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The aim of the work described in this thesis was to investigate and devise low cost
methods of interrogating fibre Bragg grating sensors. Through the application of novel
signal processing techniques we are able to measure physical measurands with both high
accuracy and low noise susceptibility.

The first interrogation scheme is based upon a CCD spectrometer. We compare different
algorithms for resolving the Bragg wavelength from a low resolution discrete representa-
tion of the reflected spectrum, and present optimal processing methods for providing a
high integrity measurement from the reflection image.

Our second sensing scheme uses a novel network of sensors to measure the distributive
strain response of a mechanical system. Using neural network processing methods we
demonstrate the measurement capabilities of a scalable low-cost fibre Bragg grating sensor
network. This network has been shown to be comparable with the performance of existing
fibre Bragg grating sensing techniques, at a greatly reduced implementation cost.
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CHAPTER 1

Introduction

The advantages the fibre optic sensing discipline has over more mature measurement
methods are the inherent immunity to electromagnetic interference, the size and weight

of devices, the high sensitivity, and the ease of multiplexing sensors together [6].

The fibre Bragg grating has been at the forefront of fibre optic sensing for many years
due to the ease of manufacture, small physical size, inherent multiplexing capabilities,

and near linear measurement response to both temperature and strain {7].

However fibre optic sensing remains prohibitively expensive for many applications, and
is typically only marketable in niche applications where conventional sensing methods are
inadequate or inoperable. However in application areas operating in large electromagnetic
fields or flammable atmospheres, or those requiring large numbers of light weight sensors,
or for high sensitivity biomedical and chemical applications, fibre optic sensing is a suitable

and appealing technology.

In order to open this technology to fresh markets and compete with established conven-
tional on a level plain a concerted effort is required to reduce the cost of implementation.
The fundamental objective of the research work described in this thesis is to explore and
devise fibre Bragg grating based sensing systems that are low in implementation cost. By

exploiting commercial ‘off-the shelf’ equipment and applying novel processing techniques

17



1.1. Thesis Qutline 18

we aim to reduce average implementation cost whilst retain the high resolution, stability,

and integrity expected of such devices.

1.1 Thesis Outline

Chapter 2 introduces the theory of fibre Bragg gratings, discussing underlying principles
and how we can design and predict their behaviour. We present ways to fabricate them,
specifically focussing on UV interference pattern based methods and how this inscription
can be enhanced. We discuss issues relating to device longevity with specific focus on
reliability and stability for temperature sensing applications. Finally we present their

application as sensors, their mode of operation, and typical system topologies in use.

Chapter 3 outlines concepts and general methods behind machine learning and function
approximation. Such methods are used as tools throughout the work contained within
this thesis and this chapter aims to clarify the underlying processes and philosophy behind
them.

Chapter 4 presents the underlying background work behind the creation of a custom
commercial temperature measurement system for an electricity generator. This project
was commissioned by ALSTOM (Switzerland) Ltd to create a low cost stable and reliable
turnkey measurement system that provided sufficient flexibility for the development of in-
tegrated temperature monitoring within the stator assembly of their generator products.
In order to provide such a device we designed a system employing a CCD spectrome-
ter to measure the reflection spectra from a series of fibre Bragg gratings separated by
wavelength. Given the relatively low resolution measured spectrum we investigated the
application of image processing techniques to enhance resolution and increase stability
and noise suppression. Initially focussing on the evaluation of known methods we then
used the results of our analysis to evolve the techniques and increase both reliability and

stability.
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In Chapter 5 we investigate the discipline of Distributive Tactile Sensing. We introduce
the philosophy behind the concept compared to competitive techniques, and we describe
methods of implementation. We then describe a proof of principle study where we apply
this philosophy to a distributive fibre Bragg grating sensor system, developing a novel low

cost scaleable architecture we name an Overlapping Grating Sensor Network (OGSN).

Chapter 6 focuses upon evaluating the novel OGSN distributive architecture and devel-
oping techniques to aid its implementation. We simplify the design to an easily analysable
system before performing both simulative and experimental characterisation to determine

system performance and identify implementation philosophy.

Chapter 7 finishes the thesis with a summary and suggestions for future work.



CHAPTER 2

Fibre Bragg Grating Sensors

Fibre Bragg gratings (FBGs) were first discovered by Hill et al. [8] alongside the dis-
covery of fibre photosensitivity. These two simultaneous discoveries have transformed
modern fibre optics, and decades later still provides both novel research and commercial

opportunities [4, 7, 9, 5, 6].

Even in this very early work the importance for physical sensing applications was re-

alised, and FBGs have been and continue to be used in a wide range of sensing roles.

This chapter focuses upon introducing the devices and the theory behind them. We
start by presenting the theory behind them. We then look at how they are made. Finally

we look at their use as sensors, and the systems they can be employed in.

2.1 Fibre Bragg Grating Theory

A fibre Bragg grating (FBG) is a region of periodic refractive index modulation within

the core of an optical fibre. It can be expressed as [10]:

oneg(z) = Oneq(z) (1 + v cos [‘-?Ez + qb(z)]) (2.1)

20
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Where dnes(2) is the effective refractive index change with respect to position z, v is
the fringe visibility, A the modulation period, and ¢ is the chirp or deviation from this

period.

Light propagating in the fibre core is scattered by each grating plane, each contributing
a very weak reflection back down the core of the fibre. The cumulative reflection from the
entire grating consists of light with a phase relative to the grating’s periodicity. Light that
does not match the periodicity of the structure is cancelled out by the phase mismatch.
This creates dominant reflections at specific resonant wavelengths matching this condition,

known as the Bragg condition, given as:

2neg A

Ap = form=1,2,3... (2.2)

Where Ap denotes the Bragg wavelength, and m denotes the phase multiple (also known

as the grating order).

This ‘multiple-mirror’ analogy helps to illustrate another key attribute of fibre Bragg
gratings; they have a reflection coherence and strength proportional to their length, or
more specifically the number of grating planes. The reflection spectrum both narrows and
gets stronger with increasing length until a saturation limit is reached. At phase multiples
other than the fundamental order, the reflection is both weaker and broader due to the

larger geometry and wider range of affected wavelength.

Coupled Mode Theory

The preceding approximation is sufficient for rudimentary analysis as a narrow band
mirror or notch-filter, however in order to understand the interactions between modes in

greater detail we must apply more rigourous techniques.

Coupled mode theory is a widely used technique capable of fine resolution analysis of

the interaction between different guided modes, whilst remaining easy to use. The work
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of Yariv [11] and Erdogan [10] describe in great detail the application of coupled mode
theory to guided optics and gratings. We shall present an abridged and applied account
from these texts, collating information relevant to the work in this thesis. For a full a

detailed explanation the reader is directed to this referenced work.

We shall consider two modes; the forward propagating mode A(z), and the counter
propagating mode B(z). Normally these are orthogonal and do not interact, however
in a region of dielectric perturbation energy is transferred between modes such that the

respective resultant modes R(z) and S(z) can be described by:

R(z) = A(z)e"*% (2.3)

S(z) = B(z)e™++3 (2.4)

where J represents the detuning from the designed peak wavelength Ap given by:

_ s
s=p-1
=f~-Pp (2.5)

1 1
= 2’ﬂ'neﬁ‘ (X — XE)

If we assume that all power is transferred between modes:

‘;_f = i6R(2) +ikS(2) (2.6)
Efg = —i8S(z) —ix*R(2) (2.7)

where & is the ‘AC’ self-coupling coefficient given by
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m
K = n' = X(sneﬂ- (2'8)

and ¢ is the ‘DC’ self-coupling coefficient defined as

6=6+0—-— (2.9)

From equations 2.6 and 2.7 we can calculate the cumulative effect of a grating’s index

profile on both the transmission and reflection spectra.

Uniform Fibre Bragg Grating

A uniform fibre Bragg grating is an FBG where both dn.q and ¢ are constant over the
entire length of the grating. Therefore &, o, and & are constant with respect to z, which

means R and S have closed form solutions [10].

If we assume that the wave originates from 2 = —oco (or R(—L/2) = 1) and there
is no reflection beyond 2 > L/2 (or S(L/2) = 0). The reflection amplitude p =
S(—L/2) /R(—L/2) is given by:

—ksinh (\/52 — &ZL)

= 2.10
P = G sinh (VA% — 82L) + iv/AZ — 6% cosh (v/i2 — 52L) 310
and the reflection power r = |p|%:
sinh? (v/k? — 62L
(Ve =d%) (2.11)

ra= .
cosh? (Vk? = 62L) - &

Figure 2.1 illustrates the reflection spectra with respect to the normalised wavelength:

o =T+ 3E (2.12)
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(a) Effect of coupling strength (N = 2000) (b) Effect of grating length (xL = 2)

Figure 2.1: Uniform fibre Bragg grating reflection spectra: The characteristics of uniform
fibre Bragg gratings show that an increase in coupling strength increases the grating
strength until it reaches a point of saturation and begins to broaden. Increasing the
grating length whilst keeping the coupling strength length product (kL) constant narrows
the reflected spectral width.

where the maximum amplitude occurs at ¢ = 0 or

Recay (1 i 6“’*“) X (2.13)
Tleff

There are some significant features that we can see from Figure 2.1. Firstly as expected
the grating’s width changes with respect to the number of grating planes N in the device
(Fig. 2.1(b)).

Secondly from Figure 2.1(a) we see that with strong gratings the reflection becomes
wider, independent of any change in grating length. This is because the light does not
penctrate the full length of the grating, thus reducing the effective length of the device
and linking the width to dneg.

Lastly we note the presence of resonances outside the primary Bragg reflection. These
are known as sidelobes and can be attributed to the abrupt index change at the ends of

the FBG creating a Fabry-Pérot like cavity over the length of the grating [12].
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Non-Uniform Fibre Bragg Grating

The analysis detailed in the preceding section is only valid for a uniform FBG, where
both dne.g and ¢ are constant over the entire length of the grating. For the majority of
devices this is not the case, either by design or by effect. Gratings are often designed to
have a certain profile so that it has a specific response. In addition to this they may have

a certain index profile caused by the manufacture method.

In order to evaluate these non-uniform structures we need to evaluate equations 2.6
and 2.7 piece-wise, either through numerical integration or evaluation as a combination

of many uniform gratings [10]. Here we present the piecewise uniform method [13].

For reflection spectra we evaluate the following matrix

R; _F Ry (2.14)
Si Si-1

where

cosh (yAz) — i€ sinh (yAz —i&sinh (yAz
F— (YAz2) — i sinh (YAz) 4 F'r ) (215)
i%sinh (YAz) cosh (yAz) +iZ sinh (yAz2)

and

v = VK? - 52 (2.16)

where £ and ¢ are as given by 2.8 and 2.9 respectively.

We start at Ry = R(L/2) = 1 and So = S(L/2) = 0. Then calculate through
to R(—L/2) and S (—L/2), where again we can calculate the amplitude reflection p =
S(—L/2) /R(=L/2), and the reflection power r = |p|2.
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This allows us calculate the reflection spectrum for any arbitrary grating profile. Trans-

mission and group delay can be calculated in a similar manner using a different matrix

[10].

2.2 Inscription

As one might expect from over 30 years of research, the knowledge in the area of fibre
Bragg grating inscription and manufacture is deep and wide ranging. The realisation of
a link betwcen the 240-250nm absorption band in germanosilicate fibre and long-lasting

index change has been integral to FBG development.

Exposure to a continuos interference pattern of UV light is the dominant manufacture
method for fibre Bragg grating manufacture, However inscription with high intensity
pulsed sources such as KrF excimer or more recently TiSaphire femtosecond lasers enable
inscription methods that can manufacture devices during the fibre drawing process [14]

or negate the requirement to strip an already coated fibre [15].

Ultra-Violet Photosensitivity

The 240-250nm absorption band in germanosilicate fibre has been linked to GeO defects
created during the fibre manufacture process [4]. These defects form weak covalent bonds
with other Ge or Si atoms present in the silica lattice (Fig. 2.2). This weak bond has an
absorption peak at 242nm which when excited breaks and releases the electron into the
conduction band, forming a negatively charged GeE’ trap. This clectron diffuscs into the

lattice and becomes trapped by a neighbouring GeE' site.

This molecular change alters the absorption characteristics, which in turn changes the

refractive index through the Kramers-Kronig relationship [4]:
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Figure 2.2: UV index change mechanism: Sufficient excitation of the weak covalent bond
releases an electron which is free to diffuse into the silica lattice. The resultant molecular
change alters the absorption characteristics which in turn changes the refractive index.

&m-rr(:\)zi,f’ [ Boah) (2.17)

2m? { = (:.\_)

N

Where P is the principal part of the integral, A is the wavelength, and a.g(A) is the

effective change in the absorption coefficient of the defect.

Hydrogen-loading has been shown to have a significant effect upon photosensitivity
[16]. The presence of GeH molecules in the lattice is thought to increase the efficiency of
GeE'’ generation when exposed to UV light. This provides an easy and efficient method
of creating highly photosensitive fibre from standard germanosilicate fibre type without

the need for co-doping.

Longevity and Reliability

One of the primary concerns for sensing applications is how reliable the sensor is. With
this in mind it is important to recognise that the index modification described in the
preceding section is not permanent. The trapped electrons are readily thermally excitable,
and the speed of their return to their original un-trapped state is accelerated by elevated

temperature.
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Figure 2.3: Conduction Diagram: During inscription electrons are excited to the conduc-
tion band and trapped by neighbouring negatively charged GeE’ traps at a distributed
energy level. Electrons at an energy below the demarcation energy level Ep, a function
of time and temperature 2.18, are freed to the conduction band to return to their original
location.

Erdogan et al. [17] demonstrate for germanosilicate fibre that the trapped state is at
a distributed energy level (Fig. 2.3(a)). This is significant because trapped electrons at
an energy below the demarcation energy level Ep are freed to the conduction band and

return to their original location (Fig. 2.3(b)).

This demarcation energy is a function of both temperature and time and for non-
hydrogenated germanosilicate fibre has been modelled as linear with respect to tempera-

ture T and logarithmic with respect to time ¢:

Ep(T,t) = k5T In(vot) (2.18)

Where kp is the Boltzman constant and vy is a fibre specific constant scaling the fibre’s

energy release rate v at energy level E with respect to temperature, given by:

S(E) e g (- Ef"“T) (2.19)

For hydrogenated fibre the energy level has a wider distribution reaching closer to the

conduction band. This has been shown not to obey the same model as non-hydrogenated
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germanosilicate fibre [18, 19], however still demonstrates a similar logarithmic relationship

with respect to time.

The significance of these relationships is twofold. Firstly it is clear that for stable and
predictable operation throughout a specific temperature range, the device must be an-
nealed to at least the maximum temperature for a sufficient time such the all trapped
electrons below E = kgT have been freed. Otherwise both reflection strength and wave-

length are susceptible to change whilst in operation.

Secondly we introduce the concept of accelerated ageing. Given that the rate of change
of Ep is proportional to the temperature, it is possible to accelerate the annealing process
by exposure to an elevated temperature. Whilst not always a recommended method for
high temperature operation, this method is particular useful for ambient temperature

operation where electron diffusion is otherwise slow.

Inscription Techniques

Whilst direct point-by-point inscription processes for fibre Bragg gratings have been de-
veloped [20, 21], the manufacture of a consistent, high quality core index modulation

typically requires a stable interference pattern.

The holographic inscription method [22] (Fig. 2.4) is a flexible method capable of
generating inscription patterns with a periodicity governed by the geometry of the beam
path. Specifically the rotation of the mirrors varies the angle of the beams such that a

pattern of period A is created, where

Auv
2sinf

(2.20)

which would inscribe a grating at
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Figure 2.4: Holographic grating inscription: The fine interference pattern required for
fibre Bragg grating inscription is created by the intersection of two coherent beams at
a specific angle. The resulting inscribed structure has a refractive index profile shaped

relative to the inscription beam.

NefAUY

Jip = (2.21)

sin ¢/

Although this method has clear benefits in terms of wavelength flexibility it does have
its drawbacks. The beam path is very long, and is aligned by skill and judgement. It is
very difficult to create an exact interference pattern in line with the fibre and therefore
there can be slight tilt to the grating plane which may result in an undesired grating

response from light scattering into radiation modes [23].

Additionally the grating length and profile is limited to the spot size of the inserip-
tion beam. Whilst the sidelobes are suppressed by not having an abrupt index change,
FBGs with a Gaussian index profile have a resonance on the short wavelength edge (Fig.
2.5). This is a different Fabry-Pérot effect between the edges of the grating, occurring
because the central region has a higher effective index and has therefore shifted to a longer

wavelength than the weaker edges, creating a cavity [12].

The phase mask method (Fig. 2.6)[24, 25, 26] uses the interference pattern created
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Figure 2.5: Reflection spectra for fibre Bragg gratings inscribed with a Gaussian index
profile: Gaussian profiled gratings suffer from a short wavelength resonance on the short
wavelength side caused by the creation of a Fabry-Pérot structure between the edges of
the grating. This feature is more pronounced with stronger gratings.
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Figure 2.6: Phasemask grating inscription: A phase grating can be used to create the
inscription interference pattern out of the two first order diffraction modes. Such a grating
can act as a mask allowing a fibre placed immediately behind the grating to be exposed
to a reliable and repeatable interference pattern, inscribing a fibre Bragg grating at twice
the period of the phase grating

immediately behind a phase grating. The phase mask is designed such that the zero
order is weak, with the majority of the light diffracted to the Ist order modes. This

inscribes a grating at twice the period of the phase mask.

The primary advantages of this inscription technique are the simplified and reduced
free-space alignment, the ability to write long gratings by scanning the inscription beam,
and the ability to inscribe complex grating structures repeatedly. Whilst phase masks
remain expensive to manufacture, they can be used to replicate identical gratings on a

mass scale.
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Since FBG inscription phase masks are designed to concentrate the majority of an
incoming beam into the 1st order modes, we can use it as the beam splitting element in the
preceding holographic inscription system. In doing so we create a Talbot interferometer
out of the &1 order beams which can be used to replicate an image of the phase mask
[27], adjustable in scale by the mirror angle. This allows scanning of the inscription beam
to inscribe long gratings at arbitrary wavelengths as dictated by the beam geometry. This
method has also been shown to inscribe chirped gratings using a chirped phase mask [28].
It should be recognised however the alignment difficultics still remain with this inscription

method.

Some subtle adjustment to wavelength can be made by straining the fibre prior to
inscription, however it has also been shown that dithering the phase mask position relative
to the fibre enables a fine and continuous control over both the index profile (known as
apodisation) and also the grating periodicity [29]. Using a modulated laser beam to
achieve this dither has shown to be particularly successful [30, 31] as it ensures minimal
moving parts and thus alignment. By precise fibre translation and beam modulation it is
possible to inscribe arbitrary apodisation profiles, phase shifts, and create chirped period
profiles. Chirped profiles do however incur an apodisation profile relative to the beam

width due to the increased overlapping of the out of phase fringes [29, 31].

High-Intensity Pulsed Laser Inscription

Because of their optimal wavelength and stable characteristics, KrF Excimer pulsed laser
sources have been used alongside continuous wave lasers throughout the history of fibre
Bragg grating inscription. However in more recent years interest has grown in the in-
scription of devices by ultra-short high-power laser pulses at wavelengths away from the

240-250nm absorption band, introducing an alternative inscription mechanism.

Commonly fibre Bragg gratings are inscribed using the described UV absorption mech-
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Cumulative Typical pulse Writing

Grating fluence energies conditions
type (J/em?) (mJ/em?) CW Pulsed Obervations
Type 1 Up to 500 100 Y Y
Type I1A > 500 100 Y Y Associated with compaction
of the glass matrix
Type 11 NA 1000 N Y Associated with fusion

of the glass matrix

Table 2.1: Key Differences between Types I, I, and IIA Bragg Gratings [4]

anism, modifying the refractive index of the germanium doped core and forming what are
known as Type I fibre Bragg gratings [4]. Changes to the inscription power and duration
allow the inscription of alternative structures each with different thermal characteristics
(Table 2.1)[4, 32]. However this is still reliant on presence of Ge-Ge or Ge-Si bonds in the
specific region of inscription, making grating manufacture within speciality fibre such as

photonic crystal fibre or erbium doped fibre difficult.

Another problem directly related to UV inscription is that the grating region must have
the fibre’s protective buffer removed, since this is typically sensitive to UV light. Removal
of this buffer can result in surface strength degradation, the extent of which depends on
the stripping mechanism used. Hydrogen loading to increase the photosensitivity of the

fibres has also been shown to decrease the mechanical strength of the fibre [33].

Direct inscription in a variety of optical materials at wavelengths away from absorption
peaks has been demonstrated using high powered lasers with a pulse duration in the
order of femtoseconds. The effected region of multi-photon absorption from a focused
beam becomes is highly localised using sub picosecond pulse width [34], and the highly
non-linear relationship to beam intensity enables three-dimensionally localised refractive

index modification at arbitrary depths in a dielectric medium [35, 36].

Application of this inscription process to fibre Bragg grating manufacture has been
highly successful. Inscription has been demonstrated using the phase mask technique at a

variety of wavelengths [37, 38], and also by direct point-by-point illumination [15] with the
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ability to inscribe at arbitrary positions within the core [39]. Significantly it has enabled
inscription of multiple fibre types including rare earth mineral doped fibres [40, 41] and
photonic crystal fibre [42], and being wavelength independent the manufacture method is
readily able to inscribe through the protective polymer buffer [15], negating the need to

strip away any coating.

Beyond the manufacturing advantages, fibre Bragg gratings inscribed by femtosecond
laser have been demonstrated to survive and provide stable long-term functionality at
significantly elevated temperatures [43, 40]. This is indicative of Type II behaviour and
the possibility of a partially ‘damage written’ grating, and is a significant advantage for

temperature sensing applications.

It is perhaps the temperature response of femtosecond inscribed structures that illus-
trate the fact that there are still unknowns. Whilst it is generally accepted that there
are regions of damage and regions of index change, the complete makeup and its relation
to the beam profile and strength is still not fully understood. Cyclic anncaling studics of
both long-period and fibre Bragg gratings have failed to fully separate regions of increased
stress, quenching, and damage [44]. In addition to this high-power transmission through
regions of inscription have highlighted unknown self heating and potential fibre fusing

effects [45).

Ultimately however it can be seen that the use of femtosecond inscription will prove
significant to the future of fibre optic sensing. The ability to provide reliable, stable, and
casily produced structures in different fibre types will bring forward the entire discipline,
and the ability to combine these structures with micro-machining techniques [46] will

undoubtedly benefit the entire fibre optic sensing industry.
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2.3 Fibre Bragg Gratings As Sensors

Fibre Bragg gratings make ideal optical fibre sensors. Since the Bragg wavelength is
proportional to changes in both refractive index n.g and grating period A, there are two
mechanisms that are exploitable for physical measurement sensing. We can denote this

as:

5?’19{{ 6A
A/\B =2 [AW S neﬂ-‘m] AM (222)

where M represents the measurand, and dn.q/6M and §A/éM the measurand’s respec-

tive index and expansion cocfficients.

From this it is clear that a change in physical property that has an effect on either
nex or A will change the Bragg wavelength proportionally. This wavelength encoded
measurement is a distinct advantage over other optical fibre sensors, as the measurement

is impervious to source fluctuation, connector losses, and other such problems affecting

the DC light level.

For FBG sensors the primary sensing mechanisms are strain and temperature. A small
polarisation dependent sensitivity to dynamic magnetic field can be detected [5], however
the effects of magnetic fields can generally be discounted in comparison with the fore
mentioned quantities. Secondary measurands can exploit these primary mechanisms to
change the Bragg wavelength, enabling sensors such as pressure [47, 48] or chemical sensors

[49]. The effect upon wavelength is shown in Table 2.2.

Measurement Systems

Key to the usc of fibre Bragg gratings as scnsors are the systems that employ them. This

is representative on two levels. Firstly the uncertainty with which the Bragg wavelength
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Javelength  Strain sensitivity Temperature sensitivity

(1 m) (pm pe™b) (pm°C™?)
0.83 ~ (.64 ~ 6.8
1.3 ~ 1 ~ 10
1.55 ~ 1.2 ~ 13

Table 2.2: Strain and temperature sensitivities of FBG sensors at different operation
wavelengths (5]

Detector /
Wavelength
Measurement
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Figure 2.7: Wavelength Division Multiplexed (WDM) FBG sensor topology: A WDM
topology separates each fibre Bragg grating into specific regions of operating wavelength,
with the maximum number of grating sensors being dictated by width of the source and
the required operating range for each grating

is measured is the limiting factor to a measurement system’s accuracy. Secondly the
envision of multiplexed systems containing multiple sensors reduces the ‘per sensor’ cost

and makes a system commercially viable.

Several different multiplexing topologies have been demonstrated for FBG sensing.
Time Division Multiplexing (TDM) [50, 51, 52, 53], Code Division Multiplexing (CDM)
[54], and Wavelength Division Multiplexing (WDM) [7] topologies are all realisable within
FBG sensor systems. Of these WDM based schemes are possibly the easiest to realise

and form the basis for work contained inside this thesis.

Figure 2.7 shows a simple generic WDM topology for use with FBG sensors. Each

sensor is separated by and works within a specified operation range dA. The number of
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Figure 2.8: Filter based interrogation methods

sensors that may be used within the system is dictated by the width of this range in

relation to the width or range of the illuminating source.

It is the wavelength measuring device that dictates the accuracy of the system. For
high precision measurement scanning tuneable laser systems have proven to have optimal
accuracy [55]. As the source has a very narrow line width the technique can be em-
ployed directly in the illustrated scheme without further modification, however the cost

is prohibitive for low-cost systems.

An analogous method would be to use a scanning filter in combination with a broadband
source (Fig. 2.8(a)). This has proven successful and can be implemented using a variety of
different filter types including Fabry-Pérot (7], acousto-optic [56], and fibre Bragg gratings
[57].

Scanning methods are however inherently slow, especially for systems with mechanical

moving parts. Edge-filter interrogation [3, 58](Fig. 2.8(b)) uses a wavelength dependent
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Figure 2.9: CCD Spectrometer: CCD spectrometers diffract the incoming light such that
different wavelengths are focused at different points on a CCD image sensor, creating a
low resolution optical spectrum analyser

filter F in series with the reflected spectra to create an intensity relative to the FBG
wavelength. By comparing this intensity against a non-filtered signal it is able to measure
the FBG wavelength in realtime. Since this method measures the relative response against
a non filtered signal it is immune to source fluctuation, however the edge filter must be of
known function and must be stable throughout measurement. Unfortunately this method
is difficult to apply to WDM systems and although solutions exist [59], it is difficult to scale

due to the large number of custom filters which each require environmental stabilisation.

Diffraction based CCD spectrometers (Fig. 2.9) offer a low cost alternative to labora-
tory optical spectrum analysers (OSAs). These devices measure a low resolution image of
the spectra by diffracting the beam such that the different wavelengths are spread across
a CCD image sensor. Whilst design primarily for biomedical spectroscopy applications
they have been demonstrated applied to FBG interrogation [60]. These devices are com-

mercially available in bulk optic form, and devices based upon tilted FBGs [61, 62] and
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planar optical waveguides [63] have shown potential for continued improvement and cost

reduction.

2.4 Conclusion

We have presented a comprehensive overview of fibre Bragg grating technology, outlining
aspects of theory and practice. Using coupled mode theory we presented an insight into
how a FBG works, and the subtlety of design. We have also described techniques to

characterise and model any arbitrary device.

Methods of inscription have been presented and a explanation for index change mech-
anisms has been offered. We have outlined concerns about device stability and longevity,
and offered a solution as to how accelerated ageing might ensure stable operation. Finally
we presented the mechanisms behind FBG sensing, and described methods for integration

into measurement systems.



CHAPTER 3

Function Approximation and Machine

Learning

Finding and modelling patterns within mecasured data is an important scientific discipline
with wide ranging application. Being able to statistically recognise and identify underlying

relationships is a fundamental part of scientific activity.

Research in the area of machine-learning is both wide ranging and fast moving. Within
this thesis we limit the scope to the application of established methods from the area of
neural networks, which are arithmetic networks designed to mimic the biological nervous

system and its parallel computational architecture.

In this chapter we present the fundamental concepts required for understanding of
neural networks and their application for function approximation. We attempt to give
an overview and insight into the different models and learning methods available, and

describe the underlying methods used throughout the remainder of this thesis.

40
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3.1 Machine Learning Principles

Machine learning is the process of fitting a mathematical model to an unknown sys-
tem. This is an iterative process based on two factors; the minimisation of error as the
quantitative measure of the fit, and the improvement of generalisation as the qualitative

measure.

In order to illustrate the key concepts associated with machine learning we present a
polynomial curve fitting [64], demonstrating the approximation of a single sinc wave cycle

using an Mth order polynomial model with weighting vector w:

M
y(z) =wo +wr ... wyzM = Z w;z! (3.1)
§=0

The first part of all machine learning methods is to collect independent sets of data,;
a training set, and a validation set. These set contain both inputs z and targets y. In
this particular example we construct a training set of N evenly spaced samples from the
function y = sin 27z with the addition of random Gaussian distributed noise. The testing

set shall comprise samples from the same function without the additional noise.

Error is measured with an error function, such as the sum of the error squared function:

N

E(w) =) {y(@sw) —t.}? (3.2)

n=0
The learning or training stage is the systematic manipulation of the weighting vector w
such that the error against a set of target values (the training data set) is minimised. Upon
minimisation against the training data we test the prototype model with the validation

data set.

The results of different minimised polynomial models with increasing complexity M

can be scen in Figure 3.1(a). Here we can sce the cffect of over-fitting a function to the
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Figure 3.1: Demonstration of the effects of model complexity for function approximation.
As the model polynomial order M is increased we start to see the model ‘over-fit’ the
data (Fig. 3.1(a)). The use of a secondary validation data set to test the trained model
illustrates the point of model over-fit (Fig. 3.1(b)).

data (as with M = 9). Regularisation or Generalisation is the prevention of this and
refers to the ability of the model to produce reasonable outputs for inputs it hasn’t seen
before. This can be thought of as the application of ‘Occam’s Razor’ to the problem [65],

where the least complex solution is usually the best.

One measured approach to achieving optimal generalisation is to test the network with
a secondary validation data set. Increasing the complexity whilst monitoring error from
a trained model with this independent validation data set allows us to gauge when the

model is starting to over-fit the data (Fig. 3.1(b)).

This use of independent data to check the model is key to machine learning and is a

requirement of many learning algorithms.

3.2 Linear Models

The polynomial model used in the preceding section is an example of a linear model. It

follows the form of

N
y(z) = wip;(z) (3.3)

j=1
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where ¢; represents fixed functions of z, known as basis functions. These functions do
not need to be related to each other nor be linear functions of z. Models of this form are
denoted as linear models even if the vector ¢ contains non-linear functions because they

represent a linear summation of weighted models that are themselves fixed.

For linear models the sum of squares error function 3.2 forms one single minimum and

can be found by when dE/dw = 0.

This can be solved using a matrix representation of the system and its weights:

y(x) = W (3.4)

which can be solved for target vector T and ® = ¢,(x") by [66]:

WT = &iT (3.5)

where ®! denotes the pseudo inverse of ®

Press [67] provide an implementation of this calculation with increased reliability and

accuracy though use of Singular Value Decomposition.

This linear optimisation process is denoted as linear least squares regression.

Linear Neuron Model

The Adaptive Linear Element (ADALINE) (Fig. 3.2) [1] is a linear model of the form:

N
Y= ijz'j (3.6)
=0

where NNV represents the total number of inputs.
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Figure 3.2: The Adaptive Linear Element (ADALINE) calculates the biased sum of a set
of weighted inputs.

This forms one of the fundamental building blocks of neural networks known as the
neuron, and is classed as part of the perceptron family. It draws its inspiration from
biological neurones and consists of a summing junction summing each of the synaptic
inputs as scaled by their respective weights. The output is linear with respect the the

summation due to the linear activation function which follows the summing node.

The usage of this model is primarily for adaptive filtering, due to its similarity to
traditional FIR filter models. However the use of a linear transfer function allows linear
least square regression to be used as the training method which can be beneficial in some

situations.

Multi-Layer Perceptrons

Whilst single layered architectures are useful, they cannot be used to model any arbitrary
function. Despite the capability to use non-linear activation functions, the output is still
generated by a linear function of the input. Multi-Layer Perceptrons (Fig. 3.3) on the
other hand have been proven to have the capability and flexibility to approximate any

model [66].

The architecture consists of a minimum of three layers (including the input layer). The
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Figure 3.3: The Multi-Layer Perceptron network comprises interconnected layers of neu-
rons, each calculating the biased weighted sum of their inputs, scaled by an activation
function.

input nodes are non-computational, with outputs connected to each and every neuron in

the next layer?.

The second layer is a layer of neurons, each consisting of a summation of weighted
inputs followed by a (typically non-linear sigmoidal) activation function. This layer is
known as the hidden layer because neither its inputs or outputs are connected to the real
world. There can be successive hidden layers however it has been proven theoretically

unnecessary as a three layer model can approximate any function?.

The final layer is another layer of neurons and processes the results of the hidden

layer(s).

Typically for function approximation neurons in the hidden layer would have sigmoidal
activation functions, whilst neurons in the output layer would use linear functions. This
is known to assist the training process as it assists gradient calculation [66]. As such

pattern detection and processing is performed in the hidden layer, whilst the output layer

1Methods to prune some of these connections for efficiency purposes exist, however are not considered

in this thesis

21t should be recognised that extra hidden layers can however encourage generalisation in otherwise

large networks
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Figure 3.4: The training cycle for Multi-Layer Perceptron networks. Separate test and
training data is collected, pre-processed to emphasise or normalise the data characteristics,
the network trained and iteratively manipulated to find the optimal architecture.

provides a linear response relative to their computation.

Figure 3.4 shows the typical approximation workflow required for MLP approximation.

It can be seen as essentially the same workflow as described in section 3.1.

The collection of data representative of the system is the first step in the learning
process. Many training methods require an additional set of data for cross-validation
purposes so typically three sets of data is the minimum requirement. This data then
requires scaling such that all inputs are of the same variance. This is so that the training
/ error minimisation stage can follow the correct path of minimisation. The network is
first initialiscd to a simple configuration of a few hidden nodes and the training algorithm

calculates the correct weights from the training set.

Following completion of training the model is tested, the networked changed, and the
new model trained. This process works the same as that shown in Figure 3.1(b), however
instead of adding extra polynomial terms to the model we are adding extra neurons to the
hidden layer. Once the error from the test data set has reached a minimum, the model is

deemed optimal.
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Training

Due to the non-linearity and increased model complexity the difficulty in training a ncural
network is a limiting factor. Whilst the architecture itself is inherently flexible, it is not
always possible to reach that optimal configuration. Subsequently training algorithms are

wide, varied, and under continuous research.

The problem with training multilayered networks is that there is no visibility of the
correct output from each node in the hidden layer. This means that the network must be

analysed behaviourally and iteratively, and the network’s weights adjusted accordingly.

Backpropagation is the standard technique used for such training and is a generalisation
of the previously described least squares method. It can be thought of as a two pass

process through the network; a forward pass and a backward pass [68].

In the forward pass the training data propagates through the network in the conven-
tional manner, from input to output identifying the error between the network output
and the correct result for the given input condition. In the backward pass the errors from
this forward pass are passed back through the network, from the outputs towards the
inputs, in the form of error gradients. This being the error scaled by the synaptic weight
and activation function. All of the weights are adjusted proportionally to inverse of this
error gradient, which is measured at each and every synaptic weight. The proportion at
which the weights are changed is known as the learning rate parameter. The ultimate

aim is to reduce the error gradient for each synaptic weight to zero by iteration.

This method is known as the gradient descent training method. Whilst it does work
and is relatively easy to understand it is a heavily iterative and computationally expensive
task and is one that is difficult to optimise, because if the learning rate parameter is set
too high the network will oscillate and if too low the network will not converge. There
are also problems where the network appears optimal however is actually at a localised

minima, as such usage of this algorithm requires repetition to ensure that is not the case.
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There are other backpropagation methods that are faster to use, most notably being
the scaled conjugate gradient descent method [69] which is method using the second
derivative of the error function to efficiently determine optimal weight manipulation, and
also application of the Levenberg-Marquardt algorithm [70] which has been proven to be

the fastest method by a sizeable margin.

It is however the application of Bayesian statistics to the backpropagation problem that
has particular relevance for function approximation. Whilst each of the aforementioned
training methods can control and improve generalisation through means of additional
independent data sets providing early stopping information, or including noise into the
data set [71], MacKay [65] incorporated a probabilistic interpretation of backpropagation
and weight change. This method makes maximum use of a single training data set and
docs not require additional verification data sct to perform carly stopping to the training.
Instead it modifies the previously described gradient descent method to include objectivity
drawn from the distribution of data and the network behaviour by statistical methods,
and the weighting at each synapse is changed in accordance with this. Importantly the
technique does not further complicate the training process from a user’s point of view,
instead the entire process is simplified because the network training only requires one
single data set and does not require any parameters such as the aforementioned learning
rate parameter. It is a true black-bor method requiring only the data and the number of

iterations the algorithm should make.

This method addresses problem areas of backpropagation with the ultimate aim of
producing a network that is well generalised, and not simply the network with the least
error for a given training set. It specifically ensures that each node is well utilised such
that no dominant behaviour occurs, and the use of such a network discourages the blind

use of oversized networks.
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Radial Basis Function Networks

Radial Basis Function Networks (RBFNs) differ from the MLP model in that the neuron
does not perform a weighted summation of the input data, instead it outputs a weighted
sum of the Euclidean distance between the inputs and set of prototype vectors providing

a non-linearity. For k outputs this can be expressed as [66]:

N
ve(z) = Y widi(x) + wro (3.7)

i=1
Although not always the case, the basis function usually takes the form of a Gaussian

function:

Bia) (""—"‘Jﬂ) (38)

20}
Where x is the input vector, and p contains the basis centres.

The standard training method is to set the vector u to the input data and given that
this is a linear model it can be solved using the linear least squares method described in
section 3.2. As the architecture requires no iteration the model only require the setting

of the basis function width ¢, which effectively determines the smoothness of the output.

This is an effective training method showing excellent promise for approximation ap-
plications. However, it does have one major drawback; it doesn't scale well for large data

sets.

Alternative training methods offer a different approach and select a subset of these basis
functions, based upon their contribution towards the target function. Notable methods
for this are the orthogonal least squares approach [72] which takes a measured approach
to assess the contribution of each individual basis function to the target output, and that
of Orr [73] who concentrates upon function generalisation by including a cross-validation

factor to enable early stopping.
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One modified architecture analogous to the RBFN is the General Regression Neural
Network (GRNN) [74]. This method has the same first layer as the full RBFN including
all the training data as basis functions however, it differs in that it neither performs a least
square fit on the data to generate weighting nor does it perform any basis function pruning.
Instead it uses an extra special layer containing a vector based upon the probability density
of the training data. This is used to scale a regular summation node from the basis layer.
This method has been shown to be very effective in non-linear filtering applications [75, 76]

and is very fast and non-iterative in its training.

3.3 Conclusions

We have presented an overview of different machine-learning and neural network tech-
niques paying specific attention to the application of function approximation. We have
outlined major models and learning methods in the field, and have attempted to describe

the underlying processes used throughout this thesis.

All of the methods and models presented within this chapter are readily available in both
commercial and non-commercial software implementations; however, the author makes
explicit use of the Matlab Neural Network Toolbox (Version 5.0.1) and the NETLAB
toolbox [77].



CHAPTER 4

Low Resolution Spectral Analysis

High precision wavelength resolution of a fibre Bragg grating’s wavelength is the fun-
damental objective for sensing applications. Picometre precision is desired in order to

compete on a level plane with more mature technologies.

Spectral processing is an area of research that has significant impact upon fibre Bragg
grating sensing. In particular the application of sub-pixel processing techniques [78, 79]
has brought significant gains for many areas of fibre optic sensing, and has introduced a

level of accuracy and stability that has enabled commercial realisation.

In this chapter we start by presenting an overview of spectral processing for fibre Bragg
grating sensors. Concentrating upon two common sub-pixel measurement techniques
and highlighting the benefits and limitations of their use with respect to low resolution
measurement. We then introduce two novel processing methods and present theoretically
simulated operation over a variety of conditions. Finally we apply these techniques to
a temperature measurement system to display the resolution enhancement methods in

practice.

51
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Figure 4.1: The generic spectral sampling model. The spectrum is sampled at discrete
wavelengths, each sample measuring a specific optical range.

4.1 Measurement of FBG spectra

Most interrogation schemes for FBG sensors rely nupon a discrete representation of the
FBG reflection spectra. The nature of the sampled spectra varies between different mea-
surement methods, however we can generalise this to the model shown in Figure 4.1
where different wavelengths are sampled at a regular interval with an optical resolution
determined by the Full-Width-Half-Maximum (FWHM) measured relative to the sample

period s.

Optical Spectrum Analysers (OSAs) allow a high degree of control to their sampling
model which proves optimal in a laboratory environment, however for a dedicated mea-
surement system consisting of FBGs the sampling reliability, linearity, and resolution of

tuneable lasers have shown to be the preferred sampling method [55].
Low cost alternatives to these sampling systems often have less desirable characteristics.
Typical problems that might be encountered include low optical and sample resolution,

resulting in a low-resolution ‘smeared’ spectrum image; poor linearity both in terms of
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sample period to wavelength and also wavelength to power conversion sensitivity; finally

measurement noise may be significant.

Diffraction grating spectrometers are low cost fixed sampling devices that use a diffrac-
tive element to project an image of the spectrum across an image sensor. They are
designed primarily for spectroscopy applications and exhibit many of the problems de-
scribed. However it has been shown that with appropriate processing they can be used

in practical FBG sensing systems [60].

The application of image processing techniques has shown great promise with respect
to increasing the accuracy of these low resolution systems and overcoming systematic
limitations. The methods have allowed the development of novel low cost implementations
including those operating at extended wavelength ranges [61], and devices with very poor

optical resolution [62].

The development and application of image processing techniques to be used for fibre
Bragg grating sensor measurement enhancement is an important enabler for low cost

implementation.

Sub-pixel resolution

Since a FBG grating’s reflection covers multiple neighbouring samples we are able to use
signal processing to identify the position of the grating. This has two benefits; firstly by
processing multiple measurements we increase the noise immunity, and secondly we are

able to increase the resolution of the measurement to sub-pixel* accuracy levels.

The processing techniques can be loosely split into two categories; filtering where the
data is processed in parallel by a filter kernel, and regression where the data is approxi-

mated to a function by statistical methods.

!The use of the the word pixel (Picture Element) stems from the application of image processing

techniques to process the spectral ‘picture’. One pixel can be regarded as one sample from the spectrum
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Figure 4.2: The two different methods of processing the discrete sampled reflection from
fibre Bragg gratings to find the peak position. Filter methods 4.2(a) calculate the peak
directly from the sampled data using a kernel, and regression based methods 4.2(b) fit a
mathematical model to the data and calculate the peak position from the model.

Filter based methods process the measurement directly (Fig. 4.2(a)), returning a result
relative to the position of the data with respect to the position of the filter. Different
kernels can be applied to directly calculate the Bragg wavelength [78]. scan for the peak

(80, 81, 82], or pre-process the spectra [83] to remove background noise.

Regressive methods attempt to approximate the data to a mathematical function us-
ing machine learning and statistical methods (Fig. 4.2(b)). Once a function has been
identified the peak can be identified mathematically or using iterative methods. Polyno-
mial [79], and Gaussian [55] models are particularly well known, however nenral network

models have shown promise in certain applications [84].

4.2 Evaluation of processing methods

Ultimately this study shall be applied to a real measurement system measuring FBG
sensors using a CCD Spectrometer. However in order to evaluate these techniques over a

wide range of resolutions and noise levels we must simulate with a flexible general model.

For evaluation and simulation purposes we simplify the problem to one of identifying
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Figure 4.3: The Gaussian function fibre Bragg grating model used to evaluate each pro-
cessing method.

the exact position of a sampled Gaussian function (Fig. 4.3). This simulated spectrum
has Gaussian distributed noise added, which is given as a Signal-to-Noise Ratio (SNR)
figure measured relative to the peak amplitude. This model allows flexibility to change
both the SNR and the sample period, measured with respect to the peak’s Full-Width-

Half-Maximum (FWHM) value, which for a Gaussian function can be given by:

Rig) =g parmis (4.1)

where ‘pos’ represents the peak position.

Using this model we are able to evaluate the effectiveness of different algorithms in
determining the peak position to a sub-pixel accuracy at different SNR levels for different
sampling resolutions. Before presenting any novel techniques we shall investigate the
two most popular methods; the Centroid Detection Algorithm, and the Least-Square

Quadratic fit.
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Figure 4.4: Centroid Detection Algorithm (CDA) evaluation: Contour plots of the R.M.S.
crror measured relative to the sample spacing, for different grating widths and noisc levels.
4 different sample set sizes are presented (Top row from left; contour plots for 3, and 5
samples. Bottom row from left; contour plots for 7, and 9 samples). Optimal behaviour
(minimum error) can be seen at a constant grating width for a given sample set size,
independent of noise level.

Centroid Detection Algorithm

Ej ’\ii.i
Zj i

The Centroid Detection Algorithm (CDA) method (4.2) [78] is a weighted mean calcu-

Ap = (4.2)

lation to determine the centre of gravity for the reflected peak. This filter calculates the
first moment of an array of samples of intensity i; at wavelengths ;. Whilst this only
rcturns the exact peak of the reflection for a symmetric peak, so long as the reflection is

of stable shape it does calculate a stable measurement for the Bragg wavelength.

In addition to resolving the Bragg wavelength, this algorithm has found use in appli-

cations where the reflection shape change requires quantification [85].
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the valley of optimal sample set size to grating (2 x FWHM) + 1)

width ratio

Figure 4.5: Optimisation of Centroid Detection Algorithm usage. From the observation of
an optimal sample set size to grating width ratio (4.5(a)), we can determine the optimal
characteristics of the Centroid Detection Algorithm (4.5(b))

The effectiveness of the Centroid Detection Algorithm method can be determined
through simulation of the previously described model, measuring the error in resolved
position for different sample sct sizes (the number of data point used in the calculation)
centred on the grating’s measured peak value. With repetitive processing of the grating
centred in different positions, the RMS error at different noise levels can be calculated rel-
ative to the grating width (measured relative to the sample spacing), for different sample

set sizes (Fig. 4.4).

From the contour plots presented in Figure 4.4 we notice there to be a definite valley
of minimal error for each sample set size, displaying an optimal width of grating for that
particular sample set size which is independent of nose level. We can explore this further
by plotting the relationship between grating width and the size of the sample set for a

fixed level of noise on a separate contour plot (Fig. 4.5(a)).

From Figure 4.5(a) we can see that there is a clear linear relationship between grating
width and sample set size with respect to minimal output error. Making the general
approximation that sample set size N is optimal at N = (2 x FWHM) +1 we can plot the

RMS error for different resolutions at different noise levels (Fig. 4.5(b)). It is clear from
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Figure 4.6: Least-Square Quadratic fit (LSQ) evaluation: Contour plots of the R.M.S.
error measured relative to the sample spacing, for different grating widths and noise levels.
4 different sample set sizes are presented (Top row from left; contour plots for 3, and 5
samples. Bottom row from left; contour plots for 7, and 9 samples). Optimal behaviour
(minimum error) can be seen to shift to wider grating widths as the signal-to-noise ratio
increases, for a given sample set size

this that when optimised in this manner, use of Centroid Detection Algorithm method
can determine the grating position to an accuracy of less than the sample spacing with

low uncertainty.

Least-Square Quadratic fit

The Least-Square Quadratic fit (LSQ) method [79] is a regressive technique that fits a
quadratic function to the data using a lincar lcast-square fit. The usc of a polynomial as
the regression function allows a linear fit, which means that we can solve the regression
absolutely and can do so with high precision using Singular Value Decomposition (SVD)
to calculate the pseudo-inverse matrix [67]. The use of a quadratic polynomial guarantees

a single peak.
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This method has previously been shown to have superior accuracy and noise suppres-
sion characteristics compared to the Centroid Detection Algorithm technique [79, 55).
Repeating the same test used for the Centroid Detection Algorithm; calculating the po-
sitional error for different sample set sizes, grating widths, and noise levels (Fig. 4.6) we
see that again there is a definite valley in the contour plot, indicating a specific window of
optimal accuracy. However unlike the Centroid Detection Algorithm method we can see
that the relationship between optimum accuracy and the sample set size to grating width
ratio changes with noise level (Fig. 4.7(a)), with the peak accuracy shifting to wider
gratings at lower noise levels. If we compare the results from this Least-Square Quadratic
fit technique with those of the optimised Centroid Detection Algorithm detailed in the
preceding section, we find there to be little benefit (Fig. 4.7(b)).

Furthermore we can see from Figure 4.8 where we analyse the error relative to the
peak position for both the Centroid Detection Algorithm and Least-Square Quadratic fit
methods, that the error from the LSQ method is more systematic than that of the Centroid
Detection Algorithm. There is a periodicity to the mean error matching the movement
of the peak position relative to the sampling points. This indicates that there is an offset
to the resolved position generated by the sampling distribution. It therefore precludes
the Least-Square Quadratic fit method from serious recommendation, as a greater level

of uncertainty will always be present despite output filtering.

4.3 Novel processing methods

Approximation

We have shown that a significant portion of the error associated with the Least Square

Quadratic fit method is systematic. In order to try and remove this noise source we shall
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Figure 4.7: Analysis of Least-Square Quadratic fit accuracy: Figure 4.7(a) demontrates
the shift of peak accuracy to wider grating widths at lower noise levels, and Figure 4.7(b)
demonstrates there to be limited benefit of Least-Square Quadratic fit usage of over an
optimised Centroid Detection Algorithm method
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Figure 4.8: Analysis of Positional Error (FWHM = 5, SNR = 25dB). As the peak position
is moved relative to the samples we see that unlike the results from the Centroid Detection
Algorithm, the error for the Least Square Quadratic fit method introduces a systematic
error offset dependent upon the peak position relative to the sampling

determine whether an improved function agnostic regression technique has any bearing

over system performance.

Paterno et al. [84] introduced a method using the sampled spectra as training data
for a one-input / one-output Radial Basis Function Network (RBFN). This network was
trained to approximate the reflection power for a given input wavclength. Following
successful training the network has become a mathematical model of the FBG reflection

and can be sampled to any arbitrary resolution. This method was designed to eliminate
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Figure 4.9: A General Regression Neural Network (GRNN) can be used to approximate
FBG reflection spectra to a smooth mathematical model. The structure of the network
is dependent on the number of samples used and their probability distribution.

noise and decrease uncertainty for high resolution spectra however, resolution gain for low

resolution spectra is a conceivable application.

The specific network model and training method chosen for this technique relied on two
factors; the basis width parameter which operates as a smoothing factor to the model,
and a cross validation figure which acts as a qualitative control preventing the model from
over training. However this particular method is computationally expensive and heavily

based upon iteration.

The General Regression Neural Network (GRNN) [74] has been proven as an optimal
method for noise suppression and function regression over most alternative methods [75,
76]. It is similar to the Radial Basis Function Network however doesn’t require any
iterative training. Instead its architecture is based upon the probability distribution of
the training data, the data itself, and a smoothing parameter which defines the width of
the network’s basis functions. This makes it very fast to train, and it is guaranteed to

have an optimal architecture without any need to retrain.

Using this network in place of the Radial Basis Function Network (Fig. 4.9) allows

regression to an optimal fibre Bragg grating model, which can be subsequently sampled

?Many iterative training methods contain (pseudo)-random generated numbers which means that you

may not get the same model consecutively with the same data



4.3. Novel processing methods 62

-20 -10 0 10 20
Samples

Figure 4.10: The effect of basis width w (measured in number of samples) in pixels on

the approximation of a noisy sampled Gaussian function by a General Regression Neural
Network (SNR=25dB)

to an arbitrary resolution in order to determine the grating peak.

Figure 4.10 illustrates this approximation in practice for a noisy sampled Gaussian
function, demonstrating the effect of the radial basis width with respect to regression to

an optimal waveform.

From Figure 4.10 we can see that the function smoothing (basis width) has a significant
effect upon the resolved function. This clearly will have a resultant effect on the accuracy
and performance of this method to identify the grating peak. Calculating the RMS error
using different values of basis and grating width, for different sample set sizes (Fig. 4.11)
we are able to explore the relationship between these three parameters. We can see there
to be no common optimal basis width for all different sample set sizes, instead the optimal
width increases with sample set size at smaller set sizes before appearing to approach an

optimal value of approximately 1.8 samples for larger sample set sizes.

Using the optimal basis widths observed in Figure 4.11, we are able to calculate the

positional error for different sample set sizes, grating widths, and noisc levels (Fig. 4.12).
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Figure 4.11: Optimal basis width evaluation for the General Regression Neural Network
processing method: Contour plots of the R.M.S. error measured relative to the sample
spacing, for different grating and basis widths at a constant signal-to-noise ratio (SNR =
25dB). 6 different sample set sizes are presented (Top row from left; contour plots for 3, 5,
and 7 samples. Bottom row from left; contour plots for 9, 11, and 13 samples). Optimal
behaviour (minimum error) can be seen for narrower gratings, and shifts to wider basis
widths as the sample set size increases

We find that the General Regression Neural Network method is similar to the preceding
Least Square Quadratic fit method in terms of operating window shapes, with optimal

accuracy shifting to wider gratings at lower noise levels.

However the General Regression Neural Network technique can be seen to perform
better than the Centroid Detection Algorithm method at low resolutions (Fig. 4.13(a)),
and the systematic error scen with the Least Square Quadratic fit method has been

eliminated (Fig. 4.13(b)).

Filtering

Dyer et al. [65] argue that the increased accuracy gained through approximation tech-

niques such as the Least Square Quadratic fit, Gaussian function fits, or our General
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Figure 4.12: General Regression Neural Network evaluation: Contour plots of the R.M.S.
error measured relative to the sample spacing, for different grating widths and noise levels.
4 different sample set sizes are presented (Top row from left; contour plots for 3 (w=0.65),
5 (w=1.0), and 7 (w=1.4) samples. Bottom row from left; contour plots for 9 (w=1.7),
11 (w=1.8), and 13 (w=1.8) samples). Optimal behaviour (minimum error) can be seen
to shift to wider grating widths as the signal-to-noise ratio increases, for a given sample
set size
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Figure 4.13: Analysis of General Regression Neural Network accuracy: The General
Regression Neural Network can be seen to perform better than the Centroid Detection
Algorithm method at low resolutions (Fig. 4.13(a)), and has eliminated the periodic error
offset seen with the Least Square Quadratic fit method (Fig. 4.13(b)
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Figure 4.14: The graphical represen- Figure 4.15: The relationship between
tation of the Centroid Detection Algo- grating, weighting, and optimal weight-
rithm resembles an Adaptive Linear El- ing window for the Rectangular Windowed
ement (ADALINE)[1] Centroid Detection Algorithm (RWCDA)

Regression Neural Network method do not justify the cost of implementation. It was
proposed that averaging the calculated position from less accurate filtering techniques

would be more valuable.

In Section 4.2 we found there to be an optimal grating width for a particular sample
size. It was found that centring the sample set on the grating and windowing it around
the peak provided optimal noise suppression, as CDAy was found to be optimal at

N = (2 x FWHM) + 1.

Since the Centroid Detection Algorithm is a linear calculation we can rewrite Equation

4.2 in the form:

N
Ap=AXo+ ijij (4.3)
j=1

where

Mo = Aj
wj; = E!

Which is the form of an Adaptive Linear Element (ADALINE)(1].

(4.4)
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Figure 4.16: Comparison of weight distribution between optimal Rectangular Windowed
Centroid Detection Algorithm and ADALINE filter kernels

Using this ADALINE visualisation of the CDA (Fig. 4.14) we can see that the synaptic
weights increase linearly with distance from the bias point. Therefore in order to ensure
that the weightings are kept small and that output noise is minimised we must ensure
that the bias point is set to the centre of the sample. Windowing the sample set around
the grating has a profound effect because the samples outside the grating peak have both
high weighting and a low SNR. We denote this method as the Rectangular Windowed
Centroid Detection Algorithm (RWCDA) (Fig. 4.15).

This ADALINE representation can be used as a tool to investigate the parallel filter
topology further. Because it is a linear model we can perform a linear least squares fit
and minimise the error function to the weighting vector required for calculating the peak

position from sampled spectra for any grating shape.
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Figure 4.17: Analysis of optimised ADALINE filters: Figure 4.17(a) shows increased
accuracy and noise suppression as the true peak deviates from the filter centre, Figure
4.17(b) displays a reduced noise level alongside a slight increase in systematic error, and
Figure 4.17(c) illustrates the strong noise immunity and accuracy level offered by the
technique.

Figure 4.16 shows the optimal weights for different width Gaussian functions found

using a training set consisting of:

41n(2)(z;—posn)?
ij=e" T +NF (4.5)

where ‘pos’ is a vector of 10000 samples of normally distributed random numbers centred
at 0 with a standard deviation of 1, and NF corresponds to a SNR of 25dB measured to

the peak.

Using these calculated filter kernels we can sce the optimal characteristics for the parallel
filter architecture. Figure 4.17(a) displays the potential accuracy and noise suppression

as the true peak deviates from the filter centre.
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Figure 4.17(b) displays the introduction of slight systematic error over the Rectangular
Windowed Centroid Detection Algorithm or General Regression Neural Network methods,
however the surrounding noise level has been reduced. Overall we can see this to be the
preferred method we have presented in terms of accuracy (Fig. 4.17(c)), especially when

we start to consider speed of operation and hardware implementation.

Obscrving the shape of this optimal filter to be related to the underlying Gaussian
function we compare the effect of using the same Gaussian function to window the CDA
kernel against the optimal filter kernel predicted by the least squares fit. Iteratively we

find that the optimal kernel can be approximated as:

_2(h—Aj) g
YT T Y

where g represents a sampled Gaussian fit to the grating shape. For grating width

for FWHM > 1.5 (4.6)

lower than this the Rectangular Windowed Centroid Detection Algorithm kernel would
be preferable. The comparison between the two kernels can be seen in Figure 4.18(a).
More interestingly we find that this Gaussian windowing function is ncar optimal for

non-Gaussian profiles such as the sinc function given in Figure 4.18(b).

We denote this method as the Gaussian Windowed Centroid Detection Algorithm

(GWCDA).

4.4 Temperature measurement system

In order to experimentally verify these findings and determine their effectiveness in mea-
suring real FBG sensors we built a temperature measurement system (Fig. 4.19). For
the measurement device we used an Ocean Optics HR2000 CCD Spectrometer. This was

a spectrometer operating in the 800-900nm range with an approximate sample resolu-
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Figure 4.18: Comparison of Gaussian Windowed Centroid Detection Algorithm
(GWCDA) kernels against optimised filter kernels predicted by the least square fit for
different function widths / sampling rates
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Figure 4.19: Experimental Apparatus: RS-+ S

A superluminescent diode (SLD) acts as
source for a fibre Bragg grating sensor
housed in a climate controlled chamber. Re-
flected light is measure by a Spectrometer
and processed by a personal computer

Figure 4.20: The sensitivity of the CCD
imaging element used in the spectrometer
(manufacturer’s data)
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Figure 4.21: FBG Temperature Sensors (as sampled by an Ocean Optics HR2000 CCD
Spectrometer)

tion of 50pm. The exact wavelength linearity for the 2048 pixels was specified by the

manufacturer as:

An = —4.8623 x 10™%n? + 0.046445n + 799.087402 for n = 0,1,2...2047 (4.7)

The sensitivity for the CCD detector in this range can be seen in Figure 4.20. The
optical resolution is given as 5 pixels FWHM. Each measurement is sampled to 12bit
precision. The device was controlled by a PC using custom software. This allowed direct
access to the CCD array and control over integration and biasing. All spectral filtering

was turned off, and the CCD was biased to compensate for the DC dark noise level.

The source was a SLD-381-HP superluminescent diode (SLD) manufactured by Super-
lum Diodes Ltd. This had a spectral centre at 822.5nm with a bandwidth of 22.2nm
FWHM, and a ripple of 1.4%.

We used two different fibre Bragg gratings as the sensors. Both were inscribed using
the holographic technique using a Gaussian beam approximately 5Smm wide, and both
were annealed to 120°C for over 48 hours. Sensor A (Fig. 4.21(a)) had a strong index
profile, requiring a very short CCD integration time. Sensor B (Fig. 4.21(b)) had a weak

index profile, requiring a longer integration time.



4.4. Temperature measurement system 71

3000 aximum 3500 - -=-Maximum
2500 3000 -
2000 2500
— 1500~ = R0 =
1500 -
1000 oo
500 500 4 ~
zg: 8':
N ‘:- . - 'l””””” = :_' rlll
2 Ed “”“““H RWCDA Kemel 2 = Ill RWCDA Kemel
20— .3:
0.8 0.8
P I R W ] N 111119
¥ 0ad ”l”“m Ill G“"'?’“"’"" Ve ‘l] [l GWCDA Kemnel
0.8 Frrrrrrrrrrrr T 0.8
-20 -10 0 10 20 s a0 s 0 5 0 15
Position (pixels from max.) Position (pixels from max.)
(a) Sensor A (b) Sensor B

Figure 4.22: Filter Design: The design of each filter kernel is made relative to each
grating shape. Rectangular windowed filters are centred on and cover the entire reflection,
Gaussian windowed filters are centred by and calculated from the least mean fit of a
Gaussian function.

With the two gratings shapes known we can determine the filter kernels for the Rect-
angular Windowed Centroid Detection Algorithm method, and calculate those for the
Gaussian Windowed Centroid Detection Algorithm filters based upon a least square fit
of a Gaussian function to the grating reflection. The weightings for each of these can be

seen in Figure 4.22.

Individually the gratings were placed in a Sanyo environmental chamber and the spec-
trum was measured at 5°C intervals between 0 and 100 °C. The spectrum was sampled

20 times for each measurement step.

In order to verify the optimal sample size for the Least Square Quadratic fit algorithm
we process the reflected spectrum from this temperature testing using 5, 7, 9, and 11
sample set lengths, each centred upon the measured peak pixel. Shown in Figure 4.23 are
the processed results for both sensors. Here we plot the mean resolved wavelength and

the residual from a straight line linear least squares fit to the mean of the 20 readings
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Figure 4.23: FBG temperature sensing using the Least Square Quadratic fit processing
method: Mean resolved wavelength is displayed with respect to temperature for different
sample set sizes (Top), with the residual from a straight line fit shown in the centre plot
and the measurement standard deviation in the lower plot. Optimal behaviour for sensor
A occurs with a sample set length of 11 samples, whereas for sensor B the optimal length
is 9 samples.

taken. In addition to this mean we plot the standard deviation of measurements in order
to gain an insight into noise rejection capability. We can see clearly the fibre Bragg
grating’s thermo-optic non-linearity on both plots [86], and can see that the 11 sample
Least Square Quadratic fit performs best with sensor A, whilst the 9 sample fit appears

more accurate for sensor B though with a slightly increased uncertainty.

Repeating this to identify the optimal sample set length for Generalised Regression
Neural Network processing (Fig. 4.24) shows the Generalised Regression Neural Network
to perform best with a larger data set for both sensors A and B, both in terms of accuracy

and uncertainty.
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Figure 4.24: FBG temperature sensing using the Generalised Regression Neural Network
processing method: Mean resolved wavelength is displayed with respect to temperature
(Top), with the residual from a straight line fit shown in the centre plot and the measure-
ment standard deviation in the lower plot. Optimal behaviour for both sensors occurs
with a sample set length of 11 samples.

Comparing the four algorithms together (Fig. 4.25) we can see the Gaussian Windowed
Centroid Detection Algorithm technique to be clearly optimal for the larger stronger grat-
ing sensor A. For sensor B we find that the Generalised Regression Neural Network method
is optimal in terms of mean accuracy, for a larger uncertainty. Against the other traces
we can see that the Least Square Quadratic fit method is starting to demonstrate some
of the systematic uncertainty illustrated in earlier simulations. If we consider uncertainty
we find that it is again the parallel Gaussian Windowed Centroid Detection Algorithm

which proves optimal of the 4 different methods.
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Figure 4.25: FBG temperature sensing using RWCDA, GWCDA, LSQ and GRNN pro-
cessing methods: Mean resolved wavelength is displayed with respect to temperature
(Top), with the residual from a straight line fit shown in the centre plot and the mea-
surement standard deviation in the lower plot. Optimal behaviour can be seen using
the GWCDA method, given its high performance and high noise rejection (low standard
deviation).

4,5 Conclusion

The benefits of applying image processing techniques to process fibre Bragg grating re-
flection spectra have been clearly demonstrated. Their usage for resolution enhancement
and noise suppression has been comprehensively evaluated in a function and resolution

agnostic manner.

We have evaluated two established processing techniques, showing benefits and limita-
tions to their implementation, and from the evaluation of these methods have developed

two novel processing techniques.

Using a Generalised Regression Neural Network (GRNN) to approximate and model the

FBG reflection we are able to remove systematic errors induced by more restrictive fitting



4.5. Conclusion 75

methods such as the Least Square Quadratic fit method. This method proved to perform
better than the Least Square Quadratic fit in both simulation and experimental testing
with observing resolution gains of greater than 10x in the presence of high background

noise.

However it is the application of windowing techniques to the Centroid Detection Al-
gorithm that has demonstrated the most potential. Through the application of machine
learning as a tool to investigate filter weighting we were able to demonstrate what is
the statistically optimal parallel filter architecture for noise suppression. Further analysis
showed that this was proportional to a Gaussian function fit of the reflection which we

have denoted as the Gaussian Windowed Centroid Detection Algorithm.

This method has proven optimal in both simulation and practical testing, demonstrating
low variance and optimal accuracy. With a working qualitative test now available, future
work could focus on the development of a generalised window model for arbitrary grating
shapes. Or given the parallel nature of the filter, work could focus on a discrete real-
time practical implementation for use with an Arrayed Waveguide Grating (AWG) FBG

interrogation scheme [87).



CHAPTER D

Tactile Sensing Surface

A tactile sensor can be defined as ‘a device or system that can measure a given property of
an object or contact event through physical contact between the sensor and the object’[88)].
This illustrates that touch is a multifaceted sensation, and encompasses a wide range of

quantifiable mecasurements and subscquently a wide range of measurement techniques.

In this chapter we shall concentrate upon measurement using a matrix of sensors in
conjunction with a surface or skin, otherwise know as cutaneous sensing. First we will
present an overview of cutaneous sensing methods, focusing on the evolution of efficient
and scaleable methods. Secondly we present the development of a novel distributive strain
sensor architecture using a network of fibre Bragg gratings. Finally we present the proof

of principle study for this system as part of a tactile sensing surface.

5.1 Cutaneous sensing

Cutaneous sensors are possibly the most studied form of tactile sensor, primarily because
the presence of a skin allows the conception of devices that mimic human touch. This

distributive measurement of contact between a skin and an object is an area of great

76
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Figure 5.1: Cutaneous sensing: Extrinsic sensors measuring the radial strain distribution
from a point load (shear and normal stress denoted by dashed and solid plots respectively

[2])

interest for a variety of applications such as industrial manufacturing and minimal invasive

surgery [88, 89], which lead to a wide range of possible implementations.

The field of cutaneous sensing can be further split into two predominant categories;
intrinsic where the skin and sensors are integrated, and extrinsic where the skin forms a
protective cover over a substrate mounted sensor matrix or the skin is the substrate to
a sensor matrix. Extrinsic sensors carry the largest volume of research, as typically they

are able to measure the finest feature size.

Small scale feature resolution is the driving force for most tactile sensing research. With
the vast majority of sensor types being extrinsic sensors measuring force normal to the
skin (Fig. 5.1), the limiting factor is the non-linearity between the deformation and the
resultant measured force. Additionally since the internal stresses are radial from the point
of deformation, the measurement ‘image’ from anything other than a point load suffers

from a high level of measurement overlap due to stress dispersion. This is particularly so
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with thick skins or materials with a high Poisson’s ratio [90]. From this it is clear that it

is the skin’s material properties that predominantly govern the sensor’s accuracy.

There has been a large amount of research into the best way to model the skin’s be-
haviour when deformed. This includes traditional mechanics [91], Singular Value De-
composition (SVD) and Finite Element Analysis (FEA) [92], and Fourier decomposition
[93]. One of the most successful methods has been to use neural networks to approxi-
mate the transfer function correctly. This has proven optimal on a number of occasions

(94, 95, 94, 96], and is straightforward to implement for arbitrary systems.

Intrinsic sensors however try to limit the influence of stress superposition by measuring
near surface strain. Embedded strain sensors measure the shear strain of the surface,
and from this calculate the deformation profile. Optical fibre sensors such as fibre Bragg
gratings are ideal for embedding within a surface structure. With this application in mind,
Moiré Grating based strain sensors have been developed with very fine spatial accuracy

[97).

In order to have a high strain coupling cocfficient, the skin matcrial needs to be fairly
stiff, with a large Poisson’s ratio. However the mechanical characteristics of the sensor

dominate that of the skin.

Distributive Tactile Sensing

Although most tactile sensing methods measure and process a distributed signal, the
discipline of Distributive Tactile Sensing (DTS) focuses on a different aspect of tactile

sensing; efficiency.

Distributive Tactile Sensing (DTS) [98] is an elegant measurement method utilising
the crosstalk between a set of sensors to enhance measurement. This methodology is in
direct contrast with the techniques described in the preceding section, where crosstalk

and superposition would be considered as a noise source and ideally isolated from each
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measurement. The specific benefit DTS has over other direct measurement techniques is
that the required concentration of sensors for a specific accuracy is typically significantly

lower.

The method presented by Ellis et al. [98] uses sparse localised strain measurements
to calculate the deformation profile of a thin homogeneous surface. Its effectiveness is
delivered by two factors; the surface should be thin and stiff, this ensures that the radi-
ated stress covers a large distance (and thus multiple sensors), and the surface should be
fixed such that the elastic deformation is repeatable with and predictable for each con-
tact condition deformation. This type of mechanical system can be readily modelled by
mechanical theory, and therefore by measuring the surface strain or deflection at different
locations it is straightforward to calculate information about the contact condition from

the mathematical model.

The use of these linear models do ultimately limit the potential system accuracy, since
material defects, construction variance, and elastic non-linearity all have a potential im-
pact on fine scale resolution [93]. Neural network approximation has been identified as a
potential technique to overcome this limitation, and derive a system model purely through
experimental measurement of the system. This methodology has proved successful for a
variety of applications and sensor types [99, 100, 101}, and removes the need to perform

Finite Element Analysis (FEA) upon each measurement system.

DTS using optical fibre sensors

The value of optical fibre based sensors has already been recognised for use in conjunction
with DTS, and has been explored in a number of experiments. Brett and Stone [99)
used simple bend sensors whose transmission efficiency was proportional to the fibre
curvature. Whilst low cost in implementation, this sensing topology does not scale as

it requires dedicated fibres and receivers for each sensor. In addition to this the sensors
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use mechanical alignment for the measurement condition, which raises both noise and

reliability concerns.

Cowie et al. [101] introduced a more advanced topology based upon fibre Bragg gratings.
This enabled a system which can multiplex the sensors in the wavelength domain. This
method proved very successful in terms of accuracy, and gave an increased reliability
level. However the technique is heavily reliant on fine-scale wavelength measurement,

which significantly increascs both cost and system response time.

5.2 Low cost optical implementation

The sensor measurement system used in [101] was based on a standard wavelength multi-
plexed design using an OSA for the spectral interrogation. To reduce the system cost we
could replace the optical spectrum analyser with a low-resolution device such as a spec-
trometer, and apply the processing techniques described in Chapter 4. However this is
still a rather expensive solution, and the speed of operation is hampered by the acquisition

and conversion speed.

A different solution would be to base the system on the edge-filtering interrogation
method described in Section 2.3. This would increase the measurement bandwidth con-
siderably and reduce the cost further. Given the multiplexing requirement, implemen-
tations derived from those of Fallon et al. [102] were thought most suitable. However
as a low-cost system there is a concern with respect to the ultimate scalability. Each
sensor measurement is absolute, and requires a dedicated and stable filter arrangement
to both separate the sensor response and also to resolve the sensor’s measurement. The
concern here is that the absolute accuracy is totally dependent upon the efficiency of this
stabilisation which becomes more difficult to guarantee as the system scales. The filtering

complexity also increases as the number of sensors increase.
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Figure 5.2: Evolution of the Overlapping Gratings Sensor Network (OGSN) topology:
Edge filter fibre Bragg grating measurement [3] can be realised as a differential measure-
ment between two sensors where the power measured at receivers A and B is directly
proportional to the difference between sensors Ay and A,. This concept can be extended
to include multiple gratings and multiple filter paths such that the receivers measure the
response proportional to distributed measurement between sensors

Overlapping Gratings Sensor Network
Conceptual Development

Given that the DTS method uses a distributive measurement, it stands to reason that
the measurement system does not need to make absolute measurements. We therefore
designed a new topology based on and extending the edge-filter method’s differential

measurement mode, creating a new architecture that is both scalable and distributive in
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measurement.

The evolution of this concept can be seen in Figure 5.2, where an implementation of
the edge-filter topology using overlapping FBGs is shown in both absolute and differential
modes. In both cases the measurement is given by the ratio between receivers A and B.
Since the absolute measurement is not essential for this application, a differential mea-
surement would return a more informative measurement measuring two locations with
the same number of FBG sensors. In addition to this it negates the need for environ-
mental stabilisation in situations where the two sensors are in close thermal contact for
strain measurement applications such as a tactile sensor or have identical strain relief
for temperature measurement systems. However this differential mcasurement cannot be

extended to include a further gratings in series without loss of information.

The Overlapping Gratings Sensor Network (OGSN) topology extends the differential
configuration further by creating multiple filtering paths to each of the different receivers
thus creating a distributive response. In an OGSN system a shift in wavelength for
one FBG sensor affects the power at multiple receivers simultaneously, with the ratio
between receivers A,B, and C determining the distributed measurement. If the sensors
are in thermal contact with each other and do not shift beyond the edges of the source,

temperature will not effect the measurement of distributed strain!.

Since the topology returns a ratiometric response relative to the distributed measure-
ment it is analogous to the distributive measurement of a surface. Therefore by restricting
the movement of the sensors like the DTS surface we should be able to apply the same
techniques to calculate the distributive measurement. This restriction could be performed
simply by fixing the OGSN network to a conventional (fixed) DTS measurement system,
thus effectively convolving the two response functions together which in turn could be

modelled or approximated by neural network regression.

Conventional edge-filter methods use a ratiometric measurement against the source

IThis assumes a flat source spectrum
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Figure 5.3: Overlaping Gratings Sensing Networks: The principle of the network is that
interaction between sensors shall only occur within specified ‘zones’, which are centred
upon the intersecting couplers (Fig. 5.3(a)). Limiting the sensor movement such that
wavelength shift and spacing between sensors is limited to that of half the grating width
(Fig. 5.3(b)), ensures that interaction only happens inside each zone

strength to mitigate any change in signal strength not attributed to the measurement. It
was envisaged that with suitable training data the OGSN neural network could be trained

to identify and compensate for change in source strength.

There are an infinite number of possible implementations of an OGSN, and whilst not
necessary or practical to generate a generalised model we can describe the basic concept

of operation. In figure 5.3 we present an example of an OGSN; a 2x2 coupler design with
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the maximum number of sensors in place.

Each network is arranged into ‘zones’ where filter pairs act upon each other. These
zones are centred upon each coupler such that gratings interact on either side of the
coupler. Given that the sensors have an operational range of the overlap between sensors

(3 grating width) interaction only occurs inside each zone.

The attenuation of the coupler also creates dominant signals within each zone. Sig-
nals reflected by multiple sensors are greatly attenuated in comparison with the primary
signals. This contributes towards a conceptual structure much like the surface system
this is driven by, where there is a high level of crosstalk between sensors and a level of

attenuation for ‘distant’ sensors.

5.3 System Evaluation

In order to gauge the effectiveness of the OGSN method as part of a tactile sensing surface
system, we evaluated against a set of specific performance attributes.

e Positional accuracy across the surface.

e Feature extraction

e Effcctiveness against temperature variation

e Effectiveness against source strength variation

System Overview

The test system can be loosely split in two parts; the mechanical system, and the optical

system.
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Figure 5.4: Tactile surface system: A supported metal plate (Fig. 5.4(a) carries a seven
sensor Overlapping Grating Sensor Network (Fig. 5.4(c)), each sensor measuring the
point strain in line with the long edge of the plate. In order to create a distinctive
measurement output function, the sensor layout was designed to minimise strain overlap
between paralleled sensors (Fig. 5.4(b))

The mechanical system (Fig. 5.4(a)) comprised a rectangular 0.5mm thick steel plate,
fixed and supported on all four sides by a 45mm wide framework to which the plate was
bolted. The unsupported region measured 320x240mm with 7 sensors fixed to the bottom
of the surface, arranged on a 60x80mm grid measuring strain in the direction of the long

edge.

The optical system used in conjunction with this surface can be seen in figure 5.4(c).
The seven sensor OGSN comprised 10mm long 1.5nm spectral width chirped fibre Bragg
gratings (CFBQG) sensors, each identically inscribed at the same wavelength? using the

dithered pulse phasemask method described in section 2.2. These sensors had a peak

*The zero-strain Bragg wavelength tuning was to be performed by fixing the grating to the surface

under strain in order to mitigate wavelength shift by inscription method or annealling
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Figure 5.5: Fibre Bragg grating sensor spectra: The transmission spectra of two of the
seven fibre Bragg gratings as fixed to the sensor surface (Transmission loss may be subject
to a measurement system offset)
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Figure 5.6: Measurement system source: The source used for the seven sensor network
consisted of a broadband source reflected off a chirped fibre Bragg grating. The trans-
mission spectrum of the circulator and grating combination can be seen in Figure 5.6(b)

reflection strength of approximately 10dB, and had been annealed at 90°C for longer

than 48 hours to ensure stability.

Each sensor was fixed with epoxy resin to the surface under strain in order to meet the
individual wavelength criteria (Fig. 5.5). In order to create a distinctive measurement
output function, the layout was designed to minimise strain overlap between paralleled
sensors such as Ay and As, or A3 and Ag (Figure 5.4(b)), ensuring that no two outputs had

similar motion.
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The source was implemented by reflecting light from a commercial erbium ASE source
(AFC Tech. BBS1550) off a 7nm wide chirped grating centred at 1554nm (Fig. 5.6), again
inscribed using the direct write inscription technique®. The photodiodes were low cost free
space devices simply glued into position, and the couplers were low cost communication

band devices.

Neural Network Training

The system performance and integrity is ultimately dependant upon the ability to create
an efficient and well approximated neural network. For this proof of principle work we

replicated the proven method demonstrated by Cowie et al. [101] (Figure 5.7).

The network architecture for all tests was a single hidden layer Multilayer Perceptron.
The activation function used inside the network was a ‘softmax’ function [66] for the

classification tests, and a linear function for all function regression tests.

The training was performed iteratively using a scaled conjugate gradient algorithm
provided by the NETLAB MATLAB library [77]. Error minimisation against separate
data was sought through the adjustment of hidden nodes, and the number of training

iterations (Fig. 5.7).

Test Results
Positional Accuracy

In order to test the positional accuracy of the system, we moved a 1.6kg square mass

with a contact area of 2500mm? over a central region measuring 240x160mm, collecting

3This arrangement was designed to simulate approximately the output from a low cost multimode

diode laser
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Figure 5.7: Neural Network Training: A single hidden layer Multilayer Perceptron network
was used to process the data (Fig. 5.7(a)), with the optimal architecture determined
iteratively from measured data (Fig. 5.7(b))

multiple set of data for the receiver level at each position. Training an MLP by the
method shown in Figure 5.7 we found an optimal network with a single hidden layer of 49
nodes achieves an absolute position accuracy of 7.0mm (rms) for a shape placed anywhere
on the surface. This accuracy is considerably better than the minimum sensor spacing
of 60 mm. The distribution of the spatial accuracy as a function of position can be seen
in Figure 5.8. This illustrates a fairly even accuracy across the entire surface which is
slightly increased near gratings A3 and As, and has an area of increased uncertainty near

6.
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Figure 5.8: Positional accuracy for the OGSN surface system: Contour plot illustrating
the RMS error (mm) with respect to position. Markers denote the fibre Bragg grating
sensor positions.

Feature Resolution

Test Circle Square Rectangle Triangle
Shape Identification  100%  100% 100% 100%
Rotation RMS Error - 6.6° 7.8° 7.3°

Table 5.1: Shape testing: Accuracy of shape classification, and RMS error in rotation
resolution

The feature resolution was tested using four different shapes (circle, square, rectangle,
and triangle) placed in the centre of the surface. Each of the four shapes were of solid steel,
and were of equal surface area (2500mm?) and mass (1.6kg). Parallel neural networks were
trained to classify the shapes, and also to resolve the angle of orientation. Classification
was achieved with 100% accuracy, and the angle of rotation to within 7 degrees for the

square, triangular and rectangular objects (Table 5.1).

Stability Verification

To evaluate the potential for the signal processing to mitigate external influences, the

position test was repeated at different times with different ambient temperatures (varying
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Figure 5.9: Stability Accuracy: Contour plots illustrating the RMS error (mm) with
respect to position. Markers denote the fibre Bragg grating sensor positions.

by 5°Celsius) and with different source power levels.

By retraining the same neural network configuration (49 hidden nodes) we obtained an
average positional resolution of 27.4mm (rms) when exposed to source power fluctuations
of greater than 50%. In a separate experiment, the retrained network returned a resolution
of 23.4mm (rms) when exposed to ambient temperature changes of 5°Celsius. The effect

of these changes can be seen in Figures 5.9(a) and 5.9(b) respectively.

Long Term Verification

Long term testing reduced the achievable accuracy of the system. It was found that
the long term system drift caused a large variance on each of the receiver signals. This
dramatically affected the neural networks performance, which were unable to minimise
to a correct approximation solution. The most likely causes of drift was deemed to be
temperature related, either from a temperature gradient over the sensing surface or from

the source and sensor gratings not having ‘top-hat’ spectra.
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OGSN Cowie et al. [85]
7 FBGs (3 wavelengths) 9 FBGs (9 wavelengths)
Narrowband Source Broadband Source
5 Photodiodes Optical Spectrum Analyser
4 2x2 couplers 1 2x2 couplers4
Pre-Amplifier Stable Temperature Reference
PC & DAQ PC & GPIB

Table 5.2: Equipment requirements for FBG based DTS: The equipment cost is signifi-
cantly less for the OGSN system since it has no requirement for spectral measurement or
a dedicated temperature reference. Additionally the Bragg wavelength requirement has
been proven achievable by mechanical strain of identical gratings, thus eliminating the
cost of custom device manufacture.

5.4 Discussion and Conclusions

It can be seen that Overlapping Gratings Sensor Network has great potential as a dis-
tributed sensor. Used in combination with a system such as a Distributive Tactile Sensing
surface, it was found to achieve significant improvements over our previous FBG based

system interrogated using a high resolution optical spectrum analyser [101].

The primary benefit that this method has over the previous study is one of implemen-
tation cost. If we compare the two against each other (Table 5.2) we can see the dramatic
difference in implementation cost. The only component of significant cost is the source,
however this has potential to be replaced by a multimode laser with suitable spectra. In
addition to this the PC and data acquisition could be replaced by discrete components in

a commercial design.

Long term stability has been seen to be a problem, with the measurement drift noise
preventing successful neural network design. Future work would be required to charac-
terise this further and gain insight into stable long term operation. In particular studies

within a controlled temperature environment may help identify problem areas.

Ultimately the proof of principle work contained in this chapter displays great promise

for the technique. Within a tactile sensing application the Overlapping Gratings Sensor
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Network demonstrates an accurate low cost solution for distributed fibre optic sensing.
However more understanding of the system and its noise rejection capabilities are required

for long term usage.



CHAPTER 0

Overlapping Gratings Sensor Network

Chapter 5 introduced a distributed FBG sensing network we named an Overlapping Grat-
ings Scnsor Network. This topology evolved out of the edge-filtering interrogation tech-
nique introduced by Melle et al. [3], adding multiple filter paths to create a complex

response relative to the distributive measurement across all sensors.

The OGSN is specifically designed to operate in tandem with a distributive measure-
ment system such as the distributive tactile sensing surface introduced by Ellis et al. [98].
These systems have limited degrees of freedom and as such restrict the response of the

OGSN such that it can be modelled and interpreted.

In addition to clear benefits in terms of implementation cost and potential operation
speed, we have shown potential for self-referencing. Edge filter techniques are particularly
susceptible to environmental influence and require dedicated references and stabilisation.
The OGSN architecture is designed such that factors such as source fluctuation and

temperature drift have limited effect upon the resolved measurement.

In this chapter we simplify the system design to investigate the key characteristics
and capabilities of measurement systems that employ an OGSN. We employ simulation
techniques to evaluate the system and identify behavioural aspects of OGSNs before

comparing these results against a practical implementation of the same system.

93
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Figure 6.1: 1D tactile sensing system based on a cantilever beam, utilising a single coupler
Overlapping Gratings Sensor Network (OGSN)

6.1 System Design

Our proof of principle investigation focused upon the validity and potential of the OGSN
measurement technique. However the size and complexity of both mechanical and optical
systems limit analysis beyond this point. Full analysis of 2D thin plate tactile sensors
is difficult to model successfully (93], especially when convolved with the measurement

network response.

In order to investigate the OGSN topology further and characterise its implementation,
we must simplify both the OGSN and the measurement system to a model that allows us

flexibility to characterise multiple system attributes.

We retain the thin plate tactile sensing method as the mechanical measurement system,
however reduce the complexity to a 1D system in a cantilever beam configuration. This
is to be measured by a four sensor OGSN, measuring the surface strain of the beam (Fig.

6.1) in order to identify the position of a single point load.
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Figure 6.2: Strain distribution across a cantilever beam for a single point load: For a
homogenous beam strain increases lincarly from the point of contact towards the fixed
end at a rate determined by the load strength, the beam'’s cross-sectional dimensions, and
the beam’s material properties

This combination allows freedom to investigate the approximation of the underlying
measurement transfer function specifically allowing us to to investigate the impact of

source fluctuation, training data, noise, and system stability.

Tactile System Design

A cantilever beam (Fig. 6.2) is a classical mechanical system. The strain at a given point
on the beam can be modelled as [103]:

Va0
‘”;'2 (6.1)

€ =

where M is the moment with respect to position, F is the Young’s modulus of the
beam material, and / is the moment of inertia of the structure which for a rectangular
cross-section of width b and thickness h can be given as:

bi? |
I=— (6.2)

Since only one end of the beam is fixed, there is only moment between the force and
the fixed end. Therefore we can identify that the maximum strain is at the fixed point

o h

FzE3
(= —*), and this decreases linearly to zero at the point of contact.
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Figure 6.3: Single coupler OGSN: A fully populated single coupler OGSN has four FBG
sensors and three photodiode receivers, with a single interaction zone between the left
hand sensors (A; and A3), and the right hand sensors (A2 and \)

Minimal OGSN design

A fully populated single coupler OGSN has four FBG sensors and three photodiode re-

ceivers (Fig. 6.3). The light levels at each of the receivers can be given by:!?

Pa= [0 -R)1-R)+ 30~ R)1 - R)ReR d) (6.3)
Pp = f 'g(l = R)Ry(1 - R3) + %(1 - Ry)(1-R3)Ry dA (6.4)
Pc = / g(l - R)(1-Ry) + ‘g(l — R))RyR3(1 — Ry) dA (6.5)

where R, represents the reflection spectrum of the nth grating, and S is the source
spectrum.
Neural Network Design

Function approximation with neural networks is key to this distributive architecture.

Without some level of machine learning it would not be possible to accurately identify

lthis assumes the transmission spectrum is the exact inverse of the reflection spectrum
2Highly attenuated paths such as P4 = [--- + £(1 — R;)Rz(1 — R3)R; dA are omitted for clarity,

and do not exist for 100% reflective gratings with ‘top-hat’ profiles
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Figure 6.4: OGSN neural network processing architecture: The network used was based
on the Multilayer Perceptron (MLP) model, with a single layer of hidden nodes utilis-
ing sigmoidal activation functions feeding linear output nodes. Network complexity was
controllable be varying the number of hidden nodes.

the measurement transfer function of a practical system because manufacturing toler-
ances both with the optical and physical system would skew any generalisation of the

architecture,

In the preceding chapter we used a Multilayer Perceptron (MLP) neural network archi-
tecture to approximate the measurement function. The optimal architecture was decided
by increasing the network complexity until the error in a secondary and independent data
set was minimised. Since it has been demonstrated that a single hidden layer MLP is ca-
pable of regression to any arbitrary function [66], this complexity is increased or decreased

by adding or removing hidden nodes respectively.

Here we shall retain the MLP architecture (Fig. 6.4), however we shall incorporate
some key differences. The lincar transfer functions for the ncurons in the hidden layer
have been replaced by tansig functions, equivalent to the hyperbolic tangent of the input.
The use of sigmoidal functions in the hidden layer(s) improves the statistical training

process, and the tanh transfer function is known to increase training speed [66).

We also change the training method. In place of the scaled conjugate gradient descent
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method, we shall use the Bayesian weight training method introduced by MacKay [65], and
described in Chapter 3. This method is proven to provide the optimal generalised network
for the function regression of a set of data, and significantly it has been implemented
within the Mathworks Matlab Neural Network Toolbox (Version 5.0.1), which shall be

used for all network modelling in this section.

6.2 System Evaluation

The fundamental measurement of this system’s performance is the accuracy at which we
can resolve the position of an applied load. This can be primarily attributed to that of
the neural network, either in terms of training ability, or functional stability. Within this

however there are certain key factors which should be addressed.

Sensor Position Outputs from the OGSN are a composite measurement of more than
one sensor. It is highly probable that the positioning of the sensors relative to each

other has some effect upon system performance.

Training Data Spread The use of Bayesian regression in the learning process assigns
heavier weighting on sparse data. This may potentially lead to overfitting of sparsely
sampled systems and as such it is therefore important to understand the minimal

sampling level required to achieve correct approximation.

Noise Susceptibility Noise can influence the system performance in multiple ways.
Whilst a degree of training set noise is known to be beneficial with respect to noise
suppression [71], there are several noise sources that can influence the measurement

system.

Source Fluctuation The performance of source fluctuation is critical to the system

integrity and must be characterised and proven.
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Figure 6.5: OGSN spectra model: The single coupler spectral model can be simplified by
using gratings which reflect 100% of the light, with a rectangular footprint, and a source

with no ripple that covers the entire sensing range

Signal Level Different weights change the underlying measurement function. This changes

both the function shape and signal to noise ratio.

To investigate these attributes we evaluate the system in two stages. Firstly we use
a simulation model to examine the limits of operation, and secondly we use a practical

implementation to verify these findings.

Simulative Evaluation

Model

The primary mode of operation for an OGSN is for the wavelength shift to be limited to
the width of the overlap between gratings. For maximum range this is deemed to be half
the grating width w, for unipolar operation, or 0.25w, for bipolar use. Whilst conceivable,
operation outside this range is highly dependent upon the relative shift of all the gratings

since gratings must overlap.

For the purpose of simulation we consider the source is of unit amplitude (Ps = 1) with

a width w, equal to 3w, centred on the grating spectra (Fig. 6.5). This source spectrum
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is rectangular in shape, as is each grating. Using this nomenclature we can consider the

power at each receiver in terms of w,

Therefore the optical model can be given by:
P,

Py= -55- [(6A\1 — 8X2) + Z]) + NF (6.6)
Py = 2 [(8)3 = )+ (M = ) +ug] + NF (67
Bais -{;ﬁ ((6A — 6A0) + Z] + NF (6.8)

where
X if6A > )3
¢ = (6.9)
A3 if8A3 > 6

0\, represents the measurement of the respective grating, and Z is the zero-strain

leakage from the light not reflected by the gratings given as:
Z = w, — 1.5w, (6.10)

The system noisc figure (NF) represents the cumulative system noise. It is Gaussian
distributed and measured relative to the source strength, allowing consideration of noise

susceptibility independently of the source level.

This OGSN is measuring the surface strain of a beam top shown in Figure 6.6. The
position of the load is measured in units relative to the spacing of the sensors, which
are spaced equidistantly along the beam. Since we know that strain increases linearly
between the point of contact and the fixed end (Fig. 6.2), no measurement is made with
the load positioned ‘before’ FBG4. Additionally we can sce there is no differential change
between sensors for load positions ‘beyond’ FBGp, and therefore we do not evaluate for

positions between the sensor and the free end.

We consider four different grating configurations for evaluation, given in Table 6.1. The

maximum grating shift can be seen to be between FBG; and FBGy, and since the system
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Figure 6.6: Evaluation model for a cantilever beam: A load F acts at a position xp on
the beam. The sensor are evenly spaced along the beam, measuring the topmost surface
strain. The evaluation range is confined between sensors A and B, measured in units of
sensor spacing distance

Config FBG, FBG; FBGe FBGp

A FBG, FBG, FBG; FBG;,
B FBG, FBG; FBG, FBG,
C FBG, FBG; FBG, FBG,
D FBG, FBG, FBG,; FBG,

Table 6.1: FBG Sensor Position Configurations

is unipolar in operation the maximum load we can use across the entirety of the beam

T P
Fiax 18 grw,.

Inside this range the shift at position x caused by a single point load at xp can be given
by:

!"(J'p - J') if Trp >0
O\ = (6.11)

0 otherwise
Using the model given by equations 6.6 through 6.11, we can determine the receiver
output for cach of the sensor position configurations given in Table 6.1, Figure 6.7 shows
the relationship between each of the receiver levels for a load of F,,« at different positions

along the beam.

Junits measured relative to the grating width and grating spacing
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Figure 6.7: Cantilever beam simulation model: Simulated output powers for different
load positions (indicated by marker value) calculated at receivers P4, Pp, Pg, and Pp for
sensor configurations A, B, C, and D (top to bottom respectively) as given in Table 6.1.
A single point load of Fiay (= %xwg) is considered in different positions, and the power
at each receiver is calculated using equations 6.6 through 6.11. Of all the configurations,
configuration ‘B’ shows significant promise because of the large level of simultaneous

movement on all

receivers.
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Figure 6.8: Training/sampling process for an OGSN measurement system: Following
collection and pre-processing of independent data from the measurement system, the
network complexity is iteratively changed to determine the optimal processing architecture

Ultimately we wish to train a neural network to resolve position from an input con-
dition given by the combination of receiver levels, and therefore we can immediately see
potential difficulties with configuration C since the path is complex with little simultane-
ous movement on all receivers, and it is not well separated between dimensions (receiver
levels). In contrast to this configuration B immediately appears attractive since there is
a simultaneous change on all three receivers between positions ‘0’ and ‘2’, and change on
receivers B and C between positions ‘2’ and ‘3’. This is clearly well separated between

dimensions, with a smooth continuos path that has a high potential for noise rejection.

Training Data Evaluation

Ultimately an OGSN is trained and calibrated in-situ. Whilst it may be possible to know
some characteristics in advance, it is necessary to collect data from the system. The
constitution of this data is of great significance since we wish to have optimal system

performance with the minimum amount of data.

Figure 6.8 shows the general sampling and training process for OGSN based systems.
Within this process we only truly have control over the data collection and processing

stages. The mechanical and optical system is fixed, with specific transfer function and a
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specific noise level. The machine lcarning stage is automated beyond the initial choice of
learning algorithm and network type. However we have two controllable inputs to the data
collection stage; sampling density and sample set size, and we are also able to process
this collected data such that any features within the data set are scaled appropriately
for the machine learning stage. Typically this scaling is a simple normalisation process
ensuring that the data range between inputs are similar, however for more complex data

sets requiring specific feature extraction other techniques may be considered [64].

We can consider the impact of sampling attributes by looking at the performance with
respect to positional accuracy at different system noise levels. It is not possible to elimi-
nate all noise sources from the system, and in particular slow drift of both mechanical and
optical measurement is of significant concern. Therefore we must consider the operation
and training inside a noisy environment, and the effect that both sample rate with respect
to the sensor spacing and training sample set size in terms of repetitions have upon the

system uncertainty.

It can be seen from Figure 6.9 that an increase in sample set size does show improvement
with more data. However the effectiveness of extra data decreases as the sample set
gets larger. We can also see there to be a marginal accuracy improvement for sensor

configurations B and D over configurations A and C.

Sample spacing (Fig. 6.10) plays a more profound role, with overall accuracy improving
with increased measurement density. By measuring the error at different positions along
the beam over several repetitions we can determine both the mean and the RMS error
for that specific location when the training data is sampled at different resolutions. Fig-
ure 6.11 shows there to be clear distinctions between the different sensor configurations.
Configuration B can be seen to perform well at all samples rates, whereas configurations

A and C appear to have systematic accuracy problems evident at low sample rates by
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Figure 6.9: Effect of training data set size (repetitions of data sets covering the length
of the beam) has upon system accuracy measured by the overall RMS error relative to
the sensor spacing (Load F' = Fp,,, Sample rate = 5 samples per sensor). Increasing
the number of data sets used to train the neural networks whilst keeping the sampling
spacing constant improves the system performance (presented in terms of noise rejection
capability).

their mean error.

If we consider the results of testing the effect of both sample density and number of
sample set repetitions in the training data set, it is clear that configuration B and D

perform better and make more efficient use of the training data training data.

Source Fluctuation

Edge-filter interrogation is significantly affected by source power variation. Other edge-
filter based methods nominally use a dedicated receiver to monitor the unfiltered light in
order to compensate for source fluctuation 3, 59, 58]. The OGSN is specifically designed

with source fluctuation compensation integral to operation.
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Figure 6.10: Effect that sampling density (samples per sensor spacing) has upon sys-
tem accuracy measured by the overall RMS error relative to the sensor spacing (Load
F = Fpax, Sample set size = 3). Increasing the number of samples taken between each
fibre Bragg grating sensor for the neural network training data improves the system per-
formance (presented in terms of noise rejection capability).

We have seen that performance of the approximation is significantly dependent upon
sufficient sampling of the measurement model, and this is likely to extend to the fluctu-
ation compensation performance being dependent upon power level sample distribution.
By measuring the error relative to source level and beam position for networks trained
with data sets of varying sampling density, both in terms of position and source power
level, we are able to determine the effectiveness of each sensor configuration to provide

this compensation.

Figure 6.12 shows that the sample distribution does have a significant affect on the
complete operation of an OGSN. Evidently each configuration performs differently and it
becomes clear that configuration C show particularly poor performance, whereas configu-

ration B displays a clear readiness to train and displays good accuracy at sparse sampling
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Figure 6.11: Effect that sampling density (samples per scnsor spacing, denoted as SR)
has upon the system positional accuracy measured as mean and RMS error (Noise level
= -45dB,Load F = Fax, Sample set size = 3): Increasing the number of samples taken
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