
PROGRAMMING AND SIMULATION OF CONTROL ALGORITHMS

USING COMPUTER GRAPHICS.

Thesis by

Lim Jit Wee

For the degree of

DOCTOR OF PHILOSOPHY

submitted to the

Department of Electrical and Electronic Engineering

THE UNIVERSITY OF ASTON IN BIRMINGHAM

October 1981

The University of Aston in Birmingham

‘PROGRAMMING AND SIMULATION OF CONTROL ALGORITHMS

USING COMPUTER GRAPHICS.'

Ph.d. Thesis, Lim Jit Wee, October 1981

Summary

A system for the programming and evaluation of process
control algorithms has been developed. A graphical block
diagram language was adopted to provide an easy means of
programming via a graphic terminal. A number of pre-defined
blocks are provided and programming is achieved by
connecting the required blocks together. The graphic blocks
correspond to software modules performing the required
control functions.

The pictorial program is then compiled to givea
machine-independent program structure table. This can then
be linked with the block routine code to provide the target
processor's control program to realise a required control

algorithm.

A similar graphic approach was adopted for simulation
of the controlled processes, so that the performance of the
control algorithm may be evaluated. The use of standardised
software modules and computer graphics simplifies
programming and the maintenance of system documentation.

The interaction and communication between the two sub-
systems (control scheme and process model) supports the
testing and evaluation of control algorithm. The data
structures for effective graphics and efficient execution of
the blocks are specified. The various functions necessary
for the compilation of the graphical program are
investigated and analysed.

KEYWORDS : control algorithm programming, simulation,

graphical language, compilation,

data structure

ACKNOWLEDGEMENTS

The Author wishes to express his appreciation and

gratitude to his supervisor, Dr. G. K. Steel, for his

invaluable assistance and guidance throughout the period

spent on this research and to Professor H. A. Barker for his

initial supervision.

Thanks are also due to the staff of the department,

colleagues and friends for their encouragement and advice.

Special thanks to Dr. C. Y. Linn for his assistance and co-

operation.

Finally, the Author wishes to thank his parents and the

rest of the family for their patience, support and kind

understanding throughout the project.

ey

LIST OF CONTENTS

Summary i

Acknowledgements ces

List of contents iii

List of illustrations viii

List of tables xi

CHAPTER

1. General Introduction and Research Objectives i

2. Process Control 4

2.1 Introduction 4

2.2 Programming languages oI

2.3 Choice of programming approach 8

2.4 Levels of process control S

2.5 Generation of control program code 10

2.6 Execution on dedicated control processor 14

2.7 Block types in process control 16

2.7.1 Implementation of interface blocks 20

2.7.2 Minimal basic set of blocks 21

2.8 Implementation of blocks 22

2.8.1 Integrator block 22

2.8.2 Delay block 23

2.8.3 PID block 24

2.8.3.1 Introduction 24

2.8.3.2 Variations of algorithms 26

2.8.3.3 Further considerations 28

Let

3. Graphics Systems

Data

4.1

Graphics display

Graphical input mechanism

Graphics software

Graphics and data structure

Graphic data structure

Graphic picture structure and programming

methodology

Structure

Graphic data structure

4.1.1 Introduction

4.1.2 Graphic block (GB) record

4.1.3 Graphic information (GI) record

4.1.4 Macro expansion (MX) record

4.1.5 Non graphic data (NGD) record

4.1.6 Graphic text (GTXT) record

4.1.7 Input list (IL) record

4.1.8 Relation between graphic records

Graphic menu

Run time data structure

4.3.1 Introduction

4.3.2 Run time block records

4.3.3 Upwards link (ULN) record

4.3.4 Run time type records

4.3.4.1 RT simple type (RST) record

4.3.4.2 RT composite type (RCT) record

4.3.5 Run time text (RTXT) record

4.3.6 Run time value table (RVT)

iv

ae

33

35

36

37

38

29

42

42

42

43

46

48

49

50

52

53

54

56

56

57

58

59

59

60

61

62

5. User Interface and Graphic Editor 78

5.1 User interface design 78

5.1.1 Introduction 738

5.1.2 Command languages 12

5.1.3 Feedback considerations 81

5.1.4 Information display 82

5.2 Graphic editor 84

5.2< Introduction 84

5.2.2 Graphics hardware description 84

5.2.6 sPick function 86

5.2.4 Editing of the picture 87

5.2.5 Connections to and from junction 90

5.2.6 Text editing OF

6. Graphic Compiler Oe

6.1 Introduction 93

6.2 Transformation of graphic type to run time type 94

6.3 Expansion of macro block and subpicture 95.

6.4 Error checking by graphic compiler 96

6.4.1 Missing connections 96

6.4.2 Illegal data type connection 96

6.4.3 Algebraic loops of

non-retrospective blocks 98

6.5 Sequencing the blocks for execution oo

6.6 Allocation of data tables for blocks 100

6.7 Initialization of the run time data table 103

6.8 Listings and messages 103

6.8.1 Examples of listings and warnings 104

oi.

Compilation Activities (1) Picture Validation

Run time treatment of composite blocks

Closed loops of blocks

Algebraic Loop detection

7.3.2

To3s2

Introduction

Implementation of loop detection scheme

Compilation Activities (2) Sequencing

Process ing order amongst control scheme blocks

Sequencing functional block

8.2.1

8.2.2

8.2.3

8.2.4

Introduction

Sequencing method implementation

Data structure used in sequencing

General comments on sequencing

Compilation Activities (3) Data Manipulation

2 we Allocation of storage for run time block

9.1.1

Balog

Onle.3

Initial

9.2.5.1

9.2.5.2

Introduction

Data structure for retrospective block

Data structure for

non-retrospective block

ization of functional blocks

Introduction

Initialization criteria

Input-output initialization

Steady-state initialization

Further considerations

Steady-state initialization

External terminal initialization

106

106

109

lll

Ca

114

117

LT

a9

rig

120

122

123

25)

125

125

126

128

129

129

130

131

132

134

134

136

10. Simulation

10.1 Review of digital simulation languages

10.2 State variable representation

10.3 Integrator block in simulation

10.3.1 Introduction

10.3.2 Features of single step and

multi-step approaches

10.3.3 Error estimation

10.3.4 Control of integration step size

10.4 Relations between integrator and other blocks

10.5 Distinction betwwen H and Tc

10.6 Block types in simulation

10.6.1 Minimal set of basic blocks required

10.6.2 Composite block implementation

10.7 Delay block

10.8 Derivative block

10.9 Simulation and the graphic compiler

10.9.1 Sequencing of blocks

10.9.2 Storage allocation for blocks

11. Testing of control algorithms

11.1 Introduction

11.2 Interaction supervisor

12. Conclusion and results

12.1 Programming implementation of system

12.2 Conclusion

Appendices

List of references

vii

137

137

139

140

140

143

145

147

148

149

E51

152

152

153

155

Lae

LIST OF ILLUSTRATIONS

Generation of program code

Scheme of downloading to dedicated controller

Memory map of dedicated control processor

Examples of DDC functional blocks

Delay block implementation

Basic PID - block diagram

Interactive PID - block diagram

Incremental PID - block diagram

Set point derivative elimination - PID

Simplified model of interactive process

Heirachical structure of picture

Graphic block (GB) record

Graphic information (GI) record

Macro expansion (MX) record

Non-graphic data (NGD) record

Attributes of the flags in NGD record

Graphic text (GTXT) record

Graphic type specific text records

Graphic block specific text records

Input list (IL) record

Relation between graphic records for simple block

Relation between graphic records for

composite block

Graphic menu data structure

Run time block records

Upwards link (ULN) record

Example of run time composite block record

of 3 simple blocks

viii

ae

14

15

16

24

25

27

28

31

33

41

63

64

65

65

66

67

67]

638

69

70

we

yh

13

74

74

4.16

4.17

4.18

10.1

10.2

10.3

10.4

10.5

Run time simple type (RSTYPE) record

Run time composite type (RCTYPE) record

Run time text (RTXT) record

Equipment used in project

Simplified model of graphic editor

Simplified model of graphic compiler

Example of an algebraic loop

Relation between run time data file and

block record

Subroutine and effect on run time data

Macro and effect on run time data

Run time treatment of composite block

Square root function diagram, algebraic loop

Non-linear filter diagram, non-algebraic loop

Loop detection scheme

Processing order amongst control scheme blocks

Groups of interconnected nodes

Block sequencing example

Data structure used in sequencing

Program modules and data flow

Run time data file structure

Structure of LEAD/LAG function block

Structure of first order lag block

Initialization block diagram

Runge-Kutta 4th order integration rule

Adam-Moulton 4th order predictor-corrector

Runge-Kutta-Merson 4th order integration rule

Distinction between H and Tc

Composite block implementation - simulation

ix

1

76

ay

85

87

94

98

102

108

108

108

109

Lis

118

120

£22

123

124

127,

129

13

134

142

142

146

149

152

10.6

10.7

10.8

10.9

11.1

Derivative block and difference equation approach

Derivative function from integration

Execution order amongst simulation blocks

Data allocation for integrator

Interaction between control scheme and model

Interfacing to actual process

Data structure for interaction communication

Graphical details of integrator block

Graphic data records for integrator block

CORAL 66 procedure for integrator block

TS3

154

156

158

162

163

163

169

170

and

2

5.

epi

ui

LIST OF TABLES

Transformation of integral action

to discrete form

Graphic editor command characters

xi

22

88

CHAPTER 1

GENERAL INTRODUCTION

During the last two decade the advent and proliferation

of the minicomputers and microprocessors has reduced the

cost of digital processing power. With lower cost and higher

reliability of computing elements, digital control is

becoming widely adopted. This is mainly possible due to the

advancement in technology and mass manufacturing of

programmable hardware. ic is this programmable capability

that makes the computing system very versatile, thus very

responsive to the changes in requirements.

In this project computing power is exploited to create

a system which allows programming to be carried out by

graphics or drawings. This means of programming will

eliminate the major hindrance to the use of computers - the

need to acquire detailed knowledge of the computer hardware

and programming languages. This system permits the user to

describe the problem to the computer system by drawings, a

very natural and effective man-machine means of

communication.

The main objectives of this research are in the areas

of

(1) designing and implementation of a computer graphics

package. The package provides an efficient means of

entering graphical information into the data base in

i

the form of a graphical programming language (GPL). The

data structure required for efficient handling of

graphic information is identified.

(2) the compilation of the graphical programs to executable

programs representing process control algorithms. The

graphic data are combined with pre-fabricated software

modules. Use of such standardised modules results in

more reliable software.

(3) to test the working of the control algorithms and allow

the interactive modification of control parameters.

Reliable control software is obtained by testing the

interaction with a simulated model of the process. The

graphical programming approach is extended to include

simulation algorithms. The interaction ensures the

satisfactory performance of the control algorithms

before loading them to dedicated control processor or

controller.

The thesis is divided into the following chapters.

Chapter 2 deals with process control aspects —- general

requirements and the implementation of some functional

blocks. Chapter 3 is concerned with the general graphics

system - display and input mechanisms. In chapter 4, the

details of the data structures used for graphics purposes

and the execution phase are discussed. A tailored-purpose

data structure for graphics (GDS) is chosen to ensure

efficient graphics operation and memory storage utilisation.

The execution phase data structure (RDS) is concerned more

a

with the efficiency of execution. Chapter 5 covers the man-

machine interface of the GPL system and gives a general

description of the graphic editor and its capabilities. In

chapter’ 6, 7, 8, 9 the graphic compiler of GPL and its

activities are analysed and discussed. Chapter 10 deals with

simulation - general requirements and the distinction

between simulation to control algorithm functions. In

chapter 11, the testing and evaluation of the control

programs are considered. Chapter 12 concludes the thesis

with a review of results.

CHAPTER 2

PROCESS CONTROL

2.1 INTRODUCTION

The application of digital computers to process control

is now well established. Digital process control has been in

use in industries for a long period of time, the first

control computer being installed in 1958 [EDWARDS 1972].

However due to the high cost and relatively unreliability of

early computers, the spread of digital process control was

much smaller than expected.

During the last two decades, with the technological

advancement and extensive manufacture of computers and other

LSI (large scale integration) components, the cost of

digital processing hardware has been decreasing at a very

rapid rate [MUSSTOPF 1979A J], [SCIAM 1977]. Low cost, and

high component quality, in turn lead to more and wider

applications. The reliability of digital hardware has been

further enhanced by the usage of distributed computing

systems, with Tocal.. data processing and remote

communication, and fault-tolerance computer architecture

using redundancy [RZEHAK 1978], [DEPLEDGE 1981].

The field and depth of computer applications in control

are well covered by [HEALEY 1975] and [DUYFJES 1977].

One major obstacle to even wider application of digital

control is the programming aspect. Process control

programming is a comparatively specialist activity, since

programming skill must be supplemented by thorough awareness

of control engineering and the process itself. The lack and

cost of personnel with the above qualifications severely

hinder the spread of computer process control.

In efforts to overcome this problem, the philosophy of

control software design has been undertaken in many

approaches (discussed in the following section). The general

trend is to allow the user himself to describe the process

and the control requirements to the control computer,

bypassing the use of specialist programmers. The general

development and trends of process control software are well

highlighted by the following publications [PIKE 1970],

{ PIKE 1972], { SCHOEFFLER 1972], [IECI 1968] and [IECI

1969 J.

2.2 PROGRAMMING LANGUAGES

The classifications of programming languages will be

discussed below with reference to process control

requirements. Programming languages can be generally divided

as follows [MUSSTOPF 1979B J], [| STEUSLOFF 1979] :

(A) Assembly/machine language. This is the lowest level of

programming, requiring detailed knowledge of the

specific machine used. The advantages are efficiency in

execution and storage space utilisation. The main

disadvantages are that (1) errors can be easily made

and are difficult to "debug" and (2) the software is

not “machine portable". So assembly language is

normally used to overcome very stringent restrictions

on memory space and processing requirements.

(B) High Level sentence-type Language (HLL). High level

languages improve on assembly languages in terms of

programmer productivity, documentation, maintainability

and portability. HLL programs are easier to write and

debug. The portability allows the transfer of programs

to other machines. One sentence in HLL is usually the

equivalent of many “sentences" of assembly language.

However HLLs do not normally produce very efficient

machine language programs. HLL can be classified as :

(1) General Purpose. The most commonly used are

FORTRAN, COBOL, BASIC and PASCAL. Extensions of

FORTRAN for control applications are commonly

carried out e.g. £ IPW/EWICS 1981]. Certain HLLs

are designed for "real-time applications" such as

RTL/2 [BARNES 1975 J], PEARL [FREVERT 1975] and

CORAL 66 [HALLIWELL 1977], [WOODWARD 1974].

Being general purpose in nature such languages

contain features that may not be necessary in

process control, leading to inefficiency. Control

software programming is still a difficult task

requiring time and skill.

(Cc)

(D)

(2) Process-oriented (problem-oriented). Here, in order

to ease the programming effort, familiar

engineering terms are introduced into the language.

A problem-oriented language is closely related to

the application field. Examples of such languages

are AUTRAN [GASPAR 1968 J], BATCH [PIKE 1970]j,

ACCOL { BRISTOL 1975] and PROSEL [NOBLE 1977].

Fill-in-the-blanks (FIB) language. This approach

eliminates the need for the knowledge of programming by

the user in the normal sense. All “programming” is done

by filling in the questions on pre-prepared "forms". A

large number of FIB languages exist such as BICEPS

[PIKE 1970], APEX [KELLY 1967] and PROSPRO [BATES

1968]. Most FIB languages are for special applications

in specific fields. Such languages are usually written

in a high level language.

Block-oriented language (BOL). This is similar to the

FIB approach except now most of the pre-defined

software modules are defined in terms of “functional

blocks". Each block performs a certain function such es

the three-term or lead/lag control. Use of such pre-

fabricated modules tends to result in more reliable

control software programs. Programming here involves

the interconnections of whatever blocks are required

(obtaining a "“control-diagram" drawing). There are two

methods of communicating the structure of the drawings

to the computer system, namely

(1) by labelling the input and output terminals of each

block and entering the structure in alphanumeric

form. Examples of such BOLS are MICRODARE [KORN

1979] and an approach by Lee [LEE 1967].

Translation from the block structure to the

intermediate code may be tedious and error-prone.

(2) by entering the actual drawing using a graphic

terminal. The computer system may then work out the

interconnections.

The approaches in (C), (D) and (2) of (B) can be

regarded as very high level languages (VHLLs). Such VHLLs

have a major disadvantage in the requirement of a long

implementation time but do offer the following advantages

(i) they are relatively easy to learn and to use, (ii) it is

possible to adopt standards for usage, (iii) they can be

modified quite easily to suit a particular application and

(iv) they offer good application-oriented, readable

documentations.

2.3 CHOICE OF PROGRAMMING APPROACH

One of the main features of the usage of computers is

to provide an easy programming facility and a friendly user

interface. To quote Wilke [WILKE 1979], “emphasis in

process control packages has been on the facilities for

operators and users, rather than on any sophistication of

control". The programming language in this implementation is

=a

a graphically based block oriented language. Graphics is a

natural medium for man-machine interaction [FOLEY 1974].

The GPL (graphical programming language) allows the

programming to be carried out by entering the actual

“drawing" of the various blocks to the computer system using

a graphic terminal. The two main advantages of using

computer graphics in GPL are the ease in use and the only

documentation required is the drawing. The GPL package will

be further discussed in section (2.5).

2.4 LEVELS OF PROCESS CONTROL

Process control software can be generally divided into

four levels of function [PIKE 1970], [SCHOEFFLER 1970],

{ TOCZYLOWSKI 1978]. From the lowest level upwards they

are

(1) Direct Digital Control (DDC). This level communicates

with the process variables directly. Data acquisition

and direct control are carried out at regular

intervals.

(2) Optimization Control. This level involves supervisory

functions applied to the DDC system. Optimization is

based on performance criteria relating to the overall

system performace.

(3) Adaptive Control. Here the process model used for the

optimization control can be checked by on-line

measurements and modified if necessary. Security checks

can be carried out to detect any plant malfunctions.

(4) Mangement Information. Tasks at this level supply

information to management and permit overall control of

the process behaviour.

Emphasis in this project is mainly with the DDC level.

Process time constants and the execution speed of the

computer are important considerations for DDC. In processes

where the process time constants are in the order of

milliseconds, DDC is not generally feasible. For many slower

processes with time constants in the order of seconds or

minutes DDC is readily applicable. The general applications

of DDC are well surveyed by Auslander & co-workers

{ AUSLANDER 1978] and Varga & co-workers [VARGA 1979].

2.5 GENERATION OF CONTROL PROGRAM CODE FROM GPL

The general sequence in obtaining the control program

code using the GPL is shown in figure (2.1). The

intermediate steps are

(1) the synthesis of the GPL "program" from the user block

diagram concept, using the graphic editor.

(2) the compilation of the GPL program by the graphic

compiler to give the program structure table (PST).

This table contains all the information as to the block

used and interconnections. The PST is numerical in

nature, comprising various run time data structure

hoe

records (section 4.3).

(3) the program generation. The program generator "links"

the PST with the appropriate run time algorithm code

routine to give the run time program code. This

machine-dependent program code is ready for execution

on the target processor. The execution of the program

code by the processor will be denoted throughout the

thesis by the term “run time phase".

The GPL program and the PST obtained in (1) and (2) are

machine-independent since they are only involved in the

transformation of the pictorial block diagram to a numerical

form suitable for the program generation section.

kes

User block

diagram concept

4+------------- +
+ Graphic +
+ editor * +
4+------------- +

GPL pictorial Algorithm
program routines *

4+------------- + 4$---------- fe
+ Graphic et + CORAL66 +
+ conpilere® + + compiler +
4+------------- + +---------- ots

Program Algorithm
structure routines
table, PST code

(ea
+ program =
+ generation * +

Executable
program * written in
code CORAL 66

FIGURE 2.1 GENERATION OF PROGRAM CODE

The structure of the package system can be divided into

four operational stages : (1) graphic editor, (2) graphic

compiler, (3) program generation section and (4) run time

algorithm routines. The first three stages are independent

of each other and operate on input data to give the

appropriate output for the next stage. If any error or

ambiguity is encountered then the relevant message is

displayed and the next stage is not activated.

aries

To allow the package to be portable, every stage is

written in a high level language, CORAL 66 [HALLIWELL

1977 J], [WOODWARD 1974]. Portability is further enhanced

by separating the machine-dependent code from the machine-

independent portions. To transfer the package to a different

computer system (with a suitable CORAL 66 compiler), only

the machine-dependent code requires modification. Most of

the machine-dependent code segments are involved with the

input and output activities.

The algorithm routine determines the functional

characteristics of each block, relating the output to the

inputs. Each routine is functionally independent, needing

only the information as to the parameter list (the block's

variables). The routines are written in CORAL 66 which is

further compiled to give the machine-dependent code. If it

is deemed necessary to modify the function of a block, then

only that algorithm routine need to be changed accordingly.

The program generation is a relatively easy task

compared with the graphic compilation. This is basically a

“linking" function, linking the required functional type in

the PST with the appropriate address of the routine code.

This function is very similar to that required for any

block-oriented language approach.

=13—

2.6 EXECUTION ON DEDICATED CONTROL PROCESSOR

This section considers one of the feasible scheme of

execution of the run time control program code obtained from

the GPL system on a control dedicated processor. The scheme

involves

as shown

downloading to the processor from the host computer

in the figure (2.2).

+-- +--

+ + + +
+ + + DEDICATED + input
+ HOST + + CONTROL +< =
+ COMPUTER + + PROCESSOR + PROCESS
+ + + + VARIABLES
+ + + + UNDER
+ GPL + down + (ee CONTROL
+ SYSTEM +---------- >+ (MEMORY) +== =
+ + loading + () + output
+----------- + +----------- +

FIGURE 2.2 SCHEME OF DOWNLOADING TO DEDICATED CONTROLLER

There are many different methods of downloading, via

(2)

(2)

(3)

"blowing" onto EPROM (programmable memory). The

EPROM can then be plugged into the control

processor for execution.

transferring on to a magnetic tape, and getting the

control processor to pick up the relevant

information from the tape.

a serial link from the host computer to the control

processor. This serial link is used to pass all the

required information.

=14—

The memory map of a typical control processor using a serial

link is indicated in figur- (2.3).

p
+ Execution + (ROM)

aP monitor +
$o-------------------- +
+ Algorithm routines + (ROM)
+ Code +
$--------------------- +
+ Program Structure + (RAM)
+ Table (PST) +
4$--------------------- +
+ Run time result + (RAM)
+ region +
$--------------------- +

ROM - read only memory
RAM - read/write memory

FIGURE 2.3 MEMORY MAP OF DEDICATED CONTROL PROCESSOR

The program structure table (PST) is generated by the

host computer and defines the particular control algorithm

employed. The monitor picks up the relevant data from each

block in the PST, finds the correct functional algorithm

code and executes the code. The result can be dumped onto

the result region before going to the next block in PST.

The dedicated control processor described above is a

simple but crude system. The processor system can be

enhanced to give a higher performance such as to provide a

display and modification interaction for the operator. This

can be achieved by having a more sophisticated execution

monitor. The execution of the control program on dedicated

processor is an area not covered by the research objectives

and will not be considered further in this thesis.

=15—

2.7 CLASSIFICATION OF FUNCTIONAL BLOCKS

The basic set of functional blocks simulate functions

familiar to process control engineers. Some of the more

frequently used blocks are indicated in the figure (2.4).

The GPL permits the provision of a new block in 2 ways,

(1) by the specification of a set of numerical coordinates

(for drawing the block symbol) and an algorithm

procedure to define the relationship of output to

input. Appendix B gives an example of this process.

(2) by taking blocks from the basic set to create a new

“composite block".

[J aan =|
aie ‘oF ces PID fax + a

—+Pv ral

INTEGRATOR ee

[J

a DE LANa ae ad ress ag / Pc
N

| Imeut INTERFACE Function

Generator.

FIGURE 2.4 EXAMPLES OF DDC FUNCTIONAL BLOCKS

All the fundamental block types in the process control

system can be generally classified as one of the following :

-iLG=

(A) _NON-RETROSPECTIVE BLOCKS

These blocks have outputs as instantaneous functions of

the inputs. They fall into two categories :

(1) block whose current output depends solely on the

current input value. Examples include the adder and

multiplier.

(2) block whose current output depends on the current input

and the past value history of the input and/or output.

Some examples are the leadlag function and the PID

function.

Implementation of the type (2) differs from type (1) in that

it requires a past value queue to be maintained.

(B) RETROSPECTIVE BLOCKS

Retrospective blocks are those whose outputs are

computed based only on the past history of their inputs

and/or outputs. On no account are the current inputs

involved. These blocks can be processed during the run time

phase in any order. Examples include the integrator, first

order lag and the second order lag functions.

aya

(C) MACRO BLOCK AND SUBPICTURE

Macro block and subpicture are "composite" blocks,

which are constructed by various other blocks, retrospective

or non-retrospective, as separate entities. The composite

block can be regarded as the graphical equivalent of a

subroutine. Once such a block is defined the user can just

use it as a "black box", ignoring the internal working of

the block. The composite block approach promotes the modern

programming methodologies [YOURDON 1975], allowing the

user to view the problem as a hierachical level of black

boxes. The advantages of the composite block are

(a) It leads to more comprehensible diagrams.

(b) Frequently used configurations can be defined once

and called up whenever required.

The concept of a subpicture differs from that of a

macro block. A large block diagram may be partitioned into

subpictures for convenience or where the display capacity

requires this. A subpicture is a composite block used only

once in the control scheme. Its internal structure can be

freely modified at any time. A macro block is designed to be

used as many times as necessary within a control scheme. A

change in this block will affect all implementations and

this can lead to errors in appreciating the full effect of

changes. For this reason, macro blocks are regarded as fixed

entities.

=18—

(D) INPUT INTERFACE BLOCKS

The input interface block is used as an interface

between the process (or the model of the process) and the

actual control scheme. It enables measurements from the

process to be passed over to the control scheme. Generally

there are two classes of input interface, the analog and

digital. Device handlers will be handling all the means of

measurement of the process, including the sampling interval.

The process analog variable may be scaled and linearised and

fed through a A/D converter to give a finite range, normally

in the 12 bit representation. The actual physical address of

the instrumentation will be handled by the device handler

and the output sent to memory locations. These memory

locations may be updated by internal transfers or DMA

(Direct Memory Access) may be used. DMA allows blocks of

memory locations to be updated by means external to the

processing unit.

It is the function of the analog interface to “format”

the integer output value of the device handler into floating

point representation and to carry information about the

scaling factors. This means as far as the other blocks are

concerned that they are only interested in the value at the

appropriate memory location and not the physical means of

implementation of the instrumentation. No formatting is

required in the digital interface, just storing the binary

input in the appropriate memory location.

HOS

(£) OUTPUT INTERFACE BLOCK

Output interface blocks act as the interface between

the control algorithm and the process (or model of the

process). Similar to the input interface, there are two

classes, the analog interface and digital interface. The

main function of the analog interface is to format the

output values from floating point representation down to the

finite integer range, normally in the form of 8 bits

representation. To do so, the output interfaces require the

scaling factor and the upper and lower limits of the

variable. Output device drivers will be handling all the

physical addressing and the activation of the actuators.

2.7.1 IMPLEMENTATION OF OUTPUT AND INPUT INTERFACES

As far as this project is concerned, the interfaces are

between the control algorithm and the simulation model of

the process. These interfaces can be considered as message

passing modules. The input interface will be given the

following data

(1) the upper limit of the incoming variable

(2) the lower limit of the variable

(3) the actual value of the variable as a percentage of

the two limits, as an integer value.

Based on these values, the input interface module will

format the incoming percentage integer value into the

=20—

floating point representation used in the rest of the

blocks. The output interface with the following data

(1) the floating representation of the variable

(2) the upper limit of the output variable

(3) the lower limit of the output variable

will compute the output (integer value) to be transferred to

a D/A converter.

All the integer values will be over the range of a 8-

bit representation (0-255), interfaces are usually limited

in range and precision.

2.7.2 MINIMAL BASIC SET OF BLOCKS

The minimal basic set of the functional blocks

essential for DDC is considered to be as given below

(a) retrospective blocks - integrator, first order lag,

second order lag and the delay function.

(b) non-retrospective blocks

type (1) - summer, multiplier, function generator and

junction block.

type (2) - lead/lag function and PID controller

(c) interfaces - input and output blocks.

=a

2.8 IMPLEMENTATION OF FUNCTIONAL BLOCKS

The function of each block is determined by its

algorithm procedure. The implementation of the conventional

blocks such as the summer, multiplier and function generator

are straightforward and obvious. A few of the functional

blocks can be implemented by various approaches and some of

these are considered in the following sections.

2.8.1 INTEGRATOR BLOCK

There are many methods of transforming the analogue

integral action into the equivalent discrete form

[D'HULSTER 1979], [ROSKO 1972], see table (2.1).

method transfer function forward extrapolation eqn.

: ai pe
difference Tage inte Sle ae Alice

a zs" a z-transform Tao Aaswes ale alee

Tustin pte Sal \ = Yy + [x +p | a ee Man sade 7 (%nes

< sampling interval

“o
u

Zz backward shift
operator

x = input, y = output

TABLE 2.1 TRANSFORMATION OF INTEGRAL ACTION

TO DISCRETE FORM

299)

From the above table, the z-transform approach gives an

extrapolation equation in which the current output can be

calculated without the knowledge of the current input (i.e.

retrospective in nature). The z-transform approach is

adopted for the implementation to obtain retrospective

integrators allowing them to be executed in any abritrary

order. This choice implies that the z-transform approach is

also used for any functional block involving the integral

action such as the first order lag and lead/lag function

(see Appendix A).

2.8.2 DELAY BLOCK

There are two approaches to the approximation of the

delay block [KEY 1965]. One approach is to satisfy the

mathematical transfer function having a constant gain and a

phase shift proportional to the frequency (e.g. Pade

approximation or Stubbs and Single's approximation [JACKSON

1960]). The other approach is to store the input and to

reproduce this after the desired interval of time. The shift

register is adopted to achieve digital computation when the

required delay is an integer multiple of the sample

interval.

The delay block is implemented as follows,

9 3—

outeuT PTR

oureut
=e DELAY ae
INeuT INPUT PTR

VALUES RING GUFFER

FIGURE 2.5 DELAY BLOCK IMPLEMENTATION

The input parameter N is the number of the time delay

intervals to be specified by the operator. A variable-sized

delay block causes difficulties during the storage

allocation. So the delay block is implemented with a fixed-

size M-stage ring buffer. This avoids having to shift all

the actual values along since only the two pointers need

updating. Precautions must be taken to ensure that N does

not exceed M.

2.8.3 PID CONTROLLER

2.8.3.1 INTRODUCTION

Most process loops are controlled by the very flexible

PID algorithm or one of its variants. A PID controller can

be easily "tuned" (i.e. its parameters varied) to give the

required performance of the manipulated variable.

—o4—

As implied by the name PID controller (Proportional,

Integral and Derivative controller), also widely known as

the "three term" controller, the basic algorithm is as

follows :

a
v =K fe or fede + Tagt | + Vin (24)

where v = output of the PID algorithm

e = input signal to the PID

K = proportional gain

Ti = integral time constant

Td = derivative time constant

vm = manual reset output value.

Figure (2.6) shows the basic PID algorithm in diagrammatic

form.

INPUT,
ouTeutT, 0

UT, @ kK le Se

InteceaL

 sla

DERwwaTive
FIGURE 2.6 BASIC PID - BLOCK DIAGRAM

In the implementation of this, consideration must be

given to other factors, such as the operator interface,

=955

filtering of signals, automatic/manual transfer, bumpless

parameter changes, reset windup and non-linear output

requirement [ASTROM 1980]. Detail considerations will be

given in later sections.

2.8.3.2 VARIATIONS OF THE PID ALGORITHM (1)

The basic PID algorithm can be modified to give several

variants to provide for different operating requirements.

The basic algorithm (equation (2.1) and figure (2.6)) is

also known as the ideal or non-interactive PID, since all

the three terms can be set independently. By approximating

the integral and derivative terms, the following equation is

obtained

ai Kylene + eee eels aaa Veer = ee)
a

where Ts is the sampling interval.

With further manipulation,

change in v,

v(n) - vin-1) =K(en-@an) Ren + Ss (tne 2e + ienn) (23)
i s

(Note that the manual reset output vm is now not required.)

This is known as an incremental algorithm since only the

change in the output, v, is calculated.

=—I6—

2.8.3.2 VARIATIONS OF THE PID ALGORITHM (2)

In practice, most analog contollers are better

represented by [BIBBERO 1977]

z= rey iss site Vai, (2.4)

where Tl = equivalent of the integral time constant

u TZ equivalent of the derivative time constant

Kl = gain

This is known as the real or interactive PID algorithm

(figures 207)))

INPUT, © | OuTPuT, V

K \+sT (as)

Derivanve

 \

ie

InTEGea

FIGURE 2.7 INTERACTIVE PID - BLOCK DIAGRAM

Manipulation of equation (2.4) gives

Oe K
Cr eh) Gey eS (2.5)

The front portion of the expression represents an

incremental algorithm and the latter an integrator function,

figure (2.8).

274

MANUAL

VALUE

Av K outeur, v
es \+sT, s + e &

e l
I

1

= :
a 1

Ruco/M Anu aL

FIGURE 2.8 INCREMENTAL PID with internal integrator

Working on just the incremental portion gives :

change in v,

K, (1%) +T3)(134Ts) Ki,
v(n) - v(n-1) Rees oN a Say (MIS FETE ATTIC ne,

K.Ta

ag TS Cnn (2.6)

Equation (2.6) is selected to be implemented as the PID

incremental algorithm. Further information on the algorithm

of PID can be found in [CADZOW 1970] and [SMITH 1972].

2.8.3.3 FURTHER CONSIDERATIONS ON PID

The final choice of the algorithm for the PID is partly

dependent on the following factors [BRISTOL 1977] :

(1) FILTERING OF SIGNALS

In most practical cases, the input to the PID is

usually preceded with low pass filter. This limits the

high frequencies present (regarded as noise) in the

input signal as the PID is usually only interested in

=23—

(2)

the slow changing trend of the variables under control.

The low pass filter also prevents any sudden "jump" in

the PID output when there is a sudden change in the

input variable. Instead the PID output will “ramp" up

to the new required value.

Another PID block type is provided, that with the

equivalent transfer function of a PID with a low pass

filter attached at the front end.

INTEGRAL WIND UP OR SATURATION

The integral mode of the PID is introduced to eliminate

steady state errors. As long as there is a deviation

from the set point, the integral mode will give a

changing control demand. Often the control demand

cannot be achieved due to saturation of the actuator.

This leads to a situation where the integral mode

builds up to a large value i.e. integral “windup", a

situation to be avoided.

For digital computation with floating point numbers,

the range of the output of the PID is virtually

infinite. When the output of the PID is connected to a

D/A converter saturation occurs at the limits of the

conversion range of the converter. Once the output

limit is reached reset windup is avoided by holding the

PID algorithm output at the saturation value until the

computed increment requires the output to move back

into the linear range.

=29=

(3)

(4)

AUTO/MANUAL CONTROL

Auto/manual changeover is implemented so as to allow

the operator to vary the output of the PID manually.

With the incremental algorithm, the output is tracked

automatically i.e. in switching over to the AUTO mode,

separate initialization of the output is not required.

Input to the manual value terminal in the PID function

block may be from another functional block. The

Auto/manual changeover is implemented by means of a

flag (figure (2.8)).

OPERATOR INTERFACE

Since the flexibility of the PID controller lies mainly

in the ability to be “tuned" to suit a given control

requirement, clear and easy access for the tuning must

be provided. With the chosen algorithm it is possible

to change each parameter independently. To allow this

feature, the evaluation of the coefficients of the PID

controller will be done during the RUN TIME, instead of

being calculated earlier and storing only the results

(for example T1/T2 can be calculated and stored as a

single value). The penalties are slightly longer

execution time and more memory storage. This allows the

set point of the controller to be set by another block

giving cascade control [BIBBERO 1977].

=30—

(5)

Ser

BUMPLESS PARAMETER CHANGES

With the derivative mode in the PID algorithm, any

changes in the set point will be differentiated, giving

a large control output. This can be avoided by

elimination of the set point from the derivative term.

Figure (229.) shows the set point derivative

elimination.

Pout SP

Process e Av K output
LST, s a =

Vaeaare s Y

ev

ae
T,

(6)

(7)

FIGURE 2.9 SET POINT DERIVATIVE ELIMINATION - PID

EXTERNAL INTEGRATOR

The provision of the an external integrator for the PID

allows the incremental changes to be used by other

funcional blocks. For most cases this is not necessary

and so the integrator is provided within the PID

structure. If required, a further block functional type

can be provided with external integrator.

INITIALIZATION

During the steady state condition, the error samples

are approximately the same i.e.

aah

e(n) = e(n-1) = e(n-2)

In effect the derivative and proportional components of

the PlD are cancelled out, leaving only the integral

component. For initialization the states of the

internal error signal can be made equal to the first

error input signal i.e.

e(-2) = e(-1) = e(0)

=32—

CHAPTER 3

GRAPHICS SYSTEM

3.1 GRAPHICS DISPLAY

Graphics devices fall into two categories --

interactive and passive. Passive devices are output-only

devices (such as the graph plotter). Interactive devices

(such as a graphics terminal with a light pen) permit human

interaction through a variety of input mechanisms. A minimal

interactive graphics workshop comprises a device for

displaying the pictorial data and a device for accepting

pictorial data as shown in figure (3.1).

+----------- + 4+----------- +
+ + + +
ts it + DISPLAY.

+ += ==>+ DEVICE +
am oe output + =

sua DATA az te +
+ +
+ BASE ity

+ +
+ + input + =
i eae INPUT +
7 mth - DEVICE +
+ + + +
+----------- + +----------- +

FIGURE 3.1 SIMPLIFIED MODEL OF INTERACTIVE PROCESS

Graphics displays of many kinds are used [HOBBS

1981], but three types of cathode ray tube (CRT) displays

lead the field [MACHOVER 1977A J, [McMANIGAL 1980].

(A) REFRESHED RASTER-SCAN DISPLAYS are similar to

television CRT, requiring the generation of a matrix of

intensity values which are fed to a TV monitor

{ MACHOVER 1977].

(B) REFRESHED DIRECTED BEAM DISPLAYS [LUCIDO 1978]. Lines

are drawn by directing the electron beam across the

screen. Such lines are called "vectors". Each vector is

regenerated (refreshed) during the refresh cycle to

give a constant picture. Unlike the raster-scan

display, this only scans the paths between vector

endpoints.

(C) DIRECT VIEW STORAGE TUBE DISPLAYS [PRESIS 1978]. This

display uses the CRI that incorporate a means of

storing displayed data and causing them to remain

visible, without refreshing, once written. Lines are

drawn in a similar way as refreshed directed beam

display.

The different types of displays require different

device drivers (software to operate the devices). The

general graphics terminal requirements for various

application areas have been identified by Carlson [CARLSON

1978] and Presis [PRESIS 1978]. Selection of a particular

display depends on several factors including the resolution

available and required, the ability to move objects about

dynamically and the cost. The refresh-type terminal is,

generally, more complicated and expensive than the storage

=a4—

tube display. If the ability to display dynamically changing

pictures is necessay, then the refresh-type display should

be used.

3.2 GRAPHICAL INPUT MECHANISM

The ACM Graphics Standard Planning Committee has made

its CORE proposal for a graphics standard [ACM 1979] and

identifies the following 6 types of logical input devices

(A) KEYBOARD for the typing of alphanumeric data

(B) BUTTONS for program function activation (e.g.

function keys)

(C) STROKE DEVICES for the direct visual graphics entry

e.g. the RAND tablet [DAVIS, ELLIS 1964] and the

SKETCHPAD [SUTHERLAND 1963].

(D) VALUATORS for analog quantity entry (e.g. dials and

meters)

(E) LOCATORS for position entry (e.g. joystick)

(F) PICKS for item selection (e.g. light pen and

joysticks)

Of the six device types, the pick and the locator are

the most useful for interactive graphics because they allow

the user to interact directly with a graphical output by

pointing [FOLEY, WALLACE 1974]. One form of the pick

devices is the usage of the human finger to provide "touch

=35—

input" [HEROT 1978]. Design considerations for graphics

input devices have been well discussed [OHLSON 1978],

{ NEWMAN, SPROULL 1979]. In this project, the input device

is the joystick (performing the picking function) and a

keyboard for alphanumeric data input.

3.3 GRAPHICS SOFTWARE

To achieve device-independence, the graphics software

is usually divided into three parts -- an application

program, a standard graphics package (for the manipulation

of the graphical item) and a device driver [HEILMAN 1978],

{ NEWMAN 1978], [BERGERON 1978]. The application programs

involve user written problem-solving programs, making full

use of the graphics language for graphical input and output

actions. The device driver is the program to activate the

graphics hardware used.

Some graphics systems are built in the form of a

graphics package based on an existing programming language

{ MEADS 1972), { Gino 1976 J, [CALCoMP 1974],

{ SIMPLEPLOT 1978]. Such graphics packages are sets of

functions, subroutines (to provide the manipulation of the

graphical objects) to be called by the application programs.

The alternative is to cnoose an existing programming

language and to extend and modify it to perform the graphics

facilities [KULSRUD 1968], [SCHARK 1976]. The followings

just a few examples of the languages being extended for

graphics, Pascal [THALMANN 1981], Algol [JONES 1976] and

=aG=

PL/I (SMITH 1971]. The basic graphics facilities must

include means for moving the cursor (or drawing pen),

drawing line vectors and writing alphanumeric characters.

3.4 GRAPHICS AND DATA STRUCTURE

An important component of the graphics programs (and

other general programs) is the DATA STRUCTURE. The graphic

data structure is the software representation of the model

being operated upon. The choice of the data structure has an

influential effect on the algorithms used. To quote Wirth,

“The decisions about structuring data cannot be made without

knowledge of the algorithms applied to the data" [WIRTH

1976]. The general criteria for the graphic data structure

design are

(1) adequate representation of the problem.

(2) sufficient flexibility.

(3) facilitating the extraction and manipulation of

information.

(4) efficient in terms of memory storage space.

Much work has been done in the area of data structure

for graphics. Sutherland's work on SKETCHPAD [SUTHERLAND

1963] has heavily influenced the development in this area.

Sutherland defined a ring structure to handle a very common

class of picture (called the “network graphs"). These

pictures are usually interconnected in a network fashion,

375

and can be decomposed in lower levels of “subpictures"

(other smaller pictures). Early work was also carried out by

Ross and Rodriguez [ROSS, RODRIGUEZ 1963].

Sebsequent to SKETCHPAD, work has concentrated on the

investigation and finding of more efficient graphic data

structures. Various surveys of data structures for graphics

have been carried out [GRAY 1967], [WILLIAMS 1971 jj,

{ VAN DAM 1971]. Abrams [ABRAMS 1971] has discussed the

advantages and disadvantages of the general purpose and

tailored graphic data structures. Other workers have

discussed specific data structures, for example for the

drawing of lines [VAN DAM, EVANS 1967], [FRANKS 1968]

and for remote computer graphics [COTTON, GREATOREX 1968].

3.5 GRAPHIC DATA STRUCTURE

Most graphical data structures are pointer-type

structures, with such pointers being explicitly or

associatively addressed. Programming languages designed to

work with such pointers greatly facilitates the construction

of the data structure e.g. PASCAL and ADA. The design of the

pointer scheme is a critical part of any data structure

{[DODD 1969]. Some programming languages are developed for

the implementing and manipulation of general-purpose graphic

data structure e.g. LEAP [ROVNER, FLEDMAN 1968], Lé6

{ KNOWTON 1969], ASP [LANG, GRAY 1968] and a system by

Evans and Van Dam [EVANS, VAN DAM 1968].

goa

It is decided to use a specially tailored data

structure for the graphics in this application in order to

achieve efficient data storage. The iconic or symbolic data

structure (introduced by Tanimoto [TANIMOTO 1976]) for

structuring pictorial data is a good basis upon which to

build the tailored-purpose data structure. The scheme

employs arrays whose elements are pointers to property list

(table of attributes and other values) and pointers to other

arrays [SHAPIRO 1978]. Linn [LINN 1979] has demonstrated

the usage of such a scheme using tables to store the

graphics information.

Tables containing entries of fixed size in consecutive

locations can be used but the choice of the size is

critical, since "overflowing" may occur, when the reserved

locations are filled up and more entries are required. In

this project, the iconic data structure scheme is used, with

the basic form of data storage being the SINGLE LINKED LIST.

All the graphical information is stored in "records" within

the linked list. Discussion on the different types of

records is given in section (rae) (Graphic data

structure).

3.6 GRAPHIC PICTURE STRUCTURE AND PROGRAMMING METHODOLOGY

The display diagram, composed of various block types

and their interconnections and other textual information, is

termed as a block-diagram or a "PICTURE". Each block diagram

itself can contain other block-diagrams or graphical

-39-

pictorial entities. Such pictorial entity can be a simple

block (this is the lowest level of decompositon, the very

basic or fundamental "building brick"), or it can be

composite in nature.

Composite blocks are of two types :

-- the subpicture, which is a collection of blocks (simple

or composite) to be treated as a single entity in the

picture.

-- the macro block, similar to the subpicture but with the

restriction that its internal structure (i.e. the

constituent components) may not be modified.

The main difference between the subpicture and the

macro block lies in their usage. The subpicture is defined

as a. “once-off" entity, ise.sit. is gused -only jonce in ‘a

picture. Its usage is usually for conceptual or aesthetic

purposes. Therefore, it is permissible to modify its

internal structure as long as the number of terminals (input

and output) is left unchanged.

The macro block is intended for definition of a

configuration of blocks for repeated use. The macro block

definition is a "master" entity, and there can many usage of

the block type ("instances") in a picture [SUTHERLAND

1963]. Modification of the macro block constituents is

prohibited due to the "ripple" effect (any modifications in

the master must be reflected through all the instances). It

=A0=

is possible for the macro block and the subpicture to

contain composite blocks themselves, resulting in a

heirarchical structure. Figure (32) shows the

heirarchical structure of the picture.

Recursive block definition is strictly not allowed, for

example it is not permitted to define block A to contain

block B, if block B is defined in terms of block A

(explicitly or implicitly).

The composite blocks (macro block and subpicture) can

be used for "information hiding". As long as the interface

remains the same the internal composition may be varied

without affecting the overall final results. Each composite

block can be treated as a module with a single entry and a

single exit. By using such composite blocks, the operator is

encouraged to pursue the top-down programming methodology.

The operator deals on only one level of decompositon at a

time. Hence the advantages of the latest programming

methodology can be reaped [YOURDON 1975].

PICTURE (top)

SUBPICTURE MACRO (composite)

SIMPLE BLOCK (lowest)

FIGURE 3.2 HIERACHICAL STRUCTURE OF PICTURE

sa

CHAPTER 4

DATA STRUCTURE

This chapter deals firstly with the data structure

adopted for effective computer graphics and secondly the

data structure for efficient execution purposes during the

run time phase.

4.1 GRAPHIC DATA STRUCTURE (GDS)

4.1.1 INTRODUCTION

The diagrammatical description of the pictorial scheme

must be mapped (represented) onto a data structure that

allows easy manipulation and modification. This data

structure keeps all the information necessary to define the

pictorial signal flow diagram. These include the blocks used

(their types, any associated text) and interconnections.

The linked list is a versatile form of data structure.

This contains of various "records" (set of values) all

linked together via using linking pointers [WIRTH 1976]],

{ HOROWITZ, SAHNI 1976]. The main advantage of the linked

list is that it is efficient in memory utilisation and can

be readily expanded to accommodate requirements for larger

storage area. The linked list is used in this project to

represent the mapping of the signal flow diagram into

internal data representation. Consideration of various data

structures for graphics can be found in [WILLIAM 1971] and

=49—

{ GRAY 1967]. The cons_dJeration for the choice of a

purpose-tailored data structure and its internal component

is well discussed by Linn [LINN 1980]. One important

consideration for the GDS is that it should be simple in

mature and form. This allows the understanding of the

"picture" by the operator in alphanumeric form, facilitating

the manual entry of the graphical information in numbers (if

this is ever required). The various records used in the GDS

are =

(1) graphic block (GB) record

(2) graphic information (GI) record

(3) graphic text (GTXT) record

(4) input list (IL) record

(5) macro expansion (MX) record

(6) non-graphic data (NGD) record

The internal structure of each record will be discussed in

the following sections with their inter-relationship.

4.1.2 GRAPHIC BLOCK (GB) RECORD

The graphic block record is diagrammatically

represented in the figure (4.1). Most of the allocations

within the record are explained in the figure itself, but

the following requires more attention

Ase

(A)

(B)

(Cc)

(D)

The block number (BLKNO) is the identification number

given to the block (by the operator or the system).

Other records may be identified with a particular block

record via its block number or the block pointer (a

pointer to the start of the GB record).

the GIPTR (graphic information pointer) links this

block record to the appropriate GI (graphic

information) record where more information about the

attributes and pictorial form of the block is kept.

The position of the base of the block on the screen of

the graphical terminal is given by XPOS and YPOS.

These, in association with the pictorial information in

the graphic information record, are used for the actual

drawing of the symbol of the block as well as for the

identification of the block when "picked" by the joy-

stick (performing the pick function).

Following the TXTPTR (text pointer) is the input set of

two elements for the *irst input terminal (if a block

has no input terminal then the input set is not

allocated). The input set is repeated for each input

terminal of the block. A input set contains any

connection information to that associated input

terminal. Within the input set are two entries, the

BLKPTR (block pointer) and the O/PNO (output terminal

number). If the input is connected to, say the output

terminal 2 of block 25, then the BLKPTR points to the

start of the GB record of block 25 and the O/PNO is 2.

-44-

(E) The representation of any output connection is handled

by the ILPTR (input list pointer) which follows any

input set. Each output terminal of the block is

allocated a ILPTR entry. When an output is connected to

some other input terminals, then the ILPTR points to

the appropriate input list (IL) record where the

information about the connection is kept. Section

(4.1.7) will deal more with the IL record. The IL

record is output-oriented in the sense that only

information of connection of output terminal to input

terminals is kept.

As indicated in the figure, the GB record may vary in

the length as this depends on the number of input and output

terminals. The minimum length (minlength) of a GB record

is eight (8) entries. The first input set are at location

eight (8) and nine (9) after the start (or the base) of

the GB record. For the Nth input the input set starts at

base + minlength + N*2 - 2

Any ILPTR (for the output) follows the input sets, the

position of the Nth output being given by

base + minlength + NIP*2 +N -1

where NIP is the total rumber of input for the block. The

NIP can be found in the GI record.

45 =

4.1.3 GRAPHIC INFORMATION (GI) RECORD

This record (figure (4.2)) keeps most of the

pictorial data of the block symbol and other information,

most important of which are the number of inputs (NIP) and

number of outputs (NOP).

The following elements of the record are discussed in

greater details

(A) the graphic information link (GILINK) is used to link

one GI record to the next. This allows a search through

all the GI records for any particular required GI

record (usually identified by the type number).

(B) the type number (TYPENO) identifies the block function

category. Each type number is unique in the whole

system.

(Cc) the class number (CLASSNO) allows differentiation

between the various classes of the block type provided.

The four classes of type are

(1) The simple block type (CLASSNO 0). This is the

fundamental type of block and is a single block

entity.

(2) The macro block type (CLASSNO 1). This is a

collection of blocks (simple or otherwise) to be

used as a separate single entity. It is analogous

-46-

(3)

(4)

to the “library" of general purpose subroutines in

high-level programming languages. Modification of

the internal structure of the macro block type is

restricted as it may be used more than once in the

picture.

The subpicture type (CLASSNO 2), similar to the

macro type is also composite in nature. The

exception is that it is only a "one-off" block (It

is only used once in a picture). So the internal

structure can be modified with no restriction. The

subpicture can be viewed more as a "normal"

subroutine (as opposed to general purpose

subroutines) .

The picture type (CLASSNO 3). This is the top in

the hierarchical level of the graphical entities. A

picture normally consists of the three previously

mentioned block types, namely simple, macro block

and subpicture. The picture can be regarded as a

composite type, allowing all its information to be

stored in the GI reocrds. This eliminates the need

for another data structure to indicate the picture

presence. Each picture is uniquely identified by

the type number (in this case a large number in

excess of 1000). Whenever the graphic editor is

called, the GI records can be search to see if the

editing is to be carried out on an existing picture

or to create a new picture.

SAT =:

(D) The non graphic data pointer (NGDPTR), valid only for

simple block record, links to the NGD (non graphic

data) record where non-graphic information is stored.

(E) The MXPTR (macro expansion pointer) points to the macro

expansion (MX) record, this is only valid for composite

block records. The MX record keeps information about

the internal structure of composite block.

4.1.4 MACRO EXPANSION (MX) RECORD

The macro expansion (MX) record is used only by the

composite block type. Information about the internal

structure of the block type is given in this record,

represented in figure (4.3). The important elements of the

MX record are as follows

(A) MXLINK (macro block link). This is the pointer to the

graphic block (GB) record of the first block in the

internal structure of the composite type.

(B) Following the length element, is an input set of two

elements representing the first input terminal. The

BLKPTR refers to the start of the GB record of the

internal structure which is providing the actual input

terminal numbered (I/PNO). The relative displacement

from the base of the MX record for the Nth input is

given by N*2.

(C) Similar to the input, an output set (two elements) are

used for each output terminal of the composite type.

-49=

The relative displacement from the base of the MX

record of the output set for the Nth output is

NiP*2 N=)

where NIP is the number of inputs for the composite

type, defined in the GI record.

4.1.5 NON-GRAPHIC DATA (NGD) RECORD

The non graphic data record (figure (4.4)) contains

all the information not related to the drawing of the symbol

of the block. Non graphic data are those mainly used for the

run time phase and the compiling phase.

The significant elements of the NGD record are as

follows

(A) The number of internal variables (NIV) is the number of

variables used by the run time routine of the block

during its execution.

(B) The general flag (GF), which is a collection of bits

(in this case 16 bits) used to indicate attributes of

the block type e.g. the first four bits are used to

indicate if the block is of the retrospective or non-

retrospective nature. Not all the bits are used at the

present moment.

(C) The reset output flag (ROF) has 16 bits, with each bit

set showing if a particular output need to be reset

Ags

during initialization or restarting of the run time

computation.

(D) The logical input flag (LIF) (16 bits) is used to

show if the input to a particular input terminal must

be of the logical variable nature.

(E) The logical output flag (LOF) is similar to the LIF,

except this shows if any output gives only logical

value.

(F) The constant value input flag (CIF) is used to indicate

if any input is expecting only constant value, similar

to the LIF.

For LIF, LOF, CIF the input terminal numbers correspond to

the bit positions in the flag word. Figure (4.5) shows the

attributes of each of the flags in the NGD record.

4.1.6 GRAPHIC TEXT (GTXT) RECORD

Text can be used in a block diagram for naming,

labelling and entering numerical values. Such text data are

kept in the graphic text (GTXT) record (figure (4.6)). The

storage of text characters requires special explanation. The

first text character follows the TXTYPOS. Each text

character stored in a byte (8 bits), allowing 2 characters

in a word (16 bits). The length of the record is specified

in complete words. A “blank space" is added to the text if

the number of characters is odd. The entries TLINK, LENGTH,

TXTXPOS, TXTYPOS occupy 4 words so that the number of text

-50-

character in a record is given by (L-4) *2 where L is the

length of the record. If the text length is, say 6 then the

total number of text characters stored is (6-4)*2 (i.e. 4

characters). The position of the text (TXTXPOS, TXTYPOS) is

defined as the lower left corner of the first character in

the text string.

There are seven (7) different forms of text records

corresponding to the different purposes that the text

serves. Graphic text can be classified under two

categories

(A) The block specific text. This is the text that may be

vary with each block. The block specific text are of

the following categories :

(1) the random text, mainly for commentary purposes

(2) the block name

(3) the engineering unit for the terminals

(4) the constant text, for entering numerical values

(5) the tag label, for tagging terminal for later

identification.

(B) The type specific text. This is fixed for a block

type and includes :

(1) the block type function

(2) the block terminal name

=§)=

Figure (4.7) and figure (4.8) show all the types of text

records. The various forms of text record are differentiated

by their TXTXPOS elements. The normal range of the TXTXPOS

and TXTYPOS is limited by the size of the screen (in our

case 1024 and 780 respectively). So identification of the

various type of text record is possible by using excessively

large values for TXTXPOS in combination with the TXTYPOS.

The normal random text is identified by its TXTXPOS and

TXTYPOS having values less than 1024 and 780 respectively.

If the values of TXTXPOS and TXTYPOS are 3000 and O then,

this is a block name text record. The values used for

identification of the text record are all given in the

figure (4.7) and figure (4.8).

4.1.7 INPUT LIST (IL) RECORD

The input list record (figure (4.9)) keeps the

information about the interconnection between the output of

a block and the input terminals of blocks. The IL record is

acessed by the ILPTR (input list pointer) entry in the GB

record. If the first (lst) output of block, say block

number 24 is connected to the input terminal numbered 2 of

another block, say 31, then the ILPTR entry for the lst

output of block 24 is updated to link with a IL record. In

this IL record, the BLKPTR entry points to the start of the

GB record of block 31 and the I/PNO is 2.

=52—

When the output terminal of a certain block is

connected to more than one input terminal, then the ILLINK

entry is used to link all the appropriate input list records

together. The example in section (4.1.8) will further show

the use of the IL record.

4.1.8 RELATION BETWEEN THE RECORDS

By combining together and relating the various records,

an extremely efficient and and flexible data structure is

obtained. The figure (4.10) shows the records required for

a simple block with all their possible inter-relations. The

plock record is linked to the GI record (of the correct

TYPENO) by GIPTR. All block specific text is handled by the

plock text pointer (TXTPTR) and all the output connections

by the input list records.

Figure (4.11) shows all the records required to

represent a composite block with 3 constituent blocks. Here

the MX record is used. A "picture" (the top level) is

considered as a very special composite block type and thus

is similar to figure (4.11).

Soe

4.2 THE GRAPHIC MENU

The graphic menu is a display of all the different

block types that is provided in the system. The menu shows

the shape, size and the number of inputs and outputs of the

each block. The type number is displayed next to the block

picture as additional information. The operator uses the

graphic menu to select the required block type to be used

during synthesis of the pictorial program. The blocks in the

graphic menu are drawn in their normal size to assist the

user in laying out the picture. Whenever a selection is made

from the graphic menu, the selected item is redrawn to

provide the visual feedback.

The data structure for the menu is different from that

of the general graphics being simpler in nature. The menu

data structure is shown in figure (4.12). It is separate

from the graphic data structure, the only link being the

pointer to the GI record. The menu is divided up into pages,

where each page can have several block types (usually of a

similar nature). For example one page can be used especially

for the retrospective blocks. Each page in the menu is

identified by the menu page number (MSPPNO). When using the

menu to aid in the selection of the block types, pages of

the menu can be "skipped" over, i.e. unwanted pages not

displayed.

=54—

The menu data structure is in two forms, a menu page

record and a page block record. The menu page record

contains the menu page number (MSPPNO) and a pointer

(MPBLINK) to the first page block within the page. All the

menu pages are linked via the MPLINK element. The page block

record contains the position of the base of the block within

the menu in BXPOS and BYPOS. The GIPTR links to the GI

record where all the drawing coordinates are stored. All

page blocks within a page is linked by their MBLINK.

Pages in the menu gives the flexibility and the ability

to add on at some later stages, if necessary, new functional

block types. The flexibility even allows the graphical menu

to be modified, for example to discard unwanted block types

or to group frequently used block types onto one page.

-55-

4.3 RUN TIME DATA STRUCTURE (RTD)

4.3.1 INTRODUCTION

The run time data structure serves a different purpose

from that of the graphic data structure. The graphic data

structure is designed for easy manipulation and modification

of the graphical items on display screen and for the

extraction of data during the actual drawing phase. The run

time data structure is more concerned with the execution of

the functional blocks within the picture. Here the

efficiency with regards to the referencing of the input and

output connections is important. The run time data structure

contains only the essential information for the execution,

hence the graphical information can be removed.

Consideration as to the basic run time data structure is

given by Linn [LINN 1980]. The run time data records are

as follows :

(A) The RSB (run time simple block) record

(B) The RCB (run time composite block) record

(C) The ULN (upwards link) record

(D) The RSTYPE (run time simple type) record

(E) The RCTYPE (run time composite type) record

(F) The RTXT (run time text) record

(G) The RVT (run time value table).

-56-

The following sections will discuss each record in greater

detail.

4.3.2 RUN TIME BLOCK RECORDS

There are two forms of block records in the run time

data structure, one for simple block, and another for the

more complex composite block (figure (4.13)). The following

elements of the record are discussed

(A) The ELINK (execution link) is used to link all the RSB

records in the order in which the blocks will be

processed during the execution phase.

(B) The LBLKNO (local block number) is the block

identification number (provided by the operator or the

graphic system) during the synthesis of the signal flow

block diagram phase. This is not necessarily unique,

due to the usage of composite blocks.

(C) The GBLKNO (global block number) is the block

identification number provided by the system during the

conversion from the graphic data to the run time data.

This GBLKNO is unique for each block during run time.

(D) The RVTPTR (run time value table pointer) is used to

indicate the starting location of the run time data

file of each block. The data file is stored in the RVT.

The data file consists of entries for the input and

output values and any internal variables necessary for

the execution of the block.

y=

(E) The IPPTR (input pointer) is used to repesent the

connection between the blocks. One IPPTR entry is

allocated for each input terminal of the block. This

entry is used as a pointer to the RVT, pointing to the

location in which the appropriate ouput value is

stored. (This output is that which is connected to the

input terminal.)

(F) The MXPTR (macro expansion pointer), valid only for the

composite block record, points to the first run time

plock record of the internal structure of the composite

block.

The composite block record has no allocation for any

IPPTR entry. The composite block during run time will be

expanded down to simple blocks. Since all the simple blocks

will contain the interconnection information in their IPPTR

entries, it is not necessary to allocate IPPTR for the RCB

(run time composite block) record.

4.3.3 UPWARDS LINK (ULN) RECORD

This is only used in conjunction with the RCB_ record.

Figure (4.14) shows a ULN. The only element of interest is

the CBNPTR (composite block record pointer) which is used to

point back to the RCB record. The ULN record is used to

indicate the end of the internal structure of the run time

composite block. Figure (4.15) shows an example of a run

time composite block with the ULN record. The ULN is

-58-

necessary as it provides the means of termination of the

constituent records and the link back to the RCB itself.

4.3.4 RUN TIME TYPE RECORDS

The run time type records are used to store all the

necessary run time (RT) information about the block type. As

there are two categories of blocks, the simple and the

composite, two different forms of type records are required.

They are

(1) the RT simple type (RSTYPE) record.

(2) the RT composite type (RCTYPE) record.

4.3.4.1 RUN TIME SIMPLE TYPE (RSTYPE) RECORD

The RSTYPE record keeps all information for only the

simple blocks, figure (4.16). The RSTYPE record is fixed

in length, having 14 entries. Some of the entries are

discussed below

(A) the TLINK (type link). This is a pointer for linking

all the RT type records together. It provides the

routing for a search of any required type number

(TYPENO).

(B) the TXTPTR (text pointer) is used to point to any

associated RT type specific text records.

(C) the various flags GF, ROF, LIF, LOF, CIF are identical

to that in the NGD (non-graphic information) record and

=590—

have been discussed in section (4.1.5).

(D) The CLASSNO (class number). This entry is always zero

for the RSTYPE record.

4.3.4.2 RUN TIME COMPOSITE TYPE (RCTYPE) RECORD

The RCTYPE record differs from the RSTYPE record since

it must contain more information about the internal

structure of the block. Figure (4.17) shows a RCTYPE

record. Most of the elements in the record are similar to

those in the RSTYPE record. The following entries are

different

(A) CLASSNO (class number). The class number is used to

differentiate between the various class of the block

type, namely macro or subpicture.

(B) MXPTR (macro expansion pointer). This is a pointer to

the first block in the internal structure of the

composite block type.

(Cc) the input set of LBLKNO (local block number) and I/PNO

(input terminal number). The definition of the input

terminal of the composite block type in relation to the

actual input terminal of the block in the internal

structure is handled by this input set. An input set is

allocated for each and every input terminal. For a

particular input terminal set, the LBLKNO refers to the

local block number of the block within the composite

type ; and the I/PNO is the numbered input terminal of

-60-

that block.

(D) the output set of two entries, LBLKNO and O/PNO (output

terminal number). This defines the output terminal of

the composite type in terms of the constituent block

(see discussion of input set in (C)).

4.3.5 RUN TIME TEXT (RTXT) RECORD

The format of the run time text differs from that of

the graphic text record. The run time text keeps only the

necessary data such as the block name, type name,

engineering units and the terminal names. The random text in

the graphic system is now not required. The general form is

shown in the figure (4.18).

The main element is the TEXT, which contains all the

text characters. Each text character is allocated a byte (8

bits), and the most significant bit (MSB) is used as a

termination flag. When the character is the last of the text

string, then its MSB is set.

The run time text can be classified as follows

(A) type-specific text. This record stores the text

specifically related to the block type i.e. the block

type function text and the terminal name text. The

type-specific text is fixed for all blocks of the same

type and is given during the definition of the block

type.

=—61 =

(B) block-specific text. This record stores text relating

to each specific block in the block-diagram. For

example this may contain the block name and any

engineering units to be associated with the terminal

data values.

Figure (4.18) shows the two run time text records.

4.3.6 RUN TIME VALUE TABLE (RVT)

The RVT is a floating point array where values of

variables and parameters of the run time simple blocks are

stored. These are grouped together to give a "module" of

data file for each block. Further discussion on the

allocation of the storage location can be found in section

(9.1) (allocation of storage for run time block).

-62—

GRAPHIC BLOCK (GB) RECORD

+ (GLINK) (LENGTH) (LLINK) (BLKNO) (GIPTR)

LEGEND

(GLINK) global link to the next graphic block (GB) record

linking all the block records.
(LENGTH) length of the record.
(LLINK) local link to graphic block record which is in the

same "picture level" (hierarchical level).
(BLKNO) block identification number.
(GIPTR) graphic information (GI) record pointer.

(XPOS)] position of the base of block
(ypos)] x & y coordinates.

(TXTPTR) pointer to associated block-specific text (GTXT)

record.

(BLKPTR) pointer to block (GB) record.
(0/PNO) output terminal number.

(ILPTR1) pointer to the input list (IL) record (output 1).
(ILPTR2) pointer to the input list (IL) record (output 2).

When the output is connected, then the ILPTR is
pointed to the appropriate IL record.

$----------------------- +
+ (BLKPTR) (0/PNO) + INPUT SET
4$----------------------- +

This is the output terminal of graphic block to
which the input terminal of the present block is
connected to.

FIGURE 4.1 THE GRAPHIC BLOCK RECORD

—O3=

GRAPHIC INFORMATION (GI) RECORD

(MXPTR) (TXTPTR) (NGDPTR) (BLKNOXPOS) (BLKNOYPOS)

(I/P COORDS) (O0/P COORDS) (PIC COORDS) +

-pictorial drawing coordinates...)

LEGEND

(GILINK) link to the next graphic information (GI)
record linking all the GI records.

(LENGTH) length of the record.
(TYPENO) type number, identification of block function.

(CLASSNO) class number, various classes :
0 - simple type
i = macro ‘type
2 - subpicture
3 - picture

(NIP) number of inputs.
(NOP) number of outputs.

(MXPTR) pointer to the macro expansion (MX) record,
valid for composite type only.

(TXTPTR) pointer to associated type specific text
(GTXT) record.

(NGDPTR) pointer to the non-graphical data (NGD)
record.

(BLKNOXPOS)] starting position of the block
(BLKNOYPOS)] number, relative to the base of block.

(I/P COORDS)] coordinates of the input & the output,
(0/P COORDS)] relative to the base of the block.

(PIC COORDS) coordinates for the drawing of the symbol of
the block.

FIGURE 4.2 GRAPHIC INFORMATION RECORD

=64—

-+

(BLKPTR) (0/PNO) +

LEGEND

(MXLINK) pointer to the first GB record of the "internal
structure" of the composite block

(LENGTH) length of the record
(BLKPTR) pointer to the block record (GB)
(I1/PNO) input terminal number
(o/PNO) output terminal number

FIGURE 4.3 MACRO EXPANSION (MX) RECORD

NON GRAPHICAL DATA (NGD) RECORD

$---------- - - - - = 5 re +
+ (NGDLINK) (LENGTH) (NIV) (GF) (ROF) (LIF) (LIF) (CIF) +
$o----------- $$ $n +

NGD record is fixed in length (8 entries)

LEGEND

(NGDLINK) pointer to the next NGD record
(LENGTH) length of record
(NIV) number of internal variables
(GF) general flag to indicate attributes of block type
(ROF) reset output flag
(LIF) logical input flag (16 bits) with each bit set to

represent that the corresponding input terminal is
logical in nature.

(LOF) logical output flag (16 bits)
(CIF) constant input flag (16 bits), each bit showing if

the corresponding input terminal is expecting
constant values.

For the LIF; LOF;’ (COF “the terminal number
corresponds to the bit position in the computer

word

FIGURE 4.4 NON GRAPHIC DATA (NGD) RECORD

=65-

ATTRIBUTES OF THE FLAGS IN THE NGD RECORD

GENERAL FLAG (GF)
16015 4 rae 12 2a910" 9h ise 7 6 Sy 4° 342

Eaigce\e Z :
$--4--+--+--4+--4--
lst four bits used to indicate nature of block

- retrospective
- non-retrospective
- input interface
- output interface

LOGICAL INPUT FLAG (LIF)

16S 14; 13.125 1059
$--+--+--+--4+--4+--4--4+--4-

lst and 4th input are logical in nature, i.e. they are
expecting only binary (logical) values.

LOGICAL OUTPUT FLAG (LOF)

U6eLrSeie VS 2 eis) Bee, SCs 6a Se
a-t--+--+--+--+--4--4+-

lst and 4th output are logical in nature,
are only binary (logical) values.

CONSTANT INPUT FLAG (CIF)

TESESI U4 UG 812. 2t TO Oe Bae Tae ee See
$--t--+--+-

3rd and 4th input are expecting only constant values

FIGURE 4.5 ATTRIBUTES OF THE FLAGS IN NGD

-66-—

GRAPHIC TEXT (GTXT) RECORD - GENERAL FORM

$---------- = $= - $$ 5 nnn +
+ (TLINK) (LENGTH) (TXTXPOS) (TXTYPOS) ((TEXT)) +
+---- -+

LEGEND

(TLINK) pointer to next text (GTXT) record
(LENGTH) length of the record
(TXTXPOS)] starting position of the text relative to
(TXTYPOS)] the base of the block.
((TEXT)) location where the TEXT is stored.

FIGURE 4.6 GRAPHIC TEXT RECORD

TYPE SPECIFIC TEXT RECORDS

BLOCK TYPE NAME TEXT RECORD
4+--- +
+ (TLINK) (LENGTH) (TXTXPOS) (TXTYPOS) ((TEXT)) +
+--- +

(=2000) (=0)

$a --- 3-2-3 $55 5 ee +
+ (TLINK) (LENGTH) (TXTXPOS) (TXTTERMNO) ((TEXT)) +
4+------------------------ = -- = - = - $5 === +

(=2000)

NOTE : the values of TXTXPOS and TXTYPOS given in bracket
are the dummy values of the entries used to identify
the various different text records. So if the
TXTXPOS=2000 and TXTYPOS=0, this is a block type
name record.

LEGEND

(TLINK) link to the next graphic text (GTXT) record.
(LENGTH) length of the record.
(TXTXPOS) x-coordinate of starting position of text.

Also used to differentiate between various
form of GTXT record. The normal range of
txtxpos is 0-1024.

(TXTYPOS) y-coordinate of starting position of text.
(TXTTERMNO) terminal number to which the terminal text is

associated.

FIGURE 4.7 GRAPHIC TYPE SPECIFIC TEXT RECORDS

EG7=

BLOCK SPECIFIC TEXT RECORDS

RANDOM TEXT RECORD
$---------------------- ----- = - - = - 5 5 = 5 == +

+ (TLINK) (LENGTH) (TXTXPOS) (TXTYPOS) ((TEXT)) +
$e nn rrr +

T (GEIR) (LENGTH) (TKIXPOS) (TXTYPOS) ((TEXT)) +
TEE PR soGoy an) ae
ENG UNIT TEXT RECORD

+ (LINK) (LENGTH) (TKEXEOS) (TXTO/PNO) ((TEXT)) +
i ee fesdno Re Pe

CONSTANT TEXT RECORD

Thank) (ueN@?H) [@REXPOS) (TXTI/eNO) ((TEXT)) +

RS Ws ie, Cgou ar a hema Al ‘
TAG TEXT RECORD
fon nnn +

+ (TLINK) (LENGTH) (TXTXPOS) (TXTTERMNO) ((TEXT)) +

chilly, NRE alia net Mets i

NOTE : values of the TXTXPOS,TXTYPOS given in bracket are

dummy values of the entries used for
identification of various text record type.
TXTXPOS=3000 and TXTYPOS=0, this is a block
text record.

LEGEND

(TLINK) link to the next text (GTXT) record
(LENGTH) length of the record
(TXTXPOS) x-coordinate of starting position of text, also

used to differentiate between various form of
GTXT record. For random text, the txtxpos
always less than 1024.

(TXTYPOS) y-coordinate of starting position of text
(TXTO/PNO) output terminal number to which the engineering

unit text is associated.
(TXTI/PNO) input terminal number to which constant

text is associated.

(TXTTERMNO) terminal number to which terminal text
associated.

FIGURE 4.8 GRAPHIC BLOCK-SPECIFIC TEXT RECORDS

-68-

INPUT LIST (IL) RECORD

IL record is fixed in length (4 entries)

LEGEND

(ILLINK)

(LENGTH)
(BLKPTR)
(1/PNO)

pointer to the next input list (IL) record used
when the output of a block is connected to more

than one input terminal
length of record

pointer to the block record
input terminal number

This set refers to the input terminal (given by
I/PNO) of the block number (found in BLKPTR).

FIGURE 4.9 INPUT LIST RECORD

-69-

GB (GRAPHIC BLOCK) RECORD
--+

(ILPTR) +

+ (GLINK) (LLINK) (BLKNO) (GIPTR) (TXTPTR)

TO OTHER
GB RECORD

IL (INPUT LIST) RECORD
GTXT (GRAPHIC TEXT) RECORD

4+---L---------------------------- +
+ (TLINK) (XPOS) (¥POS) ((TEXT)) +

Sine See.

TO OTHER RELATED GTXT RECORD

GI (GRAPHIC INFORMATION) RECORD

+ (GILINK) (TYPENO) (CLASSNO)...(NGDPTR) (COORDS) +

TO OTHER
GI RECORD

NGD (NON GRAPHIC DATA) RECORD
4+-----L------------------- --+
+ (NGDLINK) (NIV) (GF) (ROF) (LIF) (LOF) (CIF) +
te

TO OTHER NGD RECORD

FIGURE 4.10 RELATION BETWEEN RECORDS FOR SIMPLE BLOCK

=70=

GB RECORD (composite block)

--+

+ (GLINK) (LLINK) (BLKNO) (GIPTR) (ILPTR) +

$o------ ---- -- - - = = = = 5 5 $$ f= +

GI RECORD

TO OTHER
GI RECORD

MX RECORD

4---I_------------------------- === == 55555 - == +

+ (MXLINK) (BLKPTR) (I/PNO)...(BLKPTR) (O/PNO) +

GB RECORD

 4+---1------------------------------ +

+(GLINK) (LLINK) (BLKNO) (GIPTR) +

GB RECORD
--+

(GIPTR) +
Br A ak, +

LEGEND
GI GRAPHIC INFORMATION

MX = MACRO EXPANSION
GB = GRAPHIC BLOCK

FIGURE 4.11 RELATION BETWEEN RECORDS FOR COMPOSITE BLOCK

TiS

MENU PAGE RECORD

Fe eA a ee ee

+ (MPLINK)
pe

PAGE BLOCK RECORD

4+----1------------------------------ +
+ (MBLINK) (BXPOS) (BYPOS) (GIPTR) +
4+----}------------------------------ +

4+----41------------------------------ +
+ (MBLINK) (BXPOS) (BYPOS) (GIPTR) +
poe

LEGEND

(MPLINK) menu page link, pointer to the next page in
menu.

(MPBLINK) menu page block link, pointer to the first
block in this page.

(MSSPNO) menu page number, identification purpose
(MBLINK) menu block link, pointer to next block in the

same page.
(BXPOS)] position of the block within this page.
(BYPOS) J
(GIPTR) pointer to the GI (graphic information) record.

FIGURE 4.12 GRAPHIC MENU DATA STRUCTURE

S76

RUN TIME DATA STRUCTURE

RSB (runtime simple block)

+ (LINK) (LENGTH) (LLINK) (ELINK) (LBLKNO) (GLBKNO)

(TYPEPTR) (TXTPTR) (RVTPTR) (MXPTR) (IPPTR1) +

+ (LINK) (LENGTH) (LLINK) (ELINK) (LBLKNO) (GBLKNO)

(TYPEPTR) (TXTPTR) (RVTPTR) (MXPTR) +

LEGEND

(LINK) general link for all run time block records.

(LENGTH) length of each block record.

(LLINK) local link, use for linking local blocks in
composite block internal structure.

(ELINK) execution link, linking blocks in the proper
processing order (valid for simple block only).

(LBLKNO) local block number, identification purposes.
(GBLKNO) global block number, identification purposes.

(TYPEPTR) pointer to run time type record.
(TXTPTR) pointer to any run time block-secific text (RTXT)

record of the block.

(RVIPTR) pointer to the run time value table (RVT) which
contain the data file for this block.

(MXPTR) applies to composite block, pointer to first block
of the internal structure. For simple block
record, this is a null entry.

(IPPTR1I) first input pointer to the run time value table

(RVT) location of the output to which it is

connected to. If input is not connected then IPPTR

is null.

FIGURE 4.13 RUN TIME BLOCK RECORDS

—13=

UPWARDS LINK (ULN) RECORD - for composite block only

$---------------- = = 5-5 nnn +

+ (LINK) (LENGTH) (LLINK) (CBNPTR) (GBLKNO) a

$----------------- = -- == = 5-55 +

LEGEND

(LINK) pointer to link to next run time block record.

(LENGTH) length of the record (fixed of 5 entries).

(ILLINK) null entry.
(CBNPTR) pointer back to the composite block (RCB) record,

used to terminate the internal structure of a

composite block.

(GBLKNO) null entry.

The (LENGTH) and the (GBLKNO) may be used to identify the

ULN record from the other run time data records.

FIGURE 4.14 UPWARDS LINK RECORD (ULN)

RCB RECORD

=
+(LINK) (LLINK) (LBLKNO) (GLBKNO) .. (MXPTR) (IPPTR) +

4$----------4-- = - - = - 5 5 5 nnn +

RSB RECORD
4---1---------------- - = - = - = 5 5 5 nnn +

+(LINK) (LLINK) (LBLKNO) (GLBKNO) .. (MXPTR) (IPPTR) +

fo -- fo nnn +

RSB RECORD
4+---1------------------- == === = = 5 55 ern +

+(LINK) (LLINK) (LBLKNO) (GLBKNO) .. (MXPTR) (IPPTR) +
pn fn nnn +

ULN RECORD
4---1------------------------ +
+ (LINK) (LLINK) (CBNPTR) +

LEGEND
RCB -— RUN TIME COMPOSITE BLOCK
RSB - RUN TIME SIMPLE BLOCK

ULN - UPWARDS LINK

FIGURE 4.15 EXAMPLE OF RUN TIME COMPOSITE BLOCK OF
3 SIMPLE BLOCKS

gS

RUN TIME TYPE RECORDS

RUN TIME SIMPLE TYPE (RSTYPE)

Cs Rieke) LL AGS eet ree.

LEGEND

(TLINK) link to the next run time type record
(LENGTH) length of this record, fixed at 14 entries.

(CLASSNO) class number of type, used for differentiate
various classes of type, namely

O -- simple type
1 -- macro block type
2 -- subpicture type
3 -- picture type

(TYPENO) type number identification
(SWIX) switch index, for execution uses only for

type

(TXTPTR) txtptr, pointer to any associated type-specific
text (RTXT) record

(NIP) number of input
(NOP) number of output
(NIV) number of internal variables

(GF) general flag (set of bits) for indication

attributes of the type e.g. retrospective & non-

retrospective

(ROF) reset output flag
(LIF) logical input flag - bit is set to indicate

corresponding input of a block type
logical (binary) in nature

(LOF) logical output flag, as above applying
output

(CIF) constant input flag - bit indication that
input expects a constant value.

FIGURE 4.16 RUN TIME SIMPLE TYPE RECORD

—I5S

must be

RUN TIME COMPOSITE TYPE (RCTYPE)

(TXT) (NIP) (NOP)

(LBLKNO) (1/PNO) .+ (LBLKNO) (0/PNO) +

LEGEND

(TLINK) link to the next run time type record.
(LENGTH) length of this record.
(CLASSNO) class number of type, used for differentiate

various classes of type, namely
0 -- simple type
1 -- macro block type
2 -- subpicture type
3 -- picture type

(TYPENO) type number identification.
(TXT) txtptr, pointer to any associated text (RTXT)

record.

(NIP) number of input.
(NOP) number of output.
(MXPTR) pointer to the first block record in the internal

structure of the composite type.

(LBLKNO) local block identification, in the internal
structure.

(I/PNO) input terminal number.
(0/PNO) output terminal number.

input set to define the input
terminal of the composite type.

4------------------ +
+ (LBLKNO) (0/PNO) + output set to define the output
too 77-23 --- 5 + terminal of the composite type.

Which input or output terminal of the composite to
which the above sets refer to depends on their

relative location in the type record.

FIGURE 4.17 RUN TIME COMPOSITE TYPE RECORD

TGs

RUN TIME TEXT (RTXT) RECORD - GENERAL FORM

$---------------- = +

+ (TLINK) (LENGTH) ((TEXT)) -
foo rr +

LEGEND

(TLINK) pointer to the next associated RTXT record.

(LENGTH) length of the record in complete words.

((TEXT)) text characters. Each character is stored in a
byte.

TYPE-SPECIFIC TEXT
4$---------------- == = - = = 5-5 5 5 5 5 nnn +

+ ‘ oF

+ (TLINK) (LENGTH) BLOCK FUNCTION TERMINAL] NAME +
$-- +

4$-- +
+ c 3 +

+ (TLINK) (LENGTH) BLOCK NAME ENG UNIT f

$-------- $= == $$ 5 5 enn nnn +

NOTE : The dot above the character indicates that the most

significiant bit (MSB) of the byte is set.

FIGURE 4.18 RUN TIME TEXT RECORD

a=

CHAPTER 5

USER INTERFACE AND GRAPHIC EDITOR

This chapter deals with the design and considerations

of the man-machine interface and gives a general description

of the graphic editor and its facilities.

5.1 USER INTERFACE DESIGN

5.1.1 INTRODUCTION

The user interface design of a graphics system is of

utmost important and a main contributer to the success of

the system. A poorly designed interface is difficult to

learn and to use. Considerations for designing of the user

interface of a graphics system [NEWMAN 1979], [GooD

1981] includes

(1) the command language

(2) the feedback

(3) the information display

Each consideration will be further dealt with below having

regards to the user interface used in this project. (The

display terminal used is a direct view storage tube display

with a joystick control device and a keyboard.)

=18=

5.1.2 COMMAND LANGUAGES

The command language should be designed to be as simple

as possible and logically consistent so that it is easy for

the user to learn. The followings are some methods of

communication on which the command language may be based,

(A) KEYBOARD DIALOGUE

This is the simplest style of command language. The

graphics system "prompts" the user to supply all the

necessary information by printing question messages.

The choice of answer may also be restricted to a set of

responses offered to the user together with the

question.

(B) KEYBOARD COMMAND LANGUAGE

An example for the graphics system is the command to

delete a block, say block number 25, from the display

as follows

DELETE BLOCK 25

This form of command language requires much less code

than the keyboard dialogue. The processor must only

recognize a limited vocabulary of commands. The user is

however confronted with the task of memorising or

keeping a record of the command set.

=79—

(C) FUNCTION KEYS

The commands are given with the aid of a set of

function keys. Each function key can be assigned a

specific function, such as DELETE or CREATE. It is

possible to assign certain alphanumeric keys to act as

function keys. An example is the character key D to act

as the DELETE function key.

(D) MENU-DRIVEN LANGUAGE

This is a very general and flexible style of command

language for the following reasons

(1) The menu displays plainly on the screen the full

range of the available options. A well designed

menu can even be made to display different list of

options during different stages of using the

graphics system.

(2) The menu can be easily changed e.g. to include new

commands. When the command menu is displayed on the

screen, the required command can be selected from

the menu by use of the joystick.

In implementation the function keys approach was

adopted. The menu-driven language would be preferred but

with the storage tube display terminal, the writing speed is

limited. A trained user can operate much more quickly using

single key strokes rather than having to wait for a menu to

be displayed. However menu-driven facilities are also

=80—

included, particularly to describe the available block types

(GRAPHIC MENU). The graphic menu lists much information

about the block type, including the shape and the size of

the block symbol and the number of inputs and outputs.

5.1.3 FEEDBACK CONSIDERATIONS

Feedback is an important ergonomical factor to be taken

into account during user interface design. In the graphics

system, visual feedback serves to assure the user that the

system is responding to his command. One essential form of

feedback is the "selection feedback" whenever some form of

menu is used. When a choice is made by the user, selection

feedback (e.g. highlighting or inversion) indicates that the

system is responding to the selected item. Whenever the user

selects a block, that block is redrawn to provide the visual

feedback. (Highlighting and inversion are not permitted in

storage tube display.)

Another form of feedback is the “command feedback".

This serves to indicate to the user that the system is

responding to his non-visual commands (commands not

affecting the display directly). One example is the saving

of the system present status and data. The command feedback

also prevents the user from giving a command when the system

is not ready to receive it (the system may be busy doing

some other functions). In this project, the command feedback

is provided by the changing the shape of the cursor on the

screen. Whenever the system is ready to accept commands, the

=33—

cursor is a blinking pointer (looking like an arrowhead).

When the system is not ready for commands, a blinking alpha

cursor (a shaded rectangle) appears.

5.1.4 INFORMATION DISPLAY

This section concerns the effectiveness in displaying

information. The important question is "how should the

information be presented on display in the most effective

manner to promote the interaction between user and the

graphics system ?". Problems in information display

generally relate to overall layout or the representation of

the object.

(A) OVERALL LAYOUT

Here utilization of the screen area is considered with

regards to the picture display and the menu. The screen

could be divided up into “windows", allowing the menu

and the picture to appear simultaneously. Since the

screen area is not very large, it is decided to use the

whole screen for the picture display area. The graphic

menu will be drawn separately upon user request.

(B) OBJECT DISPLAY

The graphical representation of the object item is

chosen on the basis that (1) it must reinforce the user

conceptual view of the item and (2) the symbol

preferably is ome that the user is accustomed to. in

this implementation, the symbology used is "borrowed"

-82-

from the commonly used and popular control block

diagram representation.

=93-

5.2 THE GRAPHIC EDITOR

5.2.1 INTRODUCTION

The graphic editor enables interactive communication

between the graphics system and the user for the synthesis

of the GPL (graphical programming language) programs. The

editor is used to create a new picture or to modify an

existing picture. A picture is defined as a collection of

related graphical entities which are displayed together. The

facilities provided by the graphic editor are dependent on

the graphics hardware used. The following section will give

a brief description of the graphics hardware used.

5.2.2 GRAPHICS HARDWARE DESCRIPTION

The display terminal used is the TEKTRONIX 4051

terminal, of the 4050-series storage CRI (cathode ray

tube) display type [TEKTRONIX 1976A]. This is a popular

and commonly used storage terminal which has been emulated

by refresh type terminals. It has a drawing area of 19 cm by

15 cm and has the addressing capability of 1024 x 780. A

4051 data communication interface [TEKTRONIX 1976B J] (a

RS-232 compatible interface) is used to connect the display

terminal to a minicomputer as the host computer. The

minicomuter used is the TEXAS INSTRUMENTS 990/10 model

{ TEXAS INSTRUMENTS 1978]. The interface acts as a doorway,

allowing streams of characters to flow to and from the

graphics drawing hardware in the 4051 terminal. This

-84-

interface allows the 4051 terminal to emulate a TEKTRONIX

4012 computer display terminal. Figure (oS. lee) shows

diagrammatically the hardware equipment used in the project.

+-------------- + +----------------- +

+ - . +

+ TEXAS + + +
+ INSTRUMENTS +---------------- >+ [" DISPLAY J) +
+ 990/10 + output + £ SCREEN] +
+ + + +
+ + + +
+ + + +

* ee + SE JOYSTICK. | sat
+ GPL & = input + [KEYBOARD] oF
+ DATA BASE + + +
+ + + TEKTRONIX 4051 +
+-------------- + 4+----------------- +

FIGURE 5.1 EQUIPMENT USED IN PROJECT

By putting the data communication port into the

terminal mode, the 4051 terminal becomes interactive and

three other submodes are allowed [TEKTRONIX 1976B]. The

ALPHA SUBMODE in which the incoming characters are displayed

as lines of text. In this mode, the terminal works like an

alphanumeric terminal except that the characters can be

positioned anywhere on the screen. The GRAPHIC SUBMODE in

which the incoming characters are decoded as screen

locations, which are used for vectors (lines) drawing,

allowing picture to be drawn. The GIN SUBMODE in which the

location of the graphic cursor can be sent out through the

data communication port, with the character typed on the

keyboard. The graphic cursor is controlled by a joystick

device (TEKTRONIX 4952) [TEKTRONIX 1976B], which is used

to move the cursor to any desired position on the screen.

-85-

Although storage displays do not permit dynamic

movement of image (e.g. ("dragging"), they do generally

provide better resolution and are less expensive than the

refresh types [PRESIS 1978]. Because of the storage

display of the 4051 terminal, deleted blocks and connections

do not disappear from the screen until the picture is

redrawn. Redrawing of a picture may take a long time

(depending on the complexity) due to the slow speed of

drawing, so a picture is only redrawn if requested by the

user. Futhermore, if necessary, the editor can be made to

redraw the picture after each alteration by setting a

software switch. The graphic editor can be easily adapted to

handle a refresh type terminal with a light pen, by making

the refresh type terminal emulate a storage tube display

terminal. The basic editing actions will remain unchanged.

5.2.3 PICK FUNCTION

The pick function, using the joystick and the GIN

submode, allows the operator to "pick" graphical entity on

the srceen. The picking function is performed by comparing

the cursor position to the position of the graphical

entities. Identification algorithms for the pick function

are discussed in the paper by Weller and co-workers [WELLER

1980]. General picking selection techniques are discussed

by ([NEWMAN 1979]. The pick window is defined as the area

around the cursor within which the graphical item is chosen.

The pick window is of a fixed size in this case. Any

ambiguity of which graphical entities picked (when there are

-86-

more than one in the window) is resolved by picking the one

nearest to the cursor location. The selected item is redrawn

to provide the visual feedback to the operator.

5.2.4 EDITING OF PICTURE

This section on the graphic editor concentrates mainly

on the creation of a new picture or modification of an

existing picture, using elements from a menu of basic block

types. A simplified model of the graphic editor is shown in

figure (5.2).-

+------------- + +------------------- +
+ - + GRAPHIC TYPE DATA +

user + GRAPHIC Are Dos ee if

command------ >+ + + TEXT data +

a EDITOR + BLOCK data 7
+ + enn === 2
$------9------ +

+------------------- +
+ EDITING ROUTINES +
taooeate +

t= + + =devere a
+ GPs + + —join +
+ Program + + -redraw a

+ ty ee aa aT +

---+

FIGURE 5.2 SIMPLIFIED MODEL OF GRAPHIC EDITOR

Editing is initiated by giving the appropriate keyboard

command and by giving the picture type number (unique for

each picture). An example of the editing keyboard command

set is given in the table (5.1).

Sol

GRAPHICAL EDITOR COMMANDS

P = picture naming J = join terminal
R = redraw of picture W = draw guidelines

? = dump GDS Cc = create block

: = save GDS D = delete connection

X = open trace file B = delete block
Z = close trace file * create junction

G = get trace flags Q = quit edit
O = open or "unfold" cuaposite block

SELECT

S = select
next menu page) used for controlling of

previous menu page) display of menu page

TEXT EDITING

= select block for text edit
= block name text edit
= block number edit

random text edit
constant input edit
engineering unit edit
finish text edit Y

w
A
Q
O
W
A
w
W
H

no
u

TABLE 5.1 GRAPHIC EDITOR COMMAND CHARACTERS

If the picture type number cannot be found in the GI

(graphic information) records, then a new (empty) picture is

created. Otherwise the existing picture will be drawn on the

display screen. Addition of a block within a picture

involves the selection of the required block type. This

selection can be carried out in three ways :

(1) by selecting a block of the required type (already

present in the picture).

(2) by selecting through the graphic menu (a display of

all the available block types).

-88-

(3) by specifying the required type number. (This

avoids the delay due to drawing of the graphic

menu.)

The cursor can then be located in the required position and

the block created by a keyboard character command.

The editor can be used to connect terminals of blocks.

Terminals are “picked" by the cursor (controlled by the

joystick) and validity checks applied before the connection

of the two terminals is completed. The validity checks

concentrate mainly on the correctness of the intended

connection in the signal flow sense, i.e. an output to an

input, or vice versa. Incorrect connections include attempts

to connect two outputs (or inputs) together and the input

terminal being already connected to another output. Any

attempted incorrect connection will be reported back to the

operator via a message on the display screen and the

attempted editing action ignored. The difficulty involved in

usage of the junction block is discussed in section

ibm S i

Deletion of a connection between blocks is relatively

easy to implement. The simplest case is deletion at the

input terminal, since there can be only one connection to an

input terminal. Deletion at an output terminal requires more

care, since it may be connected to several inputs. Deletion

of a block requires even more attention (see section on

recursive deleting in [SUTHERLAND 1963]). When a block is

=oo—

deleted, then all connections to and from it must be deleted

as well. The editor removes the appropriate block record and

updates all the connection information.

The editing of the picture (with subpictures and macro

plocks) is enhanced by the possibility to "expose" or

"unfold" the internal composition of the composite blocks

(i.e. to show the internal structure). The GB (graphic

block) records and the GI (graphic information) records are

scanned for the next lower level of the picture to find the

required composite block. Validity check will prevent a

macro block from being modified by any attempted editing.

The creation of a composite block is very similar to

the creation of a picture, except for the need to modify the

class number entry in the GI (graphic information) record to

the appropriate class number. (The class numbers are 1 for

macro block, 2 for subpicture and 3 for picture.)

5.2.5 CONNECTION TO AND FROM JUNCTIONS

A junction block is normally used for aesthetic

purposes since it just passes the signal along. A junction

block in diagrammatical representation is just a big "dot"

and its input and output terminals are coincident. Whenever

a junction is "picked" for connection, the terminal which is

chosen cannot be immediately identified as either the input

or the output. This has to be worked out from other

connection already made to the junction. A more complex

-90-

situation arises in the case of a multi-segment connection

line (formed by connecting several junctions only). Here the

whole length of the multi-segment connection must be scanned

to determine the flow of the signal.

5.2.6 TEXT EDITING

Text associated with the block type (type specific

text) may not be modified while creating a picture. Type

specific text are text of the block function name and

terminal names and can only be modified by recreating the

block type.

Block specific text (text associated with a particular

block) can by edited using the editor. Text editing is

initiated for example by first selecting the block in which

the text is to be edited. The complete capabilities of the

text editing include

(1) addition or removal of commentary random text.

(2) the changing of the block number subject to the

restriction that the new block number is unique within

the picture.

(3) addition or removal of the engineering unit text to be

associated with the terminal data value.

(4) the association of constant numerical value to

terminals.

=or-

(5) the changing of the block name.

(6) the tagging of any terminal with a label so as to

enable easy indentification during the execution phase.

These changes are incorporated in the graphic text data

structure (see section (4.1.6) for a description on the

graphic text data structure).

a

CHAPTER 6

THE GRAPHIC COMPILER

6.1 INTRODUCTION

After the graphical programming language (GPL) program

is configured, it is passed over to the graphic compiler.

The main output from the graphic compiler is the program

structure table (PST), a numerical data representation of

the picture. The PST comprises various inter-related run

time data structure records (section 4.3). The functions of

the graphic compiler can be outlined as the followings :

(1) data transformation of type specific data from

graphic to run time requirements.

(2) expansion of the macro blocks and subpictures.

(3) error checking of the picture, which is divided

generally as :

(a) missing essential connections.

(b) illegal data type connections.

(c) “algebraic loops" of non-retrospective blocks.

(4) sequencing the blocks for execution.

(5) allocation of data tables for the blocks.

(6) initialization of the data tables.

(7) listings and messages.

=93—

A simplified model of the graphic compiler is shown in

figure (6.1).

Sone Soe eae ae

+ a macro expansion +

+ NGD data ——-——— error checking +
+ + sequencing +

storage -
allocation +

initialization +
ees ee +

+------- t+ tena -SL------- +
+ PROGRAM us ie +

+ STRUCTURE + ne LISTINGS +

. STABLE, Sr se a +

$-------------- + $-------------- +

FIGURE 6.1 SIMPLIFIED MODEL OF GRAPHIC COMPILER

6.2 TRANSFORMATION OF GRAPHIC TYPE TO RUN TIME TYPE

After the graphical synthesis of the picture scheme,

the transformation of the graphics data (in terms of the

blocks diagram) to the run time data (for more efficient

execution and storage space) is to be carried out. Of the

run time data, there are two groups, one of the type records

and the other the block records.

-94-

This section will deal mainly with the type specific

record information transformation. The type specific

information are those relating to the particular type of the

functional block provided and not with the graphical outline

of the block. All the run time type records are formed using

the information previously provided in the graphic data. The

run time type record provides a compact form of all the

essential information. (The actual elements of the text

record can be found in section (4.3.4) (run time type

record)).

There are two ways of dealing with the type-specific

transformation, namely by transforming when the graphic

compiler is called, implying that the transformation will be

carried out with each compilation ; or by providing already

transformed run time type record, leaving only newly

provided functional block type to be transformed. The

difference is only in the execution time required for the

compilation.

6.3 EXPANSION OF MACRO BLOCK AND SUBPICTURE

The use of macro block or subpicture in a picture leads

to compactness of the graphical representation and allows

blocks that are related logically or computationally to be

grouped as one entity. In most cases, the operator is only

interested in the relationship between the inputs and

outputs, and not the "internal structure computation", of

the composite blocks.

-95-

During run time, the macro block and subpicture must be

expanded, that is their internal structure are represented

in terms of simple blocks. This results in only one single

level of simple blocks. For further details on treatment of

the subpicture and macro block, refer to the section (7.1)

(run time treatment of composite blocks).

6.4 ERROR CHECKING BY GRAPHIC COMPILER

6.4.1 MISSING CONNECTIONS

For the graphic compiler to function properly, certain

ESSENTIAL connections in the picture must be present. If the

operator may by mistake or otherwise has left out the

connections and it is the function of the connection error

checking module to detect these connections and inform the

operator of the result. Essential connections include input

(normal variable, logical or constant in nature) that may

have been left “undefined". A simple but trivial example is

that of one input of the multiplier function block is

connected. With the other input left unconnected (i.e.

undefined), the output of this block is obviously ambiguous.

6.4.2 ILLEGAL DATA TYPE CONNECTIONS

The inputs and outputs of the functional blocks are

allocated one of the following data types,

—=96=

(1) system normal variable

(2) logical variable

(3) constant.

A system variable is one whose value is represented in

floating point number whose range is determined by the

implementation in the run time processor. A logical variable

is represented as an integer with value one or zero (1 or 0)

i.e. it is binary in nature. The constant data type applies

particularly to the input, implying that a constant input

value is expected at that input. It is also in floating

point number representation and the constant values are held

in a constant pool data table.

Obviously it is improper or "illegal" to try to connect

an output of the type "system variable" to an input of type

“logical variable". Constant input can also be checked if

the input value is actually a constant, since constant

values are stored in the constant pool data table. This data

table is a read only data base during the run time

processing of the blocks. This data type-checking is similar

to the type-checking function of the new programming

languages (e.g. Pascal and Ada).

-97-

6.4.3 ALGEBRAIC LOOPS OF NON-RETROSPECTIVE BLOCKS

Closed loops of non-retrospective blocks are not to be

allowed in the picture, to prevent “algebraic loops". A

algebraic loop is a situation such that the instantaneous

value of any output is fed back to the inputs of the blocks

in a closed loop. With reference to the figure consisting of

a summer, a multiplier and a non-linear function generator,

their interconnection cause the instantaneous output of the

non-linear block to be fed back to the adder. This results

in a algebraic loop, since a closed loop is formed.

Non- LINEAR

x3 x FUNCTION
ADDER

 MULTIPLIER

FIGURE 6.2 EXAMPLE OF ALGEBRAIC LOOP

The presence of any algebraic loops in a picture may

not be obvious, especially if the picture is complex and/or

using various macro blocks and subpictures. Further details

on the algebraic loops can be found in section (7.2) (closed

loop of blocks). These algebraic loops, if any, will have to

be detected and if found to be reported to the operator.

This will be expanded upon in the loop detection section

Che soie

-98-

6.5 SEQUENCING THE BLOCKS FOR EXECUTION

After the expansion of the macro blocks and the

subpictures, and the completion of the error checking

routines, a valid interconnected set of simple blocks

results. It is necessary to sequence or sort the blocks to

determine the processing order of these blocks during the

run time execution. The blocks are either retrospective or

non-retrospective in nature. Non-retrospective blocks

require their present input values for the computation of

their outputs while the retrospective blocks do not.

Sequencing is only carried out among the non-retrospective

blocks since all the retrospective blocks, by definition,

are independent in their processing order.

Sequencing is necessary to ensure that the computation

conforms to the data flow requirements of the block diagram.

For example if a non-retrospective block has an input value

derived from an output of another block, the other block

must be executed first so that the input value is updated

before it is used [ROSKO 1972]. The general discussion on

sequencing (including the processing order) can be found in

section (8.2).

=09=

6.6 ALLOCATION OF DATA TAB..ES FOR BLOCKS

Each block can now be allocated memory storage for the

output, input and internal variables (if any) in the RVT

(run time value table). These will be grouped together to

give a data file for each block. Such data file gives a

clear representation of a functional block in the data

table, allowing easier recognition of the block than

otherwise. The choice of the allocation of variables of

block is discussed in the section (9.1).

The general format of data file is clearly shown in the

RVT (run time value table) in figure (6.3), i.e. the

current outputs, current inputs, past inputs and internal

variables in that order. The relation between the run time

simple block (RSB) and its data file is also illustrated.

The RVTPTR in the RSB record points to the first entry in

the data file (RVT). This first entry is usually the first

output variable. Thus the next output variable is located at

RVTPTR+1 and can be refered to by RVT [RVTPTR+1]. The

first input variable is located at

RVTPTR + NOP

where NOP is the number of output of the block. The location

of the Nth input is at

RVIPL Re NOP Ng=. 1

Knowing the NIP (number of input), the start of the internal

variables can be found and easily accessed. The IPPTR entry

in the run time simple block record is used to indicate the

=1£00=

connection of an output to the input. IPPTRNOl points to the

output location (in RVT), that output being connected to the

first input terminal. So the first input variable value is

given by RVT [IPPTRNO1]], similarly the rest of the inputs

can be found. Direct addressing of the output to the input

is used to ensure more efficient and faster processing of

the blocks.

L01l—

RSB (RUN TIME SIMPLE BLOCK) RECORD

(ELINK) (GBLKNO) (RVTPTR) (IPPTRNO1) (IPPTRNO2)

RVT (RUN TIME VALUE TABLE)
FLOATING POINT

4+------------------------ +
+ +]

-—______»+ (CURRENT OUTPUTNO1) +

+ (CURRENT OUTPUTNO2) + J

(SS se + J] DATA
+ (CURRENT INPUTNO1) +] FILE

+ (CURRENT INPUTNO2) +) OF
Bataan = os lagaim +] THE
+ (PAST INPUTNOL) +] BLOCK
+ (PAST INPUTNO2 eee er
+ + J
+ o2---85------- === +]
+ (INTERNAL VARIABLE1) +]
+ (INTERNAL VARIABLE2) +]
+ +]
4+------------------------ +
+ +
+ +
+- +

(IPPTRNO1])---> + (CURRENT OUTPUTNO]) +
+ (CURRENT OUTPUTNO2) +
$------------------------ +

LEGEND

(ELINK) Link to next block to process

(GBLKNO_) Global block number, identification purpose
(RVTPTR) RVT pointer, points to first entry in data

file
(IPPTRNO1) Pointer to location in RVT where the output is

stored, this output being connected to this
input.

FIGURE 6.3 RELATION BETWEEN DATA FILE AND BLOCK RECORD

oe —

6.7 INITIALIZATION OF THE RUN TIME DATA TABLE

The data files of the blocks can now be initialized

from the operator-provided values (with more values,

computed from given values). The general philosophy involved

in initialization is explained under section G92 5)

(initialization of functional block). The initialization

also allows the checking of the compatibility of the

provided values to the terminals. The data table and the run

time block data structure are now ready for execution.

6.8 LISTINGS AND MESSAGES

This function of the compiler provides the error

reporting and general reporting facilities. Error reporting

includes any error or warning messages arising from the

previously mentioned functions of the compiler. This is

consistent with the listings, error and warning reporting of

conventional high level programming language compilers. The

reporting facilities of the graphical compiler can be

divided into the followings :

(1) errors concerning the usage of macro blocks. These

concentrate on the completeness and legality of the

macro block and subpicture. By completeness, it is

meant that the macro block is complete in its internal

structure as opposed to a un-completed attempt at the

construction of a macro block. Usage of such an invalid

marco block or subpicture (detectable since they are

03

flagged) is forbidden. Legality of a subpicture

includes the usage of a subpicture only once in a

picture.

(2) connection errors, include error listing of any missing

essential connections, illegal data type connections

and "algebraic" loops. Reports could include block and

terminal references where the connection error occurs.

(3) initialization report. Messages about operator-provided

values, any incompatibility between such values, and

any initialization difficulties (including insufficient

initial values to provide for all the initialization

requirements).

General reporting would be on the listings of the

blocks used in the picture and their interconnections in

numerical form as opposed to the graphical form. This

provides a separate form of documentation. Information about

number of blocks used, their types, and total amount of

memory storage for the graphic and run time representation

can be provided.

6.8.1 EXAMPLES OF LISTINGS AND WARNINGS

Error reporting and warning listing can be implemented

by providing a source of all the messages in a listing

library. When an error is encountered, the appropriate

message is selected and then listed. Some examples of the

messages are provided below

-104—

(1) Subpicture.

SUBPICTURE USED MORE THAN ONCE

(BLKID) (BLKID)

(2) Connection errors.

INPUT UNDEFINED (BLKID) (TERMID)

ILLEGAL CONNECTION

(BLKID)(TERMID) (BLKID) (TERMID)

ALGEBRAIC LOOP (BLKID) (BLKID) (BLKID)

(3) Initialization.

INCOMPATIBILE INITIAL VALUES TYPE

(BLKID) (TERMID)

INCOMPLETE INITIALIZATION

where (BLKID) is the identification block number and

(TERMID) the terminal number of the block.

=105—

CHAPTER 7

COMPILATION ACTIVITIES - PICTURE VALIDATION

7.1 RUN TIME TREATMENT OF COMPOSITE BLOCKS

There are two ways of treating a composite block (i.e.

a collection of blocks to be treated as a single entity).

Composite blocks are of two types - macro and subpicture,

the main difference being the ease to which to modify the

internal composition in the subpicture type but restricted

in the macro block type.

They can be looked upon as analogous to subroutines (or

procedures) in normal high level programming languages.

There will be no identity problems as shown in the figure

(7.1A). The actual composite block is entered into the run

time block records and a DUMMY structure (similar to the

definition of a subroutine) is required to define its

internal composition. The dummy structure is to be used

during the processing of the composite block. Variables

storage in the run time value table, RVT, must be allocated

for each and every block inside the composite block, this

storage being replicated for every occurrence of the

composite block. Figure (7.1A) shows the effect on the run

time data structure. By treating composite blocks as

subroutines, little space in the run time block record is

required to indicate each occurrence but, in common with

subroutine calls, more parameter passing is required,

resulting in slower execution. Sequencing of the blocks in

-106-

their appropriate processing order now become more

difficult, when composite blocks of a mixture of

retrospective and non-retrospective blocks are used.

If the composite blocks are treated as macros, they

must be expanded down to the lowest level possible, thus

resulting in only one level of simple blocks. Similar to the

expansion of macro code statements, this requires more data

storage (compared with the subroutine approach) since the

structure of the macro is repeated for every occurrence of

the composite block. Figure (7.1B) shows the run time data

structure using the macro approach. The advantage of this

approach lies in the simplicity of the execution of the

blocks, no dummy structure is required and the

differentiation of composite block and simple block is not

required. Sequencing is simplified, applying only to one

level of all simple blocks. Unfortunately, the identity of

the composite block is destroyed during the macro

replacement. Another data record (the RCB, run time

composite block, record) is used to maintain the composite

block identity.

In this project, the macro approach of the treatment of

the composite blocks is adopted. So one of the functions of

the graphic compiler is to deal with the macro replacement

(expansion) of all the composite blocks down to the level of

simple blocks.

-107—

BLOCK RECORDS RVT

(simplified) value table

BLK NO. | TYPE

10 A blk 10 block
LY Cc composite record

2 B } pax ay
27 D ae

5 S composite blk 2
blk 27

fue 5

dummy
structure
composite
type 'C'

FIGURE 7.1A SUBROUTINE AND EFFECT ON RUN TIME DATA

BLOCK RECORD RVT

(simplified) value table

BLK NO. | TYPE

10 blk 10
nl (merci aie]
n2 composite } blk 11

block 11
jonk ga,

blk 27

} bik, 5S

composite
block 5

FIGURE 7.1B MACRO AND EFFECT ON RUN TIME DATA

FIGURE 7.1 RUN TIME TREATMENT OF COMPOSITE BLOCK

=108—

7.2 CLOSED LOOPS OF BLOCKS

In the graphical picture scheme, closed loops of

interconnected blocks may be configured in order to realise

the required control function. Such loops fall into two

categories :

(A) loops with non-retrospective blocks only

(B) loops with at least one retrospective block.

An example of the first category is found in the

obtaining the square root function as shown in the figure

(7.2). This is a common practice in the analog computing

{ KORN, KORN 1972].

- oa 2

be

 ay) i |

FIGURE 7.2 SQUARE ROOT FUNCTION BLOCK DIAGRAM

In this case the blocks forming the'closed loop are all non-

retrospective, i.e. their outputs are instantaneous

functions of their inputs. An ALGEBRAIC LOOP is formed

equivalent to an implicit expression of the form

y=F(x,y)

109

These loops present no problems to analog computing since

the constituent blocks are processed simultaneously. The

sequential operation of digital computing requires one block

to be processed at a time and this leads to the requirement

of an iterative solution. Solutions of implicitly expressed

function via iterative process may be acceptable in

simulation programs, but they are unacceptable in process

control applications for the following reasons :

(a) the number of iterations varies, depending on the

specific data involved i.e. the processing time is

undeterminate.

(b) the convergence of the solution cannot be guaranteed.

The problem can be avoided by creating a new functional

block which defines the required function explicitly.

Algebraic loops are therefore not to allowed in the

pictorial scheme, and it is a part of the function of the

graphic compiler to test for the existence of such loops and

to terminate processing with an error message if a loop is

found.

The second situation exists, when at least one block in

the closed loop is retrospective in nature i.e. its outputs

are not dependent on the current value of its inputs. Such a

block effectively "breaks" up the loop, allowing the blocks

to be processed in a sequential manner [SPECKHART, GREEN

1976 J.

=110=

Biock 8
a cond din)
eed

 Non- Li neat

Funcrion
Brock A

FIGURE 7.3 NON-LINEAR FILTER BLOCK DIAGRAM

The integrator block C is implemented as a retrospective

algorithm (see section (2.8.1)) so that the output d(n) does

not depend upon the current input c(n). The block C has

effectively "broken" the closed loop. Hence block C may be

processed before blocks A ind B. Thereafter the processing

order A B is found by tracing the signal flow round the loop

starting at block C. The general technique is therefore to

process all the retrospective blocks first, in any order ;

then the remaining non-retrospective blocks in an order

determined from the connections in the block diagram.

7.3 ALGEBRAIC LOOP DETECTION

7.3.1 INTRODUCTION

Since algebraic loops are not allowed in the picture,

they must be detected by the graphic compiler. For the

purpose of loop detection, a flow graph can be obtained by

replacing each block by a node. This allows the application

of the topological theory to this problem.

ati

If all the non-retrospective blocks (nodes) are placed

in a set, S, then topological sorting can be used [KNUTH

1978]. The nodes in set S contain information as to their

interconnections. This results in a partial sorted set since

nodes can only be processed after the nodes connected to

their inputs are already processed. The basic principle is

to pick a first node not preceded by any other nodes. (The

first node has no other nodes connected to its input or one

with all its input defined.) There must be at least one such

node otherwise a loop exists (since this only occurs when

all the nodes are in a closed loop). This node is marked and

its connection information deleted. The procedure is

repeated until the set S is exhausted or when a loop is

detected. The topological sorting method detects any

existing loops but does not identify them.

To enable identification of the nodes forming a

algebraic loop, a method known as the "depth-first search"

is used with some modifications [AHO, ULLMAN 1977]. The

search is initiated by finding the INITIAL NODE (one with

all input defined, see figure (7.4)). Using their

connection relation to search for successive nodes (i.e.

nodes connected to its ouput), the "tree" is traversed as

far as possible. With each new node visted, the existence of

this node in the path already “travelled" is checked for. A

loop exists if this new node is already in the path and with

the path intact, all the nodes forming the loop can be

identified. Other possible paths may be formed via

traversing to the preceding node to see if another

—1i2>

alternative route is possible. When all the nodes are

"visited", all possible paths are exhausted and accounted

for.

Figure (7.4) shows the loop detection method in

operation. Figure (7.4A) shows the flow graph of the

plocks, where node A is the initial node (all inputs

defined). Two possible traversing sequences are shown in

figure (7.4B) as examples of the operation of "visiting"

the nodes.

D

i or.
F é

FIGURE 7.4A FLOW GRAPH

ForwatD

o wot

SS Se eS e

 A feseaee 8 ic e € a
*

Found

FIGURE 7.4B EXAMPLES OF VISITING THE NODES

FIGURE 7.4 LOOP DETECTION SCHEME

=1t3-—

7.3.2 IMPLEMENTATION OF THE LOOP DETECTION SCHEME

Loop detection applies only to all the non-

retrospective blocks present in the picture. of the

relationship between the blocks, these can be classified

under :=

(A) "Isolated" block i.e. the block is not connected to any

other blocks at the input or output ends. Isolated

blocks can be ignored since closed loop will never

exist for them.

(B) Block having only input connection i.e. the output is

not connected to other blocks.

(C) Block having both inp-t and output connections.

The general implementation is as follows : the blocks

present in the picture are maintained in a linked list

BLKLIST and their interconnection information in another

linked list LINKLIST. The structure of both the lists are

shown as follows

=li4—

BLKLIST

Ce Se ee oe ee

+ (BLINK)
speek ees

LINKLIST

4$----------------- === ---- === 5-5 - == +

+ (LLINK) (FROMBLK) (TOBLK) (PATHLINK) +
----+

LEGEND

(BLINK , link to next block record

(LLINK) link to next connection entry record

(BLKNO) identification block number

(BLKVISITED) flag to set when block is vistied

(FROMBLK) block where output is connected to (TOBLK)

(TOBLK) block where input is connected to (FROMBLK)

(PATHLINK) link to records of path "travelled"

A block is now selected from the BLKLIST, the first on

that list that is not marked visited. if this is an isolated

block then, this block is marked visited i.e. the blkvisited

flag is set. If this is type (B), then its connection can be

deleted from the list LINKLIST and the block marked visited.

This is possible since a block with no output connection

cannot be part of a closed loop.

For a block of type (C), with both input and output

connections, the LINKLIST is used to proceed "forward" to

the next block (the next block is that which connected to

the output of the block). Each forward block is tested to

check if it is already present in the current path

(indicated by the PATHLINK entry). If it is not present,

then the connection is inserted into the path, via updating

the PATHLINK. This block is then marked as visited, the

=o

connection record deleted from LINKLIST, and the procedure

repeated going to the next forward block. A loop is detected

if the same block appears more than once in a current path

and the loop detection algorithm may be terminated. If no

more forward block can be found, then "“backtracking" will

accounts for all other possible paths. Backtracking involves

the locating of the last but one block in the current path

(blockback), deleting the last block from the path and using

the block (blockback) as the focal point to search for

another route. This is to ensure that blocks with output

connected to more than one input terminals are thoroughly

searched for alternative routes of the signal flow. So the

path is created going forwarding and then deleted when

backtracking if no loop is detected. The complete loop

detection scheme is ended when all the block in BLKLIST are

marked as visited or when a loop is detected and reported to

the operator.

=llo=

CHAPTER 8

COMPILATION ACTIVITIES - SEQUENCING

8.1 PROCESSING ORDER AMONGST CONTROL SCHEME BLOCKS

This section deals with the order of execution amongst

the various block types provided for control algorithms in

DDC. The processing sequence during execution is indicated

in the figure (8.1). At the start of the processing

(computation) cycle, all the input interface blocks are

processed first. Ordering between the input interface blocks

is arbitrary and the processing order is determined by the

sequence the interfaces are linked in the list. Execution of

all the input interface blocks first ensure that the

correct, up-to-date input values are presented to the rest

of the picture scheme.

Now all the outputs of the retrospective blocks can be

computed as they are totally independent of each other.

Ordering of the blocks in this group is of no significance.

The order used is the order in which the blocks are linked

in the list.

The non-retrospective blocks can now be processed in

the order determined by the sequencing algorithm via tracing

the signal flow. At this point all the blocks except for the

output interfaces have been evaluated for this cycle. Now

all the input queues may be updated. These input queues

belong to blocks (retrospective or non-retrospective) that

ae

require their past input values for computation.

To finish off the processing

interfaces can be processed (in che

cycle,

order

all the output

that they are

collected) to present the results of this computation cycle

to the process environment.

+ SPAR
LG

4+-------------1------------- +
+ UPDATE INPUT INTERFACES
ae

+ UPDATE OUTPUT OF

st RETROSPECTIVE BLOCKS

+ UPDATE OUTPUT OF
+ NON-RETROSPECTIVE BLOCKS +

+ UPDATE OUTPUT INTERFACES
$-------------47------------- +

FIGURE 8.1 PROCESSING ORDER AMONGST CONTROL SCHEME BLOCKS

=e —

8.2 SEQUENCING FUNCTIONAL BLOCK

8.2.1 INTRODUCTION

Since the retrospective blocks as implemented do not

use current input values in computing the current output,

there is no need to arrange them in any particular sequence.

Input interface and output interface blocks too need no

sequencing at all. This leave only the non-retrospective

blocks to be sequenced into a proper, correct processing

order to ensure correct computation results.

After the expansion of the macro blocks and the

subpictures, a single level of only simple blocks with all

the valid interconnections results. Firstly all the blocks

are collected into their respective classifications, namely

the input and output interfaces, retrospective and non-

retrospective. This collection of the retrospective blocks

will determine the order in which the individual block is

processed, the first one being on the top of the collection.

Input interface and output interface blocks are dealt in the

same way.

With other blocks "removed", the remaining non-

retrospective blocks are usually in small groups of

interconnected blocks. Replacing the block by node, the

topological representation is shown typically in figure

(8.2). A node cannot be evaluated until all of its input

values have been evaluated. It is therefore necessary to

=119-

derive the appropriate processing order for the nodes. This

is always possible since closed loops are not permitted.

i eee

ye a nee

SO OOO
FIGURE 8.2 GROUP OF INTERCONNECTED NODES

8.2.2 SEQUENCING METHOD IMPLEMENTATION

To obtain an easy-to-prove algorithm for the

“sequencing, all independent, possible signal paths in the

picture (only for the non-retrospective blocks) are to be

found.

The approach to determine the independent paths is very

similar to the “depth-first search" in topology [AHO,

ULLMAN 1977]. The search is initiated by finding the

INITIAL NODE, in this case the node with all its inputs

already defined. This is used as the starting node to search

for the next linked node (node which is connected to it) and

traversing as far as allowed. This gives the first path.

Nodes "visited" are marked by setting an appropriate flag.

Other paths may be formed by traversing to the preceding

—120—

node to check if an alternative signal route is possible.

Else another initial node may be found and used as the

starting node. When all the nodes have been “visited" then

all the possible signal paths are found.

Once all the computation (signal) paths are found, the

nodes can now be sequenced fairly easily. Firstly all the

starting nodes of all the paths are copied to the output set

of nodes (nodes already sequenced). This is possible since

the starting nodes are independent in their processing

order. The next node is selected on the basis that all its

preceding nodes in all the paths which the node is present

have been evaluated. The nodes sequenced can be marked by

negating the node number (the block identification number).

Sequencing is completed when all the nodes in all the path

are used.

The figure (8.3) shows an example of the operation of

the sequencing method. All possible computation paths are

found (figure 8.3B). Picking up the starting nodes gives

part of the sequence as AGI . The next node B can be

evaluated because node A (the preceding node) is already

evaluated. Node C is then selected since both A, B are

processed. But the node D cannot be evaluated since the

preceding nodes in path 2) and 3) (i.e. nodes E and F) are

not yet evaluated. The next node is selected, E, since it is

next on the available list. Applying the method till

completion gives the final sequence as

=

AG OT BEC. Dre

Ota he

(1) ABCD

—(«) () (2) ABFD

(3) AE PD

(4) GF

(4) I

(2)}— FIGURE 8.3B SIGNAL FLOW
—1 1

FIGURE 8.3A FLOW GRAPH

FIGURE 8.3 BLOCK SEQUENCING EXAMPLE

8.2.3 DATA STRUCTURE USED IN SEQUENCING

All the blocks in the picture are maintained in a list

BLKLIST. The interconnection information is to be found in

the list LINKLIST. The BLKLIST and LINKLIST are the same as

those used in the LOOP DETECTION (section (7.3.2)). They

=i 2

are used for the searching and finding of all the possible

signal paths. The list PATHLIST maintains all the possible

computation (signal) paths, via keeping all the block number

of the blocks in a path together.

LINKLIST

(LLINK) (FROMBLK) (TOBLK)

(BLINK) (GBLKNO) (BLKVISITED)

PATHLIST

(PLINK) (NOOFBLK) (BLKNOl) (BLKNO2) (BLKNO3)

LEGEND

(PLINK) pointer to next path record
(NOOFBLK) number of block within the path
(BLKNO1) identification block number of first block
(BLKNO2) identification block number of second block

FIGURE 8.4 DATA STRUCTURE USED IN SEQUENCING

When all the blocks are sequenced, they are linked together

via the ELINK (execution link) entry, in the run time block

(RSB) record, in the order in which they are to be executed

during run time.

8.2.4 GENERAL COMMENTS ON SEQUENCING

The method implemented is similar to the approaches

used in loop optimization and code optimization in compiler

design [AHO, ULLMAN 1977]. There is an interesting

relation between the flow graphs and the "gotoless" programs

ee

which allows such programs to be checked for the logical

flow of data. In modular programming, where the emphasis is

mainly on structuring the programs in modules with single

entry and single exit, the data flow is particularly

highlighted.

FIGURE 8.5 PROGRAM MODULES AND DATA FLOW

N. Wirth [WIRTH 1976] shows a very good example of

the use of topological sorting which operate on set of nodes

where partial ordering exists. The basic principle is

similar to that used in the sequencing algorithm. His

approach placed the main emphasis on the use of the correct

data structure (in this case the linked list).

-124-

CHAPTER 9

COMPILATION ACTIVITIES - DATA MANIPULATION

9.1 ALLOCATION OF STORAGE FOR RUN TIME BLOCK

9.1.1 INTRODUCTION

There are four distinct classes of blocks, namely (i)

retrospective, (ii) non-retrospective, (iii) input interface

and (iv) output interface. The retrospective blocks are

those whose present outputs can be computed without using

the values of the present inputs (e.g. integrator) ; whereas

the non-retrospective blocks have their current outputs

dependent on their present inputs (e.g. multiplier and

summer). The input interface and the output interface blocks

can be considered..as non-retrospective blocks for the

purpose of allocation of memory space.

This allows us to divide all the blocks in the

graphical programming language (GPL) program into the

retrospective and non-retrospective groups. The fundamental

structure of the program is classified by the processing

(carrying out computation on) all the retrospective blocks

separately from the non-retrospective blocks. Processing of

the retrospective blocks can, in principle, be carried out

in any arbitrary order. On the other hand, the non-

retrospective blocks must be processed in an order

determined by the interconnections. To fully maintain the

arbitrary processing order, each retrospective block must be

=e =

totally independent of any other block as far as the

computation of the output(s) is concerned. This is achieved

if each block contains all the necessary data values

(outputs, present and past inputs, and any internal

variables) within its own data region.

An alternative proposed by Linn [LINN 1980] seeks to

economise on data storage by using the principle that an

input value will be obtained by accessing an output value

table in accordance with the block connection pattern.

However this approach implies that the retrospective blocks

must be sequenced to give the correct result. Taking a

simple example, where the output of a retrospective block A

is connected to an input of retrospective block B. If block

A is processed first, then its output is a(n+l). But since

block B requires a(n) (which is over-written by a(n+l)), the

processing order must be B A.

9.1.2 DATA STRUCTURE FOR RETROSPECTIVE BLOCK

In this implementation the data structure of the

retrospective blocks is defined so as to allow retrospective

blocks to be processed without sequencing. The main penalty

of this approach is that more storage will be required by

each block. Additional storage will duplicate the output

value of a block to which an input is connected to. But the

extra storage space is small compared with the storage for

the rest of the variables of the block. (It will only take

up two more storage for a block having two input terminals.)

=126—

The data file for each retrospective block has the

following structure. The section denoted "current inputs"

contains copies of the output values of the blocks to which

the inputs are connected. This is updated at the end of each

processing cycle when the new output values have been

computed for all the blocks in the system.

4+----------------- +
+ CURRENT +
7 OUTPUTS +)

4$----------------- ome)
+ CURRENT +)
+ INPUTS +) DATA ORGANISATION
$0 ------------- +7)
+ PAST +) FOR ONE BLOCK.
+ INPUTS +)
Henne ‘+)
+ INTERNAL +)
+ VARIABLES +
4+----------------- +

FIGURE 9.1 RUN TIME DATA FILE STRUCTURE

This approach has the following advantages :-

(1) the retrospective blocks can be processed in any

arbitrary order, no sequencing is required. This

inherently allows closed loops of retrospective blocks.

(2) all data required by the block are grouped together so

that data accessing routines are simplified.

=127—

9.1.3 DATA STRUCTURE FOR NON-RETROSPECTIVE BLOCKS

Interconnected non-retrospective blocks must be

processed in a sequence which ensures that no block is

processed until all its input values have been updated. This

can be avoided by arranging the data structure but the

advantages are seen in adopting the same data structure for

the variables of every block to conform to that proposed for

the retrospective block. This eliminates the necessity of

the compiler to differentiate between the two classes of

blocks when it comes to the allocation of the data areas.

Each block has its own "modular" data file to operate on,

simplifying the program structure and reducing the

possibility of programming errors.

=123-

9.2 INITIALIZATION OF FUNCTIONAL BLOCKS

9.2.1 INTRODUCTION

Since some functional blocks need their past values of

the inputs and outputs for computation, memory storages must

be allocated for these "variables". These will have to be

initialized to some suitable values before the graphical

programming language program (consisting of functional

blocks) is executed.

Consider the case of a LEAD-LAG functional block (see

figure below, using the Laplace operator s),

Tl = lead time constant

T2 = lag time constant

bw
 fl a 4 e 4 a sampling interval

Tie Te = 1/T1 A

FIGURE 9.2 STRUCTURE OF LEAD/LAG BLOCK

This gives the relationship (using the z-transform method)

-oT -xT

Sree sn Glee Dee ee ee (9.1)

Now at n=0 i.e. initially, from equation (9.1)

T -«T -«
Dre Gey) a + OK

where \), and X, are the values of the output and the input

respectively at time t = 0,

—1290=

y-, and X., the values of the variables at time t = -l.

Obviously, the memory storage values of the variables must

be initialized to some suitable values before execution of

the block program is possible.

9.2.2 INITIALIZATION CRITERIA

The following sections will discuss the different

approaches of initialization of the functional blocks. There

are in general three criteria for setting the initial

conditions of a system [PRITSKER 1969 J], [WILSON, PRITSKER

1978A;, -1978B") s-

(1) The system is started "empty and idle", that is all the

internal variables are set to zero, and the propagation

of all the effects of the internal variables is allowed

to work through the system before taking any serious

measurements. This criterion has the advantage of being

easy in implementation.

(2) The system is started at the steady-state mode. This is

the best approach but is difficult to implement since

the steady-state determination is "tricky" and

laborious.

(3) The system is started at the steady-state mean. This is

a compromise between approaches (1) and (2), with less

propagation effects than approach (1).

=*30=

From the three above-mentioned approaches, approach (3)

is chosen, compromising between approaches (1) and (2).

9.2.3 INPUT-OUTPUT INITIALIZATION

The most elementary approach involves the provision

(via the operator or other means) of ALL the initial output

and input values of blocks. It is then possible to "trim"

the variables to fit the given data. This arbitrary choice

of initial values may leave the system in some undetermine

state, unless a careful choice is made.

Take the example of a FIRST ORDER LAG

oe er
ve sal ere 1 e, tre ve

v Tt = time constant
x—-s -------- i—+ y

1 St T = sampling interval

FIGURE 9.3 STRUCTURE OF FIRST ODER LAG BLOCK

Now if the initial values are provided, say

output, y=w ; input, x =u

then

w—-(-

Bt) = ue yet) = eae Ne

where A = exp(-T/c)

giving y(0) = w= (1-A) x(-1) + A y(-1)

3

The above choice of the variables will fit the given data,

since y(0) =w as expected.

Judging from the above example, this method may appear

easy to use. But when a sequence of blocks are connected

together, then the choice of initial values are not

arbitrary since the outputs may affect inputs, unless one is

willing to accept the initial “settling down" period for the

effects to propagate through. Given a sequence of blocks, it

may be possible to initialize the blocks separately, however

the system may not give the desired performance.

Since this involves provision of all the data values

via the operator (hence a potential source of error), this

approach is dropped in favour of the other to be described

later.

9.2.4 STEADY-STATE INITIALIZATION

To minimise the transient on start up of the control

program, the steady-state relationship between the inputs

and outputs is used. In this case, the retrospective blocks

are effectively being "replaced" with their steady-state

relationship. For the example of the lead/lag block, at

steady state, from equation (9.1)

x(n) = x(n-1))
) STEADY STATE

y(n) = y(n-1))

=132—

giving y(n) = x(n) = y(n-1) = x(n-1)

Note that the value of the output remains the same

during steady state, if the input remains unchanged. This is

expected from the transfer function of the lead/lag block.

It is now possible to determine the value of the input or

the output, given the other. This also allows checking on

the compatibility of the operator-provided initial

conditions.

Retrospective blocks which deliver a constant output

with a constant input have a well defined steady-state

behaviour. However, there are some functional blocks that

differ radically from the above behaviour. A good

representative is the INTEGRATOR type functional block

implemented as follows,

1 Yq — Ya-4 $2) a5
Saas y

s T = sampling interval

INTEGRATOR

Note that the output will be varying with each sampling

period except when the input, x, is zero in value. That is

y(n) = y(n-1) + T x(n-1)

y(n), se y(n=1) at steady state.

These blocks belong to a class, the "INTEGRATIVE", will

require more attention and care during initialization. In

=

the case of the INTEGRATOR, two initial values, namely

output value [y(-1)] and input value [x(-1)] must be

provided externally.

9.2.5 FURTHER CONSIDERATIONS

9.2.5.1 STEADY-STATE INITIALIZATION

Consider the example in figure (9.4),

my + a

Carron. | + £2 cen ve 5 2

I = LAG i

\ auoex C eG |
i Breen D Broex & '

' |
| |
| \
|
! I

| x [es
FILTER oo

!
|

|

1
\
\
'

I

|

Beck B Broek A |

|
\
I

|

FIGURE 9.4 INITIALIZATION BLOCK DIAGRAM

In the above case, all the variables are marked xl, x2, x3,

x4 and x5. If all five variables are provided with initial

values, then it is only a trivial matter to select suitable

values for the internal variables (using the steady state

relationship).

-134-

Provision of all the variables may lead to OVER-

SPECIFICATION. Consider the case below :

i .
; '

t
T \ t
1 '
' = '
1 Cxeck: | outeur, y

Only two initial values needed to be provided, say SP and

Pv. Since the variable error (= PV-SP) can be determined

and since for the LEAD/LAG, at steady state, the output is

equal to the input. Therefore the initial output is equal to

the value (PV-SP).

This over-specification is a trivial matter, since the

specified value may be overwritten with the calculated

required value, and a warning issused to the operator. In

most cases, the inputs are used as valid data when over-

specification occurs.

Looking at figure (9.4) and considering only the

EXTERNAL terminals need to be initialised. The external

terminals are those marked with small circles. In this case,

only three initial values are required, namely xl, x2 and

x3. Using these values and with further manipulation, the

rest of the variables (x4 and x5) can be determined, and

thus the retrospective blocks initialized. This approach

reduces the workload on the operator considerably.

=135—

9.2.5.2 EXTERNAL TERMINAL INITIALIZATION

Given the external initial values, the manipulation of

these data with the functional blocks is important. One

approach is to process all the blocks in the "correct

sequence". By the correct sequence, it is meant that each

block can be processed if and only if all its inputs are

valid (i.e. previously defined). (By previously defined, it

is meant that the values are provided via the operator or

are output values of already processed blocks.) From the

structure of figure (9.4), the correct processing sequence

is obviously A, B, C, D, E. The retrospective blocks are

replaced with their steady state relationship, making them

behave like non-retrospective blocks. From block A, and

given x3, x4 and e can be calculated. Variable x5 can then

be found and thus all information needed for initialization

are found.

The choice of approach for initialization is that of

the external terminal initialization approach. That is the

operator needs provide only the initial values of the

EXTERNAL TERMINALS and the outputs of the integrators.

=. 36>

CHAPTER 10

SIMULATION

This chapter covers the simulation of the mathematical

model of a process. Such a model can be analytically derived

from physical theorems or obtained by process identification

methods [SMITH 1972]. The chapter starts with a brief

review of available simulation languages, then considers the

crucial integration requirements and concludes with the

implementation of some functional blocks.

10.1 REVIEW OF DIGITAL SIMULATION LANGUAGES

The early days of computer simulation were dominated by

analog machines. the initial development of digital

simulation languages serves two main purposes, namely (1) to

provide an alternative tool to check the solutions of the

analog machines and (2) as a back-up in case of the analog

machine break-down [STRAUSS 1968]. Early languages

correspond closely to the use of analog computer, giving

rise to a family of "Digital Analog Simulators" or BOSLs

(block oriented simulation languages) such as MIDAS, MIMIC

and DYSAC [BRENNAN 1968]. Such early languages are

relatively specialised programs and thus are rather simple

and compact to implement allowing their use on small digital

machines. However usually BOSLs are closed-ended with little

facility for expansion [GULLAND 1973].

Tho

Meanwhile attempts had been made to develop languages

that related to the structure of ordinary differential and

algebraic equations (i.e. the EOSLs - equation oriented

simulation languages) . The earliest landmark is the

development of the DSL (digital simulation language) by IBM.

Interests in this approach leads to the adoption of a

“standard" for simulation languages by the SCi Committee on

Simulation Software [SCi SOFTWARE COMMITTEE 1967], a U.S.

professional body. One important feature of EOSLs is the

"macro facility" devised from advanced assemblers. This

allows the repetitive use of a submodel which only needs to

be defined once.

One of the main drawbacks of many simulation programs

has been their lack of close man-machine interaction caused

by the use of batch processing rather than interactive

processing { REVETT 1975} Recently more and more

simulation languages are designed for interactive processing

e.g. DARE-P [LUCAS, WAIT 1975] and BEDSOCS [EIDELSON

1980].

BOSLs use the following principle : the system is

represented by a block diagram using blocks from a library

of standard blocks. The model specification is entered via a

terminal consisting of the block details, the parameters and

interconnections between the blocks in alphanumeric form.

Examples of such languages include DYSAC [HURLEY, SKILES

1963], KALDAS [DINELEY 1967] and a system by Payne

{ PAYNE 1974].

—135—

The process of manually translating the block diagram

into the necessay numerical form for the simulation programs

is an error-prone and tedious task. To bypass the manual

translation, the simulation language in this implementation

consists of the actual block symbols and their

interconnections being communicated to the system by using

graphics. Main features of the approach include (1) direct

correspondence between the blocks and the physical systems

and (2) the drawing on the display screen is all the

documentation required to diagnose or debug the simulated

model. The graphical approach is similar to the graphical

programming language approach for the programming of control

algorithms (section 2.3). The synthesis and most of the

compilation of the pictorial program are identical. The most

obvious differences are in the provision of different

functional blocks and the allocation of storage locations.

These differences will be discussed in section (10.9).

10.2 STATE VARIABLE REPRESENTATION

In the simulation of continuous systems, it is most

convenient to represent th- system dynamics in the state-

variable form as a set of simultaneous first order

differential and algebraic equations. These equations are of

the general form :

YH YU te)

where Y is a vector matrix of the state variables,

-139—

¥' the derivative vector

Iq
 the independent input variables

t the continuous time variable

This is the most general form of system description

embracing both linear and non-linear systems. To quote

Brandin [BRANDIN 1968], “simple algebraic techniques and

approximations reduce virtually all systems to a set of

simultaneous ordinary differential equations of the first

order". The fundamental structure of state-variable form is

a set of interconnected integrators. The basic dynamic

element is the integrator for which the choice of numerical

integration algorithm is of crucial importance.

10.3 INTEGRATOR BLOCK IN SIMULATION

10.3.1 INTRODUCTION

The various numerical procedures for generation of

solutions of the first order differential equations are very

well discussed in the papers by Benyon [BENYON 1968] and

Brandin [BRANDIN 1968]. The theoretical aspects and

application of such procedures can be found in various books

on numerical analysis such as [GEARS 1971] and [KOPAL

1955]. The classical methods for the numerical solutions of

ordinary differential equations can be classified as the

following :

-140-

(1)

(2)

The single-step method, of which the most commonly

used algorithm is that of the Runge-Kutta 4th

order.

The multi-step method or the predictor-corrector

approach, one example being the Adams (Moulton)

predictor-corrector.

Figure (10.1) and (10.2) show typical examples of both

the approaches applied to a single first order differential

equation.

=e

Ye ASE ey. Unmet)

Kl = F (Y[n], Ufn], tf{n])
Vip =) YGn)-+) Ki s0n/ 20; ti = tin) Bo

K2l= Pe yi eUlnl, Ct)
¥2\ = ¥in] + K2 */H/2 ; +2 = t[n] +/H/2

Ks. = Pe Cy2, -ulal,, £2)
¥3 = Y[n] + K3 * H # t3)= tinlet o

KA =F (Yo), UEnd, 3°)
y{n+1] = ¥[n] + H (Kl + 2*K2 + 2*K3 + K4)/6

t{n+1] i condeden

FIGURE 10.1 RUNGE KUTTA FOURTH ORDER INTEGRATION RULE

R= PN a Uy tes)

Vib = EC Yoni; vial, tiny)

PREDICTED VALUE
Zintl | = Yin] + (H/24)(S5¥"(n) - s9Y'[n-17 + 37¥"fn=2]

= 9OY | Priaads)

t[n+1] = t{[n] + #8

Gitar) Ser ee Zintid; Ulin), tintd ia)

CORRECTED VALUE
Y{nt+l] = y{€n] + (H/24)(9Z'{n+1] + 19¥'{n] - 5y'{n-1]

+ -Y" En=29")

FIGURE 10.2 ADAM-MOULTON FOURTH ORDER PREDICTOR-CORRECTOR

LEGEND

H - integration step size
U - independent input variable
t - continuous time variable
Y - variable under consideration
Y' - derivative of Y

-142-

10.3.

(A)

(Cc)

2 FEATURES OF SINGLE-STEP AND MULTI-STEP APPROACHES

The general features of the Runge Kutta algorithm are :

It is self-starting. Past values of Y are not required

so that the procedure can be started without

initialization.

It requires N evaluations of the derivatives for a Nth

order method.

The truncation error at each step is proportional to

N+1
H

where H is the integration step size and N the order of

the method.

The predictor-corrector approach has the following

features

(A)

(B)

(c)

It is not self starting since the previous values of Y

ive. Y{n-1], yYf{n-2], Y{n-3] are required. Usually the

first few parts of the solution are calculated by some

other method such as a single-step approach.

It may iterate the corrector until the required

convergence is reached, although in practice this is

rarely done.

It provides an excellent estimation of the truncation

error especially if the predictor and the corrector are

=143—

of the same order.

(D) Previous information must be retained and maintained so

that storage requirements are increased.

The predictor-corrector approach usually requires fewer

derivative evaluations per integration step than the single-

step approach of the same order. However this does not

necessarily imply that the predictor-corrector method is

faster than the single-step approach in terms of overall

computation speed. The single-step method deduces the rate

of change in the variable by exploration of the values of

the variable at various locations within the step. In the

multi-step approach, the rate of change is deduced by

extrapolation from what has been happening in the previous

steps. The single-step approach also tends to have greater

stability than the multi-step approach, making it possible

to use a larger step length. Some variations of the multi-

step approach had been found to give good stability as found

in the work of Hamming [HAMMING 1959], Milne and Reynolds

{ MILNE, REYNOLDS 1960] and Gurk [GURK 1955].

The choice between the two numerical solution

approaches is subjected to the several factors [KORN, WAIT

1978 J, [BRANDIN 1968] including :

(1) the nature of the systems equations, in particular the

degree of the non-linearity and the range of the time

constants involved.

-144-

(2) the accuracy required and the stability of the

solution.

(3) the processing requirement in terms of computation time

and memory space.

A further development which is particularly useful for

highly non-linear systems is based on varying the step

length to control the error at each stage.

10.3.3 ERROR ESTIMATION

The normal Runge-Kutta (RK) approach does not provide

any estimation of the error in the solution but variations

of the basic method have been derived to give error

estimation. The two approaches are

(1) to use two Runge-Kutta procedures of different order

and use the difference in each step to estimate the

error.

(2) to use the same procedure, but with two different

integration step size and compare the two results.

By the careful choice of intermediate points, some of

the intermediate results are common to both the RK formulae

and the computation can be minimized. Merson [MERSON 1957]

has devised a modified RK method that enables the error

estimation to be made easily. The Runge-Kutta-Merson (RKM)

fourth order integration algorithm increases the number of

-145-

evaluations of the derivative per integration step from 4 to

5 and is shown in figure (10.3). Another development has

been the Runge-Kutta-Fehlberg (RKF) variation [FEHLBERG

1969]. Work was also carried out on the RKM method by Chai

and Burgin [CHAI 1974], [CHAI, BURGIN 1970]. Once the

error at each integration step can be estimated, the

adjustment of the integration step size is possible. This

can minimize the computation time while keeping the error

within bounds.

SSF (Ys Ue,

Kl = F (Yf{nl, U[n], t{n])]
Yl = y{n] + (H/3)K1 7 t1 = t{n] + H/3] 1st stage

K2 =P va, Ulnl atin) J
Y2 = y[n] + H(K1+K2)/6 ; t2 = t{n] + H/3] 2nd stage

Kj F (Y2,) Ulin}, £2.) J
¥3 = y[n] + H(K1+3*K3)/8 ; t3 = t{n] + H/2] 3rd stage

KA =P ONS, Ulm tom)] 4th
y4 = y{n] + H(Kl - 3*K3 + 4*K4)/2 ; t4 = t[n] +H] stage

K5 = F (¥4, U[n], t4)

y[ntl] = yn + H (Kl + 4*K4 + K5)/6 ; t{n+1] = t{[n] + H

ERROR = H (2*Kl - 9*K3 + 8*K4 - K5)/30

H -- integration step size

FIG. 10.3 RUNGE-KUTTA-MERSON FOURTH ORDER INTEGRATION RULE

A careful study of many popular multistep and the

Runge-Kutta methods had been carried out by Shampine and co-

workers, and they concluded that "the fourth order RKF

strategy is often a good choice as a general-purpose

integration rule" [SHAMPINE 1976]. An investigation into

-146-

the performance of integration routines used in general-

purpose digital simulation programs was also carried out by

Martens [MARTENS 1969]. The performance was compared with

respect to the overall speed, accuracy and convenience of

use. He concluded that "for the general simulation of linear

and non-linear systems, the variable step-size Runge-Kutta-

Merson method proves to be most accurate and most

efficient."

The different conclus_ons in the two studies indicate

that no one integration rule is best for all purposes. In

this project, the RKM fourth order algorithm with variable

integration step size is used. This algorithm is commonly

used in simulation languages such as the SLAM package [ICL

1974 J, BEDSOCS package [EIDELSON 1980] and DARE-P

[LUCAS, WAIT 1975].

10.3.4 CONTROL OF INTEGRATION STEP SIZE

The absolute value of the integration error (ABSERR)

and the relative magnitude of the error (RELERR) specified

by the user can be compared with the actual error

estimation. The total acceptable error TOTALERR of each

integrator is calculated as

TOTALERR = |ABSERR| + |RELERR*INTOP |

where INTOP is the output value of the integrator.

-147-

The error measure used is

(A) ESTERR > TOTALERR

(B) ESTERR < TOTALERR

(Cc) ESTERR < TOTALERR/2

where ESTERR is the estimated error for each integrator.

If condition (A) is met for at least one of the

integrator present the integration step is halved and the

integration step is repeated. If (B) is met for all the

integrators present the next step is taken without any

change in the step length. If (C) is met for all the

integrators present the result is accepted but the step

length is doubled for the next step.

10.4 RELATIONS BETWEEN INTEGRATOR AND OTHER BLOCKS

There are two phases in implementation of the forward

integration algorithm in each computation cycle. Phase (1)

is the derivative evaluation where the other blocks are

processed to evaluate the derivative input to the

integrators. The integrator blocks are not involved in this

phase. Phase (2) is the integration evaluation where only

the integrator blocks are involved. This phase advances the

numerical solution to the next time step.

-148-

10.5 DISTINCTION BETWEEN H AND Tc

Tl, logging interval

CONTROL SIMULATED

ALGORITHM <== =F MODEL OF

SCHEME communication PROCESS
interval, Te

H, integration step

FIGURE 10.4 DISTINCTION BETWEEN H AND Tc

The communication interval Tc is the time interval when

the results of the model under simulation are presented to

the environment (in this case the control algorithm scheme) .

In this implementation, the communication interval is

identical to the sampling interval, Ts used in the control

scheme (section 2.8). If the simulated model itself is under

investigation, then the user may wish to know the values of

the output in between Tc. This interval can be denoted as

the "logging interval", Tl. In this implementation the

logging interval Tl is the same as Tc. The changing of Tl to

a value different from Tc is not implemented.

The integration step length H is the time interval by

which the integration algorithm will advance the numerical

solution. In theory, the smaller the H the better is the

result of the integration rule. However due to the limited

precision in a small digital computer, the above does not

apply due to truncation error and round-off error effects.

There is an optimum choice of H for each system depending on

-149-

the integration rule used, specific computer used and the

systems dynamics.

10.6

used

(A)

(B)

(c)

BLOCK TYPES IN SIMULATION

There are four general types of functional block to be

in simulation

the integrator. This is the basic dynamic and most

important element in the simulation process. The

integrator is used to advance the numerical solution of

the first order differential equation from one stage in

time to another. The choice of the integration

algorithm is crucial and involves a compromise to

obtain sufficient accuracy without excessive computing

time.

the non-dynamic blocks. These blocks have no memory

storage or past history of the input or output values.

The blocks respond only to the current input values,

examples include the summer, multiplier and function

generator.

the special dynamic blocks. A block of this class has

“memory” i.e. it utilises the past history of the input

or output values for the computation of the present

output. Examples include the delay and derivative

function.

=150—

(D) the interface blocks. The input and output interface

blocks are for interaction with the environment and are

similar to those discussed in section (2.7).

(E) the composite blocks. Such a block is a collection of

blocks to be treated as a single entity in graphic

representation. During the compilation, the composite

block will be expanded down to the simplest form in

terms of blocks of the other classes. Examples include

the first order lag and second order lag. In effect,

the only elements appearing in the run-time system are

blocks of type A, B, C and D.

10.6.1 MINIMAL BASIC SET OF BLOCKS

The minimal basic set of functional blocks required for

effective simulation of a model is given below :

- integrator

- special dynamic blocks of delay and derivative function

- non-dynamic blocks of summer, multiplier, function

generator and junction block.

- interfaces, input and output

- composite blocks of first order lag and second order lag.

=151—

10.6.2 COMPOSITE BLOCK IMPLEMENTATION

Composite blocks can be generally be divided into two

classes : (A) those without an internal integrator component

and (B) those with an integrator as one of the internal

constituents. Implementation of class (A) is obvious and

straightforward. The implementation of class (B) is carried

out to ensure that the only dynamic element is the

integrator. This is best illustrated by an example, the

first order lag (see figure 10.5).

————
 +

o|
-

te

!
1

|

'
y

ese ' x

'

!
1

\utegna Steucruee

FIGURE 10.5 COMPOSITE BLOCK IMPLEMENTATION

10.7 DELAY BLOCK IN SIMULATION

x—-- DELAY IK——+ y

The delay block function is an approximation to a

continuous delay. With the Runge-Kutta-Merson RKM variable

step algorithm used for the integrator function, it is not

possible to provide delayed output values to correspond with

the computation time used. It is also difficult to allocate

=152—

memory space for the d-layed output, the number of past

values varies with the change of the integration step

length.

One solution will be to store the data at the end of

each integration step. The output of the delay block is kept

constant during the integration step interval. For the

approximation to be accurate, the integration step should be

kept as short as possible.

10.8 DERIVATIVE BLOCK IN SIMULATION

variable

x

dt

“E rime,

FIGURE 10.6 DERIVATIVE BLOCK & DIFFERENCE EQUATION APPROACH

Two approaches to implement the derivative block are

considered, (A) difference equation [BIBBERO 1977]. The

derivative of the variable X can be approximated at the time

interval t[{n] to t{nt+l] by

derivative = (X[n] - X{n-1])/(t£n] - t{n-1])

Note that this implementation will give a block the output

of which varies only at the end of each integration step.

=153=

(B)the use of the integration function

 K = s/K (K>>s)

ue s
+

'
'
'
t
‘
'
‘

1 time constant = 1/K

!

1
1
1
'
1
'
1

FIGURE 10.7 DERIVATIVE FUNCTION FROM INTEGRATION

In this implementation, the choice of K is important.

The larger K is, the better is the approximation. However

too large a K may make the time constant of the function so

small that it may reduce the range of the integration step

size used in the rest of the system. One interesting choice

of K is 1/H where H is the integration step length to give

the update of the derivative output within each integration

interval as required by the RKM algorithm.

In this project, the derivative function will be

approximated by the first order difference equation approach

for the following reasons

(1) the integration function approach increases the

processing time during execution due to the extra

integrator and can have an advance effect on the step

length.

(2) the difference approach needs less memory space than

the integration approach.

=154—

10.9 SIMULATION AND THE GRAPHIC COMPILER

The graphic approach for the simulation of the model of

process and the effects on the graphic compiler (chapter 6)

are discussed below

(1)

(2)

(3)

CS)

(6)

(7)

data tranformation of the type-specific data from

graphic to run time. The mechanism is identical to that

necessary for the compilation of the control program,

so no modification is required.

expansion of composite blocks. The basic expansion

action is identical.

error checking. In simulation, closed loops of non-

dynamic blocks (algebraic loops) are not allowed. So

the loop detection scheme need no changing.

sequencing of blocks is further discussed under section

CYO- 9. bu.

the allocation of storage for the run time data file is

discussed in section (10.9.2).

initialization. In simulation, the special dynamic

blocks need to be initialized (section 10.6).

the listings and messages system is identical and

changes are not required.

=155=

10.9.1 SEQUENCING OF BLOCKS

For the simulation program, the block types that need

no sequencing are the integrator (similar to the

retrospective blocks used for control algorithms (section

2.7)) and the interfaces. The rest of the blocks must be

sequenced to ensure that the computation conforms to the

data-flow requirements. The sequencing method is identical

to that for the control scheme and the details are given in

section (8.2.2). The execution order of the block types is

shown in figure (10.8)

START

INPUT INTERFACE

DERIVATIVE PHASE

blocks except integrator
executed in order of the
signal flow
 RUNGE-KUTTA

MERSON
ROUTINE

INTEGRATION PHASE

integrators executed
in any arbitrary order

OUTPUT INTERFACE END

FIGURE 10.8 EXECUTION ORDER AMONGST SIMULATION BLOCK

=156-—

10.9.2 STORAGE ALLOCATION FOR BLOCKS

As previously stated, the only dynamic block appearing

in the program structure after the expansion of composite

blocks is the integrator. Efficient computation of the

integrator function is therefore important. To achieve this,

ald thes Yaa Ki, K2, K3, K4, K5, Ynt+tl, ERROR (used in the

Runge Kutta Merson RKM integration rule) are stored in

linear floating-value arrays (figure 10.9). This allows the

calculation of all the K's as one set.

The other (non-integrator) blocks are just allocated

data storage in the RVT, run time value table, and the data

file is identical in structure to that for control algorithm

(section 9.1). The linear arrays, RKMVALUES are totally

separate from the storage in RVT. These extra storage

necessary for the integrator affects the structure of the

run time data records slightly. A new pointer (RKMVPTR) is

required to indicate to the location in the RKMVALUES, where

the values for the RKM routine are stored. Since the MXPTR

entry in the RSB (run time simple block) record is always a

null entry (section 4.3.2), this entry can be used for the

RKMVPTR. Figure (10.9) shows the effects on the RSB record

of an integrator.

=t5/—

neg
Broce
Cevrered

 Linear

AeRAYS

RKMVALUES

RSB (integrator)

(ELINK) (GBLKNO) (TYPEPTR)..(RVTPTR) (RKMVPTR) (IPPTR)

LEGEND

RSB run time simple block record.
(RKMVPTR) pointer to location of linear arrays where va

for Runge Kutta Merson routine are stored.

(RVTPTR) pointer to RVT (run time value table), data
for the block.

The rest of the entries are identical to figure (4.13).

FIGURE 10.9 DATA ALLOCATION FOR INTEGRATOR

-158—

Luss)

file

CHAPTER 11

TESTING OF CONTROL ALGORITHMS

11.1 INTRODUCTION

This chapter deals with the interaction of the control

algorithm program with the simulated model of the process

(figure 11.1). The control programs can be thoroughly tested

and evaluated to ensure satisfactory performance.

The two following publications gives some indications

as to the importance and difficulties involved in the

testing to obtain reliable control software : [KRATZER

1979 Jj, ({ D'HUSLTER 1979]. Kratzer described a system where

the development of process control software is divided into

three phases. The first phase covers the design of control

algorithms and off-line simulation. Phase 2 comprises

evaluating the control program on a process computer in a

real-time environment. The final phase covers refined

simulation on a dual computer system where one computer

simulates the plant while the other is controlling the plant

through realistic interfaces.

In this implementation, a simpler approach is adopted.

Both the simulation of the model and the control algorithm

are to be carried out on one computer. Realistic interfaces

can be obtained through the use of appropriate interface

functional blocks.

hoo

The control program from the GPL (graphical programming

language) system is totally self-contained since it only

communicates through the input and output interfaces. These

interfaces are implemented to communicate through reserved

memory locations and are not interested in the actual

process interface equipment used (figure 11.2 and section

2.7.1). These same interfaces are used in the simulation of

the model of the process. This is essential to ensure the

independence of the control program. The control program

does not and need not know that it is only trying to control

a model of the process. This is important to avoid changes

when the control program is transferred down to the

dedicated processor controller for the actual applications

(section 2.6).

One of the most important parameter specification is

the sampling interval, Ts, used in the control program. Ts

is dependent on the actual process time constants.

Variations of Ts can be carried out to check the effect on

the control performance. Ts is also the communication

interval between the two subsystems of process model and

control scheme.

11.2 INTERACTION SUPERVISOR

Both the execution of the control program and the model

of the process are to be carried out on the same host

computer of the GPL system. For orderly interaction, an

interaction supervisor (IS) is designed to "“sit" upon the

=160-—

two programs (figure 11.1). The basic task of the IS is to

transfer the control of the execution hardware from the

control program to the process simulation program.

The operation of IS is as follows for a computation

cycle,

(1) transfer the values of the process model output to the

input interfaces of the control program.

(2) start execution of the control program.

(3) transfer the values of the output of the control

program to the process model input.

(4) execute the program to simulate the process model.

The interaction communciation is handled by the IS in

the following manner : all the terminals of interest of the

input and output interface blocks are to be "tagged" by a

label (see figure 11.1). The two terminals with the same tag

label are to be related by value. Figure (11.3) shows the

data structures used by the IS for the inter-communication.

The interaction supervisor may be developed to any

level of sophistication required. The minimal functions of

Is include

(1) the controlling of the start and ending of the whole

process of interaction.

(3) provides for interactive parameter display and

=161—

modifications such as the value of sampling interval,

Ts.

(4) the specification of parameters for logging and to

perform the logging of the values. (Figure 11.3 shows

the basic data structure required for this purpose.)

INTERACTION

SUPERVISOR

input output
interface thi Se aera interface

CONTROL SIMULATED

ALGORITHM MODEL OF

SCHEME PROCESS

output input
interface Ee ae interface

OuTI ou71

Ts H
sampling integration

interval step

tag label

FIGURE 11.1 INTERACTION BETWEEN CONTROL SCHEME AND MODEL

=162—

t '

GRAPHICAL U eae
PROGRAMMING t | PROCESS
LANGUAGE SYSTEM \ ; INTERFACES

¥ '

J 1

'
input ' MEMORY : ANALOG-
interface LOCATIONS DIGITAL

CONVERTER

CONTROL
ALGORITHM
SCHEME

output MEMORY es DIGITAL-

interface LOCATIONS | ANALOG 7
' CONVERTER

1
\

FIGURE 11.2 INTERFACING TO ACTUAL PROCESS

supervisor communication table (SCT)
floating point

value | high limit | low Limit

supervisor input tag

(LENGTH) (BLKNO) (TERMNO) (VALPTR) (TEXTTAG)

(LINK) (LENGTH) (BLKNO) (TERMNO) (VALPTR) (TEXT)

logging record

(LINK) (LENGTH) (INTERVAL) (TAGTEXT)

FIGURE 11.3 DATA STRUCTURE FOR INTERACTION COMMUNICATION

—163—

CHAPTER 12

CONCLUSION AND RESULTS

12.1 PROGRAMMING IMPLEMENTATION OF SYSTEM

This section gives a general description of the

development and implementation of the graphical programming

language system. The program for the basic requirements for

graphic editor has been completed and now occupies about 24K

(16 bits) words. This however is not a good indication of

the memory space required by the editor since that depends

upon the level of sophistication required and the use of

overlays to minimise the space requirement. Besides the

essential editing routines, facilities are provided to

initialize the graphic data structure records via reading in

data records from a file on the storage disk. The format of

the file is machine-independent and presents an easy means

of access to the user.

Most of the essentials of the compiler are completed,

needing about 30K words of storage. Again the required

sophistication level can affect the size and overlays can

used. Only a limited number of the types of functional

blocks (for the control algorithm and simulation) are

provided at present. It would be relatively easy to expand

the range of functional types. Appendix B shows the

development of a graphical block with the corresponding

algorithm procedure.

-164-

A basic minimal simple interaction supverisor has been

built to test the working and co-operation between the two

subsystems (control algorithm and model of process).

12.2 CONCLUSION

This research has focussed on a software engineering

method offering a system which supports the designing and

testing of process control algorithms using the facilities

of computer graphics. The system offers an easy to use and

fully documented programming facility based on drawings. By

treating each software module block as a "black box", the

top-down structured programming methodology is strongly

encouraged and promoted.

The application of the block diagram structure for

process control is analysed. The frequently used features

required for process control have been identified and

provided for in terms of the appropriate standard functional

blocks. Each graphical block corresponds to pre-defined

software module performing a basic function. This approach

eliminates the need for knowledge of formal programming,

since the "programming" (the synthesis phase) is carried out

by connecting the required functional blocks together using

graphics. A facility to define composite blocks as

subsections of a block diagram had been included. This

allows segmentation of a block diagram or the repeated use

of a combination of elementary blocks as a “macro” block.

-Loo—

Once the machine-independent graphical representation

is completed, it is compiled to give a program structure

table. The machine-independent program structure table is a

compact numerical representation of the block diagrams. This

compilation includes the following functions : macro

expansion to give a level of basic simple blocks, error-

checking to ensure logical flow of data signals, sequencing

to determine the necessary order of execution of the blocks

and allocation of the storage area necessary for each block.

A program generator phase combines code segments relating to

the functional routines of the blocks with the program

structure table to give the final control program code

appropriate to the target processor.

The same graphics based technique has been used to

develop a process simulator. This allows the investigation

and evaluation of control algorithms through interaction

with the simulated model of the process. The control

algorithm and process model are run together in one host

computer. This evaluation is essential to ensure reliable

and satisfactory control schemes before committing them to

dedicated process control hardware.

=166-

APPENDIX A

Transfer function of blocks using z-transform method

For digital computation, the analog actions such as

integration must be transformed into their equivalent

discrete forms appropriate to a sampled-data systems. There

are various approaches to the tranformation operations

{ RAGAZZINI 1958]. One approach is via the approximation of

the sample and hold operation using a ZOH (zero order hold).

The ZOH is important from a practical view since it is

simple in nature and is readily implemented. To quote Smith,

"In by far the majority of the process control applications,

the zero-order hold is used" [SMITH 1972]. So the z-

transform method and a ZOH are used to implement some of the

blocks provded for the DDC, some of the blocks are discussed

below

(a) INTEGRATOR

27 —+ Zou

a (s) = bal? z = backwards shift operator
ea $2

s = Laplace operator

2(z) eo eae T = sampling interval x m4
\-2"'

See Sane wen

This is a retrospective implementation.

-167-

(b) FIRST ORDER LAG

SRL ee 1 ————t y
i ZOH 148%

ost
2s) pee : tT = time constant
x s l+se

3 \-e*
5 (2) = =

z-e°

x
-X,

Vie ee CSE Jee,

retrospective implementation

(b) LEAD/LAG FUNCTION

ES ee \+sTh
ae Or 14st. yy

2

asf,

2 (s) S Blac ener Sires Tl = lead time constant
= Ss \esTy

T2 = lag time constant

Ps) Az-8 an als 1 a1z2)e = a

x Zen) ie tT, of TG

¥ = \-g-e"")

-0T
Yatr = 2 Ya + ¥Xq + %Mnes

non-retrospective implementation

=163—

APPENDIX B

This section shows the development of the graphical

details of the functional block symbol. The example of the

integrator illustrates the development. Figures (B.1) and

(B.2) show the graphical details while figure (B.3) shows

the algorithm routine procedure.

(80,60)
yf BLK No. PasiTion

Base Of Syueor

af

(-S0, 50) (50,50)

(10,30)
(20,30)

(-S0,0) (50,0)

20-3 NT (0)
| G10,-303

(-S07 50) T (s0,-So)

(10, -20)

FIGURE B.1 GRAPHICAL D°"'AILS OF INTEGRATOR BLOCK

GRAPHIC INFORMATION

typeno = 31 classno = 0 mxptr = -l (invalid)

nip = 1 nop =l

TERMINAL POSITION (-50,0) (50,0)

BLOCK NUMBER POSITION (50,60)

BLOCK OUTLINE (-50+2000,-50) (-50,50) (50,50)

(50,-50) (-50,-50)

(-20+2000,-30) (-10,-30) (10,30) (20,30)

Loo

NON-GRAPHICS INFORMATION

NIN = (2) Gr = 2) ROPE= bie = 0) TOP ="0 ~ cir =90

BLOCK TEXT

TEXT =INT text position (10,-20)

GI record

7 | S31ar POL Wjoi 50/60 |-50 | 0 {50 | 0 i

BLOCK OUTLINE pa
y

NGD record N\ | Sp2"|.2 2 | 01010

10 |-20 |IN|Ta oO

TEXT record a

4= blank space

The actual elements of each records are discussed in section

(4.1).

FIGURE B.2 GRAPHIC DATA RECORDS FOR INTEGRATOR BLOCK

The CORAL66 procedure for the integrator in figure

(B.3) should be read in conjunction with figure (6.3).

=170-

"CORAL'

‘PROGRAM' INTEGRATOR

'COMMENT' CORAL66 procedure for integrator block ;
'DEFINE' VI "'VALUE''INTEGER'" ;

‘EXTERNAL' ('PROCEDURE' INTEGRAL (VI) ;
‘PROCEDURE' UPINTEGRAL (VI) ;) ;

‘EXTERNAL'('FLOATING' TSAMPLE ;(sampling interval
‘FLOATING' 'ARRAY' RVT [1:5000] ;
‘INTEGER''ARRAY' RDS [1:5000] ;

(run time data structure array)

Jess
'‘DEFINE' RSBRVTPTR (PTR) "RDS [PTR+8S J" ;

‘DEFINE' RSB NO BEFORE INPUT "10" ;

“SEGMENT' INTEGRATOR
“BEGIN'
“INTEGER' BASE, INPTR,IPPTR ;

‘COMMENT' Run time Value Table data file structure ;
'‘DEFINE' OUTPUTNOW "RVT [BASE]" (current o/p)
‘DEFINE' INPUTNOW "RVT (BASE+1]" ; (current i/p)

'‘DEFINE' INPUTPAST "RVT [BASE+2]" ; (past i/p)

‘DEFINE’ OUTPUTPAST "RVT [BASE+3]" ; (past o/p)

"COMMENT ! -------~=~ === == 5 === == = 5 nn
INTEGRATOR -- RETROSPECTIVE

outnow innow inpast outpast

y(n) x(n) x(m-1) =y(n-1)

algorithm y(n) = y(n-1) + T*x(n-1)
BLKBASE - pointer to the start of the

run time simple block (RSB) record.

'"PROCEDURE' INTEGRAL ('VALUE''INTEGER' BLKBASE)
‘BEGIN’

BASE := RSBRVTPTR (BLKBASE) ;
OUTPUTNOW := OUTPUTPAST +
INPUTPAST*TSAMPLE ;

‘END! ¢

"COMMENT' -- update the input queue --

'PROCEDURE' UPINTEGRAL ('VALUE''INTEGER' BLKBASE)
‘BEGIN'

BASE := RSBRVTPTR (BLKBASE) ?
INPUTPAST := INPUTNOW ; (store previous i/p)
OUTPUTPAST OUTPUTNOW ; (store previous o/p)
INPTR BLKBASE + RSB NO BEFORE INPUT ;
IPPTR RDS { INPTR] ; (input pointer)
INPUTNOW RVT [IPPTR] ; (current i/p)

LEND = 7

‘END'
‘FINISH'

FIGURE B.3 CORAL 66 PROCEDURE FOR INTEGRATOR

-Lii—

ACM

AFIPS

FICC

HMSO.

IECI

IEE

IEEE

IFAC

LPL

IMACS

sgcc

SIAM

UMRCC

UKAC

ABBREVIATIONS USED IN REFERENCES

Association of Computing Machinery

American Federation of Information-Processing

Societies

Fall Joint Computer Conference

Her Majesty Stationery Office (UK)

IEEE Transactions on Industrial Electronics and
Control Instrumentation

Institute of Electrical Engineers (UK)

Institute of Electrical & Electronic Engineers (NY)

International Federation of Automatic Control

International Federation of Information-Processing

International Association for Mathematics &
Computer in Simulation

Spring Joint Computer Conference

Society for Industrial & Applied Mathematics

University of Manchester Regional Computer Centre

(UK)

United Kingdom Automation Council

ee

LIST OF REFERENCES

ABRAMS M.D. (1971)

‘Data structure for computer graphics'
Proc. symposium on “DATA STRUCTURE IN PROGRAMMING

LANGUAGES", SIGPLAN Notice, Vol 6 No 2, Feb 1971,

pp 268-286

AcM (1979)

‘Status report of the graphics standard committees of

ACM/SIGGRAPH'
Computer Graphics, Vol 13 No 3, 1979

AHO A.V., ULLMAN J.D. (1977)

‘principles of compiler design'
Addison-Wesley, 1977

ASTROM K.J. (1980)
‘Design principles of self-tuning regulator
Proc. of an International Symp. on "METHODS &
APPLICATIONS IN ADAPTIVE CONTROL", Bochum 1980,

(edited by Unbehaugen), pp 1-20, Springer-Verlag

AUSLANDER D.M., TAKAHSHI Y., TOMIZUKA M. (1978 ’)

‘Direct digital process control : practice and

algorithms for microprocessor application'

Proc. of IEEE, Feb 1978, Vol 68 No 2, pp 199-208

BARNES J.C.P. (1975)
'The use of RTL/2 for multitasking'
Minicomputer Forum 1975, Conf. Proc., On-Line Conf.
Ltd (UK) 1975, pp 157-166

BATES D.G. (1968)
"PROSPRO/1800'
IEEE Transactions on Industrial Electronics and

Control Instrumentation, Vol IECI-15 No 2, Dec 1968,

pp 70-75

BENYON P.R. (1968)

'A review of numerical methods for digital
simulation'
Simulation, Nov 1968, Vol 11 No 5, pp 219-238

BERGERON R.D., BONO. P.R., FOLEY J.D. (1978)
‘Graphics programming using the CORE system'
Computing Surveys, Vol 10 No 4, Dec 1978, pp 389-442

BIBBERO R.J. (1977)
‘Microprocessors in instruments and control’
John Wiley & Sons Inc., 1977
pp 61-63 cascade control
pp 155-176 PID and other algorithms

—1/3—

BRANDIN D.H. (1968)

‘Mathematics of continuous system simulations’
Proc. AFIPS 1968 FICC, Vol 33, pp 345-352

BRENNAN R.D., LINEBURGER R.N. (1968)

‘A survey of digital simulation : digital analog
simulator programs
in “SIMULATION : THE DYNAMIC MODELLING OF IDEAS &

SYSTEMS WITH GRAPHICS", (edited by J.McLEOD),

PP 244-255, McGraw Hill, 1968

BRISTOL (1975)
‘Bristol UCS 300 - the process controller
(Technical Bulletin TM280A), American Chain and

Cable Co. Inc. USA

BRISTOL E.H. (1977)
‘Designing and programming control algorithms for DDC
systems’
Control Engineering, Jan 1977, Vol 24 No 1, pp 24-28

CALCOMP (1974)
‘CALCOMP Manual'
University of Manchester Regional Computer Centre
(UMRCC), 1974

CARLSON E.D (1978)
‘Graphic terminal requirements for the 1970's '
Computer, Aug 1978, pp 37-45

CAZDOW J.A., MARTENS H.-A. (1970)
'Discrete-time and computer control system'
Prentice-Hall Inc, 1970

CHAI A.S., BURGIN G.H. (1970)
‘Comment on Runge-Kutta-Merson algorithm'
Simulation, Aug 1970, Vol 15 No 2, pp 89-89

CHIA A.S. (1974)
‘Modified Merson's integration algorithm which saves
two evaluations at each step'
Simulation, March 1974, Vol 22 No 3, pp 90-93

COTTON I.W., GREATOREX F.S. (1967)
‘Data structure and techniques for remote computer

graphics'
Proc. AFIPS 1967 SJCC, Vol 26, pp 533-544

DAVIS) M.R., ELLIS T.0., ((1964)

'The RAND tablet : A man-machine communication
device'
Proc. AFIPS 1964 FJCC, Vol 33, pp 325-331

DEPLEDGE P.G. (1981)

‘Fault-tolerant computer systems’
IEE Proc. Part A, May 1981, Vol 128 No 4, pp 257-272

-174-

D'HULSTER F.M., DEKEYSER R.M., HEYSE J.E.,

VAN LAUWENBEWRGHE A.R. (1979)

‘The computer as an aid for the implementation of
advanced control algorithms on physical processes'
Proc. of IFAC symposium on "COMPUTER AIDED DESIGN OF

CONTROL SYSTEMS", Zurich Aug 1979, pp 31-36,
Pergamon Press

DINELEY J.L., PREECE C. (967)

‘A manual of KALDAS programming'
Oriel Press Ltd (UK) 1967

DODD G.G. (1969)

‘Elements of data management systems’
Computing Surveys, Vol 1 No 2, July 1969, pp 117-133

DUYFJES G., DE JONG P.J., VERBRUGGEN H.B. (1977)

‘Questionnaire on applications of modern control
theory in process industry - results and comments’
Proc. of 5th IFAC/IFIP conf. on "DIGITAL COMPUTER

APPLICATIONS TO PROCESS CONTROL", Hague 1977,

pp 833-841, North-Holland Publishing Co.

EDWARDS F., LEE F.P. (1972)

‘Man and computer in process control’
pp 4-5, Institute of Chemical Engineers (UK), 1972

EIDELSON A.F., ROBINSON I.J. (1980)

‘Implementation of BEDSOCS : an interactive
simulation language’
Computer Journal, British Computer Society, Feb
1980, pp 233-240

EVANS D., VAN DAM A. (1968)
‘Data structure programming system'
Proc. IFIP Congress 1968, pp 67-72, Spartan Books
Ltd.

FEHLBERG E. (1969)

‘Low order classical Runge-Kutta formulas with step
size control and their application to some heat
transfer problems’
NASA REPORT TR R-315, G.C.Marchall Flight Center,

Huntsville, Alabama, April 15 1969

FOLEY J.D., WALLACE V.L. (1974)

'The art of natural man-machine conversation'
Proc. IEEE, Vol 62 No 4, April 1974, pp 462-471

FRANKS A.J. (1968)
"B-LINE, Bell line drawing language'
Proc. AFIPS 1968 FJCC, Vol 33, pp 179-191

-175-

EREVERT Te 1975)
‘Realtime language PEARL - concepts of language
design and implementation’
Minicomputer Forum 1975, Conf. Proc., On-Line Conf.

Ltd (UK), pp 183-191

GASPAR T.G., DOBROMTOFF V.V., BURGESS D.R. (1968)

‘New process language uses English terms’

Control Engineering, Oct 1968, pp 118-121

GEARS C.W. (1971)
‘Numerical initial value problems in ordinary
differential Equations’
Prentice-Hall, Englewood Cliffs, N.J., 1971

GINO (1976)

‘GINO-F user manual
Computer Aided Design Centre, Cambridge, UK, 1976

GOOD M. (1981)
'ELUDE & the folklore of user interface design’
Proc. of ACM SIGPLAN SIGOA symposium on "TEXT
MANIPULATION", Oregon, June 1981, SIGPLAN Notices,
Vol 16 No 6, pp 34-43

GRAY J.C. (1967)

‘Compound data structure for computer aided design
A survey'
Proc. ACM National Meeting, 1967, pp 355-365

GULLAND W.G. (1973)

‘Continuous system simulation - a review paper’
Proc. of conf. on "COMPUTER AIDED CONTROL SYSTEM

DESIGN", LEE, April 1973, pp 186-192

GURK H.M. (1955)

‘The use of stability charts in the synthesis of
numerical quadrature formulae

Quarterly of Applied Mathematics, Vol 13 No 1, April

1955, pe 73-78

HALLIWELL J.D., EDWARDS T.A. (1977)

‘A course in standard CORAL 66'
NCC Publication, National Computing Centre Ltd (UK)

HAMMING R.W. (1959)

‘Stable predictor-corrector methods for ordinary
differential equations'
Journal of the Association for Computing Machinery,
Vol 6 No l, Jan 1959, pp 37-47

HEALEY M. (1975)
‘A survey of minicomputer applications in industrial
control'
Minicomputer Forum 1975, Conf. Proc., On-Line Conf.
Ltd (UK), pp 493-503

=176-—

HEILMAN R.L., MARCHANT J.M. (1978)

'T1GS - an overview of the terminal independent

graphics system'
Proc. of SIGGRAPH 1978, 5th Annual Conf. on
“COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES",

Altanta, Aug 1978, ACM, pp 93-107

HEROT C.F., WEINZAPFEL G. (1978)
‘One point touch input of vector information for
computer displays’
Proc. of SIGGRAPH 1978, 5th Annual Conf. on

“COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES", Aug

1978, ACM, pp 210-216

HOBBS L.C. (1981)
‘Computer graphics display hardware’
IEEE Computer Graphics and Applications, Vol 1 No l,
Jan 1981, py25-39

HOROWITZ E., SAHNI S. (1976)
‘Fundamentals of data structures
Pitman Publishing Ltd, 1976, pp 106-168

HURLEY J.R., SKILES J.J. (1963)

'DYSAC - a digitally simulated analog computer'

Proc. of AFIPS 1963 SJCC, Vol 23, pp 69-82

ICHBIAH J.D., HELIARD J.C., ROUBINE O., BARNES J.G.P.,

KRIEG-BRUECHNER B., WICHMANN B.A. (1979)

‘Preliminary ADA re_crence manual’
SIGPLAN Notice, Vol 14 No 6, June 1979

IcL (1974)
‘SLAM - a simulation language for analogue modeling’
ICL 1900 series, ICL 1974

IECI (1968)
IEEE Transactions on Industrial Electronics and
Control Instrumentation
Vol IECI-15 No 2, Dec 1968

LECT. (1969))
IEEE Transactions on Industrial Electronics and
Control Instrumentation
Vol IECI-16 No 3, Dec 1969

IPW/EWICS (1981)
‘Draft Standard on Industrial Real Time FORTRAN’
Technical Committee of International Purdue Workshop

on Industrial Computer Systems (IPW) and European
Workshop on Industrial Computer Systems (EWICS),
SIGPLAN Notice, Vol 16 No 7, July 1981, pp 45-60

==

JACKSON A.S. (1960)

‘Analogue computation’
McGraw Hill, 1960, pp 255-257

JONES B. (1976)
‘An extended ALGOL-60 for shaded computer graphics'
Proc. ACM symposium on "GRAPHICS LANGUAGES, COMPUTER
GRAPHICS", Vol 10 No l, 1976, pp 10-17

KELLY V.H., WAKEFIELD A.J. (1967)

"APEX - a new approach to programming for on-line
control'
Proc. 2nd UKAC control convention on "ADVANCES IN
COMPUTER CONTROL", April 1967, IEE publication No 29

KEY K.As, (1965.)

‘Analogue computer for beginners
Chapman and Hall, London, 1965, pp 155-158

KNOWLTON K.C. (1969)

‘A programmer's description of L6é'
Comm. ACM, Vol 9 No 8, Aug 1969

KNUTH D.E. (1978)

‘The art of computer programming Vol 1 : Fundamental
Algorithms'
Addison-Wesley, 1978, pp 258-268

KOPAL Z. (1955)

‘Numerical analysis
Chapman and Hall, London, 1955.

KORN G.A., KORN T.M. (1972)

‘Electronic analog & digital computer'
McGraw Hill, 1972

KORN G.A., WAIT J.V. (1978)

‘Digital continuous system simulation’
Prentice-Hall, 1978
pp 79-99 DARE-P simulation language
pp 169-184 integ-ation routines

KORN G.A. (1979)

"Real-time applications of computer-aided design'
Proc. of IFAC symposium on "COMPUTER AIDED DESIGN OF

CONTROL SYSTEMS", Zurich 1979, (edited by CUENOD),
Pergamon Press, pp 649-668

KRATZER G. (1979)

‘Design and implementation of process control
software under realistic environment conditions’
Proc. of 2nd IFAC/IFIP symposium on "SOFTWARE FOR
COMPUTER CONTROL", Prague June 1979, (edited by

NOVAK), pp 149-153, Pergamon Press

—173-

KULSRUD H.E. (1968)
‘A general-purpose graphics language
Comm. ACM, Vol 11 No 4, April 1968, pp 247-254

LANG C.A., GRAY J.C. (1968)

‘ASP - a ring implemented associative structure
package'
Comm. ACM, Vol 11 No 8, Aug 1968, pp 550-555

LEE W.T., BOARDMAN R.M., HIGHAM J.D. (1967)

‘Block diagrammatic programming in computer control’
Proc. 2nd UKAC computer convention on "ADVANCES IN
COMPUTER CONTROL", April 1967, IEE publication No 29

LUCAS J.J, WAIT J.V. (1975)

‘DARE-P - a portable CSSL-type simulation language'
Simulation, Jan 1975, Vol 21 No 1, pp 17-27

LUCIDO A.P. (1978)
‘An overview of directed beam graphics display
hardware’
Computer, Nov 1978, pp 29-36

LINN C.¥., BARKER H.A. (1579)
‘A process control system based on a graphical
language'
Proc. of 3th International Conf on "TRENDS IN ON-
LINE COMPUTER CONTROL SYSTEMS", March 1979, IEE

1979, pp 45-48

LINN C.Y. (1980)
‘Digital control system programming from process
control diagram'

PhD Thesis, Department of Electrical Engineering,
University of Aston in Birmingham, July 1980.

MACHOVER C., NEIGHBORS M., STUART C. (1977)

‘Graphics Display
IEEE Spectrum Vol 14 No 8 , Aug 1977, pp 24-32
IEEE Spectrum Vol 14 No 10, Oct 1977, pp 22-27

MACHOVER C. (1977A)

‘A brief personal history of computer graphics'
Computer, Nov 1978, pp 38-45

MARTENS H.R. (1969)

‘A comparative study of digital integration methods
Simulation, Feb 1969, Vol 12 No 2, pp 87-94

McMANIGAL D.F., STEVENSON D.A. (1980)
‘Architecture of IBM 3277 graphics attachment'
IBM System Journal, Vol 19 No 3, 1980, pp 331-344

tio

MEADS J.A. (1972)

‘A terminal control language’
in "Graphics Languages" (edited by NAICE, ROSENFELD)
North-Holland, 1972

MERSON R.H. (1957)

‘An operational method for the study of integration
processes'
Proc. of Symposium on "DATA PROCESSING", Weapons
Research Estab., Salisbury, South Australia, 1957

MILNE W.E., REYNOLDS R.P. (1960)

‘Stability of a numerical solution of differential
equations - part II'
Journal of the Association of Computing Machinery,
Vol 7 No 1, Jan 1960, pp 46-56

MUSSTOPF G. (1979A)
‘Microprocessor hardware and software’
Proc. of 2nd IFAC/IFIP symposium on "SOFTWARE FOR
COMPUTER CONTROL", Prague June 1979, pp 23-50,
Pergamon Press

MUSSTOPF G., ORLOWSKI H., TAMM B. (1979B)

‘Program generators for process control applications’
Proc. of 2nd IFAC/IFIP symposium on “SOFTWARE FOR
COMPUTER CONTROL", Prague June 1979, pp 11-22,

Pergamon Press

NEWMAN W.M., SPROULL R.F. (1979)

‘Principles of interactive computer graphics (2nd

ed.) *
McGraw Hill, 1979
pp 147-158 graphical input devices
pp 159-182 picking selection methods
pp 443-478 userface interface design

NEWMAN W.M, VAN DAM A. (1978)
‘Recent efforts towards graphics standardisation'
Computing Surveys, Vol 10 No 4, Dec 1978, pp 365-380

NOBLE J.S. (1977)

‘The evolution of process control software’
Proc. symposium on “DEDICATED DIGITAL CONTROL",

University of Aston in Birmingham, 1977, Institute
of Measurement and Control (UK)

OHLSON M. (1978)

‘System design consideration for graphics input
devices’
Computer, Nov 1978, pp 9-18

=180-

PAYNE C.A.J. (1974)
‘Programming by block diagrams - a computer language
to suit the process engineer'
Canadian Control & Instrumentation, Dec 1974, Vol 13
No 12, pp 25-30

PIKEUH.E. (°1970 .)

‘Process Control Software'
Proc. of IEEE, Vol 58 No 1, Jan 1970, pp 87-97

PIRE HOE. (°1972") ‘
"Future trends in software development for real-time
industrial automation'
Proc. AFIPS 1972 SJCC, Vol 40, pp 915-923

PRESIS RB. WG L978)
‘Storage CRT display terminals : evolution & trends
Computer, Nov 1978, pp 20-26

PRITSKER A.A.B., PEGDEN C.D. (1979)

‘Introduction to simulation and SLAM'
John Wiley & Sons, 1979

RAGAZZINI J.R., FRANKLIN G.F. (1958)

‘Sampled-data control system'
McGraw Hill, 1958, pp 117-144

REVETT M.-C. |(1973))

‘Control system design using ADSOL, an on-line
digital simulation program’
Proc. of conf. on "COMPUTER AIDED CONTROL SYSTEM

DESIGN", IEE, April 1973, pp 193-197

ROSKO J.-S. (1972)
‘Digital simulation of physical system’
Addison-Wesley, 1972
pp 372 sorting & sequencing
pp 402-422 integration approximation

ROSS D.T., RODRIGUEZ J.E. (1963)
‘Theoretical foundation for computer aided design
system'
Proc. AFIPS 1963 SJCC, Vol 23, pp 305-322

ROVNER P.D., FLEDMAN J.A. (1968)

‘The LEAP language & data structure’
Proc. IFIP Congress 1968, Vol 1, pp 579-585, Spartan
Books Ltd.

RZEHAK H. (1978)
‘Redundancy in hardware and software of process
control’
Proc. of IMACS symposium on "SIMULATION OF CONTROL
SYSTEMS", (edited by TROCH I.), North-Holland
Publishing Co., pp 7-15

=18i—

SCHARK G. (1976)
‘Design, implementation and experiences with a
higher-level graphics language for interactive
computer aided design purpose’
Proc. ACM symposium on "GRAPHICS LANGUAGES, COMPUTER
GRAPHICS", Vol 10 No 1, 1976, pp 18-23

SCIAM (1977)
Scientific American - special issue on
microelectronics.
Sept. 1977, Vol 237 No 3.

SCHOEFFLER J.D. , TEMPLE R.H. (1970)

'A real-time langauge for industrial process control'
Proc. IEEE, Jan 1970, Vol 58 No 1, pp 98-106

SCHOEFFLER J.D. (1972)

'The development of process control software’
Proc. AFIPS 1972 SJCC, Vol 40, pp 907-914

SCi SOFTWARE COMMITTEE (1967)
"The SCi continuous system simulation language
(CSSL) '
Simulation, Dec 1967, pp 281-303

SHAMPINE L.F., WAIT H.A., DAVENPORT S.H. (1976)

‘Solving non-stiff ordinary differential equations -
the State of the Art' .
SIAM Review, Vol 1° No 3, July 1976, pp 376-411

SHAPIRO K.G-*(1978.)

‘Data structure for picture processing’
Proc. of SIGGRAPH 1978 5th Annual Conf. on “COMPUTER

GRAPHICS & INTERACTIVE TECHNIQUES", Altanta, Aug

1978, pp 140-146

SIMPLEPLOT (1978)
‘SIMPLEPLOT manual'
UMRCC, 1978

SMITH C.Ls8C, 1972 >)

‘Digital computer process control’
Intext Educational Publishers, 1972
pp 91 quote on ZOH
pp 166-179 PID
pp 184-200 process identification methods

SMITH D.N. (1971)
‘"GPL/I : A PL/I extension for computer graphics'
Proc. AFIPS 1971 SJCC, Vol 38, pp 511-528

SPECKHART F.H., GREEN W.L. (1976)
"A guide to using CSMP'
Prentice-Hall Inc., 1976, pp 168-172

—1a2—

STRAUSS J.C. (1968)
‘Digital simulation of continuous dynamic systems :
An overview'
Proc. of AFIPS 1968 FJCC, Vol 33, pp 339-344

STEUSLOFF H.U. (1979)

‘Programming distributed computer systems with higher
level languages'
Proc. IFAC/IFIP workshop on "DISTRIBUTED COMPUTER

CONTROL SYSTEMS", Tampa, Oct 1979, pp 39-50,

Pergamon Press

SUTHERLAND I.E. (1963)
‘SKETCHPAD - A man-machine graphical communication
device’
Proc. AFIPS 1963 SJCC, Vol 23, pp 329-346

TANIMOTO (1976)
‘An iconic/symbolic data structuring scheme'
in "Pattern recognition and artificial
intelligence", Academic Press, 1976, pp 453-471

TEKTRONIX (1976A)

"Tektronix 4051 graphic system operator's manual'
Tektronix Inc., 1976

TEKTRONIX (1976B)
‘Tektronix 4051 option 1 data communication interface
instruction manual’
Tektronix Inc., 1976

TEXAS INSTRUMENTS (1978)
“Model 990 computer reference manual, Volume 1

Concepts and Facilities'
Texas Instruments, 1978

THALMANN N.M., THALMANN D. (1981)
‘A graphical PASCAL extension based on graphical
types'
Software : Practice & Experience, Vol 11 Nol, Jan
1981, pp 53-62

TOCZYLOWSKI E. (1978)
‘Large scale steady state process simulation in
design of supervisory control'
Proc. of IMACS symposium on "SIMULATION OF CONTROL
SYSTEMS", (edited by TROCH LI.), Sept 1978, North

Holland Pub. Co., pp 55-61

VAN DAM A. (1971)

‘Data and storage structure for interactive graphics'
Proc. symposium on "DATA STRUCTURE IN PROGRAMMING

LANGUAGES", SIGPLAN Notice, Vol 6 No 2, Feb 1971,

pp 237-267

—183—

VAN DAM A., EVANS D. (1967)

‘A compact data structure for storing, retrieving and
manipulating line drawings'
Proc. AFIPS 1967 SJCC, Vol 30, pp 601-610

VARGA A., SIMA V., POPTESCU Th., VASILIU C. (1979)

‘Process control algorithms for microprocessors'
Proc. of 2nd IFAC/IFIP symposium on "SOFTWARE FOR
COMPUTER CONTROL", Prague 1979, pp 161-164, Pergamon
Press

WELLER D.L., CARLSON E.D., GIDDINGS G.M., PALERMO F.P.,

WILLIAMS R., ZILLES S.N. (1980)
‘Software architecture for graphical interaction’
IBM System Journal, Vol 19 No 3, 1980, pp 314-330

WILKE J.D.F. (1979)

‘A microprocessor philosophy for process control
systems'
Proc. of 3rd International Conf. on "TRENDS IN ON-
LINE COMPUTER CONTROL SYSTEMS", March 1979, IEE

1979, pp 115-120

WILLIAMS R. (1971)

'A survey of data structure for computer graphics
systems’
Computer Survey, Vol 3 No l, March 1971, pp 1-21

WILSON J.R., PRITSKER A.A.B. (1978A)

‘A survey of research on the simulation start-up
problem'
Simulation, Vol 31 No 2, Aug 1978, pp 55-58

WILSON J.R., PRITSKER A.A.B. (1978B)

‘Evaluation of startup policies in simulation
experiment’
Simulation, Vol 31 No 3, Sept 1978, pp 79-89

WIRTH N. (1976)
‘Algorithms + data structure = programs'
Prentice Hall, 1976
pp xiii quote for data & algorithm
pp 163-182 linked list data structure
pp 182-189 topological sorting

WOODWARD P.M., WETHERALL P.R., GORMAN B. (1974)

‘Official Definition of CORAL 66 (3rd Ed)'

HMSO (UK) 1974

YOURDON E. (1975)
"Techniques of program structure and design'
Prentice-Hall Inc., 1975, pp 36-77

-184-

