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SUMMARY

A graphical process control language has been developed as a means
of defining process control software. The user configures a block diagram
describing the required control system, from a menu of functional blocks,
using a graphics software system with graphics terminal. Additions may be
made to the menu of functional blocks, to extend the system capability,
and a group of blocks may be defined as a composite block. This latter
feature provides for segmentation of the overall system diagram and the
repeated use of the same group of blocks within the system.

The completed diagram 1is analyzed by a graphics compiler which
generates the programs and data structure to realise the run-time
software. The run-time software has been designed as a data-driven system
which allows for modifications at the run-time level in both parameters
and system configuration. Data structures have been specified to ensure
efficient execution and minimal storage reguirements in the final control
software. ‘

Machine independence has been accomecdated as far as possible using
CORAL 66 as the high 1level language throughout the entire system; the
final run-time code being generated by a CORAL 66 compiler appropriate to
the target processor.
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CHAPTER 1

PROCESS CONTROL

1«1 Introduction

The term ‘digital process cont;ol' encompasses a wide range of~
process control functions, all sharing the common factor of involving a
digital computer element. The tasks a computer may perform may be divided
into 4 levels (1,2] :-

(i) Direct Digital Control (DDC)

(ii) supervisory control
(iii) optimising and adaptive control
(iv) management information .
The areas of interest in this research were DDC and supervisory control.

As its name implies, in DDC the computer performs the actual low
level functions of acquiring measurements from the process and adjusting
the process’actuators. Two factors to be considered when contemplating
the use of DDC are the process time constants and the execution speed of
the computer. Fast processes which require responses 1in the order of
milliseconds are normally beyond the capability of DDC. A large
proportion of processes, however, have time constants of the order of
seconds -- it 1is sufficient to regulate the process actuators several
times a second, and DDC is feasible in such cases. Indeed, for such slow
processes it 1is pra;tical to control several loops with one computer.

Since the introduction of the minicomputer in the mid-60's, and
especially the establishment of microprocessors by the mid-70's, the

trend of DDC has been away from a single big computer controlling several




nundred loops, towards small stand-alone (dedicated) computers handling a
small number of loops, because of the increased reliability and reduced
costs afforded by the latter (3,4].

Supervisory control, also called setpoint control, is a 1less
frequent control action than DDC, and may also be undertaken by the
stand-alone process computers.

In a survey published in 1977 (5] on digital control applications,
it was found that applications were most widely reported in the chemical
industry (which involve 'slow' processes). A combination of DDC and
supervisory controllwas used in more than half of all the cases reported,
and the number of DDC loops varied from the range 1-5 to 100-800. In the
majority of applications minicomputers were used, with memory sizes
ranging from 8K to 128K words (the majority falling between 24K and 48K).
Microprocessor-based controllers have since become mcre common [4,€~-91.

Assuming the technical feasibility of DDC, 1its implementation
involves two main aspects :-

(i) hardware

(ii) design and software .
The viability of most process control systems is linked to economic
factors [10]. Hardware costs are incurred by every installation, whereas
design and software costs may sometimes be shared among several
installations.

Dedicated process controllers may be classified as either special-
purpose or general-purpose. Special-purpose controllers are used in two
situations. Cne is where the application is very specialised and
stringent physical hardware constraints exist (for example, constraints
on execution time or size or weight). The other is in high-volume
applications where the hardware costs must be minimised (for example, a

washing machine controller). Design costs (for both hardware as well as




software) will consequently be higher, but these are non-recurrent and
pecome insignificant when distributed over the large number of units
produced.

General-purpose controllers may Dbe wused in a variety of
applications. For process controller manufacturers, cost performance is
optimised by increasing the number of possible applications. For the end
user, cost performance 1is determined by both the hardware and the
implementation effort. The consequence of these requirements is a call
for modularised hardware and standardised functions and signals [11]. The
effects of modularisation and standardisation are increased hardware
costs (certain features are inevitably wunnecessary for each specific
application) but reduced implementation costs.

The implementation effort may be split into hardware and software
design. Hardware design 1is reduced to the selection of appropriate
standardised modules. Hardware standardisation also leéds to a reduced
programming effort as standard software modules are available to handle
the hardware. The remaining software problem 1is one of defining the
collective operation of the various hardware elements to effect the
required control functions. This is a non-trivial problem and software
costs normally account for a significant proportion of the total system
cost. Furthermore, software costs are often recurrent -- programs have to
be subsequently modified to suit the occasional change in control
requirments.

Software costs will be raduced if some form of standardisation 1is
adopted [12-14]. Normally this is realised through the use of process

control-oriented high level languages and a modular approach to software

design.




1.2 Programming Languages

Programming languages for process control applications fall into 4
main categories :-
(i) assembly languages
(ii) general purpose procedural high-level languages
(iii) problem-oriented procedural high-level languages

(iv) 'format-defined' languages .

The disadvantages of programming in assembly language are :-—

(i) it requires a skilled knowledge of assembly language
programming;

(ii) the large amount of code involved necessitates a long
software development time;

(iii) errors are easily made;

(iv) errors are both hard to locate and hard to correct;

(v) programs are hard to maintain;

(vi) a large amount of documentation is necessary to describe
the actions performed by each section 5f code;

(vii) the programs, being written in the assembly language for a
particular computer, are not transferable to a different
make .

These factors result in increasing the software cost.

The only advantage of assembly language programming is the
execution and storage efficiency that may be achieved by a highly
competent programmer. Assembly language is often necessary to satisfy the
constraints imposed upon special purpose controllers, for example where a

large amount of processing [15] or high sampling rates are involved.




High-level languages (HLLs) are by comparison much easier to
write, read, debug and maintain. In HLLs each statement translates into
tens or hundreds of machine-code instructions. Complex programs may be
written with relatively few high level language statements. HLLs also
have the advantage of portabilitf -- the same programs may be executed on
a variety of computers provided that the compilers or interpreters exist.
Unfortunately they also tend to be less efficient in terms of execution
speed and storage requirements compared to a wellfwritten assembly
language program.

Procedural HLLs are those in which the solution is expressed in
sequential language statements. They may be subdivided into general-
purpose and problem-oriented languages. The former have been designed for
general problem-solving whereas the latter are purpose-built to suit
their own narrow sphere df application.

The most widely used general purpose HLL has been FORTRAN [5,16].
Standard versions of FORTRAN (17,18) are not particularly suited to
process control, so extended versions have been produced [19-21]. Even
with extensions, FORTRAN based languages have had only partial success
[22], being most successful where a high degree of computation 1is
involved [23].

Other general-purpose procedural HLLs include PL/I [24,25],
ALGOL 60 [26], CORAL 66 [27,28], RTL/2 [29,30], and PEARL (31], the last
three having been designed for 'real-time' applications. Other real-time
languages are listed in surveys by Thompson (16] and Elzer and Roessler
(32). In the U.K., CORAL 66 is most widely used (1671 .

Due to the general-purpose nature of these HLLs, language features
are not specifically geared to any particular application. The
realisation of the required control functions still involves a

substantial programming effort.




Process control (problem-) oriented procedural HLLs enable the
engineer to write programs using familiar engineering terms, and each
have their specific area of application. A large number of such languages
exist, including AUTRAN (33], PEL [(34,35], PROSEL (36,37].

'Format-defined' languages [14] are also problem—oriented HLLs,
and are normally of the fill-in-the-blanks type. The user is required to
simply fill in forms to describe the control strategy he wishes to
implement, the control strategy normally being represented by some
diagram readily understood by the engineer. No programming in the normal
sense of the word is required. Examples of such languages include PROSPRO
{1,381, BICEPS (1], FOX2-IMPAC (36] and ACCOL (39].

A problem with procedural HLLs is the enforcement of programming
discipline. This is especially true of general-purpose HLLs, due to their
inherent flexibility. Within an establishment, programming conventions
have to be standardised and adhered to if confusion is to be avoided.

Format-defined languages, being oriented towards their specific

field of application, do not suffer from this problem.

Graphics 1is a useful tool in process control. Use has been mostly
limited to display functions such as the display of mimic diagrams
showing the values of relevant process variables [40]. Diagrams of some
form are invariably used to express process control schemes. Normally
they serve as the starting point in the software generation process -- to
assist in the process of writihg programs or form-filling.

In certain specific applications a facility is provided to
describe the software in a direct graphical way, as in the case of some
programmable logic controllers which are programmed interactively using a

ladder diagram representation [34].




A graphical (diagrammatic) language is the ideal method of
generating DDC software, but little work has been directed towards this
goal [41,42]. Kossiakoff and Sleight [43]) have described a graphical

programming system which utilises 'Data Flow Circuits'.

1.3 Research Objectives

The objective of this research was to design a graphical
programming language for programming a standard DDC process control
system. This aimed to allow the process engineer to express his control
problem in terms of his block diagrams, and also to obviate any necessity
for writing programs or form-filling.

The main features of this graphical process control language
are :-

(i) complete specification of the control problem using block
diagrams in which each block represents a basic control
function;

(ii) the facility to define a new set of functions to suit the
particular area of application;

(iii) the facility to define groups of blocks as macros or
subpictures which may subsequently be identified by single
blocks. This further allows segmentation of the diagram
into a group of subpictures.

(iv) the provision for commentary text and plant symbols in the
block diagrams.

Further processing of the control diagram to generate the run-time
system 1is achieved by a graphic compiler. The main functions of the
compiler are the generation of CORAL 56 code and data structure for the

run-time system. The latter function includes :=-




(i) setting up +the data and linkages to define the block
diagram structure;
(ii) setting up the data for use by the blocks;
(iii) determination of processing order for the blocks.

The final run-time system is intended to accomodate the following

features :-
(i) periodic data-driven execution of the control functions;
(ii) operator interaction which includes the ability to examine
and adjust all variables and the ability to reconfigure
the control structure;
(iii) logging and display operations.

The emphasis of this approach has been to concentrate on the top
level of program design; machine dependent aspects and the implementation
of hardware dependent functions can be accomodated as necessary by
specialised code modules.

In the design of the language, emphasis has been placed on the
data structures to support the graphics and run-time phases. The Graphic
Data Structure is designed to facilitate the creation and editing of
orocess control diagrams; in the Run-time Data Structure the emphasis is
cn execution efficiency and modifiability.

It has not been possible within the duration of this research to
produce a complete software system. So far, a graphic editor has been
produced to provide the basic editing capabilities. For the run-time
system, a supervisor has been assembled capable of performing the most
fundamental task of periodically processing the control algorithms. This
development has been sufficient to enable the =2ssential features of the
software system to be defined, sc that the extension to a complete

facility becomes a routine programming function.




The essential contribution of this work has therefore been the
definition of the software structure required to give efficient

implementation of control algorithms based on a graphical language using

block diagrams.




CHAPTER 2

SOFTWARE REQUIREMENTS

2.1 Introduction

This chapter gives a general appraisal of the features of a
software system appropriate to the requirements of DDC. These features
are evaluated to indicate the role of a graphical language and to define
a specification for subsequent developments.

The selection of any language for process control is based on
several criteria. Criteria related to programming are :-

(i) ease of use

(ii) flexibility
(iii) promotion of structured programming practice
(iv) facility of documentation and maintenance
(v) portability .
Criteria related to execution are : -
(1) efficiency
(ii) system interrogation and modification
(iii) security .
All the languages and systems mentioned in Chapter 1 succeed to

varying degrees in attempting to satisfy these requirements.

2.1.1 Ease of Use

The programming task must be undertaken by process engineers, not
"general-purpose' programmers. It has been found that a communication gap

exists between process engineers and programmers. The process engineer

-10-




knows what he wishes to achieve, but is seldom well-versed in the
intricacies of computer programming; the programmer may be skilled in
writing programs but seldom understands the requirements of the process
control problem ([44].

It 1is therefore preferable that the process engineer be
responsible for producing the programs [45,46j. This calls for maximum
simplification of the programming task so that he may achieve his control
objectives 'without undue effort spent in learning computerese' [47]. At
the same time, to assist in the production of working software, the
programming language or system must aim to minimise the opportunity for
errors.

It has been noted that problem-oriented languages tend to be more
suitable for more specific applications than general-purpose high-level
languages [22,23,48], as they require a smaller translation effort on the
part of the wuser to convert his ideas into programs. The greater the
translation effort required the less satisfactory the language becomes.
The engineer is called upon to spend large amounts of time programming;
the frequency of errors 1is rélated to the ease of the translation
process, and the work will Dbecome limited to those more gualified
'engineer-programmers'. The translation effort therefore has to be

minimised.

2.1.2 Flexibility

The flexibility of a language allows it to be used in a wide range
of applications, but this 1is sometimes achieved at ﬁhe expense of
simplicity. The user may be forced to consider a wider range of options
than necessary for the solution of his specific problem of limited scope.

On the other hand a problem-oriented language that provides too many

-11=-




powerful facilities peculiar to a specific application loses its
generality and is useless for other applications. It is both impossible
and undesirable to attempt to provide all the facilities that are useful
to everybody =-- undesirable because only a subset will be used for a
particular application and the existence of the rest 1is an unnecessary
and unwanted overhead and detracts from the simplicity of the system.

The language should therefore cater for the more common
requirements, yet allow fhe user to modify it to suit his needs. One
solution to this is a modular approach which allows features to be added

within a defined general structure.

2.1.3 Promotion of Structured Programming Practice

Programs written with a well-defined structure are easier to
understand and debug. Languages  differ in their amenability towards
structured programming, assembly languages being poorest in this respect.
Languages derived from FORTRAN and BASIC are also lacking 1in structured
programming aids. The block-structured languages like ALGOL 60, ALGOL 68
[49,50}, PL/I and CORAL 66 etc., enable structured programs to be writteﬁ
more easily. The question is not the possibility of writing structured
programs {(any language may be used with sufficient resolve on the part of
the programmer) but the ease with which this may be accomplished.

'Format-defined' languages (which are mainly of the fill-in-the-
blanks type) are superior in this respect Dbecause the structuring is

intrinsic in the facilities provided.
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2.1.4 Facility of Documentation and Maintenance

Although documentation plays no direct part in program execution,
it is a very important factor in software production, as it directly
affects program debugging and maintenance. Maintenance involves two
functions :-

(1) correction of 'bugs' discovered after the initial testing
period;

(ii) program modification necessitated by the changes in the
control strategy and in the process itself [51].

In assembly language programs, the assembler statements do not
indicate the overall purpose of a piece of code. It is necessary to
include profuse comments, without which it becomes almost impossible to
comprehend.

Pfocedural high-level languages reduce this- problem by using.more
natural syntaxes and allowing the use of meaningful names for variables.
Procedural problem-oriented languages allow the user to express the
solution to his problem in even more familiar terms, thereby reducing the
amount of‘documentation necessary. In fill-in-the-blanks languages the
action of form-£filling has the effect of providing automatic

documentation to a certain degree.

2.1.5 Portability

A general purpose process control language must be capable of
operating on as many different computers as possible. Assembly language
programs are not portable -- each range of computers from a manufacturer
use their own unigque assembly language. High-level language programs
achieve portability (although seldom fully) by relying on a compiler or

interpreter to translate the language statements into the machine code

-13-




for the specific computer. The degree of portability depends on the
number of translators available for different computers, as well as the

extent to which the various implementations of the language differ.

2.1.6 Efficiency

There are 3 aspects to the subject of efficiency. The first is the
programming efficiency and has been discussed under different headings in
the preceding sections. The other two aspects are related to program
execution : the amount of machine code produced and the time taken for
the machine code to execute. As noted in Chapter 1, high-level languages
are less efficient in this context. Interpretive languages are generally
least efficient. Depending on the implementation, the presence of source
text in the run-time system may lead to increased memory requirements; in
some systems the necessity to search for program lines and variables, in
addition to the necessity to interpret the source text, significantly
increases execution time.

Efficiency is less important when the computer available is large
and the problem.is not a time-critical one; however, process control
computers are normally minicomputers or microprocessor-based, especially
in the case of DDC.

The program and data structure also affect the overall execution
efficiency of a program.

The loss of efficiency caused by a high-level language is often
outweighed by the increased efficiency of program generation. The
objective 1is therefore <to wuse a high-level language and to seek

efficiency by a careful choice of program and data structure.
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2.1.7 System Interrogation and Modification

A flexible process control system should allow examination and
modification of all variables. Access to all variables is necessary both
during the initi;l debugging phase, and during subsequent execution, to
monitor the proper operation of the system. Due to the impermanence of
control requirements and of the process itself, there 1is often a
necessity to .modify the control system : introducing additional control
calculations, adding variables to be scanned, adding or deleting control
loops. All process parameters and variables must therefore be accessible
to the engineer or operator [51].

Interpretive languages [46,52,53] allow on-line modification of
both program and data. Variables may be accessed through the facility of
'software probes' [53]. Compiled languages require the adoption of a
special software structure in which all variables and parameters must be
stored in special tables; an interpretive program then executes the
various control actions according to the data -- that is, a data-~driven
system [51,54].

Such a software structure 1is intrinsic in a graphical block-

diagram based system {42].

2.1.8 Security

The process control system must include protection mechanisms to
safeguard the systems from being recklessly or mistakenly modified with
catastrophic results. There are two aspects to the problem of security.
The first is to do with the protection against wunauthorised access =--
normally achieved by the use of passwords -- but is not of concern here.

The second aspect of security involves the minimisation of the effects of

human errors.
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In procedural interpretive languages (for example BASIC and its
derivatives) new program lines may be checked for syntactic errors before
being accepted. This does not prevent logical errors such as the creation
of endless loops or the illegal accessing of variables.

Data-driven systems are more secure due to the 1limited
modification allowed, assuming the correct operation of the basic control

routines.

2.2 Definition of the Graphical Process Control System

A system is now proposed with the objective of embracing the
requirements described in the preceding sections. It.consists of three
parts :-

(i) the Graphical Process Control Language (GPCL) ;
(ii) a program development system comprising a graphics _editor
and the GPCL compiler;
(iii) the run-time system which is generated for execution in a
process computer.
The following sections define the requirements of this software system in

relation to the factors discussed in Section 2.1 .

2.2.1 Ease of Use

Since process engineers use block diagrams as their standard way
of representing ideas and control schemes, a language based on these
block diagrams has considerable advantages to the user. Several languages
are based on this concept, but still require the wuser to specify

textually the contents of his diagram [6,55-57].
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Ideally the program should be identified with the diagram itself
-- that is, to allow the engineer to input his process control diagram

into the computer and let the computer generate the control software. The

human effort then becomes one of transcription rather than translation,

and is therefore susceptible only to transcription errors which are less
common than translation errors.

With the wuse of sophisticated pattern recognition techniques and
an iﬁaging device (e.g. a TV camera) to read the user's drawing the whole
process may be automated, thus eliminating even transcription errors. At
present however an economic solution is to require the user to generate
his diagram on a graphics visual display terminal.

A graphical, block diagram language is therefore specified, with a
full graphics support facility. This language is called GPCL (Graphical

Process Control Language).

2.2.2 Flexibility

Rather than attempting to provide all the blocks that may
conceivably be required, it is essential to proviae the facility ¢to
define new Dblocks whenever required for the particular application. The
implementation envisaged here has identified the essential features of
blocks to ensure that structural requirements can be met for any block
likely to be needed.

The further introduction of a 'macro block' as a means of

replacing a group of blocks by a single block adds to the flexibility of

the language.
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2.2.3 Promotion of Structured Programming Practice

Two levels of programming are involved in GPCL. The basic level is
the programming to realise the control action of each block -- this is
only required when new blocks are introduced. The GPCL language defines a
standard convention for handling data (Chapters 4,5).

The other 1level is the 'programming' of the diagram, which is in
actuality the interactive creation of the diagram at the graphics
terminal. For this, the ‘'macro' facility enables 'top-down design' by

allowing the structuring of the diagram into blocks of different levels.

2.2.4 Facility of Documentation and Maintenance

The method described is inherently self-documenting. In fact,
since no translation (from diagram to program) by the user is required,
the need for documentation beyoﬁd the level of ovérall system description
does not arise.

Since the 'program' is equivalent to the process control diagram
itself, there is no problem of comprehensibility. Maintenance 1is

therefore facilitated.

2.2.5 Portability

In GPCL, the question of portability occurs twice -- the
portability of the GPCL editor and compiler and portability of its
output. To minimize machine dependence the GPCL compiler and editor must
themselves be written in a high=-level language. The portability of the
generated software (the GPCL compiler output) would be lost if it was a
specific machine dependent code. It 1is preferable to produce an

intermediate language output, which <can then be converted 1into the
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machine language for the target ©process computer (the software
development stage need not be supported by the process computer).

While it is possible to design a new purpose-built intermediate
language from which machine specific code may subsequently be generated,
this was not done because of the significant extra effort required and
the necessity to provide code generators for different target computers.
The choice was therefore made among several high-level language
alternatives.

The application under consideration being process control, the
language had to be one of the 'real-time' langauges. The popularity of
CORAL 66 for real-time applications and the availability of a CORAL 66
compiler for the Department's Texas Intstruments 990/10 minicomputer,
prompted the adoption of CORAL 66 as the intermediate language. The
choice of CORAL 66 as the intermediate language led to its wuse 1in the

entire software system =-- the GPCL editor and compiler. .

2.2.6 Efficiency

Although the code compiled from a high-level language is generally
not as efficient as good assembly code, CORAL 66, having been designed
with a consideration to real-time requirements [27] is relatively
efficient. This by itself 1is not sufficient -- the control program
generated by the GPCL compiler has to be designed to be as efficient as
possible. This 1is mainly achieved by eliminating the necessity for any

searching during execution of the control algorithms..
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2.2.7 ©System Interrogation and Modification

It is natural to implement a block-diagram based language as a set
of tables which are operated upon by an interpretive program. The use of
tables allow both variables and control strategy to be examined and
modified.

Further, the GPCL language allows text such as names and

engineering units to be attached to each Dblock to facilitate

identification.

2.2.8 Security

The execution of the software generated by the GPCL compiler is
data-driven. As noted in Section 2.1.8, this makes it less vulnerable to
user-induced catastrophes, since the user 1is not permitted to modify

control ‘routines.

2.3 Software Generation Process

Several steps are involved in the process of generating the final
control program for use in the process computer (Fig 2.1) :-
(i) synthesis of diagram using GPCL editor;
(ii) compilation by the GPCL compiler to produce the control
program in CORAL 66 form;
(iii) compilation by a CORAL 66 compiler to produce the control
program in machine-dependent code form;
(iv) linking with any machine dependent routines;
(v) loading into the process computer;
(vi) execution.

Steps (i), (ii) and (vi) will be discussed in the following chapters.
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Process Control Diagram

GPCL Editor

GPCL ‘Program’

A

GPCL Compiler

CORAL 66 Program
+ Data

CORAL 66 Compiler

Machine Specitic

Code

Machine Dependent
Routines

Link

Figure 2.1

4

Run-time System

Software Generation Process

In many DDC

applications the process

computer

may

be

microprocessor-based, with a small memory capacity. This implies that the

software generation process must be accomplished on a different computer

-- a minicomputer and graphics terminal is needed.
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CHAPTER 3

GRAPHICS

3.1 Introduction

Graphics being a natural medium for man-machine communications,
its applications are varied and too numerous to mention. Some areas where
it is extensively used include simulation [58-61], computer aided design
[62-64], analysis [65,66], and computer animation ([67,68]. Whatever the
application, two basic components are involved -- graphics software and

nardware.

3.1.1 Graphics Software

Graphics software may be grouped under 2 headings -- application
programs and graphical languages. Application programs are user-written
programs which perform the computations peculiar to his problem. The
application program makes use of the graphical language to perform its
graphical input/output actions.

Normally the graphical language is based on an existing language
[69] (normally the same one as used by the application program) -- it may
either take the form of a graphic package (a set of graphical functions
implemented as subroutines to be called by the application program) ([70-
76], or take the form of extensions to the language [77,78]. The
graphical language includes facilities for geometric transformations
(scaling, rotation, translation) as well as simple line-drawing, and may

often handle 3-dimensional pictures.
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An important component of graphics programs is the data structure.

The data structure is the software representation of the model being
operated wupon. 'The purpose of the data structure is to facilitate the
extraction of intelligence and manipulation of both the 1image and the
information it represents’ ([Abrams [79}). It must store graphical
information in such a way that it can be retrieved and manipulated
easily. It must also reflect the non-graphical characteristics of the
model.

Much work has been done on the subject of data structures.
Sutherland in SKETCHPAD [80] describes a ring structure for handling a
common class of pictures which may be termed ‘'network graphs' --
configurations in which pictures are connected to others in a network,
the pictures often being decomposable into lower level 'subpictures'.
Others have discussed the design of general-purpose and tailored graphic
data structures ([79],. data structures for remote computer graphics [81],
data and storage structures [82], a simple data structure for drafting
[83] and line drawing [84], and data structures for picture processing
[85]. The judicious choice of data structure is vital to the success of a

graphics programe.

3.1.2 Graphics Hardware

A variety of graphics devices exist. They are of 2 types --
interactive or passive. Passive devices are output-only devices, like the
graph plotter. Interactive devices (graphics terminals) permit human
interaction through a variety of input mechanisms.

Graphical input devices include the keyboard, switch, joystick,
light pen, and data tablet [86,87]. Each of these devices provide a

different means of expression for the user. Some are more suited to the
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expression of values, or text, or selection of objects. Each input device
requires different software to operate (device drivers). In order to
achieve some degree of portability for the graphical language, they may
be categorised according to their functional characteristics. Several
classifications have been suggested [87-91]. Foley and Wallace [89]
propose 4 device types =-- pick, button, locator and valuator. Examples of
these are the light-pen (pick), function key (button), joystick (locator)
and potentiometer or analog dial (valuator).

Despite the functional differences, it has been attempted to
demonstrate that each device may be treated as belonging to any of the
four device types, and 'with appropriate programming, any device can
simulate any other device' (Cotton ([88]), although in some cases the
simulation may be quite awkward.

Graphic displays (terminals) may be grouped into 3 main types
[87,92] -- refreshed directed beam CRT, raster-refreshed CRT, and direct-
view storage tubes. In the refreshed directed beam CRTs (87,93], lines
are drawn by directing an electron beam across the screen. Since the
image only remains on the screen for a fraction of a second, all the
lines making up the picture have to be continually redrawn (refreshed).
Lines are drawn in a similar way in direct-view storage displays [94],
but the image does not fade and therefore no refreshing is necessary.
Raster-refreshed (also called raster-scan) CRTs are similar to television
CRTs; they require the generation of a matrix of intensity values which
are fed to a TV monitor. The matrix is stored in a 'frame buffer'.

Again the use of different displays require different device
drivers. Attempts [73,76,95,96] have been made to achieve device
independence by separating the whole graphics software into 3 parts -- an

application program, a standard graphics package, and a device driver.
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The most basic functional difference between the refreshed
directed beam CRT, raster-scan CRT, and the direct-view storage tube is
the necessity to refresh the first two, and conversely the ability to
modify the image continuously. Storage technology reguires the whole
screen to be erased and the picture redrawn. Drawing speeds are
relatively slow for storage tubes.

Despite the device independence achieved between devices of the
same type (even between the two refresh types) the three types are not
fully interchangeable. Carlson [92] and Preiss [94] identify the graphics
terminal requirements and their related application areas. The basis for
selection of a particular type of display depends on several factors,
including the ability to dynamically move objects, the resolution
available, and not least the cost.

Functionally, both refreshed directed beam and raster-scan CRT

displays may be made to simulate storage tube displays, within limits.

3.2 Graphical Process Control Language (GPCL)

As nas already been stated in Section 2.2.1, the language proposed
is both block-diagram oriented and also allows the process engineer to
describe his diagram by graphical means (through a graphics terminal
using the Graphic Editor) instead of Dby a textual language or form-
filling.

Fig 3.1 shows an example of a block diagram. It is a diagram of a
simple dye mixing process. Blocks 11, 12 and 13 are input blocks;
they represent the hardware interface to the ‘'real world', and obtain
their inputs from a densitometer and two flow meters. The control loop
applies its output through block 14 to valve V2 in response to changes in

flow induced by a change in V1. A complete control system would be more
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complex as it would require safeguards like level limit detection.

3.2.1 Macro Facility

A feature of GPCL is the facility ¢to form composite blocks by

grouping together simple blocks. In Fig 3.1 all blocks are simple blocks

-- that is, they are basic components and cannot be decomposed further.
If cascade control 1s often used, the engineer might wish to define a
cascade controller block, made up of two PID blocks and a multiplier

(Fig 3.2). This is similar in many ways to the 'macro' facility in

1 D
e
sp v
PV1 py P10 l 2
1 c p P
PV2 JP[ I
. MULT SP
PID :
PV3 PV
3

Figure 3.2 Cascade Controller - Example of Composite Block

textual programming languages.

The overall control scheme can then be redrawn as in Fig 3.3 ,

where block 27 is the composite block.

3.2.2 Components of GPCL

A GPCL 'program' is made up of a graphical component and a non-

graphical component. The graphical component is the representation of the

block diagram and is called the Graphic Data Structure (Section 3.3). The
non-graphical component is formed by the CORABL 66 routines which perform

the functions represented by each block, and other functional

descriptions which do not manifest themselves in the picture. These will
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be discussed in Chapter 4.

3.2.3 Main Graphics Requirements

While the graphics facilities required for the Graphic Editor may
be very sophisticated, only a basic subset of graphics functions is
essential. The possible graphics facilities (either hardware or software)
are listed below together with their usefulness in this application.

1) 3-D representation -- this is not needed, since block diagrams are 2-

dimensional drawings.

2) Colour -- process control block diagrams are normally monochromatic
(plant mimic diagrams are often multi-coloured, but are not relevant
here). However, during editing, the availability of colour is
advantageous as it can help to emphasise the objects of interest. The
objects themselves need not possess a colour attribute.in the Graphic
Data Structure -- the graphic editor may draw objects with different
colours according to the current editing circumstances.

Colour is not available on direct-view storage displays.

3) Intensification -- this 1s the ability to display objects at

different levels of brightness. This feature is again useful, but not
essential, for editing purposes.

4) Translation -- this is a geometric transformation that affects the
position of a graphical entity. This is required in order to position
blocks at different parts of the screen, and also to enable viewing
of different parts of the diagram if it is too big.

5) Rotation and mirroring -- rotation is a transformation that affects

w

the angular orientation of a graphical entity. Arbitrary rotations

are not needed since block diagrams should be laid out such that

biocks are either ‘horizontal' or ‘'vertical'. Rotation through 90 and
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6)

270 degrees would be of some use. However, this significantly
increases the complexity of the program in several ways. If the
rotation 1is not available as a hardware facility, it places a burden
on the software. In a terminal with hardware character generation but
no rotation, the rotation of text through any angle becomes a
problem.

Rotation of a block through 180 degrees is almost never wanted
as the block ends up upside down. The action required is 'mirroring'.
Again text causes a problem since it should not be mirrored as well,
and the Gquestion arises as to where to position the text associated
with the mirrored block.

The absence of rotation and mirroring places a constraint on the

block-diagram layout, but greatly simplifies the software and
hardware requirements.
Scaling -- scaling 1is a transformation that changes the size of a
graphical entity. In many graphical drawing languages [80,81,84,
97,98] ‘'macros' or ‘'subpictures' are used to define groups of more
elementary graphical entities, and as such, when a 'macro' is
encounteredduring picture drawing, it is expanded and its constituent
components drawn instead.

In GPCL, composite Dblocks retain their graphical identity and
are not expanded when a block diagram is drawn. Thus scaling,
otherwise required to draw the internal components, is not required.
The question that remains is whether blocks of the same type
should be drawn in different sizes, and whether 'zooming' is allowed.
'Zooming', the display of part of a picture at various magnifications
is not a useful feature in the context of process control Dblock
of different-sized blocks can provide a means of

diagrams. The use

indicating the relative importance of blocks. The attendant
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disadvantage 1is that of text generation, as in the case of rotation.
Extra storage 1s also needed to store the scale for each block. In

GPCL therefore blocks may only have one size.

7) Dynamic display -- editing of a block diagram is facilitated by the
ability to continuously move objects about the display area
('dragging'), and also the ability to 'flash' certain blocks and user
prompts on and off. This 1is only possible with refresh displays.
While this feafure facilitates the editing task, it doces not affect

the GPCL language in any way.

3.3 Graphic Data Structure

The Graphic Data Structure (GDS) 1is a data structure which
contains the complete graphical information of the block diagrams. It 1is
a hierarchical structure, but differs from other hierarchical structures
[79-82,84,97,98] in that the hierarchy pertains to the functional rather
than graphical properties. The significance of composite blocks is more
functional than graphical.

The Graphic Data Structure also includes a small amount of data of
a non-graphical nature. Its presence enables a certain amount of error-

checking to be performed at an early stage (during graphic editing).

3.3.1 Design Criteria

The general criteria for graphical data structures are the same --
a need for adequate representation of the problem model, providing
sufficient flexibility for the purposes of the application, and
facilitating extraction and manipulation of information. At the same time
the storage should be efficient (not reguire too much space). These

criteria are generally interrelated and mutually contradictory, and
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solutions are always a compromise.

Abrams ([79] addresses the problem of choosing between an existing
general-purpose graphical data structure, and one that is tailored to the
specific application. The former is normally less efficient of storage

because of the presence of unused features; the 1latter requires a

construction effort.
In the interests of efficiency it was decided to wuse a special-

purpose data structure.

3.3.2 Attributes of Simple Blocks

In a process control block diagram, several different graphical
entities exist -- function blocks, lines, text and plant symbols.

Function blocks (wﬁich will sometimes be referred to simply as
'blocks') define the processing that is to be performed, and they may be
software analogies of hardware signal processing modules.

Lines are of two types. The first type is analogous to wires that
link the hardware modules (function blocks). They define the signal flow
amongst the blocks. The second type of lines serve no functional purpose
-- they are purely pictorial elements (for example to represent a pipe).

Ssimilarly, plant symbols are purely pictorial elements, that serve
to make the diagram more meaningful.

A piece of text may or may not be associated with a particular
block. If it 1is, it may be purely commentary oOr provide textual
identification and information such as names and engineering units, or it
may have'a numerical value, like a constant for a setpoint.

By treating all the graphical entities as attributes of the BLOCK,
the latter may be identified as the fundamental component of a diagram.

+ should be noted that a BLOCK need not be a FUNCTION BLOCK =-- it may
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not perform any processing function, in which case it is a pure GRAPHIC

BLOCK.
The graphical attributes of a BLOCK are :-
(i) block number
(ii) position
(iii) shape (and size)
(iv) input/output structure
(v) connections
(vi) text .

The block number is unique to each block within the picture Dbeing

displayed. A 'picture' here refers to a collection of blocks forming a
block diagram. A more general definition is given in Section 3.4 .
The position is its x-y coordinates within the pictﬁre.

The shape of the block, and its input/output structure (the number

of input and output terminals and their positions) are the same for all
blocks of the same TYPE. As stated previously, the size is fixed and
therefore not explicitly required.

Connections are the lines that define the signal flow, and text is

that associated with the particular block.

Not all blocks possess all the above attributes. GRAPHIC BLOCKS do
not possess any input/output structure, nor therefore any connections.

By defining the BLOCK as the fundamental component of a diagram,
plant symbols and the second type of lines described above may be defined
as pure GRAPHIC BLOCKS. Text which is not related to any particular block
may be treated as block-related text by attaching them to graphic blocks.

In this treatment lines do not exist as entities in their own
right -- they are implicitly defined by connections or graphic blocks. A

problem arises when sometimes, for aesthetic or logical reasons,

connecting lines between two (function) blocks have to Dbe composed of
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several segments. The solution to this is to define a special JUNCTION
block, which has one input and one output (in the same position) and has
the shape of a big ‘'dot'. Signals are then routed via these JUNCTION
blocks.

A FUNCTION BLOCK also possesses several non-graphical attributes.

These include the function algorithm (in the form of a CORAL 66

procedure) and several properties which determine the legality of
interconnections (to detect errors such as connection. between
incompatible terminals). These properties are called Non-Graphical Data

and will be discussed in detail in Chapter 4.

3.3.3 Single-level Data Structure

This section deals with a possible method of representation of a
picture which consists of only simple blocks.

The input/output structure and shape of a block are type-specific,
being identical for all blocks of the same TYPE. In addition, all
FUNCTION BLOCKS possess a BLOCK TYPE NAME (FUNCTION NAME) and normally
have a name for each of their input and output terminals. Fig 3.4 shows
block schematics for the MULTIPLIER and INTEGRATOR blocks. These names
are common to all blocks of the same TYPE. GRAPHIC blocks need not
possess a block type name.

All type-specific information is stored in a table called the
Graphic Information Table, which contains a record for each different

tyoe of block (Fig 3.5). Each record in the table holds the following

information :-
(i) length -- total length of the record
(ii) TYPE number -- unigque to each block TYPE
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Figure 3.5

Components of Simple Graphic Data Structure
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(iii) number of inputs (NIP)
(1v) number of outputs (NOP)
(v) a pointer (TXTPTR) to any type-specific text
(vi) a pointer (NGDPTR) to any non-graphical data
(vii) coordinates of the block number -- all blocks have a block
number by which they may be identified. Normally all block
numbers will be printed next to the  block; this
information specifies a suitable place for them to be
printed.

(viii) the coordinates of each input and output terminal -- this
is needed to draw connections in the correct places, and
to allow the terminals to be referred to via a graphic
cursor during editing.

(ix) the picture coordinates describing the lines that form the
shape of the block.

All coordinates are specified relative to the base of the block
which may be any point in or around the block. It is also the position of
the block type name if one exists (the position of a piece of text is the
bottom left-hand corner of the first character).

The picture coordinates specify the endpoints of the lines, in the
order to be drawn. Only one end point is specified for each line =-- the
start point of the line is the end point of the previous line. 'Moves',
flagged by adding a big number (2000) to the x-

or invisible lines, are

coordinate.

Since both the I/0 structure and the shape vary considerably

between different types of blocks, the records in the Graphic Information

Table are of variable length, the table itself being organised as a

linear array. A directory called the Graphic Information Pointer Table

points to the start element of each record. The remainder of the
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attributes are stored in five other tables -- a Master Table, a

Connection Table, a Text Table and Text Pointer Table, and a Non-

Graphical Data Table (Fig 3.5).

The Master Table holds for each block a record containing the
following pieces of information :-
(1) the block number
(ii) the TYPE number of the block
(1iii) the x-y coordinates of the block
(iv) a pointer to the block's connection information in the
Connection Table
(v) a pointer to the Text Pointer Table .

The Connection Table is a table containing variable-length records
-- one for each block that has an I/O structure. Each record holds the
following pieces of data :—.

(1) length of the record
(ii) block number
(iii) for each input, the block number and the output to which
it is connected.

Since the connection of outputs to inputs 1s a one=-to-many
relationship, and since it 1s not permissible to interconnect two
outputs, this is sufficient to define all interconnections.

Two tables are required to hold text information. Each block may
| ecach being in a different position in

include several pieces of text,

relation to the block. The text strings are stored as variable length

records in the Text Table. The start of each text record, together with

. ; he t 7 i i
the coordinates of the first character of the text string, 1S stored in

an entry in the Text pointer Table. Also stored in each entry in the

latter table is a link to the next piece of text which belongs to the
a .

same block.
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Each function block has a record in the Non-Graphical Data Table
which stores, among other things, information on the type of signal
(continuous or logical, fixed or variable -- Section 4.2) compatible with
each terminal. This information is not essential during the editing phase
(it is required in the compilation phase) but its presence enables signal
checking, and therefore error detection, at an early stage in the
software production process.

The result is a Graphic Data Structure as shown in Fig 3.6 . Such
a structure suffers from two major deficiencies. It does not allow for
the representation of composite blocks, and also does not lend itself to
efficient manipulation. These two problems are dealt with in the next

section.

3.3.4 Multi-level Structure

The previous section dealt with a single-level data structure --
that is, a picture which consists only of simple blocks. A powerful and
useful feature to have in any programming language is the facility for
creating 'subroutines' or ‘macros'. In the context of GPCL, it means the
ability to <create a subpicture or 'composite block' which is made up of
several other blocks. This is useful for the following reasons :-

(i) it allows for neater, more comprehensible diagrams;

(ii) frequently used configurations can be defined as macro
blocks which can be called up when reqguired;
(iii) it encourages a structured, modular approach to designing
control systems.
~An arbitrary example of composite blocks is shown in Fig 3.7 . A,
B, E, F and G are simple block types: C and D are composite block types.

Fig 3.8 shows the multi-level nature of the diagram, where the squares
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Figure 3.8 Multi-level Nature of Diagram
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represent simple blocks and the circles composite blocks. It is clear
that each composite block resembles a simple picture and can therefore be
represented using a data structure fairly similar to that of the previous
section.

Two classes of composite blocks may be identified. The first class
is the 'one-off’ composite block == it has been defined not because it is
to be wused more than once, but for conceptual or aesthetic purposes. In
GPCL, this class of composite block is called a SUBPICTURE. The second
class of composite block has been defined with the intention of repeated
use. In GPCL this is called a MACRO. A main difference between the two
classes of composite blocks arise in the run-time system -- the internal
configuration of a macro cannot be modified whereas that of a subpicture
can. This has the implication that in a process control diagram, each
subpicture can appear only once.

The Graphic Data Structure described in the previous section has
several shortcomings when operated upon by the computer.

In the Connection Table the input information is given in terms of
block numbers. Since there 1is no direct relationship between a block
number and the position of the entry for that block in the Master Table,
a search through the latter is required. A search is required for every
connection -- a time consuming process as the number of blocks increases.
The same problem arises when accessing the Graphic Information

Table. A search has to be performed to access the right record for each

block type.

The Connection Table only holds information for inputs. Since a

many-to-one relationship exists petween inputs and outputs this is most

ici i i m a tedious process
efficient in terms of memory usage. However, it becomes t P

to try to determine all the inputs which are connected to a particular

output as every entry in the Connection Table has to be searched. While
’
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the delays are insignificant for a small system, for a larger system with

a substantial number of blocks the search time can become intolerable.

The existence of several tables is another potential source of
problems. It 1is not easy to allocate suitable sizes for each of the
tables, and there is therefore a danger of overflow. CORAL 66 does not
éllow for unbounded arrays and tables.

The overflow problem is less likely to occur with a single array.
All records are therefore physically stored in the same array, with
records belonging to the same table forming a linked list.

In order to minimise searching, TYPE information in the Master
Table is converted into actual pointers to the appropriate Graphic
Information Table records, thus dispensing with the Graphic Information
Pointer Table. Similarly, connection information does not make use of
block numbers, but pointers to the relevant Master Table record.
Furthermore, connection data includes information for eaéh output -- all
input terminals connected to the same output are stored in a linked list.
In a linked structure such as this, it is more appropriate to refer to
the table records as NODES. Each record in the Graphic Information Table
is referred to as a Graphic Information node. For each block, connection
information is now merged with its record in the Master Table, forming a
Block node. The Text Pointer Table and Text Table are also merged,
forming Text nodes. The resultant structure is shown in Figures 3.9 and

3.10 .

A1l nodes have three common features. The first word is always a

link to some other node, the second word always contains the 1length of

the node, and a null link or pointer is indicated by a zero value.

In the Block node, BLINK links all other nodes at the same level.

GIPTR points to the Graphic Information node. TXTPTR points to the first

related Text node. For each input, BLXPTR points to the Block node of the
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block to which the particular terminal is connected. For each output,

ILPTR points to a linked list of Input List nodes which 1links all the

input terminals which it sources.

In the Graphic Information node, GILINK links all other Graphic
Information nodes. To cater for composite blocks, two new items have been
added. These are the CLASS and MXPTR values. The CLASS of a simple block
is zero; that of a subpicture is 1 and that of a macro is 2. For
composite blocks (both macros and subpictures) MXPTR points to the Macro
Expansion node which relates a composite block's terminals to those of
its constituent blocks.

TLINK of each Text node links all Text nodes belonging to the same
block. More details on the Text node are given in Section 3.4.6 .

Each Input List node specifies an input terminal to which a
particular output terminal is connected. All Input List nodes that

specify inputs connected to the same output are linked by ILLINK.

2.3.5 Limitations of Macro Blocks

The Graphical Data Structure described so far has a shortcoming,
related to macro blocks. Once a macro block has been defined, it may be
used in several different places. While the definition of a SUBPICTURE

may be changed, because it is a one-off structure, that of a MACRC must

1

remain the same for all uses, since all similar MACRO blocks share the

same dJefinition. The macro feature of textual programming languages also

operate in this way. In these languages the Macro expansions may be made

variable by ovarameterisation. In GPCL, this is =cuivalent to requiring

all the different variables to be 'hrought out' to the tarminals of the

.
Ty
fu
ot
=
wn

macro ptlock

the axample of the cascade controller bleck (Fig 3.17a), the valuss of




P1, I1, D1 and P2, I2, D2 (representing constants) are the same for every

use of the block, whereas for the block in Fig 3.11b the P, I and D

values have been made external.

o]
I
P1
Pl
L {sP
v L—{SP v
PID T
e ey PID —-]
C D2
12 C
2 -L £ | l B
MULT SP MULT sp
V| v

(a) (b)

Figure 3.11 Cascade Controller Block

The hardware equivalent is fixed potentiometer settings in the
first case, and linking the P, I and D signals together with the other
signals through to an edge connector or backplane in the second.

Obviously the 'wiring' can get very complex 1f more blocks are
involved, or if more than one level of macro is usad.

Since with identical hardware modules it 1s possible to adjust
potentiometers individually, this facility should also be available in

GPCL. That 1s, individual constants may pe changed, so that they may be

(&)

L

rent among similar macro Dblocks. This reqguirement nas drastic

P a
1L

,
]

ffects on the Craphic Data Structure.

(©

, In the same way that thes internal wiring of hardware modules may

not be altered, so the internal connection configuration of the GPCL

macro block must remain unalterable.
The other reguirement peculiar to process control applications is

ginearing units oOr dimensions, for some (but not

th

all) wvariables. Thus the output o one block may be in

itre/mi sha~ of another in lbs/inz. For a svstem without macros this
itre/min, th
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poses no problems, as it

is a simple matter to attach a text string to a

1( ! + 1 i .
block's output terminal. The constraints imposed by +the Graphic Data

Structure on constants within macros also applies to text.

The seriousness of this is morse debatable, however. It may be
argued that only the inputs from the process, and the outputs of
controller, are of interest to the engineer or operator. The problem may
be solved by forbidding input or output interface blocks to be embedded
within macros. Again, the operator may be interested not so much in the
absolute values of these variables as in percentages. Nevertheless, there
will be occasions when the engineer will wish to monitor the value of an
inner block, as in the case of computed (as opposed to measured)
variables.

To cater for the presence of ‘'individual' constants and text
inside macros requires a drastic modification to the Graphic Data
Structure resulting in a significant increase in complexity and size, 1if
these constants and text are to be correctly displayed by the Graphic
Editor.

The Run-time Data Structure (Secﬁion 5.4) does not suffer from
these limitations because all macros have to be expanded, and all blocks
(within macros) are replicated. By resorting to a small amount of textual
communication in the form of constant and text lists during the graphic
compilation phase, it 1is possible to set these constants and text

individually without any modifications to the Graphic Data Structure. The

constants within macros displayed

consequence of such a strategy is that

sditor need not indicate the run-time values, and they may

0

by ths graphi

“herefore be omitted.
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3.4 Graphic Editor

mh : . .
The Graphic Editor enables the user to interactively create a

process control diagram and subsequently modify it. Since the facilities
it provides 1is dependent upon the hardware 2mployed, a brief hardware
description is given in the following section.

The term 'picture' will be usad frequently in the remainder of
this chapter. A PICTURE may ‘be defined as a collection of related
graphical elements which must be displayed together. All the 1lines and
text which comprise the description of a single block displayed on its
own form a picture. If a diagram shows several blocks connected together,
then the diagram is the picture.

In the rest of this chapter, the simpler term 'editor' will be

taken to imply the Graphic Editor.

3.4.1 Hardware Description

As mentioned in Section 3.1.2, storage displays have the
disadvantage of not permitting dynamic movement of the 1image. However,
they generally provide finer resolution, and for the resolution and
information content offered are less expensive than refresh types [(941].

storage display is used, blocks may not be ‘'dragged' about,

=
[
js3}

nor may user prompts be implemented easily. Deleted blocks and

connections do not disappear from ths screen until the picture 1s

redrawn. Because of the slow drawing speed of storage displays it is not

[

3 7 = < 1 1 £ -
practical to redraw the picture svery time a deletion 1is made 1if the

. s . A - \ s
picture contains a 1ict of lines, so radrawlng must pe specifically

raquested by the user.




These are inconveniences which may Dbe tolerable if the |user
interaction is properly designed.

An advantage of using storage displays is the ease with which the
Graphic Editor may be adapted to nandle refresh displays. For example, if
the Graphic Editor is designad to work with a storage display; and a
refresh display capable of =mulating the former is connected instead, the
editing actions will remain basically unchanged, even though a joystick
might be replaced by a light-pen. Furthermore, by setting a software
switch, the CGraphic Editor may be made to redraw the picture after every
alteration.

The graphic terminal used in this project was a Tektronix 4051.
This 1is a Tektronix 4010-type device which is a widely used storage
terminal, and which has been emulated on refresh—type. terminals. The
screen ‘is divided into 1024 addressable points horizontally and 780
points vertically. The terminal operates in two basic modes -- an alpha
mode and a graphic mode. In the alpha mode it works like an ordinary
alphanumeric terminal except that characters may be positioned anywhere
on the screen. Characters are generated by hardware in a dot-matrix
format. In the graphic mode, lines are drawn by manipulation of an
electron beam. A line is drawn from the current beam position when the
terminal recaives a string of four characters which specify the
coordinates of the endpoint of the line. In this mode a graphic cursor is
produced which can be manipulated by means of a joystick control; hitting

~ausaes tha terminal to send the coordinates of the cursor,

haracter typed, to the computer. The graphic cursor 1is

9]
0]
by
o
s
bt
W)
0n
(t
¥
L
Q

} + . + 3
invoked by a command from the computer; unfortunately, it cannot be

manipulated by the computer.




The joystick is not as convenient as a light pen, but the only

consequence is slightly slower operator response.

3.4.2 Menus

i . .
For ease of use, the Graphic Editor provides a COMMAND MENU which

lists the various functions provided. Functions provided by the Command
Menu include saving or retrieving a diagram, displaying or editing a
picture, creating a new block type or modifying an existing one, and
modification of the GRAPHIC MENU described below.

When 1invoked, the options are displayed and the user is required
to enter the number of the function wanted. An alternative method 1is to
let +the user point the graphic cursor at the required function. However,
this is computationally more involved as it requires comparison of the
cursor position with the known positions of the functions listed.
Furthermore this method would be more convenient for the user only if a
rafresh terminal with a light-pen were used, as manipulation of a graphic
cursor otherwise would not be as fast.

The GRAPHIC MENU 1is a display of all the different block types

defined in the system. When the user wishss to create a block 1in a

icture, ne can specify the block type through the Graphic Menu. The TYPE

it¢]

number is displayed next to each block as additional information, and the

base of each block is also marked.

The use of a Graphic Menu in this system presents some problems

. - - e 1 . . ‘
non-existent in normal literal menus. The blocks nave various shapes and

sas: 'normal' function blocks may not be too dissimilar in this
es; to) ! nct

n

[y

pect, but such assumptions cannot pe made for pure graphic blocks

=

=

[}

(plant symbols =2tc.).
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The Dblocks should be displayed in their normal size. A reduced

1 - ,
scale would allow the menu to be displayed more compactly but this makes

accurate pin-pointing difficult, and distorts the relationship between

the block angd it; intended position in the picture. Similarly, all blocks
should be displayed with the same scale (i.e. life-size) to avoid
confusion.

This means that is is not normally possible to display all blocks
within the area of one screen, and the menu has to be split into‘ several
pages. The Graphic Menu must be user-modifiable, for a user may introduce
new block types; conversely he might not need certain types and may wish
to discard them. He may also wish to move the more frequently wused ones
to thes same menu page.

It 1is therefore necessary to extend £he Graphic Data Structure to
handle tnhe Graphic Menu. The'.extra data required are the menu page
number, pésition and block type. GIPTR points to the Graphic Information

node previously described. The menu substructur= (Fig 3.12) consists of

Menu Block nodes and Menu Page nodes. MBLINK links together all Menu

MPLINK MBLIINK MENU PAGE NODE
|
MBLIINK X Y COORDS GIPTR MENU BLOCK NODE
l
MBL}NK X Y COORDS GIPTR
!
'

MPLINK MBL:NK
|

! '




Block nodes belonging to the same page and MPLINK links all the pages of

the menu. The page number is determined by the order of the Menu Page

nodes.

Modification of the menu is achieved interactively with the user

specifying the page number and position for each block tvpe.

3.4.3 Editing Aids

Several facilities are provided by the graphic editor to
facilitate the =diting task.

To assist 1in the layout process, the user may cause a line grid to
be drawn. There are systems where symbols are constrained to lie on
discretely defined positions shown by a dot grid on the screen [99]. The
advantage of such a system is to enable a very big user coordinate space
to exist.(possible screen positions may be described with fewer memory
bits, thereby allowing a computer word to define a coordinate space which
may be hundreds of times larger than the screen size), but such a picture
size is not required in GPCL. The line grid aids alignment of points or
blocks but does not place any constraints on the exact location of these
objects.

Vertical and horizontal guidelines may also be drawn anywhere on
the screen, for example through the output terminal of one block so that

the 1input of another block to be connected to it may be aligned either

vertically or horizontally.

1

These alignment aids do not affect th= data structure wnatsoaver

-- they are temporary objects which Adisapoear when the picture is
ra en 3

redrawn.

I+ is also pcssible to specify a picture which may be superimposed

on tha one being edited, in order *o make use of some spatial




relationshi that mij
p t might exist between the two. This is one situation

. h .
where the use of colours and different line intensities would be useful

as 1t provides a clear distinction between the pictures. The superimposed

ic e m ifi it - i
pictur nay not Dbe modified as its sole function is to assist in the

layout of the picture being edited.

In contrast to the superimposition facility, a picture may also be

used as a starting point for the creation of another -- in this case the
data structure is affected as it 1involves creating a duplicate
description of the original picture (called 'definition copying' in

Sutherland's SKETCHPAD [20]).

3.4.4 Editing of Blocks

Editing a plcture consists of the manipulation of blocks,
connections and text. This and the following sections describe editing
actions and assume that the editing mode has already been entered through
the Command Menu.

In all <cases the term 'pointing' refers to the action of
positioning the graphié cursor and implies pressing a function key or
special character if this is not explicitly stated.

mo create a block in the picture, the user has to specify the type
of block required. If such a type does not exist, it must be defined
first (Section 3.4.7). If the type of block exists in the picture being
edited, the user simply points (the graphic cursor) to an existing block
and specifies this as the type of the block he wishes to

picturs, he may call up a prage

ot
5
(7

create. If no such block 1s present 12

from the Craphic »HMenu, and point O the_base of the desired block. If

1 1 i ) h r h 4 i 1 3 i
nowever the user is familiar with the type number he may wish to specify

the delay required to draw the menu

the number directly, thereby avoiding
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page. This 1s also permitted, and on entering the type number the
relevant block is displayed.

The next step is necessitated by a shortcoming of storage type
graphic terminals =- the inability to continuously manoeuvre objects on
the screen. The user has to relate a certain point on the selected block
to another point in the picture, in order that the block may be created
in the corregt position in one attempt. This 1s done by picking a
reference point within or around the selected block (often an input or
output terminal) using the graphic cursor, then pointing to the target
position in the picture, where the block will subsequently be drawn.

Wwhen a block 1is c¢reated, it is automatically assigned a block
number , which will be displayed. This number can be changed by pointing
to it and entering a special character. The graphic editor will then
allow a new block number to be entered.

JUNCTION blocks are a special case. They may be created 1in the
correct position in a single step by positioning the graphic cursor and
pressing a special key.

Moving a block in a picture involves a similar process. The user
first points to +the base of the block, then points to a reference spot
around the block, and finally points to the new position for this
particular reference. The necessity to point to the base first is to

safeguard against moving the wrong block.

jol}

1

Deleting a block is much simpler. The usar just points to the Dbas

of the block and presses tha delete function kXey. The =2ditor removes the
Eloc node from the Graphic Data Structure, and deletes all connactions

that have been made o that particular block. However, on the screen the
lack of selective erasure means that the picture is not redrawn after

svery modificaticn since too much time would bes wasted.
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Ic create a connection Dbetween two terminals, the user first
A 3 o ) o a 3 . 3 : ; 3

points to the output terminal, +then +to the input terminal, thereby

specifying the direction of data flow as well as the terminals involved.

¢4

Tt is possible for the graphic =ditor to Qork out the data flow direction
by itself, but this obviously involves extra work especially if a chain
of junction blocks is involved (i.e. a multi-segmented linz).

The aditor checks tne connection for validity before updating the
ralevant input and outpgt pointers in the Graphic Data Structure. For

example, two outputs may not be connectad together. It is also illegal to

t-h

connect anvthing to an input if that input has a constant value attached.

Checking has to be performed at this stage because the connection
description explicitly defines the direction and naturs of each

connection. Terminals of incompatible signal type may also not be
connacted.

‘then & connection is made between the ou:zput of one 'normal' block
(i.2 other +than & JUNCTION) and the input of another, checking 1is
srivial. This is not th= case, however, when one or both of the Dblocks
involved is a junction block, since its graphical representation is a big
2ot with its input and output coincident. In this case, whether the
connection being made 1is to thas junction's input or output can only be
the othar connections to the junction, if
of =hs terminal at the other end of +the connection

Anocthar ccaplication arising from junctions appears in the case of

originally connacted at one OY both

nas thz 2nd connections deleted

multi-segmentad line passing *“hrough several Jjunctions.



The revious =xisten ~ . - . .
b ence of a connection at one end of this line to a

normal block has created a definite dirsction for the data flow. If a new
connection is later made to a normal block, the data flow along the whole
of the multi-segmented line will have to be reversed if the new terminal
and the previous (disconnected) terminal are not of the same type.

Deletion of a coanection is achieved by pointing to one terminal
and pressing the delete connection key. It is important that the cursor
be positioned reasonably accurately in order ~to avoid deleting an
adjacent connection instead.

A delete connection action at a junction involves more processing
and requires more care. The cursor must be positioned as near as possible
along the line to be deleted, and at the same time a short distance away
from the centre of the junction. The editor has to work out both the

junction involved and the line to be deleted.

w
S
.

o)

Editing Text

Text editing 1is a mors complicated process than the 2diting of

blocks or connections for the following reasons :-

(i) text (which as mentioned in Section 3.3.2 1s always
attached to blocks) may be divided into two types -=- one
appears on all blocks of the same type (type-specific)
while the other 1s unigue to each individual block (block-
specific);

(ii) type-specific text includes the block type name and
teyminal names (if any) as well as perhaps some 'random'
text ;

(iii) block-specific text may also be sub-divided into 4 types

R . . ~ and 1 a 1
-— constants, englneerling units, blocck name anc random

i
|
]
!
|
i



text;
(iv) 'random' text, which is for purely commentary purposes,
may appear anywhere in or around the block (in contrast to
the other types of taxt which have definite positions);
(v) constants have connection implications; an input cannot
have a constant and simultaneously be connected to another
plock.
Type-specific text is defined when creating a new block type. When

aditing a normal diagram, type-specific text cannot be edited.

The Dblock number may be edited by pointing to its first character

and entering a special character. The alpha cursor will appear and the
new number may be typed in. The editor has to check the validity of the
text string and ensure that another block in the picture does not possess
the same number.

The block name is edited by pointing to the base of the block and
entering a special character. The editor will then allow the name to be
sntered next to the block number. If a name exists it will be

overwritten. The user may also delete a name.

An output may be given engineering units by pointing to the

terminal and entering a special character. The editor then allows the

units to be entered next to the output, or next to the name of the output

if the name exists. Again, units may also be deleted.

. 1 1 ¢ 1 '*—'
Type-specific text may only be edited during creatlon or editing

of the block type (Sections 3.4.7, 3.4.8). To edit a block type name Or a

rerminal name, the user roints tC the base of the block or the relevant
Lel alie , iz I

i ) ~cter. The alpha cursor will then
“erminal and enters 2 special character P

erad. The editin nrocedure 1is
appear whereupon the name may be anter g I a

1tsS.
similar to that for block names and engineering units
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To i
edit random text, the user first specifies the block by

pointing to its base. The computer then allows the pieces of text

belonging to this Dblock to be edited. If text exists, an alpha cursor

will appear at the first character of the first line. Modification of
text 1is achieved by simply overtyping. To proceed to the next line, a

carriage return must be entered, and the alpha cursor will now appear at

the start of the next line. This process is repeated until the last line,

after which a graphic cursor will be produced.

A new line of text may be created by pointing to the desired
position following which the text may be entered. After the line 1is
terminated with a carriage return, the graphic cursor will re-appear and
the process may be repeated.

If when the graphic cursor is present, only a carriage return is
entered, it will be irterpreted as the end of the text edit.

When the alpha cursor is at the first character of an existing
line of text, it is possible to move or delete the 1line by typing a
special character followed by a carriage return. This is interpreted as a
'move/delete string' command, and a graphic cursor will appear. Entry of
a 'delete' character will cause the string to be deleted from the data

structure. To relocate the string, the graphic cursor is moved to the new

position and another special character entered. The line of text will be

printed at the new position and the alpha cursor will re-appear in the

first character position.

Constants are created by first pointing to the relevant input and
== s

entering a special character. An alpha cursor will appear at a suitable

location near the input for the value to be entered. The editor has to

check the numeric validity of the string entered and check that the input

is not connected to some other block, then flags the relevant input

descriptor in the Block node. The text string is stored in a Text node

-58-~




which 1is flagged ind i
agg to indicate that it is a constant text, and to indicate

the input to which it belongs.
Constants m
ay not be moved. To modify a constant it has to be
deleted fi i i to +
C irst by peointing to the input and pressing the 'delete constant'
Kaye
c Mo .
The Text ncdes for the various types of text are shown in
i . . TLIN i i t )
Fig 3.13 LINK is a pointer to the next related Text node. The length
of the node depends on the length of the text string. If the node stores
1 A 1 3 o 1
random text, the x and y coordinates of the text (relative to the base

of the block) will be stored in the 3rd and 4th words. By assuming a

TUNK | LENGTH| X Y cci)oaos (RANDOM  TEXT)
TLINK | LENGTH | 2000 0 ( BLOCK TYPE NAME)
runk | wenem | 2000 | TEMOMAEL CTERMINAL  NAME )
TLINK | LENGTH | 3000 0 ( BLOCK NAME)

( ENGINEERING UNITS)

TLINK LENGTH 3000 0/P NO

TLINK LENGTH 4000 /P NO ( CONSTANT TEXT )




1 1w ,
practical limit on the coordinate values, numbers greater than this limit

: 2
may be used to indicate other types of text. For example, function and

terminal names are identified by a value of 2000 in the 3rd word, and the

4th word holds the terminal number which if zero identifies the text as a

function name (block type name).

3.4.7 Editing Simple Block Types

Creation of a new simple block type means creating a new Graphic
Information node, including possibly some text. Although this information
may optionally be supplied directly as data by the user, it 1s normally
achieved interactively using the Graphic Editor.

Creation of a new block type is a more complicated process than
the previous editing functions. The first step is to define the shape of
the new block. This is the only time when the block may be displayed
larger than lifesize, to help produce a more accurate definition.

First the user has to define a base point -- the base of the block
is the location to which all other coordinates are referred and also the
position of *the Dblock type name (Section 3.3.3), if any. The user then

11 graphical details by drawing 1lines. The line

fu

defines the shape and

-
0

drawing process a simple cne : the user points to the start position

of a line, enters a 'start-of-line' character, tnen points to the end

. - KR 7."\1' 1
position of the line and types an tand-of-1line' character. Deleting lines

involves a similar procedure.

1+ should be noted that at this level the only graphical entity
- 14 ~ +

: . . e i > (& ined in SXETCHPAD 30
axisting is the LINE -- no 'sSubplcture (as defined 1 (801)

£aciliry is provided. The 2ditor maintains a simple temporary data

structure consisting of a linked list of pailrs of endpoints (Fig 3.14)

for this line-drawing exercise.




' T . e

—-—- —= LINK LNTH=6| START COORDS END COORDS
i !

b = -

Figure 3.14 Temporary Lin2 Drawing Data Structure

Simply creating all the lines is not sufficient, however, because
the picture coordinates in the Graphic Information node not only define
tha 1lines, but also the order in which they are to be drawn (3ection
3.3.3). After having created all the lines, the user has to specify the
order of ‘'draws' and 'moves'. This is facilitated by the graphic aditor
displaying the block in one half of the screen : as the wuser specifies
sach endpoint in turn (also indicating if it is a draw or a move), the
actions are echoed in the other half of the screen.

Yaving created the shape of the block, the user has to define the
position of the input and output terminals, if it is a function block.

This is done by pointing to the required spots and pressing the 'create

input' or ‘'create output' function key. The sequence in which they are

created determines their terminal numbers starting from 1 for both inputs

and outputs. The number will appear in the picture next to the spot where

the teyminal is defined (marked by a cross), for the benefit of the user.

Terminals may not be deleted individually. If too many terminals

= 3 1 3 ] 3 3
nave Dbeen created, specifying tne tdelete terminals' action will remove

; T i st w ¢ termi umbers
terminals. This is the simplest way Lo =nsure that erminal n

Q
[
fd

always consecutive.

W
~
0]

Tayminals may alsc be re-positioned. This may be used to re-order

£ thay have been create

P Y

- i fi be ted and edited
maxt (in this case always type specific) may be createa a d

' i mi i 1 in Section 3.4.6 . However, +his can
in a similar way to that Aescribed in S

i ified. Similarl the position
when the block 1S 4rawn unmagnizl Yy, the
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for the block number must be defined when the drawing is life-size.

At the end of the creation process, the editor will request a TYPE
number for the block type. It thsn forms a new Graphic Information node
and includes it into the Graphic Data Structure, along with any text that
has been created. The user is also asked to supply the non-graphical data
for the new block type so that a Non-Graphical Data node may be created
for it.

Modifying an existing block type is a similar process. The picture
coordinates are expanded into the temporary data structure if lines are
+o be edited. The only restriction is that the number of inputs and

outputs cannot be changed if a block of that type is used anywhere.

3.4.8 Editing Composite Blocks

To create a composite block a picture must have previously been

=

created showing all the component blocks. The user can indicate that he
wishes to define the picture as a composite plock. The editor then allows
him to define the graphical information for the new block in exactly the

same way as for creating a simple block type.

After this has Dbeen completed, the user nas to relate the

corminals of the newly-formed composite block to those of its constituent

blocks. This is done by displaying the picture to be used. The input and

cutput terminals corresponding to rhose of the composite block may then

be svecified in the correct order (similar to tne procedure for defining

torminals for a simple block).

(t
joy
(D

i is able to create the Macro

With this information rhe =241tor

- . block, 2 s the Graphic Information
Expansion node for the new block, as well as P

- . o : ) snam and the blocks that make up
node, and establish ho links between

I i ‘nformation that must pe supplied is
the picture. The other pisce of informa
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whether the block is to be a subpicture or a macro.

Subpictures may be modified like a normal picture; however, the
inputs and outputs corresponding to the terminals of the subpicture block
may not be changed.

A macro block can only be modified if it is not being used in any
picture.

Recursive definitions are not allowed. For example it 1s not
permitted to define a block type 'A' which contains a composite block

type 'B' which in turn contains a block type 'A'. Since block type

numbers are unique, this is easily checked.




CHAPTER 4

FUNCTIONAL BLOCKS

4.1 Introduction

The basic set of blocks used simulate all +the common hardware
analog and digital modules familiar to process control engineers. Some

frequently used blocks are shown in Fig 4.1 . The objective of this
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I A
P ‘ l
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X Y s 1l
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Figqure 4.1 Examples of Functional Blocks
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applications. tnhile
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a purely graphical method and has already been described in Section
3.4.8 .

The second method is used to define a new simple block. Use cannot
be made of other existing blccks since it is not a composite block.

The .graphical characteristics of a block have already Dbeen
discussed in Chapter 3, as has been the process of defining the graphical
information for a new block type (Section 3.4.7). The following sections
will deal with the functional properties of simple blocks, the format of
the CCRAL 66 procedure which defines the function of the block and the

dependence on the storage structure for its variables, and the

implementation of several block types.

4.2 TFunctional Characteristics

Every block type has a certain number of inputs and outputs,
although it is not necessary for both to exist. The relationship between
the inputs and outputs are defined by a CCRAL 56 procedure, which may be

as simple as a one-line arithmetic expression, or as complex as a set of

state equations used in modern control theory.
In the run-time system, only one COpY of the procedure for each

block <ype 1is stored, this procedure being sharecd by 311l occurrences of

the particular block type. Consequently all program variables whose

values are to be retained until the next time a block is processed must

lues, some internal variables may

be saved. Thus apart from the output va

have to be stored. The number of internal variables for each block type

aust be known in order that Space nmay be allocated for them in the Run-

time Data Structure (Section 5.4)

Before execution of the actuzl process control system can start,

it is necessary to have determined the order of processing of the blocks,




which depends on the specific interconnection of the blocks. A block can
only be processed when all its inputs are defined. Input interface blocks
are therefore processed first, then subsequent blocks as their inputs
become defined, and finally ending with the output interface Dblocks.
However, Dlocks are sometimes connected into closed loops, and the
processing sequence can only be determined with a knowledge of certain
properties of the Dblocks. A Dblock type may have some of its outputs
initialised before execution begins. These outputs are defined in a RESET
CUTPUTS FLAG word (ROF). Each output of the block is associated with a
it in the ROF word; if the output is initialised, the corresponding bit
is set to '1'.

Some function blocks use expressions which depend on past values
of input to obtain new values of output. Such blocks are called DYNAMIC
plocks; an example of a dynamic block is an INTEGRATCR using the
trapezoidal integration algorithm

In = In- + T(U q-1 + U, /2
the nth output value and Up ., Upoy the current and previous
input values respectively.

It is possible to define Aynamic blocks where in the evaluation of
the current output, the values of input used are restricted to past ones
egration algorithm

only. An INTEGRATCR using the rectangular int

I n-1 n-1

"

has <this property. Blocks n

of this typve will bhe refesrred to as

; i 51 ifica i -he determination of the
RETROSPECTIVE; they nave special significance 1n tae determinatil !

: w3 g 1 5,3, .
execu=ion seguence as will be shown in Section 2.2 1

5 interfzce DI } Secti 1.5) which
Input interface and output interace Hlocks (Section 4.5) w
i i ¢ ffact tne processing seguence. These
interact with physical devices also affect the [ g q
iy are indicated in 2 GENERAL FLAG word (GF)
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RETRO OUTPUT [NPUT
[/F [/F
Figure 4.2 General Flag Word
Input and output signals may be classified as one of two types --

continuous or logical. Logical signals can take on only two values, 1 or
0 (or TRUE or FALSE). In order to prevent connections between terminals
of different signal type, 1t is necessary to provide signal descriptions
for both inputs and outputs. Thesa take the form of two flag-words, the
1O0GICAL INPUTS FLAG word (LIF) and the LCGICAL OUTPUTS FLAG word (LOF) .
Each input (output) terminal has a bit in the LIF (LOF) word which 1s set
to '1' if the signal type is logical.

5

Inputs may bpe further grouped into two types -- 'parameters' and Y
"norimal' inputs. Tha former only accept constant values and may not be
connected +o the outputs of other blocks; the latter do not have such a
restriction on values. In thz GFCL run-time system, Lnputs with constant
settings are treated 1in the same way as all other inputs, and are
connectad to a CONSTANT PCCL BLOCK which is a function Dblock with no
nput  but numerous preset outputs. This tyreatment allows any input to be
connected to either a constant valua or the output of any Hlock. In order

avameter' input to another plock, the

y 5 to define 1 thosz inputs which
COMSTANT INPUTS FLAG word (CIF) is used to define all thoss 1npu »

. 1 W -~ 1 B
mas number of internal variables (NIVv), tnoe General Flag word
3 i ne i~al Inout ical
(N .4  Reget Cutpuzs Flag WOX (RCF), the Logical inpucs and Lcgical
IS [ - = PO IS - ]
apd =he Ccnstant Inpuns Flag word (CIF)

; in ro tne next NGD node.




LENGTH

NGDLINK =3 NIV GF ROF LIF LOF CIF

Figure 4.3 YNon-Graphical Data Node

4.3 Procedures

The functional relationship between the inputs and outputs of a
function block is defined by an algorithm written as a CORAL 66
procedure. The method of accessing variables is dependent upon the
organisation of +the Run-time Data Structure (Section 5.4), and a
discussion of this will be deferred until Section 5.4.4 . For the
purposes of describing the procedure in general, it suffices here to
refer to sach variable by meaningful names (e.g. INPUT2, OUTPUT etc).

wo examples of procedures are shown in Fig 4.4 . The identifiers

INPUT1, INPUT2, OUTPUT, RESET, and TIMECONWSTANT are all CORAL 6H6 macro

names. They' allow convenient names to stand in place of the actual

identifiers. The 'DEFINE’ statements are the CORAL 66 macro definitions,
m

+he details of which are not shown (s=e Section 5.4.4). The 'DELETE'

statements cancel these definitions.

It should be noted that the procedurs neadings do not include a

cedure nzeds to access are global. an

parameter list. All variables & pro

example is the variable called INTERVAL which depends on the time

rh

i Ce € i the algorithm.
interval between sucessive executions O th g

: i be usecs they involve varyin
Recursive procedures snould not Se used as y ying

; £ rotential source of danger in a
memory allocation and are therefore a pPC 1

system with limited memory.
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4.4 Internal Representation of Variables

A vyestion that i i+ . .
q arises with regard to continuous variables is

whetner they should be represented by fixed or floating point numbers.
The three factors to be considered are :-
(i) storage requirements
(ii) execution speed
(iii) dynamic range .

Another question that arises is how logical variables should be
nandled.

The following discussion is based upon the assumption of a 16-bit
processor being used in the process control computer. Although there
oxist some process computers which employ 8-bit microprocessors, the
majority (with the notable exception of the 12-pbit PDP8 series) use 16-
pit word lengths. This 1is increasingly true even for microprocessor-based

systems due to the number of 16-bit microprocessors pecoming available.

4.4, Storage Requirements
For a given resolution, fixed point numbers require fewer bits
; ; i i j ' r 2 t
+han floating point Ones, but in practice this difference can no

necessarily be used to advantage.

The resolution of the common 12-bit analog-to-digital and digital-

i ful c . To reduce com utational
to-analog converters 1S 0.025% of full scale T p

errors due to either overflow OT truncation, variables have to be stored

3 3 £3 -1 vy ~ b
with a few more bits. I1f a total of 15 bits 15 sufficient (with the 15th

bi : ; b F 6-bit ¢ essor the fixed point number
bit bheing a sign wit) then ror & 16-bit process

. .. . B
: . ting point number would
can be stored in onz (15-bit) word, whereas a floating k

. e
need part of an extra word to store the exponent if the same resolutlion
G part r ar XT DI

is to be preserved.




If however, 15-bit arithmetic is deemed to give either
insufficient resolution or dynamic range, then the fixed point numb
he er

be held in mcre th: q }
must core than one word. Normally thz number of additional

bits reguired will be rather less than a complete word. For example 23
~ ’

pits will give a resolution of 1 part in 3 million; if this is adopted

! -~ - < 3- = 7

the remaining 8 bits of the additional word will be left wunused (see

Fig 4.52). Use of the entire width of the two words does not provide any

useful increase 1in accuracy.

mhe same number may be stored in floating point format in the same

space, with the remaining 8 bits holding the exponent (Fig 4.5b).

Thus, unless variables are scaled in fixed point representation to

occupy one word only there is no storage penalty in using a (two word)

floating point format. In this implementation it is assumed that floating

roint representation will be used.

7 0 15 0
unused |
l . J
. a4
sign 23 bits
a-Polnt

(a) Integer/Fixe

exponent

15 7 0 [ 0
_J

- ~
8 bits sign 23 bits mantissa

) Floating Point

(b

epresentations
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The instruction set of most 16-bit processors include instructions
for integer multiply and divide. Single precision fixed point arithmetic
requires little more than integer arithmetic plus

some shifts, and 1is

therefore fairly fast.

Double-precision fixed point arithmetic takes longer and relies on
the presence of double-precision integer instructions, the absence of
which will necessitate more code and increase execution time
significantly.

Floating point arithmetic poses more problems =-- many 16-bit
processors do not have floating point instructions. For those which do
not have them relatively lengthy software routines must be used.
Alternatively, separate floating point hardware may be incorporated.
Floating point instructions,, if they exist, are slightly slower than
integer ones, but +he difference in speed becomes less significant when
all the other operations the processor has to perform is taken into

account.

4.,4.3 Range

t | icular fixed
The range of values that can be represenved by a particu

point format is naturally 1imited, whereas floating point numbers have a

i i ici £ tical purposes. Use of
range which 1s mor= than sufficient tor most practlc purg

Yy no restrictions, whereas range 1S

the latter therefore imposes virtuall

. : ; ; fixed i numbers are used.
an important consideration when fixec point num

£ imi exists in all analog
However, the problem of range limits also x1ists

iw it | ad to
] ; ; nardware, and 1t nas always ha
equipment, including process control /

: - i ass. Furthermore, the whole
be taken into account 1in +he design Proc t

; 1 varyin
function of the process controller 1s ©O produce an ana-od output varying




within a defined range, e.g. 0-10V , 4-20m2. Similarly, analog transducer
signals are normally scaled to range over a limited span.

Nevertheless, there is no intrinsic requirement to carry over the
notion of such span limits to the blocks internal to the controller
diagram although this could be achieved by limiting the output range of
individual blocks. The preferred alternative is to use floating point
representation for all variables, with sufficient range for scaling
between blocks to be unnecessary. Scaling is then only required in analog
input/output interface blocks.

Also, the theoretical speed advantage of fixed point arithmetic

mnade possible by the application of scaling is offset by the very act of

scaling itself.

4.4.4 Logical Vvariables o

Not all functional blocks process continuous variables; some Q

blocks are reguired to execute logical functions. An example 1S the

CCMPARATCR block which compares two continuous signals at its inputs and f}

sroduces a logical output (1 if one input is greater than the other, O

otherwise) .

In processing such Roolean variables, naximum storage =e=fficlency

is achieved by using only one pit of storage to represent each variable,

.- : = oY s there are bits
thereby storing as many variaples in each COMPUEST ©O das =

in that word. However, cfficiency of storage is not related to efficiency

; p iz i yes more code than if
of execution, and referencing these variables requl s

2ach variable occupied a separate woxrd.

CORAL A6 itself does not provide for a BOOLEAN data type- In this
- D0 - 4+ =

: e 1 1 £ a integer O
case, as 1in some other languages. it is simplest tO use n el

erhaps 2zero for the '0' state and a

represent a single variable, using P




n-zero integer for the "1 m .
no g L state. The disadvantage of inefficient

memory usage on the one hand 1is offset on the other by the more

straightforward referencing.

To preserve the homogeneity of the Run-time Values Table where all
a block's variables are stored (Section 5.4.1), logical variables are not
afforded special storage. No distinction 1is made between logical and
continuous variables in the Table. The '0' state is represented by a
floating point value of zero and the '1' state by any other value,
normally one. The seriousness of storage inefficiency depends on the
actual representation of floating point number which is implementation-
dependent, as well as the number of logical variables present.

Although both continuous and logical variables are represented by
floating point numbers, this does not prevent type checking on signals to
be performed to prevent incoﬁpatibility, resulting for example from
attempts to connect an analog signal fo a logical input. Type checking 1is
senabled by the presence of signal description flag words in the Non-
Graphical Data as described in Sectioq 4.2 .

4,5 Some Implsmentation Considerations

divided into 2 categories -- computational

Function blocks may be

blocks and input/output interface blocks. Input/output interface plocks

are those that are connected to the physical process interfaces (e.g.

are machine dependent to 2 certain

analog inputs anc outputs), 2and

i act with the
degree. Computational blocks are Ones +hat do not interac

. . P ‘ .
chysical interfaces, and Are machine-independent. 1,/0 interface
Yo ntert es, LI ]

£ B! 1 ale and
3 unt of computation such as scal

blocks may also involve 2 ¢

f ' ineari ion.
offset adjustments and sometimes 1inearisati
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The implementati
b ation of most computational blocks 1is quite

straightforward and obvious (as in the examples of the MULTIPLIER and

INTEGRATOR 1in Section 4.3). A few computational blocks however, present

more than one possible method of implementation. These, and some typical

1/0 interface blocks, will be discussed in the following subsections;

4.5.1 Constant Pool Block

As stated in Section 4.2 constant inputs to blocks ére implemented
as inputs connected to one of the outputs of the Constant Pool Block.
Since connections may be altered and blocks added or deleted in the run-
time system, the number of constants will vary. This suggests either a
single large, variable-sized Constant Pool Block (i.e. having a variable
number of outputs), or a number of suitably sized fixed ones. The former
approach eliminates wastage, but necessitates re-allocation of the Run-
time Values Table entries (Section 5.4.1) whenever the number of

constants change, which is undesirable. The second approach is preferred.

4.5.2 ¥X-Y Function Block

The X-Y function block (Fig 4.6a) nolds a set of x and ¥ values

which define a curve. B value of x present at the input will produce an

internolated value of y at the output. The values of x and y are stored

in the Run-time Values Table as internal variables ot the X-Y function

block (Fig 4.5b).

: i ¥ ixed numker of data ints)
To provide only one size of block (a fix po

de the accuracy required; conversely

is undesirable since it may not provi

. : 274+ ! o=
no: so many points may de needed. Here again the possibility of variabl

- = itself as a means of
sized blocks (for storage ot values) suggests 1t= t

ne number of points (or

o . o ™ sguires t
minimising storage requlrementa. ™is r=29g
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input x—-output o/P

(a) Schematic (b) Variables stored in RVT

Figure 4.6 X-Y Function Block

the number of internal variables) to be stored somewhere other than in
the Graphic Information node in the Graphic Data Structure, and other
than 1in the TYPE node (Section 5.4.3) in the Run-time Data Structure,
since these nodes hold information which is identical for all blocks of
the same TYPE.

One possible solution is to provide the number of points as
another input to the block (Fig 4.7). This input must be defined as a ".‘
constant parameter input to prevent 1t being connected to some other i §

plock. also, precautions nave to be taken by thne Supervisor in the run=

time system to prevent this value being changed. ' S

input L— output

No. of points

Figure 4.7 Variable Size X-Y Function Block

The use of variable length blocks complicates the Run-time Data

Structure as well as the Supervisor fFunctions, since it cannot now simply

= + int i 1
rely on the values of the numbers of outputs and internal variables 1n

he TYyPE node to Aetermine the actual number of variables possessed DYy

(r

(T

he function block.




3y providing several X-Y function block types differing only in
the number of data points, it is possible to avoid undue wastage without
+he complications of variable length blocks. Cnly one interpolation
routine 1s necessary for the different sizes, as the routine can access
+he TYPE information in the Run-time Data Structure to determine the2
number of points.

The setting up of the x andy values may be done using preset

1ists which are supplied for inclusion during the compilation phase.

¥-y-7 function blocks are implemented in a similar way.

4.5.3 Delay Block

Delays may be implemented using either a continuous analytical
approximation of the padé type [100,101] or an N-stage shift-register o
type delay nlock which provides a true =ransport delay. The former

requires less storage, but is less accurate, whereas the latter provides

a better simulation at +he expense of more storage. L
A method of implementing & N-stage delay using an M-stage shift-

register 1is shown in Fig 4.8 - The input variable enters the M-stage

shift-register at 2 point that is N-1 stages penind the output, and gets

input

JUN .

""" o T Xn \ X -1 \""""“" KnoNat | output
v 2
. e P
N-1 stages
Figure 4.8 variable St2ge Celay

i ;= eventually amerges at the output. By

£ N, delays from 1 to M sStages may be obtained

Ny

i b I ad rari e | ~opnacting this input to
(Fig 4.2a). Further, N may be mace variable by con g p

raken tO ensure that the value

another block, Dbut precautions must be




M-stage

input—-m ——output in
put
Delay output
N (@) (b)

Figure 4.9 Delay Blocks

does not exceed its permissible range. Also, the value of N must be
altered very gradually in order to avoid discontinuities.

Since +the number of stages required depends on the frequency of
processing, large delays may demand excessive memory storage. To cater
for 'large' delays, +herefore, another parameter C may pe introduced
which determines the numper of processing intervals before the values are
advanced by one stage (Fig 4.9p). This reduces storage requirements at
the expense of some loss of resolution. Interpolation may be used to

provide a smooth output change. AS with N, the value of C may be made

1

variable, with similar precautions.

By providing a fow delay blocks with Aifferent numbers of stages.,

all delays may be catered for.
Fig 4.8 does not imply that 211 the values have o be physically

shifted every C processing intervals. To minimize execution, the block 1is

implemented as 2 circular Dbutfer, with pointers to the first and Nth

stages. The variables storage for the block is shown in Fig 4.10 . COUNT

is incremented until it equals the input C, tnen the input and output

cointers are incremented.

P POS
OUTPUT | COUNT |[1/P POS{ 0/ Y

__ D

1ock variables

storage of pelay B

Figure 4,10




As with the X-Y function block, it is possible to implement the

delay block as a variable-sized block. However, in addition to the
storage allocation and associated problems, the run-time size must Dbe a

constant. It is preferable therefore to provide only fixed size delay

klocks.

4.5.4 Input/Output Interface Blocks

5

Since these blocks involve physical devices, ‘the routines for
rhese Dblocks are necessarily partially machine-dependent, although this
dependence may be minimised through modularisation. Basically, two
strategies may Dbe used to process these blocks. The first is to use a
separate input/output processing subsystem which scans the inputs at
regular intervals and updates the relevant values in the Run-time Data
Sstructure by Direct Merory Access. Output values may pe transferred to
the physical interfaces by the 1/0 processing subsystem in a similar way.
This places a minimal processing demand on the main processor and is the
fastest way of effecting process 1/0. It is achieved at the expense of
ex*ra hardware and 1s only necessary wnen scan rates (and processing
frequency) are high and a large amount of 1/0 is involved.

In the second method, input and output actions Aare rreated as part

of normal processing of the blocks. Some typical 1/0 interface Dblocks

will be discussed.

4.5.5 Analog Input/Output Blocks

The Analog Input block is used tO input a measured process

] 3 ; wvad i ptaini +he si ]
variable. The actual hardware involved N obtaining tne signals and tne

‘ £ i fors t presenting them TO the
creprocessing oL the signals before actually T g

; i .11 shows a rypical scheme.
computer vary between different systems: Fig 4 st V4
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The signal from the transducers may be one of several types (e.g. 4-20mA
IS . . - ’
+10V to -10V, ac or dc, etc). Whatever the type, it may be converted into

a2 normalised voltage whi i ; .
g ich is then suitable for input to an analog-to-

digital converter (ADC). Since the ADC is a fairly expensive device, the
inputs would normally be multiplexed to share the same ADC [102].

In this example, the process computer has to switch the
multiplexer to the wanted input, initiate the A-to-D conversion and wait
for its completion (tens of microseconds). In suchva case, the relevant
input parameters to the Analog Input block (Fig 4.12a) are the address of
+he multiplexed input, and the SCALE and OFFSET values. The dotted line
marked '(INPUT)' is a 1ine that may be drawn to pictorially link the

input block to a plant symbol. NO real terminal exists or is required for

this purpose.

The SCALE and OFFSET values convert the output of the ADC into a

meaningful engineering value. In a special purpose analog input block

extra processing may be involved, for signal conditioning. The choice of

processing actions depends ON the specific application.

Analog OCutput plocks (Fig 4.12Db) function in a similar fashion

(Fig 4.13). Computed output values may b2 scaled and offset before

presenting to 2 digital—to-analoq converter (DAC), the output of which is

demultiplexed into several track-and-hold devices. The signals are then

converted into the required signal type to drive the output devices. As

witn the Analog Input block. the dotted line in Fig 4.12b indicates a4

. . P mh ) T re
pictorial link to @& plant sympol. Tne block does not possess 4 al

sutput terminal in the data structures.
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4.5.6 Digital Input/Output Blocks

As with previous blocks, these are machine dependent blocks.

Digital Input blocks are typically of the form illustrated in
Fié 4.14a showing a single input line whose address must be provided, or
that shown in Fig 4.14b where each block handles mulgiple lines (the
latter being nore suitable if the lines may only be addressed
collectively). In the latter, each line involves one location in the Run=
rime Values Table.

Digital Output Blocks are the reverse of the digital input blocks

(Figs 4.15a,b).

Group address

-Line j?dress
— - - S
—— = —p ————
(INPUT ) = = — ——Value (INPUTS) Values
—_— o SRS
— e - S

(a) Single input (b) Multiple inputs

Figure 4.14 Digital Input Blocks

Group address

Line address
‘ ] =

— O
Value e——— — »{(0U TPUT) values [:_ - (QUTPUTS)
I

tiple outputs
{a) Single output (b) Multiple P

ital cutput Blocks

rigure 4.15 DiglEe




CHAPTER 5

COMPILATION AND RUN-TIME STRUCTURE

5.1 Introduction

The several stages involved in the process of arriving at the
control programn for the target process controller from creation of the
plock diagram have been snumerated in Section 2.3 . The first step,
synthesis of the Dblock diagram on a graphics terminal, has been dealt
with in Chapter 3. The result is a data structure which can be input to
the GPCL compiler, together with non-graphical information, to produce a
control program in CORAL 66. Up to this stage the control program is

still machine independent provided rhere are no assembly language inserts

in any of the procedures.
Refore describing the control program in more detail, it 1is

appropriaﬁe to consider the objectives of the run-time system. The

requirements of the run-time system are different f£rom those of the

graphics system. Since the run-time system is to be implemented on &

, , ) . . cuti
fairly small machine, memory 1s more 1imited. At the same time, execution

of the control program should be as fast as possible since it is

verforming a real-time task.

: £ i 1 strate
As stated in Section 5.1.7, modification of the contro gy

in the run-time system is facilitated by making the execution data-

3r i I ; i F3 i regquires that surficient
driven. The facility to permilt modification qui

information be retained in the run-time system.

+ rt a full gra hics
Software and hardware resources needed to Suppo P

111 i i of the process control
facility are normally peyond the capacity
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computer and this facility must therefore be forgone in preference of a
much simpler one sufficient to allow on-line modifications. Thus, in the
absence Of graphics support. all purely graphical information (including
part of text) will éerve no active purpose in the run-time system, and
rnerefore may be omitted.

To allow modification of software at such a low level has its
dangers. The control strategy may be altered without causing a
corresponding alteration in the source files. Interpretive languages are
less seriously affected, since the new control scheme 1s apparent from
the program statements, and it 1is merely necessary to obtain a new
listing whenever changes are made, to update the source ‘documents.
Alterations made to normal non-data-driven compiled programs take the
form of machine code patches, which are hard to detect and document if
the change 1s not noted immedigtely. Consequently, modifications should
pe affected only at the source code level, which is then recompiled.

In GPCL, the control strategy 1is completely defined by data, from

which the up-to-date version of the source may be recovered via a process

called reverse compilation. The reverse compiler should not reside in the

run-time system == the task 1s pexr formed by the more powerful graphic

system running on 2 more adequately equipoed computer .

5.2 Components of Control Program

mhwa control program is not 2 single monolithic programi rather, 1t
P A ‘L_./~ - -

ch can be divided 1into

' i 3 es wni
comprises a suite of program and data modul

thres components :-
(i) Supervisor
(ii) control algorithms

(iii) run-time data -
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The SUPERVISOR 1is the program which is in overall control of the

execution of the process contrecller. Its functions include
(i) determining the correct order of

processing for the

blocks;
(ii) calling the appropriate routine for each block and
supplying it with the necessary parameters;
(iii) interacting with the operator, displaying values and
enabling modifications;
(iv) performing chacks to ensure proper operation of the
system; |
(v) providing logging and alarm facilities.
The CONTROL ALGORITHMS perform the actions required of each
functional block, and have been discussed in Chapter 4.
The RUN~-TIME DATA can pe divided into four types :-
(i) data defining the characteristics of each functional block
type;
(i1) data that provide interconnection information;
(iii) all the variables pelonging to the functional blocks;
(iv) tex: associated with certain blocks.

The data are stored in the RUN-TIME DATA STRUCTURE (Section 5.4).

5.3 Compilation From Graphics

: . ui i e arrive at the final
Two compilations are required 1n order to

; . - -
object code for the process ~ontroller. The first, performed by the GPCL

compiler, takes data from the Graphic Data Structure and With additional

control program in CORAL 66 code

non-graphical information, produces 4

which includes the Run-time Data gtructure. The second compilation 1S

and function block

: . 1S0Y
performed by a CORAL 656 compiler on che Superviso




algorithm programs to produce either assembly language or machine code

for the target processor, and is beyond the scope of this thesis

In the process of creating the Run-time Data Structure, the GPCL

compiler has to expand macros and subpictures, sequence the blocks,

initialise data in the various tables and allocate space for run-time
variables. It also performs error checking and brings any errors to the

attention of the user.

5.3.1 Seguencing

When the output of one block feeds into the input of another, the
former must be processed before the latter. Failure to do so will have
two effects -- on the very first round of processing some blocks will be
processed while their input values are still undefined, and on all
subsequent rounds delays will pe introduced into the system, resulting in
inaccuracies. Sequencing is necessary to avoid such problems.

The processing seguence may be manually specified, as in the case

of the Bristol UCS3000 Process Controller (39], at compile time. This has
two disadvantages -- it involves extra work for the user (and introduces

another source of error), and it cannot cater for on-line changes to the

control strategy.

While the function of sequencing may be left to the Supervisor 1in

the run-time system, it is preferrably done at an earlier stage in order

+o alert +the user to errors 2s sarly as possible in the software

production processe.

Seguencing would be & straightforward process it the inter-

, - + 4in closed loops. all that is
connection of Dblocks did not result 1 p .

necessary would be to start with input interface Dblocks and gradually

proceed through the inner plocks. For example, in Fig 5.7, A and E are




analog input blocks and D is an analog output block. There exist several
possible sequences -- ABEFCD, AEBFCD, AEFBCD, EABFCD etc. -- all of which

will produce identical results.

Figure 5.1 Example of Interconnection of Blocks

Often, however, the data flow between the blocks forms closed

loops. Two situations are likely to arise.

In the first, an attempt is made to obtain an inverse function - by

feeding the output of a nigh gain block through a particular function

block back into its input, a common practice in analog computing. Fig 5.2

shows a method of obtaining the square root function from a square

AN
y=Ae :A(x—yz)
2 _ Y
yxy x-y" = 2=0
y =Vx

Figure 5.2 Square Root From Sguare Function

- . \ , : h hax outputs which are
function. Tf all the blocks forming the loop nave p L

inputs, an algebraic loop

rhe instantaneous values of their

ents can handle this configuration without any

exists. Wnile analog compon

a  truly .parallel manner, &

trouble since processing is carried out 1in
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digital solution 1is more awk i i ; :
g ward, since it is equivalent to an implicit

expression of the form y=f(x,y). Several continuous simulation languages
(e.g. MIMIC, CSSL, CSMP [103-105]) permit such expressions provided they

are declared to be IMPLICIT; solutions to these expressions can only be
arrived at by an iterative process.

While such solutions may Dbe acceptable in simulation programs,
they are unacceptable in DDC applications as the number of literations
vary depending on the specific data involved and the accuracy required;
moreover, convergence cannot be guaranteed. In such a case therefore, the
compound function of the group of blocks must be realised by a single new
functional block.

In the second situation, at least one of the blocks in the loop is
retrospective (Section 4.2). Such a block effectively breaks open the
loop. An example is an INTEGRATOR block using the rectangular‘integration
formula

I, =T, © TUpoq

The sequencing problem is solved by processing all retrospective

blocks first, followed by the remaining non-retrospective blocks.

The question still exists, however, as to the order of processing

, ; ] K e
among the retrospective blocks. When retrospectlive blocks are separated

. P : A -
by non-retrospective blocks the processing sequence does not matter, bu

retrospective block directly feeds the input of

(=1

i the output of one

; i & N e tw imple delay blocks A
another, a problem arises. consider for exampl #O Simp 4

: : ol ib! :ntarval, connected 2as
and B which delay tne input value for one sampling 1n ,

jwl

. . : inatantaneous function block. Assume that
shown in Fig 5.3, where C 1S 20 instantan 1

C A B

— DELAY DELAY

pelay Block Crhain
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at time nT all the blocks have been processed, and the values of the

outputs of Dblocks C, A an
P ' d B are C + A_ and B_ . In the next round of

processing, at time (n+1)T, if A is processed before B its output
~ 7 -

hecomes A‘n+1 = CpL-» The result of processing B should be Bhet1 = Ap,
but the value of An has already been lost. This is a consequence of
allocating storage to output (and internal) values only, and not to input
values (see Section 5.4.1).

There are three solutions to this problem. Thé first requires
processing of chainesd retrospective blocks in an order exactly reverse to
that for non-retrospective block chains, such that the last block in the
chain is processed first. This strategy howeaver again fails if the
retrospective blocks form a closed loop. A simple unity gain block may be
inserted to break such a loop.

The second solution necessitates a' distinction beween new and old

values for the outputs of retrospective blocks (see Fig 5.4a). When such

oOLD OQUTPUTS NEW OUTPUTS INTERNAL VARIABLES

(a) Retrospective Block

(NEW) OUTPUTS INTERNAL VARIABLES

(b) Non-retrospective Block

Figqure 5.4 Storage For Variakles

; i he 'new s'
a block is processed, +he output results are stored 1in t! new outputs

_ . lon-retyos £is locks have onl
area of the block's data storage area. Non-retrospective b Y

! Fi .4Ab). The input of a
one ser of output values == 'new outputs' (sees Fig 5 Yo T p

; T
non-retrospective block must always use tng new values of outputs. The

another retrospective

: : ~ i f tec to
input of a retrospectlve block, if connec ed
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block must use the 1la L . .
' tter's old values. The distinction between 'new

1 ] . .
outputs' and 'old outputs' only exists in the Run-time Data Structure,

and has no effect on the Graphic Data Structure. This method has several

disadvantages :-

(1) extra storage is required for retrospective blocks, which
must be present regardless of the existence of
retrospective block chains;
(ii) the GPCL compiler has to differentiate between the two
types of storage allocation when producing the Run-time
Data Structure;
(iii) the same is required of the Supervisor when on-line
reconfigurations are made;
(iv) if all inputs point to ‘'old outputs' of retrospective
blocks, the ‘'old outputs' must be updated by the ?;
Supervisor to the new values before the non-retrospective 'ii

blocks are processed; »
(v) if the inputs of non-retrospective blocks point to 'new
outputs', the ‘'old outputs' may be updated at the very
beginning of each retrospective function routine, but this

method complicates the setting of input pointers when

making connections (although this can only done when the

control loop is not running, and does not incur any run-

time overhead).

The - third solution avoids the problem altogether by prohibiting

i ; i ks. If ch blccks have to
direct connactions between retrospective blocks su b

be connected, they must be separated by unity gain buZfer blocks.

The gecond solution is too complicated, while the third is

. +hat the first solution (sequencing) 1s
unnecessarily harsh. It 3ppears that th
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ceptable with a 2 icti i
accep , ol restriction on retrospective blocks forming closed

loopS.

5.3.2 Treatment of Macros and Subpictures

There are two ways of treating a composite block (i.e. an assembly
of blocks to be treated as a single block -- Section 3.2.1). If they are
looked upon as analogous to subroutines in normal programming languages,
they will be treated as individual entities during execution and possess
their own variables. They have no identity problem in the run-time
system, and in common with all subroutine calls, little space in the
Block Table (which defines the configuration, Section 5.4.2) is required
for each occurrence of the subroutine. However, it also means that a
dummy structure 1s required to define its internal composition, and
variables storaée in the Run-time Values Table (Section 5.4.1) must still
be allocated for every block inside 1it, this storage being replicated for
every occurrence of the subroutine block. Fig 5.5a shows conceptually the
offect on the Run-time Data Structure.

Also, in common with all subroutine calls, more parameter passing
is required, resulting in slower execution.

Sequencing 1is more aifficult when the subroutine treatment 1is

adopted. If the composite block has several outputs, all of which are

affected by the instantaneous values of its inputs, it is a purely non-

s}

i 3 i £ it i urely retrospective. Ir
retrospective block; 1f none are affected, 1t 1S pur ly D e

formed separately for each of th

o®

either case, sequencing has to be per

i i £ mposite block has a mixture of
inner levels of a diagram. 1f +the composi

sequencing becomes 2 non-

. -
retrospective and non-retrospectlive ratns,

trivial problem.




BLOCK TABLE RUN TIME VALUES OUMMY STRUCTURE

FOR COMPOSITE
Block No Type TABLE BLOCK TYPE 'C’
y 4 r
p: y 4 17 L ]
31 A
2 B } Block 31 |
11 C (composite)
12 A Block 2 l
3 C (composite)
Block 11 [ AJ
4 “~ d
} Block 12
Block 3
L4 Ar
m
(a) 'Subroutine'’ treatment y;i
‘ i
fod
]
BLOCK TABLE RUN-TIME VALUES ‘f
Block No | Type TABLE |
" Ar i pA L
31 A
2 B } Block 31
nt t }Block 2
n2 '
Block 11
: (composite)
: Block 11
12 A
‘ . } Block 12
Block 3
(composite) Block 3
1 1 L

gffact of Composite Blocks on

+ime Data Structure (Simplified)

Run-
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£ ' ) \
If composite Dblocks are treated as macros, they must be expanded

down to the lowest level, resulting in only simple blocks. Similar to the

. £ . .
expansion of macro code statements, this requires more storage since the

structure of the macro 1is repeatzad for every occurrence of the macro

plock as shown in Fig 5.5b . Thes advantage lies in the simplicity of

sxecu=ion during run-time =-- no Jdummy structures are required, and
sequencing is done to the one and only level of (simple) blocks that 1is
orasent.

However, unless a certain amount of redundant information 1is
rotained, the identity of esach macro block will be lost. If the user has
Adefined a frequently used network of blocks to be a macro block, he will
ne more interested in thes block as a whole rather than 1its constituent
elements. Also, reconfiguration in the form of deletions or additions of
macro blocks 1s more awkward than for subroutine biocks because it
involves multiple modifications in the Block Table (Section 5.4.2).

Since in +the run-time system the emphasis 1s on axecution

sfficiency of the control algorithms, the macro approach is preferred.

(92}

.3.3 Gensration of Control Prograd

For he GPCL compller to generata the control program &tne user

graphical and non-graphical data and a library of

for the function algorithms (Fig 5.6). The user mmay

: I initi as and constants) and text
also supply a 1list of wvealues (initial values s

i j S j 5) a bl
‘hlock names and 2nginesring unizs -- S=action 3.3.5) for any block.
The functions of ths GPCL compiler
macros and subpictures;

(i) expansion of

i t i T nlocks and thelr
(ii) allocation of space for blocks i

various tables;
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(iii) sequencing of the (expanded) blocks;

(iv) conversion of constants stored as strings in the Text
Table into their numerical values for storage in the Run-
time Values Table;

(v) inclusion of all CCRAL 66 procadures required;

(vi) generation of the Run-time Data Structure in a machine

independent format;

(vii) generation of listings and error messages.

GRAPHIC AL
&
NON-GRAPHICAL RUN-TIME
DATA DATA
STRUCTURE
FUNCTION
ALGORITHMS \\\\\\\\\\\\s
GPCL CONTROL
COMPILER PROGRAM
CONSTANT /
L1sT
TEXT LIST
LISTINGS
CONTROL LOOP
SPECIFICATION

control Program

Figure 5.5 Generation OfL
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5,4 Run-time Data Structure

The requirements of the Run-time Data Structure are to permit

£3 ~3 s . .
efficient real-time execution while at the same time preserving the

structured feature of the igi . . ; o
original control diagram using the minimum of

information possible.

The Grapnhic Data Structure 1is designed to facilitate graphic
editing; it does not lend itself to efficient execution of the control
algorithms. In addition, certain run-time elements are missing. Search
orocedures used to establish connections in the Graphic Data Structure
are time-consuming. It is therefore necessary to define a Run-time Data
Structure which optimises run-time execution.

The structure of the block diagrams must be preserved in the run-
time data in order to permit on-line interrogation and modification, as
well as to enable reverse compilat;on. Ideally, in the absence of memory
constraints, an up-to-date Graphic Data Structure (and therefore Jdiagram)
should be recoverable from the Run~time Data Structure. This requires

non-functional information like x-y coordinates, shape and random text to

be kept in the Run-time Data gtructure. If these are omitted only partial

. . t) . 3 . - - , ) t
recovery 1s possible. This 1s not a serxious drawback, since a copy of the

1g1 ni ture i th \ > compiler can
original Grapnic Data Structure qust exist, and the reverse P

use it in conjunction with the Pun-time Data Structure to produce a

revised diagram which is logically and functionally correct, if not

: = rheti int view.
totally satisfactory from an sestnetic point of

. R ; ) -time Data Structure consists of
Following this policy. the Run-time a

four tables :-

(i) a Run-time values Table

(ii) a Block Table

(iii) a Type Table




(iv) a Text Table .

5.4.1 Run-time Values Table (RVT)

T S y 3 3
In the run-time system it 1s necessary to provide storage for the

. - )
variables for each block. Three types of variables are involved -- input
values derived from other blocks, output values to be accessed by other

blocks, and internal variables.

Since the inputs of a block are derived from the outputs of other
blocks it is neither necessary nor desirable to store both input and
output values.

If output values alone are stored, a set of pointers is required
to define input values, pointing to the values of the outputs to which
they are connected (Fig 5.7b). This is not an overhead because it also
defines the structure (interconnection) of the control diagram.

The alternative approach requires all input values which are
connected +to a block's output to be updated on completion of computation
for that particular block. Since an output may feed several 1inputs, 'a
slightly more complex pointer system has to be maintained (Fig 5.7c).
Also, more values have to be stored and the updating cof all the inputs

involves extra processing.

I« is concluded that storage of outputs is preferred to storage of

. | B 1 = 1 ari )
inputs. For each block, all outputs and interna. variables (if any) are

stored in a contiguous area in the RVT which 1is a one-dimensional

floating point array (Fig 5.8).

£ tl cointers specifying the location of

. , . . is the case in the Graphic Data
i block and its input or output numper as 1S o

Structure, they polnt to the actual locatlions 1n

, - 3 inimisi the numker of
of the varisble is to be found, thereby minimising i

1)
-
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Ist output value
2nd output value

RUN TIME
Ist internal variable variables for block X
VALUES 2nd internal variable
TABLE .

variables for block Y

Figure 5.8 Run-time Values Table

references necessary toO access the values. There 1s one drawback,
however, as mentioned below.

While interconnection information is thus not explicitly defined,
it can Dbe deduced from a knowledge of the locations of the variables of
cach block in the RVT, when reguested by the operator. The ease of
cbtaining interconnection information is sacrificed for faster access to
variables during execution. This is perfectly acceptable since all
operator interactions are low priority tasks. However, a consequence 1s
that function block procedures are unable to determine the connection
details. For example, if a LOGGER block exists and is connected to a
block in order to log the latter's output, it cannot easily identify the

variable that it is logging purcly from the existing connection

informatiocon.

5.4.2 Block Table

()
it

i s f t ture ne control loops.
The Block Table defines the formal structure O c s

i : a into thei constituent blocks. Every
11 composite blocks are expanded into their T

o]

entry in the Block Table. IEf

o
e
o]
Q
3
o
&
o
(
at

. )
n simple oOT composite nas an

~e Y 3 1 B < e 1 -
o i imply T 3 heir identlc woulc Dbe ost
composite blocks were simply expanded, ta Y ,

~ ~ 13 EREE + f the
: ; £ Blocks onceptually different Irom tn
resulting in  a configuration ©= hlocks C &

1] trol diagra & therefore necessary to retain
original process control diagrams. is ti




the identity of composite blocks. Only simple blocks have an associated
algorithm, possess variables, and are executed. Composite blocks do not
possess variables of their own, nor are they executed.

The Block Table consists of several linked lists of Block nodes,
each list linking the blocks appearing in the same picture. Composite
Block nodes are further 1linked to the list of its constituent blocks.

simple Block nodes and Composite Block nodes (Fig 5.9a,b) have largely

similar data elements :-

(i) GLINX -- link to other block nodes
(ii) LNTH -- length of node
(iii) LLINK -- local link

(iv) local block number (LBLK)
(v) global block number {GBLK)

(vi) a pointer (TYPEPTR) to its TYPE description

)

(vii) pointer (TXTPTR) to its specific text

(viii) a pointer (RVTPTR) to its variables
(ix) (for simple blocks only) a pointer (IPPTR) for each input.
in both Simple and Composite Block ncdes, GLINK links all nodes.

The processing segquence is determined by the order of linking. Composite

blocks are not processed and their nodes appear after those of the simple

blocks. As usual, the length of each node is stored. The LENGTH is always

the length in (CORAL 56 integer) words.

The LOCAL LINK links together all blocks belonging to the same

picture oxr composite block.

In the Graphic Data Structure, a pblock may pe referred to by 1its

block nunber. Since the block may belong to 2 composite block, more than

the Run-time Data strructure because

one block may have the same number 1n

1 {5 +h for
of the expansion of composite blocks. The plock number 1s tneretore only

unique witnin its own picture, and 1S called the LOCAL BLOCK NUMBER. If a
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plock constitutes part of a composite block which in turn belongs to

nother composite block, i .
an F ; 1t can be specified in the

run-time system Dby

qualifying its Local Block Number with those of all intermediate levels

It is also possible to identify the block by its GLOBAL BLOCK

NUMBER, which 1s truly unique to each block and is assigned by the GPCL

compiler. Both local and global block numbers are to be found in the

Simple and Composite Block node records.

The TYPEPTR is a pointer to the appropriate TYPE node which
contains type-specific information (Section 5.4.3).

The TXTPTR points to any block-specific text that may be
associated with the block (Section 5.4.6).

Variables associated with composite blocks are not stored
separately because these variables really belong to the constituent
simple blocks. Separate storage for composite blocks would therefore Dbe
redundant and necessitate extra processing in updating the values. Hence
only simple blocks possess variables in the RVT, and RVTPTR is the
pointer to the start of each block's variables in the RVT..A zero value
in the -Composite Elock node corresponding to the RVTPTR in the Simple

Plock node differentiates the two Hlock nodes.

The remaining data in a Simple Block ncde define the

interconnections -- for each input +here is a pointer to the location in

the RVT where the output value resides. As explained earlier, this

ninimises execution time.

Tn the Composite Block node, the MACRO oyPANSION POINTER (MXPTR)
i Ll s N N H

i M i < 1
links it with 1its constituent plocks at the next level. This cnables

put not in the opposite

s ” 1
tvaversal from a nigher to a lower level,

: : ; = i a x by specifying the local block
dirsction. It 1is possible ©o f£ind a block by Sp ving

: <3 ) s hicher up in the hierarchy, but
numbers of successive composite plocks hlg s

Aot tha raverse an  upward link is required for this purpose and 1s
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provided by the Upward Link node (Fig 5.9c¢c). It is always the last nod
e e

in the list formed by the local links (all blocks belonging to the same

picture), and contains a pointer CBNPTR to the Composite Block node which

the group of blocks constitute.

The TYPE table holds information specific to each block type. The
description for a simple block TYPE is different from that of a composite
hlock TYPE. Only simple blocks posseés algorithms and real variables.
Composite blocks are not executed since they are expanded into their
constituent simple blocks.

The TYPE table is organised as a linked list, formed of two types
of nodes, each node containing information for one block TYPE (Fig 5.10).

Each Simple Block Type node holds the following description :-

(i) TLINK -- links all TYPE nodes
(ii) LNTH -- the length of the node (constant)

(iii) CLASS, which is zero for simple blocks
(iv) TYPE number which identifies the block function
(v) SWIX -- the index to its procedure call
(vi) a pointer (TXTPTR) o type-specific text
(vii) the number of input terminals (N1P)
(viii) the number of output terminals (MOP)
(ix) the number of internal variables (NIV)
(%) a General Flag word (GF)
(xi) a Resat Cutputs flag word
Logical cutputs Flag words (LIF,LOF)

(xii) Logical Inputs and

(xiii) a Constant Inputs Flag word (CIF) -
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The length of all Simple Block Type nodes is fixed; that of

composite Block Type nodes is not.

E r i :
The TYPE number is used only during operator interaction and not

during processing of the blocks.

The algorithm to be executed for .a block depends on its TYPE. To

orocess a Dblock, the supervisor must call the appropriate routine to

execute the desired algorithm. This may be done in various ways.

Selection wusing a nested IF statement, which compares TYPE
qaumbers, is slow unless there 1is only a handful of TYPEs. A CASE
statement, while basically performing the same function, does so more
efficiently, but it is not available in CORAL 66.

A 'computed goto' statement may be used to select the correct
procedure. In CORAL 56 tne mechanism is called a WITCH, which 1s an
array of labels to which program execution may be transferred. Since the
TYPE numbers are seldom consecutive, they may not be used directly as the

index to the switch. Instead, a 13bel 1is generated for each function

P2S

procedure <call and the index of the label within the SWITCH declaration

is stored in the Switch Tndex (SWIX) word in the corresponding TYPE node.

The Switch Index is used by the Supervisor to effect the correct

procedure call (see Fig 5.11).

The CLASS of a block determines whether it is a simple block, a

N . . 5
subpicture or a macro block, for wnich the CLASS values are 0, 1, and

i i inf ati i uire: durin sequencin and
respectively. This information 1S recuired g 1 g

execution -- only simple blocks are axecuted. It 13 also reguired during

i i i 1 stru 2 modified
nodification -- 2 subplcture can have its internal structur

whereas a macro block cannot.
ode wnich contalns type—specific text

TXTPTR points to the Text noc

(function and terminal names) »
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The £ 3 .
The number of inputs determines the length of a Simple Block node

and is therefore required when a new block is added to the syst
=1 SMe.

The number of outputs and internal variables determine the

allocation of space in the RVT for each block.

The various flag words have been described in Section 4.2 . The GF
and ROF words are used in the sasquencing operaticn; the other flag words
enable checking of connections made on-line, and provide an additional
protection against human errors.

Composite Block Type nodes contain a different set of data :-

(i) TLINK -- links all TYPE nodes

(ii) LNTH -- the length of each node, which varies according to
+he nunber of terminals present

(iii) CLASS -- a value of 1 for subpictures and 2 for macros

(iv) TYPE number

(v) MXPTR -- & pointer to its expanded structure

(vi) a pointer (TXTPTR) to any type-specific text
(vii) number of inputs (NIP)
(viii) number of outputs (NOP)

(ix) input and output tarminal ecuates .

TLINK, LNTH, CLASS and TXTPTR function in the same way as in

Simple Block Type nodes. NIP and NOP are used in conjunction with the

input and output terminal equates (see below) for operator functions.

Since connactions and variables in the Run-time Data Structure are

i c i Tefi i lock 1 nnactions to 2 composite
axplicitly defined for simple blocks only (conn

. . : . .
block are translatad 1nto 1lower level connactlons involving 1ts internal

¥ i de 1 the TYPE information a set of
blocks), it 1is necessary to include 1n it I

1s of the composite plock to

cqguates which relate the external termlind

n input i th is a pair of
those of its internal blocks. FoOI sach 1npuc terminal there 1s 2 pair

output

: in ; } d its input;
numbers which specify the equivalent internal blocx 2n put;
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equates are similar. This imposes a restriction of one internal input t
1 ! inpu o}

eacn macro oOr subpicture input, as shown in Fig 5.12a,b This is not a
’ . - i
serious drawback as it may be overcome if necessary by the

introduction

of unity gain blocks to act as distributors (Fig 5.12c).

, unity gain block

(a) Correct (b) Forbidden (c) Use of unity gain block

Figure 5.12 Composite Block Inputs

The length of a Composite Block Type node is therefore dependent
upon the number of terminals it possesses.

MXPTR is a pointer to the internal structural description of the
composite Dblock. The use of a dummy structure 1s unnecessary since the
structure is defined by any one of the existing composite blocks (of the

same TYPE) in the Block Table. A consequence of this approach is the

L1

requirement that at least one COpY of the macro or subpicture must exist.

.

Since composite blocks are not executed, all information related

to exacution Ao not exist. Similarly:, information pertaining to

~onnections (the various flag words) do not exist.

The components Of +he Run-time Data structure dealt with so far

are shown in Fig 5.13

5.4.4 Accessing of variapbles

: -
i 15 algorithm written as 2 CORAL 66
The format of a functional block's algo q

This section discusses

. ; +107 .3 .
orocedurs has been Aiscuss=2d in section 4
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details of the access mechanism.

In each o
procedure, two types of data accesses from the Run-time

Data Structure are invo . T i
é lved The first +type of access involves the

internal variables and output variables which belong to the block being
processed;\the second type involves the block's input values which are in

fact the outputs of other blocks. All these values are to be found in the
Run-time Values Table (Section 5.4.1).

A ?rocedure can obtain variables from £he RVT in two ways. It can
rely on the Supervisor to find and copy all its input values into an
array called INPUT, and all 1its wvariables into another array called
OUTPUT. Then the arithmetic or logical operations are performed on these
two arrays. The values in the OUTPUT array are then copied back into the
RVT by the Supervisor.

For example the eguation for a MULTIPLIER block can be written as

OUTPUT1 := INPUT1 * INPUT2
Using the intermediate arrays, the equation would be
OUTPUT (1] := INPUT([1]) * INPUT(2]

The advantages of this method are the ability to handle 'special
cases' like JUNCTIONS (see Section 5.4.5), and the security 1t ©provides
(the =ffect of any indexing errors are more likely to be limited to the
intermediate arrays and therefore the block's own variables). The

disadvantage is the extra processing overhead incurred in transferring to

and from the intermediate arrays.

The second method involves accessing the RVT values directly

‘ i =i he f i ] ithm for a Dblock
through pointers. Before execucing the functional algorit o ,

; i ] 8lock node the inter to 1ts RVT
the Supervisor obtains from the Simple Block no po

i i ba ial 1led OPBASE and
entrias (RVTPTR) and places it in a global variable call SE,

£ i ' int in another global called
places the address of tn2 first input pointer i g

IPRASE.
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first output of the block can then be accessed by the term

RVT [ OPBASE |
the second output by the term

RVT [ OPBASE+1 |

and so on. Internal variables are accessed in a similar fashion.

+3
o
®

first input value of the block can be accessed by the term
RVT { RDS [ IPBASE ] ] ,
the second input value by ths term

RVT [ RDS [ IPBASE+1 ] )

and so on, where RES refers to the array wnich contains all tables except

r
o
®

RVT (see Section 5.4.7).
Taking for simplicity the example of the MULTIPLIER block, the
full expression relating its output to its two inputs is
RVT[ OPBASE ] := RVT[ RDS[ IPBASE ] ]*RVT[ RDS[ IPBASE+] 1]
This is cumbersome and ﬁay l1ead to errors, especially if the algorithm is
a more complex one.

One of the wuseful features of a CORAL 66 compiler 1is the
incorporation of a macro processor, enabling definition of macro names in
the form of identifiers to replace often lengthy blocks of code. By
defining macros for each of ghs input and output terms, the expression

can be written much mcre concisely (Fig 5.14). Not shown are the

PROCEQUFE MULTIFLIER?

ey b Tl T 0 LT )-_-i

EFIHES CUTFUT TEYI M .

TEFIMES IMFLTL "EVTE =L 4

TE i FIITE - sl
DEFI”E Tr‘”—’l[T,_‘ : I:I“T'[ - o = hi
BEGIH

OUTEUT:= IMPUTLI«IMFLTC
EpdTi o
: . H THiTE T

. P —_- =1 T THEIT H CTTELETE T FIiT s
T ETES [HELITE nE| ETES IM=Lip L nELETE

AL WU S N B AV a Pl -

Macro Definitions

Figure 5.14 CORAL 66
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'EXTERNAL' declarations for the arrays RDS and RVT and for the variables

IPBASE and OPBASE.

The macro definitions need hct be within the procedure body, as
long as they appear before they are used. They may be kept separately and
included at compile time by the CORAL 66 'LIBRARY' facility. A standard
set may therefore be kept which relieves the engineer of the need to
define them when creating a new algorithm.

Macros in CORAL €6 may also have parameters. Thus it is possible
for example to have the following general macros :-

'DEFINE' OUTPUT(N) "RVT[ OPBASE-1+N ]'";

'DEFINE' INPUT(N) "RVT{ RDS[ IPBASE-1+N ]} 1'";
in which case the MULTIPLIER algorithm becomes

OQUTPUT (1) := INPUT(1)*INPUT(2)
This is useful when more variables are involved. Note that the variables
may be called by any macro names provided the corresponding macro

definitions exist.

5.4.5 Junction Blocks

If all graphical information was to »2e retained in the run-time

system a problem would be posed by JUNCTION blocks (Section 3.3.2). The

(=)

junction Dblock was introduced as convenient means of segmenting a

; ; ; £ ai Mo ts role 1is
connaction line in order toO produce a neater dlagram I e}

i clusi in & -time Y re
ore entirely graphical. Tnclusion in the Run-time Data Structu

+thora

th

i + : ious pbeiln the additional
has several undesirable effects, the most obviou being

: £ 5 si e junction.
storage required in the Rlock Table for every single juncti

If a junction is ~andled in exactly the same manner as other
ii i { nal )

d D e which impl
bplocks, it must pocssess an output value, anc a procedure 11c simply

fo its output -- that is, similar to a unity
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gain block. This results in additional Storage in the RVT and additional

processing, both of which may be rather significant due to the fairly

high proportion of junction blocks present. The procedure itself is +too
simple to occupy any significant storage.

To avoid the additional output value storage and processing,
junction blocks must be treated differently. To obtain the input value of
a block, if it is connected to a junction, the connection must be traced
back through successive Jjunctions if any wuntil an ordinary block is
reached, the output of the latter being the value sought. In this case
the method of accessing input values by the function procedures described
in Section 5.4.4 will no longer work. Every attempt to access an input
value will require a test to see if the connection is to a junction. The
execution overhead incurred will be even more than that for the first
method. It is seen that the inclusion of junction blocks in the run-time
system is not justified.

If Jjunction blocks are omitted altogether from the Run-time Data

tructure, the diagram loses it tidiness on reverse compilation
(connection lines will be drawn by the shortest route), but it will not

“e randered incomprehensible.
Since in th2 run-time system memory is restricted, graphical

information should be omitted, and under such circumstances the retention

of junctions is meaningless.

5.4.6 Text Table

e i i of Te de and is
Tha Text Table CcOnslsts of a linked list of Text nodes, 1

used to store 3 types of information

(i) function names and ~erminal names

1] £ ang i ing units
(ii) block names and output engineering
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(iii) messages .

Function a i
n and terminal names are type-specific. Every function

block type has a function name so that the function mayv be identified by

- . . .
name rather than by type number, in the run-time system. Similarly the

(=Y 1- ) ] i 1 1
presence of terminal names aids their identification. If they are absent
= 7

terminals have to be identified by terminal numbers.

The GPCL compiler concatenates the function name with the terminal
names 1into a single text string and stores it in a Text node. Since each
character 1s stored as 7 bits in an 8-bit byte, the 8th bit may be used
to flag the last character of each name. This is denoted by the dots in
the example of Fig 5.15 . If a terminal name is missing, it must still be

indicated by a blank character.

I
F ] '
SpP

P1D — LINK |LENGTH | PI DSPPYPID YV

PV

Text Node
Function Block

Figure 5.15 Function and Terminal Names

Also, esvery block may be given a name, and 1its outputs may be

given engineering units, if reguired. As mentioned in Section 3.3.5, the

e » ] v
current Graphic Data Structure does not cater for individual text within

macros, so these have to be supplied separately during compilation. The

block name and engineering units are concatenated into a single text

string, as in the case of function and +oyminal names, and this is stored
i~ ] - N do< -

) ) . : i .16 . If the block has not
in  another ‘Text node as illustrated in Fig 5 1%

i i ' it +hen no Text node 1s created
been given a name nor any enginesring units, -

for that block.
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FLOW RATE

L/MIN . \
[ LINK LENGTH| FLOW RATEL/MIN

. Text Node
Function Block

Figure 5.16 Block Name and Engineering Units

Text nodes also provide storage for messages which may be accessed
by a suitably implemented MESSAGE block.

Each Text node is stored within the integer array RDS. The LENGTH
is always given as the number of integer words (as determined by the
CORAL 66 compiler) required to store the node. Thus for 16-bit integer
representation, a Text node which contains a string of 10 characters
(each stored in one byte) will have a length of 7.

Since this obviously affects the Run-time Data Structure, the GPCL
coméiler must know +the integer representation wused by the CORAL 66

compiler for the target machine. However, it is safe to assume a 16-bit

integer representation.

5.4.7 #Machine Independent Representation of RDS

All nodes described in the preceding sections are stored in a

single integer array. The RVT is stored in a floating point array.

r~ 1 g e 3
The Run-time Data Structure produced Dby the GPCL compiler is

Ll

. i 1i ar
machine independent. This is possible because all pointers and links are

e m S
array indices instead of ibsolute machine addresses. The output generated
POPAN = Je =) = ~

by +the GPCL compiler 1is 2 1ist of integey and floating point array

This output will subsequently

, R A
slements, in a decimal format (F1g 5.17)

. ) m-tin steme.
be read by the Supervisor into the rud rime syst
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CHAPTER 5

RUN-TIME SYSTEM

6.1 Introduction

After the Supervisor and function block algorithms have been
compiled Dby a CORAL 66 compiler, the resultant code may be linked with
any machine dependent code modules. The linked code can then be loaded
into the process computer for execution.

During execution, the Supervisor has to perform a number of tasks.
The basic Supervisor functions are :-

(1) initialising the Run—time Data Structure;

(ii) sequencing the function blocks;

(iii) periodic processing of the function blocks;
(iv) operator interaction.

Other useful functions include :-

(i) logging;
(ii) alarm handling;

(iii) performing system integrity checks;
(iv) remote communications.

Each function may involve one oOr QOIS tasks. Tasks operate at

different levels of priority. Block processing is a nigh priority task.

Operator interaction on the other hand involves low priority data

, . w a higher
structure interrogation and static display tasks, as well as z

priority dynamic display task.

sactions.

Details are given in the following
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6.2 Run-time Data Structure Initialisation

As stated 1in Section 5.4.7, the Run-time Data Structure produced

py the GPCL compiler is in the form of a list of the contents of integer

and floating point array elements. This representation enables it to be

machine independent. The first function of thas Supervisor is therefore o
initialize the Run-time Data Structure by reading in these wvalues from

some external storage device. The format of the data was given in Section

5.4.7 &

6.3 Function Block Processing

Function block processing is the main high priority task. All low
priority tasks are executed only when all block processing has been
completed and before the next round of processing. Sevéral control loops
may be handled by the process computer. Loops may pe on-line (active) or
off-line. Each loop has 1its own processing interval, which must be a

multiple of the basic processing interval. This number 1is stored in a

counter. Processing is initiated by a real-time clock interrupt; if the

start of the next basic processing interval has been reached, the

Supervisor decrements the counter for each loop. When the counter is

decremented to zero, it 1s reset, and the associated loop will Dbe

processed.

. ) s .
For each loop the Supervisor processes ecach function block in turn

' j 1 ' rocessin sequence 1is
by calling its associated procedure. The p g q

the Block nodes are linked in the Run-

determined by the order in which

i mposite
cime pData Structure. Only simple blocks are processed, since compos

iler.
blocks are expanded 1nto simple Dblocks by the GPCL compi

R ~ a £i v inc efinit ion the current
2trospective D ocks are pEOC;‘ssed irst, since by d

ut lue may be Comp\]tod without knowledge of the cur P
Sutpu values me =]
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values. Then the new output values of the remaining blocks may be
computed. The order of processing is :-
(i) retrospective blocks
(ii) input interface blocks
(iii) non-retrospective blocks
(iv) output interface blocks .
The Supervisor makes several variables available to the procedure
being called. These are :-
(1) the absolute time
(ii) the loop's processing interval
(iii) a pointer to the start of the block's Run-time Values
(iv) a pointer to the block's first input descriptor (in 1its
Block node)
(v) a pointer to the block's TYPE node .

As described in Section 5.4.3, the pfocedure is called using its Switch

Index value in the TYPE node.

5.4 Seguencing

Sequencing is performed by the GPCL compiler in the course of the

detection of errors such as algebraic loops as described in Section

5.3.1 . The Run-times Data Structure that is 1initially loaded into the

run-time system is therefore already sequenced. However, when the control

configuration 1is modified as a rasult of additions or deletions of

blocks, or altered connections, the sequence will be upset. It is then

. o 3
necessary for the Supervisor to re-sequence ths blocks. The sesqguencing

alaorithm is identical to that used by the GPCL compiler. The order of

order in which tha Block nodes are

P

processing 1s dstermined by the

linked. There is no nacessity to provide a ssparate sequance table. The
- B . Llas = 1 o= J <
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sequencing algorithm is described below.

m .
To illustrate the problem, the arbitrary configuration in Fig 6.1

is used. A, F are input interface blocks and J, H are output interface

blocks. D and E are retrospective blocks; the rest are not

Assume that originally the blocks have not yet been sequenced and

re linked in a - . .
a random order, for example as in Fig 6.2a. First a

repeated search is made for any retrospective blocks, which will be moved

to the head of the linked list by swapping links. The result is shown in
Fig 6.2b.

The retrospective blocks then have to be sequenced, as mentioned
in Section 5.3.1 . If D and E were not connected together their order
would not matter. In this case however, E must be processed first. The
inputs of D and E are checked for connection to a retrospective block.
Since the input of E is conneéted to D, E must bg.moved in front of D in
the linked list, resulting in Fig 6.2c.

After all retrospective blocks have been sequenced, the remainder
of the list is searched for input interface blocks, which are moved to 2
position after the retrospective bloéks (Fig 6.2d8). The order amongst
them is immaterial since they may not be connected together.

The remainder of the list is now searched for non-retrospective,

computational blocks whose inputs are all defined -- that is, connected

to blocks which are already sequenced. sequenced blocks are indicated by

their position in the linked 1list; alternatively it is possible to flag

these blocks for example by temporarily nesgating their global ©Dblock

I to their Run-time
numbers in their Block nodes, or even bpetter, to mark thei un-t

Values by multiplication with a big value. In this case the next block to

be sequenced is G (Fig 6.2e). Repeated searches will result in all non-

; z £
retrospective blocks being sequenced (Fig 5.2f).
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process

(Retro) > (Retro)

Figure 5.1 Example of Sequencing Problem

020202020,02020,0

(a) Original seguence

(b) Retrospective blocks moved

{(c) Retrospective blocks seguenced

606060

rface blocks seguancead

0R050202020,02020
020

(f) Sequencing complete

tntermediate Stages of Sequencing

Figure 6.2
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The remai :
inder of the simple Dblocks in the list will be output

i face i
interface blocks among which the processing order again does not matter

Det i i
etection of illegal loops is very simple. Each search through the

unsequenced portion of the linked list should produce one block which may

pe added to the sequenced portion of the list. If either an algebraic

loop, or a loop formed by retrospective blocks, exists this condition
will ultimately fail.

It is apparent that sequencing is a very lengthy process. However,
since sequencing need only be performed while a control loop is off-line
(it may not Dbe reconfigured when active), speed is of no consequence.

Sequencing is a low priority task.

6.5 Operator Interaction

The main operator interactions are :-
(i) data display -- display of process variables, setpoints,
control loop configuration etc.

(ii) data input -- modification of setpoint and other parameter

values, and of control loop configurations.

Apart from the display of ©process variables, these are mainly low

priority tasks, wnhich axecute only wnen the computer is not processing

the control loops.

The man-machine hardware interface should preferably be a Visual

Display Unit (VDU) with absolute cursor addressing which allows any

orocess variable displayed to be periodically updated. Operator process

) . . : 53 £ rictiv for the
panels with only LED alphanumeric displays are too restrictive

N Y + e v
amount of information that may be extracted from the system.

The Run-time Data Structure contains all the information necessary

lay the £ollowing details for each block

to allow the Supervisor to disp
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(not necessarily simultaneously)
(i) its global and local block numbers
(ii) the name of the function
(iii) the name of the block, if any
(iv) the name of each terminal
(v) the values of each input and output
(vi) the engineering units, if any, for each output
(vii) the values of its internal variables
(viii) the blocks to which it is connected
Items (1iii) and (vi) will not always be displayed since only blocks of
interest may have been given names and units.
The block may be specified via its global block number or its
lineage (the list of intermediate blocks to which it belongs) .
The display of most of the above information is straightforward.
The display of iﬁput and output values has to be updated periodically
(after every round of processing). The extraction of connection
information from the Run-time Data Structure, however, involves multiple
searches and comparisons -- a very time consuming process, but acceptable

as it is a low priority task.

The Supervisor also allows modifications to the Run~tims Data

Structure. Most variables may pe modified. This may be achieved via

numeric entry, or via a gradual adjustment from the original value to

: - b2y 4
avoid discontinuities, which is necessary if the value belongs to a loop

that 1is active.

i i i reconfigured -- connections may
when a loop is off-line, it may be g

~ : at+yvicoti -
be modified and blocks added or deleted. Certaln restrictions apply

. 3 e
for example macros may not be reconfigured, but their constants may be
-~ ~ 7 4 -~ >

changed.
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Additio :
tions and deletions of blocks involves a fair amount of

processing. If a simple block is deleted, all connections to it must also

pe deleted. It 1is probably preferable to prevent blocks being deleted

white connections to it exist, to force the operator to explicitly remove

all connections before deleting the block. The space its variables occupy

in the Run-time Values Table (RVT), as well as any text it possesses,
must also be released.

The deletion of a macro block also results in deletion of all its

constituent blocks. Since the structural definition of esach macro block
is implicit in the connections, at least one copy of each type of ma;ro
block, with all its RVT entries, may not be deleted.

Additions involve allocating Block nodes and space for storage of
variables in the RVT. Also, some blocks may have variables which have to
be initialised by the operator. Addition of macro blocks is particulariy

complicated, as it involves the creation of its constituent blocks.

6.6 Additional Supervisor Functions

The Supervisor functions may be developed to any degree of
sophistication conceivable. Some useful facilities include logging, alarm
] 1 1 i t
handling, performing system checks, remote communications etc.

Logging and alarm handling may be implemented within the control

i i Y T ise when attemptin
loops as special function blocks. However, problems arils p g

] j : for re=asons similar to those
to log variables of a block withn a macro, fo

i i 5 ni i o alarm handling. These two
stated in Section 3.3.5 ; this also applies t

i } ] T ) tha Supervisor. Blocks whose
functions are therefore best performed by T

i 2] nould be given block names
outputs are to be logged or alarm monitored si g

= Y 2 T g i g i d alSO be
O lible ] i i i (i 2n lneerln unlitcs ShOu_
: K 2as ldvntlflca,lo. 7 a

provided.
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Logging and alarm information may be stored in a2 LOG TABLE d
= &S an

ALARM TABLE (Fig 6.3). Some of these may be initialised at compile time
- ’

LOGGING

[NTERVAL | BLOCK PTR | 0P nO.

BLOCK PTR O/P NO. LOW LIM, HIGH LIM.

(a) (b)

Figure 6.3 (a) LOG Table (b) ALARM Table

but the Supervisor should permit on-line specification of new variables
to be logged or alarm-monitored.

The alarm handling function may vary somewhat 1in strategy. If
variables are monitored every processing interval, the ©processing
interval must be reasonably short to prevent an alarm condition from
getting out of hand. An alternative is monitor these variables more

frequently than the loop processing.

6.7 Interrupt Processing

The three main causes of interrupts are :=
(i) real-time clock
(ii) character input

(1iii) character output .

The real-time clock interrupts updates the system clock and enable

i th e
the Supervisor to start processing +he control loops at tne corr ct

times.

iated with
. , . ' rrupts are associate
Character input/output interrut

communication functions.
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Generall i
Y lnput and cutput interface blocks do not use

interrupts. Data acquisition and output from and to the process must be

achieved within the processing of the block. There is therefore a limit

on the time available to obtain each input or set up each output. In most

cases this 1s not a problem, since even analog-to-digital converters are

available which are not significantly slower than interrupt service

routine overheads. If a particular input device responds too slowly, a
possible solution is to initiate the data acquisition by the explicit use
of a digital output block in the control loop, so that the data will be
available at the next round of processing. Interrupt mechanisms are very
machine dependent. Vectored interrupt mechanisms allow the processor to
determine the source of the interrupt easily, but the number of vectored
interrupts is limited. To resort to the time-consuming process of polling
to discover the interrupting source would defeat the primary purpose of
using interrupts (for the input/output interface blocks). The alternative
is to use additional interrupt hardware.

Counter-type input functions which count the number of random
pulses received are best implemented with hardware counters rather than

with interrupt driven software counters. Input values should remain fixed

for the whole duration of processing. Also, since processing of the loops

is synchronous, little advantage is to be gained from the knowledge that

a counter has reached a certain value, say, in the middle of processing

because no action may be taken until the next round of processing.

Communications devices such as the UART (Universal Asynchronous

1 i i communications is the only task
Receiver Transmitter) are an axception. Commun

i b i asynchror 1 and
invoked by a function block which may De executec asynct ronous.ly

i i ! i npletion.
proceed as a packground tasx until compl




7.1 Graphics

The software for the system has only been partially written. The
Graphic ILditor is capable of performing the basic editing functions.‘The
size of the editor so far is approximately 20K (16-bit) words, but this
does not provide a good indication of the memory requirements because it
is dependent upon the level of sophistication sought, as well as the wuse
of overlay technicues to minimise core requirements.

Only a limited number of function block types have been created.
These include the ones‘used in the dye mixing example of Fig 3.3 . The
develorment of the graphical and functional characteristics of each block
type are given in the Appendix. The sizes of the Graphic Information node
and the type-specific text nodes for each block type, and the size of
cach block node, in the Graphic Data Structure for the function blocks
used are shown in Table 7-1. Values are given 1in 16-biz words.

; Y 1 i1 =
The oxact storage requirements for the block diagrams depends on

jefined te in 2 ock as
ths number of constants and user-defined text present 1 ach bl ,

] 11 ni included. Table 7-2 shows
well as the amount of plant symbolic grapnlcs 1n 1lu

2ire f ! sarious types of information to
the total amount of data raquired for tae various tyr

e T - ifi information occupies a
ronresent +the block diagrams. 1YPE specliic L

i nis = £ as the ber of
: ; tacs y his example, but as the num
substantial proportion of space 1n tnis E

i i plocks increase he 'picture’ requirements will increase
dlagrams and ploc! ncrease, tn ¥

i - i £ +a will dep=nd
sroportionately wnereas +he 1increaase 1in type-specliic data wl dep=n
PLOfL tionately WNereas on

CEE v wWilock -ypes used.
only on the number of different DLOC V¥

|
—
[\
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Graphic
Block Type Info Node | Text Nodef Block Node
Analog Input 45 21 14
Counter Input 45 27 14
Analog Output 45 26 - 15
X-Y Function 37 6 10
Multiplier 33 25 12
P-I-D 45 36 18
Junction 15 0 10
Cascade (macro) 31 31 16

t type-specific text

Non-Graphical Data Node = 3 words each

Table 7-1 Individual Graphics Storage Reguirements

Type-Specific Picture
Function Blocks 470 270
Graphic Blocks 150 100

3]

storage For Elock Diagram




7.2 Run-time System

The various memory : .
- - Hetn reguirem 3 ,
I nents in the run-time system are shown

in Table 7-3 where the i ; .
’ he column with the heading 'TYPE INFO' gives the

+ - = 3 N -
total amount of data used to store type-specific information. The wvalues

- e i ‘
of the Run-time Values Table requirements for each block takes into

account the space required for constant parameter inputs. If some non-
parameter inputs are connected to constants the total RVT requirements
will increase. The RVT requirements assume the use of 2 words per
floating point number. The X-Y function block nolds 17 data points.

The Run-time Data Structure requirements for the dye mixing
example total approximately 400 words of which 200 words are type
information and 200 are individual block information and variables
storage.

Figures related to execution are given in Table 7-4. On the Texas
990/10 mwinicomputer the control loop in the example takes approximately

58 msec to execute. This mediocre performance is due to the absence of

floating point instructions and the relatively slow instruction execution

times (between 1.5 and 20 microseconds) of this minicomputer. Floating
o +76

roint numbers are stored with 20 bits precision and a range of 10 to

70 it ti £s bstantial proportion
10 . Floating point arithmetlc accounts for a substantlal proporw

of the total processing -- addition of two floating point numbers takes

an average Of between 450 and 650 microseconds; division takes between

900 and 1000 microseconds. With +he use of a faster CPU and hardware
floating point, performance will 1imy

endent upon

o)
vt
O
D
b
D
9]
a
t
-
o}
3
[’y
]
{
ol
1)
Lo

obvionus that figures relatec

t
-
)

£3 & 3 1 Aata structure
} T o i ziqures related to the «ata StI
th2 specific computer used, whereas I1gUr

i £ + hioek and are largely machine
tne design of eact block and gely t

[oN

only depen on

£ jdentical word lengths) .
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Block Type Type Info | Block Node | RVT Sjize
Analog Input 22 11 8
Counter Input 23 11 4
Analog Output 22 12 6
X-Y Function 21 9 36
Multiplier 22 10 2
P=-T-D 24 13 S
Cascade (macro) 40 9 0

Table 7-3 Run-time Data Storage Requirements

Procedure Size Approx.TimeT
Analog Input 65 1.8
Counter Input 57 1.8
Analog Output 90 2.8
X-Y Function 162 4.2
Multiplier 35 1.0

P-I-D 137 5.8

Cascade (macro)

T in milliseconds

. I - o
Table 7-4 990/10 procedure Sizes and Execu-1on Times
L P L by
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CHAPTER 8

CONCLUSIONS

This research has involved the investigation and design of a

graphical Dblock diagram approach to the generation of software for

process control. A graphical language (GPCL) allows a process control
block diagram to be created interactively at a graphics terminal, using
the Graphic Editor. The use of the language requires no knowledge of
formal programming, when working within the set of available function
blocks. A novel feature is the inclusion of plant symbols and text in the
block diagrams for purely commentary purposes. The wuniformity of
treatment for function biocks and graphic blocks (plant symbols)
simplifies the Graphic Data Structure. The language also accomodateé
several different types of text (block, function and terminal names,
constants and engineering units). Constant settings and connections are
created wusing a unified strategy. This simplifies the Graphic Data
Structure as well as increases the flexibility of the system.

A macro and subpicture facility nas been included to facilitate
groups of blocks which collectively form compound

the repeated use oOf

functions and to enable the functional structuring of block diagrams. The

hi 1 ater for the presence of
current Graphic Data gtyructure does not C

; ; 5 i +hi imilar macro blocks, but gains in
differing constants and text within simil

T

erms of simplicitve.

L A-. ri 1 i blOCkS
2 (S i a2 2N( 1IN ona.s. at‘uf‘bu'\,es Of fianction
‘Ln_, Daﬁi_. [ grapthu; andc f’~ I 1 a

i ] i ! Y es cO b
5 . . . eto 2 1aollng new ulock | e
aave 1‘4:'9 L l/»*:LXL,_Lf.hed anc para;\,,-,‘,rlse 7 e

a new Dblock TtYDe involves the

accomodated easily. The creation of

e case of function blocks the

. . . . L \ and in the
graphical definition of the block,
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specification of certain non-graphical properties as well as the suppl
pply

of a CORAL 66 procedure, this being the only time a knowledge of

programming is required.

The graphical nature of the system, together with the use of

functional names for each ¢t i :
} erminal, reduce the chances of human error

during creation of the diagrams. For example it is impossible for the

io incl i - .
user to 1include 1in the diagram a non-existent function block type, or

make a connection to a non-existent block or terminal. During editing of
the Dblock diagram the GPCL editor is also able to perform a number of
validity <checks to eliminate errors such as connection petween
incompatible terminals. In this way the graphical feature is exploited to
remove many of the sources of error likely with purely textual
programming languages.

The completed process control diagram is submitted to the GPCL
vcompiler, together with a library of CORAL 66 routines and any preset
data; from these the GPCL compiler is able to generate 2 run-time system
also in CCRAL 66. This comprises a suite of»machine-independent programs
and a machine-independent Run-time Data Structure. These programs may
then be compiled by a CORAL 65 compiler into machine dependent code for

; G
2xecution in the target process computer. The analysis Dby the GPCL

compiler 1is facilitated by the function block approach, and also by the

amount of preliminary checking already performed by the graphic editor.

o ' .ta Structure involves the creation of
The generation of the Run-time Data Structu

N ' ‘ sion bid
tables which define the structure of the block diagram, the expansio °

; 3
o . y~mation of space for variables and
nacros and subplctures, rhe allocation T E

ne i ' £t information for
n f i 1 £ inclusion of typé 1nz
parameters for each function block, tne 1

: p rocessing order
§ . oy rion of tne correct P
each block types, and tne determinatlon c

for the blocks (seguencing).
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The Run-time
ne Data Structure permits identification of all

. . |
variables and parameters for logging and user modification Connecti
' . on

information 1s also retained so that the user may modify the block

7 4 ; p s i .
diagram 1n the run-time environment. Modification may result in a

necessity to resequence the blocks, which is performed automatically

All composite Dblocks are expanded into their constituent simple

blocks so that no execution Qverhead is incurred by parameter passing.
The identity of each composite block is retained, howe&er, thus
preserving the structural representation of the original block diagram.
The organisation of the Run-time Data Structure allows accessing of
variables by the function block procedures to be achieved directly
through pointers. This maximi;es the real-time performance of the system
since no searching is required in repetitive routines. The disadvantage
is the amount of searching necessary for bperator—related tasks, which is
a small penalty since they are not executed frequently.

The further development of the system could take a number of

directions depending on the application area anticipated. Several aspects

have been incompletely developed; these include the modification of the

i N ifferi ithin similar macro
raphic Data Structure %o nandle differing text within sirn

9]

blocks, the development of the GPCL compiler (which mainly performs data

. ~ : 1 '1 Py I
structure manipulation) and the run-time Supervisor. The role ot the

i i i i+thin ' control
Supervisor in the initialisation of wvariables within the

; s transfer' will require special
hms and ' suto-manual bumpless transt
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analogous to the passing of Arrays as procedure parameters in textual

programming languages. The use of such 3 feature would be to complement

the composite block facility, for the purpose of simplifying block

diagrams. If this is cdone, extra information will be required to describe

2ach terminal and enable detection of illegal connections.
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APPENDIX

This s i : 2
'his section shows the development of the various components which

constitute the block diagram of the dye mixing process shown in Fig 3.3
. 14

leading to the final PRun-time Data Structure. The Analog Input and

Cascade Controller blocks will be used to illustrate the details of some

of tha various components of the data structures.

A.1 Analog Input

Fig A.1 shows the graphical details of the Analog Input block. The
coordinates of each point are given in GDU's (Graphic Display Units) --
the screan of the Tektronix 4051 terminal is divided into 1024 GDU's

norizontally and 730 GDU's vertically.

i/p3420,95
Block no.
Yo s
-20,65 g= )
20,65
0,25 ¢ 60,75
o/p
-15 4015
-20,-15 == §0,-15
l/p‘l — 4“,—45 L
-60
i/p2 7 0,-6

£ g I + Block
i o +ails of Analog Input U
Figurs A.l Graphical Detai-s ¢




Graphic Information Nede:

Type No.

Class

i

NIP

I

NOP

Block

il
o2

NO.

I/0 coords

10

coords = (40,70)

= (0,-45), (40,-60), (20,95), (60,25)

Picture coords

(=20+2000,-15), (-20,65), (50,65), (60,15),

(-20,-15), (0,25), (-20,65), (20+2000,95),
(20,85), (0+2000,-15), (0,-45), (40+2000,-15),

(40760)

Non-Graphical Data Node:

O =z
o

<
T

0
O,
5|
1]

6 2000 0 ATl N
\
5 2000 1 S
1
5 2000 2 Z
\
0 S 2000 3 A
1]
=14 \___q/___) - — "
i/p1 i/p 2 vp3 7P




Run-time Data Structure:

simple Block Node:

LNTH
GLINK | =1y ' |LLINK | LBLK | GBLK |TYPEPTR TXTPTRIRVTPTR| IPFTR1 | IPFIR 2

IPPTR 3

Type-specific Text Node:

Nkl A NS A

A.2 Cascade Controller

Fig A.2 shows the schematic of the Cascade controller block and

its internal components.

//Blockno.
—+10,175
-10,165 110,165 5
. I I
-10,140 4+TP! Pl
. -
v
_10,110 4=TP? PV1 py PID 2
, 4110,95 : ¢ P
-10,80 ?’"/p‘?’ Nop PV2 l F ’
' MULT SP
10,50 TP 1o [
PV3 Py
-10,25 110,25 2

Figure A.2 Graphical Details of Cascade Controller Block

Graphic Information node:

TYPE no.= 100

1l
B

NIP
NOP = 1

Block Mo. coords = (10,175)

(-10,80), (=10,50), (110,95

1/0 coords = (=10,140), (=10, 1100,

= 5 110,25 ’
Picture coords = (—13+2000,25), (=10,165), (110,165), )

(-10,25)
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Type-specific T

ext Nodes:

8 2000 O CA SC AD
'
I 5 |2000] 1 S P
[ (] s [2000] 2 [rv ]
y
| 6 J2000] 3 [Pv 2 |
3
6 {2000| 4 PY 3
3lock Node:
CRTH v T v T '
=16 A 1 : : :
\ " —————— S Y
1/p1 1/p2 i/p3 i/ph o/p
Macro Expansion Node:
CNTH ! : | ! !
=12 1 N ; { 1
i/p1 i/p2 1/p3 i/pl o/p
Run-time Data Structure:
Composite Block Type Node:
NOP X
Tein | LNTH [ CLASS] TYEF [MxPTR | XTPTR NP RS b
N——— ——
i/p 1
T T
1 : 2 2 ! 2 3 0+ 2 3 011
1 ! . .
i/p? i/p3 i/ph o/p
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a.3 Data Structures

The more important components of the Graphic and Run-time Dat
é n-time a

Structures are shown in Fig A.3 and Fig A.4

A.4 Main Software Components

m

The data module used in the run-time system is.shown in Fig A.5 .
All variables are declared to be externally accessible by other modules.
Figures A.5 to A.11 are source listings of the procedures for each
function. The external data declarations (similar to the ones in the data
module) are not shown as they will be inserted by the GPCL compiler. The
three interface blocks use procedures which involve machine dependent
code; this code is shown after the CORAL 66 procedure, although it is

physically separated from it in actuality.
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BLOCK NODES
[o n
- O o
éi“zv'xx&a-)ip-:
...“".-._J_:E}_)_S:
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CP - Constant Pool Block Node
\4 sB - Simple Block Node
l | 01 UL 8 - Composite Block Node
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Figure A.4

Run-time Data gtructure £xample (Part)
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