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SUMMARY

The rapid developments in computer technology have resulied in 4 widespread use of
discrete event dynamic systems (DEDSs). This type of sysitem is complex hecause i
exhibits properties such as concurrency, conflict and nan-determinism. Tt is therelore
important to model and analyse such sysiems hefore implemeniation {o ensure safe,
deadlock free and optimal operation. This Thesis investigaies current modelling
techniques and describes Petri net theory in more detail. Tt reviews top dowi, bottom up
and hybrid Petri net synthesis techniques that are used to model large systems and
introduces an object oriented methodology to enable modelling of larger and more
complex systems. Designs obtained by this methodology are modular, easy to understand
and allow re-use of designs.

Control is the next logical step in the design process. This Thesis reviews recent
developments in control of DEDSs and investigates the use of Petri nets in the design of
supervisory controllers. The scheduling of exclusive use resources is investigated and an
efficient Petri net based scheduling algorithm is designed and a re-configurable controller
is proposed.

To enable the analysis and control of large and complex DEDSs, an object oriented C++
software tool kit was developed and used to implement a Petri net analysis tool, Petri nel
scheduling and control algorithms. Finally, the methodology was applied to two
industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls
Lid.. and a semiconductor testing plant belonging to SGS Thomson Microelectronics Lid.

ey words: Discrete evenl dynamic systems (DEDS), Ohject oriented methodalagies,
OMT. Petri nets, scheduling, supervisory control.
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Chapter 1

Introduction

1.1 Introduction to this Thesis

This Thesis develops a methodology! for the design, analysis and optimal control of
discrete event dynamic systems (DEDSs). A DEDS is a dynamic system that evolves
with abrupt changes, at possibly unknown and irregular intervals. DEDSs are
encountered in many fields of engineering, including manufacturing, robotics, traffic
management, logistics and computer and communication networks [Sobh et al. 94]. This
Chapter introduces the basic theory of DEDSs, describes the purpose of the research and

identifies the contributions made in this Thesis.

1.2 Discrete Event Dynamic Systems

The IEEE Standard Dictionary of Electrical and Electronic Terms defines a system as "a
combination of components that act together to perform a function not possible with any
of the individual parts”. Any type of system has a set of inputs, u, a set of outputs, y, and
a state, measurable over a period of time [z[,,rf], where 1,1, € U". The state of a’'system
is defined as the smallest set of variables (state variables) such that knowledge of these
variables at time, t =1,, together with the knowledge of the system inputs, u(r) Vr 21,
completely determines the behaviour of the system Vizt, [Ogata 90]. The set of
equations required to specify the state x(r) Vr =1y, given x(f,) and the function u(t),

WVt >1,, are called the state equations and the state space of a system, X, is the set of

{1

all possible values that the state may take.

A DEDS belongs 1o a class of systems that is described by means of the system
classification illustrated in Fig. 1.1. Referring to this classification, a static system 1s one
in which the output, y(¢), is independent of past values of the input, w(z),
r, <1, <t.Vre R whereas a dynamic system is one in which the output depends on past

values of the input.

I A design methodology is a process for the organised production of a design using a collection of
predefined technigues and notations [Rumbaugh er al. 91]
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Furthermore, dynamic systems can be classified as time-varying or time-invariant
systems. For time-varying systems, the input/output relationship of a system, g, depends
on tume, hence, y = g(u(t),t). In linear time-invariant systems, the function g, is linear,

otherwise the system is non-linear.

If the state space of a non-linear system is described by a discrete set and state changes
(events) are only observed at discrete points in time, the system 1s known as a discrete
state system. An event can be thought of as occurring instantaneously and causing

transitions from one discrete state value to another.

Discrete state systems are further subdivided into time-driven and event-driven
systems. In time-driven systems state transitions are synchronised to a clock, whereas in
event-driven systems it is the occurrence of asynchronously generated discrete events

that forces instantaneous state transitions. In between event occurrences the state

remains constant.

(L1uEar ) (WON-LINEAR)

DISCRETE Discrete Event
LTE _ - =
s N Syslems
(TIME-DRIVEN) Ivm (EVENT DRlV"-‘N)

/(—PTEWTMCTIC) CTO\.HASTIC

N
/
/ DISCRETE-
TIME
/
Fig. 1.1 Systems classification [Cassandras 93]

Based on the system classification above (Fig. 1.1), a DES is a discrete-state, event-
driven system [Cassandras 93]. Furthermore, a DEDS is a DES whose output depends
on past values of the input. DEDSs are complex systems because they exhibit
characteristics such as concurrency, conflicts, non-determinism and system deadlocks.
Current theories and technigues for modelling and analysis of DEDSs are discussed 1in

Chapter 2 of this Thesis.
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Definition 1.1
Mathematically, a DEDS is defined by Ramadge and Wonham [89] as the state
automaton [Hopcroft and Ullman 79] described by the five-tuple: G =(E,X,I',f,x,),

where,

E 1s a countable set of events

X 1s a countable state space

["(x) is the set of feasible or enabled events, Vx e X,I'(x) CE
f(x.e) is a state transition function, f:X XE = X,VeeI'(x),xe X

X, € X, 1§ an initial state

G is interpreted as a device that starts in the state x, € X, and execultes state (ransitions,
generating a sequence of events. Events are considered to occur spontaneously and

instantaneously.

1.3 Modelling and analysis of DEDS

A model of a DEDS is a representation of the features of a system that are considered 1o
be important for its correct operation. Obtaining a model of a system is the first step
towards understanding how the system works and, if the model is an accurate
representation of the system, it can be utilised to analyse the system's dynamic
hehaviour. The mathematics of traditional control theory [Healey 75, Ogata 90],
including differential and difference equations, has been developed over the centuries to
model and analyse continuous processes that are observed in nature. However, the rapid
advances in computer technology have resulted in a widespread use of DEDSs that are
mostly man-made and are overwhelmingly complex [Cassandras 93]. The increasing
complexity of man-made systems makes intuitive solutions inadequate {Ramadge and
Wonham 89], therefore it is necessary to use some form of state transition structure (for
example, automata [Hopcroft and Ullman 79] or Petri nets [Peterson 81]), or a set of
algebraic equations [Hoare 85] or a logical calculus such as temporal logic [Manna and
Pnueli 83] for their analysis and design. According to Ramadge and Wonham [89], no
single modelling approach will suffice for all problems of interest and every approach
hus its own applications, virtues and limitations. A large capital is involved in designing
and operating DEDSs and some of these systems are safety critical [Leveson 86], so 1t 1s
important to model and analyse new systems, prior to their implementation, to ensure

safe and optimal operation. According to Cassandras [93]:
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"New models and methodologies are needed not only to enhance design procedures, but
also to prevent failures (whmh can indeed be "atJSUOPhIC at this level of complexity) and
to dehiver the full potential of these systems.”

Since this Thesis is about control of DEDSs, including safety critical applications,
Chapter 2 reviews current modelling techniques to select one that is well proven, allows

automation of analysis for convenience and provides a compact graphical representation

of the model to facilitaie visualisation of the problems.

1.4 Synthesis of a DEDS model
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Once the modelling technique that is best suited 1o the problem is se

"how to build a system that behaves as we desire” needs to be addressed [Cassund

93]. Design techniques have been developed to aid the designer to synthesise models

complex systems. These include top down, bottom up and object onented design.

Top down design [Wirth 71], also known as stepwise refinement, is a fechnigue for the
design of a system by moving from a general statement of what the &3

detailed statemnents about specific tasks thai are performed.
f P

referred to as a "divide and conquer” approach because each statement is aecomposed
into more specific statements in a step by step fashion. Sometimes the top down
approach can be so abstract that it is hard to find a starting point [McConnell 93].
Therefore, an alternative approach is bottom up design [Agerwala and Choed-Amphai
78). 1In this approach one needs to identify the low level capabilities that the system
needs to have, then to identify the common aspects of low level components and group

them. This process is then repeated on the next higher level.

The difference between the two approaches is that the top down decomposition works

C

from the general problem and breaks it into smaller more manageable problems, whereas
the bottom up approach starts with smaller more manageable problems and works

owards a general solution. Both approaches have their strengths and weaknes The

strength of top down design is that pw ple find it easy o break up a big problem nio

smuller components and a weakness is that the top function of a system might B

HTE N

ifficult to identify [McConnell 93], Another Lil‘nhj\’ intage is thal many sysiems

nummHy hierarchical, so they are difficult to decompaose. The most SETIOHE Wi

that top down functional design requires a ‘s)l.\_ul io he described by a ,

the top, which is a dubious requirement [ar

[ McConnell 93],




One of the strengths of bottom up composition is that it typically resulis in carly
identification of implementation details. However, it is difficult to use exclusively since
most people are better at breaking down a concept into smaller concepts than they are ul
taking small concepts and making one big one [McConnell 93]. Another disadvantage
of bottom up design is that it is not possible to build a system using building blocks
without actually knowing what the final product will look like, therefore it can only bhe

used in conjunction with top down design.

Both bottom up and top down approaches concentrale on functional absiraction, and

have produced incomplete specifications and designs for complex sysier

93]. In order to facilitate the design of complex systems, produce more undersiandable
designs and specifications, facilitate the transition between design and implementaiion

and enable software re-use, several researchers mcludmg Seidewitz [89], Coad and

Yourdon [90] and Firesmith [93], have advocaied a paradigm shift towards ohject

oriented (O0) uzchniques.

In OO techniques [Booch 94] one refers to classes of objects. A class of objecis is

defined as a collection of aitributes and operations that are able (o manipulaie the values

of these atuibuies. An object is an instance of a class and the values of the object's

attributes can only be changed by executing the operaiions defined in the cly

to. Obiject oriented design (OOD) is the process of identifying real-world objects and
classes of objects, identifying the operations on the classes and objects, and then building
a system from those objects [McConnell 93]. The encapsulation of properties and
operations within an object makes it possible to treat the object as a 'black box'. This is
in contrast to traditional functional design techniques where data structures and functions
are defined separately and are only loosely connected. Encapsulation prevents small
changes to an object from having a large ripple effect on the whole system. One can
define a new class, starting off from another class, by means of inheritance. The
inherited class would contain all the attributes and operations of the super class hut
would have some additional attributes and operations. Therefore inheritance makes it
possible to re-use previously designed classes. The application of top down, hottom up
and ohject oriented methods to synthesise DEDS models is investigated in Chapter 3 of

this Thesis.
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1.5 Control of DEDSs

Conurol is the next logical step to the design process [Cassandras 93]. The adaptation of
traditional control theory to DEDSs was only recently pioneered by Ramadge and
Wonham [87]. Their strategy was to model the DEDS on a state automaton [Hoperoft
and Ullman 79] and completely describe its behaviour by the language [Hopcroft and
Ullman 79] generated by the automaton. System requirements and specifications were

also assumed to be specified as languages.

To control a DEDS [Defn. 1.1], it 1s assumed that certain evenis of the system can be
disabled (not allowed to occur) when desired [Ramadge and Wonham 89]. Thus, the set
of events, E, is partitioned inio the set of controllable events, E, and the set of
uncontrollable events, E,, where E=E UE, Uncontrollable events occur
spontaneously.  However, the occurrence of controllable events depends on the
enabling/disabling action of a system controller defined by the function y(w), where w
is the sequence of events that have been observed up to the current state. In automata

theory [Hopcroft and Ullman 79] a sequence of evenis is referred 10 as a siring.

A controller of this type is known as a supervisor [Ramadge and Wonham 89], the
fundamental purpose of which is to provide closed loop control 6 force ihe system 1o
behave as specified under a variety of operating conditions [Cassandras 93]. The
supervisor (Fig. 1.2) converts the input string, w, into a controlled string, w,. Feedback
is provided by observing the state sequence resulting from w, either by directly

observing every new state or by observing the output, y = g(x,e).

mmmmm DEDS  _ _ _ _ _

! |

SUPERVISOR |

w enable/disable | | W , y=glxe)
- pew = = flxe) =

/) [ ‘

S A
Fig. 1.2 Supervisory Control of DEDSs [Cassandras 93]




This method for supervisory control, as described in [Ramadge and Wonham 8§7], is
limited by the use of a state automaton (to represent the system) which is adversely
affected by the state-explosion phenomenon [Zhou and DiCesare 93]. The feasibility of
constructing supervisors for DEDSs and methodologies for supervisor design are still
under development [Cassandras 93] and the basic theory of supervisory control, its
limitations and a novel supervisory controller design are presented in Chapter 4 of this

Thesis.

1.6 Optimisation of the system

Exclusive-use shared resources are components that are present in mosi DEDSs.
Examples of such resources are: production units in process plants, machines i flexible
manufacturing systems (FMSs); processors, communication channels and storage devices
in computer systems; cash machines in a bank; and so on. Their common feature is thar

they are shared by different users or processes, but can only be used by one user or process

at a time. One of the problems raised by the presence of shared resources in a DEDS s
that the overall performance of the system depends on the order in which they are allocated
to the users or processes. It is necessary 1o schedule the allocation of resources if one is (0
ensure the optimal control of a DEDS. In Chapier 4 traditional approaches 1o scheduling
resources are introduced, followed by the presentation of an efficient scheduling algorithm

to ensure optimal control.

1.7 Contributions of this Thesis

This Thesis presents an object oriented methodology for the design, analysis and optimal
control of DEDSs based on Object Modelling Technique (OMT) [Rumbaugh er al. 91],
Petri net theory [Murata 89] and supervisory control theory [Ramadge and Wonham &7].

Four main contributions are presented:

(1) An object oriented methodology for synthesis of DEDS maodels [1.7.1]
(i1) A fast Peuri net based scheduling algorithm [1.7.3]
(i) A re-configurable supervisory controller for DEDSs [1.7.2]

(iv) A Petri net software tool kit [1.7.4]

These contributions are assessed in Chapier 6 by considering their application i 1wo

industrial DEDSs.
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1.7.1  An object oriented methoedology for modelling DEDSs

This Thesis presents an object oriented methodology for synthesis of DEDS models . The
technique is a modification of OMT [Rumbaugh et. al 91] and complements the currently
available Petri net synthesis techniques. The OMT model consists of three separate
models; the object model, describing the objects in the sysiem and their relationship; the
dynamic model, describing the interactions among objects in the system; and the
functional model, describing the data transformations of the system. This Thesis shows
that the dynamic model can be represented by a controlled Petri net [Krogh 87], and that
there is a direct link between the three OMT models, thus enabling construction of the
complete model by following a step by step approach. This makes the dynamic mode
more understandable and the design engineer more confident that it accuralely represents
the behaviour of the system. This methodology has heen applied 1o two classical
problems in Chapter 3 and to two industrial DEDSs in Chapter 6. The methodology
described in this thesis has resulted in the publication of a conference paper [Azzopardi ef
al. 96].

1.7.2 A fast Petri net based scheduling algovithm

This contribution is an improvement over the Petri net [Peterson 81] based scheduling
algorithm published in [Azzopardi and Lloyd 94a]. The algorithm uses a branch and
hound algorithm applied to the timed Petri net [Sifakis 78] model of the plant. However,
to improve the efficiency of this algorithm and to make the algorithm applicable to larger
systems, heuristics are used to reduce the search space. The major improvement
introduced in this Thesis involves reducing the Petri net, effectively wmovm;: all the
uncontrollable events [Ramadge and Wonham 87] from the model to obtain & further
reduction in the search space of the scheduling algorithm. The improvement in the rife
of convergence of the algorithm is backed up by experimental results presented in

Chapter 4 of this Thesis.

1.7.3 A re-configurable supervisory controller for DEDSs

In DEDSs, such as computer or production systems, shared resources conld hreak down
at unknown intervals. As a result, jobs must be re-routed (o make nse of the availahle
chared resources whenever such a situation occurs. In the event of a hreakdown, the
Slate-1ransition structure on which the supervisory controller is hased, would not e g
correct representation of the plant, unless all possihle failures are included in e model.
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It 1s not practical to model all possible failures in the supervisory controller because the
addinonal states that need to be introduced would result in high CPU and memory
requirements and make the system difficult to analyse. Therefore, in Chapter 4, a Peiri
net model-based controller is proposed. It uses state feedback to detect changes in the
set-up and incorrect response of the system. It is re-configurable to accommodate 10
these changes. The design of the re-configurable supervisory coniroller was published in

a workshop paper [Azzopardi and Holding 95].

1.7.4 A Petri net software tool kit

It is necessary to use computer programs to be able (o analyse the dynamic madel of
large DEDSs and to implement scheduling and control algorithms, due to the large stale
space associated with these systems. In this Thesis, an object oriented C-++ Petri net
software library was implemented and has been used for the analysis and implementation
of all the examples discussed in this Thesis. The class structure and facilities of the

software library are described in Chapter 5.
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1.8  Layout of the Thesis

This Thesis is organised into seven chapters. Chapter 2 presents a review of techniques
for modelling DEDSs and introduces Petri net theory, which is most relevant 10 the
research work presented in this Thesis. Chapter 3 discusses top down and hottom up
Petrt net synthesis techniques for modelling large systems. Since these technigues
concentrate on functional abstraction they are limited to smaller sized DEDSs. To
overcome this limitation, Chapter 3 presents a modified version of OMT (an ohject

oriented design methodology) to synthesise models of large, indusirial DEDSs.

Chapter 4 tackles the problem of optimising a DEDS by developing an efficient Petri nel
hased scheduling algorithm to enable re-scheduling of the resources in the case of
fMuctuation in processing times. Chapter 4 also presents an introduction to the basics of
supervisory control for DEDSs, the use of Petri nets for supervisory control and a novel

re-configurable closed-loop controller for DEDSs.

Chapter 5 describes a Petri net software tool kit, implemenied in object oriented C--+,
that enahles the implementation of analysis tools for DEDSs, Petri net hased scheduling
algorithms and Petri net hased control algorithms.  Chapter 6 applies the design
methodology 1o two indusirial DEDSs and Chapier 7 summarises the methodalogy,
assesses the contributions made in this Thesis and makes suggestions for further work.



Chapter 2

Modelling and analysis of DEDSs

2.1 Introduction

The increasing complexity of modern industrial DEDSs, makes intitive solutions {or
their design and control inadequate. Therefore, according to leading researchers in the
field, including Ramage and Wonham [89] and Cassandras [93], one musi use a stale
ransition structure (such as automata [Hoperoft and Ullmann 79] or Petri nets [Peiri
62]), or a set of algebraic equations [Hoare 85] or a logical calculus such as temporal
logic [Manna and Pnueli 83] for their analysis and design.

This Chapler investigates current technigues for modelling DEDSs including automaiia,
state charts [Harel 87], Petri nets, temporal logics and process algebras [Hoare 85} in an
attemnpt 1o choose the technique that is most suited 1o this research work. Petri net theory
wis found 1o be the most suitable technique becanse of the ease with which it is ahle (o
model DEDS characteristics; it is well developed and research in this field is intense; 1t
allows automation of analysis to facilitate analysis of larger systems; it provides a system
evolution mechanism that is useful for analysis and for implementing supervisory
control; it provides a compact graphical representation and it models system precedence
relations and timing information that are necessary for performance optimisation. Hence
Petri net theory and Petri net extensions that are particularly relevant to this research are

described in further detail in this Chapter

2.2 Techniques for modelling DEDSs

Briefly, a model of a DEDS is a mathematical representation of the features of the system,
that are considered to be important for its operation. Several techniques Tor modelling
DEDSs have been developed and are reviewed in [Davis &8, Joseph and Goswami /9,
Scholefield 90, Ostroff 92b]. In this section, the more relevant modelling technigues are

discussed.
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2.2.1 Finite State Automata

One of the modelling techniques used to study the behaviour of DEDSs is hased on
theories of languages and automata [Hoperoft and Ullman 79]. A DEDS [Definition 1.1]
has an underlying event set, E, associated with it, which is thought of as the alphabet of a

language, and event sequences are thought of as words in the language.

Definition 2.1 A language, L, defined over an alphabet E, is a set ol sfrings
formed from events in E. A language may be thought of as a formal way (o describe the
hehaviour of a DEDS by specifying all admissible sequences of events the DEDS i
capable of following [Cassandras 93].

Definition 2.2 A finite state automaton is a device that is capahle of generating a
language in accordance to well defined roles and is defined by Hoperoft and Ullman [ 74]
as a five-tuple (E,X,{,x,.F), where

E is a finite alphabet,

X is a finite set of states,

f is a state transition function, NXXE — X,
X, is the initial state, x, € X,

I is a set of final states, F C E.

State automata are represented graphically by means of state transition diagrams (or state
diagrams for short). A state diagram is a directed graph consisting of circles that

represent states and arcs that denote events.

Example 2.1 Consider the automaton (E,X,f,x(,,F), [Cassandras 93], where
E={a.p.7}
X ={xyz}
flx,0)=x, f(x,f)=f(x,y)=z2
fha)y=x (0B =10ny)=y
fz.fy=z [z a)=f(zy7)=Y

X, =X

This is graphically represenied by the staie diagram of Fig. 2.1, where the initial siaie,
(x},is marked by an arrow and the set of final states, {x,z] is indicaied hy shaded cireles.
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Fig. 2.1 A state diagram

Although state automata have been used in applications such as telephony [Davis HR],
their application is limited to smaller applications because they are non-compositional and
suffer from state-space explosion [Scholefield 90], where the number of siates increases
exponentially, resulting in an unstructured and chaotic diagram. The deficiencies in sinle
automata have been partially overcome by the development of Statecharts [Harel 87|

which are described in the following section.

2.2.1.1 Statecharts

Statecharts is a visual formalism developed by Harel [87], in an attempt to resolve the
problems associated with state diagrams. Statecharts can have several layers so that one
can "zoom-in" and "zoom-out" depending on the level of abstraction that is required, and
provide a mechanism for communication between concurrent Stale machines (o enahle

compositional design of large systems.

Rounded rectangles represent states and encapsulation is used to express the hierarchical
relation between states. Events are represented by arrows which can optionally have a
condition (guard) associated with them. This is illustraied in the statechart of Fig. 2.2
which has three states A, B and C. Event «, for example, transfers the sysiem from siale
B 10 stale A. Since event f takes the system 1o state B from either states A or C, the
latier are "clustered" into a new "super-state” D. Then, staie D represents the exclusive-or
(XOR) of states A and C.

3
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Fig. 2.2 Example of a statechart

Zooming-in is achieved by looking 'inside’ D resulting in the diagram of Fig. 2.3 (h).
Zooming-out is done by removing the states inside D and abstracting Fig. 2.2 1o Fig. 2.3
(a). This facility enables the system designer to view the dynamic model al the level of
abstraction that is desired and makes the diagram less chaotic than traditional staie

X S (a)
l - ’LD )
- (c)

(a) (h)

Fig. 2.3 Zooming-in and zooming-oul

diagrams.

Fig. 2.4 illustrates a system with concurrent states, where states B and C are concurrent
with states E, F and G. The state Y represents the AND operator on states A and D. This
feature of statecharts results in a more compact graphical representation of concurrent
systems. A traditional state diagram would have required 6 states to model the system Y

of Fig. 2.4.

A software package called STATEMATE [Harel er al. 90], has been written 1o provide 4
working environment for the development of complex DEDS. It makes use of statechurs
semantics for representation of the behavioural model of the sysiem and allows the user (o

step through the system evolution



STATEMATE also provides facilities for simulation of the system and analysis of the
dynamic behaviour of the system. Analysis is done by means of brute force methods
(exploring all possible states) and gives information on reachability of states, non-
determinism, deadlock and event traces.

Statecharts’ semantice are incomplete and imprecise, resulting in several problems that are
described in detail in [DerBeek 94]. To overcome these problems, the semantics of
Statecharts have been altered and DerBeeck [94] describes 20 different varianis of
Statecharts.

2.2.2  Petri nets

A Petri net [Petri 62] is a graphical notation with an underlying mathemaiical theory for
modelling and analysing DEDSs. Graphically, Peiri nets can be used (o visnalise the
evolution of the system. As a mathematical theory, it can be applied to set up the siaie

equations of a system to analyse its dynamic behaviour.

Definition 2.3 A marked Petri net is defined by Murata [89] as a five-tuple Z = (P,

T, 1. O, m), where:

P 1s a finite set of places.

T is a finite set of transitions, with PUT # & and
PNT = @,

LPxT — {01} is the transition input function that specifies the arcs

directed from places to transitions;

O: PxT — {0,1} is the transition output function that specifies the arcs
directed from transitions to places;

m: P — N is the marking representing the number of tokens in a

place. (N represents the set of natural numbers)

In Petri nets, the set of states is represented by a set of places. The sei of events is
represented by a set of wansitions. The active states of the system are illustrated hy .
lokens in the relevant places. Graphically, places are depicted as circles, ransitions us \
filled bars and tokens as dots in the circles that represent places. The places and
transitions in the Petri net are linked by means of directed arcs. The set of places Tinked
hy directed arcs into a transition represents the input function, whilst the et al places

linked by ares directed out of transitions represent the autpul function. Fig. 2.5 illustraies

i Petrt net graph.
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The marking of a Petri net represents the state of the system that it models. Tokens low
through the Petri net, representing the evolution of the system, according 10 the rule:

Definition 2.4 A transition t € T is said to be enabled iff each input place of |
contains at least one token. An enabled transition, t & T, may fire at marking ',
yielding the new marking, m, where m(p,) =m'(p.)+O(p,, 1) =1(p;.1) fori =12, 4 (F)

In addition 1o showing how the modelled sysiem evolves, Peiri net theory can he used 1o
analyse its behaviour for desirable properiies such as houndedness, liveness and
reversibility [Murata 89, David and Alla 92, Desrochers and Al-Jaar 95]. Boundedness
implies that the number of states that a system may enter is finite, liveness indicates that

there is no deadlock and reversibility shows that the system has cyclic behaviour.

According to Ostroff [92], Petri net theory was one of the first formalisms to deal with
concurrency, non-determinism and causal connections between events. A problem with
ordinary Petri nets is that large nets are difficult 1o analyse. However Petri net theory is
the subject of intense research and methods for analysis of large nets have been developed

and will be discussed in this Thesis.

2.2.3  Temporal Logics

An alternative approach is 1o use classical logic [Hamilton 78], including propositioni "

(statement) and predicate (first order) logic 10 model DEDSs. In propositional Togic,
simple statements are denoted by capital letiers (A, B, C, ...) and the conneciives fisied in

Tahle 2.1 are used 10 form compound statements (propositions).
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not A —-A
Aand B A AB
AorB A v B
if A then B A—B
Aifand only if B AeB

Table 2.1 Connectives of classical logic

In predicate logic, statements have a subject and a predicate. Roughly, the subject is the
thing about which the statement is making an assertion and the predicate vefers 0 a
property which the subject has. For example, the statement "there is at least one sheep
that is black" would be represented by the predicate logic statement (Ix)(P(x) A W(x))
where, the symbol (3x) means that "there exists at least one object x such that" and

P(x) and W(x) mean " x is a sheep” and " x is hlack" respectively.

When using classical logic to specify a DEDS, the states of the system are nof
individually enumerated, but groups of states are characierised by means of logica]
propositions. When a proposition is true, it means that the state of the sysiem helongs 1o
the corresponding group. Valeite [95] pointed out that there are two main difficuliies
associated with using classical logic to specify DEDS: (i) It is difficult (o define the
meaningful groups and the corresponding propositions; (ii) Classical logic is inadequate
1o reason about time and state evolution because, once a proposition has been proved true,

it has to remain true, otherwise an inconsistency would be detected.

In order to reason about systems in which changes occur, modal logic [Hughes and
Cresswell 68] is used. This logic has the special operators which specifies change: (i) 0
(possibility operator), and (ii) CJ (necessity operator). The semantics of madal logic are
denoted by the Kripke structure [Kripke 63] which considers a system to be composed of
a set of worlds (W) and an accessibility relation (R). W represents all the possible states
that a system may be in, and R defines how the system changes from one world (o

another.

In order to reason aboul concurrent systems, it is necessary to use some kind of iemparal -
logic [Manna and Pnueli 83]. Temporal Jogic is a form of madal lTagic where R is
interpreted as the passage of time and o is a sequence of states. Formulas of tempora]
logic are constructed using the temporal operators: L, 0, @, W, which are called the
lways', ‘eventually', ‘next' and 'until’ operators respectively and are interpreted over il

Kripke structure as:
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G = So, Si, ...
R($0,801)
where
s., where n 2 0, represents a state, and
R(s,,$..:) 18 the accessibility relation.

The semantics of the temporal operators are defined below. For a state sequence o, let the

sequence ¢’ be the k-shifted sequence given by ¢ = s, $i, ..., then,

(i) if w is a classical formula (constructed from propositions or predicates and logical
operators listed in Table 2.1), containing no femporal operators, then,
Cl=w il Sol=w
in this case w can be interpreled over a single state in &, which is the initial state s,

(i)  the temporal operator [ (always) is defined as:
ol=Clw il VEkz0, a®l=w
which means that [ w holds on o iff all states in o satisfy w,
(iii)  the temporal operator ¢ (eventually) is defined as:
ol= 0w iff k20, a¥l=w
which means that 0w holds on ¢ iff at least one state in ¢ satisfies w,

(iv) the temporal operator O (next) is defined as:
ol= 0w iff cl=w
which means that Ow holds on ¢ iff ¢" satisfies w,
(v) the temporal operator W (until) is defined as:
cl=xUy iff dk = 0 such that
o“l=y,and Vi, 0<i<k, a”l=x
which means that xUy holds on o iff at some time y holds, and until then, x holds

continuously.

There are several types of temporal logic that differ in the way in which they model time.
These include hranching time, linear time and partial order temporal logics. Branching “
temporal logic views time as a tree like structure, in which, at each node, the futire has
several possible alternatives. Linear time temporal logic views time as having only ane
possible future whereas partial order temporal logic considers the partial ordering of

CVEnts in time.



When using temporal logic to model DEDSs it is often necessary to explicitly refer to a
state transition graph to define the worlds (states), where the propositions are consistent
with the classical logic framework. According to Valette [95], all reasoning about state
changes has to be based on a state-transition graph and the typical search for invariants
(propositions which are true for all the states), although useful for formal proof of
computer program correctness [Galton 871, including safety and liveness properties

(defined in {Alpern 85]), is useless for specification of the system evolution.

2.2.4 Process Algebras

Process Algebras consist of a set of processes and operators that provide process
construction. The process algehra defines a set of equations which provide a proof theory
One such algebraic approach is communicating sequential processes (CSP) developed hy
Hoare [78] and described in detail in [Hoare 85]. It is a notation for specification and
verification of systems of concurrent processes and makes use of three fundamenial

semantic models: trace model, failure model and stability model.

A trace is a finite sequence of events, where an event is an action performed by a process
and is considered to be instantaneous. A process, P, is formally defined by the trice
model as:

P sat S(tr)

where S(ir) is a specification stating the behaviour of this process in terms of traces.

A failure model is used to distinguish between deterministic and non-deterministic
hehaviour, by specifying a process in terms of refusal sets. A refusal sel, such as
refusals(P), is a set of event sequences which is refused by process P. For a non-
deterministic process, both traces and refusals are used to specify its behaviour, therefore

P sat S(tr, ref)
ef) | ( tr € traces(P) j

= Vi, el T\ e e refusals (P/1r)

which is equivalent to the failure model, defined as:
failures (P {(U ref) | tr e traces(P) A rel e refusals(P /) |

The stability model is used to model 1 viernal transactions of a process and (o investignle
whether a particular process has stabilised at some iniernal event.
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CSP processes communicate by sending messages via channels. A process, P, consists of
a pair of communicating processes A and B (denoted by (AlIB)) which synchronise on a
communicating event, C, where process A sends an output message, M, to process B. This
15 1llustrated in Fig. 2.6.

M

Ct C?

Fig. 2.6 CSP model of communication [Lau 91]

CSP provides a process algebra to specify a process in terms of its set ol traces and
refusals. Several proof systems exist [Olderog 86] whereby the trace model can he used
to prove safety properties whilst the failure model can be used 1o prove liveness
properties. A drawback of using CSP to specify and verify DEDS, poinled out by mei
[91], 1s that the verification technique used by CSP is based on an axiomatic approach an

to construct a full mathematical proof requires an in depth understanding of the different
inference systems. Another disadvantage of CSP is that it is event hased where the siiie
of a system is only a derived notion and is not specified explicitly (as in staie automati,

Petri nets and temporal logic).

2.2.5 Comparison of modelling techniques

Several authors [Peterson 81, Cassandras 93] have compared the modelling capabilities of
state automata and Petri nets. Cassandras [93] states that the choice of using state
automata or Petri nets is often subject to personal biases however, in this section, the most

important modelling features are compared.

First of all, a state automaton can be always be represented by a Petri net. The automaton
(E.X.f,x,,F) can be represenied by the Pewrinet Z = (P, T, I, O, m,), where;

and the initial state, x,, is represented by marking the correspanding places in the

Petri net, (m,).
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According to Cassandras [93] a disadvantage of Petri nets is that the graphicul
representation of realistically sized DEDSs has many places, transitions and links,
resulting in a spaghetti-like diagram. However, in such a situation, the graphical
representation is still useful since one can focus on the section of the net that is of interest.
On the other hand, state automata of a simple system can consist of an infinite numbher of
nodes. Consider the queuing system in Fig. 2.7, where 'a' represents the arrival of a
customer to the queue and 'd' represents a departure of a customer after being processed.

The processor is only capable of handling one job at a time.

processor

(ueue

Fig. 2.7 A queuing system

The state diagram representing this system consisis of an infinite number of nodes,
whereas a Petri net can describe the same system without having 1o explicitly show all
possible markings. The equivalent models are illustrated in Fig. 2.8 and clearly show ihe

advantage of using the compact notation of Peiri nets.

Another advantage of using Petri nets over state diagrams is that the Petri net structure
allows the modular design of a system. Suppose that we want to model a system
consisting of two systems, say, system 1 and system 2. If the two systems are modelled
as state automata with state spaces X, and X, respectively, the state space of the whole
system, X, consists of all possible combinations of the individual system states (i.e.
X =X, xX,). This means that combining multiple systems rapidly increases the
complexity of a state diagram. On the other hand, Petri nets allow the modular design of
systems, in which the individual component Petri nets are combined by adding places and
transitions to represent the coupling effects between the systems. The subject of Petri net
synthesis for large systems is well documented [Jeng and DiCesare 93] and is covered in

more detail in Chapter 3.

The deficiencies in state diagrams have been partially overcome by the development of
Statecharts which, however, have incompleie and imprecise semantics, resulting in 2(1 |
different variants of Statecharts. Another disadvaniage of using Statecharis is that
analysis of the system hehaviour is done by means of brute farce methods, which Timis

the size of systems that can he analysed within a reasonahle time

1!‘.,.12
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. Fig. 2.8 Comparison of state diagram and Peiri nei

The formal methods (temporal logic and process algebras) described in the previous
sections are complementary. For example, temporal logic 1s good at describing properties
that concern the whole system, such as liveness and safety. However, according io
Valette [95] it is not suitable for specifying the system evolution, also, according to
Ostroff [92] temporal logic specifications are relatively unstructured and could benefit
from the more structured notations of process algebras. The use of formal methods resulis
in specifications that are difficult to understand and according to Hall [90], a high level of
mathematical skill is needed to carry out a fully formal development (of a DEDS) that
includes proofs, and it is unrealistic to expect the majority of software engineers o be ahle

to do proofs easily.
The advantages of Petri theory, over the techniques described in this Chapier are:
s The case of modelling DEDS characterisiics including: concurrency, asynchronaig

and synchronous features, conflicis, mutual exclusion, precedence relations, non-

determinism and system deadlocks,

o Analysis can be performed by using mathematically based computer software,
¢+ Tiis well developed and backed up by aver 25 years of iniense research and a urpe

Peiri net research community,




= It allows a concise and intuitive graphical representation of the model o aid
visualisation of the problem and facilitate communication of the problem amongst
the system designers,

¢ Itis useful for performance optimisation (scheduling exclusive-use resources) because

the model contains both the system precedence relations and timing information.

For the reasons mentioned above, Petri net theory is the theory adopted for the research

work presented in this Thesis. It is described in more detail in the following sections.

2.3 Petri net Theory

A Petri net (defined in Section 2.2.2) is a graphical notaiion with an m‘nder]yiﬁg
mathematical structure [Definition 2.3] for modelling and analysing DEDSs. As &

graphical notation, a Peiri net is used to visualise DEDS characieristics i’_Z] ou and

DiCesare 93] such as: synchronisation, concurrency, conflicts, resource

precedence relations, non-determinism and system deadlocks. As a mathematical oal,
Petri net theory is used to define the state equaiions of a sysiem and o analyse iis

dynamic behaviour [Murata 89, David and Alla 92, Zurawski and Zhou 84].

There are three approaches for analysis of behavioural and structural properties of the
Petri net model: The coverability graph approach [2.3.3], the incidence matrix approach
[2.3.4] and the Petri net reduction approach [2.3.5].

2.3.1 Behavioural properties

The most important behavioural properties of a DEDS are reachability, houndedness,
liveness, deadlock states, quasi-liveness, home state, and reversibility [David and Alla 92,
Zurawski and Zhou 94, Desrochers and Al-Jaar 95]. It is important to noie that
hehavioural properties of a system depend on its initial conditions. Therefore, a sysiem
that is, say, live, under a particular initial condition is not necessarily so under another

initial condition.

Definition 2.6

A marking m, is said (0 he reachable from a marking i, iff ther

transitions that transforms meto m, [Pelerson &1, Murata 89].
from a marking me iff 3S:m[S > ., where § 18 a sequence of U‘ansiiium and a5 = m

o
¥

means that on is reachable from me by firing the sequence of ransitions, &




This property can be used to verify, for example, that the system can reach a desirahle

state, or that 1t will never reach a hazardous state, from its initial conditions.

Definition 2.7

A place is k-bounded if the number of tokens in that place never exceeds k in any of the
reachable markings of the Petri net [Peterson 81, Murata 89]. That is, a place p € P is k-
bounded iff Ik e N: m(p) <k, Vm e R(Z,m,) where R(Z,m,) is the set of markings of

the marked Petri net Z, reachable from initial marking m,.

A marked Petri net Z is k-bounded iff all its places are k-bounded. That 1s, Z 18 k-
bounded iff p e P isk-bounded, Vp e Z. Furthermore, Z is safe ifl it is 1-hounded.

["a Petri net is used to model storage buffers or production units that have finite capacity,
k, then the k-boundedness of a place representing a buffer or production unit ensures that

there will be no overflow [Murata 89].

Definition 2.8

Z is live if for any marking reachable from my, it is ultimaiely possible 1o lire any
transition of the net by progressing through some further liring sequence [Peierson 81,
Murata 89].

Liveness guarantees deadlock free operation. A transition 7 is said to be guasi-live if for
initial marking my, there is at least one firing sequence which contains 7 [David and

Alla 92].

Definition 2.9

A marking m, is a home state for an initial marking my, if for every reachable marking
there exists a sequence of transitions that transforms this marking into m, [David and Alla
92]. That is, m, is a home state for an initial marking my, if Vm, e R(Z,m,),
A8 m[S; > m,.

A Petri net is reversible if the home state is the initial marking [David and Alla 92]. That
is, Z is reversible iff m, e R(Z,m),Vme R(Z,m,).

Reversibility is an important property that means that the system will finally return 10 i

initial state from any reachable state. This property is directly related 1o ithe automaiic
error recovery problem [Narahari and Viswanadham 85, Zhou and DiCesare Y3].

£



2.3.2 Structural Properties
Structural properties of a Petri net, unlike behavioural properties, are independent of the
imtal marking. The following structural properties are of interest:

Definition 2.10

A marked Petri net, Z, is structurally bounded if it is bounded [Definition 2.7] for any
[nite initial marking [Desrochers and Al-Jaar 95, Murata 89].

Definition 2.11

Z1s structurally live if it is live [Definition 2.8] for any finite initial marking [Desrochers
and Al-Jaar 95, Murata 89].
Definition 2.12

A trap is a set of places such thai every transition that inpuis from one of these places also
outputs to one of these places. So, once a place in a trap has a token, there will always he
a token in at least one of the places in the trap [David and Alla 92, Desrochers and Al-Taar
95].

Definition 2.13
A siphon is a set of places such that every transition that outputs to one of these places
also inputs from one of these places. This means that once all places in a siphon have no
token, there will never be a token in any one of the places in the siphon [David and Alla
92, Valette 95].

To illustrate the significance of siphon structures in Petri net models, consider the siphon
structure, comprising the set of places {pZ, p3, p12, p13, p22, p23}, illustrated in Fig. 2.9:
If all the places are empty, none of the transitions may be fired because all of them have
at least one input place belonging to the net. Therefore, once empty, no sequence of
firing of transitions could possibly re-introduce a token into the siphon resulting in

deadlock.

This situation is reachable if it is possible to empty the siphon by firing transitions ta and
te respectively. Therefore the liveness of Petri nets that contain siphon siructures is
dependent on the initial marking and on whether there can be a situation where the siphon

15 empued.
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Fig. 2.9 Example of a siphon [Valetie 95]

Definition 2.14
Parallel Mutual Exclusion (PME) places [Zhou and DiCesare 91] are used (0 mode]
exclusive-use shared resources in a DEDS. In order to define a PME, places are

categorised as:

e The set of A-places, P,, representing processes
«  The set of B-places, Py, representing resources (1-bounded)
¢ The set of C-Places, P, representing buffers (n-bounded)

An elementary path [Berge 62], EP, is a sequence of nodes
X1, X2, Xsn... Xo,n = Lsuch that 3 an arc (xi, % )Vi€ Ny, where N is the sel of natural
numbers {1, 2, ...,n-1}. An A-path between nodes x and y is an elementary path hetween
node x and node y, EP(x,y), each of whose nodes, except for x and y is either an A-place

Ot 4 transition.

Then, given a marked Peui net, Z = (P, T.1,0, my), P=P, UP, UP., a4 k-parallel "

mutual exclusion (Fig. 2.10) is defined as a k-PME=(pg.D) such that:

I P € Py with m,(pg) =1, D is a set of  transition  pairs,

] S 5 iyl 3 v Figt e
D= {(7/,;"/;1 XU e (A )jk 21, satisfying the following canditions:

A7 ipter 2



(1) All transitions in D must be different, except for r,and1,, therefore,
il €T, 1, # Tj» Ty # 1,5 and 1, s 1, when i # j,Vi,j e N, where N, =/1,2,....k )

(h) There is one input arc from py 1o each 7, and one output arc from 7,, 10 pg for
1<i<k but no other arcs related to pr. therefore,
I(pg 1) = O(pg.t,)) =1, Wpg.r,) = O(pg.t,;) =0 when s, #1,,VieN;
I(pg.t,)=0(pg.1,)=0 whent, € T, UT,, where
T,={r.ieNJ}, and T, = {hieN};

(¢) Any elementary path between r,, and a C-place has to contain 1, for [<i<Fk,
therefore, VieN,,peP, if pe EC(t,).1, € EC(1,.);

(d) Any elementary circuit including 7, the shared resource place pg , but no other
B-places or C-places, must include 1, Tor 1=i<k,therelore,

VEC(r,,), ifECt, ) N(PyuP.) = {px}, 1,; € BC(1,;); and

(e) Each mransition on an elementary path between f,; and 7, should be on one A-path

between 1, and 1, for 1<i<k therefore, if 1€ EPG,.7,), 7 i8 on an A-pith

EP(Tniszbi)
2. If a resource place is not initially marked, then its output transition is never
enabled. That is, the output transitions of p' are never enabled

Vp' e P, UP.,me R(Z,my) if the initial marking m,(p') =0 and

s if pePy
mo(p) = >1, ifpePyUPc—{p'}

3. Given a marked Peui net, Z, if p, # p,, and if JEP(p,,1) and EP(p,.1) are A-paths,

then their first intersection occurs at a transition.

4. Tokens for different processes cannot be mixed together, that is, there is no A-paih

hetween | and t, VreT,,reT.. Where T, and T, are the sets of transitions

associated with processes a and b respectively.

5. Each process must have an equal opportunity 1o compele for and acquire the resouree.
Therefore, T, and a sequence of fireable ransitions g thai containg no iransition in

T, . such that me[ g > enables 1 VreT..

AR Chipter




6. The shared resour. ;
ource must be eventually released from the process, therefore, Vm,, if

t,; fires at me R(Z,m i '
o e e (Z,my), then VieT if BP(1,,1)#0 andr, & EP(r,.1), 1 can be
nabled an ired ini

. fireable ¢ containing no t» 3hy, such that m[r,g;h; > enables 7, if
m(pg)=1andr isenabled, then r, ¢ T,.

Zhou and DiCesare [93] studied the conditions under which Petri nets containing PME
structures are live, bounded and reversible.

(a) (b)
Fig. 2.10 (a) A general case 1-PME, (b) A general case 2-PME

Definition 2.15
A sequential mutual exclusion (SME) [Zhou and DiCesare 93] is a mutual exclusion
where two transitions, say, t,, and 7,, can be enabled simultaneously only after 1, fires

from some initial marking before 7,,. SMEs are used to model exclusive-use shared

resources that are used in more than one stage of a sequential process.

Given a marked Petri net Z = (P, T, I, O, my), P=P, P, WP, a sequential mutual

exclusion (SME) exists iff

I. A(pe.D) such that D = D' uD U UD L2 2k = D]
D= {(rj,],r,’)} ); eN, } satisfying:
() (pE,D’) forms a k-PME if all arcs of pg related 1o transitions in D~ e
deleted, therefore, (/),;»‘Di) isa k-PMEin Zi= (B, T, I, O, my) that results from Z
with 1(pp.t) = O(pp.t) =0, Vi€ D= D5
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. Each subnet Z has the property that once the transition .

(b) For each transition t in a PME with a higher index, there is a transition t' in a PME
with a lower index such that an A-Path exists between t and t', therefore,
VieT,1<i<j,3re T such that the A - path EP(1',t) # 0 where
T,={n.veN,}

(¢) There is no A-path from D™ o D', therefore, if an A-path
EP(1,.1,)#0forueN,,ve N, then i<j; and

(d) Any elementary path containing 1, and ), have ), when i<j, therefore, if
EP(r,,.5.)#0forueN_,ve Ny, i<i, then £ € EP(,1h).

. There exist sequential relations among different groups of processes, therefore, Vin,,

g, and ieN, |, if my[g, > enables 1], Vje N, | then
Jue N, 3#(g.1,) =#(g.1,) 2 1. Where #(g.7,) is the number of times 7, appears
in g.

! in D' fires al marking m . a
sequence of transitions can be found to enahle the other transition 1, from any
marking reachable from m in Z. Hence, Ym,, if 1, fires al me R(Z,ma). then
¥fireable g containing no 1;,,3h; containing no tansition in 7;, I<j<i if i1,

such that m[t..g;h; > enables t,. in Z;.

The Petri net in Fig. 2.11 is an example of an SME in which transitions t1 and (3 are both

enabled but cannot fire simultaneously.

-4(- hinipier 4



2.3.3  The Coverahility Graph

A reachability tree is a graph of all possible markings that the Petri net may reach starting
off from a specific initial marking. The nodes of this graph represent the marking of the
Petri net whilst the arcs represent the firing of a transition. The reachability tree is
actually the state-transition diagram equivalent of the Petri net. As with state automata
[2.2.1], the reachability tree suffers from the state explosion phenomenon [Murata 89],
when it continues to grow indefinitely because of unbounded or cyclic behaviour of the

system.

To overcome this problem, a coverability graph is used. This is obtained by merging
nodes which correspond to the same marking and therefore contains a finite number of
nodes [David and Alla 92]. In the case of unbounded places, the marking in the

coverability graph is represented by an '@, which can be interpreted as ‘infinity’.
P2
i W,

Fig. 2.12 An unbound Petri net
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Fig. 2.13 An infinite reachability tree

Consider the unbound Petri net in Fig. 2.12. The reachability tree (Fig. 2.13) is infinitely
large, whereas the coverability graph (Fig. 2.14) consists of only two nodes, {1,0} and
{l.o}, where @ ={1,2, ..., o=J.

— 1] -
D

.

Fig. 2.14 A coverability graph

Using a coverability graph it is possible 1o analyse the Peiri net for behavioural properiics
hy means of an exhaustive search. However, (or an unbounded Petri net, liveness and
reachability cannot be verified from the coverability iree alone due (o a loss of
information brought about by the use of the ‘@ notation [David and Alla 92].

2.3.4 The incidence matrix

An n-place, m-transition Petri net graph can be described by means of an 7 x'm incidence
matrix [Murata 89], A, and a marking vector m. The incidence mairix describes the
interconnection between places and transitions of the Petri net and the marking vector

indicates the places that are initially marked. These are defined as:

Definition 2.16
0: if there is no arc linking place 7 and transition j

Ali, jl=1~1; if placeiis an input place 0 transition j
1. if place i is an outpul place from transition j

0: if there are no tokens in place i
mii] = 1: i there is a token in place i

peil

T.
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The mcidence matrix can be used (o generate both the coverability graph and P- and T-

invariants, which in turn can be used to verify certain structural properties such as
conservative components and repetitive components [David and Alla 92].

2.34.1 Definition of P- and T- invariants

For an ordinary Petri net with incidence matrix A

Definition 2.17
A P-invariant is an (nx1) non-negative integer vector x, satisfying the equation
’
x'A =0, where n=#(P)

The non-zero elements of the vector x represents the set of places in which the toral
number of tokens is constant.

Definition 2.18
A T-invariant is an (mx1) non-negative integer vector y satisfying the eguation
Ay =0, where m =#(T)

The non-zero elements of the vector y represent a sei of transitions which, il fired in 4
particular order, bring the net to the same marking that it was in prior o firing the

transitions.

From the P- and T-invariants of a Petri net, the following properties can be proved about

the dynamic behaviour of a DEDS:

Boundedness If all the places in a pure Petri net (i.e. a net that does not contain self-
loops) are included in its set of P-invariants, and the initial marking, my, is bounded, then

the net is bounded [Desrochers and Al-Jaar 95].

Liveness and boundedness A pure Petri net is live and bounded if all the places are
included in the P-invariants, all the P-invariants are marked and none of the siphon

structures (if any) are cleared [Desrochers and Al-Jaar 95].

Conservative components The set of places in a P-invariant is referred (o us 4
ponent because the number of tokens marking this set of places is ¢

conservative com
constant [Murata 89]. Thus P-invarianis can be used to prove mutual exclusion ol siaies

| David and Alla 92], which is often required to prove safety properties af a sysiem.
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Repetitive components The set of transitions in a T-Invariant is referred to as a

repeliive component since, by firing the transitions in a T-invariant, starting {rom an

initial marking, o, , the resultant marking will be m, [David and Alla 92).

Solution of the equations in definitions 2.17 and 2.18 involves solving a set of
homogeneous simultaneous equations and if m=n, then the equations can be solved by

using Cramer's rule. Solving these equations present the following problems:

(1) If the determinant of the incidence matrix, A, det(A) # 0 then there is only one

solution, with all the unknowns equal to zero. This is often called the trivial solution.

(i) If det(A)=0, then there will be infinitely many solutions other than the (rivial
solution, which means that at least one of the equations can be ohtained from the
others.

(iii)  If m#n, the determinant of matrix A is undefined. In this case, it m=>n there are an
infinite number of solutions and if m<n, there are no solutions at all.

2.3.4.2 Graphical Solution of P-invarianis
To simplify the procedure of obtaining the P-invariants, David and Alla [92] present
araphical method that consists of two reduction rules that preserve the P-invariants of the

Petri net.

2.3.4.2.1 Ry - Self loop transition This reduction rule removes self loop
transitions whilst preserving the P-invariants of the Petri net. That is, transitions that are
connected to a place which is both an input and an output place. Consider the Petri net in

Fig. 2.15 (a). It can be reduced by:

(1) Suppressing arcs forming a self-loop (Fig. 2.15 (b))
(11) Suppressing a transition if it is isolated (Fig. 2.15 (¢))
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Fig. 2.15 Reduction Ry (self-loop transition)

2.3.4.2.2 Rp - Pure transition  This reduction rule operales on pure transitions. A
Transition 7', is pure if it has at least one input and one output. The reduction, illusirated

in Fig. 2.16, is done by performing the following:

[ T, is suppressed

1]

Place P+ P, is associated with every pair of places (P, P,) such that Pe" T, and
P eT’, where °T;, 77 represent the set of input and output places of 7,
respectively.  The number of tokens in P+ P, = sum of tokens which were
initially in (£, P,).

3. The input transitions of P, + P, are the input transitions of P, and P, except for
T,. The output transitions of P,+ P, are the output transitions of P, and P,

except 7.

(h)

Fig. 2.16 Reduciion Rpy (pure transition)
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The reduction r i ,
rules described above can be extended to and expressed as an efficient

algori arti ; c:
‘ gorithm [M‘axunez and Silva 82] to find all the invariants of a Petri net. These are
implemented in Chapier 5 of this Thesis.

Usm.g a combination of these reductions it is possible {0 obtain the invariants of ordinary
Petri nets. This is illustraied in Fig, 2.17. Starting with a 5-place, 4-transition Petri ‘nc‘:L
we apply reduction rule Ry three times and Ry once, resulting in a 2-place Petri net from
which we can deduce that P1+P2+P4 = | and P1+P3+P5 = 2. This means that the number
of tokens in the loop P1,P2,P4 is equal to one and that the number of tokens in the loap
P1, P3 and P5 is equal 1o two at all times.

P2 (j p3 (0

l
/‘Z\
P4 L\ ps ()
\ i |
\ / Rb \ Rb

e

P1+P2+P4 P1+P3+P5
P1+P2+P4 P1+P3+P5

Fig. 2.17 Calculation of P-Invariants [David and Alla 92]

2.3.5 Reduction rules
Peiri net models of large systems tend 1o hecome very complex.  Generating the
b and calculating P- and T- invariants using matrix techniques can
e to compute manually.

coverahility grap
hecome very time consuming and impossibl
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For this reason, several researchers, including Hack [72], Bertholet [86], Lee-Kwang er

al. [87], Murata and Komoda [87] have devised reduction rules that, whilst reducing the

number of places and transitions in the Petri net, preserve certain properties of the original
Pewri net. These can then be verified by using coverability graph analysis on the reduced
The following sections describe reduction rules that preserve liveness, quasi-
liveness, home-state, conservativeness and boundedness.

Petr1 net.

2.3.5.1 R1 - Substitution of a place

A place P, can be substituted (suppressed) if:

L The output transitions of P. have no input places other than P.

2. Place P, is pure (P, is pure if there is no transition that is both an input

and an output transition to P,).

3. Al least one output transition is not a sink transition (a sink transition
is one that has no output places).

Substitution is done by removing the place and its output transition as shown in Fig. 2,184
and Fig. 2.18b below. In the case that the place to be substituied is tokenised, then fhe

token is placed in the place following the output place following the autput transition.

P

T

Py RI
T, -
Py

(a)

Fig. 2.18 Reduction Rule R1 [David and Alla 92]

In the case that the place to be substituted has more than one input transition or more than
one oulpul transition, then, substitution is done by removing the place and re-structuring
the links specified by the directed arcs connected to this place as shown in Fig. 2.19 and

Fig. 2.20.



T .

(a) o :

i
(b) k1 T
> [l
Py " ()
t i

Fig. 2.19 Substitution of a 2-input or 2-autput place [David and Alla 92]

2.3.5.2 R - Neutral Transition
A wansition 7 is neutral iff “7; =7T7. A neuiral transition and iis interconnecting arcs
can be suppressed iff a transition T, # T, exists such that post(p;,t,) 2 pre(p;.t;) lor

every place p,e°T; [David and Alla 92]. This is illustrated in Fig. 2.21.

(a) (b)

Fig. 2.20 Substitution of a place with mare than one input and output [David and
g. 2.2 \
Alla 92]
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2.3.53 R3 - Identical transition
Transitions T, and T; are identical iff “7;="T; and T7 =T7. In such a case ane of the

transitions together with its corresponding arcs can be suppressed. This is illustrated in
Fig. 2.22 below.

R3

Fig. 2.22 Reduction rule R3 [David and Alla 92]

2.3.6 Petri net extensions

In the following sections, Petri net extensions that have been developed to suit particular

applications relevant to this research are described.

2.3.6.1 Timed Petri nets

To he able to analyse how a DEDS evolves in time, it is essential to include the concept of
lime within the Petri net model. Timed Petri nets arc an exiension of Peiri nets that are

able to incorporate time within the model. There are two conventions related o timed

Petri nets, one has a ime delay associated with the places in the Petri net and the other has

time delay associated with the ransitions.  Sifakis [78] showed that they can he

functionally equivalent, however, hoth conventions have been widely used.
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Dubois and Stecke [83] were the first to use Petri nets 1o analyse control problems of

production systems by using timed transition Petri nets. Barad and Sipper [88] used timed
place Petri nets to model a FMS. A timed place Petri net has two main advantages over i
timed transition Petri net, namely: (a) it preserves the usual Petri net convention of
instantaneous events; (b) it is less ambiguous, since the marking of the Petri net during the

ume that a process is in execution, represents the current state of the system.

A timed place Petri net is defined as a six-tuple, Zymeg = (P, T, I, O, 8, m) where P, T 1,
O are as previously defined for an ordinary Petri net and 8: P — R* is a de]ay veclor,

whose ith element represents the time associated with the ith place. A transition t € T is
enabled iff Vp e I(t), m(p) > 0 foratime, §=2 o(p).

2.3.6.2 Controlled Peiri nets
Krogh [87] developed controlled Peiri nets (CPNs) for the solution of a class of control
pmhlmm as described in [Holloway and Krogh 90]. A CPN is a five-tuple
c={P.T.6.x.B}, where P is the set of places, T is the set of iransitions,
/; =(PxT)U(TxP) is the set of direcled arcs connecting places and transitions, y is the
finite set of control places, represented by empty squares and [ is the set of
associaling control places with transitions. A place p e P or control place c e y is sa uj 1o
be an input to a transition te T if (p,t)e & or (c,t)e B, respectively. The set of places
or control places which are inputs to a transition t& T is denoted by @t or . The set of
controlled transitions T, < T is defined as the set of transitions t € T for which Vr # @&
The set of transitions that are not in T, is called the set of uncontrolled transitions. A
control u:y — {0,1} assigns a binary token count to each control place. A transition
LeT is said to be state enabled under a marking m if ¥pe™ 7, m(p)=1. A controlled
transition t e T, is said to be control enabled under a control u if u(c) =1,Vee'' s
The control place ¢ € y is said to be disabling if u(c)=0, and is said to be enabling if
u(c)=1. A controlled transition te T is enabled if it is both state enabled and control

enabled.

2.3.6.3 High level Peiri nets
High level Petri nets, including predicate/transition nets [Genrich and Lanienbach & H

coloured Petri nets [Jensen 81] and nets with individual tokens Rus:g 82] were

developed 1o model complex DEDS. They can be considered to he a structurally folded
version of a regnlar Peuri net and produce a smaller and mare manageahle graphicl
rcprescmmmn for very complex systems [Murata 8 89]. To illustrate the transition firing
rule for high level Petri nets, consider the nel illustrated in Fig. 2.23 (a). It consists of ane
transition, four p}aws and four labelled arcs. The arc label dictates how many und which

Kinds of coloured tokens will he removed from or added 1o a place on firing of the
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relevant transition. For example, w

hen the transition in the net of Fig. 2.23 (a) fires, P,
loses two tokens of the same colour, x, P, |

2 loses two tokens of different colours, <x,y> and

<y,z>, Py gets one token of the colour <x,z> and P4 gets one token of the colour e (a

constant). This is illustrated in Fig. 2.23 (b).

P3

<X, Z> J

/ \
/<1b <X V> 4 <Y, > T
<b, > P4
<d, &

(a)

IO
\:\))\\\ ] <%, Z= »
qujapaq > (/

Fig. 2.23 Mustrating the firing rule for high level Petri nets

2.3.6.4 Continuous Petri nets

Timed Petri nets [2.3.6.1] are well suited for the quantitative evolution of a system.
However, in the case where the times associated with places differ greatly in length, then,
the number of reachable states explodes [Alla 95]. This limitation can be overcome by
the use of timed continuous Petri nets [David and Alla 90], which are presented

informally, below.

In a continuous Petri net, the marking of a place is a real number and, at each time, an
associated firing speed v(t) is associated with each transition. This transition is
continuously fired, which means that between the instant t and 1+81, a quantity of
marking, v8t is removed from the input place and added to the output place of this
(ransition. Continuous places are represented as two concentric circles and transitions are
represented as rectangles. To illustrate t the application of continuous Peiri nets, consider
the simple production line, consisting of two buffers and a machine, illustrated in Fig.
2.24 (a). Tt is represented by a timed transition Peiri net as shown in Fig. 2.24 (b). In this

model the delay. d=0.5, represents the processing time ol Machine 1. the availability of

which is represented by place Pa.
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j_uffer] Machine 1 Buffer 2
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(a) (b) (©

Fig. 2.24 Continuous Petri nets

The discrete event model (Fig. 2.24 (b)) is transformed into a continuous Petri net in the
following way: The integer number of tokens in Py is replaced by a real number and a
firing speed, v=1/d=2, is associated with transition Ty. The evolution of the continnous
Petri net is as described above.

2.3.6.5 Hybrid Pefri nets

As defined in Section 1.2, DEDSs evolve from one stale (o the nexi via instantaneons
events. The staies that a DEDS may be in could be of a continuous nature, such as, "drum
is rotating”. Such systems are commonly referred to as hybrid systems. Therelore, Petri
nets have been extended to combine the concepts of Petri nets and continuous Petri nets to
form hybrid Petri nets [Le Bail er al. 91]. Consider the example in Fig. 2.25, which
represents a system consisting of two tanks (continuous places Py and P;) and a valve
(continuous transition T7) which can be open (P3 is marked) or closed (P4 is marked).
When Pz is marked and Tank 1 is not empty, transition Ty fires continuously at a speed
that represents the fluid flow. When the marking of the continuous place P; is equal to
85.6, indicating that Tank 2 is full, then T3 is enabled and fires, thus closing the valve.
This example shows how the interaction of the continuous and discrete event parts of a

hybrid system can be modelled on a hybrid Petri net.
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Fig. 2.25 Hybrid Petri neis

2.4 Conclusion

This Chapter discussed technigues for modelling DEDSs and selecied Petri net theory as
the modelling technique that is most suited to the research presented in this Thesis. i

described Petri net theory for analysis of structural and behavioural properties of DEDSS
by means of three main techniques, including coverability graph analysis, incidence

matrix analysis and analysis by means of reduction rules.
The following Chapter will investigate currently available Petri net synthesis technigues

that are used for modelling large and complex DEDSs and will introduce a novel object
oriented methodology for Petri net synthesis based on OMT [Rumbaugh 91].
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Chapter 3

Synthesis of DEDS models

3.1 Introduction

Modelling practical DEDSs such as independently-driven, multi-axis, high-speed
industrial machines or complex manufacturing systems, usually results in a Petri net with
a large number of places and transitions [Desrochers and Al-Taar 95]. This implies a
lurge state space and incidence matrix, which makes it computationally difficult to check
for Tiveness, boundedness and reversibility using the conventional Peiri net analysis
techniques described in Chapter 2. To overcome this problem, design fechnigues have
been developed to synthesise well behaved Petri net models of complex sysiems. These
include bottom up [Agerwala and Choed-Amphai 78], top down [Valetie 79], and hyhrid
[Zhou and DiCesare 93] Petri net synthesis technigues.

Since a Petri net model is an abstract representation of the system, there is a ‘semantic
gap' [Cooling 91, Fraser et al. 91] between the informal specification of a system and its
model. Researchers including Yourdon and Constantine [79], DeMarco [78], Jackson
[83], Ward and Mellor [85] have developed structured methods to bridge the 'semantic
gap' between the informal specification of a system and its model. However, these
methods concentrate on functional abstraction, and have produced incomplete
specifications and designs [Firesmith, 93]. In order to facilitate the design of complex
systems, produce more understandable designs and specifications, facilitate the transition
between design and implementation and enable software re-use, several researchers
including Booch [91], Rumbaugh er al. [91], Shlaer and Mellor [92], Firesmith [93] have
advocated a paradigm shift towards object oriented (O0) iechniques.

This chapter reviews Petri net synthesis techniques and object modelling technique
(OMT) [Rumbaugh et. al 91], a well established object oriented methodology. 1t presents
2 modification to OMT to facilitate the design of complex DEDSs and 1o improve the
representation and analysis of the dynamic model of the system. This madification
enables the construction of a complete PEDS model by following u siep hy step
approach.
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3.2 Bottom up Petri net synthesis

In botom up synthesis one identifies the low-level capabilities the system needs to have,
then identifies the common aspects of low level components (sub-systems) and groups
them to form a larger sub-system. This process is then repeated on the next level up until

the system is completely described.

In bottom up Petri net synthesis techniques [Agerwala and Choed-Amphai 78, Narahari
and Viswanadham 85, Krogh and Beck 86], sub-systems are modelled separately. The
sub-system models are normally small and easy to verify. At each step of the synthesis
procedure, the interactions between the sub-systems are considered and represented by
merging common places/transitions of the sub-system models, resulting in a larger sub-
system. Analysis for the required properties is done after each siep so that final analysis
is simplified.

Agerwala and Choed-Amphai [78] presented a set of synthesis rules which allowed the
bottom up construction of large Petri nets, hased on smaller sub-nets that shared o
common place. At each synthesis step, sub-nets are merged in such a way that a sel of
places are merged into a new place. This is called a one-way merge, and is defined

helow:

For an unmarked Petri net, Z=(P,T,1,0), select a set of places to be merged P,, < P, such
that:
1. If p; and p; are input places to the same transition then they cannot he
merged. Therefore Vp,,p, € P, (I(pi1) =1 AI(p, 1) =1)= p; = p,.

o

If p; and p; are output places to the same transition then they cannot he
merged. Therefore Vp;,p; € P, (O(pit) = 1A O(pj,t)=1) = p, = p,.

Then construct the net Z'=(P.,T".I',0", such that

1. T=T

2. P'=(P-P,)u{p) wherepeP

3. ' and O are ohtained by replacing every occurrence of each p; e P, in |
and O by p

A one-way merge is illustrated in Fig. 3.1 where P3 and P6 are merged into P3.

&

A5 Cliipier 3




P1 P6 P4
ﬁf\ Q
{ ™
|
P2 y PS5
~
/
N P3 i J/
Merge P3, P6
into P3

Fig. 3.1 Example of a one-way merge [Jeng and DiCesare 93|

Agerwala and Choed-Amphai [78] presented the following theorem which shows that
after every one-way merge, the P-invariants of the resultant net can be derived from the

P-invariants of the sub-nets.

Theorem '
Consider a Petri net Z=(P,T,1,0) on which the one-way merge operation is applied,
resulting in the Petri net Z'=(P\,T.1,0"), all the P-invariants [2.3.4.1] of Z', PI'. are

obtained from the P-invariants of Z, P1, as follows:
PI'c P is a P-invariant of Z' iff 3PI on Z such that:

Lif P, < PI.then PI'=(PI-P,)u{p}
2.if P, MPI =@, then PT' =PI
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Consider the Petri net, Z, (Fig. 3.1) consisting of places {P1, P2, P3, P4, PS5, P6}. The P-
mvariant supports of Z, PI = ({P1.P2}, {P4,P5}). Z'is formed by merging P3 and P6 into
P3, therefore Py, = {P3, P6}, satisfying the condition: P, PI=@. Then the P-invarian
supports of Z', PI' = PI = ({PI, P2} {P4,P5}). This can be verified by solving the

cquations of Definition 2.17 in [2.3.4.1]. Tn this particular case, since not all the places

are included in the set of P-invariant supports, one can not use the invariant method 1o
verily liveness or boundedness.

Narahari and Viswanadham [85] presented a systematic bottom up approach (o synthesise
the Pewri net model of a FMS. They obtained the final model by representing every
machine operation by a separate Petri net and then combining these nets hy Slmring
places. They extended the theorems of Agerwala and Choed-Amphai [78] 1o verify o

existence/absence of deadlock (liveness), conservativeness and boundedness after cach

synthesis step.

Krogh and Beck [86], proposed a bottom up synthesis approach for synthesising live and
[-hounded Petri nets. Their method, unlike the botiom up approaches of Agerwala and
Choed-Amphai [78] and Narahari and Viswanadham [85], is based upon sharing simple
clementary paths [Berge 62] in which no place or transition appears more than once.
They defined two types of simple elementary paths:

I A solitary transition path (STP), which is a simple elementary path terminated at
hoth ends by a place, for which each transition in the path has only one input and one
output place.

2. A solitary place path (SPP), which is a simple elementary path terminated at both
ends by a transition, for which each place in the path is an input place for only one

transition and an output place for only one transition.

To illustrate the synthesis procedure, consider the three simple elementary circuits (SECs)
in Fig. 3.2, where an SEC is a Petri net of finite length with coincident initial and final
places. First (a) and (c) are combined along a common STP {Pl., t1, P2}, then the
resultant net is combined with (b) along a common SPP {12, P3, 13}, resulting in the Pefri
net (d). The Peiri net obtained in this fashion will be live and I-bounded if there is
exactly one token in each of the P-Invarianis of the sysiem (a standard invariant analysis
ult [David and Alla 92)). Krogh and Beck [86] show that after cach syni Aham step. the

P-invariants of the combined net can he easily calculated.
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(a)
PS 2 P3 3 P66
> Q“”F*Q‘*ﬁ*‘*@ﬂ
. D,
(b)
P D
EAS48,
(¢)

(d)
Fig. 3.2 (a)-(c) Three SECs, (d) Three SEC's combined along an STP and an SPP
{Jeng and DiCesare 93]

The bottom up Petri net synthesis techniques described above rely on the invariant
method to analyse the properties of the combined net after each synthesis step. The
disadvantage of using invariant ana.lysis is that P-invarianis do not convey compleie
information about the Petri net, making it difficult to analyse the net for properties such
as liveness and reversibility. Except for the method of Krogh and Beck [86], the methods

do not guarantee that the resultant net will preserve impariant properties.

Bottom up design has the advantage of describing the system in ierms of sub-sysiems,
which have real-life correspondences such as robots and machines.  However, it is
difficult 1o use exclusively since most people are better at hreaking down a furge coneep

into smaller ones [McConnell 93].
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Also, 1t 1s not possible to build a system solely by using building blocks, without actually
knowing what the final product will look like. Therefore it can only be used in
conjunction with top down design which shall be described in the following section.

3.3  Top down Petri net synthesis

Top down design [Wirth, 71] is a technique for design of a system by moving from a
general statement of what the system does to detailed statements about specific tasks that
are performed. This approach is often referred to as a "divide and conquer” approach. In
top down Peuri net synthesis, one starts off with a simple Peiri net, showing the top-level
hehaviour of the sysiem. Then, transitions and places are replaced by a more detailed
subnet in a step-by-step fashion, so that a large Peiri net can he synthesised. This method
is also referred to as stepwise refinement of transitions and places [Valetie 79, Suzuki and
Murata 82, 83]. Valette [79] showed that using well formed hlocks [3.3.1] fo replace i
placc or ransition in a safe, live and reversible Petri net preserves these properties in the
larger net.

Top down Petri net synthesis has the limitation, however, of not gnaranieging the correct
hehaviour of a concurrent system if shared resources are involved. The reason is that in
these systems the interactions among the sub-systems are coupled throughout all levels of
refinement, which makes it difficult to specify the system using the top down approach
[Jeng and DiCesare 93]. This has led to the development of a hybrid synthesis approach

[Zhou and DiCesare 93], which overcomes this deficiency.

3.3.1 Well formed blocks

A Petri net with one initial transition labelled ., and one final transition labelled 7, is
called a block. Consider the Petrinet Z' = (P, T, 1, O', m,") (Fig. 3.3). It is obtained fram
a hlock Z = (P, T, 1, O, m,), by adding a place p,, called an idle place, such that:

»  The only output transition of p, 18 7.,

°  The only input transition of p, 18 75,

s m)=m, +{p,l

Then, the following definitions can he given:
o The block Z is k-hounded iff the associated Peiri net Z' is k-hounded,

¢ The hlock Z is Tive iff the associated Petri net Z'is live.
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A block Z1s said 10 be well formed [Valette 79] iff the associated Petri net Z' is such that:

e Z'ishve

¢ m, 1s the only marking in the set of reachable markings from m," such that the idle

place is not empty

 The only transition enabled by m,'is the initial transition, Fini -
Block

o

S tinj

Idle place

Fig. 3.3 Well formed block with idle place
Examples of well formed blocks are illusiraied in Fig. 3.4 helow.

. o -
EEEE (inj B () T lini ini

& fin & (fin %

(a) (b) (©) (d)

lfin tfin

Fig. 3.4 Well formed blocks: (a) "Sequence” block; (b) "if-then-else” hlack; (¢)
"do-while" block; (d) "fork-join" block [Valetie 79]

3.4 Hybrid Petri net synthesis

Hyhrid Petri net synthesis [Zhou and DiCesare 93] uses top down design followed hy 4
hottom up approach. This synthesis approach, although very similar to top down design,

suaraniees o safe. live and reversible Petri net model when shared resources are involved,
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This 1s achieved by modelling shared resources as parallel mutual exclusion (PME) places
| Defn. 2.14] and sequential mutual exclusion (SME) places [Defn. 2.15]. Hybrid Petri net
synthesis of Zhou and DiCesare [93] is summarised below:

« From knowledge of the system, an abstract Petri net model is formulated to describe
the important sysiem interactions. This initial net should have all the desirable
properties required for the final net.

*  Stepwise refinement is used 1o add the required amount of detail. Each successive
refinement will retain the desirable properties of the initial net if well-formed hlocks
[Valette 79] are used.

¢ Resource places and the shared resource places are added in the form of PME [Deln.
2.14] and SME [Defn. 2.15] places as required.

This approach inherits the advantages and disadvantages of top down design. [ts main
weakness 18 that formulating the top function of a system, which is the first siep of the
hybrid synthesis technique, is difficult in realistically sized systems.  Another
disadvantage is that many sysiems are not naturally hierarchical, so they are difficuli to
decompose and represent by means of well formed blocks. The most serious weakness is
that this technique requires a system to be described by a single Petri net at the top, which

1s a dubious requirement for many modern event-driven systems [McConnell 93].

3.5 Bridging the semantic gap

The previous sections described methods for synthesis of well behaved Petri nets. Using
these methods one can synthesise Petri nets which would exhibit the required properties
ol liveness, boundedness and reversibility, therefore not requiring time consuming
analysis. However, since a Pelri net is an abstract representation of the system, there is o
semantic gap (defined in [Cooling 91, Fraser er al. 91]) between the informal
specification of a system and its model. Thus it is possible for information 1o he lost in
the process of translation of the informal requirements into a Petri net representation.

When synthesising Petri net models of complex industrial sysiems or safety critical
systems. designers need 1o feel confident that their model accurately represents the
system.  To help bridge the semantic gap, researchers (ncluding Yourdon and
Constantine |79], DeMarco [78], Jackson [83], Ward and Mellar [RS]. Yaurdan [K9])

have developed structured methods . However, according 10 Firesmith [93]. sinee fhese
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methodologies concentrate mainly on functional abstraction they have produced
mcomplete specifications and designs because, as noted by Seidewitz [89] "Functional
analysis and specification techniques actually sacrifice closeness to the problem domain
m order to allow a smooth transition to functional design methods". Functional
decomposition methods have very limited software re-use [Firesmith 93] and, since
changes mn requirements are mostly related to functions rather than objects, small changes
Lo functional decomposition designs may have a large ripple effect [Rumbaugh er al.. 91].
To enable the design of more complex software systems, to enable re-use of designs, (0
produce more understandable designs and specifications, researchers (including Booch
[80, 91], Meyer [88], Shlaer and Mellor [88], Coad and Yourdon [90], JTacohsen [87].
Rumbaugh er al. [91] and Firesmith [93]) have advocated a paradigm shift towards ohject

oriented methodologies.

Booch [86] described the fundamental concepts of ohject oriented software development
and explained that object oriented development is fundamentally different from functional
approaches to design. Ohject oriented software decamposition more closely models a
person’s perception of reality, whilst functional decomposition is only achieved through g
transformation of the problem space. Therefore, a design that is developed using an
object oriented engineering approach is more understandable, extensible and
maintainable. In OO techniques [Booch 86], one refers (o classes of objects. A class of
objects 1s defined as a collection of attributes and operations that are able to manipulate
the values of these attributes. To enable re-use of designs, one can define a class, starting
off from another class, by means of inheritance. The inherited class (subclass) contains
all the attributes and operations of the superclass together with additional atributes and

operations.

An object is an instance of a class and the values of the object's attributes can only be
changed by executing the operations defined in the class it belongs to. Encapsulation of
properties and operations within an object makes it possible to treat the object as a 'hlack
hox' and prevents small changes to an object from having a large ripple effect on the

whole system.

Ohject-Oriented Analysis (OOA) strives to understand and model a particular problem
from a user-oriented or expert's perspective, in ferms of ohjects and classes, with un
emphasis on modelling the real-world. The product, or resultant model, of OOA specilies
4 complete system, a complete set of requirements and an external inferfuce of the sysiem
(0 he buill. These are often obtained from a domain model (e.g. FUSTON, [Tacohsen 87,

scenarios [Rumbaugh er al. 911, or use-cases [Tacohsen 87].




3.6 Comparison of OO methodologies

Rumbaugh er al. [91] defined a software engineering methodology as a process for the
organised production of software, using a collection of techniques and notational
conventions. A methodology is usually presented as a series of steps, with techniques and
notation associated with each step. The more established OO methodologies, are those of
Booch [86], Shlaer and Mellor [88] and Rumbaugh er al. [91] and are briefly introduced

helow.

Booch [91] extended previous Ada-oriented work to the entire OO design area. Booch's
methodology includes models to describe the object, dynamic and functional aspects of a
software system. Shlaer and Mellor [88] described 4 complete methodology for ohject-
oriented analysis which breaks down analysis into three phases: Static modelling of
objects, dynamic modelling of states and events, and functional modelling.  Shlaer and
Mellor [88] added OO techniques to the traditional structured analysis principles of
Yourdon and Constantine [79]. Yourdon [89] provided a criligue, hut only referred 1o
their earlier work. According to Rumbaugh er al. [91] a major flaw with the Shiaer and
Mellor methodology is the excessive preoccupation with relational datahases and
database keys. The OMT [Rumbaugh er al. 91] methodology consists of three phases:
analysis, system design and object design. An object model is augmented with a dynamic
model and a functional model to describe all aspects of the system. The OMT analysis
phase is the development of a model of what the system 1s supposed to do, whilst the
design phase consists of optimising and refining the object model, dynamic model and

functional model until they are detailed enough for implementation.

Fundamentally, the methodologies of Booch [86, 91], Shlaer and Mellor [88] and
Rumbaugh et al. [91] are very similar, the main difference being the graphical notation
that they use. In fact, currently! there is a move to combine OMT and Booch
methodology to form a "unified approach”. The Shlaer and Mellor methodology is an
approach to analysis, whereas OMT is an object oriented approach spanning from
analysis to design and implementation, and for this reason it was chosen to he the ohjec

oriented methodology to he adopted in this Thesis.

LOhjeer Expo. London, TIK, September 95
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3.7 The OMT methodology

OMT uses three models to describe a system: the object model, describing the objects in
the system and their relationship; the dynamic model, describing the interactions among
objects in the system; and the functional model, describing the data transformations of the
system. The methodology is introduced in the following sections.

3.7.1 The object model

The OMT object model consists of object diagrams which describe the static structure of

objects in the system, including their identity, their relationships 1o other objects, their
attributes and operations that can change the values of these attributes. The ohject model
provides the foundation for the dynamic and functional models. OMT object modelling
notation combines object-oriented concepts (class and inheritance) with information
modelling concepts (entities and associations). Tt is an enhanced form of entity-
relationship (ER) diagram [Chen 76) that is used in information modelling and datahase
design. The basic notation is described in the following sections and a more complele

description can be found in [Rumbaugh er al. 91].

3.7.1.1 Modelling objects and classes

Figure 3.5 summarises the object modelling notation for classes. A class is represented
by a box with three regions. The topmost region contains the name of the class. The
second region contains a list of attributes, with optional additional information including
their data type (e.g. integer, Boolean, real number, etc.) and initial value. The botiom
region contains the list of operations that can modify the values of the attributes. Euch

operation may be followed by additional details such as an argument list and return type.

Class Name

attribute
attribute : data type
attribute : data type : initial value

operation
operation (argument list) @ retumn type

oo Chinper A




3.7.1.2 Modelling links and associations

Links and associations establish relationships among objects and classes. An association
describes a group of links with a common structure. A link, which is an instance of an
association, is a physical or conceptual connection between object instances.
Associatons and links often appear as verbs in the problem staiement. A one-to-one
assoctation between classes are represented as shown in Fig. 3.6.

| a Association Name
i Class-1 Class-2
role-1 role-2

Fig. 3.6 One-to-one association

Multplicity of associations specifies how many instances of one class may relate 10 4
single instance of an associated class. The terminology used in OMT to madel multiple
associations is shown in Fig. 3.7.

— 1 Ciass | Exacily one

fﬁ—-w@l Class | Many (zero or more)

O Class | Optional (zero or one)

I+
] Class | One or more
1-2, 4
Class | Numerically specified
Fig. 3.7 [lustrating multiple associations
3.7.1.3 Modelling inheritance

Inheritance is a method of abstraction for sharing similarities among classes whilst
preserving their differences. The notation for inheritance is a triangle connecting 4

superclass to its subclasses as shown in Fig. 3.8.

—
Superclass I
i —
/\\\_
,,,,,,,,,,,,,,,, AN
Subclass-l I Suhclass-2
Fig. 3.8 [Mustrating inheritance
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3.7.2  The dynamic model

The OMT dynamic model describes the aspects of a system that are concerned with time
and the sequencing of operations. These include sequences of events, states that define
the context of events and the organisation of states and events. OMT dynamic models are
represented graphically by means of state diagrams [Section 2.2.1], showing the state and
event sequences that can occur in every class. The state diagrams used in OMT have
been extended to enable nested state diagrams (for more compact notation) and 1o mode]
synchronisation and concurrency as in statecharts [Section 2.2.1.1]. These exiensions are
described in the following sections and a more complete description can he found in

[Rumbaugh er al. 91].

3.7.21 Nesting state diagrams

To allow for a more compact representation of state diagrams, the OMT notation uses
nested state diagrams. Thus, an activity in a state can be expanded as a lower-level state
diagram, with each state representing one step of the activity. The notation (or nesting
state diagrams is shown in Fig. 3.9 where the superstaie consists of substate-1 followed

hy substate-2.

Supersiate

event 1 p

subtstate-1 —B=| substate-2 )
S/

event 3 ’ event 2

i

v v
Fig. 3.9 Nesting state diagrams
3.7.2.2 Concurrency

OMT state diagrams have been extended to model concurrency. Concurrency within an
object can occur when the object can be partitioned into subsets of attributes or finks,
cach of which has its own subdiagram. This is illustrated in Fig. 3.10 where the
superstate consists of four substates which are partitioned into two concurrent

subdiagrams.
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( Superstaie )
i
(Subsmte-] | { Substate-3 ) eventl
\,\’_“ : A_/ | \/‘ S | E—
T4 v )
¢ | Poe
\d .M“\ . \
2 ! { >
Subsmte i Subsla(c )
N : /
|
! event2
A\
Fig. 3.10 Concurrent state diagrams
3.7.2.3 Synchronisation
In OMT, the synchronisation of events is shown by an arrow with a forked tail as shown

in Fig. 3.11, whcrc the concurrent events, eventd and eveni4, are synchronised eventis

resulting from concorrent processes.

splitting of control synchronisaiion of conirol

/

- -w______ _______“

| evenid
P \

event( 7 .

- ~. N
< ] S

\‘ event2 @m
‘( substate-2 substate-4

\. /

Fig. 3.11 Synchronisation of control

3.7.3 The functional model

The functional model shows how values are computed, identifies consiraints hetween

ohjects and specifies the optimisation criteria. Functional dependencies are illustrated by
means of data flow diagrams [Rumbaugh er gl. 91} and functions are @xpmsscd n various
ways including natural language, mathematical equations and pseudo code. The
processes on a data tlow diagram correspond 1o staies defined in the stale diagrams. The
(Tows on a data flow diagram correspond 1o ohjects or attribute values defined in an ohject

diagram.
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3.7.4 Analysis

In the analysis stage, the OMT designer is concerned with understanding and modelling
the system and the domain in which it operates. The first step of the analysis phase
consists of obtaining a problem statement which provides a conceptual overview ol the
proposed system. This, together with dialogue with the design engineers and hackground
knowledge, 1s used 10 obtain a formal model of the three essential aspects of the system:
the objects and their relationships, the dynamic flow of control, and the functional
transformation of data. Rumbaugh er al. [91] give a step by step guide for the analysis
stage, resulung in an analysis document, consisting of a problem statement, an ohject

model, a dynamic model and a functional model. The steps are summarised below:

3.7.4.1 Write or obtain an initial description of the problem.

The first step in the design of a DEDS is (o state the requirements. The typical contents
of a problem statement are the problem scope, application context, assumplions,
performance and safety requirements.

3.7.4.2 Build the object model

To build an object model, one first identifies the classes of objects that are specified in the
problem statement or that are implicit in the application domain. Objects include physicul
entities (e.g. machine) and concepts (e.g. trajectory) which often correspond to nouns in
the problem statement. The next step is to identify associations between the classes.
Associations are dependencies between two or more classes and often correspond to
stative verhs or verb phrases in the problem statement (e.g. communicates with, inserts
into, drives). This step is followed by identifying the object attributes for each class of
objects. Atributes are properties of individual objects (e.g. name, velocity, position) and
usually correspond to nouns followed by possessive phrases (e.g. "the position of the
cursor”) or adjectives (e.g. stationary, rotating). The next step is o organise classes by
using inheritance to share common structures and to test the access paths through the
object model diagram. Finally, since the object model is rarely correct after a single pass,

it is usually necessary to go through the object modelling procedure again.

3.7.4.3 Develop the dynamic model

The dynamic model is more important for interactive sysiems than for static systems (2.4,
databases). The first stage in developing the dynamic model is to prepare scenarios of
typical interaction sequences that occur hetween the different ahjects in the system and 0
identify external evenis. The scenarios are represented as event traces on an event flow

diagram.
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The next stage is (o develop a state diagram for each class that has important dynamic
behaviour, where every scenario corresponds to a path through the state diagram. The

final stage is to check for consistency and completeness of events shared among the state
diagrams.

3.7.4.4 Construct the functional model

The procedure for constructing the functional model consists of identifying input and
output values, and using data flow diagrams to show functional dependencies. The nexi
step 1s 1o describe each function in natural language, mathematical equations, pseudo
code or some other appropriate form. Finally, the constraints between the objecis are

identified and the optimisation criteria are specified.

3.7.4.5 Verify, iterate and refine the three models

According to Rumbaugh et al. [91]. most analysis models require more than one pass (o
complete so it is necessary to verify, iteraie and refine the three models to remove
inconsistencies within and across the models. Thus the OMT analysis document consists
of a prablem statement, an object model, a dynamic model and a functional model.

3.7.5 System design

In the system design phase, the overall architecture of the system is determined. Using
the object model as a guide, the system is organised into sub-systems. Concurrency is
organised by grouping objects into concurrent tasks and decisions are made about infer-
process communication, data storage and implementation of the dynamic model. Also,
priorities are established for making design trade-offs. Rumbaugh er al. [91] give a step
by step guide for the system design stage, resulting in a system design document which
consists of the structure of the basic architecture for the sysiem and the high level strategy

decisions.

3.7.6  Object design

In the object design phase, the analysis models are elaborated, refined and then optimised
1o produce a practical design. During the object design phase, there is a shift in emphasis
(rom design 1o implementation. First, the hasic algorithms are chosen to implement each
major function of the sysiem. Based on these algorithms, the structure of the ohject

model is then optimised for efficient implementation.
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The design must also take into account concurrency and dynamic control flow as
determined by the system design document. The implementation of each attribute and
association is determined and the sub-systems are packaged into modules. Rumbaugh er
al. [91] give a step by step guide for the object design stage, resulting in a design
document consisting of a detailed object model, a detailed dynamic model and a detailed
functional model.

3.8 Modification to OMT for analysis of DEDSs

As described in Section 3.7.2, the OMT dynamic model is represented by a state diagram.
However, any system described by means of a state diagram can he represented hy a Petri
net. Moreover, a state diagram for a simple system can consist of an infinite number of
nodes and, although Petri nets can be graphically complex, they are of finite size and their
araphical structure is useful to visualise the behaviour of the system. Unlike stafe
diagrams, Peiri nets are modular and larger nets can be formed by simply merging places
or transitions.  Also, Petri nets are able to model asynchronous, concurrent processes
whereas these are more difficult to model with state automata. In this Thesis, the
following additions and modifications are made to OMT to make it more suitable 1o

modelling DEDSs and to improve the representation and analysis of the dynamic model.

¢ The object model must include the set of controllable events [3.8.1]

«  The dynamic model is represented by a Petri net with control places [3.8.2]

«  The state of the control places is driven by functions specified in the functional model
[3.8.3]

3.8.1 Object model must include the set of controllable events

Normally, in the OMT object modelling phase [3.6.1], the designer would first identily
the different objects that make up the system and classify them in a list of classes. The
next step would be to add the list of atributes and operations to the ohject models. There
is no fixed rule on which attributes and operations should be included in the model, this is |
usually subjective. However, since the purpose of modelling the DEDS 15 1o analyse and
control it it is necessary 1o include the set of controllable events [Ramadge and Wonham
871 in the list of operations of the class definitions. As a direct consequence ol (his
requirement, it is also necessary to include the pre-conditions and posi-conditians i ihe

atribuie list of the class definitions.
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3.8.2 Dynamic model represented by a Petri net with control places

OMT 1s modified so that the dynamic model of the objects will be represented by a
controlled Petri net [Section 2.3.6.2] instead of state diagrams. The Petri net model

representing the dynamic behaviour of the various objects can be obtained directly from

the object model and problem statement by taking the following steps:

¢ Class associations represented in the object model are represented by transitions thal
model the communication between the objects. These transitions are termed object
communication transitions (OCTs).

* A conuollable event is represented by a transition with a control place as one of iis
npuis.

* Binary attributes representing the pre-conditions and post-conditions of the controllahle

events are represented by Petri net places.

3.8.3  Control places driven by outputs of functions in the functional model

The functions that consirain and opiimise the performance of the system are defined as

algebraic equations or logical statements, the outputs of which drive the state of the
control places. Every control place of the dynamic model must have a function

associated with it to ensure that the behaviour of the system 1s constrained to satisfy the

behaviour specified in the problem statement.

3.8.4 Synthesising the Petri net model
To synthesise the complete Petri net model of the system, the appropriate number of
ohjects are instantiated. These are then "hooked" together by merging the abject

communication transitions. Table 3.1 shows the relationship between the three models of

the modified OMT methodology.

Ohject model Dynamic model Functional maodel
Binary atuihutes Petri net places -
Controllahle events Controlled transitions | functions
Associations Object cornmunication
(ransitions
Tahle 3.1 Relationship hetween the three OMT models
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Therefore, the set of binary attributes defined in the object model is represented by a set

of Petrt net places in the dynamic model. The set of controllable events defined in the
object model is represented by the set of controlled transitions in the dynamic model and
funcuions in the functional model. The associations between classes defined in the ohject

model are represented by object communication transitions in the dynamic model.

3.9  Applying OMT methodology to analyse DEDSs

This section illustrates the use of OMT, as modified in the previous section, hy
application to two classical DEDSs: The Dining Philosophers problem [Courtois ef «l.
71, Peterson 81, Hoare 85], and a Drum-Slider system [Sagoo and Holding 90, Tiang 95].
The advantages of using OMT to analyse the sysiem and Petri nets to represent the

dynamic model of DEDSs will be highlighted.

3.9.1 The dining philasopher problem

Problem Statement

There are five philosophers around a circular table with [ive forks on it. A philosopher
may only be eating or thinking at any one time. Each philosopher has access 10 two
forks. one on either side. Each fork is shared by two philosophers and may be either on
the table or in use by a philosopher. To avoid a deadlock situation (documented in
[Hoare, 85]), a philosopher must pick up the two forks simultaneously to eat. Initially all

the philosophers are thinking.

Object model

In this problem two types of object are identified; a philosopher and a fork. Therefore the
OMT object model consists of a fork class and a philosopher class. The following
associations exist between the classes: a philosopher can be the right diner or left diner of
4 fork. whilst a fork can be the left utensil of the philosopher to its right or the right
utensil of the philosopher to its left. The philosopher may either have two forks or none
ar all. The classes and associations between them are shown in the object model |

illustrated in Fig. 3.12.

kit
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right diner left utensil

| |

. In use 0,2 |
Philosopher  © ‘1 Fork
| |
left diner right utensil
Fig. 3.12 Dining Philosophers object diagram

Using the problem statement as a guide and standard OO techniques [Booch 94], the
attributes of the objects that are considered to be important for the correct unctioning of
the system are listed in the class definitions. Since we assume that the philosophers make
their own decisions as to whether they want to eat or think, there are no controllahle
events in the system. The philosopher class has two attributes Thinking and Eat ing,
with the initial condition being that the philosopher is thinking. The fork has an atiribute
Available that is initially true, meaning that initially it is on the 1able and availahle (o
be picked up by one of its neighbouring philosophers. These attribuies are of a Boolean
type and are listed in the class definition in Fig. 3.13

x Philosopher Fork

- Thinking : boolean = true .
| - HRIDE boole Available : boolean = true

- Eating : boolean = false

i
1

Fig. 3.13 Atributes of Philosopher and Fork classes

Thus the ohject model of the Dining Philosophers problem consists of the object model
diagram (Fig. 3.12) and the class definitions (Fig. 3.13).

Dynamic model

In the first stage of obtaining the dynamic model, the events between ohjects are
identified and represented by labelled Petri net transitions. These transitions are fermed
"ohject communication transitions” (OCTs). In this problem, the philosopher ohjects
interact with the forks objects by picking both forks or releasing them. Thus the OCTs

for the philosopher and fork classes are as shown in Fig. 3.14.
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pick both forks release both forks

I Philosopher i

picked by left philosopher

released by left philosopher

Fork
picked by right philosopher released by right philosopher
Fig. 3.14 Mustrating the object communication transitions OCTs

The second stage of dynamic modelling involves developing a Peiri net madel for each
class to describe its important dynamic behaviour. The objecis' binary atiributes, Tisied in
the object model, are represented by Peiri net places in the dynamic model and evenis are
represented by transitions. The places and iransitions are then linked by directed arcs 10
represent the dynamic behaviour described in the problem statemeni. The resulting
dynamic models are illusirated in Fig. 3.15

Philosopher

ealing

pick both forks / \ release both forks

\\

\@/

thinking
picked by left philos‘op ier

Fork
j\ avajlahlf,
picked by right philosopher released by right philosopher
Fig. 3.15 The class dynamic madels
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The dynamic model describing the system is obtained by instantiating the required
number of objects and "hooking" them together by merging the relevant OCTs as shown
m Fig. 3.16. In this example, five fork objects and five philosopher objects are
nstantiated and hooked together by merging their common OCTs (Fig. 3.14). Therefore,
the OMT dynamic model consists of the Petri net models representing the dynamic
behaviour of the classes and the object interactions (OCTs).

Functional model

This system has no external inputs or outputs and does not have any functions that
modify data values. Therefore it does not have a functional model associated with the
objects that comprise the system.

Philosopher 1 Philosopher 2 Philosopher 3

\ S

inking /
N/

Fig. 3.16 Dining Philosophers Petri net
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Behavioural analysis

The Petri net was analysed using a Petri net analysis tool (developed as part of this
research work [Chapter 5]) and was shown to be live and deadlock free. Therefore the
final analysis document for the dining philosophers problem consists of the problem
statement, object model (Figs. 3.12 and 3.13), object communication model (Fig. 3.14)
and the Petri net model (Fig. 3.16).

3.9.2 A Drum-Slider system

This section will illustrate the application of OMT analysis, as modified in this Thesis, (o
model a drum-slider system that was investigated by Sagoo and Holding [90] and later by
Jang er al. [95], who used a rule-hased approach to mode] the system.

Problem Statement

The system consists of a drum and transfer slider, illustrated in Fig. 3.17. The drum
rotates in steps of 22.5°. The slider movement may be descrihed as heing simple
harmonic. It inserts into the drum slots when the drum is stationary and in ihe correct
position. The drum starts to rotate again once the slider has reached the safe poini (point
(¢) on Fig. 3.17) on its withdrawal stroke. If on the approach of the slider to ihe drum, at
the decision point (point (b) on Fig. 3.17), the drum is still rotating, then the slider must
abort its motion and return to its home position (point (a) on Fig. 3.17). The home
position is that of maximum withdrawal. The system is initially at rest with the drum

stationary and in its correct position and the slider at its home position.

Slider

Fig. 3.17 The drum-slider mechanism
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Object model

In this problem two types of object are identified; a drum and a slider. Therefore the
OMT ohject model consists of a drum class and a slider class. The relationship of the
classes is one-lo-one and the slider interacts with the drum by inserting into the drum or
withdrawing from the drum. Adding the associations between classes results in the
object model shown in Fig. 3.18.

insert into

Drum Slider

withdraw from

Fig. 3.18 Drum-Slider object diagram

Using the problem statement as a guide, the attribuies of the objects that are considered (o
he important for the correct functioning of the sysiem and the controllable evenis are
listed in the class definitions. The drum has two hinary atiributes: rotating and
stationary, with the initial condition being that the drum is stationary. The
controllable event associated with the drum is start rotating. The event that stops
the drum rotating is an automatic event and therefore it is not necessary 10 include this

event in the class definition of the drum.

The movement of the slider is simple harmonic and is therefore a continuous motion.
However, in this problem we are interested in controlling the interactions of the drum and
slider which are discrete events. Therefore, the simple harmonic motion can he mapped
into a sequence of states that highlight the importani parts of the slider motion, these
being: At home position, inserting before decision point, at
decision point (inserting),past decision point, at safe point

(withdrawal), past safe point (Fig. 3.19).
The controllable event associated with the slider is the abort event which makes the
slider abort its inward stroke if the drum is still rotating when the slider has passed the

decision point. Thus the class definitions are shown in Fig. 3.20.

Therefore the object model of the Drum-Slider problem consisis of the ohject mude] -
dingram (Fig. 3.18) and the class definitions (Fig. 3.20).
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Displacement of slider

home position (a)

decision point (b)

safe point (¢)

maximum insert (d)

| 1 cycle | |

State of shider

Inseriing before decision point |

At decision point (inserting)
Past decision point

At safe point (withdrawal)
Past safe point

At home position

Time

Fig. 3.19 Mapping a continuous motion 1o a set of discrele states

Drum

Slider

rolating : boolean = false
stationary : boolean = true

Inserting before decision poini : hoolean
At decision paint : boolean

Past decision point : boolean

At safe point withdrawal : hoolean

start rotating

Past safe point : hoolean
At home position : hoolean = irye

Fig. 3.20

abori

Drum and Slider class definition
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Dynamic model

In the first stage of obtaining the dynamic model, the events between objects are
identified and represented by labelled Petri net transitions (Fig 3.21). In this problem, the
shider object interacts with the drum by inserting into it and withdrawing from it.

Slider insert Insert into drum

N
| FK\' r/ |

Slider withdraw Withdraw from drum

Fig. 3.21 Mlustrating the Object Communication Transitions (OCTs)

As In the previous example, the second stage involves developing a Petri net model for
each class 1o describe important dynamic behaviour. The objects’ binary atiributes in the
object model are represenied by Peiri net places in the dynamic model and events are
represented by transitions. The places and transitions are then linked by divecied arcs 1o
represent the dynamic behaviour described in the problem staiement.  The resulting
dynamic models are illusirated in Fig. 3.22.

The dynamic model describing the system is obtained by instantiating the required
number of objects and "hooking" them together by merging the relevant OCTs, illustrated
in Fig. 3.23. In this example one drum and one slider object is instantiated and hooked

together by merging the appropriate OCTs (Fig. 3.21).
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Therefore, the dynamic model consists of the OCTs, the Petri net models representing the

dynamic behaviour of each class, and the Petri net representing the whole system

Functional model

The functional model defines the constraints of the system operation. The output of the
functions change the state of the control places in the Petri net model. This system has no
external inputs or outputs. However, it has two functions that are defined in the ohject
model. These are the start rotating operation of the drum object and the abort
operation of the slider object. The Boolean values that determine whether the function is
performed or not are represented by control flows (dashed line) in the data flow diagram

illustrated in Fig. 3.24.

For the event start rotating 1o be enabled, the drum must be stationary and the -
slider must have reached the safety point on its withdrawal siroke. Since the start
otating event does not effect the state of the slider, this is represented hy 4 dashed

line. The function changes the state of the drum from stationary (o rotating, so

these states are represented by solid lines.
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Fig. 3.24 Functional diagram for drum-slider problem

Similarly, for the event abort (o be enabled, the slider must be at the decision paint and
the drum must be rotating. Since the abort event does not affect the motion of the
drum, then the input to the abort enabling function is shown with a dashed line. The
function changes the state of the slider from At decision point to At home

position, these states are represented by solid lines.

From the problem statement, the condition for the drum to start rotating is defined
as (note that the "." notation normally used in OO terminology is adopted. i.c.
drum.stationary means "drum is stationary"):
drum.stationary A piston.At safety point —
drum.start rotating
Since the states stationary and At safe point are pre-conditions of the transition
representing start rotating in the Petri net model (Fig. 3.23) the state of the control

place, drum. control = l.
The other condition specified in the problem statement is related 10 the abort event

which is defined as:

drum.rotating A slider.At decision point - slider.aborf
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Since drum.rotating is not a pre-condition of the transition representing
slider.abort in the Petri net model (Fig. 3.23), the state of the control place,

slider.control = drum.rotating

Behavioural analysis

The Petri net was then analysed using a Petri net analysis tool (developed as part of this
research work [Chapter 5]) and was shown to be 1-bounded, live and deadlock free.
Using concurrency sets [Skeen 83] and P-invariants that were generated by the Petri net

analysis tool, the following safety properties of the system were verified:

1. There can never be a situation where the slider will travel beyond the decision point if

the drum 1s not stationary and in the correct position.

1

There can never be a situation where the drum will start rotating befare the slider has
withdrawn past the safety point.

The use of the modified OMT has resulied in a complete analysis document for the
problem, consisting of the problem statement, ohject model, the Petri net madel, the

functional model and Petri net analysis resulis.

3.9.3 Evaluation of the methodology

In the previous two sections the modified OMT methodology was applied to two well
documented problems. The Petri net model representing the dining philosopher problem
is equivalent to that obtained by Peterson [81] and the Petri net representing the drum-
slider problem is similar to that obtained by Sagoo [92] shown in Fig. 3.25. However in
hoth examples, the object oriented methodology re-used designs by grouping identical
objects into classes and resulted in modular and more understandable designs.  Anather
advantage of the Petri net represention of the drum-slider problem (Fig. 3.23) aver that of
Sagoo [92] is that it has fewer places and ransitions and a smaller state space.
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Fig. 3.25

Petri net representation for drum-slider problem [Sagoo 92]

| Places

Transitions

. P1 - Slider accelerating towards drum
' P2 - Slider at decision point
' P3 - Slider inserting into drum
- P4 - Slider fully inserted
' P5 - Slider withdrawing
t P7 - Slider at rest
P9 - Drum rotating status
P17 - Drum rotating at constant velocity
P14 - Drum stationary
P15 - Drum stationary status
P1¢ - Slider at rest
P17 - Slider's motion to rest

T1 - Slider enters decision point

T7 - Slider proceeds with insertion
T3 - Slider starts to abort motion

T4 - Slider makes insertion into drum
Ts - Slider starts to withdraw from drum
T - Slider clears drum

Tg - Slider starts its motion

T10 - Drum starts to rotaie

T13 - Drum stops rotating

T14 - Slider commences its motion
T15 - Slider reaches zero velocity

Table 3.2 - Meanings of places and transitions of Fig. 3.25
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3.10 Conclusion

This chapter has reviewed currently available Petri net synthesis techniques for modelling
large systems. It was noted that these techniques are based on functional abstraction and
that the experience of researchers has shown that functional abstraction is not practical
for large indusirial applications. This chapter therefore proposed using an obhject oriented
methodology 1o facilitate the design of complex systems, produce more understandable
designs and specifications, facilitate the transition between design and implementation
and enable re-use of designs. The methodology was based on the well known OMT
methodology and was applied to two well documented problems. The following chapter
describes the next stage of the design process, in which the controller for a DEDS is

designed.
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Chapter 4

Optimal control of DEDSs

4.1 Introduction

Following the specification and analysis of a DEDS as described in the previous chaplers,
the next stage in the design process is that in which the controller is designed. Closed
loop control of DEDSs is based on the supervisory conirol theory developed by Ramadge
and Wonham [87], who used state automata to model the plant and its Supervisory
controller. However, as described in [Chapter 2] there are several advantages of using
Petri nets over state automata to model DEDSs. Hence, this chapler reviews research
work that adopts Petri net theory for supervisory control including that of Valetie e al.
[85], Holloway and Krogh [90] and Giva and DiCesare [94a].

Having designed the plant and controller, the next siep is 1o find a way to conirol itin the
best possible way. Exclusive-use shared resources (such as production units in batch
process plants, machines in FMSs, processors in computer systems, cash machines in a
bank) are components present in most DEDSs. Their common feature is that they are
shared by different users or processes, but can only be used by one user or process at a
time. The problems raised due to the presence of shared resources is that the overall
performance of the system depends on the order in which they are allocated to the users
or processes. Since a large capital is involved in designing and operating DEDSs 1t is
important to ensure optimal operation to make these systems commercially viable.
Therefore this chapter reviews Petri net based scheduling algorithms and develops an
efficient scheduling algorithm to allocate the plant's shared resources in such a way $o as

to guarantee optimal performance of the plant.

Another consideration is that if at some point there is a physical change in the plant, say,
because of a partial failure of a resource, there will be a mismatch between the plant and
the supervisory controller. Therefore any changes in the plant set-up will invalidate the
contral systern. This is unacceptable in real-world industrial systems where the controller
should at least be able to shut down the plant safely in the case of a partial failure. A
novel design for a DEDS controller, first presenied by the author of this Thesis in
[Azzopardi and Holding 95], is described in this chapter. It is based an the OMT maodel
of the plant and is re-configurable 1o accommodale for unexpected changes in the plani.
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4.2 Supervisory control of DEDSs

Following the standard practice of control theory, Ramadge and Wonham [87] distinguish
between the "plant” (object to be controlled) and the "controller” (the agent doing the
controlling).  This distinction tends to simplify the problem of defining exactly what
controlled behaviour 1s required, as well as what constraints on behaviour are imposed by

the underlying physical system.

As described in Section 1.5, uncontrollable events occur spontancously, however, the
occurrence of controllable events depends on the enabling/disabling action of a coniroller
defined by the function y(w), where w is the sequence of events that have been ohserved
up to the current state. A controller of this type is known as a supervisory controller, the
fundamental purpose of which, is to provide closed loop control to force the system to
hehave as specified under a variety of operating conditions. In the control theory of
Rumadgc and Wonham, the plant and controller are both modelled as [inife-state
utomata with complementary input-output behaviour: The plant automaton generafes
events from spontaneous state transitions which can be enabled or disabled by the input
signal from the controller; whereas the controller automaton accepis events [rom the plant
which | state transitions in the controller and change conirol inputs (o the plant (Fig.

4.1).

_ _ _ _ Pan_ -
l l
Controller | |
W enable/disable | W, y =g(x.e) |

— ] L cw -—-l-a--—mv X = flx,e) -
|
Lo e ] ]

Fig. 4.1 Supervisory Control of DEDSs [Cassandras 93]
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4.2.1 A logical DEDS model

This section introduces the notation used in the theory of supervisory control of Ramadge
and Wonham [87] in which a DEDS model is used to study the sequences of events that
the process can generate. Let T denote the finite set of event labels and X° denote the set
of all finite strings of elements of the set X, including the empty set £, then, an element

of 2 is referred to as an event.

A string, u = 0,0,...0, €L, where G,,0.,...,0, are evenis, represents a partial event
sample path. Partial because there may be more events after o,. The set of all physically
possible sample paihs is a subset L. of £ and L is called a language over the alphabet .

A string u is a prefix of a string ve X° if for some we £, v=uw. [f v is an admissible
sample path, then clearly so are all the prefixes of v. If the prefix closure of L& Z is
defined 1o be the language L = {u:uv e L for some v e Z*} then it is required that L =L.

In this case it is said that L is prefix closed.

Ramadge and Wonham model the behaviour of a DEDS as a prefix closed language L
over the event alphabet £. Each v el represents a possible event sample path of the
DEDS. For example, the trivial DEDS with two events, which operates so that the events
o and B always occur alternately, with o or f occurring first, has the behaviour:
L={e, a, B, of, B, ofex, ...}. The behaviour of the DEDS can be constrained if [w],
is made to denote the number of occurrences of the event « in the string w, and
L= {w e X' for each prefix u of w, |u|, < IU]ﬂ}, then L represents a DEDS in which the

-

number of occurrences of the event « is always less than or equal to the number of

occurrences of 3.

To construci more elaborate examples it is convenient to have a means of language
representation.  Ramadge and Wonham [89] represent a DEDS by a finite state
automaton. Hence, to represent a behaviour L, a generator G is an automaton (defined in
[Hopcroft and Ullman 79]) consisting of a state set Q, initial state q,, and a iransition
function 8:xQ — Q. The set of events possible at state g is the set S(g)c Z such that

for each o e Z(g),6(0.q) is defined.

G can be represented as a directed graph with a node set Q and an edge g — ¢' labelled
o for cach triple (o,4.4') such that g'=8(0,¢). G is inierpreted as a device that staris in
its initial state g, and executes stale transitions by following its graph. Siate transitions

are considered to occur spontaneously, asynchrononsly and instantaneously.
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The transition function 6 of G is extended to a function on X' xQ hy delining
S(e.q)=¢ and §(wo.q)=8(0,8(w.q)) whenever q'=8(w,q) and 8(c.q') are defined,
The abbreviation 3(w,q)! means "8(w,q) is defined". In terms of the graph of G,
S(w.q)! means that there is a path in the graph starting from q that is labelled hy the
consecutive elements of the string w. The closed behaviour of G is defined o be the
prefix closed language L(G)={w:we XL * and 5(w,q“)§}

I
/
o/
VAP
A
W °p
Fig. 4.2 A simple generator [Ramadge and Wonham 87]

Consider the simple generator in Fig. 4.2, It models a machine with three states, lahelled
[ (Idle), W (Working) and D (Down); The initial state, I, is marked by an arrow, and there
are four possible slate transitions, each labelled by the associated observed event from the
event set £ ={e,f,A,u}. The closed behaviour of G is the set of all sirings obtained by
starting in the state T and following the graph. Tn the formalism of regular expressions
this is written as L(G) = (e + aAu)* (e + o+ 0id ).

4.2.2 Controllability and Supervision of DESs

This section introduces supervisory control theory of Ramadge and Wonham [87] who
state that to control DES it is assumed that certain events of the system can be disabled
when desired. This allows the controller to influence the evolution of the sysiem by
prohibiting particular events at certain times. The set of events, Z, is partitioned into
controllable and uncontrollable events. Thus £=%, uUZXZ, . The events X, can be
disabled at any time (e.g. start motor), while those in X, model events over which the

controller has no influence (e.g. machine breaks down).
The control input of G is a subset y< X satisfying the condition &, <y (he

uncontrollable evenis are always enabled). If o ey, ihen o is enabled by ¥ (permitted
to oceur) otherwise o is disabled by y (prohibited from occurring).

-HO- Chinpiur



Let T2 denote the set of control inputs. A DES represented by the generator G,
equipped with a set of inputs [ is called a controlled DES (CDES). For convenience, i

CDES is referred to by 1ts underlying generator G.

Conurol of a CDES, G, consists of switching the control input through a sequence of
elements y,y,y"....in[", in response to the observed string of previously generated
events. This type of controller is called a supervisor. Formally, a supervisor is a map
{:L — T", which specifies the control input f(w) for each possible string ol generated
events, w. The objective is to design a supervisor that selects control inputs in such a way
that the given CDES, G, behaves in obedience to various constraints. Constraints can be
viewed as a requirement that certain undesirable sequences of events are not permitied to

occur, whilst at the same time, certain other desirable sequences are allowed.

When a CDES is controlled by a supervisor, f, it operates as before, except that it obeys
the additional constraint that, following the generation of a string w, the next event miust
he an clement of F(w)NE(8(w.q,)). The closed loop system of G supervised by [ is
denoted by (G.f). Then, the behaviour of (G, is denoted by L(G.[), or simply I,

formally defined as follows:

1) eel;;and
11) woelL iffweLl, oef(w), and woeL

If G has some marker states (i.e. states that, say, mark the completion of a process), then
the language controlled by fin G is L (G,f)= L =L (G)nL, which is simply that
part of the original marked language that survives under supervision. If L, represents
completed tasks, then this language is important because it indicates those tasks that will

be completed under supervision.

In practice one may require an alternative representation for the supervisor, . For this,
Ramadge and Wonham used state realisation in terms of an automaton together with an
output map [Ramadge and Wonham 87]. Let T=(Z.X,£,x,) be an automaton, and
®X — T, we say that the pair (T,®) realises the supervisor [ if for each
wel, @(é(w,xn)) = f(w). This means that the value of  on the string w can he found
by first applying w to T causing T to be driven from its initial state to some stafe x and
then computing ®(x). Thus T is a standard automaton whose state transitions are driven

by the events in X.
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[n standard control terminology G plays the role of the "plant” (object to be controlied). T
functions as the "observer" or "dynamic compensator”, and @ is the "feedback”. Tt is
possible to realise a supervisor as another DES S. In this case, the control action ol S on

G is implicit in the transition structure of S as shown in Fig. 4.3 below.

control, 'y

enabled event, ¢

Fig. 4.3 Supervision of a DES

The basic problem in supervisory control is to modify the open loop behaviour of a given
DES G so that its behaviour satisfies the specification of the system. Consider the
following problem: Given a CDES G with behaviour 1., what closed loop behaviours
K < L can be achieved by supervision? This is the concept of controllability where it i8
said that K < £ is controllable if KZ, "L < K. This means that for any prefix of a
string in K. i.e. any we K, if w followed by an unconirolled event oe 2, s in L, i.e.
wo e L, then it must also be a prefix of a string in K, i.e. woe K. In this sense, K is
conditionally invariant under the action of X, . Generally, the aim of supervision is not to
modify L, but instead to achieve a prescribed language for L, and to do so while
preserving the desired non-blocking property. The conditions under which this is

possible are stated in terms of language controllability [Ramadge and Wonham 87].

4.3  Petri net based supervisory control

As described in the previous sections, supervisory control theory of Ramadge and
Wonham [87] used a state transition structure based on finite state automata to implement
control. However, as discussed in [Chapter 2] Petri nets have several advantages over

state automata, namely:

(1) Since the states of a Peiri net are represenied by the possible markings and not hy
the places, they allow a compact description; i.e., the structure of the net may he
maintained small in size even if the number of markings grows.

(i1) They allow modular synthesis; i.c., the net can be considered as composed of
interrelated subnets, in the same way as a complex sysiem can be regarded as camposed

of interacting suhsysiems.
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(i11)  Pewri nets can model asynchronous, concurrent processes in a straightforward

manner whereas this 1s more difficult to model with state automata.

Not surprisingly, several researchers have used Petri nets to control DEDSs. Courvoisier
er al. [83] were the first to describe a system for the design of control logic of Petri net
hased programmable logic controllers (PLCs). They used the system to control two
automatic guided vehicles sharing a common path. This work was extended by Valette er
al. [85], who show that, by using the Petri net model representing a FMS, it is possible 1o
control the plant by means of a token-player computer program (Fig.4.4). The token
player algorithm acts as a supervisory controller, playing tokens on a Petri net model
representing the plant. It continuously searches for enabled transitions and fires them. It
interacts with the plant by receiving messages which represent the occurrence of an evernt
in the plant, for example, threshold crossings detected in local controllers [Andren er al.
94]. As illustrated in Fig. 4.4, the token-player updates the marking of the Peiri net,
which represents the state of the plant, when a message is received from a local controller.

This is represented by the left part of Fig. 4.4.

Stable % B
sfafe @ﬁ“__u._

wait

number of
enabled

transitions

>0

External }
event |
Search for
enabled
transition

| Y

|
i Fire
1 r ' B fransition

/ number of
enabled

“ \ |
7 |

Y

Fipd new
' N marking
|
| Abnormal )
V behaviour 9 Internal cycle
detection
Fig. 4.4 The token-player algorithm [Valetie 93]
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When the token-player is waiting for a message, then it is in the stable state. When an
event occurs, the token-player searches the Petri net data structure to locate the (ransition
representing this event. The current marking of the net must be such that this transition is
enabled. otherwise, the state of the supervisor is said to be inconsistent with the actual
state. This means that there is a fault in the plant, or that the control system is [aulty or
that there was a design error at the specification phase of the controller [Valette 95]. The
fact that it is impossible to fire a transition which is not enabled ensures that any failure
will be detected. The right hand side of Fig. 4.4 shows the internal cycle ol the token-
player. Once the marking has been updated, then the transitions that are enabled and do
not depend on receiving a message are fired. If any of these transitions have messages
associated with them, they are executed. The internal cycle ends when all the transitions
that are enabled by the current marking depend on receiving a message [rom the plant,

which is the stable state.

Krogh er al. [88] describe a set of software tools for the automatic generation of control
programs for discrete manufacturing processes. A Peiri net model of the control and
process logic is extracted from a relational database containing the system specifications.
The controller is of the token-player type as in [Valetie er al. 85], where the control
compuler maintains a Petri net model of the system (o update the marking of the model.
Holloway and Krogh [90] used controlled Petri nets (CPNs) (described in Section 2.3.6.2)
for the efficient solution of a class of control problems. The main characteristic of the
CPN approach to supervisory control is that no transition structure for a controller is
given. The control, u, is a function of the actual marking of the net and needs to he

computed at each step.

Giua and DiCesare [94a] also proved that Petri nets can be used as language generators in
the framework of supervisory control of Ramadge and Wonham [87]. Given a marked
Petri net Z=(P,T,I,0,m) with initial marking m,, the alphabet Z is represented by the sel

of transitions T. The closed behaviour is given by the language
L(Z.m,)={oeT|3m)m,[o> m]}. Given a set of final markings m,. the marked
hehaviour is defined as Lm(Z,mU):{Oﬂ(Elm em,)[m,[o> m]} A DES is said to bhe
non-blocking when T = L, (where L is the set of all prefixes of strings in L) i.e., any

string o € L can be completed into a string o7& L.

As in [Holloway and Krogh 90] the transitions in T are partitioned into two disjoint
subsets: the set of controllable transitions T, (that can be disabled il desired), and the set
of uncontrollable transitions T, (that cannot be disabled by an external agent). The

supervisor, S, is a Petrt net that directly models the system.

43 Chaptar




The supervisor will run in parallel with the plant, i.e., whenever an event in the system
occurs. then the transition in S, representing this event, fires. Furthermore, the transitions
that are enabled in S, represent the events that are allowed to occur in the plant, while all
other events are disabled. This 1s very similar to the concept of a token-player [Valette er
al. 85], the main difference being that it is defined within the framework of supervisory
control [Ramadge and Wonham 87]. The net S is called a proper supervisor il the

following two properties are ensured:

Trimness

¢ The net S does not allow blocking markings, 1.e., reachable markings Irom which the
final marking cannot be reached.

Controllability

« Tt is not possible to reach a marking from which an uncontrollable eventin the plant is

enabled but its corresponding transition in S is not.

[n the examples of Ramadge and Wonham [89] it was observed that in general the
number of states grows exponentially as the number of sysiems increases. Thus [or
realistically sized systems it is unfeasible to generaie and investigale the siafe Space
manually. Giua and DiCesare [94a] showed how integer programming techniques may
be used to validate supervisors for control of DEDSs. These techniques are restricted Lo
supervisors that can be modelled on a class of Place/Transition (P/T) net called
elementary composed state machine (ECSM) nets. Their approach is restricted in the
sense that, there exist supervisors that cannot be modelled as ECSM nets. Also, although
Integer Programming problems are more manageable than methods based on brute force
state space search, they cannot always be solved in polynomial time [Giua and DiCesare
94a].

4.4 Scheduling exclusive-use resources

The previous sections have shown how Petri nets can be used for supervisory conirol of
DEDSs. The next stage is to formulate a strategy for the optimal control of the plant.
This is done by allocating exclusive-use resources in such a way, so as to optimise the
performance of the plant, which is similar to the operations rescarch scheduling prohlem

[Baker 74].
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Definition 4.1

The general scheduling problem is defined by MacCarthy and Liu [93] as

n jobs {JPJJ,._.,J” have to be processed and m resources {RPRZ,.‘.,R”,} are available.
A subset of these resources is required to complete the processing of each job. The
processing of job J, on resource R, is called an operation and is denoted by the element,
O, of matrix O. For each operation Oy, there is an associated processing time denoted
by the element, 7, of mawix t. Elficient algorithms for obtaining an optimum solution to
the scheduling problem exist only for very simple flow shops: "There is no single
algorithm that can solve a general scheduling problem" [Ku er al. 87). The range ol
methods that have been developed can be grouped into three types [MacCarthy and Liu

93]: efficient optimal methods, enumerative optimal methods, and heuristic methods.

Efficient optimal methods

These methods generate an optimal schedule, with respect to some criterion, in
polynomial time. They solve the problem optimally and efficiently even for a large
number of jobs, however methods of this type can only be applied to specific prohlems
and are limited to systems with only one (two in some cases) shared resource. For i
larger number of resources, it is necessary o apply either enumerative or heuristic

methods.

Enumerative optimal methods

Enumerative optimal methods involve a partial enumeration of the set of all possible
schedules. Generally they involve mathematical programming formulations, followed by
hranch and bound methods and elimination methods. The time required for these
methods to obtain a schedule grows exponentially as the number of resources that can
operate concurrently increases. This is due to the well known state-explosion
phenomenon, which makes these methods unsuitable for scheduling systems with a large

number of jobs and shared resources.

Heuristic methods

A good heuristic straiegy attempis 10 approximate an optimal solution in polynomial fime.
There are three main types of heuristics [MacCarthy and Liu 93]

l. Decisions are made each time a resource is released, or when a job arrives in a
queue. Priority rules are examples of this type of heuristic.

A neighbourhood structure is defined and the solution found must be optimal within

2

this neighbourhood structure.
3. The order of jobs is determined on one resource after another. For example the
shifting botdeneck procedure for job shop problems [Adams er al. BR]
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Most heuristic algorithms incorporate branch and bound procedures in which the mosi
promising part of the state space 1s searched exhaustively. The main disadvantage ol
heuristic methods is that they may be questionable in optimality and stability [Chang and
Liao 4],

4.4.1 Petri nets for scheduling DEDSs

The ability of Petri nets to model the dynamic characteristics of DEDSs, has led some
researchers o investigate the suitability of using Petri nets for modelling the scheduling
problem. This section reviews the work that has been done in this area of research.
Carlier er al. [85] showed how to model scheduling problems on a timed Petri net
(defined in Section 2.3.6.1). They cited the fact thai one could model time consirainis as
well as resource constraints as an advantage over using classical Petri net. This early
work was however limited to the state machine class of Petri nets, where every transition

has only one input place and one output place.

Viswanadham er al. [90] developed a way to preveni deadlock in FMSs using Petri nel
models. They showed how scheduling rules for ensuring deadlock preveniion can be
devised by carrying out an exhaustive path analysis of the reachability graph ol the Feut
net model. This is however impractical in real situations due to the combinatorial state
explosion phenomenon so they developed a deadlock-avoidance algorithm that would
look ahead' into the evolution of the system for a number of steps. Hatono et al. [91]
proposed scheduling for contflict resolution by using priority rules depending on the
scheduling objectives. The work of Viswanadham er al. [90] and Hatono er al. [91]
concentrated on scheduling for deadlock avoidance rather than performance optimisation.
However, in Chapter 3 of this Thesis it was shown that deadlock avoidance can be

obtained by using a suitable Petri net synthesis method.

Researchers have recently begun to investigate the application of well-known operations
research (OR) scheduling algorithms and artificial intelligence (AD) optimisation
algorithms to Petri net models of DEDSs. Martinez et al. [88] illustrated a method for
control of complex production sysiems, modelled by coloured Petri nets [Jensen &1] and
scheduled by a real-time decision module based on knowledge-based scheduling using Al
techniques. The necessity of including a real-time decision module was due 1o the fuct

that the systems they modelled were not completely deterministic.

Shen ef al. [92] were the first to suggest scheduling a PEDS hy applying the hranch et
hound search algorithm to the Petri net model of the system. They madified the braneh
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and bound algorithm by including tests to reduce the search space and hence improve the
convergence of the algorithm. These results were extended by the author in [Azzopardi
and Lloyd 94a].

Zhang [92] pointed out that most current production planning systems are planned on
mmadequate models that 1gnore the temporal costs of actions. He proposed a timed
Predicate/Transition (TPr/T) net model for planning and used the well-known A™ scurch
algorithm [Pearl 84] based on the TPt/T net to schedule the system. At the same tme,
Lee and DiCesare [92, 94a] presented a method for scheduling FMSs hased on a timed-
place Petrr net combined with a heuristic Tunction to limit state explosion.  The
pertormance of the search algorithm depends on the information included within the

heuristic functon.

4.5 A Petri net based scheduling algorithm

This section describes a Petri net based scheduling algorithm [Shen er al. 92, Azzopardi
and Lloyd 94a] which uses a branch and bound algorithm applied to the timed Petri net
model of the plant. To improve the efficiency of the algorithm and o make it usahle for
larger systems, heuristics are used to reduce the search space. This Thesis introduces a
further improvement over the previously published scheduling algorithms by reducing the
timed Petri net, effectively removing all the transitions that represent uncontrollable
events from the model. This results in a further reduction in the search space of the
scheduling algorithm and an increase in its rate of convergence. The output of the
algorithm is a partial sequence of transitions, representing controllable events, that
guarantees the minimum cycle time for the plant operation. This sequence is used by the

Petri net based controller to ensure optimal control.

To schedule a plant (definition 4.1), it is first modelled on a umed-place Petri net and the
m resources {R,R,,....R,, } are modelled as PME or SME places, the processing time 1
associated with operation Oy is modelled as a time associated with the Petri net place
representing operation O;. An algorithm to automatically generate the timed-place Peiri
net model from the scheduling information has been published in [Azzopardi and Lloyd
94h].

To illustrate the effect of the heuristics and reduction technique to the efficiency of the

scheduling algorithm, consider a plant with two shared resources used hy two johs as

shown in Fig. 4.5.
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Resource 1 Resource 2

b1 ———f e = < ——Jp job I completed

joh 2

l
\

s job 2 completed

Fig. 4.5 A two resource plant

The matrices representing the scheduling problem are:

1 2 20 4
O:{ }:mdt:{ ]
[ 2 3 7

The plant is modelled on a umed place Petri net as shown in Fig. 4.6.

Fig. 4.6 A timed place Petri net model

where;

Place | Transition
i ’ job 1 waiting for resource 1 I Start processing job | ?n resouree |
2 job 1 is being processed by resource 1| 2 Stop processing job | in resonrce |
3 job 1 waiting for resource 2 3 Start processing Jnh ] in resonree 2
4 job 1 is being processed by resource 2 4 Stop prt)ccssi'nglt)i) i in resource ;”;
3 iob 1is Ready 5 Start processing job 2 in resouree |
g job 2 waiting for resource | 6 Stop processing ,}.()h 2 inresource |
7 iob 2 is being processed by resource 117 Sit:u'i. processing Jo_b 2 inresopree 3
8 job 2 waiting for resource 2 8 Stap processing job 2 in resouree 2
4 job 2 is being processed by resource 2
10 job 2 is Ready
I resouree | available
12 resource 2available

|
1
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4.5.1 The branch and bound algorithm

In a Pewrt net based Branch and Bound algorithm [Shen er al. 92], the timed place Petri
net model. Zya (defined in section 2.3.6.1), 18 executed by firing one enabled transition
at a time. Al every marking, m, where the set of enabled transitions, ET < T, contains
more than one transition (1.e. #(ET)>1), only one is fired, whilst the others are stored as
the set of alternative enabled transitions, AT < ET, at that level, 1. This procedure is

repeated until the marking, m, is equal to the required marking, m, .

At the level where the required marking is reached, the cycle ume for this sequence of
events is recorded as the upper bound of the search and the sequence of transitions, S, s
stored as the best liring sequence. Backtracking is then initiated up to the level, 1, where
alternative enabled transitions exist (i.e. #(AT)>0). A new branch is formed hy [iring one
of the alternative transitions. The Petri net is then executed in the manner described
above until the required marking is reached again. If the cycle time is less than the upper
bound, then this sequence of transitions, S, is stored as the best firing sequence and the
upper bound is made equal to the new cycle time. Backiracking is initiated again and the

process is repeated again, until all possible paths have been explored.

Il at any time, whilst exploring a new path, the cycle time is larger than the upper bound,
then this branch is abandoned and backtracking is initiated again. When all possible
paths have been explored, the upper bound of the search is the minimurm possible cycle
time and the sequence of transitions that results in the minimum cycle time is the one that
is stored as the best firing sequence. The Petri net based branch and bound algorithm is

summarised below:
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bt e b e e e

129 level =level -1 // go back to level where #(ET,,) >0

// Branch and Bound algorithm
WHILE (levelz0)

|
0
4 WHILE (#ET)=0)
S

6 IF clock <upper bound

7 find set of enabled transitions, ET .,
8 increment clock

Y

ELSE back track

! /1 if current time 2 upper bound this is not a good solution
o)
3 select one enabled transition, te ET .
4 add t to the sequence of transitions, S
5 save the set of alternative transitions AT ..
6 [ind marking, m, obtained by [iring transition, t
17 store ume at which transitions were enabled, time,., = clock
[y
19 IF the marking, m, is equal to the required marking, m,
20
| IF c¢lock < upper bound
2 upper bound=clock;
23 best firing sequence =§;
24 back track
25
26

27 I/ back mrack algorithm
28 WHILE (#(ET,.) = 0) |

1 IF (level 20)
2 clock=t 1me) // set ime

Applying the Branch and Bound algorithm to the timed Petri net model of the plant
shown in Fig. 4.5, with initial marking m=[100001000011] and required marking
m, =[000010000111], results in the reachability tree shown in Fig. 4.8, with 29 possible
markings being investigated. The optimal cycle time is 27 minutes which is obtained by
using the transition firing sequence, S = TsTeT\ Ty Ty Ty T3 Ty The optimal aperation of the

plant is illustrated in the Gantt chart of Fig. 4.7.
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Fig. 4.7 Gantt chart showing optimal operation

Although the Branch and Bound algorithm resulis in an optimum solution, the processing
time required for the algorithm to converge can be very large even for simple prohlems.

In the following sections, methods for reduction of the search space which increase the

rate of convergence of the algorithm are described.

4.5.2 Methods for reduction of the search space

In order to reduce the search space of the Branch and Bound algorithm, heuristics may be
used to trim the reachable state space [Azzopardi and Lloyd 94a, Lee and DiCesare 94a].
To illustrate the reduction in search space that can be obtained by means of heuristics,
consider the following heuristics that were developed by the author of this Thesis in

[Azzopardi 93].

Heuristic 1:  Detect concurrency

When an enabled transition can be fired concurrently with the fired transition the
alternative transition can be removed from the set of alternalive transitions at that stage.
This reduces the number of branches that the algorithm needs to explore unnecessarily.

The algorithm is summarised as:

| [Ftie ETluvci-l AND clock = T.imelwei_l
2 remove t from ET ewi
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Heuristic 2 : Look-ahead

[n the search for the optimum schedule, at every new marking of the Petri net, the current
time s compared to the upper bound of the search. If it is less, then the search along that
branch continues, otherwise it is abandoned since it will surely not result in the optimum
solution. To reduce the search space of the algorithm, a look-ahead heuristic [Shen er al.
921 1s used. Looking-ahead 1s done by comparing the upper bound to the sum of the
current time plus the remaining processing time of that production unit that still has the
longest processing time yet to be performed . The algorithim is summarised below, where

C_resource, is the remaining processing time on resource k.

IF (clock + MAX(t_resource,) > upper bound)
back track

0 —

Heuristic 3:  Check for duplicated marking

This test checks for duplicated Petri net marking while exploring a new branch. Tr checks
whether the new marking obtained by firing the current transition is the same as the
marking in the next step of the current minimum solution. If this occurs, it means tha
there are dilferent ways to arrive from to the duplicaied state Irom the initial staie of the
plant and that working down this branch will result in the same path taken from the

duplicated state to the final state as in the current minimum solution [Shen et al. 92].

Therefore, if the time required to reach the duplicated state in the current search is greater
than or equal to the time required 1o reach this state in the current minimum solution, it
will be useless to examine this route further since 1t will surely not lead to the optimum

solution. The algorithm is illustrated below:

back track

o —

IF(m=m, ANDclock 2 timep. ) 1‘

Hiustrating the reduction in search space
The effect of these heuristics to the search space of the Petri net model of Fig. 4.6 is
illustrated in Fig. 4.8. The shaded areas show those areas that are not explored hy the

algorithm due to the reduction in search space.
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Fig. 4.8 Search space for scheduling algorithm
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4.5.3 Petri net reduction

As discussed in Section 4.2.2, in DEDSs events are divided into the set of controllable
events and the set of uncontrollable events. For the purpose of scheduling DEDS
operation, it is not necessary to consider the uncontrollable events in the system, as, by
definition, the controller cannot influence their occurrences. In the Petri net described in
Fig. 4.6, the wansitions that represent controllable transitions are those thal are inputs (o
places representing processes (ie. T\, T,, Tsand T,). The uncontrollable events are
represented by the transitions that are outputs from the places representing processes (i.c.
T,, T,. T, and Ty).

In a timed Petri net that uses PME places to represent shared resources, the transition
indicating the start of an operation represents a controllable event, whereas the one that
represents the end of an operation is not. Therefore, by applying reduction rule R
(described in Section 2.3.5.1) 1o the operation places, the transitions representing
uncontrollable events are removed from the Peiri net model. This is illustrated in Fig. 4.9
where the dotted lines show the places, transitions and arcs that are removed by reducing
the net. This reduction can be visualised as the collapse of an input transition, operation

place and output transition into one transition.

v Y
OF 10()
Fig. 4.9 The reduced timed-transition Petri net
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Since the operaton places, which have been absorbed into a transition, have a time

associated with them, the delay is now transferred to the transition. This means that the

resulting Peurt netis a timed transition Petri net [Sifakis 78].
Fig. 4. 10 illustrates the application of the Branch and bound algorithm with heuristics to
the reduced Peur1 net model (1.e. the tumed transition Petri net). The shaded areas

tlustrate the reduction in search space obtained by the heuristics defined in Section +.3.2.

fevel 1
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l 1 g L
T
T level2 T
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Ty T
000010000111 [000010000111]
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i

Reduction in |
search space

~—————  Forward search

Back track i

Fig. 4.10 State space of reduced net
By reducing the Petri net and applying the Branch and Bound algorithm with heuristies,

the state space has been reduced from the 29 states required by the Branch and Bound

algorithm (Fig. 4. 8) to 12 states (fig. 4.10).
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The following section reports on a series of experiments that were performed to quantily

the reduction in search space and to observe the rate of convergence of the scheduling

algorithms on larger plants.

4.5.4 Performance evaluation of the scheduling algorithm

Scheduling problems are difficult combinatorial optimisation problems, therefore the
efticiency ol a scheduling algorithm is very important for its practical use. Efficiency
refers 1o the computational resources necessary Lo obtain a solution.  For simple
algorithms, complexity may be represented using mathematical expressions however, for
more complex algorithms like the one developed in this Thesis, computationl

experimentation is required to quantify complexity [MacCarthy and Liu 93].

In order to evaluate the gain in performance of the algorithm presented in the previous
section, compared (o the algorithm presented in [Azzopardi and Lloyd 94a] and 1o the
Branch and Bound algorithm, the following experimeni was performed:

A compuler program was written to generate random scheduling problem (Definition 4.1)
in terms of matrices O and t, which represent the routing information and processing
times, for a plant with a given number of jobs and resources. Another program, based on
the Petri net modelling algorithm developed by the author in [Azzopardi and Lloyd 94b]
then converted this information into a timed place Petri net. The following algorithms

were then applied to the Petri net model:

Algorithm A Branch and Bound
Algorithm B Branch and Bound AND 3 heuristics
Algorithm C  Petri net reduction AND Branch and Bound AND 3 heuristics

For each algorithm, the number of times a new marking had to be found was recorded.
This reflected the number of iterations that the algorithm had to perform in order 1o
converge and is directly proportional to the CPU time that is required. To investigate the
improvement of Algorithm C and Algorithm B over the standard Branch and Bound
algorithm, the experiment was performed on scheduling problems with different numbers

of resources, jobs and processing lmes.
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For a plant with a given number of shared resources, it was observed that number ol states
that the Branch and Bound algorithm generated increased very rapidly as the number ol
jobs increased. This occurred to a lesser extent for Algorithm B and to an even lesser
extent for algorithm C. The state space that has to be investigated by the three algorithms
applied o a plant with 2 shared resources in Fig. 4.11 on a linear scale and in Fig. .12 on
a logarithmic scale to reveal more information about the whole range of values. For cach
size of plant an average over 10 randomly generated scenarios were taken.
80000
e
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@ 60000
boc
»
Z 50000
5 40000
w 30000
a
22
g 20000
c 10000
07
2 3 4 5 8
number of jobs
Fig4.11 Scheduling 2 resources
£ 100000
o
=
S 10000
)]
b
- 1000
o
5 100
< 10
=
=
8 1 f : f {
2 3 4 5 6
number of johs
Fig 4.12 Logarithmic scale for the number of iterations
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The results showing the number of iterations required by the three algorithms on each of
the 220 different scheduling problems are tabulated in Appendix A. The lollowing
sraphs (Fig. 4.13 to 4.18) show the improvement obtained by Algorithms B and C over
Algorithm A when applied to plants with up to 7 shared resources. The x-axis represents
the number of jobs and the y-axis represents the improvement factor for Algorithms B

and C over Algorithm A. The following legend was used in the graphs:

Number of iterations required by Algorithm A

Fig. 4.15

Scheduling 4 resources

e Number of iterations required by Algorithm B
I Number of iterations required by Algorithm A
- Number of iterations required by Algorithm C
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Fig. 4.17 Scheduling 6 resources Fig. 4.18 Scheduling 7 resources

From these graphs it can be seen that both Algorithm B and Algorithm C are more
efficient than Algorithm A for all the scenarios that were investigated. Tt can also be seen
that the improvement due to Algorithm C increases at a faster raie than that due fo
Algorithm B, as the complexity of the plant increases. This means that Algorithm C, that
was developed in this Thesis, is applicable to larger DEDS and converges severul imes

faster than previously published scheduling algorithms.

4.6  Design of a re-configurable supervisory controller

In industrial DEDSs, shared resources may break down at unknown intervals. In such a
situation, jobs must be re-routed to make use of the available shared resources. In the
event of a breakdown, the Petri net model within the supervisory controller would not be
a correct representation of the plant unless all possible failures are included in the model.
If it were possible to model all the possible failures, this would result in a much more
complex Petri net because of the additional states that need to be introduced, resulting in

high CPU and memory requirements for its analysis.

To be able to respond to both the changes in the set-up and incorrect response of the
system, this Thesis proposes a re-configurable Petri net model-based controller first
puhlished by the author of this Thesis in [Azzopardi and Holding 95]. The controller uses
state feedback (Fig. 4.19), to detect both changes in the plant configuration and incorrect

-

response of the system.
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The proposed controller combines the Petri net synthesis technique based on moditied
OMT (presented in Chapter 3), a Petri net based scheduling algorithm [Section 4.5.3] 1o
ensure optimal operation, a token-player module [Valette er al. 85], a manager module
and a database containing the OMT specification of the plant, in the form ol a hierarchical

controller illustrated in Fig. 4.20.

Reference
i/p i/ olp
e B Controller ML_;% Plani -
staie feedback
Fig. 4.19 Closed loop confrol set-up

| Tnlerface l
OMT Database Manager Module
Petr1 net Scheduling Token -
modelling module Player
module module
Fig. 4.20 Structure of re-configurable controller

The token-player module controls the plant operation by sending the required signals 1o
the plant to trigger controllable events, in response to state feedback signals received from
the plant as shown in Fig. 4.4. If the controller detects a response that is different to the
expected one, it is able to re-schedule the plant operation. When the controller deteets a
change in the plant configuration (via staie feedback), it con re-synthesise the Petri net
model to reflect the change. The re-scheduling and re-modelling features of the propnsed

controller are described in the following sections.
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4.6.1 Re-scheduling

In practice, there may be situations where actual processing times vary from their
estimated value, or where resources are unavailable for a short period ol time (down
time). In these situations, the response of the plant will differ to that expected by the
controller, so the manager module would re-schedule the plant to keep the plant operation
optimal. Re-scheduling the operation of a plant was suggested by Chang and Liao [94]
(Fig. 4.21) who used a re-scheduling strategy for timely adjusting of the planned schedule
of an FMS 1o cope with disturbances in the plant. In this Thesis the idea of re-scheduling
was adopted and included as one of the facilities of the re-conligurable controller (Fig.
4.10).

OMT
Specification Nominal Updated ‘
Database Nominal Schedule ,~, Schedule Outpint
wmw Scheduling e cncnsnnsas Plant W
Algorithin
Fasi
Rescheduling
Algorithin
Fig. 4.21 Re-scheduling function of the re configurable controller

Re-scheduling is implemented by the Petri net based scheduling algorithm described 1n
Section 4.5.3 of this Thesis. The manager module passes the current state of the plant, in
the form of a marking vector, to the scheduling algorithm, which in turn calculates the
optimal schedule for the plant operation. The resulting partial sequence of transitions is
used as the control law for the token player algorithm and ensures optimal operation of

the plant.

4.6.2 Re-configuration

In a situation where part of the system under control fails unexpectedly, the controller
detects this change through the state feedback and re-synthesises the Petri net model and
analyses it for the behavioural properties that are specified in the OMT analysis model.
Re-configuration is done by using the OMT-hased Petri net synthesis technigque [Section
3.8], the OMT analysis information stored in the datahase and the state feedback

information.
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The new Petri net model has to be analysed and the exclusive-use resources have to bhe re-
scheduled to ensure correct and optimal operation. The flow chart representing this

behavioural aspect of the manager module is illustrated in Fig. 4.22.

G
v

Compare state feedback

-‘*w to that expected by dh--——‘—-“

token-player algorithm

Re-schedule resources
for optimal nperation

Re-synthesise
Peiri net model A

Perform analysis

based on OMT
requirements

Shut down system

Y
G

Fig. 4.22 Manager module re-configuration decision

To illustrate the significance of the re-modelling facility of the controller, consider 4
section of an FMS production path illustrated in Fig. 4.23, with a corresponding Petri nel
representation as shown in Fig. 4.24, with the significance of the places and iransitions
lsted in Table 4.1. Assume that Unit 1 and Unit 2 are both identical production units.
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1 Unit 1 l
| Product 1 v % Product 1§

| Product 2 > Product 2 |

! Product 3 = Product 3 [
! Unit 2 |

Fig 4.23 Section of a production plant

1“&/1\# | =

] 1 ]

Fig. 4.24 Petri net representing section of production plant
| .
- Place Place 1
‘ |
Pl Product 1 is processed in Unit | P4 Unii 1 is available ]
P2 Product 2 is processed in Upit I | PS Unit 2 is availahle [
P3 Product 3 is processed in Unit 2 i
;

Table 4.2 Significance of places and transitions

If, say, Unit 2 were to break down, the production material would have to be re-routed so
that the three products are processed by Unit 1, as shown in Fig. 4.25. This would be
achieved by modifying the Petri net by removing the token from place Ps and re-drawing

the arcs so that product 3 is processed by Unit 1, as shown in Fig. 4.26. Obviously re-

configuration is not always possible; In the case of breakdown of a vital component of the
system, where re-configuration 1s not possible (or not permitted), the controller would

have to shut down the plant.

l . l
‘ Product 1 ] Unit | » Product 1 |

| Product 27 > Product 2 |
K .
| Product 3 §\\ & Product 3 ‘
! Unit 2 |
Fig. 4.25 Production Unit 2 hreaks down
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Fig. 4.26 Modified Petri net

4.7 Conclusion

This Chapter has introduced traditional control theory for DEDSs where the supervisory
controller is based on a state automaton model of the plant. Extensions (o this work were
described where the supervisory controller was based on a Petri net and was driven by a
token-player algorithm. It was then shown how exclusive use resources can be scheduled
hy using Petri net based scheduling algorithms in order io ensure optimal control. A
novel scheduling algorithm based on Petri net reduction iechniques was introduced and
experimental evidence shows that it has a rale of convergence that is several times laser
than previously published algorithms. Finally, a re-configurable controller was proposed
to cater for unexpected changes in the plant. The advantages of the proposed controller

over previously published controllers is that;

e Based on the OMT model, it can automatically re-configure the Petri net supervisor to
accommodate changes in the plant.

o Tt can automatically re-schedule the plant operation in the case ol a fluctuation in
process times or resource breakdown.

«  The last rate of convergence of a Petri net based scheduling algorithm mukes it
feasible to perform on-line re-scheduling where this is allowed by the physical

construction of the plant.
In the following Chapter, an object oriented C++ Petri net class is developed to enahle

analysis of large Petri nets and to enable the implementation of the scheduling algorithm
and token-player algorithm that were described in this Chapter.
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Chapter 5

Design of a Petri net software tool kit

5.1 Introduction

This chapter presents the design of a Petri net software tool kit that was implemented in
object oriented C++ [Stroustrup 94] to: (i) analyse the behavioural and structuril
properties of a DEDS; (i) to control the DEDS by means of a oken-player algorithm and;
(iii) to schedule the allocation of exclusive-use resources. The class structure of the
software and some of the more important algorithms are described. A complete list of
functions that have been implemented in the software tool kit are listed in Appendix R.
The application of the software tool kit is illustrated by the implementation of a Petri net

analysis t0ol.
5.2  The Petri net class

A Petri net is a five-tuple, Z = (P, T, I, O, m) [Definition 2.3} which can be represented

by a pre-condition matrix, H™, a post-condition matrix, H" and an initial marking vector,

X, . where;

¢ The pre-condition matrix represents the input function L. H7[i,j] =1 means that place
j 1s an input place to transition 7.

e The post-condition matrix represents the output function O. H'[i,j]=1 means that
place j is an output place from transition i

X,[j] = n means that in the initial marking of the net, there are n tokens in place i

&

Hence. the Petri net data structure was implemenied in C++ as:

struct pnet{

matrix H_pre, H_post; /I pre & post condition matrices
matrix G, // Incidence matrix

vecior  X0; // initial marking

ini P /I number of places & fransitions
int n, Il reference count

}Epns
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where;

»  H_pre and H_post are the pre-condition and post-condition matrices

¢ (C is the incidence matrix [Section 2.3.4]

o X0 is the ininal marking vector

¢ p=#(P) and (=#(T) are constants representing the number of places and transitions in
the net

s nisa variable that records the number of instances of the Petri net class

To implement the data structure shown above, it was necessary to implement a matrix and
vector class in C++ to provide the respective data structures and operations associated

with vector and matrix algebra, since these are not provided as standard features of C++

To implement algorithms which generate concurrency sets, find deadlock states and
ohserve transition sequences, it is necessary to generate the coverahility graph of the Petri
net. In order to handle this information it was necessary to implement a reachahility tree
class®. This class required the implementation of an integer sel class”™ (o provide the daia
structure for, and allow operations on sets of integers. The classes comprising the Pelri

net ool kit, together with their associations are illustraied in Fig. 5.1.

| Tﬁyﬂ_l _______ o i ‘
¥ Veclor class | Tree class  pe——
| S B
____{ Set class I
L H
— |
Aty - Pewrinet |
Matrix class | e 'Oll_ class ¢
s s
i |
| Timed place 1 Timed Lransmon‘ ‘COTIU‘DHECI
iL_P“Lmﬂgtwﬂgss; Petr net class | [ Petri nel class |
Fig. 5.1 Classes and their associations

The following sections describe the more important functions that are associated with the

Petri net cluass.

These clisses were implemented by Dr. 1. Jang of the 1T Research group, Depl. BEAP, Aston njversiiy.
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5.2.1 Find the set of enabled transitions

A Petri net transition is enabled [Definition 2.4] when its input places are full. Therefore,
the following algorithm, find_enabled_transitions( M), was designed to find the set ol

enabled transitions of a Petri net.

VieT
(VpeP:H[1.p]=1LM[1,p]>0) = r€ET

where, M is the marking vector, and ET is the set of enabled transitions

5.2.2 Find the new marking

The new marking, M, of a Petri net resulting from firing transition, r& T, ai marking
M is obtained by removing a token from each of its input places and adding a token 1o
cach of its output places. Hence, the following algorithm, find_new_marking(t), (o find

the new marking by firing transition (;

Vp e P.M, . [p.f]= M p.r]+ B[ p.i] - H [ p.1]

5.2.3 Generating the coverability graph

To generale the coverability graph of a 1-bound Petri net, the following algorithm, based
on a depth-first strategy [Cormen et al. 93] was developed and incorporated into the Petri

net C++ class:

1. find_enabled_transitions(M)

2. select one enabled transition, 1 € ET

3. find_new_marking(t)

4. If a place is not 1-bounded, represent this by an ‘o'

5. Marking is a repeated marking — £0 10 sSiep 8

6. Save marking and set of enabled but unfired transitions

7. go 1o step |

8. Rack track 1o a marking where there are enabled but
unfired transitions

9. g0 10 Ssiep 2
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5.2.4 Calculating the P- and T- invariants

To calculate P and T-invariants, an efficient algorithm, presented and proved correct by
Martinez and Silva [82]. This finds all invariants for an ordinary Petri net with n places,
m transitions and an incidence matrix A [Section 2.3.4], by solving the simultaneous
equations defined in [Section 2.3.4.1]. The algorithm was implemented as one of the

functions of the C++ Peltri net class.

Step. 1
5 « Let B = identity matrix of dimension n x n, A = the incidence matrix.
? Construct the matrix [BIA]

Step 2
For each index j of transition Tj

«  Add to matrix [BIA] as many rows as there are linear combinations of
(wo lines, in which the element in column j is greater than zero.

s FEliminate from matrix [BIA] the rows whose element in column j is not
Zero.

Step 3
s The P-invariants correspond to the non-zero rows of B

To illustrate the algorithm, consider its application to the example shown in Fig. 5.2:

TI T2 T3 T4
T1
PRI W YU YOO W NS B | WY § SO | P1
1
| o 4 P2
VIV YOO B sV 1 LTV | W T | P

/4 1(}/.‘)’/”//1’//0//'//0//}//“//2],//. s P4
N VIRV RRVI R DR KR 'R/ BN UK GO SRR RN i
s b A K s Ar s A ss A s 2ht s B s P1F2
bt bo e Bocfladodiaass P1+P3

| 11616 0000 Pi+P2+P4
| 10101 00600 P1+P3+P5
Fig. 5.2 Iustrating the algorithm to find P-Invariants

y 0t-1 0 0 1
0 1 y 0 1 -1 0 0
The matrix [RIA]={0 0 1.0 0f 1 0 -1 0
0 0100 1 0 -1
00 110 0 1]
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To eliminate the elements in the column representing T, we add rows 1 and 2, and rows |

and 3 10 form two new bottom rows and delete the 1st three rows to get:

0001010 1 0 -1
0000 110 0 1+
1 1000(0-1 0 1
101000 0-1 1

To eliminate the elements in the column representing T,: we add rows 1 and 3 1o form

new bottom row and eliminate rows 1 and 3 to get:

0000 1100 1-1
1010000 -1 1
1101000 0 0

Finally, to eliminate the elements in the columns representing Ty and T, we add rows |

and 2 1o form a new bottom row and delete rows 1 and 2 to get:

110100000“
1010 1{000 0

Using this result and the initial marking we conclude that the P-invariants are
P +P,+P, =1 and P, +P,;+P;=2. This maiches the resulls ahtained in [Section
2.3.4.3] where reduction methods were used to obtain the P-invariants of the Petri net
ilustrated in Fig. 5.1. The algorithm to calculate the T-invariants operates n a similar
fashion to the one that calculates the P-invariants except that B = identity matrix of
dimension m x m, A = the transpose of the incidence matrix. The algorithm operates 10

eliminate the elements in the columns representing the places of the Petri net.

5.3 Petri net extensions using inheritance

When using object oriented techniques, one can define a new class, starting {rom another
class, by means of inheritance [Booch 94]. The inherited class contains all the attributes
and operations of the super class but has some additional attributes and operations.

Therefore inheritance makes it possible Lo re-use previously designed classes.

By using inheritance, it is possible to re-use the Petri net class [Section 5.2] o implement
classes of Petri net extensions (e.g. timed Petri nets). This is illustrated in Fig. 5.1 and
demonstrated in [Scct'(m 5.3.1] and [Section 5.3.2], where two new classes representing
timed-place Petri nets [Sifakis 78] and conirolled Petri nets [Krogh 87] are designed.
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5.3.1 Timed-place Petri net

where P, T, I, O, m have the same meaning as in the definition of an ordinary Petri net
and 0: P — R is the delay vector, whose ith component represents the time associated

with the ith place.

From this definition, it can be seen that a timed place Petri net has the same data struciure
as an ordinary Petri net but has an additional vector, 8. Therefore, by using the
inheritance facility of object oriented C++, the timed place Petri net (TPPN) class was

derived from the Petri net class. Hence, the TPPN data structure is:

class timed_place_petrinet:public petrinet
struct tppnet{
vector i; /ldelay vecior
intn, /Ireference connt
} *tppn;

Some of the functions of the TPPN class, such as those to find the P- and T- invariants are
identical to those of the Petri net class. An advantage of using inheritance is that these
functions can be used by the inherited class and therefore it is not necessary to re-define
them. These functions are called "virtual functions" [Stroustrup 94]. On the other hand,
some functions, such as those to find the list of enabled transitions and generate the
reachability graph. need to be re-defined because the condition for a transition to he

enabled in a TPPN is different to that in an ordinary Petri net.

In a TPPN, a transition t € T is enabled iff Vp e I(1), m(p) > O for a time, 6> 0(p).,

therefore this algorithm was implemented as one of the functions of the TPPN class.

5.3.2 Controlled Petri net

As defined in Section 4.3, a controlled Petri net (CPN) is a five-tuple Z. = {P»Tsé%ﬁ}s S
where P is the set of places, T is the set of ransitions, &= (PxT)U (T xP) is the set of

directed urcs connecting places and transitions, y is the finite sel of coniral places,
represented hy squares and f3 is the set of arcs associating control places with transitions.
Therelore the data structure of a CPN is equivalent to that of an ordinary Petri net with in
additional set of control places and set of arcs that link the contral places 1o the coniralled
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ransitions. This information can be represented in the form of a vector, B, where B,

contains the transition number to which the ith control place is linked to. Hence the CPN

data structure has been implemented in C++, as:

class controlled_petrinet:public petrinet {
struct cpnet {
vector B; // control place connection
int n; /[ reference count
) *cpn;

5.4  The reachability tree class

To analyse the dynamic behaviour of the Petri net using reachahility tree or coverahility
graph analysis [Section 2.3.3], it is necessary (o provide a data structure that can handle
this information and provide the analysis facilities. This was done hy implementing «
reachability tee class which consists of two data siructures.  One that records the

reachability tree information, including the number of nodes and their inlerconnections,

whilst the other data structure records the node information, including the marking, a lis

of enabled transitions, preceding and succeeding nodes.

The tree data structure and the node data structure, implemented in C++ are shown below:

class tree {
_; Tree_node rt;
i mt counter; // reachability tree node counter
int size; // keep the size of allocated memory

struct  riree_node

[
i

vector  marking;
Ini_Set enabled_trans; // set of enabled trans
inf pre, post; // no of pre & posi nodes
vector pre_nodes, pre_trans;
vector  posi_nodes, posi_trans;
int n; /l reference index
! node;




5.4.1 Deadlock states

The algorithm to find the set of states where deadlock occurs, investigates the nodes of
the reachability tree and checks whether any transitions are enabled at that node. 1If no

ransitions are enabled, then that node represents a deadlock state. Hence, the algorithm:

void reach_tree :: dead_lock_markings() const

[ for (int i=1; i<=counter; i++)
if (rt[i).enabled_trans().is_empty()==TRUE)
{ cout << "\n\MMarking" << rtfi}.n() <<"="

(rt[i}.marking().vec2set()).set_print();
1
J

‘ 5.4.2 Concurrency sets

Concurrency sets [Skeen and Stonebraker 83] were introduced to verify the correciness of
commil protocols in a distributed database sysiem. Hill and Holding [90] exiended the
application of concurrency seis to protocols modelled using Peiri neis and were used hy
Sagoo [92] to analyse Petri net models of hard real-time systems and by Jiang e/ al. [96]

to analyse the safety properties of a multi-axis high-speed industrial machine.

The concurrency set of a place p, € P is the set of places that can be marked concurrently
with p,. The algorithm to find the concurrency set of a Petri net place involves

investigation of the states in the reachability tree, hence the algorithm:

/! calculate the concurrent set for the given place
Int_Set reach_tree :: concurrency_set(const int place_index) consl
{

Int_Set conc_set;
for (int i=1; i<=counter; i++)
if ((rtfi).marking().val(place_index-1))!=0)
conc_set=conc_set + (rtfi].marking()).vec2sel();
conc_sel.element_delete(place_index);
refurn conc_sex




5.5  Using the Petri net tool kit facilities

The C++ Petri net tool kit is a C++ library that allows handling of Petri net, Petri net
extensions and reachability tree objects. This section describes the principle functions
that have been implemented and included in the Petri net tool kit. It is not feasible to
describe all the functions concisely in this Thesis, therefore, a list of all the functions

provided by the Petri net tool kit are listed in Appendix B.

5.5.1 Petri net functions

This section lists the functions provided by the Petri net class. These functions operaie on
the data structure described in Section 5.2. To illustrate the way in which functions can

he used, in the following text they are applied to a Petri net ohject called PN.

5.5.1.1 Constructors
In C++, a constructor [Stroustrup 941 is a function that initialises and allocaies new

objects. In the Peiri net class, the following types of consiructor were designed:

1. Create a Petri net object from given pre-condition matrix, post-condition matrix,
initial marking vector, number of places and number of transitions. This constructor 18
defined as:

petrinet(matrix, matrix, vector, int, int);

To illustrate the usage of this constructor, assume that we have defined the Tollowing:

matrix pre_condition, post_condition;
vector mitial_marking;
nt number_of_places, number_of_transitions;

Then to instantiate a Petri net object, PN, using the information defined above, one would
use the constructor:

petrinet PN(pre_condition, post_condition, initial_marking,
number_of_places, number_of_transitions);

2

Create a Petri net object from a net list file . This constructor is delined as:

perrinet(const char * netlistfile);
Then. to instantiate a Petri net ohject, PN, from a net list file called netlist.dat, one would

tse the constructor:

perrinet PN("netlist.dar”);
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where "netlist.dat" is a text file, containing information regarding the size of the Petri net

and the way in which the places and transitions are connected, with the following formalt:

# Netlist written 1n standard format
#Wed Oct 18 15:05:56 1995

#

places=40  (ransitions=27

transition 1: input places 2 }: output places { 2 13 };
transition 2: input places 5 }: output places { 3 14 };
lransition 473 415);

{11
{21

3: input places { 3 14 37 }: output places {
transition 4: input places { 4 }: output places { 5 };
transition 5: input places { 5 13 }: output places { 6 12 };
... ele.

i

3. Create a Petri net object from a graphics file. This constructor is defined as:

perrinet(char * graphicsfile):

Then, 1o instantiate a Peuri net object, PN, from a graphics file called graphics.dat, one
wotld use the constructor:

perriner PN("graphics.dat");

where "graphics.dat" is a text file of a similar format to "netlist.dat" shown above, but
also includes information regarding the location of each place and transition in terms of

Cartesian co-ordinates.

5512 File output
To save the attributes of a Petri net object in the form of a net list file, the following
function was defined:

void write_netlist(char *filename, char *msg = R

To save the attributes of the Petri nel object, PN, on a file called "netlist.dat” with a
message in the file header, the function would be used as shown below:

PN.write_netlist "netlist.dar","This is a demo Petri net"”);

5.5.1.3 Accessing the attributes of Petri net ohjecis
The following virtual functions were implemented to access the data structure of the Peir

net objects:

PN.Max_place_number() and PN.Max_rransition_number() veturn the Targest place and

ransition number respectively.
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PN.Initial_marking() returns the initial marking vector of the Petri net, PN.

PN.Inpur_places(transirion) and PN.Outpur_places(transition) return the input places and
output places of a transition respectively.
PN.Inpur_rransitions(place) and PN.Outpur_transitions(place) return the input transitions

and output transitions of a place respectively.

5.1.4 Petri net evolution

|94

Three functions that are related to the Petri net evolution have been implemented

according to Definition 2.4 in Section 2.2.2. These are:

PN find_enabled_transitions(marking_vector) returns a list of transitions that are enahled

for a particular marking vector called "marking_vector" [Section 5.2.1].

PN.find_new_marking(marking, rransition) returns the new m arking of the Petri net,

obtained by firing a particular transition at a particular marking [Section 5.2.2].

PN.find_marking(marking, transition_sequence) returns a marking obtained hy firing ihe

(ransition sequence starting from the marking vector that is passed to the function.

5.5.1.5 Petri net analysis
The following functions were implemented to enable the automation ol coverability

oraph, invariant and reduction rules analysis of Petri nets.

PN.coverability graph() generates the coverability graph [Section 2.3.3] of the Petri net,
PN. This is an implementation of the algorithm described in Section 5.2.3. Analysis
functions to find liveness, deadlock states, unbounded places and concurrency sets are
functions associated with reachability tree objects. They have also been implemented and

are listed in Appendix B.

The virtual functions PN.p_invariants() and PN.t_invariants() calculate the P- and T-

invariants [Section 2.3.4.1] respectively, using the algorithm described in [Section 5.2.4].
PN reductionR1() returns the index of place that can he substituted [Section 2.3.5.1],

PN reducrionR2() returns the index of neutral fransition [Section 2.3.5.2]1 und

PN reducrionR3() returns the index of an identical transition [Section 2.3.5.3].
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. conu

Then, PN.sub_place(place_number) performs a place substitution on the place with index
place_number and PN.rem_trans(rransition_number), removes the transition with mdex

transition_number.

5.6 Development of a Petri net analysis tool

To be able to analyse large Petri net models generated during this research work, 1t was
necessary to have access to a Petri net analysis tool. The requirements for this tool were
that it was to provide graphical and text input, analysis of ordinary and timed Petri nets,
reachability tree analysis and invariant analysis. Therefore, a Petri net analysis tool was
developed by using the C++ Petri net tool kit developed in this Chapter, a graphic user
interface (GUI) library! and a public domain Petri net graphical simulator=.  The

functionality of the Petri net analysis tool is described briefly in this section.

The main window consists of a grid where Petri net graphics are displayed and four drop-

down menus (Fig. 5.3) that contain the main functions of the analysis tool.

Fig. 53 The analysis tool menus

The "File" menu (Fig. 5.4) provides file handling facilities. The Petri net information can
he loaded or saved in the form of a graphics file or in the form of a net list file (without

graphics).

LSUTT. o GUI Tibrary developed hy the Compalter Science Department, University of Virginia, USA
MPetri. w public domain Peiri net simulaior written by Sunil Gupta, Branel University, UK

1
o
Fud
N
3
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Fig. 5.4 The File drop-down menu

The Petri net can also be input by interactively using the mouse and graphical mput
buttons (Fig. 5.5) to instantiale places, transitions, tokens and arcs. The Petri net
components are positioned on a graphics panel using the mouse. The Petri net
components can he labelled (Fig. 5.6) to make the Peiri nel graphics more understandable.

Fig. 5.5 Graphical input buttons

Fig. 5.6 Labelling places and transitions
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Fig. 5.7 Analysis drop-down menu

When the Petri net is loaded into the analysis tool, then, analysis may be performed by

choosing the appropriate analysis function from the "Analysis" menu (Fig. 5.7).

The analysis tool described in this section has been successfully uiilised in the research
activities of the IT Research Group at Aston University and has been used (o analyse Peurt
nets developed in this Thesis and in [Holding et al. 95, 96, Jiang et al. 96, Jiang and
Holding 96]. These applications include Petri nets of over 100 components and reachable

state spaces in excess of 1500 states.

5.7 Conclusion

This Chapter has presented a Petri net tool kit which provides an exlension Lo object
oriented C++ that allows operations on Petri nets, Petri net extensions and reachability
iree objects. Within the design process of a control system for DEDSs, it can he utilised
to analyse the behavioural and siructural properties of the system [Section 2.3]; 1o
implement the token-player algorithm [Section 4.3] and to implement algorithms 10

cchedule exclusive-use resources [Section 4.5]
In the following Chapter, the object oriented methodology, scheduling algorithms and

software ol kit that were developed in this Thesis have heen applied 1o design and

analyse two complex industrial plants.
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Chapter 6

Analysis and control of industrial DEDSs

6.1 Introduction

This chapter illustrates how the object oriented methodology that has been developed in
this Thesis can be used to model, analyse and optimally control industrial DEDSs. The
methodology is applied to two indusirial DEDSs. The first is a prototype can sorting
machine, developed by Eurotherm Controls Ltd., described in [Jiang 95], and the second
example is the semiconductor testing facility of SGS-Thomson Microelectronics (Malta)

Lid. described in [Azzopardi et al. 96].

6.2 A high-speed can sorting machine

The can sorting machine illusirated in Fig. 6.1 was documented in [Tiang 95, Holding e1
al. 95] where a System Behaviour Driven Method (SBDM) was used 1o obtain an
Extended Timed Place Transition Net (XTPTN) model of the machine and its behavioural
and safety properties were verified using temporal logic. In this section, the modified
OMT methodology [Chapter 3] and Petri net tool kit [Chapter 5] are applied to the high-
speed can sorting machine to design the synchronisation logic for the independently
driven axis of the machine, and illustrate the modularity and re-usability aspects ol the
methodology. Fig. 6.2 and Fig. 6.3 are a side elevation and a front view of the can sorting

machine.

6.2.1 Problem statement

The prototype can sorting machine is illustrated in Figs. 6.1, 6.2 and 6.3. Cuns are
ransterred from the feeder 1o Druml by Pistonl, from Druml to Drumz by Piscon2 »
and from Drum? to the conveyor by Piston3. The two drums, three pistons, feeder and
conveyor are driven by independently controlled motors and need to he synchronised so
Uhat cans can he ransferred safely between the different components of the machine. The

drums rotate by a fixed angle of rotation upon reception of 4 starc rotation signul.
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A piston inserts and withdraws as a continuous motion on reception of a start cycle
signal.

//szs

DD DD
7 =

Feeder \ Vi

Piston2

Piston]l  ~ Q ) i 7

4=t

Piston3 Conveyor

Druml C Dum2

Fig. 6.1 Eurotherm conirols prototype can sorting machine

Cans

Feeder

Piston2

Conveyor
Piston3
Drum] Drum?2
Fig. 6.2 Side elevation
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Feeder \
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Plunger3 —
[/ \\ ]
Druml Dium?2

Fig. 6.3 Front view
A controller is required to provide the synchronisation logic to satisfy the following
operational requirements [Jiang 95] in order to ensure the safe and correct operation of the

machine :

1. The drum should not rotate whilst a piston is inserting into it

o

The piston should not insert while the drum is rotating

For 4 can to be transferred between the two drums, both must be stationary

o

4. The independent motion of the drums is permitted.

6.2.2  Object model

In this problem we can identify four classes of ohjects: drum, piston, conveyor and feeder.
For simplicity, we will assume that the drums can be stationary in ane ol three positions
or rolating from one position to the next. The drum is controlled hy 4 starc
rotarion signal, whilst the event that stops the drum rolating is an automatic eveni.

The drum is initially stationary and al Pogition_1.
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A piston inserts and withdraws as a continuous motion on reception of a start cycle
signal, therefore a piston may be either stationary or performing an insert cycle.
The piston is initially stationary. The conveyor can be running or stationary
and is initially running. It can be started or stopped manually. The can feeder is
always available for the piston to insert. Thus, the attributes and functions of the drum,

piston, feeder and conveyor are shown in Fig. 6.4.

piston
drum insert cycle:boolean:false

stationary:binary:irue stationary:boolean:true conveyor
rotating: binary:false running:hoolean:irue
Position_1:binary:irue start cycle stationary:boolean:false
Position_2:binary:{alse
Position_3:binary:false start conveyar

feeder slop conveyor

starl rolation . . )
Can available :hoolean: e

Fig. 6.4 Definition of classes

Two pistons are associated with each drum and there may be gither one or two drums
qssociated with a piston. There is one piston associated with a conveyor and @ piston miy
or may not be associated with a conveyor. There is one piston associated with a feeder
but a piston may or may not be associated with a feeder. Therefore, the class associations
are illustrated in the object model diagram of Fig. 6.5 using standard OMT notation

[Rumbaugh e al. 91].

nserts into drum
2

1,2

e I

| piston ;Ln-“’ﬁﬂm&o conveyor

|

| SR _,_.7:__‘”.,, USRS
j .
|
0 feeder
Mserts mio

Fig. 6.5 Can sorting machine object diagram
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The object model of the can sorting machine consists of the class definitions of Fig. 6.4
and the object model diagram of Fig. 6.5.

6.2.3 Dynamic model

The first step in designing the dynamic model of the machine is to identify the
communication events between the objects. In this problem, the drum, conveyor and
feeder objects communicate with piston objects when a piston inserts into them. On the
other hand the piston communicates with the other objects by inserting into them.
Therefore, the OCTs are as illustrated in Fig. 6.6.

piston inseri pisfon insert

drum e “I conveyor ~-~~i

e _insert into R

| . .
) { object piston msert
] pision —i feede »
i
Fig. 6.6 The object communication transitions (OCTs)

The next stage involves developing a Petri net model for each class to describe 1ts
important dynamic behaviour. The objects’ binary attributes, defined in the object model,
are represented by Petri net places in the dynamic model and events are represented by
wransitions. The controllable events are represented by controlled transitions [Krogh &71.
The places and transitions are then linked by directed arcs Lo represent the dynamic
behaviour of the objects as described in the problem statement. The Petri net maodels of

the piston, conveyor, drum and feeder class are illustrated in Fig. 6.7.

To obtain the complete Petri net model that represents the dynamic hehaviour ol the
machine. it is necessary to initialise the required objects and "hook" them together my
merging the relevant OCTs. As described in the problem statement, the can sorting
machine consists of two drums, three pistons, a feeder and a conveyor. Therelore twa
drum ohjects: Druml and DrumZ; three piston objects: Pistonl, Piston2, Pisronsi;
i feeder object: and conveyor object are initialised and a Petri net is formed by merging

the relevant OCTs as shown in Fig. 6.8,
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Fig. 6.8 The Petri net model representing the can sorting machine

6.2.4 Functional model

The functional model defines the constraints of the system operation. The output of the
functions change the state of the control places in the Petri net model. Therefore in this
section, functions are specified to restrict the dynamic behaviour of the system to that
described in the problem statement.  (Note: The "." notation normally used in OO
terminology is adopted. ie. Pistonz.stat ionary = true means thatthe atuibute,
stationary, that belongs to P iston2 is true, ie. "Piston 2 is stationary”..

Drum? . control = 1 means that the control place of Drum?2 i1s equal to one, etc.).

Function 1: Druml.control
Druml .stationary A Pistonl.stationary A Piston2.stationary —

ruml .start_rotation.

L/i
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Since Druml.stationary is a pre-condition of Druml .start_rotation thatis
already detfined by the Petri net structure, then;

Druml.control = Pistonl.stationaryA Piston2.stationary .. (6.1)

Function 2: Drum2.control

Drum? .stationary A Piston2.stationary A Piston3.stat ionary —
Drum? .start_rotation.

Since Drum2 .stationary is a pre-condition of Drum2 . start_rotation thatis
already defined by the Petri net structure, then;

Drum? .control = Piston2.stationary A Piston3.stationary .. (6.2)

Function 3: Pistonl.control
reeder.can_available A Pistonl.stationary A Druml .stationary
— Pistonl.start_cycle.

Since Feeder.can_available,Pistonl.stationary and

Druml . stat ionary are pre-conditions of Pistonl.start_cycle that are already defined

by the Petri net structure, then Pistonl.control = 1 .. (6.3)

Function 4: Piston2.control i

Drum? .stationary A Piston2.stationary A Druml.stationary —

Piston2.start_cycle.

Since Drum? . stationary, Piston2.stationary and Druml .stationary are
pre-conditions of Pistonz. start_cycle that are already defined by the Peuti net
structure, then;

Piston2.control =1 ... (6.4)

Function 3: Piston3.control
Conveyor.running A piston3.stationary A Drum2.stationary —
P

iston3.start_cycle.
Since Conveyor . running, Piston3.stationary and Drum2 .stat ionary are

pre-conditions of Piston3. start_cycle that are already defined by the Peui net

structure, then;

Piston3.control =1 ... (6.5) ‘

Function 3: conveyor.control

Conveyor .start and Conveyor. stop are controlled manually by an operator.
Therefore. since the initial condition of the conveyor is that it 1S running.
r.control_1 = conveyor .control_2 = 0. . (6.6)

SO TN
cConvey

@]

1
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6.2.5 Behavioural Analysis

The Petri net, with the appropriate functions defining the states of the control places, was

analysed using the Petri net analysis tool [Section 5.6]. In this particular case, since the
functions are based on states that are modelled as Petri net places, the controlled Petri net
was converted into an ordinary Petri net by adding arcs to implement the functions as
additional pre-conditions for the controllable events. The Petri net model was verified Lo

be live, deadlock free and 1-bounded. Table 6.1 shows the complete concurrency sets Of

the Petri net illustrated in Fig. 6.8. Concurrency set analysis [Jiang e al. 96] was used in

order to ensure that the functional and safety requirements, specified in the problem

statement, were satisfied.
State Place | Concurrency Set
Feeder.can_available |1 {2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16,17, 18}
Conveyor.running 2 {(1,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18}
Pistonl.stationary 3 (1,2,4,5,7,8,9, 10, 11, 12 13, 14, 15,16, 17, 18}
Piston2.stationary 4 {1,2,3.,5,6,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18}
Piston3.stationary 5 {1,2,3,4,6,7,9,10, 11, 12, 13, 14, 15, 16,17, 18}
Pistonl.inserting 6 {1,2,4,5,7,8,9,11,12, 13, 14, 15, 16,17, 18}
Piston2.inserting 7 {1,2,3,5,6,8,9,11, 13,14, 15, 16, 17, 18}
Piston3.inserting 8 (1,2,3,4,6,7,9, 10, 11, 13, 14, 15, 16, 17, 18}
Drum_1.stationary 9 {1,2,3,4,5,6,7,8, 11,12, 13, 14, 15, 16, 17, 18}
Drum_1.rotating 10 {(1,2,3,4,5,8,11, 12, 13 14, 15,16, 17, 18} i
Drum_2.stationary 11 |{1.2,3,4,5,6,7,8,9,10, 13, 14,15, 16, 17, 18} ;3
Drum_2.rotating 12 (1,2,3,4,5,6,9, 10, 13, 14, 15, 16, 17, 18} ‘i‘
Drum_1.positionl 13 {1,2,3,4,5,6,7,8,9,10, 11, 12, 16,17, 18} |
Drum_1.position2 14 {1,2,3,4,5,6,7,8,9,10, 11, 12, 16, 17, 18} 15‘
Drum_1.position3 15 (1,2,3,4,5,6,7,8,9,10, 11, 12,16, 17, 18} I
Drum_2.positionl 16 {1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15}
Drum_2.position2 17 {1,2,3,4,5,6,7,8,9,10, 11, 12,13, 14, 15}
Drum_2.position3 18 {1,2,3,4,5,6,7,8,9, 10,11, 12, 13, 14, 15}

Table 6.1 Concurrency sets

Property 1. The drum should not rotate whilst a piston is inserting into it.

This property can be verified by analysis of the concurrency sets from which it must be
shown that Druml.rotating is not present in the concurrency set of
pistonl.inserting and PistonZ. inserting, and Drum2 .rotating is not-

present in the concurrency sets of PistonZ.insertingand Piston3.inserting.

This can be verified by inspection of Table 6.1.
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Property 2. The piston should not insert while the drum is rotating.

To verify this property, Pistonl.inserting and Piston2.inserting mustnot
be present in the concurrency set of Druml . rotatingand, Piston2. inserting,
and Piston3.inserting must not be present in the concurrency set of

Drum2 .rotating. This can be verified by inspection of Table 6.1.

Property 3. For a can to be transferred between the two drums, both drums must be
stationary.

Therefore the places representing Drum_1.rotating and Drum?2 .rotating must

not be present in the concurrency set for PistonZ2.1ns erting. From Table 6.1, can

he seen that places 10 and 12 do not belong to the concurrency set of place 7, therefore

this requirement is satisfied.

Property 4. The independent motion of the drums is permitted.

To maximise performance, the independent motion of the drums is permitted and
required.  Therefore the places representing Drum_1.rotating and
Drum? . rotating must be present in the same concurrency set. It can be seen from
Table 6.1 that place 10 is present in the concurrency set of place 12, hence this

requirement is satisfied.

6.2.6 The controller

The can sorting machine can be controlled by a PLC or microprocessor based controller
as shown in Fig. 6.9. The controller executes a token player algorithm that is driven by
the state feedback signals from the machine. The controller responds by sending the
control signals to trigger the controllable events. The set of control signals corresponds to
the set of control places in the OMT dynamic model. Therefore, in this application, the
set  of control signals are: Druml. contol, Drum2.control,

Pistonl.control, PistonZ. control, and Piston3.control.

control signals |

] \
1
|

Controller g Machine |
| |
| |

A ‘ !
state feedback
Fig. 6.9 Control of the can-sorting machine
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6.2.7 Comparison with a previous design

The can sorting machine described above was first documented in [Jiang 95, Holding ¢7
al. 95] where a System Behaviour Driven Method (SBDM) was used to obtain the rule-
hased functional requirements of the system and the behaviour of the machine was
modelled on an XTPTN model in [Jiang 95]. The methodology (SBDM) developed by

Jiang [95] and the resulting model are discussed briefly and compared with the OO

methodology and resulting CPN developed in this Thesis.

SDBM is based on Structured Common Sense [Goldsack and Finkelstein 91] that was
developed to support the construction of a formal requirements specification for real time

systems. The steps defined in SBDM are:

« Identify each autonomous component within the system
«  Determine the actions that each component performs

- Determine the states that each component can be in.

« Identify the events that trigger state transitions
e Determine the links and interactions between the states and construct a rule based

representation of the behaviour of the system

Jiang [95] also developed a method for translating the rule based representation mto an

XTPTN to enable behavioural and timing analysis. This was extended by Holding et al.
(93] to translate the rule based representation into a CPN. The application of SBDM to
the can sorting machine described above, resulted in the CPN illustrated in Fig. 6.10

where the semantics of the places and transitions are as defined in Table 6.2.
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16

|
|
|
|
|

| Place | Entity Action / interpretation|
| | Drum1 | Rotate
) | Druml | Wait_to_transfer
3 | Drum 1 | Committed_to_transfer
L4 ' Drum?2 | Rotate
C5 | Drum? | Wait_to_transfer
6 | Drum2 | Committed_to_transfer
7 - Transfer Slider | Approach_motion
8 - Transfer Slider | Decision_position
9 ~Transfer Slider | Insert_motion
10 . Transfer Slider | Abort_motion
11 - Transfer Slider | Return_motion
12 " Synchronisation logic | Slider_insert_inhibit
13 - Synchronisation logic | Drum_rotate_inhibit
Table 6.2 Semantics of SFC model of multi-axis system
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Transition Associated Condition | Mnemonic Comment
tl Druml_rotate_completet D1_ROT_COMP
12 Drum?2_rotate_completey D2_ROT_COMP
13 Slider_return_complete | S_RET_COMP
4 Slider_approach_ S_APP_COMP
complete
t5 cl c1 and c¢2 ensure mutual
6 c? exclusion between
8 —C] A= transitions on selection
t10 S_insert_complete S_INSERT_ construct at Step 12
COMP

Table 6.3  Conditions of SFC model of multi-axis system

Jiang [95] proved that the Peti net in Fig. 6.10 satisfies the safety and liveness criteria
that were specified in the problem statement however, the CPNs of Fig. 6.8 and 6.10 are
different in various respects. The CPN that was designed using the modified OMT (Fig.
6.8) is clearly modular and shows the separate objects and their synchronisation by means
of the OCTs, whereas this is not the case in the CPN that was obtained using SBDM (Fig.
6.10). This makes the CPN of Fig. 6.8 more clear and easier to understand than the CPN
of Fig. 6.10. Furthermore, the modularity of the CPN of Fig. 6.8 makes it easier L0 re-use
modules and to make modifications whereas any modifications to the CPN of Fig. 6.10
would have large ripple effects. Another major difference between the two CPNs 1s the
interpretation of the control places. In the CPN that was designed in this Thesis, the
control places have the same interpretation as defined by Holloway and Krogh [90], and
therefore make use of functions (defined in the functional model) to define their states.
However, Holding et al. [95] used the control places to represent feedback from the plant.
This makes it very difficult to analyse the CPN of Fig. 6.10 unless additional work 1s done

to define functions which simulate feedback from the machine.

Although there are similarities between OMT and SBDM in that the first stages involve
identifying the autonomous components (objects) in the system, there are major
advantages that the modified OMT presented in this Thesis has over SBDM. First of all,
SBDM. unlike OMT, does not distinguish hetween static (object), dynamic and functional
models. Secondly, OMT is more suitable for the analysis of larger systems because it
allows re-usability by organising objects into classes and by using inheritance whereas
SBDM requires the identification of actions, states and events for each object. Also,~
OMT designs are modular and therefore they are easier to understand and modity and
object oriented designs can be easily implemented in OOP languages such as CH++.
Finally OMT uses graphical representation for the object model. dynamic model and

functional model, making designs easier to understand.
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6.3 A semiconductor testing plant

A semiconductor testing plant is a complex batch process plant with large number of
processing units and products. A large capital is involved in operating these plants, o it
is important to model and analyse these systems to ensure optimal operation. This section
illustrates the application of the methodology developed in this Thesis, to the
semiconductor testing plant of SGS Thomson Microelectronics Ltd. in Malta which has

resulted in the publication of a conference paper [Azzopardi ef al. 96}.

6.3.1 Description of semiconductor testing plants

A semiconductor testing plant1 consists of a number of processing units such as testers,
ovens, printers, lead-straighteners, scanners and packing machines (Fig. 6.11).
Semiconductor devices of a specific type are tested in approximately constant size

batches.

Raw Material Batches Finished Product Batches

Testers D

O J O O
I | D)

1 | l | Scanners Packing
b L
DD DD DD DD O O o O
\ Printers
0]
Fig. 6.11 Layout of a Semiconductor testing plant

Oven

Raw Material  Tegter | Tester 2 Baich 1o Packing
Batch _> ol _>— Department
. ED D D and Finished
Product Stores

Fig. 6.12 A typical product flow

e

U Buged om the testing facility of SGS-Thomson Micraelectronics plant in Malta.
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Typically a batch must go through a number of tests using various testers, a burn-in or
bake period, printing, lead straightening, scanning and packing (Fig. 6.12). Batches of

different types of devices must undergo different production paths and the duration of

each process differs depending on the type of device. Each tester is capable of testing

different devices by using different device handlers and test software.

The number of batches of the required types of device are calculated typically on a
monthly basis depending on customer orders. The main problem for production control
personnel is to allocate batches of different products to the testers and other machinery in

order to avoid bottlenecks, maximise throughput and machine utilisation.

Semiconductor plants are fast moving batch process plants in which time for analysis and
scheduling is very limited. Since optimal scheduling of a large number of machines to
maximise throughput is a very difficult and time consuming task, rule-of-thumb
scheduling methods are often used to arrive at workable but sub-optimal schedules
[MacCarthy and Liu 93]. The SGS-Thomson semiconductor testing facility in Malta 1s a
hatch process plant which currently tests 700 different products using 100 testers of 21
different types, 26 bake ovens and 29 burn-in ovens. If one were to mathematically
model such a plant, it would be possible to apply scheduling algorithms to the model,
ensuring optimal control and maximising throughput of the plant. Furthermore, by
atilising the controller designed in Chapter 4, the plant would be able to be operated

optimally, even in the event of a production unit breaking down.

In the following sections we show how OMT, as modified in this Thesis, and Petr1 net
theory were applied to model a production run of the micros production line of the
semiconductor testing plant at SGS-Thomson Microelectronics, Malta.

6.3.2 Problem statement

The micros production line consisted of 10 Type-A testers, 3 Type-B testers and 4 Type-

C testers. The production requirement consists of 51 products. The products are tested

using one of the two test flows: Test or Test-Bake-Test. The test flow and test time for

each batch of material of the products that have a Test-Bake-Test flow are specified in "

Tahle 6.4. The test times are measured in hours. It is required to model the plant and to

schedule it for its optimal operation.
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PrTod. Tester Ist test bake Tester 2nd test

No. No. time time No. time
1 1 4.5 26.5 8 8.5
% 1 28.5 38.5 8 68.6
3 1 129 38.5 7 379.8
4 1 31.5 38.5 9 77
S 2 117.5 38.5 8 282.7
6 3 117.5 38.5 9 282.7
7 3 117.5 38.5 10 282.7
8 4 105 38.5 11 268.3
9 2 45 38.5 12 108.3
10 4 111 38.5 12 234.33
11 12 19 24 10 19
12 2 4.5 38.5 13 8.8
13 11 38.7 26.5 11 67.6
14 5 40.3 26.5 10 68.1
15 13 60.6 24 13 60.6
16 14 43.5 26.5 14 43.5
17 6 11.7 26.5 14 28.3
18 6 4.8 26.5 14 12.4
19 6 8.1 26.5 14 15
20 6 8.1 26.5 14 20.6
21 5 124 26.5 13 2413
22 6 124 26.5 14 2413
23 6 8.1 26.5 8 14.3
24 6 11.7 26.5 9 443
25 6 13.9 26.5 12 21.3
26 11 9 24 13 9

Totals 1337 801.5 2908.33
Table 6.4 Test flows for micros products with two tests

6.3.3 Object model

In this problem, there are

3 classes of objects: products, testers, and ovens. There are two

classes of products; Product-T, whose test flow only consists of one test and Product-

TBT, whose test flow 18 Test-Bake-Test.

Since both types of product have attri

butes in common, such as a technical code, package

type (i.e. DIL. PQFP, PLCC, etc.), the Product-TBT class and the Product-T class are

derived from th
specific class. For examp
required to test a batch of devices, the type
tested or whether the raw material is available.

indicate the ty
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attributes indicating whether the oven is available or not. The class definitions are

illustrated in Fig. 6.13, below.

The next stage in the design of the obj
the classes. For example, each object belonging to the derived class Product-TBT 1s

testers and an oven, whilst each tester may test many products. hence,

associated with 2

Product

Tester

Tech_Code:string
Number_of_pins:int
Package_type:string

Available_Raw_Mat

-boolean:true

type:string
available:boolean
‘true

start_testing

A

Product-T

Tester:string
test_time:int
testing:boolean
finished:boolean

start_testing

Oven

available:boolean
true

start_bake

Fig. 6.13

Product-TBT

1st_tester:string
Ist_test_time:int
1st_testing:boolean
Bake_time:int
Baking:boolean
2nd_tester:string
2nd_test_time:int
2nd_testing:boolean
finished:boolean

start_1st_test
start_bake
start_2nd_test

Class Definitions

the associations between classes are as illustrated in Fig. 6.14.

tests

Product-T

Fig. 6.14

&2

Pr()duct—TBTk_,mk,&sEi

tester

Obiject Model
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6.3.4 Dynamic model

The dynamic model of each class of objects was constructed by taking the following
steps:

The first step in designing the dynamic model of the machine is to identify the
commiunication events between the objects and represent them by Petri net transitions. In
this problem, Tester objects communicate with product objects by starting and ending the
testing process and conversely, the products communicate with the testers by starting and

stopping the testing process. Thus the OCTs are as shown in Fig. 6.15.

stop testing

stari testing
product 1

product 1

stop testing

start testing 0
product 2

product 2

tester

start testing stop testing

product n preduct n
start test H Product-T stop test
N
start Ist
test
stop 1st
start bake test
Product-TB
stop bake \I start 2nd
test
stop 2nd
test
Fig. 6.15 Object Communication Transitions

The next stage involves developing a Petri net model for each class to describe its
important dynamic behaviour. The objects' binary attributes in the object model are
represented by Petr1 net places in the dynamic model and events are represented by
ransitions. The controllable events are represented by controlled transitions [Krogh 87].
The places and Lransitions are then linked by directed arcs to represent the dynumic\.\
hehaviour of the objects as described 1n the problem statement. Therefore the dynamic
model (excluding control places for clarity) is as shown in Fig. 6.16. The dynamic model

of the ovens is identical to that of the Lesters and is not shown due to space considerations.
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start testing
product 1

start testing
product 2

start testing
product n

start bake It
\P

stop bake |i

. stop testing
—_— product 1
stop testing

Product-T
&
vailable
start test
>

Testing

Read)’,\{

%

Product-TBT

Available{ @

@,
=0

Fig. 6.16

The complete dynamic model is obt

I product 2

stop testing
product n

_/>l stop test

start 1st
test

st_test stop 1st
test
Ready

start 2nd
test

stop 2nd
test

The dynamic model

ained by initialising the appropriate number of

objects, representing the products, testers and ovens. These are then hooked together by

merging the OCTs. The production run modelled in this section consisted of 26 products

of the TBT type, 26 products of the T type and 10 testers which resulted in a Petri net

with 270 places and 208 transitions (which is too large to illustrate graphically in this

Thesis). The size of this Petr1 net makes it very time consuming to analyse, even when

USlllfr software tools, however, since t

he Petri net was built using well formed blocks

[Valette 79] and PME places [Zhou & DiCesare 93] it 1s guaranteed to be live and 1-

hounded.
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6.3.5 Functional model

The state of the control places (that represent the enabling conditions of controllable
events) must be represented as functions in the functional model. The functional model 1s
an important part of the OMT model because it defines the control strategy of the
production run. For this problem, the control strategy was to maximise throughput and
therefore the functional model takes the form of the scheduling algorithm described in

Section 4.5.3.

6.3.6 Controlling the plant

The algorithm described in Chapter 4 has been used to generate a sequence of transitions,
Sopt» that minimises the cycle time. The Gantt chart showing the optimal schedule that is

obtained by firing Sopr is illustrated in Figure 6.17.

The controller described in Chapter 4 of this Thesis can be used to control the plant by
operating the token-player algorithm on the dynamic model of the plant. Using the
efficient scheduling algorithm (described in Section 4.6) ensures optimal operation.
Sincé the controller is re-configurable and has a re-scheduling facility, it can give
production personnel an alternative schedule in the situation where a production unit

hreaks down. The alternative schedule is optimal for the degraded plant.
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6.4 Conclusion

This chapter has applied the OO methodology developed in Chapter 3, scheduling
algorithm developed in Chapter 4 and the software tool kit developed in Chapter 5t

analyse and control two industrial DEDSs. The first example was based on a can sorting

machine developed by Eurotherm Controls Ltd., described in [Jiang 95] and the second
example was based on a semiconductor testing facility belonging to SGS-Thomson

Microelectronics (Malta) Ltd. described in [Azzopardi et al. 96].

Both applications illustrate how the object oriented methodology that was developed in
this Thesis allows re-use by grouping similar objects into classes (and by using
inheritance in the 2nd example) and produces modular and understandable designs. By
applying the methodology to two very different industrial DEDS it has been shown that

the methodology is indeed practical and applicable to a wide range of DEDS.
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Chapter 7

Conclusion

7.1 Introduction

This Thesis discussed techniques for modelling DEDSs and selected Petri net theory as
the modelling technique that was most suited to the research. It described Petri net
theory for analysis of DEDSs and discussed three main techniques including:
coverability graph analysis, incidence matrix analysis and analysis by means of reduction
rules. Since industrial DEDSs are very complex and difficult to model, this Thesis has
reviewed currently available Petri net synthesis techniques, including top down, bottom
up and hybrid synthesis for modelling large systems. It was noted that these techniques
are based on functional abstraction and that the experience of researchers has shown that
functional abstraction is not practical for large industrial applications. This Thesis
therefore proposed using an object oriented methodology to facilitate the design of
complex systems, produce more understandable designs and specifications, facilitate the
transition between design and implementation and enable re-use of designs. The
methodology was based on the well known OMT methodology and was applied to two

well documented problems.

Once a model of the system is obtained, the next step in the design process is o design
the controller for the system. This Thesis therefore investigated the adaptation of
taditional control theory to DEDSs, that was recently pioneered by Ramadge and
Wonham [87], and the adaptation of Petri net theory for supervisory control. It was then
<shown how exclusive use resources can be scheduled by using Petri net based scheduling
algorithms in order to ensure optimal control. A novel scheduling algorithm based on
Petri net reduction techniques was ‘ntroduced with experimental evidence to show that it
has o rate of convergence that is several times faster than previously published
algorithms. Finally, a re-configurable controller was proposed to cater for unexpected

changes in the plant.

This Thesis has also presented a Petri net tool kit which provides an extension to object
oriented C++ that allows operations on Petri nets, Petri net extensions and reachability
rees.  Within the design process of a control system for DEDSs, it can be utilised to
analyse the behavioural and structural properties of the system; to implement the token-

plaver algorithm and to implement algorithms to schedule exclusive-use resources.
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Finally. the OO methodology developed in Chapter 3, the scheduling algorithm
developed in Chapter 4 and the software tool kit developed in Chapter 5 were used 10
analyse and control two industrial DEDSs. The first example was based on a can sorung
machine developed by Eurotherm Controls Ltd., described in [Jiang 95] and the second
example was based on a semiconductor testing facility belonging to SGS-Thomson
Microelectronics (Malta) Ltd. described in [Azzopardi er al. 96]. Both applications
illustrated how the object oriented methodology that was developed in this Thesis allows
re-use by grouping similar objects into classes and produces modular and understandable
designs. By applying the methodology to two very different industrial DEDS it has been

shown that the methodology is indeed practical and applicable to a wide range of DEDS.

7.2 Summary of contributions

«  An object oriented methodology for synthesis of DEDS models

This Thesis presented an object oriented methodology for synthesis of DEDS models.
The technique is a modification of OMT [Rumbaugh et. al 91] and consists of three
models: the object model, describing the objects in the system and their relationship; the
dynamic model, describing the interactions among objects in the system; and the
functional model, describing the data ransformations of the system. It was shown that
the dynamic model can be represented by a controlled Petri net to improve the
representation and analysis of the dynamic model of DEDSs. There is a direct link
hetween the three OMT models, thus the construction of the complete model can be
obtained by taking a step by step approach. This methodology was applied to two
classical problems in Chapter 3 and to two industrial DEDSs in Chapter 6.

« A fast Petri net based scheduling algorithm

This contribution is an improvement OVET previously published Petri net based
scheduling algorithms. The algorithm uses a branch and bound algorithm applied to the
timed Petri net model of the plant. The efficiency of this algorithm is improved by using
heuristics to reduce the search space. The major improvement introduced in this Thesis
involved reducing the Petrl net, effectively removing all the uncontrollable events from
the model to obtain a further reduction in the search space of the scheduling algorithm.
The improvement in the rate of convergence of the algorithm 1s backed up by

experimental results presented in Chapter 4 of this Thesis.
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* A re configurable supervisory controller for DEDSs

Whenever shared resources in industrial DEDSs break down, jobs must be re-routed 10
make use of the available shared resources. In the event of a breakdown, the state-
transition structure on which the supervisory controller is based would not be a correct
representation of the plant, unless all possible failures are included 1n the model. Since it
is not practical to model all possible failures in the supervisory controller, in Chapter 4 a
Petri net model-based controller is proposed. It uses state feedback to detect changes in
the set-up and incorrect response of the system and is re-configurable to accomodate for

these changes

« A Petri net software tool kit

To analyse the dynamic model of large DEDSs, to implement scheduling algorithms and
control algorithms for realistically sized industrial DEDSs, an object oriented C-++ Petri
net software library was implemented. It was used for the analysis and implementation of
all the examples discussed in this Thesis and for analysis of Petri net models resulting

from the work of the IT research group at Aston University

7.3 Suggestions for further work

. Automation of the modified OMT methodology

There exist several software tools that allow automation of the OMT methodology.
These, however use state diagrams to represent the dynamic model and most packages do
not provide analysis facilites for the dynamic model. It would be very useful it further
work was done to incorporate the Petri net tool kit that was developed in this Thesis to an
OMT software tool. This would provide a software workbench for the design engineer,

providing an OMT analysis document supplemented by a Petri net analysis facility.

« Optimisation of code in tool kit.
Most of the algorithms that were incorporated within the C++ Petri net class that was

developed in this Thesis used brute force technigues 10 ensure correct operation. Many of
the aleorithms can be further optimised 10 reduce their memory and CPU requirements.

This would result in the faster response that is required in industrial environments.

«  Use of genetic algorithms for optimisation of DEDSs.

This Thesis developed a fast scheduling algorithm based on Petri net reduction
techniques, the Branch and Bound algorithm and heuristics. Genetic algorithms,
developed by Holland (75], are a well known technique for scheduling problems with an
irregular and poorly defined search space. It would be interesting to investigate the
application of  Genetic algorithms to schedule DEDSs that are modelled on Petri nets.
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Appendix A

Experimental results

This appendix contains tables that show the number of iterations required by the following

algorithms to schedule plants with n jobs as described in Chapter 4.
Algorithm A Branch and Bound

Algorithm B Branch and Bound AND 3 heuristics
Algorithm C  Petri net reduction AND Branch and Bound AND 3 heuristics
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Scheduling 2 resources:

n A B C n A B C
2 26 22 14 5 4400 3162 739
2 22 12 12 5 8219 1356 2710
2 26 20 14 5 3298 2569 504
2 26 20 14 5 7321 1300 1833
2 21 12 11 5 3581 1259 223
2 24 12 11 5 4422 2482 1201
2 26 20 12 5 5812 4265 1195
2 24 12 11 5 4368 2748 1276
2 25 20 14 5 5987 3567 904
2 28 20 12 5 3956 3321 953
3 111 82 33 6 60398 14447 629
3 51 38 16 6 70807 36008 21909
3 156 100 68 6 91717 19620 27876
3 104 37 27 6 99077 30520 5645
3 105 35 37 6 70523 51676 7985
3 134 84 36 6 76381 13653 14948
3 153 96 58 6 45738 5589 4234
3 159 68 68
3 157 109 49
3 66 27 24
4 368 196 45
4 480 276 115
4 507 230 144
4 719 419 223
4 693 448 138
4 699 475 263
4 548 439 75
4 918 666 349
4 626 518 137
4 509 148 138

Averace number of iterations for scheduling a plant with 2 resources

n A B C
24 17 12
119 67 41
606 381 162

5136 2602 1153
73520 24501 11889

Ul hwno
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Scheduling 3 resources

n A B C n A B C
2 43 28 20 5 21913 8719 6274
2 34 16 18 5 39508 6207 1236
2 38 16 18 5 20143 11581 5766
2 34 16 18 5 36603 7437 3980
2 55 18 25 5 21030 10824 509
2 52 30 25 S 34247 23046 10646
2 51 30 19 5 19151 6223 795
2 34 16 18 5 38147 3548 2253
2 38 16 15 5 29004 12025 1974
2 35 16 15 5 18569 4160 5400
3 279 33 66 6 1408213 297171 41597
3 309 210 130 6 1187764 103937 71395
3 312 51 90 6 310876 73025 31484
3 200 95 43 6 1237750 246213 62856
3 849 187 116 6 638561 11858 82125
3 281 173 108 6 463504 24831 7885
3 161 78 59 6 310141 43733 11997
3279 64 51

3190 49 45

3 461 185 145

4799 397 184
3184 1047 1038
4841 1405 1548
2354 236 197
4661 1289 1259
2038 527 280
6356 911 1092
3012 485 476
5379 1722 882
3690 1204 789

AADNDDDAMDDDDS

AvmﬂﬂenunﬁmrofﬂmaﬁonsﬁnsdﬁﬁuhngapMntwﬂthhmeerMUM£s

n A B C
? 41 20 19
3 332 112 85
4 4031 922 774
5 27831 9377 3883
5 793829 114395 44191
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Scheduling 4 resources

n A B C n A B C
2 32 18 11 5 130989 7685 23527
2 143 48 33 5 702922 215549 35701
2 76 22 26 5161138 31789 35738
2 50 20 14 5 275323 115859 63725
2 46 20 15 5 149991 35602 25124
2 32 54 28 5 269202 205942 7834
2 76 22 26 5 785319 270925 32094
2 32 18 15 5 137206 40908 11783
2 b7 48 29
2 31 18 12
3 940 45 80
3 296 39 55
3 491 41 44
3 517 307 160
3 390 63 74
3 967 400 347
3 274 75 82
3 375 182 98
3 333 41 84
3 745 196 173
4 5142 1052 788
419513 9494 4467
4 4785 1114 842
4 9108 2969 1961
4 2057 693 227
4 13056 2548 5011
4 9231 137 1395

416428 517 194
415678 1312 3333

Averace number of iterations for scheduling a plant with 4 shared resources

n A B C
63 28 20
532 138 119

10555 2204 2023
326511 115532 29440

Ul D wWwnN
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Scheduling 5 resources

n A B C n A B C

2 65 24 16 4 16034 1404 134

2 124 108 51 4 38820 887 332

2 40 22 14 4 15731 3768 706

2 85 26 17 4 39610 588 1645

2 40 22 13 4 3258 1359 453

2 b2 24 19

2 225 94 43 5 1555860 740188 32418

2 110 48 33 5 2082942 502316 60635

2 90 26 30 5 71340 698 8380

2 39 22 14 5 557353 172296 48343
5 298114 23028 44377

3 1510 324 176

3 853 47 87

3 781 58 b2

3 1352 120 156

3 2427 2096 320

Average number of iterations for scheduling a plant with 5 shared resources

n A B C
ya 88 41 25
3 1384 529 160
4 22690.6 1601.2 654

5 913121 287705 37330

Scheduling 6 resources

n A B C n A B C
> 151 30 36 3 1896 76 87
> 101 30 21 3 491 51 57
> a8 26 16 3 572 88 65
> 282 68 34 3 611 51 40
> a8 26 15 s 2148 314 427
4 17

% 122 %g 18 4 98742 26584 6944
5> 64 28 19 4 202871 2573 2372
5 202 32 34 4 25326 1435 386
> 72 28 19 4 272722 14106 1724

4 “35596 9616 2891
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Average number of iterations for scheduling a plant with 6 shared resources

n A B C
2 114 32 22
3 1143 116 135
4 91051 10862 2863
5 2470153 612616 45669

Scheduling 7 resources

n A B C n A B C
2 242 68 49 4 287117 205 427
2 96 32 21 4 370997 5671 2201
2 59 32 18 4 133879 64142 4763
2 74 32 20 4 20405 1712 296
2 137 34 25 4 197547 118604 9727
2 222 36 60 4 106185 28166 4138
2 90 32 21 4 69298 553 393
2 102 32 40 4 86354 49806 30426
2 266 36 35 4 13682 166 223
2 94 32 20 4 57316 600 234
315643 1495 1675
3 3215 209 142
327581 3295 516
3 1915 92 77
3 1029 57 61
3 2051 571 359
3 1798 74 72
3715 72 102
3 2332 699 693
3 7533 112 155

Averaee number of iterations for scheduling a plant with 7 shared resources

n A B C
2 138 36 30
3 6381 667 385

4 134278 26962 5282
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Appendix B

Petri net tool kit facilities

Petrinet.h - header file for petrinet class containing data structure and function declerations

class vector: // vector & matrix class are friends of
class matrix; /I the petrmet class

class Int_Set; /I Integer Set class

class Tree_node: // Reachability Tree class

class timed_place_petrinet;
class timed_transition_petrinet;

class petrinet{

// a petri net data structure
protected:
struct pnet{
matrix H_pre, H_post; /Ipre & post conditions

matrix C; /fincidence matrix

vector X0, X /finitial & current marking
int p,i; //number of places & fransitions
int n; //reference count

Int_Set non_safe_places; // set of 'not 1-bounded' places
Int_Set fired_transitions; // set of fired transitions

Yo% .

;TP

void error(char *mesgl, const char *mesg2=""); /[ private function

public:

[/ * constructors
petrinet(petrinet& x);

// * blank constructor for initialisation
petrinet();

/% create a petri net structure in memory from given type, pre & post
condition matrices, initial marking vector, current marking,

delay vector, number of places and (ransitions, set of non-safe places,
set of fired transitions.*/

petrinet(int. matrix. matrix, vector, vector, vector, int, int, Int_Set, Int_Seb);

// create a petri net structure in memory from a netlist file (14/12/94)

pem’nel(const char * netlistfile); .
petrinet tead_netlist(char * netistfile):

// create @ peui net structure in memory from a set of fil?s. (mtrx) o
petrinet(char # precond. char # postcond. char ™ initmark, char * delay, int, Int);

J/ create a pelri net swucture from a cabernet f1le
petrinet(char # cabnetfile. char ™ flag):
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// create a petri net structure from a graphics file
petrinet(char * graphicsfile, int);

// destructor
~petrinet();

// write a petrinet netlist file
void write_netlist(char *filename, char *msg ="");

’

// save a petrinet structure as a set of files
void write_pn_matrices(char * msg="");

// print pn_matrices on screen (just for testing purposes)
void print_petrinet();

// equality operator
virtual petrinet operator=(petrinet & 1v);

/I generate reachability tree
virtual reach_tree reachability_tree();

// return the max place index
virtual int  Max_place_number();

// return the max transition index
virtual int Max_transition_number();

// return the initial marking
virtual vector Initial_marking();

J/ return the input places of transition
virtual Int_Set Input_places(int);

J/return the output places of transition
virtual Int_Set Output_places(int);

// return the input transitions of a place
virtual Int_Set Input_transilions(int);

J/ # return the output transitions of a place
virtual Int_Set Oulpul_transitions(inl);

// return set of not 1-bounded' places kkiph**
virtual Int_Set non_safe_places();

/] return set of fired transitions
Int_Set fired_transitions();

J/ function to find list of enabled transitions at current marking (& time)
vector ﬁnd_enabled_transilions(vector);

// function to find new marking by firing transition
veclor ﬁnd_new_maxkjng(vector, const in0);

J/ function to find new marking by firing sequence of ransiions

vector find_marking(vector, vector);

// calculates and prints p-invariants
virtual void p_invananw();

J/ calculates and saves p-invariants N
virtual void saveﬂp_mvanams(char )
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// calculates and prints t-invariants
virtual void t_invariants();

J/ calculates and saves t-invariants
virtual void save_t_invariants(char *);

/{ reduction - place substitution
petrinet sub_place(int);

J/ reduction - remove transition according to R2 and R3
petrinet rem_trans(int);

J/ reduction - returns index of place that can be substituted
int reductionR1();

J{ reduction - returns index of neutral transition
int reductionR2();

J/ reduction - returns index of identical transition
int reductionR3();

J/ save the list of transitions that do not fire
virtual void save_unfired_trans(char *);

/] save list of places that are not 1-bounded
virtual void save_unsafe_places(char *);

timed_place_petrinet.h . header file for timed place petrinet class containing data structure and

function declerations

class vector; // vector class 18 friend
class L'uned_pluce_petrinet:public petrinet{
friend class thned_transition_peuinel;
// the timed place petri net data soructure is a petrinet
// data structure plus a delay vector
protected:
struct tppnet{
vectortp;  //delay vector
J/ time._record, records the time of arrival of a token
vector time_record;
int n; J/reference count

) Fppn,

public:

[/ * constructors . .
[imed_place_pem'nel(11med_placc_pelnnet &Y,

timed_place_petrine[(): . o ‘
[imed_place_petrinet(matrix, matrix, vector, int, int, vector);

timcd_place_pemnet(char * petlistfile):

/I # destructor
~limed,p1ace_peuinel():

// # equality operator

timed_place_petrinet operator=(timed_place_peuine{ & v
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/1 * file handling
umed_placewpemnet read_netlist(char * netlistfile);
void write_netlist(char *filename, char *mse = "");
sg ;

J/ # analysis
reach_tree timed_reach_tree();
vector find_enabled_transitions(vector, double);
vector find_new_marking(vector, int, double):
void reset_time();

// # scheduling to return a sequence of transitions for optimal operation

vector schedule(vector // brute force

vector schedule_T1(vector // with Test 1 ... concurrency detect
vector schedule_T2(vector); // with Test 2 ... repeated marking
vector schedule_T3(vector); // with Test 3 ... look ahead

vector schedule_rss(vector); // reduced search space (3 tests)

J{ * reduce tppn by removing places that represent operations and
// shifting the time delay to transitions => ttpn
void reduce2ttpn(char *filename, char *msg="reduced from TPPN");

timed_transition_petrinet.h - header file for timed place petrinet class containing data structure
and function declerations

class vector, /I vector class is friend
class timed_transition_petrinet:public petrinet{
triend class timed_place_petrinet;
protected:
J/ the timed transition petri net data structure is a petrinet
// data structure plus a delay vector
struct tpnet{
vector tp;  //delay vector
// time_record, records time at which trans was fired
vector time_record;
int n; /lreference count
} *ttpn;

public:

/[ # constructors
timed_tmnsition_petrinct(Limed_transilion_petrinet &);
Limed_u‘ansilion_pem’net();
limed_transitiompe[rinet(char *filename);

/1 # destructor
~limed_transiti(m_peu'mel( );

/] # equality operator . N - ‘
timed_transition_petrinel operalor=(umed_transulon-pemnel & 1v);

/f *# file handling . N
tined_transition_petrinet read_netlist(char * netlistfile);

void write_netlist(char #filename, char *msg = ),

/1 #* analysis
reach_tree Ijmed_reach_tree();
vector «chedule(vector):
vector schedule,heuristics(veuor):

vector t'ind_enabled_tmnsitions(veclor. double);
vector (ind_new_marking(veclor. int, double);
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void reset_ume();

reach_tree.h - header file for ti i
B ) m . .. g
O ioms ed place petrinet class containing data structure and function

(NOTE: this class was develo ; ‘e :
UK) ‘ ped by I.Jiang, Senior software engineer, Evrotherm controls Lid.. Worthing.

class  Tree_node {
friend class Int_Set;
friend class vector:
struct rtree_node
{ /I REACHABILITY TREE NODE DATA STRUCTURE
vector marking;
Int_Set enabled_trans; // set of enabled trans
Int_Set conflict_trans; // set of conflicling trans

I/ keep wack of pre & post nodes

int  pre, post // no of pre & post nodes
vector pre_nodes, pre_trans;

vector post_nodes, post_rans;

int  time; // time at which marking is reached
int  n // reference index, e.g. marking index

) *node;
public:
/I constructors
Tree_node(vector&, Int_Set&, Int_Set&, int, int, vector&, vector&,
vector&. vector&, int, vector&, int);

Tree_node();

/I destructor
~Tree_node() { delete] node;};

Tree_node&  operator=(const Tree_node&); //node assignment
Tree_node(const Tree_node&); // copy constructor for node

// Following functions are used to read/write each field of anode

vector& marking() { return node->marking;}

Int_Set& enabled_trans() { return node->enabled_trans;}
Int_Set& conflict_trans() { return node->conflict_trans;)
int& pre() { return node->pre; )

int& post() { return node->post; }

vector& pre_nodes() { return node->pre_nodes; }
veclor& pre_trans() { return node->pre_trans;}
vector& post_nodes() { return node->post_nodes;}
vector& post_trans() { return node->post_trans; }

int& time() { retwrn node->tme;}

int& n() { return node->1;}

void T ree_node_prim() const; // display all fields of node

Class reach_tree [ // reachability tree data structure
friend class Tree_node:

Tree_node L B
int counter: /] reachability tree node counter
int size. /I keep the s1z€ of allocated memory

ublic: ‘
I // constructor without argument

J/ constructor with argument
// destructor

reach_tree():
reach_tree(const int size):
—reach_tree(){ delete]] 1t }:
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12113 ri'fxcil_tree_append(Tree_.,node&): // add a node into the tree
each_tree_delete(const int); // delete a node with given code

it reach_tree_root() const; // return the root node code
\:o;d reach_tree_print() const; // display all information )
yold reach_tree_save(char *filename) const; // save reach_tree
int  number_of_nodes() const {return coumér;}; /I the numbe;of nodes

// given a node code, get anode
Tree_node&  reach_tree_node(const int) const:

// replace a node with the given code in the tree by the given node
void node_replace(const int, Tree_node&);

/I given a node code, read/write its marking
vector& marking(const int);

/I given a node code, read/write its enabled transitions
Int_Set& enabled_trans(const int);

/Il given a node code, read/write its conflict transitions
Int_Set& conflict_trans(const int);

// given a node code, read/write its reached time
& time(const int);

// given a node code, read/write its RET
vector& RFT(const int);

J/ given a node code, read/write its pre
mté& pre(const mt);

// given a node code, read/write its post
int& post(const int);

/I given a node code, read/write its pre_trans
vector& pre_trans(const iny);

// given a node code, read/write its pre_nodes
vector& pre_nodes(const int);

/I given a node code, read/write its post_trans
vector& posl_lrans(const int);

/| given a node code, read/write its post_nodes
vector& post_nodes(consl int);

// reach_tree assignment operator
reach_tree& operalor:(const reach_tree&);
reach_tree(const reach_tree&); /f copy constructor
Int_Set c<mcun‘ency,set(€onsl int) const;

// 1o find out all the rransitions which are enabled at the

J/ same time as the given transitzon
void dead_lock,markings() const;
Int_Set C(mcurrency_t_sel(const inl) const;

int wee_size() const { retumn size: s

J/ veturn a node with the given index in the tree
Tree_node& node(const int) const.
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Al

AT
CDES
CSP
CPN
CPU
DEDS
DES
EC
ECSM
EP

ER

ET
FMS
GUI
OCT
OMT
00
O0A
00D
010)%
PLC
PME
P/T net
SBDM
SEC
SME
SPP
STP
TPPN
TPr/T net
XTPTN

Appendix C

Abbreviations and Acronyms

artificial intelligence

set of alternative transitions
controlled discrete event system
communicating sequential processes
controlled Petri net

central processing unit

discrete event dynamic system
discrete event system
elementary circuit

elementary composed state machine
elementary path

entity - relationship

set of enabled transitions
flexible manufacturing system
graphic user interface

object communication transition
object modelling technique
object oriented

object oriented analysis

object oriented design

object oriented programming
programmable Jogic controller
parallel mutual exclusion
place/transition net

system behaviour driven method
simple elementary circuilt
sequential mutual exclusion
solitary place path

solitary transition path

iimed place Petri net

timed predicate/transition net

extended timed place transition net
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