Aston University

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please

read our Takedown Policyand contact the service immediately




Applications of Fra ctals t() ‘

Image Data Compression

ANDREW PHILIP WILTON

Doctor of Philosophy

THE UNIVERSITY OF ASTON IN BIRMINGHAM

March 1996

This copy of the thesis has been supplied on condition that anyone who
consults it 18 understood to recognise that its copyright rests with 1ts
author and that no quotation from the thesis and no information derived

from it may be published without proper acknowledgement.

Page 1



The University of Astontlrmmgham -
Applications of Fractals to Image Data Compressio’\’ﬁ o
ANDREW PHILIP WILTON
Doctor of Philosophy
1996

Summary of Thesis

Digital image processing is exploited in many diverse applications but the size of
digital images places excessive demands on current storage and transmission
technology. Image data compression is required to permit further use of digital image
processing. Conventional image compression techniques based on statistical analysis
have reached a saturation level so it is necessary to explore more radical methods.
This thesis is concerned with novel methods, based on the use of fractals, for
achieving significant compression of image data within reasonable processing time
without introducing excessive distortion.

Images are modelled as fractal data and this model is exploited directly by
compression schemes. The validity of this is demonstrated by showing that the
fractal complexity measure of fractal dimension is an excellent predictor of image
compressibility. A method of fractal waveform coding is developed which has low
computational demands and performs better than conventional waveform coding
methods such as PCM and DPCM.

Fractal techniques based on the use of space-filling curves are developed as a
mechanism for hierarchical application of conventional techniques. Two particular
applications are highlighted: the re-ordering of data during image scanning and the
mapping of multi-dimensional data to one dimension. It is shown that there are many
possible space-filling curves which may be used to scan images and that selection of
an optimum curve leads to significantly improved data compression. The multi-
dimensional mapping property of space-filling curves is used to speed up
substantially the lookup process in vector quantisation.

lterated function systems are compared with vector quantisers and the computational
complexity of iterated function sysiem encoding is also reduced by using the efficient
matching algorithms identified for vector quantisers.

Keywords:  image compression, fractals, space-filling curves, vector quantisation,
iterated function systems.
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Chapter 1. Introduction to Thesis

1.1. Objectives

In this thesis an attempt is made to link two areas of study, image data compression
and fractals.  Each of these topics has proved fruitful for mathematicians and
engineers but their union has been less well-received. Indeed, a healthy scepticism
has become apparent with regard to the applications of fractals.

"... this 1s an mteresting case, which seems to happen more and more often, of

how an explanation 1n search of a phenomenon may lay claim to far more
territory than it can handle." [Madd 86]

There has perhaps been an over-enthusiasm for seeing fractals as a panacea for many
demanding problems in Science and Engineering. Clearly not all objects and
processes are Iractal. Many physical processes exhibit a fractal behaviour but only
over a limited range ol scales. This makes them inadmissible as fractals in the
Platonic, mathematical, sense but does not necessarily invalidate the use of fractals to
generate uselul results. There may be no true {ractals in nature but there are no true

circles or straight lines either.

It 1s the aim of this thesis to show that ideas from the mathematics of fractals can be

applied to image processing and to image data compression in particular.

The initial motivation for this work was the mtuitively attractive idea that the space-
[lling curves and fractals in general are so interesting and have such unique
propertics that they ought to have practical applications. This has been confirmed.

This issuc now i1s one ol quantification.

1.2 Why apply fractals to image compression?

The demand for better image compression and storage has led to the development of
numerous image compression methods some of which have been exalted to the status
ol proprictary or open standards. The development of open standards 1S a major
undertaking involving significant technical collaborative work between major
manufacturers. This usually means that such standards lag behind the most recent
advances in the field. This leads to an opportunity for a proprietary standard to gain a
foothold. Since the main benefit of open standards - the ability for dilferent
manufacturers’ equipment to work together - 1s so clear, it becomes increasingly
difficult for a new proprictary standard to be accepted unless 1ts performance gain is

dramatc (perhaps an order of magnitude or more). There is unlikely to be a new
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standard (other than enhancement of existing standalds) for still i image codmg in ﬂm

near future unless a new technique is devised which offers such a gain. ¢
There are two possible answers to the preceding argument.

[ If improvements to existing algorithms can be identified which are simple to
implement, requiring little overhaul of existing systems, then they may well be

adopted.

3]

Fractals offer such a novel way of interpreting image data that many authors
feel they have the potential to provide the dramatic performance increase

necessary (o supplant current standards.

1.3. Structure of thesis
The thesis 1s organised as follows:

Chapter 2 presents an introduction to image data compression. It includes an
overview and a suitable taxonomy of image compression techniques, providing a
framework into which fractal methods may be placed. It also includes a comparative
study of the 'state-of-the-art' in image compression. No new methods are presented in
this chapter but benchmark performance ligures are derived by applying existing
techniques to the same data sets which are used for the novel approaches in later

chapters.

Chapter 3 provides a grounding in [ractals and their properties. There 1$ no particular
attempt at mathematical rigour; the purpose is to describe those properties ol [ractals
which contribute to their usefulness in image processing. Methods of measuring the
fractal dimension of image data are examined. It is shown that the fractal dimension
provides a natural and effective measure of the complexity of an image which in turn
can be used to predict how elfectively the image data can be compressed. Space

filling curves are introduced as examples of Iractals.

Chapter 4 presents original work on space-filling curves. The curves are analysed in
detail and methods of generating the curves in two dimensions are compared.
Hierarchical extensions to the curves and variations lor non-square grids are
developed. A comparison 1s made of the different curves and techniques for creating
new curves. The curves are shown to have interesting and useful properties with
general applicability which is exploited in each of the later chapters. In Chapter 4
their property of re-ordering data in a two-dimensional array is exploited in a novel
way Lo generate many different scans of images. It is shown that scanning images in

this way mimproves the effectiveness of predictive methods of 1mage data compression.
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Chapter 5 presents original work on one-dimensional waveform coding using fractal

methods. A method of lossy image coding called fractal waveform coding (FWC)is

presented which is based on the fractal measurement of coastlines. This is shown to
be both easy to implement and computationally efficient, yet it yields excellent results
with an casily-controlled trade-off between compression ratio and image quality.
This method of image compression has previously been proposed but without
attention (o practical difficulties. In Chapter 5 a thorough analysis is performed with

extensive simulation from which solutions to the practical problems are derived.

Chapter 6 1s something ol a departure from the main direction of the thesis. It covers
veetor quantisation (VQ) of images. Conventionally this multi-dimensional approach
has been used (o better exploit the redundancy in image data but has suffered from
severe computatonal difficulties.  In this chapter original methods of greatly
mcreasing the performance of VQ systems are identified including a novel technique
using another property of space-filling curves, the ability to map between one and

many-dimensional spaces, for the vector lookup problem.

In Chapter 7 fractal image coding based on iterated function systems (IFS) is
discussed. This 1s a new and controversial technique, containing aspects of many of
image coding methods identified in previous chapters. Original implementations of
IFS image compressors based on several proposals have been created and
comparative results are presented. IFS coding shares similar computational
difficulties with VQ and the original improvements to the VQ lookup problem

identified in Chapter 6 have also been applied here with some success.

It will become apparent that there are connections between all ol the chapters. In
Chapter 8 a discussion ol these connections is presented. As with any work which is
new, every answer leads to further questions but time does not permit exploration of
all these avenues. Topics deemed worthy of [urther attention are discussed in Chapter

8.

It has not been possible to consider all applications ol fractals to image processing. In
particular the quite well-developed topic of synthetic image creation has not been
discussed at all. It is felt that this is sufficiently distinct from the locus of this thesis
which is the application of [ractals to coding real images of natural scenes and, n
particular, ways m which the fractally coded representation ol the images allows

compression of the image data.

U
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2.1 Introduction

This chapter contains an introduction to the image processing terminology used in this
thesis. A taxonomy of the principal components of an image compression system is
presented together with illustrations from original and cited experimental data. Many of
the concepts explored in this chapter have been used by the Joint Photographic Experts
Group (JPEG) in defining the current standard for still image compression. This
standard 1s also described in detail later in the chapter when the key ideas have been

outlined.

Digital image processing has found applications in many subject domains such as
videoconferencing, satellite remote sensing, document and medical imaging, radar,
sonar, facsimile (FAX) and remotely-piloted vehicles for military and space use. The
typical image compression sequence of activities is shown in Fig. 2.1. Typically an
analogue representation of a real-world scene is acquired by a sensor and converted to
digital form by sampling and then quantsing each sample. The digital signal has
advantages for subsequent computer processing (e.g. to enhance the image, detect
hidden or distorted features), but the analogue-to-digital conversion increases the signal
bandwidth considerably. The processed image data may then be passed directly to an
output device such as a computer screen or printer but, more typically, it has to be
stored or transmitted to a remote system. In either case, at this stage the performance of

the system hecomes limited by the volume of image data.

Imaging system

. (sensor) i Sampling g Quantisation

Natural
scene

Image Transmission Image

Compression — o storage B Restoration

Output Human

device B observer

Fig. 2.1. Digital image compression sequence
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A digital image is a two-dimensional array of pixels each of which is a number,
corresponding to some property of the image scene such as intensity, represented by a
finite number of bits. Since a single digital image may have as many as 16 million
pixels, these images comprise large amounts of information. Even though the
capacities of modern storage media and the bandwidths of transmission systems are
high, and still increasing, they are necessarily limited. For over forty years now there
has been development of methods of reducing the storage and transmission

requirements of images. This is the subject of image data compression.

More recently, digital image compression has been crucial to the growth of multimedia
computing and may be seen as an ‘enabling technology' [Gonz 92]. i.e. Its importance
m its own right is less significant than the advances it yields in other fields. In
addition, image data compression is required to handle the increased bandwidth of
modern imaging sensors and evolving broadcast television standards. In the same way
that the use of digital audio storage with compact discs has revolutionised the recording
industry, digital video introduces a whole new range of applications such as electronic
cameras, video-conferencing systems, video programme delivery by cable and satellite
and high-definition TV (HDTV). The relatively low audio bandwidth of approximately
200 kHz, which leads to a digital data rate of only 1.4 Mb/s, has permitted the
development of digital audio without requiring data compression but the far higher

bandwidth of image and video data makes data compression essential.

Some international standards for image compression have recently been established
such as the JBIG bi-level standard and the JPEG colour image standard (both of which
are discussed in Section 2.8). However, images are rapidly becoming so large that
they cannot adequately be compressed for transmission or archival with current
techniques so considerable research activity is still devoted to this problem. Some
examples of the storage and data raterequirements for uncompressed digital images for

various applications are given in Table 2.1.

Still images Moving images (image sequences)
Image type Storage Image type Data rate
512 by 512 grey-{0.25 MB Digital Broadcast| 166 MBit/s
scale (256 levels) v
1024 by 1024 full-| 3 MB HDTV 1766 MBit/s
colour (24 bit)
FAX 0.01 MB Low quality video | 0.4 MBit/s
phone
Photo disc image 6 MB Video Conferencing | 48 MBit/s
(CIF)

Table 2.1. Image storage and bandwidth requirements
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Practical systems for each of these applications have differing requirements in
compression ratio, image distortion, processing time etc. - Often, techniques can be
found which perform extremely well within a single narrow domain but successtul

mnovations which evolve into standards must have wider applicability.

2.1.1 Is image compression necessary?

There are critics of the necessity to compress images for (ransmission. While the
broadcast spectrum is inherently limited, it can been argued that increasing use of
optical fibre for transmission provides ample bandwidth for the foresecable future.
With current technology, optical fibre links are not always economically viable - in the
same way that building motorways between every town is not a solution (o traffic
congestion.  Furthermore, their greater subjective quality is leading to an ever-
increasing demand for higher resolution images. The size of uncompressed image data
grows as the square of the image resolution so that, without compression, the
seemingly vast optical bandwidth could be exhausted more quickly than might be
expected.  Conversely, the greater the image resolution, the easier the data is to

compress, making it even more reasonable to apply compression.

The case for compression of stored images is stronger. Even with the recent rapid
decline m the cost ol storage media, the capacities shown in Table 2.1 are hard to

achieve for significant sets of images.

It1s also worth considering whether the subject of image compression is now saturated
with techniques. Surprisingly complex algorithms are now being employed (o achieve
relatively modest compression gains. Advances in hardware now allow digital signal
processing in real-time at low cost, opening up new applications in areas such as
communications, consumer electronics, medicine, robotics and defence which
previously were not leasible. However, hardware developments do not remove the
incentive for searching for more efficient algorithms. It has been pointed out by Aho
and Ullman that:

"As computation hecomes cheaper and machines become faster our desire to

perform larger and more complex problems will also grow. Thus the discovery

of more elficient algorithms (i.e. those whose growth rates are low) becomes
more rather than less important.” [Aho 95]

2.2 Classification of images

Fig. 2.1 shows the first stage of an image processing system (o be the acquisition of an

image by a sensor system. This could equally be replaced by the acquisition of a pre-

digitised image from some other source. In general a digital image may pass through

o
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many image processing systems before it is viewed /by a human observer. The issue
considered in this thesis is how the compression and subsequent decompression cycle
may be optimised and how it is influenced by the other processes such as sampling
(Section 2.3) and quantisation (Section 2.4). It will not be considered how the original
image was captured - only how to maintain the fidelity of the image compared with 1ts

original digital form.

There are several categories of digital image which might need to be compressed. The
essential factors which determine appropriate compression techniques are: whether the
image is natural or synthetic; the image resolution; whether the image is monochrome or

colour and whether the image is single or part of a set such as a moving sequence.

2.2.1 Natural and synthetic images

The most fundamental division in image classes is between natural images (i.e. those
acquired by some sort of camera or scanning device) and synthetic images (i.e. those
generated by computer for animation ete.). Simple synthetic images such as cartoons
and geomeutric drawings are usually not good candidates for conventional image
compression. In general, they are far better represented by an object-based description
than a pixel based description. For example, Fig. 2.2 shows a simple bi-level synthetic

image containing three overlapping geometric shapes with different shading.

Fig. 2.2. Simple synthetic image

When displayed even at a low resolution of 72 pixels per inch this image requires
approximately 12,000 pixels to represent it, yet the computer drawing program only

requires a lew bytes 1o store the geometry coordinates and to specify the fill patterns.

o

Images of a natural scenes will, in general, contain far more information since they
represent the complexity of the real world and thus are much harder to compress. It is
appealing to consider ways in which object-based descriptions could be applied (o
natural 1images. This is the principle ol model coding which 1s discussed briefly in
Scction 2.6.5. Unfortunately this 1s [raught with difficulties since it is hard for a
compulter system to identily the objects in an image and even harder to then find concise

descriptions for the objects.
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Synthetic images can now be produced with techniques such as ray-tracing and fractal
forgery (the process of creating synthetic computer images which look like natural
scenes [Barn 88b]) which appear to be natural images. For these images both object-
based and pixel based coding are applicable, with the trade-off depending on the

computational complexity of recreating the image from the object description

2.2.2 Image resolution

The term resolution has varied meanings. For the human visual system this is most
appropriately considered to be the minimum feature resolution which is the smallest
angular difference over which two intensities may be discerned. This angular
resolution is approximately %, of a degree [Scha 89]. However, the perceived image
resolution depends on the overall imaging system, including any lenses, the separation
of the observer and the display screen, the viewing angle and the pixel spacing of the
screen. Itis therefore convenient and common (o describe the image resolution as

referring to the number of pixels on each axis of the image.

A typical modern computer display has a viewing area approximately 25 ¢cm square

which, when viewed from a distance of 50 ¢cm, subtends an angle ol approximately 22

degrees. To provide an angular resolution comparable with the angular resolution of

[t}

the human visual system such a display would need a resolution of approximately 1300
by 1300 pixels. Depending on the particular application, digital images in common use
have resolutions between 128 by 128 pixels (Iow quality video phones) and 4096 by

4096 pixels (high quality satellite imagery).

2.2.3 Monochrome and colour images

Monochrome images may be bi-level or have a grey-scale. Colour images may be
paletied, where the image contains only a relatively small number of colours, typically
256 (but these may be chosen [rom a large palette), or full-colour, where the image may
contain an essentally unlimited number of colours since there are usually more

available colours than pixels.

It 1s well known that the human perception of colour can be modelled by tristimulus
colour theory [Wyze 67] in which colour is represented by the intensities of any three
independent primary colours.  Any set of physically realisable primary colours will
require some negative coelficients o match some colours but certain shades of red,
green and blue give the broadest range ol colours for positive coefficients only. This
restriction is necessary in systems such as CRT-based displays since they cannot
produce negative amounts of primary colours. There is an internationally defined

Pag

]

¢ 21




Chapter 2

standard, CIE 1931 (with some recent modifications), which uses three primaries
which are not physically realisable, but which allows other colours to be represented
with positive coefficients. Real displays represent a subset of all the colours defined by

this standard.

The human visual system can distinguish approximately 2° shades of red, 27 shades of
green and 27 shades of blue. Thus a pixel may be represented accurately by
approximately 18 bits of data. With current technology using byte-oriented hardware it
is usual to allocate one byte to each colour giving 24 bits or 3 bytes per pixel for a full-

colour system.

Colour images can be considered as three independent 'grey-scale' images, where the
‘grey-scales’ are the axes of the tristimulus colour coordinate system. Often, the most
conceptually simple coordinate system based on red, green and blue (RGB) axes is
used but there are numerous transformations into other colour spaces [Jain 89], such as
those used for television systems, which have practical advantages since they can
exploit the different sensitivities of the human visual system to luminance and

chrominance.

2.2.4 Still images and image sequences

Processing ol a sequence ol images could be performed simply by processing ecach
image as a still image (intra-field coding) but this would neglect much of the temporal
redundancy. Practical schemes usually identify differences in successive frames (inter-
field differences) and code these using the same techniques as are used for still images.
More advanced predictive coding is also used to provide motion compensation where
part of the new image may be represented by a simple linear translation from a previous
frame. Currently the leading standards for image sequence coding are H.261 (also
known as P x 64) [Liou 91] developed for videoconferencing and MPEG [LeGa 91]

for entertainment-quality video in cable-TV and satellite broadcasting.

2.2.5 Image types used in this thesis

fn this thesis the main theme is the illustration of the novel applications of fractal
mathematics to 1image compression. Of the image types identified in Sections 2.2.1 to
2.2.4 1t 1s required only that source images should contain sufficient complexity (o

demonstrate the 1deas.

. Only pixel-based images of natural scenes are considered. These are far more

representative ol typical images to be compressed. Any synthetic image could
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casily be converted to pixel form and processed in the same way but this would
rarely be appropriate. o

The images have a resolution of 512 by 512 pixels. Images of 128 by 128
pixels or smaller are rarely acceptable, as indicated by the poor take-up of
current video-phones.  Larger images are expensive to work with since
spectalised equipment is required (o view images larger than 1000 by 1000
pixels. The intermediate resolution chosen is typical of images which are
commonly used and is convenient because it allows the original and processed
images (o be compared side-by-side on the same computer screen 10 give an
accurate subjective measure of quality. Itis also high enough to show detailed
mformation in the images such as edges. The choice of square images whose
resolution 1s a power of two is convenient for the preponderance of image
processing algorithms which require block-based or recursive decomposition of

the image.

o

In general, only grey-scale images are considered. The exception is made for
bi-level images in Chapter 4 where dithering is discussed. Elsewhere in this
thesis, all of the techniques presented are applicable to colour images if they are
treated as having three independent colour axes. This would not be optimal
since the colour coordinates, in any coordinate system, are unlikely to be
completely independent, but the processing - as far as data compression is
concerned - would not be fundamentally different. The number of grey levels is
set 10 256, which provides a useful level of quantisation since it is slightly
greater than the number of grey levels distinguishable by the human eye. It is
also convenient o work with images where cach pixel is represented by a single

bytc.

Only still images are considered. This decision is taken for practical reasons.
Image sequence coding is a qualitatively different problem. Temporal (i.c.
inter-frame) data redundancy is usually significantly greater than spatial (i.c.
intra-frame) redundancy so most developments in image sequence coding
concentrate on exploiting this. A good technique for still image coding is
required to process the first frame of any sequence and whenever there is an
abrupt change of scene and the work presented here could be employed in these
cases.  In the MPEG standard, for example, so that the decoder can reliably
resynchronise in the presence of gross transmission errors, it is specified that

cvery lifteenth frame 1s encoded without reference to previous frames.
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To summarise, experimental work reported in this thesis is restricted to 256-level, grey-

scale, sull images of natural scenes with a spatial resolution of 512 by 512 pixels.

2.3 Image sampling

In Fig. 2.1 it was scen that the first stage of converting an image to digital form is to
sample the image on a discrete grid. Older scanning devices such as vidicon camera
tubes operate by scanning the image row by row and then sampling each row. More
modern devices such as charge-coupled-devices (CCD) cameras provide a true two-
dimensional scanning ability (i.e. the image can be scanned element by element in any
order [Flor 85]). The scanning sequence is almost invariably a simple raster and, in all
current television standards, interlacing (where each frame of the image is split into two
lields containing alternate lines) is used to reduce the signal bandwidth. The possibility
ol using more complex non-raster scans for subsequent image processing including

compression is explored in Chapter 4.

2.3.1 Shape of sampling grid

Two sampling patterns are in common use, rectangular and interlaced (or quincunx). If
the horizontal and vertical spacings are equal then the interlaced pattern is the same as a
rectangular pattern rotated through 45°. With a different scaling factor, the interlaced
pattern can be described as hexagonal. A two-dimensional sampling lattice may be
desceribed by a2 by 2 sampling matrix A whose columns are the vectors specifying the

lwo nearest samples.

@ @ @ O @ O
<> <>
h b
@ @ L @ O @
@ @ & O @ O
Rectangular sampling Quincunx (interlaced) sampling

Fig. 2.3. Rectangular and interlaced sampling

The sampling matrices A, and A, for the rectangular and quincunx sampling grids

shown in Fig. 2.3 arc:

5 a 2a u
N-I[() b] M—{o b}

P
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It can then be shown [Jain 89] that, if an image f(x,y) is sampled on a grid A then its
Fourier transform F (é"\.,g\,) is replicated in frequency space on the reciprocal lattice A

where:
M= (2.2)

Hence:

To avoid aliasing an image should be bandlimited with a low-pass filter before it is
sampled. The bandwidth of the sampled image is the spatial frequency ¢, where the

Fourier transform F (g\‘, g \,) is zero outside a bounded region in the frequency plane.

F($8) =0 ror 0> & and 5> €0 oo U (2.4)

The ideal rectangular image sampling function is a two-dimensional infinite grid of
Dirac delta functions on a rectangular grid with spacing Ax, Ay. This is the comb
function where:

comh(x,y;Ax,Ay) = 2 25(x—/77Ax,y-n.Ay)
mEmeemE=ee (2.5)

Then the sampled image f,(x,y) is given by:
£ (x.y) = f(x,y)comb(x, y;Ax, Ay)

= Z Zf(mA_x,nAyﬁ(x—mAx,y—nAy)
MISSsEHSsaa e (2.6)

It follows from Shannon’s sampling theorem that a bandlimited image sampled
uniformly on a rectangular grid with spacing Ax, Ay can be recovered without error

from the sample values f(mAx,nAy) provided that the sampling rate is greater than the

1 . .
Nyquist rate, i.e. i =(.>2(,, ~A—; =(,, > 2, and that the reconstructed image is
given by :
flxy)= Z Zf(mAx,nAy) sinc(x'gm -~ m) sinc(yé'y.‘_ - /1) ......................... (2.7)

N==rr =

The important restriction here is that the input signal is bandlimited. In a digital image

processing environment, the preliminary low-pass filtering is, in effect, performed by
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the lens and scanning aperture combination during acquisition of the image. The
concern during image compression and restoration is only that this bandlimited image

can be recovered.

2.4 Image quantisation

In Fig. 2.1 quantisation was shown as being an essential component of any digital
image processing system  Although most images start as real-world scenes, with a
continuous scalar value for the intensity at each point in the scene, it is necessary in a
practical system to allocate only a finite number of bits to each pixel value. This
process s termed amplitude quantisation, or simply quantisation. This initial
quantisation is usually combined with the sampling stage during image acquisition. In
addition, most of the image compression schemes discussed in this thesis include a
further quantiser somewhere in the system (e.g. for coding transformed coellicients,
edge sizes ete.). The terminology and notation for quantisation introduced here is

required in Chapters 4 10 7.

2.4.1 Definition of quantisation

A quantiser O maps a continuous scalar variable f into a discrete variable f having a
finite setol” L reconstruction levels using a set of L transition or decision levels. This

can be expressed by:
F=0(f)=rwhere d, < FSd, oo (2.8)

where 7 for 1<i< L and o, for 0<i< L denote the reconstruction levels and the

decision boundaries respectively.

The mapping 1s generally a staircase function (see Fig. 2.4) with a simple mapping rule:
the input 1s mapped (o the first reconstruction level which includes the input. The
quantscr design has to determine the optimum transition and reconstruction levels,
given the probabilities and an optimisation condition. This involves a trade-off between

simplicity and performance.

Clearly there will, 1n general, be some error in the reconstructed values. This is termed

quantisation noise ¢, where:
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Quantiser output
[ . ,___
I, ——
/I Quantisation error
r /l /
A B
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Fig. 2.4. Quantisation

The design ol a quantiser is based around ways of minimising some error criterion
based on the average distortion D . If the minimum mean square error (MMSE)
criterion is used then D is given by:

, - 2
)= i-1)]

D

j;:—mpf(‘f - f")hdf‘/’ ..................................... (2.10)

2.4.2 Comparison of quantisers.

The simplest quantiser 1s the uniform or linear quantiser where the reconstruction and
decision levels are uniformly spaced.  Some improvement is gained by using a
logarithmic quantiser which uses closer decision levels for small signal levels and
mereases the decision level spacing for large signals where the quantisation noise is
cffectively masked. The quantisation noise is signal dependent but, for certain signal
types such as those with Gaussian or Laplacian amplitude distributions, quantisers
known as Lloyd-Max quantisers [Max 60] have been designed which are optimal (i.c.

the mean-square quantisation noise is minimised for a fixed number of quantisation

levels).
Quantiser Decision levels Reconstruction levels
Linear di—d_=A, 1<i<L ,,I_:d.'JFd;—l’ l<i<l
Logarithmic d—d_ =A, 1<i<L ( L ) (,)
r,= expl — | — |1
e—1 L
Lloyd-Max S _ d; . N\
’ d = DT << f ., Tor, (1o )df,
2 = /o’l—: i1 , 1< <L
L. =d p;’ (ff; )5#0

Table 2.2. Derivation of quantiser levels

v
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the derivation of the decision and reconstruction levels of linear,

logarithmic and Lloyd-Max quantisers are given in Table 2.2. Fig. 2.5 shows three 4-

bit quantisers over the same range 0 - 15. The Lloyd-Max quantiser is for a Gaussian

source

Reconstruction
levels

Reconstruction
levels

Reconstruction
levels

Fig.

Linear Quantiser

20 -
15+
104
d4
0 : : |
0 5 10 15
Decision levels
Logarithmic Quantiser
20 +
154
10 +
5 T )
() 4 } t i
0 5 10 15
Decision levels
Lloyd-Max Quantiser
20+
15+
10 4
54
0 : F |
0 5 10 15

Decision levels

2.5. Linear, logarithmic and Lloyd-Max quantisers

The Lloyd-Max quantiser 1s not considered suitable for practical systems since it

requires a priori knowledge of the frequency distribution of the signal (o be quantised.

However, when a practcal quantiser 1s embedded in a larger system, then it can be
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replaced during simulation by an optimum Lloyd-Max quantiser (designed to match the
known image frequency distribution) to enable analysis to be made of the contribution
made (o the total error by the quantiser.

If cach scalar is quantised separately the process is termed scalar quantisation. If two
or more variables are jointly quantised the process is termed vector quantisation, a

concept which 1s examined in much more detail in Chapter 6.

2.4.3 Quantisation taking into account visual perception.

The choice of quantiser in a digital image processing application depends on which
aspect of the image is being coded. If the variable being coded is the pixel intensity,
then, since there is no reason why a particular image should have a particular intensity
distribution, no advantage is gained by using a non-linear quantiser and linear
quantisers are generally preferred [Deni 91]. Linear quantisers are universally used for
video quantisation since, averaged over many frames, a uniform distribution of pixel

mtensities is found.

[t1s notable that the usual image display system, the cathode ray tube, has a very non-
lincar response to intensity but this is, fortunately, counteracted by the response of the
human eye. Hence, a linear quantiser can be used here without significant perceived

distortion.

A significant property of the human visual system is its sensitivity to intensity contours
m local structure. While the luminance (intensity) of an image feature is independent of
the Tuminances of the surrounding features, the perceived brightness of an object
depends on the luminance of the surrounding features. This is summarised in Weber's
law (Eqn. 2.11) which states that, if the luminance of an object £, is just noticeably
different from the luminance fy of its surroundings, then their ratio is constant. i.c.

£ = 1]

——— = constant

Lo 2.11)

The value of this constant is found to be approximately 0.02 which implies that only
about 50 contrast levels are required for an image. This is, however, a rather simplistic

conclusion since an image may contain contrasting features at different scales.

Excessively coarse luminance quantisation gives rise to perceptible contouring. There
are two main methods of suppressing this: contrast quantisation and pseudo-random

noise quantisation (dithering).
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In contrast quantisation [Kret 75] the contrast is represented by some non-linear
transformation of the luminance to give approximately 50 levels of contrast. Hence, if
uniformly quantised, each pixel which would otherwise require 8 bits is represented by
5106 bits. If an optimum mean square quantiser is used this can be reduced (0 4 (0 5

hits.

In pscudo-random noise quantisation which is known as dithering [Robe 62] a small
amount of uniformly distributed noise is added to the luminance signal. In order to
display the image, the same, or another, pseudo-random sequence 1s subtracted from
the quantiser output. The mean value of the quantised pixels 1s the same with or
without noise but any contours are smoothed. The amount of dither must be small
enough to maintain spatial resolution but large enough to allow the luminance values (©
vary randomly about the quantiser decision levels. Dithering schemes utilising fractal,

space-filling curves are examined in Chapter 4.

2.4.4 Summary of quantisation

Quantisers are required during digital image acquisition, processing and display.
Lincar quantisers of contrast rather than luminance are appropriate for image capture
and display. At other stages in an image processing system the choice of quantiser
depends on which variable is being quantised. Optimal quantisers are known for
variables with well-defined statistics but many variables (e.g. edge magnitudes,

transform coelficients) require a more empirical approach.

2.5 Data compression

General purpose data compression schemes are those which are independent of the
nature ol the data source. Itis appropriate o discuss general data compression before
considering image data compression because many of the principles are applied in

image dala compression.,

Data compression consists of taking an input stream of symbols and transformin ¢ them
mto an output set of codes. The data is judged to be compressed if the size of the codes
is smaller than the original symbols. Strictly, there are two distinct components, data
modelling and data coding. The decision to output a particular code for a given symbol
(or set ol symbols) s based on a model of the data which delines the symbol
probabiliies. Frequently, the theoretical distinction between modeliing and coding is
blurred und it 1s common Lo discuss image coding schemes which are really modelling

schemes but perhaps include an implicit form of coding.

v
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2.5.1 Data modelling

General purpose data compression generally uses one of two types of models,
statistical and dictionary based. Statistical models encode each symbol based on its
probability whereas dictionary systems replace entire strings of symbols by a single

code.

2.5.1.1 Statistical modelling

The simplest statistical model is a staric table of symbol probabilities. Representative
blocks ol data can be used o build such a table. In the case of image data no universal
table of pixel intensity probabilities exists since, averaged over many images, the
probabilities of all levels are equal. However, statistics can be gathered for cach image
and used to form a static probability table for that image. Since these image-specific
statstics need to be transmitted to the decoder, this limits statistical models of this kind
to order O or order 1 (i.e. blocks of only one or two pixels) since an order n model of a

. . . n -
data strecam with symbols having L values requires (2") probabilities.

The solution to this difficulty is to employ adaptive models. Instead of requiring an
mital pass through the dat to generate statistics, the statistics are continually generated
during compression as new symbols are encountered. The decoder encounters
symbols in the same sequence as the coder and can therefore update its copy of the
statistics in the same way. Such systems are inevitably poor for small data sets (since
most ol the message will have been transmitted before a representative symbol
probhability table can be built) but are appropriate for large data sets such as 1mages.
Various enhancements can be made such as assigning different weightings to old and
recent symbols. Adaptive modelling is usually carried out with a {inite context, using
only a certain number, or order n, of previous symbols. The order is generally small

sinee memory requirements grow exponentially with z.

2.5.1.2 Dictionary modelling

Dictionary hased modelling schemes scan input data searching for groups of symbols
which occur in a dictionary. When a match is found, only the dictionary index needs (o
be transmitted.  Static dictionaries have similar disadvantages 1o static probability
models, an overhead in forming the dictionary and the need to transmit the dictionary
along with the compressed data. The solution is also similar - adaptive creation of the
dictionary.  Nelson [Nels 92] cites the use of acronyms as a simple analogy to this
process. For example, the first time in this thesis that the Joint Photographic Expert
Group (JPEG) is mentioned, both its dictionary definition and substitution string are

defined. Atany later point in the thesis only the substitution string is required.
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2.5.2 Data coding

Data coding is the method for representing the chosen codes with as few bits as
necessary (o convey the information content. A coder is said to be optimal if every
generated code has exactly the number of bits required by the information content of the

coded symbol.

Elficient coding techniques based on the idea of data entropy have been known lor over
40 years. Compression is achieved by taking into account statistical properties of the
data. There are only three fundamentally different approaches, minimal redundancy or
cntropy coding (Shannon-Fano coding, Huffman coding), arithmetic coding and
substitutional coding, but these have been modilied o produce families of related

schemes.

2.5.2.1 Shannon-Fano coding

Shannon-Fano coding [Shan 48] was the first well-known method for elfectively
coding symbols. It requires knowledge ol the probabilities of the symbols in the
message and assigns codes for each symbol with low-probability symbols having more
bits and high-probability symbols having fewer bits. Although the symbol codes have
different lengths they can be arranged as a binary tree giving unique prelixes so that
they can be uniquely decoded. The codes generated are frequently but not always
optimal. Fig. 2.6 shows the Shannon-Fano code tree for the short set of symbols A-E

derived from a set of probabilities given in Table 2.3

Shannon-Fano code | Huffman code
Symbol| Count | Probability | Codeword [Bits Codeword | Bits
A 15 ().3846 00 2 0 1
B 7 0.1795 01 2 100 3
C 6 ().1538 10 2 101 3
D 6 (.1538 110 3 110 3
E 5 ().1282 111 3 111 3
Table 2.3. Shannon-Fano and Huffman codes
Root Root
0 I | 0 [ 1
0 | 0 | 0 I
! ] l ) | 0 1 0 |
A B C l l i
D EA B C D 3
Shannon-I‘ano code tree Huffman code tree

Fig. 2.6 Shannon-Fano and Huffman code trees
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2.5.2.2 Huffman coding

Hulfman coding [Hufl 52] shares all of the desirable properties of Shannon-Fano
coding but the code tree is built bottom-up instead of top-down leading to a different set
ol codes. The Hullman code is optimal only when all symbol probabilities are integral
powers of /4 because it uses an integral number of bits for each code. It is efficient
when the symbols 1o be coded have widely varying probabilities and when there is a
large data set 1o be coded. For a given frequency distribution, there are many possible
Huffman codes, each giving the same total compressed length. A pure Huffman coder
has 1o pass a complete set of symbol statistics to the decoder. As the coder collects
more data and tries 1o achieve better compression the size of the statistics increases.
However, in practice the symbol probabilities converge alter a relatively small fraction
of the total data. Huffman proved that his coding system could not be bettered by any
integral bit-width coding scheme including Shannon-Fano coding.  Since the
computational complexity is similar, Huffman coding is therefore almost always used

mstead of Shannon-Fano coding.

Adaptive Hulfman coding is also possible. An existing Huffman code tree can be
updated to take account of a new symbol without having to rebuild the entire tree
because Hulfman trees exhibit the sibling property (a binary tree where the nodes can
be listed in order of increasing weight with every node appearing adjacent to its sibling
i this list). There are practical problems with Hulfman trees for large data sets due to
numeric overflow of the integers which are typically used to represent the codes but
these can be solved by periodic but infrequent rescaling of the tree [Nels 92]. Huffman
coding is extremely widely used both as a compression scheme in its own right and as a

back-cnd entropy coder o more sophisticated compression systems such as JPEG.

2.5.2.3 Arithmetic coding

Hulfman and Shannon-Fano codes must have integral bit widths so they are optimal
only 1n the rare cases when the symbol probabilities are integral powers of 4. This
problem is most apparent when some symbols have very high probabilities. For
example, a symbol with probability 0.9 would have an optimum code size of 0.11 bits
but a Huffman coder would have 1o assign a code of | bit. Arithmetic coding avoids
this restriction by using a fractional number of bits for each coded symbol with the
cntire message having a single code which is represented by an interval of real numbers
between () and 1. As the message becomes longer, the interval needed to represent it
becomes smaller and smaller, and the number of bits needed (o specily that interval

mereases. Successive symbols in the message reduce this interval in accordance with
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the probability of that symbol. Arithmetic coding is not efficient for short messages but

the efficiency approaches 100% for long messages.

Arithmetic coding requires a technique for building a model of the data which can be
used by the encoder. The model can be static (e. g. a table of standard letter frequencies
for English text) or adaptive, taking into account intersymbol probabilities as well as the

symbol probabilities.

Artthmetic coding methods are computationally intensive compared with Huffman
coding. On data scts containing some symbols of very high probability arithmetic

coders can achieve significantly better compression than Huffman coders but, n

f}"

reneral, the improvement is small [Witt 87]. For example, Pennebaker's Q-coder
[Penn 88], which is acknowledged 10 be excellent, only achieves 5-10% better
compression and, since it has been patented, is usually replaced with a Huffman coder

1o avoid licence fees.

2.5.2.4 Substitutional coding

Substitutional (or dictionary-based) compressors replace an occurrence of a particular
symbol or group of symbols in a data stream with a reference 1o 2 previous occurrence
of that symbol or symbols.  Substitutional compressors can have static or adapuve
dictionaries. A static dictionary is only appropriate when the data is known to be
restricted to a narrow range of values and all well-known schemes use adaptive
dictionarics.  There are two main classes of schemes, both proposed by Ziv and
Lempel, LZ77 [Ziv 77] and LZ78 [ Ziv 78].

LZ77-based schemes maintain a lookahead buffer and move a fixed-size sliding-
window over the data trying o find a match between the bulTer contents and the
window. Using LZ77 itis relatively simple to implement compressors which are Fast
[Nels 921 which has led to the development of many popular computer archiving
programs (¢.g. Lha, zip, zoo). Itis also used for data compression in quarter-inch

tape drives which use the QIC-122 standard.

LZ78-based schemes build the dictionary from all previously encountered symhbols
instead of just a subsct of them. In addition, dictionary entries can be formed by
concatenation of new symbols with existing dictionary entries. A practical version of
this scheme which can discard and rebuild the entire dictionary during compression is
Weleh's LZW scheme [Wele 84]. This is used in the UNIX compress program, the
Graphics Interchange Format (GIF) standard for paletied colour images and the
V.42his standard which has been adopted by modem manufacturers (o replace the

previous MNP-5 Huflman-based standard.
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2.6 Classification of image compression systems

The purpose of image compression is to design a model and coder which take
advantage of the properties which are unique to images (i.e. they are two-dimensional
data sets with features which have to be recognised by the human visual system).
Given this additional knowledge, image compression systems should be able to

perform significantly better than general purpose compressors.

2.6.1 Mathematical models of images

In his proneering work Shannon [Shan 48] viewed communication signals as a series
ol symbols generated according o some stochastic process. This idea has been widely
used In 1mage processing. For example, images are often modelled as first order
Markov processes, which are stochastic processes in which the future is determined by
the present and is independent of the past. However, this is only valid for parts of
images such as areas of fairly uniform texture (grass, clouds etc.). The parts of images
which are badly modelled by such processes are the feature edges. These may well
represent a small set of pixels compared (o the total image size but they are most

important for human perception [Marr 82].

Another image model based on metric spaces is also used in this thesis. This model is

described in Chapter 7.

[tis the difficulty in finding an accurate but mathematically tractable model for images
which leads to the requirement for experimental work based on simulation (o determine

the elfectiveness of image compression algorithms.

2.6.2 Lossless and lossy compression

Whereas general purpose data compression techniques are invariably lossless (i.c. they
produce cxact duplicates of the input data after compression and restoration), image
compression may be lossy. The level of redundancy in images is so much greater than
in other torms of data that 1t 1s acceptable to discard large amounts of data il is not of
high importance. Data such as digitised images and digitised speech are imperfect
representations of analogue phenomena (due to sampling and quantisation) (o start
with, so the idea of losing a certain amount ol data during subsequent compression is
not unreasonable. In particular, this becomes even more acceptable if the level of loss
is known (or at least predictable) and can be traded against compression ratio in a
controlled manner. Lossy compression does not permit perfect reconstruction of the
original but it can provide very good quality at a fraction of the bit-rate. A well-
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designed lossy system can minimise information loss (image distortion) for a given
storage space or communication rate (i.e. when bits are scarce the lossy system can

devote the bits to the data of most importance).

Image coding schemes may be broadly divided into three categories depending on
which aspect of the image is used. Different transformations may be applied to the
image data to move it into a more suitable domain for quantisation and codeword
assignment. The categories are waveform coders, transform coders and model coders
and are discussed in Sections 2.6.3 10 2.6.5. In these sections, common practice has
been followed in referring to the systems as coders although the key differences are

really in the way in which the data is modelled.

2.6.3 Waveform coders (spatial domain)

In waveform coders the image intensity or some simple variation, such as difference in
ntensities between pixels, is coded. Waveform coding has a major advantage in its
simplicity, both conceptually and computationally. Since these techniques do not
exploit features specific to any class of signals, they may be used for speech as well as
mmages.  For example, techniques developed for audio data such as pulse code
modulation (PCM) and delta modulation (DM) can be used for image coding but are
found to be less effective because images do not have the same repetitive nature as
sounds. Detailed description of these techniques is deferred to Chapter 5 where they

provide clearer contrast with the fractal waveform coding method described there.

Waveform coders also exhibit the highly desirable property not shown by other coding
methods of graceful degradation of image quality at high compression ratios in contrast

to the blockiness' apparent in the reconstructed images from transform coding.

In principle, any of the methods outlined in Sections 2.4 and 2.5.2 can be used for
quantsation and codeword assignment but, for simplicity, scalar quantisation and

uniform codeword assignment are usually employed.

Adaptive waveform coding of images requires a method of predicting later pixel values
from mformation about previous pixels. The prediction is usually carried out based on
only a few surrounding pixels. For example, Fig. 2.7 shows a target pixel X at the
current position (x,y) and four previous predictor pixels A-D
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Predictor pixels

Current pixel

Fig. 2.7. Pixels used for waveform coding predictors

Even using only four pixels to form a prediction there are many possible predictors

with some of the more common shown in Table 2.4. The lossless mode of the JPEG

standard uses only pixels A-C as predictors with eight possible prediction equations

which are also shown in Table 2.4.

4-pixel prediction equations

JPEG 3-pixel prediction equations

X =A No prediction
X=8 X=A

X:C X:B
X=(A+C))2 X=C
X=(A+D)/2 X=A+C-B
X=(A+(C+D))2))2 X=A+(C-B)/2
X=A+(C-B) X=C+(A-B)/2

X=A+((D-B)/2)

X =(A+C)/2

Table 2.4. Possible predictor equations

The justfication for using waveform coders depends on the redundancy present in the

sequence of pixels. In wavelorm coding errors are causally related (o the scanning

mechanism. The scanning mechanism is analysed in Chapter 4 and fractal-based

wavelorm coding is examined in Chapter 5.

Thus there are three issues which have (o be addressed in a wavelorm coder:

. The scan order in which the data 1s processed.

. The way in which data is reduced (e.g. how samples are selected, how

redundant data 1s discarded).

o Compression of the resultant reduced data (bit reduction ete.)
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2.6.4 Transform coders

Transform analysis is a general technique for solving difficult problems by moving\br
rransforming the problem into another domain where the problem is easier to solve.
For example, Brigham [Brig 74] cited the example of solving a relatively complicated
problem, long division, by taking logarithms and using the simpler operation of
subtraction. In image transform coders the image is transformed into another domain
(e.g. Fourier or Cosine) which is significantly different from the intensity domain and
the transtorm coefficients are coded. The transformation itself does not compress at all
but a transform may be selected such that many coefficients are either zero so they need
not be transmitted or sufticiently close to zero that they may be quantsed with fewer
bits. Clearly any picture containing useful information is correlated (i.e. there is a fall-
off n energy at high frequencies) so that, when transformed, the set of samples in each
output block has values which are no longer correlated and most of the ‘energy'
(information) is contained in a small proportion of the block. 'Energy compaction' can
then be achieved by rank-ordering the transtorm coefficients in order of decreasing

significance.

Transform coding is generally handled in an open-loop process where, in principle,
cach block can be handled separately unlike the closed-loop sequential nature of
DPCM. This has two advantages: the coder can be made adaptive to local image
characteristics and the overall storage and computational requirements are reduced.
Although smaller sub-image block sizes increase the efficiency, using blocks which are
too small reduces the ability to exploit correlation among neighbouring sub-images.

Typical block sizes used are 8x8 and 16x16.

The general structure of a transform coding system is shown in Fig. 2.8.

X } Y = AX Y X =BY
Forward ) Reverse
—P  ransform P Quantiser ———»  transform —
A B

Fig. 2.8. Transform coding system

The mput set of N pixels X may be either a one-dimensional set from the vertical or
horizontal directions in the image or a rectangular (typically square) block. The input
set is transformed by the N by N matrix A to give a set of N transform coefficients
Y =AX. These coefficients are quantised (o yield an approximation Y. At the

receiver the quantised coefficients are re-transformed by the matrix B to yield X = BY .
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For this process to work well it is desirable that the matrix A should have the following

properties

. It should generate coefficients which are as uncorrelated as possible. This is a
corollary to the requirement for energy compaction. The implication is that
many coefficients can be discarded without significantly degrading the

transformed image.

. [t should be linear. i.e. allow a one-to-one mapping between the pixel and

transtform domains. Thus B=A""

. Ideally, 1t should be orthonormal. The energy in both domains should be the

same so that no energy is lost or carried redundantly.

Some of the most important transforms are the discrete Karhunen-Loeve transform
(KLT) (also called the Hotelling transform) [Andr 75], the discrete Fourier transform
(DFT) [Brig 74], the Walsh-Hadamard transform (WHT) [Prat 69] and the discrete
Cosine transform (DCT) [Ahme 74]. There are many variations on these : e.g. Haar,
Slant, and singular value decomposition (SVD) but their performances are not
sufficiently better for compression to make them widely used. There have been several
comprehensive analyses made of image transforms (e.g. [Andr 75]) and their fast

implementations (e.g. [Elli 83, Jain 89]). The conclusions are illustrated in Table 2.5

Transform | Complexity for Energy Notes
n by n block compaction
DFT O(ﬂz log, ”_> Good Good
DCT ()(nz 10117/7,) Excellent Ne.z.lr—thimal f01‘ highly-
=2 correlated images
WHT O(nz log, n) Good So me objectionable
- distortion
Haar 0( i > Fair Poor compression
Slant 0(172 log, n) Good Similar to WHT
KLT 0(174> but can he| Optimal Used for performa}me
, evaluation. Best on average
approximated
SVD 0<”4> but can be| Opumal Used jfor pcl'{f01‘1na.llce
: evaluation. Best for a given
approximated image

Table 2.5. Comparison of transform coders

. ~ . . . ~ ~ ~ . 4 .
The complexity of the direct implementation of any of these transforms is O(n, ) which
18 excessive for large images. However, if the transform is separable (i.c. it can be
performed using two one-dimensional transforms), this reduces to 0(17,3). Most of

these wransforms (including DFT, DCT, HT, Haar and Slant) can be simplified still
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further by expressing the transformation matrix as sets of products of several smaller
matrices. This leads to fast algorithms for their implementation. In particular if the
smaller matrices have just a few non-zero entries then the complexity reduces to
O(n* log, n).

2.6.4.1 Theoretical transforms

The KLT has theoretical importance as it is the only transform which fulfils the three
requirements identified ahove. The elements of the KLT transformation matrix are
obtained by diagonalising the covariance matrix of the image data, giving completely
uncorrelated coetficients. Also the variance of the KLT coefficients decreases in value
monotonically with increasing order so it is optimal in having the best energy
compaction properties. It is not used in practice because of the computational
requirements. Even more importantly, the image statistics are different for each image
block and require different wransformation matrices for each coefficient. If a new matrix
is required for cach block then the overhead outweighs the advantages. The usual
solution is to employ sub-optimal transforms which can use a fixed transformation
matrix for all blocks. The SVD is similar to the KLT except it concentrates the most
energy in a given number of coefficients whereas the KLT concentrates the average

energy 1n a given number of coefficients.

2.6.4.2 Discrete cosine transform

Each of the practical transforms listed in Section 2.6.4 is useful in some area of image
processing such as image enhancement, or motion estimation, but for image
compression, the DCT has emerged as the clear leader.

Given an n by n image block f(x,y) then the DCT of the block, denoted Flu,v),

where i and v are the x and y direction spatial frequencies, is given by Eqn. 2.12

: 1 o<, mu(2x +1) mv(2y +1)) ,
V)= f ) X,V )COs > — ... 2.12
Flu,v) = C(u)C(x );;if(x,))cos{ > }cos > j ( )
[V i=0

where C(i) = 1 ] P20

The DCT has all of the desirable transform properties, including an efficient algorithm
requiring only real arithmetic. It may be viewed as giving a harmonic analysis of an
image block with the DCT coefficients giving the relative amounts of the two-
dimensional spatial frequencies in the input block. The first coefficient corresponds to

no x ory direction variation and is thus known as the 'DC' coefficient with the
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remaining coefficients being termed 'AC! values. Because images typically vary
slowly across the relatively small blocks (typically 8 by 8 pixels) which are considered
m ransform coding, almost all the signal 'energy' is contained in the first few

coeflicients.

1L is apparent that direct application of Eqn. 2.12 leads to an extremely inefficient
method of calculating the DCT with complexity 0(11.4). However, many of the terms
could be replaced by table lookup leading 1o a practical method using a pre-calculated

cosine transform matrix C where:

l
—= 1=0
_ { Vi
i) (2] +1

l\-cos EL/—Z 1#()
" VRO OSSOSOV (2.13)

Then, using matrix multiplication:
................................................................................... (2.14)

2.6.4.3 Zonal and threshold coding

Once the transform coefficients of an image block have been found a strategy is needed
for deciding which coelficients to code and how to allocate the number of available bits
among the coeflicients. In zonal coding all coelficients within a pre-defined region of
the coelficient matrix are coded. In threshold coding, the whole of the coefficient
matrix is considered but only coelTicients exceeding a lixed threshold are coded. This
requires extra information about the locations of the selected coelficients which is
typically provided by run-length coding the coefficients. If the transform has good
energy compaction propertics a regular sequence of coelficients may be used such as
the zig-zag scan used in the JPEG system (see Section 2.8.4). Once the selected
coelhicients are chosen the total number of bits allocated to the block is divided among
the coefTicients proportionally (o the expected variances of the coelficients. In the
DCT. for example, the expected variance is much larger for low-Irequency

components.

2.6.5 Image model coding (parametric coding)

The term image model coding is usually only applied when a more sophisticated image
model 1s derived and the model parameters are coded. The reconstructed image is then
synthesised from the model parameters. Image model coding is stll in its infancy but it

1s thought that future applications will be in arcas where intelligibility of the mages 1s
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far more important that faithful reproduction of image intensities. For example, some
suceess has been achieved with 'cartoon-like' images for sign-language in areas such as
video phones for the deal [Pear 90). The potential compression attainable by such
systems s significantly greater than is likely to be achieved by other methods but there

18 a limited number of applications where intelligibility is the only important factor.

There are specific areas within conventional coding where model coding can be applied.
Many images contain areas of constant 'texture’ where the image data varies in the
region but is statistically very similar. If a model can be found for the statistical
variation (repeat Irequency, shading ete.) then it is sufficient (o encode just the
boundary of the region and a description of the texture. For example, it might be
sutlicient to code just sulTicient information (o specily that a certain region of an image
contains blue sky with a few clouds and let the decoder decide where to place the
clouds. This is closely related to the use of [ractal Torgery' in image synthesis where
the object is Lo create realistic-looking synthetic images. This is not considered Turther

i this thesis since the theme is the processing and compression of real image data.

2.7 Comparing image compression schemes

Numerous image compression methods are known. The choice of a particular
technique for a given application depends on four main criteria: the choice of 1mages;
the required quality of the reconstructed image; the compression ratio: the speed of
operation. To clarily evaluation of the techniques introduced in this thesis, Sections

2.7.1 10 2.7.4 describe how these factors are measured.

2.7.1 Choice of test images

Once the type of image has been established (see Section 2.2), the content of the image
to he compressed clearly has a considerable influence on effectiveness ol (he
compression techniques. The optimum choice of test image subject from the unlimited
possibilitics 1 an intractable problem. In some applications there is a clear choice (e.g.
human head and shoulders for development of videoconferencing systems) but the
issue s rarely so clear-cut. An analogous situation arises when vendors of computers
publish benchmark performance data for their machines. The benchmark programs are
usually independently designed to try and represent realistic tasks but commercial
pressures have forced some vendors to optimise their compilers (and in some cases the
hardware) specifically for the benchmarks [Patt 93]. For image compression, as an
extreme example, one could design an algorithm (Fig. 2.9) which provides excellent

data compression ol one particular image but is otherwise not useful.
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encoder : IF image is the lena image THEN
transmit '1°
ELSE
transmit '0°
transmit uncompressed imag¢

¥

ENDIF

Fig. 2.9. Image-specific compression algorithm

This type of problem has (o be avoided by using a set of significantly different test
mmages.  There are advantages in using ‘standard' images since they are readily

available and their use permits direct comparison with other workers' results.
In this thesis two sets of images are used extensively.

. A primary image set ol three well-known test images having significantly
different properties (see Table 2.6). This set is used (o develop algorithms and

to give comparisons with other work. The images are shown in Appendix A.

Image Name Notes

LENA The ‘classic” test image. Mostly casy o compress and
reconstruct, with some regions of fine detail. The version used
here 1s derived from the original RGB format.

BOATS An intermediate difficulty image. The sharp edges of the boat
masts need o be picked out from the plain background.
Legibility of the boal name is also a good test.

BARBARA A dilficult image to compress. The fine pattern of stripes on the
clothes causes trouble for all coders. There are large regions of
Iine detail with sharp edges.

Table 2.6. Summary of primary test images

. A secondary set ol 26 images of widely-varying subjects (fine-art, landscapes,
portraits, machinery, sports scenes ete.) collected from generally available
sources including several image processing research laboratories and Usenet
newsgroups. It is not known in all cases how each image was originally
captured but it can be argued that, in a sense, this makes the set more useful
since it introduces greater diversity. To prevent the introduction of unnecessary
crrors due o re-sampling and re-quantisation, original images were chosen
which had a resolution of at least 512 by 512 and at least 256 grey levels.
Higher resolution images were cropped [rom the centre rather than rescaled.
This larger image sethas been used to fine-tune algorithms and to generate more
meaningful statistics once algorithms have been optimised on the small primary

mmage sct. The secondary image test setis shown in full in Appendix A
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2.7.1.1 Image complexity

Itis useful 1o have some objective measure of image complexity in order to judge the

effectiveness of any compression. The usual approach is to compute the ‘entropy' or

information content of the image.

Shannon showed that the entropy H of a set of symbols with L possible values is given

by:

where P, is the probability that the symbol value is i.

Unlike thermodynamic entropy, there is no absolute number which represents the
absolute information content of a message. When information entropy is calculated, the
symbol probabilities depend on the model not just on the data so, for example, the

probabilitics depend on which order entropy is being used.

H can be interpreted as the average amount of information contained in each symbol.
The zero'th order entropy of the image is obtained by considering only individual pixel
mtensities. However, it is not sufficient o consider just single pixel values, since
images contain features which extend over many pixels. Better estimates can he
obtained by examining the frequency distributions of blocks of adjacent pixels. For
example the [irst order entropy is obtained by considering all consecutive pairs of pixel
mtensities. As the block size n increases the estimates provide better approximations to
the entropy of the image. Table 2.7 shows the zero'th and first order entropies of the

primary test set images.

Image Zero'th order|First order|Compression |Compression

Name Entropy /| Entropy ratio lossless|ratio lossy
bits-per-pixel | bits-per-pixel | JPEG JPEG (Q50)

Lena 7.25 5.95 1.86 14.26

Boats 7.07 5.94 1.74 11.15

Barbara 7.51 6.66 1.60 9.00

Table 2.7. Complexity of primary test images

Determination of image complexity can be achieved by an inverted argument. If a
standard image compression algorithm such as JPEG (which is discussed in Section
2.8) 15 applied, then the compression ratio achieved is a good indication of the image
complexity. There are dangers in this approach. For example, Table 2.7 shows that
the compression ratio achieved with the lossless JPEG model does not vary greatly

between images but the lossy JPEG model achieves quite different compression ratios.
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These problems with determining a good measure of i image complexity suppmt the case

for finding a more appropriate measurements such as the fractal dimension which is

discussed in Chapter 3.

2.7.2 Measurement of image quality

One of the key measures of any image compression system is the quality or fidelity of
the restored image. The requirements for the quality of the reconstructed images
produced by a compression system depend on the application. Some data, such as
historical records and space probe data, may be irreplaceable or very expensive to
obtain in which case lossless or information- -preserving coding is required. In othe
applications, such as entertainment television, high subjective quality is of paramount
mmportance but much of the original information may be lost so long as the result is
acceptable to human viewers. There are also applications, such as remotely piloted
vehicles and robot vision where intelligibility is overwhelmingly important but visual
quality 1s not. However, in each case, the lower the acceptable quality and intelligibility

the lower the required bit rate.

It is necessary to have some reproducible and objective measure of image quality.
Clearly it is desirable for this measure to reflect the perceptual quality or usefulness of
the restored image in a particular application. Unfortunately, the complexity of coding
schemes required, especially at very low bit-rates, inevitably results in radically
different errors and unwanted image artefacts which are not directly comparable
between schemes.  For example, it is hard to predict whether a group ol human
observers will prefer a generally sharp image with a few major defects or a rather
blurred image with no other defects. There is no easily computable measure which is

accepted to accurately represent human preferences for image quality.

An additional desirable property of distortion measures is ease of computation and
tractability in further analysis. This explains the popularity of measurements based on
the squared error since there is a wealth of theory and associated numerical methods
which are based on optimising the mean squared error. Definitions of squared error
based measurements including the mean-squared-error (MSE), the signal-to-noise ratio
(SNR) and the peak signal-to-noise-ratio (PSNR) for an M by N pixel source image f

and restored image 7 with source image variance o”are given in Table 2.8.
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v 0 N e e ———————— §
Distortion measure Definition .
Mean squared error 1 & 2

MSE =—=% 3 |£(i./) - £(i.J)]
MN &4
Mean signal-to-noise ratio 2

- o
SNR =10log ,
210 MSE

Peak signal-to-noise ratio - : 2
(peak value of source image data)

MSE

PSNR = 101og,,

Table 2.8. Squared-error based distortion measures

SNR is commonly used in general signal processing applications but, for image
processing, PSNR is more common. It has even been suggested that this is because
the figures look better (typically PSNR is 4-6 dB greater than SNR)! There are
problems with the squared error. For example, it gives a large numerical distortion for
a small spatial or intensity shift in the image even though these errors would give no
visual distortion. Equally, a single damaging but highly localised visual defect may
only give rise to a small average distortion. MSE does not take into account masking
effects of high activity near edges or the subjective significance of coherent errors like

block structure, ghosting and contouring.

In general, it is found that MSE measures are better predictors at higher bit rates but
poor at low bit rates. A reasonable compromise which can be taken is to design a
system to minimise the mean squared error but then use a more complicated distortion

measure o evaluate the quality of the system.

For these reasons a wide variety of objective image quality measures have been
proposed [Ahum 93] which attempt to incorporate knowledge of the human visual
system (sensitivity Lo edges, insensitivity Lo textures, masking effects). Such methods
include the absolute error and the cube root of the sum of the cubed errors (L3). None

ol these measures has had wide acceplance

Use of subjective measures is a potential minefield, frequently leading to inconsistent
results.  Atlempts have been made to design objective measures which predict
subjective measures for applications such as entertainment video. Typically [Marm 86]
this would involve plotting the objective measure against scores awarded for subjective

quality and then trying to fit a curve to the resultant points.

Cosman er al [Cosm 94] made a detailed analysis of objective and subjective measure of
mmage quality of compressed medical images. They made the surprising and

controversial conclusion that, in many cases, the compressed and restored images are

supertor (o the originals when judged subjectively (by medical exXperts - not image

Page 46




Chapter 2

processing experts). It is thought that this is mainly due to the inherent noise reduction

when clustering methods such as vector quantisation are used. As far as objective

measures are concerned they make a strong case for the use of segmental SNR (SSNR)
[Jaya 84] which was developed as a measure of coded speech quality, since it averages
out small distortions over large areas and large distortions over small areas. SSNR I
calculated by dividing the image into blocks of small to medium size (e.g. block sizes
from 2 x 2 t0 32 x 32 pixels), calculating the SNR for each block and then averaging

the values for each block size.

To test the predictive value of each of these quality measures, images in the primary test
set (see Section 2.7.1 and Appendix A) were distorted by a variety of effects (random
pixel variation, JPEG compression, coarse quantisation) and each objective distortion
measure was applied. The parameters were chosen to give a range of quality values
representative of compressed images derived by the methods discussed in this thesis.

The results averaged over the three test images are summarised in Table 2.9

Distortion by random pixel variation
variation PSNR / dB SNR / dB SSNR / dB
.01 44 84 40.50 28.85
0.02 38.67 34.33 25.26
.04 32.71 28.37 21.29
().08 26.72 22.38 17.82
Distortion by coarse quantisation
grey levels PSNR / dB SNR / dB SSNR / dB
64 46.39 42.05 29.88
32 40.93 36.58 26.44
16 34.91 30.57 22.76
8 28.88 24.54 18.94
Distortion by JPEG compression
quality factor PSNR / dB SNR dB SSNR / dB
90 38.93 34.39 25.18
50 34.11 28.77 22.23
25 30.67 27.33 20.69
10 28.24 23.90 18.56

Table 2.9. Summary of restored image quality measures

The absolute value of cach objective quality measure evaluated in Table 2.9 is less

important than achieving an equal ranking between the objective and subjective
measures.  The distorted versions ol cach of the images were ranked in order of
subjective quality by a group of non-specialist observers using a 'bubble-sort' of paired
comparisons. Fig. 2.10 shows the mean ranking obtained from cach of the objective
quality measures plotied against the mean subjective ranking. Itis not necessary also o

cvaluate SNR as a predictor since, for a given image, it is proportional o the PSNR.
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Fig. 2.10. Subjective quality of distorted images

Some interesting results can be seen [rom close examination of the statistical data. For
example, images with 2-4% random pixel variation were nearly always preferred by
observers o images with only 1% random variation! The data is considered reliable
since control experiments were introduced by the presence of image pairs which ought
to be indistinguishable and such image pairs were consistently ranked equal. Overall it
can be scen Irom Fig. 2.10 that neither PSNR nor SSNR achieves completely uniform
objective and subjective ranking but that both measures do provide approximate
predictions ol subjective acceptance. The closest straight line fit is for the SSNR but
the PSNR is almost as good so, to [acilitate comparison with other work, the simplest
and most common measure, PSNR, is used for the experimental results reported here.
Where the term SNR is used it should be taken to mean the PSNR unless specifically

stated otherwise.

2.7.3 Compression ratio

Data compression is the process of reducing the amount of data required Lo represent a
given amount of information. Data is not synonymous with information. Dilfering
amounts of data may represent the same amount of information. Data which adds no
relevant information or duplicates existing information is said to be redundant. If two
data sets contain n, and n, information units then the compression ratio C, is:

Cyp = /%_»

OF course, when compressing images, the true information content of each image 1s
unknown so a rather more practical measurement is used. The compression ratio is

simply defined as the ratio of the original image size (which is always 262,144 bytes

Page 48




Chépter

tor experimental work reported here) (o the compressed image size as given in Eqn.
2.16. \ \

c o= Size of original image
RS - .
Size of compresse age '
z¢ of compressed image (2.16)

Results quoted do not necessarily correspond (o the actual size of the compressed files
to which, for simulated systems, it is not necessary to perform optimal packing of
compressed data into bytes. Instead the results are quoted as if this packing has been
performed. In addition, unless specifically stated, the results do not assume that any
further compression such as entropy coding (see Section 2.5.2) has been applied to the

compressed data.

[t should be noted that there is also some disagreement over whether compression ratio

is & uselful measure. It has been suggested that the absolute size of the compressed

image which can be reconstructed to give a perceptually acceptable image is more
useful.  The reasoning is that initial images with very high resolution can be
compressed greatly, giving high quality reconstructed images but still requiring
excessive storage for the compressed data. In contrast, an initial image with low
resolution will be difficult to compress significantly. Perhaps unsurprisingly, this
argument is promoted by proponents of scale-independent image compression schemes

such as iterated function system compression which is discussed in Chapter 7.

2.7.4 Coding and decoding speeds

Clearly, in order to be uselul, any image data compression must be achievable in a
finite and preferably short processing time. In the past it has been important (o ensure
that a coding scheme is practical o implement in hardware. This issue is now
becoming less significant with developments such as: reconfigurable hardware [ Atha
94] which is blurring the distinction between hardware and software implementations;
the embedding of high-performance microprocessors into systems (o execute complex

algorithms.

Where the ime taken 1o perform image compression and decompression is an important
factor it necessary o provide some measure of the complexity of the computation.
Obviously no measure based on the speed ol a particular processor, such as the Sun
workstation as used here, is likely to be useful. Neither is it helpful to give results
which only apply to a specific size of images. The appropriate measure is the
computational complexity of the algorithms which provides an indication of the rate of

growth ol the computation time as the scale of the problem increases.
¢ P
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In this thesis the computational complexity of the algorithms presented is described

with the ‘order notation’ proposed by Knuth [Knut 76]. If fand g are functions of the
mteger n which represents the scale of the problem then the order of 7(n), denoted
( (n)), is the set of all g(n) such that there exist positive constants ¢ and n, such

g(n) I< ¢f(n) forall n>n,. For example, complexities of n*/2 and 13n° + 51 are
both O( 72). It is helpful to think of O(f(n)) as meaning order ar most f(n). For
example, a complexity of 4n is also O(nz), which may be seen by setting ¢ =2 and
ny =1 In general, algorithmic complexities greater than 0(773) rapidly become
mmpractical whereas algorithms with extremely low growth rates such as O(log2 77) are

extremely useful.

For each algorithm the relative speeds of compression and decompression also need to
be considered.  Speed of compression usually matters much more if data is to be
transmitted rather than stored. The decompression speed is quite important for storage
and retrieval and is vital for reception of transmitted data. Some compression methods
are approximately symmetric with respect to the compression and decompression
speeds. Others, such as IFS coding, examined in Chapter 7 are extremely asymmetric,
with compression times currently exceeding decompression times by several orders of

magnitude.

2.8 Current image compression methods

Current image compression methods are split into two categbries. The first category is
methods which have been adopted as standards. These are well-understood and have
performances which are generally good but not outstanding. They are, however,
robust. Current image compression standards have been developed by the ISO and the
CCITT organisations to encompass binary, grey-scale and colour images. The state of

the art as far as standards are concerned is the JPEG standard.

The second category consists of areas of current research. Current research work in
image compression is focused on wavelets, object-based coding, vector quantisation
(VQ) and fractal image compression. The last two topics are closely related to each

other and are addressed in this thesis in Chapters 6 and 7.

2.8.1 General purpose data compression of images

Although general purpose compression techniques outlined in Section 2.5 perform well
on data such as text they are not very effective for compressing continuous tone
mmages. Statistical methods fail because pixel intensities tend to be quite uniformly

distributed and dictionary methods fail because the repeated features, which might

Page 50




Chapter 2

otherwise be good candidates for dictionary entries, tend to be slightly different cach
time they are encountered so that only short matching strings can be found. Table 2.10
shows the performance of several general-purpose compression systems on the image
data. In all cases the compression is poor. The best compression ratio achieved is
1.32:1 by gzip on the BOATS images. Clearly, general-purpose compressors are not
useful for image data which is why compression schemes have to be devised

spectfically for images.

Compression| Basic LENA BARBARA [|BOATS

name compression |compressed |compressed compressed
scheme size/Bytes size/Bytes size/Bytes

none raw image 262144 262144 262144

UNIX LZW 219893 259187 217457

compress

Izh, Tha LZ77 218866 235557 203742

g71p LZ77 212930 232157 198978

200 LZ78 240941 282201 225062

Table 2.10. Performance of general-purpose compression systems

2.8.2 Elementary image compression

It1s possible to achieve significant image compression simply by sub-sampling either in
the spatial domain or in the intensity domain. The effectiveness of this depends on the
resolution of the source image and the requirements of the display. For example the
three 1mages in the primary test set have been sub-sampled at various resolutions or
block sizes and then (lincarly) interpolated back to their original resolution. Fig. 2.11

shows the resulting compression and distortion resulting from this simple process.

70 130.00
S 60+ +25.00
".',!

20+ 4+20.00 & .
S 404 © | ——8—— compression
Zz +15.00
. +10.00 &
8 10 4 +5.00

0 0.00

Block size

Fig. 2.11. Compression by sub-sampling
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The objective measure of SNR makes this seem effe’étive‘ibut’,,suhje,ctivelzy, the restored

images have most noticeable 'blockiness' as shown in Fig. 2.12 where the block size is

8 by 8 pixels.

Fig. 2.12. Blockiness due to sub-sampling

Similarly, the three primary test images have been coarsely quantised. Fig. 2.13 shows
the resulting compression and distortion resulting from this simple process. Again, in
spite of an apparently good objective measure of SNR, subjectively, the restored
images have most noticeable contouring as shown in Fig. 2.14 where the image is

quanused o only 8 grey levels.
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Fig. 2.13. Compression by quantisation
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Fig. 2.14. Contouring caused by coarse quantisation

The significance of these results is that considerable compression can be achieved very
simply using only sampling and quantisation. If the compression achieved in this way
i1s sufficient for a particular requirement then there is no need (© resort to any of the

more complex image compression schemes.

2.8.3 Binary image compression standards

2.8.3.1 CCITT Group 3 and Group 4 FAX

The most widely used standards are the CCITT Group 3 [Fax3] and CCITT Group 4
[Fax4] standards. The Group 3 system uses non-adaptive one-dimensional run-length-
coding in which some lines are coded two-dimensionally. The Group 4 system uses
only two-dimensional coding. In both cases the two-dimensional coding is based on
relative address coding (RAC) [Gonz 92]. The CCITT used a set of eight
representative documents to test the standards. On these documents the compression

ratio achieved is approximately 15:1 [Urba 92].

2.8.3.2 JBIG

A further committee, the Joint Bi-level Image Experts Group (JBIG) has produced an
improved standard which performs 10-15% better than CCITT Group 4 on text and
linc-art and copes better with half-tone images and other documents which are
sometimes expanded by the original FAX standards [Arps 94]. JBIG can be used on
grey-scale or even colour images by applying the algorithm to one bit-plane at a time
but the overhead in processing the separate bit-planes means that beyond about 6 bits

per pixel the JPEG standard (Section 3.8.4 ) works better.
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JBIG uses predictive coding from a set of near by (but previously scanned) ‘;1xe1s ca 1
the template. An example template might be the two pixels preceding the current on )
the same line, and the five pixels centred above this pixel on the previous line. The
pixel difference is then arithmetically coded based on the state so formed. The specified
arithmetic coder is the Q-coder [Penn 88] but the standard permits use of a Huffman

coder to avoid licence lees.

2.8.4 Continuous-tone image compression standards

There are numerous widely-used proprietary image file formats such as the popular
GIF format. These are usually lossless systems, mostly based on run-length encoding
or substitutional encoding which are employed more as a matier of convenience and to
distinguish rival image processing software than (o perform real image compression.
For example a GIF-compressed image typically has the same storage requirement as it
would if compressed with a general purpose data compression system. There is only
one standard, JPEG, which has been universally adopted and which marks the current

'state-ol-the-art'.

2.8.4.1 JPEG

The Joint Photographic Experts Group (JPEG) is an experts group of ISO, IEC and
CCITT members which has defined a compression standard for image coding [Wall 91,
Penn 93] JPEG is designed lor compressing either full-colour or grey-scale digital
images of ‘natural’, real-world scenes. The JPEG standard defines a 'haseline' lossy

algortthm and four modes of operation:

. Sequential encoding. Each image is independently compressed.
. Progressive encoding. This is intended to support real-time transmission of

images. 1t allows the DCT coelTicients to be sent incrementally in multiple
scans' of the image. With cach scan, the decoder can produce a higher-quality
rendition of the image. Thus a low-quality preview can be sent very quickly,

then refined as time allows.

. Hierarchical encoding. This allows images to be compressed at multiple
resolutions. The higher-resolution images are coded as differences from the

next smaller image.

. Lossless encoding. This does not use the DCT, since roundofT errors prevent a
DCT calculation from being lossless. The lossless mode uses predictive coding

chosen from one of eight specified predictor Tunctions. The sequence of

o
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differences between actual and predicted values is encoded using Huff

coding as in the lossy mode. The lossless mode is particularly appropriate for

the final scan in a hierarchical sequence.

[tis worth outlining the baseline compression algorithm shown in Fig. 2.15 since it is
essentially a sequence of the same transformations, quantisations and encodings which

are discussed in Sections 2.4 10 2.6.

Data in B DCT in 5 Coefficient B Zig-zag B
8x8 blocks qQuantisation re-ordering

I £

Transtorm into — Other two Quantisation
suitable colour space ; colour axes tables
Ze10 Run-length
cncoding
Compressed

i i ata ou
Arithmetic data out

coding ’
OR

Header file

non

Huffman
encoding

Fig. 2.15. JPEG image compression

L. The image is transformed into a suitable colour space. This is irrelevant when the
image is grey-scale but for colour images it is preferable to transform from the red-
green-hlue (RGB) space into a luminance/chrominance colour space.  Some
compression can then be applied along the chrominance axes by undersampling as the
human eyc is not as sensitive to high-frequency colour information as it is (0 high-
frequency luminance.  The remainder of the algorithm operates on each colour
component independently but if the colour space is not changed compression will be

less since each component is coded at luminance quality.

2. In cach colour axes the pixel values are grouped into 8x8 blocks. The DCT of each

block 1s calculated.

3. For cach block, cach of the 64 frequency components is divided by a separate
‘quantisation coefficient’, and the results are rounded (o integers.  This is the
fundamental compression step. A quantisation coelficient of 1 loses no iformation;

larger coelficients lose successively more information. The higher frequencies are
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normally reduced much more than the Tower. All 64 quantisation coefficients a
parameters to the compression process and can be defined for each image but mo:

existing coders use simple multiples of the example tables given in the JPEG standard.

5. The reduced coefficients are encoded. JPEG coding is so effective that many
(typically more than half) of the coefficients are reduced to zero durin g the quantisation
stage. The zero values are coded with a run-length coder and the non-zero values are
coded using arithmetic or Hulfman coding. The specified arithmetic coder is the
patented Q-coder [Penn 88] so it is rarely used in practice. As a further refinement, the
coeflicients are scanned in a zig-zag order (see Fig. 2.16) thus selecting coefficients in

order of probable energy content and maximising the expected run lengths of zeros.

&

Fig. 2.16. JPEG coefficient block scan order

0. Appropriate headers are added to produce an ‘interchange’ JPEG file. All of the
compression parameters are included in the headers so that the decompressor can
reverse the process but for specialised applications, where the decoder knows which

parameters were used, this overhead of several hundred bytes may be omitted.

The decompression algorithm reverses this process and typically adds some smoothing

steps to reduce pixel-to-pixel discontinuities at the block boundaries.

2.8.4.1.1 Performance of JPEG encoding

The JPEG compression process has numerous parameters which can be used to trade
off compressed image size against reconstructed image quality over a very wide range.
In practice these parameters are usually derived from a single value called the ‘quality’
setting which varies in the range 0 10 100. The way in which these paramelers are
derived varies between JPEG implementations $o no direct comparisons can be made

hetween different implementations.

The performance ol a typical JPEG coder [Imag 94] has been evaluated here with

results as shown in Fig. 2.17. This shows the mean performance over the three
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primary test images with Q varying from 10 to 100. It can be seen that the

approximately proportional to, and the compression ratio approximately

proportional o, the quality setting except for the two extreme values. The di’sconi;_ih\ui\‘ty
at Q=100 is caused by the coder switching to the lossless mode and the smaller
discontinuity at Q=10 is caused by excessive rounding during the quantisation stage.
In most implementations the useful range of JPEG quality settings is approximately 25
- 90.
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Fig. 2.17. Performance of a typical JPEG compressor

From Fig. 2.17 it is clear that the JPEG compressor achieves very good results (30 dB
SNR ata compression ratio of 20:1) but at the higher compression ratios the subjective
quality is poor with considerable 'blockiness' in the restored image. For example, Fig.
2.18 shows detail from the Lena test image when compressed at a ratio of 50:1 using
JPEG. It can he observed that there is obvious degradation due to each block being
represented by only a few DCT coefficients. In addition artefacts with a ripple-like
appearance are seen around edges. This effect, the Gibb's phenomenon associated
with ringing" in the [requency response of the human visual system is inevitable with

Irequency-domain-based compression.
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lllustration removed for copyright restrictions

Aston University

Detail from original image Detail from compressed image

Fig. 2.18. LENA compressed at 50:1 with JPEG encoding

JPEG has been adopted as the image compression system for the Adobe PostScript
printing system language, the raster image part of the ISO Document interchange

format, the CCITT colour FAX standard and the European videotext standard.

2.9 Summary

Data compression is a well-developed topic and provably optimal compression can be
achieved for certain types of data. Compression systems may be broadly divided into
lossless and lossy systems. There are applications where only lossless compression
can be used and, for such data, techniques such as Huffman coding, arithmetic coding
and substitutional coding can provide significant compression ratios. Images do not
compress at all well using lossless compression techniques. Fortunately, a digital
image, being an approximation of analogue data to start with, is an excellent example of

data for which lossy compression is appropriate.

There is a need for scepticism with regard to claims made for the effectiveness of
proposed image compression schemes. It is enlightening to compare compression ratio
and distortion figures with Fig. 2.11 which shows the objectively (but not subjectively)

200d performance of an elementary compression method such as sub-sampling.

Although well-established, lossy image compression has become so important that
considerable development work is still taking place. The pressure for a working
standard has resulted in the JPEG standard which has rapidly become widely adopted.
It gives good compression in the range 10:1 to 20:1 with subjectively acceplable

distortion and objectively measured distortion in the range 30-35 dB SNR.



JPEG compression is computationally dunandmo Hdldel@ advances have alleviated
this problem considerably but there is still a requirement for conceptually dll\,\
computationally simple compression techniques. In Chapter 4, novel scanning |
strategies are presented which can IMprove many existing image compression schemes
with little increase in complexity. A further, computationally simple, fractal

compression lechnique is presented in Chapter 5.

At higher compression ratios greater than approximately 20:1 artefacts caused by JPEG
compression become subjectively unacceptable. Vector quantisation offers hope for
significantly higher compression if the computational difficulties can be solved. This is

addressed in Chapter 6.

A Turther drawback with JPEG is its resolution dependence. Even though it provides a
hierarchical mode, this is not the same as resolution-independence.  Any attempt to
display the image at a resolution higher than the highest coded resolution still results in
blockiness from the required pixel replication. It will be seen in Chapter 7 that is not

the case when iterated function system [ractal-based methods are used.

Most rescarch is applied to incremental developments of themes which have been
known for many years. The demand for signilicantly better compression systems
requires a more radical approach. Although the idea is controversial, the concept of

using fractals for image compression appears to offer a solution.
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Chapter 3. Fractals and Images

3.1 Introduction

This thesis is concerned with the applications of fractals to image compression'. In
Chapter 2 it was shown that the problem of image data compression reduces to two
separate problems: (1) modelling the image data so that redundancy may be
determined and (2) coding the data according to the model so as (o require the
minimum storage. In this chapter it is shown that images can be modelled as fractal

data and that this interpretation leads to new ways of compressing images.

In addition fractals provide a natural tool for applying conventional image data
compression techniques in a systematic and hierarchical way (o the complexity of
mmage data which is present at many scales of measurement. Here, some of the ways
i which fractal forms arise from image data are identified. The procedures used o
determine whether data is fractal are also used to measure the complexity of the data

and 1t 1s shown how this relates to the conventional complexity measure of entropy.

This chapter gives a brief and non-rigorous description of the properties of [ractals

together with notation sufficient o explain the image compression methods explored

in Chapters 4 10 7.

3.2 What is a fractal?

Unfortunately it 1s not easy (o give definition of a fractal. Many, otherwise rigorous,
mathematics texts evade this issue since any particular definition seems either to
exclude sets which are usually thought of as fractals or 1o include sets which are not.
The reasoning is well expressed by Falconer who wrote:
"My personal feeling is that the definition of a fractal should be regarded in
the sume way as the biologist might regard the definition of life. There is no
hard and fast definition, but just a list of propertics characteristic of a living
thing. ... Most living things have most of the properties - but there are
exceptions to all of them." [Falc 90]

For a fractal set £ such a set of properties might include:
(1) F has a fine structure. 1e. detail at arbitrarily small scales.

(2) F is too irregular to be described by traditional geometrical language - both

locally and globally.

Page 60




Chapter3
(3) F may have some form of self-similarity, perhaps approximate or statistical.

4) Usually the fractal dimension 3 of F (however defined) is greater than its
topological dimension. Definition and practical measurement of the fractal

dimension are considered in Section 3.5.
(5) In most cases F is defined in a simple way, perhaps recursively.

Since fractals are only defined here in such loose terms it is appropriate to give an
example ol an object which is considered to be fractal. One of the most famous
examples is the coastline of Great Britain. Mandelbrot [Mand 67] compared the
lengths of coastlines on various maps. He observed that as the maps became more
and more detailed the measured length of the coastlines increased in a regular way.
Thus there is no single coastine length; it depends how it is measured. However, the
rate of increase of the coastline length at different levels of magnification can be

measured.

The procedure is to measure the length at various scales and plot the logarithm of the
length against the logarithm of the unit measure (i.e. the smallest measurable unit at 4
given resolution). Any logarithm base may be used, provided it is the same for both
axes, since it s the ratio which is important. The slope of the plotted line is negative
since, as the scale increases, the length decreases. Informally, the fractal dimension is
one (the topological dimension of a line) minus the slope of the plotted line. This is
Hlustrated in Fig. 3.1. The fractal dimension of the coastline of Britain, measured in
this way is approximately 1.28. A more practical method of measuring the fractal

dimension of image data is described in Section 3.4.

regression line

log (lotal length)

log (unit length)

Fig. 3.1. Experimental measurement of fractal dimension
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Measurement of coastlines may seem a long way from image data compression but it

will be shown in Chapter 5 that exactly the same process may be used to 'measu
image data at various scales. If a simplified version of the data is created at a chosen
scale, and detail at smaller scales is ignored, then a compressed version of the image

1s produced.

3.3 Sources of fractals

Fractals are not merely an elusive mathematical coneept. Dirac reputedly remarked
that if a theory is mathematically beautiful and elegant, it is inconceivable that nature
does not have a use for it. It could certainly be argued that is the case for fractals.
Real-world objects and processes often exhibit fractal properties and it is increasingly
accepted that there is a deep, probably causal, relationship between the fractal
structure and appearance of natural objects and the processes which form them [Gell
94].

Fractal analysis has been found to have extremely diverse applicability. Some of the

most fruitful areas have been:

. Quantitative measurement of the irregularity of physical properties. For
example, the roughness of ocean floors and the distribution of carthquakes
along fault lines [Piet 86]. Measurement of fractal properties has also been
used to characterise materials and hence identify the physical processes which
formed them [LeMe 91].

. Fractal modelling of physical processes [Cher 91, Peit 92]. For example,
fractals have been used to model lightning, clustering of stars, Brownian

motion, spread of discases, population growth etc.

. Computer graphics [Peit 88]. For example, synthetic scene generation for

[light simulators and films [Pent 84].
. Analysis ol the growth of biological forms such as plants [Meak 86].

These arcas are clearly related. For example, the success of fractal modelling of
plants and trees for synthetic imagery is due to the image formation techniques

corresponding well to the way in which the real objects are formed [Saup &9].

Many examples of scaling laws or power laws (i.e. the quantity under study is
inversely proportional to the rank) are known in a wide variety of disciplines

(populations of cities, earthquake magnitudes, word distributions). Laws of this form
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have long been known [Zipf 49], but have only recently been interpreted as

manifestations of underlying fractal phenomena [Mand 82, Gell 94]. Ina completelyv«f”
general form Mandelbrot's finding may be summarised with 2 single rule:

(Measurement of process) < (scale at which process is measured )=
where » which is the fractal dimension of the process.

Mandelbrot was the first to argue that Nature is fractal. The premise adopted here is
that this can be exploited for image compression by assuming that images of nature
are also fractal. This is not a proven assumption but some confidence can be gained
from a result derived by Kaye that, if a Markov chain! of events exists (as is often
assumed for consecutive pixel intensities), then there will probably be a fractal pattern

embedded in the chain of events [Kaye 89].

3.4 Fractal dimension and complexity

Entropy was introduced in Chapter 2 as a measure of data complexity which has been
found acceptable for theoretical analysis. However, it was noted that entropy does
not provide a good measure of the complexity of specific data types such as image

data.

Experimental work has been performed here to measure the complexity of images
assuming that they have a fractal form o determine if such measurements are better
predictors of the compressibility of the image data than entropy. In order to achieve
this, a practical, automated method of measuring the fractal dimension of an image 18

required.

The theoretical determination of the fractal dimension of a set requires knowledge of
the properties of the set and the metric space in which it lies. Although there are
several different definitions of fractal dimension used by mathematicians, the
objective here is simply to find a method of measuring image data complexity.
Unfortunately there is no broadly accepted unique way of associating a fractal

dimension with a set of experimental data so empirical methods are required. As

YA Markov Process is a stochastic process in which the future is determined by the
present and is mmdependent of the past. For example, in a random walk the current
location does depend on the past but the next step direction is independent of the past.

A record of the results of a Markov process is known as a Markov chain [Papo 84].
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noted 1in Section 3.2, the general method of medsuung the fractal dimension of a set s

based on drawing a regression line of a log-log plot of the property being measulcdﬂ'm“
agamst the scale at which it is measured. Practical schemes usually follow the
outlines devised by Barnsley [Barn 88b] which lead to 2 fractal dimension measure

called the box dimension.

I Ais aset in a Euclidean space and N,(A) denotes the smallest number of sets with
diameter no larger than & needed o cover A, then the box dimension 2, of A is

given by:
......................................................................................... (3.2)

For example, Fig. 3.2 shows three sets and the number of & hoxes required Lo cover
%

them.

(1) A curve ol length [ may be covered by /e boxes of size € and 21/ € boxes of
size €/2. Thus for the curve the box dimension 3, is 1, in agreement with

the geomelric dimension of a simple curve.

(h) A region of area A may be covered by A/e? boxes of size £ and 2 Ale
boxes of size £/2. Thus for the region of the plane the box dimension D, 18

2, again in agreement with the geometric dimension.

(¢) The Sierpinski tiangle [Sier 12] is formed by recursively removing the middle
mverted wiangle from an equilateral triangle partitioned into four equilateral
triangles of half the side length. At each stage only 3/4 of the area is left so
the limit set has an area of ' (%) = 0. 1f the Sierpinski triangle is covered
with N boxes of size € then it requires 3N boxes of size €/2 o cover il.
Thus the box dimension of this set is "¥,,=1.58. This fits well with the

concept of a set which has no area but is 'larger' or has 'more (0 it' than a line.
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Fig. 3.2. Examples of sets and their box dimensions

Direct application of the bhox dimension requires some form of automated

determination ol how the image data is 'covered' by the € bhoxes.

Barnsley described a non-automated method of measuring the fractal dimension of an
mmage which resembles the theoretical definition of box dimension. Regions of the
mmage are covered by disks of radius & Tor a range of e-values and in each case the
number ol disks required is counted to give values for N.(A). IF In(N, (A)) 1 then
plotted against In(1/€) then the gradient of the best-fitting straight line approximation

gives a value for ;. The best [t is calculated by least-squares linear regression.
& L

Since an automated method is required here, a method derived by Clarke [Clar 86] for
use i geological mapping has been adapted for use with images by treating pixel

intensities as contour levels. The algorithm is shown as Algorithm 3.1,
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Algorithm 3.1. Clarke's method for measuring fractal dimension

L. Overlay the image with the largest square which will fit. Take the mean
miensity of the four corners and assign it to the centre of the square. Find the

total area of the four surfaces of the resulting pyramid.

2. Overlay four smaller squares on the same surface and measure their areas
in the same way. This smaller scale yields a larger surface area since it
includes more of the surface details.

3. Continue this process to the lowest level of scaling (two pixels by two
pixels).

4. Plot the log of total area against the log of the area of an overlaid square for
cach size of unit square

5. The fractal dimension is given by the slope of this plot.

Edge size | Square Area]In Square Area Pyramid Area [In Pyramid Area
256 65536 11.083 266658 12.495
128 16384 9.688 289121 12.575
64 4096 8.286 364151 12.805
32 1024 6.868 458180 13.035
16 256 5.416 799110 13.591
8 64 3.892 1401432 14.153
4 16 2.197 2303565 14.650
2 4 1.386 4054873 15.215

Table 3.1. Evaluation of fractal dimension of Lena by Clarke's method

15.5 +
154

14.5 -
14 -
13.5 -
134

1

In (pyramid area)

12.5 +
12 t } t t
0 2 4 6 8 10 12

e

In (square area)

Fig. 3.3. Linear regression of data from Clarke's method for Lena image

From Fig. 3.3 it may be seen that there is an excellent linear relationship for the
smaller square sizes but this fails for the larger square sizes. Since these larger sizes
mclude only a very small number of samples, it has been chosen to use only square

sizes from 64 down to 2 pixels.
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The

Clarke's method with results as shown in Table 3.2. Also included is the zero'th 01de1

fractal dimension of the three primary test images has been estimated usmg'

mmage entropy (calculated from Eqn. 2.1) together with the image compression ratios

achieved by a general purpose data compressor (gzip,

standard JPEG image compression algorithm.

see Section 2.5) and the

Image Zero'th order [ Clarke fractal gzip JPEG
entropy/ bits | dimension compression compression
per pixel ratio ratio (Q=75)

Lena 7.273 2.220 1.230 9.220

Barbara 7.511 2.299 1.129 6.131

Boats 7.074 2.271 1.318 7.532

Table 3.2. Fractal dimension, image complexity and compression ratio

The correlation of the image compression achieved with the various coding methods
and the complexity as measured by entropy and fractal dimension has been calculated
and 15 shown in Table 3.3. The correlation measure used here is the Pearson product-

moment correlaton coefficient r of paired measures x and y . This is given by Eqn.

3.3 where o, and o, are the standard deviations ol x and y and H,oand fi,oare the
means of x and y. For a perfect correlation, r =+1, and a perfect negative correlation,

r=-1.

= TV T L | e (3.3)
170' .0, Z‘ Hit
Complexity measure gzip JPEG FWC
compression compression compression
Entropy -().752 -0.574 -0.537
Fractal dimension -0.684 -().863 -0.909

Table 3.3. Correlation of complexity and compression measures

The correlation coefTicients in Table 3.3. are all negative, since more complex data
sets compress less. It is apparent that entropy provides a better complexity measure
than Iractal dimension for general purpose data compression (which is based on
The fractal dimension measure

statistical coding). 1s only slighdy worse for

Zen

predicting general purpose data compression performance and is much better at

predicting the performance of JPEG compression which is intended purely for

images.

For comparative purposes the final column in Table 3.3 shows the correlation of the
complexity measures and the compression achieved by a novel Image compression
method called fractal waveform coding (FWC) which is the subject of Chapter 5. For
fractal dimension provides an excellent predictor of

X CIIAYIS ROILYWOARE
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the effectiveness of this form of image data compression,
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3. 5 Space-filling curves

Some of the best-known examples of fractals are the space-filling curves. C'ha\p\rt‘ei' 4
is devoted 1o the use of two-dimensional forms of these curves for scanning images
and higher dimensional forms of the curves are used in Chapters 6 and 7 for mapping
veetors into one-dimensional forms. In this chapter only a few of the elementary
properties of the space-filling curves are outlined sufficiently to provide insight into

fractals.

The first space-filling curve was described by Peano in 1890 [Pean 90]. He showed
that a continuous curve can pass through all the points of a two (or more) dimensional
region.  Another such curve was later found by Hilbert [Hilb 91] who viewed such
curves as the limiting cases of sequences of polygons. At the time mathematicians
regarded these curves as 'monsters' [Saga 91] since they were so difficult to analyse
with the body of mathematics then known. For example, the curves are nowhere
dilferentiable.

Because of the practical difficulties in drawing them, these curves remained
mathematical curiosities until the advent of computers and suitable plotters in the
1960's.  After Mandelbrot's pioneering work [Mand 82], space-filling curves were
soon recognised as good examples of fractals. The curves have the distinctive
properties of [ractals listed in Section 3.2, In particular:

They exhibit self-similarity at different scales.

They can be generated by relatively simple rules.

4
o

Three of the most well known of these curves, the Hilbert and Peano curves and a

form of the Sicrpinski curve, are shown in Fig. 3.4.

U 5o
L l?l |
nln [ llj

T [H”

Hilbert curve Peano curve Sierpinski curve

Fig. 3.4. Some space-filling curves
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3.5.1 Order of space-filling curves

Space-filling curves are typically defined by a recursive formula usiné an bi‘dér n
which indicates the level of recursion. The order can be considered to be a formalised
dication of the scale of the curve, or to what level of detail the curve is drawn. The
curves are only truly space-filling when 57 — oo, However, the curves soon appear (o
completely cover the plane for even small values of 1. In this thesis the curves are
used in the analysis of digital images whose resolution is clearly finite so only curves
ol inite order need be used in their processing. Fig. 3.5 illustrates a Hilbert curve of
different orders. An n'th order Hilbert curve, H,, 1s composed of four appropriately
rotated copies of the Hilbert curve of order n—1 with the endpoints being joined by

three line segments which themselves form a copy ol H,.

e
AR
< v <

H, H,

e

4

Fig. 3.5. Different order Hilbert curves

[tis simple o show that A, covers 2" points. Hence a 9'th order Hilbert curve

sulfices for scanning the 512 by 512 pixel images used in this thesis.

3.6 Summary

Fractals provide an interesting and effective ool for analysing problems which have
proved intractable using other methods.  Fractal data arises from many physical
sources and fractal behaviour is exhibited by many natural objects. Images ol natural
scenes capture this data and thus also contain ractal data. The success of fractal
modelling for synthetic imaging suggests that there is considerable potential for using

fractals 1o analyse the much greater complexity of real images.
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It has been shown that the concept of a fractal dnnensmn can be apphed' to re
images and that it provides a natural and effective complexity measure which can b
used to predict the performance of both fractal and non- -fractal image compmsmou

methods.  If lossless compression, based on conventional statistical methods from
mlformation theory, is 0 be applied then entropy is an appropriate measure.
However, if lossy compression is 10 be applied, then advantage can be taken of
knowledge of the complexity of the data at different scales which is provided by

measurement of the fractal dimension of the data.

In addition to their uses for fractal modelling of image data, fractals such as space-
[lling curves offer an explicit mechanism for applying 'divide-and-conquer' methods
o complex problems such as image compression when iterative or recursive

operations are required at a range of scales.

In this thesis the well-established problem of image data compression is approached

using a variety of fractal-based methods.
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Chapter 4. Fractal scanning and space-filling curV

4.1 Introduction

[n Chapter 2 the general principles of image scanning were introduced but no
assumptions were made about the sequence in which the image pixels are scanned.
The convention for the scanning sequence is so well established that this issue is often
1ignored and the scan is assumed (o be a simple raster. However, there are many
possible ways of scanning an image and, particularly when predictive coding is being
used, the scan sequence has a significant influence on the compressibility of the

resultant stream of pixels.

The possibility of achieving greater image compression by re-ordering data with
space-filling curves, which were introduced in Chapter 3 as some of the best-known
examples of fractals, was first suggested 25 years ago [Laem 67, Bial 69, Butz 71] but
reports since then have been contradictory [Quin 89, Mogh 91]. In this chapter, new
results are presented which provide a convincing case in support of the conjecture. In
addition, while previously published work has concentrated on just two of the many
possible space-filling curves, experimental results are presented here over a much
wider range of curves. The idea of using space-filling curves for scanning is extended
with the concept of hierarchies of space-filling scans together with an associated

notation which concisely identifies such scans.

Space-lilling curves have also been proposed [Cole 90, Cole 91] for use in the
dithering of images for display on devices such as laser printers, which support only a
limited set of intensity levels. Experimental work has been performed here to confirm

this 1dea.

4.2 Types of image scan

An image scan is an ordering of the pixels in an image for sequential processing such
as 1image compression.  Of the three main classes of image compression schemes
histed in Section 2.6, both wavelorm coding and transform coding entail an implicit
assumption that the image data is processed in a particular order. In the case of
waveform coding, the individual pixel ordering determines the compression.  For
transform coding, the pixel order in each block is not usually significant but the order
i which the blocks are presented is relevant. Scans are classified here as random-
access if there are no restrictions on where consecutively scanned pixels lie in the

mmage oras sequential 1f consecutively scanned pixels are adjacent in the image.

o
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4.2.1 Random-access scanning

Modern devices such as charge-coupled-device (CCD) cameras provid\e\'\e{ tr’uéwt’wb-\\ \\
dimensional scanning ability (i.e. the image can be scanned element by element in
any order [Flor 85]). The sequence in which the image data is read out is determined
by the device fabrication and could, in principle, be in any desired order. For such
devices random-access scanning can be applied but existing serial standards are
usually used for reasons of compatbility. It is not clear that any advantage would be
gamed by scanning every pixel in an image with a random-access scan, but using
such a method for statistically selecting a sub-set of the pixels is useful for purposes
such as histogram generation. Powerful parallel systems which can scan many, or all,
of the pixels concurrently might also be described as random-access. However, since
only sequential processing is considered here, the work is restricted to sequential

scans.

4.2.2 Sequential scanning

In sequential scanning the objective is to select consecutive pixels which are adjacent
i the image so as to preserve pixel correlation. The fundamental problem is that the
scanned data is only a one-dimensional set of values but it needs to represent the two-
dimensional correlation present in the image. Thus, it is preferable to try and identity

scans which maintain two-dimensional continuity through the image.

Sequential image scans may be further divided into raster scans which are essentially
one-dimensional and non-raster scans which can traverse the image in both the x and

y directions simultaneously.

4.2.3 Raster scanning

In raster scanning the signal is formed by scanning in a series of parallel lines, either
horizontally or vertically. In broadcast television and in most other applications the
scan starts at the top left hand corner and finishes at the lower right hand corner (see
Fig. 4.1). Typically each line is scanned in the same direction so the scan must return
to the beginning of each line in a very short time known as the flyback. This format
dates back to the earliest developments in television such as the Vidicon tube and has
led 1o several standard video signal formats such as RS-170, RS-343 and CCIR 601
Raster scanning has the advantage of being simple but there are several

disadvantages:
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throughout the resulting one dimensional array. Hence a raster scan results in

high-frequency periodic components in the one-dimensional scanned form.

. The 1mage resolution is locked (o a standard (the number of lines in the
mmage). The display must adopt the same standard or convert the input signal

Lo 1ts own standard.

. It the bandwidth of an analogue channel used to carry the video is reduced,
only the horizontal resolution of the image is reduced, not the vertical
Therefore loss of resolution is not distributed evenly, giving lower image

quality.

. Flyback which is non-useful time occupies more and more of total frame time

as the line rate increases.

—
P =B Flyback <
4:-222—_————-

—
)
 —

Simple raster Bidirectional raster
Fig. 4.1. Simple and bidirectional raster scanning

Flyback can be avoided il bidirectional scanning is adopted. In this case alternate
lines are scanned from left 1o right and right to left (see Fig. 4.1). The recent HDTV
standard uses a bidirectional (also known as boustrophedonic) scan. This alone gives
a substantial improvement on unidirectional raster scanning in terms ol spatial
disruption for only a small increase in complexity because it avoids the

disconunuites at the end ol cach line.

4.2.4 Non-raster scanning

There are (n:)! possible sequences in which the pixels of an n by image can be
scanned ol which only a small [raction are likely to give any advantages over a
bidirectional raster. Unlortunately, it is not obvious how 1o compare the scans exceplt
by an impractical exhaustive search. In addition, the size of the binary word needed
simply to identily the scan, S, would be huge.

“scan ?
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[1"a much smaller subset of the possible scans contammg just those which are hkely to

be useful can be identified, then both the time to search for the optimum scan and the

storage of the identification of the scan can be significantly reduced.

Clearly, an optimum scan must exist for any given coding method. If, for example,
run-length coding is to be used, the optimum scan would create a sequence of pixels
where all pixels of the same mtensity were consecutive. Under such circumstances
the worst-case storage requirement, Sy » for the encoded image would be the product
of the number of possible grey levels, L, and the storage for each run. The maximum

. . 2 -
possible run length is n=. Thus:

S = L(logj(L) + logz<nz)) bits

Substituting realistic values of L=256 and n =512 in Eqn. 4.2 gives:

S = 256(log, 2° + log, 2! ") =256(8+18) bits = 832 bytes

HEx

This would represent an outstandingly good compression ratio of over 300:1 - and
this 1s the worst-case comprcssi()n ratio for such an optimal scan. Naturally, the

problem with this is the size of the representation of the scan, S With n =512,

scan ”
then, for numbers as large as »°, Stirling's factorial approximation (Eqn. 4.3) is valid.

For large n,
It =nInm—n e 4.3)

. : . Inn
Converting o base 2 logarithms using log, n = o then
n

) ﬁ(nz i —/7,2) :]%(lnnz ) i) bils. ....................................................... (4.4)

Nitn

Hence, for n=512, S, =542 kbytes which is approximately double the size ol the

ortgmal image.

The purposes of examining non-raster scans here is 1o find a good, bul not necessarily
optimal, value for S which requires a much smaller value for S

sean ”

This problem was addressed by Memon et al [Memo 95] who tried to decorrelate
mmages by taking differences of adjacent pixels along a scan. Given an image, an
optumal scan that minimises the absolute sum of the differences encountered can be
computed clficiently. However, the scan is inevitably irregular and the number of

bits required Lo encode it turns out o be prohibitive. They proposed a prediction
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scheme which partitions an image into blocks and, 101 each block, selects a scan 11om
a codebook of scans such that the resulting prediction error is mmumsed.
Unfortunately this has similar problems to vector quantisation (see Chapter 6) in that
considerable processing time is required to form a codebook and, unlike vector

quantisation, the codebooks vary considerably between different images.

The approach taken here is (o consider only regular, hierarchical scans which have
concise deseriptions. It should be recalled from Chapter 3 that a complex appearance
requiring only a simple definition is a fundamental property of space-filling curves
and ol [ractals in general. Intitively it can be seen that the space-filling curves have
appropriate properties for use as non-raster scan generators.  They provide a
sequential scanning mechanism which uniformly traverses the image in (wo
dimensions yet they can be generated reasonably easily and require only concise

desceriptions.

The 1dea ol a fractal (space-filling) scan has been proposed for broadcast TV [Drew
91]. The main advantage was seen to be the possibility of creating a system with built
m upwards and downwards compatibility with different resolution broadcasting
stations and receivers. This is not possible with a raster scan because the line rate has
to be fixed. Ina fractal scan it can be arranged that corresponding parts ol the image
are scanned at corresponding times by different resolution (order) scanning curves. In
other words, all that needs to be fixed by the standard is the form of the scan (e.g.a

Hilbert scan) and the orientation (choice of starting and finishing points).

4.2.5 Interleaving

[n a practical implementation of an image compression system it should be
considered how the decompressor might overlap the decompression of the data stream
and the display of the data. The solution is to interleave the data components from
the source image. For example, the JPEG standard defines an entity called a 'data
unit’ which is a single pixel in the lossless predictive mode and a block of pixels in
the lossy DCT—huscd mode. When two or more components are interleaved, cach
component G is partiioned into H, by V, data units. For example, Fig. 4.2 shows
interleaving with H=2, V=2. Regions are ordered within a component m row-column
order. In JPEG terminology the minimum code unit (MCU) is the smallest group of

mterleaved data units.
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JPEG MCU interleaving
with H=2, V=2

l
— MCU :{d d.d . d 1
] 1 00> 50121051
—
, < MCU, = {dy,.dys.d,,.d;,}
elc.
3

MCU, = {dm,dz],d d},}

30

elc.

Fig. 4.2. Interleaved data unit ordering

Interleaving is not considered further in this chapter but it should be noted that the

principle can be applied even if the scan sequence 1s not a simple raster.

4.3 Space-filling curves for scanning

The carliest suggestions that space-filling curves might provide a mechanism for
bandwidth reduction appear (o be by Laemmel [Laem 67] and Bially [Bial 69] who
proposed a scheme called sampling mapping. They described how uniformly spaced
samples ol a continuous input signal could be grouped into sets of N samples with
cach set being interpreted as the coordinates of a point in an N-dimensional cube.
They suggested that, if cube coordinates are now transmitted instead of the original
samples, then a bandwidth reduction of N:1 is achieved. However, although they
recognised that reconstruction of the signal by the receiver now becomes much more
susceptible o noise, they failed to mention that no bandwidth reduction is achieved
unless the new samples are represented by fewer hits than were used for the original
samples. Though it was not recognised at the time, a modern interpretation of this

method might consider it Lo be analogous Lo arithmeltic coding (Section 2.5.2.3).

More recent uses ol space-lilling curves for bandwidth reduction have concentrated
on their uses for re-ordering image pixels before applying conventional coding
schemes such as predictive coding and run-length encoding.

There has been some debate over whether any real benefits are gained from non-raster
scanning methods. The inconsistencics in the arguments for and against relate

primarily to the choice of data for analysis or simulation. Some workers have
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considered only binary images while others have considered grey-scale images but
only with synthetic scenes. The disadvantages of such restricted data sources wer
outlined in Section 2.2.5. In this section results are presented which provide a
comparison of the Hilbert curve and a simple raster scan for grey-scale 1mages of
natural scenes. In addition, some useful results are determined which are independent

ol the source image.

4.3.1 Evidence against space-filling curves

Quin er al [Quin 89] concluded that there is no meril in any scan more comphicated
than a bidirectional raster. They proved that, for a random image (i.c. one consisting
of completely uncorrelated pixels), there is no difference in the run length histogram
whichever scanning curve is chosen but they were unable o prove this conjecture for
real images. This result is not very useful since clementary information theory shows
that random images are incompressible anyway. They also performed simulation on
binary images which contained a single randomly positioned and sized ellipse and
measured the run length distribution for raster and Hilbert scans. They concluded that

there was no statistical difference.

Whilst the choice of a binary image for simulation is reasonable, they only explored
the potential for lossless compression. Lossy compression using predictive coding is
more appropriate for grey-scale images. The choice of such an artificial image with a
single feature must be considered sceptically, particularly in the light of findings from

Chapter 3 where the fractal nature of real images was considered.

4.3.2 Evidence for space-filling curves

Several authors have produced results which support the conjecture that space-filling
curves, particularly the Hilbert curve, provide superior scans. Most results have been
experimental with the exception ol a formal proof by Lempel and Ziv [Lemp 86] that
the best compression ratio attainable by any lossless two-dimensional COMPIessor is
cqual to the fiite-state compressibility of the sequence read from the im age traced by
a Hilbert curve. Whilst this result is interesting, it is only applicable to lossless
coding. In this section evidence provided by various methods of comparing raster

scans and space-filling curve scans for lossy data compression is evaluated.

4.3.2.1 The neighbourhood relationship

There is further quantitative evidence in favour of space-lilling curve scans. Sorck

and Zeevi [Sore 88] introduced a measure which they called the neighbourhood
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relationship which quantifies how well the association between pixels Wthh are.
mn the two-dimensional image is preserved in the one-dimensional scanned form.

[T the points along the scan are denoted by S;(1<i<N) where N is the number of
points in the scan, then the neighbourhood relationship, which is defined as the mean
Euclidean distance D, between pixels which have a separation of j in the scan, 1s

given by Eqn. 4.5:

N—i

Z =Y+, - e (4.5)

The neighbourhood relationship has been evaluated here for a simple raster, a
bidirectional raster and a Hilbert scan with the results shown in Fig. 4.3. Both the
raster and Hilbert scans give a periodic relationship but the period for Hilbert scans is
much greater than for raster scans and is not apparent over the maximum

neighbourhood length used here.

300 r
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200 —a&—— X Raster

150 —&—— X Bidirect

100 ——&—— Hilbert 9

Pixel separation

(63
o

Pixel displacement along scan

Fig. 4.3. Neighbourhood relationship for raster and Hilbert scans

Comparison of two scans involves comparing the values of D, over all up o a
specified maximum neighbourhood length.  Since it is unlikely that any scan will
have a smaller D, than any other scan for all values of i then a weighting function W,
may be assigned (0 the D, (o evaluate a single scan quality measure V. If this

weighting lunction is inversely proportional to the separation i, then:
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The quality measure V defined in Eqn. 4.6 has been evaluated here for simple*‘ra«s._ter?
bidirectional raster and Hilbert scans of 512 by 512 arrays. The results are shown 1
Table 4.1 for a maximum neighbourhood length of 1000. Longer neighbourhood
lengths are not considered since pixels any further apart are unlikely to be related.
The improvement achieved by the bidirectional scan is only about 18% whereas the

Hilbert scan improves the measure by an order of magnitude.

Scan Simple raster Bidirectional Hilbert scan
raster (9'th order)
V 626.09 510.65 69.23

Table 4.1. Neighbourhood preservation of various scan paths

In their analysis Sorek and Zeevi also presented evidence which showed that
reconstruction errors alter compression along a Hilbert scan were subjectively better.
They attributed this to the Hilbert scan giving no preferred directivity in the restored
image whereas a raster scan can cause more accurate sampling of edges in the scan
direction giving a false orientational emphasis in the output. Furthermore, the
reconstruction error is correlated in the direction perpendicular to the scan creating
false contours known as Moiré patterns. Removal of Moiré patterns is the primary
motivation for applying space-filling scans (o the dithering ol images - a concept

discussed 1n Section 4.9,

4.3.2.2 Lossless coding

Lossless coding along a Hilbert curve has also been investigated by Provine and
Rangayyan [Prov 94] who, in tests on a small set of 24-bit colour images, achieved
compression ratios of between 3:1 and 5:1 using differential predictive coding and an
cntropy coder. Skarbek er al [ Skar 89a] applied the Hilbert scan (o lossless coding of
dithered binary images and claimed it gave slightly better compression than raster
scanning but it is difficult to relate their findings to other work since it is not usual (o

try to compress the dithered form of binary images.

4.3.2.3 Run-length coding

Cole [Cole 87] described run-length coding along a Hilbert curve covering the whole
mmage. However, he only used binary images and these were synthetic and thus not
very representative of real image scenes. Although his experimental arrangement was
essentially the same as Quin's (noted in Section 4.3.1) his findings were entirely

contrary. i.e. He found the Hilbert curve significantly better.

It would scem reasonable that the real test of any superiority of space-filling curve

scans for run-length coding is the scanning of grey-scale 1mages of natural scenes.
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Fig. 4.4 shows two of the primary test images, 'Lena’ and 'Barbara’, scanned alo
Hilbert curve with the 262,144 pixel one-dimensional images redrawn in raster forr
for convenience. \

Fig. 4.4. 'Lena' and 'Barbara' images scanned along Hilbert curve

It 1s intuitively very clear from Fig. 4.4 that this data will compress well with run-
length compression. Quantitative evidence is provided by the run length histograms
shown in Fig. 4.5 for the three primary test images scanned with a raster scan and a

Hilbert scan.

. 0.45 +
;:D 0.40 +
3 0.35+
= 0.30 + —#—— Rasler scan
£ 0254
> 0.20 4+ —&—— Hilbert scan
Z—g 0.15 +
= 0.10 +
° 0.05 4+
=~ 0.00
0

Run-length

Fig. 4.5. Run-length distribution for raster and Hilbert scan paths

Although Fig. 4.5 may not appear dramatic, the run length distribution makes
compression considerably easier with a Hilbert scan. The fraction of pixels in the

very shortest runs of one or two pixels has fallen from 65% of the total (o only 499
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This alone has a considerable influence on the final compression ratio. Furthermore,

though it is difficult to show an a graph of any reasonable scale, the Hilbert sca
credies many more runs of the very longest lengths (64-512) pixels than the raster

scan.

4.3.2.4 Other coding methods

Other coding methods such as vector quantisation [Samp 93], wavelet decomposition
| Ansa 92a,] and lapped orthogonal transforms (LOT) [Ansa 92b] have been applied
along Hilbert curves. The results have generally been in favour of the Space-filling
curves bul, in these more sophisticated coding methods, the contribution to the

compression ratio from the difference in scanni ng is greatly reduced.

4.3.3 Experimental comparison of Hilbert scan and raster scan

From the preceding discussion it is clear that, while the bulk of the evidence is
broadly in favour of the Hilbert curve over the simple raster curve as a scan, there is
some difficulty in directly comparing experimental results. For clarilication, a variety
ol compression methods have been applied here to the larger, secondary set of (est
mages. The compression methods shown are GIF (a lossless compression method
based on arithmetic coding), lossy JPEG (see Section 2.8.4.1), FAX Group 3 (see
Section 2.8.3.1) and [ractal wavelorm coding (FWC) which is the subject of Chapter
5. The comparison between the scans is based on AC,, the percentage change in

compression ratio achieved by the Hilbert scan C,,, . over that achieved by the raster

scan C .. 1e.
O O ‘
AC, = 88 S LOOTD e (4.7)
raster

The results are summarised in Table 4.2, As expected, there is litde difference in the
compression achieved for GIF compression since arithmetic coding makes little use
ol the data ordering but there is still a 4% improvement achieved with the Hilbert
scan. JPEG compression gives consistently worse results with a Hilbert scan since
the two-dimensional correlation present in the 8 by 8 pixel blocks processed by the
JPEG process is lost by the Hilbert scan. However, in the case of compression
techniques based on one-dimensional predictive coding, the superiority of the Hilbert
scan 1s clear. Both Group 3 FAX compression and FWC achieve better compression
with the Hilbert scan for all of the test images. For Group 3 FAX the mean

improvement is 10% and for FWC it is 18%.
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Image AC. % AC. % AC. %
GIF Lossy JPEG|FAX
(Q=75) Group 3

announcer -1.19 -45.64 8.78 2.71
beachgirl 9.28 -42.35 4.37 22.53
bluegirl 8.88 -45.21 6.75 30.57
cablecar 0.73 -36.09 7.53 7.55
cornfield -4.04 -31.00 7.58 2.72
flower 3.87 -40.66 11.53 24.55
fruits 6.56 -30.73 4.80 22.00
goldhill 1.38 -25.87 9.11 9.75
jewels 8.42 -39.86 5.77 17.49
kids 2.49 -37.42 10.04 11.19
koala 7.36 -29.98 18.60 32.07
leopard 2.20 -34.04 11.21 17.79
model 4.48 -43.46 4.05 27.28
narcisus 5.37 -24.34 15.99 19.74
nicki 7.87 -39.21 8.34 29.57
or-002 1.77 -31.74 4.38 21.26
orca’/ 4.07 -34.97 18.65 21.65
pens 3.99 -37.84 13.99 26.81
plumehat 6.00 -14.67 6.60 12.76
rabbit3 3.84 -19.21 14.12 7.39
reba08 10.33 -32.89 11.38 26.73
soccer -3.18 -34.39 12.11 4.70
vi-002 1.99 -25.43 13.66 12.11
yacht -0.42 -43.72 9.74 3.40
zebras 2.87 -27.27 20.45 15.11
zelda 7.00 -37.15 9.50 46.68
Mean 3.92 -34.20 10.35 18.31

Table 4.2. Comparison of raster and Hilbert scans

4.3.4 Space-filling curves and quad-trees

Further support for Hilbert curves as scan generators is provided by the relationship
between the Hilbert curve and quad-trees [Same 84] which are a well-established
method for image representation based on successive sub-divisions of the initial array
into quadrants. Each node of the tree is a leaf if all of the pixels in the quadrant have
the same colour (intensity for grey-scale images) or has four child nodes. This
labelling is repeated until quadrants (possibly single pixels) are reached of a single

colour (or grey-level).

The link between Hilbert curve and quad-tree is that each order of the Hilbert curve

maps directly to the next level in the quad-tree. This relationship is shown in Fig. 4.6.

Different data structures may be used 1o hold the quad-tree data yielding different

levels of data compression.  For example, Samet showed that the minimum storage

2

for a pomterless quad-tree of a 2" by 2" binary image is 2"%. However, regardless

Page 82




of the data structure used, quad-irees typically yield a data compression ra

for binary images.

Visit sequence

Fig. 4.6. Relationship between Hilbert curve and quad-tree

Kamata er o/ [Kama 93] compared the sizes of quad-tree representations of Hilbert
scanned and raster scanned binary images. They found that the quad-tree formed
from the Hilbert scan was consistently smaller than the quad-tree representation from

da raster scan.

Stmilar tests have not previously been performed for grey-scale images but have been
measured here. To code a grey-scale image as a quad-tree it is usual to define a mean
distortion level at which it is acceptable to replace all of the pixels in the square by
the mean grey level of the square. Fig. 4.7 shows the mean compression ratio
resulting from a quad-tree representation, with various MSE acceptance levels, of the
raster and Hilbert scanned versions of the three primary test images. The distortion
ligures are not shown since each MSE acceptance level yields approximately the
same image distortion, irrespective of the scan. However, the compression ratio

varies significantly.

The storage mechanism for the quad-tree components is not optimised here. The
compressed size 1s simply taken to be proportional to the number of squares in the
quad-tree, with an approximate requirement of 2 bytes per square. 1t does not take
advantage of any savings which could be made by entropy coding based on the

distribution of the square sizes.
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Fig. 4.7. Quad-tree compression for raster and Hilbert scans

In contrast to the finding of Kamata ef al it is clear from Fig. 4.7 that the Hilbert scan
gives a consistently worse compression ratio than a raster scan for quad-tree coding.
However, this is taken as confirmation that the Hilbert scan has indeed reduced the
(wo-dimensional correlation of the image by increasing the one-dimensional
correlation along the scan path. The connection between quad-trees and Hilbert scans
1s presented to help explain how the Hilbert curve re-orders the image data and not as
a suggeston that Hilbert scanning, or any other space-filling scanning, is necessarily

appropriate for subsequent compression with quad-trees.

4.3.4.1 Accessing data from quad-trees

In spite ol the negalive comments made carlier about Hilbert scanning for quad-tree
data compression, there is one task associated with quad-trees where the Hilbert scan
olfers a performance improvement. A major problem with image data stored in quad-
trees Is the increased complexity of accessing pixel values for processing. Laurini
[Laur 85] first suggested that typical operations which need o be performed on stored
quad-tree data (such as retrieving the intensity of a pixel, extracting a sub-image elc.)
may be performed clficiently if the quad-uee elements are stored in Hilbert scan
order. It has been shown that the problem of displaying image data stored as
pointerless depth-first (DF) quad-trees [Mill 92] and breadth-first (BF) quad-trees
[Skar 90] may be achicved with very efficient algorithms of computational

complexity O(n) by scanning along a Hilbert curve.

v
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4.3.5 Space-filling curves and other image representations

A further insight into the properties of a space-filling scan such as the Hilbert scan
was given by Moghaddam er f [Mogh 91]. They considered the relationship
between Hilbert scan and an orthogonal expansion. By mapping the basis functions
for a one-dimensional transform such as 2 DCT Lo two-dimensional basis matrices,
using an inverse Hilbert curve mapping, they identified basis images similar to the
basis functions of two-dimensional Fourier, Walsh and DCT transforms. However,
the Hilbert scan matrices are subscripted by only one index giving a representation in

which the spatial frequency increases in all directions simultaneously.

[Uis intriguing (o consider that there may be a fundamental connection between the
two-dimensional Fourier transform of an image and the one-dimensional transform
taken along a Hilbert scan. A separable two-dimensional transform such as the
Fourier transform is usually calculated by taking one-dimensional transforms of each
row and then taking one-dimensional transforms of the results down cach column.
However, the natural definition of a true two-dimensional transform would be in
terms ol a two-dimensional transform of each quadrant of the image followed by a
recursive subdivision, at each level taking the transform of the four values (o produce
the overall transform. The order in which the pixels are visited by this algorithm is
the same as the visit order of a Hilbert curve. However, while several authors [Mogh

91, Witt 83| have commented on this, the exact relationship remains unclear.

4.4 Construction of space-filling curves

In order to use space-lilling curves for image scanning, algorithms have 1o be found
for plotting the curves. For image scanning only two-dimensional curves are required
and only such constructions are analysed in this section. In Chapter 6 space-lilling
curves are applied Lo vector quantisation where far more complex curves in higher
dimensions are required. It will be seen there that different algorithms can be applied
since only a subsct of the curve points are needed whereas in this chapter a/l of the

curve coordmates need to be generated.

4.4.1 Ad hoc and systematic methods

Soon after graphics plotters became available some early methods for plotting space-
[1lling curves [Bial 69, Butz 71, Null 71] were derived but these were over-
complicated and inefficient.  The title of Null's paper, "How to waste time with a
plotter”, gives some indication that, at the time, the curves were not pursued for

entirely serious purposes. More elegant methods based on recursion have been
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proposed [Wirt 76, Gold 81, Witt 83, Grif 85] which are much faster and have found
uses in computer graphics, art and animation. Wirth [Wirt 76] even used
construction of the Hilbert curve in his programming textbook to illustrate the
appropriate use of recursive programming. However, these methods are not helpful
for the problems of sequentially scanning rectangular grids and mapping directly

between grid points and scan sequence numbers.

Current methods for generating space-filling curves can be split into three categories:
direct mappings, table-based methods and recursive methods. These are all examined
mn detail in this section. The choice of a method for curve generation depends on a

trade-off between speed and storage requirements.

Direct mappings and tabular methods have been found for the most well known
curves. Later, in Sections 4.5 and 4.6, it will be shown that there are so many
possible curves that recursive generation of curves is more practical. Instead of trying
to create a simple method of drawing the curve from a potentially complex set of
tables, it is better to provide a simple definition of the first order version ol the
required curve and then use a more complex algorithm to plot the higher order

version.

4.4.2 Direct mapping algorithms

Efficient use of space-filling curves for image processin g requires algorithms to map
directly between pixel coordinates and sequence number for a scan of arbitrary order
(recall from Chapter 3 that the order of a curve indicates the level of recursion). Such
a mapping has been found for the Peano curve by Cole [Cole 85a]. Cole showed that
il 1> 2 is an odd integer then there is a simple direct mapping between the first n”

base n Gray code integers and the sequence of points on the p'th order Peano curve.

4.4.2.1 Gray codes

IL1s not always recognised that Gray codes are merely one example of a large set of
cychic progressive codes. These are number systems such that successive integers
differ in only one bit.  The reason for considering these number systems for
generating space-filling curves follows from the observation that the points on the

curves are always one 'step' apart in the x or y direction, but not both.

Given a base n integer a = a]a?,,.am(() <a <n,i= 1,2,...,171.) let the Gray code base n

integer b corresponding to a be given by b=0bb,...b,. The conversion rules are

< s

j
different for odd and even based numbers but, in each case, set p; = 2"1‘ mod 2.

=]
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If nis even then b, = a and i =23, ..m, b = [a ?i‘ @iy 1S €3 en
1/1 =l-a, ifa_ isodd

For the use of Gray codes to calculate Peano curve coordinates an important theorem
was proved by Cole [Cole 85a] that, for odd bases, the operations of conversion to
Gray code and reduced radix complcmentation are commutable. i.e. denoting the n
reduced radix complement of « by a =c¢ 16y---C,, Where ¢, =n—1-aq, for
r=12,..,m,and, denoting the base n Gray code equivalent of @ by @’, then

@) =() (4.8)

4.4.2.2 Mapping from Peano curve sequence to image coordinates

Cole defined this mapping in an n-dimensional space but in two dimensions there is a
simpler mapping as described here. Let P, be the i'th order Peano curve in two
dimensions, 7>2 be an odd integer and m be a positive integer. Given a base n
integer a=ad,...a,, (0<a <ni= 1,2,..,2m) and its Gray code equivalent
b=bb,...b,, then, it x=bb,...b, and y=bb,..b, . then the point (x,y) relative

to integer Gray code scale axes is the «'th point on the Peano curve P .

For example, the 50'th point on P, may be found by converting 50 to base 3 giving
1212, with Gray code equivalent 1012. The coordinates of the point are then (02,1 1)
in base 3 or (2,4) in decimal (see Fig. 4.8).

A

) E‘ ’ié % 5 End-point of curve
5()"51141_301111 E .
Y T E PGS]O %Iurbvle
W+ E =5 55 E:I P3

Start-point 5 \é;: —— E E

of curve \ E

0

l ! ! l
R
0O 5 10 15 X

b

Fig. 4.8. Mapping from third order Peano curve to image coordinates
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4.4.2.3 Mapping from image coordinates to Peano curve sequence

The inverse mapping is readil y derivable from the forward mapping of Section 4.4.
but extra care needs to be taken to ensure the coordinate values are padded to the

correct size before the mapping (akes place.

Let (x,y) be any pointin a two-dimensional space whose coordinates are expressed
as  base 3 numbers of m. and  m_ bits respectively. i.e.
X= .rl_rz....xm(() Sx. <3 k= ],2,.._,/771\_), Y=Yy, (0 Sy, <3 k= 1,2,...,/7'1.‘,). Set

X I<k<m
/77:11111,?((177\,,/77\,) and let X=XX,..X where X,*[L

N A ) and
10 otherwise

[y 1<k<m

Y=YY, .Y, where ¥, = 10 otherwise: IFa"=Y,X,V,X, .Y, X, then (x,y) is the

a'th pointon P, expressed as a Gray code number.

For example, consider the point (x,y)=(02,11) in base 3 used in Fig. 4.8. This gives

X=02, Y=11. Hence a' = 1012, or a=1212 which is the 50'th point as before.

4.4.3 Table-based mappings

Unfortunately the direct mapping identified for the Peano curve cannot be exiended 1o
the Hilbert curve (the commutability of the conversion (o and from Gray codes is only
true for odd bases and so is not valid for the Hilbert curves which depend on base 2
artthmetic). For Hilbert curves. table-based transformations have been found [Cole
864, Fish 86, Grif 86]. These are less elegant mathematically but are suitable for

computer implementation.

Cole's algorithm describes a mapping Irom the first 227 integers to the ordered
vertices of the p'th Hilbert curve H,. Using the table approach, to convert a Hilbert
curve sequence number o an image coordinale, its number is expressed as a binary
number with all leading zeroes. The sequence numbering is assumed (o start from
zero. The binary digits are grouped into pairs. The most significant pair is used 10
mdex one of 4 tables A1-A4 (Table 4.3) which yields the most significant bit of each
of the x and y coordinates expressed in binary and the number of the next table. This

. . ~ . s - 2 . .
process is repeated p times for an image of 277 pixels.

Page 88



Chapter 4

Table A1 Table A2
Digit  [x y Next Digit |x Yo Next
pair table pair table
00 0 0 A2 00 0 0 Al
01 | 0 Al 01 0 1 A2
10 1 ] Al 10 1 1 A2
11 §) 1 A4 11 | 0 A3
Table A3 Table A4
Digit X ¥ Next Digit x ¥ Next
pair table pair table
00 I | A4 00 1 1 A3
01 0 l A3 01 1 0 A4
10 0 0 A3 10 0 0 A4
Il 1 0 A2 Il 0 1 Al

Table 4.3. Translation from Hilbert scan sequence to pixel coordinates

For example, to find the coordinates of the 122'nd pointon H,, it is first necessary (o

convert the number 121 (sequence numbering starts from zero) to binary form, giving

OTTTT001. The most significant digit pair is 01, which from Table Al gives | and ()
as the most significant digits of x and y respectively and specifies Table Al as the
next table. This process is repeated for the next three pairs of digits to give the
coordinates of the 122'nd point on H, as (1001,0100) in binary or (9,4) in decimal

format.

The inverse translation from Hilbert curve vertices to integers can be performed in a

similar way using the four tables B1-B4 in Table 4.4.

Table B1 Table B2
X,y pair Integer Next table | x,y pair Integer Next table
pair pair
00 00 B2 00 00 Bl
10 I B4 01 01 B2
10 01 Bl 10 11 B3
[ 10) Bl 11 10 B2
Table B3 Table B4
X,y pair Integer Next table | x,y pair In?eger Next table
pair pair
(0 10 B3 10 10 B4
01 01 B3 11 11 B1
10 11 B2 01 01 B4
| ] 00 B4 11 00 B3

Table 4.4. Translation from pixel coordinates to Hilbert scan sequence

Other tabular methods of curve generation have been described by Skarbek er af [Skar
89b] and Kamata [Kama 93] cach based on two-level look-up tables but requiring

varying additional storage.
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4.4.4 On-line and off-line curve generation

The choice of an algorithm for generating the curve depends on a trade-off between
the storage required for look-up tables (off-line generation) and the computation time
Lo generate coordinates as required (on-line generation). In general it seems better (o
create a mapping between the raster scan and the space-filling scan for all points and
then use this o wansform points as required. This strategy has been adopted for
experimental work reported in this chapter since it provides a way ol testing space-
[tlling curves for existing image compression tools. The computational complexity of
building a curve from a concise description is low but the off-line storage required by
the coder and decoder for the forward and Inverse transformation matrices is
considerable. The forward transformation table for an n by n pixel scan requires
n*INT(log,n) bits and the inverse lookup-table requires 27°INT(log, 1) bits. Since
the overheads of unpacking integers which do not fit exacly into bytes is
considerable, INT(log, n) is set o 8 for n<256 and 16 for 256<n<2". For
example, for a 512 by 512 pixel scan the forward transformation look-up table

requires 512 kB and the inverse look-up table requires | MB.

4.5 Generalised space-filling curves

Previously all of the authors investigating space-filling curves for image compression
have selected the basic Hilbert curve or Peano curve (some have even selected the
Hilbert curve but called it a Peano curve). There has been no comparative analysis of
other curves, the order of the curves or the effectiveness of a single pre-processing
scan compared with scanning while compressing. The Peano and Hilbert curves are
the most regular curves and the easiest to construct but there are many such curves.
Sagan [Saga 91] gave a proof that there are infinitely many space-filling curves but it
can really only be applied to curves defined over continuous images and not (o

images delined on a discrete grid.

A large but finite number of curves can be defined for a discrete grid but these
different curves have recetved little attention and authors even differ in the number of
distinet curves which can be derived. However, if there are well-defined rules for
thenr production, it is possible to label all such curves. Image compression algorithms
can then be evaluated over many different scans and the optimum scan can be chosen
for any given image. The extra information to pass to the decoder o identify the scan

1s small compared to the image size.
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4.5.1 Searching for new curves

In order to decide whether a curve is space-filling a set of criteria is required 101\
acceptance. - All reported methods are based on the notion of a basic square grid or

tile upon which the lowest order member of each family of curves is inscribed. A
space-filling curve is considered o be a tessellation of square tiles containing
different orientations of the same basic design which all join up to form a continuous
open path. Identification of new curves involves finding new basic patterns which
obey a prescribed set of rules. Various sets of these rules have been proposed such as

requirements [or:

. Self-similarity. The curve can be constructed by the recursive application of a

set of rules for connecting components.

. Space-filling. The curve passes through all squares of the grid.
. Sell-avoiding. The segments of the curve do not touch or intersect.
. Simplicity. The curve can be drawn with a single stroke of a pen, without

lifting the pen or drawing a segment more than once.

Griffiths [Grif 86] introduced an extra restriction on the allowed rotations of tiles
which, while in the spirit of mathematical elegance, reduces the number of distinct
curves which can be used for image scanning. He observed that, for odd degrees, the
copies of the basic tile may be grouped in pairs so that the entry and exit points are
similarly placed on corresponding diagonals. Hence any tile on the completed board
may be replaced hy its partner, giving 2n” variations of each basic design. Griffiths
proposed selecting just one of these based on some arbitrary criterion such as

requiring adjacent tiles 1o be either only rotations or only reflections of each other.

Prusinkiewicz er al [Prus 90] described a method of generating new curves based on
production rules in context-free grammars. They adopted the four criteria listed
previously (i.e. space-filling, self-avoiding, simple and self-similar) and adopted an
acronym FASS to denote such curves. However, their method also accepts irregular
curves, where each tile ol the n'th order curve could be composed of different tiles of
order n-1.

A method has been adopted here for curve generation here which is most similar (o

that used by Griffiths but without the restrictions on tile rotations. It is implicit in the

definition of a space-filling curves that it is only necessary (o find the first order

v
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version of the curve, here called a basic curve, since this contains. all the

necessary (o recursively generate higher order versions.
Procedure for identifying new basic curves

Each tile is divided into an n by n grid. The path " is formed so that it enters
and leaves the tile in corner grid squares and passes through the centres of
cach grid cell once only. S/ 1s said to be of degree n.

n° copies of the tile are fitted together (o form a new tile S;. The tles may
have 8 different orientations (rotations through 90" and reflections of 180").
The joining steps between the 5’ copies of S to form S must themselves

form a path S

[ 7 is odd then the start and end points of §" are at opposite ends of a tile
diagonal and if n is even they are at the ends of a tile edge.

The tile is rejected if it is a mirror image of a previously accepted tile.

~ . . . ~ ~ 2 . ~
If these rules are met, it is possible to form S? from n’ copies of §; and so on.

The curve S} is said to be of order .
k

Using this systematic approach, there is found to be only one curve of degree 2 which

15 the Hilbert curve and only one curve of degree 3 which is the Peano curve. Tt will

be seen in Section 4.6.2 where hierarchical scans are developed that the fourth order

curves are particularly useful. The five fourth order curves are shown in Fig. 4.9.

The last of these five basic curves is identical to the second order of the Hilbert curve.
)

ie. S'(5)= (1)

Fig. 4.9. Basic fourth degree space-filling curves

For higher degrees the number of basic curves of degree n, C,, increases rapidly, as
shown in Table 4.5. The numbers of curves identified by other workers are also
mmcluded in Table 4.5, The correspondence between methods is good for curves of
low degrees but worsens for higher degrees. The correspondence is also lower for
odd degrees since these provide far greater possibilities for symmetric or mirrored

solutions which meet different acceptance criteria.

Page 92



Chapter4

No. of basic curves, C,, reported for each meth d
Curve degree, | Grifliths ‘Prusinkiewicz Wilton
2 l 1 1
3 1 1 1
4 5 5 S
5 14 43 18
6 not reported 897 897
7 not reported not reported 3364
8 not reported not reported >20000

Table 4.5. Numbers of space-filling curves of each degree

The distinguishing feature of curves accepted here is their regularity which leads (o a
concise description. Other authors were not necessarily concerned with compact
representations ol the scans and accepted scans where each of the order n-1 tles
making up a tile of order n could be different members of the family of curve at that

degree.

fen

For higher degrees, where there is more than curve in each family it is necessary to
assign a unigue label, or index number, to cach member of the family. This requires
that there should be a unique ordering of the member of each set of curves S There
are two ways ol achieving this. All of the basic scan patterns can be exhausuvely
generated and held by the coder and decoder or the basic scan pattern can be included
in the overall scan description.  In either case, the basic scan pattern can be
represented by a canonical ordering (in row-column order) of the sequence in which
the n’ cells of the basic degree n tle are visited.  For example, in Fig. 4.10, the
degree 3 tle 1s defined by the sequence {0,1,2,5,4,3,6,7,8), and the degree 5 tile by

[y

the sequence: {0,1,2,3,4,13,12,11,10,5,14,15,16,9,6,19,18,17.8,7, 20,21,22,23,24}.

.

Degree 3 tile Degree S tile

Fig. 4.10. Canonical definitions of space-filling curves

Each basic scan pattern represented this way incurs a storage requirement of
n* log,(n’) bits. For example, there are 897 basic curves of degree 6 but cach only

requires 6° log, (67) =216 bits =27 byles to define.
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In addition, the basic scan pattern requires a listing of the orientations of the basi
pattern which are required to create the second and higher order curves. For IWO
dimensional curves there are only 8 orientations so the orientation data has a storage
requirement of 3n* bits per scan.

Thus a complete description of all the basic curves up to the sixth degree has a storage
requirement of:

O

> {3+ C.m INT(log, ()} bits.

n=2

IUis straightforward to substitute the numbers of curves of each degree from Table 4.5
(0 determine that the total requirement is 193,636 bits or approximately 24.6 kB, of
which most is taken up by the description of the sixth order curves. This is not

excessive and could easily be stored by the coder and the decoder.

4.6 Hierarchical scans

To provide a greater variety of scans a new class of mixed scans is mtroduced here.
These take the form of hierarchies of scans where each order of the scan may use
curve ol any degree, order or index. A new notation is defined here to describe (hese

[

complex scans.

The notation has similarities with that developed by Bourbakis and Alexopolous
[Bour 92]. They were interested in defining a large subset of the possible scans with
usclul properties for image data encryption rather than compression but they required
the same key feature, namely that it should be possible o give a concise description
ol the scan. They created a context free language called SCAN which could be used
Lo 1dentify a subset of the possible scans of an n by n image. They identified 15 basic
scan patierns based on a 4 by 4 grid with uselul cryptographic properties and assigned
to them letters in the set Z={R,C,D,E,A,1,0,L,S,H,Y,W,Z,B, X} where the letters
can, with some imagination, be associated with the appearance of the scan patterns.

Some examples are shown in Fig. 4.11.
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s

SCAN letier R SCAN letter C SCAN letter I
(Raster) {Bidirectional Raster) (Spirah)

Fig. 4.11. Graphical representation of some of the SCAN letters
A word in the SCAN alphabel is of the form: Lin# Ln,#..#Ln, where L e, 1, 18

4 power of 2, H”/ =n and # 1s a separator. Each word then uniquely describes a scan

e

given by the SCAN word 74# R2 which gives a 4 by 4 spiral (SCAN letter 1) of 2 by
2 rasters (SCAN letter R) covering an 8 by 8 grid.

LA 2

of the complete image. For example, Fig. 4.12 shows the scan of an 8 by 8 ima

‘.Z_

Fig. 4.12. Scan generated by SCAN word /4# R?2

The scan patterns selected by Bourbakis are not all suitable as patterns for space-
filling curves and are defined on a fixed grid size (corresponding (o curves of degree
4) but the same approach can be used to give a hierarchical notation for valid space-
lilling scans.

In this thesis, hierarchical space-filling scans are represented with the notation given
in Eqn. 4.9. The term level is used to denote stages of the scan. In the case of a scan

consisting of [ levels then:

Sean = 1 m J4 S5 (m o # (m) A0 0) 9

where 5/ (m) is the k'th order instance of the m'th member of the set of space-filling

curves of degree n.
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The sequence of the levels is reversed compared with the cryptogr dpth scans used b
Bourbakis. In this implementation of the scans (due to the recursive way in which the
scans are generated) it is easier to reverse the order of the levels so that the first stage

of the scan description is the ‘innermost' or final stage of the scan

For example, the structure of a two level scan S} (3)#52(1) is shown in Fig. 4.13. The

scan consists of four copies of the third member of the set of fourth degree basic
curves drawn at order one. The four copies are placed in a sequence with orientations
defined by the single member of the set of second degree basic curves drawn at order

one.

o
—
-
o
_
o
o

[=]
o
N

<]

12 11
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~
o
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10

«
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8 7 5] [0]
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Fig. 4.13. Example of structure of hierarchical scan

Fig. 4.14 shows the details of two scans of a 64 by 64 i mmage. Fig 4.14(a) is th
simple one-level scan S7(1) (which is the Hilbert scan) and Fig. 4.14(b) is the Lhrce—

level scan S7(1)# S, (1)#55(1).

(a) (b)
Fig. 4.14. Examples of hierarchical scans
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4.6.1 Continuity of curves

[Lis readily apparent from the way in which the space-filling curves are defﬁwdfhat a
hierarchical curve can only be continuous if all its levels are of odd degree or all are
of even degree. Without this restriction the start and end points of the curves at each
level would not be at the correct corners. This reduces significantly the number of
potenually useful hierarchical curves which can be used to scan images of the
required size but, as is shown in Section 4.6.2, some image sizes still provide

considerable variety in the possible choices of hierarchical curves.

4.6.2 Exact scans of 512 by 512 images

It 1s possible exhaustively to list all of the scans which exactly cover a grid of 512 by
512 pixels. These can be found by considering all of the 30 possible factorisations of
the number 512 which are listed in Table 4.6. The number of permutations is
calculated differently if any of the factors are even powers ol two since these factors
can be represented by two different degree curves. (i.e. factors which are (he same

even power of two are distinguishable).

Factorisation | Permu- | Factorisation | Permu- | F actorisation Permu-
tations tations tations
2° 1 2 2% 2¢ 6 2.2.2.2°.2° 10
2.2 2 2°.2% 2 1 2.2.22.22.2° 60
2007 2 2.2.2.2° 4 2.27.222% 07 120
272" 2 2.2.2%.2° 12 2.2.2.2.2.2° 6
242 2 2.2.2° 2" 12 2.2.2.2.2%.2° 30
2277 3 2.22.2%.2¢ 24 2.2.22%2% 27 |120
2.27.2° 6 2.22.23 27 12 2.222222° |7
2.2%2° 6 27929208 |24 2222272220 |42
2.2% 24 6 2.2.2.2.2° 5 2.22222722% |8
52 52 58 6 55990094 |20 2222222221

Table 4.6. Factorisations of 512
To form the scans from the factorisation there are four issues to take into account:

. For a given lactorisation, each different permutation of the factors gives a
different scan. For example, consider a two-level factorisation of 512 such as
2°.2°. This could yield a scan based on a 32 by 32 pixel grid such as S?
replicated 256 times on a 16 by 16 grid defined by the curve S;. The
factorisation 2°.2*% would yield a completely different scan based on the curve
S; repli