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The wire drive pulse—echo system has been extensively used to
excite and measure modes of vibration of thin rectangular plates.
The frequency spectra of different modes have been investigated as
a function of the material elastic moduli and the plate geametry.
Most of the work was carried out on isotropic materials.

For square plates a wide selection of materials were used. These
were made isotropic in their in-plane dimensicns where the
displacements are taking place. The range of materials enabled the
dependence on Poisson's ratio to be investigated. A method of
determining the value of Poisson's ratio resulted fram this
investigation.

Certain modes are controlled principally by the shear modulus.
Of these the fundamental has two nodal lines across the plate
surface. One of them, which has nodes at the corners, (the Lamé mode)
is uniquely a pure shear mode where the diagonal is a full wave
length. One controlled by the Young's modulus has been found.

The precise harmonic relationship of the Lamé mode series in
square and rectangular plates was established. Use of the Rayleigh-
Lamb equation has extended the theoretical support.

The low order modes were followed over a wide range of sides
ratics. Two fundamental types of modes have been recognised: These
are the longitudinal modes where the frequency is controlled by the.
length of the plate only and the 24f product has an asymptotic value
approaching the rod velocity. The other type is the in-—;zalane flexural
modes (in effect a flexurally vibrating bar where the 2“/w is the
gecmetrical parameter]. Where possible the experimental work was
related to theory. Other modes controlled by the width dimension of
the plate were followed.

Anisotropic materials having rolled sheet elastic symmetry were
investigated in terms of the appropriate theory. The work has been
extended to examine materials fraom welds in steel plates.
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CHAPTER ONE

GENERAL INTRODUCTION

The differential equations for in-plane vibrations

(50)).

of thin isotropic plates are well established (Love 1926
Their solutions are particularly difficult for any but
the simple circular plate, which in effect has only one
boundary. The complete solutions involving all possible
modes of vibration were obtained through numerical methods

as used by HollanchOL.

For the cartesian case of square and rectangular
plates,only one satisfactory solution has been obtained.
This is the Lamé mode of square plates where the corners
are nodes. In this work, which is essentially
experimental, a very large number of modes has been studied.
Extensive use has been made of the approximate solutions

obtained by Holland(3l ) (48,49)

and Redwood .The pulse
echo technique used is applicable to all materials and
by using these with a wide selection of Poisson's ratio

a fresh insight has been obtained.

As stated, for thin plates having rectangular
geometries, a general solution of the differential
equations of motion is not at present der ivable. The
difficulty of obtaining the exact solution is due to the

restrictions imposed by the boundary conditions of the

-1—



straight edges of the plate. Certain related modes with
no disélacements at the corners have been solved by

M. G. Lamé, 1866(‘45 1. Since then, various approximate
methods have been developed and employed to obtain the
solution of other vibrational modes of rectangular plates.
For instance, Eksteinczzl has applied a perturbation

(691

method; Mindlin and Medick have developed an

(78)

approximate plate theory; M. One has approached the

problem via an approximate theory based on an energy
principle;EerNissg?Qhas developed the coupled-mode theory;
Lloyd and Redwoodc48l have employed the finite difference
method to find the solution of different rectangular
plate vibrational modes; and recently R. Holland(31 )has
obtained more accurate results by applying a technique
similar to that used by Ekstein. In his work, the frequency
spectra for rectangular plate modes have been determined
and represented as a function of Poisson's ratio.
Extensive theoretical data for the normalised resonant
frequencies of different modes as a function of width-

to-length ratios and Poisson's ratio values are fully

represented in reference (32).

Experimentally, the method employed to excite and
to measure these modes has been only partially successful.
This is initially due to the finite thickness of the plate,
which requires special techniques to excite the different

(23 )

modes. An optical interference method to observe
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the displacements on the straight edge of the plate has

(1,48,49,78) made use of a

been used. Other researchers
split-quartz electrode system on the surface of the plate,
which required different electrode polarities to excite

the different modes of vibration. This method is only

applicable to piezoelectric materials.

In recent years, the explosive growth of electronic
instruments in the fields of measurements, has madé its
contribution to measurements of the natural vibrations
in response to the demand for material investigations.

By determining their elastic and their mechanical properties
the stress analysis of high temperature structural designs
can be carried out. The wire drivé type pulse-echo

G,14). L, excite and measure

system has been developed by Bell
very weak resonant vibrations with high precision under
suitable driving conditions. This has been successfully
used to excite and measure the different resonant modes

of disks(‘8’9']31

with an accuracy higher than 0.2%. The
pasic feature of the system and its diagram are

illustrated in detail in Chapter Two.

The excellent results obtained from the disk by this
method and the high accuracy of measured eigen values
have induced further application of this system for the

measurement of the freguency spectrum of rectangular plates.

The changes of the square plate resonant frequency



for different Poissonls ratio values have been
extensively investigated through the use of various
materials which were carefully machined to be isotropic
in their in-plane dimensions. It must be noted that the
disk modes have been taken as a reference in determining
the two elastic moduli (Young's modulus and Poisson's
ratio). The full results are covered in detail in

Chapter Three of this thesis.

The type of square plate modes which are principally
dependent on the shear modulus have been identified. The
sensitivity of certain modes towards the anisotropy of
the materials have.also been shown through exploring the
nodal patterns of the vibrational modes, which make use

of the magnetostrictive probe.

Modes have been followed to a finite limit dictated
by signal strength of the plate width-to-length ratio.
Two beam vibrational modes have been distinguished: these
are the longitudinal and in-plane flexural modes. Other
modes whose frequencies are controlled by the width
dimension of the plate, have also been found and
investigated. Particularly interesting were modes
associated with end resonance and with purely plate

velocity.

Chapter Four and Chapter Five cover in detail the .

full experimental results and the theoretical investigations,



which have employed the theory of the wave motion in the

plate to a limited extent.

Fur@her investigations related to the anisotropic
measurements of the materials have been carried out in
Chapter Six. The results indicate that the longitudinal
modes of a long strip are sensitive to the direction of
the grains w.r't the plate length. The method has proved
successful in measurement of the elastic constants of
materials with this symmetry. The theoretical analysis
supports the results and has giyen excellent identical

results.

Tt is clearly established that the pulse-echo method
is a sensitive instrument for measurements related to the

materials characterisations and for investigations related

to non-destructive testing and evaluations of the materials,
which have unhomogeneous properties. Part of Chapter Six
demonstrates an industrial application which has recently

been published in a periodical journal (see reference (39)).



CHAPTER TWO

THE INSTRUMENTS AND THE TECHNIQUES

OF THE MEASUREMENTS

2,1 INTRODUCTION

For many years the resonance behaviour of structures
has attracted a great deal of attention. The
theoreticians have been engaged to apply different
methods to determine theoretical solutions for certain
modes of vibration under specific geometrical and
boundary conditions. Experimentally many methods have
been employed to excite and measure these vibrational
modes, obtaining the frequency spectrum and the

associated eigen functions.

Shaw (l955)£g”in his work used the optical

intereference method to observe the surface
displacement patterns of the vibrating disks. Others
used a split-quartz electrode system on the surface of
a plate, which required different electrode polarities
to excite different modes of vibration (P. Lloyd et al.,

1966) and (R. Holland, 1968).

With the growth of electronic instruments in recent
years in the field of measurement and as a result of the

demand in non-destructive evaluation of the materials,



the wire drive pulse-echo system used here was developed
to excite the natural vibrations of certain modes, and
can resolve very weak resonances with high precision under

suitable driving conditions.

Basically, the echo system designed for resonant
ultrasonic thermometry by Bell(5'6),,Since then it has been
used for many other applications, concerning
measurement of elastic constants and internal friction

8,9,12,13,14)
of refractory materials over a wide temperature rangeg' P

2.2 THE PULSE ECHO SYSTEM - BASIC FEATURE

The pulse echo system can be considered as two
individiual units; an electronic unit which generates

and receives the signals, and the transmission line.

In the electronics a signal generator produces bursts
of oscillation, the number being controlled manually.
These are coupled to the line with a magnetostrictive
transducer producing longitudinal stress waves. The
echoes reflected from the remote end of the line, where
the resonator is attached, are then amplified and
displayed on an oscilloscope. A schematic diagram for
the system is shown in Fig. 2.1 , the transmission line
is made of nickel wire or telcoseal (nickel-iron alloy)
and should be long enough to accommodate the number of
waves needed to obtain the required echo pattern without

signal overlap. To minimise the attenuation, and the

-7



backward noise and echoes due to the presence of the kinks
in the line, it is important to stretch and anneal a part
of the line which is to be matched at a position about
A/4 from the end of the transmission line. The highly

stressed line has low attenuation but poor magnetostrictive

properties. Theanealed part of the line has good
magnetostrictive properties and being short does not
contribute excessively to the attenuation. A coil
provides electrical coupling and a magnetiis required to
produce a d.c. bias. The coil is tuned by means of a
decade capacitor. The echo pattern forms as a result
of combining the echo signal from the resonator and the
backward signal from the junction. These two signals
are in reverse phase, consequently they form a cross-
over at a stage when the two signals have the same
amplitude. This cross-over or a "null" is a signature
that confirms the vibration of the resonator as it
indicates that the frequency of the transmitted waves
is equal to the natural resonant frequency of the
resonator. It also confirms the coupling to the line
which is jointed to the resonator by a cementing agent.
Figure 2.2 is a typical oscillogram of the echo
pattern. The echo pattern can be regarded as two parts;
the echo signal and the echo decrement which is the
exponential radiation of the stored energy due to the
resonance and it occurs after the echo signal. The

echo signals have an amplitude of the order of one volt-

—8—



for an input sinusoidal signal of 30 V. peak-to-peak,
which is sufficiently strong for background electronic

noise to be neglected.

The attractive feature of this system is that the
electronic unit is at a far distance from the 'resonator,
so that the spectra of the bodies can be measured at

various temperatures, (Chaplain, K. R., 1980).

The electronic unit is designed to generate a sqguare
wave signals in the range from 5 kHz to 1 MHz in

frequency, the frequency limit of the techniques.

2.3 THE MAGNETOSTRICTIVE PROBE

This is another important part in the instruments
used to identify and form the exact vibrational patterns
of displacement for the resonator. Figure 2.3 shows
a sketch for the magnetostrictive probe, it consists
mainly of a thin nickel wire (0.5 mm diameter) terminated
with a magnetostrictive coil to pick up the signal. It
is tuned usually with an external capacitor, and has an
attached magnet to polarize the field. The displacement
pattern of the body can be explored by moving the line
gently across the surface of the resonator. The probe
signal will be zero at the nodal lines. Using a double
beam oscilloscope this signal and the echo can be compared.

In moving across a nodal line the probe signal reverses

-9=



the phase. Thus a precise picture can be built up for

the nodal pattern of a vibrating plate at different

resonant frequencies using this probe.

The probe can also be used to resolve two adjacent
resonant modes by identifying the most convenient

driving point for each individual mode.

2.4 THE VIBRATIONAL NODAL PATTERN IDENTIFICATION

Any individual mode of vibration will have a certain
displacement pattern of vibration (the eigen function).
This simple fact forms the basis for studying the
resonant frequency spectrum for the vibrational mode

of a thin rectangular plate.

Square isotropic plates were first investigated.
A resonance is excited when it has a component of
vibrational parallel to the line at the driving point.
Thus a diagonal corner drive will excite the Mason mode
of Fig. 2.4 which has two nodal lines parallel to the
sides of the plate but not the mode having the nodal

diagonals (Lamé mode) .

Nodal patterns were explored using the probe described
in the previous section. In moving across a node the
amplitude goes through zero and the phase reverses. While
nodes at the edges were detected easily, observations of
the nodal lines on the face of the plate were difficult

-10-



as the vibrations were in-plane.

Figure 2.4 shows some typical vibrational patterns
for simple resonances of a square plate. 1In the case of
disk resonances, the driving point determines the nodal

lines position (the mode is degenerate).

In a case where there were two nodes on each edge,
giving four nodal lines it was uncertain whether these:
actually go through the centre giving a node or parallel

to the sides giving an anti-node.

It might be important to mention that for higher
modes, some nodal lines have a curved shape rather than
a normal straight line proposed. This is also true of

flexural (Chladni) vibrations.

2.5 THE DRIVING TECHNIQUE

Knowing the vibrational pattern of displacement for
the plate resonant modes, a proper drive point could be
selected to give an optimum mechanical coupling with
the line, so that the echo signals have maximum amplitude
at that drive point. This could be of major assistance
in identifying and in resolving the different modes of
square and rectangular plate, in addition, in following
their vibrational spectra. It is obvious that the
longitudinal mode requires a drive at the far end parallel

to the length of the plate where the maximum displacements

-11-



are taking place. On the other hand, the flexural mode

(in-plane flexure of a rectangular plate) requires
different drive position, so that the displacements have

vectors parallel to the driving line.

Figure 2.5 shows the proper driving positions of
some square and rectangular plate modes. Typical modes
are shown in this figure and their vibrational patterns

are illustrated for several length-to-width ratios.

Maximising the coupling to the line will result in
a more significant form of the echo signals and,
consequently, more precise measured results will be

obtained.

~ As has been mentioned before, the magnetostrictive
probe can be of great assistance in executing this work,
as It helps to identify the.best drive point of the plate
to the line. The coupled modes (modes occur at one
frequency) can be resleed hy selecting and driving_the
plate at an appropriate.positiqn where one of these mcodes
has maximum Vibrational displacements to the line and the
other modes have a naode at that point or have less

coupling to the line.



‘deTaonao TeUDTS

JnoyyTM wre3jed oyod poxtnbol syl ute3jqo O3 popdsu S|8ABRM JO JaUIU 3Y3 S3BPAUNDOOE O3 ybnous buot

aq Jasnur 3T °3SEaT 3B 3T 3O 3xed IO SATIOTIFSOjPUbEW &] 3IShul SUTT UOTSSTUSURI} SYL "3T0A SUO

Jnoqe JO Oyod ue sSIATH STyg, ‘epn3Tldur s3TOA Of JO pue SIsqunu buUT3RTTTOSO UuTEe3XsD JO 3sang
UOTSSTUSURI) B ojersusb 03 s3Tun OTseq oyl SMOYS UB3SAS oyos-ssTnd ay3 Jo uribeTp oT3ewsUYoS T1°¢ “BTd

urajyed
oyoo pakerdsTp SyL segeu
Burasnlpy Aousnbaxd

Sichaceg) Ut UOTATIR0R
! 3sang
Ket1dstd
“bdoosoT1T0S( TO3RIBUD)
asang ToqUINN
ﬁl.annl.ns.iull L 3sang
oyos TeubTs
U IOSP SOURUOSSI -
lTo3Toede)
buruny, TRubTS

* (o3e1d) IJO3RUOSSI | UOTSSTWSURILY,
oyl uwpIy oyoe TrubTsS _ .

putrddeTasA0 U3 ™M
3sang 8y} 93epoumnpode 03 ybnous Huog —_— _—
23eTd oONPS URL]]

TeTnbUR3OT] ﬁ. — .w:mrerrlllllJ
I P

SUTT SATIOTIZSOIDUDLER

SUTT aUy3 y3Th uotiounl ayl
upIJ pejosTIel Teubls

PT=T3 =auad
astaxerod 03 joubey

-]13-



Fig.

2.2

A typical oscillogram of the echo pattern obtained
as a result of combining the echo signal from

the resonator and the backward signal from the
joint of the transmission line. These two signals
are in a reverse phase. The cross over indicates
that the frequency of the transmitted waves is

equal to the natural frequency of the resonator
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This is the mode first identified This is the famous Mason mode

and described by Lamé. which in Quartz has a zero
1 - coupled equal temperature co—efficient.
2 - symmetrical vibration 1= gg?ié coupling by diagonal

3 - diagonal perfect nodes
4 - analogous to (1,2) disk modes

Fig.

but drive do not control nodal

2 - symmetrical vibration

3 ~ axes perfect nodes

pattern. - analogous to (1,2) disk.

no nodal point 1 - strongly coupled tothe edges
the coupling stronger at the 2 - (Aa) is the lowest;

diagonal drive Antisymmetrical vibratiaon,

(B) is the highest;
Symmetrical vibration.

3 - (a) is a flexural type mode,
(B) is dilational tupe mode.

symmetrical vibration
analogous to (1,R) disk
(Breathing mode).

4 - Different dispersion curve,
End resonance mode.

2.4 Shows same typical vibrati&ﬁ patterns of square plate
rescnance. The mode is excited when it has a camponent
of vibration parallel to the line at the drive point.
(Dotted line plate at rest).
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BN _ L ’
N
— 1
A A
1:1 2:1 4:1
Coupllng Ay=h, A1>A2 A strong
D = Node D = significant 22 "2
A, and A, out of phase coupling D significant
(i)
C D
C D C D
B S \ \ 8
A / //_\/_______‘, P
A QJ,.J {
1:1 2:1 4:1
A is a node A is a node A is a node
Coupling B>C C>B B is weakly coupled
C and D out of C and D out of C and D best drive
phase phase C and D out of phase
(i1).
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BREATHING MODE

A .’7 ——
A, 1

1:1 2:1 4-1
£:w ratio
B B
=N__.- >
Al AQ A2 Al Best drive is A or B
B>Al B>A2 in phase A and B are in phase.
Al,A2 and B are s
in phase i11)
¢ B | C JB ‘c
P f/_\
—— Ry
4 Al /o 7
\ / I
v" ~ | —
D D D
2:w ratio 1:1 2:1 4:1
A is a node
D>C and D
C and D are out of phase
B and C are out of phase
(iv)
AB <> o s
A Vibration a ‘ No Vibration
e N
N ~N—
f:w ratio 1:1 2:1 4:1
(End resonance) Best drivg is when B is at an
angle of 457 fram the edge.
(v}

Fig. 2.5 Shows the drive conditions to give maximum coupling of
the vibration to the line. Typical vibrational patterns

are shown for different length-to-width ratios.
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CHAPTER THREE

THE RESONANT MODES OF SQUARE PLATES

3.1 INTRODUCTION

Problems involving the extensional vibration of
circular plates have been solved by Love(50 ). Solutions

of the differential equations of motion for different

(92)

modes are available (Holland,1966,Sharp Y. Experimental.

measurements on thin isotropic disks show good agreement
with these theoretical eigen frequency values. Poisson's
ratio and the elastic moduli for isotropic materials can
be measured precisely better than 0.2%. Using tabulated
eigen values for the various modes, in particular those
modes which are governed principally by the shear modulus
such as (1,2; 1,3;.....), and those which are more

dependent on Young's modulus, e.g. (1,R; 2,1 and 2,R)
(1)

modes, two moduli can be obtained (Ambati , Chaplain(lS)).
The Poisson's ratio modulus is normally used together

with shear, plate or Young's modulus as convenient.

For rectangular plates, no general solution is
known, the difficulties of obtaining exact solutions of
the equation of motion arise from the restrictions

imposed by the boundary conditions on the straight edge

of the plates.

Solutions for some modes have been found under
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(45,64 )

certain limited boundary conditions . Modes with
zero displacement at the corners have exact solutions,
these have been described by Lamé for isotropic elastic

plates. He obtained the exact solutions of the equation

of motion for these boundary conditions.

Different methods have been attempted to obtain the
solutions of the differential equation of motion for

(22 )

different circumstances. Ekstein was first to study
the vibrational modes of square plates using variational
techniques known as a perturbation method. 1In this method
some extensional modes of square plates were calculated,
however his resonant frequencies were only approximate.

" . 51
Then Mahly and TraSch( )

found a method of transforming
Fkstein's infinite determinant into a simple transcendental

equation which could easily be solved exactly.

Oneo,l958(78 ) has studied the modal vibrations of
a rectangular plate with variational techniques using
trail functions. He reported that an accuracy of better

than 1% is obtained for the fundamental longitudinal

mode along the length.

Most recently these modes have been studied using
finite difference(48’49£nd finite element methods(37 ).
In the work of Lloyd.and Redwood, finite difference
techniques were applied to transform the differential

equation system into an approximate matrix eigen value

problem.
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They observed that for square and rectangular
isotropic plates, there exists four distinct families
of modes. They reported that the predicted resonant

frequencies are within 2% of experimental values.

More accurate results have been obtained by
31
Holland( ); using Lagrangian techniques and trail
functions similar to those used by Ekstein. By those

means, he reduced the differential equation eigen value

problem to an approximate matrix characteristic value
problem which is more efficient technique than that of

Lloyd and Redwood.

Holland has confirmed that rectangular plates can
have four types of contour extensional modes: diagonal
shear, dilational-type, flexural along the major axes,

and flexural along the minor axis.

Extensive theoretical data on the normalised
resonant frequencies of different modes of each family is
given by Holland and Roark (1967)(32). They expressed
the results using Poisson's ratio and the ratio of length

to width as independent variables.

3.2 SOME EXPERIMENTAL CONSIDERATIONS

Solutions of problems in anisotropic elasticity often

lead to calculations which are extremely if not
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prohibitively difficult. These require some assumptions

to make a solution possible.

To make a comparison between the theoretical results
of the modal resonant frequencies of the square and the

rectangular plates and the experimental results, isotropic

materials have to be used.

Experience with disks is that sliced from drawn rod,
they appear isotropic. In axial directions there is no
stress and effects associated with longitudinal grains

are not present.

In a rod the longitudinal and shear resonances give
the moduli directly. For some materials different values
of moduli are obtained, which indicate radial anisotropy.
Considering anisotropic rods such as carbon or glass
fibre in polymer where the fibres are simply longitudinally
oriented, the longitudinal velocity is high because of
the high elasticity of the fibres but the shear velocity
is small being controlled by the polymer matrix rather

than the fibre.

Materials such as glass and silica (fused quartz)
show identical moduli values whether these results

are obtained from rods or disks cut from the rod.

Disks cut from rolled metal sheets are anisotropic
as is shown by a split in some modes, in particular the

lower order modes. In aluminium and steel the elasticities
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differ by a few percent parallel and perpendicular to the
direction of the roll. These features have been investigated

in detail and are described in Chapter Six.

The isotropic materials which have been measured were
prepared by machining a thin slice of a plate from
cylindrical rods or bars. They can be considered as a
planary isotropic (orthotropic). The grains direction
which are longitudinally oriented in the rod, are involved
only in the thickness of the plate where no body

displacement takes place in it.

3.3 LOW ORDER SQUARE PLATE MODES

To understand the vibrational spectrum of a thin
rectangular plate, it is convenient to regard the
simplest and easiest geometry in which the vibrations

occur - the square plate.

Materials with different Poisson's ratio have been
prepared as a thin slice of a plate machined from a
cylindrical rod or a bar as described in the previous

section.

Precise values for Young's modulus, the shear
modulus and Poisson's ratio for the materials used were
measured using the disk theory. The vibrational modes
of the square,plates,which were machined from the

isotropic disks, were then investigated using various
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driving techniques. Initially the plate was driven at
the centre of the side where most of the modes with
antinodes at this point will be excited. Modes with a
node at this point need different driving positions,
ideally parallel to the maximum displacement vector to
allow the signal to be picked up and displayed on the
screen of the oscilloscope. The modes were soon
identified, and the vibrational patterns were drawn using
the probe already described. To investigate the nodal
pattern for each mode, the probe was extensively used
and nodes were identified and followed through a point
where the phase of the motion is changing. This is
carried out by touching the probe to the surface of the

plate at a small angle.

The sketches for the lowest fifteen modes of the
square plate resonator are shown in Fig. 3.1 . The
vibrational displacements patterns are illustrated for
the aluminium plate with their normalised frequencies

corresponding to the plate wave velocity.

The resonant modes of the square plate can be
classified into groups according to their vibrational
patterns. The coupling to the line and the phase of the
motion for the opposite sides of the plate must be taken
into consideration for this classification. There are

mainly three types of the vibrational modes for the
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square plate:-

(i) = The dilational type modes — The general feature

is that the displacements at the two opposite sides
of the plate have an equal phase. The mode having
a symmetrical feature of the vibration. The

fundamental of this type is mode (3) in Fig. 3.1 .

(ii) The diagonal ‘shear type modes - These have

nodes at the centre of each side, therefore the
mode requires a different driving position. Mode (1)

represents the fundamental of this type.

(iii) The flexural type modes - These have the

characteristic of "free-free bar" flexural vibrations.
The phase is reversed at the two opposite sides with
maximum coupling at the edges of the plate. These
modes have an antisymmetric vibrational patterns

feature. Mode (2) is the fundamental of this type.

A most interesting feature of the square plate modes
is that, unlike the disk, the mode which has two nodal
diameters is split into two fundamental modes, the lowest
one has nodal lines parallel to the sides and antinodes
at the corners. This mode is historically important
and known in gquartz as "Face Shear G.T. Cut" mode
developed by W. P. Mason(54'552 It gives the low

temperature coefficient quartz resonator which was used
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in Radar and LORAN navigation system of W.W.2.

The second fundamental mode has a node at each corner
giving nodal lines across the diagonals. This is the
original mode described by M, G. Lamé®>) in 1866. since
there is no stress at the corners, this simplified the
boundary conditions for the solutions of the equations
of motion enabling exact solutions to be achieved. These

fundamental modes were found to be the only pure shear

modes in square plates.

The breathing mode in the disk (1,R) is associated
with one in the square plate vibration. In this mode,
the phase of the motion is constant over the whole
periphery. The amplitude is higher at the corners than
at the centres. The total area of the plate is changing,
this means that it is more dependent on Young's modulus,
while the other modes are more dependent on the shear
modulus because there is a distortion in their shape,

and the change in their area is very small.

The breathing mode has a node at its centre if the
plate is indefinitely thin, but the resonant frequency
requires a correction as in the disk, if the thickness
is signficant compared to -its length. The displacement
in the thickness direction is associated with the
lateral contraction due to the Poisson's ratio coupling
of the material.
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The weakly coupled mode to the driving wire at
certain driving positions éan always have an alternative
position where the vibrations have more significant
displacements and consequently the mode will be more

tightly coupled to the 1line.

Some of these modes require an edge drive, while
the others require completely different driving conditions.
In the case of the edge drive, the lowest of these is mode
(2) in Fig. 3.1 . This mode has three nodal lines, two
of them are parallel to the sides of the plate and the
third is crossing them to form two axial nodes in the
plate. The next mode which has three nodal lines 1is
mode (6) of the disk. The three nodal lines are crossing
each other at the centre to form an axial node. This
was confirmed by clamping the plate at its centre. When
the mode has a central node the clamping does not effect
it. The feature of modes having non-symmetrical nodal
patterns has a special interest in the case of the
investigations related to the materials anisotropy, this

will be discussed in detail later.

The other modes which have the feature of being
tightly coupled at the edges of the plate are modes (4)
and (7). These require an angle of 45 degrees with the
driving line for optimum excitation. The resonant
frequency of mode (4) has been investigated extensively,

and it has been found that it is controlled by the Young's
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modulus as will be discussed later. This mode with

mode (2) were found to combinedto form a . single resonance
(end resonance) when the plate length exceeds twice the
width. Maximum coupling again occurs at an angle of

45 degrees between the driving line and the edge of the

plate.

Mode (9) was described as a second breathing mode {48 )

A close look at its vibrational pattern shows that there
are two nodes on each side of the plate indicating by the
phase reverse of the motion at the centre and the edge

of the plate even their coupling to the line is almost
the same. These are forming four nodal lines crossing
each other to form a node at the axial centre. This was
verified by again clamping the plate at its centre. Nodes
on the side of the plate indicate that its shape is
changing rather than its area. For this reason it cannot

be classified as a breathing mode.

Mode (8) was not unambiguously classified. It has
an antinode at the centre indicating that the nodal lines
are parallel to the sides. Extensive use of the probe

indicated a 2x2 nodal pattern.

Figure 3.2 shows the vibrational nodal patterns

for the lowest order modes of the square plate and their

corresponding disk modes.
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3,4 THE RESONANT FREQUENCY CHARACTERISATION

Isotropic materials ranging from brass with Poisson's
ratio of 0.36 to pyrolytic graphite with in-plane value
of -0.10 have been used in this investigation. Accurate
measurements of Poisson's ratios of the materials and
their modulus have been carried out using disk resonators.
The disks were then machined to perfect square plate
geometries. A set of the samples used in this
experimental investigation are shown photographically in

Fig. 3.3 .

The different modes of the vibration have been
excited using an optimum driving position. The
frequency-length product for each mode has been normalised
to the plate wave velocity. The complete set of the
results is shown for different materials in Table 3.1.

The choice of the plate velocity for normalisation is

arbitrary but is widely used.

The graphical plot for variations of various modes as

a function of Poisson's ratio is shown.in Fig. 3.4.

Wwith materials having progressively decreasing
Poisson's ratios, all the modes, except one, rise
linearly. While the one which is going in opposite
direction, like the disk resonant modes, is the breathing

mode. The variation of this mode with Poisson's ratio,

unlike the others, is not linear. It overlaps with the
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Lamé mode and mode (4) at zero Poisson's ratio; i.e. for
materials with low Poisson's ratio, the three modes
(Lamé, breathing and mode (4)) will. be close to each
other. This can be used as a reference for calculating
the Poisson's ratio for isotropic materials. The
frequency ratio between the breathing mode and one of the
fundamental modes can be used as a sensitive method for
measurement of the elastic modulus of the materials.
Table 3.2 shows the frequency ratio of the breathing
mode to the Lamé mode for various materials measured.
The plate modulus and Poisson's ratio have been measured
from the disk. The variation is shown graphically in
Fig. 3.5 . Within the limits of observation the
frequency ratio varies linearly with Poisson's ratio
above (+0.10); then a slight curvature occurs for values

below that.

The large change means that observations on square
plates give a sensitive measurement of Poisson's ratio
and unlike disks present no difficulties in the case of
metals with close frequencies of (1,3) and (1,R) modes.
This is an important practical application for material
studies where sguare plates can be made available. The
accuracy of these measurements, however, depend on an
experimental calibration curve, while the corresponding

disk method is based on a completely accurate theoretical

expression.
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3.5 ~ THE MODES OF HARMONIC RELATIONS

Mason and Lamé modes have been investigated
extensively, as they are the most common fundamental
and simplest resonant modes of square plates.
Measurements on square plates with various Poisson's
ratio show that these are also modes with frequencies
twice and three times the fundamental Lamé mode. This
is illustrated in Table 3.3, the frequency is normalised
to the shear wave velocity (CS) which was measured from
disk resonators for different materials. These harmonic
relationships were accurate to better than 3. In other
words, their resonant frequencies are precise integers
of the fundamental Lamé mode regardless of their
Poisson's ratio. This is an interesting result as
harmonic relationships are not normally encountered in
the vibrational spectra of solids. It does not appear

to have been explicitly reported to date.

It has been found that all these modes share the
same feature of having nodes at their cornexs. This
indicates that they are the modes described and resolved
by Lamé. Exact solution for these modes should be
obtainable because of having zero displacement at the

corners, which satisfy the difficult boundary conditions

for the differential equation Qf motionf

Driving the plate at the centre of the side will

excite the odd Lamé modes, i.e. the first, the thixd,...etc.



modes; while the even modes, because of a node at the
centre of their sides, require an intermediate driving

position where the maximum displacement occurs.

Figure 3.6 demonstrates the harmonic relationships
of the Lamé modes series. It shows the lowest three modal
pattern configurations. The simplest explanation is to
consider that the second harmonic can be regarded as four
Lamé plates of half the fundamental size and twice the
frequency. Subsequently the third, fourth,...etc.

harmonic have similar considerations.

Lamé mode was found to be the only mode with this

feature of being harmonically related . The other. fundamental

mode, Mason, was found to have no harmonic relationship

with any other modes.

Table 3.4 shows the values of the normalised
frequency for these two fundamental modes. It can be
seen that the first Lamé mode has a constant value of
/2. The Mason is also considered to be a pure shear
mode although an experimental variation for the various
materials of about 1% was observed. The results indicate
that these two modes are shear type modes with the

wavelengths equal to the diagonal of the square plate in

the case of Lamé mode.

The graphical plot for the values of the frequency-

diagonal productanormalised to the shear wave velocity
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as a function of Poisson's ratio is shown in Fig. 3.7 .
Modes with no variation or slight variation .indicate
that they are governed principally by the shear modulus.
Clearly the breathing mode is the only one which has a.large

curvature change with Poisson's ratio .comparing to the other

modes.,

3.6 THE ROD MODULUS MODES

It is interesting to find some modes which are
controlled by the shear modulus. The dependence of the
two fundamental modes on this modulus was demonstrated
earlier. In the Lamé mode, the shear wave length was

found to form the diagonal of the plate.

Further investigations were carried out concerning
the characterisation of the different resonant modes
with respect to the Young's modulus. Normalising the
frequency-length product for each mode to the rod
velocity shows that mode (4) has a constant value

irrespective of the pPoisson's ratio of the materials

being measured.

A complete set of the measurements is given in
Table 3.5, the values of the rod velocity and the
Poissaon's ratio were measured to an accurate figure from
the disk. It will be noted that the normalised value of

22f to the rod velocity for all the materials is very

close to unity. Therefore it can be said that this mode

~33—



is governed by the rod modulus where the rod wave length

is twice the length dimension of the plate.

It has been thought that the value of 22f can be
very close to the rod velocity for infinitely thin plateS§.
This will reduce the lateral contraction due to the
Poisson's ratio coupling in the thickness direction

of the plate.

The dependence of the other modes on the Young's
modulus can be observed by normalising them to the rod
velocity. This is shown graphiéally in Fig. 3.8 .
Modes with slight variation or no variation at all with
the Poisson's ratio indicate that they are governed

principally by the Young's modulus.

3.7 THE ANISOTROPIC EFFECTS OF THE GRAIN ORIENTATIONS

ON THE RESONANT MODES OF THE SQUARE PLATE

3.7.1 The Symmetrical Modes

In disks cut from rolled metal sheets, which can be
considered as moderately anisotropic,the fundamental
mode which has two perpendicular nodal diameters was
(9,19 )

found to be split in two modes In one, that

with the lower frequency, the nodal lines were

symmetrical about the axis of roll, and in the other they

were at 45 degrees.
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A number of square plates of different orientations
were cut from rolled metal sheets. The variation of the
frequency for the lowest six modes with plate orientation
is shown in Fig. 3.9 . The angle is measured relative to
drive position. The cyclical variation of the two
fundamental modes can be seen clearly but this does not
occur in the flexural modes. The effect is less on the
breathing modes. This obviously has an effect on the
apparent value of Poisson's ratio. It is shown
grahically in Fig. 3.1C . The values of Poisson's ratio
were obtained from the ratio of the breathing mode to
the Lamé mode using the calibration curve shown in Fig.

3.5 .

3.7.2 THE NON-SYMMETRICAL MODES

Measurements on shim steel square plates show the
variation of the two fundamental modes with the plate
orientation. These modes, unlike the disk (1,2) modes,
have not been split. This is because the modes have
symmetrical nodal pattern configurations. On the other
hand, modes with non-symmetrical nodal patterns are

expected to split as a result of the plate anisotropy.

Mode (2) in Fig. 3.1 was described as the

fundamental nfree—free bar" vibration. It has three

nodal lines forming two axial nodes. This mode becomes

double as the existence of the grains remove the mode.
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degeneracy. There is a frequency variation of about 3%
observed in the measurement of shim steel plates. The
best drive to excite the douhle modes is to drive the

plate at the edge where both have displacements. This

is demonstrated in Fig. 3.11 .

In general, for any modes of having (n,m) nodal
lines; there will be no split if n=m, and the mode will

split if n#m.

3.8 NON-HOMOGENEQUS MATERIALS STUDY

Measurements of the resonant frequencies for anisotropic
materials have been carefully investigated. Nuclear
graphite, which might be thought to be isotropic, showed
anomalous results demonstrating a significant anisotropy.
Measurements on square plate, machined out of the disk, show
a greater difference between the observations on different
sides of the plate. This is shown in spectrum form in
Fig. 3.12. The modal frequency was normalised to the
fundamental Lamé mode, and the line height represents the
normalised coupling. The breathing mode was found to be
split into two separate modes, while the fundamental Lamé
has no significant effect. This will show two different
values of Poisson's ratio, one at (-0.05) when the drive is

at (a), and (+0.10) when it is at (B) side.

Since the two fundamental modes have not been affected
significantly by the drive position, this indicates that the

shear modulus has just a unique value for this material.
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Fig.

Sketches for the lowest fifteen vibrational

resonant patterns of square plate (After
Holland, R. reference 31 ).

The frequency-length product 1is normalised
to the plate wave velocity in an Aluminium

plate of Poisson's Ratio (0.338).
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disk modes.

-~38-

DISK MODES SQUARE PLATE MODES
Mason Mode Lamé Mode
Mode Mode l
(1,2) (1,2)
Square————e= —
l
/ '
Flexural 1 Flexural 2
N Lt
AR ARVAR!
Mode —t <+t — Mode —+ <
(1,3) (1,3) ‘
< ——squaretT— /\————»
w KN N
ro Loy T S
I
Mode - — — ﬁgzéelthing
(1,R)
i
Bl b
PRI 2R R I
békl)?i) i nd € <t |
<1 ——
pl1a ) AN
e . |
(2,2) Square
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Fig.

3.

The photographical display shows the set of
samples used in this investigations. These
have been machined in square plate geometries
from disks. The materials shown are ranging
from Brass with Poisson's ratio = 0.357 to
Pyrolytic Graphite of an in-plane Poisson's
ratio = -0.075. The values of Poisson's ratio
and the plate modulus have been obtained from

+he disk measurements.
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Fig. 3.5 The variation of the frequency ratio of the breathing
mode to the Lamé mode as a function of Poisson's ratio.
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Fig. 3.6 This configuration was given by Holland, but the .

harmonic relationship apparently overlooked -

The second harmonic can be considered as four
Lamé plates of half the fundamental size at
twice the frequency. Subsequent results are

determined by considering the third, fourth, etc.

harmonic Lamé modes.
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modes.
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Fig.

3.8

The graphical plot for the variations of the
frequency-length products normalised to the
rod velocity (Co) as a function of the
Poisson's ratio for the lowest ten square

plate modes.
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4000 -\/\/\_/

Mode (1) Mason Mode

Y { T i T 1 ! 1 ! l ' L
o 45 90 135 180 > 0
Grains degree angle

Fig. 3.9 Graphical plot for the variation of different square
plate modes with the grains direction for shim steel.
Grain orientation angle is corresponding to the drive

line.
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Fig. 3.10 Gr

157%
aphical plates repres

180
8 degree grain direction >
ent the variation of the two
fundamental square plate modes with the grain directions.
The effect of this on the apparent value
is also shown. This has

of Poisson's ratio
curve of Fig. 3.5.

been found fram the calibration
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Symmetrical Modes
No Splitting

Grains

r-—-—-
I

| IR,
Non—-Symmetrical Modes
Splitting
(about 3% for shim steel)
(n,m) if n=m No splitting

if n#Am Splitting

3.11 Sketches for the symmetrical and non-symmetrical modal
atterns configuration showing the effect of the grains

Fig.

P
orientation on the modes splitting.
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A drive — g

B drive
4
i
1.0 Normalised Freguency ‘ 2.0
——1 drive
Normalised
Coupling
A = a2 Mode (114) /
Fundamental B N ? o #
1.0 - Lamé Mode
B drive ;e
MOde (1’3)
Rreathirg 4
0.5 7
$ T
1.0 2.0

Normalised Frequency

Fig. 3.12 Spectrum for Nuclear Graphite showing effect of anisotropy
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Brass
Aluminium
Copper

Black
Plastic

Steel
Mica
Glass
Silica
Silicon

Pyrolytic
Graphite .

36.0

1 48.0

27.0Q

36.0
35.0
25.4
77.6

44 .4

41,088

46,414

59,080

32,642
65.040
166.25
38.593
60.181

26.760

1.3880
1.3640

1.3588

1.3354
1.2970
1.2280
1.2235
1.1585

1.1272

0.9254

This shows the measured value
and the variations of their

-50-

< of the Lamé and the breathing modes

ratios with the Poisson's ratio.




carried out for vari

related to better than X%,

~51-

Brass : 0.357] 2095 | 36.0 41,088 82.1701 123.260
Aluginium| 0.338] 3159 48,0 46,414 92.825( 139.235
Coppex 0.328) 2271 27.0 59.080} 118.152} 177.230
Black.
plastic 0.313] le64 | 36.0 32.064 64.125 96.190
Steel 0.285| 3226 35.0 65.040! 130.02 195.05
Mica 0.223] 4912 25.0 135.380| 270.65 406.05
Glass 0.22041 3477 77.6 31.543 63.05 94,610
Silica 0.165{ 3786 44,4 60.155| 120.150| 180.455
Silicon 0.14 1892 50.0 26.710 53.22 79.95
Pyrolytic) 25 71.550| 142.65 | 213.78
,.Graphite__79f97$’_2537,, .._fQ ...... N T LT
The harmcnic relationship of the Lamé modes. Measurement

ous materials shows the modes are harmonically




'TABLE' 4

t:h»eDiSk ........ TR ] EE G £ I Y 7 13 O
C, _p| Iength]Tamé Mode . . | Mason Mode. ...
Sample o) m.sec ~| mm 51 o
| £ Kz Cf £ Rz | AE/C
...................... RS-
........ Ce L
Brass 0.357| 2095 | 36.0 | 41.088| 0.9985| 36.180| 0.6217
Aluminiun| 0.338] 3159 | 48.0 | 46.414) 0.9974| 40.956| 0.6211
Copper 0.328] 2271 | 27.0 | 59.08 | 0.9933| 52.292] 0.6217
Black
Black | 0.313| 1664 | 36.0 | 32.064|0.9810| - -
Steel 0.285| 3226 | 35.0 | 65.040|0.9979| 57.396| 0.6250
Mica 0.223| 4912 | 25.4 | 135.380| 0.9900| 121.110| 0.6263
Glass 0.220| 3477 | 77.6 | 31.543| 0.9956| 27.706| 0.6183
Silica 0.165| 3786 | 44.4 | 60.155|0.9977| 52.905| 0.6204
silicon | o0.14 | 1892 | 50.0 | 26.7100.9982| 23.4%0| 0.6208
Pyrolytic| o o75| 2537 | 25.0 | 71.550| 0.9971| 64.281 0.6334
Graphite . : A o R T R |

The experimental results for Lamé and Mason modes.

The precise values of the freque

various materials.

normalised to the shear velocity (CS)

from the disk.

ncy are obtained for

The frequency-length product is

which was measured




Sample q Co Length | Freq 208 _, 4%
AR PR 'm_‘sec?l: . (Mlnnm Kz ... m.sec CO
Brass 0.357 3452 -36.0 47.681 | 3433 0.9944
Aluminium 0.338 | 5165 48.0 53.292 5116 0.9905
Copper 0.328 | 3700 27.0 67.680 | 3655 0.9878
Black 0.313 | 2697 36.0 37.115 2672 0.9907

Plastic

Steel 0.285 | 5171 35.0 73.043 | 5113 0.9888
Mica 0.223 | 7682 25.4 148.60 7549 0.9827
Glass "0,220 | 5432 77.6 34.69 5384 0.9911
Silica 0.165 | 5780 44.4 64.550 5732 0.9918
Pyrolitic -0.075 {3418 25.0 67.985 3399 0.9945
Graphite

The experimental results for mode (4), one of the square

plate resonant modes.

The frequency-length product is

very close to the rod velocity (CO) which was measured

from the disk for different materials.

at 45 degre
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