Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately




Doctor of Philosophy

The University of Aston in Birmingham

October 1995

This copy of the thesis has heen supplied on condition that anyone wha congults
it is understood to recognise that its copyright rests with ite author and that no

quatation from the thesis and na information derived from it may he publishad
without proper acknowledgement.




Dispersion aspects of periodically amplified soliton
transmission systems |
Finlay M. Knox

Doctor of Philosophy
1995

This thesis presents improvements to optical transmission systems through
the use of optical solitons as a digital transmission format, hoth theoretically and
experimentally. An introduction to the main concepts and impaivments of optical
fibre on pulse transmission is included before introducing the concept af solitons in
optically amplified communications and the problems of soliton system design.

The theoretical work studies two fibre dispersion profiling schemes and a
soliton launch improvement. The first provides superior pulse transmisgion hy ap-
timally tailoring the fibre dispersion to better follow the power, and hence nonlin-
carity, decay and thus allow soliton transmission for longer amplifier spacings and
shorter pulse widths than normally possible. The second profiling scheme examines
the use of dispersion compensating fibve in the context of soliton transmission over
existing, standard fihre systems. The limits for solitons in nncompensated stan-
dard fibre are assessed, hefore the potential benefits of dispersion compensating
fibre included as part of each amplifier are shown. The third theoretical investi-
gation provides a simple improvement to the propagation of solitons in a highly
perturbed system. By introducing a section of fibre of the correct length prior to
the first system amplifier span, the soliton shape can be better coupled into the
system thus providing an improved “average soliton” propagation model.

The experimental work covers two areas. An important issue for soliton
systems is pulse sources. Three potential lasers are studied, two ring laser config-
urations and one semiconductor device with external pulse shaping. The second
area studies soliton transmission using a recirculating loop, reviewing the advan-
tages and draw-backs of such an experiment in system testing and design. One
novel method of pulse shape stabilisation over long distances with low jitter. The
future for nonlinear optical communications is considered with the thesis conclu-
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Chapter 1

Introduction to soliton

communication systems

Since the telephone was invented by Alexander Graham Bell in 1876, the prolifer-
ation of telephone and communication systems has steadily increased, as has the
traffic these systems carry. This continual increase in demand has driven research
into systems that will carry the load more efficiently, more clearly, over longer
distances and most importantly at a higher number of calls per line. Electronic
systems using coaxial cables coped with the demands for many years, but eventu-
ally progress in laser engineering and the development of a suitable transmission
medium in optical fibre in 1970 began the shift to optically based systems. The
first undersea optical systems initially carried the same 230 Mbit/s traffic as the
best electronic systems but at a much reduced cost [1]. It was not long however
before the optical data rate outstripped that possible using coaxial cable.

From that time an enormous amount of research has been directed towards
making the best use of the potential capacity of optical fibres. The data rates in
use have increased rapidly over the years, with the next transatlantic link being
installed during 1995 raising the long distance data rate to 5 Gbit/s on a single
optical fibre. There have been many advances in technology required to achieve
this capacity, with probably the most significant that of the erbium-doped fibre
amplifier [2]. However, the pressure to increase the available data rate continues,
more so now that inter-site computer communications are becoming more prevalent,

the best example of which is the “Internet” international computer network of
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computer networks which desire fast, error-free communication of large amounts
of data around the world. As the growth of computer networks and the Internet
continues unabated, so the communication systems they rely on are required to
increase in capacity and accuracy.

The subject of this thesis is a study of one potential method of reaching the
next generation of optical communication systems beyond 5 Gbit/s, making use of
fibre nonlinearity and the optical soliton [3]. The reasons solitons are of interest
is outlined in the first two chapters. Later chapters study some novel methods of
making optical transmission systems more suitable for solitons to allow an increase

in the data rate and some of the requirements of the systems components.

1.1 Optical fibre and transmission limitations

Before considering the place of solitons in optical communications an understanding
of the problems associated with high speed optical fibre communications is required.
In this section we introduce the main features of optical fibres and discuss briefly
their implications for linear and nonlinear optical transmissions.

Throughout this thesis we shall only be considering propagation in single-
mode fibres. In optical fibres the signal is guided through the glass medium by en-
casing a slightly higher refractive index core within a lower refractive index cladding
region. Naturally the electric field traverses this boundary but the containment of
the electric field by the core-cladding boundary is sufficient to guide the signal
through the fibre. The difference between the single mode fibres and the alterna-
tive multi-mode fibres used in the early days of optical fibre work is the size of the
core radius. Now that the technology exists to manufacture small central cores it
is possible to restrict the light to a single mode of the fibre, the HEy, fundamen-
tal mode, whereas with larger cores several propagation modes of the fibre can be
supported. The core radius required to restrict the light to a single mode is found

from the normalised frequency [4],pp.3
V= k‘oa(n% - ’I"Li)l/z (11)
where ko = 27 /X is the propagation constant of wavelength A, a is the radius of the
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core region with a refractive index n; and n, is the cladding refractive index. For
the fibre to be single mode this normalised frequency must be V' < 2.405. Typically
multi-mode fibres have a core radius 25-30 pm. Single mode fibres generally have a
relative core-cladding index difference A = S of around 3 x 1073 which results
in a core radius of 2-7 um for 1550 nm wavelengths. The only restriction on the
cladding radius is that it be large enough to entirely contain the electric field,
such that the cladding-air (or cladding—protective coating) boundary does not
guide other unwanted modes. A radius of 50 um is generally sufficient, with the
industry standard now 62.5 pm. Although these equations were developed for step
index fibres (SIFs), sometimes called standard fibres, they also apply in general to
other fibre cross-sectional index profiles such as graded-index fibres where the index
decreases gradually from the fibre centre. Different fibre core sizes and profiles allow

for tailoring of the fibre dispersion and birefringence, as discussed below.

1.1.1 Optical fibre characteristics

There are four main fibre characteristics to be taken into account. The first is that
of the optical fibre attenuation. Using the fibre pulling techniques now available
[4],pp.4, the loss has been minimised to the point where only three loss mech-
anisms are important. The first two loss mechanisms are the intrinsic losses of
the silica medium, due to Rayleigh scattering and the electronic infra-red absorp-
tion. Rayleigh scattering is a fundamental loss mechanism which depends on the
constituents of the fibre core. It is caused by random density fluctuations of the
silica and varies as A~% making it dominant for shorter wavelengths. Electronic ab-
sorption dominates over Rayleigh scattering beyond around 1.6 pm in silica. The
third important loss mechanism is that of OH-absorption. Whilst care is taken in
the manufacturing process to minimise both these effects the technological limits
restrict this to the approximate loss profile as given in figure 1.1.

This loss profile is the deciding factor in the operating windows for long
distance optical transmission systems. The first so-called transmission window
at ~ 850 nm is not shown in figure 1.1 as it is not applicable to long distance
transmissions as it has a high intrinsic loss. Its role is mainly for short transmissions

(eg. metres to a few kilometres) due to the high loss but it is useful due to the

14



o
€ 08
S 06
g LOSS
—~ 04} PROFILE
[7p] \\
o INTRINSIC™ _
LOSS ~
0.2+ N -
1 i -

1 1 1
11 12 13 1.4 1.5 16 17
WAVELENGTH (gm)

(@]

Figure 1.1: Measured loss profile of a single mode optical fibre, from [4],pp.6. The
dashed curve is the intrinsic loss from Rayleigh scattering and infrared absorption
of pure silica, the solid line the measured profile clearly showing a peak in the loss
from the OH-absorption at 1.4 pm and a smaller peak at 1.25 pm

availability of cheap, simple silicon electronics for the transmitter and receivers.
The second transmission window is at 1.3 pm which has been the main one used
in fibre systems installed to date due to the low dispersion of the step-index fibres
in this window, as discussed below. The third transmission window which is now
coming to the fore is at the loss minimum of 1.55 pym. This thesis concentrates on
the third transmission window at 1.55 pm which has been opened up to systems
design through two developments, dispersion shifted fibres and the erbium doped
fibre amplifier.

The second fibre characteristic is that of chromatic dispersion. The interac-
tion of the electro-magnetic wave with the bound electrons of the medium results
in a frequency dependence of the refractive index, n(w). As discussed in more de-
tail in section 2.3, this dependence affects the propagation of optical pulses as the
propagation speed of their constituent frequency components is given by ¢/n(w).
This results in the components arriving at different times producing a temporal
dispersion of the pulse. This can be a serious limitation to optical transmission.
The rate of this dispersion is described by the dispersion parameter D, essen-
tially the second derivative of the refractive index with respective to wavelength.
Figure 1.2 shows a typical dispersion profile for a “standard” step-index fibre. In
standard fibres the dispersion is mainly due to the chromatic dispersion of the
optical fibre although there is a small contribution from the waveguiding effect of

the fibre, known as waveguide dispersion. The dispersion zero wavelength can be



deliberately varied by tailoring the fibre core and cross-section profile to increase
the waveguide dispersion. Two particular examples are that of moving the dis-
persion zero into the third transmission window to give “dispersion shifted fibres”
(DSFs), permitting long distance transmission here, and of moving the dispersion
zero beyond 1.6um to produce “dispersion compensating fibres” (DCFs) which are

of great interest currently [5]-[12].
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Figure 1.2: Variation of the dispersion parameter Dy with wavelength for a step-
index single-mode fibre, taken from ref. [4],pp.11

The third fibre characteristic is that of the fibre nonlinearity. Due to the
symmetries of the silica there 1s essentially no second order susceptibility @) term.
The nonlinearity of optical fibre comes from the third order susceptibility, &) of
the silica and can result in effects such as four-wave mixing and nonlinear refraction.
Four-wave mixing occurs between co-propagating waves of different frequencies
resulting in the generation of new frequencies. Here we are concerned mainly with
single wavelength propagation and shall concentrate on nonlinear refraction. This
occurs both through the self-action of wave on itself as well as between different
waves and polarisations. It results in a nonlinear variation of the net refractive
index 7i(w, |E|?) of the fibre with intensity |E|? [4],pp.16. Although optical fibres
have a very small nonlinear index coefficient, over long transmission distances this
intensity dependence of the refractive index leads to a number of effects, including

the important effects of self-phase modulation and cross-phase modulation, which
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are discussed below. /

The final fibre characteristic of interest is that of the fibre birefringence.
In a perfectly cylindrical fibre core there would be no coupling between the two
polarisation modes of a single-mode fibre. However manufacturing defects lead to
deviations from cylindrical symmetry and result in a birefringence. For a constant
difference in the refractive indices of the two modes there is a fast and a slow
axis with the fast axis having the lower refractive index. Generally however local
fluctuations in the core and hence in the local birefringence are introduced by im-
perfections in the manufacturing process. Light launched into a single mode fibre
with linear polarisation will quickly reach some arbitrary polarisation due to the re-
sultant mixing of the polarisation modes. The implication for optical transmission
systems is that ordinary fibres will not be able to support one potential method of
increasing the data transmission capacity, polarisation division multiplexing, as the
signals will mix on propagation and the data will be corrupted, although some suc-
cess has been found [13, 14]. Again, tailoring of the fibre core cross-sectional profile
can induce a stronger and essentially constant birefringence to create polarisation
maintaining fibres which should allow polarisation multiplexing. The birefringence
is also responsible for polarisation mode dispersion (PMD), discussed below, which
is currently presenting limitations for upgrading existing standard fibre systems
[15] as low Dbirefringence and hence low PMD was not specified when the fibre was

commissioned.

1.1.2 NRZ, solitons and the EDFA

The above fibre characteristics can lead to signal degradation in an optical trans-
mission system. To date all optical transmission systems have relied on a lin-
ear transmission format, where nonlinear effects are avoided through the use of
square pulses filling the bit period, known as non-return-to-zero (NRZ) transmis-
sion [8, 12, 16]-[22]. These systems are designed such that the detrimental effects
the pulses experience are not significant over a single amplifier span. At the end of
each transmission span of 30-50 km, the pulses are electronically detected, re-timed
and retransmitted amplified and reshaped. High speed electronics are required after

each fibre span adding unwanted expense and complexity at each amplifier node.
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The system is also restricted in operations to a single data rate by the electronics
as in order to upgrade the system by increasing the data rate each regenerator
must be replaced. Obviously this will be expensive and for trans-oceanic links is
not generally practical. However, linear transmission systems have been designed
and installed for transmissions at data rates of 2.5 Gbit/s for oceanic distances.
The original interest in soliton transmission systems stemmed from the fact
that soliton pulses balance the main effect of the fibre nonlinearity, self-phase mod-
ulation against that of the fibre dispersion, dispersive broadening. This nonlinear
transmission, return-to-zero (RZ) format was originally seen as a possible answer to
the signal degradation from both dispersive and nonlinear effects allowing transmis-
sion for longer lengths between regenerators. However, the fibre attenuation leads
to a reduction in the optical power and hence the effect of the nonlinearity re-
moving the required nonlinearity—dispersion balance. It was shown that the pulses
could be maintained if the optical power was not varied too much [23]-[26] but this
necessitates even more frequent amplification than for NRZ systems. However, the
periodic reshaping required for NRZ systems to remove dispersive broadening is
not necessary for soliton transmission systems. This led to the search for a suit-
able, simple power amplifier that might be used with soliton systems. The first
step in this direction was the use of Raman amplification to provide the necessary
gain [27] which showed that very long distance soliton transmission was feasible.
A major advance in the development of solitons for optical transmission
systems was the erbium-doped fibre amplifier (EDFA) [28]-[40]. These amplifiers
use the rare earth element erbium as a dopant within a fibre to provide optical
gain in the 1.55 pm transmission window. The gain medium is optically pumped,
usually at 980 or 1480 nm, with the pump coupled in through a fibre wavelength
division multiplexer (WDM) providing an all-fibre power amplifier. While these
amplifiers can be used with NRZ signals, there is no re-timing or reshaping so the
unwanted propagation effects are allowed to build up. However they do provide a
purely optical, all-fibre gain function suitable for solitons. In addition, as the EDFA
gain is linear with intensity (at a fixed average power) the pulse shape is maintained
through the amplifier. EDFAs also remove the complexity of the regenerators as

they are purely passive and contain no high speed electronics.
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Naturally, these amplifiers are not without their broblems. As well as provid-
ing gain from ~ 1520 — 1570nm they also introduce amplified spontaneous emission
(ASE) noise [41]-[48]. The amount of noise depends on the quality of the amplifier
but has a theoretical minimum which depends on the pumping regime [49]-[52].
The absolute minimum is for a co-propagating pump beam (ie. in the same direc-
tion as the signal) which is quantum limited for the high gain amplifiers required
to a noise figure value of 3 dB. This translates into a doubling of the noise content
propagating with the signal at each amplifier [47]. Unchecked, this can destroy
the signal within a few amplifications (found to be generally less than 10 ampli-
fications using the recirculating loop of chapter 7). The noise can be filtered out
with a bandpass filter with a bandwidth of several times the soliton bandwidth
(the choice of such a wide filter is so as not to remove t0o much energy from the
spectral wings of the pulse and thus destroy its shape). Even if a perfect filter could
be designed, some ASE noise would get through within the bandwidth required for
the signal. Despite filtering, ASE causes problems, in particular a random timing
jitter for long distance soliton transmissions [53]. However, the passive, data rate
transparent nature of the amplifiers means that provided a systems upgrade is de-
signed to maintain the original amplifier output power and gain levels there 1s no
need to replace them allowing a very simple upgrade path. Also, the very wide
bandwidth of the amplifiers, and in particular the relatively flat gain region from
~ 1550 — 1565nm allows the possibility of multiple wavelength signals being trans-
mitted through a single optical fibre (wavelength division multiplexing, WDM)
[54] without any need to separate the different wavelengths along the length of the
transmission link. These advantages have made the EDFA itself a very attractive
prospect for future transmission systems, and their use with solitons a very strong

possibility.

1.2 Thesis overview

Thus far we have discussed in general terms the limitations to pulse transmission in
fibre optic communications and the place of solitons in such systems. In chapter 2
we expand on these ideas and discuss some of the limitations to soliton propagation

in more detail. With this as our background, we wish to find ways to alleviate some
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of the problems in order that solitons can be used in real transmission systems. This
thesis considers methods of improving soliton propagation in optical fibres using
a variety of novel techniques, mainly concerning the dispersion profile of the fibre
transmission line.

The first three chapters of new work were performed theoretically and com-
putationally. In chapter 3 we consider an improved fibre dispersion profile for
soliton transmission, by developing an optimised stepwise approximation to the
exponential decay in the dispersion which would balance the power loss and hence
the decay in the nonlinear effect due to fibre loss. By exactly following the power
decay with the equivalent dispersion decay, the soliton power—dispersion relation-
ship (discussed in chapter 2) can be maintained to produce a fundamental soli-
ton in lossy fibre. By approximating the decay, improved propagation was found.
Chapter 4 assesses the limits to solitons in standard fibre systems with a view to
upgrading existing systems. After finding the transmission distance limit some-
what prohibitive we consider the use of dispersion compensating fibre and show
the resulting improvements to soliton propagation possible. Chapter 5 studies an
improvement to the average soliton model derived from moving the launch point to
average over the pulse shape changes as well as power in highly perturbed systems.

The experimental work is contained in chapters 6 and 7. Chapter 6 looks
at suitable sources for soliton propagation including one novel laser, the actively
mode-locked figure-eight laser. In chapter 7 we introduce the experimental model
for soliton propagation, the recirculating loop, and with it investigate a novel RZ
pulse propagation regime where pulses can be transmitted jitter-free and with no
shape changes for more than global distances. Finally, chapter 8 summarises the
conclusions of this work and considers the current and future position of solitons

in the world of fibre optic communications.
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Chapter 2

The nonlinear Schrodinger

equation

2.1 Introduction

In order to study soliton propagation we need an accurate mathematical model
which describes the features of the transmission of light pulses through the optical
fibre medium. This section studies in more detail the most important features
for soliton propagation, namely group velocity dispersion (GVD) and self-phase
modulation (SPM), the two effects responsible for the existence and nature of
solitons. These two effects are considered first in isolation from each other before
their combined effect is studied. Other important effects are also outlined later.
All of the following equations can be arrived at from Maxwell’s equations with the
appropriate substitutions, reductions and approximations. A rigorous derivation
is not particularly helpful to the understanding of the results we wish to consider
and can be found in a good textbook on the subject, for example ref. [4] from
which much of what follows is taken. Here we shall include only an overview of the

derivation.



2.2 Wave equation derivation of the NLSE

The starting point for the derivation is the wave equation in the standard form
[4],pp.34
1 82E . 82PL 62PNL
2o~ MTer T H o

(2.1)

where E(r,¢) is the electric field, c is the speed of light in free space, pq is the vac-
uum permeability. Py is the linear and Py, the nonlinear part of the polarisation
field P(r,t) = Pp(r,t) + Pyp(r,t) which are related to the electric field through
the dielectric tensor, V) for the linear part and x® for the nonlinear polarisation
field parts [4],pp.28.

Several assumptions are required in order to proceed. The first is that Py,
is treated as a small perturbation to P, the second that the optical field maintains
a linear input polarisation along the fibre allowing a scalar approximation. The
third is that the slowly varying wave approximation is valid allowing us to write
the electric field in the form

E(r,t) = =2[E(r, t)exp(—iwyt) + c.c.]

[N
N
N
N
p——

where £ the unit vector of the linearly polarised light, E(r,t) is a slowly varying field
relative to the period associated with the optical frequency wy and c.c. denotes the
complex conjugate. The polarisation components P; and Py, can be expressed
similarly. Another simplification is used in obtaining the nonlinear polarisation
from the electric field in that the nonlinearity is taken to be instantaneous, which
is generally valid for optical fibres for pulse widths greater than 0.1 ps [4],pp.36.
The wave equation for the slowly varying amplitude F(r, ) is found through
the use of the Fourier domain, which is valid when P, is taken as a small pertur-

bation. This wave equation is given by

V2E 4 e¢(w)kiE =0 (2.3)

where ky = 27/) is the propagation constant at wavelength A and e(w) is the

dielectric constant which is related to dielectric tensor and allows us to find the
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coefficient of nonlinearity ny as [4],pp.37

3
through the use of the definition
i(w, |E?) = n(w) + ny| B2 (2.5)

From equation (2.5) we see that the nature of the nonlinearity is as a modification
to the linear refractive index, n(w), depending on the square of the electric field, the
intensity. It is this intensity dependent refractive index change, known as nonlinear
refraction, which gives rise to the effect of self phase modulation, discussed below.

Equation (2.3) has the solution of the form

E(r,w—wpy) = /OO E(r,t)exp([i(w — wy)t]dt. (2.6)

—00

Further solution is obtained by separating the variables for the electric field using
E(r,w—wy) = F(x,y)A(Z,w — wo)exp(ifyz) (2.7)

where A(Z,w — wy) varies slowly with Z and F(z,y) contains the lateral fibre
mode dependence, approximately Gaussian for a single mode fibre and unaffected
by changes in the refractive index hence ignored below, and f, is the propagation

constant. Using this substitution the propagation equation (2.3) becomes

0A . ~
where Af is found from the modal distribution through F'(z,y). To obtain the tem-
poral solution of the slowly varying amplitude A(Z, ) we take the inverse transform

of equation (2.8), for which it is useful to expand B(w) as a Taylor series about the

carrier frequency wy as

Bw) = By + (w —wo) By + %(w — wo)* Bz + ]g(w —wo)’ Py + -+ (2.9)
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where

871 ,H

ow™
with fg, 81, [» and f3 the propagation constant, inverse group velocity, group
velocity dispersion and the third order dispersion respectively. The cubic and
higher order terms are generally negligible if the spectral width is much less than
the carrier frequency (Aw < wp). The cubic term can become significant if 8, >~ 0.

Performing this substitution and Fourier transform on equation (2.8) and
evaluating A, which includes the effects of fibre loss and nonlinearity, we obtain
[4],pp.40

84 814
ﬁl ,32 82‘2 = iy|A’A (2.11)

where the nonlinear coefficient -y is defined as

ToWy
= 2.12
7 CAeff ( )

with A.s; the effective core area of the fibre, the area of the core and cladding the
signal propagates within. Although there is still some discussion, the value of ns is
known to be around 2.5 x 10729m?W . Typically the effective core area at 1.55
pm is 50 — 80 wm?, depending on the fibre type.

One further simplification is to move to a frame of reference moving with
the pulse we wish to study at the group velocity v, = 1/p, by making the trans-
formation

7z
T=t-Z=t-p7% (2.13)

Yy
This gives equation (2.11) as
- - v|Al* A 2.14
% o taar T A (214)
This is our desired propagation equation, often known as the generalised nonlinear
Schrodinger equation. If the loss is taken as oo = 0 it is known simply as the
nonlinear Schrodinger equation (NLSE).
Loss aside, equation (2.14) gives four regimes of operation to consider when

studying optical pulse propagation. These can be loosely defined through the use
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of two length scales, the dispersion length Lp and the nonlinear length Ly :

T3
L, = 0 2.15
D T (2.15)
1
Ly; = .
NL o) (2.16)

where F is the peak power of the pulse of width 73 and + is the nonlinear coefficient.
The four regimes of operation are found from the relative magnitudes of these two
length scales compared with the transmission distance L. If L < Lp, Ly, the pulse
will not experience significant linear or nonlinear effects, but this regime requires
long pulses (>100 ps) at low peak powers (<0.1 mW) which are not of interest for
high speed communications. The remaining operating regimes, where dispersion
dominates (L > Lp, L < Lyy,), nonlinearity dominates (L > Ly, L < Lp) and
where both nonlinearity and dispersion are significant (L > Lp, Ly, ), are outlined

below.

2.3 Group velocity dispersion

The first operating regime we consider is where dispersion has a significant effect
on the optical pulse, characterised by L > Lp and L < Lyy. In any medium,
different optical wavelengths will travel at a slightly different velocity due to the
variation in the refractive index with wavelength. This means that the constituent
wavelengths of a pulse will arrive at slightly different times, giving a temporal
dispersion known as group velocity dispersion (GVD). The usual comparison made
for GVD is the refraction of a white light source through a prism splitting the light
into its constituent colours and revealing the optical spectrum. This well known
effect is likewise the result of the difference in refraction experienced by the colours
of the light due to the refractive index variation.

Mathematically, we start from the NLSE with loss as defined by eqn. (2.14).
Assuming the effects due to nonlinearity are negligible, n, and hence y are set equal
to zero removing this term. It is not necessary to exclude the effect of loss as it has

no effect on pure dispersion and can be removed through the use of a normalised



pulse envelope U(Z,T) with,
A(Z,T) = VPoexp (—aZ/2)U(Z,T). (2.17)

This gives the normalised version of equation (2.14) in the dispersive regime as

20 _ 15,0
o7 2972

(2.18)

which can easily be solved through the Fourier method. If U(Z,w) is the Fourier

transform of U(Z,T") such that,

1

U(2,7) = 5

/°° (2, w)eap(—iwT)dw (2.19)

then it will satisfy the ordinary differential equation

oU 1. .-
—_— T —— 71,5 2
LaZ 2ﬂ2¢) U (2 O)
with the solution
U(Z,w) = U(0,w)exp (%,82(4)2Z> (2.21)

where U(0,w) is the Fourier transform of the input pulse at Z = 0 given by

0(0,0) = /"°° U(0, T)eap(iwT)dT. (2.22)

—o0

Equation (2.21) shows that the relative phase of the pulse spectral components
change as a function of propagation distance and the square of the frequency of
that component. These phase changes do not alter the spectral content of the pulse
but will change the shape of the pulse. The general solution of equation (2.18) is

obtained by substitution of equation (2.21) into equation (2.19) to give
Uz, T) = —-/ U(0,w)exp {'/)’szZ} dT. (2.23)

In order to assess the impact of GVD on a pulse, let us consider an example
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of an input transform-limited Gaussian pulse of the form

v103) = emn(-2) 20

=10

where 7 is the input 1/e half width of the pulse, related to the full width at half
maximum (FWHM) pulse width through 7; = 2v/In27 ~ 1.6657y. By performing
the substitutions and integrations in equations (2.22) and (2.23) we obtain the

solution for a pulse after a given propagation distance as

2 1/2 T2
7Ty = —T0 Py I S 9.25
u(2,1) <7§—iﬁ2Z> 6Tp< 2@5—1@2)) (2.25)

The Gaussian temporal pulse profile is preserved on propagation, but the peak
intensity drops and the pulse becomes broader such that after some distance Z the

pulse width 7y is
2

Z
7 =10y 1+ (—) A (2.26)
Lp

Evidence for this is shown in the simulation of figure 2.1(a) which shows the input
pulse and profiles after propagation through fibre. The diagram shows the intensity
against time, in a frame moving with the pulse at the group velocity, with increasing
distance. We see from equation (2.26) that the extent of the temporal broadening
varies as (» and is inversely dependent on the input pulse width 7. This results
in short pulses broadening more quickly and is due to the broader spectral range
required to support a shorter transform limited pulse.

A chirp is accumulated across the pulse as it broadens. Mathematically this

can be found by separating the pulse envelope into the amplitude and phase parts
U(z,T)=|U(Z,T)|exp(i¢(Z,T)) (2.27)

which gives the phase ¢(Z,T") as

_sgn(B)(Z/Lp) T, ( 4 ) (2.28)

$(Z,T) = 1+ (Z/Lp)? 72 T

LD

with sgn(f,) signifying the sign of f;. The instantancous frequency difference
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Figure 2.1: Effect of GVD on an input 10ps Gaussian pulse (Z=0) with propa-
gation over 10 Lp in optical fibre with a GVD of f, = 21.8ps*/km (or Dy =
17ps/nm/km), and loss & = 0. (a) Temporal shape after each Lp = 1.651km. (b)
chirp (instantaneous frequency against time) after 10 L.
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across the pulse dw is then given by

bw = —2—;@ (2.29)
sgn(Bo)(Z/Lp) T
T+ C/Lo? 7 (230

which shows a linear frequency change across the pulse, a linear frequency chirp, as
shown in figure 2.1(b). The sign of the chirp is dependent on the sign of the GVD
parameter (3», through the definition of Lj. In the anomalous dispersion regime
(B2 < 0) this results in the “blue” components of the pulse travelling faster than
the “red” and vice versa for the normal dispersion regime (8, > 0).

The effect of GVD becomes more complex when the input pulse is not trans-
form limited and thus has an initial chirp. Whilst the dispersive effect is the same,
the degree of temporal broadening experienced by a given pulse will depend on its
initial chirp as compared to the dispersive chirp accumulated on propagation. An
up-chirped pulse, one whose frequency increases from leading to trailing edge, in a
normal dispersion fibre will broaden more quickly than an unchirped pulse as the
frequencies continue to spread away in the same temporal direction as the initial
chirp. The same will be true for a down-chirped pulse in the anomalous disper-
sion regime. The reverse of these two cases is more interesting however, as the
initial chirp of the pulse will effectively have to be “undone” before pulse broad-
ening occurs, leading to pulse compression. This useful result is exploited later
in compressing down-chirped DFB pulses through in normal dispersion fibre (see
section 6.3). Pulse profile also plays an important role in the dispersion character-
istics of a pulse. Smooth pulse profiles, such as the Gaussians, tend to maintain
a smooth shape under dispersive broadening. More sharply defined pulses such as
super-Gaussians can develop oscillations in the trailing edges of the pulse as the
more complex spectrum required to support such a pulse shape disperses [4],pp.67.

In deriving the NLSE the higher order terms in the Taylor expansion of
equation (2.9) were ignored, as in general they are insignificant compared with the
second derivative, the group velocity term ;. However the third order dispersion
term 3 can become significant when the second order term is small (8, =~ 0).

Defining another length scale L', = 73/|0], third order effects will be noticeable
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when L', < Lp or equivalently 79|82/0s| < 1 which, using typical values, requires a
very low dispersion of Sy < 0.01ps/nm/km [4],pp.65. Mathematically the effect of

5 is to introduce an additional term to equation (2.18)

oU 0*U o*U

- = 2
‘97 ﬁZaTz ﬂ*aTﬂ (2:31)

which can again be solved through the Fourier technique. The effect of this extra
term is to introduce asymmetric pulse shaping and an oscillatory temporal structure
[4],pp.66. However, as the GVD must be so low this is not generally a problem.

Finally, a comment on the notation used for GVD. Throughout the deriva-
tion above the group velocity dispersion parameter 3, was used. However, there 1s
a second notation used through much of the rest of this thesis, that of the group
delay dispersion D, which tends to be a more useful quantity in practical terms.
The difference between them is that group delay dispersion (GDD) is the second
derivative of the refractive index with respect to wavelength rather than frequency.
The simple relation between group delay and group velocity dispersion 1s

—2mc

_Dg - )\2 ,BQ. (232)

2.4 Self-phase modulation

Next we consider the most relevant nonlinear effect in optical fibres as far as soli-
ton formation is concerned, self-phase modulation (SPM). Nonlinear effects are the
most significant effects experienced by pulses being transmitted along an optical
fibre when the length scales are L > Ly, and L < Lp. In order to concentrate
on the effect of SPM in this section we assume that the group velocity dispersion
is negligible and take f, = 0. Again starting from the NLSE with loss (equa-
tion (2.14)) and using the normalisation for the amplitude (equation (2.17)) we

arrive at the partial differential equation

g% = memp(—a7)|U \U (2.33)
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Note that despite the amplitude normalisation; the loss coefficient « is still con-
tained in this equation since, as the nonlinearity is intensity dependent, loss will

reduce its effect. This equation is easily solved with the solution
U(Z,T)=U(0,T)exp (i¢nr(Z,T)) (2.34)

with U(0,T) again the input pulse amplitude and the nonlinear phase term ¢y,
given by

dni(Z,T) = U0, T) Kﬂf (2.35)

where the effective length Z.;; is

Zoyy = ~ (1 — exp(—aZ)) (2.36)

(67

and gives a reduced length that effectively rescales the nonlinearity for the presence
of fibre loss.

Equation (2.34) shows that the effect of self-phase modulation is to induce
an intensity dependent phase change across the pulse, through the dependence
on |U(Z,T)|?, increasing with propagation distance. As in equation (2.29) the

frequency chirp this phase shift induces across the pulse is

0w _ _a|U(0,T)|2 Zery
- aT oT Lny

(2.37)

This frequency chirp, through the W differential is dependent on the shape
of the input pulse and in particular the rate of change of the pulse shape.

The effect of this chirp is to generate new frequencies at the edges of the
pulse spectrum, redistributing the pulse energy to these frequencies. As the chirp
increases in magnitude with propagation distance it will exceed the bandwidth of
the original pulse and new frequencies will be self generated by the pulse. Note the
contrast here with GVD which does not introduce additional frequencies but merely
realigns their relationship to each other as they propagate at different velocities.
Thus the effect of self-phase modulation is a spectral broadening of the pulse.

By way of example, taking the Gaussian input pulse of equation (2.24) and

this time considering its propagation in the presence of nonlinearity we find the
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spectral broadening shown in figure 2.2(a). In the absence of loss (o = 0, Z,5; = Z),

the peak nonlinear phase shift experienced by the pulse centre is given by

Qsmaa:(Za O) - = VIPOZ (238)

LNL

which increases linearly with distance and with peak power F;. The most striking
feature of the spectral changes induced by SPM is the oscillatory nature of the
spectrum. This can be explained if we consider the temporal variation of the
frequency chirp across the pulse as shown in figure 2.2(b), which shows the chirp
after a distance of 10 Ly, corresponding to the last trace in figure 2.2(a). From
this we see that the pulse has the same instantaneous frequencies occurring at
two points in its temporal profile. This can be thought of as two waves of equal
frequency but different phase and as such these waves can either constructively or
destructively interfere, depending on the phase difference. It is this interference
which results in the multiple peaks in the spectrum.

If the input pulse used is chirped, there is a change to the nature of the
SPM induced. This change depends on the sign of the chirp, as an up-chirped
pulse will add with the SPM induced chirp increasing the oscillatory nature of
the spectrum, while the opposite will be true for a down-chirped pulse [4],pp.84.
Another important point to note is that, as mentioned above, the degree of self
phase modulation depends on the rate of change of the pulse intensity. For a
squarer, super-Gaussian pulse, there would be little variation in the pulse shape
over the central part of the pulse and very fast changes in the edges of the pulse.
The effect of this that while the pulse still develops the same number of peaks in
its spectral structure, the majority of the pulse energy experiences little SPM and
this energy remains in the central peak of the spectrum [4],pp.83. Only the wings
of the pulse contribute to the generation of new frequencies leading to far lower
peaks in the spectrum in contrast to that of the Gaussian where the outer spectral
peaks contain the most energy. It is this dependence on pulse shape that leads to
the use of squarer pulses in NRZ transmission systems, as most of the pulse energy

remains within the input spectral width.
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Figure 2.2: Effect of SPM on a 10 ps Gaussian input pulse in the presence of

nonlinearity but no dispersion or loss for 10Ly. (a) Spectral output after each
Lyz = 1.651km. (b) Chirp (instantancous frequency) against time after 10Lyz.



2.5 The NLSE and the soliton solution

The final regime to consider, in terms of the length scales, is that where both
the linear and nonlinear transmission effects are significant, L > Lp, Ly,. Here
the combined effects of GVD and SPM lead to a significantly different variation
in the pulse dynamics from either case separately. Initially we shall look at the
lossless case for which the governing equation is the nonlinear Schrodinger equation

(NLSE) of equation (2.14) with the loss coefficient oo = 0 giving

A _ 1,94 , ,
2 = kS —lAPA (2.30)

The dynamics of this equation depend on the sign of the GVD parameter f,. There
is a ¢.w. solution to this equation which is stable for the normal dispersion regime
(B, > 0) but in the anomalous dispersion regime (3, < 0) it leads to modulational
instability, a modulation to the temporal profile which will start spontaneously
from noise [4],pp.105. Here we are more concerned with pulsed solutions to the
NLSE.

To simplify equation (2.39) we introduce

A A T
U=N—"n) 2=—, T=— 2.40
vV Py Lp 70 ( )

where the parameter /N is defined as

Lp P 0T

N? = =
Lyy, |B2]

(2.41)

and hence obtain the standard form of the nonlinear Schrédinger equation,

(9u 1 0u 9
7 tlufu=0 2.42
where we have taken the case for the anomalous dispersion regime (sgn(f;) = —1).

For the normal dispersion regime the dispersion term, the second derivative with
respect. to time, is preceded by a minus sign.
This equation can be solved exactly using the inverse scattering transform

method in terms of eigenvalues. The method was first proposed by Gardner et al.



[55] and was used by Zakharov and Shabat [56] to solve the NLSE in 1973. We
shall not go into this method here, other than to say it is similar in style to the
Fourier transform method of solving linear partial differential equations. Whilst
higher order solutions exist (N > 1), the solution of most interest to us here is the
single eigenvalue solution which corresponds to N = 1 [4],pp.114 and which has
the form

u(z,7) = 2Csech(2(T)exp(2i¢*z) (2.43)

where ( is the single eigenvalue. We can obtain a simplified, canonical form for
the soliton if we make use of the normalisation to set «(0,0) = 1 by setting 2¢ = 1

resulting in the fundamental soliton solution
u(z, 7) = sech(r)exp(iz/2). (2.44)

From equations (2.40) and (2.41) we see that this relates in the context of optical
fibres to choosing the input peak power Py and pulse width 7y such that N = 1,

ie. we set the peak power for a given pulse width and fibre parameters to be

Py = @ (2.45)
)

This choice of parameters gives the fundamental soliton which will be sup-
ported without change upon transmission, the stable soliton solution. This is more
obvious by studying the various dependencies of the soliton solution. We see from
equation (2.43) that the effect of the eigenvalue € is to link the power, pulse width
and phase relationship of the fundamental soliton. However, there is no depen-
dence of this solution with distance for the pulse width, only for the phase. On
propagation the soliton will remain the same hyperbolic secant shape and width
but will accumulate a phase across the entire pulse linearly with distance. This
phase accumulation however has no temporal dependence thus the pulse does not
acquire a chirp. To illustrate these effects, figure 2.3 shows the temporal evolution
of a fundamental soliton with distance and the phase of the pulse. Also shown is
the evolution of the soliton spectrum which as there is no chirp accumulated also
remains invariant.

An alternative way to consider the formation of solitons as found from the
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Figure 2.3: Evolution of a 10 ps fundamental solitons (a) temporal shape (b) phase
and (¢) spectrum with distance, in fibre with loss o = 0 and Dy = 17ps/nm/km.
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NLSE is to consider the chirps imposed on a pulse by GVD and SPM. We saw above
that the sign of the chirp for GVD depends on the sign of the dispersion parameter
B2, whilst that from the SPM is always of the same sign. In the normal dispersion
regime this leads to a combined and detrimental effect, but in the anomalous dis-
persion regime the signs of these two chirps oppose each other. The formation of a
soliton can thus be thought of as the pulse shape which gives the correct frequency
chirp balance between GVD and SPM, with the power and pulse width chosen such
that the SPM chirp contribution exactly balances the GVD chirp. As such there
is no build up of any temporal chirp across the pulse and hence no temporal or
spectral broadening.

The linear increase in the phase of a soliton allows us to define the soliton
period Zy which is defined as the distance required for a 7/2 phase rotation, and
in normalised units is zg = 7/2, or in physical units as

[Iﬂzi

5
2 15

Zo = gLD = (2.46)
This soliton period is frequently used as a length scale for describing the evolution
of a soliton under various effects and perturbations. The choice of zy = 7/2 was
chosen originally as this is the period of the shape evolution of higher order solitons
[4],pp-115.

Another important feature of solitons is their resilience to perturbations. As
the soliton solution of the NLSE is a stable solution if a perturbation such as a small
change in the pulse’s temporal or spectral profile is applied to the soliton it will
attempt to regain the soliton solution. This can be shown mathematically using
linear stability analysis and similar techniques. The resilience of solitons does give
rise to unusual and undesirable effects, such as Gordon-Haus timing jitter discussed
below, but does provide an additional advantage in general over other transmission
formats. The fact that the soliton is a stable solution of the NLSE also results in
non-soliton pulses evolving toward the soliton solution from any reasonably close
input chirps and shapes [57]-[60].

It is this temporal and spectral invariance that make solitons so attractive
for optical communication systems. Unlike NRZ transmission systems where GVD

and SPM will work to destroy the pulse, fundamental solitons remain stable for the
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length of the system, in an ideal world. However in the above we have made several
omissions including one particularly important one, the effect of fibre attenuation,

which we consider next.

2.6 The NLSE with loss - the average soliton

Although we have seen the effect of loss for GVD and SPM individually, their
combined effect leads to a different dependence on loss than for either individual
case. The major problem for solitons in an optical fibre resulting from the loss is
that the decrease in the power of the pulse results in a decay in the nonlinear effect
it experiences, removing the balance between dispersive and nonlinear chirps. It
an N = 1 soliton is launched into an optical fibre this decay in the nonlinear effect
results in pulse broadening as the GVD chirp gradually becomes dominant over that
from the SPM. In order to balance out the effect of loss, the power must be re-
amplified periodically before the signal is lost to the noise propagating with it [61].
For soliton systems this can be done all optically with the EDFA as pulse shape
changes should not be significant, provided the dispersion does not destroy the
pulse [23]-[26, 62]. This has led to the concept of the average soliton, which has a
major impact on the propagation of solitons in real optical fibres. In discussing the
average soliton we shall see that the EDFA has been instrumental in the elevation
of solitons to a practical transmission format for optical communications. However,
the use of EDFAs is not without its own problems, mainly due to the noise that
these amplifiers introduce to the optical signal. These problems are addressed later.

We consider the effect of distributed loss and periodic discrete gain has
on soliton propagation. The EDFA can be taken as a discrete amplifier as its
length (typically a few metres) is short compared to the fibre transmission length
between amplifiers (a few 10’s of kilometres). We return to the NLSE with loss
and normalise as before (equation (2.40)) to obtain

Ou 1 0u

L—a*;: + 5572 + |ul2u = —ilu (2.47)



where we have used the normalised loss I
I = %‘LD. (2.48)

To exactly compensate for the distributed loss along each fibre section, the discrete
gain from the amplifiers must be such that the fields, u; and wus, before and after

cach (j%) amplifier respectively, are related by
us(jza) = G (j2a) (2.49)

where G = e?'# is the power amplification factor required to restore the signal after
the exponential loss and z, = L,/Lp is the amplifier spacing L, normalised to the

dispersion length. Introducing the transformation u(z,t) = A(2)R(z,t), eqn.(2.47)

becomes
OR 10%R 5 9 .
282 +§'5“7*_*2*+A (Z) BI R=0 (2.00)
where
AQ(z) = AQ(O)e_F("‘"jZ“). (2.51)

Thus, the exponential energy variation in the periodically forced NLSE is equivalent
to an exponential variation, A%(z), in the nonlinear coefficient of the lossless NLSE
(cf. equation (2.42) with v = A?(z) and u = R). If the period of A?(z) is short on
the characteristic length scale of the soliton evolution (L, < Z;, or equivalently
7, € m/2), its average is a good approximation in eqn.(2.50) and the so called
average soliton model is obtained [23]-[25]. By averaging the variation of A*(z)
over the first amplifier span (j = 0) and equating it to the desired normalised

average value of 1

1 7z
< A(2) >= — / A2(2)dz =1 (2.52)
2 10
gives
20z,
A%(0) = A = PR (2.53)

where A3 is the peak amplitude of the input average soliton.
Figure 2.4 shows the variation in the soliton energy on propagation along a

few amplification periods of such a system. Essentially, the average soliton model



balances the excess nonlinear chirp of the initial section of propagation between
amplifiers with the excess dispersive chirp of the second part so that on average
the dispersion and nonlinearity balance. Diagrammatically, this is equivalent to

the areas above and below the A%(z) = 1 line being equal.
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Figure 2.4: Variation of the soliton energy with propagation distance over 4 am-
plification spans, each with a net loss of 5 dB. A%(z) = 1 is the energy of an N=1
soliton in a lossless fibre to which the soliton is averaging.

Although this discussion has focused on the most important perturbation
to the soliton transmission, loss, it is also applicable to other perturbations. The
prescription can be applied to other periodic variations of the fibre, which means
their period must also be short compared to the soliton period. Defects from the
manufacturing process for example must meet this criteria, but as these defects
are generally short compared with any realistic amplification period, designing the

system for the average soliton will also remove their effect.

2.7 Cross-phase modulation and birefringence

There are several other effects that can occur in an optical fibre. These effects are
often not particularly significant and can be designed around but can be a problem
given appropriate conditions. Here we summarise some of these effects, namely
polarisation mode dispersion, polarisation dependent loss and gain and cross-phase

modulation.
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Beginning again with the linear effect and ignoring nonlinearity, the bire-
fringence of the optical fibre can cause problems. As mentioned above, the random
variation in the local birefringence due to imperfections in the manufacturing pro-
cess breaks the degeneracy of the polarisation modes in a nominally cylindrical
fibre. This results in mixing between the modes and hence any light launched into
the fibre will quickly reach some arbitrary polarisation. Whilst this is not gener-
ally a problem for single polarisation transmissions, the net difference in the group
velocities of the fast and slow axes of the two orthogonal polarisation states can,
if large enough, result in a pulse splitting for a randomly orientated input polari-
sation pulse. As for the spectral components with GVD, the different propagation
rates lead to a temporal dispersion of the polarisation components. This effect,
known as polarisation mode dispersion (PMD), is not often a significant problem
with new optical fibres due to the improvements in the manufacturing process, but
older fibres including a majority of the installed fibre base can have very signif-
icant PMD and make upgrading to higher data rates with NRZ formats difficult
[63]. The effect of PMD on solitons is discussed below once the nonlinear effects
have been introduced. PMD can also be significant in other devices used in optical
communications, such as the optical isolators used to restrict propagation to one
direction and eliminate reverse travelling ASE noise from one amplifier interfering
with a previous one.

Likewise, less of a problem for fibres now but still important when con-
sidering older fibres and other devices are the effects of polarisation dependent
loss (PDL) and polarisation dependent gain (PDG) [64]-[67]. PDL is not really a
serious problem in optical fibres due to the birefringent polarisation mixing, but
can be more of a problem with other devices used in optical communications. In
particular, lithium-niobate modulators, used to impose data on a pulse stream,
tend to be highly polarisation sensitive due to the waveguiding used for these slab
devices, with PDL values around 10 dB common. Generally such high polarisation
dependent losses must be avoided, with polarisation controllers used to set the ap-
propriate state for minimum loss for a single polarisation signal. With polarisation
division multiplexed systems more involved solutions would be necessary. In a sim-

ilar way, polarisation dependent gain, due to preferential alignment of the erbium
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ions to one polarisation state during the manufacture of erbium fibre, can become a
serious problem. Again, this problem has generally been overcome for erbium fibre
at the manufacturing process, although just as for PDL, other devices can have
stronger PDG, such as the semiconductor laser amplifiers discussed in section 6.3.

Cross-phase modulation (XPM) is another nonlinear effect which describes
the phase modulation of one pulse at frequency w, on co-propagation with another
at wo. The NLSE with XPM can be found in a similar way to that of the original
NLSE formulation from the wave equation by replacing the slowly varying electric

field of equation (2.2) by that describing the combined fields [4],pp.173

E(r,t) = =2[E exp(—iwt) + Esexp(—iwat)] + c.c. (2.54)

SN

It is then possible to solve for the resultant change An in the refractive index

n(w) = n + An which is found as [4],pp.175
Any = ny(|Bj|* + 2| E-5[) (2.55)

where j = 1,2 for the two wavelengths. The first term in £ is the self-phase
modulation term described above. The second term in f5_; shows that the nonlin-
ear refractive index change when two waves are co-propagating depends not only
on their own intensity for SPM but also on the intensity of the other wave. This
refractive index change leads to a phase modulation by one pulse on another given
by

W5z

An; =
. .

Wiz

NL
¢; "=

B[ +2

Bs_]?"]. (2.56)

The phase modulation due to the XPM term is seen from these equations to be twice
that of the SPM term for the same intensity. This comes through the mathematics
from the squaring of the electric field (equation (2.54)) for the nonlinear polarisation
field giving twice the number of terms for different frequencies than for one.

The difference between vy, and vy, the group velocities of the two pulses, 1s
important when considering XPM. Whilst two pulses may initially be co-propagat-
ing, the difference in their group velocities will lead to a walk-off. Once the pulses
no longer overlap there will be no cross-phase modulation. This limits the extent of

the XPM for any given two wavelengths in an optical fibre. Whilst detrimental for
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optical transmission lines, XPM can be useful as we shall show below (section 6.4).
The nonlinear effect of birefringence is also an XPM process between two
waves of the same frequency but different polarisations. As such it can be studied

by using as the input the field for an elliptically polarised optical wave [4],pp.177

N | =

E(r,t) = (2B, + 9E,)exp(—iwpt) + c.c. (2.57)

for the amplitudes F, and F, in each polarisation state. Again the result is a
modulation of the refractive index for each polarisation component by the other

known as nonlinear birefringence and is given by

2 2 2 =
ATL.’E = TNy (|E1| +§]Ey’ > (208)

2 .
Any = N9 (!Ey|2 + é‘lE:,;|2> . (259)

We see that the XPM between polarisations is less significant than that for different
frequencies as the dependence on the other wave is a factor of 2/3 rather than 2.
Other than this, the qualitative behaviour is the same. This change in the refractive
index produces a rotation of the polarisation ellipse of the input elliptical wave.

One consequence of this variation in the polarisation is the effect known as
nonlinear polarisation rotation (NPR). As the nonlinearity is essentially instanta-
neous, the high power central peak of a nonlinear pulse will self-induce a greater
index change and hence polarisation rotation than the low power wings. This ef-
fect can be used as a pulse shaping mechanism when used in conjunction with a
polarisation element. If a pulse is input to the fibre at some angle to the polariser
and there is sufficient nonlinear polarisation rotation to align the peak of the pulse
with the polariser this part of the pulse will be transmitted whilst the lower power
and hence less polarisation-rotated wings of the pulse will be rejected. This effect
has been used in laser cavities [68, 69] and is investigated below in the context of
pulse transmission (section 7.3).

For solitons, once again the dispersive and nonlinear effects must be con-
sidered together. While work continues to understand their effect in the random
birefringence of ordinary fibres, consideration of more strongly birefringent fibres

gives a qualitative indication of the effect [4],pp.190. Essentially, if the birefringence
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is below ~ 0.3D, [70] the lower power polarisation component of an elliptically po-
larised pulse will be “trapped” by the higher power component, preventing the
pulse from splitting as expected for linear pulses, although it may lead to a timing
jitter [71]. At higher levels of birefringence the nonlinear index change is insufficient
to balance out the dispersive effect and the pulse will split as before. However, this
resilience to PMD pulse splitting is currently creating further interest in solitons

for upgrading older systems [15].

2.8 Soliton system design considerations

Now that the properties and effects of optical fibre transmission and solitons have
been introduced, we can consider the requirements for designing an optical soliton
transmission system. Various trade-offs are necessary to design any given system
for its competing requirements. In general, soliton system design falls into two
main areas namely short and long haul. Short haul systems are taken here to
mean distances of hundreds of kilometres and long haul to be trans-oceanic system
lengths (thousands of kilometres). The length of system changes the emphasis of
the design constraints as discussed below. One very important consideration for
any length of soliton system is that of the average soliton limit to the amplifier
spacing, L, < Zy. Typically systems designers take a factor of 10 for safety to
mean “much less than” but use the full soliton period (8zy = 27), giving this limit
as L, < 8/10Z, [72]. The other problems considered here are those of soliton
interactions, random timing jitter, the signal-to-noise ratio (SNR) requirements,

acoustic interactions and the average power requirement.

2.8.1 Soliton—soliton interactions

For a high speed transmission system it is desirable that solitons be placed as close
together as possible in order to maximise the possible data rate (R) achievable.
It is therefore important to assess how closely two solitons can be placed without
detrimental effects. Unfortunately the nonlinearity of the optical fibre that leads
to the existence of solitons also provides the mechanism for interaction between the

solitons. This topic has attracted a great deal of interest over the last few years
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[73]-[80], as have potential methods of dealing with the problems [81]-[83].

There are two main cases to consider when studying soliton interactions.
The first applies to solitons in optical time-division multiplexed (OTDM) systems,
that of the interactions of solitons of equal frequency [4, 84]. A pair of solitons at

the input to a transmission fibre can be described as

TR/?,

To

u(0,7) = sech(r —

) + rsech (7‘(TTR/2)> et (2.60)

To

where Tr = 1/R is the initial separation, 7 is the relative amplitude and @ is the
relative phase of the two input pulses. The solutions for this input to the NLSE has
been calculated by both the inverse scattering method and perturbation theory, as
well as by numerical simulations {84]. It has been shown that two solitons in phase
(6 = 0) and of equal amplitude (r = 1) will periodically be attracted and collapse
upon propagation, as shown in figure 2.5. If the separation is comparatively large
compared with the pulse width (T > 27p) the pulses will collapse and separate

with a period [4],pp.132

1
Z, = Zyexp (2]?70) (2.61)

with the collapse occurring Z,/2, in a perfect lossless system. As this distance
is related to the soliton period, Zp, this has implications for a soliton system as,
even though this behaviour is predictable this is for a perfect pair of solitons in a
lossless system. Systems designers wish to avoid any potential failure mechanism
however and so any system is designed to ensure that it is shorter than the collapse
length. As the behaviour is predictable, it is usually sufficient to make the system
length up to half the collapse length. Alternatively, and more frequently used, if
the solitons are separated by a sufficient mark-to-space ratio the exponential of
equation (2.61) will be large enough to avoid interactions over global distances.
Generally the mark-to-space ratio taken 1s between 1:6 and 1:10.

If the pulses are out of phase (¢ = 7), a different evolution occurs in that
the pulses do not attract but instead repel, as shown in figure 2.6. While repulsion
may initially seem to be more desirable for soliton system design as it avoids the
pulse collapse of in phase solitons, it is not as the pulses continue to separate for

the entire system length at the same rate, regardless of how far apart they become.




Figure 2.5: Evolution of two in-phase, equal amplitude solitons along a transmission
line. The fibre dispersion of 15 ps/nm/km and pulse width of 10 ps give a collapse
distance of 108 km (Zp = 216.7km) at the data rate of 20 Gbit/s.

This can result in out of phase pulses walking into adjacent bit slots producing
errors. It has been suggested that in the context of a pulse stream the mutual
repulsion from out of phase pulses on either side will give a stable operating point
with no pulse movement [85]. However in the usual amplitude modulation format
of a soliton data stream there cannot be pulses ecither side of every pulse and thus
this method fails. This result is borne out in section 4.2.3. Another possibility is
that midway between in and out of phase there is a point at which the pulses neither
attract or repel (8 = 7/2,37/2), but this point is unstable and any perturbation
will cause the phases to shift to one of the two extremes outlined above.

So far we have only considered pulses of equal amplitude (r=1). The case
where the amplitudes are unequal has attracted a certaln amount of interest re-
cently [86]-[88]. Unequal amplitude solitons introduce an interesting behaviour to
o transmission line, in that they essentially eliminate the problem of soliton inter-
actions. Figure 2.7 shows the evolution of two such solitons, with an amplitude
difference of 10%. Although there is an interplay between the pulses, unnoticable

on this figure, their actual position 1n time does not change and they remain in
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Figure 2.6: Two 10 ps pulses at 20 Gbit/s in standard fibre, as in figure 2.5, but
with a 7 phase difference between them.

their given bit slots. This behaviour arises from the difference in the evolution
rates of the phases of the two pulses. As described above (equation (2.44)) the rate
of evolution of phase is related to the pulse amplitude. Thus the phases of unequal
amplitude pulses will vary at different rates, constantly going in and out of phase,
hence the pulses periodically attract and repel and both effects cancel out. This
effect has been used successfully to propagate solitons for 11500 km at 20 Gbit/s
[87] and 500 km at 80 Gbit/s [88].

The other distinct soliton interaction case is that of solitons of different
frequencies, as used in a wavelength-division multiplexed (WDM) communication
system [84, 89]-[91]. Trains of pulses of different frequency will travel at different
rates due to the difference in the group velocity and will hence collide and interfere
periodically when they are in conjunction. After interfering the pulses emerge
unperturbed from the encounter, as illustrated in figure 2.8.

Even though the pulses do emerge unscathed by their encounter, there is a
small modification to the pulse position, seen in the figure, resulting from the mod-

ification to the refractive index. The manifestation of the refractive index change 1s

47




Figure 2.7: Interaction of two in-phase solitons at 20 Gbit/s in standard fibre with
an amplitude difference of 10%

Figure 2.8: Interaction of two 10 ps pulses of different frequency (40 GHz frequency
separation) on propagation along an optical fibre.
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that while the pulses interfere, the slower pulse is retarded and the faster pulse ad-
vanced, by a time proportional to their frequency difference [72, 89]. Although both
pulses return to their original velocity once the interaction is complete, there is an
implication for data in a WDM transmission system. Due to the random data im-
posed on the communication data stream, the pulses of one stream will not always
encounter a pulse from the other. This results in a random number of temporal
shifts any given pulse encounters. Over a long-haul communication system, the
temporal shifts can become significant and thus limit how closely WDM channels
can be placed. This thesis considers only single wavelength channel propagation so

this effect shall be left out of the systems design considered below.

2.8.2 The Gordon-Haus effect

It was mentioned above that solitons are resilient to perturbations, as they try
to re-attain the stable soliton solution if perturbed. This can lead to somewhat
unusual consequences, such as the random timing jitter solitons experience in long
transmission systems, know as the Gordon-Haus effect [53, 92]. This resilience also
leads directly to one method of dealing with this timing jitter problem.

The Gordon-Haus effect is a result of the ASE noise introduced by the
EDFAs to the propagating signal. This noise affects all four of the parameters
required to define a soliton, namely the temporal position, the spectrum, the pulse
width and the phase, but the most important perturbation is found to be that
experienced by the soliton spectrum [93],pp.130. The resilience of the soliton to
perturbations means that the pulse will try to absorb this noise component. This
absorption results in a small change in the soliton spectrum as its average central
frequency will be shifted by the new noise induced component of the spectrum,
toward or away from the new noise component frequency, depending on the relative
phases. This frequency shift can have a profound effect. The problem encountered
is not however in the frequency domain but in the temporal domain. The slight
change in frequency gives a small change in the group velocity of the pulse. Over a
long propagation distance, this will result in a difference in the arrival time of the
pulse from the centre of its nominal bit slot, the random timing jitter.

Briefly, the Gordon-Haus effect comes from the change in the group delay
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of a pulse over one amplifier span L, of At, = fyL,Aw for a frequency change
Aw. By considering an ensemble of pulses and summing their variation over the
full system length an estimate of the standard deviation of the pulse arrival time

< 13, >1/2 can be derived as [92]

<t2 > B 27115 Nsp|Bo|he(G — 1)L?

7 ; - 2.62
N 97’0/\214fo!\(2) ( 6 )

where Ngp is the spontaneous emission factor of the amplifiers, i is Planck’s con-
stant, G is the amplifier gain and 7y is the pulse width. This equation shows that
the deviation of the pulse position and hence jitter experienced is dependent on
the system length by L*?2. For short systems this will mean that the jitter is low
(depending on the other parameters) and not a significant problem, but for longer
system lengths the jitter may become significant and can be the limiting factor in
long distance systems design.

In order for the detector at the end of a system not to receive an error the
pulse must arrive within a time window =t,, around its input position. Assuming
Gaussian statistics, obtaining a typically acceptable bit-error ratio (BER) of less

than 1079 requires that the variance allowable is [72, 92]

(tx) = <é1>2 (2.63)

Through equations (2.62) and (2.63) we can find the maximum transmission dis-

tance allowed for a given set of parameters and this error ratio as

t2 Aopr LA}
< 0.1372- TrlyAef) 0

L3
! NSP’I'LQDQI'I,(G - l)

max

(2.64)

where we have used the experimentally useful units Dy and 7, = 2in(1 + ﬂ)m =
1.76370, the full-width at half-maximum width for a soliton. Thus we see that there
is a limit to the length of any soliton transmission system due to the ASE noise
shifting the frequency of the signal and hence the arrival time of the pulse through
the interaction of the pulse with dispersion. This is illustrated in figure 2.9 for a
typical system of 10,000 km. The jitter is clearly seen as the pulses have moved

away from their input position at the zero point of the time axis. The system




simulated is too jittered for use if the data rate were 10 Gbit/s and a typical

arrival window of one third of the bit interval t,, = 33 ps is used.

0.015 T y T

0.010 -

Power (W)

0.005 r

Figure 2.9: Example of the Gordon-Haus effect on 32 pulses, 20 ps wide after
transmission through 400 amplifiers spaced every 25 km, giving a system length
of 10,000 km. The amplifiers were assumed to be perfect (Ngp = 1) and the fibre
dispersion was 1 ps/nm/km, giving a deviation in the pulse arrival time at this
point of < 3, >1/2= 49 ps.

We mentioned earlier the use of filters to reduce ASE noise introduced to an
optical signal by EDFAs. However, filtering the noise away from the solitons is a
somewhat double-edged sword in that whilst filtering reduces the bandwidth of the
noise and hence the shift in frequency experienced, it also introduces an additional
loss to the wings of the soliton. In practice filters also have a finite insertion loss
across the whole bandwidth. In order to compensate these losses, the gain of the
amplifier must be increased. This again leads to an increase in the jitter. As the
ASE noise introduced to the signal increases linearly with gain [92] the noise at
the centre of the soliton spectrum which cannot be filtered will increase degrading
the signal-to-noise ratio discussed below. Thus a balance must be struck as to the
bandwidth of the filtering and gain that is acceptable [94].

One other possible way to reduce the Gordon-Haus jitter would appear from
equation (2.62) to be that of reducing the dispersion of the fibre link. Whilst this
method does give some benefit, reducing the dispersion reduces the power required
to support a fundamental soliton. If the dispersion is taken too low the energy

in per pulse will be insufficient for the detector to distinguish the signal from the
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noise resulting in errors at the receiver. There are other problems that can be
encountered by solitons in low dispersion systems, particularly the effects of higher
order dispersion and polarisation mode dispersion (PMD) which limit how low
the dispersion can be taken. Optimisation must be performed to find the exact
dispersion required.

As this timing jitter appears to limit the possibility of long distance soliton
transmission and the data rates of such systems, a great deal of work has been
directed to reducing or eliminating its effects [95]-(102]. There is an overlap here
to other soliton work towards an optical fibre “soliton storage ring” where pulses
can be maintained for long times (and hence long distances) in order to provide
an optical buffer or memory [103]-[106] which obviously suffers similar problems
to soliton transmission. One novel result has returned solitons to the fore again. It
has been shown that this resilience could lead to a substantial reduction in the ASE
noise build-up and the accumulation of timing jitter, by forcing the solitons to follow
a change in their central wavelength [107]-[111]. By gradually changing the central
wavelength of the filters in a transmission line away from the input wavelength, the
solitons are forced to slide to the new central wavelength. However as the noise is
linear it cannot follow the shifting wavelength and will eventually be attenuated
by the filters. This “sliding-guiding” filter technique has been used to great effect
to propagate solitons of 20 Gbit/s over 14,000 km error-free [111]. The advantages
found from this form of filtering by far outweigh the disadvantages of the extra gain
requirement. There are still concerns however over this filtering technique regarding
its implementation in a real system where supervisory systems are required, such

as its compatibility with optical time-domain reflectometry (OTDR).

2.8.3 The required signal-to-noise ratio
Another consequence of noise for optical communication systems is the requirement
that the signal-to-noise ratio (SNR) be maintained at a level which 1s acceptable

at the detector. The SNR from signal-spontaneous beat noise is given by [14]

72 . . 2
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where F,,; = N(G — 1)phvB is the total ASE power at the output of amplifier N
in a bandwidth B and P,,; is the average optical power in a signal pulse. As the
power required to support a fundamental soliton is a function of the dispersion of
the optical fibre, this requirement can limit how low the dispersion can be taken
in trying to eliminate effects such as Gordon-Haus jitter. Frequently the minimum
SNR requirement is taken as 23 dB within a bandwidth of half that required for

the data rate, B = 1/2Tx [72].

2.8.4 Average power considerations

At the other end of the power scale from the required SNR, there are other power
aspects of soliton system design. For a soliton data stream, the average power

requirement is found by averaging over a single bit period,

P 1 /’j{",?/‘z P ; 2({ ) " (9 66)
av QTR St 0sech, '/7_(1 at 2.
Pyro
= 2.67
2Tx (2.67)

where the factor of 1/2 assumes 50% data ones in the data stream. Substituting
from equations (2.41) and (2.32) we obtain the average output power required from
an amplifier as

_ N?|Dy|N?

P, = (2.68)

weyrolh

The first power aspect to consider is that of the maximum safe average
power in the fibre. As equation (2.68) shows, the power requirements for solitons
goes up linearly with the data rate and the dispersion, and inversely with pulse
width. As the drive to ever higher data rates continues, so the average powers
required will increase to the point that they may approach the limits set for the
average powers by safety standards. Current UK safety limits allow up to 50 mW
of optical power. Whilst this is generally not a problem as yet, it may become one
in the not too distant future. The problem is more acute for upgrading the existing
standard fibre base to higher data capacity, due to the large dispersion at 1.55um
of around 17 ps/nm/km.

Another power consideration that causes concern amongst those in favour

of NRZ transmissions is that of the average power required to support solitons.
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Systems designers wish to keep powers low partly because for laser diodes higher
operating output powers generally mean lower device lifetimes hence lower relia-
bility and additional replacement costs. The argument against solitons is that as
solitons are nonlinear pulses, the power required to support them must necessarily
be greater than that for NRZ systems. On the face of it this is a valid argument but
neglects the mark-to-space ratios of the two formats. NRZ systems essentially have
a mark-to-space ratio of one, with an NRZ data one essentially filling its data slot.
As discussed above though, in order to avoid unwanted soliton-soliton interactions
(assuming in-phase, equal amplitude pulses, as usually preferred for soliton system
designs), solitons require a mark-to-space ratio of 1:6 -~ 1:10. Thus although the
peak power of the solitons may well be higher than that of NRZ pulses, the average
power per bit interval can in fact be significantly lower. The NRZ average power
requirement stems from the need to maintain a given signal to power ratio, given
by

L

P =2SNR(G — I)NS,)I‘),/J,BL (2.69)

a
By way of example, for a given fibre dispersion of 0.5 ps/nm/km and loss 0.2
dB/km over amplifier spacings of 25 km at a data rate of 10 Gbit/s, the average
power required to support a data stream of 10 ps solitons at 1.55 pm will be 0.93
mW at the output of any amplifier in the system. Taking the requirements of
SNR = 23dB and B = 1/2Ty as above, Ngp = 2.0 and a total system length
of 10,000 km for an NRZ system the average power will be a minimum of (.44
mW. Hence this example soliton system would require approximately twice the
minimum power of an equivalent NRZ system. However, this is the actual soliton
power required fixed by the average soliton prescription as opposed to the mininmum
for the NRZ system. Such a factor of 2 may well be absorbed by further safety
margins in the NRZ system and so giving similar average powers lor both types of

system.

2.8.5 Acoustic interactions

Solitons propagating along a transmission fibre send an acoustic shock wave trans-
verse to the fibre axis into the fibre cladding through electrostriction [112]-[114].

This results in a self-frequency shift in the pulse again giving a temporal shift with
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propagation. In addition, there is an interaction with pulses arriving later, as the
wave reflects from the cladding boundary ~ 20ns later. These shifts in the carrier
frequency, as for the Gordon-Haus effect, give a change in the GVD the pulse ex-
periences giving a shift in the arrival time of a pulse. The main concern for optical
communications is not the self-action, which will be the same for each pulse, but
the pulse-pulse interaction as, if data is imposed on the optical signal, whether or
not a pulse experiences this interaction will depend on whether a data one is the
correct distance ahead or not. This random timing jitter increases as the square of
the distance transmitted, or linearly with distance when using filters [115].

As the strength of the acoustic interaction varies with the square of the dis-
persion [112]-[114], this mechanism can become very significant in high dispersion
systems, such as in the first experimental observation of this jitter [116]. As long
distance systems generally require lower dispersions, Gordon-Haus jitter will tend
to dominate in these systems. However as shorter systems can use higher disper-
sion, acoustic interactions can be the dominant jitter mechanism for solitons. This
may present a limit particularly with regard to the upgrading standard fibre sys-
tems over 1,000 km as even if dispersion compensation is used to remove the other
unwanted effects of high dispersion this jitter mechanism will not be compensated

and will continue to build up in the standard fibre sections.

2.8.6 Soliton system design diagrams

Now that the main limits to soliton systems have been discussed we need some way
of assessing their combined impact, to find the possible set of parameters under
which a system can be operated. This is generally done through the use of a soliton
systems design diagram, where the above limitations are plotted as a function of
pulse widths against amplifier spacing. Here we consider the design diagrams for
long distance high data rate transmission, namely trans-Atlantic (> 6,000km) and
trans-Pacific (> 10,000km) systems.

Figures 2.10 and 2.11 are the design diagrams found, using the above lim-
itations, at data rates of 5 and 10 Gbit/s respectively for (a) trans-Atlantic and
(b) trans-Pacific system lengths. As can be seen, there is a wide range of allowable

pulse widths and amplifier spacings for 5 Gbit/s even for 10,000 km. However, for



10 Gbit/s while the system can be operated over 6,000 km, there is no region of
operation for 10,000 km. In this case the major limitation is the Gordon-Haus jitter
which requires such long pulse widths to suppress its effects (see equation (2.64)).
Thus, as stated above Gordon-Haus jitter is generally the main limitation to soliton
propagation over long distances. Given the small region of operation for 10 Gbit/s
over 6,000 km is seems unlikely that data rates above this, the next two being 20

and 40 Gbit/s, will even make transatlantic distances.
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Figure 2.10: Design diagrams for a 5 Gbit/s transmission system for distances
of (a) 6,000 km and (b) 10,000 km. Limits are above solid lines and below
dotted lines, shaded area shows acceptable region of operation. Other param-
eters used were A = 1.555um, Dy = 0.5ps/nm/km,« = 0.22dB/km, Ngp =
1.4, Ay = 40pm? SNR = 23dB within a bandwidth B = 1/2T%, Gordon-Haus
jitter BER = 107% in a window Tg/2. Note that the soliton interaction limit is
unimportant for this system configuration and length and is above the maximum
pulse width shown.

It must be noted that the rules outlined above used for such design dia-

grams are necessarily conservative, although this is counterbalanced by their over-



simplicity in ignoring other effects such as PMD. Actual systems design will take
these design diagrams only as a starting point, with the eventual choice of sys-
tem parameters found by extensive numerical simulation and experimental testing.
Obviously they do not include some of the more advanced techniques to extend
the transmission distance such as sliding-guiding filtering. As such, although these
diagrams can form a basis for further work, their main function can be to set the
direction of the work required to improve the transmission. An example of this will

be seen for shorter system lengths in chapter 4.
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Figure 2.11: Design diagrams for 10 Gbit/s as in figure 2.10.for distances of
(a) 6,000 km and (b) 10,000 km. Limits are above solid lines and below dot-
ted lines, shaded area shows acceptable region of operation. Again, other pa-
rameters used were A = 1.555um, Dy = 0.5ps/nm/km, o = 0.22dB/km, Nsp =
1.4, Ayyp = 40pm?* SNR = 23dB within a bandwidth B = 1/2Ty, Gordon-Haus
jitter BER = 107% in a window Tp/2.



Chapter 3

Stepwise dispersion profiling

optical transmission systems

3.1 Introduction

The perturbations to solitons from the loss-gain cycle of a periodically amplified
communications system are essentially negligible if the system is designed such that
amplifier spacing condition of the average soliton prescription is satisfied (L, < Zg
or z, < zy), . However, as L, — Zy the perturbations to the pulses can become so
great that the solitons can no longer recover and the pulse may be destroyed within
a few L,. Since the period of a soliton Z; is proportional to 75/D; as we move to
ever higher data rates and hence shorter pulses so the soliton period and allowable
amplifier spacing decreases and the problem becomes exacerbated. For an average
soliton of width 79 in a system of fixed amplifier spacing L,, the soliton period may
be increased by reducing the fibre dispersion, Dy, hence reducing the perturbations.
However, since the soliton power is also proportional to Dy, this has a detrimental
effect of simultaneously reducing the pulse power and therefore the signal-to-noise
ratio (section 2.8.3). Alternatively, the distortions may be reduced by improving
the balance between dispersion and nonlinearity. One possible method is to replace
the erbium-doped fibre amplifiers with distributed amplification provided by low
doped erbium fibre throughout the transmission line (117, 118], thereby smoothing
the variations in the soliton power. However, distributed amplification presents

practical difficulties because of the long amplification distances and criticality of the



pumping scheme. A second possibility: is to tailor the fibre dispersion to match the
variation of the soliton power and hence improve the GVD-SPM balance [119, 120].
Tailoring is entirely passive, may be implemented with no reduction in the average
system dispersion, and therefore no reduction in the signal to noise ratio, but does
require careful design of the dispersion profile for optimum results. It is this scheme
and in particular its design problem which is the subject of this chapter.

A number of studies of soliton propagation in fibres with periodically varying
fibre parameters have already been reported. One particular application is the
generation of high repetition rate solitons by propagation of the beat signal from
two c.w. waves separated in frequency by the required repetition rate through a
suitable dispersion decreasing fibre [121]. For soliton communication systems, it
has been shown that average soliton concepts also apply to soliton propagation in
such fibres [25]. Thus, the average soliton is robust to the perturbations resulting
from fluctuations in the fibre parameters, arising during the manufacturing process
provided, as above, the period of these variations is short compared with the soliton
period. Indeed, under this condition, soliton robustness to large scale changes in the
fibre dispersion has been studied and verified numerically [26]. Deliberate profiling
of the fibre dispersion to improve propagation results was first suggested by Tajima
in 1987 [119]. It was noted that an exponentially varying fibre dispersion which
matched the exponential variation of the pulse energy could in principle facilitate
distortionless transmission. However, such careful profiling of fibre dispersion is
difficult to achieve over long fibre lengths at present. Therefore, it was suggested
subsequently that the exponential variation could be approximated by a stepwise

linear decrease [122]; using many fibre sections of equal length and the dispersion

required at the section midpoint. The results were studied using a variational
approach over a single unamplified span and improvements in transmission fidelity
were obtained. This chapter considers in further detail the potential advantages of
stepwise dispersion profiling to periodically amplified systems. Using an intuitively
appealing perturbation function, a simple scheme for optimal profiling is derived
which is shown to allow average soliton propagation beyond the usually accepted
limits. While soliton communication systems are the focus of this discussion, the

results apply equally to unidirectional erbium fibre ring lasers.



3.2 Mathematical model description

In section 2.6 the concept of the average soliton was introduced, wherein a pulse
can propagate as if in a lossless medium. However, although the soliton appears
to propagate with the nonlinearity and dispersion in balance over many amplifi-
cations, over one amplifier span there is a local mismatch. Figure 3.1 shows the
nonlinear coefficient of the NLSE, A?(2), defined in equation (2.51) and therefore
the mismatch between dispersion and nonlinearity over an amplification period,
for an example soliton communication system. The above average intensity level
in the first part of the period results in an initial surplus of self phase modulation
chirp over group velocity dispersion chirp, which is then compensated during the
latter part of the period, where the group velocity dispersion dominates over self
phase modulation. (In a fibre laser, the presence of distributed gain and lumped
loss, as opposed to lumped gain and distributed loss, reverses the order of these
dominating influences.) This spatial mismatch results in a perturbation to the av-
erage soliton which depends on the depth and period of the modulation and has
been shown to be O(22) [23, 24] where as before z, = L,/Lp. Detailed expressions
for its magnitude can be obtained as a function of the distance variable, z, via a
perturbation approach [23] or per amplifier spacing, z,, via an operator approach
[62]. In this work a simple integrated measure of the perturbation per amplifier
spacing is considered to be the mismatch area, AT, 2z,), between the function

A?(z) and its average, given by,
‘Za 1 p .
A = / [A%(z) — 1ldz = = A% — 1 — inA] (3.1)
J0

with T = 2L, the normalised loss as before (equation (2.48)) and
2

2z,
- e (3.2)

1 — ()2]‘2,1

A

onNe

as in section 2.6. This function is O(z?) for small z, and is directly related to
the first order perturbation function (A;(z)) derived in [23] which is itself O(z,)
and perturbs the nonlinear Schrodinger equation with nonlinear terms of O(z%).
Thus A; is a lowest order and intuitively appealing measure of the net periodic

perturbation. This takes no account of any evolution in the soliton parameter but,
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as confirmed below, provides an accurate basis for predicting improved propagation

characteristics.
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Figure 3.1: Variation of the perturbation function A*(z) against distance (nor-
malised to the amplifier spacing) in a periodically amplified soliton communication
system (pulse energy, peak intensity and amplitude have similar variations). Here
the total span loss is 'z, = 12 dB

In the remainder of this chapter we shall adopt a slightly different notation
for the dispersion from that of chapter 2. The group delay dispersion of a given
fibre will be D, as opposed to D, throughout the rest of the thesis, as we wish to use
the dispersions of the various profile sections to be Dy, Dy, ..., D;. Now consider a
stepwise variation in the fibre dispersion D with average value D, and periodicity
Z4, as shown for example in figure 3.2(a). The period z, is divided into n sections
each with dispersion Dy, start point z;_; and end point z; (200 = 0,2, = 24, With
zo0 the zero point to avoid confusion with the soliton period z). The relevant

renormalised quantities are then given by

D D D
AN =Z2A, V=22, (A —72,) ==z —z-1), (3.3)
j Dj 7D, ’
where
Z D}(ZJ - Z]‘_]) = DGZQ, (34)
j=1

Tt was mentioned above that if it were possible to taper the dispersion exponentially
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[119], in our notation according to,
D(z) = D,A2e™ (3.5)

the GVD would balance the SPM continuously over the entire period. It follows
that a stepwise approximation of equation (3.5), such as that in figure 3.2(a), would
improve the balance. Alternatively, one can think of each dispersion step acting as
an effective amplification [121] to rescale the soliton amplitude, keeping the function
A% (') closer to its optimum value of unity, as shown in figure 3.2(b). Clearly, the
greater the number of steps, the better the approximation and so the reduction in
the perturbation. Therefore, the optimal dispersion profile, for any given number
of profile steps, is defined as that which minimises the total mismatch area per

amplifier spacing.
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Figure 3.2: (a) Stepwise 2-fold periodic variation of the fibre group delay dispersion
D(z) with normalised distance to follow the soliton energy variation. (b) A% (2
in the profile of (a). Note the reduction of the total mismatch area compared with
figure 3.1
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Under the above renormalisation, the total areas above and below the line

A% (2') = 1 remain equal as befits anaverage soliton, but the total mismatch area,

A=Y [ M) - 1), (3.6
j=1"%j-1

varies according to the specific profile in question. For example, figure 3.3 illustrates
the variation of /\Ql(z’ ) under a 2-fold rising dispersion profile, similar to the one
studied in ref. [26], which actually opposes the variation in the soliton power. The
average soliton condition is still satisfied over the period z,, but not within each
profile subsection. Here, in comparison to the unprofiled case of figure 3.1, the
average soliton experiences greater excess self phase modulation in the first fibre,
followed by even more dominant dispersion in the second fibre. Consequently, A,
increases in line with the increased perturbation.
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Figure 3.3: (a) Stepwise 2-fold periodic variation of D(z) with normalised distance
to oppose the soliton energy variation, for I'z, = 12 dB (2, = 24/2, D1 = Dy/2
and D, = 3D,/2). (b) A¥(#') in the profile of (a). Note the increase in the total
mismatch area compared to figure 3.1



To optimise the whole profile by minimising A,, the average soliton condi-

tion if first applied to each profile section, i.e.,
5y
[ AT = (- 7). (3.7)
-1

which minimises each individual mismatch areas. The dispersive profile of the fibre

is then slaved to the decaying exponential of equ. (3.5), and given by,

D, = D,A2 [‘f (3.8)

_«'21"3_7‘_1 — 6*2]\2_,'}

2L (2 = 2j-1)

In the simplest case of a 2-fold profile, this gives a set of solutions dependent on the
single dispersion step z;. For example, figure 3.4(a) shows the dependence of Dy and
Dy on z for 'z, = 12dB. Figure 3.4(b) shows the corresponding variation of the to-
tal mismatch area Ay, which is minimised for z; = 0.344z2,, when it is approximately
48% of A;y. Therefore, if D, = 1ps/nm/km,T" = 0.24dB/km and L, = 50km, the
optimal profile consists of 17.2 km of fibre with D, = 1.90ps/nm/km, followed by
32.8 km of fibre with Dy = 0.53ps/nm/km (figure 3.2). Although the minimum of
A, is close to the point at which the contributions to A, of each section are equal,
ie. Sy 4+ Ty, =S, + Ty in figure 3.4, they do not quite coincide.

In general, the n-fold optimal profile is found similarly, by applying the
average soliton condition to each profile section and then minimising A,. In a

concise form the solution is obtained as follows: defining,

20 (7 — zj-1)
2 _ i % .
A'} - 1 —_ eh?l"(zj——zj,,) (39)
eqn. (3.6) becomes,
AQ no =2z . .
Ay =Y S (A - 1 - ) (3.10)
©og=1 7

which is minimised numerically with respect to the (n-1) free parameters z; to z,_1.
The dispersion profile is then given by eqn. (3.8), or equivalently by,
.’l\‘é —90 2
Dj=Dy-5e " 57 (3.11)

v
A3
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Figure 3.4: (a) D, and Dy versus z for 2-fold profiling and I'z, = 12 dB. (b)
Corresponding variations in the mismatch areas Sy +T), So+715 (see figure 3.2 and
the total mismatch area As.



3.3 Results and discussion

The results above can be summarised in a pair of optimal system design diagrams
for each number of profiling steps, n. For example, figures 3.5 and 3.6 show sample
optimal design diagrams for two-fold and four-fold profiling. The required disper-
sion values and lengths only depend on the product 'z, and can be determined
for any given average dispersion and net periodic loss. In each case, the n pairs
of values (D;, z; — zj—1), which describe the profile, fan out from (Dy, zo/n) as
Iz, — 0, to give profile sections of gradually decreasing dispersion and increasing
length. In renormalised units, this corresponds to modulations of A?(2') of de-
creasing length and gradually increasing amplitude, as in figure 3.2(b). In general,
as in the two-fold profiling case detailed above, the optimal dispersion profile dis-
tributes the total mismatch area and therefore the perturbation near-evenly, but
not exactly, across the period. For instance, in the four-fold optimal profile for
Iz, = 10dB, the mismatch area per section varies by less than 1%. In long haul
communication systems, the periodic fibre loss is likely to be less than 10 dB in
order to minimise the effects of noise [123]. Thus, optimal stepwise profiling would
require fibres with dispersions varying from about twice D, to a few tenths of D,.
On the other hand, systems which could accommodate greater periodic losses would
require a set of fibres with a greater range of D. For a large profiling parameter n,
the required range of D extends over a maximum range from A%D(,, to Aﬁ])ae“zuﬂ
(see equation (3.5)).

The reductions in the relative mismatch areas, A,, /A, for optimal disper-
sion profiles are given in figure 3.7, showing a near 1/n behaviour and a very weak
dependence on I'z,. It is instructive to compare these improvements in A,, with
those obtained by reducing the amplifier spacing from z, to (zq/m). In the latter
case, the total mismatch area for n sections is given by nA, (I, z — a/n) (eqn.(3.1)).
These functions have similar 1/n dependencies to those of figure 3.7, differing only
in that their slight curvature is upward rather than downward. Taking for example,
[z, = 10dB and n=4, the optimal profile ratio A, (T, z,) /A (I, z,) 1s 0.242, whereas
the reduced amplifier spacings ratio nA; (', z,/n) /A1 (I, z,) is 0.266. Therefore, ac-
cording to our simple analysis and confirmed by numerical simulations described

below. perturbations to average solitons in a system with n-piece optimally disper-
s P g Y 1
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Figure 3.5: Optimal design diagrams for periodically amplified soliton systems
with 2-fold profiling (a) dispersion values (normalised to the average dispersion),
(b) fibre lengths (normalised to the amplifier spacing), both against total span loss
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Figure 3.6: Optimal design diagrams for periodically amplified soliton systems
with 4-fold profiling (a) dispersion values (normalised to the average dispersion),
(b) fibre lengths (normalised to the amplifier spacing), both against total span loss
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sion profiled fibre spans are marginally less thaﬁ,those same solitons in a system
where the amplifier spacing is z,/n. Th‘is 1mphesthat the increase in perturbations
caused by doubling the amplifier spacing could be readily compensated by doubling
the dispersion profiling parameter n. Alternatively, since the increase in perturba-
tions caused by halving the soliton period (ie. by reducing the pulse width by V2)
is equivalent to doubling z, (see the NLSE scalings), it could also be compensated

by doubling 7.
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Figure 3.7: Variation of the normalised total mismatch area A, /A, with I'z, for
n=2, 3, 4 and 8

In the above, the potential application of stepwise dispersion profiling to
allow either an increase of L, and therefore decrease of the number of amplifier
stations, or a decrease of 7y and therefore increase of the data rate R (Roc 1/
at a fixed mark-to-space ratio) was considered. However, the potential gains of
increasing R or L, may be mitigated by associated increases in the detrimental
effects of amplified spontaneous emission (ASE) noise. ASE noise increases with
both R and L,, and is particularly important in long-haul systems where it de-
grades the signal to noise ratio (SNR) and gives rise to the Gordon-Haus effect
[53]. Moreover, since the RMS Gordon-Haus jitter 1s inversely proportional to /7y
and the amount of tolerable jitter decreases linearly with 7q, its relative importance
increases strongly with the data rate R [53, 92]. On the other hand, increase of
L, also increases the Gordon-Haus jitter, due to higher gain amplifiers required to

overcome the greater periodic losses. As a function of G, the associated penalty is
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given by [123], : sY¥ 8 orREile
(G = 1)/inG]’
G

F(G) = (3.12)

also rising significantly with G and therefore L,. Thus, in long-haul systems the
potential gains are limited by noise considerations. If, however, the ASE noise and
in particular the Gordon-Haus effect can be controlled using one of the techniques
proposed recently [94, 95, 97, 107], then this dispersion profiling technique could
be used effectively. Moreover, in shorter span systems where the effects of concate-
nated ASE noise are not so critical (the RMS Gordon-Haus jitter varies as L2,
where L is the total system length), the cost and maintenance benefits of increas-
ing data capacity and/or using a greater amplifier spacing could be attractive to

system designers.

3.4 Numerical Examples

To demonstrate the effects of stepwise dispersion profiling, figures 3.8 — 3.10 com-
pare numerical simulations of pulse propagation along potentially realistic unpro-
filed and optimally profiled fibre systems. The chosen parameter values correspond
to a path average dispersion D, = 1ps/nm/km, a fibre loss of 0.24dB/km and
an amplifier spacing of L, = 25km, giving a periodic amplification of 6 dB. With
these parameters, the nsual design constraints allow operation of long-haul sys-
tems, in unprofiled fibre, say 6000 km in length, at 5 Gbit/s using 20ps (FWHM)
solitons. Here, a conservative bit interval (1/R) of 10 times the soliton FWHM
has been taken to avoid soliton-soliton interactions (in principle the solitons could
be closer, giving higher R for a given 79). At this data rate, the average soliton
period of 158.5 km is six times the amplifier spacing and the perturbations due
to the dispersion-nonlinearity mismatch are almost negligible. The length of the
system is then chiefly limited by the Gordon-Haus effect. However, as mentioned
above, if the Gordon-Haus effect can be overcome, or if the total system length
is only a few tens of amplifier periods, in which case the Gordon-Haus effect is
relatively small, then the dispersion-nonlinearity mismatch perturbations become
increasingly important as the data rate is increased. For operation at 10 Gbit/s,

the 10 ps pulses have soliton periods of just under 40 km and these perturbations
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are significant; beyond 10 Gbit/s, they are a,rdomi/nant/ constraint. Therefore, to
further enhance these effects and investigate their reduction using dispersion pro-
filing, the numerical simulations summarised in figures 3.8 — 3.10 were initiated
with 5.62 ps pulses (Zy = L,/2 = 12.5km), well within the normally disallowed
parameter region, thereby modelling systems with potential for operation at data
rates of 20 Gbit/s (and beyond, depending on the soliton-soliton spacing). Prop-
agation distances of a few hundred kilometres were considered and to concentrate
on average soliton effects ASE noise due to the amplifiers was not included.

Figure 3.8 shows a comparison between pulse shape evolutions in an unpro-
filed communication system and in a four-fold optimally dispersion profiled system.
The difference in their stability is clearly evident in the time domain. In the un-
profiled fibre, the initial pulse is immediately broadened and diminished during
its early phase of propagation, shedding significant amounts of radiation. Such be-
haviour is typical of this operation regime. Propagation of the initial soliton cannot
be supported by the periodically amplified system so it sheds dispersive wave radi-
ation, losing energy and broadening (note the amplitude-pulse width relationship
for solitons) until its pulse width corresponds to a soliton period which is suffi-
ciently long to satisfy the average soliton condition . In contrast, in the optimally
profiled fibre, the initial pulse is virtually unperturbed. These observations are
confirmed in the corresponding and dramatically different frequency spectra shown
in figure 3.9. The spectra of the unprofiled system show significant amounts of
energy lost to dispersive radiation, large modulation of the central maximum and
rapid growth of the first sideband resonance peak. The higher order resonances
are also present and can be seen on a logarithmic scale. In contrast, only slight
evidence of radiation ripple and no sign of the first resonance is seen in the profiled
system over this propagation distance.

Further evidence of the improvement in soliton stability is shown in fig-
ures 3.10(a-c), where details for calculations of the two-fold optimal profiling have
also been included. Figure 3.10(a) shows the stabilisation of the initial pulse width
with increasing n, indicating the increasing facility of the profiled systems to allow
propagation of shorter pulses. This is confirmed in figure 3.10(b) which measures

the fractional energy carried in an interval of £ 50 ps around the initial pulse centre.
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Figure 3.8: Pulse profile evolutions of average N = 1 solitons over 25 amplifier
periods (625 km) with 6-dB periodic loss and initial pulse widths of 5.62 ps in (a)
unprofiled fibre and (b) four-fold optimally profiled fibre, ie. profile steps at Z;_3
= 4.82,10.39, 16.96 km and D,_4 = 1.62, 1.22, 0.87, 0.58 ps/nm/km.
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(b)

Figure 3.9: Spectral profile evolutions corresponding to the temporal profiles in
figure 3.8 for average N = 1 solitons over 25 amplifier periods (625 km) with 6-
dB periodic loss and initial pulse widths of 5.62 ps in (a) unprofiled fibre and (b)
four-fold optimally profiled fibre.
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Figure 3.10: Evolutions of the pulse (a) width, (b) energy and (c) area, against
propagation distance, in n = 1 (unprofiled), 2- and 4-fold optimally profiled fibre
systems for 5.62 ps solitons over 25 amplifier periods (625 km) with 6-dB periodic
loss.
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For the unprofiled fibre, this fraction is qulckly reduced /below unity beyond 75 km,
as dispersive wave radiation shed by the solitdﬁi érosses these boundaries. With an
increase in n, the radiative component of the propagation is diminished and at n
= 4, 99.8% of the initial soliton energy is still within this window after the 600 km
propagation. This computation has been confirmed to 6000 km, after which the
pulse width was virtually unchanged, confirming the stability of the propagation
over long distances. Figure 3.10(c) shows the evolution of the pulse area, often
used as a sensitive measure of pulse distortion as it remains constant for perfect
soliton propagation [26, 27, 124}, which also reflects increasing pulse stability with
profiling.

In the above example, the potential of stepwise dispersion profiling for oper-
ating soliton communication systems with shorter pulses was examined. To study
the facility to operate with increased amplifier spacings we consider a second and
more extreme exaniple, using identical an 5.62 ps soliton source to that above,
but double the amplifier spacing to 50 km (Zy = L,/4). Figure 3.11 shows pulse
evolutions of such a system using unprofiled fibre, optimal two-fold and four-fold
stepwise profiling. The unprofiled fibre is unable to support propagation of the
initial pulse which breaks up into two main sub-pulses that separate symmetri-
cally, rapidly distributing energy over a wide temporal region. Although the two
sub-pulses appear to be reasonably stable, and may ultimately emerge as solitons,
they are accompanied at these early stages by a significant quantity of low level
radiation, particularly between them. Improved propagation characteristics are
obtained with increased profiling. The two-fold profiled system shows similar be-
haviour to that shown in figure 3.8(a), rapidly shedding radiation over the first
few amplification periods and leaving behind a diminished and oscillatory damp-
ing soliton. The quantity of radiation shed would certainly disrupt a potential
communications system. However, the four-fold profiled system shows almost dis-
tortionless transmission in the time domain, with negligible pulse width increase
over the first 1200 km propagation. Decreasing evidence of pulse distortion in the
corresponding frequency spectra was also noted.

Finally, compare the computation shown in figure 3.8(a) for L, = 25km

and for figures 3.11(a-b) for L, = 50km. The improvement in soliton propagation
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Figure 3.11: Pulse profiles evolutions over 25 amplifier periods (1250 km) with
12-dB periodic loss and initial pulse widths of 5.62 ps in (a) unprofiled fibre, (b)
n = 2 fibre (Z; = 17.2 km and D,_, = 1.90, 0.53 ps/nm/km) and (c) n = 4 fibre
(Zy_3 = 7.53, 17.04, 29.95 km and D,_, = 2.41, 1.51, 0.82, 0.34 ps/nm/km.
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obtained by either halving L, or by two-fold optimal dispersion profiling are almost
equivalent, as expected. These observations ére upheld by any of the usual measures
of perturbation, such as the RMS pulse width or pulse area. However, careful
comparison of the rate of growth of the pulse areas shows that in the two-fold
optimally profiled system are marginally less perturbed than in the system with
halving the amplifier spacing. This behaviour is in keeping with the marginal
differences in the perturbation function A, for these cases, as described above, and

confirms its validity as an accurate monitor of average soliton perturbations.

3.5 Conclusions

We have shown that stepwise dispersion profiling in periodically amplified systems
allows stable propagation in regimes normally forbidden to the average soliton.
In particular, n-fold optimal dispersion profiling yields an equivalent reduction
in perturbations as n-fold reduction of the amplifier spacing. Thus, in general,
if stable propagation is achievable for a system with amplifier spacing L, and
pulses of soliton period Zy, n-fold optimal profiling will permit extension of the
amplifier spacing to nL,. Equivalently, for the same amplifier spacing, it will
allow stable propagation of solitons with period (Zy/n), yielding corresponding
/7 increases in the achievable data rates. Given the improved propagation found
using dispersion profiling to a given average dispersion as against a single fibre with
that dispersion, it seems reasonable to assume that profiling will give significant
improvements over reducing the dispersion of a given amplifier span, especially as
the SNR problems found with low dispersions are avoided. Therefore, in practical
periodically amplified systems, stepwise profiling could be utilised to increase single
channel data rates well beyond 10 Gbit/s or to reduce the number of amplifier
stations, provided the associated noise penalties are relatively unimportant, as in
short-haul systems, or provided the Gordon-Haus effect can be controlled in long-
haul systems.

To analyse the optimum dispersion profile a simple and intuitive measure of
the perturbations which arise from the discontinuous balance between dispersion
and nonlinearity was used. The validity of this perturbation function has been

verified numerically and, based on it, a straightforward algorithm for determining
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optimal n-fold profiles has been presented. Usinrg/’fc,his method, n-profile design
diagrams in terms of the path-averaged syst,érh diépefsion and net periodic loss are
readily obtainable and examples for two-fold and four-fold profiling have been given.
In practice, only a limited set of fibres with different dispersions will be available.
Nevertheless, the same approach could be used to optimise system design for the
fibre available.

The results presented above apply only to unidirectional transmission. They
are however equally applicable to unidirectional, mode-locked erbium fibre soliton
lasers. In these lasers, the cavity must be sufficiently long for the nonlinear mode-
locking mechanism to operate effectively. As a result, the pulse width is limited
via the same average soliton condition and unwanted frequency sidebands are often
generated. Therefore, stepwise dispersion profiling of the gain medium could also
be used to suppress sideband generation and to stabilise the mode-locking of shorter
solitons. In either case, the profiling required is simple to implement and, with the
benefits found, should provide a useful method of improving soliton propagation

in systems outwith the usual average soliton limit.
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Chapter 4

Soliton transmission over

standard fibre

4.1 Introduction

Of the ~50 million kilometres of optical fibre installed world-wide, most is so called
standard fibre, with low-loss in the 1.3 and 1.55 pm wavelength regions, the second
and third communications windows, and low dispersion in the 1.3 pm window.
Generally, current systems work in this second window using electronic regenerators
to re-time, reshape and amplify the optical signal periodically to maintain the data
over the system length. The major drawback of these regenerators is that they
operate at a fixed data rate which necessitates their replacement if the system
is to be upgraded to higher data rates. Recently, interest has turned to replacing
these regenerators with erbium-doped fibre amplifiers (EDFAs), which have a wide-
bandwidth and therefore are in principle data rate transparent. However as they
do not re-time or reshape the optical signal they introduce other system design
problems that must be addressed [125], mainly due to the higher dispersion of the
optical fibre in this window.

Several methods of coping with the dispersion problems have been sug-
gested, including the use of dispersion compensating fibre {5, 6, 126]-[130], opti-
cal phase conjugation [131]-[134], pulse pre-chirping [18, 135, 136] and duobinary
transmission [137, 138]. Of these, phase conjugation is a complex process to im-

plement efficiently and pulse pre-chirping and duobinary coding are limited in the
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distance over which they can be effectiveftbz&}oii:nd/ 150 km. Dispersion compen-
sation is simple and effective, but requireé large additional fibre lengths, greater
optical gain leading to additional amplifier noise and a reasonable degree of accu-
racy. However, as well as being supported by the fibre dispersion in the erbium
gain band, solitons have two major advantages over linear propagation in standard
fibre. The existing standard fibre was mostly made before polarisation mode dis-
persion (PMD) could be reasonably well controlled in the manufacturing process.
While this is a major problem for linear propagation techniques solitons by their
very nature can cope with a reasonable degree of PMD (see section 2.7). Addi-
tionally, solitons are compatible with all optical switching and routing technologies
proposed to overcome the electronic bottle-neck problems encountered at switching
nodes with the high data rates currently being considered [139]-[142].

In this chapter, we study the problems associated with using solitons to
upgrade embedded standard fibre systems with EDFAs. In particular we study
systems where the existing amplifier spacings are >30 km with a view to upgrad-
ing the data rate to 10 Gbit/s, which is a specific but important technological
challenge relevant to the current European optical network [85]. The soliton sys-
tem design constraints are discussed and investigated by numerical simulation. We
show that soliton propagation should be possible in standard fibre systems to dis-
tances of around 200 kin, and that phase modulation and alternating amplitude
codings are detrimental in such highly perturbed systems. In order to extend this
distance a novel method of improving soliton propagation in standard fibre systems
is examined. This investigates the use of dispersion compensating fibre, incorpo-
rated as part of each amplifier, to reduce the average dispersion of each system

link. This scheme should lead to soliton propagation for greater than 2000 kin.

4.2 Solitons in standard fibre

The design constraints for soliton systems were discussed in chapter 1. For such
short systems as those considered here, two of the constraints, the Gordon-Haus
jitter and the required signal-to-noise ratio are unimportant as neither has sufficient
distance in which to accumulate to any significant degree. The soliton interaction

and average soliton constraints must however be balanced to give a stable prop-
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agation. The average power req-uirem’ént?icénf a’:léob‘ef an issue; due to the high
dispersions of these systems.

In order to illustrate and assess these constraints, we shall consider a par-
ticular system. The standard fibre was taken to have a dispersion of 15 ps/nm/km
and a loss of 0.2 dB/km at the 1.55 um signal wavelength, and the data rate was
10 Gbit/s. It was assumed the EDFAs could provide the optical powers and gain
necessary for soliton propagation, with the amplifier output power in the range
5-15 mW. Figure 4.1 is the design diagram for these system parameters resulting
from the constraints outlined above. The average soliton (AS) and average power
(AP = 5, 10 and 15 mW) constraints are minima, whereas the soliton interaction
(SI) constraints for system lengths of 144 km and 360 km are maxima. The design
diagram identifies an acceptable region of parameter space for a 144km system with
10 mW optical amplifier output powers and amplifiers spacings below 12 km, as
highlighted by the shaded region around 25 ps. Similarly, for system lengths of 360
kim, these constraints dictate higher average powers of 15mW, shorter pulse widths

of around 15 ps and impractically short amplifier spacings below 6 km.
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Figure 4.1: Design diagram for a 10Gbit/s standard fibre system. Solid line (AS) is
the average soliton constraint, dashed lines are the average power (AP) constraints
for 5, 10 and 15 mW and the dot-dashed lines are the soliton interaction (SI)
constraints for system lengths of 144 and 360 km. The region of operation for a
144 km system with 10 mW average amplifier output powers is shaded.

The upgrade of existing systems means that ideally the original amplifier

spacings should be maintained. In this section, we focus on the use of 36 km
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original amplifier spacings for total isystemfl/;e/ﬁgth:s :up to 360 km (see figure 4.2),
corresponding closely to the current Eufopééﬁ optical communications network
[85]. Since operation of soliton systems at 10 Gbit/s necessarily prohibits soliton
widths greater than approximately half the bit interval of 50 ps, the associated
soliton periods in standard fibre are only a few tens of km. As L, = Z;, average
soliton perturbations are severe and the system design is closely squeezed between
the competing requirements of the soliton-soliton interaction and average soliton
constraints. As a result, any potential system is highly perturbed and as shown
in the design diagram of figure 4.1 there is now allowable region of operation,
according to the simple design rules above. However, these design rules are based
on long-haul system considerations which use conservative guidelines to completely
avoid perturbations. Therefore, in order to probe these constraints more closely and
identify the limits more precisely, we have performed extensive sets of numerical

simulations using full NLSE propagation, as described in the following section.

<10110010111..> \

AN Error rate
b S%*‘ LPF - Estimation

Figure 4.2: Schematic diagram of the system under consideration. L, is the ampli-
fier spacing of 36 km. LPF is a raised cosine electrical low pass filter. n is number
of amplifier sections.

4.2.1 Standard fibre system simulations

The system was simulated by propagating a random bit sequence of 144 data bits,
50% data ones, at 10 Gbit/s, via the split-step Fourier method along 36 km of
standard fibre, before being amplified by gain equal to the previous loss. Amplified

spontaneous emission (ASE) noise was included, for an amplifier spontaneous emis-
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sion factor Ngp = 1.4. Qutput could be,obtdinga.:aftér éach amplifier.. The receiver
was simulated as a fast photodiode followea by an electronic filter with a bandwidth
of half the data rate to convert the return-to-zero (RZ) soliton data to non-return-
to-zero (NRZ) format. It was then possible to estimate the bit-error ratio (BER)
from the received eye diagram through the @ parameter method [143]-[145], where

() is given by,
= o

, 4.1
P (4.1)

for means p; and standard deviations o1 of the data 1’s and 0’s. The BER is

then estimated according to,

1 eap(-Q°/2)

BER = NGt 0 .

(4.2)

For each BER computation, the 144 data bits were propagated in 9 sets of 16 bits
for speed of simulation, as it was found that the BER estimated was the same using
this method or a single 144 bit propagation. We note that determination of the
BER by this method is normally performed for a set of single, isolated pulses to
avoid an under-estimate of the Q from patterning effects. However, in this work we
expect strong soliton interactions, the nature of which will be pattern dependent,

necessitating the inclusion of patterning in the BER estimate.

4.2.2 System performance results

Simulations were performed for pulse widths of 10-50 ps to test the maximum
transmission distance for which data could be recovered. Figure 4.3 shows a typical
simmulation result taken at each amplifier output for 30 ps pulses propagating to 360
km. After only a few amplifications the pulse train begins to distort and by the end
of the simulation the data has been lost. However up to around 200 km, although
the pulse shapes have been corrupted, the energy associated with each data one
largely remains in the appropriate bit slots. This is not obvious from figure 4.3
but is clearly seen in the filtered eye diagrams of figure 4.4. These show that as
the pulses propagate, the initially clean eye (a) is gradually degraded (b-d) but
remains open to 216 km. However, by the next amplification at 252 km (e), the

eye is beginning to close, giving significant errors at the receiver, and by 360 km
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(f) the eye has completely closed. Thus, Wé_ée/eftha;t é,lthbugh the pulse shapes are
changed, the data can be recovered to a distance of 216 km, corresponding to 6

amplifier spans.

Figure 4.3: Example simulation of a 30 ps pulse train over 360 km of standard fibre
with data < 1111011110110101 >.

This is also shown in figure 4.5, which summarises the BERs for the range
of pulse widths from 10 to 50 ps with increasing distance. We note that the esti-
mated BER values are somewhat optimistic. However, these numerically obtained
error rates do not take account of effects not attributed to the soliton propagation
through the fibre and EDFAs, such as source and receiver noise. This diagram
does not therefore attempt to predict experimentally measurable error rates but to
indicate where the system might reasonably be expected to operate.

Figure 4.5 shows that there is a small parameter region in which solitons
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Figure 4.4: Filtered simulation eye diagrams corresponding to figure 4.3 after sys-
tem lengths of: (a) 0 km (b) 144 km (c) 180 km (d) 216 km (e) 252 km (f) 360
km.
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Figure 4.5: Logio(BER) versus pulse width for propagation in standard fibre to
distances of 144-360 km. Output is taken after each 36 km spaced amplifier.

can propagate for pulse widths of around 30 ps. For a system of length 144 km,
data streams with pulses in the range 22 — 38 ps propagate with acceptable error
rates. As the distance increases, so the range of pulse widths diminishes until no
pulse width will propagate. However, this is substantially better performance than

anticipated by the design diagram of figure 4.1.

4.2.3 Phase and alternating amplitude modulation

In these simulations, the initial solitons were generated in-phase. It was noted
in section 2.8.1 that a stream of pulses alternating in phase by 7 (anti-phase)
could in principle stabilise their positions against soliton interactions by mutual
repulsion from the pulses on either side, and that phase quadrature (7/2 difference)
does not give any soliton interactions, but is an unstable operating point. It has
been suggested that the anti-phase condition could in principle constitute the most
stable operating condition for soliton transmissions [84, 85, 146]. To examine these
possible phasing schemes, figure 4.6 shows simulation results for the variation of
BER with initial phase separation of adjacent bits for 30 ps pulses at 144 and 180
km.

We find that the error ratios are lowest for pulses which are in phase or

nearly in phase. While the error ratio is also reduced where the pulses are in anti-
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Figure 4.6: Logo( BER) versus initial intra-pulse phase separation (x2m radians)
for 30 ps solitons in standard fibre for system lengths of (a) 144 km and (b) 180

km.
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phase for 144 km, the deviation obtzﬁn{éd?fdr"‘thé Valueof Q is larger indicating
a worse operating point. This is more obvious one amplifier span later at 180
km. Thus, in this system varying the initial intra-pulse phase difference does not
improve the system BER performance and in particular there is no indication of
improvement for soliton phasing in quadrature or anti-phase. Therefore we see
that when using amplitude-shift keying (ASK), the normal on/off bit modulation
format for solitons, the missing pulses (data zeros) mean that the mutual repulsion
between neighbouring solitons required for phase quadrature (7/2 phase difference)
does not exist for all pulses, confirming that it is an unstable operating point. Hence
we conclude that phase modulation does not offer any advantages in such highly
perturbed systems.

Similarly, in figure 4.7 we summarise a set of simulations to test the effect
of using solitons of alternating amplitudes, which in principle could also reduce the
effect of soliton-soliton interaction [86]. As above, it was found that in this heavily
perturbed system no benefit could be gained from using this scheme. Typically,
a pulse-to-pulse amplitude difference of around 10% is required to significantly
reduce the interactions. Variations of up to this level were tested, but in every case

a significant degradation in the system BER performance was observed.
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Figure 4.7: Logyo( BER) against the difference in the soliton N number for 30 ps
alternating amplitude solitons in standard fibre to 144 km.
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4.3 Dispersion compensatlonWIth solitons

We have shown that it is possible to operate solitons over short standard fibre
systems for up to 216 km. A remaining problem, however, is that optical powers
of around 12 mW are required from the output of each EDFA. In addition, this
system is limited in maximum distance, with an increasingly narrow range of toler-
able pulse widths. In order to alleviate these distance and pulse width constraints,
it is necessary to do more than install EDFAs and propagate solitons. The ap-
proach we consider here is to reduce the average dispersion and optical power by
dispersion compensation. We adopt this approach as, even though it is possible
to dispersion compensate NRZ systems in this way, solitons may be more resilient
to the perturbations of such compensated systems. Furthermore, solitons do not
require complete dispersion compensation as NRZ systems do, merely a reduction
in the average dispersion. Given that we are attempting to upgrade standard fibre
systems whose exact dispersion may not be known and which may vary along a
system or even amplifier span, these soliton advantages over NRZ may represent a
more flexible upgrade path.

There are several methods of dispersion compensation available, including
optical fibre Bragg reflection gratings [147, 148]. Here we consider the use of dis-
persion compensating fibre [5, 6, 127, 128]. Such fibre is commercially available
and has high negative group delay dispersion (GDD) in the 1.55 pm region. By
incorporating a length of this fibre prior to the active fibre as part of each amplifier
node, the average dispersion of each amplifier link is reduced. This should lead
to reduced perturbations to the solitons alongside reduced average powers. The
actual dispersion compensating fibre simulated here was not of the optimum dis-
persion and loss now available [10], but of a more modest dispersion value of -50
ps/nm/km. While dispersion compensating fibres generally have slightly higher
loss than standard fibre, the same value of 0.2 dB/km as for standard fibre was
used as improvements are still being made to the loss figures of these fibres. In
addition, as we shall show in section 4.3.3 the loss of the fibre may not be too
significant in short systems (where ASE noise is not an issue) provided the com-
pensating fibre is placed in the low power, dispersion dominant part of the soliton

propagation cycle.
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4.3.1 Dispersion compensajtliieingts,éhemé

The average dispersion of the amplifier link with the addition of the compensating
fibre is found from considering the total dispersion across the link. For a standard
fibre section of dispersion D and length L, concatenated with a compensating

fibre of dispersion D, and length L., the average dispersion D, is,

 D,L,+ D,L.

D, = 4.
Ls + Lc ( 3)

Thus, in order to reduce the average dispersion of an amplifier link to 6.0 ps/nm/km
an additional 5.8 km of compensating fibre must be added to each amplifier. The
amplifier gain and the launch powers are then adjusted to take account of the extra
periodic loss and lower average dispersion. [igure 4.8 shows a schematic diagram
of such a compensating amplifier with the variation of the fibre dispersion under

such a reduction of the average dispersion to 6.0 ps/nm/km.
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Figure 4.8: Schematic diagram of the dispersion compensating amplifier link and
the variation of dispersion with distance over one transmission link for D, = 6.0
ps/nm/km. SIF is 36 km of step index fibre, Dy = 15ps/nm/km, DCF is 5.8 km
of dispersion compensating fibre, Dy = —50ps/nm/km.

In order to assess the likely impact of such a compensation scheme 1t is
helpful to consider an extension of the simple design diagram of figure 4.1. Previ-
ously, the system dispersion was fixed and the amplifier spacing varied. Now we

consider a fixed standard fibre length between amplifiers of Ly = 36 km but vary
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the dispersion, so the x-axis is the~a\fel‘agef'sjiétem, diS}iér31011. Account has to be
taken of the additional length of the C0h1/peﬁ’/sa/ti11g fibre in the calculations, but
it is considered an integral part of each amplifier, rather than an addition to the

total length of the propagation fibre.
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Figure 4.9: Dispersion compensation design diagram of pulse width against average
dispersion D,. Solid line (AS) is the average soliton constraint, dashed lines are
the average power (AP) constraints for 5, 10 and 15 mW and the dot-dashed lines
are the soliton interaction (SI) constraints for system lengths of 144 and 360 km.
The region of operation for a 144 km system with 10 mW average amplifier output
powers is shaded.

Figure 4.9 shows that as the dispersion is reduced, the minimum pulse width
limits from the average soliton and average power constraints decrease, whilst the
maxima from the soliton interaction constraint increase. We see that if the disper-
sion is decreased <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>