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Thesis summary

A multi-chromosome GA (Multi-GA) was developed, based upon concepts from
the natural world, allowing improved flexibility in a number of areas including
representation, genetic operators, their parameter rates and real world multi-
dimensional applications.

A series of experiments were conducted, comparing the performance of the Multi-
GA to a traditional GA on a number of recognised and increasingly complex test
optimisation surfaces, with promising results. Further experiments
demonstrated the Multi-GA’s flexibility through the use of non-binary
chromosome representations and its applicability to dynamic parameterisation. A
number of alternative and new methods of dynamic parameterisation were
investigated, in addition to a new non-binary ‘Quotient crossover’ mechanism.

Finally, the Multi-GA was applied to two real world problems, demonstrating its ‘
ability to handle mixed type chromosomes within an individual, the limited use of

a chromosome level fitness function, the introduction of new genetic operators for

structural self-adaptation and its viability as a serious real world analysis tool.

The first problem involved optimum placement of computers within a building,
allowing the Multi-GA to use multiple chromosomes with different type
representations and different operators in a single individual. ;

The second problem, commonly associated with Geographical Information
Systems (GIS), required a spatial analysis location of the optimum number and
distribution of retail sites over two different population grids. In applying the
Multi-GA, two new genetic operators (addition and deletion) were developed and
explored, resulting in the definition of a mechanism for self-modification of
genetic material within the Multi-GA structure and a study of this behaviour.

Additional keywords: Multi-chromosome, optimisation, spatial analysis,
Geographical Information Systems, dynamic
parameterisation.
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Chapter 1: Introduction
The place of Evolution in Computing

“Where shall I begin, please your Majesty?” he asked. “Begin at the beginning,” the
King said, gravely, “and go on till you come to the end; then stop.”
Lewis Carroll (1865), Alice’s Adventures in W onderland.

Since man invented the wheel, human beings have been seeking to create devices
to make life easier and solve some of the problems encountered in an ever more
intricate world. As the world and the activities of man have become more
complex, so have the requirements of the devices that man attempts to create to
reduce this complexity. The early inventors such as Charles Babbage — hindered
by an unfortunate lack of equipment — had to invent the tools they needed before
they could go on and build the machines they had in mind. Babbage’s ultimate
invention has finally led to the computer — possibly one of the most significant

technological advances made by humanity.

However the computer itself is only the start, with the tool having made
possible advancements seemingly restricted only to the imaginations of science-
fiction writers. Using the computer, Artificial Intelligence (A.I.) has come ever
closer to reality and research in A.L. has followed a number of different
directions. These approaches are constantly developing, with innovations like
expert systems and neural networks continually emerging. Yet there are still
problems that evade solution or prove difficult for current A.IL. methods. Whilst
the computational speed given by the computer is helpful, combinatorially

explosive problems are still very much in existence.

Search and optimisation problems — those with a large number of potential
solutions — are a prime example, providing a constant test for computing
approaches. One new methodology — namely Genetic Algorithms (GAs) —
draws on nature, looking to the inspiration provided by theories about the

origins of species.
The Genetic Algorithm

Genetic Algorithms are, put simply, a set of procedures based upon the ideas of
Darwinian evolution and natural selection. Originally proposed by Professor
John Holland in his book “Adaptation in Natural and Artificial Systems” (Holland,
1975), GAs draw upon the ideas put forward by Charles Darwin — the

improving evolution of a species through survival of the fittest members in its
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population by reproduction — in order to optimise complex solutions. The high-
level ideas and biological principles of evolution are maintained and applied to
encoded computing search problems to ‘evolve’ better and better solutions. GAs
have spawned a number of different directions of research based upon this basic
principle — survival of the fittest. These research directions are explored in

more detail during the literature review carried out in chapter 2.
The Multi-Chromosome Approach

Current approaches, based upon the traditional GA concept of a single, encoded
chromosome string mostly use this linear structure, whilst investigating the
application of alternative representations and operators. More recently a
number of authors have begun to investigate hybridisation with other
techniques, hierarchically organised chromosomes and more structured GAs,
but for the most part a number of Holland’s original proposals (1975) have gone
as yet unimplemented in a non-hybridised GA framework. In addition,
consideration of the biological world identified a great deal of complexity within
natural creatures, with the potential for a similar parallel to exist in GAs -
demonstrated to a degree in some other fields of Evolutionary Computation

research.

In studying both the move of current GAs towards more complex, multi-
dimensional problems and representations, along with Holland’s (1975) work,
the natural world and structural research undertaken in other areas of EC, a
multi-chromosome GA (Multi-GA) was devised, allowing the incorporation of
several chromosomes within an individual and a consequent increase In

flexibility and operational potential.
Structure of the thesis

It is the multi-chromosome structure, its development, testing and application
to real world problems that are presented in this thesis, with the following

structure:
Review

Chapter 2 provides an introduction to GA research, covering the principles
behind genetic algorithms and a brief introduction to the numerous research
directions which are being investigated. There then follows a more detailed
discussion of the representational and structural research that has been carried

out, exploring in depth recent work investigating alternative representations,
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hierarchically structured and split-chromosome GAs and the initial steps

towards the use of more than one chromosome to tackle a problem.
Multi-chromosome approach

Chapter 8 describes the multi-chromosome GA developed here, from the
biological precedents and existing research which provided the inspiration,
through to the design and implementation of the multi-GA approach both in

conceptual and software development terms.
Comparative testing

Chapter 4 investigates the application of the Multi-GA in a traditional GA
manner on a number of test optimisation surfaces: Details of the problems, the
rationale behind the testing and the results of experiments carried out on both
the Multi-GA and traditional GA are given, along with a brief summary of the
findings.

Dynamic parameterisation

Studies were also carried out to explore some of the current GA research areas
identified as potentially benefiting from the flexibility of the Multi-GA
structure. In particular, experiments involving dynamic parameterisation and
alternative chromosome representations were undertaken, with the results
presented in chapter 5. This chapter also contains details of a newly developed
real valued crossover method — Quotient crossover — and a brief discussion
concerning the problem surfaces used, in the light of the results obtained.
Chapters 4 and 5 contain a description of the studies carried out to determine
the scope of performance of the basic Multi-GA. More complex tests were then

undertaken and these are described in chapter 6.
Applications

Chapter 6 investigates two applications problems designed to more thoroughly
explore the features of the Multi-GA not investigated by previous tests.

Specifically, network minimisation and spatial site location problems were used.

Chapter 6 also includes a brief introduction to Geographical Information
Systems (GIS) — an area making particular use of spatial analysis — and presents
the Multi-GA results in the context of its usefulness as a new GIS tool. In

addition, it outlines two new operators that provide genetic manipulation within
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the multi-chromosome structure, along with a study of their behaviour and

application during the site selection problem.
Conclusions and future work

Chapter 7 provides a summary of the work presented in the thesis, outlining the
main conclusions of the preceding chapters. A discussion of the future potential
of the Multi-GA approach is included, with details of additional work that could
be carried out, both following directly from results presented in this thesis and

in areas seen to hold potential, but unexplored due to the constraints of time.
Appendices and references

The thesis concludes with a list of the references consulted during the thesis and

appendices presenting some additional data referenced in chapters 5 and 6.
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Chapter 2: Review
The Evolutionary Cycle

Taking a novel approach to problem solving, GAs follow a simple, cyclical
pattern in their operation, using terminology that relates to the sources of their
biological inspiration. A GA works by randomly encoding a number of possible
solutions to the problem being attempted. Each generated solution takes the
role of an individual in a population of possible answers. The randomly generated
solutions are then assessed for fitness, which is a measure of how good a possible
solution is at solving the specified problem. At this point, the evolutionary
parallel is applied and a new population of solutions created, by a process of
selection and reproduction from the current population. A number of genetic
operations are applied to generate the new population, which then goes forward
to replace all, or some, of the old population in the next generation. The entire
cycle is then repeated until appropriate terminating conditions are satisfied, as

illustrated diagrammatically in figure 2.1 overleaf.

The effect of this evolutionary process is to produce a convergence around areas
of interest on a problem surface, directing members of the population to the
parts of the surface that best fulfil the criteria of the fitness function defining the
problem. Observation of individuals shows a migration towards the current best
areas of fitness as the population finds increasingly better solutions. This is a
simple overview — naturally a great deal of research has been conducted 1n a
number of areas and these are explored in more detail later on. Whilst the
specifics of the various areas of GA research may differ slightly, the essential

nature of the systerns is that illustrated by the figure overleaf.

The main driving processes that contribute to the success of this cycle are the
operations applied to the members of the population. These operators utilise
inherent genetic building blocks known as schemata, and it is these schemata that
facilitate the evolution of improved solutions over time. In the remainder of this
section, research into the items and processes fundamental to the basic genetic
cycle are examined in more detail. In addition, brief considerations of the place
of the genetic metaphor in the real world and the different research directions

that have been followed are undertaken.
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Figure 2.1: The Evolutionary Cycle

The major items covered in this section are:

¢ Schemata
* Selection
» Crossover
*  Mutation

»  Other genetic operators.

» Applications

o Parallel tracks of research.
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Schemata
“All animals are equal, but some are more equal than others” (Orwell, 1945)

Identified by Holland (1975), schemata provide the key to the mechanism by
which GAs work. An individual chromosome string may contain segments
embodying qualities that make it ‘fit’ according to the fitness function being
applied. These representational qualities are schemata. Amongst a population of
chromosomes expressed in the same representation, some will contain ‘good’

segments that make them fitter (“more equal”) than their peers.

But what actually is a schema? Goldberg (1989, p.29) describes it as a simzlaraty
template. A schema corresponds to a pattern of genetic information within an
individual which contributes to its particular fitness value. The effect of the
genetic operations is to manipulate schemata as they alter the genetic material
in a chromosome. Over time, good schemata propagate through members of the
population — hence the algorithm evolves ‘fitter members’ (that is, members

containing good schemata) over time.

For example, in a traditional binary coded GA, individuals will contain allele
values of 1 or 0. For a particular problem, a good combination (high fitness)
might be a chromosome consisting of 1001100. Another chromosome of equally
good (or better) fitness may be 1100101. In this example, the pattern producing
the good fitness might be 1#0#1##, where # 1s a “don’t care” operator — this
pattern is defined as a schema. A schema represents a certain combination of
genetic material, but all schemata have two mmportant properties critically
relevant to the effects of genetic operators. The defining length of a schema is the
(inclusive) distance between the first and last bit represented by non-“don’t care”
symbols. The order of the schema is the number of fixed (non-“don’t care”)

positions represented.

eg. A 1#1#1 is of order 8 with a defining length of 5.
B ###01 is of order 2 with a defining length of 2.

Holland (1975) proposed a theory for the analysis of schema propagation over
time called (not surprisingly) the Schema Theorem, and it s this theorem that has
been used as a basis for much of the theoretical and mathematical analysis in the

GA field.
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The Schema Theorem is given by Goldberg (1989) as:

m(H, t+ 1)2 m(H, t)-“ﬁﬁ@{l —pcaz(il)- o(H)pm}

where: m(H, t) number of schema H at time £ in mating pool m

~
1

average fitness of strings representing H.

F = average fitness of the entire population.

pe = probability of crossover.

o (H) = defining length of H. .

[ = length of chromosome string containing H.
o(H) = order of schema H.

Pm = probability of mutation.

Figure 2.2: The Schema Theorem.

A detailed explanation of the theorem, illustrating the application to a simple
problem and analysing the propagation of schemata is given by Goldberg (1989,
pp. 80 - 85) and interested readers are referred to that text for a full discussion

of schema theory.

GA operators make changes to the material on which they are working, with the
consequence that schemata may be disrupted. Low order schemata of a short

defining length are less likely to be disrupted and therefore more likely to

propagate through to subsequent generations. The schema theorem assists in
determining the likelihood of a particular schema being passed on to the next

generation, following the selection of the individual containing it.

This information is of use in a number of areas of GA research, not least the
design of new genetic processes or representations. This particular relationship
was highlighted by De Jong (1985) in his ‘ten year perspective’ paper, who

pointed out that the design of any new genetic process or representation must

take into account the effect of genetic operations on the chromosome string. A
schema of short defining length is more likely to propagate through time than a
schema of longer defining length. Hence, new genetic encodings and operators
should take into account, during the design process, the length of schemata

defined by their representation.

As the description of the genetic operators unfolds, the importance of schemata
and the effects of the evolutionary cycle upon them will become increasingly

clear.
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Selection

The underlying principle of genetic selection is that individuals are picked from
the population in proportion to their fitness. Over the entire population, a
greater selection pressure is applied to the fitter members, embodying the
Darwinian principle of survival of the fittest. Selection of less fit members 1s not
precluded, but is in fact an essential part of the process, responsible for
maintaining diversity in the population. This simple description evidently
shows the importance of selection schemes and their potential effects on the
evolutionary cycle. Naturally, selection has been a major focus of research, with
a number of different selection mechanisms being developed, particularly in
order to address the problem of maintaining selection pressure. Popular

selection schemes include:

» Fitness proportionate selection.
» Rank based selection.

*  Tournament selection.
Fitness proportionate selection

Goldberg (1989, p. 11) described the method of operation of simple roulette
wheel selection — that is, the proportionate selection of an individual related
directly to its fitness. This is perhaps the simplest selection scheme and
commonly adopted by researchers embarking into the GA field. However,
analysis of the behaviour of this selection algorithm and its effect on the
population soon led to studies which pointed out a number of failings. Baker
(1987) performed a comprehensive study illustrating the problems of bias in
such schemes. Baker’s paper proposed a number of alternative schemes, with
results showing the positive and negative effects of bias on the sampling

performed by these schemes.

The result of this analysis (Baker, 1987) was the proposal of a new algorithm
with improved, unbiased performance, namely Stochastic Universal Sampling
(SUS). SUS represented a modification of the single pointer roulette wheel
selecting a member 7 times to fill the population, by moving to an pointered
roulette wheel spun just once. Baker’s (1987) study is indicative of the type of
research carried out in the area of selection scheme analysis, providing valuable
information to assist researchers in designing selection schemes that improve

GA operation.
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The scaling problem and rank based selection

Baker’s (1985, 1987) studies illustrated some of the problems with selection
methods and these concerns have been identified by other authors. De Jong
(1985) mentioned the “scaling problem” of selection pressure, along with some of
the attempts to address the issue. The scaling problem refers to the
maintenance of an effective selection pressure throughout the generational cycle.
Purely relying upon fitness proportionate selection can lead to a weakening of
selection pressure as convergence occurs in the population. In an attempt to
resolve these issues, a number of different approaches to selection have been

taken — primarily rank based and tournament schemes.
Rank based selection

Ranking schemes have been proposed (Baker, 1985; Grefenstette & Baker, 1989;
Whitley, 1989) as one method of addressing the roulette wheel problem of a
weakening selection pressure over time. Relying purely on fitness criteria, one
finds that the selection pressure reduces as the fitness difference between best
and worst becomes smaller. This in turn leads to a failure of the GA to move
forwards in any great direction (premature convergence) and a stagnation of the
GA search to a level of almost random searching (Whitley, 1989). Rank based
selection addresses that problem through sorting of individuals, assigning a
ranking value to each individual and then performing proportionate selection on
the basis of the ranked value rather than raw fitness. This allows the GA to
maintain effective selection pressure as time progresses and provides a weapon
with which to help balance the searching of the problem space against the
efficient use of the genetic material discovered so far — the so-called

‘exploration/exploitation” dilemma.
Tournament selection

Tournament selection is a newer approach, departing from the themes of
proportionate selection by selecting 7 individuals randomly and then picking the
fittest from within this group. A number of authors have studied tournament
selection (e.g. Goldberg, 1990; Goldberg & Deb, 1991; Mahfoud, 1991; Blickle &
Thiele, 1995) and examined its effects in detail. Tournament selection does have
benefits over proportionate selection methods and, according to an interesting
comparative study (Goldberg & Deb, 1991), a binary tournament exhibits
similar performance to proportionate selection with ranking. The paper also
performed complexity analysis of the various ranking schemes, providing a

formal analysis of the timeliness of comparative GA selection methods.
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Genetic operators: Crossover

Crossover is arguably the main driving force behind the search process in GAs
(Goldberg, 1989). It involves the exchange of genetic material between two
selected chromosomes, creating two new chromosome strings. It can be seen
that any manipulation of genetic material will inherently manipulate schemata,
producing new similarity templates within newly created chromosomes. A
great deal of research has been carried out into different ways of performing
crossover, with the aim of the process being to evolve children that describe

improved solutions to the given problem.

With this in mind, a number of different crossover methods have been
researched, expanding Holland’s (1975) proposals for simple one-point
crossover. In addition, mainly driven by application to real world problems,
there has been considerable development and analysis of alternative, problem
specific crossover operators, studied in more detail later on. The remainder of
this section introduces the more traditional crossover operators and their

variants.
One point and N-point crossover

The primary form of crossover, described in many introductory GA texts (e.g.
Goldberg, 1989; Holland, 1975, p.98), has been one point crossover — the
interchange of genetic material after a single point on the chromosome string
between two selected individuals in order to produce new (and hopefully better)
child individuals, as illustrated in figure 2.3.

A point on the chromosome
string is randomly selected.

Genetic material

X

After crossover, the
resulting child
chromsomes contain a
mix of their parents'
genetic material.

Figure 2.3: One point crossover.
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Genetic operators: Mutation

Following the application of crossover to candidate chromosome strings, the
next operator to be applied is usually mutation. This is a simple operator,
functioning by the selection of a random gene on the chromosome according to a
probability chance (as with the other operators) and then perturbing the value
by a small amount. Without it, the introduction of new genetic material (and
hence schemata) later on in the evolutionary process would prove impossible —
something which would have severe consequences on the ability of the GA to

produce an adequate solution.

In a binary encoded GA, the value is typically inverted, whilst other
representations like real encoded GAs add or subtract a small amount. A
number of mutation schemes can be seen to have developed for problem specific
situations (e.g. Williams ez al, 1994). The paper by Williams et al. illustrates
both sides of the mutation coin particularly well, utilising a problem specific
mutation operator designed around a chromosome based on a non-binary
encoding. Illustrations of the other main approach, utilising mutation as a
primary search operator, can be seen in the development of Evolution Strategies
(ES) (Bick et al, 1991) [outlined in section 2.1.7.17] and are summarised by De
Jong (1985, p.176) who points out the “frequently tried but rarely successful strategy

of increasing the mutation rate to improve GA performance.”

Mutation has been shown in the above studies to play a significant part (despite
the prominence of crossover as the main driving force) and has not escaped
theoretical analysis. As discussed in section 2.1.7.1, ES provide significant
evidence of the power of mutation based search and papers such as Bick et al.
(1991) and Hansen et al. (1995) provide much formal analysis of the mechanisms
of ES search.

Further studies in the GA community have been performed, in an attempt to
understand exactly what the effects of mutation on the evolutionary process are.
A good example is that of Tate & Smith (19938), which challenged the traditional
role of mutation as a method of recovering lost information (Goldberg, 1989, p.
14). They related mutation to the encoding scheme used, introducing the
notion of allele coverage. Their conclusions illustrated a method for studying
why increasing mutation rate may be good for search, using the allele coverage
metric as a tool. As we can see, the traditional view of mutation has been that of
a background operator useful specifically for climbing to an optimum, or for

reintroduction of genetic material lost through the domination of crossover or
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by genetic drift. As a result, the majority of research has concentrated on the
crossover operators discussed earlier. However, mutation has been shown to be
highly dependent upon the representation scheme used by a chromosome and

research into the effects of mutation is an area experiencing much analysis.
Genetic operators: Additional mechanisms

However, the genetic process does not stop with selection, crossover and
mutation and there are a number of other mechanisms and operators that have
developed in the course of research. Holland’s original proposals (1975)
included the inversion operator, designed to tighten the linkage between short
order schemata in the chromosome string, assisting the genetic processes in

creating schemata of short defining lengths, as illustrated in figure 2.6.

A particular chromosome

is made 'fit' by a schemata

and likely to be disrupted
by possible crossover.

Inversion re-orders
between random points

to produce a chromosome
containing the fit schemata
with a shorter defining length.

Figure 2.6: Holland’s inversion operator.

Inversion effectively performs a crossover within a chromosome, producing
schemata of shorter defining lengths that are equally as fit as longer order
schemata by creating a tightly linked, reordered positional dependence of the
component genes. The new, shorter schemata are then less likely to undergo
disruption during the traditional crossover operation. A number of studies into
the effects of inversion and similar style ordering operators have been carried
out. It is perhaps due to these studies that such operators are not used,
principally because of the time taken for them to produce beneficial effects
(Goldberg, Deb & Korb, 1991a). However, other authors (Whitley, 1987) have
shown that for certain encoding schemes or problems, inversion and similar
operators can actually play a useful part to improve performance. This sort of

result is an excellent illustration of the important information provided by
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continued formal analysis, assisting future researchers in highlighting the areas
in which it is most practical and useful to apply a particular operator, or
combination of parameter settings. In addition to the negative results of a
number of studies, inversion has other difficulties associated with it. Firstly, the
traditional binary coded GA explained by Goldberg (1989) utilises a position
dependent representation, whereas inversion requires position independent
representation of the genes. Secondly, the demonstrated success of operators
such as uniform crossover (Syswerda, 1991), which by their very operation make
inversion ineffective, means that applications using this popular crossover

operator will find that inversion is entirely redundant.

Arguments such as these have led to a decline in the use of inversion to an
almost non-existant level, although the rise of application areas of GAs have led
to much development of other reordering and problem specific genetic
operators. More discussion on these other problem-specific operators, and
particularly their importance in the relationship to alternative structural

representations, can be found later on in section 2.2.2.1.
Application of the evolutionary cycle

The principles and mechanisms of the evolutionary cycle discussed so far
highlight a number of different areas of potential for research and application of
this searching mechanism. Not only have GAs resulted in a number of different
research themes (discussed briefly in the next section), but they have also found
application in the real world. These real world applications have had particular
significance on the genetic processes themselves, and their specific relevance to

the work laid out in later chapters is discussed in more detail in the section 2.2.5.

It has already been mentioned that search and optimisation problems are the
central areas addressed by the GA approach and that can be seen throughout the
literature. The result is that studies into the evolutionary processes and their

applications have been conducted in a wide varlety of areas.

Examples of the diversity of applications include formal analysis of the
mechanisms of the genetic process (Radcliffe, 1991, 1992; Suzuki, 1993);
automatic generation of programs — a separate strand of research, referred to as
Genetic Programming (Koza, 1992); development and application of rule-based
approaches known as Classifier Systems (Wilson, 1985; Sedbrook et al., 1991)
and a plethora of real world problems such as telephone network design (Davis
et al, 1993; Carse et al, 1995), generation of identikit style images of criminal

suspects (Caldwell & Johnson, 1991) and timetable optimisation (Abramson et
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al., 1998; Burke et al., 1995). There has also been considerable research into
developing new approaches and methods to improve the applicability and
performance of the evolutionary metaphor and it is this line of investigation,
into the representational qualities of GAs, that has been followed during the

work presented in this thesis.
Parallel tracks of evolutionary research

In addition to the research undertaken specifically on the pure GA, it has
already been mentioned that there are a number of other major directions that
research into Evolutionary Computation (EC) has followed. These topics are
very much fields in their own right, with more and more intensive research
carried out in each area. Each of the fields has the same guiding principle —
evolution — as its foundation and there still exists a great deal of similarity and
potential for cross co-operation between each strand of research, as highlighted

by the next chapter.

Some, such as Evolution Strategies (ES), have developed alongside GAs almost
as an alternative school of thought; whilst areas like Genetic Programming and
Classifier Systems have developed out of Holland’s work (1975) into emerging
fields in their own right. Whilst GAs continue to provide fruitful areas of
research in search, optimisation, applications and the algorithms themselves, the
same is true of each of the alternative directions taken by EC. Irrespective of the
genealogy of each topic, all now provide opportunities for research and

application. The three key strands of research are:

» Evolution Strategies
e Genetic Programming

» Classifier Systems.
Evolution Strategies

Evolution Strategies developed primarily in Germany, whilst the majority of
GA research has taken place in the United States. ES rely on parameterised
mutation as the primary operator for change, rather than crossover which is the
driving force in GAs. Described in a comprehensive introductory paper by Béck
et al. (1991), ES were developed in the 1960s by Rechenberg (19738) and further
researched by Schwefel (1975). Bick’s (1991) paper described the development
of ES, from the initial two membered ES using a simple mutation-selection
scheme, a real-valued vector individual and a descendant created from random

numbers, modified by mutation.
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Areas of specific interest in the ES field relate to ES parameterisation and use of
real-valued representations. As discussed later in section 2.3 alternatives to the
binary alphabet traditionally employed in the GA community have been taking
hold and ES provide much information on the use of non-binary representations,

which are central to this particular genetic strategy.

In the area of parameterisation, ES researchers have again provided studies into
the effects of operator rate application, coming up with metrics such as
Rechenberg’s 1/5 success rule (1975), defining the ratio of successful mutations
to the mutation variance. Further similarities can be seen with approaches in
the pure GA community to dynamic parameterisation, mirrored in the ES field
by mechanisms providing for the self learning of the controlling strategy
parameters through genetically inherited variables and additional strategy
parameters for self-learning of the topological environment (summarised by
Bick et al., 1991).

Genetic Programming

One of the newer developments in the EC field, Genetic Programming (GP) 1s
now finding its way from the initially proposed ideas of evolving computer
programs using the evolutionary paradigm (Koza, 1991; Koza, 1992) to
applications of this programming strategy to solve other problems, such as
automated learning of protein sequences (Handley, 1998) and image feature

classification (Tackett, 1993).

Koza (1991) asked the question “How can compulers learn to solve problems without
being explicitly programmed?” and it is this central Al question that GP seeks to
address, through application of the evolutionary concept. GP differs from the
main thrust of GA work in the representation of the chromosome string used.
Rather than working with a chromosome string consisting of a single, decodable
gene representation, the GP chromosome consists of sub-trees of a program -
typically in an order based language such as LISP. The genetic process
randomly generates and manipulates entire sub-trees to produce a program, the
success of which dictates its fitness. GP evolution is guided by two basic genetic
operators — fitness proportionate selection and recombination (crossover). By
working with entire sub-trees of LISP generated programs, the genetic
operations always result in syntactically valid, if potentially less fit, programs
after selection and recombination (Koza, 1991). Selection operates in the same
way as the traditional GA approach,whilst mutation is less important, replacing

an entire selected sub-tree with a new, randomly generated sub-tree.

34




2.1.7.3

Review

This description of genetic programming highlights a number of similarities to
the pure GA research field and, in particular, identifies several approaches to the
representational structure and style of GP which have great similarity to
approaches currently being examined in the pure GA field. As with the
parameterisation studies carried out in ES, the structural approach taken by
many of the studies in GP carries important ideas and results for those working
in the pure GA field of representation — an area discussed in more detail in

section 2.4.
Classifier Systems

Classifier Systems (CS) represent EC’s approach to tackling the central A.l
question of machine learning. Maintaining the now familiar genetic operators of
selection, crossover and mutation, classifier systems work with a population of
production rules. Utilising a rule based problem solving approach, the classifier
system attempts to evolve better solutions by applying a genetic algorithm to
evolve new rules, combined with a credit assignment method of rewarding

beneficial rule systems.

As with the other fields of GA based research, CS development has followed a
number of paths, described in some detail by Wilson & Goldberg (1989) in their
critical review of the field. The main topic of debate in the CS field has been
concerned with the method of credit assignment, where two schools of thought
have arisen. The Michigan approach (Holland & Reitman, 1978) proposed use
of credit assignment at infrequent intervals, maintaining an activation history
and paying classifiers activated since the last payoff, as embodied by the bucket
brigade. The alternative Pitt approach (Smith, 1980) involved genetic evaluation
of entire classifier rule sets, thereby side-stepping many of the issues concerned

with credit assignment efficiency (Wilson & Goldberg, 1989).

Credit assignment is not the only area of research in the CS field and other
investigations have been conducted into the mechanisms of CS operation. This
has resulted in new algorithms (Shu & Schaeffer, 1991), hybrid systems (Parodi
& Bonelli, 1993) and analytical studies to increase the understanding of the
problems faced by genetic rule based systems (Miller & Forrest, 1989). In
addition, an ever increasing number of applications to real world problems exist,
with CS have been applied in a range of diverse areas from patient classification
in triage (Sedbrook et al, 1991), computer memory processors (Kitano et al,
1991) through to routing design in telecommunications networks (Carse et al.,

1995).
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As with Genetic Programming, there are a number of issues in classifier systems
of particular relevance to recent representational research in the pure GA field
and much can be learned by studying the mechanisms used by Classifier
Systems. Whilst they may initially seem to attack different problem areas, as
with GP the representational strategies adopted by classifier systems (e.g.
Smith, 1980; Smith 1983; Greene & Smith, 1987) bear a striking similarity to
parallel ideas currently being pursued in the field of pure GA research. This
close correlation not only reinforces the emergence of Classifier Systems from
the same roots as pure GA research, but provides a number of lessons and 1deas
for researchers attempting to apply parallel ideas in the field of pure GA
research. This relationship, particularly in terms of structural and
representational similarities that are most relevant here, is examined later on n

section 2.4.5.8.
Pure GA Research

The primary area of research activity to date has been in studying the GA
process itself and in determining the scope of application for this novel search
methodology. The focus of this research has included not only the technical
processes, but more holistic and strategic views of the research effort. Notable
papers by Goldberg (1989a) and De Jong (1985) attempt to provide some

guidance in the approach that researchers should undertake in their work.

Goldberg’s (1989a) paper provides an insight, and a strategic approach, to the
design philosophies that one should seek to undertake in the development of
GAs. It illustrates the level to which the GA community have analysed both
their algorithms and methods of research and provides an analysis of the
potential pitfalls in the GA research process. In the same way that GAs and
their evolutionary paradigm depart from traditional problem solving methods,
papers such as Goldberg’s indicate that a similar change in researchers’ attitudes

may also be required in this new and emerging field.

De Jong’s (1985) ‘ten year perspective’ paper relates the ideas subsequently
embodied by Goldberg’s guidance to specific issues, providing a good indication
of the areas that, in his view at the time, GA research needed to address. His
analysis of the field is an excellent starting point from which to examine the area

of pure GA research.
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De Jong (1985) identified the principal areas into which analysis and research

can be divided, namely:

¢  Theoretical study.

* Operators.

* Population behaviour.

*  Performance (including parameterisation).
« Applications.

* Representation.

Areas requiring study identified in 1985 have not changed, but advanced to open
up new topics within those same areas. Each of these areas contain issues of
particular relevance to the structural and representational work presented later,
particularly in the area of representation which is explored in some detail in the

remaining sections of this chapter.
Theoretical study and alternatives to the Schema Theorem

Titles such as this immediately lead one to think of mathematical dissection and
study, for which the GA field is no exception. In his book, Holland (1975) gave
the beginnings of a formal, mathematical explanation of the mechanisms by
which the GA process operates, outlined in the earlier discussion of schemata
and schema theory. However, the topic of “theoretical analysis” is more wide
ranging than just mathematical study and includes the effects of the genetic
operators, the dynamics of the GA population over time and performance related
issues. These themes were identified by De Jong (1985) in his ten year

perspective.

Although very useful, the schema theorem is not the last word in theoretical
analysis and other authors (e.g Radcliffe, 1991, 1992) have identified additional
requirements for theoretical modelling of GA behaviour not adequately
addressed by the schema theorem. Indeed, a number of areas in GA research —
in particular the development of new genetic operators and processes discussed
in more detail later on — are currently in need of additional theoretical analysis,

so alternative approaches merit some consideration.

Radcliffe has taken analysis of schema theory a step further, introducing the
concept of more general objects and manipulative operators known as Jforma
(Radcliffe, 1991), along with introduction of specific genes related to these forma
(Radcliffe, 1992). Other authors have taken a different approach to modelling

the behaviour of GAs, from specific studies of the original schema concept
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(Hulin, 1991) to different modelling approaches such as finite markov chains
(Goldberg & Segrest, 1987). What is clear is that a degree of formal analysis to
understand GA behaviour has been undertaken by the GA community, in an
attempt to better explain how the genetic process actually achieves its results.
This formal analysis continues, with each new advance or technique opening up
new ground for formal explanation and relation back to the concept of schemata
or alternative concepts such as forma. Interesting examples of such analysis can
be seen in the development of specific problems that highlight schema
propagation and identify new difficulties such as parasitic behaviour (Mitchell,

Holland & Forrest, 1994) and deception (Goldberg et al., 1992).

By making oneself aware of alternative methods in analysing of GA behaviour,
researchers in non-theoretical fields of GA research may find useful new tools to

help provide a formal basis and explanation for their work.
Genetic operators

Genetic operators are the key to the effectiveness of the evolutionary process, as
mentioned earlier. Section 2.1.8 presented a discussion concerned with the
studies involving direct analysis and development of genetic operators
themselves (e.g. Syswerda, 1991). In addition, work has also been carried out to
investigate the effects of operators on the population and schemata, as well as
suggesting appropriate applications for the wide variety of general and problem

specific operators in existence.

Based around the arguments raised by theoretical analysis, the main approach to
the development of genetic operators has been a desire to understand and
improve GA performance. Holland (1975) initially identified the genetic
operations of crossover, mutation and extended re-ordering operators such as
inversion, leading to much subsequent research being carried out as discussed
earlier in this chapter. Of particular interest in the context of structural and
representational research has been the rise of problem specific crossover

mechanisms and the close relationship between the work in these two areas.
Problem specific crossover

When analysing real world problems, it is not uncommon to find that a binary
encoded GA representation may be inappropriate. This issue has been identified
by several prominent authors such as Davis (1991), who advocates the use of
hybridised representations where appropriate. Alternative representations
(discussed later) have also led to the development of specialised crossover

operators in order to maintain legality of representation. The use of alternative
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representations was viewed by De Jong (1985) as an “alternative to finding a
representation which fits the standard versions of crossover and mutation.” That 1s to
say that problem specific operators may be required if the generic crossover and
mutation operators are incapable of maintaining legal representations.
Recognised as such, the development of problem specific operators has proven to
be an area of intensive research, extending the scope of GA applications
markedly. Hybrid operators designed for more generic use, such as Sirag and
Weisser’s (1987) simulated annealing based unified thermodynamic operator,
have been proposed. Other authors such as Schatfer and Morishima (1987)
introduced modifications incorporating a notion of dynamic control, encoding
the crossover points as part of the chromosome string with their punctuated
crossover mechanism. This line of research has continued, with a recent paper
by Levenick (1995) proposing an extension to Schaffer and Morishima’s
proposals in the form of inserted ‘metabits’ to dictate the legality of a crossover

point at each bit.

These types of approach highlight particularly well the interaction across areas
of research in EC and the high correlation between the sub-processes that make
up the genetic cycle. For example, it is widely recognised that genetic operators
are particularly sensitive to control parameters (Schaffer et al., 1989a) — a feature

exploited in the insertion of crossover points and the use of metabits.

The development of such a variety of operators requires, as noted by De Jong
(1985), that an understanding be gained of how they effect the genetic process.
Starkweather et al (1991) contributed to this understanding with their
comparison of six sequencing operators. Their study provides a useful analysis
of the method of operation of non-traditional styles of operator, giving an
insight into the application and design of such operators in a problem oriented
context. Their conclusions also backed those of a study by Schaffer and
Eshelman (1991), amongst others, in observing that some operators perform
better in conjunction with mutation, although analysis of the exact rates was
beyond the scope of the Starkweather paper. The authors also highlighted the
important theoretical point that performance of problem specific operators is

directly related to the nature of the problem (Starkweather et al, 1991, p. 73).

As mentioned earlier, retaining legality of representation has been one of the
main reasons for the development of alternative operators. Examples vary
between ordering operators for Travelling Salesman style problems (e.g.
Whitley et al., 1989), wrap around block operators for source apportionment
problems (Cartwright & Harris, 1998), GP style structural manipulation

operators (Williams et al, 1994) and several alternative methods applied to the
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job shop scheduling problem (e.g. Bagchi et al., 1991). These applications clearly
illustrate that, whilst the essence of crossover remains the same, the method by
which genetic exchange takes place exhibits a wide variety according to the area
in which the GA is being applied. It can also be seen that the specific area or
method of application, or representation, may have a direct effect on the
alternative operator being applied and vice versa. This issue is also closely
related to the discussion of the real-world application of GAs, covered in section

2.2.5.
Effects of operator application

The genetic operators have a significant effect on the behaviour of the
population in producing improved fitness over time. It is evidently an important
part of the research effort to understand why and how this occurs — both In
relation to the classical operators and in predicting the behaviour of newly
developed operators. The schema theorem acts as a starting point and includes
references to the effects of crossover and mutation in its formulation. The need
for operator research was recognised by De Jong (1985, p.175) who observed
that it is “‘mportant to verify that they [new operators] aren’t overly disruptive of the
process of distribution of trials ... and that they encourage the formaiion of building
blocks.” This statement reconfirms the importance of the schema theorem and
schemata processing in the GA process and sets an important requirement for

the understanding of operator behaviour.

Developments in GA research over the ten years since De Jong’s (1985) analysis
have followed this guidance and a number of authors (e.g. Schaffer & Eshelman,
1991; Starkweather ef al, 1991; Tate & Smith, 1993) have produced studies of
the existing operators and their effects on GA behaviour. Comparative studies
of operator performance have been carried out, addressing not only the classical
GA operators of simple crossover and mutation, but variations on crossover
along with new or less frequently used operators such as inversion (e.g.

Whitley, 1987).

Crossover performance was subjected to a detailed analysis by Schatfer and
Eshelman (1991) who mixed two subpopulations with differing degrees of
crossover. Study of the resulting rate of take-over provided an interesting
analysis of how serious the effects of schema disruption by crossover (recognised
in the schema theorem as a factor affecting propagation) actually could be.
Their conclusions are interesting, confirming that crossover introduction can be
a mixed blessing. They went some way to identifying the circumstances in

which crossover and mutation interact to produce positive results highlighting,
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with illustrative reasons, the circumstances in which the more disruptive
Uniform crossover operator outperforms 2 point crossover and vice-versa.
They also compared and contrasted their results to those of Fogel and Atmar
(1990), whose results analysed the power of selection and mutation for search —
seemingly in contrast to Shaffer and Eshelman’s. This discrepancy was
explained by the latter authors, who highlighted the differences in
representation and inversion style operators used in the two studies. This
explanation in itself raises interesting issues — namely the effect of alternative
representations on GA performance (covered later). Other eftects of a variety of
crossover operators can also be identified, as illustrated by Syswerda’s (1989)
observation that uniform crossover’s method of operation negates any eftect of
inversion. The type of study undertaken by these authors is essential to a
thorough understanding of how the introduction of an operator atfects the
performance of a GA. Crossover has traditionally been seen as the main driving
force, with mutation “appropriately considered as a secondary mechanism” (Goldberg,
1989, p.14). However, the nature of the interaction between operators, and their
effects on the population, makes it critical that a thorough analysis of their

behaviour is carried out.
Population behaviour

The effects of a particular rate, algorithm or operator applied by a GA can be
widespread. Just as the understanding of a particular operator is important, the
wider effects of the GA process on the entire population must be understood.
Population behaviour covers a large part of the evolutionary cycle,
encompassing selection algorithms, convergence issues, population

manipulating algorithms, operators and parameter rate control.

There have been some novel and interesting attempts by GA researchers to
address the problems of premature convergence and population behaviour, those
of particular interest involving structural and representational manipulation. In
addition, a growing body of researchers are now investigating co-evolution and
the use of subpopulation schemes, carrying important consequences both for GA

development and co-operation between the different areas of EC research.
Premature convergence

Premature Convergence is an issue that has governed a significant part of
population behaviour research. Related to the selection problem, GA search is
hampered by the dominance and overtaking of single, particularly fit,

individuals. The rapid spread of these individuals, which can occur in some
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situations, then leads the GA to convergence at a solution that is not optimal.
Having had a large proportion of the gene pool over-run by these super
performers, mutation alone can find it impossible to break out of the rut into
which the population has been pushed. Ranking and tournament selection go
some way to addressing this issue, by reducing the reliance of genetic selection
upon particularly high fitness values, producing a more even selection
distribution. However, this alone is not enough and there continues to be a
great deal of interest in alternative methods of solving the

‘exploration/exploitation dilemma’.

A variety of different approaches have been suggested such as incest prevention
(Eshelman & Schaffer, 1991; Craighurst & Martin, 1995), design of new
parameters based on approaches like simulated annealing (Sirag & Weisser,
1987) and strategies that attempt to interpret and adapt to the problem surface
(Shaefer, 1987). Papers such as Eshelman & Schaffer’s tackled the question by
controlling the population itself, whilst retaining the unmodified basic principles
of the GA. Their paper presented a method of diversity maintenance through
population analysis and similarity restriction by ‘incest prevention’. The issue of
incest prevention was further explored in a paper by Craighurst & Martin
(1995), who approached the issue through maintenance of a family tree, applying
varying generational levels of incest prevention. The results of their study
showed some promising effects of this intriguing approach to population
control. These approaches to incest prevention in particular highlight an
interesting representational use of the GA process, incorporating attempts to
retain some level of information from one generation to the next. An immediate
similarity to work in the field of Classifier Systems and the widely debated issue
of credit assignment (e.g. Smith & Goldberg, 1990; Grefenstette, 1988;
Westerdale, 1989) can be implied, with incest prevention researchers mirroring
the principles of bucket brigade credit assignment, through control of the

genetic process based upon the history of individual’s performances over time.

Other approaches with aims similar to those of alternative selection schemes
include crowding (De Jong, 1975), “genetic censorship” (Mauldin, 1984) and
preselection (Mahfoud, 1992). The issue of premature convergence 1s one that
continues to occupy a significant amount of research time in attempting to find

the optimum parameter set or algorithm to effectively balance the dilemma.
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2.2.3.2 Subpopulations and niching

Subpopulation schemes are an interesting offshoot of the population dynamics
area and yet another facet of behaviour for which GAs hold much potential.
They have been applied in a number of areas, including real world problems,
but also as a method of dealing with premature convergence. GAs are quick to
find the general area of a solution, but lack what De Jong (1985) referred to as
the “killer instinct” in seeking out a single optimum solution. This observation,
which has also led to research in hybridisation, can be interpreted to show that

GAs will quickly identity a single area at the expense of other areas.

Subpopulation schemes attempt to preserve genetic diversity by performing a
more local search, restricting the ability of members to be dominated by other
individuals from a different subpopulation (Spears, 1994). In addition, they
allow effective identification of multiple areas through sharing out the available
population amongst multiple peaks of interest (Goldberg, 1989; Deb &
Goldberg, 1989).

In addition to preservation of genetic diversity, subpopulation schemes have
been applied in a number of other areas of research where they have shown
significant potential for benefit, particularly in relationship to parallelisation of
GAs (outlined in section 2.3.4.5 on performance issues). Just as parallelisation
has been utilised to take advantage of the implicit parallelism of GAs, there also
exists enormous potential for parallel evolution of subpopulations or niches.
The issue of niching and the use of subpopulations has been identified and

successfully applied by several authors (e.g. Harvey, 1992a, 1992b, 1992¢; Deb

& Goldberg, 1989) and presents great potential for application to parallelisation.

In addition, the use of structural modifications and representational alternatives
to the traditional GA, such as Harvey’s SAGA system, Grefenstette’s SAMUEL
system (Grefenstette et al, 1990) and the structurally related field of Classifier
Systems all provide opportunities for the expansion of subpopulation schemes.
Indeed, a recent paper by Potter, De Jong and Grefenstette (1995) explores the
subpopulationary application of the SAMUEL system. The area of co-
evolutionary application holds significant potential for future research, both
across the different fields of EC and especially given the structural advances

being currently undertaken in the pure GA field (examined in section 2.4). As

discussed in Chapter 7, there is a direct potential for the work presented here to

be applied to subpopulations, with promising indications for the future.
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What is clear throughout these approaches to population dynamics, and the
variety of selection schemes and operator mechanisms discussed elsewhere 1n
this thesis, is the huge potential for improvement of GAs by adaptation. A wide
variety of different approaches, all with merits and opening new questions, are
being researched by authors in an attempt to address the core issue of

exploration vs. exploitation.
Performance issues

Having undertaken theoretical analysis of the population and operators, there
has naturally been research into the performance of the GA itself — that is, how
well it actually solves the task in hand. Very much related to the studies of the
effects of operators and the exploration/exploitation dilemma, research into GA
performance has concentrated to a large extent upon suitable problem design.
In order to complete a thorough analysis, one must naturally have a benchmark

upon which to base a study.
Test Suite studies

De Jong (1975, 1985) has again been a central figure in this area of research,
designing a widely used 5 problem test suite. He also identified the need for
careful thought and research into fitness functions looking at a combination of

other factors, rather than single scalar values (De Jong, 1985, p. 175).

Research into suitable testing functions has continued, with alternative
functions designed to highlight specific performance problems, having been
developed. A recent paper by Whitley et al. (1995) presented a comprehensive
study of the failures of existing test problems, suggesting that GA researchers
should avoid problems that can easily be solved by other methods. Whitley’s
paper also identified a number of specific failings in commonly used test
functions and suggested combinations of problems that provide a more rigorous
test suite. The results of Whitley et al (1995) confirm the study by Davis
(1991a) investigating test functions F'1 - F7 with traditional and steady state
GAs, showing that the existing test suite is not unbiased to alternative GA
representations, is significantly parameter and representation coding dependent

and may be more amenable to solution by non-GA methods.
Deception and other techniques

Goldberg et al. have provided a great deal of work in designing so-called
‘deceptive’ functions (e.g. Deb & Goldberg, 1992; Kargupta et al, 1992;
Goldberg et al, 1992), which are difficult problems specifically designed to
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deceive the GA search process. The analysis of these problems, and methods
used to overcome deception, has led to a number of notable structural changes

to the basic GA (discussed later in more detail).

The identification of such problems has opened the field to further work, with
theoretical analysis being extended through specific methods such as
subpopulations and other premature convergence avoidance techniques
(discussed in the previous section). There have also been attempts by authors
(e.g. Forrest el al, 1998; Mitchell et al, 1994) to take a higher level view and
analyse what exactly makes problems hard for GAs, along with developments
like the ‘Royal Road’ problem identifying new behaviour such as ‘parasitic

schemata’.

There is considerable analysis being undertaken to understand not only the
‘how’ of GA performance, but also the more strategic ‘why?” — exactly the point
raised by De Jong (1985, p. 170), who stated “GAs have properties of therr own ...
the key to a successful application is to understand and exploit these properties.” The
theoretical analysis of GA mechanisms, behaviour and performance gives us the

opportunity to do exactly that.
Effects of parameter selection

Any complex process involving a number of different variables naturally
requires parameterisation and the GA is no exception. This chapter has so far
illustrated a variety of features exhibited by GAs, each of which has associated
parameters, the different values of which will have differing effects on the entire
process including the parameters and features themselves. As with the other
facets of GAs, parameterisation has been a major focus of the research effort, n
an attempt to find a robust and general approach to optimising parameterisation

settings.

The scope of features that require parameterisation in a GA is large. Firstly,
there are issues related to population dynamics, such as the size of the
population itself, the frequency of communication between subpopulations or
niches, the rate of replacement into the new population etc. Issues of elitism —
whether to carry across the best member(s) — arise, as does the choice of
selection strategy. For each new selection algorithm comes a potential new set
of parameters, as is the case with the genetic operators. Operators have to be
applied, but with what frequency? Having decided to apply the operator, one

then faces questions as to the type of operator — posing the further question of
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treating differing types of operators themselves as a form of parameter, given

the different effects they have on the population and its rate of convergence.

This graphically illustrates the immense scope of the number of decisions and
their potential effects. This is without adding the complexity that may be
required by applying a GA to, say, a problem with a changing fitness function
modelling a dynamic system! The difficulty of this parameterisation task has

been a focus of research right from the outset of the GA field.

Perhaps the most renowned study is De Jong’s (1975) analysis of
parameterisation, producing a set of benchmarking functions and parameter
settings he found to provide good general performance. Indeed, despite the
initial impression created by the large number of parameters, De Jong puts
forward the argument that “within reasonable ranges, the values of such parameters
are not all that critical” (1985, p.176). This analysis lends support to the
acceptance in the GA community of De Jong’s (1975) work and the results
obtained in that study, which showed that a population size of 50 - 100,
crossover rate of 0.6 and mutation rate of 0.001 gave good results over a wide

variety of problem domains.

Since De Jong's (1975) thesis, studies have been performed on a wider range of
issues than simply varying parameter rates for the crossover operators. Ior
example, analysing issues related to the chromosome encoding schemes and type
of operators applied have also been studied. One such paper is that by Schaffer et
al. (1989a) who, in addition to contrasting De Jong's (1975) results with those of
authors like Grefenstette (1986), also tackle issues like the usage of gray coding
as opposed to simple binary coding. Schaffer’s (1989a) study performed a
detailed analysis of crossover and mutation rates for a variety of population
sizes, suggesting some alternative parameter settings to those put forward by
De Jong and Grefenstette. This area of research is still active and widespread,
as illustrated by authors such as Reeves (1993) studying the issue of small
population size and Whitley et al. (1995) confirming the benefits of gray coded

binary over simple binary encoding.
Dynamic parameterisation

Dynamic parameterisation attempts to find the optimal parameter settings for a
GA during the GA process itself. One of the most referenced papers in this
field, mentioned already, is Grefenstette (1986). He provided a novel approach
to finding the optimum set of GA parameters from the range of possible

solutions, by assigning this optimisation task to a GA! This ‘meta-GA’ approach
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was used to evolve a set of parameters utilised by a lower level GA applied to a
particular problem and gave promising results, with rates differing from De
Jong’s (1975) suggested parameters. Grefenstette’s recommended values were
population size 30, crossover rate of 0.95 and mutation rate of 0.01 and he went

on to identify a number of reasons explaining these results.

This style of parameterisation has continued, with a number of approaches being
taken in attempts to provide the most flexible GA possible, capable of adapting
to dynamically changing problem surfaces. The idea has obvious merits — if the
problem surface the GA is applied to alters, it is logical that the GA should
evolve new parameters most suited to its new environment. An algorithm that
professes to follow an evolutionary paradigm should not exclude itself from selt-
adaptation! Examples of recent research into self-adaptation include Lee &
Takagi’'s (1998) system utilising fuzzy logic techniques to control
parameterisation; examination of the problem space before deciding upon
parameterisation (Cartwright & Mott, 1991) and Davis’ (1989) dynamic

adaptation of operator probabilities.

The idea of dynamic parameterisation obviously shows promise — if one accepts
the concept of evolutionary algorithms being able to adapt to form acceptable
solutions, the concept of dynamic adaptation of the multitude of parameters by
which those algorithms operate then follows logically. This theme is discussed

more directly in chapter 5.
Parallelisation

An alternative understanding of ‘performance’ is perhaps defined in terms of
speed, or machine efficiency. One of the criticisms levelled at GAs by
researchers in other fields, such as neural networks, is that they take too long to
find solutions. The CPU intensive nature of GAs is well known and attempts to
improve the speed performance of GAs have led to research in areas concerning

parallelisation.

Another, more important, factor in the drive to research parallelisation is that
GAs have been shown (Holland, 1975) to utilise impliczt parallelism in their
manipulation of schemata. The notion of implicit parallelism — the processing of
something like 7% schemata for z structures (Goldberg, 1989, p.40) — has
provided a natural channel for the development of GAs on parallel hardware,
and has been investigated by many researchers (e.g. Spiessens & Manderick,
1991; Chen et al., 1993; Kitano et al., 1991). Other authors (e.g. Miihlenbein et

al., 1991) have proposed structures that attempt to incorporate parallelism into
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their operation, to take advantage of diversification onto this form of hardware
system. This general move to take advantage of hardware to exploit implicit
parallelism has been specifically identified by prominent authors such as Davis
(1990), who forecast that “Genetic Algorithms will be widely used on parallel

computers, since they are intrinsically parallel algorithms.”

Parallelisation is not limited to genetic operators alone, with studies having also
been suggested for other areas of the GA field. Population dynamics are a prime
example, with the subpopulation and niching concepts also being obvious
candidates, investigated by several studies (e.g. Cohoon et al, 1991; Davidor,
1991). Tournament selection was identified by Goldberg & Deb (1991, p.81) as
“particularly easy to implement in parallel.” Some theoretical analysis of the
mechanisms by which parallel GAs operate has also been carried out (Pettey &

Leuze, 1989).

It is this two track development — modification of the GA structures to exploit
implicit parallelism and the application to specific parallel hardware — that has
provided the main path for theoretical analysis and practical implementation of

the essentially parallel nature of GAs.
Applications

There has been much discussion in this chapter so far about the widespread
application of GAs and the role this has played in the theoretical development of
new types of GA. It is therefore pertinent that some of these applications be
mentioned, to highlight the variety of uses that GAs have been successtully

applied to both inside and outside the academic community.
Common optimisation test problems

Within the academic environment, a great deal of effort has been put into
applying GAs effectively to the problem of function optimisation. Indeed, GAs
are typically described as search and optimisation procedures based on
Darwinian Evolution. Widely used problems such as Travelling Salesman
(Homaifar et al, 1993; Whitley et al., 1989), Job shop scheduling (Nakano &
Yamada, 1991) and Prisoner’s Dilemma (Fujiko & Dickinson, 1987) have all
been subjected to GA analysis. The success of the GA at solving these kind of
problems has played a two-fold role in GA development. It has undoubtedly led
to research into the theoretical and structural advancement of the GA, with a
number of papers studying new GA approaches to function optimisation

(Miihlenbein et al, 1991).
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Real world problems

Secondly, real-world applications with an optimisation requirement have been
targeted and in recent years, GAs shown to have widespread beneficial
applicability in many areas. Right from the early stages of GA research
following Holland’s (1975) work, prominent authors began to apply GAs in the
real world — notably Goldberg’s (1983) application to gas pipeline operation.
Areas of application spread from the obvious optimisation tasks such as
timetabling (Abramson, 1993; Burke et al, 1995), routing and scheduling
(Gabbert ef al., 1991; Thangiah, 1995) through to the less obvious tasks such as
criminal identikit development (Caldwell & Johnson, 1991) and combat target
detection (Bala & Wechsler, 1993).

The role of applications in GA development

GA applications have played their part in theoretical development, and through
application to problems such as air quality and the source apportionment
problem (Cartwright & Harris, 1993) alternative operators required to maintain
legality of representation or improved search potential have arisen. More
definite departures from the traditional GA, which have led to significant
structural changes, can also be seen in applications to telephone network
optimisation (Davis et al., 1993) and brewery delivery scheduling (Juliff, 1993),

covered in more detall in section 2.4.

Examples such as these serve to highlight the symbiosis between applications
development and research into better GA operation and techniques, brought
about partially as a consequence of their application. The widespread areas of
application also serve to show that GAs are a serious methodology, despite their
relative youth in comparison to other more established artificial intelligence
techniques. This is given further weight by the seriousness with which GAs
have been taken by major companies, in a number of cases investing millions of

dollars in GA based solutions (Davis, 1993a).
Representation Issues

Given the method by which GAs manipulate an encoded chromosome string to
search problem spaces, finding an acceptable representation to map the problem
space into chromosome string form is critical. Account has to be taken of both
the accurate description of the problem space and the ability of the genetic
operators to manipulate the schemata in an efficient manner. These issues
neatly encapsulate the continuing debate in the GA community as to the most

appropriate form of alphabetic representation.
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Chromosome encoding

The importance of chromosome encoding cannot be underestimated, with
prominent authors such as De Jong (1985, p. 170) identifying the problem of
selecting an appropriate mapping as ranging from “a trzvial activity to a highly
creative one”. Binary encoded chromosome strings have been suggested as
preferable (Goldberg, 1989; Holland, 1975) because of the low cardinality of the
alphabet. This relates closely to the schema theorem and the ability of the GA
to manipulate building blocks, which some authors believe to be an easier thing
to undertake in a low cardinality alphabet. Other authors however (Davis, 199 1)
propose that non-binary representations, or hybrid representations, are in fact
essential for an accurate representation of many problems. They propose that
GA research should not presume binary encoding to be best in all cases, despite
the schema based theoretical arguments. The debate over alphabetic
representation is defined by these two summary points of view, with the
discussion of cardinality and ‘minimal alphabet’ properties of a given

representation making a highly relevant contribution.
Minimal alphabets

De Jong (1985, p. 171) pointed out that “it s easy to demonstrate a dramatic
improvement in the behaviour of GAs in switching from a short length, high cardinality
representation ... to a longer, lower cardinality representation.” As mentioned by
Antonisse (1989) in his proposals for a novel schema encoding, the number of
schemata processed for an alphabet of cardinality v and string length & 1s about
(v + 1)k, Schema processing, it is argued, is simpler and more effective through
use of a simpler cardinality alphabet due to the maximisation of hyperplanes in
the GA search space (Whitley, 1993). Other representational considerations,
such as the implementation of encoding schemes like gray coding in order to
avoid hamming cliffs in the search space (Grefenstette, 1986; Whitley et al,
1995), add to the attraction of binary encoding through its simplicity of
implementation. The need for specialised genetic operators is eliminated, with
the GA implementations being true to Holland’s (1975) initial proposals and

schema analysis work.

However, there is significant debate as to the merits and usage of non-binary
encoded GAs. The argument of greater complexity in cardinality of alphabet 1s
interesting, but studies such as those by Antonisse (1989) and Goldberg (1991)
significantly contribute to the theoretical understanding of schemata and
minimal alphabet behaviour in non binary encoding schemes. Antonisse

undertook an analysis of Holland’s (1975) schema theory proposals, suggesting
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that the number of possible strings indicated by use of the # (don’t care) symbol
is in fact greater than originally indicated. He proposed consideration of
remaining subsets of strings, thereby increasing the power of the # operation
within the schema theory and, as suggested by the title of his paper, overturning
the binary encoding constraint. As is commonly found, all is not as it seems and
the paper analysed a number of other necessary changes, but nevertheless
provides an interesting introduction to a discussion of interpretation of the

schema notion.

Goldberg (1991) took the accepted concept of minimal alphabets into the domain
of real-coded GAs, providing theoretical analysis for non-binary coded GAs and
the proposal of a virtual alphabet. The paper illustrates the virtual alphabet,
identifying the searching carried out by a higher cardinality alphabet in terms
similar to those of binary minimal alphabets. The study provided by Goldberg
in analysing virtual alphabets provides a great deal of insight into the method by
which non-binary representations actually perform searches. It goes some way
to identifying the reasons for the success of real encoded GAs and also (as
expected once an understanding has been gained) providing examples of
situations at which they are likely to fail, presuming that the GA reflects the
simple nature assumed by Goldberg (1991).

Binary vs. Real encoding

As illustrated by the above discussion, the conclusion adopted by GA
researchers so far seems to be “whichever representation is most appropriate for

the problem in hand” and this has to be seen as the most sensible solution.

Despite this, a number of studies have attempted to resolve the issue of real or
binary encoding. For example, papers such as Goldberg’s (1991) analysis
provide other authors with a good foundation on which to explore the issues
raised in the real/binary debate in more detail. Janikow and Michalewicz (1991)
have done just this, taking suggestions proposed by Goldberg (1991) and
proposing modifications to genetic operators with floating point representations
to give enhanced performance. Once again, it can be seen how the identification
of psychopathic blocking problems only leads to further research aimed at

overcoming these problems with a consequent improvement in GA performance.

In addition to such theoretical analysis, the applications of non-binary GAs are
widespread, advocated by such prominent authors as Davis (1991). His book
contains a number of different applications of GAs to problem environments,

specifically requiring the use of alternative representations. Indeed, Davis
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concentrates on the issue, stating that “genetic algorithms, although robust, are
generally not the most successful optimisation algorithm on any particular domain”
(1991, p. 59). Davis’ argument is exactly that summarised earlier, that one
should use whichever representation seems most appropriate to the problem in

hand.

This argument holds some considerable weight, both in the theoretical analysis
provided -by Davis (1991) and in the number of practical applications of non-
binary encoded GAs from areas such as Travelling Salesmen problems (Whitley
et al., 1989) and chemical structure database search (Jones et al, 1993), to
musical composition (Horner & Goldberg, 1991). In addition to these, there 1s
strong evidence provided by the other strands of GA research as to the benefits
and applicability of a non-binary representation. Particularly in Evolution
Strategies — which are founded upon the ideas of a real valued vector
representation — the use of non-binary alphabets has been fundamental
throughout an area of research that shows no sign of lacking in either potential

or application.

‘What there seems to be therefore, is no definitive and universal answer to the

question - real or binary?
Alternative Structural Representations

Whilst the immediate thought at the mention of ‘representation’ is one of
encoding schemes, representation may also refer to structural representation.
Considerable research has been undertaken recently to look at alternatives to
the single binary chromosome string and a number of different approaches have
been developed. Arising in many cases out of GA applications, alternative
alphabetic encodings have led to alternative genetic operators in order to
maintain legality of representation. This in turn has led to the development of
structural modifications in a number of areas, manipulating the fabric of the GA
chromosome string itself in order to better attack a particular problem (e.g.

Davis et al, 1993).

However, application areas are not the sole source of chromosome diversification
and theoretical research — particularly into deceptive problems — has led a
number of authors (e.g. Goldberg et al, 1989, 1991a) to produce differing

structural modifications.
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These structural alternatives can be summarised by work in a number of areas,

which are dealt with In turn:

e Messy GAs.

¢ Hybrid solutions.

¢ Segmented chromosomes.

* Hierarchical representations.

e Multiple chromosomes.
Messy GAs

Theoretical analysis of deceptive problems, which by definition are difficult for
traditional GAs to solve, highlighted the problem of linkage to be an important
issue. Approaches such as inversion (Holland, 1975) have not been altogether
successful in tackling this issue in practice and this analysis of difficult problems
led to the development of the messy GA (Goldberg, Korb & Deb, 1989).

The messy GA (mGA) retained the underlying Darwinian principle of survival
of the fittest, but departed from traditional GA approaches quite radically, as
explained by Goldberg, Deb & Korb (1991a). The traditional GA’s fixed length
chromosome string was removed, with variable length strings being used 1n a
method involving overspecification or underspecification (modification of conflicting
genes caused by varying the length in a way appropriate to the problem in
hand). Traditional fixed crossover operators were abandoned in favour of cut

and splice operators that manipulated the variable length strings.

The evolutionary process was further split into a premordial phase in which
potential building blocks are generated and a juxtapositional phase, during which
the genetic operators are applied to manipulate the genetic material.
Tournament selection was utilised, inherently addressing the requirements of
fitness scaling. The result was a novel GA having split the evolutionary

process, abandoned fixed representations and designed new genetic operators.

The results were reported by the authors to be promising, with the mGA having
“always found globally optimal strings” in the deceptive problems tested in the
1991 paper. The initial research into the mGA has begun to inspire further
investigation and application of the structure. Goldberg et al. (1989) discussed
the relationship of the mGA operators to the schema theorem. Authors have
also undertaken further theoretical analysis (Deb, 1990; 1991; Goldberg et al.,
1998) exploring particular facets of the behaviour of the mGA. Without a
doubt, the messy GA is an area of huge potential, illustrating the benefits in
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performance that can be derived from taking a different structural

representation to that of the traditional approach.
Hybrid solutions

Davis (1991) argues that a successful application of a GA to a particular problem
should not avoid exploiting other methods containing useful problem
information. GAs are known to identify an area of interest reasonably quickly,
but lack the “killer instinct” (De Jong, 1985). Hybridisation is another way of
attacking this question, with hybridised GA/hill climbing algorithms being a
particularly good example of a combined system with the homicidal behaviour

needed to finish the job.

Both applications specific and general-purpose GAs have been developed using
hybridisation, which has progressed in a number of areas. Two specific areas are
discussed here, namely general hybridisation with alternative methods such as
simulated annealing and the approaches of Miihlenbein et al. (1991, 1993) using
the Parallel and Breeder GAs. Both these areas illustrate the use of
representational modifications to the standard GA, in an attempt to improve

performance.
General hybridisation

Hybridisation with other systems has been carried out by a number of authors,
using the GA to begin a search process and then handing over to more
traditionally accepted methods. Examples include Powell e/ al (1989), whose
EnGENEous expert system seeded a GA to find improved domain knowledge
and Kido et al. (1993) who handed over a GA initiated search to methods like
TABU search. Other authors have pursued a hybridisation approach more
integrated with the genetic process, rather than handing over a partially

complete search.

Simulated Annealing (SA) (Kirkpatrick et al, 1983) has provided the basis for
most of these combination methods, illustrated particularly well by Shaefer’s
(1987) ARGOT algorithm. Shaefer absorbed the SA concept of “temperature”
(controlling the detail of the search) to produce a GA with search bounds
adapting according to convergence properties of the chromosomes. He also
utilised a representational diversion, with ARGOT ‘learning’ strategies through
the use of an intermediate mapping between the chromosome string and the
problem space — a distinctly different representational strategy to the accepted

GA methodologies.
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Other SA based representations include Sirag and Weisser’s (1987) proposals for
a Unified Thermodynamic Operator (UTO). Again borrowing the temperature
concept, their genetic process was modified to replace crossover with the UTO,
the temperature (adjusted by a measure of population convergence) controlling
the degree of change taking place during crossover. Their paper presented a
good example of true hybridisation, substituting a chunk of the GA cycle with a
concept derived from another methodology altogether. The ideas behind the
UTO have been continually developed, with a recent paper by Varanelli &
Cohoon (1995) extending the linkage of the UTO to GAs through the
introduction of a population concept. They presented encouraging results,
illustrating how the closer ties to the evolutionary cycle allow greater control

over the convergence process.

The variety of hybridisation schemes also encompasses the move towards
improved computational performance through parallelisation (discussed earlier).
The most notable examples are the Parallel and Breeder GAs developed by
Miihlenbein et al. (1991, 1993).

The Parallel GA

The Parallel GA (PGA) (Miihlenbein et al., 1991) incorporated into the overall
system a number of alternative genetic and non-genetic methods, including the
co-evolutionary metaphor provided by subpopulations, modified crossover

operators, non-genetic hill climbing and parallel computation.

The PGA operated by application of the genetic process to a number of
subpopulations, periodically exchanging members of the subpopulations. If no
significant improvement was seen within a certain time period, a hill climbing
algorithm was engaged in an attempt to improve the solutions found. The
representation of the PGA differed from that of a traditional GA through the
introduction of a set of chromosomes, rather than a single chromosome string.
Recombination was provided as an additional operator, periodically exchanging

homologous chromosomes between sets.

This illustrated a number of distinct differences between the PGA and
traditional methods, both in hybridisation and representational terms, similar to
the split and multiple chromosome structures to be discussed shortly. However,
the large amount of hybridisation with co-evolutionary, parallel and non-genetic
schemes puts the PGA into the class of a hybrid GA, as opposed to a purely
representationally diverse GA.

[€3
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Additional work on a PGA has also been carried out by von Laszewski (1991),
who extended a parallel GA implementation to include a ‘structural crossover’
operator. Von Laszewski’s application to a A-way graph partitioning problem
utilised a string based representation and introduced structured crossover and
mutation operators. Structured crossover operated in a similar manner to GP
style methods discussed shortly, exchanging a block of graph information. The
extension of the work by Mihlenbein et al. (1991) by von Lazewski (1991)
illustrates the potential given by hybrid schemes such as the PGA.

The Breeder GA

The Breeder GA (BGA) (Miihlenbein et al., 1993) performed a further
hybridisation on the PGA, combining the advances made by the PGA with the
ideas of population control put forward in ES. Utilising truncation selection
(taking the T'% best individuals and randomly mating them with the population)
to imitate the actions performed by human breeders, the BGA came a step closer
to the ES (I, A) selection strategy. The BGA took further steps in the ES
direction by controlling the population convergence through a measure of
fitness distribution, utilising the ‘response to selection’ metric in its selection

strategy.

The results presented in the 1993 paper showed promise, illustrating an
improvement over the PGA strategy (Miihlenbein et al, 1991). The concepts
and theory of the BGA were further explored by Miihlenbein ef al. (1994) in
their analysis of the interaction between crossover and mutation. This paper
also identified the way forward for the BGA, specifically mentioning the merits
of application to operators analogous to GP subtree exchange and the use of
variable length chromosome representations. The BGA has continued to
provide a vehicle for research into the beneficial hybridisation of GA research

with other areas in EC.
Segmenting the chromosome

In the traditional GA a single chromosome string decodes, via a fitness function,
to a particular solution on a problem surface. As problem applications and
developments in GA techniques have become more complex, this
representational method has proven too restrictive. This issue was identified by
De Jong (1985) throughout the representation sections of his ten year
perspective. He identified a need for research into a number of different areas,
relating to adaptive representation, type and length of string that may be

restricted by the use of a fixed length, binary chromosome.
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2.4.3.1 Incorporating additional genetic information

One chromosome segmentation idea has been proposed by a number of authors

in their incorporation of genetic operators into the chromosome structure itself.
Schaffer & Morishima (1987) explored ideas of self-adaptation through the
incorporation of crossover points. Self-adaptation has already been mentioned
as an area of interest, specifically highlighted by De Jong (1985) in the ten year
perspective. The Schaffer & Morishima approach involved the evolution of
crossover points by incorporation of a punctuated crossover operator into the

chromosome string.

The result of this was a segmented chromosome, containing genetic information
and encoded crossover points, both of which were evolved during the genetic
process. Their results indicated that the adoption of an evolved crossover
mechanism suggested better performance, with productive crossover
continuing, even in the face of a converging gene pool. Other investigations
into adaptive operator rates (e.g. Grefenstette, 1986; Davis, 1989; Julstrom,
1995) indicate that dynamic adaptation has benefits. However, the approach
taken by Schaffer & Morishima showed, at a relatively early stage in GA
research, a forward-looking chromosomally manipulative way of achieving this

goal.

A more recent study by Levenick (1995) has taken a similar, but extended,
approach to the problem. Levenick leant towards the biological metaphor of
introns — inserted genetic material — already investigated in some areas of the
GP community. His paper proposed the introduction of a ‘metabit’ alongside

each gene in the chromosome string, dictating whether or not crossover was

permissible at that location. This method incorporated both a novel
chromosome structure modification, an extension to the Schatfer & Morishima
(1987) study and a biological metaphor. The results, indicating benefits for
population control, illustrated the methods in which a variation in the

chromosome structure has allowed a more flexible GA operation.

Successful results from this kind of insertion methodology are important,
indicating a direction for GA research which incorporates both a more flexible
chromosome representation and ideas of dynamic configuration (De Jong, 1985;

Grefenstette, 1986).
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2.4.3.2 Multi-part chromosomes

Continuing the line suggested by the approaches detailed so far, one arrives at
the idea of splitting a chromosome into distinct representational parts. As an
extension of the insertion schemes, several studies have been undertaken that

utilise this more flexible approach in applying GAs to particular problem areas.

Kelly & Davis (1991) applied a hybrid GA technique to the development of
classifiers, incorporating genetic and A-nearest-neighbour techniques. In doing
so, they used a real-valued chromosome string, split into $ sections. Each
section dealt with rotation in space, classifier weight evaluation and £
neighbours’ weights respectively. The paper also used an interesting hybrid
approach, basing creation of new chromosomes on the ranking of individuals
according to classification, rather than traditional genetic selection. As such, it
is a good example of a study illustrating the flexibility of a split representation
and the benefits of a hybridised approach, producing promising results for -

nearest neighbour classification.

Another hybridised approach that incorporated split chromosomes was
presented by Bowen & Dozier (1995) in their application to constraint
satisfaction problems. Their algorithm used a four field chromosome data
structure, recording a variety of information in a manner similar to some
ordering problems (e.g. Bruns, 1993). They also used an interesting approach to
population diversity, maintaining a measure of ‘family’ through gene similarity
comparisons and restricting the number of members of a ‘family’ in the

population at any one time. Their approach then combined these genetic

notions with an ‘arc revision’ space search, using the results of this space-
reduction technique to decide whether to halt the search if a solution was not

possible.

Davis et al. (1998) gave one of the best illustrations of representational
flexibility, having applied a GA with a tripartite chromosome to the design of a
robust telecommunications network. Their paper split the chromosome into
three distinct parts dealing with network link capacities, routing and
survivability respectively. Davis et al. also took a further step, designing
independent operators that acted only on specific parts of the chromosome
string — an approach not taken by the other split-chromosome studies. The

scope of previous research into problem-specific operators, applied at a single

level to the entire chromosome string solely to maintain a legal representation,

was consequently challenged.
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Hierarchical representations

A natural extension of the approaches discussed above is to increase the
independence of functional parts of the chromosome in a hierarchical manner.
This bears a striking similarity to the concepts embodied in the GP and CS
fields of research. The principle of structured information and manipulation of
entire sub-structures is well founded in those areas and can also be seen to have

been applied successfully in the pure GA area.

The difference between the simple segmentation of a chromosome and more
structured representations primarily exists in the amount of manipulated
information. The previous section illustrated typical examples, whereby
different parts of a split chromosome relate to different parts of a problem. The
hierarchical representation provides a more definitive segmentation, giving
greater independence to the chromosome string in its manipulation, as well as

coding.
GP style hierarchical encoding

GP development of programs, especially utilising manipulation of sub-trees and
ideas like introns, has provided a great deal of inspiration for alternative
representational structures in the pure GA field. Williams et al. (1994) clearly
illustrated the flexibility of this approach, by applying a GA to the development
of a novel neural network structure — the bumptree. Consisting of a number of
hierarchically organised gaussian functions, the bumptree structure was
translated into a real-encoded GA, with sections of the chromosome string

representing (in a similar way to GP) entire subsections of the bumptree.

In evolving different bumptrees, subordinate gaussians were exchanged through
the genetic manipulation of the chromosome sections representing that
subordinate. This action could be directly compared to the common GP
operation of crossover of sub-trees, although GP is still ahead of this type of

research by working with sub-trees of potentially different sizes.

The representational approach taken by Williams e/ al. (1994) demonstrates not
only the advantage of a hierarchically structured chromosome, but further
reinforces Davis’ (1991) argument of using the most appropriate alphabetic
representation — in this case real valued gaussian parameters. It also indicates
how Davis’ suggestion of the most appropriate representation can be interpreted
in a structural manner, in this case applying an appropriately ordered

hierarchical chromosome to a naturally hierarchical task.
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2.4.4.2 The Structured GA

The structured GA (sGA) takes the hierarchical representation demonstrated by
Williams et al. (1994) and formalises it into a more general genetic algorithm
approach, rather than a specific problem application. The initial sGA model
(Dasgupta & McGregor, 1991), and subsequent applications (Dasgupta &
McGregor, 1992, 1992a; Dasgupta, 1994), utilised a structured representation
designed to inherently represent a number of the issues that have been tackled
by other authors (e.g. crowding (Mahfoud, 1992), sharing (Goldberg &
Richardson, 1987) and messy GAs (Goldberg et al., 1989)).

sGA hierarchical representation
a1

/N /N /N

ajp ajg 413 421 499 dgg  dg] 432 433

2 3

sGA chromosome string

aj] ag aglajy] ajg a1g adg] dgy dgg 431 439 433

T

high level genes control low level sets of genes

Figure 2.7: The Structured GA representation.

The sGA differed from the traditional GA in its use of a directed graph style

hierarchical chromosome representation. Incorporating ideas discussed earlier,
namely the use of redundant genetic material and split chromosome
functionality, the sGA chromosome decodes into high and low level genes. The
state of the high level genes activated sections of the string that referred to the

corresponding low level genes, illustrated in figure 2.7.

Utilising this structure, Dasgupta & McGregor reported some success In
application to the evolution of neural networks (1992), evolving both network
connectivity and weight matrices simultaneously. They also indicated positive
optimisation results, and directly compared their method to the messy GA

(Goldberg et al,, 1992) as a possible alternative, in the field of non-stationary

function optimisation (Dasgupta & McGregor, 1992a).

They indicated that the use of the high-level genes to control the activation of

lower level genes produced an inherent genetic diversity, a form of distributed
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memory and biological plausability (1992a, 1994). The sGA is an interesting
extension of Williams’ (1994) approach, forming a more general GA using a
similar hierarchical approach. Using ideas of integral redundant material,
dominance operators and structured representation, whilst maintaining the
traditional GA operations of classical crossover and fitness based selection, the
sGA is an interesting combination of approaches advocated by other authors

(e.g. Schafter & Morisihima, 1987; Holland, 1975; Williams et al., 1994:).
SAGA

Harvey's Species Adaptation Genetic Algorithm (SAGA) (Harvey, 1992a)
presents a similar approach to that of the sGA, but takes a slightly different line
of attack, using the evolution of variable length structures as opposed to the
incorporation of redundant genetic material proposed in the sGA. The SAGA
structure also includes a number of other ideas, such as the independent
contribution of each gene to the final chromosome fitness, the relevance of the
subpopulation concept and a more detailed analysis of the role of schema in a
variable length methodology. Some of these ideas are similar to those seen
elsewhere, in particular to Smith’s (1980) LS-1 classifier system (discussed in
more detail later on), whilst others seek to address areas Harvey (1992a) claims

have lacked sufficient detail when implemented by CS and GP approaches.

The SAGA system operates by allowing the chromosome string to lengthen
under the control of an ‘increase-length’ operator whilst retaining some of the
genetic information from the parents. Harvey identifies the effect of this to be
the creation of different ‘species’ of chromosome string within the overall
population, introducing the evident scope for extension to the subpopulationary
concept. Harvey goes on in further papers (Harvey, 1992b) to extend the
discussion of the mechanisms by which the crossover operators and the notion
of schema theory to the recombination operator applied in the variable length
context of SAGA, noting the need for the exchange wherever possible of
homologous segments of chromosome string — an issue identified by Holland
(1975) in his proposals for translocation and segregation operators in position

independent GA applications.

Harvey identifies the main potential for the use of variable length GA
mechanisms (and SAGA in particular) as being in areas of environments of
unknown complexity, such as the evolution of an artificial life Animat. In pre-
defined domains such as traditional GA function optimisation, Harvey points out
that “one would do best to stick to fized lengths” (Harvey, 1992a). The SAGA

mechanism has been quite widely explored and developed by Harvey in his
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papers (1992a, b, ¢) and its context in relationship to the research being

undertaken in co-evolution and Artificial Life explored in some detail.

He also makes a number of comparisons to Goldberg’s Messy GA, Classifier
Systems and GP, setting out the SAGA mechanism as distinct in a number of
areas - mainly true variable length chromosomes (unlike the messy GA
manipulation of fixed length genotypes (Harvey, 1992a)) and by extending the
study of schemata and their relationship to the operators he uses (Harvey,
1992b, ¢). A similarity to the other hierarchically structured representations
discussed previously in this section, to the development of cubic and wrap
around crossover mechanisms and their associated theoretical analysis 1s also
evident (described in the next section). Harvey’s SAGA presents an interesting
area of great potential for future research, holding much relevance to the work

presented here (discussed in more detail in the next chapter).
Cubic, wrap-around and multiple chromosome encoding

The work described so far indicates the trend towards more diverse structural
representations. However, the majority of the representations mentioned still
work with some form of linear chromosome system, albeit well structured. A
number of authors have taken diversification of the chromosome structure to a
greater degree, particularly along the lines of cubic multi-dimensional

representations and distinct, independent chromosomes.
N-cube representation

In a recent drive to attack problems of an inherently multi-dimensional nature, a
number of authors have proposed alternative operators and chromosome
structures that attempt to reflect this multi-dimensionality. A paper by Beasley
et al. (1998) suggested a method of encoding referred to as ‘expansive coding,’
splitting a problem into sub-problems concatenated together on the
chromosome string. Whilst the representation maintained a concatenated
string, their genetic operators treated chromosome sub-problems as a distinct
2D structure, utilising this metaphor in the exchange of 2D blocks through
crossover. Their operators strictly limited themselves to the sub-regional 2D
blocks — an approach also adopted by others. Their results demonstrated an
increased complexity and size of chromosome string, but a reduced complexity

of problem for the GA to solve.

The multi-dimensional representation idea was also taken up by Watabe &
Okino (1993) in their study of genetic shape design. Their approach differed
from that of Beasley et al. (1993) in the direct translation of an n-d problem into
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an n-d chromosome of real numbers. They implemented this using an array
structure of floating point values representing the genes. This representation
was then hybridised with the Free Form Deformation (FFD) technique to
evaluate the shape being defined, through genetic manipulation by operators
that exchanged randomly sized subgrids in the array structure. Their paper
illustrates a combination of multi-dimensional representation and operators,

distinct from that given by the Beasley et al. (1993) approach.

That combination has recently been further explored, with studies beginning to
explore the effects of such multi-dimensional exchanges. A study by Bul &
Moon (1995) investigated the formal generalisation of multi-point crossover to
n-dimensional encoding. Their paper also took the first step towards detailed
formal relationship of this multi-dimensional structure back to the schema
theorem, relating examples of schema formation and preservation in 7-

dimensions and the effects of n-dimensional crossover.

The study of z-dimensional representation proposed in the Bui & Moon (1995)
paper was continued by Kahng & Moon (1995) in their analysis of
recombination mechanisms in n-dimensional encoding schemes. Their study
identified the weakness in research of schemata understanding in multi-
dimensional representations and provided an analysis of potential schema effects
in an z-dimensional crossover mechanism. Their results suggested applicability
of the proposed multi-dimensional encoding scheme within traditional linearly
represented chromosome structures, as well as relating the proposed
geographical crossover in n-dimensions to current crossover methods. In an
analysis of future research required, they identified the need for greater research
into multi-dimensional structures and generalisation into n-d structures

utilising different lengths of chromosomes across dimensions.
Distinct, multiple chromosomes

Whilst the research identified thus far contains radical departures from the
traditional linear chromosome representation, none of the studies mentioned
represent a wholesale departure from the traditional method. All retain some
measure of type similarity in representation or linear chromosome

representation (albeit hierarchically organised or segmented).

Holland (1975) identified an extension of GA potential through an increase n
independence of chromosomes, moving to a set of homologous n-tuples
controlled by mechanisms of dominance and translocation. This indication of a

multi-chromosome structure was still a step further than studies discussed
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above, although the trend described is moving in that direction. A distinctly
multi-chromosome structure has been adopted by Julift (1993) in her application

of'a multi-chromosome GA to pallet loading.

Juliff used a hybrid genetic algorithm combined with an intelligent load builder
in the optimisation problem of beer delivery. The paper described a GA
structure with three independent chromosomes within an individual applied to
different facets of a multi-dimensional problem. Chromosomes were
independently responsible for packing beer onto a pallet, pallets onto a truck
and ordering the pallets for packing. Her proposals also indicated independence
of operator application and representation, ensuring that legality of
representation is retained - an issue already discussed and mentioned by Davis
(1991) frequently in his discussions of problem specific applications. Juliff's
multi-chromosome approach takes the structural independence and flexibility
implied by the linearly represented studies mentioned so far to its more natural
conclusion, separating out the functional parts into distinct chromosome

representations altogether.

However, the system retains a significant measure of hybridisation to non-
genetic processes by passing resulting chromosome information into an
intelligent load builder that makes the decisions. This places a hybridised
distinction on the Juliff approach compared to that of the purely genetic
approaches suggested by Harvey and other areas of GA research such as
Classifier Systems (discussed in the next section). Nonetheless, the results
presented by Juliff (1993) indicated positive performance compared to other GA
methods and implemented a number of the suggestions outlined by other

authors investigating structural diversification.

Juliff's study also took a further step in the line indicated by the continuing
trend in the GA community for diversification away from linear representations.
As GAs are applied to more complex, multi-dimensional problem areas, greater
structural and representational flexibility would seem to be a sensible way
forward. Indeed, this requirement was identified by both De Jong (1985) and
Holland (1975), with the mechanisms for achieving this explicitly suggested by
Holland.

Pure GA structural alternatives and other areas of EC

Whilst the discussion so far has related to structural developments in the area of
pure GA research, it has already been mentioned that there is considerable

similarity amongst these approaches to the other areas of research 1In
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Evolutionary Computation. The similarity between the use of some structural
alternatives and the GP style use of subtrees was identified in section 2.4.4.1.
However, the recent trend towards independence of elements within the
chromosome string and distinct separation of chromosomes has great structural
relevance to the work that has been undertaken elsewhere, particularly in the

field of Classifier Systems.

Whilst using the GA mechanisms to evolve new production rules within the
classifier systems, the classifier system itself has developed along different lines
to research in pure GAs. However, examination of the structures used within
many classifier systems reveals striking similarities, particularly relevant to the
direction being taken by recent pure GA structural developments outlined in
this chapter so far. The similarities can be demonstrated very graphically by
examination of an early Classifier System - the LS-1 system proposed by Smith
(1980).

Smith’s Learning System 1 consists of a population of knowledge structures, as
opposed to individual functional units, with a performance measure evaluating
the knowledge structure entities as a whole and the GA evolving classifier rules
by manipulation of the knowledge structures. Each individual (fixed length)
rule in the production system makes a contribution to the knowledge structure,
representing the set of rules on which the GA makes its evaluation. The
learning component of LS-1 uses a production system memory consisting of an
unordered list of fixed length rules (not of fixed size). In addition to the
traditional genetic operators, additional crossover mechanisms are applied to
exchange rule components within the knowledge structure (identified in the
pure GA context by Holland’'s (1975) discussion of translocation and

segregation).

The ‘LS-1 critic’ responsible for credit assignment calculates the payoft by
application of a weighted relationship of the components performance to the
knowledge structure’s evaluation. Smith goes on to discuss the relationship of
the various weighting factors and growth of the knowledge structures on
performance, identifying a number of issues and areas for future development of

the system.

From this description, the similarity of Smith’s system to a number of the
current approaches being developed in the pure GA research field - particularly
the use of knowledge structures as compared to Juliff's (1998) independent
chromosomes and Harvey’s (1992a) independent gene contributions to the

variable length SAGA genotype - becomes evident. In addition, the
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independence of the knowledge structures opens up immediate observation of

the potential of such a system for application to subpopulationary evolution.

The additional underlying theme of co-operation of component classifier items
has been further developed in a recent paper by Bull, Fogarty and Snaith (1995).
Their paper, evolving a quadrupedal robot with communicating, co-operating
Classifier Systems builds on the ideas of contribution of knowledge structure to
overall evaluation outlined by Smith (1980). It also presents a similar parallel to
the pure GA work of Harvey's (1992a) SAGA mechanism and the gene to
genotype fitness relationship, along with overtones similar to the future
direction implied by a number of the other structurally novel GA mechanisms

recently proposed and discussed here.

In summary, Smith’s (1980) LS-1, its development and application (e.g. Smith,
1983; Greene & Smith, 1987) and other related work in the Classifier Systems
field highlights the level of similarity and cross co-operation that exists within
the different strands of GA research. In addition, it demonstrates that the
recent trend by authors in the field of pure GA research to move towards more
structured chromosomal representations, away from the traditional linear
chromosome, shows promise and may well have distinct advantages in taking
lessons from the other areas of EC research that have been going on around
these developments. It is this theme that is pursued further in the remainder of

this thesis.
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Chapter 3: The Multi-Chromosome Approach
Inspiration and conceptual design

The previous chapter illustrated the movement of the GA community towards
architectures and structures allowing a greater operational and representational
flexibility. It is not uncommon in GA studies to see the authors refer to a
biological or natural precedent for their method (e.g. Dasgupta, 1991; Holland,
1975). Following this guidance, high-level considerations of natural processes
led to the identification of what would seem to be an anomaly between current

pure GA methods and the natural world.
The qualities of natural organisms

If one considers life in the natural world, a variety of highly complex organisms
can be seen, from single-celled amoeba through to the higher forms of life. The
associated increases in complexity of organisms up the evolutionary chain 1s
reflected in their genetic encoding and DNA, correspondingly showing an
increase in complexity. Bacteria and viruses have a simple structure efficiently
designed for self-replication, whereas the DNA defining a human being is a

complex double-helix structure.

Ears
Eyes Whiskers
Mouth
Nose
Fur
Legs

Figure 3.1: Higher life forms are an amalgamation of several component features

Simple observation of the higher forms of life shows that, whilst they are an
integrated unit, they consist of a number of component features — independent in

nature — that make up the whole. For example, as shown in figure 3.1, a
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complex creature such as a cat is made up of a number of component parts.
Each of the legs, eyes, eavs, fur, tail, organs etc. all combine and act together to

form the complete creature, competing in the world for survival.

Whilst all the component parts are still ‘bits of cat’ and inseparable from the cat,
it is conceivable that they may make an independent contribution to the fitness
of that animal. The nature of the contribution will be highly dependent upon
the environment in which the animal is trying to survive, but each component
may be considered to have an independent ‘fitness’, contributing to the ability of

the animal to survive.

Consider a population of cats. Each cat has eyes, ears, a nose, fur etc. Some cats
will have better eyesight, sense of smell and different fur patterns from others.
Good eyesight can be interpreted as the eyes having a high fitness. For good
hearing, the ears have high fitness, but this would be independent of the fitness
of the eyes. Only when the two are brought together within a particular animal
in its specific environment does the combination become important. If an animal
has to hunt its own lunch, then eyesight and hearing are important. If it gets
fed by people, cute fur colour and fluffiness might be more important to its

survivall

Bringing the discussion back to the GA metaphor, it can be seen from this
example that an individual in a complex environment might consist of a number
of component features. Whilst each makes a contribution to the overall fitness
of the individual, the component parts of the individual may have a high degree
of independence from one another and, as such, evolve in different ways within
the individual. It is the concept outlined by this example that is embodied

within the ideas for the multi-chromosome structure.
Over-simplification in current representations

When considering this discussion in the light of current GA methodologies, it
could be surmised that the traditional GA has an architectural simplicity
approaching that of the amoebal Whilst the representational complexity of the
GA makes this a rather broad generalisation, the metaphor is appropriate when
one considers the traditional GA with singly applied rates and a single fitness
function. Only recently, with the more structured GA representations discussed
in sections 2.8 and 2.4, has any attempt been made to create an appropriate

independence within the traditional GA mechanism.
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[t is conceivable that, despite the flexibility of encoding schemes utilising binary
(or non-binary) representations, problem applications to which a GA might be
applied are inappropriate to encode in such a linear fashion. Whilst
representation may be possible through the use of highly sophisticated
encoding, operators and fitness functions, such a methodology may introduce a

higher degree of complexity into the traditional GA.

Hybridisation and modifications to Holland’s (1975) GA structures are now
widely accepted and advocated as necessary in many problem domains
(Davis, 1991). Looking back to Holland’s (1975) proposals, his explanation of
the more advanced behaviour of the GA included references to positional
independent coding schemes and suggestions for independence of operators,
using segregation and translocation within sets of genes to evolve independent
parts for greater representational flexibility. Rather than producing more
complex traditional GA encodings and fitness functions, the multi-chromosome
approach utilised here brings together a number of different concepts. In
particular, these include the trend for structural flexibility illustrated by recent
pure GA papers (e.g. Harvey, 1992a, Dasgupta, 1991; Miihlenbein, 1991; Juliff,
1993; Williams, 1994), the concepts seen in nature, Holland’s (1975) proposals
and ideas explored in the other areas of EC research (e.g. Classifier Systems,

Smith, 1980; Smith, 1983; Greene & Smith, 1987).
Defining a multi-chromosome GA

The concept outlined above has been translated directly across into a GA
structure, to produce the multi-chromosome GA (Multi-GA). From this
structural base, the exchange of genetic material intended to evolve both feature
chromosomes and to group together feature chromosomes within an individual,
was developed. The potential for future developments made possible by the new
structure was also identified and a number of steps taken to realise this
potential, resulting in the development of genetic processes typically unseen n

the traditional GA approach.
Structure

The core feature of the Multi-GA structure is a number of independent feature
chromosomes grouped together to define a single entity, in a similar manner (in
fact devised in parallel) to the approach taken by Juliff (1993). This has resulted
in a minor change of expression from that used within the traditional GA. In
the traditional GA context, a chromosome string is frequently referred to as a

member of the population. In the Multi-GA structure, an additional level of
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unaftected by the other chromosomes in the individual. The relationship

between them is governed by the individual level fitness function.

As can be seen from this illustration, the structure is inherently more flexible
than the traditional GA approach and allows for a considerable independence of
representation and manipulation, although utilisation of these facilities is not
compulsory. The structure provides a method for adaptation to the degree
required by the problem in hand and is able to act in exactly the same way as a
traditional GA if so required. However, there are a number of additional

representational and genetic features available.
Basic genetic operations

Structural differences are only a part of the distinction between the Multi-GA
and traditional GA. Modification to produce a number of independent
chromosome strings also required a reorganisation of the genetic operators and
processes, in order to realise the conceptual goal. As outlined earlier, the
independent features of an organism may well be capable of developing
independently of one another. Their interdependence is governed by the
individual in which both sets of features are contained. This argument was also
advanced by Holland (1975) in his discussion of segregation and translocation
operators. Holland’s proposals for segregation (to identify homologous
chromosomes within a set) and translocation (to ensure exchange of information

between those chromosomes) are embodied in the Multi-GA.

The Multi-GA makes use of the traditional GA operators, not requiring any
custom designed operations in its basic mode of execution. The application of
these operators is modified slightly but the operators remain fundamentally
unchanged, leaving the Multi-GA as a non-hybridised method utilising the pure
GA concepts outlined by Holland (1975) and subsequently developed by others.
Basic genetic operations take place at two levels within the Multi-GA structure

— Individual and Chromosome level.

Individual level operations

Selection is performed exactly according to traditional GA methods, with
individuals selected from the population on the basis of their ndividual level
fitness. This embodies the principle that the fitness of an individual, and hence
its survival in the environment, is governed by the overall combination of the

contributions made by the features making up that individual. Standard GA
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selection algorithms, with or without varying degrees of elitism, can be applied
to the Multi-GA.

Crossover is also utilised in the same way as traditional GA methods, with the
exception that it may be applied at botk levels in the Multi-GA. Individual level
crossover involves the application of the crossover operator to manipulate entire
feature chromosomes across two selected individuals. Returning to the
biological example, the motivation for this operator is to exchange an entire set
of ears in one cat with those of another. Because the individual is assessed on
the basis of the combination of its feature chromosomes, the evolutionary
process must include some method of exchanging features across individuals in
order to evolve an individual with the optimum combination of features.
Individual level crossover fulfils this requirement. Again, the popular crossover
operators can be implemented at the individual level - namely n-point or

uniform crossover.
Chromosome level operators

Having selected individuals and undertaken exchange of feature chromosomes
by crossover, genetic operators are then applied at the chromosome level. Both
crossover and mutation are applied here, in order to improve the quality of
feature chromosomes. Operations at the individual level result in the optimum
combination of feature chromosomes currently present in the population, but
make no attempt to actually improve the quality of those feature chromosomes.
In the biological example, it would be akin to swapping eyes, ears and noses in
cats but at no point exchanging between sets of eyes in order to produce better

eyes. This action is carried out by chromosome level genetic operators.

Chromosome level crossover and mutation are applied in exactly the same way
as the traditional GA operators, taking material from two identical feature
chromosomes in the selected individuals and exchanging. The rate at which
chromosome level operations are applied may be different from the individual
level crossover, allowing flexibility in the rate of genetic manipulation at both
Jevels in the structure. Once again, any of the popular crossover and mutation
algorithms may be utilised, as appropriate to the representation of the feature
chromosome in question. The important point to remember is that genetic
exchange only takes place between peer feature chromosomes — that 1s
chromosome 1 exchanges only with another chromosome 1. No inter-
chromosomal exchange mechanism is currently employed by the Multi-GA,

although it is not inconceivable that this could take place if required.
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3.2.2.3 Fitness function calculations

Fitness functions may be calculated at both individual and chromosome levels.

At the chromosome level, the fitness function is applied in exactly the same way
as 1t would be with a simple, traditional GA. The feature chromosome is
evaluated and a fitness value assigned, appropriate to the problem in hand. This

1s repeated for each feature chromosome in the individual.

The individual level fitness function is a more difficult proposition, as it is this
function which has to relate the component features together. A specific method
for doing this is inappropriate to define here, as it will depend entirely on the
problem to which the Multi-GA is being applied. However, it 1s not acceptable
to entirely dodge the issue and the problem of how to gain a suitable
combination of potentially different feature level fitness function representations

was given some thought.

Proposals for tackling this method in the Multi-GA used during this study

revolved around a summing of relative contributions. Should the problem

representation of each feature chromosome be identical, then the individual level
fitness function is not difficult to calculate. The combination of the features (of
the same type) would be defined in some way by the task being tackled and

reflected in the fitness function applied.

However, when tackling a combination of different representations, the question
becomes more complex. In such cases, comparison of diftering chromosome

representations would be achieved by a process of normalisation. The relative

contribution of each chromosome to the individual would be obtained by
normalisation amongst its peers, repeated for each feature chromosome 1in the
individual. The resulting series of normalised (if necessary, weighted) values

can then be combined by the individual fitness function.

In this manner, the combination of fitnesses in an individual composed of diverse
representations can be achieved, whilst retaining the chromosome level
requirement of maintaining fitness relative to one another, required for accurate

evolution of each feature chromosome.
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Triggered by problem specific circumstances, the addition and deletion
operators create and destroy new chromosomes within an individual. When
called, the creation operator augments an individual with one new chromosome,
typically randomly initialised, of a type and parameterisation specified by the
user when configuring the Multi-GA. The new chromosome then becomes a
functional part of the individual, as with the pre-existing feature chromosomes,
producing a population of individuals containing a varying number of
chromosomes. The scope of creation and deletion operators investigated has
been restricted to a single representation, but the extension to mixed type

creation would not be difficult.

When conditions specified by the problem are met, the deletion operator is
called and removes an identified chromosome from the individual. In the
current application, the candidate chromosome is identified by a combination of
the problem requirements and the creation mechanism. Problem specific
applications aside, the potential for self-modification of the genetic structure
through the addition and deletion of genetic material is demonstrated by these
operators. Addition and deletion incorporates the principles of a number of
current research areas, specifically insertion of genetic material (Levenick, 1995)
and self-adaptation (Julstrom, 1995). Similarities may also be drawn to the
principles approached by the variable length modification concepts of Harvey’s
(1992a) SAGA and Lindgren’s (1991) work (compared in more detall in the
following section). The purpose for which the additional chromosomes may be

utilised is at the behest of the user in applying the Multi-GA in a problem area.

Comparison to current approaches

One of the key questions with any new technique is “how does it differ from
approaches taken by other people?” Chapter 2 illustrated recent pure GA trends
towards more structured representations and operators, of which this work 1s an
extension. The Multi-GA provides a new perspective on many of the ideas
proposed by other authors, bringing together a number of 1deas currently

scattered amongst different approaches into a single genetic mechanism.

Pure GA methods

As discussed briefly in section 3.1.2 earlier, many of the traditional GA
approaches contain a linear chromosome representation, giving a marked
distinction between the Multi-GA approach. However, the more recent trends

discussed in section 2.4 reveal the moves of pure GA researchers to a more

complex representation.
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For the majority of these cases, there is an increase in complexity, but still a
linear feel to the chromosome representation used. Whilst approaches like the
structured GA (Dasgupta, 1991) and segmented chromosomes (e.g. Davis et al.
(1998)) introduce a great deal of ordering, they still maintain a single linear
representation and do not break up the fitness or operator structure in quite the
way undertaken by the Multi-GA. The approach set out here formalises the
structural organisations proposed by authors such as Dasgupta (1991) and
Williams ef al. (1994) into a more distinct, multi-dimensional representation.
Consequently, the distinction between chromosome segments and the ability to
apply different operators to segment parts becomes easier to implement, with
the Multi-GA representing an advance on the work carried out in these areas so

far.

Some authors have already taken further steps towards this approach, with
systems like SAGA (Harvey, 1992a) treating genes on the variable length linear
chromosome string as having a distinct contribution to the overall fitness. The
similarity between this approach and the Multi-GA combination of independent
chromosome fitnesses is evident and a number of the ideas touched upon by the
SAGA system are incorporated into the concept and implementation of the
Multi-GA structure. However, the degree of problem representation flexibility
is expanded by the Multi-GA structure. The independent feature chromosomes
provide the potential for alternative type representation within the individual,
allowing the ability to represent sections of a multi-dimensional problem that
would be difficult to envisage with a single (albeit independently contributing)
gene on a chromosome string. In addition, Harvey's (1992a) investigations into
the use of operators governing the length of his SAGA chromosomes are
extended to the Multi-GA concept, with the study of the addition and deletion
operators establishing their role in the governance of feature chromosome

propogation within Multi-GA individuals.

The use of independently contributing fitnesses is not restricted to the SAGA
system. An earlier paper by Lindgren (1991) demonstrated a pure GA system
tackling the Prisoner’s Dilemma problem and explored both dynamic increase in
genome length and (in a similar manner to SAGA) calculated a final fitness
value by the combination of a number of component fitness solutions. In
addition, Lindgren’s discussions on the mechanisms for control of the population
and the evolution of species provide ideas explored by both Harvey's SAGA and
the Multi-GA. Of particular relevance is the investigation (outlined in chapter
6) of the effects of the Multi-GA’s addition and deletion operators on population

behaviour. This analysis of the mechanisms of dynamic population control
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using addition and deletion explores behaviour similar to that of Lindgren’s
(1991) ‘extinctions’. In doing so, the Multi-GA provides a vehicle for research,

identified by Lindgren as necessary, into the effects on population behaviour of

dynamically controlled self-adapting individuals.

Despite the evident similarities, both the Lindgren and Harvey approaches
maintain the use of an essentially linear chromosome representation, albeit with
some interesting and highly useful ideas for species evolution. The work
investigated here using the Multi-GA structure provides a more structured,
open representation than that proposed so far, allowing the independent feature
chromosomes a greater freedom of representation. Whilst using suggestions
and proposals similar to those implemented by Harvey, it has been successfully
applied to a fixed-domain problem (chapter 6) — an approach which Harvey
considered to provide little benefit for SAGA and other systems with species
evolution capability. This serves to demonstrate the usefulness of applying
ideas explored by some authors in other application areas, allowing a similar,
but slightly diverse, approach to provide new problem applications for concepts

that may not intially appear to be easy to implement.

However, chapter 2 also pointed out that the pure GA field has already moved
on from the single, linear representation into more structurally diverse areas.
Work undertaken to investigate the effects of n-cubic representation and multi-
dimensional operators (e.g. Bui & Moon, 1995) 1s highly relevant and may have
direct application to the multi-chromosome structure. Juliff (1993) has already
implemented a distinctly multi-chromosome approach to a problem application
and the structure implemented here — developed in parallel to Juliff's beer
stacking application — can be seen to have similarities. However, Juliff's (1993)
multi-chromosome approach is extended here by the reliance on a purely genetic
process, rather than a hybridised, external intelligent load-builder. Whilst
hybridisation is an approach carrying high recommendation, the Multi-GA 1s
restricted to hybridisation of representation and structure within the GA
metaphor. It does not attempt at this stage to hybridise itself with other Al
techniques, in the way proposed by Miihlenbein et al. (1991). In addition, these
studies provide a more specific structural investigation of the multi-chromosome
concept, with additional operators and the general-purpose characteristics of the

Multi-GA highlighting a distinct move forwards from the Juliff approach.
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Related research elsewhere in EC

Chapter 2 also mentioned work in the other fields of Evolutionary Computation
of great relevance. This manifests itself in a number of areas, from structural
similarities and the borrowing of concepts, through to the potential to expand
pure GA research into other current research areas. It is the high degree of
cross co-operation between the fields that becomes evident as one examines the

work undertaken here in more detail.

Perhaps the most evident similarity, is the structural likeness to work
undertaken in the field of Classifier Systems. In particular, Smith’s (1980) L5-1
system and its developments (e.g. Smith, 1983; Greene & Smith, 1987) share a
number of common themes with both the Multi-GA structure and some of the
related pure GA research already discussed. Whilst set in a different context, it
is obvious that Smith’s use of independent knowledge structures contributing to
the success of a classifier’s evaluation is similar in concept to the independent
chromosome fitness evaluation within an individual. In consequence, it can also
therefore be related to the independent single gene fitness contributions
(discussed in the previous section) of Harvey's (1992a) and Lindgren’s (1991)
work, along with the multi-chromosome aspects of Juliff's (1993) study. Smith’s
L.S-1 also incorporated a mechanism for the exchange of components within the
knowledge structure - a function undertaken by the individual level crossover of

the Multi-GA.

Ideas such as this, backed up by an established use of such concepts within the
CS field (demonstrated by work such as the communication between
independent classifier systems within Bull, Fogarty and Snaith’s (1995)
quadruped robot), illustrate the merits of exploration of alternative structures
shown to have success in other areas. This is true not just of Classifier Systems,
but can be seen throughout the EC field in both future potential (discussed in

Chapter 7) and current research.

Other notable examples already discussed include the co-evolutionary metaphor,
with independent subpopulations evolving to produce localised solutions to a
part of a problem. This would seem to be similar to the application of a feature
chromosome to the particular problem - indeed, the Multi-GA structure could
be applied in such a way as to provide a distinct mechanism for
subpopulationary evolution in the manner carried out by many researchers
today. However, there is a potential for future expansion within the Multi-GA

structure, allowing definition of the inter-relationship between the
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subpopulations in a way not easily exhibited in most current GA representations

of co-evolutionary strategies. A good example of this is that of timetabling,

discussed in chapters 6 and 7.

In addition to structural mechanisms, the Multi-GA discussion has also outlined
the potential for the use of dynamic parameterisation. Dynamic
parameterisation, explored in more detail in chapter 5, has been an area showing
promise in both the GA and ES fields. The Multi-GA structure used here
provides, not a particularly novel mechanism for dynamic parameterisation, but
an interesting vehicle for the application of established dynamic
parameterisation techniques. In addition, the two dimensional nature of the
structure does open a debate as to the most effective method of dynamic
configuration between the two levels of the structure — an issue which has not
necessarily arisen in GAs using a linear chromosome string. The discussion of
dynamic parameterisation undertaken in chapter 5 introduces it as a method
which may have benefits within the Multi-GA context, and addresses some of
the issues of existing dynamic parameterisation research that become

appropriate when dealing with a structure of higher dimensionality.
What does the Multi-GA achieve?

Having identified a number of similarities with existing approaches, both inside
and out of the pure GA field, the natural conclusion is to ask what is actually
achieved by the Multi-GA? The answer can be gained from consideration of a

number of different perspectives.

The similarity between LS-1 and other classifier systems brings an indication of
the level of cross co-operation between the fields of EEC research that remains, as
yet, fully unexplored. In the pure GA field it can be seen that a number of
authors are skirting around structural ideas already implemented quite
successfully in a different application context. It may well prove to be useful to
take these ideas and look once more at their application to areas of research in
felds such as function optimisation and pure GA specialisation to see if the
currently evasive multi-dimensional problems can’t be better tackled. The
Multi-GA work goes part way to addressing this question, providing a direct
example of a co-ordination of similar ideas from within and without the pure GA
field into a distinct structure, identified as applicable in a pure GA context. The
potential for dynamic parameterisation (e.g. Grefenstette, 1986) and GP style
variable length crossover manipulation (Koza, 1992) is also incorporated into

the Multi-GA structure, through the provision for independent parameter rates
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to be associated with each chromosome. Self-generation of genetic material
through addition and deletion may also provide an avenue for fruitful
investigation, as well as incorporating proposals put forward by authors such as

Levenick (1995), who advocated modifying the genetic material by insertion.

Finally, the Multi-GA embodies the proposals put forward by Holland (1975)
for a structure incorporating sets of homologous chromosomes, controlled by
segregation and translocation operators. It also incorporates a number of De
Jong’s (1985) ‘ten year perspective’ visions relating to adaptive representations
(not necessarily of fixed length) and the investigation of strategies like sub-

populations and self-adaptation.

In summary, the Multi-GA brings together a number of suggestions and
directions that current pure GA research is moving towards into a distinct,
flexible and purely evolutionary mechanism. In doing so, it provides a useful
platform for the further development of these ideas, and others of a highly
relevant nature from the associated fields of Evolutionary Computation. Given
that some areas of pure GA research appear to be moving towards greater usage
of multi-dimensional representations, an opportunity to refocus on the
achievements and issues studied by a variety of authors - embodied into a single,

distinct structure - is a valuable and worthwhile exercise.
Design and Implementation in Software

Implementation of the Multi-GA structure required careful thought, in order to
best overcome the software engineering difficulties associated with the use of
different types within a single structure. Software development and
experiments were carried out on SUN UNIX systems running initially under
SUNOS 4, subsequently upgraded to Solaris 2.3. In making the decision as to
the best method of implementing the ideas encompassed by the Multi-GA
structure, a number of factors were considered including ease of maintenance,
language simplicity and flexibility, machine performance, software support and

future development potential.

Perhaps the deciding factor was the need to implement flexibility of
representation within an individual, presenting a requirement for ease of type
definition within the chosen implementation language. In addition to its well
engineered modular design, the recently introduced facility of ‘templates’,
allowing the parameterisation of types within C++, made that the natural
choice. As a result, the Multi-GA developed as an object oriented program,

functionally decomposed for ease of operation. The process by which the
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software system was designed, implemented and validated is discussed here,

along with details as to the methods by which experiments were carried out.

Modular Decomposition

The evolutionary cycle, outlined in chapter 2, consists of a number of distinct
operations which present the software designer with naturally separate
component parts. The inherent division within GAs lends itself particularly
well to an object oriented design process, with items such as chromosomes,
individuals and populations immediately obvious as potential objects. In
addition, the inherent parallelism of GAs assists in defining the boundaries of

these objects.

The initial task in undertaking the work was to design a simple, traditional GA.
This served to familiarise the author with the C and C++ languages, as well as
providing a practical understanding of the GA process. During this activity,
ideas for the Multi-GA began to emerge and extensions of the simple GA to a
multi-chromosome implementation were undertaken. As with any software
system, a number of changes took place during development, for both
implementation and research oriented reasons, but the fundamental design
concepts changed little. A great deal of research effort was invested In

designing a robust, easily modifiable suite of software for use as a research tool.
Multi-GA object structure

In this section, a basic familiarity with object-oriented programming is assumed.
Interested readers are referred to Holub (1992) and Murray (1993) for an
introduction to object oriented design and programming with C++. The basic
concept 1s the definition of software structures as distinct objects, containing

member procedures and functions which operate on the objects.

The structural concept outlined in section 3.1 provided a natural break into
three core objects — chromosome, individual and population. The genetic

operations, applied to objects, were implemented as member functions of the

appropriate object class.

Certain additional classes were required for implementation reasons and
simplicity of design. The most notable of these is the class ‘Individual _pair’
containing the member functions for the core genetic operators, crossover and
mutation. The genetic process dictates selection of two members from a

population (assuming a roulette wheel based method) and the application of
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genetic operations to that pair to create children. As such, the genetic process
spends a large proportion of its time dealing with just two individuals, hence the

creation of a class containing the required genetic function procedures and two
individuals.

For ease of development, sections of code requiring frequent modification were
grouped together, namely genetic operators and fitness functions. Addition of
experimental testing procedures was then simply achieved through the insertion
of an appropriately identified section of code in the respective function module,
adhering to the software engineering principles of modularity and information
hiding. The other major distinct module developed was a data storage module,
holding arrays of chromosomes. This was a change forced by C++ language

restrictions.

The complete modular structure of the Multi-GA software suite is illustrated n
figure 3.5. This shows the major classes utilised in the software implementation,
in addition to the location of the main genetic procedures and the newly
developed add/delete mechanism. It is clearly visible from the diagram how the
natural distinction of the GA processes, along with ease of modification through
easy insertion of new operators or functions, has produced a simple modular
C++ object structure. The main module acts to oversee the genetic process.
The individual consists of a number of chromosome objects, accessed for

implementation reasons via the data storage class.

The functions module, containing both chromosome and individual level fitness
functions, is accessed from both of those modules at the time of the fitness
evaluation. Additional fitness functions are added directly into this module,
with minimal effect on other objects in the structure. The same 1s true of the
operators module, called by the pair of selected individuals to perform the
required genetic manipulations. Again, for implementation reasons, use of the
addition/deletion operators required interaction with the data store class but

standard genetic procedures interact only between population and selected

individuals.
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N\

Operational procedure

Figure 3.5: Multi-GA software object interactions.

Templated parameterisation

One of the key features of the language selected was the availability of templated
parameterisation. The templating feature of C++ allows the programmer to
define the type of a procedure, function or object at execution time. The ability
to pass a type (predefined or user defined) as a parameter into a procedure has

proven to be immensely useful, reducing the complexity of the resulting

software considerably.
It is not an exaggeration to say that a great deal of the progress made in the

implementation and testing of the Multi-GA was made possible by the flexibility

of parameterisation given by th
menting multi-representational structures, the availability of

e use of templated software. For other

researchers imple
compilers capable of handling this style of templated parameterisation 1S an

invaluable aid.
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This procedure was then repeated as each new routine, operator or function was
added to the code. Tracing of the program via the interactive debugger allowed
exact Interrogation of variables during execution and the trickier bugs were
located by this process. By tackling software development in this structured,
incremental manner, the problem of major debugging effort was avoided

through verification of smaller procedures at the time of their implementation.
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Chapter 4: Comparative Testing

Introduction

A series of tests were performed on the Multi-GA in order to investigate its
performance in relation to the traditional GA. A number of different studies
were carried out, exploring the features and flexibility given by the Multi-GA.
Chapter 6 deals with the application to more complex real-world problems, but a

direct comparison to the traditional GA structure on accepted problem surfaces

was also necessary.

This chapter describes the test problems applied, the rationale behind the
testing, the implementation of the chromosome encoding within the GAs and
the results of the fixed rate experiment series carried out. It also describes the
move to dynamic parameterisation that arose out of the fixed rate experiments,
laying the foundations for both the discussion of dynamic parameterisation and

application oriented results presented in chapters 5 and 6 respectively.
Test problems used
Rationale behind surface selection

In selecting the type of problem to apply, recognised optimisation surfaces of a
complex, scalable nature were sought in order to allow experimentation with a
number of chromosomes in the Multi-GA structure. Whilst problem surfaces
such as the De Jong test suite (1975) are well recognised as benchmark tests, it
was felt that these problems lacked the requirement of a multi-chromosome

implementation since they could be described by a simple chromosomal

representation.

Initial investigations into optimisation surfaces containing multiple local minima
led to the identification of surfaces defined in a paper by Styblinski & Tang
(1990). Following experimental results and further encouraged by
recommendations from Miihlenbein, more complex, widely accepted surfaces
were selected — namely Schwefel’s F7 and Griewank’s I8 function. The choice
of these two functions from the set listed in Miihlenbein’s (1991) parallel GA
study was made because of their contrasting surface shape and Miihlenbein’s
identification of them as difficult, scalable problems. In particular, Miihlenbein
(1991) described F8 as “one of the most difficult to optimise because it is non-separable
.. [and] has to climb a hill to get to the next valley. » Selection of these problems
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allowed higher dimensionality tests to be performed, making full use of the

multi-chromosome potential which the tests were intended to Investigate.

4.2.2  The problem surfaces

The relative simplicity of the representational qualities of problems such as the

deceptive problems, or the De Jong test suite, led to the decision to steer

towards scalable problems, fully utilising multiple chromosomes. The test
problems were also selected in order to provide an upwards gradation in
difficulty, from the Styblinski & Tang (1990) surfaces through to the more
difficult F7 and F8 problems identified by Miihlenbein (1991).

4.2.2.1 Styblinski & Tang surfaces

Styblinski & Tang (1990) carried out a study of function optimisation and
identified three equations defining problem surfaces of varying difficulty. All
three were multimodal, providing complexity at least similar to some functions

in the De Jong test suite, but with the added benefit of scalability in the later

two functions. Consequently, these problems were the first set tackled, mitially

in 2 variable form and then scaled to the more complex 10 variable form.

2

1
f(x;, 29) = 2 2(1‘14— 1622+ 5Il) -4 <z, <4 [4.1]

=1

The first problem presented, defined by equation [4.17] above, provided a
scalable, multimodal surface with four local minima, the global minimum at z =

-2.908534 (i = 1, 2) and a maximum close to the origin, illustrated in figure 4.1.

Figure 4.1: Optimisation surface 4.1

In the 2 variable form, this surface was extended by Styblinski & Tang to

increase the number of local minima, providing a surface (illustrated in figure
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[5 2] I
4.2) with 13 small local minima through addition of cosine terms (equation

[4.27]).

Q2

1
Sflrnxe) =7 2(1:#— 1622+51,) [4.2]

=1

- 10 cos (+(x]+2.903534«)> cos (Q(.r2+2.9035344)> 4 < ;<4

Figure 4.2: Optimisation surface 4.2

A further increase in complexity was obtained by scaling equation [4.1] to 10
variables, increasing the number of local minima to 1024. In addition, Styblinski
& Tang presented another surface with the global minimum at an off-centre
location, defined by equation [4.8] and illustrated in figure 4.3. Whilst
Qustrated in 2 variable form, the experiments were performed only on the more

complex 10 variable form of this problem.

n

n
1
F(xgy ey Tp) = on z2 -4n Hcos (z;) |+ 40 -4 < ;<% [4.87]

=1

Figure 4.3: Optimisation surface 4.3
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These surfaces provided a number of scalable optimisation alternatives, with

mcreasing numbers of local minima and different global minimum locations.

4.2.2.2 Schwefel’s F7 function

fr@)= 2% sin <\/ l xil ) -500 < ;< 500 [4.4]

=1

The F7 function provides a difficult surface for an optimisation task and 1s

scalable in nature, allowing expansion to an arbitrary number of variables. As

illustrated in figure 4.4, the problem surface contains a large number of local

minima, with the global minimum located off centre, at z; = 420.9687 tor

1= (1, .., 7). In addition, the next best optimum value is located far away from

this point, potentially leading the GA to convergence at a point from which it
may be difficult to recover. Figure 4.4 shows the F7 function for a 2 variable

problem, clearly showing the large number of local minima present.

-500  -500

Figure 4.4: Schwefel’s F7 function (2 variable)

4.2.2.3 Griewank’s F8 function
n
2
Js(x) = 4000 ~
=1

The F8 function is another example of a scalable problem, applicable in arbitrary

Ly

cos ——.
N 2

+1 -500< 2,;£500  [4.5]

n
1=

=1

dimensions. The function provides a different type of surface from that

presented by F7, having an overall basin shape, but on closer examination
consisting of a number of hills and valleys moving out from the central global

optimum. The behaviour of this surface can clearly be seen in figure 4.5,
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lustrating the F8 surface’s general shape (left) and close detail near the origin

(right).

~-178

-500 -500

Figure 4.5: Griewank’s F8 function (2 variable) general shape (left) and close detail

F8 apparently has the qualities of providing a highly testing surface, specifically
identified by Mithlenbein (1991) as extremely difficult to optimise. As with the
F7 function, the tests were applied in both 2 variable and 10 variable
combinations, giving the GAs increasingly complex surfaces to optimise.
Whilst this problem surface looks highly complex, recent research (Whitley et
al., 1995) has presented a powerful argument as to the lack of suitability of '8
for GA optimisation. The details of this research, published after the

experiments described here were carried out, is discussed in section 5.5.
Representational handicaps

Whilst it was necessary to apply the Multi-GA and traditional GA on accepted
optimisation problems, it is important to note that the application to these
problems did not fully utilise the structural benefits proposed by the Multi-GA.
In particular, the concept of independent chromosome fitness functions was not
permitted by the representation required to implement benchmarking functions.
This feature of the Multi-GA required a more complex application problem, of
the type described In chapter 6. This will become clear in the following section,
where the encoding method more clearly illustrates the lack of an independent
chromosome fitness function. However, significant differences were still made

possible by the structure and the comparative testing exploited these to produce

a number of interesting results.

Encoding the test problems

As with any GA application, a method of encoding the variables into
chromosome string form and designing the fitness function had to be found. An

acceptable balance between ensuring an accurate comparison and exploiting the
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An additional change from the problem surface equations given was introduced
for operational simplicity. Where the surface implemented contained both
positive and negative values, an offset was subtracted from the final fitness
evaluation to ensure that the surface was (in the case of minimisation) below the
zero axis. For Goldberg (1989) style implementation of fitness proportionate
selection, values both above and below the zero axis can mislead the selection
process from minimisation to maximisation, leading to location of the global
maximum rather than global minimum. This problem is overcome when
specifying ranked selection with minimisation or maximisation identified as a
specific parameter, as encoded in the Multi-GA software. The offset produced
no change in the behaviour of the fitness functions, but simply lowered the final

result by an appropriate amount.
Designing a suite of experiments

Having identified a series of optimisation surfaces of varying complexity and
scalability — and bearing in mind the representational handicaps in traditional
optimisation contexts outlined earlier —a series of illustrative, rather than

complete and exhaustive tests, was constructed.
Objective of the optimisation tests

The intention of the optimisation tests was to investigate the effects of multiple
chromosomes and analyse how the multi-chromosome GA, conceptually
suggesting increased flexibility, performed on a series of problems that the
traditional GA handles reasonably effectively. A number of potential areas, such
as co-evolution, dynamic parameterisation, representational flexibility etc. have
been identified as holding potential for the multi-chromosome structure.
However, before advancing to these and multi-dimensional applications
problems that may be more directly suited, the obvious question “how does it do

against the traditional GA?” had to be addressed.

The test suite was intended to provide this basic comparison of traditional to
Multi-GA performance on an increasingly complex series of problem surfaces.
Having performed these initial experiments, a number of the more advanced
areas offering greater potential benefit to the Multi-GA were explored.
However, the time available regrettably did not allow for a full and exhaustive
series of tests of all aspects of comparative testing and the test series was not
designed as such. The intention was to investigate the performance with a view
g forwards to practical, multi-dimensional problems with greater

to movin

feature independence following an initial behavioural comparison.

9%




Comparative Testing
4.2.5.2 The experiment series implemented
The test series moved from simple to more complex surfaces, providing

discrimination between the traditional and Multi-GA by exploiting the areas of

the Multi-GA expected to prove beneficial. In doing so, the design of the

experiment suite was a dynamic process, with the results of early experiments

indicating the way forward for the later tests carried out.

Initial tests were conducted on the Styblinski & Tang (1990) surfaces described
in section 4.2.2.1. Starting with 2 variable versions, then progressing to 10

variables, the intention was to analyse the effects of increasing the

representation to 10 chromosomes within the Multi-GA structure and

demonstrate the effects on performance (if any) of distinct individual and

chromosome level operations.

The first experiments were performed with fixed parameters on Styblinski &
Tang problem surfaces [4.1] and [4.27] in 2 variable form. The move to higher
dimensionality was carried out with surface [4.1] and surface [4.37] in 10
variable form. Typical parameter settings were used Initially and the results of
these experiments dictated the move on to the more complex surfaces of F'7 and

F8, recommended by Miihlenbein (1991) in both 2 and 10 variable forms.

The general aim of the experiments on F7 and F8 was the same as above — to

illustrate performance on a simple surface, then repeat for a higher

dimensionality to increase the effect of the multi-chromosome structure.
Following the results of early experiments using fixed rates, later experiments
considered dynamic parameterisation and alternative alphabetic representations.
Experiments in these areas were designed to explore the effects of dynamic
application of both crossover and mutation rates and ranking alternatives to
increase maintenance of genetic diversity. The move to alphabetic alternatives
then explored the effects (if any) of utilising a higher cardinality alphabetic
representation, in conjunction with the increased structural flexibility, and the

development of a new real-encoded crossover mechanism — Quotient crossover.

As the discussion shows, the experiments performed were by no means an

exhaustive comparison, but provided a base for indicative analysis of the

n both binary and non-binary alphabetic representations for

structural potential 1

a variety of increasingly complex problem surfaces. The remainder of this

chapter presents the results of the fixed parameter rate experiments.
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Experimental results

The first series of comparative tests were performed using fixed parameter
settings, mitially on the surfaces defined by equations 4.1 - 4.3, then on the more
complex F7 and '8 problems. These tests provided the preliminary indications

of comparative performance of the traditional and Multi-GAs, over increasingly

complex surfaces.

GA configuration

The initial series of experiments on surfaces 4.1 - 4.3 were performed with
typical GA parameter settings — population size 100, 75% crossover, 4%
mutation and ranked roulette wheel selection using a generational GA, with
elitism carrying across the single best member at each generation. The Multi-
GA used the same parameter settings, with the addition of Individual level
crossover operating also at 75%. Each GA trial was run for 500 generations,
initial studies indicating that this gave adequate opportunity for population
convergence, whilst not demanding excessive CPU time. Every experiment set
consisted of 20 GA trials, run with a different random seed to provide a measure

of statistical significance.

The chromosomes were encoded in binary form, with varying ranges for the
simpler and more complex surfaces. Surfaces 4.1 - 4.3 were encoded from -4 to
+4, using 12 binary bits after the decimal point to provide a significant search
space. Offsets applied in order to ensure negative fitness evaluations were -12
for surfaces 4.1 & 4.2 and -80 for surface 4.3. F7 and F8 were encoded from

-500 to +500, with 4 bits after the decimal point and offsets of -840 and -180.5

respectively.

Tables presented all take a similar format, showing a number of statistics about
GA performance. The tables detail the type of problem tested (including

parameterisation ‘nformation where pertinent) and show results, under the

column headings shown overleaf.
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A
verage Best/Worst  Best/worst results of each GA trial, averaged over

the 20 trials performed.

Std. - lati
Dev. Standard deviation of the average listed in the
preceding column.
B / " . . . ~
est/ Worst Ever Best/worst single result obtained by any of the 20
runs.
Average Best Gen. Number of generations taken to find the best result

of each trial, averaged over the 20 trials performed.
Degree of Elitism  Number of individuals carried forward without

modification to the subsequent generation by elitism.

2 variables, surface 4.1

The table below presents the results of the 20 GA trials for both traditional
(TGA) and Multi-GA (MGA) on surface 4.1.

GA | Average Std. | Average Std. | Worst | Best Ever | Avg. Best Std.
Tested Best Dev. | Worst | Dev. | Ewver Gen. Dev.
TGA | -78.29 | 0.05 2.181] 8.73 1 9.87| -78.33 57.50 | 65.92

MGA | -78.32 1 0.05 527 4.30| 14.13| -78.33 40.95 | 23.98

Table 4.1: Fixed rate Traditional and Multi-GAs applied to 2 variable surface 4.1

The results indicated interesting trends, showing comparable performance trom
both the traditional and Multi-GA, as shown by the average best results
achieved. Both GAs found the global optimum (-78.38) during the 20 runs,
indicated by the best ever result. However, a number of differences are

noticeable between the two GA methods, relating to worst performance and

generations to converge.

Whilst indicating similar average best performance between the two GAs, the
Multi-GA method converged, on average, more quickly than the traditional GA.
Whilst the result is not statistically significant, being within the standard

deviation of the traditional GA, it does seem to indicate a quicker convergence

from the Multi-GA with a comparably smaller standard deviation.

Examination of the average worst result also shows a difference. Analysis of the

worst results can provide information about the population behaviour of the GA.
One of the primary object
diversity, thereby restraining pr

diversity can be gained by analysl

ves of GA researchers has been to maintain genetic
emature convergence. A measure of population

s of the range of fitnesses present within a
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population, indicated by the upper and lower fitness bounds. As such, the
average worst result In a population, taken in conjunction with the average best

result, assists with indicating the level of fitness diversity (and hence
convergence) within the population.

The results shown by the average worst figures indicated a slightly higher value
from the Multi-GA, although again just within the traditional GA standard
deviation range. This greater range suggests (as described) improved fitness
diversity from the Multi-GA.

However, the results from both GAs are within the standard deviation limits of
one another, so it would be unwise to conclude anything other than on average,
comparable but slightly improved convergence and population diversity is seen
from the Multi-GA approach, with no significant disadvantages seen by utilising
the more structured Multi-GA approach.

2 variables, surface 4.2

The indications given by the results obtained from surface 4.1 led to identical
experiments being carried out on a more complex surface — the extension to 13

local minima provided by surface 4.2.

GA Average Std. | Average | Std. | Worst Best Ever | Avg. Besl Std.
Tested Best Dev. | HWorst Dev. Ever Gen. Dev.
TGA [-100.21 | 0.27 | -4.82 4.15] 5.69 |-100.33 79.75 | 81.07
MGA |-100.81| 0.05| -3.76 4.59] 5.85|-100.33 54.30 | 64.02

Table 4.2: Fixed rate Traditional and Multi-GAs applied to 2 variable surface 4.2

The results shown in table 4.2 are similar in trend to those presented in table
4.1. Both GAs find the global optimum (now ~100.88) on at least one of the 20
trials carried out. On average, the Multi-GA performs marginally better than
the traditional GA, but again well within the bounds of standard deviation,
indicating comparable performance between the two. The range of standard
deviation on both average best and generations to converge is smaller with the
Multi-GA, indicating a more consistent performance. In general, the results
indicated by the test on the simpler problem surface were repeated here,

indicating comparable performance, converging in slightly less time with a

smaller standard deviation in the Multi-GA.
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10 variables, surface 4.1

The Multi-GA concept outlined in chapter 8 suggested the use of multiple
chromosomes, with individual level crossover allowing exchange of entire
feature chromosomes. In the 2 variable problem surfaces, there is little scope for
this operation to take place. In addition, both GAs found the global optimum,
indicating a relatively simple problem surface. As a result, the extension of
surface 4.1 to 10 variables, utilising its scalable nature, was implemented to

provide a more demanding test surface containing 1024 local minima. The

results are presented in table 4.3.

GA Average | Std. | Average | Std. | Worst |Best Ever | Avg. Best | Std.
Tested Best Dev. Worst Dev. | Ever Gen. Dev.

TGA | -77.92|0.72| -18.23| 299 | -7.88 | -78.29| 396.45 | 54.95
MGA | -78.25| 0.00| -13.83| 2.08| -8.45| -78.83| 298.95 | 65.83

Table 4.3: Fixed rate Traditional and Multi-GAs applied to 10 variable surface 4.1

The results again indicate similar trends, with the Multi-GA performing on
average slightly better than the traditional GA. Whilst the Multi-GA average
best was still within the bounds of traditional GA standard deviation, 1t was
noted that the traditional GA did not actually find the exact global minimum in
this example, falling fractionally short of the -78.88 required. The apparently
sero standard deviation reflects a smaller standard deviation than can be

expressed to 2 decimal places.

Again, convergence was achieved more quickly with the Multi-GA, with a
larger difference than that shown in previous experiments. These results
showed an increase in the trends indicated by the 2 variable results, with the
Multi-GA exhibiting slightly better performance than the traditional GA on this
surface, measured in terms of fitness convergence to the global optimum, with
comparable average performance and comparable, if slightly improved, average

convergence time. In general, the trends hinted at with the 2 variable version

were confirmed by the more complex 10 variable surface.

10 variables, surface 4.3

This surface presents a more complex challenge still, with Styblinksi & Tang

(1990) describing it as having “a large
‘deepness’ and ‘frequency’ depend on a specific choice of the coefficients of the sinusoidal

(unknown) number of local minima, whose

part.” The results of experiments on this surface are presented in table 4.4.
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GA Average Std. | 4 verage | Std. Worst

Best -
Tested Best Dew o Do est Ever | Avg. Best | Std.

Ever Gen. Dev.
\'1;1?;}\ -119.24} 0.51| -45.29| 4.25| -40.02|-120.00| 874.00| 52.85
] Al -119.16 | 0.50 | -41.19| 1.88 | -40.01 |-119.97 | 298.60 | 52.75

Table 4.4: Fixed rate Traditional and Multi-GAs applied to 10 variable surface 4.3

The results for this surface again indicated comparable performance between the
two GAs. The Multi-GA converged a little faster on average, but fractionally
missed the global minimum, found by the traditional GA at -120.00. No
indications were given by this set of results of a continuation in the trend
indicated by the previous surfaces, although the results provided no conclusive
evidence of a loss of performance either. The conclusions on this more complex
surface were comparable performance, well within the bounds of standard

deviation for both GAs.

The trend indicated by the first three experimental sets and the inconclusive
results of the third led to further experiments on more complex surfaces.
Performance was comparable on surfaces 4.1 - 4.3 and in all cases both GAs
came close to, or found, the global minimum. Consequently a similar set of
tests, initially in 2 variable form then expanding to 10 variable form, were

carried out on the more difficult F'7 and I8 surfaces.

2 variables, F7

As with the experiments carried out so far, 20 GA trials were performed under
the same parameter settings as previously used. In addition, experiments were
performed to investigate the effects of increased selection pressure on the search
process. Population convergence, controlled by the selection algorithm and the
use of elitism, encapsulates the lssues defined by the exploration/exploitation
dilemma. Whilst detailed studies on a variety of selection schemes have been
carried out elsewhere (e.g. Goldberg, 1990; Whitley, 1989), it was considered
instructive to investigate the effects of selection pressure through elitism on the

traditional and Multi-GA architectures.

Investigations of varying degrees of elitism were carried out with the best and

best 10 members of a 100 member population being transferred to the next

generation. Table 4.5 presents results obtained for the 2 variable F7 surface.
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4.3.7

GA Degree o ;
o E(lgl"_ln_smf AY};Z:’?E gg: A;f;?;gf'e gfea; lgz;j{ Best Ever Avér; fesﬁ Std. Dev.
TGA 1 -1677.79| 0.25 |-128.96 | 82.29 | -2.04 |-1677.97 61.60 | 388.46
MGA 1 -1677.58| 0.98| -87.98| 79.56| -2.04|-1677.97 30.95 5..7‘2
TGA 10 -1676.98| 1.70|-180.68| 77.58|-21.70|-1677.97| 347.40| 60.35
MGA 10 -1677.46| 0.77| -76.38| 78.58| -2.04|-1677.97| 49.75|108.57
Table 4.5:

Fixed rate Traditional and Multi-GAs applied to 2 variable surface F7

The results showed similar trends to the experiments performed so far, with
performance of traditional and Multi-GAs being comparable. Although the
traditional GA showed marginally improved performance on average, the
results were well within the Multi-GA standard deviations. Performance
measured in terms of the best ever result was identical, with both GAs finding
the global optimum of -1677.97 in all cases. The differences between the two
GAs occurred in the areas of population diversity and convergence time. The
Multi-GA average worst values indicated a greater spread of fitness ranges (and
hence genetic diversity) than that given by the traditional GA, although again
within standard deviation limits. However, convergence times did present a

more substantial difference, indicating Multi-GA convergence to be, on average,

50% that of the traditional GA with a much smaller standard deviation.

The differences indicated by the use of a higher degree of elitism were minimal,
showing a slight degradation of average performance and an Increase in
convergence times. The traditional GA was most seriously affected by the move
to 10 member elitism, with a huge increase in convergence time from 61.6

generations (£38.46) to 847.4 generations (£60.35).

Overall, the results indicated that the problem surface itself 1s not sufficiently
complex to discriminate between the performance of the traditional and Multi-

GA. The effect of 10 member elitism did not overly influence performance, but

appeared to play a part in the time taken for the GA to reach its final result.

2 variables, F8

In addition to F7, Miihlenbein (1991) identified F8 as a particularly testing
problem surface, {llustrated by the complex shape of this surface as shown 1n

figure 4.5 earlier. Results for the experiments performed on I8 are given in

table 4.6 overleaf.
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GA Degree of |  Average Std. | Aver
T i il D yﬁ;:ﬁe gferi 7?;7:71 Best Ever Avg. Best 1Std. Dev.
. Tve Sen.
I;I/;gj‘; 11 -180.46 | 0.10| -68.48| 5.70| -58.88 | -180.49 58.00 {100.57
-180.48 | 0.12| -68.08| 6.02 | -58.72 | -180.50 56.651 90.16
\rl/;gj?\ 10 -180.40 | 0.09 | -71.19| 7.94 | -57.22| -180.50 31.35 20.38
] 10 -180.46 | 0.00| -67.60| 5.82| -56.76| -180.50 3040} 35.19

Table 4.6:  Fixed rate Traditional and Multi-GAs applied to 2 variable surface F8

The results were strikingly similar to those presented previously, showing
comparable performance between the two GAs. In terms of both best ever
performance and average best, there was little difference between the two — the
Multi-GA performed slightly better and found the global optimum of -180.50.
Interestingly, convergence times were very similar for both 1 and 10 member
elitism results, with 10 member elitism having little effect other than a marginal

lowering of the average best performance.

4.3.8 10 variables, F7

Despite the more complex nature of the F7 and F8 surfaces, 2 variable
experiments still resulted in the location of the global optimum by both GAs.
For the same reasons as outlined earlier — namely greater surface discrimination
and greater utilisation of the multi-chromosome structure — the more complex
surface experiments were repeated at higher dimensionality. The results of the
scaling of F'7 to 10 variables are given in table 4.7 with the global optimum now
located at -5029.83.

GA  |Degree of| Average |Std. Dev. Average |Std. Dev.| Worst | Best Ever | Avg. Best | Std.
Tested | Elitism Best Worst Ever Gen. Dev.
TGA T 1-2640.85 | 189.67 | 689.84 | 195.24 |1046.63 |-4901.57 $47.40 | 60.35
MGA 1 -4718.59 1172.831 | 710.56 152.24 {1146.35 |-5020.01 275.55 | 57.41
TGA 10 _4710.48 | 142.74 | 645.95 138.47 | 849.83 |-4932.30 310.90 | 54.31
MGA 10 -4685.29 |170.79 | 725.3% 185.81 11213.99 |-5016.82 237.65 | 81.90

Table 4.7: Fixed rate Traditional and Multi-GAs applied to 10 variable surface F7

The results reflected the more discriminating nature of the surface, with both

GAs failing to find the

comparable performance Ih t

global optimum at -5029.83. The Multi-GA showed
erms of best ever fitness and average best
standard deviation limits. The increased
as reflected by the larger standard
The Multi-GA also exhibited

performance, again coming within
discrimination of the problem surface w

deviations in both average best and worst values. | .
a higher value for average worst performance, indicating a higher diversity
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ran 1th 1 ;
1 g?e' within the population, although again these values were in range of the
traditional GA’s standard deviation.

10 member elitism showed a degradation in the performance of the Multi-GA on

average an o] 1 - erf .
ge and marginally in best ever performance. Convergence time was lower

with the Multi-GA, although not statistically significant.

As with previous experiments, the results indicated comparable performance
between the two GAs, with a tendency for the Multi-GA to take the edge
slightly over the traditional GA, shown by a higher average best, best ever and

convergence time in most cases.
4.3.9 10 variables, F8

The experiments were repeated with F8 in 10 variable form, completing the

series of fixed rate tests as shown in table 4.8.

GA |Degree of | Average Std. Average | Std. |Worst Ever Best Ever | Avg. Best | Std.
Tested | Elitism Best Dev. Worst Dev. Gen. Dev. .
TGA 1 18045 0.00| -117.98 | 1.00| -116.99 -180.50 | 202.25 | 48.22 Bt
MGA 1 -180.471 0.10} -117.70 | 0.77 | -116.98 -180.50 | 360.15 | 81.14 : !
TGA 10 -180.45| 0.08 | -118.08 | 0.93 | -117.02 -180.49 | 186.20 | 37.66
MGA 10 -180.47| 0.05| -118.14 | 1.18 | -116.98 -180.50 | 202.45 | 65.56

Table 4.8: Fixed rate Traditional and Multi-GAs applied to 10 variable surface F8

Comparable performance was again indicated from the two GAs. Both GAs
located the global optimum of -180.50 with similar population diversity and
average best performance within standard deviation values of one another.
Convergence times presented interesting results, In contrast to previous
experiments, showing the Multi-GA taking longer to converge than the

traditional GA. The discrimination indicated by the escalation to 10 variables

with F7 did not appear to be mirrored by the F8 surface.

4.4 A summary of fixed parameter testing

A number of tests were performed on 2 variety of increasingly complex problem

surfaces, comparing the performance of traditional and Multi-GA structures.

Experiments were performed initially with the simpler surfaces 4.1 - 4.8,
increasingly the complexity fro
and 4.3. The results showed good p
locating the global minimum. Indication

nvergence in fewer generatl

m 2 to 10 variables in the scalable surfaces 4.1
erformance from both GAs, In most cases
s of a trend towards marginally better

ons and a wider population fitness
performance, €O
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diversity were su ;
y' ggested, although the range of standard deviation results over
the 20 trials left no statistically significant conclusions.

Experiments were then carried out on the more complex 7 and '8 surfaces in
both 2 variable and 10 variable form, with similar results to surfaces 4.1 - 4.3.
Investigation of population convergence through increased degrees of elitism
resulted in surface dependent behaviour, with no clear indication given of a

general benefit when applied in the manner described here.

What the results did show was that, despite the representational handicap
restricting full utilisation of the Multi-GA in the traditional GA problem
environment, comparable performance was seen from the two GAs over a range
of increasingly complicated problem surfaces of widely differing characteristics.
Although no clear lead was shown by the Multi-GA, indications were seen of
improvements in some areas of performance and the more structured
representation certainly did not produce a degradation of performance in the

traditional GA environment.

These results led to further investigation of the Multi-GA, still in a traditional
GA context with associated representational restrictions, but in an attempt to
further exploit the structural flexibility in a beneficial manner through

application to dynamic parameterisation.
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5.1.1

Dynamic Parameterisation
Chapter 5: Dynamic Parameterisation

Exploring dynamic parameterisation

The field of dynamic parameterisation, introduced in section 2.3.4.4, has been an
area of ongoing research in GAs for some time. The structural flexibility of the
Multi-GA, laid out in chapter 3, contains a great deal of potential for a number
of current techniques to be explored, including dynamic parameterisation. The
Multi-GA’s independent feature chromosome parameter rates lend themselves
to dynamic control, allowing independent assignment of the most appropriate
parameter rate to each chromosome. It is this line of investigation that was

taken up during the experiments described here.

Related research

As discussed briefly in chapter 2, a number of authors have undertaken research
into dynamic parameterisation, exploring several different facets of this
approach. Of this research, a number of papers exploring the dynamics and
application of rate calculation are particularly appropriate to the Multi-GA
studies carried out here. Srinivas and Patnaik (1994) proposed the use of an
Adaptive Genetic Algorithm (AGA) that dynamically controls both the
crossover and mutation rates of individuals, according to their relationship with
the current state of the population fitness. As we shall see, the mechanism of
rate calculation used by the Multi-GA is similar, making use of and confirming a

number of important points made by Srinivas and Patnaik.

An investigation into adaptive operator Fates was carried out by Davis (1989),
who made the observation that different operators are required at different
stages of the genetic process, with the GA able to adapt and select as
appropriate. This theme has been followed up by a number of other authors,
referenced throughout this section. In their investigation 1nto adaptive

crossover, White & Oppacher (1994) followed this theme by proposing an

automaton controlling crossover rate, using a version of the Adaptive Uniform

Crossover operator (AUX) and ins
thus being subjected to the genetic proce
of inserted operators oOr genetic material dis

(1987) and Levenick (1995), has been followed u
ation. In his study of adaptive mutation, Bick (1992)

erted into the genetic representation itself,
ss. This theme, similar to the concepts
cussed by Schaffer & Morishima

p by several authors as a
mechanism for self-adapt | B
encodes the mutation rate directly into the genetic string in a similar way to

White & Oppacher (1994). This is of particular relevance to the Multi-GA, as

105




Dynamic Parameterisation

the later discussion (chapter 7) into self adaptation and the use of multiple
chl*om?somes demonstrates. The use of self inclusion of operator rates for rate
evolution, mentioned by Davis (1991) and followed up in the other studies
discussed, has seen interesting results in application to both dynamic crossover
and mutation, which have relevance to the Multi-GA studies carried out here.
In particular, a number of observations made by authors such as Bick (1992) and

White & Oppacher (1994) are observed to some degree in the Multi-GA results
that follow.

Starkweather et al. (1990) carried out a study into dynamic mutation, similar to
(and directly referenced by) that of Srinivas and Patnaik, exploring the use of an
adaptive mutation rate in a distributed genetic algorithm. This work, again
providing important lessons for the structural development seen in the Multi-
GA, takes a significant step in the application of the dynamic parameterisation
mechanism to the increasingly popular co-evolutionary concept. Other studies
in dynamic mutation, such as that of Hesser and Mianner (1992) confirm the
results of other studies (such as Schaffer et al. (1989), Bick (1992) and Fogarty
(1989)) in demonstrating the relationships between parameter rates, population
size and convergence. In a wider context, other authors such as Julstrom (1995)
have taken the approach of calculating dynamic operator rates by referring to
the past history of individuals, demonstrating a cross-fertilisation of ancestral
history mechanisms of the type seen in papers by Eshelman & Schaffer (1991)
and Craighurst & Martin (1995).

The study by Starkweather ef al. (1992) is particularly interesting, mentioning a
number of points which are taken up in the Multi-GA exploration of dynamic
rate application. Their paper examines the use of a distributed genetic
algorithm, with communicating subpopulations exchanging members with an
adaptive mutation rate. Of particular significance is the expectation of similar
results from GA approaches evaluating individuals in parallel, with mechanisms
for maintaining Jlocality’ of mating. Given the discussion in chapter 7 relating
the Multi-GA to a subpopulationary context, their experiments (analogous to a
t of a Multi-GA implementing subpopulations, with
¢ maintaining locality of mating) are of particular

eful comparison for such a future study. This 1s

future developmen
individual level crossove
relevance and may provide a us
also the case when examining the res

study, in which a number of observed tren
conducted here. Further discussion of these relationships 1s

ults and conclusions of Starkweather et al’s

ds are similarly observed in the Multi-

GA experiments

examined in the dynamic mutation results section.
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Fogarty’s (1989) paper provides interesting results for Multi-GA
experimentation, in exploring a number of alternative mutation rate calculation
mechanisms related to generation number, bit string representation, initial
population seeding and a combination of all three. Fogarty’s examination of a
decreasing mutation rate over the bit string of an individual presents an
immediate similarity (as with Harvey’'s (1992) SAGA structure, discussed
earlier) to the structural application of mutation rates in the Multi-GA context.
The experiments carried out here did not include studies into the relationship
between Initial population seeding or generation number and the effects on
chromosome level dynamic mutation rates. However, Fogarty’s (1989) results
for dynamic mutation rates varied by bit position would undoubtedly provide an
indication of expected performance with the Multi-GA representing, what is in
many respects, an expanded version of Fogarty’s bit string to mutation rate

relationship.
Objectives of dynamic application to the Multi-GA

As outlined in the brief introduction to this chapter, the structure of the Multi-
GA as defined in chapter 38 opens up the possibility for independent application
of genetic operator rates at the chromosome and individual levels. With the
potential for customisation so evident, the success of other authors in dynamic
application of parameter rates to the genetic process becomes significant. Given
a Multi-GA structure with the potential for a local chromosome operator and
rate, it became evident that an investigation into the possibility of dynamic

configuration of those rates would be appropriate.

The results of the initial fixed parameter tests indicated that surfaces 4.1 - 4.3
were easily solved in 2 and 10 variable form, by both traditional and Multi-GAs.
Given the time constraints placed upon the work, it was decided to restrict
subsequent experiments to the 2 and 10 variable F'7 and I'8 surfaces, since these
offered greater discrimination in performance. In addition, this point 1s
mentioned by Srinivas and Patnaik (1994), who observed improved performance
of their AGA on problems of a greater multimodal nature. The 2 variable
versions of the surfaces provided simple examples of performance and 1t was
recognised that, on the basis of the results presented in section 4.3, surfaces 4.1 -

4.3 would behave in a similar manner to the 2 variable I'7 and F'8 surfaces.

In addition, the earlier results indicated comparable performance between the
traditional and Multi-GA. Investigations into dynamic parameterisation were

designed to explore the structural potential of the Multi-GA, demonstrating
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lternati X . )

alternative methods of dynamic parameterisation within that structure; rather
than performing a distinct comparison with a dynamically parameterised
traditional GA. Whilst the structure of the Multi-GA differs from that tested in
Starkweather et al. (1992)

, @ number of similarities exist between the two
structures and Starkweather points out that structures providing dynamic rate

calculation 1in parallel “could display behaviour similar to the implementation

described” if local evaluation is maintained.

Although a direct comparison to a dynamically parameterised traditional GA

would be a desirable and useful study to undertake, the objective here was to ’» !

lustrate that dynamic parameter rate application within the Multi-GA context :

1s feasible and worthy of future investigation, as suggested by other researcher’s S
studies. It is accepted that a traditional GA operating with dynamic i1k
parameterisation methods may well give comparable performance, but the f

requirement to undertake the application work described in chapter 6 meant

that time and CPU constraints did not allow for such a study to take place here.

What the results do give is an indication of some alternative methods of

applying dynamic rates within the Multi-GA structure and the behaviour of

such application. They are not an exhaustive test of all aspects of dynamic
parameterisation, but indicative results showing successtul application and the
potential for futher investigation. Importantly, having demonstrated a

mechanism for their application, a foundation is laid for future investigation of

their interaction with the dynamic population control explored in chapter 6
through the use of addition and deletion. Chapter 6 undertakes some study of

the effects on population behaviour of this new mechanism, but time did not

permit a study of the interaction with dynamic rates. This is of particular
interest given the observation of Srinivas and Patnaik (1994) that “a similar
dynamic model for varying the population size in relation lo the filnesses of the

populatz‘on” warrants investigation.

5.1.3  Mechanisms for diversity maintenance

In approaching dynamic parameterisation, 1t was noted that one of the main
objectives of this type
diversity maintenance to best address the exploration/exploitation dilemma.

of work has been to find a set of rates that use suitable

Methods of effective diversity maintenance are, as such, an important part of the

parameterisation debate from direct control studies (e.g. Julstrom, 1995)

through to alternatives like incest prevention (Eshelman & Schaffer, 1991) and

(Craighurst & Martin, 1995). The latter studies showed the

ancestral history
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ote 1 or di rersl 1 ~
potential for div ersity maintenance by reference to the surrounding population

members and this style of approach was followed in the experiments performed
here. However, the other studies mentioned earlier also take a less direct
approach, attempting to maintain diversity as a function of the rates being
dynamically applied. It is this approach that was adopted here, although more

direct maintenance of an individual’s history is made possible by the Multi-GA

structure (discussed in chapter 7).

Methods of dynamic rate calculation were devised that took into account both
the Multi-GA structure and the performance of other population members. The
obvious candidates for dynamic parameterisation were crossover and mutation
rates. In the Multi-GA structure, dynamic crossover was applied at the
chromosome level only, with other studies being carried out to show the
potential benefits of individual level crossover. In order to retain the
relationship between the dynamic rate and performance of other chromosomes, a
comparative rate calculation method was used. This method calculated an
appropriate rate, related to the performance of the current chromosome with

respect to the rest of the population, resulting in the following relationship:
Rate o Fitness difference between current and best chromosomes.

The above method results in an increasing rate, up to a maximum specified by
the user at configuration, as the difference between the two chromosomes
becomes wider. Application of a rate directly proportional to the fitness distance
(or ranked position in the population) produces a higher level of genetic
exchange as the fitness of the current chromosome decreases. Consequently,
there is a greater exchange of the less fit material contained in members of lower
fitness, whilst the disruption of building blocks in the fitter members 1s

minimised by a reduced rate of genetic manipulation.

However, it could also be surmised that a reduction in the rate of exchange may
lead to less incorporation of fitter schemata in the genetic process and perhaps

induce premature convergence at a local minimum. Also, the better individuals

may contain some sub-optimal chromosomes (as individuals are selected on the

basis of a combination of chromosome fitnesses), so a peer chromosome

operation within a fit individual may not necessarily involve exchange of a fit

chromosome. Consequently, an additional metric was developed with

calculation of a rate nve

that is, the fitter chromosomes are most 11

rsely proportional to the chromosome fitness distance —

kely to engage in crossover:
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Rate o = . 1
1tness difference between current and best chromosomes.

Inverse fitness distance calculation acts in the opposite way to direct fitness
distance, applying a higher crossover rate to the fitter members, thereby
encouraging propagation of their genetic material through the population. The
effect of any disruption of good material is lessened through the application of

elitist selection strategies, maintaining the best (n) individual(s).

Application of dynamic mutation rates presented further potential for alternative
rate calculations. 1In addition to a calculation based upon chromosome
performance, it 1s possible to base mutation rate calculation on the relative
performance of the individual within the population. In crossover experiments,
the presence of individual level crossover provided exchange at an individual
level. Mutation is applied only at the chromosome level, so no structural
relationship exists to the individual performance as a whole, hence the methods
used for dynamic crossover were reformulated to include references to the
individual’s rank. Both direct and inverse methods were again applied to this

metric.
Specifically, the rank based methods developed were:

(i) Rate o Pop. ranking of the individual containing current chromosome.

1
Pop. ranking of the individual containing current chromosome.

(1) Rate o

The result was a set of dynamic calculation methods that investigated
approaches linked to both exploitation and exploration, based on relative

chromosome fitness and performance within the population as a whole.

A number of similarities can be seen in the methods used here when compared
with those of other authors. Starkweather et al (1992) used the same principle of

mic rate calculated between zero and 7, where n 1s an

applying a dyna
appropriate ceiling value selected by the user. Their approach related the
application of this maximum rate to the percentage difference in the bits of the

two parent strings, rather than directly to fitness values. The relationship to

fitness values was taken up by Srinivas and Patnaik (1994), who used a very

similar mechanism to that proposed h
mechanism related the rate to be applied back to the average fitness of the

ere. The principal difference is that their

population. In addition to this, they applied rates in a more liberal manner,

forcing a mutation and crossover at high rates on all members that fell below
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the 50% mark i : C L
o mark in the population. In not maintaining a relationship to the

average fitness, the Multi-GA relates the current rate value directly to the
current best in the population and does not Impose any particular rate setting on
individuals within the population if they are below a certain threshold. In taking
this approach, the Multi-GA more closely follows the evolutionary metaphor,
allowing the fitness relationship of the individual to evolve the mutation rate
rather than using an interventionist threshold. Given the more complex multi-
dimensional structure of the Multi-GA, a purely evolutionary approach
requiring minimal pre-configuration is desirable as it allows more flexible
application of the structure to an unknown environment, evolving its own
parameters to suit that environment. Studies such as White & Oppacher (1994)

also demonstrate that, given time, such an evolutionary approach does produce

positive results.

In addition, the Multi-GA operator rate application was designed to promote
exchange of schemata in individuals relating to their performance. In many GA
experiments, it can be noted that worst performing members of the population
do contain good schemata. By application of a mechanism inversely relating
rate of exchange to performance, the objective of achieving greater exchange in
members with low fitness (to whom disruption makes little difference in
performance terms), whilst maintaining the currently good solutions with
minimal disruption is achieved. This mechanism should allow for greater
redistribution of schemata in the lower performing members of the population -
an effect not so dramatically achieved by a levelling out with relationship to

average fitness values.

Experiment suite tested

In order to provide a comprehensive test set, each dynamic rate was applied in
turn, producing a series of GA trials carried out on 7 and I'8 in 2 and 10
variable forms. As with previous experiments, 20 GA trials were performed for
each experiment, introducing statistical significance to the results. Dynamic

rates were implemented by allowing the rate to float, calculated by the relevant

method, up to a maximum figure supplied at the time of GA configuration. The

other parameters regarding population size etc. were unchanged from earlier

experiments, namely 100 members running for 500 generations, following

indicative experiments that revealed no significant advantage by execution for a

greater length of time.
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The effects of eliti : o
elitism on dynamic parameterisation were investigated, with

experiments applying three rates — 0, 1 and 10 member elitism. Individual level

crossover w 1 ] o . .
r was also investigated, applied in the dynamic crossover experiments

at fixed rates of 0% and 75% respectively.

The dynamic mutation series was carried out in a similar manner, fixing the
crossover rates at individual and chromosome level and allowing the mutation
rates to float up to their maximum values of 10%, 30% and 50% according to
each of the four methods devised. The conclusions of the dynamic crossover
experiments also played a part, slimming down the initial wide-ranging test

series. More details on the dynamic mutation tests is given in section 5.3.

Dynamic Crossover

The first series of experiments investigated the effects of dynamic
parameterisation of chromosome level crossover and the eftect of individual level
crossover. Experiments were performed on each problem surface with a fixed
mutation rate of 4% across the entire individual (that is, a 4% chance of mutation
of a chromosomal bit somewhere in the individual, not a 4% chance of mutation
within each feature chromosome) and individual level crossover set at 75%, then
disabled (i.e. 0%). For each set of experiments, the chromosome crossover rate
was calculated according to the direct and inverse chromosome fitness distance

methods, up to maximum values of 60%, 75% and 90%. LElitism was applied at

all three settings of 0, 1 and 10 members for each experiment.

The experiments were performed first on the 2 variable I'7 and I'8 surfaces,
then moving on to the more discriminating 10 variable cases. The main

objectives of the dynamic crossover test series were to:

« Identify the effect of individual level crossover.

«  Assess the effects of dynamic chromosome crossover at different rates.
«  Assess the effects of elitism at increasing dynamic crossover rates.

. Assess the usefulness of applying dynamic rates in direct and inverse

proportion to relative fitness performance.
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2 variable, F7

Experiments were performed for each of the dynamic crossover rates and elitism
settings, for both 75% and 0% individual level crossover, utilising direct and
inverse fitness distance calculation methods. The results are presented in that
order, starting with 75% individual level crossover and direct fitness distance

calculation (complete results in appendix C, table C. 1).

The literature suggests that the use of elitism is a beneficial method of retaining
good genetic material from one generation to another, generally leading to
improved performance and faster convergence to an area of interest. The results
shown in table 5.1 confirmed this, indicating that performance with single
member elitism was indeed better than without elitism. In all cases, the average
best showed a slight improvement through the use of elitism, although well
within the bounds of standard deviation. A further increase to 10 member

elitism was not conclusive though.

Table 5.1:

Comparison of the differing rates applie
mild improvement as the dynamic rate climbed towards

standard deviation parameters of other results. Comparison to the fixed rate

GAs (figures taken from table 4.5) showed a slight decrease In average best

Chromsome | Degree of | Average St.
Xover rate | Elitism Best Dev.
0 -1676.01 1.92
60% 1 -1676.86| 1.19
10 -1676.94, 1.29
0 -1676.61 1.81
75% 1 -1676.96| 1.38
10 -1677.19} 3.74
0 -1676.81 1.94
90% 1 -1677.21| 1.28
10 -1677.52| 0.22

performance from the dynamically configured

standar
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distance calculation with 75% individual crossover.

d showed little discrimination, with a

Multi-GA, although again within

d deviation bounds, as illustrated in table 5.2.

90%, but well within
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GA Tested | Chromsome Degree of Average St. Dev.
' Xover rate | Elitism Best
Fixed - 1 -1677.79 0.25
TGA — 10 -1676.98 1.70
Fixed 75% 1 -1677.58 0.93
MGA 10 -1677.46 0.77
Dynamic| max. 1 -1676.86 1.19
MGA 60% 10 -1676.94 1.29
Dynamic| max. 1 -1676.96 1.38
MGA 75% 10 -1677.19 3. 74
Dynamic| max. 1 -1677.21 1.28
MGA 90% 10 -1677.52 0.22
Table 5.2: 2 variable F7 dynamic crossover optimisation results for direct fitness

distance calculation at 75% individual crossover compared to fixed rate GAs.

Generally, dynamic crossover rates calculated by direct chromosome fitness
distance produced roughly comparable performance to the fixed rate approach,
with little distinction as to the level of dynamic rate application. The
experiments were then repeated without individual level crossover, in an
attempt to gauge the effect of this important Multi-GA operator (complete
results in appendix C, table C.2).

A B
Chrom | Degree of | Average Best | Si. Dev. Average St.
Xover Elitism Best Dev.
0 -1654.26 | 47.20 -1676.01 1.92
60% 1 -1683.08| 59.02 -1676.86 1.19
10 -1625.79| 62.26 -1676.94 1.29
0 -1618.64| 78.22 -1676.61 1.81
75% 1 -1608.60| 70.67 -1676.96 1.8
10 -1649.75| 46.60 -1677.19 3.74
0 -1626.16| 59.35 -1676.81 1.94
90% 1 -1611.88| 58.99 -1677.21| 1.28
10 -1625.40| 62.46 -1677.52 0.22
Table 5.3: 2 variable F7 dynamic crossover optimisation results for direct fitness

distance calculation with individual crossover at 0% (A) and 75% (B).

[t was immediately obvious that experiments without individual level crossover

produced noticeably worse results (table 5.8). Across the board, average

performance of the GA with 75% individual level crossover enabled was

superior. Whilst both GAs showed comparable best ever performance,

reflecting the simpler nature of

' nsi
crossover produced better, more co

the problem surface, the use of individual level

stent results (table 5.3) and, on average,

faster convergence (table 5.4).
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A

Chrom | Degr 2

oo 15%7; j; :;f Avé.e ft’st St. Dev. Avgp i}est St. Dev.
0 105.95 73.36 82.65 62.30

60% 1 100.80|  97.50 80.60| 93.74
10 160.20| 143.42 84.95| 108.84
0 98.65 59.42 99.85 77.59

75% 1 120.50 | 129.98 60.55 28.9¢2
10 98.10| 116.26 51.80 28.27
0 109.15 87.83 88.60 79.52

90% 1 134.55| 135.25 100.80 | 123.75
10 78.45 65.52 65.80 53.57

2 variable F7 dynamic crossover convergence times for direct fitness distance

calculation with individual crossover at 0% (A) iand 75% (B).

Having established a picture for direct fitness distance calculation, experiments

were repeated for inverse fitness distance calculation (complete results in

appendix C, tables C.8 and C.4). The results showed a repetition of the trend

indicated by direct fitness distance calculation concerning individual level

crossover. Worse performance from the average best and a larger standard

deviation was seen when individual level crossover was removed. Elitism

showed no clear trend, but results were mainly comparable (table 5.5).

Table 5.5:

A B
Chrom | Degree of | Average Best St. Dev. Average St.
Xover Elitism Beslt Dev.
0 -1671.37| 14.57 -1677.44 1.07
60% 1 -1685.71| 67.36 -1676.86| 3.89
10 -1685.07| 55.98 -1677.88| 0O.11
0 -1622.00| 77.29 -1677.61| 0.24
75% 1 -1659.19| 41.92 -1677.64| 0.90
10 -1686.23| 56.67 -1677.09 1.08
0 -165%.52 1 47.4'1 -1677.62| 0.00
90% 1 -1671.07| 25.62 -1677.48| 1.17
10 ~-1665.61| 35.43 -1677.58 1.17

2 variable F7 dynamic crossover optimisation results for inverse fitness

distance calculation with individual crossover at 0% (A) and 75% (B).
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The comparison e . - . .
p between inverse and direct fitness distance calculation was

more revealing, with slightly improved average best results for inverse fitness
distance over direct fitness distance and overall perform

ance comparable to both
fixed rate GAs (table 5.6),

A B
Chrom Deg?’ge of Average Best | St. Dev. Average St.
Xover Elitism Best Dev.
0 -1676.01 1.92 -1677 .44 1.07
60% 1 -1676.86| 1.19 -1676.86| 3.39
10 -1676.94 1.29 -1677.88} 0.11
0 -1676.61 1.81 -1677.61 0.24
75% 1 -1676.96 1.38 -1677.64| 0.90
10 -1677.19 3.74 -1677.09 1.08
0 -1676.81 1.94 -1677.62| 0.00
90% 1 -1677.21| 1.28 -1677.48| 1.17
10 -1677.52 0.22 -1677.58| 1.17
C
GA Tested | Chromsome | Degree of |  Average St. Dev.
Xover rate | Elitism Best
Fixed — 1 ~-1677.79 0.25
TGA - 10 -1676.98 1.70
Fixed 75% 1 -1677.58 0.98
MGA 10 -1677.46 0.77
Table 5.6: 2 variable F7 dynamic crossover optimisation results for 75% individual level

crossover comparing direct fitness distance calculation (A) with inverse (B)

and fixed rate results (C).

The most noticeable effect was in convergence time, with inverse fitness
distance producing around 50% fewer generations than direct fitness distance
for an average covergence, In many cases with a standard deviation around 50~

66% smaller (table 5.7). Convergence results were very similar to the fixed rate

Multi-GA.
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A
B
g?g;;l Dg% ; f; :f 4 vcg;e fest St. Dev. Avg.j’est St. Dev.
o 0 82.65 62.30 48.85 22.61
0 1 80.60 98.74 42.15 338.80
10 84.95| 108.84 43.15 46.94
0 99.85 77.59 46.55 23.08
75% 1 60.55 28.92 30.60 12.00
10 51.80 28.27 26.00 9.8k
0 88.60 79.52 34.90 16.23
90% 1 100.80| 128.75 30.20 9.80
10 65.80 53.57 24.30 8.42
C
GA Tested | Chromsome | Degree of | Avg. Best | St. Dev.
Xover rate | Elitism Gen.

Fixed - 1 61.60 | 38.46

TGA - 10 347.40 60.85

Fixed 75% 1 80.95 5.72

MGA 10 49.75| 108.57

Table 5.7: 2 variable F7 dynamic crossover convergence times for 75% individual level

crossover direct fitness distance calculation (A) v. inverse fitness distance (B)

and fixed rate results (C).
2 variable, F8

An identical set, performed under the same experimental conditions, was then
applied to the F8 problem surface. The results of direct fitness distance
calculation at 75% and 0% individual crossover are given in full in appendix C,

tables C.5 and C.6, and summarised in table 5.8.

The results for the 2 variable F8 with individual crossover disabled were not as
revealing as the F7 surface, with individual level crossover suggesting a slight
performance improvement. Average best values were marginally improved, but
well within the standard deviation range of the alternatives. The lack of
discrimination between the two methods was also shown in the best ever results
achieved, with both methods performing comparably on the surface. Analysis of
the effects of elitism and dynamic rate application showed little discrimination,
with a slight increase in average best as the dynamic rate approached 90% in
both tables. Comparison to the fi

better performance by both traditional and fi

xed rate results given in table 4.6 showed

xed rate Multi-GAs over the direct

fitness distance dynamic rate results.
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A
Chrom ’ . 8
e ol Il O I
0% (i :iggg; 0.16 -180.89 0.09
. 0.19 -180.40 0.06
10 -180.30 0.15 -180.85 0. 14
. 0 -180.28 0.14 -180.37 0.12
5% 1 -180.32 0.19 -180.87 0.08
10 -180.29 0.20 -180.38 0.17
0 -180.35 0.00 -180.46 0.06
90% 1 -180.49 0.05 -180.42 0.10
10 -180.4:1 0.00 -180.35 0.00
C
GA Tested | Chromsome | Degree of | Average | Std. Dev.
Xover rate | Elitism Best

Fixed - 1 -180.46 0.10

TGA - 10 -180.40 0.09

Fixed 75% 1 -180.48 0.12

MGA 10 -180.46 0.00

Table 5.8: 2 variable F8 dynamic crossover optimisation results for direct fitness

distance calculation at 0% (A) and 75% (B) individual crossover.

The overall lack of any discrimination in the results, combined with a good
solution from most methods, indicated a particular simplicity in the problem
surface itself. Indeed, the overall basin shape of '8 converges to a central global
minimum, although the complexity of the surface points towards Miihlenbein’s
(1991) observations of its difficulty. However, most of the tests on the 2
variable F8 surface produced results close to the global optimum with little
discrimination between the methods. Experiments with inverse fitness distance

were the next to be performed, giving the results shown in full in appendix C,

tables C.7 and C.8.

The results for these experiments showed few differences, with a marginal
improvement shown by addition of individual level crossover, although within
standard deviation ranges. Examination of best ever performance showed that
both methods again found, or ca

alternative rates of crossover and elitism als

me very close, to the global minimum. The

o showed little discrimination.

Comparison to direct fitness distance calculation revealed a slight improvement

1 ;till within s iation results. However, the
in average best values, but still within standard deviatio

trend illustrated by the F7 2 variab
erations to converge was repeated
owed average generations to converge of just under 50%

le results of a reduced, more consistent

ber of gen (table 5.9). Inverse fitness
number

distance calculation sh
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of those for dir - ) .
e for direct fitness distance calculation, with a substantially lower

standard deviation for T : i
r the lower rates of 60% and 75%. Whilst still within the

limits of the direct fitness distance standard deviation, the trend for greater

consistency of performance (as indicated by smaller standard deviation values)
was confirmed with the inverse fitness distance method. In addition,
performance was directly comparable to the fixed rate GAs, but again with a

smaller standard deviation for the convergence time.

A B
Chrom Deg7'ge of | Avg. Best | St. Dev. Auvg. Best | St. Dev.
Xover Elitism Gen. Gen.
0 98.95| 102.94 40.90 21.17
60% 1 77.55| 121.88 41.05| 28.70
10 77.50| 122.92 26.20 15.57
0 96.85| 104.92 50.65 27.68
75% 1 88.65| 125.28 47.05 32.35
10 85.50| 130.42 53.60 80.82
0 67.15| 3093 65.70 88.09
90% 1 147.75| 84.00 83.70| 1238.71
10 35.30 14.93 81.95| 1338.97
C
GA Tested | Chromsome | Degree of | Avg. Best | St. Dev.
Xover rate | Elitism Gen.

Fixed - 1 58.00 | 100.57

TGA — 10 31.835| 20.38

Fixed 75% 1 56.65 90.16

MGA 10 3040 ] 85.19

Table 5.9: 2 variable F8 dynamic crossover convergence times for 75% individual level

crossover direct fitness distance calculation (A) v. inverse fitness distance (B)

and fixed rate results (C).

5.2.3 10 variable, F7

Following the results obtained on the 2 variable surfaces, with many of the

different approaches coming close to, or locating, the global minimum, the

problems were scaled up to the 10 variable surfaces. In doing so, not only were

experiments performed on a more comp

feature chromosomes were provided, giving individual level crossover a more

e to play. As before, the same series of experiments were run, the

significant rol
sented in full in appendix C, tables C.9 and C.10 for

results of which are pre

. : 0 2 o/ 3 V] ‘ 1 SO T
direct fitness distance calculation at 75% and 0% individual level crossove

respectively.
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Reétllts were interesting, showing recurrence of the trends indicated by 2
variable 7. The distinction between individual level crossover at 0% and 75%
was clear, with the 75% rate producing statistically significant improvements in
average best performance (llustrated in table 5.10). Standard deviation of

avera ; ; . .
ge best was also consistently lower, in the region of 50% for many cases.

Comparison with the fixed rate GAs (data from table 4.7) indicated average best

results slightly better than the traditional GA and comparable to the Multi-GA,
although within standard deviations. Elitism showed a shght 1mprovement at
75% individual level crossover in both average best and best ever results in all

but one case.  Application of different rates of chromosome crossover showed

little difference though, with comparable results across the board.

Table 5.10:

A B
Chrom | Degree of |  Average | St. Dev. Average | St. Dev.
Xover Elitism Best Best
0 -4080.17| 357.49 -4708.22 | 149.57
60% 1 -4079.80| 259.58 -4719.82 | 168.38
10 -4158.58| 204.96 -4748.73| 188.10
0 -4036.30| 303.11 -4708.18 1 173.92
75% 1 -4165.12| 269.31 -4702.17| 167.48
10 -4093.35| 272.14 -4704.02 | 228.28
0 -4123.00| 333.71 -4620.68| 159.24
90% 1 -4050.74! 346.97 -4730.17| 175.78
10 -4049.48 | 296.00 -4691.05| 167.27
C
GA Tested | Chromsome | Degree of | Average | Std. Dev.
Xover rate | Elitism Best
Fixed - 1 -4640.88 | 139.57
TGA - 10 -4710.48 | 142.74
Fixed 75% 1 -4718.59 | 172.31
MGA 10 -4685.29 | 170.79

10 variable F7 dynamic crossover optimisation results for direct fitness

distance calculation at 0% (A) and 75% (B) individual crossover, compared

to the fixed rate results (C).

Best ever performance also showed improved results at the 75% rate, coming

of -5029.83 on several occasions (table 5.1 1).

closer to the global optimum
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Ch S n
irom | Degree st Ever | Best Ever |
o Lfi‘lt f'; :f Best Ever Best Ever
0 -4833.53 -5014.50
60% 1 -4485.72 -5028.92
10 ~4501.45 -5017.69
0 -4573.20 -4933.06
75% 1 -4641.08 -5017.82
10 -4476.53 -5016.96
0 -4840.40 -4892.87
90% 1 -5017.19 -5018.98
10 -4707.77 -1929 .98

Table 5.11: 10 variable F7 dynamic crossover best ever optimisation results for direct

fitness distance calculation at 0% (A) and 75% (B) individual crossover.

Elitism also had an effect on the convergence time, with experiments using
elitism showing fewer average generations to convergence (table 5.12), whilst
maintaining comparable average best performance. The fall in convergence
times and the effects of 10 member elitism confirmed earlier conclusions that
elitism concentrates the search effort, with excessive elitism indicating

premature convergence.

A B
Chrom | Degree of| Avg. Best St. Dev. Avg. Best | St. Dev.
Xover Elitism Gen. Gen.
0 475.65 41.01 407.70 94.88
60% 1 484.05| 16.10 886.95| 67.93
10 464.75 40.00 344.50 67.98
0 482.20 31.25 430.00 64..4:8
75% 1 484.40 11.97 385.35 59.15
10 461.15 34.05 309.40 63. 14
0 470.90 34.24 402.95 68.85
90% 1 464.65| 32.93 352.55| 49.72
10 439.95 55.94 316.95 45.20

Table 5.12: 10 variable F7 dynamic crossover convergence time results for direct fitness

distance calculation at 0% (A) and 75% (B) individual crossover.

The experiments were then repeated using inverse fitness distance calculation,

the results of which are presented in full in appendix C, tables C.11 and C.12.

Results for inverse fitness distance calculat
distance. Again, the use of individual 1
y improved performance. Comparison to the fixed rate

ion showed similar trends to those of

di f evel crossover resulted in
1rect ritness

statistically signiﬁcantl

traditional GA (data from table 4.7 |
o | er rate and comparable fixed rate Multi-GA

) revealed better performance from the 75%

dynamic chromosome Crossov
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performance. Inverse fitness distance showed a slightly
be)

In average best for single member elitism (

section 5.1.1. These results are Hlustrated in table 5.1

demonstrated, average convergence times were slightly improved with inverse

Dynamic Parameterisation

fitness distance, although not with statistical significance.

improved performance

although within standard deviations),
lending weight to the concepts behind this calculation met

Table 5.13:

hod outlined in

As previously

A B
Chrom Degj‘;e of | Average St. Dev. Average St. Dev.
Xover Elitism Best Best
0 -4182.23 | 288.84 -4737.47| 180.12
60% 1 -4258.49 | 294.08 -4742.36| 169.84
10 -4181.14| 304.47 -4669.78| 188.81
0 -4205.791 220.92 -4680.43 | 146.40
75% 1 -4225.30| 236.97 -4754.75| 186.88
10 -4083.70| 261.65 -4711.92| 187.17
0 -4339.10] 339.95 -4794.70| 1338.26
90% 1 -4173.48| 299.52 -4719.03| 188.00
10 -4112.71| 238.47 -4771.21| 120.93
C
GA Tested | Chromsome | Degree of |  Average | Std. Dev.
Xover rate | Elitism Best

Fixed - 1 -4640.83 | 189.57

TGA - 10 -4710.48 | 142.74

Fixed 75% 1 -4718.59 | 172.31

MGA 10 -4685.29 | 170.79

10 variable F7 dynamic crossover optmisation results for inverse fitness

distance calculation at 0% (A) and 75% (B) individual crossover, compared

to the fixed rate results (C).

10 variable, F8

Completing the series of test surfaces, the experiments were repeated on the 10

variable F8 problem. Results of the direct fitness distance calculation

experiments are given in full in appendix C, tables C.18 and C.14-.

The results indicated a great deal about the complexity of the problem surfac.e,
with nearly all cases coming close to the global minimum. A Shg,ht increase in
discrimination over the 2 variable form of the problem was seen, with the results
for 75% individual crossover giving slightl
Indeed, in most cases, the standard

y higher average best results and a

greatly reduced standard deviation.

deviation values were so small as to be unrepresentable by 2 decimal places.
e 7

Eliti peared to have little effect, with minimal performance discrimination
itism ap
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Dynamic Parameterisation

A
Chrom | Degr " S7. Doo. | 8
. ? :izgii 0.18 -180.41 0.05
: 0.05 -180.42 0.08
10 -180.85 0.08 -180.44 0.00
0 -180.38 0.10 ~-180.41 0.04
75% 1 -180.39 0.07 -180.4:5 0.00
10 -180.34 0.09 -180.41 O:OO
0 -180.86 0.09 -180.43 0.06
90% 1 -180.36 0.11 -180.4:3 0.00
10 -180.37 0.16 -180.4+ 0.00
C
GA Tested | Chromsome | Degreeof | Average | Std. Dev.
Xover rate | Elitism Best
Fixed - 1 -180.45 | 0.00
TGA — 10 -180.45 | 0.08
Fixed 75% 1 -180.47 | 0.10
MGA 10 -180.47 | 0.05
Table 5.14: 10 variable F8 dynamic crossover optimisation results for direct fitness

Whilst little discrimination in average best values was seen between 0% and
75% individual level crossover, a marginal improvement in best ever

performance was indicated, with 6 cases finding the global optimum at

only 1 at 0% (table 5.15).

Table 5.15:

10 variable F

to the fixed rate results (C).

A B

Xover Elitism
0 -180.49 -180.49
60% 1 -180.50 -180.50
10 -180.47 -180.50
0 -180.48 -180.50
75% 1 -180.49 -180.50
10 -180.49 -180.48
0 -180.49 -180.49
90% 1 -180.49 -180.50
10 -180.47 -180.50

fitness distance calcu

8 dynamic crossover best ever optimisati

Jation at 0% (A) and 75% (B) individual crossover.
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o In addition, the results were comparable, but
margina "ess1 |
g y less impressive, than the fixed rate GA tests (data from table 4.8)

distance calculation at 0% (A) and 75% (B) individual crossover, compared

75% and

on results for direct




The trend for re - :
duced conver gence time was also repeated, with some results

giving statistically significant r i 1 : I
‘ y sig eductions in the average number of generations
required for convergence (table 5. 16)

Dynamic Parameterisation

Table 5.16:

Experiments were then repeated using inverse fitness distance, with the results
shown in full in appendix C, tables C.15 and C.16. The results indicated little
distinction, with comparable performance again illustrating the apparent ease
with which the F8 problem surface was solved. Average best performance was a
little improved over direct fitness distance, although the discrimination was not
as distinct as for the F7 surfaces.
fixed rate traditional and Multi-GAs (data from table 4.8, illustrated in table

5.17). Other trends described earlier were repeated, with elitism indicating a

10 variable F8 dynamic crossover convergence time results for direct fitness

A

Chrom | Degree st | St Dev. | 2

Xover E?z‘tmzf AW St Dev Avg.pfgst St. Dev.
0 438.05 44.22 359.30 63.89

60% 1 320.10 64.26 258 55 69.40
10 304.20 90.27 239.70 70.41
0 415.80 60.24 374.85 55.84

75% 1 341.55| 68.79 216.90| 8448
10 300.35 58.12 188.00 51.10
0 408.00 49.67 375.55 52.24

90% 1 305.45| T74.12 257.15| 53.92
10 290.40 63.92 200.75 45.76

drop in the average number of generations to converge.
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distance calculation at 0% (A) and 75% (B) individual crossover.

Again, performance was comparable to the
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A
Chrom | Deor, : St Doo. | B
o I;?Z;; Zf 4 26; ;thf St. Dev. Avgz:z}ge St. Dev.
0 -180.4 5
o | § | oenl on  [Tmm
. -180.47 0.04
10 -180.44 0.00 -180.47 0.10
0 -180.41 0.04 -180.43 0.04
75% 1 -180.45 0.00 -180.47 0.04
10 -180.41 0.00 -180.46 0.08
0 -180.43 0.06 -180.42 0.00
90% 1 -180.48 0.00 -180.45 0.06
10 -180.44 0.00 -180.48 0.00
C
GA Tested | Chromsome | Degree of | Average | Std. Dev.
Xover rate | Elitism Best
Fixed - 1 -180.45 0.00
TGA - 10 -180.45 | 0.08
Fixed 75% 1 -180.47 | 0.10
MGA 10 -180.47 | 0.05
Table 5.17: 10 variable F8 dynamic crossover optimisation results for 75% individual

crossover, comparing direct fitness distance calculation (A), inverse fitness

distance calculation (B) and the fixed rate results (C).
A summary of dynamic crossover

In summary, the dynamic crossover experiments revealed a number of trends.
The 2 variable F7 and F'8 surfaces showed good performance from the dynamic
rate Multi-GA, which found the global solution in most, if not all, cases. I'8
provided very little discriminating behaviour, in contrast to the observations of
its difficulty made by Miihlenbein (1991), with both traditional and Multi-GAs
performing rather well. Analysis of Multi-GA individual level crossover
showed a distinct improvement on the 2 variable F7, with an improved average

best performance at the 75% rate over the 0% rate. The '8 surface showed little

discrimination however, possibly due to the nature of the surface.

Study of the general shape of Fs reveals little need for the global searching
required with F7, as Fg leads down towards the location of the global optimum.
Searching is required however at the local level — a function which is better
fulfilled by chromosome level crossove

the only remaining distinction would then rel '
1 method, where a difference is evident only in the time taken

e level) search to achieve its goal. The results indicated

r. In removing individual level crossover,

ate the chromosome searching to

the rate calculatio
for the local (chromosom

this difference, lending weight to the conclusion that individual level crossover
1s ,
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demonstrates a more global search

' with chromosome level crossover
performing local searching. Study

of the alternative methods of rate calculation

showed a slight improvement in F7 averao
g p ntin F7 average best performance through the use of

the inverse fitness distance method over that of direct fitness distance. The

number of ati <
r ol generations taken to converge was reduced with inverse fitness

distance, producing a more consistent (smaller standard deviation) convergence
in approximately half the time of direct fitness distance. Indications of this
trend were found for the 2 variable F§ surface. Overall performance of dynamic
chromosome crossover rates showed little distinction between the three

alternative rates of 60%, 75% and 90%, indicating comparable performance to

the fixed rate GA results presented in chapter 4.

Extension of the experiments to the more complex 10 variable surfaces verified
the trends described above, especially on the F'7 surface. In particular, the
increased complexity of 10 variable F7 produced greater discrimination in the
results, showing the use of individual level crossover to provide a statistically
significant Multi-GA performance improvement. Single member elitism also
showed improvements, both in terms of best ever results and in the number of
generations taken to achieve comparable results. Finally, there was a repetition
of the trends of improved performance with inverse fitness distance calculation

and little discrimination with alternative rate application.

In addition, the apparent simplicity of '8 was repeated in the 10 variable case,
with both the individual level crossover rates of 756% and 0% and the three
dynamic crossover rates showing similar performance. A small, but not
statistically significant, improvement in average best performance was seen with
inverse fitness distance compared to direct fitness distance, but on the whole the
tests on both 2 and 10 variable I8 illustrated comparable performance and

added little to the results, in contrast to Miihlenbein’s (1991) observations.

Dynamic Mutation

Having obtained the results from the dynamic crossover experiments on each

surface, investigations Into dynamic mutation were then carried out.

Experiments were performed by fixing chromosome and individual Tevel

75 icatl ’ methods of dynamic rate
crossover rates at 75%. Application of the four y

I, mutation rates floating up to maximum levels

individual.

calculation were conducted, wit

of 10%, 30% and 50% across the entire

traints, a full and exhaustive test of each possible

: d CPU cons
Due to time an In addition, results of the

o . on
parameter combination was not a practical optio
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experiments i e or - .
p into dynamic crossover indicated little distinction between dynamic

rates applh -
pplied at 60, 75 and 90%. In order to accurately assess the effects of

dynamic mutati .
y on alone, crossover rates at both individual and chromosome

level had to be fix . )
fixed. Results on previous experiments indicated that individual
level crossover provided a beneficial mput, so the rate of 75% was again used

and experiments without individual level crossover were not performed

In order to verify the lack of distinction between chromosome crossover rates,
the 1nitial series of experiments into direct rank dynamic mutation on the 2
variable surfaces were performed at three fixed rates of 60%, 75% and 90%.
Following the results of these preliminary experiments, with both rank based
and chromosome fitness distance based dynamic mutation being tested, a single
chromosome level crossover rate was selected for remaining tests. 75%
chromosome crossover was chosen, being the median of the three rates applied
and one that falls between the parameters recommended by De Jong (1975) and
Grefenstette (1986).

Experiments were performed on each of the two combinations of the I'7 and F'8
surfaces, calculating the dynamic mutation rate using both chromosome fitness
distance and rank based calculation methods in direct and inverse proportion.
The other parameters were kept consistent with previous runs and statistically

significant results obtained by execution of 20 trials per experiment.
The main objectives of the dynamic mutation test series were to:

. Assess the effects of dynamic rate calculation at varying maximum
rates.

«  Assess the usefulness of applying dynamic rates in direct and inverse
proportion to relative fitness and population ranking.

«  Assess the effects of elitism at increasing dynamic mutation rates.

Sections 5.8.1 - 5.3.4 present the results, as before, for each surface in turn.

2 variable, F7

The first series of tests was carried out using direct rank based calculation at the

e crossover rates, with the full results shown in appendix C,

three chromosom

table C.17.
namic Crossover, showing little

The results confirmed those obtained for dy
s of 60%, 75% and 90%.

chromosome crossover rate

distinction between ‘ o e
ed out after this pomnt utilised only the 75%

Experiments on F7 carrl
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g res Lll tS. FOI hlghel le\/elS Of mutatlon, llp tO 30 /0 (1Ild 9 O /O tlle

results were good with the o ni i i
e e g global minimum being found in almost every GA
nal. indi

onsistency was also good, indicated by average best standard deviation
results too small to express in 2 decimal places. In all cases, the best ever result

showed location of the global minimum, also indicated by the average best at
higher mutation rates. k

Maz | Degree of Average St. Best Ever
Min. | Elitism Best Dev.
0 ~1677.02| 461 -1677.97
10% 1 -1677.81| 0.00| -1677.97
10 -1677.64| 1.08| -1677.97
0 -1677.94 0.00| -1677.97
30% 1 -1677.97| 0.00| -1677.97
10 -1677.97| 0.00| -1677.97
0 -1677.97| 0.00| -1677.97
50% 1 -1677.97| 0.00}| -1677.97
10 -1677.97| 0.00| -1677.97

Table 5.18: 2 variable F7 dynamic mutation performance for direct rank based

calculation at 75% chromosome crossover.

Interesting effects were noticed in the number of generations taken to converge,
with 10% elitist mutation taking fewer average generations to converge than the
higher rates (table 5.19). This indicated confirmation of the previously
identified effects of higher mutation rates, namely increased disruption leading
to greater convergence times. However, the simplicity of the problem surface
did not lead to a loss of performance by high mutation in this case, with the

increased searching encouraging location of the global minimum.

Mazx | Degreeof | Avg. Best| St. Dev.
Min. | Elitism Gen.
0 120.85 129.93
10% 1 29.90 8.28
10 24.55 6.38
0 110.05 96.22
30% 1 41.25 14.88
10 45.75 80.69
0 992.20| 115.50
50% 1 71.75| 17.80
10 29.00 7.31

2 variable F7 dynamic mutation convergence times for direct rank based

calculation at 75% chromosome crossover.

Table 5.19:
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Results for the 10 variable surface were expected to show

Lo a more noticeable
indication of the expected behaviour in ter

| ms of global performance, as well as
convergence time. 1tism r i i
g The elitism results also backed this conclusion, indicating a

fall in average convergence times in each of the three crossover tests at higher
mutation rates. This confirmed the previous hypothesis, indicating that GA
searches with high disruption through large scale mutation and no mechanism
for retaining good solutions take longer to find good results. On the whole, the

addition of elitism led to more consistent convergence times, with lower
standard deviations (table 5.19).

The next step was to perform experiments for inverse rank based calculation,
with the full results given in appendix C, table C.18. The results were very
similar to those of the previous table, with the global optimum being found in all

cases under best ever result and, at higher mutation, in all trials performed.

Table 5.20:

Max | Degree of | Average St. Best Ever
Min. | Elitism Best Dev.
0 -1677.50| 0.91| -1677.97
10% 1 -1677.81| 0.00} -1677.97
10 -1677.94] 0.20| -1677.97
0 -1677.96| 0.00} -1677.97
30% 1 -1677.97| 0.00| -1677.97
10 -1677.97] 0.00| -1677.97
0 -1677.97| 0.00} -1677.97
50% 1 -1677.97} 0.00| -1677.97
10 -1677.97| 0.00]| -1677.97

2 variable F7 dynamic mutation performance for inverse rank based

calculation at 75% chromosome crossover.

The trend in elitism was repeated, generally leading to a fall in the average

number of generations to converge and, on the whole, a tightening of the

associated standard deviation. As indicated by the dynamic crossover series,

inverse calculation suggested reduced average convergence times for methods

without elitism and an indicated performance improvement for 1 elitism results.

Considering the previous tables, illustrating longer convergence times at high

mutation rates (due to the increased disruption), the adoption of inverse rank
based calculation appeared to counte

down to more sensible figures for comparably

- this effect, bringing convergence times

high mutation rates (table 5.21B).
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Table 5.21:

Following experiments into rank based calculation, the method adopted in the
dynamic crossover series — fitness distance based calculation — was tested,
providing a mutation rate based solely on relative chromosome performance.
Full results for direct and inverse fitness distance calculation at 75%
chromosome crossover are given in appendix C, tables C.19 and C.20. The
results again illustrated the trend of an improved performance from the inverse
approach over the direct approach, with a more consistent average best location

of the global optimum, which was not achieved at all with direct fitness distance

A
. . 0 oo o B

%{/INL Dl??; ;f, Zf Avé.efest St. Dev. [h}é, fesf St. Dev.
0 120.35| 129.93 109.75| 185.94

10% 1 29.90 8.23 39.15| 30.06
10 24.55 6.38 24.60 6151
0 110.05| 96.22 62.60| 72.45

30% 1 41.25 14.88 31.90 9.31
10 45.75|  80.69 32.60| 21.88
0 222.20| 115.50 68.50| 68.71

50% 1 71.75|  17.80 35.70 9.70
10 29.00 7.81 41.70| 63.24

2 variable F7 dynamic mutation convergence times for direct rank based (A)

and inverse rank based (B) calculation at 75% chromosome crossover.

calculation (table 5.22).

B
Average | St. Dev.
Best

-1677.58 0.84:
-1677.97 0.00
-1677.65 0.98
-1677.97 0.38
-1677.97 0.00
-1677.97 0.00
-1677.96 0.00
-1677.97 0.00
-1677.97 0.00

Table 5.22:

Fitness diversity, indic

values, coupled with a notl

A
Max | Degreeof | Average St. Dev.
Min. | Elitism Best
0] -1671.64| 25.7
10% 1 -1677.44 1.15
10 -1677.68 0.00
0 -1671.96| 22.59
30% 1 -1671.49| 25.71
10 -1677.60 0.82
0 -1677.51 1.01
50% 1 -1677.75 0.00
10 -1677.55 0.65
2 variable F

based (A) and invers

crossover.

ated by a larger range between averag

ceable difference between average best values,
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suggested better performance both in terms of optim

a achleved and diversi :
search space (table 5.23). Iversity of

A

Ay N - B
/J\\jgll El'tm Av};’; satgé’ Iif;‘ A;;/e;‘ge DSetv Average | St. | Average| St.
] ; Best Dev. | Worst | Dev.
0 | -1671.64|25.75| -97.53] 74.94 -1677.58| 0.84| -2.67| 1.62
10% 1 -1677.44| 1.15| -123.02| 71.89 -1677.97| 0.00 —QAO:L 0.00
10 -1677.68| 0.00| -128.36| 88.83 -1677.65| 0.98 —235 0:96
0 -1671.96| 22.59| -117.72! 81.35 -1677.971 0.38| -2.11} 0.10
30% 1 -1671.49| 25.71 -99.18| 72.58 -1677.97| 0.00| -2.04 O'OO
10 -1677.601 0.82| -165.58| 77.60 -1677.97| 0.00] -2.04 O:OO
0] -1677.51| 1.01| -100.37} 69.69 -1677.961 0.00| -2.57| 0.72
50% 1 -1677.75| 0.00} -111.22] 59.19 -1677.97} 0.00| -2.05| 0.03
10 -1677.55| 0.65| -129.06| 65.41 -1677.97| 0.00| -2.04} 0.00

Table 5.23: 2 variable F7 dynamic mutation best and worst optimisation results for direct
fitness distance based (A) and inverse fitness distance based (B) calculation at

75% chrom. crossover.

Inverse fitness distance calculation again showed the trend of elitism to reduce
convergence times for all rates of mutation. Interestingly, direct fitness distance
calculation showed very fast convergence times, explaining the poorer average
best values to be caused by premature convergence in many of the 20 trials

performed (table 5.24).

A B
Mazx | Degreeof | Avg. Best| St. Dev. Avg. Best | St. Dev.
Min. | Elitism Gens. Gens.
0 31.85| 11.31 78.30 77.43
10% 1 28.20 8.00 36.70 9.80
10 21.15 543 30.10 21.80
0 927.95| 14.35 154.30 65.12
30% 1 30.30 5.06 60.75 16.82
10 21.40 3.63 31.35 17.49
0 33.50| 11.75 217.15| 14443
50% 1 95.55| 5.71 121.90| 58.14
10 19.25 4.77 34.20 9.49

Table 5.24: 2 variable F7 dynamic mutation convergence times for direct fitness distance

based (A) and inverse fitness distance based (B) calculation at 75% chrom.

crossover.

Comparison with the rank based results indicated comparable performance in

most cases. Inverse ranking produce
(table 5.25).

d faster convergence times In many cases,

particularly at higher mutation rates
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A
Maz | Degre 'St Dev, | B
Min. E?z'tz;:z)f Avgznfi.m e ATé;gé,feSt St Dev
. 0 109.75| 185.94 78.830| 77.48
10% 1 39.15| 30.06 36.70] 9.80
10 24.60 6.51 30.10 21:80
0 62.60| 72.45 154.30| 65.12
30% 1 31.90 9.51 60.75 16.8;
10 32.60| 21.88 31.85| 17.49
0 68.50| 63.71 217.15| 144.48
50% 1 35.70 9.70 121.90| 58.14
10 41.70| 68.24 34.20 9.49

2 variable F7 dynamic mutation convergence times for inverse rank based (A)

and inverse fitness distance based (B) calculation at 75% chrom. crossover.

Inverse fitness distance produced a greater, more consistent fitness diversity at

the 10% mutation rate (table 5.26).

A B
Mazx | El'tm Average St. Average St. Average St. | Average | Sl
Min. Best Dev. Worst Dev. Best Dev. | Worst | Dev.
0 -1677.501 091 -30.22 | 49.44 -1677.58 0.84 -2.67| 1.62
10% 1 -1677.81| 0.00 -8.73| 15.79 -1677.97! 0.00| -2.04| 0.00
10 -1677.94( 0.20 -16.76 | 38.82 -1677.651 0.98| -2.35| 0.96

Table 5.26:

2 variable F7 dynamic mutation fitness diversity for inverse rank based (A)

and inverse fitness distance based (B) calculation at 75% chrom. crossover.

Comparison to the fixed rate GAs described by table 4.5 revealed good

performance across the board
best values marginally outperformed t
standard deviation over the traditional GA in

were comparable to the fixed rate Multi-GA and improved over the fixed rate

traditional GA (table 5.27).
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A
WWW St. | Avg. Best| St. Dev
Min. | Elitism Best Dev. Gens. ) .
10% 1 -1677.97| 0.00 36.70 9.80
10 -1677.65| 0.98 30.10 21.80
30% 1 -1677.97| 0.00 60.75 16.82
10 -1677.97| 0.00| 31.35 17.49
50% 1 -1677.97] 0.00] 121.90 58.14
10 -1677.971 0.00 34.20 9.49

B
GA | Degree of |  Average Std. | Avg. Best |Std. Dev.

Tested | Elitism Best Dev. Gen.

Fixed 1 -1677.79| 0.25| 61.60| $88.46
TGA 10 -1676.98| 1.70| 347.40| 60.35
Fixed 1 -1677.58| 0.98| 380.95| 5.72
MGA | 10 -1677.46| 0.77| 49.75| 1038.57

Table 5.27: 2 variable F7 dynamic mutation convergence times for inverse fitness

distance calculation at 75% chrom. crossover (A) and fixed rate GAs (B).

2 variable, F8

Experiments on the F'8 surface were performed initially at all three chromosome
crossover rates, as with the F7 results presented in section 5.8.1, in order to
verify the expected behaviour on this very differently shaped problem surface.
The first set of results, for direct rank based calculation, are shown in full in
appendix C, table C.21. The results confirmed the conclusions drawn from
other experiments so far that there is little difference between the three rates of
chromosome crossover. This led to the decision to run remaining experiments

at 75% chromosome crossover only for the I8 surface as well.

The results also showed similar trends to those exhibited by I'7 experiments,

with increasing mutation rate leading to marginally better average best

performance and an increase in the average number of generations required to

i ' 1 itism. Identification of the
converge, partlcularly for experiments with no elitis

other trends noted with F7 were difficul : |
the problem surface and consequently the good performance of

t to pick out here, due again to the

simple nature of

the GA. In all cases, the results were very close to, or at, the
‘mination apart from the effect of elitism on

global minimum

with no real evidence of discr

. . ] l
g ‘

hods to complete the result s ‘
as introduced by these other methods. The results for

able C.22. The results

lculati t ets and investigate whether or not
calculation me

any discrimination W

i i 1 1x C, t
inverse rank based calculation are g1ven in appendl
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dded littl :
added Iittle to the debate, showmg comparable performance to direct rank based

calculation et .
, although demonstlatlng marginally increased standard deviation

\% alLleS fOl’ some a\/el'a e b S a l(] onv O [e)
eSt Value 3 ¥ 1 1 y

lower avera - ' :
ge convergence times for single and 10 member elitism over no

elitism wer inly indi
were mainly indicated (table 5.28) but the results in other areas were, on

the whole, comparable.

Mazx | El'tm Avg. Best | St. Dev.

Mitn. Gen.
0 64.4:5 61.14
10% | 1 55.65| 94.24

10 46.65 74.46
0 131.90| 106.61
30% 1 122.65] 134.05
10 188.50| 161.89
0 142.75| 115.02
50% 1 96.50 94.63
10 91.40| 105.53

Table 5.28: 2 variable F8 dynamic mutation convergence times for inverse rank

based calculation at 75% chromosome crossover.

With little new information added, the remaining 2 experiments into direct and
inverse chromosome fitness distance calculation were performed. These results
are presented in appendix C, tables C.28 and C.24 respectively. Direct fitness
distance results showed a similar trend to those presented for I'7 (table 5.22),
producing a decline in the average best performance even on this simple surface.
In addition, average convergence times were consistently low across all three
mutation rates (table 5.29), indicating rapid convergence to some sub-optimal
results. In other respects, the results were comparable to others presented for

F8, indicating the lack of distinction provided by this problem surface.

Maz | Eltm | Avg. Best | St. Dev.

Min. Gen.
0 48.101 8108
10% 1 1 33.00 598

10 | 8140 3581
0 35.80| 28.72
30% | 1 38.05| 16.83
10 | 2655] 19.72
0 32.60| 991
50% | 1 30.90| 11.2%
10 | 27.80] 2329

I

Table 5.29: 2 variable F8 dynamic mutation convergence times for direct fitness
al 29:

distance based calculation at 759% chromosome Crossover.
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Results for invers 1
e fit i
ness distance calculation were also very much comparable

to those already presented. The previously identified trends ree
O

. arding 0 and 1
member elitism were repeated

d trated whilst good, comparable performance was
emonstrated acr - : .
cross the range of dynamic mutation rates tested. The average

best val i ind; .
ue obtained indicated marginally better performance than direct fitness

distance, although within - lati

g . In many standard deviation ranges (table 5.30). Results
were comparable with both the rank based dynamic mutation methods and the
fixed rate GAs (data from table 4.6), with slightly umproved average best

performance over the traditional GA, but no real significant differences.

A B C
Max | Deg.of | Average St. Average | St. GA Deg.of | Average | Std.
Mtn. | Eltm Best Dev. Best Dev. Tested | El'tm Besto Dev.
0 -180.45| 0.00 -180.48| 0.13 Fixed 1 -180.46 | 0.10
10% 1 ~180.47| 0.07 -180.49| 0.10 TGA 10 -180.40 | 0.09
10 -180.47| 0.10 -180.48 | 0.06 Fixed 1 -180.48 | 0.12
0 -180.45 | 0.08 -180.50| 0.00 MGA | 10 -180.46 | 0.00
30% 1 -180.48 | 0.11 -180.50| 0.05
10 -180.47| 0.09 -180.50| 0.08
0 -180.47| 0.0% -180.49 0.06
50% 1 -180.47| 0.10 -180.50| 0.12
10 -180.46| 0.00 -180.50! 0.07

Table 5.30: 2 variable F7 dynamic mutation convergence times for direct fitness distance
based (A), inverse fitness distance based (B) calculation at 75% chrom.

crossover and fixed rate GAs (C).

The trend identified in the F7 tests of longer average convergence times for

inverse fitness distance was also repeated here, along with greater standard

deviations on the convergence times (table 5.31).

I A B
Maz WWW Avg. Best| St. Dev.
Min. Elitism Gens. Gens.
0 48.10, 81.08 187.85| 117.49
10% 1 33.00 5.98 82.30| 90.57
10 31.40| 385.81 54.15| 90.58
0 35.80| 28.72 281.70| 183.51
30% 1 38.05| 16.83 157.20{ 117.82
10 96.55| 19.72 77.85| 55.89
0 32.60 9.91 268.50| 129.07
50% 1 30.90| 11.2% 9214.45| 120.62
10 97.80| 23.29 90.10| 94.28

Table 5.31: 2 variable F8 dynamic mutation convergence times for direct fitness (A) and

inverse fitness distance based (B) calculation at 75% chrom. crossover.
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10 variable, F7

Foll \Ni]lg experim ) ] d
o} ents on the ¢ 3 y 1 imi n an

complexity was introduced and tested wi -ank bas 1
distance dynamic mutation, applying chl';:;iol:r(l)th tc}llé Idén'l\ e
at 756%. The results for direct rank calculati e*an 'm I?/Idl‘lal l‘evel CFOSS‘OVGF
ation are given in full in appendix C,
table C.25. The results showed comparable performance across the three
mutation rates, with smaller average best standard deviations for the $0% rate
(table 5.32A). Interestingly, the trend of a fall in convergence time with elitism
was reversed here, although the use of elitism did introduce more consistency to
the average convergence time (indicated by a fall in standard deviation as the
level of elitism rose, shown in table 5.32B). Overall, average best performance
improved as elitism increased, whilst best ever performance showed the best

results for 10% dynamic mutation, being comparable elsewhere (table 5.32C).

Average Performance Best Ever Av. Convergence

Mazx | El'tm | Average St. Dev. Best Ever Avg. Best | St. Dev.
Min. Best Gen.

0 -4854.05| 117.22 -5022.12 362.30| 101.72
10% 1 -4921.26| 101.97 -5029.65 459.20 31.50

10 -4924.08 98.44 -5029.83 400.50 90.46

0 -4855.29 55.50 -4983.87 384.05 88.70
30% 1 -4950.10 68.18 -5019.45 429.80 52.4:5

10 -5012.51 35.94 -5029.77 485.30 13.19

0 -4381.06| 109.0% -4610.29 29570 112.32
50% 1 -47762.791 155.32 -4968.24 398.40 78.52

10 -5008.80 34.81 -5028.88 475.45 20.68

Table 5.32: 10 variable F7 dynamic mutation results for direct rank calculation at 75%

chromosome crossover, showing average performance, Best ever

performance and average convergence time.

To a large extent the observations made from direct rank based calculation were

repeated in the experiments with inverse rank based calculation (given in full in
appendix C, table C.26). Average best performance showed a slight

of cases over direct rank calculation, although within

improvement 1n a number
m, on the whole, indicated a shghtly improved

standard deviation ranges. Elitis

average best value (table 5.34). Best eve . .
and 50% (with inverse ranking), shown 1n

- values were more noticeably improved
at the higher mutation rates of 30% . |
here was little statistically significant difference In

table 5.85. Overall, t ‘ |
of improved best ever results at higher mutation

performance, but indications

rates were seen when compared to direct ranking.
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Table 5.33:

A B
Mazx | Degr | Best Ever | | Best Ever |
Min. E%f:yif Fest B Best Ever
0 -5022.12 -5025.33
10% 1 -5029.65 -5028.53
10 -5029.83 -5028.67
0 -4983.87 -5027.06
30% 1 -5019.45 -5029.80
10 -5029.77 -5029.83
0 -4610.29 -5006.29
50% 1 -4968.24 -5029.19
10 -5028.88 -5026.64

Dynamic Parameterisation

C
G4 Degree of | Best Ever
Tested | Elitism
Fixed 1 -4901.57
TGA 10 -4932.30
Fixed 1 -5020.01
MGA 10 -5016.82

10 variable F7 dyn. mt'n best ever optimisation results for direct rank based (A),

inverse rank based (B) calculation at 75% chrom. crossover and fixed rate GAs (C)

Comparison with both fixed rate experiments (data from table 4.7) showed good

results. Performance, measured in terms of average best (table 5.34) and best

ever (table 5.33), was improved with dynamic mutation rates in almost all cases

of both direct and inverse ranking, some with statistical significance. The

difference was more noticeable when looking at inverse rank based calculation,

with more results indicating statistically significant performance improvements.

Best ever performance was also encouraging, with the majority of direct rank

experiments producing comparable or better results and all but one of the

inverse rank experiments outperforming both fixed rate GAs (table 5.38).

Table 5.34:

A B
Max Deg‘reeof Average St. Dev. Average St. Dev.
Mtn. Elitism Best Best
0 -4854.05| 117.22 -4900.97| 79.27
10% 1 -4921.26| 101.97 -4891.56| 131.14
10 -4924.08| 98.44 -4980.90| 104.66
0 -4855.29| 55.50 -4978.81| 66.67
30% 1 -4950.10| 68.18 -5025.21 5.54
10 -5012.51| 385.94 -5009.52| 40.53
0 -4381.06| 109.0% -4975.80| 88.88
50% 1 -4762.79| 155.32 -5025.66 o.Qo
10 -5008.80| 34.81 -5026.18 3.66
—c
GA | Degree of Average Std. Dev. | Best Ever
Tested | Eltism Best
Fixed 1 2640.83 | 189.57 |-4901.57
TGA | 10 _4710.48 | 142.74 |-1932.30
Fixed 1 4718.59 | 172.31 |-5020.01
MGA | 10 _4685.29 | 170.79 |-5016.82

10 variable F7 dynamic

inverse rank (B) calculation at 75%
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The final ; ‘. X
1 set of tests applied direct and Inverse fitness distance, with the results

given in full in appendix C, tables C.27 and C.28. Direct fitness distance showed

a statistically significant degradation in average best performance from its rank

based counterpar ) '
terparts across many experiments tested.  Performance for direct

fitness calculation showed slightly poorer average best performance than for the

fixed rate GAs, although within standard deviation ranges (table 5.85).

A B
: C
Max | El'tim Average St. Dev. Average St. Dev. GA El'tm | Average |Std. Dev
Mtn. Best Best Tested Best o

0 -4615.54| 194.00 -4854.05| 117.22| | Fixed| 1 |-4640.83|139.57
10% 1 -4577.87| 177.80 ~-4921.26| 10197 | TGA | 10 |-4710.48 | 142.74
10 | -4612.84| 205.98 -4924.08| 9844 | Fixed| 1 |-4718.59172.31

0 -4674.82| 166.18 -4855.29 55.50| | MGA | 10 |-4685.29 170.79
30% 1 -4682.59| 159.06 -4950.10| 68.18
10 | -4591.07| 202.09 -5012.51| 85.94

0 -4698.79| 178.51 -4381.06 | 109.04
50% 1 -4665.67| 168.22 -4762.79| 155.32
10 -4632.70| 206.42 -5008.80| 34.81

Table 5.35: 10 variable F7 dynamic mutation optimisation results for direct fitness
distance (A) and direct rank based (B) calculation at 75% chrom. crossover

vs. fixed rate GAs (C).

In addition, the drop in performance was again matched by a substantial fall in
convergence times, indicating direct fitness distance to be a method encouraging
fast convergence, but arriving at frequently sub-optimal solutions. Convergence

time was also substantially below that of the fixed rate results.

A B C
Mazx | El'tin | Avg. Best St. Avg. Best | St. Dev. GA | El'tim Avé:. Best | Std.
Min. Gens Dev. Gens Tested Gens Dev.
0 95.70| 238.56 362.30| 101.72 Fixed | 1 347.40 | 60.35

10% | 1 91.55| 7.69 459.20| 8150 | TGA | 10 | 81090 54.31
10 65.70| 4.65 400.50| 90.46 Fixed | 1 975.55 | 57.41
0 109.40| 20.02 384.05| 88.70 MGA | 10 | 287.65] 81.90
30% | 1 96.15| 6.95 429.80| 52.45
10 64.60| 5.96 485.30| 13.19
0 | 107.70| 24.60 29570 | 112.32

50% 1 100.830| 8.57 398.40 73.52
10 67.15| 8.55 475.45 20.68

Table 5.36: 10 variable F7 dynamic mutation convergence times for direct fitness

direct rank based (B) calculation at 75% chrom. crossover and

distance (A),
fixed rate GAs (O.
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I [‘ l' .

distance 1 - .
n most results. Comparison to the ranked based methods revealed

1nve1‘~se ﬁtn.ess distance performing comparably, but indicating greater
consistency 1n a lower standard deviation for elitist results at the lower 10%
rate. At higher mutation rates, rank based methods appeared to give slightly
better performance on the whole (table 5.87). Average best results ‘.Were

reasonable, with high consistency indicated by a small standard deviation.

A B
Maz | El'tm Average St. Dev. Average St. Dev. GA El'tm C/Iverarre Std. Dev
Min. Best Best Tested BestO ‘
0 -4810.95| 182.47 -4900.97| 79.27| | Fixed| 1 [-4640.831189.57
10% 1 -5020.59 11.54 -4891.56| 131.14| | TGA | 10 |-4710.48 |142.74
10 -4993.54 61.41 -4930.90| 104.66| | Fixed| 1 |-4718.59|172.81
0 -4596.38 70.22 -4973.31 66.671 | MGA | 10 |-4685.29|170.79
30% 1 -4950.59 50.57 -5025.21 5.5%
10 -5017.67 25.57 -5009.52 40.53
0 -4117.96| 160.46 -4975.80 38.88
50% 1 -4789.00| 112.14 -5025.66 0.00

10 -4985.61 52.8% -5026.18 3.66

Table 5.37: 10 variable F7 dynamic mutation optimisation results for inverse fitness

distance (A) and inverse rank based (B) calculation at 75% chrom. crossover

vs. fixed rate GAs (C).

Best ever performance was also good (table 5.88), producing comparable and in
some cases better results than inverse rank based calculation, although the
generations taken to converge Were again reasonably high. Comparison to the
fixed rate GAs was also good, exhibiting comparable performance and in a
number of cases improved results - a result similar to that of Srinivas and

Patnaik (1994), who also saw improved performance with dynamic rates on

highly multimodal problem surfaces.

139




534

Dynamic Parameterisation

A B
%Zf DIS,?; f;;f Best Ever Best Ever G4 Deg;'e(e,f of | Best Ever
. _ — Tested | Elitism
o : :oOLIG. /:’7 -5025.383 Fixed 1 -4901.57
0 5029.17 -5028.58 TGA 10 -4932.30
10 -5029.83 -5028.67 Fixed 1 -5020.01
0 -4702.81 -5027.06 MGA 10 -5016.82
30% 1 -5020.32 -5029.80 |
10 -5029.59 -5029.83
0 -4652.17 -5006.29
50% 1 ~-4959.91 -5029.19
10 -5025.99 -5026.64

Table 5.38: 10 variable F7 dynamic mutation best ever optimisation results for inverse
fitness distance based (A) and inverse rank based (B) calculation at 75%

chrom. crossover vs. fixed rate GAs (C)

10 variable, F8

Completing the series of tests, the experiments were repeated on the 10 variable
Fs surface, with the results for direct and inverse rank based calculation given

in appendix C, tables C.29 and C.30 respectively.

Results reflected a number of the trends indicated previously. Both direct and
inverse ranking showed comparable performance between 0 and 1 member
elitism, whilst repeating the trend of an increase in the number of generations to

converge (illustrated in table 5.59 below).

A B
Maz | Degreeof | Auvg. Best | St Dev. Avg. Best | St. Dev.
Min. Elitism Gens Gens
0 270.90 142.70 288.55 148.65
10% 1 401.65 83.01 469.00 34.85
10 332.15 104.75 245.50 114.24
0 281.25 128.99 295.30 124.73
30% 1 370.85 99.81 387.85 74.11
10 474.80 21.36 318.90 92.90
0 270.60 139.70 241.55 121.85
50% 1 981.45 | 127.50 388.45 8§.30
10 395.60 84.36 | 355.55 97.95

Table 5.39: 10 variable F8 dynamic mutation convergence times for direct rank based (A)

ank based (B) calculation at 75% chrom. crossover.

and inverse r
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Inverse rank base i
d calculation also showed comparable performance across the
rates, but with indicatio o i
, ns of a mar gnally improved average best result over

that achieved by direct ranking (figure 5.40)

A

Mazx | Degr  Average | St Dew | ?

Min. E%’;_;Zf AvaZ:tge o e A’g‘;’fgé’ S Dev
0 -180.17 0.05 ~-180.15 | 0.09

10% 1 -180.39 0.00 -180.45 | 0.00
10 -180.49 0.00 -180.48 | 0.00
0 -180.15 0.09 -180.17 | 0.05

30% 1 -180.22 0.09 -180.37 | 0.11
10 -180.47 0.11 -180.49 | 0.00
0 -180.11 0.11 -180.16 | 0.06

50% 1 -180.13 0.11 -180.31 | 0.07
10 -180.39 0.00 -180.49 | 0.01

Table 5.40: 10 variable F8 dynamic mutation optimisation results for direct rank based(A)

and inverse rank based (B) calculation at 75% chrom. crossover.

However, whilst inverse and direct ranking showed similar performance in
average best, there was a slight improvement seen in a number of the best ever

results for inverse ranking over direct ranking, as shown in table 5.41 below.

A B

Mazx | Degree of | Best Ever Best Ever
Min. Elitism

0 -180.37 -180.23
10% 1 -180.47 -180.49

10 -180.50 -180.50

0 -180.24 -180.28
30% 1 -180.36 -180.46

10 -180.49 -180.50

0 -180.25 -180.29
50% 1 -180.25 -180.40

10 -180.45 -180.50

Table 5.41: 10 variable F8 dynamic mutation best ever optimisation results for direct

rank (A) and inverse rank based (B) calculation at 75% chrom. crossover.

Experiments for direct and inverse fitness distance calculation methods were

then performed, with the results shown in appendix C, tables C.81 and C.32

respectively.

ce based calculation revealed little new information,

Moving to fitness distan | |
y en. Average best performance improved as the

confirming trends already se

: - : ; aining comparable
liti ate increased in both direct and inverse methods, remaining comp
elitism r
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between meth ibiti -
ods, exhibiting a slightly reduced standard deviation for inverse

fitness di
itness distance (table 5.42). Comparable performance was also indicated

between the three mutation rates in both methods

A

Max | Degree o . | St. Dev. | &

Min. E?Ztismf Ag;ig"’ XD Alg;:),ge St Dev
0 -180.07 0.10 -180.16 | 0.04

10% 1 -180.37 0.03 -180.35 | 0.02
10 -180.41 0.04 -180.49 | 0.00
0 -180.12 0.14 -180.08 | 0.00

30% 1 -180.38 0.10 -180.23 | 0.08
10 -180.41 0.03 -180.47 | 0.00
0 -180.17 0.12 -180.08 | 0.01

50% 1 -180.87 0.09 -180.12 | 0.00
10 -180.41 0.07 -180.37 | 0.08

Table 5.42: 10 variable F8 dynamic mutation optimisation results for direct (A) and

inverse fitness distance based (B) calculation at 75% chrom. crossover.

The previously noted trend of faster convergence with direct fitness distance
was again seen, but had less of an effect than in the F7 surface, mainly due to
rapid convergence to the area of F8’s global minimum, demonstrated in earlier
experiments. The upward effect of convergence times with the introduction of

one member elitism was also repeated (illustrated in table 5.4.3).

A B
Maz | Degreeof | Avg. Best | St. Dev. Avg. Best | St. Dev.
Min. Elitism Gens Gens
0 128.35 75.14 241.45| 108.18
10% 1 168.35 27.59 417.00 55.90
10 74.50 20.47 358.90| 105.89
0] 187.15| 120.28 245.90| 145.05
30% 1 210.55| 30.36 320.65| 133.26
10 73.30 10.85 465.80 20.58
0] 192.80| 146.00 9286.70| 138.07
50% 1 9925.85 34.84 223.80 158.9%
10 108.45| 104.89 394.55| 104.97

Table 5.43: 10 variable F8 dynamic mutation convergence times for direct (A) and

inverse fitness distance based (B) calculation at 75% chrom. crossover.

Comparison to rank based calculation showed a slight improvement in average

best and, in places, best ever performan

over the inverse fitness distance method.

ce for the 1nverse rank based method
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A
. 4 . I — B
f;g?nl El'tm Ag; ;lzgeﬁm Best Ever Ag?‘llge St. Dev. | Best Ever
est

o (1) _128;? 88; —180.36 -180.15 0.09 -180.23
. . -180.44 -180.45 0.00 -180.49

10 -180.49 0.00 -180.50 -180.48 0.00 -180.50

0 -180.08 0.00 -180.22 -180.17 0.05 -180.28

30% | 1 -180.23 | 0.08 | -180.34 -180.37 | 0.11 —18();6
10 -180.47 0.00 -180.49 -180.49 0.00 —lSO:SO

0 -180.08 0.01 -180.21 -180.16 0.06 -180.29

50% 1 -180.1¢2 0.00 -180.28 -180.31 0.07 -180.40
10 -180.37 0.08 -180.45 -180.49 0.01 -180.50

Table 5.44: 10 variable F8 dynamic mutation average best and best ever performance for

inverse fitness distance (A) and inverse rank based (B) calculation at 75%

chrom. crossover.

In all other cases, comparable performance was seen. Comparison to the fixed
rate tests presented in table 4.8 demonstrated similar, if marginally improved,
performance from inverse rank based dynamic mutation at the 10% rate, but in

most other cases, the fixed rate GAs performed equally well or slightly better.

A B
Gd | Degree of | Average Std. Dev. Degree of | Average Std. Dev.
Tested | Elitism Best Elitism Best
Fixed 1 -180.45| 0.00 1 -180.45 | 0.00
TGA 10 -180.45| 0.08 10 -180.48 0.00
Fixed 1 -180.47| 0.10
MGA 10 -180.47| 0.05

Table 5.45: 10 variable F8 performance for fixed rate GAs (A) and 10% dynamic

mutation inverse rank based Multi-GA at 75% chrom. crossover (B).

A summary of dynamic mutation

The results indicated fairly easy solution of the 2 variable I'7 and I'8 problems,

with little discrimination shown. Increasing mutatlon rate appeared, as

i h with increasing convergence times
expected, to 1mprove performance althoug g

as the mutation rate rose. Elitism countered this effect to some degree and

f improving performance when 1n
icated trend of little discrimination between

troduced in 1 member
again showed a trend o

form. The previously ind
chromosome crossover rates wa

variable surfaces, leading to later tests

s repeated In early experiments for both 2

being carried out at a 75% chromosome

crossover rate only.
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lysi o :
Analysis of the dynamic rate calculation methods revealed a similar trend to that

seen In dynamic crossover, with indicati .
y sover, with indications of improved performance from

m:ferse calcule?aon methods over direct calculation methods. On the 2 variable
F7 surface, inverse rank based calculation indicated a fall in average
C(-mvergence even at the higher mutation rates of 30% and 50%. Direct fitness
distance calculation performed relatively badly compared to its inverse and the
rank based methods, all of which indicated improved fitness diversity. The
results also compared favourably to the fixed rate GA experiments given in
table 4.5, with all dynamic mutation experiments (except direct fitness distance)
indicating comparable performance against the fixed rate Multi-GA, but with
improved fitness diversity indicated by the greater range of values found for the
average best and worst results. The fixed rate traditional GA lost out on these
criteria, with average convergence times and standard deviations better in the
dynamic mutation Multi-GA experiments. This reflects a similar observation
made by Bick (1992), who noted the use of ES based self adapting mutation
rates produced “very small standard deviation ... [and reached within 1% of optimum]

a factor larger than six times faster than the standard GA” in his experiments.

The F8 surface again showed little discrimination. Overall, with the exception
of direct fitness distance calculation which showed a decrease in convergence
times with elitism, comparable results across the range of experiments and to
the fixed rate traditional and Multi-GAs were seen. The similarity of the results
reinforced earlier indications of the simplicity of F8, with most experiments

finding the global optimum at one point or another.

The extension to 10 variables in both surfaces veritied the trends indicated by

the 2 variable results, with inverse rank based calculation indicating a slight
improvement over other methods and direct fitness distance showing a rapid

1 ixed r S wWas ith
convergence to poor results. Comparison to the fixed rate GAs .was gO(?d,.Wl
arable and In a number of cases, showng statistically
st values. Elitism played little part in the

sing convergence time with a slight

performance at least comp
significant improved average be
results, showing a trend towards 1ncrea

performance gain in most cases.

These observations present a similar conclusion to that of Starkweather et al.

d that “adaptive mutation 18 critical”
ibuted GA over and above the traditional GA. Their
d time performance with dynamically applied

r of cases with improved convergence times

to the improved
(1992), who state

performance of their distr
study also showed an improve

mutation, mirrored here 1na numbe

tation. These gimilarities may also suggest that Starkweather

under dynamic mu
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.et al’s plefilctlon of similar dynamic mutation behaviour from architectures
implementing parallel evaluation of an individual could be correct. Other areas
hlghhghted by Starkxvveather et al., specifically the relationship of dynamic
mutation to a dynamically controlled population size, also warrant further
investigation with the Multi-GA and, in particular, its use of addition and
deletion operators to dynamically control an individual's chromosomes
(explored i‘n chapter 6). As discussed earlier in this chapter, work by authors
such as Fogarty (1989) and White & Oppacher (1994) has shown a relationship
between dynamic mutation performance and population size, so an extension to

examine both dynamic population and individual size in the Multi-GA

architecture would be worthwhile.

Alternative alphabets

As discussed in chapter 2, the issue of alternative alphabetic representations is
one that many authors (e.g. Davis, 1991) have investigated with promising
conclusions. Chapter 8 outlined the Multi-GA structure and its ability to utilise
non-binary feature chromosomes. In studies of non-binary representations
carried out previously, it has been pointed out that alternative operators are
required, performing the essence of crossover and mutation but in a coherent,

non-binary context.

Application problems such as the travelling salesman frequently used order
based operators, specific to the problem representation. In the investigations
carried out here, the problem surfaces tested with binary chromosomes were
also tested with real encoded chromosomes, with specific real valued genetic
operators. In addition to providing a performance comparison against the best
attempted binary encoded methods, these experiments also served to indicate
whether or not incorporation of non-binary chromosomes actually proved of any
benefit, with important consequences for the encoding of the problem
applications described in chapter 6.

Before beginning experiments, suitable crossover and mutation operators had to

be designed. In doing so, the pri
with the intention of designing cross

general purpose problem application with

: . C o nt
nciple of universal applicability was paramou
over and mutation mechanisms suitable for

in real encoded Multi-GA feature

chromosomes.
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Real crossover and mutation

The de31gn‘ of real encoded crossover operators should, as indicated by De Jong
(1985), maintain the principles of the genetic metaphor if they intend to bte)
applied to evolutionary algorithms. One common approach has been to produce
averaging operators (e.g. Janikow & Michalewicz, 199 1) that take the average of
two real values and produce a child that is the average of the two. This
principle, relating one value to the other, was incorporated in the design of a

new real valued crossover operator — Quotient crossover.

The quotient crossover method retains the principle of incorporation of
information from the two parents, but produces two children, with alleles
related to the relative values of the two parents. Rather than picking a point
directly in between as with averaging, the children’s alleles are scaled by a
quotient value, obtained from the parental chromosomes. The choice of whether
to scale the children up or down is made by selecting the fitter or weaker parent
as denominator with 50% probability. Consequently, the children will be scaled
up or down the range of chromosome values by an amount obtained from the
encoded value in each parent. The operation of quotient crossover is illustrated

in figure 5.1.

1: Given 2 parents, assess
quotient value as A+B or B+A
(50% probability of either)

g: Create children by calculating
A and B values multiplied by

El] the quotient.
o

l i
'7 ) ~ G ;
Highest Range of chromosome values Lowest

| Difference in chromosome values
S ' caused by quotient scaling

re 5.1: Real valued quotient crossover.

Figu
. . s ; - sinary encoding and a common scheme
Mutation agamn required changes from binary B
utilised by other authors (e.g. Williams &
perturbation being made to the selected real Wf e oo
Multi-GA, the value used 'x‘e})i‘e‘fsﬁl’itﬁd o maximum of 10% of the CRTOTAEeINE
[ulti-GA, the valie used

1994) was followed, with a small

lue. Tn the scheme utilised by the

. o ag FENTESENTING A TATEE of
3 i o avin th chromosames Tt pre i £

Y OV i r-Ta 7 7670 a.«»l&» Sos Wi
range, btalﬁ(] over the 2
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Table 5.46:  F8 optimisation results
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+500, a ran . v
dom number between -25 and +25 would be selected and applied to

T : :
for cl ) he .rate at which mutation was applied vequired no need
or change, just the mechanisms by which the selected value was altered

the chosen real value.

Real valued performance

Having established an additional crossover method, along with averaging and
creep mutation, a limited number of experiments were performed on each ;)f the
two variants of the F7 and F'8 surfaces. As for previous experiments, 20 GA
trials were performed for each experiment with the general settings of a 100
member population, executed for 500 generations repeated. Thé previous
results in sections 5.2 and 5.3 led to the choice of experiments using a fixed 75%
individual and chromosome crossover, with 4% mutation and dynamic mutation
experiments with mutation floating at up to 10%. In all cases, single member
elitism was applied. The full results of these experiments on each surface in

turn are p‘resented in appendix C, tables C.33 and C.84.

The results again demonstrated the lack of discrimination provided by I8, with
both ¢ and 10 variable problems producing very similar results.  Similar
performance was seen from both fixed and dynamic mutation rates and quotient

and averaging methods of rate calculation (table 5.46).

A B
Smface Xover |Average Best | St. Der Average Best | St. Dev.
Fg:2 |Quot. | -180.50 | 0.03 -180.50 | 0.00
Avg. | -180.50 | 0.06 -180.50 | 0.08
Fg:10 |Quot | -180.50 | 0.00 -180.50 | 0.07
Avg. | -180.49 | 0.00 -180.49 | 0.00

for real valued Multi-GA with fixed 4%(A) and

dynamic 10%(B) mutation rates using both quotient and averaging crossover.

F7 proved to be more discriminating, with the ¢ variable surface indicating a

number of trends that were greatly exaggerated in the 10 variable case.
Averaging Crossover proved, in all cases, to be of particularly poor performance,
failing to achieve the global optimum in the 2 variable case (*1677})7) farld
falling significantly short in the 10 variable pr‘oblgm (-5029.83). Qx.,mr'.;em
ed better, with extremely good performance on the 2 variable
optimum in eVery fixed rate case. With dynamic
| slightly but stil outperformed averaging
In the 10 variable case,

crossover perform
F7 surface, finding the global
mutation, average performance fel
and dynamic mutatian rates.

crossover for both fixed S
crossaver at hoth fixed and

, - amaiy aefarmed ZWEFﬁ'Ti'ﬂg
qii(.)th”:ﬂ‘ti CTOREOVET agﬁm autpmfm mn oA

147




Dynamic Parameterisation

dynamic rates, but failed to provide good performance in terms of optima

reached. These results are illustrated in table 5.4.7 below

A

Surface | Xover |Average Best | St. Dev. Average B::l St. Dev.

7:2  |Quot. | ~1677.97| 0.00 -1672.05| 25.80
Avg. | -1586.70| 77.29 -1586.61| 63.84

[77:10 |Quot. | -4904.52 | 170.28 -4272.91| 170.89
Avg. | -9982.92 | 388.15 -2446.69 | 228.81

Table 5.47:  F7 optimisation results for real valued Multi-GA with fixed 4% (A) and

dynamic 10% (B) mutation rates using both quotient and averaging crossover.

Averaging crossover showed an extremely fast convergence time of less than
100 generations for the F7 problems studied, in both dynamic and fixed rate
mutation experiments. The poor results seen here suggest that premature
convergence is taking place, forcing an evidently suboptimal solution. Quotient
crossover showed convergence times similar to the fixed rate binary GAs.

These conclusions are illustrated by table 5.47 belaw.

A B I S

g’mﬁ)m Xover | Avg. Best | Si. Dev. _/Ivg.m §t. Dev. GA | Avg. Best | St Dev.
Gens Gens Tested Gens

F7:.2 |Quot 306.30| 114.31 348.45| 89.19 TGA 61.60| 388.46

Avg. 70.95| 114.55 96.70| 149.22 MGA 80.95 5.72

[7:10 |Quot. 448 50| 86.41 410.75| 86.29 TGA 34740 | 60.85

Avg. 56.90| 91.88 91.85| 156.68 MGA | 27555 | 57.41

Table 5.48:  F7 convergence times for real valued Multi-GA with fixed 4%(A) and

dynamic 10%(B) mutation rates using both quotient and averaging crossover,

plus fixed rate binary GAs (O).

Whilst converging in a comparable time to binary encoded experiments

performed earlier, the averaging real e

performance of the binary GAs.

ncoded method fell well helow the

148




Dynamic Parameterisation

A

Surface | Xover |Average Best |Std. Dev. WageBm‘ G4 |1 C
' : £ Averap . 5
F72  |Quot | -1677.97] 000 |- = Tested ge Best | 1. Dev
Avg. | -1586.70| 77.4 1072.05) 25.80 IGA 1.1677.79| 0.25
r— 70| 77.29| |-1536.61| 63.84] | MGA | 17158 0.4
$7:10 QL*Ot- -4204.52 | 170.28 -4272.91|170.89 TGA | 6,17';):8 (O‘Qd
Avg. | -2982.9221388.15 ~2446.69 | 298.81 MGA :l”i(gz;; i;?;

fable 5.49:  F7 optimisation results for real valued Multi-GA with fixed 4% (A) and

dynamic 10% (B) mutation rates using both quotient and averaging crossover,
plus fixed rate binary GAs (C).

['his was seen in both average (table 5.49) and best ever (table 5.50) values.
Quotient crossover put up a better performance, but still failed to match the

performance of the binary GAs in most cases.

A B C
Surface | Xover | Best Ever Best Ever GA Rest Ever
Tested
[*7.92 |Quot. |-1677.97 -1677.97 TGA |-1677.07
Avg. |-1674.79 -1657.84 MGA |-1677.97
[7:10 |Quot. |-4541.30 ~4595.01 TGA  |-4001.57
Avg. |-8288.49 -5053.80 MGA |-5020.01

Table 5.50:  F7 best ever optimisation results for real valued Multi-GA with fixed 4%(A)
and dynamic 10% (B) mutation rates using both quotient and averaging
crossover, plus fixed rate binary GAs (©).

F8 provided little discrimination, finding the global optimum in most cases.
The trend for fast convergence W
problem, where the global optimum was 1
crossover finding it in less than 25 generation
e with averaging Crossover was reve

average. In all other cases, no real d

as again ustrated in the F8 2 variable
ocated in all cases, dynamic quotient
s| However, the trend for faster
convergenc rsed, indicating longer
£ istinction was see
convergence times On istinction wa n

between methods applied on 8.

B
A ‘ e
Tg;zfa(;g WW Sf. DC"{)- W ASL I)EU.
Gens Gens
5451 1.79
g wot. 70.95 | 123.02 15.
Fe2 906,15 120.58

Avg. 106.70| 90.86
|Avg | 106 T8 Z
510 |Quot. 427.05| 86.02
Avg. | 469.05] 82.06]

41645 814
464.05| 4242

.GA with fixed 4%(A) and

mes for real valued Mulfi
and averaging crossover.

Tahle 5.51:  F@ convergence fi
rales using hoth guatient

dynamic 10% (B) mutation
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A summary of real encoded experiments

In summary, the real valued experiments serv

ed to demonstrate the ability of
' 2 g of
the Multi-GA to work with non-binary g

e . encodings. Quotient crossover
providing a scaling factor based on parental information and used to create real’
encoded children was introduced, with results indicating improved performance
over an averaging based method. Trends illustrated in previous experiments
were repeated, with F'7 providing results confirming trends indicated by binary
encoded experiments. I'8 again showed little discrimination. Whilst indicating
better performance from quotient crossover, results in the discriminating 16
variable I'7 problem indicated poorer performance from real encoding compared
to binary encoding for the experiments performed here. However, fl]e purpose
of the experiments — to illustrate the successful application and methods for

manipulation of non-binary chromosome representations ~ was fulfilled.
Recent discoveries concerning F8

One of the repeating concerns arising throughout the test series has been the
lack of discrimination shown by the test results carried out on the ['s surface, in
both 2 and 10 variable form. Whilst F7 showed reasonably effective
discriminating behaviour, especially in the more complex 10 variable form, I8
has indicated little discrimination. Although the surface maintains an overall
basin shape, visual analysis (figure 4.5) suggests a complex surface with an
extremely large number of hills and valleys. In addition, recommendations from
Miihlenbein and his PGA studies (1991) both indicated '8 as a good choice of
scalable test surface, suggesting it to be a difficult problem surface to optimise

due to its complex shape and scalable nature.

However, a recent paper (Whitley e/ al, 1995) presented at the 6th International

Conference on Genetic Algorithms thr
rformed here, opening a debate into the

ows considerable light onto the results

obtained in the experiments pe |
complexity of test suite surfaces, including specific mention of F8. The study
carried out by Whitley ¢ al. (1995) investig
F1-F10in detail with interesting results. Their analysis of I8 revealed surface
behaviour that goes a long way to explamning t ' i |

he last two chapters. In addition to presenting

(1993) Rreeder GA can he outperformed

ated common optimisation surfaces

he ease of solution seen in many

of the experiments presented in t

arguments showing that Miihlenbein's

lso presented a theoretical illustration of why 178 is

hy other methods, the study a
of Tittle use in providing diser !
ce as 1-D) slices along the diag

iminating GA behaviour. By plotting the
I nal surh onal of the hyperplane, Whitley
dimensional surfa
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et al. (1995) were able to provide cross-section

both 1 and 10 dimensions.

al analysis of the F'8 surface in

o 0 o % 16

ure 5.2:  Cross section of the 1 vaviable Fé surface, given by Whitley ef al. (1995),

)

Fi

shows multiple peaks and valleys.

NSNS fet
SNBSS é—[_r,«—-»——zlﬂ "

given hy Whitley el al. (1995)

——gg B

10 variable F8 suiface,

Figure 5.3:  Cross section af the
than the 1 variable case.

chows a much simpler parahala
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Examinatio - - i
n of the results (reproduced in figures 5.2 and 5.8 with kind

permission of Soraya Rana) show ')
) ed a 1 variable F'§ cross section clearly

reflecting the apparently complex nature of the surface seen in figure 4.5

However, the ari 08 ~
. the 10 variable cross section shows the surface to decrease in

complexity with increasing dimensionality! This reduction in complexity was
identified by Whitley et al. (1995) as due to the decreasing influence of the
product term, leading to a reduction in size of the local minima that Miihlenbein
(1991) identified as giving the surface its complexity. Their conclusion was that

the use of these test functions (F1 - F10) in comparative studies may lead lo suspect
conclusions.”

Taking this new information into account, the reason for a lack of increased
discrimination at higher dimensionality in the earlier experiments becomes
clear. In addition, the reasons for Miihlenbein's (1991) reports of good
performance can also be understood when one recalls that his PGA (described in
section 2.5.2.2.) was hybridised with a hill climbing algorithm that engaged after
a specified period of time, rather than maintaining a purely genetic approach.
Visual examination of the surface clearly indicates why hill climbers would find
this problem difficult, with extremely large numbers of local maxima in between

the next (local) minimiim.

However, the tests on F8 carried out here, although lacking experimental
significance, reinforce the results of experiments in which individual level
crossover was removed. In addition, indicative results were also given, in line
with the F7 2 variable problem, that illustrated trends shown with statistical
significance in the I'7 10 variable surfaces. Whilst the recent information
provided by Whitley e/ al. (1995) gives much insight into the results obtained
for '8, the studies performed here were not without merit, providing a widely

different problem surface on which useful experiments were conducted.
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6.2.1

Applications
Chapter 6: Applications

introduction

7: he réSUIFS of the tests performed in chapters 4 and 5 illustrated the potential of
the Multi-GA and its comparable performance to traditional GA methods.
However, as explained in section 4.2.3, direct application in a traditional GA
manner restricts full utilisation of the Multi-GA structure. In order to fully
explore the concepts laid out in chapter 8, applications problems with a more
multi-dimensional nature were investigated. This chapter describes the
application of the Multi-GA to two types of problem — network optimisation and
spatial analysis, demonstrating the use of feature chromosomes of different type
representations, chromosome feature functions and analysis of new genetic

operators developed.
Network machine placement

Chapter 8 outlined the potential for the Multi-GA structure to use chromosomes
of different type representations. The network machine placement problem was

used to demonstrate this potential in an applications context.
Related research

The network placement problem is similar in its nature to those in a wider class
of problem currently investigated by the GA community — namely, the facility
layout problem (FLP). Facility layout, being a type of problem involving large
search spaces and therefore many possible solutions, has been the focus of
mathematical algorithms for some fime. The extent of this research can be seen

by analysis of literature in the field, summarised effectively in papers by Tam

(1992) and Kusiak & Heragu (1987). Their surveys identify a number of

different mathematically based approaches to tackling FLPs, dating back to

work by Armour and Buffa (19638). Naturally, with developments in computing

and artificial intelligence techniques, new techniques have been continually

Do - ity of solutions, with GAs heing a
applied in an attempt to improve the quality

recent addition.

A common approach to FLPs by the GA community is that identified hy Tam
com apy

g tree structure =

for optimisation - encoded into a

lici binary tree defining the order of
(1992) in the use of a slicin

operations that make up the 1ayout required ion of valid slicing tree
GA operator SITINE Allowing a direct, legal representation ol VAlie 8HE g tree
FL4Y { 51 4.

1 GA can then he applied to generate potential
a 5 .

structures, the tradition
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solutions. Indications fr )
ndications from studies such as Tam (1992) and Kado et al (1995)
demonstrate the . SR St
success of the GA in this area, compared to existing

mathematical techiques -
ques and newer approaches such as simulated annealing

(Kirkpatrick et al., 1983).

A oy . o . .

research has taken place into the actual GA processes used to refine the GA’s
solution attempts. Tam’s (1992) approach used only a simple genetic process
with little optimisation and parameter tuning, yet still produced good results.
Other authors, such as Tate & Smith (1998b) have taken this research further,
investigating variations of the FLP and suggesting the use of interesting
techniques such as dynamic penalty functions to better attack more complex
I'LPs — in their case, the inclusion of infeasible regions of search space. The
scope for further work remains open, with Tam (1992) identifying possible

benefit from ideas such as the “maintarning a list of good solulions enconlered so

far,” the freezing out of operators on “parts of a layout (1.e. subtrees) [which] are

good enough and need not be changed” and “reducing the crossover and mulahon rale if

existing solulions are acceptable.”
Application of the Multi-GA to network placement

As discussed earlier in this thesis, it is believed that the Multi-GA structure laid
out in chapter 3 draws together a number of current approaches that may
provide benefit when dealing with multi-objective optimisation problems;
particularly those which may benefit from more flexible representation or finer
parameter control for independent problem sections. The conclusions into the
FLP study by Tam (1992) suggest a number of areas that have direct relevance

to the Multi-GA structure investigated here. In particular, his observation of

potential benefit from a finer parameter control, the reduction of crossover and

mutation rates on particular sections of the problem currently well solved and

od problem subtrees are all areas identified in chapter 7 as

the ‘freezing out’ of go
hin the framework of the Multi-GA structure.

particularly easy to implement wit

ere for Multi-GA application, namely network

The particular problem selected h ‘ 1
-GA performance to that of

directly compare M ulti

placement, did not attempt to 1 '
nowledged perform particularly

the traditional GA approaches, which it is ack e
ethods on the class of problems represented by

well in comparison to other m |
m was to demonstrate

FLPs. The intention of thi o
) the Multi-GA structure = identi
mixture of different Type representations

g particular proble

hanism by whicl fied in previous chapters as
mechanism by whic
having the potential for handling a
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within a singl - o
gle structure — could be successfully applied to an optimis

problem with real world applic ation

representati 8 ability that may contain different type
y ations. select; :
P ns. By selecting a problem closely related to an area of current GA

1n\v€_&stlgatlczn, it can be seen that the ideas emerging throughout different areas
of thﬁ GA field - drawn together by the Multi-GA structure used here - provide
for direct applicability to an area in which GAs are producing increasingly
better solutions with time. In addition, the further investigation into t/.he
structural potential and genetic self-modification operators undertaken later in
this chapter go some way towards identifying a mechanism by which the Multi-
GA structure could indeed be directly applied to the FLP, addressing exactly

those research issues raised by Tam (1992).
Problem description

In the real world, a common requirement in many organisations is to efliciently
install a number of computers in an ethernet style network. Undertaking this
task, the business would usually wish to minimise the distance hetween
machines, with some machines possibly restricted in their location (e.g. to
certain floors of a building). This task, involving different types to represent the
building, was given to the Multi-GA. A hypothetical building was created, with
real valued x and y co-ordinates defining the position of a machine within each
floor. The floor level position of a machine was defined by a binary encoded =z
chromosome. A large search space was created, with the overall building
dimensions being (0..20,000), (0..80,000) and (0..120) for the x, y and z

chromosomes respectively.

Two problems were tested, varying the restrictions and number of machines

placed within the building. The precise locations and ranges of the machines for

the 8 and 15 machine placement problems are given in appendix A, tables A1

: Tt o blem is given
and A.2 respectively. A graphical illustration of the 8 machine problem is gi

in figure 6.1, with the 15 machine problem displayed in appendix A, figure A.1.
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Figure 6.1: Legal machine distributions for the 8 machine locaiion problem.

Mixed representation encoding in the Multi-GA

The combination of mixed representation chromosomes was achieved by
representation of the integer valued floor level (z co-ordinate) as a binary
encoded chromosome, forming the first chromosome in a triple representing
each machine. The remaining two chromosomes represented the real valued x

and y ranges within the floor specified by the z chromosome.

A number of machines were defined by each problem, with each machine being

represented by the three chromosomes for z, x and y co-ordinates. Each Multi-

GA individual consisted of a number of these chromosome triples, so for the 8

machine case the individual contained 24 chromosomes with the first
chromosome in each triple taking a binary representation amongst the
remaining real represented chromosomes, a8 illustrated in figure 6.2.
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Chromosome 1 :
——@= Machine 1, z co-ordinate

Chromosome 2 ;
-8 Machine 1, x co-ordinate

Chromosome 3

———# Machine 1, y co-ordinate

e \ Qa1 G . .
Chromosome 8n-2 ——g Machine », z co-ordinate

Chromosome 37-1

——@ Machine 2, x co-ordinate

Chromosome $#

) ——& Machine », y co-ordinate

Individual fitness assigns machine
locations from each triple, taking
the sum value of the distance
between each in turn.

Fipure 6.2: Machine location encoding of chromosomes in a Multi-GA individual.

[nterpretation of the chromosome values was performed by the individual level
fitness function, taking each triple in turn and translating it into a point in the
3D building. The overall fitness of the individual was caleulated by the distance
between each machine in sequence, with the objective being to minimise the

total distance (and hence cabling required in a real world problem).

This was achieved by combining the chromosome fitness values, which
contained a penalty function applied to the chromosome where distinct range
limits were specified. The chromosome fitness function imposed on each.;::, yor
~ co-ordinate an additional penalty of d2, where d represents the distance

outside the legal co-ordinate range generated by the chromosome. In a

>, 3 M . » -~ 2 3 Y £ ‘AS
minimisation problem, this was seen to effectively penalise chromosome value
3

the further away from the legal region they drifted. ’I‘}‘]e use of this ﬁtfxess
penalisation mechanism was particularly appropriate gIVf:lil t?)e Conchl:‘ﬂ;)ﬂ‘ﬂ
drawn by Tate & Smith (1998b), namely that ina pl*'oblem <‘)f this t_YP% t.h‘ﬁ ’e*’.t
he boundaries of the feasible regions. I addition, it
ibility of the Multi-GA, illustrating the

could potentially differ from

solutions frequently lie on t
further demonstrated the structural flex ~
tness function which

se * 4 chromosome fi . P ol 1
use of a copriately required (say on the real valued 2

chromosorme (0 chiomOH " he integer valued z co-ordinate, for
; - not the intege ( i ,
-dina -smosomes, but no
and y co-ordinate chrom

example).
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Experimental results

Experiments were performed, as described, on 8 and 15 machine locatio

pi‘oblt":tms. As»with previous tests, 20 GA trials were performed for de,;cg
exper.xment with a p(')pulation size of 20. In the 8 machine problem, whilst some
machines were restricted to narrower ranges, there were no fixed chromosomes
In the 15 machine problem, a number of machines were restricted to singlel

floors, as detailed in appendix A, table A.2. The results for both problems are
presented in turn. |

8 Machine problem

The results for the simpler 8 machine problem were promising, with the Multi-
GA producing good results. Tables 6.1a and b show the results abtained from
the average of the 20 trials and then the specifics of the hest ever solution
obtained, llustrated in graphical form in figure 6.9.

Average Std. Average | Sid. Dev. | Best Ever | Best Ever | Avg. Best | S1d.
Best Dev. Worst Gens, Geil. Dev,

347062.40 | 99.08 "14L1.068.Q0 ‘731!1.,40 97094.8 | 448.00| 440.40| 58.50

Machine | = T 7y |Machine [z |z y
1 1| 5000.00| 5000.00 fesh 100 [17000.00. | 20000.00
2 22| 400000 | 6070.66 6 60 | 15718.,41 | 22000.00
3 81| 7921.12 | 10204.33 7 15| 12200.00 | 16500.00
4 105 | 188381.54 | 16101.24 8 4112174.59 | 25000.00

Tables 6.1a and b: Results of the 8 machine network minimisation.

The results show the sum of the distances between each machine, with the fittest
g the minimum possible distance. The results were good, with
e showing a wide range of values found during the Multi-
graphical output of the results, given in 8D in
x A, figures A2 and A8) show the Multi-
with no problems caused by use

member obtainin
the average worst valu
GA search. Examination of the
figure 6.3 (and in 2D views in appendi
GA to have located a highly acceptable solution,

of multimmpresentational chromosomes within the individual,
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Figure 6.3: 3D illustration of B machine hest result locations.

The 3D view demonstrates the relationship hetween each of the machines found
by the Multi-GA solution. Examination of the results presented in appendix A,
figures A2 and A3 shows the extent to which the Multi-GA has positioned many
machines on the very limits of their legal ranges in order to minimise the
distance to the next machine in the sequence. In addition, the Multi-GA
converges to a good solution in under 500 generations for a fairly small
population size. As such, no indication is given of unacceptable or problematic

behaviour through the use of independently represented chromosomes within

Multi-GA individuals.

15 Machine problem

s on the 8 machine placement problem, with the
rmance With representationally diverse
duced by increasing the number of

Following experiment
Multi-GA showing good perfo
individuals, further complexity was intro

machines and restricting the legal positioning of the machines. Cansequently,

the number of chromosomes increased to 48
Multi-GA with significantly mer

presented in table 6.24 averaged over
by the best rum-

per individual, presenting the
e information 0 handle. The results are
the 20 trials, with table 6.2h showing the

machine co-ordinates determined |
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A%e;;ge St Dev. A;nge Std. Dev. | Best Ever | Best Even Avg, Best | Std. F
98850.20] +775.81 | 230127.00| 8840.79] 9150600 P,G;;Sbo ;53811.15 31"?5;'1'
Machine | = x y Machine | % X y
1 96| 4976.837| 9915.86 9 88| 8888.72 | 2000.00
2 86| 5000.00 | 10000.00 10 120 | 10000.00 | 10000.00
3 86 | 7378.75 | 18000.00 11 91} 1810422 | 7000.00
4 86| 8786.70 | 20000.00 12 10| 15000.00 | 10000.00
5 86 | 15000.00 | 10000.00 18 60| 17000.00 | 12352.87
6 8| 2500.00 | 12349.74 14 60| 8000.00 | 27000.00
7 65| 7500.00 | 12800.00 15 33 | 12000.00 | 27000.00
8 O| 8453.06| 5000.00 - - - -

Tables 6.2a and b: Results of the 15 machine network minimisation.

The results show similar trends to those indicated in the & machine prohlem,
with many of the locations found to he on the horders of the acceptable regions
in an attempt to reduce the distance as much as possible. As with the previous
experiment, a high range between average best and worst indicates the degree
to which the GA has searched the problem space, converging in a similar
number of generations to a good solution. A more instructive 81 illustration of

the solution found is given in figure 6.4

120

g0

a0

x10*

Figuie f.d: 30 iliustration of 13 maching i;se‘fgi result loeations.
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_AS w.1t11 th‘e 8 machine problem, an insight can also be gained into the precise
location ofieach machine with respect to its legal ranges by exaﬁlinatiollljin 2D
along vertical and horizontal planes, given in aPPendix A ﬁé‘ures A4 and A5
Once more, the graphical results show that the Multiv-G’A hés found & gooaci

solution to thi - . .
- s more complex problem, consistently locating the solution within
500 generations.

Summary of Multi-GA application to network placement

The network machine placement problem was applied in order to demonstrate
the ability of the Multi-GA to successfully tackle an optimisation task involving
chromosomes of different representations within a single individual. Application
to 8 and 15 machine placement problems was carried out, using a mixed set of
chromosome triples consisting of binary and real encoded chromosomes defining
the location of each machine. In addition, the ability of the newly introduced
quotient crossover to effectively manipulate schemata was tested, with the real

encoded chromosomes being manipulated only by this mechanism.

The results showed that the Multi-GA was able fo produce good, consistent
solutions to both problems, within 500 generations for a relatively small
population size of 20. The differences of representation appeared to provide no
obstacle, with the Multi-GA easily applyihg binary and quotient crossover to
the relevant chromosomes within each individual. Whilst by no means
providing an exhaustive or comprehensive test suite on this particular problem,
the intention of illustrating successful \application of a mixed chromosome
representation, using different chromosome crossover mechanisms for the
different types was successfully achieved, with gaod results, These results
asis for further investigations of the Multi-GA structure,
n to those areas mentioned by researchers such as
ovides a natural operational mechanism.

provide a positive b
particularly with applicatio
Tam (1992) for which the structuré pr

Spatial analysis and the site selection pr{qblerﬁ/

common goal of Geographical Information Gystem (GIS)
uﬁi]ising GIS information hybridised with other
(andother) information. However, current
limitations and recent regearch has

Spatial analysis is a
hased techniques, typically
search mechanisms to provide spatial
G18 methods suffer from a-number-of
endeavoured to tackle these difficulties.
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The followi - . | :
¢ following sections describe GIS, current approaches and the application of

the Multi-GA as a new approach, under the following headings-

Geographical Information Systems and spatial analysis
¢ Limitations of GIS

Spatial decision support systems

A neural network approach

¢ Applying the Multi-GA
Geographical Information Systems and spatial analysis

The GIS field is an area of diverse research and application, making it difficult to
obtain a single, all-encompassing definition. Tn general, GIS are a class of
information systems relating to the storage, display, presentation and analysis of
geographically related data, which have found particular benefit fram the nse of
advanced computing technology. The interested reader is refevred to Maguire e/
al. (1991) for an excellent introduction to the GIS field, GIS pravide & wealth of
information about the geographical and human environments, with application
in areas from provision of postal data (e.g. Ordnance Survey's ADDRESS-
POINT system; O.S., 1995) through to health service provision, defence

planning and local government administration (Chorley & Buxton, 1991).

In particular, the latter applicatjons illustrate the particular use of GIS in spatial
analysis, defined by Johnston e al. (1986, p.446) to be “quantitative (mainly
statistical) procedures and techniques apphed in local analytical work.” Spatial
analysis has been identified as “extremely relevant to GIS” with “the gradual
absorption of spatial analysis tools into GIS [seen as] inevitable” (Openshaw, 1991, p.
389). These observations are confirmed by examining the real-world

applications of GIS. Chorley & Buxton (1991, p.76) described how GIS have
ce care, providing information on the

been applied in the provision of health servi on
nts and health care facilities,

distribution and characteristics of patie
subsequently used to determine funding allocat

Chorley Report (DoE, 1987) identified spatial i“@ e .
of forecasting requirements, including Jocal community services, lajnd !J%agﬁ and
resource management. Chorley & E.uxtaﬁj(lastﬂl, p.78) hav’@‘glaf:v fdingﬁv&d fhﬁ
future potential of spatial AnAlysis eusentially .,mtmgn@tec.lf”ﬂ‘ U;,I A\n:*;:t%
that “the potential for its mare widespread W3¢ and ﬁ»@i’lmmf”’” ‘ﬁd‘i‘? HITOATITELY

becaming recognised.”

ions. Tn local government, the
mation as useful for a number
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Limitations of GIS

Despite the wi
P widespread and successful yse of GIS as information provision

systems, they suffer from a number of difficulties - specifically in their ability to
provide effective data analysis. This issue was highlighted by Aangééﬁ]jzllg
(1991), who pointed out a “need to pay more allention to spatial analysis.”
Openshaw (1991, p.389) presented a starker analysis, stating that “the existing
spatial analylical loolboz is largely inadequate”. This analytical failing of the GIS is
repeatedly identified throughout Maguire el al. (1991) gaining recognition from
funding authorities that has led to investment in spatial analysis vesearch,

particularly in areas like statistical analysis and neural networks.

It is the lack of ability to intelligently interrogate the vast source of data
provided by GIS that currently handicaps their descriptive power, in particular
the inability to provide data extrapolation for a wide range of planning
applications. Indeed, Openshaw (1891, p. 400) identified “the previous neglect of
spatial analysis [as] a major impedument 1o the full explaitation of GIS.” However,
some atfempts to resolve these weaknesses have heen undertaken, with spatial
decision support systems mentioned hy Openshaw (1001, p. 391) as an approach
illustrating developments in “analysis for purposes of decision support and spatial

planning”.
Spatial decision support systems

Spatial Decision Support Systems (SDSS) seek to address the “complex spatial

problem often [having] multiple, conflicting objectives for its solution” (Densham,
1991, p.403). Based upon similar principles to current Al approaches into
DSS attempt to augment their supportive GIS,
esigned to provide the user with a decision making
geographical iformation fo be carried out in a

- Specific objectives of traditional

Decision Support Systems, 5
providing systems “explicitly d
environment that enables the analysis of

Slexible manner” (Densham, 1991, p.405). ‘ .
systems include to “help the user explore the solution space by wsing

of feasible alternatives” (Geflvion, 1068).
¢ §DES, but with additions that take
‘However, the power of current
rificial intelligence and database
s have been made fo incarporate
pe of BDAES remains

decision support
the models i the system 10 generate @ series
These hasic principles are mirrored in th
e spatial nature of the dafa,
ted, confined to ’tr’aditionai a
fon systems. Some attempta hav

praa@hﬁ@é, but the current 8eo

account of th
approaches is Himi
query style informat
expert aystem type ap
restricted.
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6.3.1.3 A neural network approach

6.3.1.4

i;‘;:}:c;:zz‘ Ziaippfoaches Ea\‘/e 1nclude'd neural networks to provide pattern
. _ ysis. Queries of the kind typically demanded by GIS were
identified by Densham (1991), who used the example of a bank branch location
problem, involving the siting of a particular facility based upon the surrounding
population. Typical questions asked might be "h&v many branches should there
be?” and “where should T locate these branches?” The limited analytical power

of current GIS and SDSS reduces their ability to provide satisfactory answers to
such queries.

One interesting new approach is that taken by Murnion (1095), who applied a
Hopfield network to this class of problem ~ specifically, retail site location.
Murnion’s approach attempted to answer the question “how many stores of a
minimum profitability can be supported by a given population grid?” — a
question that current GI8 find difficult to answer. The results were interesting,
showing good performance from the Hopfield net, indicating coverage of the
population surface and location of the optimum number of sites for a variety of

profitability levels.

However, more advanced questions concerning maximisation of population
coverage in a minimum number of sites were not addressed by the Hopfield

network, being identified as difficult to implement (Murnion, 1995a).

Related GA research

Although the use of GAs as technique for GIS is a novel one, the general class

of problem presented by site selection is similar to those covered hy timetabling

and scheduling - areas already att

been identified (as described in chapter 2) as optimisation algorithms with high
ective optimisation, Areas such as

racting significant GA research. GAs have

potential for tackling ohjective and multi-obj
timetabling or scheduling, which involve thfr ce;lc;;lation of a sequence of items

from a potentially vast problem space, have found themselves to benefit

particularly from GA application. .

Abramson's (1992) paper is a good example, {llustrating the successful
application of a GA to school timetabling, 'EVQ‘:’kiijg with a chromosome atrm B
3 clasges and room allocations, Abramson's GA

of tuples representing teachers, ¢/ Rt e i
calculates a cambination according o the ohjeetive of mln@msngragmu:ac
conflicts Thiﬁﬁ?]ﬁfoach, of encoding linear programming opfimisation

constraints into @ fitness ﬁm@ﬁdﬁ‘éﬁd ,fm;mulatiﬁg an ordering (or ather
N ETAITIEE THiY & 1E etk ; i
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roblem specific) oper
P p ) operator to perform genetic search on a single chromosome

string, has been ied i o
g applied in a similar way by other anthors (e.g. Abela et al, 1998;

Burke et al., 1995; i
; Bagchi et al, 1991). Studies such as these have served to

demonstrat '
o da e the effectiveness of GAs as an alternative to the widely accepted
and tried artificial ; :
o hax tificial intelligence approaches to scheduling and linear constraint
optimisa is effecti ‘ infi
ptimisation. This effectiveness is further reinforced by positive comparative

results, such as those obtained in studies of the type performed by Abela &t al.
1998 and Easton & Mansour, 1995 (for example).

iI‘hEI”e are a wide variety of scheduling applications and approaches, particularly
in the real-world context, from which GAs have heen able to draw inspiration
and potential solutions. As such, the application of GAs to scheduling style
problems is not a new phenomenon, with a wide variety of research having been
carried out from typical problem areas such as knapsack (e.g. Khuvi ez al, 1004)
and job shop scheduling (e.g. Bachi et al, 1991; Nakano & Yamada, 1091; Riegel
& Davern, 1990; Davis, 1085) through to more problem specific divect
application (e.g. Langdon, 1995; Ahela ¢f al., 1904; Ahramason et al, 1903). As
with timetabling, many GA strategies have found much success in this class of
problem. The work presented here demonstrates the performance of the Milti-
GA architecture on a class of problem in whichits structural flexibility gives it a

distinct applicability.
Applying the Multi-GA

The intention of Multi-GA application to the GI3 problem is twofold. Firstly, it
serves to demonstrate to researchers in the GIS field that the increasingly

widely accepted metaphor of evolutionary computation may well have direct

application and solve a number of the concerns of data management identified in

GIS literature.

From the perspective of GA vesearch, the GIS site selection problem provides a

highly appropriate vehicle for study and analysis of the dy nal‘nics ﬁ'ffmme of the
mechanisms implemented in the Multi-GA structure Dutlm?d in ch;?ptef 4.
With a general trend of much GA research towarda sELHe e adapta.t.mﬁ that
reflects a multi=dimensional or mulﬁ“abj'?ﬁ‘ive problem, the
hromosome approach 10 self-adapt would be
hlem provides a mechanism for

more naturally
identified ability of a distinct mulfi-C

ition, the GIS pro
nseful to explore. In addition, Fhe SR PR dntnn
studying the effects of the self-adaptation mechanisms identified earlier v the
i’heéia bringing an addifional level af understanding Into the dynamies of the
genetically controlled structural adaptation. With the Multi-GiA appraach
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providing a co-ordination apd refocusing of many -

tr les i : l‘ently active research
strategies Into a single genetic structure, the r '

| esults of a study into thi
articular : e : y o T
particular mechanism for self-adaptation may provide lessons or ideas for those

researchi “nat § )
researching alternative structural mechanisms to the traditional linear GA. The

GIS application also allows a greater exploration of the potential flexibility of

the Multi-GA discussed in chapter $ and not exhibited by the comparative

studies presented in chapters 4 and 5. The site selection problem, as
implemented by Murnion (1992), provides a problem which inhereﬁtly contains
an element of potential self-adaptation and is therefore appropriate to this
particular facet of the Multi-GA. The resulting analysis of self-control of
genetic material involved in obtaining the Multi-GA solutions to GIS site
selection, and the associated study of the behaviour of the genetic modification

mechanisms proposed here, are presented in the remainder of this chapter.

It is accepted that much work is still to be done and a number of problems could
have been attempted within this particular class, geared towards exploring other
Multi-GA concepts that hold potential. For example, a comparison with
subpopulationary evolution on a timetabling problem (discussed in more detail
in chapter 7) would provide a valuable insight inta the possibility of a benefit
being gained from the evaluation of independent fitness contributions. in
addition, time constraints did not allow for a full and comparative study of a

traditional GA adapted to work on this particular problem.

Densham (1991) and Geffrion’s (1998) descriptions of spatial analysis identified
a classical GA optimisation problem, which it was felt would benefit from Multi-
GA application. In particular, the increased flexibility of representation and the

use of extended genetic operators provided by the Multi-GA structure were
questions tackled by Murnijon

seen to provide the potential for extending the
nion's data, the Multi-GA

(1995) to an even more advanced state. Using Mur

was applied in order to demanstrate a number of key objectives:

«  The use of distinct chromosome and individual level fitness functions

within the Multi-GA. , : |
latian of genetic material through the

o The effects of automatic manipu ¢ ma
addition and delefion.

use of extended genetic aperators, L o re des
o The applicability of the Multi=GA to the analysis of G185 data,

estahlishing the Pgt@ntia] for futnre investigation of G’Aa‘aé an analysis

tool within th,@ G186 field.
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igure 6.7: Site selection encoding in the Multi-GA.

Each (-:hl‘omosome defined a single store location, the value of the chromos
decoding to a numbe.r, split in order to achieve the co-ordinate location o:tnl:z
store. .For example, in the 10 x 10 grid, chromosome l‘epreseutations' decédin

to an integer result between 0 and 99 were translated to grid co»ordinatege
between (0,0) and (9,9). The larger 100 x 60 grid involved l*epresent'atiown:s
decoding to co-ordinates ranging from (0,0) to (99,59). | |

The chromosome fitness function calculated the population distribution of each
particular store, obtaining the co-ordinate value from the decoded chromosome
and summing the surrounding population grid squares. At the individual level,
population shared between the stores was calculated, adjusting the chromosome
fitnesses accordingly and making any other necessary adjustments (for example,
relating to the number of chromosomes in an individual). The encading method
and fitness function relationship are illustrated in figure 6.7.

Extended operators: Adcition and Deletion

During the course of the simple grid experiments, it hecame necessary ta further
control the behaviour of the chromosome structure, through the use of the
extended operators, addition and deletion. Outiined briefly in chapter 3,
addition and deletion were incorporated into the initial multi-chromosome
concept as a mechanism for self-adaptation and control. These concepts were

realised in application to the more complex site selection optimisation questions.

Addition and deletion were used to control the number of chromosomes = and
population grid — within each individual. When certain
ocess of addition created a new, randomly initialised
ndividual. This had the effect of adding another

em, as required by the mare advaneed questions.

The addition mechanism was engaged by/jpérformiiig, 4 cgmpgrisan hetween the
profitahility of the sites currently beirig:’&egwhe;l and th@‘ n}1m13@3' of
chromosomes in the individual. Whﬁnfﬁh@:m;mb@rﬁf profitable sites found

matched the number of chromasomes in the current individual, & new

chromosome was created.

hence sites covering the
criteria were met, the pr
chromosome within the chosen

site into the optimisation probl

dition revealed need for its complementary
: :;\: i Yatar 1 ;. i s .l&v‘zi Th@

procedure to be introduced, for reasans oxp ?ﬂ‘_“"?d}?‘ tﬁ;l -u?é@m‘m_‘?,ﬂ I
romosame from the individunl, with the nan~

deletion procedure r@mﬁ‘{@d,f’" ?h g e R g Yat -
i soted individual marked 52 oandidaten for deletion 1n

Early experiments With ad

profitable sites in 8 ael
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on a single binar = /
g y encoding, with quotient Crossover on inte

one point cr ger encoding and
nts controlled the

)
wing series bemg carvied out on the 10 x 10

ossover on binary coded decimal. Initial experime
direction of later tests, with the fo]]

population grid:

@

Optimisation of 2 and 3 fixed site location

@

Population coverage using dynamic site creation

Mini . . .
nimum sites, maximum coverage with dynamic site creation

[

Following analysis of population hehaviour, dynamic chromosome creation and
Multi-GA performance, the experiments investigating coverage and site
minimisation were scaled up to the 100 x 60 grid, providing a test of the Multi-
GA on a more complex and realistic environment. The results for each of these
experiment series are presented and discussed in the remaining sections.

Simple grid, 2 and 3 site optimisation

The 2 and 8 site problems were undertaken fo give an initial indication of the
potential of the GA for further experimentation in this area. The tests invalved
Jocation of the optimum position of 2 and & stores respectively, fo give
maximum population coverage. Optimum performance was given by location of
sites at co-ordinates of [(2,4), (6,6)] and [(2,4), (4,5), (6,6)] in the two problems
respectively. In this set of problems, the individual fitness was given by the
conflict adjusted sum of the two chromosome fitnesses, the optimum co-

ordinates giving fitnesses of 1876 and 2426 respectively, with the results shown

in table 6.3.
Chrom. | Sites | Average | Sid. Dev.| Best | Best Toer | Av, Best | Sid. Dev. | Store | Store Store
Xover Best Ever Gens. Gen, . / i 2) g
iptbin| 2 | 1735.3| 132.58 1876| 33 56.95| 110.14 24 | 66| -
WEbin| 2 | 1722.1] 157.24| 1876 11 | 9920 159.01) &4 ) 661~
Qu.int| 2 | 1878.1 1264 1876} 135 | 178,60) 178.60 2,4 62 2"”41
Ipthin| 8 | 2224.8| 11560 2426/ 89 1703a'~,,},75,05 6,,9 ;1',5 e
w/fhin| 8 | 21784 159.28| 2826) 428 07.75| 11813 G l;,& o
Ou.int| 8 | 24010| 76.64] 2420] 191 | 10060| 125.66] 86 | 2 1 22

Table 6.3: Multi-GA results f@i‘ the 2and 3 fﬁﬁd/si/tgﬁéﬂ%?ﬁ@ prohlem.

g the optimum gelution on at least
e indicated an slightly xmprm@d
s) from Uniform hinary to 1 peint
The mn«bnmxy encoding 8 ,mhem@
Iaww %tﬁﬁd&i‘d deviation),

The results indicated all expemmem’s findin
one trial, with average best perfbrmanc
(althaugh within standard deviation Tange

", : ' poding:
hinary to Ouotient based INteger co
inary to & (thﬁt 33 m sﬁy

showed mueh mpmvad mﬂmst’en@y
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although taking a or . . . ,
z‘% | & a greater average number of generations to Siverge when
compared to the better of the two binary coded i n

Simple grid, dynamic site population coverage

Following the promising results obtai i i :
eX‘periments were unde%taken to ibnt:;?e:lrl;eﬂ: Slmple’. fxed ~Slte Pmblf’m‘s ,
material through the use of automatic ac{)dit' S 'Of gener"w
| | 1on of new stores. In doing so, the
question being answered was extended from “where can | best place these #
stores?” to questions involving calculation of the number of stores that can
profitably be placed on the grid, given a minimum profit criteria. Having placed
a single store profitably, the addition routine was called as outlined earlier to
add a new chromosome into the population. Experiments were performed at
three levels of minimum profitability, 200, 400 and 600 at each of the three

encoding and crossover combinations used earlier.

The results are shown in tables 6.4a - d, showing the number of chromosomes
found in the hest performing member of the ‘hest ever’ experiment performed,

and the site co-ordinates of the first found optimum member.

Chvom. T 3in. | Average | Std. Dev.| Best Ever | Gens for Avg. Best | Std. Dev. | Maz. Test

Qu. int | 400 2426.00 0.00| 2426.00

Xover | Profit Best Best ever Gen. Chrom's | label
1pt bin | 200 | 2426.00 0.00| 2426.00| 5% 40.80| 22.17 7
u/fbin | 200 | 2426.00 0.00| 2426.00{ 46 38.65| 22.70 6
Ou. int | 200 | 2426.00 0.00| 2426.00| 63 84.85| 72.18] G
1pt bin | 400 | 2421.00 21.76| 2426.00| 18 80.25| 8345 4
u/fbin | 400 | 2426.00 0.00| 2426,00] 43 95.85| 11644 5

105 18040 79.86| 4

1pt bin | 600 | 2246.60
w/fbin | 600 | 2817.90| 159.4%
Ou. int | 600 | 2411.00 65.87| 2426.00| 81

302,08 | 2426.00| 59 168.75 | 17442 4
9496,00| 273 96.00| 107,51 4
106,15| 77.08 4

Table 6.4a: Using addition to create and place stores, with unadjusted fitness.

g gt ™"C

Co-ord | filness Co-ard | filness Co-ord | filness
Siore 1| 7.6 | 628 2% | 728 | 6.6 7§Z
Qtore 2 | 8,5 | 840 g5 | 665 | 2% 2

560 | 8,5 | 665
X 7eé ¥ '13:4-1 4180 6’5 569 ! o
Store 8 Lo | gio | g7 | 460 | O | 808

Label A

Store 4

Store 5 | 0.4 s08 | 1,7 g i;,g g
Store 6| 3.2 160 ‘Q,O |0 i 0
Store 7| 8,7 L. 0 -

Tahle .4 bs Sife lacations far vesulls presented in fable 6da.




Applications

Label D

Co-ord | fitness| Co-ord | fitness | Co-ord
Store 1| 2,4 | 838 | 4.5

Store 2 4,5 691 5,6
Store 38 6,6 602 1,4
Store 4 5,6 246 2,3 362
Store 5| 8,4 59 8,6 308

Sitness
416 | 7,6 | 518

B Nt 305

Label G T [

Co-ord | fitness| Co-ord | fitness | Co-ord | fitness
Store 1| 6,6 | 938 | 66 | 786 | 6,6 | 888
Store 2| 1,4 | 5878 | 2,4 728 | 24 | 833
Store 3] 36 | 510 8,5 665 | 4,6 | 760
Store 4| 4,3 400 6,4 252 0,0 0

Tables 6.4 c and d: Site locations for results presented in fable 6.4a.

The results indicated good, comparable performance for all methods, with
population coverage heing achieved by at least one run for all results, in almost
all cases for 200 and 400 profitahility. 600 profitability began to show some
variation, with standard deviation values increasing markedly. Where larger
standard deviations were seen, quotient erogsover on integer encoding was seen
to provide greatest consistency, both in average best and time taken to

converge.

Two specific points were raised by the‘Site”lb(;latiogs/,,found under the use of
addition. Firstly, a number of individuals contained more than one chromosome
below the level of profitability. Whilst the creation mechanism was intended to

) 1 [ |' e
create individuals containing a number of profitable chromosomes, with a sing]
t seen to contmue as the generational

newly created chromosome, thls was no
sons for this was carried out and is

cycle progressed. Analysis of the reas
explained in more detail in-section 6.3.5.3.

he spread of unprofitable
yried out, resulting in development of the deletion

nanwpmfitable chromﬁsomes at the time of fitneas

he deletion operatar, account was taken of the need to

rder to allow adequate time

Investigations into 4 method of wntr@,ﬂmg t

chromosomes were ca
operator fo pruné out
evaluation. In designing t
retain at least one na
for searching to oceur. Fal
between addition and deletd
added chramosome before ith
deletion call was made anly ¥

n-profitable ¢ ahmmqsame ino
fure to acammt for this
ion pracadure&; with: deletion I
had time to #eAre

h?ﬁ 801 mare unp

wm]d have Jed to thras hing
emoving a recently
h and evolvel Consequently. the
mfitah ¢ chrompsnmes Were




Apphcatlons

resent. The result
p s of experiments using addmon and del
tables 6.5a - d. etion are shown.in

Chrom. | M. | Average | Sid. Dev.| Bt I
Xover PrQﬁ[ Best est Ever

g:;;s e{? r [ Avg Bt | Sid. Dev | Wav, | Tl

;  ever ' e

Ipt bin | 200 | 2426.00 0.00| 2426.00| 1928 C;an«() P C’l’f:ms label
. ; 5

u/f’bin 200 | 2426.00|  0.00| 2426.00| 49 p

Qu.int | 200 | 2426.00|  0.00| 249600| o G‘iig 38.16| 4
Ipt bin | 400 | 2426.00|  0.00| 242600 46 | 6825 ,,,,3_1;73 N
u/fbin | 400 | 2426.00| 000 2426.00| 154 90.85 51.28| 4
| Qu.int | 400 9496.00|  0.00| 2426.00! 126 | 110.10 57)?(5)2 ;
1pt bin | 600 | 2370.80| 116.67| 2426.00| 247 928-05 157.;)“ !
w/fhin | 600 | 2385.95| 79.97| 242600 49 | 168.20 110.(); ;
Qu.int | 600 | 2306.00| 7809 2496.00 120 | 1975|8616 !

‘—\:I_(

TO DO Z LT

Table 6.5a:  Using addition and delefion to create and place stores, with

unadjusted fitness.

Label J K L
Co-ord | fitness Ca«ard Sitness | Co-ard | fitness
Store 1| 6,6 | 833 | 6.6 038 | 24 | B34
Store 2 | 4.5 | 710 24 | 631 | 45 | 760
Store 8| 2,8 | 574 8.6 | 488 | 66 | 751
Store 4| 2,6 | 300 | 43 400 | 7,8 | 104
Store 5| 0,1 0 - - - -

Label M e
Co-ord | fitness| Co-ord lﬁness Co-ord | fitness_
Store 11 6.6 | 838 | 2.4 | 838 | 24 | 839
Storea | 45 | 815| 45 | 810 | 66 | 843
Store 8 | 1.4 | 416 | 67 | 879 | 46 | 760
Store 4| 2,8 | 862 | 7.4 | 204 | 00 0

T.abel P 0 R
Co-ord | fitness| Co-ord_ Jitness /‘KG‘Oéardj ﬁﬁw&s
Crore 11 6,6 | 786 | 6.6 728 24 :gi
e2| 2,4 | 723 5,5 | 665 6,0 | Bae
Store Bl 19 Gal 2o

Store 3| 3,5 665 253 b |2t
Srore s | 64 | 252 | 28 | #1190 L2

Tables 6.5 h,c,d: Site lacations fnrfreéul!tgﬂre&éntgdﬂ!n, fahle f.5a.

f deletmn proved suaceasﬁﬂ w1th the number of
o @ number of cases, par‘tzeu mly the %}Cf profitability
the perfmmamﬁ, and a larger increase
g at 600 praﬁtabxhiy was aeen
atandard deviation Jimits. A
’{?wﬁh slightly better

The introduction 0
chromosomes reduced i
example. In addition, a slight inerease in
in standard deviation, of the hinary. Fﬁpmﬁe"mm"

over the previous c}aperimﬁﬁm: ﬁlm@ﬂgﬁ W’mm

i 1o
similar trend wag.seen in ?@Vﬁfﬂ%‘g gﬁﬁﬁm Qe




d deviat
g dele Hovizever, the chromosomes that had :nét etl
profitability were still contributing their syh optimﬂ ﬁvt': -

~optimal fitnesses

using deletion. on in most cases

eached minimum
to the individual

I I‘IKES 3 lenC i I I
0} t ™ m 3

it was still considered inappropriate to have unprofitable sites m

aking a positive

contribution. ;
ution. Consequently an alternative method of control more directed
» more directe

towards this objecti ' i
7 ObJE(.:tlve, was applied with the fitness contribution of non-
profitable stores being entirely removed.

Chrom. | Min. | Average 't . oy -

X{me:r P Bmg Std. Dev. | Best Ever g:zm £1; Avg; f.est §id. Deu, Cl}ir(;r 7(;&1]
].pt‘b.ln 200 | 2426.00 0.00| 2426.00| 89 A7.90 5491 ;,7ms KM'
u/fhin | 200 | 2426.00| 000 2426.00| 102 4205 9738 8 Ag
Qu. int 200 | 2426.00 0.00| 2426.00| 17 77,25 ;‘2127 6 | AC
Ipt bin | 400 | 2410.55|  47.97| 2426.00 82 | 117.65| 118.60| 4 |AD
u/ibm 400 | 2415.46| 81.14| 2426.00| 29 118.25 aaim 4 AE
Ou. int | 400 | 2426.00{ 0.00| 2426.00| 188 | 16500| 127.20] 4 AF
1p1i13§n 600 | 2069.90| 264.48| 2426.00| 27 57158 8888 4 | AG
u/fhin | 600 | 2239.00| 190.96| 2426.00| & 19945 151141 4 | AN
Qu.int | 600 | 2523.10| 200.07 2426.00| 54 160,80 18860 4 Al

Table 6.6a: Using addition to create and place stores, with adjusted filness.

Takles 6:6hcd

Co-ord | filness
4 | 883 |
45 | 160 |

Label AA
Co-ord | fitness
Store 1| 2,4 | 728
Store2 | 6,5 | 569 |
Store 3 | 8,5 | 565
Store4 | 7,7 8141
Store 5 | 4,7 | 256 ,
Store 6| 3,0 0 9,8
Store 7| 51 | 0O 7.2
Stores | - | = [ L1 |
T AD | AR
Co-ord | filness gg;g;ﬁm nes
Store 1| 2.4 | 893 | 24 | 89
Store2 | 6,6 | 838 | 66 |
Store 8 | 4,5 | 760 40
Store 4| 2.2 | 0 1 bl
" Labell  AG .oan
Coward | fitmess | Comard | Jit
Gtove 1| 24 | 883 ] =%
Qrore 2| 6,6 | 848 | RO
Store 8 | 46 | 760 | %2
Store 4] 00 |0




; Appllcatmns

In order to assess the effects of this behaviour ont / oy

our or d operators, these
h-both addition and
deletion, with the results of the first of these two experiments
teerior given in tables

experiments were performed with addition only and then wit

Application of fitness adjustment, zeroing the fitness contribution of non
profitable stores, gave comparable performance to non-adjusted fitness results
with a slight fall in average best performance indicated at 400 and 600 fitnesses

The number of chromosomes was reduced in one case, but matehed hy an

increase in another case. However, the average number of generations to

converge showed a slight increase over non-fitness adjusted methods in most
cases, although all within standard deviation values of one another. The
previously identified situation of multiple non-profitable chromosomes was
again seen. The next experiment introduced deletion fo control the spread of
these chromosomes, with the results shown in tables 6.7a = d.

Chrom T Mn | Average | Sid. | Best Ever | Gens for | Avg, Best S Dew. | Maw. | Test

Xoper | Profit|  Best Dev. Best ever | Gen, Chrom's | label

Ipt bin | 200 | 2426.00 0.00| 2426.00| 66 48.00| 20.71 bt Al

u/fhin | 200 | 2426.00| 0.00] 2426.00| 29 78.56| 86700 & | AR

Qu. int | 200 | 2426.00| 0.00| 2426.00 181 | 60,06 8088| 6 | AL

ipt bin | 400 | 2426.00| 0.00| 2426.00 | 141 | 125.20| 9531} b AM
5

u/fbin | 400 | 2421.00| 21.76| 2426.00| 149 | 14640 9106 AN
Qu. int | 400 | 2426.00| 0.00| 2426.00 118 | 1€ | 11808 4 AO
1pt bin | 600 | 2396.00 45.81| 2426.,00| 66 | 189.00 18846 4 AP
w/fbin | 600 | 2400.90 | 53.94| 2426.00 109 | 217.2C 189.04| 4 AQ

' -«:14.2 4,3 4 AR

mber of stores, with adj usted fitness.

Qu. int | 600 | 2405.60 69,46 24'2600' 42

Table 6.7a: Using addition and deletlon to fmd the nu

Label N A.K - AL 1
Co-ord | fitness Co-ord Jin lé{l]r;s |
Store T | 728 | 66 | 83
Store 1 | 2,4 3 | qos

Store 2 | 8,5 | 666 40 |

Store 8| 6,6 | 621 24
Store 4 | 6,5 417 | 14
Sores| 11| Q | 62
Store6| = =]

Label AM
Co~ord |
Grore 1| 6.6
Store 2 | 46 | 077
Store 8| 8.4 | 484}
Store 4| 1.4 | F
Store & ';6 | o

Tahles 6.7 im;d &iie iﬁ 1]
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Label AP AQM "’“’X’R’"’""‘ﬂ .
- Co-ord | fitness Co-ord ﬂmessv Co-ord| fitness |
rel| 24 | 833 | 66 833 | 2,4 | 838
Store2 | 6,6 | 838 | 24 | 833 | 66 | 5ss
Store 8| 45 | 760 | 45 | 760 | 45 | 760
Store 4 | 7,7 0 1,8 0 9’,1 0]

Tables 6.7 b,c,d: Site locations for results presented in table 6.7a.

As expected, the introduction of deletion showed indications of improved
average best performance (although within standard deviations) but produced
markedly smaller standard deviation values, indicating greater consistency. The
combination of fitness adjustment and deletion, leading to the removal of more
zero valued chromosomes produced better results in the lower profitability tests,
resulting in population coverage in fewer chromosomes. Performance
comparable to previous experiments was seen, but with indications of increased

convergence times.
Population behaviour of addition and deletion

The results presented in section 6.5.5.2 described a number of cireumstances in

which the dynamic control of génetic material led to unwanted behaviour,

unanticipated at the design stage. Primarily, thi he propagation of
unprofitable chromosomes within the population, rather than thg:’éreation of a
single searching chromosome within an already fit individual, as intended. With
addition only ever creatinga single chromosome in an already wholly profitable
ion of how multiple unfit chromosomes came about required
n, the analysis of deletion and the mechanism by which it

problem was also required, to gain a thorough

individual, the quest
answering. In additio
achieved removal of this /
understanding of the behaviour of these new operators.

Qﬁiﬁ@ﬁsisting of
Vhilst the initial
aditions of addition were

jti;éfpfaczaéms. It
n 'thatflér:l f0 tbér@vm utlon of

Over time, the effect of addition W/@S:f/itfﬁ*ﬂféd‘e‘,
individuals containing a differing number of ¢l

aim of producing more chromosomes When the

fulfilled, it failed to take account of tlieviéff%gﬁéfﬁ
f crogsover and mufaie

was the genetic operators 0 L At
gﬁtgb}eichmmamm@&'

individuals with multiple unpr ,

gL he hagis of their

With individuals seleeted for genetie 'ma’mplulamz ?:@;Zn ‘ynprafitable
R e ad dndividuale. eonERiEd AT )

W vi =3 '.“ es’\ E(Ziﬁﬁ gﬁl@ﬁ-tgd 1 : R s 4 ¥ (S TP B S

H;dWldual ﬁif(i ’t:; r “b@cauﬁg,ziléy;;wé chramosome individuals, or #

chromasome (either DEEAUSE- W - e b







6.3.5.4

Applications

avmf selected an individual previously containing (say) $ profitable and 1
u}rllplo 1table (added) chromosomes; crossover and mutation between the feature
chro - ; ” : :

romosomes resulted in the production of children containing unprofitable

members within —existi : .
the pre existing: 8 chromosomes. With no mechanism for

deletion of the extra genetic material; individuals with more than one

unprofitable chromosome spread through the population, as illustrated in figure
6.9.

Deletion was implemented to prune out excessive unprofitable chromosomes, 1n
order to control the propagation of these chromosomes. At the time of fitness
evaluation, each unprofitable chromosome in an individual was labelled as such.
The deletion procedure was then called and unprofitable chromosomes were
removed in sequence until only one was left. Consequently, deletion redressed
the 1mbalance introduced by the propagation of unprofitable chromosomes,
selectively removing them and returning individuals to a state of z profitable
chromosomes with 1 unprofitable (searching) one. As a result, the GA search
process maintained a higher proportion of profitable searching, with less
chromosomes representing unprofitable areas of the grid. In the larger grid,
containing many zero rated areas, this was seen to be particularly useful in
directing the search. With addition and deletion indicating positive results in
the previous experiments, remaining experiments utilised addition and deletion

of chromosomes in all cases.
Simple grid, dynamic site minimisation, maximum population coverage

Whilst the experiments performed above provided useful indications as to the
behaviour of fitness adjustment and chromosome pruning methods, they did not
address particularly useful real world questions. In a GIS based problem
analysis in an area like, say, health care provision, questions such as “what is the

minimum number of hospital casualty units I need to provide to best cover the

population surface?” are far more likely to occur.

The results presented in section 6.8.5.2 illustrated attempts by the Multi-GA to

gain population coverage, but with no importance attached to the number of

chromosomes required.. As such, these results serve to demonstrate useful

behaviour enabled by the Multi-GA structure which, with a little modification,

can answer the more practical real-world questions and the experiments

performed here did just-that.

In order to maximise coverage and simultaneously minimise the number of sites,

the fitness function used in the earlier experiments was modified to incorporate

179
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a measurement of the number of chroniosifics s H
to be given to the exact formulation of the ﬁtvn'essdfiiliicitio Cieful s }.lad
solely the number of chromosomes as a fitness functionn‘ nitial iests using
. : . resulted in the GA
ploducing a population of perfectly placed single sites, but not obtaini
population coverage by any measure. Adjusting the ﬁt/ne;/s function to ii:fllm%c
population coverage by dividing this result by the nu1n5e1~ of Chl‘omosmzzs
performed better, but still produced solutions with less than optimum
population coverage. In order to truly answer the Question, the GA must first

gain optimum population coverage, and then selectively reduce the number of
chromosomes to as few as possible.

This was achieved by means of a three-stage process in fitness function

evaluation, operating as follows:

1: Optimise population coverage, as with previous experiments, measured
by chromosome fitness.

2: For individuals with optimal coverage, add a substantial fitness bonus.

3. Divide the fitness value of individuals with the bonus by the number of

profitable chromosomes they contain.

The value of the bonus was sufficient to ensure that, even after division, the
resulting fitness was still higher tharilthqé’e: WEi'cﬁii/Haafn'(‘:)t"yet reached
population coverage, ensuring that “ndividuals with full coverage were not lost
from the population. However, given a number of i’ndi’\?i’diia-l”s’/\&fith optimum
coverage, the division effect means that the overaﬂ"’fg(’)dl«”/(maximisatioii of

fitness) would favour those achieving coverage with less chromosomes.

The addition of the bonus did not adversely affect the selection pressure of the
on of rank based selection ensuring an even
a suitable{fi't-nes;s/KffuriétiOn,,expeifiments were

s the prev 'oﬁé}}fééié;}i)i/it"h one exception.

GA, due to the implementati
selection policy. Having obtained

performed under the same conditions a

Jicate handling was implemented,

In i experiments, no eXPhCitidhp e
previous exp - How ;,é;v,éi,fw.lth;f/duphcate

control being left to the evolutionary proct
practical option 1

licitly ﬂ-agggd%f r de

s typ of real-world problem,
| Jeletion and removed by the
duplicate locations were €xp e 6161000 led to
deletion mechanism. Furthermore, the addition O'fabon Valvue ; ;14«2 The
» oo com a fitness of 2426 to 4142.
; - vable value changing ' - F WL
the maximum achieva : o if tables 6:82 and, b.

results of these experiments ar¢ pr‘,ese,iift’

locations not usually a
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Chrom. | M. | Ave / - -

Xover | Profit Bersatge 8td. Dev. | Best Ever | Gens Jor | dvg. Best| Sid. bev " e
1pt bin | 200 | 8779.57| 493.90| 4142.00 B€S8tever Gen. . C}l&,s
u/fbin | 200 | 874851 55144 4142.00 410~ 129.70) 100.88| 4
| Qu.int | 200 | 8665.67| 607.69| 142,00 16(; s e e
1pt bin | 400 | 8727.80] 507.29 TQOOTM 11585 4
u/fbin | 400 | 8934.90| 414.20| 4142.00| 73 122.30 11786 4
Qu. int | 400 | 3984.90| 414.20| 4142.00| 86 182-;2 121.86| 4
1pt bin | 600 | $392.40 1056.20 414200 121 | 1630 105'[? X
u/fbin | 600 | 8869.60| 648.44| 4142.00| 354 213'08 189.27| 4
Qu. int | 600 | 3665.50 | 830.21| 4142.00| 340 | 212.15 ﬁi;g :

Table 6.8a:  Maximising population coverage in the minimum number of sites possible

Label | Co-ord | fitness
Store 1| 2,4 | 833
Store2 | 6,6 | 833
Store 8| 4.5 | 760

Tables 6.8b: Site locations for results presented in table 6.8a.

The results demonstrated all methods achieving the optimum coverage on at
least one of the GA trials, with average best values not far behind. In addition,
the major objective of the experiment, to do so in the minimum_ number of
chromosomes possible, was also achleved as mdlcated b rtable 6. 8b In each
case, the best result produced convergence to the t ee 0 tlmal locatlons for all
profitability levels. This is in contrast to the prekus experlments where

optimum coverage at the lower profitability Jevels (where fitnesses other than
) contained ‘ndividuals of 4 and 5 profitable

ptimum 3. Ind1v1dua1 results for each run are

the optimum three were allowed
chromosomes, as opposed to the 0
not presented here, as all achieved the three locatlons shown in table 6.8b, plus

an additional, unprofitable searching chromosome

In an attempt to improve averageb_estf p.,_e/rformancjepn th, bmary chromosomes
and following discussions with Phil Barrett (1995

sm
an alternative binary encoded chromosom Nl

representation (BCD). The binary represen’ca’ao /
it by- the chromos me

1
necessarily wholly approprlate representing POtem‘aly
liff. In order to all

(e.g. (8, #) ) over a binary hamming ¢ e
BCD was used represen ing
P propagatlon on a concatenated chro

s, decoded separately

ness func’uon is not
integer between O and 99, then spli . o
ow more. effective
o co—or_dmate_s as
mosome s_trihgl

distinct binary value
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The experiments performed above, for binary bn/e
g : poin

were then repeated with the results shown in table 6 9»: orm Crossover,

Chrom. | Min. | Average | Sid. Dev.| B
Xover | Profit Best est Ever | Gens for | Avg. Best] Std. Dev.| Maz.

: Best ever ;
Iptbin | 200 | 4142.00|  0.00] +142.00] 210 1?2”}30 Chron's
u/fbin | 200 | 4038.45| 310.65| 4142.00 80| 8120 4

: 194 93.85| 6

1pt b}n 400 | 4142.00 0.00| 4142.00| 36 157.80 102.38

u/fbin | 400 | 4142.00 0.00| 4142.00| 85 67.10 43?
. .0

1pt bin | 600 | 4142.00|  0.00| 4142.00| 283 | 23595| 95.78
w/fbin | 600 | 3847.10| 706.79| 4142.00| 195 | 233.95| 152.45

o [

Table 6.9: Maximising population coverage in the minimum number of sites

possible, using a BCD representation.

The results in terms of number of chromosomes showed no difference, with the
site locations being exactly as those illustrated in table 6.8b. However, as
expected, average best performance showed a huge improvement, with all 20
GA trials finding the optlmum solution in 8 profitable chromosomes in 4 of the
6 experiments performed and all one point crossover methods finding the
optimum result. Convergence times were comparable with those using non-

BCD binary encoding, but with a number of results indicating tighter standard

deviation results. These results conﬁ
Davis (1991) and others, that the ‘c-hQ.l :

the problem in hand can have a signiﬁcantixeffﬁﬁ

eatedly made by
ippropriate to
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and extended operator behaviour, the
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point crossover, duplicate.
used. This combination Was S

and, for computatlonal and tlme
this parameter combination. Other par:

the exception of populatlon size, whlch was ¢

the increased size of the problem being tackled-. -

rid also resulted in a change 1n the fitness
: e complex populatlon

ﬂectmg _the mor
lating site fitness, the

me method of cal(:p
51dered to be realistic for

Application to the larger population §
values defining proﬁtab1hty re

distribution. Whilst retamlng the sa
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: plications
set used 1n the small phications
grid. The results :

of a sman se

disappointing performance, with the Muylt GA
-GA operators of ad

ts showed

deletion appearing to not advance towards ; dition and
population cove
rage as well as

indicated by the smaller grid.

Average Std. Dev B
. . est Ever | Gens for
Avg. Best|  Std
| Avg | Std.

Best

— g — ‘ BL’StL"UL’T’ Gen .
70825.00| 2387.94| 75100.00] 490.00| 498 83 6?67\:.9 Prof. sites|  Dev.
oo 100 16 | 0.57

Table 6.10: , . o
Small grid parameter settings extended to the large population grid
longn

The results shown in table 6.10 were analysed, 1n oi'der to’(iet "mj

Multi-GA was not engaging dynamic adaptatio: n rem'lme e
A - ptation in the efficient manner
indicated by the earlier experiments. Following this analysis, it was revealed
that the GA was performing adequately, but taking a large amount of time, due
to the size of the search space. With such a large search space, the s;ngle
chromosome produced by addition required much longer to locate the profitable
centre of the search space — evident from figure 6.10 as a comparably small
portion of the total space. The focus of investigation consequently moved on to

examination of methods to increase the efficiency of the search, resulting in a

change to the parameters of the addition and deletion mechanism.

The next set of experiments were desig
powers of exploration by increasing the numl

the addition procedure. This also required an equivalent change in
number of non-profitable chromosomes

procedure, allowing the same increased

to survive deletion. A level of 10 chromosomes Wwas selected, giving an

additional boost to the searching introduced by the incorporation of extra
ined the same and the tests were

chromosomes. The other GA parameters remall

performed over 20 trials.

Average Best | Std. Dev. Bost Boer | Gensfor
:|" ‘Bestever |

118389.00 | 6898.05| 181500.00] 48700 e

Table 6.11: 10 chromosome addition apoi/iéd
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mber of generatlons
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e 1ncreased search

ther than a smgle

it was clearly
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demonstrated that th
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e in order to obtai
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by the move from a 1 to 10 chromosome thresh.
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4 of the individual’s chromosomes, instead of the stricter 100%.

The . ~- . :
results of this experiment series are presented in table 6.12 below
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75% 265087
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Initial experiments indicating success on a limited
to a larger 100 x 60 grid, with interesting results ‘:A numb
to the operation of the addition and deletion procedures were identifi d’ :

- ‘ : re identif ]
experiments performed to improve the efficiency of implem -

entation of these |

operators.

Following a series of experiments, it was demonstrated th s X
number of chromosomes assigned by addition and a lowvel'iill;a:f licer(;:f'fe;?é‘[fhé
engaging of the addition and deletion procedures led to a marked improveme(:t
in performance within an equivalent number of generations. Graphical display
of typical solutions obtained from the Multi-GA revealed the success of the
addition and deletion procedures in evolving a solution producing a realistic and

even coverage of the problem surface.

As suggested by the success of existing GA approaches to the class of problem
represented by site selection, the Multi-GA structure was shown to perform
well in tackling the problems presented to it. GAs, as a tool for GIS, were
shown to be particularly suitable and able to perform analysis that other
methods, such as Hopfield networks, would find more difficult. Looking
specifically at the Multi-GA architecture, its applicability to a real world

fied in Chapter $ as holding

problem was ustrated and a number of alf‘???? idexi’t' :
future research potential were touched upon. Th
analysis of operators such as addition and deletion, reve:

there is scope for yet further study'intd the application
structures, such as the Multi-GA, both in GIS :and? th§>’~Wv ;

they represent.




Chapter 7: Conclusions

The Multi-chromosome approach

The adoption of a multi-chromosome approach was undertaken followi
. . | .

consideration of the complexity of natural organisms, not currently reflected ‘g‘
it : » not currently reflected in

traditional GA architectures. In addition, examination of Holland’sﬂ(19 5)

proposals revealed a number of ideas suggesting a multi-chromosome ept)roacl
. . & P B §}
that have not been fully exploited in the literature to date.

Recent trends in GA research have shown a movement towards a number of more
structured interpretations of the traditional GA architecture (e.g. Davis, 1993;
Dasgupta, 1992; Harvey, 1992a, 1992b; Juliff, 1993). On closer examination, it
can be seen that much of the recent structural work in GAs has a close parallel to
research taking place in the other fields of EC (eg. Smith, 1980), although a
distinct comparison and cross-fertilisation of ideas has frequently been
overlooked. Despite this wealth of structural alternatives and their associated
lessons and future potential, there has been relatively little work in the GA field
towards the development of a non-hybridised multi-chromosome architecture

operating purely according to genetic pr inciples.

The Multi-GA proposed in this thesis has bxought together a number of the

different approaches into a distinct, flexible and pure ely evolutronary mechamsm
re, introducing,

The genetic process was modified to reflect the. ey

individual level crossover to exchange entire feature chromoso

individuals, whilst improving the mdependent feature chromosomes through
evel cmssover and mutation. Holland’s (1975)
cation and segregation

struct,ure gof the Mult’i*—GA [n addltlon,

traditional chromosome 1

suggestion of using ‘sets of cl
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o other rea
problems, in addition to gl"mg ConSIdemtwn

genetic operators bein




7.2

7.3

7.3.1

Conclusions

Traditional GA performance comparison

f: ielcf::in;m;eu:)rj::: gls(;nnlile;vl\;zn;hietsrtad_itif)nél ar‘ld multi~ch1~on1f>.soxne G‘AS

. optimisation surfaces of increasing
co‘m‘plex1ty. Both GAs showed good performance and located the globaol
minimum in most cases. The traditional and Multi-GAs gave mostly comparable
performance, with results on both the simpler and more complex test surfaces
producing results within standard deviation values of each other. In some areas,

indications of slightly improved performance were seen from the Multi-GA.

Considering that the application of the Multi-GA in a traditional GA manner did
not utilise the full representational benefits or flexibility of the new structure, the
results clearly demonstrated that no degradation in performance was seen from

its application in a traditional GA environment.
Improved flexibility

The comparative testing carried out, whilst demonstrating no loss of
performance, was not able to fully explore the Multi-GA’s flexibility.
Consequently, a number of additional tests were performed on areas expected to

gain from utilisation of this potential.
Dynamic Parameterisation

The ability of the Multi-GA to apply different parameter rates to each
independent feature chromosome was seen as having particular application in the
field of dynamic parameterisation. Other authors (e.g. Grefenstette, 1986;
Srinivas and Patnaik, 199%; Fogarty, 1993; White & Oppacher 1994
Starkweather et al, 1990) have reported various successes in studies of the

dynamic configuration of operator rates and their methods of application.

A number of experiments Were carried out on the Multi-GA using both dynamic

crossover and mutation. Several alternative methods of calculating the dynamic

rate were developed, relating the feature chromosome’s dynamic rate both to the
fitness of the individual containing it and 1ts

related to the rank of the current individual 1n
rrent chromosome and its peer n the best performing

peers. Speciﬁcally, these calculations
the population and to the fitness

difference between the cu
individual.

In additioﬁ experiments investigated direct and inversely proportional
culation of the dynami

jvidual ]evel crossover

¢ rate and study of the behaviour of

relationships in the cal
P mechanism. The results revealed

the newly introduced ind

: .1?90,




7.3.2

Conclusions

a significant performarnce Improvement resulting from t}re use of individual level
crossover over experiments in-which it was excluded. No real distinction was
seen by varying the rate of dynamic chromosome crossover with 75% givin

good results. Dynamically assigned mutation showed good results In a nimbe?‘
of cases, with the best performing combinations showing improvements over the
fixed rate results for both traditional and Multi-GA. The improved performance
was dependent upon the rate calculation method chosen, with inverse rank based
calculation emerging as giving the best overall performance. Direct fitness

O\/((l‘() ve exl" . 1

In addition to identifying an appropriate method of applying dynamic
parameterisation in a Multi-GA context, the results identified similarities with a
number of observations previously reported by other authors studying dynamic
parameterisation in the traditional GA (e.g. Starkweather et al., 1990). Most
importantly, the results demonstrated the successful application of the flexible
structure and its independent chromosome parameter rates in a dynamically

controlled context - a finding which has important implications for other areas.
Non-binary representations

In addition to applications involving: dynamlc parameteusation current GA
research in the fields of alternative ‘encoding methods were tested in the Multi-
GA context. The Multi-GA's ability to use independent feature chromosomes of
differing type representations required testing, before full implementation in a

mixed type applications context. Problems tested for dynamic parameterisation

with binary chromosomes were repeated with real valued chromosomes. In

addition, a new non-binary Quotient cross

child values being produced from scaling by the
ts were performed with the new quotient crossover operator

over operator was developed, with

relative fitness distance between

the two parents. Tes

and the traditional averaging operator used in many non-binary applications.

The results showed the quotient crossover operator to outperform averaging in
most cases. Averaging Crossover very qulckly

performance as being du
d by real encoded experlments were not nearly as

converged to an area of interest,

] e to premature convergence.
accounting for 1ts poor

However, the results obtaine
good as those obtained using
hod to be more appro

strating the success of

a bmary representatlon indicating the binary

di t priate for the problems _tested here. In
encoding me ]

d quotient crossover as a new non-binary
addition to demon ’
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operator, th ik
I? e results also demonstrated the capability of the Multi-GA to work
with chromosomes of a non-binary representation

Mixed representation individuals

Ifn order to further demonstrate the Multi-GA’s zibility to exploit independent
eatur : .

ature chromosomes, it was applied to a real world problem requiring
chromosomes of mixed type within each individual. This served to demonstrate

the e 1 1 : X
ase In which a number of chromosomes could be manipulated within an

individual, whilst using different representations and operators.

The network placement problem used three chromosomes to define the position
of a computer in a building, with real valued x and y chromosomes defining its
position on each floor, determined by a binary encoded z chromosome. Each
Multi-GA individual consisted of several of these chromosome triples for each
machine, representing 8 and 15 machines respectively in the two problems tested.
Whilst being a newly formulated problem, this application is similar to the class
of problems represented by facility layout on which a number of traditional GA
experiments have been carried out (e.g. Tam, 1992; Tate & Smith, 1998b).

The results were very satisfactory, with the Multi-GA handling the mixed
representation with little difficulty. Goo{cjﬁsglgtion{_s, producing highly acceptable
locations given the restricted ranges of the;rﬁ@ch{i’nes;wi/thin the building, were
produced. The results showed the Multi-GA to have no apparent problems 1n
dealing with a number of chromosomes of different type, with different operators
applied, whilst contained within a single individual. The genetic process

succeeded in evolving good solutions in all of the chromosomes represented,

illustrating the independence of feature chromosomes.

Self-adaptation of genetic material

As well as application to the muliti-rep,resentationalf problem described in the

e Multi-GA was applied to a s
f 2 minimum number of site

] ection, th patial analyss task involving
revious s ; ' o
. s-on a population grid. This

the optimum location:o . ‘
ulti-GA. Firstly, the use of

task allowed exploration 0
a chromosome level fitness fu

with the fitness of each site bein

£ two key features Qf the M ti-GA. ]
nction of limited independence was demonstrated,

g determined at the chromosome level. This

potentia,lvfor this type of feature chromosome

i ing the
was important, showing eof
o ; ] in successful application to more naturally

independence that may well be crucia

independent multi—dimensional problems.
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Secondly, the Multi-GA structure was fy th ‘ /
cornorating the ab rther 1nc1eased in flexibility by
p g the ability to dynamically control. generate and d
feature chromosomes as re db ¥ sl delete its own
uir
ators ‘ q' ‘ ed by the problem in hand. Two new genetic

p ere created — addition and deletion — which allowed the Multi-GA to
dynamically generate new '

y.. . yg erat - chromosomes to be added into the search process. A
series of 1nvestigations into the parameterisation and efficient usage of the
addition and deletion operators were carried out, resulting in a greater
understanding of the new and existing genetic operators, the best method by
which to apply them and the Multi-GA structure itself. In particular, the
relationship between the self-generation of new genetic material and the effects of
individual and chromosome level crossover on the parameterisation of the

addition and deletion operators were identified.

The resulting operators were then applied to the site selection problem —a
representative of the class of problems including time tabling and scheduling —
with highly promising results. The Multi-GA achieved optimal solution of a
small population grid experiment and produced highly acceptable solutions on a

larger and far more complex grid.
Real world applicability

The example discussed in the previous section also served to present the Multi-
GA structure as a serious tool for real world optimisation tasks. In successfully
applying the self-adaptation operators to site selection and spatial analysis, the
Multi-GA demonstrated an ability to tackle a class of problems frequently
examined in fields such as Geographical [nformation Systems.: A review of the
current state of GIS revealed much criticism by leading researchers (e.g.

McGuire et al, 1991) of the lack of analytical tools available to interpret the data

provided by GIS. The analysis desired is frequently exactly that demonstrated by

the Multi-GA in the last series of experiment
ided the Multl—GA with the ablhty to answer advanced spatial

entified by the authors of altematlve approaches such as

s. Inaddition, the use of addition

and deletion provi
analysis questions, id

Hopfield networks as difficult to 1mplement (Murmon 1995&)

-GA toa
As discussed in the next section, the successful apphcatlon “of the Multi
S S the potentlal for future extension to

real world multi-dimensional task illustrate

entationally diverse optnmsatlon problems in the same class

other complex, repres

and perhaps beyond.
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Future work

The Multi-GA structure proposed here, and the subsequent studies that have

been carried out, leave a
num - : f
) ber of areas open for future Investigation.

The multi-chromosome approach

The approach and structure of the Multi-GA itself has much potential for future
investigation into the dynamics and mechanisms of its operation. In particular,
areas such as the theoretical analysis of schema propagation, the relationship of
the individual and chromosome levels to schema manipulation and a reformulation
of the schema theory to account for the more advanced structure are all areas that

would provide a great deal of useful information.

The interdependence of chromosomes and their relationship in more naturally
multi-dimensional problem environments would also provide much scope for
investigation, with greater study of the means by which different feature
chromosomes affect the fitness of the individual as a whole being an area
proving beneficial. Increased study of the operators at both individual and
chromosome levels and their effects on the genetic processrwould prqvide greater
insight into the successful application of theMultl—GAand no doubt associated

performance improvements.

An investigation of hybridisation might also be a worthwhile study, with a

number of authors having shown beneficial results from combining GA

techniques with non-genetic search methods. In areas that might benefit from the

application of the Multi-GA as a genetic based method, it is not inconceivable that

hybridisation with other problem specific methods could produce good res ults.

Parameterisation

e g munity for
Parameterisation has been an area of Opgolpg}f?éeramh 1,-,’1—,/"_}?? GA com y

some time and the Multi-GA structurzefﬁgi‘s,’giﬁgi;gbei Qf,?d@ifiQnal parameters that
| o eonlar g—,fglrl/gnd /’;horough analysis of

would benefit from a detailed study. I“D?PE}” l 1 aful th s
dynamic parameterisation within the Multi—GA §t1fugt,‘u.rre,;ar_,nd/mzcomparlson oa
dynamnically parameterised traditional GA would be Qf use.

meterisation of the new genetic operators would be

ong with determinin '
idual and chromosome level more precisely.

Analysis of the optimum para

a useful study to undertake, al
rameter rates at indiv

g the inter-relationship

between the pa . " .2
: : s the arameter-rates-as

Initial investigations were carried out into the use ofp

nitial v s Wee 1t
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mechanism for e o e s =
xcluding information from the genetic search Sedicing!
= e he

multi-dimensional application where a particular feature chromosome is found to
be very good ar.ld accordingly it might be desirable that the genetic information
should be retained unaltered. Appropriate lowering of the rates of genetic
exchange would be one method of achieving this and a study wobuld .

particularly beneficial as a method for preventing disruption of good schemata.

The newly 1ntr?duced operators of addition and deletion would benefit from
further study, in particular defining the relationship of self-adaptation to
population size and rates of addition and deletion, all of these being possibly
dynamically determined. Further scope also exists for extending the use of
addition and deletion to generate chromosomes that would themselves be used to
evolve parameter rates for other chromosomes, following the lead given by
researchers such as Schaffer & Morishima (1987) who advocated inclusion of

parameters into the genetic process.
New genetic operators

Briefly mentioned in the previous section, the new genetic operators of addition
and deletion have scope for further development within the Multi-GA context. In
addition to parameterisation studies al/rea/c/ly mentioned, improvements in the
operator mechanisms to ensure more efficient, beneficial application would be a
potentially useful area for research. Other uses of the add and delete operators
for internal housekeeping within the individual = that is to say, control and
erial through copying and evolution of internal

retention of good genetic mat

parameter rates — are possible and would provide an-interesting avenue of

investigation. Extension of the scope of self-generation to the chromosome level
may also be desirable in certain problem app

and deletion mechanisms may provide-a usefulifram

lications and the existing addition
ework for such a process.
Quotient crossover was also introduced as a new non binary mechanism and

detailed study of its effects and compar
analyses, related to sghem

ison with averaging Crossover would
ata in non-binary mechanisms and

prove useful. Other

the relationship of the new crossover mechanism to schema propagation would

again be of interest.

Extending traditional GA applications

vestigated by GAs ¢o
t. In partic’ular, the st

i tain great otential for
A number of areas currently 1m n g p
a Multi-GA contex

ructure could easily be

exploration in
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applied to . s
. d areas utilsing co-eveluionary strategies, with different chromosomes
being defined iffer - .
& as different members of a sub population. - Specific applications

currently investigated by GAs in lower dimensions, such as time tabling, could be

greatly extended by the Multi-GA. For example, many time tabling applications

currently work with the goal of optimising a single timetable. In the real world, a

school or university may have a timetable for each year and may wish to optimise,

for example, a number of timetables in a department.

This 1s an area which could be appropriately studied in the Multi-GA structure,
with the chromosome level fitness function defining the optimisation for each year
group timetable, with the individual function governing conflicts across
timetables and producing a solution that is better at a departmental level. It could
be conceivable that the optimum solution for the entire department consists of a
particular year group with a sub optimal timetable, which allows others to reach
optimality. This would be difficult to locate with most traditional GA
applications, whereas encoding would be more easily facilitated in the Multi-GA
application. Generally, any representationally diverse multi-dimensional
optimisation task is expected to gain benefit from the Multi-GA structure and

investigations to verify this would be worthwhile.
An analysis tool for Geographical Information Systems

Finally, the area of Geographical Information Systems has already been identified
as gaining benefit from the Multi-GA structure. However, given the current
state of the art in GIS spatial analysis tools, the indications of the studies carried
out here are that GAs generally, and the Multi-GA in particular, may hold
vancing the analysis tools available to GIS.
tudy of the GIS field and the areas in which the
y applied holds a great deal of potential for
These studies would ig:e,vitalzly link back to a

y discussed, depending upon the specific

significant potential for ad
Consequently, a more detailed s
Multi-GA could be successfull
providing real world benefits.

number of the other areas alread

problems discovered.
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Appendix A

Appendix A: Network Placement Data

A.1 Introduction

This appendix presents the detailed location data for the network machine
placement problems outlined in chapter 6, along with graphical output from

Matlab illustrating this data within the hypothetical building.

A.2 The 8 machine problem data

The legal ranges of the 8 machines within the building were as follows:

Machine | x min. | x max.| xzmin. | zmar. y min. y max.
1 0 12 5000.0{ 15000.0 0.0 5000.0
2 20 40 0.0} 4000.0 0.0 30000.0
3 80 120 7500.0 | 12500.0| 10000.0| 17500.0
4 100 105 0.0 20000.0|1 7500.0| 24500.0
5 68 120 | 17000.0| 20000.0 0.0 20000.0
6 45 80 | 15000.0| 20000.0| 22000.0| 30000.0
7 15 38 8500.0| 12200.0] 7500.0| 16500.0
8 0 12 5000.0| 15000.0} 25000.0 30000.0

Table A.1: Legal co-ordinate ranges of the 8 machine network problem.
A.3 The 15 machine problem data

The legal ranges of the 15 machines within the building were as follows:

Machine |  min. | x max.| xmin. | xmazx. | ymn. | ymax.
1 0 120 0.0} 20000.0 0.0| 30000.0
2 86 86 0.0 5000.0 0.0| 10000.0
3 86 86 5000.0| 10000.0| 10000.0| 18000.0
4 86 86 0.0] 20000.0| 20000.0| 25000.0
5 86 86 | 15000.0| 20000.0 0.0| 10000.0
6 0 60 0.0; 2500.0] 10000.0| 25000.0
7 45 67 7500.0| 12500.0| 12800.0| 27000.0
8 0 10 0.0| 10000.0| 5000.0| 25000.0
9 33 90 0.0] 16500.0 2000.0{ 2005.0
10 110 120 5000.0| 10000.0| 10000.0| 23000.0
11 75 100 | 10000.0| 15000.0 0.0f 7000.0

12 10 20 | 10000.0| 15000.0| 10000.0| 15000.0
13 60 84 | 17000.0| 20000.0| 12000.0| 18000.0
14 60 | 120 0.0 8000.0| 27000.0| $0000.0
15 0 60 | 12000.0| 16000.0| 27000.0| 30000.0

Table A.2: Legal co-ordinate ranges of the 15 machine network problem.
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A graphical interpretation of the 15 machine values is given in figure A.1 below:

120 -

80 -
60 .-
40+ -

20

Figure A.1: Graphical display of the machine ranges in the 15 machine network

placement problem.
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Appendix A

A4 Graphical display of the 8 machine problem results

The positions of the machines selected as the fittest solution

by tl -
Multi-GA r y the best ever

un are . e
more clearly seen by examination of those positions in 2D,

across x/y and x/z axes, given in figures A2 and A3 respectively.
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Figure A.3: x/z co-ordinate view of machine positions in the 8 machine problem.
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A.5

Appendix A

Graphical display of the 15 machine problem results

The positions of the machines selected as the fittest solution by the best ever

Multi-GA run are mor

across x/y and x/z axes, given in figures A4 and A5 r

25

1.5

Figure A.5: x/z ¢

e clearly seen by examination of those positions in 2D,

espectively.
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Appendix C: Chapter 5 Full Results Tables

Appendix C: Chapter 5 Full Results Tables

C.1. Dynamic Crossover

Chrom | El'tm | Ave -
rom B;;l;@fe JSQ;;J. A}?ﬁ;;lge g:;). HEftz))tesrf Best Ever Av(g;.e fm St. Dev.
oo ? :1212.01 1.92| -89.28| 71.55| -2.04| -1677.97| 82.65| 62.80
:.86 1.19] -98.51| 86.12| -2.04| -1677.97| 80.60| 98.74
10| -1676.94| 1.29| -67.04| 67.17| -2.04| -1677.97| 84.95 108:84<
. 0 -1636.61 1.81) -73.70| 70.96| -2.04| -1677.97| 99.85| 77.59
75% 1} -1676.96 | 1.38|-100.78| 92.15| -2.04| -1677.97| 60.55| 28.92
10| -1677.19| 38.74|-146.36| 70.90| -2.04| -1677.97| 51.80 28:27
0} -1676.81) 1.94| -76.89 73.29| -2.04| -1677.97| 88.60| 79.52
90% 1| -1677.21 1.28| -87.53| 84.52| -2.04| -1677.97| 100.80| 128.75
10| -1677.562| 0.22| -99.26| 89.86| -2.04| -1677.97| 65.80| 53.57

Table C.1:

2 variable F7 dynamic crossover results for direct fitness distance calculation

with 75% individual crossover.

Chrom | El'tm | Average St. Average | St Worst | Best Ever | Avg. Best| St. Dev.
Xover Best Dev. Worst Dev. Ever Gen.

ol -1654.26| 47.20! -86.19| 78.50| -2.830| -1677.97| 105.95 73.36

60% 1! -165%.08] 59.02| -89.71| 76.21| -2.17 -1677.97| 100.80 97.50

10| -1625.79| 62.26 | -150.41 ‘97.70: -2.04).-1677.97| 160.20| 143.42

0| -1618.64| 78.22|-111.484 71.90| -2.17 -1677.97 98.65 59.42

75% 1l -1608.60| 70.67| -98.69| 74.22 24161 -1677.97] 120.50| 129.98

101 -1649.75| 46.60] -119.20 8846 | -4.02| -1677.97 98.10| 116.26

0! -1626.16| 59.35 —1‘1‘6.59 88.17 -9.04| -1677.97| 109.15 87.83

90% 1] -1611.88] 58.99:-128.28 80.96| -2.17| -1677.97 134.55| 185.25

10| -1625.40| 62.46 -98.35| 90.51| -3.20 -1677.97 78.45 65.52

Table C.2: 2 variable F7 dynamic crossover results for direct fitness distance calculation

with 0% individual crossover.

St

Table C.3:

2 variable F7 dynami

calculation with 75%

c crossover results for inverse fitnes

individual crossover.

Chrom | El'tm Average St. Average: TWorst | Best Ever | Avg. Best I

Xover Best Dev. | Worst | Dev.- Ever B Cen. Dev.
o | -1677.44| 107| -88.89|73.3% -2.04| -1677.97| 48.35| 22.61

60% 1 _1676.86| 8.39| -87.04| 72.61 -2.04 —1673.97 42.15| 838.80
10 | -1677.88| 0.11| -97.53 82.50 | -2.0% -—167/.93 43.1f 46.94
0 | -1677.61| 0.24| -108.3% 64.11 | -2.0% -1677.97| 46.55| 23.03

75% 1 _1677.64| 0.90| -98.36 "64.10| -2.05 —IGZZ.QZ ?o,gg 1322
10 | -1677.09| 1.08] -83.01 63.17 -2.04 -1677.97| 26. ,
o | -1677.62| 000| -101.83| 6031 -2.0%| -1677.97 gg,zg lg,zg

90% 1 -1677.48| 1.17| -118.01 91.07| -2.0% -161;.37] %.30 8,42
10 | -1677.58] 1.17 _g4.18| 59.24| -2.04| -1677. , ,

s distance




Appendix C: Chapter 5 Full Results Tables

Chrom | El'tm Average St Average St

Yover Best Den, Wors Worst | Best Ever Avg. Best| St. Dev.

Dev: | Ever

0 | -1671.87] 14.57| -1 ' L

60% | 1 | 163571 | 67.96| 11ast| Tase| 4on| Arror| 2900 5503
10 | -1635.07| 55.93| -128.95| 88.81| -2.30 —16;;’:9; J;g‘ig Si-ig

] 0 | -1622.00| 77.29| -88.28| 85.40| -2.04| -1677.97 ;LG.W 3"“25

75% 1 ~1659.19 | 41.92| -145.82| 97.14| -2.04| -1677.97 34.;2 1(1).09
10 | -1636.23| 56.67| -118.73]| 88.69| -2.04 -16'77:97 64;5 102~88

O | -1653.52| 47.41| -109.48| 68.81| -8.97| -1677.97| 76.45 114'25

90% 1 -1671.07| 25.62| -92.01! 53.32| -2.07| -1677.97 544'20 65-76
10 | -1665.61| 35.43| -120.48| 66.21| -2.04| -1677.97 45:85 86:84‘

Table C.4: 2 variable F7 dynamic crossover results for inverse fitness distance

calculation with 0% individual crossover.

Chrom | El'tm | Average | St | Average| St. | Worst | Best Ever | Avg. Best| St. Dev.
Xover Best Dev. | Worst | Dev. | Ever Gen.
0 -180.39| 0.09| -67.08| 8.03| -56.87| -180.50| 98.95| 102.94
60% 1 -180.40| 0.06| -66.49| 5.41| -55.85| -180.49| 77.55|121.38
10 | -180.85| 0.14| -65.12| 5.07| -56.01| -180.50| 77.50| 122.92
0 -180.87| 0.12| -68.91| 7.09| -55.79| -180.50| 96.85| 104.92
75% 1 -180.87| 0.08| -67.41| 5.21| -58.44| -180.49| 88.65|125.28
10 | -180.88] 0.17| -69.88| 5.18| -59.24| -180.49| 85.50| 130.42
0 ~180.46| 0.06| -65.58| 1.71| -59.70| -180.49| 67.15| 30.93
90% 1 -180.42| 0.10| -66.27| 0.57| -66.10| -180.43| 147.75| 84.00
10 | -180.85| 0.00| -66.21| 1.70| -60.91| -180.43] 35.30 14.93

Table C.5: 2 variable F8 dynamic crossover results for direct fitness distance calculation

with 75% individual crossover.

Chrom | Eltm | Average | St.—| Average SI_ | Worst | Best Ever | Avg. Best| St. Dev.
Xover Best Dev.|: Worst Dev Ever Gen.
_180.31| 0.16 | -69.18 | 8.27 _56.21| -180:49| 93.00 69.57

‘ ’ - 90| 57.65
60% 1 -180.25| 0.19|-69.93 6.42| -56.21| -180.50 6895 446;
10 | -180.80| 0.15| -68.90 8.54 -56.21 18049 552 .
~180.28| 0.14 | =69.20. 6.34 | -55.85| -180.47 17560 | 148.36
-180.82| 0.19| -70.8T 7.81| -55.63 _180.49| 158.:30| 129.79

7o 110 180.20| 0.20| <7149 5.84| -63.66| -15049 185,85 | 141,01

_180.35"‘656' ;13,1_5/,,Q;'Qoz;gi;73!'1‘5, —1780.;35 87.08 ggg
90% 1 _180.49| 0.05|-78.15 0.00 5577'3.:1/'5' ~/1:80;4«9: 4 :(1)80 O.OO .
10 | -180.41| 0.00] -78.16] 000] 7512 ~180:41 0] ©

Table C.6 2 variable F8 dynamiC crossover results for direct fitness:distance calculation
e C.6:

with 0% individual crossover.




Results Tables

Chrom | El'tm | Average | St. | Ave '
. rage | St | Best: Avo. Bes,

Xover Best Dev. Wor;gz Den. ;I{;:gt e Avg e
0 | -180.47| 0.00| -66.14| 7 7
001 -66.14| 7.08| -57.30 ( :

] - 30| -180.50| 40.9
60% 1 180.48| 0.12| -66.45| 6.81| -55.41| -180.50 451'0(5) 28.7
10 | -180.44| 0.07| -67.42| 546 ‘ 55

-57.06| -180.50 -
0 | -180.46| 0.10| -67.43| 4.79 20901 1557

-58.43| -180.500 50:65 7
Y ) ! ; . 27.68
5% 1 180.48| 0.12| -67.52| 6.83 | -56.16 -180.501  47.05| 82.35

10 | -180.48| 0.06| -67.18| 4.58| -57.27| -180.50| 53.60 80.82
oo (1) :120‘48 0.1} -66.30| 5.21| -54.98| -180.50| 65.70| 88.09
) 0.48| 0.07| -66.33 | 5.48| -58.08| -180.50| 88.70| 128.71
10 | -180.46| 0.11| -67.61| 6.24| -58.01| -180.49| 81.95]| 183.97

Table C.7: 2 variable F8 dynamic crossover results for inverse fitness distance

calculation with 75% individual crossover.

Chrom | El'tm| Average | St. | Average| St | Worst | Best Ever | Aug. Best| St. Dev.

Xover Best Dev. | Worst | Dev. | Ever Gen.
-180.47| 0.00| -69.60| 9.67| -56.20| -180.50| 93.50| 119.35
60% 1 -180.47! 0.10| -67.66| 6.62| -57.29| -180.50| 47.15| 27.96
10 -180.44| 0.18| -67.83| 7.91| -56.14| -180.50| 382.50| 40.5%
0 ~180.45| 0.07| -68.78| 6.77| -56.76| -180.49| 67.65 101.58
75% 1 _180.46| 0.18| -66.25| 7.00| -54.18| -180.50 38.90| 17.04

10 -180.46 | 0.03| -65.49| 6.06 | -57.32 -180.50| 25.60 9.87
0 -180.43| 0.12 | -72.88| 8.563|-57.21 -180.50| $02.40| 91.87
90% 1 -180.49| 0.14| -72.03| 3.07 -60.62| -180.50| 36.55 481}
10 -180.43| 0.18|-73.11 167| -68.68| -18049| 30.40 2.04

Table C.8: 2 variable F8 dynamic crossover results for inverse fitness distance

calculation with 0% individual crossover.

Chrom | Eltm | Average | St Dev. | Average SiDev. | Worst | BestEver | Avg. Best St:
Xover Best Worst Ever ‘ Gen, Dev.
0 -4708.22| 149.57 676.09 191.58| 1101.87 -5014.50| 407.70 : 94.38
60% 1 -4719.82| 168.38| 753.01 253.78| 1876.31| -5023.92 3367.95' 62.93
10 -4748.73| 138.10 768.63 226.14*,/7/1105.55/.;—50.17.69 344.50 67.93
0 | -4708.18| 178.92| 684.24} 200.24| 1089.45| 495506 430.00 64.48
75% | 1 | -4702.17| 167.48| 708.11} 18814 1 8.51 ;/5501/2.22 2’22.2(5) Zz‘ii ,
o OO MM » - :Z(;;QB’] 4«0255 68’.85
0 -4620.68| 159.24 786.93 1900 = _50}898 352:55 45,72
90% | 1 | -4780.17| 175.78| 679:69] | i e
10 -4691.05| 167.27 680.56 , 2990

ossover rcédltg‘fOr direct fitness distance

Table C.9: 10 variable F7 dynamic cr
individual c_,rc_)s_sover,

calculation with 75%




ppendix C.jCh/apterS‘FuIl Results Tables

Chrom | El'tm | Average | St De :
Xover Best v. | Average | St.Dev. | Foret :
Worst Best Ever | Aug. Best
~4080.17| 357.49] 777.90] 2 Loer 5ol
- . . 78 - P g eV,
60% | 1 | -4079.80| 259.58| 629.52| 287 ;«f; Leso o] ~4835.65 | 475.65 4101
7 | 10 | e153.58] 00496 sicer 26749 1450.07| -4485.72| 484.05| 16.10
0 | -4036.30| 303.11] 725.88] 25353 Mﬂé@ 464.75 | 40.00
75% | 1 | -4165.12| 269.31| 647.81| 15317 [297,99) 4578.20) 482.90/ 3125
10 | -1095.85| 27214 | 15789| 27597| 1375 84| areay| Lo0| 11T
o T 2125000 335711 50304 273-9; 78.84| -4476.53| 461.15| 34.05
oot | 1 | -4050.74| 34697 79957 | 3150, 1298.58 | -4840.40 | 470.90 | 34.24
10 _4049.48 | 296.00| 7074 E 1599.92| -5017.19| 464.65| 32.9
707.29| 219.18| 1058.87| -4707.7 ’
871 -4707.77| 4389.95| 55.94
Table C.10: 1 i i
0 variable F7 dynamic crossover results for direct fitness distance
calculation with 0% individual crossover.
Chrom | El'tm | Average | St Dev. | Aver
Xover Bost ”vi;;l;gt‘e St. Dev. Igz;zt Best Ever | Avg. Best | St. Dev.
— " Gen
0] -4787.47| 180.12 7 .
0% X o ?48.2.‘3 186.25| 1245.07| -5022.30| 362.65| 113.69
4742.836| 169.84] 724.17| 216.22} 1168.32| -5018.98| 306.90| 42.55
10 -4669.78 | 188. 7 . . . .
S wrvr 4‘34 14‘2 2(1) F/.i3.66 9237.41| 1231.38| -4903.45| 271.65, 70.81
% ; _4‘754‘.75 186.88 16.79 104.51 ?39.73 -4908.89| 363.65| 86.63
o _4~11. . 734991 281.55| 1792.65| -5018.85| 286.20| 83.89
711.92| 187.17| 825.03| 324.21| 1730.76| -5020.87 241.957 67.91
. 0 -4794.70| 188.26| 632.84| 196.55| 943.84 .-5012:48.1. 857.55.| . 83.35
90% 1 -4719.08| 188.00| 716.57| 233.41| 1’189:5,72’%-74-906'.6% 256.80 ~1~6:78
10 -4771.21| 120.98| 630.58| 204.52 ;,9,83.’7:2 4987.23| 278.00|  99.86
Table C.11: 10 variable F7 dynamic crossover results :for/iﬁverse?ﬁtness,distance
calculation with 75% individual crossover.
Chrom | El'tm | Average | St.Dev. | Average <7 Dev. | Worst | BestEver | Avg. Best| St
Xover Best Worst Ever Gen. Dev.
T 15203 28584 796.50| 245.63| 1861.00| ~#675.25| 40080 84.21
60% | 1 | -4253.49| 294.08| 82882 820.89| 1418.85 _4695.11| 819.80| 75.15
0 | -4205.79| 220.92| 721.12 19}7.1;8{,}12;'70;06 {F&«566.98_ 410.25| 71.02
25% | 1 | so0s.80| 236.97| 671.84| 18512 1071.75) -4869.00 540140, 8912
10 | -4088.70| 261.65| 789.90| 5.54| 1460.65| -4610.13| 28465, 78,72
0 | —4389.10| $59.95| 752.00| 15829} 18892 | -4897.17| 40320 75.28
00% | 1 | -4173.48| 209.52| 68510 16177} 103095 -4627.98) 296.80) 47.59
10 | -4112.71| 288.47| 776.00] 25442 1409.85| ~#659.89 | 25845 /89,00

calculation with 0%

Table C.12: 10 variable F7 dynamic crossover res,ul‘t‘s‘jguﬁ inverse fitness distance
individual crossover.




Appe“dl :

ull Results Tables
Chrom | El'tm | Average | St Avera
: 4 St T——— ‘
Xover Best Dev. Worf; Dew ’g Z::-t Best Ever | Ap e Bat| 57
-180.41| 0.05| -118.37| 1.18 Gen. Dev.

-117.02| -180.49| 359.
60% 1 -180. - 491 859.80| 68.
i —izgii 0.08| -117.71} 0.59| -116.99| -180.50| 253 55 692?)
. 0.00 -118.06_(& -116.99 | -180.50| 239.70 ~0'4
-180.41| 0.04| -117.85| 1.02| -116.97] 104l

5% | 1| -150.45| 0.00| “11759| 127| t1g06| sog| om0t
10 | -180.41| 0.00| -118.08| 0.77| -117.01 —180:4«8 188'00 51?(8)
0 -180.43| 0.06| -117.91| 1.20| -116.99| -180.49 375.55 52.24
90% 1 -180.43| 0.00| -118.01| 1.06| -116.99| -180.50 257:15 53'92

10 -180.44| 0.00| -118.06| 1.32| -116.99| -180.50| 200.75

Table C.13: 10 variable F8 dynamic crossover results for direct fitness distance

calculation with 75% individual crossover.

Chrom | El'tm | Average | St. | Average | St. Worst | Best Ever | Avg. Best| St

Xover Best Dev. Worst Dev. Ever Gen. Dev.
-180.34{ 0.18| -118.28} 1.23| -117.00| -180.49| 438.05| 44.22
60% 1 -180.41| 0.05| -118.57| 1.43| -116.98| -180.50| 320.10| 64.26

10 -180.35| 0.08! -117.97| 0.79| -117.02| -180.47| 304.20| 90.27
-180.38| 0.10| -117.92| 1.08| -116.91| -180.48| 415.80| 60.24
75% 1 -180.39| 0.07] -117.82| 0.95| -116.93| -180.49 341.55| 68.79
10 -180.84 | 0.09| -118.00| 1.07| -116.99| -180.49 300.85| 58.12
-180.36| 0.09| -117.72| 0:84:-116:95 —1804‘9 fl‘OS.OO 49.67
90% 1 -180.36| 0.11} -117.82{ 0.98 —11698 "180‘1‘9 30545 | 74.12
10 -180.87| 0.16| -118.25| 1.17 117 1| -180.47| 29040 | 63.92

Table C.14: 10 variable F8 dynamic crossover l‘éSflﬂlff;fofd:i,ﬁeéﬁfﬁf;less distance

calculation with 0% individual crossover.

Chrom | Eltm | Average | St. | Average | St ™ Worst | Best Ever | Avg. Best gt \
Xover Best Dev. Worst | Dev. Ever - | Gen - 6@.9
] —ol 1.17] -116.97| -180.49| 435.35| 46.9

- 41| 0.18| -117.70| 1.17 -116.97 | 180.49 5,
N 150 -1 -180.50| 292.50| 68.48

60% | 1 | -180.47| 0.04| -117.90| 109} G\ e
10 | -180.47| 0.10| -118.85] 1.24 Lot bl ;

- ~117.69| 0. 17. :

0 180.43| 0.04| -117.69 S0 e

75% | 1 | -180.47| 0.04| -117.98]
10 | -180.46| 0.08| -117.84| O-
~180.42 | 0.00| -117.61} ©.
90% | 1 | -180.45| 0.06| -118.0% 1.
10 | -180.48| 0.00| -118.15] ]

49| 208.50| 57.88
49| 429.10 55.74
50| $24.80 | 72.88
80,49 | 172.15| 43.86

Table C.15: 10 variable F8 dynam‘ic :c,rossover;are,i ts

vidual crossover.

calculation with 75% indi




Full Results Tables

hrom | El'tm | Average St Aver L 17z
( g age St | orst Bes Avo. ;
o o . Wore i Z:,:t Best Ever Avg. Best | St. Dev.
O _180.4‘2 . - 7 ; e".
) 0.11 117.81| 0.80 -117.00| -180.50] 34, 7.6
60% 1 ~-180.46| 0.08 -118.12 ) T

10 | -180.47| 0.06| 118 L34 -116.99| -180.50| 260 50 70.04
— 1~ 18.03| 1.06| -116.97| -180.50 167.65| 49.72

O | -180.41| 0.02] -117.78| 111
: 78| L11] - —=
75% | 1 | -180.46| 0.02| -117.73 [1090] 18048 352.05] 59,99
191°0.95) -116.96| -180.49| 283.15| 33 36

10 -180.45]| 0.08| -117.81| 0.80 -116.99| -180.50| 196.00 85.70

0 -180.42| 0.00| -117.66| 1.0
X .01} -116.97| - ’
90% 1 -180.47| 0.00| -118.01| 1.04| -11¢ 331 igg.:g 12%06.90 o 00
- . -116. -180. 288.85| 79.02
10 180.46| 0.05| -118.04| 1.84| -116.98 -180.49| 187.80| 59.48

Table C.16: 10 variable F8 dynamic crossover results for inverse fitness distance

calculation with 0% individual crossover.

C.2. Dynamic Mutation

Chrom | Max | El'tm| Average St. | Average| St. | Worst| Best Ever | Avg. Best| St. Dev.
Xover | Min. Best Dev. | Worst | Dev. | Ever Gen.

0 -1677.54| 0.85| -26.90| 48.27| -2.04| -1677.97| 45.00| 18.64
10% 1 -1677.96; 0.00| -27.02|48.97| -2.04| -1677.97| 54.20| 96.44
10 | -1677.80| 0.46| -27.18| 50.75| -2.04| -1677.97| 40.50| 44.83
0 -1677.97; 0.00; -2.38 140.00 | 10443

60% | 30%| 1 | -1677.97| 0.00| -2.04| 001| -2.04  44.55| 1879
10 | -1677.97| 0.00| -2.04 | 4555| 80.87
0 | -1677.97| 0.00| -2.25| 97| 288.80| 129.78
50% | 1 | -1677.97| 0.00|  -2.0% 67.45| 22.76
10 | -1677.97| 0.00| -2.04]| 28.80| 6.67 i

0 | -1677.02] 461] -9.58]28.08| -2.04| -1677.97| 120.85 129.93}
10%| 1 |-1677.81| 000| -5.08|12.88 -2.04| -1677.97) 29.90) 825
10 | -1677.64| 1.08|-1569]|8469| -2.0¢| -1677.97| 24.55| 6.98
0 | -1677.0%| 000| -2.5%| 119]-20%| -1677.97| 11005} 96.22
-1677.97| 0.00| -2.0% 904| -1677.97| 41.25| 1488

75% | 30% | 1 10.00] - |
10 | -1677.97| 0.00 -2.04;;;:",’:;. | 4‘5;75‘1?2.2

0 | -1677.97| 0.00| -233| . 2%32 17.@

50%| 1 | -1677.97| 0.00 -{2:95 29»‘0»0' 7.4:31,

10 | -1677.97| 0.00 ~ 2t Los ]

7l 7275| 99.31

0 | -1677.65| 0.98 el

10%| 1 |-1677.81| 000 -869 2
10 | -1677.96] 0.00| 989 2% T i677.97| 11845| 58.19
0 167796\ 0% :Q;(Q)’i 00| 2.04| -167797| 4855) 1250
90% | 80% | 1 |-1677.97| 000} -29% = _1677.97| 24.55| 562
10 | -1677.97| 0.00] 204 P o 089 95| 152.58
_1677.97 70.00| 19.99

97| 67.10] 180.43

-1677.97| 0.00 -9.25

7 02| -2.04 (
Sl I i dd g '-Z.gi -3069204. _1677.97| 2880 662
10 | -1677.97| 0.00| -2.04] 02— : ‘

. ct rank based calculation.
Table C.17: 2 variable F7 dynamic mutation = ‘ ‘




Full Results Tables

Mazx | El'tm | Average St. | Aver ' '
: age| . St. R B e
Min. Best Dev. | Worst Dev. }Z Z:;t Best Ever Avg. Best | St. Dep.
O | -1677.50| 0.91| -30.99 Gen.

4944 - - e
10%| 1 | -1677.81| 000| -g75| (ron| —O¥| 167797} 10975] 18592
15115791 -204| -1677.97| 3915|3006

10 | -1677.94| 0.20] -16.76
: 76| 38.82| 2,04 -1677.9"
0 | -1677.96| 0.00| -2.35 2160 2l

0.96| -2.04] -16779
30%| 1 | -1677.97| 0.00| - ' FTI9TI62.60| 7245
204 0.00| -204| -1677.97| 3190 9.3,

10 | -1677.97] 0.00] -2.04| 000| -2.04| -1677.97| 3060 21,88
O | ~1677.97) 0.00| -2.04| 000| 2.04] -1677.97] 6850 o3
50% | 1 | -1677.97| 0.00| -2.04 ‘ ' 070
b 77.97 041 0.00| -2.04| -1677.97| 8570| 970
“1677.97] 0.00] -204] 000 -2.04| -1677.97| 41.70| 6394

Table C.18: 2 variable F7 dynamic mutation results for inverse rank based calculation at

75% chromosome crossover.

| Mazx | El'tmn Average St Average St. Worst | Best Ever Avg. Best| St
a Min. Best Dev. Worst Dev. Ever Gen. Dev.

0 -1671.64| 25.75| -97.58|74.94| -535| -1677.97| 81.85| 11.31
-1677.44| 1.15| -123.02| 71.89 -1677.97| 28.20] 8.00
10 | -1677.68| 0.00| -128.36|88.83| -8.29| -1677.97| 21.15| 5.48
0 -1671.96| 22.59| -117.72| 81.85| -6.19| -1677.97| 27.95| 14.35
30% 1 ~-1671.49| 25.71 -99.18 72.58| -5.11| -1677.974 380.30| 5.06
10 | -1677.60| 0.82| -165.58| 77.60| -10.78| -1677.97| 21.40| 3.63

10%

—t
!
—
o
o
(S8

0 | -1677.51| 1.01| -100.87|69.69 1677.97| 88.50| 11.76
50% | 1 | -1677.75| 0.00| -111.22|59.19 | 2555|571
10 | -1677.55| 0.65| -129.06| 65.41 1925| 4.77

Table C.19: 2 variable F7 dynamic mutaiionﬁfeéuitS}for e

calculation at 75% chromosome crossover.

Maz | Eltm | Average | St. | Average| St Worst | Best Ever | Avg. Best) St. Dev.
Min. Best Dev. | Worst | Dev. | Ever | ngz. :
167768 0.54| -2.67| 1.62] -2.04| -1677,97) 78.80) 77.43
10% 1 -1677.97| 0.00| -2.04| 0.00| -2.04 -1677.97 36.70 9.80 |
10 | -1677.65| 0.98| -2:85 096-204' -—16’7797 3Q.10:. 21.80 .
-1677.97| 0.838| -2.11} 0.10} / V‘;/16’7’j7.9~z 154«‘"\30: ?g;g “ -

30% 1 -1677.97| 0.00| -2.04 00| 7| 60.75 b8

o ol 3135 1749
- -92:04i| O. s
10 | -1677.97| 0.00| -2.0%| o7 15| 14443

-1677.96] 0.09 _2{‘57} 072 = 59,7...’ 121.90| 58.14
50%| 1 | -1677.97| 0.00| -2.05| 0.03 L Ra
10 | -1677.97| 0.00| -2.04| O. 2

ic muta ss ﬁistance
Table C.20: 2 variable F7 dynamic mutation di
% chromosome Crost ve .

calculation at 75




Appendi

v Ful! Results Tables

Chrom | Maz | El'tn | Average | gy, Average TR ; —
Xover | Min. . Best Dev. | Worst Dev, Evc;r a7 Avg; e
-180.4 - ‘ = -

] 180 48 8‘82 66.3(3 5251 -57.09] 180,50 69.20] 818
: _180.% 06 -66.07| 5.65| -54.56 -180.50 71'65 i
c 180.43 010 -65.91| 483 -57.09| 150,50 46.65 22?2

O K . 0.11| -65.04| 6.11 -54.96 ~180.50 187'77!17‘0 130.

60% | 30% -180.50| 0.08| -65.13| 5.76 -54.96| -180.50 93'75 7 "
. 50| 939 5.48

10 -180.49| 0.05| -65.94 6.16 | -54.96 -180.50| 86.75 127.50

-180.49| 0.08| -65.111| 6 351 -57
N 5 ) . =57.0%| -180.50| 246.00 149.06
50% 1 -180.50| 0.07| -64.96 6.58| -56.63| -180.50 98.60| 62.12

10 -180.50| 0.08| -65.87| 6.2 -55.82| -180.50| 77.05 93.38

T

O | -180.481 0.10| -65.96| 6.96] -54.96] -180.50] 60.00] 73 66
10%] 1 | -180.49| 0.07| -65.96| 6.26 | -54.96| -180.50| 40 g5 20.05

10 | -18048| 0.18| -66.79| 6.01| -54.96| -180.50| 44.15| 7096

O | -180.50| 0.04| -65.65| 5.59| -57.09| -180.50| 196.10| 18094

75% | 80% | 1 | -180.50| 0.12| -65.61| 5.55| -57.09| -180.50| 9445| 9161
10 | -180.50| 0.10| -65.78| 5.94| -57.09| -180.50| 89.60| 118.62

O | -180.50| 0.00| -65.79| 6.47| -56.50| -180.50| 294.70| 121.32

50% | 1 | -180.50| 0.05| -65.34| 5.83| -57.08| -180.50| 117.25| 61.43

10 -180.50| 0.09| -66.11| 6.04| -57.08| -180.50| 61.25| 77.21

Chrom | Max | El'tm| Average St. | dverage| St

Best Ever | Avg. Best| St. Dev.

Xover | Min. Best Dev. | Worst | Dev..|.
O | -180.48| 0.09| -64.78| 5.40 | -56.77 106.00
10%| 1 | -180.49| 0.05| -64.23| 5.32] - 92.98

10 -180.49| 0.10| -65.87| 577 103.02

0 -180.50| 0.08|-66.10| 6.32| -5 22 70| 127.04
90% | 30% 1 -180.50| 0.07|-66.10] 6.32 -562.‘2  -180.50 .05 58.60
10 -180.50| 0.12| -66.75| 6.04 | -57.09.| -180.50 | 106.68 |

2180.50| 0.00| -65.60] 6.12] -67.08] -180.50| 29640 12110
50% | 1 -180.50| 0.06| -65.60.| 6.12| -57.03| -180.50 160430‘; 8?2; ‘\
10 | -180.50| 0.18| -65.76| 57.08| -180.50| ©66.00| 83.87]

Table C.21: 2 variable F8 dynamic mutation results f

Max | El'tn | Average | St
Min. Best Denv.

0 |-180.48] 0.09 |
10%| 1 |-180.49| 0.04
10 |-180.49| 0.06
-180.49| 0.08
30%| 1 |-180.49| 0.11/
10 | -180.49| 0.11| 6524 479 =% .
~180.50| 0.09| -66.51) 099} 227y~ 0 o
50% | 1 |-180.50| 0.11 S s _
10 | -180.50] 0.09 e rank based

Table C.22: 2 variable F8 dyn

calculation at 75’%




Max | El'tm Average | St _— ,
Min. Best | Dev. |0t | Worg Best Ever | g

Ever
-180.45 | 0.00| -67.45 5.22| 5654

-180.49 - 8108]

10% | 1 |-180.47| 007 -g6.6
OT) -66.62 | 6.34| -55.95| 100 cn| -
10 | -18047] 0.10| -66.18| 553 A 00 208

- ~b6.18| 5.58| 5756 | Z180.20|
O | -180.45] 0.08| -66.69 | 5001 Fro o200

8.00| -54.61| -180.50

80% | 1 |-180.48|0.11|-66.39| ~ =20
‘ -06. 1.821 =54 .

5489 | -180.50 16.83

10 | -18047 0.09| -67.75 | 6.56| -57.16| 150,50 |

O | ~18047) 0.04] -65.58| 5.47] 55.12| “150.80] oo on

50% | 1 |-18047) 0.10| -65.31| 554| -56.46| 150,50 5050 1104
10 _[-18046] 0.00] -67.95] 5.62| 5630 | -180.50| 97:50| 932

28.79

Table C.23: 2 variable F8 dynamic mutation results for direct fitness distance

calculation at 75% chromosome crossover,

Mazx | El'tm |  Average St. | Average| St. | Worst | Best Ever Avg. Best| St. Dev.
Min. Best Dev. | Worst | Dev.| Ever Gen.
0 -180.48| 0.13] -68.29| 6.92| -55.04| -180.50| 137.85| 117.49
10% | 1 -180.49 | 0.10| -64.93| 5.89| -54.38| -180.50| 82.30| 90.57
10 | -180.48| 0.06| -66.28| 7.21| -55.95| -180.50| 54.15| 90.5%
0 -180.50| 0.00| -67.26| 5.76| -58.13| -180.50| 281.70| 188.51
30% | 1 -180.50| 0.05| -66.19| 6.52 | -54.18| -180.50| 157.20| 117.82
10 | -180.50| 0.08| -66.16 5.37| -56.36| -180.50| 77.85| 55.89
0 -180.49| 0.06 | -66.46| 7.07 | -54.61| -180.50| 268.30| 129.07
50% | 1 -180.50| 0.12| -64.47 | 5.00| -54.- 0. 45| 120.62|
10 | -180.50| 0.07| -65.01| 6.46| -55.2 5 94,28

Table C.24:

calculation at 75% chromosome cross

Mazx | El'tn| Average St. Dev. | Average | St.Dev. | Worst ':Best_Em;Cg; Best St Dev .
Min. Best Worst. Ever | LSl
0 | -4854.05| 117.22| 761.48| 24823 -1%‘9"99:‘7‘-‘5022"12‘""3@2‘;;3'0:31‘2;;?
10%| 1 | -4921.26| 101.97| 776.29 :ggég.:g, 1.50|
10 | -4924.08| 98.44| 765.09
O | -4855.29| 55.50| 865.04
30%| 1 | -4950.10| 68.18] 760.87
10 | -5012.51| $5.94| 787.72
-4381.06| 109.04| 1127.44| 184
50% | 1 | -4762.79| 155.82| 988.75|

10 | -5008.80| 84.81| 778.99

irect rank calculation at 75%

Table C.25: 10 variable F7 dynamic mutation resU!Fév 0

chromosome crossover.




5 Full Results Tables

Maz | El'tm | Average St. Dev. Average | St. Dey.
M. Best Worst

0 | -4900.97 79.27] 806.06] 2051¢ e
10% 1 | -4891.56| 13114 867.38| 24316| 135 10 ~5028 | ey
10_| -4930.90| 10466| 806.09| 290.44| 1291 g ,_5‘028‘23 2160|6745
0 | -4978.31| 66.67| 829.28| 199 17 mmw\/ﬂé_&}ﬂ
30%| 1 | -5025.21| 554 844.88| 14749 | 29875 75,06

1184.48| -5029.80| 47
- - : 0.50| 2855
|| 10 | -5009.52| 40.53 | T6+11] 148.71| 98295 _5009,5 T 0| 2355
0 | -4975.80| 38.88| 882.18| 15905 | tags ol ot 2%9.10] 106.28
- 9.95| 144446 -5006.29| 146.10] 100.82

50%| 1 | -5025.66|  0.00| 899.11| 9152| 1032.81| -5009, 1 461.80| 16.89
10 | -5096G.18] 5.66) 84785 11747) 112849 -5096.64| 4agns| o2

Best: Ever

Ever
1229.99 —5025:3.3

/ﬁlg Best St Dey.
Gen. |
___-—"'-——-

Table C.26: 10 variable F7 dynamic mutation results for inverse rank calculation at 75%

chromosome crossover.

Maz | El'tm | Average St. Dev. | Average | St.Dev. | Worst | Best Eoer Avg:Best| - St.
Mtn. Best Worst Ever Gen. Dev.
0 -4615.54| 194.00| 793.22| 228.41| 1178.05| -4909.79| 95.70 23.56
10% 1 -4577.87| 177.80| 747.88| 221.66| 1255.98| -4908.47| 91.55| 7.69
10 -4612.34| 205.98| 741.83| 249.68| 1269.04| -5005.33| 65.70| 4.65
0 -4674.82| 166.18| 786.84| 222.56| 1203.18| -5024.28| 109:40| 20.02
30% 1 -4682.59| 159.06| 843.80| 258.35| 1454.99 —501668 96.15| 695
10 -4591.07| 202.09| 765.52| 270.62| 1679.76 : 64.60
0 -4693.79| 178.51| 832.02 187.38 ’1“309-.‘6.{({), - -498 - 107.70| 24
50% 1 -4665.67| 168.22| 777.41| 188.84| 11C {
10 | -4682.70| 206.42| 758.91| 181.80 1

Table C.27: 10 variable F7 dynamic mutation resglts::fofii,iré&ffitﬁess distance calculation

at 75% chromosome crossover.

Maz | Eltm ] Average | St Dev. | Average | St.Dev. | Worst Best Ever Avg.‘Bes_t' St
Min. Best Worst
0 |-4810.95| 132.47| 865.01| 209.95|
10%| 1 |-5020.59| 11.54| 902.21 28600‘;’
10 |-4998.54| 61.41| 798.12| 224.48
0 |-4596.88| 7022 1205.34| 218.58
30% | 1 |-4950.59| 50.57|1189.29| 2112
10 |-5017.67| 25.57| 942.65| 255.58| 153 05| 12177 |
0 [-4117.96| 160.46| 1873.48| 186.43) 171 | b
50% | 1 |-4789.00| 112.14| 1505.34 | 143.1¢ ]
10 |-4985.61| 52.84| 1472.53| 21006 — 1

p—

i s for inver fit ess distance
Table C.28: 10 variable F7 dynamic mutation results.fo nverse fitn e
chromosome crossover.

calculation at 75%




Appendix C: Chapter 5 Full Results Tables

%;l:: El'tm AvBé’;zge ISSY. Average | St. Worst | Best Ever | Avg. Best| St Dev.
ev. Worst Dey. Ever Coen.

10% (1) :igg’;; ggg -117.60| 1.06|-116.98| -180.37] 270.90| 142.70
: VO1-117.60| 1.06|-116.98| -180.47| 401.65| 8%.01

10  -180.49| 0.00|-117.31| 0.40|-116.98| -180.50| 832.15| 10475

O | -180.15| 0.09|-117.64| 1.18| -116.98| -180.24| 25125 128.99

80% | 1 -180.221 0.09 | -117.74| 1.12| -116.92| -180.36| $70.85 99.81
10 | -180.47)| 0.11|-117.65| 1.14| -116.98| -180.49| 474.80| 2136

O | -180.11] 0.11|-117.29| 0.56 | -116.90| -180.25| 270.60| 139.70

50% ) 1 | -180.18| 0.11|-117.24| 0.5 | -116.90| -180.25 281.45| 127.50
10 | -180.89] 0.00| -117.56| 0.67 | -116.98| -180.45| %95.60| 8436

Table C.29: 10 variable F8 dynamic mutation results for direct rank based calculation at

75% chromosome crossover.

Mazx | El'tm | Average | St. Average | St. Worst Best Ever | Avg. Best| St. Dev.

Min. Best Denv. Worst Dev. Ever Gen.
0 -180.15| 0.09| -117.54| 0.68| -116.98| -180.23| 238.55| 148.65
10% 1 -180.45| 0.00| -117.58| 0.76| -116.99| -180.49| 469.00 34.85
10 -180.48| 0.00| -117.65| 0.89| -116.96| -180.50| 245.50| 114.24
0 -180.17| 0.05| -117.48| 1.18| -116.90| -180.28| 295.80| 124.73
30% 1 -180.37] 0.11| -117.25| 0.82| -116.97| -180.46| 387.85 74.11

10 | -180.49| 0.00| -117.87| 0.56| -116.92| -180.50| 813.90 92.90
0 -180.16| 0.06| -117.59| 1.33| -116.98| -180.29| 241.55| 121.85
50% 1 -180.81| 0.07| -117.64| 1.53| -116.96| -180.40| 888.45 88.30
10 | -180.49] 0.01| -117.65| 0.68| -116.99| -180.50| $55.55 97.95

Table C.30: 10 variable F8 dynamic mutation results for inverse rank based calculation at

75% chromosome crossover.

Mazx | El'tm| Average | St. Average St. Worst | Best Ever | Avg. Best| St. Dev.
Min. Best Dev. Worst | Dev. Ever Gen.

0 [-180.07] 0.10] -117.79] 1.18] -116.97|-180.22| 128.35| 75.14
10%| 1 |-180.87| 0.08| -117.75| 1.50| -116.99|-180.46| 168.85| 27.59
10 |-180.41| 0.04| -118.82| 1.97| -116.97| -180.48| 74.50| 20.47
0 |-180.12] 0.14| -117.68| 1.20| -116.91|-180.26| 187.15| 120.28
30% | 1 |-180.88] 0.10| -117.77] 1.18] -116.91|-180.46| 210.55| 30.36
10 | -180.41| 0.08| -117.98| 1.80| -116.96|-180.47| 78.80| 10.85
0 |-180.17] 0.12| -117.95| 1.87| -116.96|-180.83| 192.30| 146.00
50% | 1 |-180.87] 0.09| -117.48| 0.60| -116.98|-180.47| 225.85| S4.84
10 | -180.41| 0.07| -117.64| 0.78| -116.90| -180.49| 108.45| 104.89

Table C.31: 10 variable F8 dynamic mutation results for direct fitness distance

calculation at 75% chromosome crossover.

229




Appendix C: Chapter 5 Full Results Tables

Mazx | El'tm Average St. | dooroor T
. age St. 27 -
Mitn. Best Dev. Worg Dey. ’1{2(1);2, Ft v Azg;nbm S Dev
0 | -180. 117 -
0% _188?1’2 0.04 111.41 0.89| -116.96] -180.3g 241.45| 108.18
10 | 15020 8-8(2) ~117.381 0.49| -116.99| -180.44 417.00|  55.90
0 150,08 | ooaTLTTL L12| -11699| -180.50| 355.90| 106 89
: 00| -117.40| 0.65 -116.95| -180.22| 245.90| 14505

30% 1 —180.2? 0.08| -117.53| 0.70 -116.96 | -180.834.| 32065 133.26
10 | -180.47| 0.00 -117.64| 098] -116.95 -180.49| 465.80 &20:58

. (1) :igg.?z g.gé -113‘31 0.64| -116.89| -180.2] 236.70| 138.07
. ) -117.38] 0.59| -116.95 -180.28| 2238.80| 15899

10 | -180.37| 0.08 “117.94) 1.17] -116.99 -180.45| 894.55| 104.97

Table C.32: 10 variable F8 dynamic mutation results for inverse fitness distance

calculation at 759 chromosome crossover.

C.3. Alternative alphabets

Surface | Xover |Average Best | St. Dev. Average | St. Dev. | Worst | Best Ever Avg. best | St. Dev.
Worst Ever gen.

['7:2  |Quot. | _1677.97 0.00 | -142.46| 72.05| -6.118 -1677.97|306.30| 114.81
Avg. | ~1586.70 77.29 -131.85| 74.26| -4.457 -1674.79| 70.95|114.55
['7:10 |Quot. | _4904. 52 170.28 | 699.97 | 204.05 1212.29 | -4541.80 443.50| 86.4:1
Avg. | -9982.22/388.15 794.81| 176.201191.77 | -3288.49| 56.90 91.88

['8:2 JQuot. | -180.50| 0.08| -57.89| 6.52| -54.61| -180.50| 70.95 | 12300
Avg | -180.50| 0.06| -70.41| 8.66| -56.04| -180.50| 10670 90.86

['8:10 |Quot | -180.50| 0.00]-116.64| 0.09]-116.50] -180.50]427.05| 5602
Avg. | -180.49| 0.00|-118.59| 1.92|-117.05| -180.50|469.05| 32.06

Table C.33:  Real valued results for experiments performed on F7 and F8 surfaces with

mutation fixed at 4%.

Surface | Xover |Average Best | St. Dev. | Average | St. Dev. |Worst Ever | Best Ever | Avg. best | St. Dev.
Worst gen.

['7:2  [Quot. | -1672.05| 25.80|-149.95| 56.14| -36.915|-1677.97 | 348.45| 89.19
Avg. | -1536.61| 63.84|-146.95| 78.47| -5827|-1657.34| 96.70|149.22
['7:10 |Quot. | -4272.91|170.89| 844.58 | 240.84 | 1536.80|-4595.01 4«107? 86.29
Avg. | -2446.69]|228.81| 701.05|261.69| 1457.81|-3053.80| 91.85] 156.68

['8:2 |Quot. -180.50 0.00| -54.61 0.02| -54.61| -180.50| 15.45 7.79
Avg. -180.50 0.08| -69.63 8.41 -57.38| -180.50|206.15}129.58
['8:10 |Quot. -180.50 0.07(-116.62 0.10 -116.49| -180.50|416.45| 81.41

Avg. -180.49 0.00/-117.96 0.92| -116.99| -180.50|464.05| 42.42

Table C.34:  Real valued results for experiments performed on F7 and F8 surfaces with

dynamic mutation up to 10%.
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