BODE PLOTS FROM POLYCOFFS OR PZS OR TIME CONSTS

Oq000

C DATA IN SERIAL FORM FREQ»MODsPHIeeeese K TRIADS
C FREQ IN HzZ
Cc
C PACKAGE WRITTEN BY MeJeHILL JAN 1975
REAL R(200),1C(200),F(2030),SPNC400)»SPD(2208)»,AL(9),FIL(2),
1PM(2808)PP(20803)»BL(9)
DATA ALC1),AL(2),ALC4)>AL(5)>ALCT)>ALIB)»ALC9),BL(1)>»BL(2)
1BL(4),BL(5),BL(7),BL(8),BL{(9)/
25HFREQ »5H (HZ)»5HMUD (,5HDB). »SHFREQ »5HRESPO,»5HNSE. »
35HFREQ »5H (HZ)»>5HPHI (s5HDEG) «»sSHFREQ »SHRESPO,SHNSE. /
14 WRITE(1519)
19 FORMAT('" FIT=0,DRAW=1")
READ(2,)1IF
IFCIF=-1)22,20,22

20 CALL FREPIC(R»I»FsKX)
GO TO 49
22 WRITEC1»1)
1 FORMAT('" K DATA?»DATCHAN?sPOLAR=1,VECTOR=2")

READ(25)K» INs»K1
IF(K.GT«280) GO TO 22
IFCIN«LT«6) GO TO 15
2 WVRITE(C1,16)
16 FORMAT(" FILENAME?'")
READ(2517)FIL
CALL FSTAT(IN,FIL,dJ)
1F(J.EQ.2) GO TO 2

17 FORMAT(2A5)
CALL SEEKCINSFIL)

15 READCINSIC(FCJI)sRCJII s 1CJ)sJd=15K)
CALL CLOSECIN)

49 IFCITOG(2)) GO TO 44
GO 10 24

44 WRITEC1546)

46 FORMAT (" PHASE +/- RAMP?"™)
READ(25)P

P=P*180.0/K
DO 47 J=1,K

47 I1CJ)=J*P
24 WRITECI»4)
4 FORMAT(" IT FFIT ITERATIONS?')

READ(2,) IT1
IFCIT1)34-,35535
35 WRITEC1,36)
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34
37

21

41

11

12

18

40

19

3@

28

29

a5

FITF (continued)

FORMAT(" CUNVERGENCE L1IM1IT?™)
READC2,)FIT

WRITEC(1,37)

FORMAT(C' N/M TH ORDER POLLYFIT?")
READ(25 INP,>MP

KM=NP+MP+1
IFCKM*(KM+5)«GT+400) GO TO 34
IFC(K1+EQe2) CALL RIMP(R»I1-,K»1)
CALL PLTFRQ(R»Fs»X,IF»AL)

CALL PLTFRQ(IsF»K,IF»BL)

CALL RIMP(Rs1,K>-1)

IT=IT1

CALL FFITCFsR»1»KsSPN>SPD>4005>F1T>IT>NP>MP)

IFCIT«EQe=1) WRITEC1,)FIT
IFCIT.EQe=1) GO TO 14
WRITEC1,5) FIT

FORMAT(" SUM OF SQUARES OF ERROR OF FIT=",1PEl12.4)

ND=IFIX(SPD(1))
NN=IFIX(SPNC(1))

DO 11 J=1sND.

SPD(J)=SPD(J+1)

DO 12 J=1,0N

SPN(J)=SPN(J+1)

CAaLL QUFREQ(SPDJND)SPNJNNJF:K:PMJPP)
CALL RIMP(PMs»PPsK»1)

CALL RIMP(R»I»HK»1)

IFCITOG(2)) GO TO 18

GO TO 42 .

KF=1

DO 49 J=1sK

1CJ)=PPC(J)

GO TO 41

WRITEC(126)

FORMAT("/StN : DENOM COEFFS'")
DO 7 J=15ND

Jd=dJ=1

WRITEC1,8)JdJsSPD(J)
FORMAT(1X»13,T18,1PE12.4)
WRITE(1,9?

FORMAT("/StN NUM COEFFS"™)
DO 18 J=1,N0NN

Jd=Jd=1

WRITE(1,8) JJsSPN(J)

CALL PLTFRQ(PM»F»>K»1,AL)

CALL PLTFRQ(PPsF»¥X»1,BL)
IF(ND«EQe1) GO TO 27

ITER=1000

CRIT=.0801

J=ND-1

CALL NEWERC(SPD»JsPMs> ITER»CRIT)
IF(J)28,29,28
WRITEC1»3)ITER»CRIT
READC2,)ITER>CRIT

GO TO 30
J=ND-J=1
J=dJd+dJ

WRITE(1,252

~ FORMAT(" REAL POLE IMAG POLE"™)
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31

32

33

26

13

23

oRoloNoNoNoNoNaN o

FITF (continued)

WRITEC1,13)(PMCI1)LPMCILI+1)511=15U52)

IF(NN«EQ«1) GO TO 13
ITER=1000

CRIT=.0001

J=NN-1

CALL NEWER(SPN,J»PM, ITERsCRIT)

IF(J>32,33,32
WRITEC(1-,3)ITER>CRIT
READ(25)ITER-CRIT

GO TO 31
J=NN-J-1
J=dJ+J

FORMAT(" ROOTS NOT FOUND WITH ITER=",165"CRIT=">E8.1>»
1"ENTER NEW ITER,CRIT™)

WRITEC(1,26)
FORMAT("  REAL ZERO

IMAG ZERO"™)

WRITE(I:133(?”(11):PM(I1+L)JII=1:J:2)
FORMAT(1X»1PE12+4s5X51PE12+4)

IF(KF+EQ.1) GO TO 14
WRITE(1-,23)

FORMAT('" FIT TO SAME DATA?"™)

READ(2,)d
IFCJ=1) 14,24514
END

QUFREQ

SUBROUTINE TO CALC REAL AND IMAGINARY .PARTS OF NCJW)/DC(JW)

SUBROUTINE QUFREQCAs> JDsBsJN>F>NsXsY)

B=NUMERATOR COEFFICIENTS
A=DENOM COEFFICIENTS
JN=LENGTH OF NUM COEFFS
JD=LENGTH OF DEN COEFFS
F=FREQUENCY ARRAY (HZ)
N=LENGTH OF F

X>Y ARE ARRAYS TO RETURN RE AND IM
SUBROUTINE QUFREQCA, JD»>BsJN»>FsNsX>Y)
DIMENSION AC1)sBC1),FC1)2XC1)s5YC1)

TP I=8+«3%kATANC1.Q)
CALC FREQ RESPO

DO 9 J=1sN

OMEG=F(J)*TP1

RED=0.0 ;

XIMD=0.0

REN=@.@

XIMN=QQG

JD1=JD=1

JN1=JdN=-1

DO 8 K=@,JDl1,2

EXP=(=1@)%%(K/2)

RED=RED+(OMEG**K)*A(K+ 1) *EXP
IF(K+2+ GT«JD) GO TO 8
XIMD=XIMD+(OMEG** (K+1))*A(K+2)*EXP

CONTINUE
DO 6 AK=0>JN1,2
EXP=(=13)%*%(K/2)

REN=REN+(OMEG**K)*B(K+1)*EXP

IF(K+2« GT« N) GO TO

6

XIMN=XIMN+(OMEG**(£+} ) )I*B(K+2)*EXP
6 CONTINUE
DEN=RED*RED+XIMD*XIMD
X(J)=(REN*RED+XIMN4#XIMD)/DEN
Y(JI)=C(XIMN*RED-REN#XIMD)/DEN

RETURN
END
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FFIT

SUBROUTINE FFIT(FsR»15N15SPNsSPDsLIMFIT»ITsNP>MP)
FITS RATIO OF POLYNOMIALS TO FREQUENCY RESPONSE DATA.
F=FREQUENCY POINTS (HZ)

R»1 HOLD REAL AND IMAG DATA

N1=NUMBER OF FREQUENCY POINTS

SPD IS WORKING ARRAY OF DIMENSION N1

SPN IS WORKING ARRAY OF DIMENSION LIM

FITTED NUM COEFFICIENTS RETURNED IN SPN

SPN(C1)=NUMBER OF NUM COEFFSe.

FITTED DENOMINATOR COEFFS RETURNED IN SPD.
SPD(1)=NUMBER OF DEN COEFFS.

FIT=5UM OF SQUARES OF. ERROR OF FIT

IT=MAXIMUM NUMBER OF ITERATIONS BEFOR BEING DEEMED INCONVERGENT
-IT SPECIFIES NO OF ITERATIONS BEFORE NORMAL EXITe.
FIT ON INPUT IS CONVERGENCE LIMIT.

IT=1 FOR WEIGHTED LEAST SUM OF SQUARES OF ERROR

IT RETURNED AS -1 IF ITERATIONS INCONVERGENT
NP=NUMBER OF ZEROS TO BE FITTED

MP=NUMBER OF POLES TO BE FITTED

coaooonoqpgao0o0accao0oc0aoaQaao

PROGRAM WRITTEN BY Me.JeHILL USING MINIMUM MEAN SQUARE ERROR
CCRITERION. BASED ON SANATHANAN AND KOERNER (IEEE TRANS AUTO
C CONTROL JAN 1963.)

C OCTOBER 1974

Cc

SUBROUTINE FFIT(F»R»>15N1>SPNsSPDsLIMFIT>IT>NP>MP)

REAL F(1)J),RC1)-I1C1),WKLC1J5SPNC1)5>NC1),CC1),LAMCLI)>UCL1)»>STCL)

1MC151)>NNCi)>SPDC1LY
TP I=8.0*ATAN2( 10510
MIT=ISIGNCI-IT)
IT=1ABSCIT)
FITLIM=FIT
ITH=0
KM=MP+NP+1
NP 1=NP+1
NMP =NP+MP

C FABRICATE WORKING ARRAYS FROM SP

4 KMS=KM* KM+ |

KMS 1 =KMS+KM
KMS2=KMS+2*KM
KMS 3=KMS+3 %KM
KMS 4=KMS+4 %KM
CALL ADJ2(M»SPN(1):KME~1)
CALL ADJ(MLMC(151)5KMsKM»0)
CALL ADJ(N>SPNC(KMS)»KMs050)
CALL ADJ(C,SPNC(KMS1):KM»050)
CALL ADJ(LAMs>SPN(HMSZ2)»0P1,0,0)
CALL ADJC(ST»SPN(KMS2+NP1)sKM-0,@)
CALL ADJ{U,SPN(KMS3+NF1)MP»GsE)
CALL ADJ(NN:SPN(AKMS4):KM>0,0)
CALL ADJ(WKLsSPD(1)sN1,0-0)
DO 6 J=1,N1
FCII=F(*TPI

6 WEKLC(J)=1.0
DO 29 J=1,KM

29 NNC(J)=10E-6
CALL ERRSET(®)

C CALC LAMBDAS
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FFIT (continued)

FIT=0.0

DO 7 IK=1,NP1

LAMCIK)=0.9

DO 7 K=1,0N1

I1=CIK-1)%2

LAMCIK) =LAMCIK)+(FC(K)**11)*WKL(K)

C CALC S AND T

81

C CALC U

9

DO 8 IK=1sKM,2

STC(IK)=0.0

I1=1K-1

DO 8 K=1sN1
STCIK)=STCIK)+(F(K)**I1)*RC(K)*WKLC(K)
IF(KM«LT«2) GO TO 81

DO 81 IK=2,KM»2

STC(IK)=0.0

I1=1K-1

DO 81 K=1,N1
STCIK)=STCIK)+(F(K)**I1)*ICK)*WKLCK)
CONTINUE

IF(MP«EQ.@) GO TO 9

DO 9 IK=1sMP

UCIK)=B.0

DO 9 K=1,N1
U(IK)=U(IK)+(F(K)**(2*IK)}*(R(K)*R(K)+I(K)*I(KJ)*WKL(K)
CONTINUE

C NOW FILL UP ARRAY M WITH LAM

10

11

DO 19 IK=1,NP1,2

DO 10 J=1s50P1s2

MJ=(J=1)/2

MK=CIK-1)/2

MCIKs J)=LAMIMEK+1+MJ) *C (=1 @) *%kMJ)
IF(J«GE«NP1) GO TO 190

MCOIK, J+1)=0.8

CONTINUE

IF(NP1«EQ+1) GO TO 11

DO 11 IK=2,NP1,2

DO 11 J=2,NP1,2

MJ=dJds2-1

MK=1K/2~1

MCIK> J)=LAM(MJ+2+MK) *C( (=1 @) *%MJ)
MCIKsJ=1)=0.0

CONTINUE

C FILL UP U

12

IF(MP<EQ+0) GO TO 13
DO 12 IK=1,MP,2

DO 12 J=1,MP,2

MS=(J+1)/2

MCIK+NP 15 J+NP1)=UCMS+CIK=1)/2)%( (=1 @) %% (MS+1))
IF(Je GE«MP) GO TO 12

MCIK#NP 1, J+NP1+1)=0.0

CONTINUE

IF(MP«EQ+1) GO TO 13

DO 13 IK=2,MP,2

DO 13 J=2sMP,2

MS=J/2

MCIK+NP 15 J+NP1)=UCMS+IK/2)%C(~1+0) %4 (MS+1))
MCIK+NP 15 J+NP) =0+ 0
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13

FFIT (continued)

CONTINUE

C FILL UP ST LEFT HAND

14

LS

16

IF(MP.EQ.@) GO TO 20

DO 14 J=1,NP1

DO 14 IK=1-MP

MCIK+NP1,J)=STC(IK+dJ)

K=1

DO 16 J=1,0NPI

DO 15 IK=1,MP

IF(KeEQe2) MCIK+NP1lsJI=MC(IK+NP1loJ)*((=10)%*xIK)
IF(KeEQe3) MC(IK+NP1,J)==-MC(IK+NP1,J)

IF(KeEQed) MCIK+NP1lsJ)=MC(IK+NP1>J)*((=1.0)%*%(IK~1))
K=K+1

IF(Ke GTe4) K=K-4

C FILL UP ST RIGHT HAND

17

18

19

DO 17 J=1sMP

DO 17 IK=1,NPl

MCIK> J¢NP1)=STCIK+J)

K=1

DO 19 J=1,MP

DO 18 IK=1,NPI

IF(KeEQel) MCIK>J*NP1)=MCIKs JHNP1D*(C=1+0)%*(IK=-1))
IF(Ke EQe3) MCiKsJ+NP1)=MCIKs J*NP1)*((=140)%*1K)
IFCKeEQed) MCIKsJ+NP1)==MCIKs J+NP1)

K=K+1

IF(Ke GT+4) K=K-4

C FILL UP C

20

21

DO 20 J=1-MPs2
C(J+NP1)=0+0
IFC(J«EQ«MP) GO TO 20
CC(J+NP1+1)=0C(J+1)/2)
CONTINUE

DO 21 J=1,0NP1
CCJI=ST(I

C INVERT M

CALL SCPROD(M»2.0%*(=-30))
CALL INUMX (M)

CALL SCPROD(M»2.0%%(-30))
CALL MXP(N,Ms>C,KM)

C CALC WKL

22
23

IF(MP+EQ«@) GO TO 28

DO 23 J=1s.N01

QR=1.0

Ql=0.0

DO 22 IK=1,MPs2
QI=QI+NC(NPI1+IKI*(FC(JX**xIKI*((~10)%*%(C(IK~-1)/2))
IFCIK.EQeMP) GO TO 22

K=IK+1
QR=QAR+N(NP1+KI*(F(J)**xKI)*((=10)%%x(K/2))
CONTINUE

WKLCJ)=1+8/CQR*QR+QI*QI)

C CALC SUM OF CHANGE IN COEFFICIENTS.

DO 24 J=1sKM
FIT=FIT+ABSC(NNCJI=NCJII/NNCI))
NN C(J)=NCJ)

ITK=ITK+1

IF(MIT)34,35,35
IFCITK-IT)61,28-28
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FFIT (continued)

35 IFC(ITK+EQe IT-ANDeFIT«GT«FITLIM) GO TO 31
IFC(FIT«GT.FITLIM) GO TO 6l
C CALC SUM O F SQUARES OF ERRORe
28 FIT=0.0
DO 25 K=1,N1
RN=0.0
XIN=0.0
DO 26 J=1,NPls2
RN=RN+N(J) *(F(K) %k (J=1))*((=1@)**((J=-1)/2))
IF(J.EQ.NP1) GO TO 26
XIN=XIN+NC(J+1I*(F(K)*%xJI)*((=10)%%x((J-1)/2))
26 CONTINUE
- QR=SQRT(WALC(K) *(RN*RN+XIN*XIN))
PR=SAQRT(R(KI*R(KI+I(KI)*](K))
FIT=FIT+(PR=QR)*(PR-QR)

25 F(K)=F(K)/TPI
C INSERT COEFFS INTO SPNsSPDe.
MP 1=MP+1

SPN(1)=FLOAT(NP1)
SPD(1)=FLOAT(MP1)
DO 39 J=1,0NP1

30 SPN(J+1)=N(J)
SPD(2)=1.0
DO 32 J=1,MP

32 SPD(J+2)=N(NP1+J)
CALL ERRSET(1)
RETURN

31 IT=-1
DO 33 J=1,N1

33 F(J)=F(J)/TPI
CALL ERRSET(1)
RETURN
END

ROUTH

SUBROUTINE ROUTH(CA»JD» IROT)
REAL AC1)>RC1l1,5)
IROT=0
DO 4 I=1,11
DO 4 J=1,5

4 R(I»J)=0.0
DO 1 J=@,JD:2
RCls1+J/72)=ACJD=J)
IFCID=Jds LT+2) GO TO 1
R(2,1+J/72)=AC(JD~=J~1)

1 CONTINUE
DO 2 I=3s11
DO 2 Jd=1s4
IFCR(I-1>1)EQB.0) GO TO 2
RCI»J)=CRCI-151)%RCI-2,J+1)=R(I=-2,1)%R(i~1-J+12)/R(I-151)

2 CONTINUE

DO 3 J=1,10

3 IFC(R(J+151)%R(Js1)eLT«0.8) IROT=-1
RETURN
END
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c

C

PZFREQ

SUBROUTINE TO PRODUCE MOD, PHASE FROM REAL POLES/ZEROS

B=ZEROS

M=NO OF ZEROS

A=POLES

N=NO OF POLES

GK=GAIN CONST

F=FREQ ARRAY (HZ)

K=NO OF FREQ POINTS

AMOD=M0OD (DB)

PHI=PHASE(DEG)
SUBROUTINE PZFREQCA»N»BsMs GK» Fs» K» XMOD» PHI)
DIMENSION AC1)»BC1)5>FC1),XMODC1)»PHIC])
RAD=45+@/ATAN2(1+@512)
TP1=360.8/RAD
GKL=ALOG1@(GK) *20+0
DO 1 I=1,K
XMOD(I)=0@.02
PHICI)=0.0
Fl=F(I)*TPI
F2=F1*F1

CALC DEN CONTRIBUTION
IF(N«EQ+®) GC TO 2
DO 2 J=1sN
XMOD(I)=XMUD(I)-ALOGI@(A(J)*A(J)+F2)
PHICI)=PHICI)-ATAN2(F1,=-A(J))

2 CONTINUE

CALC NUM CONTRIBUTION
IF(M«EQ.@) GO TO 3
DO 3 J=1-1
XMODCI)=XMODCID+ALOGLIA(B(JI*B(JI+F2)
PHICI)=PHICI)+ATAN2(F1,-B(J))

3 CONTINUE
XMODCI)=XMODCI)*10+0+GKL
1 PHICI)=PHICI)*RAD
RETURN
END
MXP

SUBROUTINE MXP(AsBsCsHKM)
REAL AC1)>B(15,1),CC1)

DO 1 I=1,4M

TEMP=0.0

DO 2 J=1sKM

TEMP =T EMP+B(1,J)*C(J)
ACI)=TEWP

RETURN

END
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"FREPIC

C SUBROUTINE TO CALCULATE FREQ RESPO OF ANY SYSTEM.

C RETURNS MOD (DB) AND PHI (DEG)

C ASKS FOR POLYCOFFS OR PZS OR TIME CONSTS.
SUBROUTINE FREPIC(XMOD>PHI»F>N)
REAL AC18)5B(10),XMODC1),PHIC1),F(1)

D0 7 J=1510

ACJI=0+0

7 BCJ)=0+0
N=200
GK1=1+0
WRITEC1,8)

8 FORMAT(" POLYCOFFS 1,PZS 2,TIME CONSTS 3™
READ(2,)1PZ

C READ IN DENOM COEFFS
WRITEC1,51)

1 _ FORMAT('"™ ORDER OF DENOMINATOR?'")
- READ(25 ) JD
IFCIPZ«LT+2) JD=JD+1
IF(JDe EQe@+AND«IPZ+GT+1) GO TO 15
WRITEC1,9)

9 FORMAT(" ENTER DENOM COEFFS")
READ(2,) (AC(J) s J=15JD)
IFCIPZ+«EQs1) CALL ROUTHCA,JD,IROT)
IFCIROT+EQ+-1) WRITEC1,15)

15 FORMAT(" ROUTH DISSATISFIED")
IROT=0
C READ IN NUMERATOR COEFFS
WRITEC1, 3)
3 FORMAT(' ORDER OF NUMERATOR?")

READ(2, ) JN

IFCIPZ«LT«2) JN=JN+1
IF(UN«EQ+@+AND«IPZ+GT+1) GO TO 4
WRITEC(1,10)

10 FORMAT('" ENTER NUM COEFFS")
READ(25,)(B(J)sdJd=15JN)

4 IF(IPZ+.EQ+.1) GO TO 5
WRITEC(1»13)

13 FORMAT(*" GAIN CONST?'

READ(2,)GK
C CALCULATE FREQUENCY RANGE

5 . WRITEC(1.,86)

6 FORMAT(*" FREQ@ FROM, TO (HZ)>'™)
READ(2s)FL»FU
FUL=ALOG1@C(FU/FL)

Nl=N=1

RN=FLOAT(N1)

DO 14 J=0sN1

FJ=FLOAT(J)
FCJ+1)=FL*1Q 0% (FUL*FJ/RN)

IFCIPZ=-2)16520518
CALL QUFREQ(CA>JD>Bs»JN>FsN»XMODsPHI)
CALL RIMP(XMOD,PHI»N»1)
RETURN
IF(JN«EQ«0) GO TO 19
DO 19 J=1»JN
GK1=B(J)*GKI]

B(J)=1.0/7BC(J)
CONTINUE
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FREPIC (continued)

IF(JD«EQ«@) GO TO 20
DO 20 J=1,JD
GK=GKX/A(J)
ACJ)=10/7A0J)
20 CONTINUE
GK=GK*GK]1
CALL PZFREQCA»JD»Bs JIN»GKs F>NsXMODs» PHI)
RETURN
END

RIMP

C SUBROUTINE TO CONVERT VECTOR DATA TO POLAR DATA OR VICE-VERSA

CRIMP(A,B>N»K)

A=REAL. OR DB ARRAY

B=IMAG OR DEG ARRAY

N=LENGTH OF ARRAYS

K=1 FOR VECTOR TO POLAR

K==1 FOR POLAR TO VECTOR

PHASE DISCONTINUITIES REMOVED
SUBROUTINE RIMP(A>BsNsK)
DIMENSION ACl1),B(Cl)
RAD=ATAN2(1+0s10)745+0
IF(K«EQ«1) GO TO 5
DO 1 J=1sN
Al=100%*%x(ACJ)/200)
ACJ)=A1*%COSCRAD*B(J))

1 B(J)=A1*SIN(RAD*B(J))
GO TO 9

5 DO 2 J=1sN
Al=ACJ)
IF(ABS(A1)+ABS(B(J))«EQ+«@.3) GO TO 11
ACJ)=10.0*%ALOGIACAL*Al1+B(J)*B(J))
GO TO 2

11 A(J)==200+0

2 B(J)=ATAN2(B(J)»Al1)/RAD

C REMOVE PHASE DISCONTINUITIES

3 FKU=00

KFLAG=@

Nl=N-1

DO 4 J=1,01

IF(B(J+1)=-B(J)«GT«1600) FKU==1.:0

IF(B(J+1)-B(J)«LTe=1600) FKU=1.0

IF(F{UNE«B-0) KFLAG=J+1

IF(KFLAG.NE.®) GO TO 6

CONTINUE

GO TO 9

DO 7 J=KFLAG»N

B(J)=B(J)+FKU*360«0

G0 T0 3

CONTINUE

RETURN

END

aaooaoaon
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