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Summary 

An experimental method is established to deduce the transfer function 
relating crystal radius to power changes in a Czochralski crystal 
growth system, The experimental method employs pseudo-random signal 
injection into the power controller of a gallium phosphide crystal 
puller and uses crystal radius measurements made on the cold crystal 
after growth is complete. This is the first known application of 

pseudo-rendom signal testing to crystal growth. Novel data processing 
techniques ere developed to convert the crystal radius measurerents to 
samples at equal time intervals. Fast Fourier transform processing is 
used to compute frequency responses for the process. An algorithm is 
developed to fit trensfer functions to modulus frequency response data. 
A theoretical derivation of the transfer function is performed. This 
is based on the heat balance equation at the solid-liquid interfece. 
Due to lack of data on gallium phosphide, the exror bounds o/ the 
prediction are wide but it is shown that they may be reduced by using 
the measured transfer function. The work has applicrtion to the 
design of control systems for crystal growth and to a more fundamental 
understending of the crystal growth process. This is the first know 
description of a theoretical analysis of Czochralski crystal grow:h 

dynamics.
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1, INTRODUCTION 
  

1.1 GENERAL CZOCHRALSKI GROWTH 

Crystal growing has been described as a craft, (Brice 1973)! and 

inasmich as the process cannot be entirely predicted from theoretical 

or empirical considerations, this is an accurate description. One of 

the more important crystal growth methods is that due to Czochralski? 

in which the crystal is pulled from the melt at constant temperature. 

The normal crystal growing procedure with this method is to dip a 

seed into the melt and wait for thermal equilibrium. Then, while 

slowly withdrawing the seed from the melt, the melt temperature is 

inoreased, causing the growing orystal to decrease in diameter to as 

small a value as will be able to support the fully grown crystal. 

The purpose of this "neck in" portion of crystal growth is to 

eliminate crystalline imperfections that were developed at the 

initial solid-liquid interface when the seed was dipped into the 

melt. From this point, the melt temperature is slowly reduced while 

the crystal continues to be withdrawn from the melt. The reduction 

in melt temperature causes the diameter of the growing crystal to 

increase. This is continued until the required crystal diameter is 

reached, at which time the melt temperature is maintained relatively 

constant. The radial temperature gradient along the surface of the 

melt must be maintained such that the usual random temperature 

fluctuations due to imperfect temperature control will not cause the 

outer edge of the melt to solidify while the centre of the melt is too 

hot for proper crystal growth. 

There are two possible rate-limiting steps in crystal growth. First 

is the time required for atoms within the liquid to migrate to a 

lattice site. This time is very short and although it affects the 

impurity distribution, it does not affect the crystal growing rate. 

Secondly, and most important, is the requirement for the removal of 

the latent heat of fusion. This heat is removed in three ways: by 

conduction through the crystal pull mechanism, by convection and 
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radiation from the body of the growing crystal itself and by conduction 

through the melt and the crucible support mechanism. 

Crystal growing apparatus normally has three means of control: melt 

temperature control, seed and/or crucible rotation control, and crystal 

pull speed control. Figure 1.1 shows a cross section through a 

typical, pressurised Czochralski crystal puller and Figure 1.2 shows 

an enlarged section of the crucible with a growing crystal. During 

crystal growth a number of process variables must be monitored and 

controlled: 

1. melt temperature must be precisely maintained to obtain the 

desired rate of solidification for the growing crystal. This is 

accomplished mainly by varying the power input to the heater. 

2. crystal pull speed must be controlled because of its 

obvious effect on the rate of crystal growth. 

3. crystal rotation speed has a shaping effect on the growing 

erystal and also has a great influence on stirring of the melt. 

4. crucible lift speed: this is optional, to maintain the 

melt level at the same position relative to the heater as the 

erystal grows. 

5. crucible rotation speed hes a significant effect on the melt 

stirring which influences the temperature distribution in the melt. 

6. cooling water flow rate affects the rate of heat removal from 

the process. 

Te inert gas atmosphere, particularly at high pressures, is a 

significant convection medium to remove heat from the growing 

crystal. 

1.1.1 Application and Objectives of Czochralski Growth 

The Czochralski method has applicability to a wide range of materials. 

For instance Ga, with a melting point of 30C has been grown by 

Zinmerman? and La A10; with a melting point of 2080C has been grown by 

Fay & Brande’, 4n important extension to the method was made by 

Metz et al? when they introduced liquid encapsulated Czochralski (LEC) 

growth. This enabled compounds to be grown where one or more of the 

constituents was volatile. In particuler this enabled the III-V 

10



compounds to be grown. One of the more difficult of these inter- 

metallic materials, GaP, requires an inert gas pressure above the 

encapsulant of greater than 35 atmospheres (Bass & oliver)®, Therefore 

it will be evident that the growth conditions in Czochralski growth 

systems are almost as diverse as the range of materials grown in them. 

In growing a Czochralski crystal there are usually several objectives: 

ae to produce a single, strain free crystal 

be to produce a uniform diameter crystal 

ce. to produce uniform impurity distribution 

da. to produce a low dislocation density 

In practice, if the first two objectives are met, the last two will be 

satisfied. The most common method of Czochralski growth is to with- 

draw the crystal at constant speed and regulate the power input to the 

heater to produce an approximately uniform diameter crystal. 

1.1.2 Automatic Growth 

There have been numerous methods employed in attempts to transplant 

erystal growth from its status of that of an art to that of a science 

by using closed loop control techniques. The demand for single crystal 

silicon increased enormously in the late 1950s and much effort was 

spent on devising automatic production facilities. Levinson! described 

a@ control system for Czochralski growth which used a weight signal from 

either the growing crystal or the crucible to effect diameter control. 

Other weighing methods have been published by Reinert and Yatsko", 

9 eras have derived the Zinnes, Nevis and Brandle” and Bardsley et al 

relationship between the apparent crystal weight and crystal diameter 

(albeit a non-unique relationship). Other control systems have 

exploited the fact that silicon has a high heat of fusion which results 

in a bright ring at the solid-liquid interface which is detectible by 

infra red sensors. This method has been published by Jen, Slocum and 

e Corburn, Seksinsky and tucker'>, Patzner, Dessauer and Valentino 

Poponiak'4, and Digges, Hopkins end Seidensticker’ >, An optical method 

using a laser beam to reflect off the meniscus curve at the interface 
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has been published by Gross and mersten |: O'Kane et aie describe an 

infra red TV system with electronic processing of the TV signal to 

give a direct measure of the crystal diameter. Similar systems, but 

using visible TV methods are described by Bachmann et ai? and 

Gartner et at 9, Possibly the most direct method of diameter control 

is to use an X-ray imaging technique. This was the subject of a 

20 2 patent by Phillips : and Pruett 

and Lien??. In a rather different category, since it is only a means 

and descriptions by Van Dijk et al 

of varying the diameter end not of measuring it as well, is a 

description by Vojdani et 21°}, of a method of extracting heat from 

the interface region by Peltier cooling. It will be evident that of 

the above methods, only the weighing and the X-ray systems can have any 

application to encapsulated crystal growth since all the others rely on 

a line of sight to the solid-liquid interface. The weighing method is 

restricted in that for certain materials, notably GaP, Ge, InP which 

expand on freezing it is not possible to obtain a unique value of 

diameter from the weight signal except at very low growth mates) Otots 

The X-ray techniques all need very high energy beams in view of the 

necessary pressure chamber wall thickness and thus are not viable 

production methods. 

1.2 CRYSTAL GROWTH DYNAMICS 

In none of the literature referenced above has there been any mention 

of the Czochralski crystal growth system dynamics in either an empirical 

or e theoretical sense. This is a serious gap and one that this thesis 

sets out to bridge. The difficulty of making on line diameter measure- 

ments for encapsulated growth would be less serious if a system model 

could be set up hence enabling a model-reference control system to be 

implemented. A further advantage of having a knowledge of the dynamics 

of Czochralski crystal growth systems in general would be that crystal 

diameter could be controlled by a strategy that would be least likely 

to cause grown~in stress concentrations or cause twinning.



1.2.1 Test Signal Injection 

The system dynamics, as developed in Appendix 1, are shown in 

Figure 1.3. It will be evident that the only externally accessible 

parts are the power input and the diameter output. There is a noise 

input, due to changing convection patterns around the crystal, changing 

emissivity of the melt surface due to impurities and changes in coolant 

flow rates. This input point is however only conceptual and there 

would be little point in actually identifying the dynamics between it 

and the diameter output. There is therefore a requirement to inject 

some form of test signal into the power controller in order to be able 

to identify the complete system. ‘The choice of this signal is 

discussed in Chapter 3. 

1.2.2 Special Identification Problems 

The nature of the Czochralski process introduces some special problems 

into the system identification procedure: 

1. As it is a batch process, only a limited amount of data will 

be available for each crystal. 

2. Because the thermal conditions change from the beginning to 

the end of a run the dynamics are likely to vary over the run, ie 

they will be non-stationary. 

3. The process is non-linear, but it is intended to make a 

linear estimate. Test signals will thus need to be restricted in 

amplitude with attendant problems of having a poor signal to noise 

ratio at the output. 

4. The crystal diameter will have to be measured from the cold 

crystal afterwards. In order to process the input/output records 

it will be necessary to convert the diameter samples (measured at 

equal distances along the crystal) into samples at equal time 

intervals and then to synchronise the two sequences. 

This thesis is concerned with the system identification of a GaP LEC 

erystal growth system, kindly made available by Metals Research ita.? 

# Metals Research Ltd, Melbourn, Royston, Herts, England. 
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FIGURE 

Cross Section Through a Typical Pressurised Czochralski Crystal Puller 
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FIGURE 1.2 

Cross Section Through Crucible With Growing Crystal 
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FIGURE 13 CRYSTAL GROWTH SYSTEM DYNAMICS 
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2. THEORETICAL DYNAMICS 

2.1 INTRODUCTION 

The dynamics of the Czochralski crystal growth system have received 

scant attention in the literature. This is surprising in view of the 

9410412, 14,25, 
interest in automatic control systems There is also 

considerable literature on both experimental and analytical aspects 

24 26-34 | The nearest approach to a 

dynamic analysis of the Czochralski process is by Bardsley et aly 

of steady state Czochralski growth’ 

but this is only concerned with the dynamic relationship between 

apparent crystal weight and diameter. 

In this chapter a transfer function is developed that relates diameter 

changes to power changes based on heat balances at the solid-liquid 

interface. This follows the approach already published by Steel and 

Hi21>>. The dynamics may be conveniently divided into three sections: 

Power to temperature, temperature to radius, and radius to temperature 

as shown in Figure 4 of Appendix 1. 

2.2 HEAT TRANSFER PROCESSES 

The analysis is based on heat transfer mechanisms at the interface. 

These are very complex, due to the high pressure atmosphere, stirring 

effects in the melt and the presence of an encapsulant. The steady 

state temperature field in the crystal has been fairly comprehensively 

documented. The steady state heat conduction equation has been solved 

numerically by Sakharov et al’. Shaskov et al’éxtend the analysis to 

include reflected radiation and then use experimental observations to 

further refine the solution obtained. Experimental observations of 

the temperature field in a growing Si crystal have been made by 

_ Shaskov and Grishin?” by means of a grown-in thermocouple. Numerical 

calculations relating particularly to the temperature field at the 

solid-liquid interface have been made by Arizumi and Kobayashi ?©» 37, 

Analytical solutions to the thermal diffusion equation in the solid 

are obtained by Brice’, Kuo and Wilcox? derive analytic solutions 

for the temperature gradient at the interface. Despite these efforts, 
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the crystal growth conditions are mainly influenced by the hydro- 

dynamics of the melt and of the growth atmosphere. Kobayashi and 

Arizumi2?? fo) perform numerical calculations to derive the solid-liquid 

interface shape under steady state conditions. They take into account 

the melt temperature distribution for the cases of rotating crystal 

and rotating crucible. The same authors also perform a more 

comprehensive analysis of the hydrodynamics in the nelt*', Experimental 

evidence is available’, that the crystal growth interface is not 

stable, even in the short term, with rapid tilt and vertical displace- 

ments occurring under steady state growth. Nygren’? also gives 

experimental evidence that the growth interface can be either concave 

or convex to the melt, depending upon the thermal growth conditions. 

35 regarding a flat Thus although the assumptions made in the analysis 

interface and cylindrical interface are at variance with actuality, 

the errors so introduced are minimised by linearising the radius error 

about its nominal, steady state value and restricting the applicability 

to small deviations. 

Since Appendix 1 was published, the paper by Kobayashi and et cunie 

has appeared. This consists of a numerical solution to the Navier- 

Stokes equations which govern the forced convection in the melt. 

Natural convection will also occur, but with normal crucible and 

crystal rotation rates it will be dominated by the forced convection. 

The results show that the time for complete circulation of the melt 

is very small, supporting the assumption made in Appendix 1 that the 

dynamic lag between power input to the crucible and temperature at 

the interface may be neglected. 

2.3 MENISCUS CURVATURE CONSTANT 

2.3.1 General 

The meniscus curvature constant, K, is of importance in the time 

linearisation operation that is performed on the raw crystal 

data (see Chapter 4), end also in the overall transfer function 

derived in Appendix 1. 

17



It is shown to be given by: 

  

K - & Series 2et 
H (from Appendix 1) 

This is a linearised approximation and a need exists to establish 

44 its range of validity. Newman and Searle’ and Matejevic!? show 

that Laplace's capilliary equation leads to: 

z -1 . eh seeceee 202 
ae o 

where R, = meniscus radius 

r = crystal radius 

e = Py ~ Pp * density difference between melt 
and encapsulant 

h = meniscus height 

oc = surface tension of melt 

As it is intended to arrive at a linear approximation to the 

relationship between the crystal growth angle and the position of 

the solid-liquid interface, it is first necessary to assume that 

the 4 term of equation 2.2 is neglible. That is, the family of 

meniscus curves implied in equation 2.2 are reduced to one 

corresponding to that given against a flat plate. The problem 

will be approached in two stages. In the first, the limits on r 

to ensure the validity of the "flat plate" approximation will be 

established. In the second part, the value of the meniscus 

curvature will be derived together with limits for its validity. 

2.3.2 Flat Plate Approximation 

Expressing the meniscus curvature in terms of cartesian co- 

ordinates and using Figure 3 of Appendix 1 as a reference: 

  

an 
ave ax” ee oe 
Ra ( # (an ae 

dx 
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2 ah _ aq dq 
pun ae ax * %¢h 

substituting into equation 2.2 and integrating both sides with 

respect to h yields: 

-1 h pw 
r 

Gee = Se te C. eeesees 204 
o 

where C is a constant of integration 

when h = 0, 9-0 and C=-1. Tet H = (20) 
e 

with 6-0, dh = cot xy 
ax 

Thus equation 2.4 leads to: 

  

  

3 
a es + {ae + 1- : 

S ay ue (t4008)4) 

m
i
s
 

" 

n
a
 Gon uy? ecm car 

where g = E 

and ou = 1= (14 cow 

Equation 2.6 is plotted in Figure 2.1 as B against ; for several 

values of ¥ . From these curves it may be seen that little error 

arises in assuming that h is independent of r for values of a 

@reater than 3. 

46 Antonov"? has observed values of Y of 10° to 20° for GaP and 

Gibbons’? has observed a steady state value for h of 4mm for GaP. 

o r, 

Using ¥ = 15° and 7 = 3 in equation 2.5 yields Re “11. 

Hence r= 16°9mm 

Thus the approximation to a single meniscus curve independent of 

crystal radius is valid for GaP crystals of greater radius than 16.9mm 
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2.3.3 Range of Values 

Having established the range of validity using the meniscus curve 

formed by the melt against a flat plate, the range of values of 

the meniscus curvature constant, K, will be evaluated. 

From equation 16 of Appendix 1: 

Sin( 6+y ) = Hoone Seaeaee ee? 
He 

He-h* 
.*. tan(o+y) = (onthe nde sedate Oed   

From equations 21 and 22 of Appendix 1, assuming negligible hs 

tang «= K(ho-h) neaewee 269) 

Note that hy differs from H only as a function of the contact 

angle, ¥ (equation 17 of Appendix 1). As a first order 

approximation, equation 2.9 will be modified to include the 

contact angle, ¥. 

tan(o+y) = K(H-h) RagesserectO 

Combining equations 2.10 and 2.8 yields: 

ab 2.11 K = svecees 2 
2(2H-n2)e 

Re-writing this in the form: 

ue 2.12 KH = Wow e seeceee 

Where W = b and re-writing equation 2.10 in the form: 

tan(o+y) = KH(1-W) weaeeercelS 

enables a graph of KH against (9+y) to be plotted (Figure 2.2). 

This shows that over a range of 0+ ¥Y between -20° and 50°, 

KH = 2°06 within 7%. Hence if H = 4.65mm, within this range of 

etry, K™ -43un 7. 
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2.4 SYSTEM PARAMETERS 

The system constants and derived parameters for Ge, Si and GaP are 

shown in Table 2.1 together with their error bounds. This is a more 

comprehensive version of Table 1 in Appendix 1. ‘The error bounds on 

the GaP parameters are necessarily wider than for the other materials 

since its physical properties have not been as extensively investigated 

as with Si or Ge. Also, values of the temperature gradients Gy and 

G, are not available for GaP. The values in table 2.1 are therefore 

estimates. The surface tension for GaP was not available, but this is 

not necessary since an experimental observation was available for the 

meniscus height, h,. 

The error bounds for the various derived parameters are calculated as 

follows: 

From equation 40 of Appendix 1, 

Pee: pose One Wacesee 214 
@n~ 95 

if the error in Mdue to errasing., 9. and of ’ 3 n 84 S05° Som 

and $0; is§u, then 

  

= 24.64 + 3M. $a, + au .se 215 = . i seeeeee gu 36, 3 en 30, 

This leads to (for worst case errors): 

1 
Sms (1+2)80, +0 $0 « weeees 216 De 8-6, { P98 + AL dB; $0. 

From equation 27 of Appendix 1: 

Pos wrk, G sass 217 

so the error in Py is given simply by 

SH en bw Nye SEs seeeseenets B 5 Gj 

From equation 14 of Appendix 1: 

tee 
BP BWr, ke G, eeeeeee 219 
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Hence: 

oF, ese +56 seauees 220 
P 8 ° 

° k G 
s ° 

From equation 25 of Appendix 1: 

  

2 P, =r, IVA, oesctesioal 

60 
Hence; 

Bree ra bauierho) Reveeesi222 
Pp J Rs 

The power radiated, ae is given from the heat balance equation at 

the interface, 

Pr. = Py +P, = Po eecceee 225 

Hence: 

SP, =6P, +8P, +6P, eccccee 22h 

P, Pree 

The power density ratio, Q is given by equation 41 of Appendix 1, 

  

Q = 2hP, GA 

re. 

Thus: 

aa = 6h, + SP, +6F, eeees ee 220 

a a P. 

The final derived parameter, >, is given, from equation 44 of 

Appendix 1 as: 

O =02G,k th, - n(Q-1) Seseess 227 

Gk |e, : jean )=1 
° 

Which leads to: 

  

$6 =b« eae (6,6k, 4,66, 1, & k, 16,4 §G,) 426k 6 h, 

os k, G, Gk, 

426k, ((Qn41 )B(nQBH1 )6 4 (Q-1 "BB SQ) 
2 Gk Tr, 

  

Where A = h, -a(Q1)B 

& 
° 
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-1 B {&? ca Seuss ses228 

The transfer function error bounds may now be calculated from 

equations 4 and 45 of Appendix 1: 

  

  

4 

n (Gk gtvd}" eceeeee 229 
ra, 

én. x Hf 5% 6G, +6k, +6K +8 +80 +§ ecvcece 230 

ou ee a8 a ; 
° 8 

8 = Gk, 39,6, v5) * evcceee 231 

Q 

$3 6G, 15K 48041 1 (53+ 6888 48k, oe wepeseeneae 

3 Gk Q's 2G EK 6 

4 Ko {Si¥n jeer} 4+ . zo seccees 233 

Cees () +e-4 

x & (Meat DO(EG, +k, +66, +6, 168) 50 

G kG & o 
a ° 8 

eooeeee 234 

  

E 

With Cc = Oires 

ory 

D «G x. 

Gk 
os 

TG ee =8) 

SC oa, 4 (86. +80, + oe. +60,)) 

ohee 

  

The large variances on Q, b,a, 3 and K ere primarily due to the 

temperature difference terms, p» and Cs -0 a? the errors being 

3-5, 
unavoidable due to differences between large numbers. This, together 

  

with the uncertainty on the values of 6,29, 98, and Ce tends to make 

the derived transfer functions rather speculative. The accuracy of the 

parameters may be improved however by using the measured transfer 

23



function. The approach relies on the assumption that the measured 

trensfer function parameters have smaller error bounds than the most 

unreliable of the derived parameters of Table 12.1. Equation 419 

indicates thatN=.21 rad/min, $ =1.14. and K = 45.91 Using this observed 

value of fin equation 229 and re-arranging for Q yields a modified 

value for dof f° =1.59. Using this value of § and the measured value of 

3 in equation 231 yields a modified value for Q of Q'=0.951. This is 

unrealistic, since as indicated by equation 42 of Appendix 1, a value 

less than unity implies an unstable mode in the power to diameter 

transfer function. However, the calculation has served to indicate that 

the actual value of Q lies sonawnare below the value of 2.78 that the 

analytical derivation indicates. Note that Q is also given by the ratio 

of power transfer densities at the interface and the surface. The lower 

value would indicate that more heat loss occurs at the surface than the 

interface. -



TABLE £2.14 

Typical parameter values 
  

  

  

  

  

  

    

System constants G, 24 8, 2% GP 2% GP It % 

ry crystal radius (cm) 4. |* |4 * 4 ed |* 

R crucible radius (cm) 203 |* [46 |* 1h be 
V growth rate (cm/min) O17)* 0030 |* | 6033)* [033 |* 

J latent heat (J/g) 43 14 |4800 }4 |4500]40 [4500 |10 
k conductivity (W/cm K) 02h}4 [003014 [e353 |41 Jed |4 

kK conductivity (W/em K) Oszitt: jOs67 14 Jer (4. lov 914 

2, density (g/cn?) 5032/1 [2.311 [eet 12 et f2 
8 angle of contact (deg) 20 140 |20 |10 |20 |10 [20 |10 
© surface tension (dyne/cm) 620 |5 |720 |5 
«< gradient variation factor 105 133 |105 [33 [105 133 [105 133 

G, gradient in crystal (°C/en) 403 |10 }110 |10 |100 |20 |100 |20 

G, gradient in nelt (°c/em) 30 |10 135 |10 |50 |20 |50 |20 
oo fusion temperature (°C) 937 |o3 |4410 | 62 |41470) 2 |4-70).2 

© melt temperature (°c) 945 | 3 |4430 | .2 |1490].2 |4490|.2 
6. susceptor temperature (°C) 960 | 05 [1457 | 05 [1545] 05 [1545] 05 

© ambient temperature (°C) 300 |10 1300 |10 |300 |10 |300 |10 

Derived parameters 

h, meniscus height (cm) Oh [10 ]0.6 110 ].5 10 ].5 Ho 

K meniscus curvature constant ca) 32 1305]2.0 [35 lbod [505 |lb03 15.5 

p differential temperature ratio 4 688} 4301135 [60 [208 J45 |2.8 15 

PS power input from melt (W) 67.0141 | 73567 {44 |110 | 24 |247 124 

P, Power input to crystal (W) T7e7]44 |10307]}14 | 02) 21 1242 [24 

P, power due to fusion (VW) 2405/2 16602}2 [1006/12 |23.912 

P|, power radiated (Ww) 40 08] 450] 36.2 158 |26.4.)167/59.2469 

Q power density ratio 4.096] 174} 2ely | 79 | 2-017] 198] 278/200 

6 dimensionless parameter 0.95) 24914 7h. | 54 | 1011] 130) 4 .08/154 

Transfer function parameters okie 

$f. natural frequency (rad/min) 0.58/447/0.70 | 34 | «21 | 78 | 17 193 

§ damping ratio 0619] 300}0620 | 124} 40 | 302] 6 (314. 

K, gain constant 49 1420} 23 35 140 1310] 35.8)309                   

* specified parameters 
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3. EXPERIMENTAL PROCEDURE 

3-1 ARRANGEMENT OF CRYSTAL PULLER 

A type MSR6 pressurised crystal puller was made available by Metals 

Research Ltd for the experimental work. This was an RF heated puller, 

capable of taking a clarge of 250gm. A systematic diagram of the 

puller is shown in Figure 3.1 and a picture of the puller in Figre 3.2. 

As can be seen from the picture, the viewing ports are inclined at 

approximately 30° to the vertical which gives a very restricted view 

of the growing crystal. Since encapsulation is used, the encapsulant, 

BL035 very soon becomes opaque thereby obscuring the interface region 

of the growing crystal. Only one thermocouple is fitted, this being 

positioned in the base of the susceptor, 1mm from the bottom of the 

crucible. The pull rod has a position indicator with a digital read- 

out in units of +0238mm and can be zeroed (eg at seed on). A contact 

device is fitted which enables contact between the seed crystal and 

the melt to be sensed. The pressure chamber is filled with nitrogen 

at a typical running pressure of ex10° face This pressure is not 

automatically controlled but for the duration of a typical crystal 

growth run it remains within 5% of its initial value. Crucible lift 

and rotation facilities are available although lift is not normally 

required, and was not used in any of the experiments. The pull bar 

also has lift and rotation facilities. Both the crucible and the pull 

bar movements are controlled by constant speed servo systems. The 

RF power input to the susceptor is controlled by a "Wattmaster" 

constant power regulator. This is fitted with a control potentiometer 

and may also be remotely controlled by a voltage signal. A closed 

circuit TV system exists for monitoring the progress of growth, the 

camera is pointed down one of the viewing ports. 

3.2 EXPERIMENTAL SYSTEM 

3.2.1 Equipment 

This consisted of pseudo-random signal injection equipment. A 

special purpose signal generator had been built by the staff of 
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the University of Aston. This provided facilities for generating 

binary, inverse repeat binary and ternary pseudo-random sequences. 

The characteristic polynomials for the sequences could be 

specified. This signal generator required an external clock 

signal and this was provided by a Servomex LF141 signal generator. 

An interface unit to provide variable amplitude and variable off- 

set facilities for the pseudo-random signal generator was designed 

and built. These three items are shown in Figure 3.3. A 

Solartron JM1861 pseudo-random signal generator was also available. 

This had a more restricted range of facilities and could only 

Produce binary or inverse repeat binary pseudo-random sequences. 

It had an internal clock generator but this had widely spaced, 

fixed frequencies. 

3.2.2 Choice of Test Signal 

The necessity to inject some form of test signal into the system 

has been established in Chapter 1. There remains the choice of 

test signal to be made. Step or impulse inputs are precluded 

immediately in that any attempt to perform a linear system 

estimation about a mean operating point would fail because of the 

large input needed. (Such a signal injection of sufficient 

amplitude to be measurable in the output could well be fatal for 

the growth process). Sine wave testing is precluded with a batch 

Process such as this; numerous crystals would need to be grown 

with different frequency inputs just to produce one freauency 

response. ‘'Gaussian' noise injection is precluded by the batch 

process limitations on the time that data can be gathered. The 

one remaining class of input signal, a pseudo-random sequence’", 

is eminently suitable. The crystal growing process is a classic 

example of a requirement for pseudo~random signal testing in that 

a low amplitude of disturbance is mandatory end the time in which 

data can be collected is limited. However, most of the literature 

describing the use of pseudo-random sequences has been on 
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1 
49 50,5 + Provided that enough data can be continuous processes 

collected during the batch process then there is effectively no 

difference between the two cases. However, it is likely to be the 

ease that in order to arrive at a reliable system estimate more 

data is required than is available. An ergodic hypothesis must 

therefore be adopted and the results from several runs regarded 

as an ensemble, with which the system estimate may be computed. 

3.2.3 Model Structure 

The crystal growth system dynamics are shown in block diagram form 

in Figure 1.3. The only intermediate stage in the dynamics is 

that of power to melt temperature. It is possible to perform a 

separate identification of this part of the dynamics by relating 

temperature changes to power changes. Unfortunately, the other 

half of the dynamics, temperature to diameter, is not separately 

identifiable. However, its dynamics may be deduced by measuring 

the overall dynamics and then subtracting the power to melt 

temperature dynamics. Note that if temperature measurements are 

made without a growing crystal present, then the diameter to 

temperature dynamics will not influence the result. There is 

therefore a case for performing a system identification experiment 

on the crystal puller without a crystal. However note that the 

melt temperature itself is not measurable, although it may be 

approximated by the temperature measured at the base of the 

susceptor. A further possibility exists, that of performing tests 

on the crucible both with and without a charge of GaP and 

encapsulant. The thermal capacity of the crucible would be 

expected to be increased by the presence of the charge and its 

heat dissipation characteristics would be expected to be influenced 

by the presence of the B05 layer. 

3.2.4 Test on Crucible Alone 

Although an empty crucible was being used (but with normal gas 

Pressure and coolant flow rates etc), the dynamics would still be 
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expected to exhibit non-linear behaviour due to the mode 

dependence of the thermal response . (The crucible is likely to 

cool with a shorter time constant than that with which it heats 

up). Accordingly, an anti-symmetric sequence was chosen because 

of the property of non-correlation with even order harmonics“. 

This would enable a linear estimate to be made of a non-linear 

system. The transient of temperature produced by a step-change 

in power input had been observed to be settled in 5 minutes. To 

give ample time for the system impulse response to have decayed, 

a sequence of 10 minutes period was chosen. To provide an upper 

identifiable frequency that would reasonably be above any system 

noise, a bit frequency of +3Hz was chosen. The sequence was now 

defined, since the inverse repeat sequence nearest to these two 

parameters has 2(27-1) bits (= 254). In this initial experiment, 

there was no limit to the length of data that could be collected. 

(Unlike the later experiments, where the data was to be limited 

by the length of crystal that could be grown). The pseudo-random 

signal generator was coupled directly into the power controller 

of the crystal puller. The peak to peak amplitude was set to 5.25 

% of mean power. (This was considerably higher than the change 

used. for the growth of a normal crystal). The test signal wes run 

for three complete periods after a settling time of a half-period 

and the thermocouple output was recorded on a chart recorder for 

subsequent analysis. (It was thought that the high RF fields 

ambient to the crystal puller would make the use of a digital data 

logger impractical). The resultant analogue chart recording was 

hand digitised on to standard PDP9 punched tape, the thermocouple 

output being sampled at the bit frequency of the test signal, and 

in synchronism with it. The method of overlapping segment fast 

Fourier transformation was employed, (Carter, Knapp and Nutta1°? ys 

to evaluate the mean frequency response function from one period 

of inverse repeat pseudo-random signal and from three periods of 
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system output. An overlap fraction of 0*5 was used, yielding 

effectively five periods of overlapped data. The frequency 

response function so produced was then compensated for the effects 

of being preceded bya zero order hold, thus providing an estimate 

of the frequency response of the continuous system represented by 

sampled data. The resultant frequency response function (gain 

and phase) is shown in Figures 3.4.1 and 3.4.2, The coherence 

function is shown in Figure 3.5. The phase and the coherence 

function together indicate a very low correlation between the 

input and output signals above -02Hz. The (almost) linear phase 

characteristic up to this frequency indicates the presence of a 

time lag between the input and output signals. In view of these 

factors a transfer function was fitted to the data by the method 

of fitting to modulus only, described in Chapter 5. The phase 

information was replaced by a negative-going, linear phase 

characteristic (initial phase), in order to start the iteration. 

The resultant fitted frequency responses are shomm in Figures 3.6.1 

and 3.6.2. The (first order) transfer function that was fitted 

was scaled to have units of "of change of power and was: 

H(s) = BteO See aeee! S01 

with a sum of squares of pecesert fit = 0061. (See description 

of FFIT in Chapter 5). The measured phase characteristic 

indicated a delay term of 07°08 

3.2.5 Test on Crucible With Charge 
A second experiment was devised to measure the dynamics 

of the susceptor and crucible with a melt present. It was further 

planned to go on to grow a crystal with a test signal superimposed. 

Since the first experiment had indicated that frequency components 

of the test signal above +02 Hz were not detectable in the output 

and the presence of the melt would be expected to lower the natural 

frequency of the system, a longer bit period was indicated. The 

next increment of bit period that was available on the JM1861 was 
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0.1 Hz. This, with the same sequence as for the first experiment, 

but peak to peak amplitude of 3% of mean power, gave a sequencé of 

duration 42.7 minutes. The sequence was run for a half period, as 

settling time, then for a further two periods. The data was processed 

in the same manner as for the first experiment except that since only 

two periods of data were availeble, only 3 overlapping segments could 

be used”3 with an overlap fraction of 0.5. The frequency response 

function is shown in Figures 3.7.1 and 3.7.2 and the coherence 

function is shown in Figure 3.8. A first order leg was fitted to 

the modulus, as for the first experiment, and the delay term was 

evaluated from the measured phase characteristic. The transfer 

function fitted was scaled to have units of "of change of power 

end was: H(s) = 3.53 evceces 302 
49.758+1 

with a sum of squares of error of fit = 0.120. The delay term was 

ems, The fitted frequency response is shown in Figures 5.9.1 and 

3.902. The delay terms were evalusted at the lowest frequency in 

the empty crucible test sequence,(.00118Hz). The difference between 

the measured and the fitted dynamics was assumed to be due to the 

delay term. The differences in gain between the two cases are 

possibly an indication of the non-linearity of the thermal process, 

the larger input signal for the empty crucible giving a lower gain, 

A further factor which could increase the gain would be the 

insulation afforded by the 3,0, layer, enabling a higher steady 

state temperature to be attained at a given power level. However, 

the 3,0, would also be expected to influence the time constant of 

the systen, this is not evident between the two deleys of the empty 

and full crucibles. It is concluded that the effect of the melt and 

BLO, is insignificant, the differences in gain being due to non- 

linearity. The delay times must be considered unreliable since they 

are based on only 4 observation. The longer delay tine with the 

smaller input signal is consistent with non~linear thermal behaviour. 
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3.2.6 Test on Crystal Growth 

An initial crystal growth experiment was devised to measure the 

dynamics between power input and crystal radius. The same 

inverse repeat binary. pseudo-random sequence was used as for the 

tests on the crucible. A crystal was seeded and at a pull speed 

of 2cm/hr was necked out to approximately 1cm diameter under 

manual power control. At this point the pseudo-random input 

signal wasapplied at 2.62% peak to peak amplitude Input power 

control was retained, (with the PRS superimposed), until the 

crystal finally broke at its seed-on point 141 minutes after 

starting the PRS. The resultant crystal showed no evidence at all 

of a diameter perturbation of high enough frequency to link it 

with the power perturbation. It was concluded that the bit period 

of the PRS used was too short for the dynamics of the erystal 

growth process to respond to it. In the choice of test signal, e 

dichotomy of interests exists, in that the low frequency end of 

the range should be taken down as low as possible in order to 

"illuminate" the dominant modes, while the period of the test 

signal should be as short as possible for two reasons: 

1. The test signal should, at worst, be short enough to 

allow a half period settling time and one full period in 

the duration of the crystal run. 

2. If possible, several periods of test signal should be 

accommodated in the crystal length to allow the dynamics to 

be separately identified at the beginning and end of the run. 

A typical crystal grown in the MSR6 puller could take approximately 

three hours to grow (at 2cm/hour). Obviously the smaller the 

crystal diameter, the longer the growth time but in practice 

manual control to produce thin crystals is very difficult, the 

system seems to have an inbuilt bias to grow crystals of 

approximately 3cm diameter. The maximum length test sequence 

that can be accommodated on the crystal is therefore two hours. 

This leaves half a period as settling time and the remaining two 
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hours for identification. It has been demonstrated that a bit 

period of 10 seconds was too short for the crystal dynamics and 

theoretical considerations (Chapter 2) have indicated that a 

Nyquist frequency one tenth that given by a ten second bit period 

would be adequate. It was thought to be advantageous to use a 

ternary pseudo-random sequence. This gave the possibility of 

performing a non-linear estimation of the system at some later 

date (Barker, Obidegru“). The overall period and bit frequency 

requirements were met by a fourth order ternary sequence with a 

bit period of 90 seconds. (This is 80 bits long and hence a 

complete period lasts 120 minutes). The magnitude of perturbation 

necessary to produce a measurable response was difficult to 

estimate, this being limited by the need to operate in the linear 

range without impairing the general growth conditions. A further 

point in favour of using a ternary sequence is that with a 

seventh order inverse repeat sequence, the longest time spent in 

one state is 8 bits but a fourth order ternary sequence only 

spends a maximum of four bits at an extreme. At this stage, no 

further systematic approach could be used to specify a 'safe' 

amplitude, so on purely empirical grounds the amplitude was set 

at a level that an experienced crystal grower thought was the 

maximum possible without causing the crystal to melt off or 

freeze out. Thus the next crystal was growm in the same manner 

as the first, but with a ternary pseudo-random power perturbation 

of 1.5% peak to peak amplitude. There was very little 

evidence of diameter fluctuations. There were visible striae on 

the crystal but these were immeasurable by the dial gauge method 

(see Section 3.2.7). However, more seriously there was not a 

complete period of data available. Lamb and Rees”) have shown 

that serious errors are introduced into system frequency response 

estimates by truncating or increasing the length of data streams 

obtained from pseudo-random sequences so that there was little 
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information to be gained from this crystal other than that the 

power perturbation was still too small. For the next crystal the 

power perturbation was increased to 2.75% peak to peak. This 

level of perturbation was satisfactory as a measurable signal was 

produced on the diameter profile of the finished crystal. 

However, as shown in Chapter 4 there was still insufficient data 

available to enable a transfer function estimate to be made. A 

subsequent crystal was grown at a slower growth rate and this 

yielded enough data to enable a transfer function to be estimated. 

A photograph of these last two crystals is shown in Figure 3.10. 

3.2.7 Measurement of Crystal Diameter 

The profile of the cold crystals was measured by means of a dial 

gauge and a lathe. The method is shown in Figure 3.11. The lathe 

provided a convenient vehicle for mounting the crystal and 

enabling the dial gauge to be incremented along the length of the 

erystal. The probe of the dial gauge was especially ground to a 

radius of *Olcm. The dial gauge itself was calibrated in 

increments of +*003cm but the reading could be estimated to -000%cm. 

Readings were taken along the length of the crystal at intervals 

of -005cm, starting at the seed-on point. The measured profile 

was then converted to diameter values by measuring the largest 

diameter on the crystal with a micrometer and applying a datum 

shift to the other profile measurements. 
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FIGURE 3.1 

Crystal Puller Systematic Diagram 
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FIGURE 3.2 

Crystal Puller Picture 
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4. 

4.1 

DATA PROCESSING 

THERMOCOUPLE DATA 

4.1.1 General Processing 

The input signal used for the first two experiments, (power to 

temperature runs) was an inverse repeat binary pseudo-random 

sequence derived from a seventh order characteristic polynomial: 

3 7 F(z) = 10270 2 eeceese 401 

where @ indicates modulo 2 addition. 

There were therefore 2(2"-1) = 254 bits in each sequence. It may 

52 
be shown” that even order harmonics are absent so that any 

frequency response estimates produced from the output data can 

only exist at odd order harmonics. It is highly desirable to 

remove any drift that is present in the output sequence“, but the 

recommended method, that of data-differencing is wasteful of data 

so in this case polynomial drift elimination was used. This 

involved the fitting of a polynomial to the output data by least 

squares regression and using the perturbations about the fitted 

curve as the drift corrected data. In this case a first order 

polynomial fit was used. Bendat and Peirsol?’ show that for a 

limited amount of data, the spectral resolution varies inversely 

with the segment length. However the bias and variance of spectral 

estimates vary inversely with the number of segments. ‘There is 

therefore a conflict between long segment lengths and large 

numbers of segments. Carter, Knapp and Nuttalr” show how both the 

number of segments and the segment length may be increased by the 

use of overlapped fast Fourier transform processing. This method 

together with Hanning windowinene was used to produce averaged auto 

and cross power spectra from which an averaged frequency response 

estimate and a magnitude squared coherence (MSC) function for the 

system were calculated (see Chapter 5). 
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4.1.2 Errors 

The errors involved in the estimation of a frequency response 

function may be categorised into two broad types: 1. Bias errors 

and 2. Random errors. Bias error is illustrated in Figure 4.1. 

It arises due to the unavoidable use of a finite width spectral 

window which can be caused by some or all of the following reascrnt 

1. Inherent bias in the estimation procedure. 2. Bias due to 

false linearity assumptions, but note that the frequency response 

estimator used, A(f) =@ (f) , gives a least squares optimal 

f. 
xx 

estimate of a non linear system. 3. Bias already present in 

spectral density estimates. 4. Bias due to measurement noise 

at the input. 5. Bias due to inputs correlated with the test 

signal. Errors from the first cause are usually neglible compared 

with errors from the other causes but it can be shown that 

8 [A(2)| =H(f) as either n = 23,7 —sco or yt if no 

other bias errors are present. (s [Aca] = expected value of 

A(f), n = number of degrees of freedom of each estimate, 

B, = estimation bandwidth, T = length of data). Errors from 

source 2 may be minimised by ensuring the linearity of the process 

being measured by restricting the amplitude of perturbation. 

Source 3 may be minimised in a similar manner to 1, by using a 

narrow enough spectral window to accurately follow any spectral 

peaks in the power and cross spectra. The fourth source is perhaps 

rather obvious, in that if an estimate is made on the wrong 

assumption that the spectral density of the input was higher than 

it actually was, then the estimate of the system frequency response 

will be biased downwards by about the same amount. The final 

source of bias errors is in some sense the opposite of 4. in that 

it is due to noise present at the input that is not measured. If 

this noise is completely uncorrelated with the test signal then no 

bias errors will result. (Random errors will however). 
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Barker and Davy? show that in the absence of noise, system 

frequency response estimates obtained by the use of pseudo-random 

signals are deterministic, as opposed to estimates made by using 

random noise. This feature eliminates the need for large sample 

sizes and frequency smoothing techniques as described by Bendat 

and Peirsol®, Errors that are still present can be classified 

in five types: 

1. Input errors, where for instance the input PRS is 

modified by the input transducer. In this case, because 

the power perturbation is a relatively 'clean' signal and 

the bit rate of the PRS is far below the cut off frequency 

of the power controller, this source of error can be 

neglected. 

2. Output errors. These are principally due to aliasing. 

A general rule is giver” that errors due to this source 

will be neglible if ja(ty of the system frequency response 

is decreasing at 40dB per decade for W Sir + A preferable 

method of aliasing reduction would be to oversample, then 

use a low-pass digital filter and finally re-sample at the 

required frequency. 

3. Noise errors. This includes the effects of disturtences 

and quantisation error. (In the crystal growing context, 

disturbances are likely to be the largest source of error). 

The magnitude error as a result of noise will be greatest at 

small phase estimates, while the phase error will be greatest 

at small magnitude errors. The disturbances in a crystal 

growing system are due to numerous factors, but are virtually 

impossible to quantify. 

4. Drift errors. These will produce bias errors, but are 

easily avoided by using drift correction techniques on the 

raw data. 

5. Non-linearity errors. As mentioned before, these are 

minimised by restricting the amplitude of the test signal 

and further reduced (avoiding even order non-linearities) by 

using an anti-symmetric test signal. 

The noise errors can still be reduced by using more than one 

period of data for the spectral density estimates and averaging, 
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4.2 

or, alternatively if several separate data streams are available, 

by adopting an ergodic hypothesis and averaging spectral 

estimates for each of the data streams to increase the number of 

degrees of freedom of the resultant frequency response estimate. 

This second method is preferable because it does not increase the 

estimation bandwidth, B, and this has been shown to be desirable 

to reduce bias errors. B, is a parameter that needs to be chosen 

with care to provide an optimal trade-off between random errors 

and bias errors. The overlapping segment method of Carter et al? 

falls into this second category. However, because the segments 

are overlapped, then the estimates produced from each segment are 

not entirely independent. A purely heuristic approach indicates 

that the number of degrees of freedom will be increased by a 

factor Ds 

where p = m(1-q) eovcese 405 

with m «= number of overlapped segments 

= overlap fraction 

CRYSTAL DATA 

4.2.1 Crystal Time Linearisation 

As described in Chapter 3, crystal diameter measurements are 

available at equal sample spacings along the length of the grown 

crystal. The only datum is the seed-on point and even this is 

subject to an uncertainty of S,. Before any frequency domain 

processing can be contemplated the diameter samples, D(7), must be 

converted into diameter samples at equal time intervals, D(t). 

Figure 4.2 shows the interface region of the growing crystal. 

L = melt level at which the crystal was seeded and growth 
commenced 

= present position of the seed from L 

distance of the interface from the seed 

= present melt level position from L 

= present crystal radius 

a
 

i
 

a 

= crucible radius 

By inspection, y = 1 +M -h severe 406 
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+ a . aM _ ah 
oe aee™ at tap at eeeeeee 407 

now * is the pull rate, wv , which is constant during the 
growth cycle 

aM (dy , dh) at is the melt level drop rate, = Wat + FE) ceeeeee 408 

with q = 4, Os eases dO) 
R Om 

where (Os = density of solid 

(Om = density of melt 

Now it can be shown from the meniscus geometry (Chapter 2), that 

gr = dy K(H-h) 
at at seecees 410 

where K = meniscus curvature constant 

H = Height to vertice of meniscus curve 

Sr), =kah 
a ‘ay, at 

substituting tor & % and a into equation 407 and re-arranging 

hence coceees 411 

for & yields: 

= (1-9) ag -t4@) weeeees4l 

In a short time interval At, the distance through which the pull 

rod moves is wAt and from Figure 4.2: 

Ay = (-alfay - x “s| Ceeenes 413 

where A, is the change in surface slope, = over the interval. 

This comprises an algorithm for computing the incremental slice 

thickness. N 

The summation Z = = 415 gives a quantity which is directly 

proportional to the crystal growth time. The next part of the 

algorithm is required to divide Z into m equal divisions where m 

is the required sample time interval. This process is illustrated 

in Figure 4.3. Observe that 2 does not in general yield a sample 

interval that is in synchronism with the sample interval of Sm. 

Linear interpolation is performed between the nearest two points 

of this function to give the sample number at which the diameter 

is required. Again, in general this sample number will be non- 

integer. A further linear interpolation is performed on the 
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Measured crystal diameter to yield the required diameter at the 

linear time sample point. The flowchart and graphic illustrations 

of the time-linearisation algorithm are shown in Figure 5.6. 

Some special points about equation 413 need emphasising. The term 

4, is in effect a second derivative and as such is liable to be ‘S 

subject to high noise levels unless special precautions are taken. 

1 ¢ 4 > Ay, then a negative slice thickness is computed, 

implying that crystal melt back has occurred. The effect of this 

on the time linearisation algorithm would be to produce a 

discontinuity in the modified diameter profile. This is unavoid- 

able since if melt back had occurred, information would have been 

lost and it would be hardly surprising that the algorithm could 

not replace it. Maximising A y minimises the danger of a computed 

melt back for any particular slice but Ay cannot be increased 

indefinitely as resolution would be lost. An optimum value of ay 

must therefore exist, large enough to preclude melt back but small 

enough to maintain the bandwidth of the resultant diameter profile. 

The crystal diameter measurements that were available had been 

made at as close a spacing as possible and were spaced at *005icm 

along each of the useable crystals. This was far higher than the 

pseudo-random ternary sequence bit rate demanded and hence gave 

the option of low pass filtering and then re-sampling before time 

linearisation. This is a highly desirable operation to carry out 

in any case to reduce aliasing in subsequent spectral estimates. 

The second derivative term, Ke needs special attention, as 

indicated, to minimise the noise that will be amplified in the 

derivative operation. Accordingly a Lanczos ‘low noise' digital 

differentiator was used. This is described by Kuo and Kaiser” . 

Strictly, an epproximation is involved in assuming that the change 

of = over a time interval At is given by the second derivative 

of r with respect to y. However this is only a second order 

error, it could be iteratively eliminated by computing a better 
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estimate of A, from the time linearised profile that was 

produced using equation 413. However the error was considered 

small enough to be neglible. A seventh order Lanczos filter was 

chosen, having a differentiator cuttoff frequency of -15f,. The 

crystal perturbations in the frequency range of interest were 

therefore differentiated while the higher, (noise) frequencies 

were attenuated. Second derivative action was achieved by passing 

the crystal data through the differentiator twice. Since the 

Lanczos low noise differentiator is a non-recursive filter and it 

is not being used on 'on linet data then it is possible to centre 

its impulse response about zero time. The filter will not then 

produce any phase shift between the input and output sequences. 

This is the same principle as was used for the more conventional 

low-pass digital filters that were designed within the DPPP soft- 

ware package. (See Chapter 5). It was found that in order to 

avoid negative slice thicknesses being computed from equation 413, 

the slice thickness, Ay needed to be approximately three times 

as great as the basic, measured crystal slice. In summary 

the time linearisation strategy that has evolved is as follows: 

1. Low pass filter the raw crystal profile 

2.  Re-sample and perform time linearisation 

3. Low pass filter and re-sample to give crystal samples 

at bit rate of PRS. 

while using a lowpass second derivative of the crystal profile in 

the time linearisation algorithm. 

4.2.2 Time Synchronisation 

Once the linear time profile has been produced, the problem remins 

of synchronising it with the injected PRS. Re-arranging 

equation 406: 

N = y-Me+h eccccee 414 

The time from seed-on to the start and finish of the PRS is 

accurately known. 

let M, = grown crystal mass and pm = melt density c 
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then the volume of liquid GaP removed from the crucible during 

growth, vy is given by: 

Tessas rac 
Am 

It has been shown in Appendix2 that the depth of liquid in a 

y, ee 415 

  

round bottomed crucible is given by: 

3 2 
hy - 3Rh, + mM, = 0 eeeceee 416 

wv 

Also, from the geometry of the crucible, the maximum depth possible 

in the curved part is given by: 

h, = (2-v3)R 

giving a maximum volume in the curved part of: 

- 5 
Vy, = 0 R(3 5-5) Teeeerel ty 

3 

Hence the depth of melt in the crucible may be calculated in two 

stages, that in the curved portion, and the remainder occupying 

the cylindrical part. Similarly, M, the drop in melt level that 

occurred as a result of growing the crystal may be calculated. If 

the interface height, h is assumed neglible compared with the 

length of crystal, then equation 414 may now be used to calculate 

the pull bar movement, N+ The time taken to grow the measured 

length of crystal is now established since the pull bar lift rate 

is controlled at a constant value. The time axis of the diameter/ 

time curve may now be calibrated. 

4.2.3 Crystal Results 

The measured crystal profiles for crystal nos 3 and 4 are shown in 

Figures 4.4 and 4.5 respectively. The intermediate stages involved 

in the time linearisation process are shown in Figures 4.6 and 4.7 

respectively for crystals nos 3 and 4. The relevant parameters in 

the data processing operations are shown in Table 4.1. The final 

decimation factors were set at integers which allowed the initial 

decimation factors to be as near to 3 as possible for reasons 

discussed above. (The computer programs were arranged to allow 
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non integer decimation within the time linearisation program but 

only integer decimation within the digital filter program). As 

can be seen from the table, the length of data available for 

crystal No 3 was insufficient to accommodate a complete sequence 

of the PRS. It was reluctantly concluded that there was little 

point in proceeding any further with the data processing for this 

crystal. The final 80 data points for crystal No 4 were drift 

corrected by a second order polynomial curve fit and a transfer 

function, H(s) was calculated using the 'SPECTA' package as 

described in Chapter 5. (A Hanning window was used and zero order 

hold correction was applied to the resultant frequency response). 

The frequency response is shown in Figures 4.8.1 and 4.8.2. The 

fitted curves show in these graphs are the result of 'FFIT' (see 

Chapter 5), fits to modulus only. The transfer function was found 

to be: 

meee Oe 
H(s) = 14579+03s-26201s¢ seoeees 418 

with a sum of squares of error of fit = 00851 

Note that H(s) has a right hand half s plane pole. This was 

considered to be unrealistic since the crystal did grow in a quite 

stable manner. It was concluded that the apparent unstable trans- 

fer function that was fitted by the 'FFIT' algorithm was purely as 

a@ result of excessive variance on the transfer function, 

particularly at high frequencies. A possible contribution to this 

variance was made by the fact that the data used for the Fourier 

transform was not settled. (The recommended half period settling 

time before data was collected could not be met due to lack of data} 

Although this factor threw doubt on the validity of the data, an 

attempt was made to fit a more meaningful transfer function by 

truncating the points on the modulus curve above the seventh. (At 

this point the variance becomes visibly large). The resultant 

frequency responses together with fitted transfer functions, 
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(H’(s)) are shown in Figures 4.9.1 and 4.9.2. 

with H(s) = +7455, Sonesen 1419. 
14641+535+78,821s~ 

with a sum of squares of error of fit = +00244. 

The value of «7455 for the gain has units of inches diameter 

per 1.375% mean power. When normalised to cn/em radius/per unit 

power chenge, a value for K, of 45.91 is obtained. By comparison 

with the standard form of second order transfer function, 

F(s) = = 
We +2500.5+5* 

respectively are obtained. By comparing the measured phase lag 

values for $ and ©, of 1.14 and 0.214 rad/min 

at .000972 Hz with the phase leg given from the fitted transfer 

function et the same frequency, a phase difference of 1464i° 

remains. If this attributable to dead time then this term is 

eat the growth rate used, this represents 0.26 cm along 

the crystal. 

4.2.4 Crystal Conclusions. 

This magnitude of dead time is feasible since it may have 

contributions from three sources: 

1) Uncertainty on the exact seed-on position on the cold crystal. 

2) Dead time between power changes and temperature changes in 

the melt. (The power to temperature experiments have indicated 

& dead time of up to 90 seconds, but the temperature measured 

was not in the melt itself). 

3) A possible delay in the temperature to radius dynamics. 

Most of the dead time is likely to be the result of source 1), as 

the seed-on position could only be identified to within 0.2cn. 

The measured natural frequency of .21 red/min is 2% above the 

theoretically predicted value » well within the error bounds of 

the prediction. The damping factor is 148% above prediction and 

the gain constant is 28% above. The theoretical transfer function 

has been derived on the assumption of small deviations about a 
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mean radius. However the crystal that was grown exhibited 

comparatively large deviations about a mean. The two sets of 

Parameters for GaP shown in Table 12.1 indicate the likely change 

of parameters with changes of radius. These changes are 

comparatively small but the violation of the small signal 

assumption is more serious since other parameters, assumed 

constant, will vary. For example, the gradient variation factor, 

o&% that relates the crystal temperature gradient to the radius 

implies that the gradient increases with radius. This will not 

be the case because the crystal will be heated more by the walls 

of the crucible as it grows larger. This will tend to reduce the 

gradient. Similarly, the power radiated from the interface will 

be influenced by the aspect of the interface to the walls of the 

crucible. The radiation from the interface will also be influenced 

by the depth of B, at any instant. Larger radii of crystal will 
25 

cause a deeper leyer of encapsulant, further tending to reduce the 

power radiated and also reducing the crystal temperature gradient. 

The effect, apart fron that reported by Nygren!? where the crystal 

shielding causes a rapid reduction in radius, will be to decrease 

the damping factor. Equation 233 indicates that the gain, K, will 

be increased under these circumstances in that G and yeh will 

be decreased. This is possibly an explanation of the observed 

difficulty of achieving uniform radius crystal growth in 

encepsulated systems under manual control. With the increased 

gain and reduced damping it is very easy to ovex-correct a large 

crystal. 

To summarise, the transfer function that hss been identified from 

only one set of results is well within the error bounds of the 

predicted transfer function. However the prediction is necessarily 

widely defined due to lack of parameters. The accuracy of the 

derived parameters has been improved by using the measured transfer 
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function (Section 2.4). The qualitative effects of deviations 

from the assumptions made in the analysis have been examined.



TABLE 14.1 Crystal Processing Parameters 
  

  

" Parameter 
  

  

Crystal 3 |Crystal 4 

Number of samples at -0051cm 1290 1025 

Pull bar speed (cm/hr) 2°3919 1°857 

Mass of crystal (gm) 245 228 

Drop in melt level (cm) 1°685 1°6557 

Time represented on linear time graph 
(min) from | 25-8 62-40 

to 136-53 182.52 

Number of samples per PRS bit 17°2 12°8 

Pre filter cuttoff (fs) 2145 °156 
(fe) 

Initial decimation factor y 
(in linear time) 3244 oo 

Final filter cuttoff {£2} “1 #125 

Final decimation factor 5. 4 

Time linearisation 'K'(mn™') 15 as,       
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Figure 4.2 Interface Region 
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Figure 4.3 Time Linearisation Interpolation 
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5. COMPUTER PROGRAM PACKAGES 

5.1 GENERAL DESCRIPTION 

All the programs used in this project were assembled into 3 distinct 

packages. They were designed to run on a PDP9 with 24k of store and 

the following peripherals 

Teletype 

Incremental Graph Plotter 

3 Dec-Tape units 

Paper tape punch and reader 

D-A convertor (2 channels) ; 

The 3 packages perform 

ae General data manipulation 

b. Spectral analysis of time series 

Ce Frequency response calculation and 

transfer function fitting 

The 3 packages were designed to interface data into each other by 

means of paper tape or magnetic tape. For example, a frequency 

response function produced by b. could be output to a file on 

magnetic tape which could then be accessed by c. 

5.2 DPPP - GENERAL DATA MANIPULATION PACKAGE 

This consists of a short main program to read in data and enable a 

choice of subroutines to be made. The flowchart for DPPP is shown 

in Fig 5.1. The data may be input from any of the PDP9 input devices 

listed in section 5.1. Data is read into an array which may be 

rotated to enable, for instance, a mid-section of the data stream to 

be processed. With the core available, storage for 1300 single 

precision data points is possible. A further array of 200 is 

available for storage of digital filter coefficients or polynomial 

coefficients. Program control is effected by means of conversation 

with the teletype and by means of the accumulator switches. The sub- 

routines are selected via the teletype and after their execution a 

further subroutine may be selected. 
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The subroutines available are 

DRITF -'adds polynomials to data stream 

FILTUR - non recursive, zero phase digital filter 

FILD - non recursive, low pass digital filter design program 

POLLY - fits curves to data by least squares regression 

ENTRER - enables entry of coefficients 

DIMOD3 - crystal time linearisation program 

PUTOUT - general data output program 

TRANS - transforms low pass digital filters to highpass or 

bandpass. 

54261 DRITF 

The flowchart for this subroutine is show in Fig 5.2. Note that if 

this subroutine is selected immediately after loading DPPP, no poly- 

nomial coefficients will exist. To avoid this, DRITF checks for the 

number of coefficients, N, to be non zero. If this test is not 

satisfied, an error message is output on the teletype and control 

returns to the main DPPP program. The drift polynomial may be added 

or subtracted from the data stream, the polarity being selected by 

means of the teletype. 

If the data stream is a sequence fx, of m elements and the drift 

polynomial is represented by a sequence fr}, of n elements in 

descending order, then the drift correction is effected by the 

algorithm nod. 
n 

Qo) ene yes for j=1,m Caner bOt 
J J ee 

5.2.2 FILTUR 

The structure of this program is shown in Fig 5.3. The coefficients 

are stored in the same array as was used for the polynomial 

coefficients in DRITF. They must either be entered by hand or calcu- 

lated with program FILD. The structure of FILTUR is a non-recursive 

digital filter. The weighting function is convolved with the data 

stream. A special feature of this particular implementation is that 

the filtered sequence has zero phase shift at all frequencies. Ina 
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physical system this would be unrealiseable since it requires the 

existence of a unit advance operator (z). In this off line case 

however, the entire data sequence is available simultaneously so that 

at a given point on the sequence, data can be both predicted and 

recalled. The convolution of the filter weighting function with 

the data stream is illustrated in Fig 5-4. Note that at each end of 

the data stream the weighting function overlaps into zeros, so that 

the filter has a settling time of half the width of the weighting 

function at each end of the data stream. In order to minimise the 

storage necessary, the program uses an auxiliary storage array of the 

same length as the filter coefficient array. This temporary storage 

is filled up from the original input data and convolution takes place 

between the temporary storage and the filter coefficients. The 

original data is replaced point by point as the temporary data frame 

is scanned along the input data. This method effectively avoids 

having storage for an extra 1300 points. When the convolution is 

completed, the filtered data sequence may be re-sampled at every Lth 

point. L is specified on the teletype and the new length of the data 

sequence is output on the teletype. 

5.2.3 FILD 

This program designs a digital filter approximation to an ideat low 

pass frequency response. The design is by the 'window' method, as 

described by Melecoyaes For convenience, a brief description of 

the method is given here. An ideal lowpass frequency response is set 

up with a cut-off frequency fo assuming the approximation to be 

composed of n points and to have a clock frequency of f. These 

3 parameters are specified during conversation. This frequency 

response is then transformed to the time domain using the fast fourier 

transform algorithm by Singleton’? This transformed frequency 

response is now the 'ideal' impulse response of the filter. However, 

this impulse response is necessarily truncated since it follows from 
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the Fourier transformation that the transform of a finite function 

will be an infinite function. The effects of this truncation are that 

the stop band attenuation of the filter will be limited and the 

frequney response will have a ripple superimposed on it. Both these 

effects may be ameliorated by multiplying the truncated impulse 

response by a window function. By this means it is possible to 

improve the stop band attenuation at the expense of roll-off rate. 

For a given window the stop band attenuation is improved by increasing 

the width of the window (up to a limit of n). Of the 3 windows avail- 

able within this program, the Blackman provides the greatest stop-band 

attenuation and the rectangular the converse. The Hamming window 

falls mid way. The window type and length are specified during 

conversation. The resultant windowed impulse response is the final 

set of coefficients for the digital filter. They are stored in array 

COEFF for use by other programs. The coefficients are also copied 

into a temporary storage array which is then transformed back to the 

frequency domain. The gain and phase response of the actual filter 

are output on the graph plotter,so that a comparison can be made 

between the ideal required and the actual realised frequency response. 

Note that a non-recursive digital filter will always have a phase 

characteristic that is linear with frequency since it is composed of 

a linear sum of weighted signal components that have been passed 

through unit delay (or advance) operators. It is therefore possible 

to shift the impulse response of the filter so that it is centred 

about zero time and hence produce a phase characteristic that is 

zero at all frequencies. The flowchart for FILD is shown in Fig 5.5 

5.2.4 POLLY 

This program fits polynomials to data by least squares regression. 

The maximum order of polynomial is ten. This is specified via the 

teletype. If n data points are to be fitted, the independent variable, 

X,ranges from 1 ton. The fitted coefficients are output on the 
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teletype and stored in array COEFF, in descending order, for further 

use. The actual least squares regression is performed by sub- 

routine STPLRG which is an adaptation of the Honeywell program 

STPLRG 

5.2.5  ENTRER 

This program permits entry of coefficients into array COEFF for use 

by other programs. The number of coefficients is requested via the 

teletype and they may be entered via either the teletype or the 

paper tape reader, the particular device being specified on the 

teletype. 

5.2.6  DIMOD 3 

This is a special purpose data transformation program intended to 

convert crystal diameter measurements made at equal distance incre- 

ments along the crystal into diameter measurements made at equal time 

intervals while the crystal was growing. The flowchart for DIMOD 3 

is shown in Fig 5.6. Note that as well as the measured diameter 

profile of the crystal, the program also requires its second 

derivative, this being in a file on magnetic or paper tape in the 

same format as the diameter. The algorithm used for the transform- 

ation is derived in the chapter on data processing. Note that in 

order to allow a data output representing diameter at time increments 

of nAt it is necessary to be able to specify a non-integer data 

sampling interval. The operation of this facility is illustrated in 

the flow chart. The algorithm is very noise sensitive, in that if 

due to noise on the second derivative, the slice thickness is 

calculated as being negative (ie computed melt back), a discontinuity 

will be produced on the output crystal profile. For this reason it 

has been found to be necessary to use as large as possible an 

incremental slice thickness, so that random noise does not produce 

negative thicknesses. The program uses internal storage for all 

calcailations, after completion of time linearisation, the original 
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data input array is over-written with the modified profile and its 

length variable set to the new (re-sampled) length. 

52.7  PUTOUT 

This is a general purpose data output program. It outputs the data 

in array DATA (the length being automatically specified by the 

variable TR). It allows inspection of the data on a 'scope 

connected to the D-A channels of the PDP 9 and/or on the graph 

plotter. Initial option selection is via the accumulator switches, 

as shown in the flowchart of Fig 5.7. The normal operating procedure 

within DPPP would be to set up the accumulator switches before 

selecting PUTOUT. If ‘Output Data' is selected, PUTOUT requests on 

which data channel the output is required. If Dectape is selected 

then the filename is required. Data is written in serial form on 

the specified device (ie teletype, paper punch, os Dectape). 

5.2.8 TRANS 

This program transforms the poet ficients of a non-recursive, lowpass 

digital filter into the coefficients of either 

4.  Highpass 

2. Bandpass 

iS Bandstop 

non-recursive digital filter. The transformations used are due to 

Gonetaitintdes: The coefficients of 2 in the lowpass digital 

filter are transformed to F(z). 

For each of the 3 cases respectively 

1, F(Z) = ae 

2o0 R(2)) = Brae 

3. F(z) = 27 
Note that in the case of the bandpass and bandstop transformations 

the number of coefficients are doubled, albeit by the insertion of 

zero valued coefficients. 
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If FN = Nyquist frequency of lowpass prototype 

FL = Cut-off frequency of lowpass prototype 

FO = Centre frequency 

F1 = Lower frequency 

F2 = Upper frequency 

Then for 

Highpass FO = FN - FL 

Bandpass F1 = FN/2 - FL/2 

F2 = FN/2 + FL/2 

FO = FN/2 

Bandstop F1 = FL/2 

F2 = FN - FL/2 

FO = FN/2 

1 

These 3 transformations are illustrated in Fig 5.8. 

5.3  SPECTA - SPECTRAL ANALYSIS PACKAGE 

SPECTA consists of a main program, GHOST, which is responsible for 

inputing data, calling the processing subroutines and enabling the 

output of data. The flowchart for GHOST is shown in Fig 5.11. In 

general the package computes 5 functions, these are 

a. Power spectrum of data file 'A' (decibels) 

b. Power spectrum of data file 'B' (decibels) 

ce Cross power spectrum of 'A' and 'B! (decibels and degrees) 

de System frequency response based on input of 'A' and output 

of 'B' (decibels and degrees) 

e. Coherence function of input and output of system 

The data may be input from the teletype, paper tape reader or from 

Dectape, the particular device being chosen by selecting a data 

channel via the teletype immediately after program loading. Four 

different output devices may be selected at run time. Selection is 

by means of the accumulator switches. The 4 output devices are 

ae Scope output 

bd. Graph plotter 

Ce Paper tape 

a. Dectape. 

SPECTA is dimensioned to accept data files ‘At and 'B! of 508 real 

numbers each. 
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The kernel of this package is a fast Fourier transform algorithm by 

Gineleone: This is a mixed radix transform and can handle data 

streams containing prime numbers up to and including 127. Data is 

read into 2 arrays, XIN and XOUT. The data remains untouched in these 

arrays throughout any program function, until new data is read in. 

Temporary internal arrays hold the data that is actually transformed 

and allow the phase of the input and output data streams to be 

adjusted. (To enable any system dead time to be trimmed out before 

transformation and hence allow better resolution of the phase 

characteristic). 

5.3.1 POWER SPECTRA - Ge Gre ve 

If U(k) and V(k) with k = 1, n are arrays storing n data points of the 

system input and output and U’ (k,) and V (x) with k, = 1, 5 are the 

fast Fourier transformed arrays, then let 

ky =n+2-k, ey ete 002 

Ae, = +5(U“(k,) + U(x) Shenae eed: 

Bey = +5(W(,) - ¥(k,)) eens Ole 

es = °5(V(ko) + V(k,)) eres 3 OD 

Yk, = +5(U“(kp) - U~(k,)) Rocce 500 

then 

Gey) = Me + i, seesees 507 

Gy (cy) Xe, + Me, seecees 508 

CyB Xe +N Be ese 509 

GM = KH Brice AO 

For odd harmonics k, increments from 2, 5 by 2, for odd and even 

56 
harmonics k, increments by 1 (reference Bendat and Peirsol): 

The power spectra are converted to dB and degrees before output on to 

the graph plotter, paper tape, magnetic tape or the C.R.0, as specified. 
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5-3-2 SYSTEM TRANSFER FUNCTION 

Again, following Bendat and Weiescl the system transfer 

function, H(f) is estimated from the input power spectrum and the 

cross power spectrum. 

H(f) = Gyx(t) acdsee O11 

GL (f) 

where G_(f) and G_(f) are smoothed estimates. 
yx xx 

Hence the gain and phase factors of the system transfer function are 

given by 

fa(e)| = Sy“ seceees 512 

G,,(£) 

giz) = ater {Syxtn} seseewie SAS 

= 
5.3.3 COHERENCE FUNCTION 

The ordinary coherence function between 2 stationary time records is 

defined ae 

*(2) = |e _(2)|? are 
lle - 

In terms of digital estimates of power spectras, 

A 2 . [ aa 
Xx Hest. Rocce cise. 

ya IG yy (F,) 

Note that the spectras must be smoothed estimates, ie derived from 

more than one block of data. Otherwise the coherency will always be 

unity. The computed coherency may be output on the graph plotter, 

paper tape, magnetic tape or the teletype, as before. 

The structure of the program permits the use of overlapped fast 

Fourier transform processing, which together with the use of a 

Hanning data window reduces the variance of the coherency estimate for 

a given amount of data. (Carter, Knapp and Nuttal 13 

5.34 HANNING WINDOW 

The measured data may be multiplied by a Hanning window as shown in 

Fig 5.13 and defined below 
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Wnt) = +5(1-Cos(@24)) Og nT<a 

W(nT) = 1 a < nT<(b-a) soreess HO 

Wnt) = slice = (b-a)< nt <b 

The percentage taper, P may be specified and is defined by 

eos 100(2a)- evecces 517 
bd 

5.3.5 ZERO ORDER HOLD CORRECTION 

Since a continuous system is being represented by a sampled data 

sequence, an implicit zero order hold is introduced at the system 

input. The subsequent estimation of the overall frequency response 

function will therefore include the frequency response of this zero 

order hold. An option is available within. the package to remove this 

modification to the actual frequency response. 

5.4 PITF - FREQUENCY RESPONSE CURVE FITTING PACKAGE 

This package has 2 inter-related functions 

1. To produce a graphical output of frequency response, (gain 

and phase) from a system transfer function 

Ze To fit transfer functions to frequency response data. 

One of these modes is selected via the teletype immediately after 

program loading is completed. The overall flowchart is shown in 

Fig 5.9. The major segments of this flowchart are described in the 

following sections. 

54.1  FREPIC 

This subroutine calculates the modulus and phase from transfer 

functions which may be specified in any of 3 different forms. These 

are a. Ratios of polynomials in s 

b. Poles and zeros with a gain constant 

Ce Time constants with a gain constant 

Frequency responses are calculated at 200 logarithmically spaced 

frequencies between limits that are specified on the teletype. Where 

the characteristic polynomial of a transfer function is input, a 

check is made to see if the Routh stability criterion is met, If it 

85



is not (ie RH half poles exist), then a message to this effect is 

output on the teletype. Computation then proceeds as normal. The 

actual frequency response computation is performed by subroutines 

QUFREQ, given polynomials, or PZFREQ given poles and zeros or time 

constants. Conversion from real and imaginary components to modulus 

and phase is performed by subroutine RIMP. There is storage for up 

to 10 numerator coefficients and 10 denominator coefficients. 

5.4.2 QUFREQ 

This subroutine accepts arrays of coefficients for the system transfer 
4 

x,(s) 
EE) 

accepts a frequency array, of the frequencies at which the transfer 

function in the form where X are polynomials ins. It also 

function is to be evaluated. It calculates the vector numerator and 

denominator separately and then combines them into a rational vector 

quantity at each frequency. If the system transfer function is 

defined as 

Saad 
H(s) = Xp ee af sevccee 518 

Jeo? 
n 2 

then Re(X,) = > (-1)) a, wd see stg 
Jeo ’ 

age 

Im(X,) = = (- 4)9 29 544 covccce 520 

(similar expressions for Xp) : 

(x ) +104) 1 (%) eeecasomoet 
and Re(H) a RQ) Rep) + in Er) IF) 

RQ)" + 10%) 

cm) Rtg =f ted) ca 
Rie) Ta)



5.4.3 P&FREQ 

This subroutine accepts arrays of poles and zeros and a frequency 

7 s array. It produces arrays of gain and phase in dB and degrees. 

If the transfer function is in the form 
n 

H (s) = ens seceees 523 
m 

(s+b.) 

the subroutine calculates modulus and phase thus 

™ ) 
lH] = sofa log, K + S208, 925 + on) - S206, 9(%5 + o)} 

a j=1 

; Neves wenGok: 

(2 ™ ) 
arg(H) = risen) - FistentB)} eeecees 525 

5-4-4 FFIT 

The basis of this subroutine is a complex curve fitting algorithm as 

described by Sanathanan and Koerner®! » Which is itself an iterative 

form of the algorithm described by Levy®°, Both these forms suffer 
from the disadvantage that transfer functions are fitted to vector, 

(real and imaginary ) frequency responses. Their convergence is 

seriously affected if the frequency responses are corrupted by noise, 

which generally has a greater influence on the phase characteristic 

than the modulus. A better fit would be obtained if fitting to 

modulus cnly were performed. It will be shown that an analytical 

solution for the minimisation of the cost function of sum of squares 

of error does not exist for the case of a fit to modulus only. 

However the method of Sanathanan and Koerner has been adapted to 

provide an iterative method of fitting to modulus only. 
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To recap on the approach of Levy 

If the measured frequency response is 

Be RgE oe «+ 526   

and the approximation to the measured frequency response is 

wok Sevcees 527 
a D 

with N and D being polynomials in s. 

Under steady state conditions, replace s by jW and re-group the 

polynomials thus 

  

  

ee fo ceore =AsU)? 3. N (a, Ag) "+A, W) )+50 (Ay Agu) HAs ) sense 528 

D 2 , 
(B,-BW +B,04- .: -)450 (B,-B,074B,)-) 

esta oe + JWR 2 5 SS wed seo B29 

at each frequency, the error of fitting is therefore 

c= F-H seeeees 530 

(K+ FW, 
6G) aac ++ 531 

DE = Ro-WtI-C+jWTR+OI -wB) 
  s+ 532 

Define E as the sum of squares of 516, summed over all frequency points 

BL = = lng, ~ Wy Td, -0<,,)° + (Wy Tie Ry + 15,43,5] 
Sieeeentsas 

The unknown coefficients of the fitted transfer function may now be 

derived by differentiating E with respect to the coefficients and 

equating to zero, thus minimising E. Observe that a set of linear 

simultaneous equations results from this procedure. 

Note that in equation 532 it has been necessary to multiply out by D, 

the denominator polynomiai. ‘The result of this is that the error 

criterion that is minimised is in fact a weighted error, with a 

greater weighting to the higher frequency measured frequency response 

os show how this weighting may be points.Sanathanan and Koerner 

effectively removed by minimising a modified error criterion EY, and 

using an iterative technique. 
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Bs SUR qG Fro HR 4 4)? Rees Dor 
kzo 

where 

5 
cue While +09 535 

  

with L being cient on count. 

Observe that for both Levy and Sanathman and Koerner the crucial 

step in obtaining linear simultaneous equations to solve for the 

polynomial coefficients has occurred at equation 532. If a fit to 

modulus was required, then the error at each frequency would be 

defined as the difference between the moduli of the measured and 

fitted frequency responses, thus 

cs Bel-tal satgers 386 

” GE Rete eter ce (oreo ey > eet G57 

there is no way that ee can be weighted to yield, when differentiated 

a set of linear simultaneous eanationy: A hill climbing technique 

could be used to solve for the unknown coefficients. Since the 

dimensionality of such a hill climb could soon prove unweildy for 

high orders of fit, a new iterative technique has been developed. 

The error criterion of equation 534 is used, but with modified 

"measured" frequency response points, ie Ry and Ts After the first 

set of transfer function coefficients has been produced, via 

equation 534, the phase information implied in Ry and I, is updated 

to the phase implied in H (preserving the modulus). This is 

illustrated in Fig 5.10. It has been found that convergence of the 

algorjthm is improved if the initial phase information of the 

measured frequency response is entered as a linear phase 

characteristic, from 0 to -180°, even for higher order fits. 
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5-5 ILLUSTRATION OF OPERATION 

The operation of FITF is illustrated in Figures 5.14.1 and 5.14.2. 

These are frequency responses computed within the package from a 

transfer function: 

H (s) = 135135-135135s+62370s--17325s°+3150s443788428s°—-s! eeceees 538 
  

135135+1351355+623708°+17325s°43150s 4437884285" 5! 

This function was computed at 200 logarithmically spaced points over 

a frequency range from *01 to 10Hz. 

The data was then fitted with a 7/7th order fit to modulus with 

10 iterations. The sum of squares of error of fit was 8-09x107>, 

The fitted frequency responses are in fact superimposed on the 

original curves in Figures 5.14.1 and 5.14.2. 

The operation of DPPP and SPECTA are illustrated in the following 

examples. Figure 5.15 shows the transform of a digital filter 

designed within DPPP. Its parameters are as follows: 

Initial length 100 points 

f cuttoff eee 
felock 

62 Hamming windowed down to 8 points. 

This filter was then used to filter two periods of a ternary pseudo- 

random sequence. The input and output sequences are shown in 

Figure 5.16. Both these sequences were then read into SPECTA and their 

power spectras computed. These are shown in Figure 5.17 (complete 

periods from the centres of the original sequences were used).
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FIGURE 5.3 
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6. CONCLUSIONS 

6.1 MAIN FEATURES OF METHOD 

An experimental method has been established to measure the 

dynamics of Czochralski crystal growth systems, relating crystal 

radius to changes of heater power. This has involved the use of 

Special techniques of data processing which are believed to be 

novel and original. The method involves the injection of a pseudo 

“random sequence into the power controller of the crystal pulling 

system. Subsequently, radius measurements are made along the 

length of the cold crystal. A new processing technique has been 

developed to enable the radius measurements made at equal distance 

intervels to be converted to radius measurements made at equal 

time intervals in order to perform frequency domain processing 

using the fast Fourier transform. This is believed to be the 

first application of pseudo-random signal testing to crystal 

&rewth systems. 

A new method of transfer function curve fitting has been developed 

that enables transfer functions to be fitted to modulus data only. 

This method is of general application to systems having transport 

delay that would produce wide ranges of phase. A theoretical 

analysis of the Czochralski crystal growth process has been 

carried out and, within the limits of the experimental and 

theoretical accuracy, agreement has been achieved between the 

theoretical and practical results. 

6.2 RELEVANCE AND LIMITATIONS 

The experimental method that has been established is relevant to 

all Czochralski crystal growth systems. The limitations are: 

4) The crystal must grow for long enough to enable at least one 

period of valid data to be collected. 

2) The magnitude of the radius variation must be limited to 

ensure the validity of the assumption that the meniscus curve 
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between the melt and the crystal does not vary with crystal 

radius. 

Since the Czochralski method is essentially a batch process and 

frequency domain processing requires averaged estimates obtained 

from several periods of data, there is a requirement to be able 

to grow at least five similar crystals with the sane perturbation 

superimposed. The limited length of data from each crystal also 

means that the resultant transfer function will be a stationary 

approximation to a time varying process. The data limitation 

will in general not permit separate transfer function estimates 

to be made at ite beginning and endiot Aterystalliarertn ane 

In view of the above factors, the measured transfer function of 

the USR6 crystal puller mst be regarded as an illustration of 

the experimental method rather than a finalised measurement. 

More similar crystals are required for this. 

The theoretical analysis is more restricted than the experimental 

method in that it assumes relatively slow growth and high thermal 

conductivity materials such as Si, Ge or GeP. (It is not 

applicable to oxide growth), The analysis shows how peremeters 

from measurements on the steady state temperature fields in the 

crystal and the melt may be incorporated into the prediction of 

Gynamic performance. The accuracy of the prediction for GaP has 

been limited by the lack of measurements for this mterial., It 

has been shown how the accuracy of the parameters involved in the 

Prediction may be improved by using the measured transfer function. 

This work provides a basis for making comparisons between control 

systems for Czochralski crystal growth for different materials 

and configurations. The results have indicated that a significant 

dynamic lag exists between the melt temperature and the crystal 

radius. 
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6.3 SUGGESTIONS FOR FURTHER WORK 

The most pressing requirement is to grow more GaP crystals to 

enable a reliable transfer function estimate to be made. It would 

be advantageous to grow a material such as Si in view of its 

considerably better documented parameters. This would also offer 

advantages of being easier to grow under manual control and 

crystals can also be produced at a higher growth rate. An ideal 

situation would be to use an automatically diameter controlled 

Si puller which would enable a particular nominal radius to be 

achieved. The effects of the BAO, layer in GaP growth could be 

similated by the addition of a suitable encapsulant. This would 

allow the theoretical structure described in Chapter 2 to be 

Bore positively verified. 

A further area of work is in the measurement of the thermal field 

in the melt and GaP crystal. This could be achieved by the use 

of growin thermocouples. 

Since a limitation of existing pressurised Czochralski erystal 

Pullers is the lack of instrumentation, a useful application of 

the measured overall transfer function would be to a model 

reference control system. Any commanded power changes are fed to 

a real-time simlation of the process so that their likely effect 

can be examined. Such a simulation could be readily achieved 

with the use of a microprocessor. 

Another possible area of work would be in the extension of the 

power to diameter transfer function to include the effects of 

& variable pull speed. This could find use in a control system 

in which rapid, short term adjustments were made to the pull speed 

but longer term control action was achieved by heater power 

variation. 
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A transfer function relating the crystal radius to the heater power is derived assuming small deviations from the steady 
state growth conditions, The derivation is based on the conditions of heat balance in the zone near the growth interface. 
The transfer function 

  

expressed in terms of the physical constants of the material being grown tegether with values of 
the steady state temperature gradients in the crystal and the melt, which can be measured experimentally. It is shown that 

the dynamics of heat transfer in the interface zone represent a sig: 

  

nificant lag in the overall! transfer function. The results 

  

also provide a means of estimating the effect of changes in the growth conditions on the dynamic response and of com- 
paring the behaviour of different materials, 

1, Introduction 

The analysis of the dynamic response of the crystal 
growth process is of interest in forming the basis for 
the study of the design of closed-loop control systems. 
Such systems for the control of crystal diameter have 
been implemented in a variety of ways. Commonly the 

heater power or the pull speed have been used as con- 
trolling variables {1,2]. In each case the closed-loop 
system is formed by deriving a signal representing the 

crystal diameter and subtracting this from a signal in- 

dicating the required diameter to form the diameter 

error signal. This error signal is then used to activate a 
controller which manipulates the controlling variable. 

The need to measure the crystal diameter has been 
met by techniques which use a laser beam to monitor 
the movement of the meniscus [2]. Alternatively an 
indirect indication has been obtained by using a load 
cell to measure the changing weight of either the crys- 

tal or the crucible [1]. 
In order to design the controller for such a system 

by systematic analysis it is necessary to define the 

dynamic response characteristics of the crystal growth 

process. For this purpose the most generally useful 
description of the process dynamics is obtained by 
identifying the transfer function relating the crystal 

diameter to the controlling variable. The transfer fune- 
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tion is defined as the ratio of the Laplace Transforms 

of the output and input variables [3]. This function is 
derived from the differential equations of the process 
which must be such that the changes in the input and 

output variables are linearly related. For nonlinear 
processes a linear relationship can be usually obtained 

by restriction ef the range of variation of the variables 

to small changes ebout the nceminal operating values. 
The following analysis shows how the transfer func- 

tion relating the changes of cryste] radius and the 

heater power may be derived. The analysis is based on 

approximations to the thermal transfer conditions in 

the system. Previous work in this fieid has generally 

been restricted to studies of the steady state conditions 

in the melt [4,5] and in the crystal [6-8]. It is neces- 
sary to extend this work to include transient conditions 

and such an extension is‘cnly possible if a number of 
simplifying assumptions are made about the otherwise 
intricate thermal! transfer conditions. To this extent 
the results derived here represent ‘a first approximation 

with a limited range of applicability. Nevertheless they 

form a useful basis for comparison of different growth 

conditions. 
The problem is approached in three stages. In the 

first stage the relationship between the crystal radius 
and the melt temperature is examined. This is done in 

terms of the heat balance obtained in the zone close to 
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the growth interface. The second stage takes account 

to the effect of the crystal radius and the heater 
power on the melt temperature and in the final stage 
these results are combined to give an overall view of 

the process dynamics. 

2. The influence of melt temperature on crystal radius 

The heat balance conditions in the zone near the 
growth interface may be used to formulate the trans- 
fer function relating crystal radius error to the melt 

temperature. In this instance the melt temperature re- 
ferred to is the value at the surface of the boundary 
layer below the solid/liquid interface. 

The interface zone is shown diagramatically in fig. 1 
where pg is the power transferred to the crystal, py is 

the power released due to fusicn, p; is the power trans- 
ferred from the melt and p, is the power lost from the 

meniscus surface. It will be assumed that the interface 
is flat and that the meniscus can be approximated by 

acylinder. The heat balance requires that 

Pi *P¢=Po*Py- : @ 
The determining features of each of the terms in this 
relationship are now considered. Linearised approxi- u 

mations will be obtained by defining the radius error 

a-1—7,, (2) 

where ro is the nomial radius value, and assuming that 
ais small enough fox terms in a? to be neglected. 

2.1. Power transferred to the crystal 

If G is the temperature gradient in the crystal close 
sy 

      
  

  

eel 

Fert | 

crystal 
Po { 

Py ny | \ meniscus 

Pr melt 

Fig. 1. interface zone. 

* See section 7, list of symbols. 
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to the interface we have 

Po= 1PkG . (63) 

where k, is the thermal conductivity of the solid. In 
order to determine how Po varies with the radius it is 
necessary to observe that G is in general a function of 
the radius. Evidence of this can be found from analysis 

of the steady state thermal field in the crystal. 
Transient changes in the radius will also set up 

transients in the thermal field. The fluctuations will 
Propagate away from the interface zone with a delay 
corresponding approximately to a time constant 
L*p.c/k, where c is the specific heat and L is the dis- 
tance from the interface. Materials of good conductivi- 
ty, such as germanium and silicon, show high values of 
diffusivity k,/p,c and the delay is then comparatively 
short; the rate of propagation of the thermal transients 
being large compared with the growth rate. In these 
cases we may assume that the changes of radius occur 
slowly in relation to the transients in the thermal field 
and the results of steady state analysis may be used. 

Theoretical analyses of the temperature distribution 
in the crystal have shown that analytical results are 
available [6,7]. In terms of the numenclature used 
here, Kuo and Wilcox [7] derive the following expres- 
sion for the temperature gradient on the axis at the in- 
terface 

G=,—6)Ir copyi 

(B,/B) cosh 2+ 2/8)" sinh X 
x   E a 

(B,/8) sink + (2/B)"? éosh 2 a 

where B is the Biot number er/k, and is the dimen- 
sionless crystal length given by 

A= (L/r) 2B)!” . @) 

The more general results obtained by Brice [6] take 
account of the radial variation of the gradient. These 

show that the above expression is applicable to the 
gradient at the outer surface and is valid for materials 
of low Biot number. The range of validity has been 

given as B <0.2 [7]. 
The value of R; is determined by the heat transfer 

conditions at the top of the crystal. For a crystal which 

starts growth at the nominal radius rg and subsequently 
varies slowly from this value, the boundary conditions 

at the top correspond to writing By = €ro/ky ie.



G.K, Steel, M.J. Hill | Analysis of the transfer function 47 

keeping B, constant under changes in radius along the 

crystal. 
Typical values of B for a semiconductor material of 

high conductivity such as germanium is 0.005, which is 

small enough for the following approximation to be 

used, 

B, 
G=(,~09[-¢ +Btanh a]. © 

for a short crystal, typically L/r <5, we may approx- 

imate with tanh \ =X and on differentiating eq. (6) we 
then have 

dG - +X), -@,-09[ ae @ 
which indicates the variation in G with radius changes. 
It is useful to write this in the form 

aGr 
——s— 8 

dr G Ks @) 

to show that the fractional change in G has the same 
magnitude as the fractional change in r and the oppo- 
site sign. Thus if Gg is the nomial value of the gradient 

G=G,(1 —a/ry) (9) 

which shows the gradient as a function of the radius 

deviation a. 
The main assumptions used in arriving at this result 

are that the erystal length is short and that the radius 
is substantially constant throughout the length. Thus 
the approximation will be valid in the early stages of 

growth. 
At the other extreme we may consider the effect of 

a change of radius nee 
The diagram of fig. 
situation. 

   dicates a simplified view of this 

on (ambient) 

  

  
Fig. 2. Long crystal. 

to the interface of a long crystal. 

In the upper section the gradient G* is given by an 
expression of ihe form shown in eq. (4) with the lower 
boundary temperature @; replaced by 4. The gradient 

G*is therefore proportional to (@9 —@,) and the 
change in G* with @g may be expressed as. 

(0) 

  

This show that if L> is short compared with Ly, so that 

(Oo — 0,) is large, the gradient G* is insensitive to 
changes in 09 and therefore the total heat flow into the 

upper section remains substantially constant. Again 

for a material of low Biot number most of the heat is 
transferred by conduction rather than radiation in the 
lower section and therefore the total heat flow into 
the lower section is also constant. The gradient G in 
the lower section is then inversely proportional to r2 
and hence, 

dG r 
ae? (1) 

which leads to, 

G=G,(1—2a/ry). (12) 
If we compare this with eq. (9) it is B appropriate to de- 
fine 

G=G,{1—aa/ro), (13) 

where @ is a gradient variation factor, which varies be- 

tween unity, in the initial stages of growth, and 2 in 

the final stages. It will be assumed that a value of 1.5 
is representative of the general intermediate conditions. 

When eq. (13) is used in conjuaction with eq. (3) 
and terms in a? neglected we get, 

= Po(1 —aa/ry) + 2Pyalry » (14) 

where Po = 173.k.Go is the nomial value of po. 

2.2. Power due to fusion 

Under steady state conditions the mass converted 

from the liquid to solid states is proportional to the 

interface area and the pull speed. But changes of 
radius are associated with changes in the meniscus 

height and there is a variation in the solidification 
rate with the movement of the interface relative to 
the melt surface. To examine this effect it is first nec-
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essary to relate the changes of radius to the meniscus 
height. 

2.2.1. Meniscus variations 

The shape of the meniscus formed between a liquid 
surface and a cylindrical solid has been analysed with 
the assumption of zero contact angle [9]. It may be 
inferred from this that though the curvature of the 
meniscus is in general a function of the radius of the 
cylinder, it becomes substantially constant for large 
values of radius. The approximation to a constant cur- 
vature is valid when the radius exceeds Hf/4 where H is 
the capillary constant given by 

H=(2o/pg)"? , (15) 
where @ is the surface tension coef fficients, p is the 
liquid density and g is the gravitational constant. 

At large radius values the meniscus shape ap- 
proaches that produced against a flat plate. The rela- 
tionship between the height h and the surface angle 
may then be shown to be [10] 

h=H{[1—sin@ +}, (16) 

where 7 is the contact angle and @ is the surface angle 
as shown in fig. 3. Here H is seen to be the height at 
which the meniscus surface becomes vertical. When the 
solid surface is vertical @ = 0 and the height is then 
given by 

hy =H —sin )¥? , an 
When angles @ and y are small, eqs. (16) and (17) 

  

      

  

Fig. 3. Meniscus, 

4112 

may be combined to give 

sin 8 = (2hg/H?) (ty —h), (18) 
which expresses the slope of the solid surface in terms 
of the deviation of the meniscus height from the value 
at which parallel growth is maintained. 

2.2.3. Movement of the interface 

The diagram fig. 3 shows that the velocity of et 
interface relative to the crystal is v— hk — ik, 
melt surface height #,, changes at the anh He 

  

fig, = 7/1 =), (19) 
with 

2 
TOP. - ¥ s (20) 
R ea 

From the diagram we also have 

+=Q-h-h m) tan 0. Ql) 
For small values of 0, tan @ = sin 6, and using eqs. (18), 
(19) and (21) with the restriction that fi is small, we get 

+ =KV(iy —h), (22) 
in which V is the effective growth rate given by 

=ufl-a), (23) 
and 

K=2ho/H? . (24) 
Eq. (22) represents the required general relationship 
between meniscus height and the crystal radius and is 
valid provided that the rate of change of radius is 
small compared with the growth rate. 

  

2.2.4. Heat of fusion 

The power released in the form of latent heat is 
given by pp= mr?p.J(v — h— hi,,) where J is the latent 
heat coefficient in J/g. On substituting for h in terms 

of 7, obtained by differentiation of eq. (22), and ap- 
proximating to small radius changes we get 

QP, oar éJe, 
ht a wae 

  

(25)



G.X. Steel, MJ. Hill | Analysis of the transfer function 49 

where Pr is the nomial value of the power released 
under steady state conditions. 

2.3. Power transferred from the melt 

The power transferred through the boundary layer 
is given approximately by, 

P= Kpy/5) Om — 9)) 17? , (26) 
which shows the general dependence on the radius 

and the melt temperature. However the boundary 
layer thickness 5 has been shown to be a function of 
the radius 7 and also to vary with the radial position 

under the interface [6]. The temperature at the 
boundary layer surface also varies. This interaction of 

effects complicates the interpretation of eq. (26). 
Alternatively p; can be expressed in terms of the 

temperature gradient in the boundary layer Gj, so 
that 

p,= 077k, G;. : (27) 

Experimental measurements of the temperature field 
in the melt have been made during the growth of sili- 
con crystals over a wide range of conditions [4]. It is 
evident from these results that the gradient near the 

interface does not change significantly with changes 
of the crystal radius. Hence eq. (27) shows clearly the 
telationship between the power transferred and the 
radius while eq. (26) expresses the effect of changes 
in the melt temperature, in as much as these are due 

to factors other than radius changes; for example 
due to changes of the heater power input. 

On combining these features and assuming small 
radius variations we get 

_ 2a 
n2F (1 ‘Ty 

where 6 ,,, is a small change in the melt temperature and 
Piis the nomial value of the power transferred. 

(28) 

  

2.4. Power transferred from the meniscus 

It is clearly difficult to be precise in evaluating the 

Power radiated from the meniscus in view of the com- 
Plex geometry involved. However it may be assumed 
that the total power is proportional to the surface 
area, which is in turn proportional,to 2x7h. The surface 
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temperature is assumed to ve constant at the fusion 
temperature. 

The relationship between the radiated power p, and 

the radius then follows as 

  por inse es @9) me the 
in which only terms corresponding to a first order va- 
tiation in A and r have been included and eq. (22) is 

used to eliminate h. Here also P, is the nomial value 
of the total power radiated. 

To avoid the problem of computing P, from the 

surface geometry, it is proposed to derive a value from 

the heat balance condition expressed in eq. (1) once 
the values of Pg, Ps and P; have been established. This 
further ensures that the parameter values used in any 
derived results will be consistent with the steady state 
heat balance condition. 

2.5. Heat balance equation 

The heat balance condition has been formulated in 
eq. (1) and the separate terms evaluated in eqs. (14), 
(25), (28) and (29). When these expressions are sub- 
stituted, the steady state values cancel to leave the in- 
cremental terms in the following differential equation, 

—5,P5 C (e ve 

0,-% \ T% 

  

2 (30) 

This linear equation defines the mode of variation of 
the radius in response to changes in the melt tempera- 
ture. The transfer function relating the two variables 
is then derived by taking the Laplace transform of the 
equation with zero initial conditions. The result may 
be written in the form 

a/5,, =-D(A + Bs + C3”), GB) 

where @ and Sn are transforms and the parameters are 

A=(P,+0P)Iry, B=P,/KVig, (32) 

C=mbJp/KV, D=P/@,,-6)- 

3. Effect of heater power changes 

It is required to relate changes in the melt temper-
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ature to changes in the heater power input. This rela- 
tionship involves the heat transfer conditions in the 

melt. 
The factors affecting the steady state temperature 

field in the melt have been examined [5], but due to 
the complex hydrodynamic effects induced by cruci- 
ble and crystal rotation general analytical results are 

not available. Some useful experimental results have 
been obtained in silicon [4] and germanium [5] 
growth systems. For the present purposes an approxi- 

-mate view of the relationship between temperature 
and power flow may be developed as follows. 

If p), is the power input from the heater to the sus- 

ceptor and 6, is the susceptor temperature then 

0,-8,=Z)2,» (33) 
where Z; is the steady state value of the thermal im- 

pedance of heat transfer from the susceptor. In the 
absence of any heat loss from the surface of the melt 

the melt temperature would rise to equal the suscep- 
tor temperature in the steady state. If then power p, 

is removed from the melt surface 

6,-0,,=Z)p,, G4) 

where Z is the steady state value of the thermal im- 
pedance presented to heat transfer through the melt. 

We note that in practice p,, is very much greater than 

P, 80 that @, is independent of p,. 

Eliminating 6, from eqs. (33) and (34) the relation- 
ship between small changes 5, in pp, 5, in p, and 6, 

in 6,, is found to be 

6m = 245), - 225, - (35) 

This is the steady state rclationship but changes of 
power do not have an immediate effect on the temper- 
ature; there is a transient delay due to thermal storage 

in the susceptor and the melt. If we define f(s) to be 

the transfer function expressing the delay in response » 

of the susceptor temperature to heater power changes 

and similarly f(s) represents the delay between the 
melt temperature and the power loss from the surface, 
eq. (35) may be transformed to give 

5, = 8,2) F,9) -3,2,A(9) - (36) 

Now p, consists of the power lost from the surface of 

the melt by radiation and that due to conduction to 
the crystal. Explicitly, 

114. 

Go) 

where oj and o, are the power transfer densities at the 

interface and the surface respectively, i.e. 

60,-9,), o=(,,/0)(@,,-9%)> (38) 

for small changes in the melt temperature and the 
radius this leads to 

SeR2 2, p= Ro, + ar°(o,—0,), 

     

ei 
On- 
  5-07} G9) 

Eliminating 5, between eqs. (36) and (39) and col- 
lecting terms in 5,, we get an expression of the form 

im * 2try(o,— 0) 2.    

bn FOS, -HO7, (40) 

where 

6= HOF, () - ie coe : 2 

o peti [: Bie? +O= i] 

2@,-9,,) @-)F,6) 
fo) ier ie ee ee : 0 (Riro)’ +2 1 + uhO)] -1- 

#=@,- 0,10, -9)> 

Q=a,Jo,. 

The value of the power transfer density ratio Q may be 

obtained by assuming that the emission at the meniscus 
is the same as over the rest of the melt surface so that 

Q=AyP/roP, - @t) 

Eq. (40)-now defines the required transfer functions 
relating the melt temperature to the heater power and 
the crystal radius. 

4. Overall transfer function 

The overall transfer function relating the radius to 

the heater power may be found by combining the re- 
sults of sections 2 and 3. It is helpful to visualise the. 
relationships in terms of the block diagram fig. 4 where 
F, and F2 are as defined in eq. (40) and —F is the 
function given in eq. (31). This block diagram clearly 
indicates the feedback effect by means of which the 
radius affects the melt temperature. Feedback occurs 

when the power density at the interface 0; is different



  

G.K, Steel, MJ. Hill | Analysis of the transfer function $1 
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Fig. 4, Block diagram. 

from that at the surface o, as expressed by the param- 
eter Q. We note also that the sign of the feedback term 

depends on whether Q is greater or less than unity. 
From fig. 4 the overall transfer function is seen to 

be 

4B, = -F\G) Fx) Fs) F,@)] . @2) 

5. Transfer function under typical growth conditions 

The form of the transfer function given by eq. (42) 
is complicated by the presence in /; and F of terms 

ff, and fy expressing the delay with which the melt 

temperature follows power changes. The function f; 
gives the delay between the heater power and the sus- 

ceptor temperature and experimental results show that 
this involves time constants of one or two minutes in 
rf heated systems. The function f, relates the melt 

temperature to changes in the surface power loss and 
although this delay is difficult to measure experimen- 
tally it may be reliably taken to be less than in fy. 
Under typical conditions the delay involved in the 
term F is considerably greater than in either Fy or 
F and it is therefore proposed to examine the signif- 
icance of the results on the assumption that the delays 
in I; and F are negligible. 

When this is done eq. (42) can be reduced to the 
form . 

  

ao, = aaa (43) 

indicating a second order lag with natural frequence 2 
and damping ratio §. The values of these parameters are 
given by 

s eel 
ro/0, 

  

Gk Km - 
“O Wo%PsGok KYO] V2 (44) 

415 

with 

o-arrGte[M __aa-n_J 
Gok Oro (Rr)? +O(u +1) 1 

The gain constant Kg has been defined to express the 

ratio of the per-unit change in radius (@/rg) to the per- 
unit change in heater power (6,,/P;,) and takes the 
value 

Gk, +8 ie 
Lapis ai [1+—_#0___] . (45) 

ok? 6 -8L Rr)? +O-1 
‘These expressions are now in a form from which they 

may be evaluated using data obtainable from steady 

state measurements of the thermal field in the melt 

  

  

i 

  

  

Table 1 
Typical parameter values 

System constants Ge Si 

rq crystal radius (em) es 
R crucible radius (cm) 23 4.6 
V growth rate (m/min) 0.17 0.30 
J latent heat (J/g) 443 1800 
k, conductivity (W/em K) 0.24 0.30 
km conductivity (W/em K) 0.71 0.67 
ps density (g/em4) $5.32 2.34 
y angle of contact (deg) 20 20 
@ surface tension (dyne/cm) 620 720 
@ gradient variation factor aS ais! 
Go gradient in crystal °C/em) 103 110 
G, gradient in melt ?C/em) 3035 
0; fusion temperature (°C) 937 1420 
9, melt temperature (°C). 945 1430 
9, susceptor temperature (°C) 960 1457 
  

Derived parameters 

hg meniscus height (cm) 04 06 
K meniscus curvature constant(em" 3.22.0 
u differential temperature ratio 1.88 1.35 
P, power input from melt (W) 67.0 73.7 
Po power input to crystal (W) 71.7 103.7 
Pe power due to fusion (W/) 21.5 66.2 
P, power radiated (W) 10.8 36.2 
Q power density ratio 4.96 2.44 
® dimensionless parameter 0.95 1.74 
  

Transfer function parameters 
    

2 natural frequency (rad/min) 
  

0.58 0.70 

$ damping ratio 0.19 0.20 
Xq__ gain constant 49 23 
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and the crystal. As an example, values for typical sili- 
con and germanium growth systems have been com- 
puted and are shown in table 1. 

The data for the silicon system were obtained from 
results given by Shashkov [4,8] and for germanium 
the results of Brice [6] were used. 

The calculated values are generally in line with 
what has been observed in dynamic measurements 
made on growing crystals with the exception of Ko. 
The calculated values are approximately three times 
the observed values. This is attributable to the fact 
that in eq. (33) linearity has been assumed between 
the susceptor temperature and the heater power. In 
the presence of a substantial heat loss by radiation 
this is clearly an approximation which over estimates 
the sensitivity of the temperature to power changes. 
It is better to base Ky on a measurement of the sensi- 
tivity and it can be shown that if w is the ratio of the 
Susceptor temperature change to the per-unit change 
of heater power, 

- Gk, v hus uQ 
0° Gok, 8 [i + 

Rio? +O-1 
Values of w of the order of 500 C° have been ob- 
served in practice. 

    

  

  

, ~ (46) 

6. Conclusions 

The results derived here represent a first approxi- 
mation to the transfer function relating the crystal 
radius to changes of the heater power. They are valid 
provided that the changes of radius occur slowly and 
are small. Approximations to the changes in the ther- 
mal field in the crystal have been made which are ade- 
quate for materials such as germanium and silicon 
which have a low Biot number. This implies that the 

“results are particular to materials showing high ther- 
mal conductivity. 

With these limitations they offer a means of re- 
lating the dynamic response of a puller to the physical 
parameters of the material being grown. It has also 
been shown how data from steady state measurements 
on the temperature field in the melt and the crystal 
can be incorporated into the analysis. 

Results of this type are important to the design of 
diameter control systems and the present work offers 
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a means of making comparisons of the control system 
performance for different materials and system config- 
urations. It is also possible to retate the required set- 
tings of controller parameters to the physical constants 
of the system and avoid the need for empirical adjust- 
ment. 

Research is at present in progress leading to im- 
proved methods of measuring the dynamic response of 
crystal growth processes and in due course comparison 
between measured and theoretical results will be re- 
ported. 

7. List of symbols 

  

a Crystal radius 
fpf Fy, F Transfer function 
G, G;, Go Temperature gradients 
h Meniscus height 
A Capillary constant 
J Latent heat coefficient 
Re ke, Thermal conductivities 
K Meniscus curvature constant 
Ko Overall gain constant 
Pir Pp Py» Po» Pr» P, Powers 
B, Pp Py Po, P, Steady state powers 
Q Power transfer density ratio 
r Crystal radius 
R Crucible radius 
s Laplace transform variable 
t Time 
v Pull speed 
Be Growth rate 
a Gradient variation factor 

ey, Angle of contact 
5 Boundary layer thickness 
6455 Increments of pp, and p, 
Sn Increment of @ 
€, €, Heat transfer coefficients 
£ Damping ratio 
9, Oy Oa Og Temperatures 
Hu Differential temperature ratio 
Ps Pm Densities 
o Surface tension coefficient 
Oj, 0, Power transfer densities 

Dimensionless parameter 
w Gain constant of susceptor 
2 Natural frequency 
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APPENDIX II 

MELT LEVEL IN SPHERICAL CRUCIBLES 

It is required to find the depth of liquid that occupies a given volume in 

the bottom of a spherical bottomed crucible 

  

volume of elemental slice = Syma xX 2 weeew hedt 

+’. total volume in depth he Vy is found by integrating equation A201 

2 
v, = (rte seeee AQ02 

R-he 

but since x2 = ee y? seeee A203 

2 3" ve aT erg] weeee A204 

3 R-h, 

2 3 
vs a RS - eeees A205 

re-arranging A205 

3V5 = 0 eeeee A206 
Tt 

n? - 3rn? + 

which may be solved for has a cubic. 
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A3-1 

16 

17 
14 

1s 

18 

APPENDIX 3 

COMPUTER PROGRAM LISTINGS 

DPPP 
DPP 

COMMON DATA(13@@),.F (1308),COEFF (200)sNsIRsFNAM(2) 

N=-1 

WRITE (1513) 

FORMAT(" DATA CHAN FOR INPUT?"') 

READ (25 NC 

WRITE(1,53) 

FORMAT(™ FILE LENGTH?") 

READ (2, LF 

IFC(NC.GT.8)GO TO 17 

DO 16 J=1s5LF 
DATACJ)=0-9 

IR=LF 
Go TO 11 

IF (NC-LT-6) GO TO 15 

WRITE(151) : 

FORMAT(" DATA INPUT FILENAME?") 

READ (2,2 )FNAM 

FORMAT CAS,A4) 

CALL FSTAT(NCsFNAM; J) 

IF (J-EQ@.0) GO TO 14 

CALL SEEK(NC»FNAM) 

READ(NCs )(DATAC J)» J=1 LF) 

CALL CLOSEC(NC) 

WRITE(134) 

FORMAT(" DATA FROMs1T0?") 

READ (2, )ISTRTsIFIN 

IR=IFIN-ISTRT+1 

IFCIR.»GT-LF) GO TO 6 

DO 7 J=1,sIR 
DATACJ)=DATACISTRT+J-1) 

WRITE (1,58) 

FORMATC" SPECIFY PROGRAM") 

IFCITOG(32)) GO TO 9 

WRITE(1,10) 

FORMATC" 1',T6,"ADD POLLY"/" 2"5T6s" IMPLEMENT DIGIFILTER"/™ 3° 

"DESIGN DIGITAL FILTER"/" 4"%5T6s"F IT POLLY"/" S"sT6s"ENTER 

QCOEFFS"/" 6",T6,"TIME LINEARISATION'/™ 7"%sT6s"OUTPUT"/" 8% 5T 

3"NEW DATA"/" 9"%,T6s"TRANSFORM DIGIFILTER"// 

3" FUNCTIONS OF ACS ARE AS FOLLOWS:"/7 

4 12",T6,"SUPPRESS THIS PRINTOUT"/" 13",T6,"SELECT DATA 

5 OUTPUT"/" 14",T6,"RE READ ACS 13515,16"/" 15',T6s"SELECT 

6 GRAPH PLOTTER"/" 16" sT6s"SELECT GRAPHICS OUTPUT"/" 17's T6> 

T"TERMINATE GRAPHICS OUTPUT"7Z) 

READ (2+) 1SW 

IF CISW-EQ.1) CALL DRITF 

IF CISWeEQ-2) CALL FILTUR 

IF CISWeEQ-3) CALL FILD 

IF CISWeEQ.4) CALL POLLY 

IF CISW.EQ.S) CALL ENTRER 

IF CISWeEQ@.6) CALL DIMOD3 

IF CISWeEQ.7) CALL PUTOUT 

IF CISW.EQ.8)9GO TO S 

IF CISWeEQ-9) CALL TRANS 

GO TO 11 

END 
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DRITF 

SUBROUTINE DRITF 

COMMON DATA(C1300)sF (1308),COEFF (200)5NsIR»FNAM(2) 
IF(N.GE-1) GO TO 3 
WRITEC1,4) 

4 FORMAT(C" NO COEFFICIENTS PRESENT") 
RETURN 3 

3 WRITE(1,45) 

s FORMAT("™ ADD ¢+1) OR SUBTRACT ¢-1)") 
READ(1,)1SN 
DO 1 J=1sIR 
F J=FLOATCJ) 
Al=0.0 
DO 2 K=14N 
M2=N-K 

2 A1=A1+COEFF (CK) 4F J¥#M2 
DATAC J)=DATACJ)+ISN¥A1 
RETURN 
END 

ENED 

C PROGRAM TO DESIGN OFF LINE FINITE IMPULSE RESPONSE 
C BRICKWALL LOWPASS DIGITAL FILTERS BY THE WINDOW METHOD 

SUBROUTINE FILD 
DOUBLE PRECISION ACC 
REAL IDEALR(100)»sIDEALI(100) 
COMMON DATAC1300)sF (1308) sCOEFF (200) sNsIRsFNAM(2) 

14 WRITE (151) 
1 FORMAT" CLOCK FREQ ¢HZ)?") 

READ (1, CF 
WRITE(1,2) 

2 FORMATC"™ NUMBER OF POINTS?") 
READ (1. NP 

33 WRITEC1,3) 
3 . FORMATC™ CUTOFF FREQ (HZ)?") 

READ (15 FC 
C PRODUCE BRICKWALL LOWPASS FREQ RESPONSE 

DO 4 J=1sNP 
IDEALR(J)=0.8 

4 IDEALI(J)=6.8 
CN=FC/CF *NP 
NC=CN+1 
IF (NP-NC4#2-LT.o1) GO TO 33 
IDEALR(1)=1-0 
DO 5S J=2sNC 
IDEALR(J)=1.0 

S IDEALR (NP- J+2)=1.8 
C CALC IDEAL IMPULSE RESPONSE 

CALL FFTIACIDEALR,s IDEALIs»NPsNPsNPo1) 
DO 40 J=15NP 
IDEALR(J)=IDEALR(J)/NP 

48 IDEALICJ)=IDEALICJ)/NP 

CALL GRUPARCIDEALR»s IDEALIsCOEFFsNP51) 
. © WINDOW IDEAL IMPULSE RESPONSE 

WRITE(1,6) 
6 FORMAT(™ WINDOW TYPE:-RECTANGULAR (1 )sHAMMING (0) sBLACKMANC-1 

READ (15) IWIND 
WRITE(157) 

t FORMATC"* LENGTH OF WINDOW?" ) 
READ (14 )L 

CALL WINDOWCNPsLs COEFF »IWIND) 
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C SCALE 

11 

12 

C STORE 

  

FILD (continued) 
TO GIVE GAIN OF 1 IN PASSBAND 
A=8.0 
DO 11 J=1,NPs2 
A=A+COEFF (J) 
DO 12 J=1sNP 
COEFF € J)=COEFF (J)/A 
CALL GRUPARCIDEALR» IDEALI COEFF »NP»O) 
COEFFS IN ARRAY COEFF 
CALL FFTIACIDEALRs IDEALIsNPsNPsNPs-1) 
N1=NP/2 

C CALC DB,DEG OF WINDOWED SEQUENCE 
CALL RIMPCIDEALRsIDEALIsN1I41) 

C CALC FREQ ARRAY. 
NI=N1-1 
DO 8 J=1,N1 
FC J)=FLOAT CJ) *CF/NP 
IDEALR¢J)=IDEALRCJ+1) 
IDEALI¢J)=IDEALI¢J+1) 
WRITE (159) 
FORMATC" GRAPH OF GAIN (DB)") 
CALL PLTFRGCIDEALRsFsN150sAL) 
WRITE (1510) 
FORMATC" GRAPH OF PHASE (DEG)*) 
CALL PLTFRGCIDEALIsFsN150,AL) 

C ROTATE FILTER COEFFICIENTS AND STORE IN ARRAY COEFF 

20 

27 

26 

LL=L-1 
N=LL 
L2=NP-L72+41 
DO 28 J=1sLL 
L3=L2+J 
IF (L2.GT.«NP) L3=L3-NP 
IDEALR (J)=COEFF (L3#2-1) 
DO 27 J=1sLL 
COEFF (J)=IDEALR(J) 
WRITE (1,26) 
FORMAT(" PAPER TAPE OF COEFFS?") 
READ (15)J 
IFCJeNE«1) GO TO 21 
WRITE (4,21) CIDEALR(J)5J=15LL) 
CALL CLOSE ¢4) 

C OUTPUT FILTER COEFFS ON PP 
21 FORMAT (1X51PE15-7) 

RETURN 
END 

POEEY, 

C SUBROUTINE TO FIT POLYNOMIALS OF DEG N TO DATA 
SUBROUTINE POLLY 
REAL A(132) 
COMMON DATA(1300)5F (1300),sCOEFF (203)sNsIRsFNAM(2) 
WRITE C132) 
FORMATC" ORDER OF POLY?") 
READ(15)N 
IF(NeLT-@) RETURN 
DO 6 J=15IR 
FCJ=J 
CALL STPLRGCIRsF sDATAsNsCOEFFs IFLAGsA) 
IF CIFLAG.NE.1) WRITEC153) 
FORMATC™ POLY NOT FOUND") 
N=N+1 
WRITE C1, ) (COEFF (J), J=15N) 
RETURN 
END 
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DIMOD3 

C SUBROUTINE TO MODIFY N EQUI-SPACED OBSERVATIONS TO M EQUI 
C TIME SPACED OBSERVATIONS (RE GAP XTALS) 

12 

SUBROUTINE DIMOD3 
REAL X1¢1360) 
COMMON DATA 1300)» FC1300)»COEFF(200) oN» IRs FNAMC2) 
ROM=4-5 
ROS=4e1 
DCRU2=9-0*ROM/ROS 
IFCITOGC16) > RETURN 
WRITEC1s1) 
FORMAT(" MENISCUS CONST? SLICE THICKNESS CIN)?") 
READ( 1s) FKsXINC 
WRITEC1,5) 
FORMATC'" SAMPLE DATA INPUT EVERY?"") 
READC 2s) FKS 
KS=FKS 
WRITEC1s 6) 
FORMAT(" ENTER 2ND DERIVATIVE FILENAME") 
READ( 22 7) FNAM 
FORMATCASsA4) 
WRITEC1s1) 
FORMATC" DATA CHANNEL? LENGTH? FROM? TO?") 
READC2, )ICHANsL» ISTRT» IFIN 
IR1=1FIN-ISTRT+1 
IFCIR1+NE«IR) GO TO 11 
CALL FSTATCICHAN»s FNAMsJ) 
IFCJeEQ-@) GO TO 11 
CALL SEEXCICHANs FNAM) 
READCICHANs )(X1C€J)sJ=1sL) 
CALL CLOSECICHAN) 
KL=IFIX(CFLOATCIR)/FKS) 
DO 4 J=12IR 
X102)=X1CU+ISTRT-1)9/CXINC) 
FC J)=Jd 
XINC=XINC#FKS 
FK2=¢5/FK 

  

C CALC MODIFIED SLICE THICKNESS 

14 

FJ=2+9 
FJ=FJ+FKS 
IFCIFIXCFJ)-GE-KL) GO TO 2 
J=IFIXCFU) 
T1L=CJ-2)*FKS+FKS/2 
EX T=XINC-FK2*xX1¢11) 

X1¢€Jd-1)=C€1-8-CDATACI1)#*2)/DCRU2) * EXT 
GO TO 14 
CONTINUE 
WRITE(128) 
FORMAT(C"™ GRAPH OF SLICE THICKNESS") 
IFCITOGC2) CALL PICTURCFsX1>KL-151) 
CALL PLOT3(X12KL-151) 

C INTEGRATE SLICE THICKNESS 

3 

3 

DO 3 J=3sKL 
K1CJ-1)=X1CJ-294+X1CJ-1) 
WRITEC129) 
FORMAT(" GRAPH OF INTEGRATED SLICE THICKNESS") 
IFCITOGC2)ICALL PICTURCFsX1lsKL-151) 
CALL PLOT3(X1l»KL-151) 

C FI=EQUI-TIME INTERVAL ON X1 
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DIMOD3 (continued) 

FI=X1CKL-1)/CKL~-1) 
C LIN INTERPOLATE DATA FOR EQUI-TIME 

K=l 
J=2 

16 FIJ=FI*FLOATCJ-1) 
IFCFIJUeLE«X1¢K)) GO TO 17 
K=K+1 
IFCK-KL)16218218 

18 K=1 
FCJ=0-8 
JeJt1 

g IFC J-KL)16216213 
17 T=CFIU-X10K-1) /€X1 CK) -X1CK-1)) 

TKS=T*FLOATC KS) 
ITKS=TKS 
TKS 1=TKS-ITKS 
FC J) =DATACK*KS+I TKS) +TKS1*(DATACK*KS+1 TKS+1)-DATACK*KS+I1 TKS) 
J=Jt1 
IFCJeLE+KL) GO TO 16 

13 DO 19 J=2sKL 
19 DATACJ)=FCJ) 

IR=KL 
LEN GTH=KL 
WRITEC1s )LENGTH 
RETURN 
END 

PUTOUT 

SUBROUTINE PUTOUT 
COMMON DATA(1360)5F (1300),COEFF (200)sNs1IRsFNAM(2) 
DO 6 J=1,IR 

6 FC Jad 
18 IF CITOGC(2))CALL PICTURCFsDATA,IR»s1) 

IF CITOGC4) CALL PLOT3(DATAsIRs1) 
IFCITOGC8))GO TO 10 
IF CITOGC16)) GO TO 7 
RETURN 
WRITEC141) 

1 FORMAT(™ DATCHAN FOR OUTPUT?" ) 
READ (25 1K 
IF CIKeLT»«6) GO TO S 
WRITE(152) 

i FORMAT(™ FILENAME?" 
READ (253)FNAM 

3 FORMAT CAS 5A4> 
CALL ENTERCIKsFNAM) 

5 WRITE CIKs4) (DATAC J)» J=15 IR) 
IF CIKeGT«3) CALL CLOSECIK) 

4 FORMAT (1X51PE1547) 
IF CITOG(8))GO TO 10 
RETURN 
END 
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FILTUR 
SUBROUTINE FILTUR 
DOUBLE PRECISION ACC 
REAL IDEALR(10@),IDEALI(100) 
COMMON DATA(1309)5F (1300),COEFF (200)5Ns IRsFNAM(2) 
IF(N-GE.8) GO TO 1 
WRITE(152) 

z FORMATC"’ NO COEFFICIENTS PRESENT") 
RETURN F 

1 LL=N 
L=N41 
L4=L72-1 

C INITIALISE DATA STORE 
LS=L72 . 
DO 9 J2=1sLL 
KI=IR+L4-J2+1 
IF(K1.GT.IR) GO TO 18 
IDEALI ¢J2)=DATACK1 ) 
GO TO 9 

10 IDEALI(J2)=8-8 
2 CONTINUE 

DO 19 Jl=15IR 
J=IR-J1+1 
J2=J-L5 
ACC=8.98 

C IMPLEMENT DIGIFILTER 
DO 18 K=1sLL 

18 ACC=ACC+IDEALI (K)*COEFF (K) 
DATACJ)=ACC 

C ROTATE TEMP DATA STORE 
DO 23 JO=2sLL 

23 IDEALI¢(J@-1)=IDEALI (JO) 
IF (J2«LT.-1) GO TO 24 
IDEALICLL)=DATACJ2) 
GO TO 19 

24 IDEALI(LL)=6.8 
19 CONTINUE 

C DECIMATE FILTERED DATA 
WRITE(1,22) 

22 FORMATC" SAMPLE OUTPUT EVERY ?") 
READ (C15 )NS 
LENGTH=IR/NS 

> DO 25 J=1,LENGTH 
25 DATAC J) =DATAC J#NS) 

WRITE (1s )LENGTH 
IR=LENGTH 
RETURN 
END 

ENTRER 

SUBROUTINE ENTRER 
COMMON DATA(1300),F (1300).COEFF (200)sNsIRsFNAM(2) 
WRITEC151) 

1 FORMATC™ NUMBER OF COEFF ICIENTS?"*) 
READ (15 N 
WRITEC153) 

3 FORMAT(™ INPUT COEFFS ON PAPER READER (3)s OR TELETYPE (2)>" 
READ (25) 1N 
WRITE(1,2) 

2 FORMATC" ENTER COEFFICIENTS IN DESCENDING ORDER") 

READ CIN» ) (COEFF (J) J=15N) 
RETURN 
END 
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GRUPAR 

SUBROUTINE GRUPAR(REAL»IMAGsCOMPLX5N.IFLAG) 
C SUBROUTINE TO CONVERT TWO ARRAYS INTO ONE COMPLEX ARRAY OR TO 
C CONVERT ONE COMPLEX ARRAY INTO TWO ARRAYS. 

REAL» IMAG=TWO ARRAYS 
COMPLX=COMPLEX ARRAY 
N=LENGTH OF EACH OF TWO ARRAYS. 
IFLAG=@ FOR 21 
IFLAG=1 FOR 1+2 

REAL REAL(1)sIMAGC1)sCOMPLX(1) 
IF CIFLAG)25352 

2 DO 1 J=1s5N 

COMPLX ( J*2-1)=REAL (J) 
1 COMPLX¢€J#*2)=IMAG(J) 

RETURN 
3 DO 4 J=1sN 

REAL €J)=COMPLX(J*2-1) 
4 IMAG CJ)=COMPLX¢( J*2) 

RETURN 
END 

a
a
a
a
a
 

WINDOW 

SUBROUTINE WINDOW(NsL»sHs IWIND) 
c 
C SUBROUTINE APPLIES A WINDOW OF TOTAL LENGTH L TO A COMPLEX 
C ARRAY 
C INPUTS ARE: N=LENGTH OF INPUT/OUTPUT ARRAY. 
c IWIND=-1 FOR BLACKMAN WINDOW 
c @ FOR HAMMING WINDOW 
c =1 FOR RECTANGULAR WINDOW 
c L=LENGTH OF WINDOW REQUIRED. 
c 
c 
c 
c 

  

H=ARRAY OF DATA TO BE WINDOWED. 

OUTPUT RETURNED IN ARRAY H 

REAL H(1) 
L@=L72 
IF CIWIND) 15156 

1 DO 5 1=2sL2 

A=8-O0*ATANC1.8)*FLOATCI-1)/FLOATC(L) 
IF CIWIND)3,252 

2 W=.54+.46#COS (A) 
Go TO 4 

3 W=.42+-5*COS(A)+.08*COS(2-0*A) 
4 HCT*#2-1)=HCT*2-1) *W 

HCI *2)=0.08 
J=N-1+2 
HC J#2-1=HOCJS*2-1) *W 

S HC J#2)=6-0 
6 L3=L2+41 

N3=N-L/2+41 
‘DO 7 I=L3sN3 
HCT#2-1)=0.0 

7 HC1*2)=0.9 
RETURN 
END 
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TRANS 

SUBROUTINE TRANS 

C TRANSFORMS LOWPASS DIGIFILTER PROTOTYPES TO HIGHPASS»BANDPASS 

C OR BANDSTOP. FOR FINITE IMPULSE RESPONSE FILTERS. 

COMMON DATA(1300).sF (1300) »COEFF (200)sNs1RsFNAM(2) 

IF (N.GE.1) GO TO 2 
WRITEC(153) 

3 FORMAT(" NO COEFFICIENTS PRESENT") 

RETURN 
€ WRITEC1,1) 

1 FORMAT (" TRANSFORM LOWPASS PROTOTYPE DIGIFILTER INTO3"/ 

1" 1"%,T6,"HIGHPASS"/" @",T6s"BANDPASS"/" -1'sT6s"BANDSTOP"/ > 

READ (2, )1T 
DO S J=lsN 

Ss F CJ) =COEFF (J) 
IF CIT+eLTe1 IN=N*2-1 

INC=2 
IF CIT.EQ.1)INC=1 

DO 6 J=1sNs INC 

Jl=J 
IF CINC-EQ-2)J1=CJ+1 9/2 

ISN=1 
IF CIT-GE+Q)ISN=(-1-8)¥**J1 

COEFF (J)=ISN#F (J1) 

IF CIT»EQ.1) GO TO 6 

COEFF (J+1)=0-08 

6 CONTINUE 
RETURN 

END



A3-2_SPECTA 

GHOST 

C PROGRAM TO PRODUCE SPECTRUM OF SYSTEM FROM INPUT AND OUTPUT 

C 1/0 DATA FROM FILES ON DATSLOT 7/6 

C CALLS SUBROUTINES BACH» (FFTIAsHANN) » SEGMENs OUTPUT» (PICTUR» ¢ GRAFIX» 

C ITOG),PLTFRQ 

31 

44 

34 

ig 

INTEGER OSTRT 
REAL ALAB(9) »BLABC9) sCLB(9)»GLC7)» 
1D(9)sE(9) sF(598)sFTEMP( 508) sFTI C254) »FTOC254) 
COMMON TEMPI (254) » TEMPO (254) sXIN(508)sXOUT( 508)» FILENC2) 

DATA ALAB(1)sALAB(2)/5HFREQ »SHCHZ) / 

DATA ALAB(C4)sALAB(5)/SHMOD (»SHDB) 7 

DATA ALABC7)sALAB(8)sALAB(9)/SHFREQ »SHRESPOsSHNSE / 

DATA BLAB(1)»BLAB(2)/S5HFREQ »SHCHZ) 7 
DATA BLAB(4)sBLABC5)/SHPHI (sSHDEG) 7 

DATA BLAB(7)»BLAB(C8)»BLAB(9)/SHFREQ » SHRESPO»s SHNSE / 

DATA CLBC1)sCLBC2)/SHFREQ »SHCHZ) 7 

DATA CLBC4)eCLBC5)sCLBC6)/SHGAMMAs 5H SQUAsSHRED / 

DATA CLB(7)sCLBC(8)»CLB(9)2/SHCOHERs SHENCE » SHFUNCT/ 

DATA D(1)sD(2)/SHFREQ »SHCHZ) / 

DATA DC 4)2D(5)/5HMOD (sS5SHDB) 7 

DATA DC7)2D(8)»DC92/SHPOWERs SH SPEC»5HTRUM / 
DATA E(1)/EC2)/SHFREQ »SHCHZ) 7 
DATA EC4)sEC5)/SHPHI (»5HDEG) / 
DATA EC7)2E(8)2EC9)/S5SHPOWERs SH SPECsSHTRUM / 

DATA GL(1)»GLC2)2GL63)sGLC4)/5HGXX »SHGYY »SHGYXPH»s SHGYXDE 

DATA GL(5)sGL(6)2GLC7)/SHGAMSQs SHMOD Hs SHPHI H/ 

RAD245¢G/ATAN26 182128) 
Pl#18@-¢@/RAD 
DO 6 Jals598 
XINCJ) 2005 

» XOUTC II #H098 
WRITEC1s1) 
READC1s)1N 
READ( 222) FILEN 
WRITEC1 210) 
READ(1»s)X1 
WRITE( 1223) 
READC1)5 LIN 
WRITEC1 226) 
READ( 2s )ILeISTRT 
IFCILeGTeLIN) GO TO 44 
Jel 
IFCINeGTeS) CALL FSTATCINs FILENs J) 

IFCJeEQeG) GO TO 6 
CALL SEEXCIN»s FILEN) 
READCINe )(CXINC J) sJ=1leLIN) 

CALL CLOSECIN>D 

WRITECL017) 
READ(12)1D2 
IFCID2-199218221 
WRITEC1s4) 
READC222>FILEN 

WRITEC125) 
READC1s }LOUT 

Jat 
IFCINeGTe5) CALL FSTATCIN»s FILENs J> 
IFCJeEQe8? GO TO 18 
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GHOST (continued) 

CALL SEEKCINsFILEN) 
READC IN» )CXOUTC J) »J=1 sLOUT) 
CALL CLOSECIN) 

43 WRITEC1223) 
READ(1s20STRT 

21 WRITEC1,12) 
READC 1s INC 

CALL BACHCFTIsFTOsILeINCsFsFTEMPsOSTRT»sISTRT»LIN»LOUT) 
IL22#(IL+1)72 
IL42IL2/INC 

C CALC GXX(DB)sGYY(DB) CARRAYS TEMPI»TEMPQ)s AND GYX(DB)» 
C GYXCDEG)CARRAYS FTI» FTO)e (SUBROUTINE SEGMEN USED FOR CHAIN) 

CALL SEGMENCTEMPI »TEMPOsIL>XtoFTOsFTioFs INC) 
C OUTPUT GXX»sGYY 

CALL OUTPUTCTEMPI 2s TEMPOsFsIL4sGL¢1)2D) 
IFCID2eEQe2) GO TO 9 
CALL OUTPUT(TEMPOs TEMPI sFsIL42GL(2)sD) 

C OUTPUT GYXREsGYXIM (DB»DEG) 
29 CALL OUTPUTCFTIsFTO»Fs1L4sGL(4)eD) 

CALL OUTPUTC(FTOsFT1»FseIL4sGL¢(3)sE) 
C CALC MODCH) AND OUTPUT TOGETHER WITH PHASE 

WRITEC1225) 
READC1s KU 
DO 32 J=2sILeeinc 
IX#J/INC+INC=1 
FTEMP CIX)#FTIC1IX)-TEMPICIX) 
IFCKUeEQe2) GO TO 32 
ALSPI*FLOATCIX)/FLOATCIL) 
FIEMPCIX)=FTEMPC1X)+2GeQO#ALOGIOCAL/SINCAL)) 
FTOCIX)#FTOCIX)+RAD*AL 

32 CONTINUE 
FTEMP (1 = FTEMP(2) 
CALL OUTPUTCFTEMP» FT0sFsIL4sGL(6)»ALAB) 
CALL OUTPUTCFTOsFTEMPs Fs IL4» GLC 7) »BLAB) 

C CALC GAMSQ AND OUTPUT 
DO 33 Js2sIL2eINC 
IXsJ/INC+INC#1 
Alseo1*(2eQ*FTICIX)-TEMPICIX)-TEMPOCIX)) 
IFCALeLEe73e2) GO TO 49 
FTEMPCIX) 3190 eO**CAL) 
GO TO 33 

ao FTEMPCIX=900 
33 CONTINUE 

FPTEMP(1)=FTEMP (2) 
CALL OUTPUTCFTEMPs XOUT»FsI1L4sGL(5)»CLB) 
IFCITOGC64)) 4259242 

42 IFCID2-1) 924329 
i FORMATC" INPUT CHANNEL?sINPUT FILENAME?" 
2 FORMAT CAS sA4) 
10 FORMATC’ SAMPLE T?") 
3 FORMAT(’ TOTAL INPUT LENGTH?") 
26 FORMATC’ INPUT DATA BLOCK LENGTH? STARTING AT?") 
AT: FORMATC" WANT @ND DATA FILE?*) 
4 FORMATC’ SYSTEM OUTPUT FILENAME?) 
Ss FORMATC’ TOTAL OUTPUT LENGTH?) 
23 FORMATC™ OUTPUT DATA STARTING AT?) 
25 FORMATC” ZOH CORRECTION ON TF?) 
le FORMATC™ ALL? (128 ODD ONLY? €2) HARMONICS") 

END 
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SEGMEN 
C SEGMENT OF GHOST FOR CHAIN SEGMENTATION PURPOSES. 

35 
36 

37 
47 

46 
28 

SUBROUTINE SEGMENCTEMPIsTEMPOsILsX1sFTOsFTIsF»INC) 
REAL TEMPI(C1)sTEMPOC1)sFTOCI )sFTICI)sF C1) 
RAD=45-0/ATAN2(1.051.0) 
IL2=CIL+1)72 
CALL ERRSET(O) 
DO 28 J=2,IL2s5INC 
IX=J/ INC+INC-1 
IF CTEMPI(J)-LE~6-8) GO TO 35 
TEMPICIX)=10-.0*ALOGIOCTEMPI(CJ)) 
GO TO 36 
TEMPICIX)=-200.0 
IF CTEMPOCJ)-LE~8-0) GO TO 37 
TEMPO (IX)=10-8*ALOGI@ (TEMPO CJ)) 
GO TO 47 
TEMPO (1X)=-200.0 
FCIX)=C€J-19/7 0X1 *IL) 
AL=FTICJ) 
IF CA1.EQ.0.0-AND-FTOCJ)-EQ-0-0) GO TO 46 
FTICIX)=S-0*ALOGIOCAL*AI+F TO (5)*FTOC J)? 
GO TO 28 i 
FTICIX)=-200.0 
FTO CIX)=RAD#ATAN2 (FTO CJ) 5A1) 
CALL ERRSET(1) 
FC1)=F (2) 

C REMOVE PHASE DISCONTINUITIES 
2 
1 

13 

oe 

16 
20 

WRITE C151) 
FORMAT(" PHASE DISCONTINUITY DETECTION THRESHOLD?") 
READ (2, )F DDT 
KU=8 
KFLAG=@ 
IL4=IL2/1NC 
NI=IL4-1 
DO 11 J=2,N1 
IF (FTO CJ+19-FTOCJ)-GT-FDDT) KU=-1 
IF CFTO (J+1)-FTOCJ)+LTe-FDDT) KU=1 
IF CKUsNE*@) KFLAG=J+1 
IF CKFLAG-NE-@) GO TO 16 
CONTINUE 
GO TO 19 
DO 20 J=KFLAGsIL4 
FTO (J)=F TO (J) +KU+360.90 

C INFINITE LOOP ESCAPE 

19 

IF CITOG(128))GO TO 19 
GO TO 13 
CALL PICTURCF sFTOsIL4s51) 
IF CITOG¢(128)) GO TO 2 
TEMPI¢1)=TEMPIC2) 
TEMPO (1 )=TEMPO (2) 
FTIC1)=FTIC2) 
FTO (1)=FTO¢(2) 
RETURN 
END 

HANN 

SUBRCUTINE HANN(As Ke PCT) 
REAL ACL) 

PI=4eG*ATAN2C1 002109) 
LPCTisI FIXCCPCT*#K)/200+¢9)-1 
FePI/LPCTL 
BO 1 Je@sLPCTi 
PlIse5tCleG-COS(F*J)) 
ACJtL BAC I+) ePI 

ACK- J ZACK J)#PI 
RETURN 
END 4129



BACH 
SUBROUTINE BACH(GYXREs GYXIMsKMs I Ks FFR»FFIs1OSTRT»ISTRTsLIN 

C SUBROUTINE TO CALC 1) POWER SPECTRUM OF INPUT ,LOUT) 
a
a
a
g
a
g
a
g
a
a
a
a
n
a
n
a
a
g
n
a
a
n
 

c 

2) POWER SPECTRUM OF OUTPUT 
3) CROSS POWER SPECTRUM 

UsARRAY FOR SYSTEM INPUT 

V=ARRAY FOR SYSTEM OUTPUT 

GYXREsARRAY TO RETURN REAL CROSSSPECTRUM 
GYXIM=ARRAY TO RETURN IMAG CROSSSPECTRUM 

GXX#ARRAY TO RETURN INPUT POWER SPECTRUM 

GYY=ARRAY TO RETURN OUTPUT POWER SPECTRUM 
FFR#ARRAY FOR INTERNAL USE 
FFIZARRAY FOR INTERNAL USE 

KM=LENGTH OF DATA 
IK=1 FOR ALL HARMONICS 
IK=2 FOR ODD HARMONICS ONLY 
IOSTRT=ADDRESS OF V AT WHICH DATA STREAM STARTS 
ISTRT=ADDRESS OF U AT WHICH DATA STREAM STARTS« 
LIN2TOTAL AVAILABLE U DATAe © 
LOUT#TOTAL AVAILABLE V DATAe 
SEGMENTATIONsSEGMENT AVERAGINGsHANNING ALL OPTIONIALLY DONE 

REAL FFR(1)sFFIC1)»GYXREC1)»GYXIMC1) 
COMMON GXX(254) 2 GYY(254) 2 UC508) » VC 588) 
KM2=KM/2 
DO 6 J=isKM2 
GXXCJ)=G 08 
GYY(J)=0-8 
GYXREC J) = 08 
GYXIMCJ) #008 
IHANI89@ 
LS2KM 
Buged 
WRITEC122) 
READ(C 12 NS» THAN 
IFCIHANeNE*1) GO TO 9 

WRITEC 1» 7) 
READ(1s)PslTHANI 
IFCNSeEQei) GO TO 10 
LS=CKM+1)/NS 
WRITEC 1532 

READ(1s0B 

10 Os€16G-B)*LS 
LSH8(LS+19/2 
NaI PFIXCC*B4¢NS)/(100-B)? 
DO 1 K=lsN 
KHL SISTRTW1+1TFIXCCK91)#0) 
KK2e1OSTRT“1+1 FIXC CK-19#0) 
DO 5S JetsLs 
Ki=aJ+KK) 
Ken JtKK2 
IFCK1e¢GT«LIN) KIsKI-LIN 
IFCK2¢GTeLOUT) K2=K2-LOUT 
FFRCJ)2UCKL) 
FFICJ)=VCK2) 
IFCIHANTeEQei) CALL HANN(FFReLS»P? 
IFCIHAN+EGe3) CALL HANNCFFI»LSsP) 

TRANSFORM AND CALCULATE GEES 
CALL FFTIACFFRs FFI 2LSeLSe).Ss-)) 
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a1 

@ 
= 

BACH (continued) 

DO 1 Is2sLSHsIK 
Kial 
K2=LS-1+2 
Am eS«( FFRCK1)+FFRCK2)) 
Bue S*¥(FFICK1)-FFICK2)) 
Xee S*tCFFICK2)¢FFICK19) 
Yeo S*CFFRCK2)°FFRCK1)) 
GXX CI) =A*“A+B*B+GXX(1) 
GYYC1)=X#x+y*yeGyy¢1) 
GYXREC1)=X*A+yY*B+GYXRECI) 
GYXIMCI)=Y¥*A-X*B+GYXIMC(1) 
DO & J=2aLSHslK 
GXXCJ)=GXXCUI/N 
GYY( J) =GYYCU)/N 
GYXREC J) =GYXRECJ)/N 
GYXIMC J>=GYXIMCJ)/N 
KM=LS 

FORMAT(" NUMBER OF SEGMENTS? HANNING?") 
FORMATC’ ZTAPER ON WINDOW? HANN INPUT AS WELL?") 
FORMAT("? OVERLAP FRACTION?) 
RETURN 
END 

  

OUTPUT 

SUBROUTINE OUTPUT(A»Bs Fs Ks AL» BL) 
REAL AC1)sBC1)oFC1)oBL(1)s FIL(2) 
WRITEC1s1.AL 
FORMAT(1X2A5) 
READ(1,)1G 
IFCIGeNEe1) RETURN 
IFCITGGC2)913514013 
CALL PICTURCF2AsKs1) 
IFCITOGC4) 215216015 
CALL PLTFRQCAsFsKsGeBL) 
IFCITOGC8) 45504 
WRITE( 426) CFC J) sAC J) eB J) 9 Jaa K) 
CALL CLOSE(4) 
FORMAT (C1X%s3E17«5) 

IFCITOGC1699 72807 
WRITEC129) 
FORMATC’ OUTPUT FILENAME?" 
READ( 1210) FIL 
FORMATC2A5) 
CALL ENTER(C6sFIL) 
WRITES 626) CFC J) sAC I) 0 BC J) a J220K? 
CALL CLOSE(6) 
IFCITOGCS229321253 
RETURN 
END 
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A333 VELTE!. 

C MASTER PRJGRAM FOR FREQUENCY RESPONSE PACKAGE 
C PACKAGE HAS TWO MODES A AND B 
Cc 
C CALLS SUBROUTINES FREPICs QUFREQs PZFREQ» ROUTHs RIMPs FFITs MATRIX» INVMX 
C\MXP»ADJ»PLTFRQsSCPROD»PICTURs GRAFIX, ITUG 

Cc 
C MUDE A READS FREQ RESPO DATA IN VECTOR.OR POLAR FORM FROM 

C TT»PRsDT1sDT2- DRAWS BUDE PLOTS OF DATAs FITS POLYNOMIALS 
CIN Se DRAWS BODE PLOTS OF FITTED FUNCTIONS. 
C CALCULATES COMPLEX POLES»ZEROS OF FUNCTIONS. 

MODE B DRAWS BODE PLOTS FROM POLYCOFFS OR PZS OR TIME CONSTS 

2
q
Q
e
9
0
A
a
 

C DATA IN SERIAL FORM FREGQsMODsPHI eeeeee K TRIADS 
C FREQ IN HZ 

c 
C PACKAGE WRITTEN BY MeJeHILL JAN 1975 

REAL RC200)210209)»FC290)»SPNC 408)» SPD(290)sAL(9)sFILC2)> 
1PMC200)»PP(208)sBL(9) 
DATA ALC1)sALC2)sALC 4)» ALC 5) s ALC 7)» ALCS)» ALC9)s BLO 1)» BLC2)>5 
1BL(4)sBL(5)sBL(07)sBL(8)»BL(9)/ 
Q5HFREQ »5H (2Z)5SHMUD (s5HDB)+ »SHFREQ »SHRESPO»SHNSEs » 
3S5HFREQ »5H (HZ)sSHPHI (»5HDEG)+»SHFREQ »SHRESPO»SHNSEe / 

14 WRITEC1219) 
19 FORMATC" FIT=0+DRAW=1") 

READ(C2,)1F 
IFCIF-1)22220322 

20 CALL FREPIC(RsIsFsK) 
GO TO 49 

22 WRITEC121) 
1 FORMATC"' K DATA?» DATCHAN? » POLAR=1» VECTOR=2") 

READ( 2s) Ks INsK1 
IFC Ke GTe299) GO TO 22 
IFCIN+LT-6) GO TO 15 

2 WRITEC1s16) 
16 FORMATC™ FILENAME?") 

READ(2s17) FIL 
CALL FSTATCIN» FILsJ) 
IFC JeEQ-3) GO TO 2 

07 FORMAT.C2A5) 
CALL SEEXCIN» FIL) 

15 READC IN» (FC J) »RCJ) 2 16d) 9 dal 5K) 
CALL CLOSECIN) 

49 IFCITOGC2)) GO TO 44 
GO To 24 

44 WRITEC12 46) 
46 FORMAT(" PHASE +/- RAMP?") 

READ( 2s )P 
P=P#180+0/K 
DO 47 J=isk 

47 IC J) =J*P 
24 WRITECi24) 
4 FORMATC(" IT FFIT ITERATIONS?") 

READC2,) IT1L 
IFCIT12934235935 

35 WRITEC1236) 
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36 

34 
37 

al 

al 

11 

12 

18 

Ao 

16 

36 

28 

29 

25 

FORMATC™ CUNVERGENCE LiMLT?"™) 

READC2s) FIT 

WRITE(137) 

FORMATC(" N/M TH ORDER POLLYFIT?") 

READ(C 2s )NP»MP 
KM=NP+MP+1 

LFCKM*CKM+5)«GT-e400) GO TO 34 

IFCK1L+EQ¢2) CALL RIMPCRsIsKs 1) 

CALL PLTFRQ(R» Fs Ks TFs AL) 

CALL PLTFRQ(I»FsKs1FsBL) 

CALL RIMPCRsIsK»-1) 

IT=IT1l 

CALL FFITCFsRo1»K» SPN» SPDs 400» FIT» 1T»NPsMP) 

IFCITeEQe-1) WRITEC1s)FIT 

IFCIT-EQe-1) GO TO 14 

WRITEC1s5) FIT 

FORMATC" SUM OF SQUARES OF, ERROR OF FIT="s1PE12+¢4) 

ND=IFIX¢SPDC1)) 

NN=IFIXCSPNC1)) 

DO 11 J=1lsND 

SP DCJ) =SPDCJ+1) 

DO 12 J=1sNN 
SP NCJ) =SPNCJ+1) 

CALL QUFREQ(SPD»ND»s SPN» NN» Fs K» PM» PP) 

CALL RIMPC(PMsPPs Ks 1) 

CALL RIMPCRsIsK»1) 

IFCITOGC2)) GO TO 18 

GO TO 42 ; 

KF=1 
DO 49 J=15K 
IC J)=PPCJ) 

GO TO 41 
WRITEC1s6) 

FORMATC"/S1tN DENOM COEFFS") 

DO 7 J=1sND 

JJ=J-1 

WRITEC1s8) Jd2SPDCJ) 

FORMAT(1Xs13,T1821PE12¢4) 

WRITEC129) 

FORMATC"/StN NUM COEFFS") 

DO 16 J=1sNN 

JJ=J~1 

WRITEC128) JJd»SPNCJ) 

CALL PLTFRQ(PMsFsK»s1sAL) 

CALL PLTFRO(PPsFsKs1»BL) 

IFCNDeEQe1) GO TO 27 

ITER=1000 

CRIT=-6801 

J=ND-1 

CALL NEWERCSPDs J»PM» ITER» CRIT) 

IF(J)28229228 

WRITECi» 3) ITER»CRIT 

READ(2s) ITER»CRIT 

GO TO 34 

J=ND-J-1 

J=JtJd 
WRITEC1225) 

FORMATC" REAL POLE IMAG POLE") 
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27 

31 

32 

33 

26 

13 

23 

a
a
a
n
a
n
a
a
a
 

  

FITF (continued 
WRITEC1,13)(PMCL1)sPMCI1+1)s11=150.2) 
IFCNNeEQ+1) GO TO 13 
ITER=1000 
CRIT=-9001 
J=NN-1 
CALL NEWERCSPN»J»PMs ITER» CRIT) 
IF(J)32s33532 
WRITEC1s3)1ITER»CRIT 
READ( 2, ) I TER>CRIT 

  

GO TO 31 
J=NN-J-1 
J=JtJ 
FORMATC"™ ROOTS NOT FOUND WITH ITER="5165"CRIT="»ESels 

I" ENTER NEW ITER»CRIT") 
WRITEC1s26) 
FORMATC"" REAL ZERO IMAG ZERO") 
WRITEC1,13)¢PMC11)sPMC11+1)5T1=15ds2) 
FORMAT(1X»1PE12¢4»5Xs1PE1264) 
IFCKF+EQe1) GO TO 14 
WRITEC1+23) 
FORMATC" FIT TO SAME DATA?"™) 
READC2s)J 
IFCJ-1) 14324514 
END 

QUFREQ f 
SUBROUTINE TO CALC REAL AND IMAGINARY .PARTS OF NCUW)/DCUW) 
SUBROUTINE QUFREQ(CA»s JDsBs UNs FsNo Xo ¥) 
B=NUMERATOR COEFFICIENTS 
A=DENOM COEFFICIENTS 
JN=LENGTH OF NUM COEFFS 
JD=LENGTH OF DEN COEFFS 
F=FREQUENCY ARRAY (HZ) 
N=LENGTH OF F 
X»Y ARE ARRAYS TO RETURN RE AND IM 

SUBROUTINE QUFREQCA»s JDsBs UN» Fs No Xo ¥) 
DIMENSION AC1)2BC1)sFC1)sXC1)sYC1) 
TP 1=8 + B*ATAN(1-@) 

CALC FREQ RESPO 
DO 9 J=lsN 
OMEG=FCJ)*TPI 
RED=0-9 i 
X IMD: 

  

JNI=JUN-1 
DO 8 K=@sJUD1+2 
EXP=(€-1+@)**CK/2) 
RED=RED+ (OMEG**K)*ACK+1)* EXP 
IFCK+2+GTeJD) GO TO 8 
XIMD=xX IMD+ COMEG**( K+ 1) )*ACK+2) *EXP 
CONTINUE 
DO 6 K=92JUN122 
EX P=(-1e@)#*CK/2) 
REN=REN+( OMEG**K)*BCK+1)*EXP 
IF(K+2<GT-+UN) GO TO 6 
XIMN=X IMN+(C OMEG#* ( 4+} ))*BCK+2) * EXP 
CONTINUE 
DEN =REDtR ED+XIMD*XIMD 

  

XC J) =CREN*RED+XIMN*XIMD)/DEN 
YC JI=CX IMN*RED-REN#*X IMD) /DEN 

RETURN 
END 

ih



FFIT 
SUBROUTINE FFITCFsRsIsN1>SPN»SPDsLIMs FIT» ITsNPsMP) 
FITS RATIO OF POLYNOMIALS TO FREQUENCY RESPONSE DATA. 
F=FREQUENCY POINTS (HZ) 
RsI HOLD REAL AND IMAG DATA 

N1=NUMBER OF FREQUENCY POINTS 
SPD IS WORKING ARRAY OF DIMENSION NI 
SPN IS WORKING ARRAY OF DIMENSION LIM 
FITTED NUM COEFFICIENTS RETURNED IN SPN 
SPNC1)=NUMBER OF NUM COEFFS+ 
FITTED DENOMINATOR COEFFS RETURNED IN SPDe 
SPDC1)=NUMBER OF DEN COEFFS-« 
FIT=SUM OF SQUARES OF ERROR OF FIT 
IT=MAXIMUM NUMBER OF ITERATIONS BEFOR BEING DEEMED INCONVERGENT 
-IT SPECIFIES NO OF ITERATIONS BEFORE NORMAL EXITe 
FIT ON INPUT IS CONVERGENCE LIMIT. 
IT=1 FOR WEIGHTED LEAST SUM OF SQUARES OF ERROR 
IT RETURNED AS -1 IF ITERATIONS INCONVERGENT 
NP=NUMBER OF ZEROS TO BE FITTED 
MP=NUMBER OF POLES TO BE FITTED 

PROGRAM WRITTEN BY MeJeHILL USING MINIMUM MEAN SQUARE ERROR 
CRITERION+e BASED ON SANATHANAN AND KOERNER CIEEE TRANS AUTO 
CONTROL JAN 1963+) 
OCTOBER 1974 

A
A
g
G
A
M
A
A
N
A
A
R
A
A
G
A
A
A
A
A
A
A
A
A
A
A
A
A
 

SUBROUTINE FFITCFsRsIsN1lsSPNsSPDsLIMsFITs 1TsNP»MP) 
REAL F(1)sRC1)5101)5WKLC1)sSPNC1)5NC1)5CC1)sLAMC1)5UC1)5STC1) 

IMC 1s1)sNNCi)»SPDCi? 
TP 1=8+G¥*ATAN2(1+d21+8) 
MIT=ISIGNC1,IT) 
IT=IABSCIT) 
FITLIM=FIT 
ITK=0 
KM=MP+NP+1 
NP 1=NP+1 
NMP =NP+MP 

C FABRICATE WORKING ARRAYS FROM SP 
4 KMS=KM*KM+1 

KMS 1=KMS+KM 

KMS2Q=KMS+2*KM 

KMS 3=KMS+34#4M 

KMS 4=KMS+4*#KM 

CALL ADJ2(Ms SPNC1)2KMS~1) 
CALL ADJCM»MC1s1)»KMs KMs@) 

CALL ADJCNs»SPNCKMS) »KMs 920) 

CALL ADJ(CsSPNCKMS1)2KMs029) 

CALL ADJCLAMsSPNCKMS2)sNP15050) 
CALL ADJCST» SPNCKMS2+NP1)»KM2620) 
CALL ADJCUsSPNCKMS3+NPi) »MPs@s6) 

CALL ADJCNNs SPNCKMS4)s Kis O20) 
CALL ADJCWKLs»SPDC1)s9N12ds0) 

DO 6 J=1lsN1 
FCJ)=FCJ)*TPIL 

  

6 WKLCJI=168 
DO 29 J=1sKM 

29 NN CJ)=1-GE-6 
CALL ERRSET(@) 

C CALC LAMBDAS



61 

F 

FFIT (continued) 
FIT=0-9 
DO 7 IK=1s5NP1 
LAMCIK)=0-9 
DO 7 K=15N1 
T1L=CIK-1)*2 
LAMCIK)=LAMCIK)+CFCK)**I1)*WKLCOK) 

  

C CALC S AND T 

81 

DO 8 IK=1sKMs2 
STCIK)=9-9 
T1lsIK-1 
DO 8 K=1sN1 
STCIK)=STCIK)+CFCK) *#11)*RCK) *WALCK) 
IFCKMeLT-2) GO TO 81 
DO 81 IK=2sKMs2 
STCIK)=6-9 
T1l=IK-1 
DO 81 K=15N1 
STCIK)=STCIK)+CFCK)#*11) #1 0K) *WKLCK) 
CONTINUE 

C CALC U 

2 

IF(MP+EQe@) GO TO 9 
DO 9 IK=15MP 
UCIK)=G+@ 
DO 9 1sN1 
UCTK)=UCTK+CFCK) **C2#1K) )*CRCK) ROCK) 41 CK) ¥I CK) ) KWKLCK) 
CONTINUE 

  

© NOW FILL UP ARRAY M WITH LAM 

10 

11 

DO 10 IK=1lsNP1.2 
DO 10 J=1sNP1,2 
MJ=(€J-1)72 
MK=C1K-1)72 
MCI Ks J)=LAMCMK4+14+MJ) *C C-1 69) #*MJ) 
IF(JeGE-NP1) GO TO 190 
MCIKs J+1)=008 
CONTINUE 
IFCNP1-EQ+1) GO TO 11 
DO 11 IK=2sNP1,2 
DO 11 J=2sNP152 
MJ=J/2-1 
MK=IK/ 2-1 
MCI Ks J)=LAM(MJ+2+MK) *( (-1-68)**MJ) 
MC IKsJ-1)=6-@ 
CONTINUE 

C FILL UP U 

12 

IF(MP+EQ-e@) GO TO 13 
DO 12 IK=1sMPs2 
DO 12 J=1sMPs2 
MS=(J#1)972 
MCIK+NP 1s J+NP1)=UCMS+C1K=1)/2)%( (C= 166) **CMS4+1)) 
IF(JeGEemMP) GO TO 12 
MCIK+NP 1s J+NP1+1)=@6+0 
CONTINUE 

IFCMPeEQ¢i) GO TO 13 
DO 13 IK=2sMPs2 
DO 13 J=2sMPs2 
MS=J/2 
MCIK#NP 1s J+NP1)=UCMS+1K/2)*C(-160)**(MS41)) 
MCIK4+NP 1s J+NP)=0-9 
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13 

  

FFIT (continued) 

CONTINUE 
C FILL UP ST LEFT HAND 

14 

15 

16 

IFCMP+EQ-@) GO TO 28 
DO 14 J=lsNP1L 
DO 14 IK=1.MP 
MCIK4+NP1s,J)=STCIK+J) 
K=1 
DO 16 J=1sNP1 
DO 15 IKk=1sMP 
IFCKeEQe2) MCIK+NP1s JJSMCIK+NP1 s J) #C(- 109) **1K) 

IFCKeEQ¢3) MCIK+NP1s,J)=-MCEK+NPIs J) 
IFC Ke EQe4) MCIK+NP1s JDSMCIK+NP1s J) *C 0-1-5) *#CT K-19) 

K=K+1 
IF (Ke GT-4) K=K-4 

C FILL UP ST RIGHT HAND 

17 

18 

19 

DO 17 J=1>MP 
DO 17 IK=1sNP1 
MCIKsJ+NP1)=STCIK+J) 

K=1 
DO 19 J=1lsMP 
DO 18 IK=1>-NP1 
IFCK+EQe1) MCI Ks J+NP1)=MC I Ks JtNP1)*C 0-108) ** CI K-19) 
IFCKeEQe¢3) MCiKs JtNP1L)=MCIKs JtNP1)*CC-160)*#1K) 
IFCK+EQ+4) MCIKs Jt+NPi)=-MCIKsJ+NP1) 
K=K+1 
IF(KeGT+4) K=K-4 

C FILL UP C 

20 

21 

DO 20 J=1lsMPs2 
CC J+NP 1)=0-0 
IFCJeEQ-MP) GO TO 20 
CC JtNP 14+1)=UCCJt1972) 
CONTINUE 
DO 21 J=lsNP1 
CCJI=STCI) 

C INVERT M 
CALL SCPROD(Ms 2¢0**(-39)) 
CALL INUMX(M) 
CALL SCPROD(Ms2e@**(-30)) 
CALL MXP(NsMsCsKM) 

C CALC WKL 

22 
23 

IFCMP+EQ¢@) GO TO 28 
DO 23 J=1sN1 
QR=1-6 
Q1=0-8 
DO 22 IK=1sMPs2 
QI=QIFNCNPIF+I KI AC FCI #RIKI KCC ~1 68) ## CCT K-1972)) 

IFCIKeEQ-eMP) GO TO 22 
K=IK+t 
QR=QR+N(NP1+K) *C FC J) **KI#C CH 109) **CK/2)) 

CONTINUE 
WKLCJ)=1 +8/CQR*QR+QI *Q1) 

C CALC SUM OF CHANGE IN COEFFICIENTSe+ 

  
DO 24 J=lsKiM 
FIT=FIT+ABSC CNN CU) NCJ) ZNNCJ)D 
NN CD=NC J) 
ITK=ITK+1 
IFCMIT)34235235 
IFCITK-1T) 61228228 
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FFIT (continued) 

35 IFCITKeEQeIT+ANDeFIT+GT+FITLIM) GO TO 31 
IFCFIT-«GTeFITLIM) GO TO 61 

C CALC SUM O F SQUARES OF ERROR. 
28 FIT=0-9 

DO 25 K=1sN1 
RN=0-8 
XIN=0-0 
DO 26 J=lsNP122 
RN=RN+N CJ) €CFCK) €#CS- 192 #0 0-1 0B) CC J-1972)) 
IF(CJeEQ-NP1) GO TO 26 
XIN=XINtNC Jt1)*CF CK) #A# J) KC C1 6G) **CCU-1972)) 

26 CONTINUE 
: QR=SQRT¢ WALCK) *CRN#RN+XIN#XIN)D 
PR=SQRTCR(K) *RCK) +1 0K) 10K) 
FIT=FIT+(PR-QR)*(PR-QR) 

25 FCK)=FCK)/TPI 
C INSERT COEFFS INTO SPN»SPDe 

MP 1=MP+1 
SPNC1)=FLOATCNP1) 
SPDC1)=FLOATCMP1) 
DO 39 J=1sNP1 

30 SPNCJ+1)=NCJ) 
SP DC2)=1+8 
DO 32 J=1sMP 

32 SP DC J+2)=NCNP1+J) 
CALL ERRSET(1) 
RETURN 

31 IT=-1 
DO 33 J=1sN1 

33 FCJ)sFCJ)/TPI 
CALL ERRSET(1) 

RETURN 
END 

ROUTH 

SUBROUTINE ROUTH(CA» JD» IROT) 
REAL AC1)sRC1155) 

IROT=0 
DO 4 I=1511 
DO 4 J=1-5 

4 RCI, J) =0-9 
DO 1 J=9»JDs2 
RC1ls 1+J/2)=ACJD-J) 
IFCJD-JUeLTe2) GO TO 1 
RC 2s 1+J0/2)=ACID-J-1) 

2 CONTINUE 
DO 2 I=3s11 
DO 2 J=124 
IFCRCI-151)-¢EQ+@-0) GO TO 2 
ROIs J) =CRCI-1s 1) *RCI-25 Jt1-RCI-25 1) *RCi-1s dtl /RCI-191) 

2 CONTINUE 
DO 3 J=1218 

3 IFCRCJ+151)*RCJs1)¢LT-8-9) IROT=-1 
RETURN 
END 
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PZFREQ 

SUBROUTINE TO PRODUCE MODs PHASE FROM REAL POLES/ZEROS 

B=ZEROS 
M=NO OF ZEROS 

A=POLES 
N=NO OF POLES 

GK=GAIN CONST 

F=FREQ ARRAY (HZ) 

K=NO OF FREQ POINTS 

xMOD=MOD (DB) 

PHI=PHAS E( DEG) 

SUBROUTINE PZFREQ(As Ns Bs Ms Gk» Fs K»XMODs PHI) 

DIMENSION ACL) sBC1)2FC1)sXMO0DC1)»PHIC1) 

RAD=45«@/ATAN2(1¢021+0) 

TP 1=360-@/RAD 

GKL=ALOG10( GK) *20+9 

DO 1 I=1sK« 

XMODC12=6+8 

PHIC1I=0-8 

FI=FCI)*TPI 

FQ=F1*F1 

C CALC DEN CONTRIBUTION 

IF(NeEQ+@) GO TO 2 

DO 2 J=1sN 

XMODC1)=XMODC1)-ALOGIOCACJ)#ACI)+F2) 

PHICI)=PHIC1)-ATAN2CF1s-ACJ)) 

2 CONTINUE 

C CALC NUM CONTRIBUTION 

IF(M-EQ-@) GO TO 3 

DO 3 J=1lsiM 

XMODC1)=XMUDCI)+AL0G19(BCJ)*BCJ)+F2) 

PHICI)=PHIC1)+ATANQ(F1s-BCU)) 

3 CONTINUE 
XMODC1)=XMODC(1)*10+0+GKL 

1 PHIC1)=PHI¢1)*RAD 
RETURN 
END 

MXP 

SUBROUTINE MXP¢64sBsCs KM) 

REAL AC1)sBC1s1)201) 

DO 1 I=1s4M 
TEMP=9-9 

DO 2 J=1sKM 

TEMP =T EMP +BC1sJ)#CCJ) 

ACI) =TEMP 

RETURN 

END 
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ERE PIC 

C SUBROUTINE TO CALCULATE FREQ RESPO OF ANY SYSTEM. 
C RETURNS MOD (DB) AND PHI (DEG) 
C ASKS FOR POLYCOFFS OR PZS OR TIME CONSTS-» 

SUBROUTINE FREPIC(XMODsPHI»FsN) 
REAL AC10)5BC10)sXMOD(1)»PHIC1)s FC1) 

DO 7 J=12198 

  

7 

GK1=1-9 
WRITEC128) 

8 FORMAT(" POLYCOFFS 1sPZS 2»TIME CONSTS 3") 
READ( 2s) 1PZ 

C READ IN DENOM COEFFS 
WRITEC1,1) 

1 r FORMATC"™ ORDER OF DENOMINATOR?") 
READC2s ) JD 
IFCIPZ+LT-2) JD=JDtl1 
IFC JD-e EQ+G-AND-IPZ-GTe1) GO TO 15 

i WRITEC129) 
3) FORMAT(" ENTER DENOM COEFFS") 

READC 2s) (ACJ) J=1s JD) 
IFCIPZ+EQe1) CALL ROUTHCAs JD» 1ROT) 
IFCIROTeEQe-1) WRITEC1515) 

1S FORMAT(" ROUTH DISSATISFIED") 
IROT=8 

C READ IN NUMERATOR COEFFS 
WRITEC1s3) 

3 FORMATC" ORDER OF NUMERATOR?") 
READC 2s ) JN 
IFCIPZ+LT+2) JN=JUN+1 
IFCUN+ EQ eGeAND+IPZ-GTe1) GO TO 4 
WRITEC1+10) 

16 FORMAT(" ENTER NUM COEFFS") 
READ( 2s) (BCU) sJ=1s JIN) 

4 IFCIPZeEQe1) GO TO 5 
WRITEC113) 

13 FORMATC(" GAIN CONST?) 
READ( 2) GK 

C CALCULATE FREQUENCY RANGE 
5 WRITEC1s6) 
6 FORMATC" FREQ FROMs TO CHZ)") 

READC2s )FLs FU 
FUL=ALO G10(€ FU/ FL) 

N1=N-1 
RN=FLOAT(CN1) 
DO 14 J=O-N1 
FJ=FLOAT( J) 
FC J+1)=FL¥*10+0** (FUL*FU/RN) 
IFCIPZ-2)16520218 
CALL QUFREQCA>s JD» Bs IN» FsN» XMODs PHI) 
CALL RIMPCXMODs PHI sNs1) 
RETURN 
IFCUN*EQ-0) GO TO 19 
DO 19 J=lsJN 
GK1=BCJ)*GA1 
BCJ)=1-0/BCJ) 
CONTINUE 
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FREPIC (continued) 

IFCJDeEQ-@) GO TO 20 
DO 20 J=1sJD 
GK=GK/AC J) 
ACJ)=1-B8/7ACJ) 

26 CONTINUE 
GK=GK*GK1 
CALL PZFREQCAs JD» Bs IN» GKs Fs No XMOD»s PHI) 
RETURN 
END 

RIMP 

C SUBROUTINE TO CONVERT VECTOR DATA TO POLAR DATA OR VICE-VERSA 
CRIMPCAsBsNsK) 
A=REAL OR DB ARRAY 
B=IMAG OR DEG ARRAY 
N=LENGTH OF ARRAYS 
K=1 FOR VECTOR TO POLAR 
K=-1 FOR POLAR TO VECTOR 
PHASE DISCONTINUITIES REMOVED 

SUBROUTINE RIMPCAs Bs» Ns K) 
DIMENSION AC1)sBC1) 
RAD=ATAN2(61+021+0)/4508 
IF(K+EQ-1) GO TO 5 
DO 1 J=lsN 
Al=10+0#*CACJ) 720-0) 
ACJ) =A1*COSCRAD*BCJ)) 

a
a
a
n
a
n
 

1 BC J) =AL*SINCRAD#*B( J) ) 
GO TO 9 

2) DO 2 J=1sN 
Al=ACJ) 

IF CABS (CA1)+ABS(BCJU))+EQeG-G) GO TO 11 
ACJ)=10+O*ALOG1G9CA1*A1+BC JU) *BCJ)) 
GO TO 2 

1 ACJ) =- 200-9 
2 BC J) =ATAN2(BCJ)2Al)/RAD 

C REMOVE PHASE DISCONTINUITIES 
3 FKU=0 +9 

KFLAG=6 
Nl=N-1 
DO 4 J=1sN1 
IF CBC J+1)-BCJ) +GT+160+0) FKU=-1+6 
IF CBC J+1)-BCJ) +L T+-160+0) FAKU=1+9 
IF CFHU+NE+«@-e0) KFLAG=J+1 
IFCKFLAGeNEe@) GO TO 6 
CONTINUE 
GO TO 9 
DO 7 J=KFLAG»N 
BC J)=BCU) +FKU*360-8 
GO TO 3 
CONTINUE 
RETURN 
END 
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