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Summary.

Distributed digital control systems provide alternatives to conventional,
centralised digital control systems. Typically, a modern distributed control system will
comprise a multi-processor or network of processors, a communications network, an
associated set of sensors and actuators, and the systems and applications software. This
thesis addresses the problem of how to design robust decentralised control systems, such as
those used to control event-driven, real-time processes in time-critical environments.

Emphasis is placed on studying the dynamical behaviour of a system and
identifying ways of partitioning the system so that it may be controlled in a distributed
manner. A structural partitioning technique is adopted which makes use of natural physical
sub-processes in the system, which are then mapped into the software processes to control
the system. However, communications are required between the processes because of the
disjoint nature of the distributed (i.e. partitioned) state of the physical system.

The structural partitioning technique, and recent developments in the theory of
potential controllability and observability of a system, are the basis for the design of
controllers. In particular, the method is used to derive a decentralised estimate of the state
vector for a continuous-time system. The work is also extended to derive a distributed
estimate for a discrete-time system.-

Emphasis is also given to the role of communications in the distributed control of
processes and to the partitioning technique necessary to design distributed and decentralised
systems with resilient structures. A method is presented for the systematic identification of
necessary communications for distributed control. [t is also shown that the structural
partitions can be used directly in the design of software fault tolerant concurrent
controllers. In particular, the structural partition can be used to identify the boundary of
the conversation which can be used to protect a specific part of the system. In addition, for
certain classes of system, the partitions can be used to identify processes which may be
dynamically reconfigured in the event of a fault. These methods should be of use in the
design of robust distributed systems.

Keywords: Dynamic reconfiguration, Fault tolerant software, Conversations,
Necessary Communications, Structural Partitioning, Design Methods and
Methodology.
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CHAPTER 1

1. 0 INTRODUCTION

1.1 INTRODUCTION

A typical distributed control system consists of a set of
information acquisition or measurement units and a set of control
actuation units (both interfaced to the physical system), together with
a set of control units implementing a control strategy (decision
processes). The physical distribution of the measurement and control
interface is assumed to be matched to physical system requirements.
The controllers will be distributed according to operational, economic,
or geographic criteria, and will be linked to interface units and to other
controllers by a communications network.

Two major factors have contributed to the rapid development
of the theory of decentralised control in the last two decades. These
are the need to accomplish computation in finite time and the
increasing complexity of systems [1].

The re!iability of a computer system decreases very rapidly
with increasing complexity. Hence a method must be developed for
handling large, complex problems. lIdeally a functional decomposition
technique must be used to make the design problem more manageable.
From a practical point of view it is far easier to manage a set of small
problems than a single large one.

Furthermore, functional decomposition leads to small
understandable processes, which are more likely to be amenable to

formal proof and may be candidates for concurrent execution. The main
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disadvantage of the technique is that the sub-problems must be
coordinated, as will be shown later. The pioneering work in this area
was done by Kron [2] and by Dantzig and Wolfe [3], who first introduced
the concepts of decomposition and coordination.

As an example of a decentralised control system consider the
system of Figure 1.1 (reference 1). It consists of two cars which are
connected by a spring. The problem is to move the system from a point
A to a point B with minimum fuel cost. The two controllers are. the
drivers of the cars and they have access to only part of the information

space, I,. I, consists of the characteristics of the two cars and of the

spring between them and is partitioned into two sub-spaces, Iip

(i=1, 2), each of which contains the characteristics of the car (i) and

the characteristics of the spring.

Figure 1.1 An example of a decentralised control system

It is clear that the two controllers arrive at conflicting
solutions for the optimal spring length 4. Driver (1) requirés the
spring to be in tension so that car (1) is pulled up by car (2), and
driver (2) requires the spring to be in compression so that car (2) is
pushed up by car (1). In each case the spring length desired by the
controller is such that the fuel consumption of its car in its movement
from A to B is a minimum.

This conflict between the sub-processes is typical in

decentralised control. It arises because the information space common

Introduction 11




to both sub-systems is précessed independently by the sub-controllers.
On the other hand, if properly coordinated, the two controllers can work
concurrently, which can result in faster execution time.

Therefore, it has to be assumed that some adequate model of
the system is available in which continuous-time properties are
represented by linear mathematics. The concept of partitioning can
then be applied methodically. However, large-scale linear systems
present problems associated with rank determination, solubility and
design. Controllability, observability and pole assignment can become
difficult to resolve, even with the use of computer-aided methods,
because the initial data itself cannot be specified with sufficient
accuracy. |

Because of these difficulties the design of complex linear
systems involves qualitative or structural procedures without actually
requiring explicit solutions [4]. This partitioning will lead to the
problem of how to overlay a distributed control structure on a
distributed system, that is, the problem of matching a type of
controller to each partition and the identification of inter-partition
communication necessary for total control. Each controller's software
will comprise a local observer and controller function and a
communication interface to other controllers. To make this
decentralised control system robust it may be necessary to consider
the software fault tolerance measures applicable to such a loosely
coupled distributed system.

In the research presented in this thesis the model is
transformed from a quantitative representation to a Boolean form and
then mapped anto a digraph to facilitate analysis .in the structural
domain using graph theory. The structural partitioning technique is
used to decompose the model into cyclic and acyclic sub-graphs

(appendix A). The decomposition decouples each linear sub-system,
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such that quantitative changes in the other linear sub-systems do not
alter the sub-system's own dynamic properﬁes [5].

The concurrent software processes required for control
purposes are mapped from the decomposed physical system. One
software process observes the behaviour of the linear sub-system and
the second software process controls it using the estimate obtained
from the observation process. Inter-process communication is required
to achieve overall decentralised control since each controller interacts
with the other's disjoint sub-state space as a result of the partition of
the overall state space of the physical system. This implies that each
controller has a naturally decomposed database by virtue of the
structural partitioning. Control of the overall system in a decentralised
manner requires necessary communications [6].

The next stage is to map these distributed communicating
asynchronous processes and distributed databases onto a network of
processors with a communication network. The mapping is done: (i) to
achieve coordination and synchronisation; the structural partitioning ._
technique employed, makes this straightforward. (ii) to achieve
maximum parallelism with only the necessary communication between
the controllers. (iii) to achieve optimum workload for each processor in
the network.

The final stage of the design uses this generic partitioning
technique with modern software design methods and control methods to
achieve robustness in the design of a system. The decomposition of the
linear system allows modern control techniques to be exploited and
enhanced; the partitioning technique allows the designer to incorporate
fault tolerant software for loosely coupled systems. Thus:

a) In the control aspect this generic partitioning technique can
exploit the decentralised control strategy of Evans et al [7] to achieve

decentralised observation for a linear continuous-time system. The
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results are such that the observation processes are reliable in the
presence of failures of other processes and lead to numerically simpler
computation than the techniques of [8,9,10]. The sub-systems can be
made completely autonomous by eliminating communications between
them, and are hence more robust to other process failures, through the
‘adoption of the unknown observer technique used in the centralised
approach. The structural (generic) partitioning technique leads to
decomposed sub-systems in which this can be adopted directly. This
technique has been .expioited in the discrete-time domain in the design
of Kalman filters [11], which provide estimates in the presence of
noise which is white, gaussian, and uncorrelated with the input and
output of the system.

b) Large-scale systems present problems for development of
software especially if the system is required to operate satisfactorily
in the presence of faults. Techniques for the construction of fault
tolerant software systems exist [12]. A fault tolerant system detects
errors created by a fault and provides error recovery through exception
mechanisms and algorithms which restore normal computations. These
methods are based upon useful redundancy of design [13]. The generic
partitioning technique can be exploited to generate concurrent

processes which are atomic [14] and can form proper conversations

[18]. It is noteworthy that these actions are identified at the
decomposition stage rather than requiring identification after the
software has been written [136].

The ultimate objective of the thesis is to derive a design
methodology for distributed computer control of an event-driven,
time-critical system. The terms 'method' and 'methodology' are often
used interchangeably. In this thesis the term 'methodology' is used to

mean a set of methods together with their theoretical basis.
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1.2 SUMMARY of THESIS

Chapter 2 of the thesis sets out the objectives of the research
presented here. It also identifies a number of tangible goals which
were achieved to obtain the set objectives. It presents a survey of
previous work in the field of decomposition. Chapter 3 and part of
chapter 4 survey the previous work in the field of systematic
identification of necessary communications, fault tolerant software,
dynamic relocation and observation of decentralised systems to
achieve the set objectives. |

A crucial concept in the subsequent chapters of this thesis is
the idea.of a partitioning technique in order to support the design of
distributed and decentralised control systems with resilient
structures. A variety of methods are required to decompose a system
at various stages of the design cycle. The literature survey indicated
that the structural partitioning technique used by Evans et al [7] is
ideal. This generic partitioning technique is shown later in the thesis
to be applicable for decomposing a linear continuous-time system to
generating concurrent software processes which are atomic [14] and
can lead »to the design of resilient software for a real-time system.

Chapter 3 summarises the use of graph theory in studies of
controllability and observability for large-scale systems. This is then
used to introduce the concept of necessary communications [6] in a
decentralised system for the control of distributed processes. The
necessary communication concept is extended to cater for the
interaction of the processes.

Chapter 3 also introduces the conversation mechanism used to
make a set of concurrent processes fault tolerant. The latter part of
the chapter surveys the use of techniques in the dynamic

reconfiguration of processes. The literature on fault tolerant software
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and the techniques of dynamic reconfiguration processes are surveyed
in order to incorporate resilient structures in software construction.

In chapter 4 the structural partitioning technique is used in
conjunction with the decentralised control strategy of Evans et al [7]
in order 'to achieve the decentralised observation of a linear
continuous-time system. The observer is used to obtain an estimate of
the state vector for each partitioned sub-system from its local
measurements. This approach circumvents the need for a stability
analysis of the complete interconnected sub-system and hence leads to
a simpler numerical computation tha.n that achieved by other
researchers [8,9,10]. The next section of this chapter derives
systemétically the necessary communications required by a
decentralised controller for observation. This work augments the
necessary communication concept introduced in chapter 3. The
necessary communications between the observation processes can be
eliminated by adopting the- unknown observer method. This leads to
observation processes which are resilient to failures of other
observation processes. Only basic matrix criteria are presented in this
thesis for the unknown observer approach. The partitioning technique is
further applied in the discrete-time domain for the first time to the
Kalman filter method. This entails the use of several small order
Kalman filters, communicating, to obtain an estimate of the complete
state vector.

Chapter 5 presents an example in the the generic partitioning
technique used to map the cyclic and acyclic sub-systems into the

structure of control software. That is, it generates concurrent
software processes which are shown to be atomic [14] and which can
form proper conversations [15]. The design of distributed processes is
pursued in the concurrent programming language Occam [17] and

related to Petri net models. It is noteworthy that the identification of
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atomic actions takes place at the decomposition stage rather than
after the software has been written [16]. This identification highlights
potential problems which may arise in protecting against interprocess
communication failures; an interim solution is provided for protecting
transactions with a distributed database in a time-critical real-time
application.  Finally, the thesis considers how to exploit the flexibility
of a distributed system by providing dynamic reconfiguration. The
possibility of reconfiguration is shown by using the directed graph
technique and the potential controllability and observability criterion
in the Boolean domain. The last section of this chapter describes the
steps to be taken in the design of a distributed or decentralised control
system.

Chapter 6 summarises the achievements of the research and
draws a number of conclusions about these. Also in this chapter a

number of areas for further research are suggested.
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CHAPTER 2

2.0 AIMS AND OBJECTIVES OF THE RESEARCH

2.1 INTRODUCTION

The aim of this research is to develop a methodology for
designing Distributed Control Systems using Computers or
Microprocessors. The work includes studies of the relationship between
the structure of control systerps and that of the dynamic plantt
Particular emphasis in the research is given to the role of
communications in the distributed control of continuous processes,
and to the partitioning technique necessary to support the design of
Distributed and Decentralised Control Systems with resilient
structures.

The problem of coordination and synchronisation in
decentralised control was highlighted in chapter 1 due to
decomposition. This problem arose from the fact that the overlapping
portions of the information space of the overall system are processed
independently by the sub-controllers. On the other hand the two
controllers can work concurrently, which can result in faster execution
time.

It has been assumed that the state equations are known and
this research is aimed only at developing the software techniques for
decentralised control. The first step in the software design is to
partition a system into a number of reasonably sized tasks which may
be able to run concurrently. The second step is to select a suitable
concurrent language for design and implementation. The
specification may place too great a demand on the language so that
language extensions are required, for example in the design of systems

which can tolerate failures in the component communicating
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asynchronous processes. The second step in the design was investigated

by a research colleague who developed a method for the design of fault

tolerant software for loosely coupled distributed systems [16]. His
work also showed a way of extending the concurrent language (Occam
[17]) for communication failures [18].

It is unwise to partition arbitrarily. The designer needs to have
design objectives and be able to answer the following questions: (1)
how are the tasks to be partitioned?; (2) will the partition
alter the dynamical behaviour and the failure modes of the
system?; (3) what effect does this partition have on the
communication and computation systems?; (4) will it identify
and produce a fail-safe design?

Part of the emphasis in this thesis is placed on the
partitioning technique necessary to support the design of
distributed and decentralised control systems. The “structured
partitioning technique adopted allows the designer to answer all the
questions posed earlier. This technique is generic to all levels of
system design: from partitioning a linear system, (represented by
mathematics) to the decomposition of software into processes, where
resilient structures can also be identified.

This partitioning process makes use of Cyclic and Acyclic
sub-systems (see appendix A) identified within a linear system. Use of
this method allows the following four objectives to be satisfied:-

1) Estimation in continuous and discrete-time
systems.

2) Systematic identification of the necessaryv
communications for distributed control.

3) To show that the partitions are the natural side
walls to the conversation used in fault tolerant design.

4) To show that dynamic reconfiguration is possible

for certain classes of system.
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2.2 PARTITIONING TECHNIQUES

Two major issues in system and software design are the
processes of partitioning and assignment. Partitioning is a process
of clustering disjoint subsets based upon the relative sfrength of
relationship between elements [19]. Assignment is to allocate nodes of
the system wusing the boundaries obtained by the above process
according to some cost criterion.

Partitioning and assignment issues must be subjected to the

following questions.

i) What criteria should be used to partition and
assign?
i) When should the partitioning occur?

iii) How long should a given assignment persist?

The first sub-section surveys the existing methods and
considers: firstly, the decomposition (partitioning) technique embodied
in a design method. In order to ascertain whether it satisfies the
questions: (a) how are the tasks to be partitioned?; (b) What effect
does this partition have on the communication and computation
systems?, etc. Secondly, the design method. It discusses whether the
method can be adapted directly for the aim of the research outlined in
the first paragraph of this section.

The second sub-section deals with partitioning techniques
which do not form part of any design methods. These are based on
achieving specific performance goals. The third sub-section deals with
partitioning based on the structure of the problem. The structured
partitioning technique is a decomposition at an abstract level.
Therefore, the existing software methods may be utilised at a lower

level.
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2.2.1 Software Design Methodology

2.2.1.1 Introduction

One of the aims of this thesis is to look at all the partitioning
_techniques necessary to support the development of a design
methodology. This entailed examining several existing methods (for
_ partitioning), which are widely used in the design of a system. The

salient features of several of these -techniques are presented below.

~ All except MASCOT are fully illustrated in Software Engineering books

[20,21]; MASCOT is illustrated fully in the official handbook of
MASCOT [22].

Note: in any system design the software production goes
through several stages of a development cycle. The methodology
developed in this thesis does not account for all of the stages involved
in the development cycle, like the ISTAR package [23]: which provides
an integrated project support environment. This methodology will
explicitly cater for the design of a system at an abstract level and
provide a run time support for process failures: which overcomes the
design faults (see section 3.3). However, it does not look at the
maintenance and movdification stages or any mathematical techniques
for the specification stage, which will lead to a resilient design; for

example like Z [24] or Communicating Sequential Processes

(CSP) [25].

2.2.1.2 Program Methodologies

2.2.1.2.1 Functional Design Method (F.D.M.)

The FDM technique is one of the oldest and most widely
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establised, and arguably the first truly systematic method for program
design [20,21]. FDM encompasses the techniques of step-wise

refinement [26] and structured programming [27] i.e uses only
sequence, selection, repetition and avoids the use of goto
statements in coding. The technique starts with a single grand,
statement of what the software is to do. This is refined using a
pseudo-language (English imperitive sentences) written as
sequences, with if, while, etc statement (structured statements). The
design is refined until the required detail is achieved for coding in a
suitable programming language. The choice of decomposition strategy
has a major influence upon the quality of the resulting design.

There is no indication of how to decompose the problem; the
approach is left to the designer who refines the software subjectively
based on experience rather than some objective mechanical criterion.

This can lead to solutions that are not maintainable or portable.
2.2.1.2.2 Data Flow Design (D.F.D)

This technique was developed by Yourdon, Myers and
Constantine [28]. A design technique based upon Data stream anaysis
called (variously) Data flow design, Structured Analysis/Design
or sometimes Transform Centered Design. The analysis produces a
data flow diagram, where each transformation that converts an input
data flow into an output data flow is represented by a bubble and data
flows by an arc. The method starts with a single, large bubble, which
is broken up into smaller bubbles. This technique is widely used for
real-time, time-critical control because most real-time systems are
hierarchical in nature. The process of design is repeatable and less

intuitive than the FDM technique and the decomposed modules will be

maintainable since the design is based on data coupling [20,21].
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DFD requires a great deal of inventive effort for a complex

design with many data flows. The task of transforming the DFD into a

~__hierarchy can be non-trival but becomes easier with experience if a

_ sequential language is used. If a language like Occam- [17] is used,
which provides parallelism, then bubbles could be implemented as
Occam processes with intercommunicating data between them.
Therefore, a hierarchical transformation is not required. The general
criticism of the methqd is that it relies on a principle which tends to

ignore any structure in the problem and data domain.

2.2.1.2.3 Jackson Structured Programming (J.S.P)

Methods of software design based upon the structure of the
data in the system have been proposed by Warnier, Jackson and others

[29]. Michael Jackson is the foremost in this field, and developed a

method well before publication in 1975 [30]. The basis of the
technique is that the structure of a program can be derived from the
structure of the files that the program acts upon or creates. The
method uses a diagrammatic notation (a tree like notation which
models the three structured constructs: sequence, repeat and selection)
- for the file and program structures and its own pseudo language. Using
these notations as documentation, the method proceeds step-by-step
from descriptions of the file structures to a design of a program
structure.

The steps are [20]:

1. Draw a data structure diagram describing the structure of each
of the files that the program uses.

2. Derive a single program structure diagram from the set of data
structure diagrams.

3. Write down the elementary operations that the program will
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have to carry out.
4. Associate the elementary operations with their appropiate
positions in the program structure diagram.

5. Transform the program structure diagram into schematic logic.

This technique has been. widely used [31]. This technique is
distinct, rational, self-contained and well defined and produces code
that is modifiable, understandable and portable because the
algorithm is determined by the data structure. The main attribute of
the technique is that decomposition guidelines are very instructive and
therefore quality of design converges; several designers will come up
with remarkably similar solutions to a given problem.

The main problem with the technique is in the minority of
cases, where there may be incompatibility between the input and
output structure. This is known as a structure clash. This is solved by
introducing an intermediate program or a file; a process known as

program inversion.

2.2.1.3 System Methodology

2.2.1.3.1 Jackson System Development (J.S.D.)

JSD was evolved from JSP as a methodology to apply to larger
problems that required system solutions rather than a program solution
[82]. It is important to note that JSP is not a subset of JSD: for
example, in JSP the starting point is a full program specification,
whereas in JSD the first major phase is to develop a system
specification. Nevertheless the techniques share the same fundamental

principles and characteristics: (i) both are process based:; (ii) both
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model the relevant aspect of the real-world; (iii) design is strictly in
terms of sequential'processes connected by sequential data streams.
~ The functional details are left until a late stage; concurrency,

~ databases etc. are seen as tools for implementation. JSD overcomes

the disadvantage of JSP mentioned earlier.

To conduct JSD the following steps are applied [29]:

Entity action step. Entities (people, objects, or
organisations that a system needs to produce or to use information) and
actions (the events that occur in the real world that affect entities)
are identified.

Entity structure step. Actions that affect each entity are

ordered by time and represented by its Jacksons structured diagrams.

Initial model step. Entities and actions are represented as a
process model; the connections between the model and the real world
are defined.

Function step. Functions that correspond to defined actions
are specified.

System timing step. Process scheduling characteristics are
assessed and specified.

Implementation step. Hardware and software are specified

as a design.

There is a large overhead involved in training the staff who are
to use JSD. This is true of any good systematic technique, however the
solution produced by this technique far out weighs any disadvantages
because this technique will lead to the production of software systems

that are modifiable, understandable and portable.

2.2.1.3.2 MASCOT

The Modular Approach to Software Construction
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Operation and Test (MASCOT) was first introduced between '71 and
'75 by Jackson and Simpson [33]. MASCOT is intended for use in the
design and construction of software for real-time embedded computer
systems. It is used throughout the design, construction and integration
stages of software development and provides a framework for software
maintenance throughout the life cycle of the system. MASCOT
provides 3 features; (i) A graphical design method (the
Activity-channel-pool or ACP diagram) which shows system
structure and the flow of data within the system and which forms the
basis for system construction, management and testing. (i) A suite of
construction software to combine the modules in an operational
system. (iii) An executive program (usually called the kernel) which
controls the interaction between modules of code (activities and
intercommunication data areas or IDA's) at run-time, safeguards
access to data, and provides monitoring facilities.

The main disadvantage of MASCOT is that it requires inventive
effort by the designer at the decomposition stage (as in the case in
DFD technique). Early versions of MASCOT weré designed for a
multiprocessing environment using direct shared memory and not
for a distributed processing environment. MASCOT 3 has to a

large extent overcome these problems and is more effective for use

with large systems [31].
2.2.1.3.3 Object-Oriented Programming

Object-Oriented programming is a method of decomposing a
specification to produce a system design [20,34,35], which differs
from the more traditional method of functional decomposition. The
approach is based upon identifying a number of types of objects, where

each object identifies some physical or conceptual object in the world
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being modelled. Objects could include; a communication protocol, a
display window or icon, file (data) service and remote

operations. An object consists of data and a set of operations

 that may be performed upon the data. This approach allows

information-hiding and data abstraction. New objects can inherit
properties from existing objects. The interaction between objects is
established at run-time. Therefore, Object-Oriented Programming
provides a flexible environment in which product and application can
be easily tailored to meet specific needs.

" This has a similar disadvantage to JSP and JSD: i.e. a large

overhead involved in training staff.
2.2.1.4 Assessment of software design methodology

The embedded partitioning technique in FDM, DFD and MASCOT
are based on some arbitrary criterion defined by the designer.
Fundamental questions such as how the partitions alter the dynamic
behaviour and the failure mode cannot be answered in a systematic
way. In JSP,JSD and Object-Oriented Programming, the
partitioning technique is systematic with an objective rationale
(reasons/principle).  While these model some physical or conceptual
object of the world which is appropriate for Qse in non-hazardous
environments, like real-time distributed office systems and banking
systems, it is not suitable for real-time control systems, such as
nuclear plants, ballistic missiles, etc., because it does not model
dynamic physical properties (i.e eigenvalues). Therefore fundamental
questions cannot be answered. However, any of the systematic
software methods above produces code that is modifiable,
understandable and portable, therefore these should be used for coding

the software.
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2.2.2 Goal-oriented partitioning
2.2.2.1 Introduction

It is assumed here that the design effort has resulted in a
refined and structured definition.of the data flow and processing steps
required to achieve desired actions or response from a system. Jensen
et al [36] pose the following question: which or what criteria are to be
used by the designers in partitioning a system. This section tries to
answer that question.

A different strategy has to be used in partitioning depending on
whether the design goals are growth, reliability or performance.
Partitioning used to achieve the above goals in reference [19] are
based on :

1) Flow relationship: vertical and horizontal

partitioning [37]. Vertical partitioning is concerned with the
separation of elements which have predecessor relationships stemming
from dafa dependancy or mandatory control flow considerations. Two
sets of processing can be horizontally partitioned if they can be
executed concurrently or without regard to order. See appendix C for
the description andrules of these techniques.

2) Data access: in this technique the notation of tempbral
order, and direction of data flow and control flow are ignored. Here, one
concentrates upon the data space accessed, the partition will coincide
that obtained with the horizontal and vertical partitioning technique.
See appendix C for the rules of data access partitioning.

3) Axiomatic partitioning: defined by formal axiomatic

decomposition techniques based on the structural composition of the
system. D. L. Parnas [38] proposed an axiomatic criterion for

modularity in which he states "each module should implement a design
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decision and act to isolate and hide that decision from ofher modules.”

An example of this approach is the Higher Order Software (HOS)
methodology [39].

2.2.2.2 Change and Growth

With time and various other reasons requirement specifications
will change. The design must be such that adaptation to meet
requirement specification change is easy. The major objective here is
to hide information and to isolate design decision. One of the
solutions is to confine the changes to a single module or, at worst, a
small number of modules. The criteria here is to use a what if [38]
- analysis of the requirement specification, i.e. if this requirement
changes, what aspect of the design is affected based on the axiomatic

__ criterion proposed by Parnas [38].

2.2.2.3 Reliability

For high reliability, the design must adopt fault prevention
designh techniques and incorporate fault-tolerant structures into
the design, so as to achieve a high degree of robustness in the
resulting system. Fault prevention requires the use of constructs that
are demonstrably correct; it requires the use of structured
software design and programming methodologies to simplify the
process of design analysis and verification. Fault-tolerant design
involves the incorporation of structures to récognise errors, contain
the scope of any damage, and to recover from the errors.

Damage containment can be achieved by the extensive use of

vertical and horizontal partitioning to generate modules which are
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small in terms of processing steps and the span of data used. The
fault-tolerant aspect will be addressed later in this thesis in
chapter 3; where the technique of forward and backward error has

to be applied [12).

2.2.2.4 Performance

Distributed systems will use many n-processors distributed
geographically or on a functional basis. However, using n processors,
does not equate to n times the computational power as the
- communication media saturates, that is, the throughput decreases
incrementally with increasing number of processors, if the processes
are not assigned to processors optimally in the distributed system. The
goal is to maximize the concurrency and responsiveness of a system

using vertical, horizontal and data access partitioning

techniques. Three major techniques for performance partitioning are :

2.2.2.4.1 Minimisation of the Interprocessor Communication

Overhead

This overhead can be drastically reduced for a particular task

by correctly partitioning processes and assigning the resulting

sub-processes optimally to the various processors, to achieve a
minimum communication between them.

A heuristic algorithm PROXCUT developed by C. J. Jenny and K.
Haessig [40] was introduced for finding an approximation to the best
placement of computational objects, such as processes, data
bases, etc., in a distributed system.

In PROXCUT, a constraint graph is produced. Nodes of the graph

are computational objects, edges (arcs) represent their constraint, and
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the weights of the edges signify the penalties involved in not
observing an assignment of objects prescribed in the constraint
expression.

The graph can then be partitioned using a algorithm to achieve a
optimum partitioning. Exact partitioning of a graph into a
predetermined number of p components (p-cut) is considered to be an
np-complete problem, where n equals the number of nodes. The
number of required operations will not be bounded by any polynomial

~and hence will be useful for small graphs only. It follows that a

heuristic algorithm must be found [41].

The algorithm is composed of two phases. A first phase

generates an approximation by using a maximum spanning-tree,

using Kruskal's algortihm [42], and a second phase improves on the

approximation by using Ford/Fulkerson maxflow/mincut theory [43].

A full explanation of maxflow/mincut and the spanning tree can be

found in appendix A. A third phase [44], was added to the PROXCUT
algorithm to cater for the loading condition. It is claimed by the
originators that the approximation for all practical purposes lies close

enough to the optimum. Full details of this algorithm for the first two

phases are given in [40].

2.2.2.4.2 Minimizing total cost of execution

The work at Brown University [41] by Stone and others closely
resembles the above approach, but is restricted to two processors
only. A set of weighted directed arrows is introduced, forming a
Module interconnection graph. This weighted digraph corresponds
closely to a constraint graph. The links between tasks represents the

cost of communication and the link between one processor and a task

represents the cost of running that task on the other processor in the
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system.

In the case of a two processor system, the minimum weight cut
“ vg\:’,,’('mincut) may be found very efficiently using a network flow algorithm
\*’\ [43]. This corresponds to an optimal assignment (i.e. minimises the

sum of execution and running costs) indicated by the partitioning of the

graph. This technique was adapted in [41] to an n-processor problem,
where the solution is found by repeatedly applying the Ford-Fulkerson
algorithm [43] to two out of n-processors. Stone's work based on
static assignment was extended to find an optimal dynamic assignment
of a modular program [45]. Two further costs were modelled onto the

graph; these were the cost of dynamically reassigning from one

processor to the other, and the cost of residence without execution. An

example of static assignment will be given for illustrative purposes.
Fig. 2.1 is shown with all the necessary information concerning the

communication and execution costs.
The cut (mincut), (obtained by applying Ford-Fulkerson
algorithm), is shown by a thick line across the graph. The optimal

assignment corresponds to a minimum weight cutset.

The total cost of execution for the static assignment of

processes to the processor 1 in Fig. 2.1 is :-
Total running cost = Cost of (execution + communication)
cost of execution = Module A+ B+C +D +E
= 5+42+4+6+5=22
cost of comms. = Module A <----> Module F = 12
Therefore: |

Total running cost = 34, and the total running cost for

processor 2 is 16.
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time P2 time

MODULE P1

Figure 2.1(b) Modified graph from Fig. 2.1(a) showing both execution
and communication cost on one graph

Figure 2.1
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2.2.2.4.3 Extracting concurrendy

A sequentially coded program can be executed more efficiently

which are amenable to parallel processing can be recognised [46]. The
work of Ramamoorthy et al was concerned with finding an efficient
scheduling mechanism, to minimize the scheduling overhead involved in
real-time multi-processor execution of parallel processable segments
of a sequential program [47].

This is achieved as follows. Given the transition graph of the

~ system. An oriented graph in which the vertices (nodes) represent the

 single task and the oriented edges (directed branches) represent the

permissible transition to the next task in the computational sequence.

The graph is then represented in a matrix form, known as the
connectivity matrix, c [48]. c is of dimension n x n ( where n is the

number of tasks) such that Ci 4 is a1 if and only if there is a directed
edge from node i to node j, and is 0 otherwise.

By analysis of the connectivity matrix, the Maximally
Strongly Connected (MSC) subgraphs are determined (cyclic
sub-systems, see section 2.2.3). A final reduced graph of the system
can be derived by replacing each of the MSC subgraphs by a single node.
Using the reduced graph a new connectivity matrix, T is obtained.
Applying the precedence partitioning technique [46], i.e. provides
an indication of the earliest time at which a task is initiated, the
natural concurrent structure of the system is highlighted.

Note: the scheduling aspect obtained by the precedence
partitioning technique is similar or identical to the technique used in
management, known as Critical path analysis [49].

The prece.dence partitons can be obtained as follows. Using

the connectivity matrix, T, a column (or columns) containing only zeros

Aims and objective of research 34



is located. Let this column correspond to vertex v,. Next delete from T

both the column and the row corresponding to this vertex. The first

~ precedence partition is P, = (v;}. Using the remaining portion of T,

locate vertices {(v,,, v,,, ..} which correspond to all columns
containing only zeros. The second precedence partition P, thus

contains these latter vertices. This implies that processes in set p,

can be initiated and executed in parallel after the processes in the

previous partition, p,, have been completed. Next delete from T the
columns and rows corresponding to vertices in p,. This procedure is

repeated to obtain precedence partitions P4, P,, ... Py, until no more
columns or rows remain in the T matrix .

The implication of this form of precedence partitioning is that
ife,,p,, ..., P, correspond to times c,, t,, ..., t,, the earliest time
that a process in partition p., can be initiated is t,. The duality of the
procedure can provide an indication of the latest time at which a
process may be initiated, by performing precedence partitions on the
transpose of the ¢ matrix. The timing obtained in this partition, serves
as an input to the operating system to help in the scheduling of

processes.

2225 Assessment of goal-oriented partitioning

While each of the above goal-oriented approaches have merit in
the development of software i.e. allowing the incorporation of
resilience, concurrency, etc., it is not appropriate in attaining the goals
elaborated in section 2.1 for designing the control structure of a
decentralised system. This is because partitioning and assignment take

place after the design effort (i.e using one of the software design
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methods above) has taken place. However the software to be coded for
the system can be parallelised and assigned optimally (goal ib and iii in
section 2.2) to the distributed system using the partitioning technique
to achieve the performance goal. The partitioning technique used to
achieve the reliability goal could be used to make the system robust
(resilient to failures). The partitioning concept of change and growth
should always be considered when designing and installing a large and

complex system.

2.2.3 Structural Partitioning

The design of any control strategy should reflect the structure
of the continuous-time linear system being controlled such that it
works in coordination and synchronisation with the physical properties
of the system. The structural analysis can be used to make immediate
and specific identification of any desirable modes of the physical
system. Quantitative analysis alone presents problems for complex
systems associated with rank determination solubility and design and
also because initial data cannot be specified with sufficient accuracy
[4].

It is assumed that some mathematical model of the linear
system is available in which its properties are represented by a state
space model. The infomation contained in a model of the system is
based not only on input-output data but on dynamic properties
(eigenvalues) as well, unlike the polynomial operator description of .a
system. In order to get insight into the dynamic properties of a
physical system as shown in ref [80], the system can be mapped onto a
directed graph (digraph) and decomposed algorithmically into so called

cyclic and acyclic parts.
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A linear system described by the state space equations:

}.((t) = AX(t) + BU(t)

where x (t) is a vector of state variables of dimension N, U is a
vector of control variables of dimension M, Yy is a vector of output
variables with. dimension p, A, B and ¢ are constant system, input and
output matrices respectively.

This linear system can be transformed into a directed graph
(digraph) which is closely related to conventional signal flow graphs.

The digraph is derived from the a matrix by assuming that a directed
branch exists from node j to node i for every n;, <> 0 [51]. The states

of the system are the nodes of the graph. The matrix B and c can be
mapped into it in the same way.
The graph can be decomposed into Cyclic (strong component)

and Acyclic components [51,52]. Graph terminology can be found in

the appendix A. Certain graph theoretic results can be applied [8]. In
particular, the set of eigenvalues of a weighted digraph is the
union of the sets of eigenvalues of its strong components. The
proof of this can be found in ref. [52]. Since the characteristic
(eigenvalues) of a weighted digraph is completely determined by the
characteristic of its strong component, nothing is known about how any
individual strong component is related to any other [52].

The acyclic sub-system s associated with zero
eigenvalues, and the determinant of every sub-system individually
contributes directly to the determinant of the system as a whole. As a
consequence, it follows that the sensitivity of any particular
eigenvalue to a perturbation in a system coefficent is zero
for all coefficents not contained in the same sub-system as
that eigenvalue.

Any matrix is decomposable if an equivalent lower block
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triangular form can be derived by a similarity transformation ptap

in which » is a special permutation matrix and pt its transpose; the

~ derivation of this special matrix is described below. This results in a

re-ordering of the associated digraph, so that the sub-systems of

which the whole system is composed can be directly related to diagonal

blocks of the transformation matrix ptap [51].
2.2.3.1 Decomposition

To achieve a permutation matrix [51], convert the system
matrix 2 into its boolean counterpart by replacing each nonzero element

by an universal element 1. Consider for example:

e

S O O
S O w o
|

= o O O
O b ON

Therefore, the Boolean counterpart is as below,

Ab =

S o - O
O o r o
= o o o
O O

The graphical convention for this technique is that if an

element of &, a; equals 1, there is a directed arc from node j to i,

i]
implying that the columns and rows of the matrix acts as source and
sink nodes, respectively.

A reachability matrix can be constructed from the Boolean

matrix A, by observation of the digraph representation as shown in

fig. 2.2. The elements of the reachability matrix Rr, ryy = 1, if there

is a path from node j to node i.
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Figure 2.2 Graphical representation of a matrix

The reachability matrix for the above system matrix is as

shown here,

O O -
o O - O
N e N
II—'I—'}-I&—'J

e

However, this simplistic approach can become cumbersome if

the system matrix is very large and therefore a systematic method is

required to generate this matrix. It was shown in [52] to be:

R= 20 U a2 ... a2 U ant
It is interesting to note that to achieve say a,2; it requires the

boolean multiplication process [53]; in the normal matrix

multiplication, an element of such a matrix would be derived as,
n

By =2

( A, X A )
k =1

ik kj

that is row-column multiplication and add, where as in the
boolean case the elements are derived as row-column logical and &

or i.e.
ot

Bo)y =\ —(1 (Bl () (Bp) L)

It also becomes apparent that if one compares the element of the

matrix 2,2 with the digraph it appears that when there is a path of

length 2 from node j to i, there is an entry at the element a, ; equal to

1. This fact is true for all powers up to and included n-1, where N is the
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dimension of the state vector.
The final step in deriving the permutation matrix, requires
_one to express the boblean matrix, R, into symmetric and
~ antisymmetric matrix form, as shown below. This means that the
reachability matrix is the basis of decomposition of a system into
cyclic and acyclic components.

In the boolean domain any matrix M, can be expressed as the

sum of a symmetric matrix
t
My () My

and an anti-symmetric matrix

&
My () My

The derivation of these or proof can be found in the paper by Luce [S3].

Thus continuing the example we have

1 000 0011

s 0100 . 1011
ymm =1 9011 Anti = 1| 0000
0O 011 0000

sum of col. 112 2 sum of col. 1 0 2 2

By summing the columns as shown above, all columns with the

same value in the symmetrical matrix are associated with the same

cyclic component, however, each node in its own right is a cyclic
component. But from the other matrix, one can observe that node 1 and 2
are separately identified as acyclic. From the second sum of columns
vector, 1 0 2 2, one can generate the required permutation matrix p
as follows [51]:

a) Scan the vector from left to right and find the position(s) of
the column which has the same highest level, 3 and 4 would be found in

this case.

b) Place it in another vector.
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. C) Repeat for the next highest level, 1 in this case, until a new
vector of the same dimension is formed.
Hence we obtain a vector, 3 4 1 2, this is used in forming a
permutation matrix by placing a universal element at column i: row
(vector[i]), where i takes value from 1 to the dimension of the new
vector.

The permutation matrix of the above is shown below,

P O O O
o O O P

| o b oo |
Ioof—lol

This explicit decomposition of the system using the similarity
transformation ptap is the basis for the partitioning technique to be
used throughout this thesis (design objective 1). The technique allows

the following design goals to be achieved:

2.2.3.2 Assessment of the structural technique

(1) When a linear system is partitioned into cyclic and
acyclic sub-systems then the set of eigenvalues is the union of the
sets of eigenvalues of its strong component (note that an acyclic
sub-system is considered a strong component because each node in its
own right is a cyclic component). Therefore, the partition will not
alter the dynamic properties of the system. Hence, the design will be
fail safe and failure modes can be overcome because each
sub-system is stable even if any other sub-system becomes unstable
(design objective 2).

(ii) The decomposed sub-systems can be mapped into the
structure of control software. This extraction of natural concurrent
processes is an abstraction idea, in which each process can be
designed in isolation. This leads to a very modular design approach. The

state vector (real-time database) of the linear system is partitioned
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into disjoint subsets associated with each sub-system. Hence,
necessary state information will need to be communicated between
sub-systems in order to achieve decentralised control. Moreover, the
analysis of the communication structure will help in the design of fault
tolerant software (design objective 3).

(iii)  The analysis of the computation and communication
structure in chapter 5 will reveal that the concurrent software
processes were partitioned into atomic actions and hence can produce a

fail safe design (design objective 4).
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2.3 COMMENTS AND CONCLUSION
2.3.7 Comments

Jensen et al raised several questions [38], which must be
considered in the course of designing a distributed processing system.
This chapter has considered in considerable length what partitioning
criteria to use in designing a system. The question of when to partition
in the design cycle and how long the designated assignment should
persist needs some elaboration here.

Partitioning and assignment for a distributed processing
system is a complex subject. To understand the issues involved Jensen
et al [36] set up a model of the transformation from the computational
requirement to the activity processed by a computing element. This
transformation goes through several steps, and each step is performed

by an agent, as shown in the Fig. 2.3.

The agent programmer will partition the system on the basis
of intellectual manageability [27,38] and knowledge of the
computational requirement, i.e. the specification. There are two
extreme positions: First, the programmer is aware of the distributed
nature of the real world processes or the designed implementation and
will therefore, design explicit concurrent processes using a language
like Occam [17]. Second, if the programmer has no knowledge of the
distribution, then the normal, sequential, software design method will
have to be utilised. In this case the next agent will have to extract
those segments which can process in parallel and assign them to the

appropiate destination in the implemented system.
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Figure 2.3 Transformation from computation to Activity
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The programmer will dictate the characteristic of the
Translator, the next agent in the design cycle. For example, in the
second case of the above agent, there will be a requirement for a
special type of compiler, which can recognise segments of the program
which can execute in parallel [48]. The roles of the other agents in
design transformation can be found in ref [36].

To answer question 3 posed in the introduction, the given
assignment persists until a system or part of system ceases to
perform to specification due to either component(s) failure or
erroneous design. This will be discussed in greater detail in the fifth

chapter.
2.3.2 Conclusions

The agent Syétem desigher was not explicitly mentioned in
the discussion above. In the transformation process it should be the
agent which partitions the system based on the physical structure of
the system, as discussed in section 2.2.3, to extract the inherent
parallelism of the processes in the system. These naturally identified
boundaries, act as side walls to the conversation mechanism proposed
by Randell [18]. This aspect will be dealt with in.greater depth in the
next chapter.

In this chapter it is shown that, the structural decomposition
acts as a step-wise refinement of the requirement specification of the
system; in other words it is a process of Abstraction at the highest
level. The partitioning techniques such as Goal-oriented, Optimising
-performance, Extracting concurrency, etc., as discussed earlier in this
chapter refine at a stage lower than those based on the physical
structure. The most important conclusion drawn in section 2.2.3.1 was

that a structural partitioning technique would need to be used as
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an essential aim of this research if the design objectives identified in

section 2.2.3.2 were to be achijeved.

In general there is a need for a system design technique which
encompasses as many of the stages in the software life cycle as
possible to stop the rapid escalation towards a system crisis:
integration and maintenance stages prove to be the most expensive in
time and money to correct. Therefore, there is a need for an advance in
system development techniques of similar magnitude to that
represented by the introduction of the first high level 'Ianguages.

The three techniques: JSP, JSD and Object-Oriented
programming (Section 2.2.1) are systematic in their approach to the
decomposition of a problem. The process of producing software, using
any of the JSD, JSP or Object-Oriented Programming approaches,
will tend to be convergent. Therefore, during integration and
maintenance, this should prevent the introduction of errors due to
misunderstanding other people's design. The use of these techniques
will lead to the production of software systems that are modifiable,

understandable and portable.
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CHAPTER 3

3.0 CONTROL STRUCTURE OF A DISTRIBUTED SYSTEM

3.1 INTRODUCTION

In order to satisfy the four objectives listed in chapter 2, a
literature survey was carried out. This chapter surveys literature only
on the following three objectives: (i) systematic identification of the
necessary communications forv distributed control, (ii) to show that the
partitions are the natural side walls to the conversation used in the
design of fault tolerance software, (iii) to show that dynamic
reconfiguration is possible. The literature survey concerning the
estimation of state vectors in continuous and discrete-time systems is
deferred until chapter 4, where the new approach to decentralised

estimation is shown.

The physical distribution of the elements of a decentralised
system will in general not be ideally matched to the information
structures required to implement decentralised control over a
particular physical system. The problem is then one of determining the
conditions for controllability under a decentralised information
structure and of using the communication links to implement the
required system [6]. Therefore, a partitioning technique is required to
match each controller to its corresponding physical sub-system and for
the design of the minimal communication network.

The potential controllable sub-space is defined for each
‘controller by its actuation units and the observable sub-space by its

aquisition units. These can be determined by the technique developed in
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Momen's thesis [4!. For any control station the controllable and
observable sub-spaces may not be identical nor may they necessarily be
unique to that control station for they may overlap similar sub-spaces
belonging to other control stations. The use of a structural
partitioning technique helps in matching the controllers to a
physically decomposed system such that the sub-systems are decoupled
dynamically. Therefore, the structural partitioning technique alleviates
the problem of how to overlay a distributed control structure onto a
distributed system.

Once the sub-space is allocated for each control station with
the aid of the structural partitioning technique, the system structure
under the decentralised control actions should be potentially
controllable and observable. Further quantitative solutions should show
these systems to be controllable and observable. In the general case it
will be necessary to implement communications before the
decentralised system can be made controllable and observable. The
determination of the communications necessary for potential
controllability and observability has been developed by Momen and
Holding [6], but they ignored the effect of state variables, (due to other
stations), which affect a given station. This information is required to
estimate locally the state information of a given station because the
database (state vector) of the controlled system is decomposed by
the structural partitioning technique. Therefore, this thesis also
emphasises the role of communication in the control of distributed
processes. The essential theory of necessary communication is
introduced in the next section and then used in the section concerning a
new approach to the synthesis of a decentralised observer in a

continuous-time linear system.
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3.2 NECESSARY COMMUNICATIONS

In a distributed control system each individual controller will
not normally have access to global system information about the initial
state and will have insufficient information for the reconstruction of
the state vector of the complete system. Dynamic systems of this type,
where each of a number of control stations processes generally
incomplete and nonidentical information about the state variables, are
called decentralised systems. If the information fed back to each local

input depends only on its corresponding subset of measurement
variables the overall feedback strategy is called decentralised control
[6].

To introduce the concept of Necessary Communications (8] in a
Decentralised system we shall adapt several definitions from

references 54, 55 and 56.

Definition 1
A structured matrix a is a matrix which has a number of

fixed zeros at certain locations and arbitrary values elsewhere.

Definition 2

Two matrices a, and a, are structurally equivalent if
there is a one-to-one correspondence between the locations of
their zero and nonzero entries i.e. if the same structured

matrix A corresponds to both a, and a,.
Definition 3

If p(a) denotes the rank of a, the generic rank p(a) s

defined to be the maximal rank that a achieves as a function
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of its nonzero entries.
3.2.7 Representation of system structure

It has been previously suggested in Reference 5C that any
linear state space equation can be mapped onto a directed graph
(digraph). When a system is mapped onto a digraph, the physical
structure of the system will also appear in the digraph itself i.e the
dynamic properties of the physical system. Therefore any visual
inspection of this digraph will also reveal a realistic relationship

between states, inputs, disturbances and outputs on the real process
[87]. The use of such a graph has already been exploited in studies of
controllability and observability for large-scale systems [597.

First, we give a short summary for these results for the

conventional linear system which appears in references 59 and 57.

.
X(t) = AX(t) + BU(t)

where X (t) is a vector of state variables of dimension w, u is a
vector of control variables of dimension M, Y is a vector of output
variables with dimension p.

The Boolean form of a matrix A, is generated from a by

substituting every nonzero entry with unity. The digraph of the system

can be derived from the system Boolean matrix a,. For example,

consider the Boolean system matrices.

0 1 0 1 0 .
Ay=1]1 1 1 B,= [0 0 b:loo:]

The digraph of the system is shown in Figure 3.1. The digraph

is constructed from the Boolean matrix a,, as follows if an element of
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Ay, a;4 €quals 1, than there is a directed arc from node 3 to i.

.Y

Uy U,

Figure 3.1 Digraph of simple system

An alternative matrix description of a digraph is that given by
its reachability matrix R and for the above example in Fig. 3.1, we

could write

1 1 1
R = 1 1 1
0O 0 1
in which r;, = 1if the 1*" node has a directed path from the
jth node, and ryy =0 otherwise. The reachability matrix can be used in

the analysis of digraph properties but it is not by itself sufficient for a

complete analysis of the dynamics of a system as the so called
term-rank properties must be considered in all situations [5%]. The

term-rank of the Boolean matrix A, is equivalent to the generic rank of

the matrix a, i.e.

TR(A,] = p(A]
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Definition 4

The term-rank of any Boolean matrix 2, is the number of
elements which exist in the maximal permutation matrix
contained in a_. Such a maximal permutation matrix is not
neccessarily unique and this fact has considerable significance

in the structural analysis of decentralised systems, this will

be illustrated later.

For the general system given in eqn. 8.1 the well known
Kalman criteria are
a) For controllability,
Rank [B, AlB, a%B,....... an-lpy] = n

b) For observability,

Rank = N

e D —

From a structural point of view it has been shown that the
single numerical criterion for controllability, i.e. the above Kalman

criteria, can be replaced by two separate and necessary conditions. The
same applies to observability by duality [51].
(a) A term-rank condition
TR[A,, Byl = N
(b) A reachability condition that all states are reachable
in a digraph sense from at least one input. That is if there are
no nonzero rows in the Boolean matrix defined by R v.A B,.
Where R is the reachability matrix of o, and B, is the boolean

equivalentof B.

Control Struct. of a dist. system 52



The boolean matrix multiplication is represented explicitly by
the operation v.A borrowed from APL notation {58].

Associated with these will be the concepts of structural (or
potential) controllability and observability. A system (a,B) is
structurally controllable if there exists a system structurally

equivalent to (a,s) which is controllable in the Kalman sense [58].

3.2.2 Controllable and Observable sub-spaces of a general

control station in a Decentralised System.

A decentralised system is said to be controllable under a
decentralised information structure if there exists a decentralised
control law which transfers any initial state, which is not known to all
the control stations, to the origin in a finite time interval [58]. It is
possible that a decentralised system may not be controllable and
observable under the decentralised information structure using only the
local information sets of the control stations; in this case
communications may be required to enhance the local information sets
to achieve controllability. The problem of controllability and the role
of. communications are considered in detail in the following sections.

Consider the decentralised control using s control stations of

the complete linear continuous-time system described by the equation

where x (t): vector of state variables, dimension n

U, (t): vector of control variables, control station (i),
dimension m;

Y. (t): vector of output (observation) variables, control

1
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station (i), dimension D

A, By, C; ! constant system, input and output matrices

The system is informationally decentralised since, in general,
the control stations have different observation vectors.

Each control station in a decentralised system controls a
sub-space of the state variables of the system. Similarly, each station
observes a sub-space of the state variables of the system. For any
control station the observable sub-space may not be identical to its
controllable sub-space, nor may they be unique to that station for they
may overlap similar sub-spaces belonging to the other control stations.

We assume that the system is jointly controllable and jointly
observable, i.e.

TR[A,, Byl = N
and
Ay

Chb

and that all the state variables are reachable from at least one input
and that each state can reach at least one output. This assumption does
not necessarily mean that the system is controllable or observable
from a single control station. To simplify the notation, we shall now
consider that all the matrices and vectors are in a Boolean form, for
example, A = a,.

It is well known that the controllable sub-space pair (a,B) are
not generally unique [60]. This means that a station i of a
decentralised system may have more than one controllable and
observable sub-space. To determine these sub-spaces for every control
station 1,2,1i,....,s in the decentralised system we shall follow the
procedure in references [4,6,54].

Step 1: the reachable sub-space from u, is a subset of all
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state variables which can be reached from any input of control station

i. It can be expressed as a column vector as follows

Ry; = V/[R V.A B, ]

where R is the reachability matrix for the whole system, and the
notation v/ means logical summation over the columns.

The ones in the vector Ry; represents the state variables which
are reachable from control station i.

Step 2: the reachable sub-space to Y., the set of inputs of
control station i, spans the set of all state variables from which Y, can

be reached. It can be determined as a row vector as

Ryj =V7I[C; V.A R]

/

the notation above means logical summation over the rows

Step 3: since we can deal with the pair (a_.,B,) as a separate

ui’®i
sub-system which is reachable from u,, then to determine whether the
sub-system is controllable or not, we must test the term-rank of the
matrix
[Ayir Byl

in which the N x N~ matrix A, represents the reachable
sub-system of the input u,. This matrix is formed from the system
matrix A (A,) by equating all the elements in the it*® row and column to

zero if the ith state is not reachable from U, .

Generally, we have two possible conditions:

B:.] 2 r

(a) TR[A () 2Ty

Ui’

B < r

i] ui

(b) TRI[A,;,
where r ; is the number of ones in the reachability vector r,,

i.e. the number of states reachable from control station 1i.
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It is clear that if condition (a) is satisfied, then the

sub-system a,. is potentially controllable from control station i, and

the controllable sub-space, which is unique in this case, will be

Ky = Ryy

However, if condition (b) is satisfied, there are one or more of
the state variables which are reachable, but not controllable. The

number of state variables that are controllable from u; is equal to

TR (Ryg, By

The term-rank of the matrix (Ay;, B;l can be determined from
any of the valid entries in the permutation matrix. This means
generally, that the control station i may have more than one
controllable sub-space. All the possible choices which satisfy the

TR [A B.

;]

iy will be represented by the set of matrices

Jlag, Bl 3= 1,2
Step 4: we can determine the potential observable space of
station i, i.e. by using the dual technique of above (steps 1-3) which
determine the potential controllable sub-space, by testing. the
term-rank of the matrix

A vy

Ci

The result of this test is one of two possible conditions

a
(a) Ay
TR 2 ryi
Ci
(®) AYi
TR < i
Ci

where r_, is the number of ones in the reachability vector r,,, i.e. the

yi

number of the state variables that reach any of the outputs of control
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station 1.
If condition (a) is satisfied then the potential observable

space, which is unigue in this case, will be

However, if condition (b) is satisfied then control station i does not
have the potential to observe Ryi- The number of states which are

observable is given by

Avyy

Cy

TR

The term-rank of the matrix (Ay;, C can be determined from

1]
any valid entries in the permutation matrix. This means generally, that
control station i may have more than one observable sub-space. All the

possible choices which satisfy the Tr{a,,,c,]1 will be represented by

the set of matrices

Jia C.

1]

Yi’ i= 1,2

Step 5: A control station may possess controllable sub-spaces
that cannot be used to achieve, even with another control station, full
controllability of the system. This kind of controllable sub-space is
known as an incompatible controllable sub-space.

In  the decentralised system, the compatible sets of
controllable sub-spaces of the control stations are sets which satisfy

the condition

R, VIR, Voo JK, = unit vector
Step 6: A duality exists for the observable sub-spaces.
Therefore, the compatible sets of observable sub-spaces of the control
stations are sets which satisfy the condition

Mty v dME, VoL JMt, = unit vector

NOTE: Here we slightly deviate from Momen's later work (his

thesis) which uses implicit feedback due to other controllers 4],
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because this thesis is concerned with resilient control structure and
therefore, the work of Momen and Holding will be followed [6].
Appendix B details these additional steps, for enlarging the above
sub-spaces. The reason for this departure is that if any control station
fails or malfunctions the potential controllable and observable space of
the other station or stations will be affected if its space was derived
using implicit feedback signals. This error in space derivation will
propagate to the other stations because its enlarged sub-space was
dependent on the one previously affected and the whole controllable
structure will collapse.

Step 7: The common sub-space is found for each of the

stations

Ly = K, M MY

Step 8: In decentralised structure the union of all the common
sub-spaces must be the unit vector, i.e. the following equation must
hold if the system is to be controllable under the decentralised

information structure

S
L)L; = unit vector
i=1

However if the above condition does not hold then in such a
system necessary communications are the minimal communication
required to control the complete system. The necessary
communications for the system can be determined by considering the
disjoint sub-space which can only be controlled by communications as
derived in reference [6].

The necessary communication, for station i

t —_ —_—
I, = [KxMM MY, U \UJ L]

for §=1,2, .. n; 1 # j
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3.3 DISTRIBUTED CONTROL SOFTWARE

The problem we are faced with now is how to design software
for ‘a decentralised system which should be robust (resilient to
failu'res). The structural partitioning technique decomposes a physical
model of a linear system into cyclic and acyclic sub-systems. Each
sub-system controller's software will comprise (i) local estimation of
its partitioned state vector, (i) a control function and (iii) a
communication interface to other controllers. In general, if a sensor
and an actuator is allocated to each sub-system and then, as a direct
result of the structural partitioning of the physical model, two .
communicating concurrent processes can be extracted: one for
estimation and the other for the control function.

The design of information processing for distributed control
software derived from the above approach leads to processes which are
robust. This is because the software processes are mapped from linear
sub-systems which are dynamically decoupled. It may be necesssary to
consider the software fault tolerant measures applicable to such a
loosely coupled distributed system to make it more robust. Moreover,
analysis of the communications between the processes controlling the
linear system leads to a method for designing fault tolerant software
[(61]. A summary of existing and recent software fault tolerance
techniques is given in the next section. This framework is required to

show that the software processes derived by the structural
partitioning technique are side walls to the conversation [18]

(objective (ii) in section 3.1).
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3.3.% Software fault tolerance

Due to the complexity of computer systems, it is generally
impossible to obtain é system which is completely free from faults
[62]. System malfunctions can be caused either by hardware or
software faults.

To develop a reliable software system a wide range of
techniques has to be applied to all stages of the software life cycle.
Methods are being developed for increasing the correctness of design

[31] by using correctness proofs. Fault avoidance methods can be used

in the design as summarised in reference [12]. System and program
design methods, like JSD, Object Oriented approach and JSP will
eliminate some of the design faults by imposing a software engineering
discipline on the design. Nevertheless, faults are likely to remain.

The basic scheme in fault tolerant systems is to neutralise
automatically the effects of a fault with pfotective redundancy.
The primary aim of protective redundancy in hardware is to overcome
the wear and tear of physical components. Hardware fault tolerance has
been studied for a long time [63] and, with the increase in hardware
reliablity due to advances in technology, hardware structures have been
developed which will cope, with a high degree of probability, with
these faults.

The primary aim of protective redundancy in software is not to
overcome the wear and tear problem because software does not age.
The problem is as, Randell [15] states, that all software failures
result from design faults. In software fault tolerance the aim is to
overcome the design fault. The complexity in software design can be
several orders of magnitude greater than that of the hardware design
due to the number of possible states of a software system [61].

Therefore we cannot test all states in a finite time so faults are likely
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to remain undetected and it is necessary to cope with them [20].

The faults can be classified into two categories: anticipated
faults and unanticipated faults. The examples of the former category
are division by zero, floating point overflow, etc. The latter suggests
by its name that faults are very unusual, for example, intermittent
hardware faults, a 'bug' in the program, etc.

The structures to enforce fault tolerance must perform the
following tasks when a fault occurs:

1) detect that a fault has occurred
3
4

(1)
(2) assess the extent of the damage that has been caused
(3) repair the damage
(4) treat the cause of the fault

Once the error detection has taken place, the damage repair
must take place. There are two strategies for repairing the damage.
These are classified as Forward and Backward error recovery
techniques [64].

Forward error recovery techniques are generally used for

recovering from anticipated faults and backward error recovery for

recovering from unanticipated faults [65].
3.3.2 Recovery Block

The recovery block mechanism [15,66] provides a backward
error recovery scheme for conventional sequential' systems. The
technique partitions the software into recovery blocks. On entry the
current state of the system is saved. (The assumption is that this is a
correct state of the system). If a fault is detected, the state of system
is restored. The system now continues using some alternative course of
action, so as to avoid the original problem. It uses a similar mechanism

to the stand by spares approach used in hardware systems [67].
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The recovery block scheme is described by the syntax given in

(€Y
%)

fig.

ACCEPTANCE TEST

~ B ¥ PRIMARY PROCESS

BLSE BY ALTERNATIVE PROCESS
ELSE BY ALTERNATIVE PROCESS

ERROR PROCESS

Figure 3.2 Recovery Block Outline

On entry to the recovery block a recovery point is established
and the primary block is entered. On completion of the primary block
the acceptance test is executed. If the test does not raise an exception
the recovery block is exited. However, if an exception is raised the
recovery point is restored, the next alternate block is executed and the
above procedure is repeated.

Recovery blocks can be used in concurrent systems, but some
form of recovery coordination is required for correct operation of this
recovery mechanism. If recovery points of interacting processes are
not properly coordinated, then an intolerably long sequence of rollback
propagations, called the domino effect [15], can occur.

The domino effect can happen when two particular
circumstances occur:

1) The recovery block structures of the various processes

are uncoordinated, and take no account of process

interdependencies caused by their interactions.

2) the processes are symmetrical with respect to failure

propagation - either member of any pair of interacting

processes can cause the other to back up.
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2.83.8 Conversation Block

An abstract construct termed a conversation was proposed in
1974 [18] as an aid to the structuring of properly coordinated error
detection and backward error recovery in interacting processes. A
conversation [88,89] is an extension of the recovery block technique,
to two dimensions. Like recovery blocks, conversations provide a wall
which serves to limit the damage caused to a system by errors. The
boundary of a conversation consists of a recovery line, a test line and
two side walls. A recovery line is a coordinated set of the recovery
points of interacting processes that are established before
interactions begin. A test line is a correlated set of the acceptance
tests of the interacting processes. A conversation is succesful only if
all the interacting processes pass their respective acceptance tests. If
any acceptance test is failed, all the processes must roll back to the
recovery line and retry their alternate blocks.

The basic program structuring rules of the conversation scheme
can be summarised as follows [69]:

) A conversation defines a recovery line as a line which

processes in rollback cannot cross.

i) Processes enter a conversation asynchronously.

iii) A conversation contains one or more interacting set of

processes aiming at the same or similar computational results.

iv) A conversation defines a test line which is an

acceptability criterion against which the results of an

interacting set of processes are assessed. A test line can thus

be viewed as a single global acceptance test called a

conversation acceptance test.

V) Processes cooperate in error detection, regardless of the

source of the error.
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Vi) Two sidewalls defined by a conversation imply that the

process participating in the conversation must neither obtain

information from, nor leak information to, a process not

participating in the conversation. That is, no information

smuggling by processes in a conversation is permitted.

One aspect of the thesis is to design a system with resilient
control structures for use in real-time control. The design method

using the backward error technique by the placement method (Tyrrell

[18]) for asynchronous concurrent processes will be utilised.

Note: the above ideas (sect. 3.2-3.3) will be used to
demonstrate that the structural partitioning technique used in
decomposing a linear system not only eases the sensor/observer
(estimation) and actuator/control problem (chapter 4), it will also ease
the construction of a fault tolerant system because of the disjoint
values of the partitions of the state of the physical system, and the
overlay of software processes necessary to control such a system
(chapter 5).

The final section below is introduced to show that dynamic
reconfiguration of software processes associated with sensors or
actuators, which has been ignored for real-time control systems, is

possible (objective iii in section 3.1).
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3.4 DYNAMIC RECONFIGURATION

The flexibility provided by a distributed environment can be
exploited by a variety of techniques, ranging through elaborate dynamic

reconfiguration, redundant processing, to fault isolation and explicitly
considering fault tolerance of software [70]. It was recognised by

Boebert et al [70], that it would be catastrophic to ignore the need to
provide fault tolerance for real-time control applications. However, the
case for providing support for dynamic reconfiguration was rejected
because, the processors in distributed real-time control systems are
typically located near the sensors and actuators they serve. They
argued that reconfiguration is rendered ineffective by the inability to
move the function of the external devices.

There are few reports in the literature in the area of
multiprocessor systems dedicated to a particular real-time task, such
as control of industrial processes [71]. They all argue, even to the
present, against the possibility of dynamic reconfiguration of
processes serving sensors and actuators.

The migration between other computing elements of
software components which are not specific to actuators or sensor
control can be used to enhance performance by load sharing in time and
space and to enable software components to tolerate hardware failures.
Some reconfigurable architectures are surveyed in [72] with the aim of
evolving a superior version. The work at Brown University [41,45]
shows how the load can be shared in time and space using a graphical
modelling technique. (See also chapter 2).

Some of the related work concerning dynamic reconfiguration

of a System can be found in [33,73,74,75]. Static approaches exist

like the Polyproc system [76]. However, static configuration is not

applicable to the work presented here. Dynamic reconfiguration of a

Control Struct. of a dist. system 65




system is necessary because a large computer system should be
introduced into the environment gradually. This will ensure that as a
system is introduced it will be integrated and work in a safe and
coherent manner. The ability to modify and extend a system while it is
running, will accommodate unpredictable changes at unpredictable
times.

Two of the relevant approaches to configuration of a System
dynamically wi[l be summarised here. First MASCOT [33] and then
Conic [73].

() MASCOT [33] provides a framework for constructing
systems for real-time applications on a single computer. The MASCOT
kernel provides scheduling and synchronisation primitives. The
processes communicate through IDAs using access procedures. The
MASCOT commmand interpreter allows a system to be configured
dynamically by the command Foi‘m. This creates a set of activities
(processes) from their root procedures and interconnects these
acitivities by substituting the addresses of the IDAs for the
corresponding formal parameters and the root procedures. Each Form
commandc creates a named sub-system, which can be deleted
subsequently by a Remove command. The availability of component
connection with component instantiation means that reconfiguring
connections can be done but only by deletion and re-instantiation of
components.

(i) Conic [73,77] provides on-line dynamic configuration:
creation, deletion and interconnection of software components. Facility
for system building and dynamic configuration are provided by keeping
configuration separate from the programming language. The concepts of
a module and message primitives have been added to the programming
language Pascal. Conic is then translated to standard Pascal for

execution. The extra functionality of tasking and message
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communication is incoporated as procedure calls to the kernel. Conic
provides a configuration language to specify system configuration. The
system configuration specification identifies the module type from
which the system is constructed, declares the instances of these types
which will exist in the system and describes the interconnection of
instances. These three functions are provided by the constructs:

a) Use: the construct provides a context of module type

from which a system is constructed.

b) Create: this construct declares named instances of module

types which will exist in the system.

c) Link: this interconnects modules, by binding the

entrypoint (input port) of a module to the exitport (output

port) of a second module instance ie the intermodule
communication channels.

To support dynamic reconfiguration three functions, Remove,
Delete and Unlink are provided to perform the inverse function to
Use, Create and Link. Dynamic configuration is supported by the
Configuration Manager, which translates a request to change the
system, expressed in the Conic configuration language, into commands
to the distributed operating system to execute re-configuration

operations.
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3.5 COMMENTS and CONCLUSIONS

Particular emphasis was given to the role of communication in
the control of distributed processes, and to the partitioning technique
necessary to support the design of distributed and decentralised
control system with resilient structures.

Chapter 2 surveyed the existing partitioning techniques and
adopted the structural partitioning technique. This technique allows
one to answer the fundamental question posed in section 2.1, and the
method with communication allows one to satisfy several goals:
three were dealt with in this chapter (section 3.1) and are summarised
below:-

(i) Identification of necessary communication
(i)  Fault tolerant software

(ili) Dynamic reconfiguration.
3.5.1 Necessary Communications

The essential theory of necessary communication was
introduced. It was pointed out that the existing work on identifying the
necessary communication to control the system in a decentralised
fashion [6], ignored the effect of state variables, (due to other

stations), that affects a given station. An extension of this work is
shown in chapter 4. This extension identifies those state variables of

other stations which interact with a given station.
3.5.2 Fault Tolerant Software

This section surveys the existing and most recent technique

used for designing fault tolerant software for real-time systems. The
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boundaries derived using the partitioning technique developed in
chapter 2 will be to shown to be the side walls of the conversation in
chapter 5. In other words, the processes mapped from the decomposed
linear systems are atomic.

This statement has two implications. (i) A recovery block is
required for each partition at the outermost boundary level and
conversations are required for the sub-processes within the
partitioned boundary. (ii) the conversation is identified before coding
unlike other techniques [16]. The partitions identify the fault tolerant

mechanism at an abstract level.
3.5.3 Dynamic Reconfiguration

The literature survey carried out in this section shows that the
dynamic reconfiguration of processes has been ignored in the past,
especially when those processes are servicing the sensors or actuators
of the system being controlled. In chapter 5, it will be shown, by
example, that the technique of dynamic recoﬁfiguration can be used
with these types of processes in real-time control systems for certain
classes of systems.

Note: the work on the dynamic configuration of a system will
not be addressed in this thesis. However, there is a real need for large
embedded computer systems to accommodate evolutionary change,
particularly those systems with expected long-life time. They need to
evolve as human need changes, technology changes, and the application

environment changes.
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CHAPTER 4

4.0 OBSERVATION, ESTIMATION AND COMMUNICATION

STRUCTURE

4.1 INTRODUCTION

In the last decade there has been a great deal of interest in the
decentralised control and estimation of the state vectors of large
complex systems [78]. This chapter deals mainly with the
decentralised estimation of the state vector of a large complex system
in continuous and discrete-time using the Luenberger observer
technique [79] and the Kalman Filter technique [80,81] respectively.

The Luenberger observer technique [79] is a well known
fundamental technique for the estimation of the states of a centralised

system. It was shown by Siljak and Vukcevic [8] also to have

application for decentralised systems. Siljak and Vukcevic synthesised
a decentralised observer from local measurements, using output
decentralisation, within an interconnected sub-system constraint.
Their state space representation of the sub-system equations must be

defined as shown below:

[ J
X; = BAXy+ (Q, A;Xy)+ BiU;
j=1
j#i
Y, = C; X4 i=1,2, ;S
Where,
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A _ |10..0-a2 .. |0
l .................. l
00 1 -an 1
and the interconnection matrix Ajs = (apqij) such that

where p = 1,2,...,n;andq = 1,2,...,n4

Note: to simplify the notation all square matrices which are
represented by a,, will be denoted by a_ throuéhout this chapter and the
thesis.

However, even though the sub-observers are made individually
stable, the composite observer constituted by the individual
sub-observers must be checked for stability by the vector Liapunov
function concept. The Liapunov function is a well known technique for
checking stability of a system without actually calculating its
eigenvalues.

Recently, several researchers have demonstrated techniques
for estimating the state vectors in a decentralised fashion [9,10,82].
However, the concept underlying all their work stems from Siljak and
Vukcevic's approach.

First, the work of Geromel and Yamakami [9] extends the work
of Siljak and Vukcevic to continuous-time linear systems. Their
method tries to overcome the unrealistically large feedback gains and
difficult numerical procedures expe'rienced by other workers and is
demonstrated in ref. 9. The technique still requires the vector
Liapunov function for checking the stability of the complete system
within a different interconnection sub-system structure constraint.

They also present a solution for the discrete-time case, which they

claim to be the first ever presented. Their state space representation
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of the sub-system is defined as in Siljak et al above and the
interconnection matrix is defined such that any two sub-systems i and

3 must be factored as

Ay = ByLiCy, 1% 3=1,2,...,5

so that the overall continuous system is stable and the decentralised

feedback gains are realistic [9].

Second, the work of Viswanadham and Ramakrishan [10]
reformulated the decentralised problem for interconnected systems
into that of synthesising an observer assuming that no information
transfer is possible. This is termed the unknown input observer
problem.

A common problem with the above approaches concerns the
stability of each sub-observer. This is because the stability of the
observers of the interconnected sub-system has to be checked using the
vector Liapunov function in all of the above approaches [8,9,10C].
This is because the interconnected sub-systems are not dynamically
decoupled. Therefore, other sub-observers will become unstable due to
the failure of any one of the individual sub-observers. Another problem
is that a local estimate requires the transmission of any necessary
estimated state information from the appropriate sub-observers.
Hence, the reliability of the sub-observers cannot be guaranteed if any

of the sub-observers fails for any reason. These problems were pointed

out by Khun and Schmidt [82].

This chapter shows firstly a new technique for decentralised
observation which circumvents the stability problem highlighted
above in the continuous-time case by using the cyclic structural
properties for the first time in the design of the decentralised
observers. Secondly, this chapter identifies systematically the
necessary state information which a sub-observer requires from

the other sub-observers to estimate locally. Thirdly, this chapter
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shows in the continuous-time case how fault tolerant
sub-observers may be constructed. Finally, the idea of decentralised
estimation of the state vector is carried forward to the discrete-time
system using é Kalman Filter; this is a technique for estimating the
states for a discrete-time system when the presence of noise in the
system is taken into consideration. This presents original work
which shows how decentralised estimation can be achieved by
the Kalman Filter.

This chapter is split into two major sections. The first section
is for the continuous-time and the other is for the discrete-time case.
The continuous-time section shows an application of the decentralised

observation process (based on the decentralised control technique of

Evans and Schiza [7,83]) which circumvents the need for stability
analysis of the complete interconnected sub-sytems (as done by the
other researchers [8,9,10]) provided the natural (cyclic) boundaries
of the system are adhered to (see chapter 2). Hence, it is a simpler
numerical process.

The aforementioned publications [8,10] demonstrate that the
separation property holds for their decentralised estimator; this
property also applies for the decentralised technique to be presented
here, and is demonstrated in this first section.

The continuous-time sub-section derives systematically the
necessary communication required by decentralised controllers for
observation processes. This augments the work of Momen and Holding
[6] who identified the necessary communication required to make the
system controllable in a decentralised scheme (see chapter 3 for fuller
details). This form of communication is known as secondary
communication to distinguish it from the work of Momen et al [§].

In this last sub-section, first part, certain matrix criteria are

also presented which lead to robust decentralised observers by
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eliminating communication between observers.

The discrete-time section shows the Kalman Filter has an’
application for estimating the states of the system in a decentralised
fashion, if again the natural boundaries of the systerh are adhered to.
This approach shows a considerable improvement in computation
time, because the order of the estimation problem is reduced. That is,
instead of using one complex Kalman filter method for estimation, this
method uses several small order asynchronous Kalman filters.
Researchers. at the Queen's university, Belfast are trying to speed up

the Kalman filter, by redesigning the standard algorithm to use

systolic arrays [84,85].
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4.2 CONTINUOUS-TIME SYSTEM

4.2.1 Decentralised Observers

4.2.9.1 Introduction

Although estimation and control problems in decentralised
systems are of equal importance [8], decentralised control has
received much wider attention than its estimation counterpart. This
difference in popularity is due in part to the need for effective
decentralised control schemes in constructing decentralised observers
for state estimations. In this section a decentralised observer for a

continuous linear system will be illustrated using the decentralised

control scheme of Evans et al [7].

4.2.1.2 Decentralised Control

Results about the decentralised control problem achieved by
researchers for continuous linear systems have appeared in the
literature [8,9,78]. These methods suffer from deficiencies; they may
have a specific structure constraint, or limited practical applications,
or provide the designer with an unrealistically large gain, or involve
difficult numerical processing.

The work of Evans et al has shown that decentralised control
can be achieved if one stays within a natural structure constraint
that is within a cyclic sub-system. The properties of cyclic
sub-systems are explained earlier in this thesis in Chapter 2. These
sub-systems (or systems) achieved by structural partitioning suggest
that the sub-system cannot be further decomposed using structural

attributes. However, quantitative analysis of these sub-systems, using
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the sensitivity matrix [7], shows that further decomposition may be

possible.

4.2.1.3 Decentralised Observer

This section shows a new way of achieving decentralised
observation by applying the decentralised control technique of Evans
and Schiza [7].

The Decentralised Observer equation can be derived by

considering the one-shot observation equation as described in ref

[80]. Consider a linear system described by equation 4.1

X(t) = AX(t) + BU(t)
....................... (4 .1)
Y(t) = CX(t)
where,
x(t) &RV
u(t) ERM
v(t) ERP

A,B and c are constant N x N, N x M and P x N matrices

respectively.

It is assumed that all the matrices and vectors except x(t) and

Xx(t) inequ. 4.1 are known. The only thing preventing a direct
reconstruction of the system in order to arrive at the state vector

itself is the lack of knowledge of initial conditions. If an estimate of

the state vector, x(t), is obtained, a measure of error between the
plant and the estimator model output, £ (t), can be determined i.e.:-

E(t) = ¥Y(t) - CQ(t) ———————————————————————————— (4.2)

This error vector can be used to improve the estimation
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X(t) = AX(t) + BU(t) + GE(f) ~—=———=—======—=—=—— (4.3)

The matrix ¢ is a feedback gain matrix, the (arbitary) selection
of which determines the characteristic of the observer if the system is
~ observable, Kailath [88]. The poles of the observer process are given by
the matrix (n - Ge).

The above equation can be carried over to decentralised
estimation if the system is partitioned into its cyclic and acyclic
components. Because each cyclic (and acyclic) sub-system s
dynamically decoupled from each other, as shown earlier, the
assignment of poles to each sub-observer can be achieved
independently. An acyclic sub-system is not considered in the thesis
since it is a trivial sub-system, i.e. it consists of one element only.

The estimation process of a sub-plant can be found by using the

following equations

S
Xi(£) = AXj(t) + ByUi(E) + ( 2 AisX,(t))
j =1
——————————— ( 4.6 )
Y, (t) = C;X; ()
X, () € Rnd
v.(t) &€ Ret
Uy (1) € Rt
s S s
Where, Yn,=N, Ym;=Mand ¥p; =P
i=1 i=1 i=1

s = number of partitions or sub-systems. And all pairs [(a,, C,

i1

are potentially observable.

The error between the sub-plant and the estimation model

output can be determined i.e.
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This error vector can be used again to improve the estimation

process,
. S
A
Xi(t) = AjX () + ByUi(t) + (D, A 13 56 + GJE{(t) ——== (4.6)
A =1 s
Xj(t) = (A~ Gici)Qi(t) +B .U, (t) 2 ) +G Yy (E) =~ (4.7)

j=1
Again the characteristic equation can be determined for the

process of decentralised observation by the equation below:-

IAI; = (B; - GC | = 0  ==—=m-mm—mmo—o—- (4.8)

where I is an identity matrix and A is a complex variable.

Let us consider a few applications of the decentralised
estimation technique, using the above equations to show how the
decentralised observers can be synthesised without checking for the
stability of the interconnected sub-system due to the way the system
is partitioned. This applies to the structural partitioning and any
further quantitative decoupling by sensitivity analysis.

The two examples demonstrate how a system can be observed
in a decentralised fashion by using two sub-observer processes
executing concurrently, asynchronously and communicating only
necessary state vector information between them at the start of a new
computation cycle. In the first example, the system is partitioned
structurally, into its cyclic and acyclic components. The second
example demonstrates that a cyclic component of 4 by 4 order, could
be further partitioned using the quantitative analysis as mentioned

earlier in the section 4.2.1.2. The second example is a sub-problem of a
large order, given in [87], where the 12 by 12 order was structually

partitioned into 4 cyclic sub-sytems [7], where two sub-systems

were of the order 4 by 4 and the other two of the order 2 by 2.

EXAMPLE 1

This example is taken from Orr's thesis [88], where the state
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space representation of the plant is shown below:-

-4 7 -1 13 0 1 0
A = 3 2 5 = 1 Ct= 0 1
4 7 -4 8 2 0 0
0 -1 0 0 -2 0 0

By using the technique described in section '2.2.3 to expose the
cyclic and acyclic part of the system, the rearranged representation
of the plant is shown below:-

Note: the matrix a, 8 and ¢ above are rearranged by partitioning
to "a = ptaP, "B = ptB and *ct = ctp, respectively. However to simplify
the notation in this example, the primes on the appropriate matrices

are omitted.

—4 -1]7 13 0 1 0

4 -4 |7 8 2 N 0 0
A = B = |[—— Cc =

0 0|3 2 1 0 1

0O 0|-1 o -2 0 0

The above partitioning technique shows that there are two
sub-systems or processes in the plant, dynamically decoupled from

each other. These sub-systems are as follows

TR

where the eigenvalues for the system or sub-systems are as

follows:-
7\,11 = -4 + 32
Ay, = -4 - 52
A, = 2
A, = 1

The interacting sub-system for the above plant is the one shown:-

7 13
B2 =15 g

The observation' vectors for the two sub-systems are as follows:-
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C, = [1 0] C, = [1 0]

To achieve the asymptotic stability for the observation
processes equation 4.8 must be used. The eigenvalues can be chosen
arbitrarily as explained earlier in this section, therefore the
eigenvalues for both estimation processes were chosen as -5 and -4.

Then the observer poles for sub-system 1, can be found from

-4 -1 9., (1 O]
[Al] - ([Gl][cl]) = 4 -4 - ng

which has a characteristic equation, calculated from the

determinant of kIl - (A; - G4Cy).

A%+ (8 + gy)A+ 20 + 497, = g1, = O
To achieve the above objective the elements of the feedback

matrix G,, g;; and g, are chosen to be 1 and 4 respectively. Similarly,

for the other sub-system to achieve the identical dynamics required,

the elements of the feedback matrix G,, g,; and g,, are chosen to be 12

and 9 respectively. The resulting behaviour of a system as described by
the estimated states >A<(t) when subjected to a step input, compared to
the actual states x(t), are shown in fig. 4.1(a) = (d). The results
were obtained by simulation using an 'in-house simulation package
(Interactive Simulation Language) in which system variables are
designated as outputs from blocks.

The initial condition of the actual states was set up as

follows:-
Block 1 ( state x,)is 1
Block 2 ( state x;) is -1
Block 3 ( state x,)is 5
Block 4 ( state x,) is -5

where as the initial condition for estimated states x,- x, were set

at 0, these were labelled as block 20,19,14,15 respectively.
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EXAMPLE 2

Evans [7] used the Gust-Alleviation Problem from {87] to
illustrate a decentralised control scheme. The extract below is a
sub-system of the Longitudinal motion of an aircraft's dynamics
achieved by the structural partitioning technique [7]. This sub-system

can be considered as a system due to the decomposition technique

used.

0.00 1.000 0.00  0.000
-408.86 -2.679 -10.71 ~-0.518
A = 0.00 0.000 0.00 1.000 B
~1.24 =-0.176 -390.10 =-0.474

[oNeNeN
o OO

Peamc— m— T

By using the partitioning technique of section 2.2.3, the
above system is shown to be strongly coupled, i.e. the system is
cyclic. However, using the sensitivity matrix (quantitative)
analysis, the system can be further decomposed into two sub-systems
[7], one with states {1, 2} and the other with states (3, 4}. These
sub-systems are shown to be dynamically decoupled and are as

follows:-

A = 0.00 1.000 A, = 0.00 1.000

-408.86 -2.679 -390.10 -0.474

where the eigenvalues for the system are:-

Ay, = -1.36 + 320.19
Ay, = -1.36 - 320.19
A, = -0.22 + 319.73
A,, = -0.22 - 319.73

The interacting sub-systems for the two sub-systems are:

| o0.00 0.000 © | 0.00 0.000
A1z = [;0.71 -O.SIB:J ‘A21“[;1.24 -0.176

The observation vectors for the two sub-systems are as follows:-
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To achieve state estimation of the system, decentralised
observers are employed on the partitioned sub-systems. To achieve the
asymptotic stability for the observer processes, equ. 4.8 must be
used; hence the eigenvalues can be chosen arbitrarily.

Two equations for the estimation processes are shown below

for sub-system 1 and 2 respectively.

Estimation 1

The observer poles for sub-system 1 can be found from

[ 1 0]
~0.00 1.000 9
[Aa1] - ([Gy1(C.]) = E408,86 —2.67;|— Eﬁj

the characteristic equation can be calculated from the determinant of
AI, - (A, - GyCy).
The values of g,, and g,, can be chosen simply as 1 and o

respectively. This gain factor will give the dynamics of the observer

process as -1.84 + 320.20.

Estimation 2

The observer poles for sub-system 2 can be found from

A,] - ([G,l[Cyl) = 0.00 1.000| |9,, [ 10 ]
(A3] 21 1C2 36010 -0 474 52

By choosing the value of g,, and g,, as 3 and 0 respectively,
the dynamics of this observer process will be -1.74 + 319.71. The
resulting behaviour of the estimated states for a step input, compared

to the actual states, is depicted in fig. 4.2 (a) - (d).

The initial conditions of the actual states were set up as
follows:-

Block 3 ( state x;)is 2
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Block 4 ( state x,) is -1
Block 5 ( state X4)is 0

Block 6 ( state x,) is -5

where as the initial conditions for the estimated states x,- x, were

set at 0, these were labelled as block 9 - 12 respectively.
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4.2.1.4 Control  System Containing Observers

Whatever the control design objective, emphasis must be

placed on the stability of the system by the feedback of a known or
measurable state vector. However, once an observer has been employed
to obtain an estimate of the state vector and this estimated state
vector has been used in place of its actual value, then the closed loop
system is no longer dependent on the true state vector, but rather is
characterised by its estimated version.

It is important and of interest therefore, to show that the
separation property holds for the decentralised estimation proposed
in this chapter; that is, to show that the eigenvalues of the observer
and the closed-loop plant matrix can be assigned separately. The
problem becomes whether, when a stable asymptotic observer is
applied to an otherwise stable control system design, the overall
closed loop system remains stable for any type of observer within this
category?

Iﬁ order to answer this question for the decentralised case,
consider again the state equation 4.4 along with a newly defined

control input signal:

where r, is a feedback matrix and r; (t) is a reference input for the
sub-plant i of the appropriate dimension. Assuming the state vector to
be known it follows on substitution of {4.9) into (4.4) that the closed

loop eigenvalues are given by
. S
X (t) =(A;- Fp)Xg() + ( LA4sX(E) + Byry(B)==="
=1

(4.10)
However when an observer is used in order to obtain an

: ; 14 O\
estimate of the state vector, such that x; (t) becomes X; (t) in (4.9},
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...

the closed loop eigenvalues are found by means of the two equations

and J=1 ’ e
Q'(t) =GiCiXi(t) +(& - BR - G;C,)X >
i 1 1 - -
+ Byr; (t) ’ _____l _____ R (j2=1A1] 5
————————— (4.92)
where the latter comes from the general observer equation {4.3).

Now if the composite closed loop system consists of

interconnected sub-plant and observers, the two equations for all the

sub-plants can be cast into a matrix form:

>€1 (t) Al o s e e s IAlS _BlFli ........... ,O Xl Blrl
X ()| |Ry rA A, [0 BF , X,| |B,x,
N -

XS (t) <1’ 'AS 0, ’ BSFS XS BS rs
= — |+ —

A A

Xl(t) Glcl,o, , 0 Al_Glcl _BlEl‘_ ’ ’Pis X1 Blrl

A A

X2 (t) O,GZCZIO, [O .,%_Gz(.‘z _%g [.pzs X2 B2r2

A A

Xs(t) O, ....... GSCS Asl""AS_GSCS—BSFS XS Bsrs

By adding column s+i to column i and subsequently subtracting

row i from row s+i, for all i = 1to s, the above complicated matrix

can be reconfigured as

B =ByFp, . Blg|"BiFqsovvcnne , 0
a0 B
0,0, vuvnnn I E NI RS SPORERYE S
0,0 e 0| B op. - rRo-GeCo

From the above matrix it can be seen that the composite system s
made up of two cyclic sub-systems. Therefore feedback controllers
and observers are dynamically decoupled. Hence the controller can be

designed as though the actual state vector is available, and the
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observer can be designed without reference to the type of feedback

control action, if any. This feature is known as the Separation property

4.2.2 Secondary communication

This section systematically derives the nhecessary
commuhnications required for controlling a plant in a desired fashion.
This technique identifies those state variables of other stations which
interact with a given station. This extends the work of Momen et al [8]
who identified the necessary communication to control a plant in a
decentralised fashion but which ignored the state variables, (due to
other stations), that affect the station.

The identification of those state variables that affect the
station is necessary for estimating state variables of a given station
by the observation process, as described in the previous sub-section,
and it is also required by a controller of the same station needing to
apply some feedback strategy.

The following definitions are required for this identification.
Most were introduced in chapter 3.

rRu, = Reachable space by control station 1.

" L " n 1"

Ry, = Observable

K. _ Potential controllable space of station 1.
2
M, = observable B v

l )

L.* = Space extended Dby communication with the other
1

station.
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L; = Designated controllable & obs. space (if an overlap)

EL; = Extended "L, space.

S

Number of stations.

NOTE: The requirement here is that the distributed contro! stations can
observe and can control the complete system. This implies a necessary
condition for the complete system to be controllable énd observable
[6].

If a system consists of a set of interacting sub-sytems is to be
controlled in a desired fashion, then it is necessary to account for the
effect of the . interaction between the sub-spaces of the other
sub-systems. The interaction of the other sub-systems may or may not
be desirable; in either case, the influencing states of the other
sub-systems must be determined so that the appropriate action can be
taken by the controlling station or processes. The identification of the
interactions of the stations can be found by the steps described below.
The information on these state variables which need to be

communicated to the station i will be placed in the set EI;.
The state variables, "1, in the stations i which are affected

by the other (stations) state variables are found by.

* *

S
.= 1, () (U Rruy

i i
j=1

where i #

If the set of such states is empty, then the sub-system i is

completely decoupled from the other sub-systems; therefore no

communication is required by the station i. However if the set is not

empty then the steps below are necessary.

The state variables in other sub-systems which interact with

Sub-system i can be identified as follows:-
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For each state variable in the set 1, find its predecessors in

the digraph of the system and form a set, P;. This is the set of all state

variables which cause a disturbance to the state variables in station i

including predecessor state variables which belongs to station i itself

P; =({states which are predecessors of s|vs A s € 1.}
1

The predecessor state variables, belonging to the other

sub-systems can be found by eliminating from the set ». all the

elements which may belong to the local set "r,. The new formed set,

*

1,*, contains all the states in other sub-systems which affect the

state variables in sub-system i.

* ok

*
I; =P; (Y L;i

The above equation finds all the state variables which affect
the controllable space of station i. However, this does not consider the
direct effect which the input vectors of all the sub-syster'ns have on
the state variables of the particular station i. These need to be
determined because, implicitly, the set of input (control) vectors
defines the controllable spaces of each sub-system.

It is therefore necessary to consider the input vectors as an
extension of the system, that is, as an extension of the state space
representation of the system. Therefore the modification to the above

procedure is as follows:-
STEP 1 :

p. = {states which are predecessors of s IVs As € I}

1

£p. = [states which are predecessors of es, in the extended
1

representation only | VesAes € L, |
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STEP 2 :
"EP; = P; || EP;
| | = means concatenate space in the boolean domain
STEP 3 :
EL; = 'L, || {control vector associated with the sub-system)
Therefore, |
STEP 4 :

*
EI;= EP;( ) EL;

The set 1, will contain all state variables that need to be

communicated to station i. To demonstrate the above procedure a

simple example is given below:-
EXAMPLE

This is an adaptation of the power station boiler controller
problem considered by Orr [89], to show the secondary communication
procedure.

Note: Here one is concerned with the boolean domain only, and,
using the concept of set theory discussed above, '1' means state is
present, and '0' means state is not present in the set. Also an
understanding of the potential controllability and observability concept

is required, described in chapter 3.

1 0 0 1 1 i 11
A =1lo o 1| B1=|1] Bp?= 1 By = ;
P oto 0 1 1

(@)

0
1 0 t
t t —
Cp 1= [o] c, 2= E] Cp 3= E]
0

From the above state space representation, the following sets
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are found. Using the methods descrived in chapter 3 for constructing

these sets.
1 Bl
1
R =
Ul 1 R - 1 B
] 1
— = — —
1 —
Rt = . t 0 £ OT
Y1 0 R_. = 1 R = |1
0 Y2 " v3
L 1 1
1 1 1|
K, =11 Ko =11 Ky, =|1
L1 0 1
t 1 0 c OT
Myo= 0 My = |1 My =11
L O_| |1 1
1 0 o ]
L 1 = 0 L > = 1 L = 1
3
0 0 1

Now under a decentralised structure the union of all the
common sub-space sets must be a unit vector, (see chapter 3) i.e. union

of L;, L,, L; must be a unit vector. Therefore no communication is

1)
required to make the given system controllable.

Therefore the sub-space (L., L,, L;) normally extended by
communication remains the same:-
L= L, L*, = L, L*3= Lj
The above procedure so far is based upon the work of Momen et
al [[6];vin this thesis it is termed primary communication. However,
further communication is required for estimating the values of the
state variables by the observation process, this is introduced in this

thesis and termed Secondary communication.
From the above sets it can be seen that state variable 2 is

controlled by L, and L. Hence, the load can be shared between the two

stations. There is only one controllable space that can be designated to
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control a particular sub-space and this is given by the set r*
3.

Therefore, the designated spaces are as follows:-
* *
L =1L, Lo=1L2 Ly = 0

The above sets show that there was no communication
required by the stations. However, it is necessary to determine which
are the interacting states between the designated controller spaces.
These are determined for each controller using the above steps as

follows and are labeled as Process 1,2 and 3 :

Process 1 (Stn. 1):
First find all the state variables that interact with this control

station
I, =L, M (RU, U RUy)

= (1001t M (110180 (11 11Y
= [1 0 01t (*i.e. state variable 1 is affected”)

Note: The above set, "1, shows that the state variable 1 is

affected. However, It is interesting to see that there is no predecessor
of state variable 1, i.e. no other state variable is agitating it. The
agitation is due to the influence of the inputs from the other stations.
This is why in the development of secondary communication
identification theory, the input vectors were considered as an
extension of the state space representation of the system.

Now, find all the predecessors for each of the state variables

of the above set *1,, as described in the extended theory of secondary

communication, i.e. step 1 above.

The two sets which represent the interaction with the station
1 state variables due to state variables and control vectors of the

system are shown in set p, and EP, respectively,
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P, = [0 0 03t

EP, = Eo(Mie.
1 [1 1 11% ("ie.inputs Uy, Uy and U, )

Note: that P, is an empty set and therefore the non-extended version

would have indicated no interaction with this station. This is obviously

wrong. These two spaces are concatenated for use later as indicated in

step 2, above.
"EP; = P, || EP; = (000 11 1]t
The next step (step 3) is to find the actual or designated
space, EL,, Wwhich this station is to control. This is shown below,
EL, = "L,|| {all the control vectors associated with the
station or designated to it }
= [1001% 1] (1001t
= (10010 0]t
The final step is to eliminate from the set "Ep,; all the state
variables associated with station i, (as shown in step 4) which will
leave in the set E1, only those state variables which do not belong to
this station. Therefore, these state variables must be communicated to

it, i.e.,

*
EI,= EP;( ) EL;

[000111]tm[011011]t

Il

(0000111t

For station 1, communication was required from the other

stations concerning the new computed control vectors U, and Us.

However, no interacting information was required concerning the state

variables of the system.
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Process 2 (stn. 2):

*

I, =1y M (Ru; U Ruy)

= [0101° M ([111)F U1 17

= [0 1 0] ("i.e. state 2 is agitated*)

P, = (0 0 1J5(" " 3 affects state 2*)
"EP, = [00 111 0]t
EI, =([00110 0]t

This shows it is necessary to communicate (the <ontrol vector

u, and the state 3) to the process 2.

process 3 (Stn. 3):

I, = (00 11°F

Py = [0 0 1)F

*

EP; = [0 0110 1]°
ELy = (00100 11t
EI; = [00010 0]t

Station 3 requires communication about the control vector U;.

Fig. 4.3 shows a diagrammatic representation of the processes.
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Interprocess communication

Figure 4.3 Secondary communications

4.2.3 Robust Decentralised Observer

The above new observation technique overcomes one aspect of
the reliability problem, namely, the problem of stability, by requiring
that each sub-plant observed is dynamically decoupled from every
other. The technique still suffers from one problem. If there is a failure
in one of the processes or in the communication network then no
information transfer is possible and consequently the observer process

will malfunction.

This problem is known classically as the unknown input
ditions under which full

The

observer problem. Here we present simple con

state estimation is -possible without communications.

decomposition technique mentioned above allows one to consider gach

sub-system, as a system in its own right. The well-known procedure

of the Luenberger observer is used to show the necessary design
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constraints and the mechanism within this simulation process is
available to the designer for minimizing the approximation discrepancy

Consider the dynamical system described by

X(t) = AX(t) + BU(t) + ED(t)

Y(t) = CX(t)

Where the matrix £ is the interaction of the unknown input
vector D (t) on the system. The observation process for the above can be

represented as

A x, A *

X(t) = FX(t) + PU(t) + NY(f) ====-=-=-mm——o———— (4.14)
where

A

X(t) = TX(E) ==mmmmmmmmm oo (4.18)

and *F, p, N and T are the corresponding coefficient matrices of
appropriate sizes. For proper approximation, the error in the estimation

process must tend to zero as t approaches infinity i.e.

A .
e(t) = X(t) - TX(t) = 0 as £t =P 00 —ccmmeceoo (4.18)

= (FT - TA + NC)X(t) + (P - TB)U(t) - (T E)D(t)
Therefore, to achieve the full reconstruction of the state

estimation, the following conditions must be satisfied

! 47N

*E‘T = TA - NC = ==e=e=ssescessc-ccosssase--- J\Ah J7y
TA 480

*P = TR  =eemsmeessssessoossscosseces \45“”
5 _ a4 eesssssssssssssssosssesssSSSS 14 997
TE = o e=s=essecesmsce-e- \.‘,,ﬂ@/

The solution of these coefficient and the transformation
matrices *r, *p, N and T must be obtained so that a direct
reconstruction of the state vector can be achieved. This is possible,
provided that *r is a stable matrix and the transformation matrix is of
full rank, and also that the original process is observable. This
observability condition is required so that the system states can be

accessed through the process outputs for reconstruction.
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4.3 DISCRETE-TIME SYSTEM

4.3.1 Decentralised  (Estimator) Kalman Filter

Many of the ideas developed for the Observer case in the
continuous-time will be carried over into this section. However, there
will be two important differences: the noise on the system will be
taken into consideration and the system will be discrete-time rather
than continuous-time. The main object behind filtering is to reduce the
effect the noise or unwanted signal has on measurements obtained and

on values calculated from those measurements.

The Kalman filter was developed by Kalman and Bucy [11] in
the early 1960's. An historical account of filtering in general is given
in Optimal Filtering by Anderson and Moore [81]. The Kalman filter
process is computed easily by digital computers because we are dealing
with discrete-time systems.

In this section, a one-step prediction of the state estimator
will be used to show that decentralised estimation can be computed if
the system is partitioned using the technique shown earlier in this
thesis. This will be demonstrated in the same way as the Luenburger
Observer technique was developed for the decentralised case in
continuous-time.

Consider a discrete version of (4.1), such that noise is

allowed for, with the time index k 2 0;

X (k+1) = AX (k) + BU (k) + DW(k)

and

Y (k) = CX(k) + V(k)

X (k) is the state vector at time instant k, Y (k) IS the output

signal at the same time instant and is corrupted by measurement noise

V (k). The process w(k) is also considered in the form of a noise
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sequence although it is possible to regard it as g system input. The

assumption made here is that v (x) and w(x) are independent, Gaussian

white processes with zero mean and finite covariance equal to r and g

respectively.

The filtering problem can then be considered as one in which a
prediction (estimation) of the state vector must be obtained for time
instant k at time instant k-1 using measured values taken up to and
including that same time instant. Note, that this one-step filtering
technique can be expanded for the more general N-step ahead predictor

and various other assumptions can be made for noise (see references
[80,81]). ’

The state estimation update vector can then be written as:

Qk+11x) = aRxix-1) + BUK) + K (Y (k) -cR (k 1x-1)) --(4.21)
which is optimal in the sense of minimum variance estimation, and the
Kalman gain is found from,

K = AP (k|k-1)CE(CP (k|k=1)Ct + R) 71 emmmemmmccnne- (4.22)
with the covariance matrix:

P(k+1|k) = AP (k|k-1)A" - KCP(klk-1)A% + DQD® -=---- (4.23]
A proof of the set of equations (4.21) - (4.23) is given in reference
181], where it is shown that in equ. (4.23) the variance of the error
between actual and estimated state vector, is known as the
reconstruction error. The selection of x in (4.22) will minimize the
mean square reconstruction error, hence leading to an optimal filter for
equ. (4.21).

It should be noted that for the discrete-time model, equ.
(4.20), the index x > 0. The initial conditions for the state vector and

error covariance matrix must therefore be defined such that

x(0]-1) = &€x0} = M
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and P(01-1) = p,

where € (x0} is the expected value, before any measurements have been

taken, with mean M,, covariance e ;. The distribution of € (x0; is
Gaussian and is independent of both the v (x) and W(k) sequences.

The control input U (k) has no effect on either the Kalman gain
k or on the update of » (k|k-1) obtained from equation (4.22) and

(4.23) respectively. This important fact must be remembered when the

equation is extended to cater for the decentralised case.

Note: In [80,81] the interesting connection between estimated

and predicted signal vectors was shown as

>A< (k + 1] k) = A)A((k)
This means that the given filtered signal ;(k), the best estimate of
the signal one step in the future ignores noise and assumes that the
signal dynamics matrix A operates only on the estimate. Thus
simultaneous filtering and prediction of vector signals can be obtained
from the same filter if the structure of fig. 4.4 is used [80,87]. This
structure is used in the simulation of two examples given below, with

the result taken from the filtering tap.

current estimate

U + (filtering) g(k)
K (k) = A 'K(K) s i 9
' A
C T —— —po
Riket [ K
delay of one =
time unit current prediction

Figure 4.4 Simultaneous filtering and prediction of vector signals
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If the system is partitioned into its Cyclic and acyclic

component sub-systems then the state of each sub-system can be
estimated by communicating asynchronous Kalman filter processes
where the interactions from the other sub-systems can be treated as

further control input vectors.

The state estimation update vector of the sub-system can then

he written as

A A
A

Ky (ka1 = AgX, (k1) + K (Y () = X (kik=1))+ B,U, (k)
Fo ARy (kKoL) )= e m o m e (4.24)
3=1

where the Kalman gain is found from,
K; = A;P;(klk-1)C % (CyP,(klk=-1)Cyt + Ry) 7L amemmem- (4.25)
with the covariance matrix:

Pi(k+1|k) = AP, (klk=-1)A;*-K;CP, (k|k~1)A;t+D;Q,D, *~(4.26)

To demonstrate that we can achieve state estimation via this
parallel approach firstly, the previous example 2 of continuous-time
section will be used with output noise considered only. Secondly, both
input and output noise are considered with a very simple system. It can
be seen from equations (4.24) - (4.26) that a considerable speed
improvement will be achieved with this approach; for example matrix
multiplication requires at least n3 calculations (where N is the order of
the matrix). The order of matrices in the examples used below is
halved, therefore the speed off multiplication process is increased by

8.

EXAMPLE 1

The continuous-time representation of the system matrix, A_,,.

and the input matrix, B_,,. of example 2 used in section 4.2.1.3 Is

mapped into the discrete-time representation by the transformation

A, —ehecont x T for the discrete-time system matrix, and By, =

dis
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Ao (Bais~I) Beg,, fOr the input matrix. Where 1 is the identity matrix

and the output matrix, ¢ is the same for both representations. Where T

1

is chosen to be “/,,t" of the fastest mode.

The discrete-time representation is as shown below for

convenience the qualifying subscript 4. Is dropped from the matrices.
A,

# ‘ Aqp
0.138 0.4475e-01 -0.8242e-02 -0.1412e-02
~18.30 0.1921e-01 0.7130e-01 -0.3075e-01
A = 0.1341e~02 -0.3595e-03 0.1282 0.4942e-01
0.8574e~01 -0.6394e-02 | -19.27 0.1050
Ay A,

By decomposition of the above matrix a it can be shown that
there are two sub-systems decoupled from each other represented by

matrices A, and A, with their interacting matrices represented by 2.,
and a,, respectively. The input and output matrices for both

sub-systems are:

0.5038e-01 -0.3381e-03
By = [-0.8612 ~0.8242e-02

C1=C2=E_O_J

0.6965e-05 -0.5048e-03

B2 =1 0.1341e-02 -0.8718

The resulting: behaviour of the estimation in parallel approach
is shown in fig. 4.5(a) while the sequential approach is shown in fig.
4.5(b). Only state 1 is shown to demonstrate that within a short time

the results are similar. The implication is that the parallel approach is
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approximately two hundred times faster in its estimation of the state‘

vector without loss of accuracy in its computation

The standard

deviation of the noise power on the output was o.95.

EXAMPLE 2

The discrete-time representation for g simple system is shown

below, for convenience the qualifying subscript 4i. 1S dropped from the

matrices.
! Az B
o 0.9512 | 0.1392 0.4877e-01 0.3568e-02
__Q»O l 0.9048 0.0 0.4758e-01
A Aj B2

C, = Cp= [1]

By decomposition of the above matrix a it may be shown that

there are two sub-systems decoupled from each other represented by

matrices a, and a, and their interacting matrices represented by a,,

and a,, respectively. The input and output matrices for both

sub-systems are also shown.

The resulting behaviour of the estimation in the parallel

approach is shown in fig. 4.6(a) while the sequential approach is

shown in fig. 4.6(b). The result indicates that estimation in the

parallel and sequential approaches is similar.

Initially, in the parallel

case, there is a glitch which is very quickly overcome by

communications between the processes. How

is approximately eight times faster in

vector without

deviations of the noise power on input and output are 0.1

respectively.

b, ™ 2 om o

loss of accuracy

ever, the parallel approach

its estimation of the state

in its computation. The standard
and 0.5
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4.4 COMMENTS AND CONCLUSION

In this chapter the author has endeavoured to show that the
observation process can be achieved by using a simpler numerical
procedure in the continuous case; it is applicable to the discrete-time
case and is substantially faster than that found in the existing
literature. This decentralised observation is achieved if

each
observation process is confined to a sub-system with a structural
constraint obtained by decomposing the system into so called cyclic
and acyclic components. It is particularly applicable for a large
system where there is a high degree of sparsity in the system matrix
A.

It should be noted by the reader that a direct comparison was
not made with work outlined earlier for the continuous-time case
[8,9]. This thesis describes, for the first time, the use of the
systematic partitioning technique above to make explicit, in the

qualitative domain, the natural processes of the system. It has been
applied to the estimation of a decentralised control system using the
technique of Evans et al [7]. Each system used by [8,8] was a strongly
coupled (cyclic) system which was decomposed by imposing certain
structure constraints. Their decomposition was achieved neither by
identifying the sub-systems explicitly with a systematic decompositon
technique nor by observing the dynamics of the system when
partitioning into sub-systems. Therefore, the stability of their
decentralised observers in a complete system had to be ensured.

From the above discussion, in the continuous case, it is not

wise to infer that the other techniques (8,9] are superseded by the

approach presented here. These should be used in conjunction with the

work presented here if it is not possible to decompose the system or

sub-system any further, using the new decomposition technique Of by

Nl 1~ ¢ o e - S 4144 A



sensitivity analysis. This structural partitioning technique was also

exploited in the discrete-time domain for the first time for the design
of decentralised estimators by adopting Kalman filtering
The theory presented here can be used to handle a non-linear

system as well as the time invariant problem, as pointed out by Evans

et al [83]; "the structural analysis applies equally to these problems
since connectedness, in the sense of the reachability criteria an&
term-rank, in the sense of solvability, are purely structural properties
which do not take into account the form of connection which can be
either numeric or algebraic."  This statement may have a significant
bearing on the self tuning adapters used for parameter estimation of a
non-linear system.

The identification of the secondary communication necessary
to build decentralised observers as a part of distributed control
scheme is also developed.

Finally, basic matrix criteria for a reliable observer are
derived but their solution requires further mathematical development
such as can be found in ref. [10] and other literature referenced
therein. In the next chapter the concepts of reliability and

reconfiguration of software processes are presented.



CHAPTERS

5.0 DESIGN METHODOLOGY
5.1 INTRODUCTION

In a distributed concurrent system the software can be
decomposed into a number of processes, the decomposition often being
performed on a functional basis [28,90]. Inter-process
communications or information flow will take place through defined
interfaces to the processes. These information flows are essential to
the operation of the complete system. It is essential to limit and
control communication under fault conditions to avoid errors
propagating through interprocess channels. One way of limiting the
extent of information flow is to identify within the collaborating

processes those actions which can be grouped as a single task, i.e.

treated as an atomic action [14].

The flexibility provided by a distributed environment can be
exploited to provide dynamic reconfiguration of processes. The survey
in section 3.4 showed, that the reconfiguration of processes which
service the peripherals, has been ignored in real-time control
applications. The general belief was that reconfiguration is rendered
ineffective by the inability to move the function of the peripherals.
Dynamic reconfiguration must deal with the failure of a process, or an
instrument associated with a process, of both.

The aim of this thesis is 10 develop a methodology for

designing distributed computer/microprocessor based Control Systems.

Of the four objectives (1) and (2) in the list below were dealt with in

. —
chapter 4. The last two objectives (3) and (4) are considered in tnis
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Chapter.
(1) Estimation of states.

(2) Systematic identification of communication for distributed

control. |

(3) Identification of atomic actions.

(4) Dynamic reconfiguration.

The main theme of this chapter is to achieve objective (3)
above. It is shown in this chapter that the structural partitions of a
linear system, (a mathematical model of a physical plant), can be
mapped into the structure of the control software. This forms natural

partitions for the software which may be used to identify sections

which can be protected by recovery blocks or conversations (18]

Ut‘].

Note here that in the majority of cases the term structural

partitioning technique implies the decomposition of a linear system
into cyclic and acyclic sub-systems but it is also applicable to the
further decomposition of a linear sub-system by sensitivity analysis.
This chapter is split into three sections. The first section
shows, by considering a specific example, that by decomposition the
processes are partitioned into atomic actions. This is important
when designing distributed systems as it alleviates the construction of
fault tolerant systems. The second section deals with the dynamic
reconfiguration of specific processes, where the processes are
associated with peripherals. The reconfiguration is invoked when either
a process fails or the instrumentation associated with it fails. The
third section describes the design methodology developed for control of

a system in a distributed or decentralised fashion.
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2 ATOMIC ACTIONS

An atomic action can be defined as follows [12]: "The activity
of a group of components constitutes an atomic action if there are no
interactions between that group and the rest of the System for the
duration of the activity” . The conversation [15] is a backward
error recovery mechanism using the idea of atomic actions to
provide a fault tolerant structure for distributed concurrent systems.

In order to show that the software processes, resuiting from
the structural partitioning of a linear system, are atomic actions a
mode! representing the system (software) must be utilised. In many

fields of study, phenomena are not studied directly but indirectly

through models. A tool is required to model distributed or centralised
systems, which will cope with the interacting processes of the system
and allow concurrency to be represented.

The model to be used in this thesis is a Petri net[91]
description of the system. A formal definition for the basic Petri net
has been specified [91] together with the Petri net graph allowing
analysis of the system to be carried out.

Modelling a concurrent system requires a number of additional
constructs not required for sequential systems such as parallelism

and communications [82]. These features are incorporated in the

concurrent notation C.S.P.[93], and concurrent language Occam [17].

These additional constructs were modelled using Petri nets in

Tyrrell's thesis [16], (see appendix D).

Petri nets provide several advantages as a system modelling

technique. First, the overall system structure is easy 10 understand due

to the precise and graphical nature of the representation. Second, the

behaviour of the system can be analysed using Petri net theory and

analytical tools [94,95].

~ i4Q
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It is the aim of this section to show that each partitioned
sub-system's control software processes are atomic actions. The
object is to develop a method for the systematic identification of
“structural partitions which define atomic actions. This identification
will be demonstrated using an example defined in chapter 4 which will
show the essential features of a control system. Such a system can be
modelled using the SEQ, PAR, communication and asynchronous

constructs available in Occam.
5.2.1 Demonstrator Example

Example 2 in section 4.2.1.3 is a linear system with two input
variables to control and two output variables to observe it. In example
o this linear system was partitioned into two decoupled linear
sub-systems with one input and one output variable associated with
each. These decoupled linear sub-system can therefore be logically
mapped into four software concurrent processes for the control
software. There are iwo processes for estimating the state vector of
the linear system, and two processes for controlling the state
variables of the linear system in a desired fashion. An Occam solution
to this is given in fig. 5.1. The inter-process communication was
derived by applying the primary and secondary communication
algorithms.

The control program of figure 5.1 can be translated into a

Petri net fig. 5.2 using the transformation described in Appendix D.

This is partitioned by functional attributes into four functional

processes which correspond to the actual processes in the program

obtained by structural partitioning. The repetitive construct N each

. . t
functional process gives rise to a l00P structure in the Petri ne

graph which serves to bound the graph. The closure of the 100ps IS




- |
signified in fig. 5.2 Dy the primes on the state identifiers (p1', p2
etC.). |
By analysing figure 5.2, it becomes apparent that after the
coordination and synchronisation communication phase, each
fsunctional process is autonomous. That is each process is an
atomic action: there are no interactions between that process and the
rest of the system software processes for the duration of computation.
The implication is that functional boundaries of each process
act as a side wall, hence a simple recovery block mechanism

may be adequate for each block.
However in figure 5.2 only simple transitions are shown (t,,,

tog tas & t,¢) for the numerical computation (sect 4.2.) of each

functional process resulting from the structural partitioning. This
complex numerical computation can be parallelised (by the appropriate
technique in section 2.2) into concurrent sub-processes,
inter-communicating to solve the problem associated with that
functional process. Since the communication is not across the
functional partition boundaries based on the structure of the physical
system these sub-processes can be made fault tolerant by using the

conversation mechanism. The method of conversation placement

[16] can be applied.
By identifying these atomic actions, made explicit by the

structural partitioning technique, it becomes apparent by analysis (see

fig. 5.2) that the protection against the interprocess communication

failure is very necessary if the database is to remain in a consistent

state after the update/access mechanism. This fact becomes more

acute if the database is distributed when any accesses and updates are

performed concurrently. This database is distributed as a result of the

Structural partitioning of a physical system which naturally

, "y a
decomposes the state vector (run-time, time-critical, database) of




linear system. Here each disjoint subset of the state vect
| o ctor is
associated with a cyclic linear sub-system.

EXAMPLE1.0CC

. program in Occam 1 for controlling a plant
_ peclaration of inter-process channels

CHAN  estrecl, estrec2, actuatori, actuator2, snduveéﬂ
snduvect2, rcvstatintl, rcvstatint2, sensori, sen,sor2'

.. declaration of process '‘control 1’

PROC contl (CHAN estrecv, actuator, snduvect) =
VAR state1, state2, uvecti:

SEQ
... initalise variables
WHILE TRUE (1)
SEQ
PAR -~(t5)

-- update process est1 (on channe! snduvect) and the
-- environment (on channel actuator)
snduvect | uvecti --(t11)
actuator | uvect! --(t9)
_- receive the estimated value for state 1 and 2
-- from process est1 on channel estrecv
-- note this could have been received in parailel
- if wished using two channels
estrecv ? statel; state2 --(t10)

-- END of PAR --(t19)
-- calculate new trajectory value 'uvectl’
-- note the process below can be done in parallel
. compute trajectory uvectl --(t23)

PROC cont2 (CHAN estrecv, actuator, snduvect) =

VAR state3, state4, uvect2:
SEQ

.. initalise variables

WHILE TRUE --(t4)
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SEQ
PAR

-- environment

-- END of PAR

-- note the process

VAR statel, state2, state3,
SEQ

... Initalise variables

WHILE TRUE
SEQ
PAR

cntsnd ! statet

receive the

cntrcv ? uvect

-- END of PAR

snduvect ! uvect2
actuator ! uvect2

rcvstatint ? state3; state4

sensor ? sensorval

... predict values for statel and state 2

--(te)

-- update process est2 (on channel snduvect) and the

(on channel actuator)

--(t1s)
--(t18)

-- receive the estimated value for state 3 and 4
-- from process est2 on channel estrecv

-- note this could have been received in parallel
-- if wished using two channels

estrecv 7 state3; stated --(t17)

-=(t22)

-- calculate new trajectory value 'uvect?'

below can be done in parallel

. compute trajectory uvect2 --(t26)

PROC est1(CHAN cntsnd, rcvstatint, sndstatint, cntrcv, sensor)=

state4, uvect, sensorval:

--(12)

-=(ts)

- send the estimated value to the process cont1
.- and to the other estimator ( process est2)

- state2 --(t10)

sndstatint | statel; state2 --(t14

state variables and control vector

.- which affect the computation for this estimator.
Also update the reading from the channel sensor.

- estimate the new value for state 1 and 2
.- based on the updated values ie state3, etc.



PROC est2(CHAN cntsnd, rcvstatint, sndstatint, cntrev, sensor)—
VAR 5tate1, state2, state3d, state4’ uvect, SenSOrvél. )._

SEQ
Initalise variables
E TRUE
WHg—EO --(13)
PAR )

-- send the estimated value to the process cont2
-- and to the other estimator ( process est1 )

cntsnd ! state3; stated --(t17)
sndstatint ! state3; stated --(t13)

-- receive the state variables and control vector
-- which affect the computation for this estimator.
-- Also update the reading from the channel sensor.

rcvstatint ? statei; state2 --(t14)
cntrcv ? uvect --(t1s6)
sensor ? sensorval --(t15)
-- END of PAR --(t21)

.- estimate the new value for state 3 and 4
-- based on the updated values ie statel, etc.

... predict values for state3 and state 4 --(t2s)

-- main program

PAR

conti(estrec1, actuatori, snduvectt)

cont2(estrec2, actuator2, snduvect?)

est1(estreci, rcvstatintt, rcvstatint2, snduvect1, sensorl)
est2(estrec2, rcvstatint2, rcvstatintd, snduvect2, sensor2)

FIGURE 5.9 Occam Program for a subset of a Gust
Alleviation Control System .
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The integrity of inter-process Communication was
mvestigated in [16]. It can be shown that the basic communication
primitives used in message passing systems have deficiencies when
applied 10 systems with safety implications [18]. It has been proposed
that the integrity of a system, which involves inter-process
communications, may be increased by introducing a time-out
mechanism to avoid deadlocks. This time-out mechanism will

guarantee that each atomic action will continue (or at least

rerminate). Petri net models were used to identify a boundary for a
time-out mechanism [16]. However, this thesis did not address the
oroblem of protecting a distributed database. Only a preliminary
survey was carried out in this thesis; it requires further research to
identify an appropriate protection mechanism. Section 5.2.2 shows
some of the problems associated with it and gives an example of a

technique' used in protecting the database.

5.2.2 Reliable Distributed Database

A distributed database provides certain potential advantages
relative to a centralised database. One of the advantages is that it can
process requests in parallel. This parallelism, through proper design,
can be exploited to provide more redundancy and hence, higher
reliability, compared to the centralised system. However, several
problems are seen that either do not exist or are less likely to occur in
a centralised system, such as communication integrity for

ifi e
transactions. Formally, if a procedure accesses and modifies th

database in such a fashion that the data is consistent before the

transaction is executed, then the data will also be consistent after the

fransaction is completed.
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A real-time database is considered to be an important part of
any process control system, especially if it is distriputed. A real-time
Jatabase will be an integral part of the Distributed Computer Control
System (DCCS) and will consist of [96]:

- the process control database

- the management database for DCCS

- the program library (software bank)

The database availability is an important requirement in a
distributed computing environment for a real-time, time-critical
system. This can be improved by addressing problems such as
Reliability, Integrity, Security and Responsiveness. In providing
fault tblerance, it is necessary to ensure that the consistency of
process control database is not upset. An insight into database
requirements can be found in [96].

When the real-time database is to be distributed the designer
must consider how to decompose the real-time database, how to design
the communications network to support interprocess message flow
between the components of the database and how to control the
concurrent transactions so the database remains consistent.

The database may be split according to geographical or
functional considerations or to provide redundancy for reliability. The
partitioning technique discussed carlier in the thesis (section
2.2.3), i.e. decomposition based on the physical structure of the plant,

dictates the structure of database and communication. The

structural partitioning technique decomposes the state vector

(real-time database) of a linear system into disjoint subsets of the

state vector which are associated with every cyclic linear sub-system.

i ' ntrol
Therefore communication is required for a decentralised cont

scheme as pointed out in sect. 3.1.

. : he
There are other decomposition techniques based On t

i . These
functional relationship between the sttributes of a data set

. . inQ



techhiques are summarised in [87]. The authors of that paper show that
runctional relations can be restated using Boolean algebra, allowing
the designer to explore the properties of a given set of functional
‘elations, as well as in the task of partitioning a data set into
sub-files for efficient implementation.
Consistency in the stored data must be maintained despite
failures and without restricting the concurrent

processing of

application requests unnecessarily. In the database literature, a

transaction [98] is defined as an arbitrary collection of operations
pracketed by two markers: Begin Transaction and End Transaction,
which has the following properties:

(i) Failure Atomicity: either all or none of a transaction
is performed.

(i) Permanence: if a transaction completes successfully,
the results of its operations will never be lost subsequently.

(iii) Serializability: if several transactions execute
concurrently, they affect the database as if they were executed
serially in some order.

(iv) An incomplete transaction must not reveal results to
other transactions, in order to prevent Cascading Aborts if the
incomplete transaction has to be undone subsequently.

Transactions simplify the treatment of failures and
concurrency. Failure atomicity makes certain that when a
transaction is interrupted by a failure, its partia results can be

undone. Serializability ensures that other concurrent transactions

cannot observe these inconsistencies. Preventation of cascading

aborts limits the extent of error recovery.

Each transaction must start with a BEGIN operation and

terminate with either COMMIT or ABORT(RECOVER), i.e. two phase
will need to be supported in @

supported Dby the

cCommit protocol. These primitives

recovery mechanism. These primitives are

F . 407



|nternati°na| Standard Organisation (1S0) Commitment

concurrency and Recovery (CCR) protocol specification [98]. A

recovery point is established by BEGIN, and is subsequently discarded
by COMMIT or restored by ABORT. This may be suitable for the design

of a fault tolerance mechanism.
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= 3 DYNAMIC RECONFIGURATION

The literature survey (sect. 3.4) showed that Iittle

consideration has been given to the dynamical reconfiguration of
processes in real-time control system. Two examples are presented in
this thesis to demonstrate that dynamic reconfiguration is possible for
the processes that are associated with the actuators and sensors.
Dynamic reconfiguration will normally place a severe demand
on the system software, on top of the demands for high level

performance in a computational system which is monitoring and

controlling a plant [100]. For example, the application may involve
real-world data acquisition, complex arithmetic calculations which
perform the state vector estimation, generate control outputs to the
application plant and system level tasks to control and schedule
computational objects. |

If each software process, extracted via the structural
partitioning, is an atomic action, the process can be made resilient
using the conversation mechanism. Protection against design faults is
provided by offering a set of alternate blocks, each employing a
different algorithm to achieve the same objective. If the primary fails,
then an alternative is tried. Since dynamic reconfiguration will

take place at the partition boundary using the technique in this

thesis, this reconfigurable process will be incorporated in an alternate

block. This can be regarded as an anticipated fault rather than the

unanticipated faults normally catered by the recovery mechanism.

Note: when the environment demands a fail safe design, the

time ovehead required to reconfigure must be accounted for such that a

' imulus
real-time system must be able to respond to an external stimu

i iti i i ions
within a specific period known as the critical time. Atomic actio

i ome
are relocated so that the dynamics of the linear systeém do not bec

2 NN



unstable or the problem of synchronisation ang Coordination dg
o . es not
ocour as highlighted in chapter 1.

Two examples are used to demonstrate the possibility of

dynamic reconfiguration. Quantitative values are nNot necessary to sh
ow
dynamic reconfiguration. No assumptions are made here as to whether

the computing element is a single or multiple processor system nor

whether it uses centralised or decentralised control; these issues are

not important at the present.

Example 1

The graphical form of the state space equation of the second
example in section 4.2.1.3 is shown in figure 5.3 in digraph form in
the Boolean domain.

It can be seen from the digraph that from control variable u, or
U, there is a potential controllabilty of state variables 1, 2, 3, and 4.
From the output variables Y, and v, there is a potential observability of

state variables 1, 2, 3, and 4. It was shown in section 4.2.1.3 that this
particular linear system can be decomposed into two sub-systems,
which are dynamically decoupled: one sub-system containing state
variables 1 and 2 and the other 3 and 4. The linear system, being
decoupled, can be controlled and observed by four concurrent processes
as described in section 5.2 and these are shown graphically in fig.3.4.
The point is that either of the observation processes can estimate the
State vector of the complete linear system, and either of the control
Processes has the ability to control the trajectory of controlled plant
The dynamic reconfiguration of processes in this system IS

i ss
Shown in fig. 5.5 which indicates which state variables each proce




s catering for. The four figures indicate how t

when one of thé process fails either due to h: (pI’OCeSSGS reconfigure

iult or a fault l'n the interface to the enwronmeni:rogramming) design

such as a combination of two processes filing Can~ ) ther Possibilities,

here except for the complete failure of either of S:hebetcatered for
WO contro|

rocesses or the imati me tim
) the two estimation processes at th
e same ti
e.
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gxample 2
The state space equation of the firgt example in section 4.2 1 3

< shown in figure 5.6 in a digraph form in the Boolean domain.

It can be seen from the digraph that the control variable U, has

the potential controllability of state variables 1.5 1 and 4. The output
] 3 . u

variable Y, has the potential ebservability of state variable 1 and 2

only, whereas the variable v, has the potential observability of all the
state variables. It was shown in section 4.2.1.3 that this system can be
decomposed into two cyclic linear sub-systems. Due to the system
being decoupled, this linear system can be controlled and observed by
three concurrent processes and not four. These are shown graphically in
bfig.5,7. One of the observation processes can estimate the state
vector of the complete linear system, and the control process has the
ability to control the trajectory of the controlled plant.

The dynamic reconfiguration of processes in this linear system
is shown in fig. 5.8 with an indication of the state variables which
each process caters for. The figures indicate how the observation
process reconfigures when the other observation process fails either
due to a (programming) design fault or to a fault in the interface to the
environment. Two points can be made, the second of which is very
significant.

(i) Reconfiguration is asymmetrical

(i) It indicates how the system could be made resilient
against failure.

The interface to the environment provides protection of

: i Y
Observation process1 and its sensor but the failure of either U, and ¥,

- ’ lysis
and the associate processes will be catastrophic. Therefore, analy

. ; roduct,
of the system for dynamic reconfiguration provides, as & by P

ident; ¢ that is,
dentification of the potential weaknesses of the controlle

& PRy s 2




whether the external interface or the computi
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duplicated 10 provide the fault tolerant structure
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54 DESIGN METHODOLOGY

The methodology put forward in this thesis for the des;
sign of

Distributed Microprocessor based Control Systems, ang the sequen f
' ce o

activities needed to be performed, is shown in schematic form
n

*

figure 5.9. The on the diagram indicates where new work was

carried out in the research. These areas were elaborated in chapter 4
and in this chapter.

The design methodology put forward is structured completely .
around the partitioning technique described in section 2.2.3. This
technique makes explicit the natural concurrency of the plant to be
controlled. This partitioning technique was used by Evans et al
[7,83] for decentralised control of a plant by achieving the desired
eigenvalues for stability. '

The design methodology involves 5 five major activities:
Partitioning, Dynamic Reconfig'uration, Identifying Atomic
actions, identifying Necessary Communications and Optimal

allocations. These activities are summarised now:
5.4.1 Partitioning for Observation and Control processes

The partitioning technique is used to make explicit the natural
concurrent processes of a physical system for the control software.
The extraction of concurrent processes from the plant represented by

e state space equation (equ. 2.1) is achieved by using the first four
design procedures in [7]. These are as follows:
(a) Form Boolean matrix a,,.

(b) Generate reachability matrix ®
(c) Generate permutation matrix P

(d) Decompose system by transformation PEAP.




Once this physical extraction has taken place (st
Step d), it is

;

; | b Processes can pe exploited tg
. aximum number ' '

oo @ M of logical (computatzonai) Processes

sssociated  with the linear sub-system for controlling purposes. Th
. This

ossary to see whether these physical

naximum number is always equal to twice the number of physical
prOCeSSeS that can be extracted. The factor of two is possible because
, duality exists between the linear system being controllable ang the
inear system being observable, as defined by the input and output
interface to the system.

For any particular linear system there is a unique set of system
inputs and outputs. These are physical impositions and for a real

system can only be altered by making alterations to the physical

system [80]. Therefore, the maximum number of logical processes can

never be achieved in practice (see example 2 in section 5.3). However,

the output sensors can normally be positioned anywhere on the system
as required, if it is to be cost effective or manufacturable. Hence, there
will be (in the majority of systems) a one-to-one correspondence
between logical and physical processes for the estimation of the state

vector of the physical system.

5.4.2 Dynamic reconfiguration

The potential dynamic reconfiguration is depicted using the

techniques (by use of the graphical and the potential controllability and

Observability technique) as shown in section 5.3. The identification of
i indi he
e dynamic reconfiguration of logical processes will also indicate

. . ; is ma
Potential weakness of the system to certain types of failures. This may

. . and
Ao indicate where to introduce fault tolerance into hardware

Software

The steps are as follows:
h input and

eac
(a) Determine the entire reachable sub-space for




output variable.
i.e. RuiandRyi i=1,2,...,s
(b) Determine the compatible controllable and observable
sub-spaces for each input and output variables, see section 3.2. |
i.e. Jx, and Iu,.
(c) Use the decomposition technique of section 5.4.1, (i.e.
extracting natural concurrency), so that each logical process
associated with the environment interface controls or observes a

designated subset of state variables from its complete set i.e. K, and

M, respectively. This will lead to an increase in the speed, and

reliability of the process, etc.

(d) Then check, graphically or using set theory, if other
processes can control or observe these state variables if the prime
process fails or the associated interface malfunctions. The necessary

information to reconfigure is contained in the K; and M, vectors. Also

ensure that on reconfiguration the partition boundaries are not

violated.

5.4.3 Fault Tolerant Structure

The identification of atomic actions is made explicit by the
partitioning technique. Therefore at the outset only the recovery block
technique is necessary for each partition. One of the alternate blocks
will be for the dynamic reconfiguration process if it is possible to
reconfigure.

Note: the steps are identical to those achieved in the previous
sub-section (5.4.2), i.e. in dynamic reconfiguration. It is necessary for
dynamic reconfiguration to be considered first so that it can be
incorporated in the recovery block mechanism.

The control software processes extracted by structural
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partitioning are composed of asynchronous communicating
sub-processes (see chapter 4 for estimation process equations). If
these sub-processes can be executed in parallel, the conversation
mechanism is required if a domino effect is to be avoided. Within the
partition boundary, the atomic actions cannot be identified at one level
higher than the coding stage. Therefore, to achieve fault tolerance for
these sub-processes, the method of conversation placement can be
applied [16].
The placement method is applied as follows.

(1) code the algorithm in concurrent language i.e. Occam.
(2) represent the code in a Petri net model
(3)

(

4) analyse the reachability tree, from one state to another

derive the reachability tree from the Petri net model

and then derive the state change table caused by communications.

(5) identify the conversation block by first deciding where
the recovery point and acceptance test is to be placed. Then the set of
entry and exit processés are identified by set theory.

Note that nested conversations can be identified using the
technique in [16]. However, it is important to realise that the state
change table is used for a branch of the tree only, that is, the
placement method is applicable only for each branch of the reachability

tree as pointed out in ref. [16].

5.4.4 ldentifying Necessary Communications

The role of communication in the control of distributed
processes was emphasised in chapter 3. It is necessary to identify the
necessary communication in order to make the system controllable in a
decentralised fashion. CommunicationsAare necessary because the

database of the controlled system is partitioned.
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The identification of secondary (extended) communication

was shown in section 4.3. This may be amalgamated with the

identification of necessary communication, as described in section 3.2.

Thus:

(@) Find the compatible reachable sub-space of each input

and output variable.
[.e.RuiandRyi 1 = 1,2,...,8

(b) Find the compatible controllable and observable
sub-space for each input and output variable, (section 3.2.)

l.e. X, and M, .

(c) Find the common sub-space for each station
(computational object). Here each station requires a hardware resource
but not necessarily one computing element per station. Then these

objects may be used in optimal allocation procedure.

e L, = K, M M, t
(d) Check if communication is required for system to be
controllable in a decentralised structure.

S
U L, = Unit vector

i=1

If the equality holds then go to step (g) otherwise continue
sequentially.

(e) Find the necessary communication for each station i

(f) Update the common sub-space arising from communication

() Designate the sub-space which the station should be
controlling and observing. This should be dictated by the structural
partitioning.

(h) For the system to be observed, that is for estimating the
values for state variables, find the necessary, (secondary),

communications. These are the interactions from other stations.
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Note: steps (e) and (h) define the communication structure

r'equired for the system to be controlled in a decentralised fashion.

5.4.5 Optimal allocation

In the previous section it was emphasised that each station
will require a hardware resource. In the final development process,
eventually, there will be a requirement to match the logical resources
to the available computing elements, such as processors/computers.

Optimal allocation is the allocation of the computational
objects: (processes, databases, etc.), so that the actual cost of
running the computation and the inter-processor communication is

minimised. This can be achieved by combining the PROXCUT algorithm,
proposed by Jenny et al [40] and the model used at Brown University by

Stone et al [41], (which were described fully in section 2.2.2). The
work by Jenny et al minimised the Interprocessor Communication
Overhead involved; the work by Stone et al also included the
minimisation of the cost of running the computation as well. However,
while the algorithm of the former is superior, the latter modelling
technique was better.

The above techniques concern the static assignment of
computational objects to the available hardware resources. Optimum
dynamic assignment of the general purpose processes is not addressed
in the design methodology proposed in the thesis. However, the work by
Bokhari [45] describes how the dynamic assignment of a modular
program can be achieved optimally. The model used by Stone is extended
to include the cost of reassigning computational objects from one
processor to another dynamically. and the cost of that object residing: in

the hardware without being executed. This technique would put a severe
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demand on the

run-time system software required to monitor the

activity of objects and running the above algorithm in the background.

How often this reassignment takes place in real-time, will dictate

whether or not executing/invoking this task would lead to instability
in the Operating System Software.

A Based on Identifying CYCLIC
PartitioningA and ACYCLIC sub-systems
Technique

Control Observation*

- * = Original Work

|
i

|
{

Structure*

‘Optimal Allocation

Figure 5.9 Design Methodology
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5.5 COMMENT AND CONCLUSION

This chapter describes a method for (i) identification of atomic
actions, and (ii) the process of dynamic reconfiguration. It also shows
the procedures involved in the design methodology proposed in this
thesis. |

The following sub-sections will draw conclusions from the

work presented in this chapter.
5.5.1 Atomic action

The identification of atomic actions was demonstrated using an
example from chapter 4 and the modelling technique of Petri nets. It
highlighted the major problem of protecting a transaction involved
in update/access in a distributed database. A protection mechanism,

required for real-time time-critical system transactions, is presented

(the ISO CCR protocol).

By protecting the processes and transactions in a real-time
time-critical system the final integrated product will be made very

resilient to failures.
5.5.2 Dynamic reconfiguration

This objective was demonstrated by using the directed graph
technique and the potential controllability and observability criteria in
the Boolean domain. An important side effect occurred when
determining where the processes can be reconfigured dynamically. This
analysis identified the system weakness points if the system was to be
made resilient against failures of computing elements as well as the

external interface to the environment.
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. The major problem here is

determining when the dynamic recon,t/ ake place. Again

this requires further research.
5.5.3 Design metndddlogy

The methodology propesedtorde’s’igning distributed control

systems using computers and mlcroprocessors is shown in summarised

procedural form in section 5.4. “This shows/ the%steps ‘which - are
necessa’{ry to design and develop. a decentra ntro,l; system which
provides graceful, degraded service when fanlureoccurs The design
technxque is based on the use of the structural partitioning techntque
to extract the natural concurrent processes for contro! software of a

linear system
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CHAPTERG

6.0 CONCLUSION AND FURTHER WORK

6.1 CONCLUSION

The partitioning technique reduces system complexity and
therefore is an attractive tool for use in analysis and design of large
or complex systems. The major objective of the thesis has been the
derivation of a design methodology for distributed or decentralised
control systems which employs the partitioning technique.

The design methodology is structured around a partitioning
technique which makes explicit the natural concurrency of a system.
This concurrency is extracted by identifying cyclic and acyclic
sub-systems. The state space equations representing a
continuous-time linear system are then mapped onto a digraph which
is then partitioned into cyclic and acyclic sub-systems.

This decomposition maps directly onto a distributed set of
communicating sequential processes which control, observe, and
estimate in a noisy environment the state of the partitioned plant.
This decomposition also partitions the database associated with the
controlled plant at its natural boundaries. The distributed database
and communicating sequential processes define the communication
structure necessary for distributed control. These sets of logical
objects: processes, databases, etc, can be then be optimally allocated
to the network of proceséors with its communication network.

The use of the partitioning technique and correctness proofs
will help in the production of error-free software for a large system.

Since non-trivial software cannot be exhaustively tested, provision
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for hidden design errors must be made. The design must include fault
tolerant structures. Atomic structures are identified at the

decomposition stage rather than after the coding stage. To achieve a

control structure which is resilient, dynamic reconfiguration should

be incorporated if at all possible and the fault tolerant design should
be incorporated into the final system.

To achieve the aims it was necessary to find a partitioning
technique which satisfied all the questions posed in chapter 2: how
are the tasks to be partitioned?; what effect do these partitions have
on the computation and communication systems?; will the partitions
alter the dynamic behaviour of the system?: will they identify and
produce a fail safe design? An extensive survey revealed that a
variety of techniques existed which satisfied some criteria but not
all of them.

The partitioning techniques embedded in Mascot, JSD, Object
Oriented Programming and others were suitable for particular
tasks only. The use of decomposition techniques above depended upon
either the wuser's experience or a mechanical approach. The
partitioning technique used by Evans et al [7] used at the structure
level to identify cyclic sub-systems for pole placement seemed to be
generic to decomposition at a plant level and to the identification of
software processes, where resilient structures can be incorporated
into the design. This generic technique was used in chapter 4 at the
system (plant) level and in chapter 5 at the software/database levels.
This partitioning technique used at structure level satisfies all the
necessary requirements above and is a generic technique for all
levels.

Use of this partitioning technique satisfied four objectives in
the design methodology:-

) The first objective achieved is decentralised observation

and estimation of state variables in continuous and discrete-time
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systems respectively (chapter 4). Decentralised observation in
continuous-time can be achieved by using a simpler numerical
technique than the other decentralised techniques [8,9,10]. Also the
observation processes are resilfent to failures against other
observation processes failing, because they are decoupled
dynamically.

The approach of decentralised observation was reformulated
from the decentralised problem for interconnected systems into a
problem of synthesising a decentralised observer assuming that no
information transfer was possib.‘le= This is termed the unknown input
observer problem. Only basic matrix criteria were shown. It was
shown that techniques such as found in ref [10] could be applied
directly to solve those matrices because, of the way the system is
partitioned structurally.

The same basic idea was carried over into discrete-time
systems to estimate the state values in the presence of input and
output noise in a decentralised fashion. This entailed adapting the
Kalman Filter technique [11], for the first fime, to a number of
reduced order inter-communicating Kalman filters as demonstrated in
chapter 4. The considerable improvement in speed achieved by this
generic partitioning technique on a single computing element can be
further improved by using computing elements with true parallel

processing capabilities and/or using the systolic array approach

[84,85].

i) ~ The second objective achieved is the systematic
identification of the necessary communication for distributed control
of observation processes, (section 4.2.2). This augmented the work of
Momen and Holding [6] who identified the necessary communication to

make the system controllable in a decentralised fashion. To
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distinguish this form of commuini‘c;atio, :ojf?‘;Momven et al

it was called Secondary communica ions,.

i) The third objective of ide-ntifying atomic structures is
achieved since the software processes. obtarned: by the partitioning

technique are the natural srde walls of the con‘versatron used in fault

tolerant desrgn (chapter 5) smce the processes const!tute atomic

actions [12]. The rdentmcatlon of atomrc actlons is demonstrated by

example using the modelling techn!que of Pet’n_nets.

| iv) The fourth . objective achleved is.sithes dynamic
reconfrguratron of processes m ~certain classes of system (chapter
5) This obJectlve was demonstrated by usrng dnrected graphs and the
potential controHabmty and observabrlrty ,technrque The by-product
of determining which processes can be reconflgured dynamxcatly

highlights the potential weakness of th ard) 'e desrgn Therefore,

appropriate action can be ta,tgen,i t-he system resilient to

failures,
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6.2 FURTHER WORK

The partitioning technique was shown to be applicable to linear
systems in both the continuous and discrete-time domain. However, it
was pointed out in‘section 4.4 that this partitioning technique is
equally applicable to non-linear systems [7]. Although other aspects
also need to be investigated for linear systems, before this work can

be applied to non-linear systems.

) The decentralized version of the Kalman filter can be
used to estimate the state of certain classes of system. The
partitioning technique was applied with additive noise on the input
side of the system and on the output sensor from the system. The
properties of noise processes were assumed to be white, gaussian,
and independent. The next stage of work would be to relax the
assumption about the condition of noise processes and to investigate
if the system can be still be decomposed and estimated in a
decentralized manner. For example, the input and output noise could
be correlated. Note this condition results in only minor changes in

the operating definition for the one-shot Kalman predictors

concerned [80].

i) Only basic matrix criteria for the reliable observer were
shown. i.e the unknown input observer problem. Fortunately, due to the
partitioning technique the system decomposed will be decoupled
dynamically. Therefore, current techniques used in solving the one
shot system can be directly applied. The resilience of the
sub-observers to failures needs to be demonstrated, first by
simulation, and then by implemention on hardware where it can be

investigated whether a sub-observer can estimate values for its
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state space even if others are injected with faults.

The generic partitioning technique central to the design
methodology in the linear system should be investigated for
application to Wiener fiItering[‘J@ﬂ] and for application to the
extended Kalman filter technique used in self-tuning regulators
[102]. The above ideas and the partitioning technique should be
investigated for non-linear system applications i.e. for use in
parameter estimation.

When the partitioning technique was used in the decomposition
of software, the software processes obtained were found to be
atomic structures. The analysis of section 5.2.2 shows that the
transactions to and from the distributed database need protection
against failures. An interim solution has been provided for the
protection of real-time time-critical transactions in a distributed
database. Further research is required to identify if the above
mechanism is appropriate.

It is felt that the design methodology described in chapter 5
could lend itself to automation. Several stages of design have been
implemented using conventional programming languages in the course
of this research: decomposition of a system from its state space
representation, identifying necessary communication and the optimal
allocation process. The aspects of identifying concurrent processes,
atomic actions and dynamic reconfiguration can be approached using a
Logic programming language because they require artifical

intelligence techniques.
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APPENDIX A

A.1 Graph Terminology 142,43,862,703]
A directed graph ¢ = [n;a) (or digraph) consists of a collection

"N of elements x, v, . .» (nodes), together with a subset "a" of

ordered pairs (x,y) of elements taken from "n* (arcs).

e.g.

N = {s,x,y,t}
A= {(s,x), (s,¥), (x,8), (v,8), (x,¥), (y,x)}
A CHAIN is a sequence of distinct nodes and arcs defined as
Xy (Xqr%g)  Xpyp unn. . r Kpo1r (X q,%0) %,
e.g. s, (s,x),%x, (x,t),t
A CYCLE is a chain but x;, = x_ (Known also as CYCLIC graph)
A TREE is simply a connected graph that contains no cycle
(known also as ACYCLIC graph)
A SPANNING SUBTREE, T is a tree that spans all the nodes in

a connected graph G. It is shown below how to derive a Spanning tree

from a given connected graph.

W <4——— Connected graph G
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By deleting edges we are left with a tree.

4——— OQut-of-tree arc

In-tree arc

we refer to arcs of T as in-tree arcs, the others as

out-of-tree arcs.

A weighted graph is a graph in which data are associated
with the arcs. The value a (i, J) associated with the arc (i, 5) is the
called the weight of (i, §). The ciy(c(i,3)) of the directed arc (i, §),
called the capacity of arc (i, 5), is a nonnegitive number. A flow in a
network assigns a flow in each directed arc which does not exceed the
capacity of that arc. Moreover, it is assumed that the flow into a node,

v which is neither the source or the sink, is equal to the flow out of v.

MAXIMUM SPANNING (SUB) TREE: a necessary and sufficient
condition that a spanning subtree be maximal is that equation a.1
(below) holds for each out-of-tree arc

a(xy, %) Sminfa(xy,x,), alxy, x3), ..., a(x,_q,% ) -—-=(A.1)

where a (x,, x,) I8 the weight assigned to the arc (X1, %) .

A.2 MAX-FLOW MIN-CUT THEORM
For any network the maximal flow value from source, s to sink,
t is equal to the minimal cut capacity of all cuts separating s and t.
The technique is based upon a labelling method, elaborated

below. This technique requires a systematic search for an Augmenting
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Path from s to +. Two points can be noted about the technique:
() When the sink is unlabelled, the flow is maximum
(i) The set of arcs leading from labelled to unlabelled nodes is

a minimum cut.
Note: letr (p~) denote the set of labelled (unlabelled) nodes.

(P~ denotes the complement of ). Then the source s is in p and the sink
tisin p~. The set x of arcs (v,w),with ver and wep~, is called a cut

and the sum of the capacities of the arcs in x is called the capacity of

the cut.
f(x,y) and <c(x,y) are the actual flow and the maximum

capacity of flow on the arc (x,y) respectively.

LABELLING METHOD
Routine A : First the source node receives the label (-, e(s)=
«). (The source is now labelled and unscanned: all other nodes are

unlabelled). In general select any labelled, unscanned node x. Suppose it

is labelled, (z%,€ (x)). To all nodes y that are unlabelled, and such that

f(x,y) < c(x,y)

assign the label (x*, € (y)), where
€(y) = min [(E(x), c(x,v) - f(x,v)]. The label implies

that the flow on an arc (x,y) can be increased by an ammount £ (y).

To all nodes y that are now unlabelled, and such that fly,=z) >

0, assign the lable (x7, € (y)) where,
E(y) = min [E(x), f(y,x)]. The label implies that the

flow on an arc (y,x) can be decreased by an ammount € (y) .

Repeat the general step until either the sink t is labelled and

unscanned, or until no more labels can be assigned and sink t is
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unlabelled. In the former case, go to routine B; in the latter case

terminate.

Routine B: The sink t has been labelled (y+, € (t)). If t is
labelled (y*,€(t)), replace 5 (v,t) by f(y,t)+E(t);if ¢ is labelled (y~,
€(t)), replace f(t,vy) by f(t,y)-E(t). In either case, next turn the
attention to node y. In general, if v is labelled (x*, € (y)), replace
Flx,y) By f(x,y)+E(t) and if labelled (x~, € (y)), replace f (v, x) by

f(y,x)- €(t), and go onto node x. Stop the flow change when the source

is reached, discard the old labels, and go back to routine A.
To find a minimal cut for given a digraph with initial flow and

maximum capacity flow shown

Capacity Initial flow

The process starts by initiating routine A i.e label source, s

(=, ) following rules given in the routine we arrive at digraph shown
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below.

The next step in the process is to initiate routine B. The
digraph shown below depicts the changes in the flow due to the routine
and the re-application of routine A again. All the changes to the

digraph are higlighted in bold characters.

The final digraph shows that after re-application of routine B.

The routine A is unable to find the flow augmenting path to sink, t.
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Therefore the process terminates and we have found the maximum flow

minimum cut set.

Minimal cut : (s,x), (y,x) and (y,t)
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APPENDIX B

The current work in this thesis is based on design of a control
system with resilient control structures: hence, the later work of
Momen's [4] was not incorporated into this research. The reason for
this omission is that his latter work on necessary communication was
based on potential controllable and observable space for each station
derived from implicit feedback due to other controllers. The additional
steps are detailed here in the same nomenclature as in section 3.2:

Step 6.1: if the intersection of R,; and Ry 4 does not produce

a null set then the controllable reachable sub-space of station i

becomes:-

R* . =R, V R

ui ui uj

The reason for this is that part of the controllable reachable
sub-space of station i is observed by station j; by implicit feedback,
this increases the controllable reachable sub-space of station i. The
duality for the observable reachable sub-space also applies.

This process can be further extended as follows even though
R,; does not interact with r . The controllable reachable sub-space
can be increased to include the subspace of station x if and only if
R, M R;ji 0 and Ry M R‘;k £ 0

then

and the duality

= R VR . VR

R vk v3 yi

vk
Step 6.2: The common extended reachable sub-space is found
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for all stations

Step 6.3: The extended controllable and observable vector

sub-spaces, in collaboration with another station is found for all

stations
* *
If R’ M Ry 20
then
*
K id = Ki \4 Kj
and
*
M7y o= My VM
else
* *
Kij=Kiandei=Mj
Note: the term-rank must be satisfied otherwise similar

procedures must be followed as in step 4 of section 3.2. The detailed
procedures are given in [4,54].
Step 6.3: The enlarged controllability and observability

vector sub-spaces for station i is given by the following equations.
K'y = U K4

* *
M U My

Step 6.4: The common subspace is found for each of the
stations
*t

* *

Note for the autonomous version in step 7, section 3.2 is

t
L; =K ) My

the above steps cater for the implicit feedback approach, the next step

for either case is to follow step 8 of section 3.2.
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APPENDIX C
C.1 Partitioning based on Flow Relationships

C.1.1 Vertical Partitioning

Vertical partitioning is useful both in centralised and
distributed design of a real-time control systems. In a centralised
serial processor, vertical partitioning is used to break processing into
small tasks. Different threads can be interleaved and no one thread can
dominate the Central Processing Unit (CPU). In a distributed system
vertical partitioning is also used to segregate tasks appropriate to
different processor architectures, to permit geographical distribution,
to enhance reconfigurability and reliability options, and to increase
performance. The following guidelines have evolved for determining
vertical partitions [19]:- ,

(i) Locate partition boundaries at points where data flows
are minimal. These are often correlated with branch points in control
flows.

(i)~ Branch and rejoin points should be examined since
processing in different branches may offer opportunities for use of
different hardware structures to enhance performance.

(iii) Recursive loops in processing tend to form natural

logical units for partitioning.
C.1.2 Horizontal Partitioning

The major factor which determines whether.two sets can be

partitioned horizontally is the relationship between their input and
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output data spaces, although control flow has some influence. The
following guidelines indicate suitable opportunities for horizontal

s

partitioning [197:-

{
(i) Completely disjoint processing steps; no data

relationship, direct or indirect, between the steps and no mandatory

predecessor-successor control flow relationship.

(i) Instance independence; the data involved in one data
processing transaction is independent of the other transactions even
though the processing performed is identical.

(i) ‘Branch and rejoining nodes; in control flow graphs an
AND branch is an explicit indication of concurrency, and an OR branch
may indicate an opportunity for horizontal partitioning when the
processing on each branch is suitable for a different harware

architecture.

C.2 Partitioning Based on Data Access

Rules for data access partitioning and subsequent database
organisation can be summarised as follows [19]:-

(i) Separate functions which operate on disjoint sets of
data or disjoint regions of a set.

(ii) Separate functions which operate on different spans of
data.

(i)~ Separate functions which have inherently different time
consf:ants and access rates because of the . data on which they operate.

(iv) Organise databases onto levels according to the span of
the data and degree which nature of higher levels can be hidden from

functions which operate on lower levels.
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APPENDIX

Programs written using sequential language can be written

using six primitive processes [104]:

INPUT

OUTPUT

ASSIGNMENT

SEQUENCE

SELECTION

REPETITION

Each basic primitive can be modelled as a Petri net, such that
the state of the process is represented by the marking of the places of
the net, u. A formal definition of a Petri net can be found in {81].

The Petri net models for these primitive constructs are shown

in figure D.1. It follows that any sequential program can be modelled
as a Petri net by combining a number of these primitives.

From the above it can be seen that every place has a unique
output transition, except for places which preceed decisions (selection,
repetition); these places have two output transitions corresponding to
TRUE and FALSE outcome of t)he decision predicate. The choice as to
which arc to take can be made non-deterministically or by some
outside influence.

The sequential constructs described above are sufficient to
describe sequential systems and the sequential parts of concurrent
systems. However, concurrent systems can not be fully described using
the sequential concepts alone. Additional constructs must be

introduced to describe parallelism, inter-process communications and

inter-process synchronisation [105].
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Process Program Flow Diagram Petri Net Model

INPUT
'INPUT (y) ZINPUT (y) INPUT (y) i
O

OUTPUT
OUTPUT (Y) f OUTPUT(Y) OUTPUT(Y)
ASSIGNMENT
X=Y X=Y X:=Y ?
| O
SEQUENCE
I
SEQP'] | F;1 ] o
P2 [ 5% ]
I P2
SELECTION

IF X <0 THEN P1
ELSE P2
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REPETITION

K:=1
SEQ
K:=1
WHILE k<100 k <100
SEQ

P1 L

"2

Fig. D1 Petri Net Models of Sequential Software Constructs.

Concurrent programming languages such as Occam allow the
user to model concurrent systems. Such systems are composed of
separate, interacting components. Each component may itself be a
process, and its behaviour can be independent of the other components
of the system, except for well-defined interactions with other
components. To deal with concurrent systems Petri net models were
developed [16] for concurrent constructs such as parallel processes,

synchronised communications and asynchronous ALT processses.
Assignment

Assignment is an action which involves a single process only:

it can be modelled as a transition with single input and output arcs.

Parallel

In the parallel construct all actions are initiated

Appendix D 170



simultaneously. The construct does not terminate until all paraliel
processes have terminated.

PAR
P
P2
P3
P4

ENDPAR

Communications

For the action of communication two processes are involved.

One sends the information and one recieves it. Thus a transition

modelling a communication requires at least two output arcs, again one

to each process. To distinguish input and output actions the occam

notation for input and output on the transitions is used.
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Input

Comm.Chan ? var

output

Comm.Chan ! exp !

These two actions, input and output, always appear in pairs in
the system. In systems which use a parallel processing language such
as Occam where communications are synchronised, the same transition

will be shared by both processes involved in the communication.

Process A Process B

aj
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ALT (alternative construct)

The alternative construct chooses one of its components for
execution. Each component process has a guard which is an input (?).
The process whose guard is satisfied earliest is executed. If more than
one guard is satisfied the choice as to which alternative is taken is
defined as being arbitrary. This construct can be modeled by the Petri

net shown below

GUARDS

op .0

GUARDED v GUARDED
PROCESS PROCESS

Interface to Environment

In order to keep the transformation from Occam program to
Petri net model as simple as possible, the communication to an
external environment (i.e. output to the environment) is simplified as

shown in the diagram below:
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EXTERNAL ENVIRONMENT
Process B

Process A Process B

a; ay
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