
PROGRAMMING AND SIMULATION OF CONTROL ALGORITHMS 

USING COMPUTER GRAPHICS. 

Thesis by 

Lim Jit Wee 

For the degree of 

DOCTOR OF PHILOSOPHY 

submitted to the 

Department of Electrical and Electronic Engineering 

THE UNIVERSITY OF ASTON IN BIRMINGHAM 

October 1981



The University of Aston in Birmingham 

‘PROGRAMMING AND SIMULATION OF CONTROL ALGORITHMS 

USING COMPUTER GRAPHICS.' 

Ph.d. Thesis, Lim Jit Wee, October 1981 

Summary 

A system for the programming and evaluation of process 
control algorithms has been developed. A graphical block 
diagram language was adopted to provide an easy means of 
programming via a graphic terminal. A number of pre-defined 
blocks are provided and programming is achieved by 
connecting the required blocks together. The graphic blocks 
correspond to software modules performing the required 
control functions. 

The pictorial program is then compiled to givea 
machine-independent program structure table. This can then 
be linked with the block routine code to provide the target 
processor's control program to realise a required control 

algorithm. 

A similar graphic approach was adopted for simulation 
of the controlled processes, so that the performance of the 
control algorithm may be evaluated. The use of standardised 
software modules and computer graphics simplifies 
programming and the maintenance of system documentation. 

The interaction and communication between the two sub- 
systems (control scheme and process model) supports the 
testing and evaluation of control algorithm. The data 
structures for effective graphics and efficient execution of 
the blocks are specified. The various functions necessary 
for the compilation of the graphical program are 
investigated and analysed. 
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data structure



ACKNOWLEDGEMENTS 

The Author wishes to express his appreciation and 

gratitude to his supervisor, Dr. G. K. Steel, for his 

invaluable assistance and guidance throughout the period 

spent on this research and to Professor H. A. Barker for his 

initial supervision. 

Thanks are also due to the staff of the department, 

colleagues and friends for their encouragement and advice. 

Special thanks to Dr. C. Y. Linn for his assistance and co- 

operation. 

Finally, the Author wishes to thank his parents and the 

rest of the family for their patience, support and kind 

understanding throughout the project. 

ey



LIST OF CONTENTS 

  

Summary i 

Acknowledgements ces 

List of contents iii 

List of illustrations viii 

List of tables xi 

CHAPTER 

1. General Introduction and Research Objectives i 

2. Process Control 4 

2.1 Introduction 4 

2.2 Programming languages oI 

2.3 Choice of programming approach 8 

2.4 Levels of process control S 

2.5 Generation of control program code 10 

2.6 Execution on dedicated control processor 14 

2.7 Block types in process control 16 

2.7.1 Implementation of interface blocks 20 

2.7.2 Minimal basic set of blocks 21 

2.8 Implementation of blocks 22 

2.8.1 Integrator block 22 

2.8.2 Delay block 23 

2.8.3 PID block 24 

2.8.3.1 Introduction 24 

2.8.3.2 Variations of algorithms 26 

2.8.3.3 Further considerations 28 

Let



3. Graphics Systems 

Data 

4.1 

Graphics display 

Graphical input mechanism 

Graphics software 

Graphics and data structure 

Graphic data structure 

Graphic picture structure and programming 

methodology 

Structure 

Graphic data structure 

4.1.1 Introduction 

4.1.2 Graphic block (GB) record 

4.1.3 Graphic information (GI) record 

4.1.4 Macro expansion (MX) record 

4.1.5 Non graphic data (NGD) record 

4.1.6 Graphic text (GTXT) record 

4.1.7 Input list (IL) record 

4.1.8 Relation between graphic records 

Graphic menu 

Run time data structure 

4.3.1 Introduction 

4.3.2 Run time block records 

4.3.3 Upwards link (ULN) record 

4.3.4 Run time type records 

4.3.4.1 RT simple type (RST) record 

4.3.4.2 RT composite type (RCT) record 

4.3.5 Run time text (RTXT) record 

4.3.6 Run time value table (RVT) 

iv 

ae 

33 

35 

36 

37 

38 

29 

42 

42 

42 

43 

46 

48 

49 

50 

52 

53 

54 

56 

56 

57 

58 

59 

59 

60 

61 

62



5. User Interface and Graphic Editor 78 
  

5.1 User interface design 78 

5.1.1 Introduction 738 

5.1.2 Command languages 12 

5.1.3 Feedback considerations 81 

5.1.4 Information display 82 

5.2 Graphic editor 84 

5.2< Introduction 84 

5.2.2 Graphics hardware description 84 

5.2.6 sPick function 86 

5.2.4 Editing of the picture 87 

5.2.5 Connections to and from junction 90 

5.2.6 Text editing OF 

6. Graphic Compiler Oe 

6.1 Introduction 93 

6.2 Transformation of graphic type to run time type 94 

6.3 Expansion of macro block and subpicture 95. 

6.4 Error checking by graphic compiler 96 

6.4.1 Missing connections 96 

6.4.2 Illegal data type connection 96 

6.4.3 Algebraic loops of 

non-retrospective blocks 98 

6.5 Sequencing the blocks for execution oo 

6.6 Allocation of data tables for blocks 100 

6.7 Initialization of the run time data table 103 

6.8 Listings and messages 103 

6.8.1 Examples of listings and warnings 104



oi. 

Compilation Activities (1) Picture Validation 
  

Run time treatment of composite blocks 

Closed loops of blocks 

Algebraic Loop detection 

7.3.2 

To3s2 

Introduction 

Implementation of loop detection scheme 

Compilation Activities (2) Sequencing 

Process ing order amongst control scheme blocks 

Sequencing functional block 

8.2.1 

8.2.2 

8.2.3 

8.2.4 

Introduction 

Sequencing method implementation 

Data structure used in sequencing 

General comments on sequencing 

Compilation Activities (3) Data Manipulation 

2 we Allocation of storage for run time block 

9.1.1 

Balog 

Onle.3 

Initial 

9.2.5.1 

9.2.5.2 

Introduction 

Data structure for retrospective block 

Data structure for 

non-retrospective block 

ization of functional blocks 

Introduction 

Initialization criteria 

Input-output initialization 

Steady-state initialization 

Further considerations 

Steady-state initialization 

External terminal initialization 

106 

106 

109 

lll 

Ca 

114 

117 

LT 

a9 

rig 

120 

122 

123 

25) 

125 

125 

126 

128 

129 

129 

130 

131 

132 

134 

134 

136



10. Simulation 

10.1 Review of digital simulation languages 

10.2 State variable representation 

10.3 Integrator block in simulation 

10.3.1 Introduction 

10.3.2 Features of single step and 

multi-step approaches 

10.3.3 Error estimation 

10.3.4 Control of integration step size 

10.4 Relations between integrator and other blocks 

10.5 Distinction betwwen H and Tc 

10.6 Block types in simulation 

10.6.1 Minimal set of basic blocks required 

10.6.2 Composite block implementation 

10.7 Delay block 

10.8 Derivative block 

10.9 Simulation and the graphic compiler 

10.9.1 Sequencing of blocks 

10.9.2 Storage allocation for blocks 

11. Testing of control algorithms 

11.1 Introduction 

11.2 Interaction supervisor 

12. Conclusion and results 

12.1 Programming implementation of system 

12.2 Conclusion 

Appendices 

List of references 

vii 

137 

137 

139 

140 

140 

143 

145 

147 

148 

149 

E51 

152 

152 

153 

155 

Lae



LIST OF ILLUSTRATIONS 

Generation of program code 

Scheme of downloading to dedicated controller 

Memory map of dedicated control processor 

Examples of DDC functional blocks 

Delay block implementation 

Basic PID - block diagram 

Interactive PID - block diagram 

Incremental PID - block diagram 

Set point derivative elimination - PID 

Simplified model of interactive process 

Heirachical structure of picture 

Graphic block (GB) record 

Graphic information (GI) record 

Macro expansion (MX) record 

Non-graphic data (NGD) record 

Attributes of the flags in NGD record 

Graphic text (GTXT) record 

Graphic type specific text records 

Graphic block specific text records 

Input list (IL) record 

Relation between graphic records for simple block 

Relation between graphic records for 

composite block 

Graphic menu data structure 

Run time block records 

Upwards link (ULN) record 

Example of run time composite block record 

of 3 simple blocks 

viii 

ae 

14 

15 

16 

24 

25 

27 

28 

31 

33 

41 

63 

64 

65 

65 

66 

67 

67] 

638 

69 

70 

we 

yh 

13 

74 

74



4.16 

4.17 

4.18 

10.1 

10.2 

10.3 

10.4 

10.5 

Run time simple type (RSTYPE) record 

Run time composite type (RCTYPE) record 

Run time text (RTXT) record 

Equipment used in project 

Simplified model of graphic editor 

Simplified model of graphic compiler 

Example of an algebraic loop 

Relation between run time data file and 

block record 

Subroutine and effect on run time data 

Macro and effect on run time data 

Run time treatment of composite block 

Square root function diagram, algebraic loop 

Non-linear filter diagram, non-algebraic loop 

Loop detection scheme 

Processing order amongst control scheme blocks 

Groups of interconnected nodes 

Block sequencing example 

Data structure used in sequencing 

Program modules and data flow 

Run time data file structure 

Structure of LEAD/LAG function block 

Structure of first order lag block 

Initialization block diagram 

Runge-Kutta 4th order integration rule 

Adam-Moulton 4th order predictor-corrector 

Runge-Kutta-Merson 4th order integration rule 

Distinction between H and Tc 

Composite block implementation - simulation 

ix 

1 

76 

ay 

85 

87 

94 

98 

102 

108 

108 

108 

109 

Lis 

118 

120 

£22 

123 

124 

127, 

129 

13 

134 

142 

142 

146 

149 

152



10.6 

10.7 

10.8 

10.9 

11.1 

Derivative block and difference equation approach 

Derivative function from integration 

Execution order amongst simulation blocks 

Data allocation for integrator 

Interaction between control scheme and model 

Interfacing to actual process 

Data structure for interaction communication 

Graphical details of integrator block 

Graphic data records for integrator block 

CORAL 66 procedure for integrator block 

TS3 

154 

156 

158 

162 

163 

163 

169 

170 

and



2 

5. 

epi 

ui 

LIST OF TABLES 

Transformation of integral action 

to discrete form 

Graphic editor command characters 

xi 

22 

88



CHAPTER 1 

GENERAL INTRODUCTION 

During the last two decade the advent and proliferation 

of the minicomputers and microprocessors has reduced the 

cost of digital processing power. With lower cost and higher 

reliability of computing elements, digital control is 

becoming widely adopted. This is mainly possible due to the 

advancement in technology and mass manufacturing of 

programmable hardware. ic is this programmable capability 

that makes the computing system very versatile, thus very 

responsive to the changes in requirements. 

In this project computing power is exploited to create 

a system which allows programming to be carried out by 

graphics or drawings. This means of programming will 

eliminate the major hindrance to the use of computers - the 

need to acquire detailed knowledge of the computer hardware 

and programming languages. This system permits the user to 

describe the problem to the computer system by drawings, a 

very natural and effective man-machine means of 

communication. 

The main objectives of this research are in the areas 

of 

(1) designing and implementation of a computer graphics 

package. The package provides an efficient means of 

entering graphical information into the data base in 

i



the form of a graphical programming language (GPL). The 

data structure required for efficient handling of 

graphic information is identified. 

(2) the compilation of the graphical programs to executable 

programs representing process control algorithms. The 

graphic data are combined with pre-fabricated software 

modules. Use of such standardised modules results in 

more reliable software. 

(3) to test the working of the control algorithms and allow 

the interactive modification of control parameters. 

Reliable control software is obtained by testing the 

interaction with a simulated model of the process. The 

graphical programming approach is extended to include 

simulation algorithms. The interaction ensures the 

satisfactory performance of the control algorithms 

before loading them to dedicated control processor or 

controller. 

The thesis is divided into the following chapters. 

Chapter 2 deals with process control aspects —- general 

requirements and the implementation of some functional 

blocks. Chapter 3 is concerned with the general graphics 

system - display and input mechanisms. In chapter 4, the 

details of the data structures used for graphics purposes 

and the execution phase are discussed. A tailored-purpose 

data structure for graphics (GDS) is chosen to ensure 

efficient graphics operation and memory storage utilisation. 

The execution phase data structure (RDS) is concerned more 

a



with the efficiency of execution. Chapter 5 covers the man- 

machine interface of the GPL system and gives a general 

description of the graphic editor and its capabilities. In 

chapter’ 6, 7, 8, 9 the graphic compiler of GPL and its 

activities are analysed and discussed. Chapter 10 deals with 

simulation - general requirements and the distinction 

between simulation to control algorithm functions. In 

chapter 11, the testing and evaluation of the control 

programs are considered. Chapter 12 concludes the thesis 

with a review of results.



CHAPTER 2 

PROCESS CONTROL 

2.1 INTRODUCTION 

The application of digital computers to process control 

is now well established. Digital process control has been in 

use in industries for a long period of time, the first 

control computer being installed in 1958 [ EDWARDS 1972 ]. 

However due to the high cost and relatively unreliability of 

early computers, the spread of digital process control was 

much smaller than expected. 

During the last two decades, with the technological 

advancement and extensive manufacture of computers and other 

LSI (large scale integration) components, the cost of 

digital processing hardware has been decreasing at a very 

rapid rate [ MUSSTOPF 1979A J], [ SCIAM 1977 ]. Low cost, and 

high component quality, in turn lead to more and wider 

applications. The reliability of digital hardware has been 

further enhanced by the usage of distributed computing 

systems, with Tocal.. data processing and remote 

communication, and fault-tolerance computer architecture 

using redundancy [ RZEHAK 1978 ], [ DEPLEDGE 1981 ]. 

The field and depth of computer applications in control 

are well covered by [ HEALEY 1975 ] and [ DUYFJES 1977 ]. 

One major obstacle to even wider application of digital



control is the programming aspect. Process control 

programming is a comparatively specialist activity, since 

programming skill must be supplemented by thorough awareness 

of control engineering and the process itself. The lack and 

cost of personnel with the above qualifications severely 

hinder the spread of computer process control. 

In efforts to overcome this problem, the philosophy of 

control software design has been undertaken in many 

approaches (discussed in the following section). The general 

trend is to allow the user himself to describe the process 

and the control requirements to the control computer, 

bypassing the use of specialist programmers. The general 

development and trends of process control software are well 

highlighted by the following publications [ PIKE 1970 ], 

{ PIKE 1972 ], { SCHOEFFLER 1972 ], [ IECI 1968 ] and [ IECI 

1969 J. 

2.2 PROGRAMMING LANGUAGES 

The classifications of programming languages will be 

discussed below with reference to process control 

requirements. Programming languages can be generally divided 

as follows [ MUSSTOPF 1979B J], [| STEUSLOFF 1979 ] : 

(A) Assembly/machine language. This is the lowest level of 

programming, requiring detailed knowledge of the 

specific machine used. The advantages are efficiency in 

execution and storage space utilisation. The main



disadvantages are that (1) errors can be easily made 

and are difficult to "debug" and (2) the software is 

not “machine portable". So assembly language is 

normally used to overcome very stringent restrictions 

on memory space and processing requirements. 

(B) High Level sentence-type Language (HLL). High level 

languages improve on assembly languages in terms of 

programmer productivity, documentation, maintainability 

and portability. HLL programs are easier to write and 

debug. The portability allows the transfer of programs 

to other machines. One sentence in HLL is usually the 

equivalent of many “sentences" of assembly language. 

However HLLs do not normally produce very efficient 

machine language programs. HLL can be classified as : 

(1) General Purpose. The most commonly used are 

FORTRAN, COBOL, BASIC and PASCAL. Extensions of 

FORTRAN for control applications are commonly 

carried out e.g. £ IPW/EWICS 1981 ]. Certain HLLs 

are designed for "real-time applications" such as 

RTL/2 [ BARNES 1975 J], PEARL [ FREVERT 1975 ] and 

CORAL 66 [ HALLIWELL 1977 ], [ WOODWARD 1974 ]. 

Being general purpose in nature such languages 

contain features that may not be necessary in 

process control, leading to inefficiency. Control 

software programming is still a difficult task 

requiring time and skill.



(Cc) 

(D) 

(2) Process-oriented (problem-oriented). Here, in order 

to ease the programming effort, familiar 

engineering terms are introduced into the language. 

A problem-oriented language is closely related to 

the application field. Examples of such languages 

are AUTRAN [ GASPAR 1968 J], BATCH [ PIKE 1970 ]j, 

ACCOL { BRISTOL 1975 ] and PROSEL [ NOBLE 1977 ]. 

Fill-in-the-blanks (FIB) language. This approach 

eliminates the need for the knowledge of programming by 

the user in the normal sense. All “programming” is done 

by filling in the questions on pre-prepared "forms". A 

large number of FIB languages exist such as BICEPS 

[ PIKE 1970 ], APEX [ KELLY 1967 ] and PROSPRO [ BATES 

1968 ]. Most FIB languages are for special applications 

in specific fields. Such languages are usually written 

in a high level language. 

Block-oriented language (BOL). This is similar to the 

FIB approach except now most of the pre-defined 

software modules are defined in terms of “functional 

blocks". Each block performs a certain function such es 

the three-term or lead/lag control. Use of such pre- 

fabricated modules tends to result in more reliable 

control software programs. Programming here involves 

the interconnections of whatever blocks are required 

(obtaining a "“control-diagram" drawing). There are two 

methods of communicating the structure of the drawings 

to the computer system, namely



(1) by labelling the input and output terminals of each 

block and entering the structure in alphanumeric 

form. Examples of such BOLS are MICRODARE [ KORN 

1979 ] and an approach by Lee [ LEE 1967 ]. 

Translation from the block structure to the 

intermediate code may be tedious and error-prone. 

(2) by entering the actual drawing using a graphic 

terminal. The computer system may then work out the 

interconnections. 

The approaches in (C), (D) and (2) of (B) can be 

regarded as very high level languages (VHLLs). Such VHLLs 

have a major disadvantage in the requirement of a long 

implementation time but do offer the following advantages 

(i) they are relatively easy to learn and to use, (ii) it is 

possible to adopt standards for usage, (iii) they can be 

modified quite easily to suit a particular application and 

(iv) they offer good application-oriented, readable 

documentations. 

2.3 CHOICE OF PROGRAMMING APPROACH 
  

One of the main features of the usage of computers is 

to provide an easy programming facility and a friendly user 

interface. To quote Wilke [ WILKE 1979 ], “emphasis in 

process control packages .... has been on the facilities for 

operators and users, rather than on any sophistication of 

control". The programming language in this implementation is 
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a graphically based block oriented language. Graphics is a 

natural medium for man-machine interaction [ FOLEY 1974 ]. 

The GPL (graphical programming language) allows the 

programming to be carried out by entering the actual 

“drawing" of the various blocks to the computer system using 

a graphic terminal. The two main advantages of using 

computer graphics in GPL are the ease in use and the only 

documentation required is the drawing. The GPL package will 

be further discussed in section ( 2.5 ). 

2.4 LEVELS OF PROCESS CONTROL 

Process control software can be generally divided into 

four levels of function [ PIKE 1970 ], [ SCHOEFFLER 1970 ], 

{ TOCZYLOWSKI 1978 ]. From the lowest level upwards they 

are 

(1) Direct Digital Control (DDC). This level communicates 

with the process variables directly. Data acquisition 

and direct control are carried out at regular 

intervals. 

(2) Optimization Control. This level involves supervisory 

functions applied to the DDC system. Optimization is 

based on performance criteria relating to the overall 

system performace. 

(3) Adaptive Control. Here the process model used for the 

optimization control can be checked by on-line 

measurements and modified if necessary. Security checks



can be carried out to detect any plant malfunctions. 

(4) Mangement Information. Tasks at this level supply 

information to management and permit overall control of 

the process behaviour. 

Emphasis in this project is mainly with the DDC level. 

Process time constants and the execution speed of the 

computer are important considerations for DDC. In processes 

where the process time constants are in the order of 

milliseconds, DDC is not generally feasible. For many slower 

processes with time constants in the order of seconds or 

minutes DDC is readily applicable. The general applications 

of DDC are well surveyed by Auslander & co-workers 

{ AUSLANDER 1978 ] and Varga & co-workers [ VARGA 1979 ]. 

2.5 GENERATION OF CONTROL PROGRAM CODE FROM GPL 

The general sequence in obtaining the control program 

code using the GPL is shown in figure ( 2.1 ). The 

intermediate steps are 

(1) the synthesis of the GPL "program" from the user block 

diagram concept, using the graphic editor. 

(2) the compilation of the GPL program by the graphic 

compiler to give the program structure table (PST). 

This table contains all the information as to the block 

used and interconnections. The PST is numerical in 

nature, comprising various run time data structure 

hoe



records (section 4.3). 

(3) the program generation. The program generator "links" 

the PST with the appropriate run time algorithm code 

routine to give the run time program code. This 

machine-dependent program code is ready for execution 

on the target processor. The execution of the program 

code by the processor will be denoted throughout the 

thesis by the term “run time phase". 

The GPL program and the PST obtained in (1) and (2) are 

machine-independent since they are only involved in the 

transformation of the pictorial block diagram to a numerical 

form suitable for the program generation section. 
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User block 

diagram concept 

  

4+------------- + 
+ Graphic + 
+ editor * + 
4+------------- + 

GPL pictorial Algorithm 
program routines * 

4+------------- + 4$---------- fe 
+ Graphic et + CORAL66 + 
+ conpilere® + + compiler + 
4+------------- + +---------- ots 

Program Algorithm 
structure routines 
table, PST code 

(ea 
+ program = 
+ generation * + 

  

  
Executable 
program * written in 
code CORAL 66 

FIGURE 2.1 GENERATION OF PROGRAM CODE 

The structure of the package system can be divided into 

four operational stages : (1) graphic editor, (2) graphic 

compiler, (3) program generation section and (4) run time 

algorithm routines. The first three stages are independent 

of each other and operate on input data to give the 

appropriate output for the next stage. If any error or 

ambiguity is encountered then the relevant message is 

displayed and the next stage is not activated. 

aries



To allow the package to be portable, every stage is 

written in a high level language, CORAL 66 [ HALLIWELL 

1977 J], [ WOODWARD 1974 ]. Portability is further enhanced 

by separating the machine-dependent code from the machine- 

independent portions. To transfer the package to a different 

computer system (with a suitable CORAL 66 compiler), only 

the machine-dependent code requires modification. Most of 

the machine-dependent code segments are involved with the 

input and output activities. 

The algorithm routine determines the functional 

characteristics of each block, relating the output to the 

inputs. Each routine is functionally independent, needing 

only the information as to the parameter list (the block's 

variables). The routines are written in CORAL 66 which is 

further compiled to give the machine-dependent code. If it 

is deemed necessary to modify the function of a block, then 

only that algorithm routine need to be changed accordingly. 

The program generation is a relatively easy task 

compared with the graphic compilation. This is basically a 

“linking" function, linking the required functional type in 

the PST with the appropriate address of the routine code. 

This function is very similar to that required for any 

block-oriented language approach. 
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2.6 EXECUTION ON DEDICATED CONTROL PROCESSOR 

This section considers one of the feasible scheme of 

execution of the run time control program code obtained from 

the GPL system on a control dedicated processor. The scheme 

involves 

as shown 

  

downloading to the processor from the host computer 

in the figure ( 2.2 ). 

  

  

  
  

  

    
  

+-- +-- 

+ + + + 
+ + + DEDICATED + input 
+ HOST + + CONTROL +< = 
+ COMPUTER + + PROCESSOR + PROCESS 
+ + + + VARIABLES 
+ + + + UNDER 
+ GPL + down + ( ee CONTROL 
+ SYSTEM  +---------- >+ (MEMORY) +== = 
+ + loading + ( ) + output 
+----------- + +----------- + 

FIGURE 2.2 SCHEME OF DOWNLOADING TO DEDICATED CONTROLLER 

There are many different methods of downloading, via 

(2) 

(2) 

(3) 

"blowing" onto EPROM (programmable memory). The 

EPROM can then be plugged into the control 

processor for execution. 

transferring on to a magnetic tape, and getting the 

control processor to pick up the relevant 

information from the tape. 

a serial link from the host computer to the control 

processor. This serial link is used to pass all the 

required information. 
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The memory map of a typical control processor using a serial 

link is indicated in figur- ( 2.3 ). 

  

p 
+ Execution + (ROM) 

aP monitor + 
$o-------------------- + 
+ Algorithm routines + (ROM) 
+ Code + 
$--------------------- + 
+ Program Structure + (RAM) 
+ Table (PST) + 
4$--------------------- + 
+ Run time result + (RAM) 
+ region + 
$--------------------- + 

ROM - read only memory 
RAM - read/write memory 

FIGURE 2.3 MEMORY MAP OF DEDICATED CONTROL PROCESSOR 

The program structure table (PST) is generated by the 

host computer and defines the particular control algorithm 

employed. The monitor picks up the relevant data from each 

block in the PST, finds the correct functional algorithm 

code and executes the code. The result can be dumped onto 

the result region before going to the next block in PST. 

The dedicated control processor described above is a 

simple but crude system. The processor system can be 

enhanced to give a higher performance such as to provide a 

display and modification interaction for the operator. This 

can be achieved by having a more sophisticated execution 

monitor. The execution of the control program on dedicated 

processor is an area not covered by the research objectives 

and will not be considered further in this thesis. 
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2.7 CLASSIFICATION OF FUNCTIONAL BLOCKS 

The basic set of functional blocks simulate functions 

familiar to process control engineers. Some of the more 

frequently used blocks are indicated in the figure ( 2.4 ). 

The GPL permits the provision of a new block in 2 ways, 

(1) by the specification of a set of numerical coordinates 

(for drawing the block symbol) and an algorithm 

procedure to define the relationship of output to 

input. Appendix B gives an example of this process. 

(2) by taking blocks from the basic set to create a new 

“composite block". 

  
  

  

              
  

  

  
    

                  

[J aan =| 
aie ‘oF ces PID fax + a 

—+Pv ral 

INTEGRATOR ee 

[J 

a DE LANa ae ad ress ag / Pc 
N 

| Imeut INTERFACE Function 

Generator. 

FIGURE 2.4 EXAMPLES OF DDC FUNCTIONAL BLOCKS 

All the fundamental block types in the process control 

system can be generally classified as one of the following : 

-iLG=



(A) _NON-RETROSPECTIVE BLOCKS 

These blocks have outputs as instantaneous functions of 

the inputs. They fall into two categories : 

(1) block whose current output depends solely on the 

current input value. Examples include the adder and 

multiplier. 

(2) block whose current output depends on the current input 

and the past value history of the input and/or output. 

Some examples are the leadlag function and the PID 

function. 

Implementation of the type (2) differs from type (1) in that 

it requires a past value queue to be maintained. 

(B) RETROSPECTIVE BLOCKS 

Retrospective blocks are those whose outputs are 

computed based only on the past history of their inputs 

and/or outputs. On no account are the current inputs 

involved. These blocks can be processed during the run time 

phase in any order. Examples include the integrator, first 

order lag and the second order lag functions. 
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(C) MACRO BLOCK AND SUBPICTURE 

Macro block and subpicture are "composite" blocks, 

which are constructed by various other blocks, retrospective 

or non-retrospective, as separate entities. The composite 

block can be regarded as the graphical equivalent of a 

subroutine. Once such a block is defined the user can just 

use it as a "black box", ignoring the internal working of 

the block. The composite block approach promotes the modern 

programming methodologies [ YOURDON 1975 ], allowing the 

user to view the problem as a hierachical level of black 

boxes. The advantages of the composite block are 

(a) It leads to more comprehensible diagrams. 

(b) Frequently used configurations can be defined once 

and called up whenever required. 

The concept of a subpicture differs from that of a 

macro block. A large block diagram may be partitioned into 

subpictures for convenience or where the display capacity 

requires this. A subpicture is a composite block used only 

once in the control scheme. Its internal structure can be 

freely modified at any time. A macro block is designed to be 

used as many times as necessary within a control scheme. A 

change in this block will affect all implementations and 

this can lead to errors in appreciating the full effect of 

changes. For this reason, macro blocks are regarded as fixed 

entities. 
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(D) INPUT INTERFACE BLOCKS 

The input interface block is used as an interface 

between the process (or the model of the process) and the 

actual control scheme. It enables measurements from the 

process to be passed over to the control scheme. Generally 

there are two classes of input interface, the analog and 

digital. Device handlers will be handling all the means of 

measurement of the process, including the sampling interval. 

The process analog variable may be scaled and linearised and 

fed through a A/D converter to give a finite range, normally 

in the 12 bit representation. The actual physical address of 

the instrumentation will be handled by the device handler 

and the output sent to memory locations. These memory 

locations may be updated by internal transfers or DMA 

(Direct Memory Access) may be used. DMA allows blocks of 

memory locations to be updated by means external to the 

processing unit. 

It is the function of the analog interface to “format” 

the integer output value of the device handler into floating 

point representation and to carry information about the 

scaling factors. This means as far as the other blocks are 

concerned that they are only interested in the value at the 

appropriate memory location and not the physical means of 

implementation of the instrumentation. No formatting is 

required in the digital interface, just storing the binary 

input in the appropriate memory location. 
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(£) OUTPUT INTERFACE BLOCK 

Output interface blocks act as the interface between 

the control algorithm and the process (or model of the 

process). Similar to the input interface, there are two 

classes, the analog interface and digital interface. The 

main function of the analog interface is to format the 

output values from floating point representation down to the 

finite integer range, normally in the form of 8 bits 

representation. To do so, the output interfaces require the 

scaling factor and the upper and lower limits of the 

variable. Output device drivers will be handling all the 

physical addressing and the activation of the actuators. 

2.7.1 IMPLEMENTATION OF OUTPUT AND INPUT INTERFACES 
  

As far as this project is concerned, the interfaces are 

between the control algorithm and the simulation model of 

the process. These interfaces can be considered as message 

passing modules. The input interface will be given the 

following data 

(1) the upper limit of the incoming variable 

(2) the lower limit of the variable 

(3) the actual value of the variable as a percentage of 

the two limits, as an integer value. 

Based on these values, the input interface module will 

format the incoming percentage integer value into the 
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floating point representation used in the rest of the 

blocks. The output interface with the following data 

(1) the floating representation of the variable 

(2) the upper limit of the output variable 

(3) the lower limit of the output variable 

will compute the output (integer value) to be transferred to 

a D/A converter. 

All the integer values will be over the range of a 8- 

bit representation ( 0-255 ), interfaces are usually limited 

in range and precision. 

2.7.2 MINIMAL BASIC SET OF BLOCKS 

The minimal basic set of the functional blocks 

essential for DDC is considered to be as given below 

(a) retrospective blocks - integrator, first order lag, 

second order lag and the delay function. 

(b) non-retrospective blocks 

type (1) - summer, multiplier, function generator and 

junction block. 

type (2) - lead/lag function and PID controller 

(c) interfaces - input and output blocks. 
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2.8 IMPLEMENTATION OF FUNCTIONAL BLOCKS 

The function of each block is determined by its 

algorithm procedure. The implementation of the conventional 

blocks such as the summer, multiplier and function generator 

are straightforward and obvious. A few of the functional 

blocks can be implemented by various approaches and some of 

these are considered in the following sections. 

2.8.1 INTEGRATOR BLOCK 

There are many methods of transforming the analogue 

integral action into the equivalent discrete form 

[ D'HULSTER 1979 ], [ ROSKO 1972 ], see table (2.1). 

  

  

          

method transfer function forward extrapolation eqn. 

: ai pe 
difference Tage inte Sle ae Alice 

a zs" a z-transform Tao Aaswes ale alee 

Tustin pte Sal \ = Yy + [x +p | a ee Man sade 7 (%nes 

< sampling interval 

“o
u 

Zz backward shift 
operator 

x = input, y = output 

TABLE 2.1 TRANSFORMATION OF INTEGRAL ACTION 

TO DISCRETE FORM 
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From the above table, the z-transform approach gives an 

extrapolation equation in which the current output can be 

calculated without the knowledge of the current input (i.e. 

retrospective in nature). The z-transform approach is 

adopted for the implementation to obtain retrospective 

integrators allowing them to be executed in any abritrary 

order. This choice implies that the z-transform approach is 

also used for any functional block involving the integral 

action such as the first order lag and lead/lag function 

(see Appendix A). 

2.8.2 DELAY BLOCK 

There are two approaches to the approximation of the 

delay block [ KEY 1965 ]. One approach is to satisfy the 

mathematical transfer function having a constant gain and a 

phase shift proportional to the frequency (e.g. Pade 

approximation or Stubbs and Single's approximation [ JACKSON 

1960 ]). The other approach is to store the input and to 

reproduce this after the desired interval of time. The shift 

register is adopted to achieve digital computation when the 

required delay is an integer multiple of the sample 

interval. 

The delay block is implemented as follows, 
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FIGURE 2.5 DELAY BLOCK IMPLEMENTATION 
  

The input parameter N is the number of the time delay 

intervals to be specified by the operator. A variable-sized 

delay block causes difficulties during the storage 

allocation. So the delay block is implemented with a fixed- 

size M-stage ring buffer. This avoids having to shift all 

the actual values along since only the two pointers need 

updating. Precautions must be taken to ensure that N does 

not exceed M. 

2.8.3 PID CONTROLLER 

2.8.3.1 INTRODUCTION 

Most process loops are controlled by the very flexible 

PID algorithm or one of its variants. A PID controller can 

be easily "tuned" (i.e. its parameters varied) to give the 

required performance of the manipulated variable. 
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As implied by the name PID controller (Proportional, 

Integral and Derivative controller), also widely known as 

the "three term" controller, the basic algorithm is as 

follows : 

a 
v =K fe or fede + Tagt | + Vin (24) 

where v = output of the PID algorithm 

e = input signal to the PID 

K = proportional gain 

Ti = integral time constant 

Td = derivative time constant 

vm = manual reset output value. 

Figure ( 2.6 ) shows the basic PID algorithm in diagrammatic 

form. 

  

INPUT, 
ouTeutT, 0 

UT, @ kK le Se 

InteceaL 

    

    
      sla 

DERwwaTive       
FIGURE 2.6 BASIC PID - BLOCK DIAGRAM 

In the implementation of this, consideration must be 

given to other factors, such as the operator interface, 
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filtering of signals, automatic/manual transfer, bumpless 

parameter changes, reset windup and non-linear output 

requirement [ ASTROM 1980 ]. Detail considerations will be 

given in later sections. 

2.8.3.2 VARIATIONS OF THE PID ALGORITHM (1) 
  

The basic PID algorithm can be modified to give several 

variants to provide for different operating requirements. 

The basic algorithm (equation (2.1) and figure ( 2.6 )) is 

also known as the ideal or non-interactive PID, since all 

the three terms can be set independently. By approximating 

the integral and derivative terms, the following equation is 

obtained 

ai Kylene + eee eels aaa Veer = ee) 
a 

where Ts is the sampling interval. 

With further manipulation, 

change in v, 

v(n) - vin-1) =K(en-@an) Ren + Ss (tne 2e + ienn) (23) 
i s 

(Note that the manual reset output vm is now not required.) 

This is known as an incremental algorithm since only the 

change in the output, v, is calculated. 
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2.8.3.2 VARIATIONS OF THE PID ALGORITHM (2) 

In practice, most analog contollers are better 

represented by [ BIBBERO 1977 ] 

z= rey iss site Vai, (2.4) 

where Tl = equivalent of the integral time constant 

u TZ equivalent of the derivative time constant 

Kl = gain 

This is known as the real or interactive PID algorithm 

(figures 207 ))) 
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FIGURE 2.7 INTERACTIVE PID - BLOCK DIAGRAM 

Manipulation of equation (2.4) gives 

Oe K 
Cr eh) Gey eS (2.5) 

The front portion of the expression represents an 

incremental algorithm and the latter an integrator function, 

figure ( 2.8 ). 
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FIGURE 2.8 INCREMENTAL PID with internal integrator 

Working on just the incremental portion gives : 

change in v, 

  

K, (1%) +T3)(134Ts) Ki, 
v(n) - v(n-1) Rees oN a Say (MIS FETE ATTIC ne, 

K.Ta 

ag TS Cnn (2.6) 

Equation (2.6) is selected to be implemented as the PID 

incremental algorithm. Further information on the algorithm 

of PID can be found in [ CADZOW 1970 ] and [ SMITH 1972 ]. 

2.8.3.3 FURTHER CONSIDERATIONS ON PID 
  

The final choice of the algorithm for the PID is partly 

dependent on the following factors [ BRISTOL 1977 ] : 

(1) FILTERING OF SIGNALS 

In most practical cases, the input to the PID is 

usually preceded with low pass filter. This limits the 

high frequencies present (regarded as noise) in the 

input signal as the PID is usually only interested in 
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(2) 

the slow changing trend of the variables under control. 

The low pass filter also prevents any sudden "jump" in 

the PID output when there is a sudden change in the 

input variable. Instead the PID output will “ramp" up 

to the new required value. 

Another PID block type is provided, that with the 

equivalent transfer function of a PID with a low pass 

filter attached at the front end. 

INTEGRAL WIND UP OR SATURATION 

The integral mode of the PID is introduced to eliminate 

steady state errors. As long as there is a deviation 

from the set point, the integral mode will give a 

changing control demand. Often the control demand 

cannot be achieved due to saturation of the actuator. 

This leads to a situation where the integral mode 

builds up to a large value i.e. integral “windup", a 

situation to be avoided. 

For digital computation with floating point numbers, 

the range of the output of the PID is virtually 

infinite. When the output of the PID is connected to a 

D/A converter saturation occurs at the limits of the 

conversion range of the converter. Once the output 

limit is reached reset windup is avoided by holding the 

PID algorithm output at the saturation value until the 

computed increment requires the output to move back 

into the linear range. 
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(3) 

(4) 

AUTO/MANUAL CONTROL 

Auto/manual changeover is implemented so as to allow 

the operator to vary the output of the PID manually. 

With the incremental algorithm, the output is tracked 

automatically i.e. in switching over to the AUTO mode, 

separate initialization of the output is not required. 

Input to the manual value terminal in the PID function 

block may be from another functional block. The 

Auto/manual changeover is implemented by means of a 

flag (figure ( 2.8 )). 

OPERATOR INTERFACE 

Since the flexibility of the PID controller lies mainly 

in the ability to be “tuned" to suit a given control 

requirement, clear and easy access for the tuning must 

be provided. With the chosen algorithm it is possible 

to change each parameter independently. To allow this 

feature, the evaluation of the coefficients of the PID 

controller will be done during the RUN TIME, instead of 

being calculated earlier and storing only the results 

( for example T1/T2 can be calculated and stored as a 

single value). The penalties are slightly longer 

execution time and more memory storage. This allows the 

set point of the controller to be set by another block 

giving cascade control [ BIBBERO 1977 ]. 
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(5) 

Ser 

  

   

BUMPLESS PARAMETER CHANGES 

With the derivative mode in the PID algorithm, any 

changes in the set point will be differentiated, giving 

a large control output. This can be avoided by 

elimination of the set point from the derivative term. 

Figure ( 229.) shows the set point derivative 

elimination. 
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FIGURE 2.9 SET POINT DERIVATIVE ELIMINATION - PID 

EXTERNAL INTEGRATOR 

The provision of the an external integrator for the PID 

allows the incremental changes to be used by other 

funcional blocks. For most cases this is not necessary 

and so the integrator is provided within the PID 

structure. If required, a further block functional type 

can be provided with external integrator. 

INITIALIZATION 

During the steady state condition, the error samples 

are approximately the same i.e. 
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e(n) = e(n-1) = e(n-2) 

In effect the derivative and proportional components of 

the PlD are cancelled out, leaving only the integral 

component. For initialization the states of the 

internal error signal can be made equal to the first 

error input signal i.e. 

e(-2) = e(-1) = e(0) 

=32—



CHAPTER 3 

GRAPHICS SYSTEM 

3.1 GRAPHICS DISPLAY 

Graphics devices fall into two categories -- 

interactive and passive. Passive devices are output-only 

devices (such as the graph plotter). Interactive devices 

(such as a graphics terminal with a light pen) permit human 

interaction through a variety of input mechanisms. A minimal 

interactive graphics workshop comprises a device for 

displaying the pictorial data and a device for accepting 

        

pictorial data as shown in figure ( 3.1 ). 

+----------- + 4+----------- + 
+ + + + 
ts it + DISPLAY. 

+ += ==>+ DEVICE + 
am oe output + = 

sua DATA az te + 
+ + 
+ BASE ity 

+ + 
+ + input + = 
i eae INPUT + 
7 mth - DEVICE + 
+ + + + 
+----------- + +----------- + 

FIGURE 3.1 SIMPLIFIED MODEL OF INTERACTIVE PROCESS 

Graphics displays of many kinds are used [ HOBBS 

1981 ], but three types of cathode ray tube (CRT) displays 

lead the field [ MACHOVER 1977A J, [ McMANIGAL 1980 ].



(A) REFRESHED RASTER-SCAN DISPLAYS are similar to 

television CRT, requiring the generation of a matrix of 

intensity values which are fed to a TV monitor 

{ MACHOVER 1977 ]. 

(B) REFRESHED DIRECTED BEAM DISPLAYS [ LUCIDO 1978 ]. Lines 

are drawn by directing the electron beam across the 

screen. Such lines are called "vectors". Each vector is 

regenerated (refreshed) during the refresh cycle to 

give a constant picture. Unlike the raster-scan 

display, this only scans the paths between vector 

endpoints. 

(C) DIRECT VIEW STORAGE TUBE DISPLAYS [ PRESIS 1978 ]. This 

display uses the CRI that incorporate a means of 

storing displayed data and causing them to remain 

visible, without refreshing, once written. Lines are 

drawn in a similar way as refreshed directed beam 

display. 

The different types of displays require different 

device drivers (software to operate the devices). The 

general graphics terminal requirements for various 

application areas have been identified by Carlson [ CARLSON 

1978 ] and Presis [ PRESIS 1978 ]. Selection of a particular 

display depends on several factors including the resolution 

available and required, the ability to move objects about 

dynamically and the cost. The refresh-type terminal is, 

generally, more complicated and expensive than the storage 
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tube display. If the ability to display dynamically changing 

pictures is necessay, then the refresh-type display should 

be used. 

3.2 GRAPHICAL INPUT MECHANISM 

The ACM Graphics Standard Planning Committee has made 

its CORE proposal for a graphics standard [ ACM 1979 ] and 

identifies the following 6 types of logical input devices 

(A) KEYBOARD for the typing of alphanumeric data 

(B) BUTTONS for program function activation (e.g. 

function keys) 

(C) STROKE DEVICES for the direct visual graphics entry 

e.g. the RAND tablet [ DAVIS, ELLIS 1964 ] and the 

SKETCHPAD [ SUTHERLAND 1963 ]. 

(D) VALUATORS for analog quantity entry (e.g. dials and 

meters) 

(E) LOCATORS for position entry (e.g. joystick) 

(F) PICKS for item selection (e.g. light pen and 

joysticks) 

Of the six device types, the pick and the locator are 

the most useful for interactive graphics because they allow 

the user to interact directly with a graphical output by 

pointing [ FOLEY, WALLACE 1974 ]. One form of the pick 

devices is the usage of the human finger to provide "touch 
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input" [ HEROT 1978 ]. Design considerations for graphics 

input devices have been well discussed [ OHLSON 1978 ], 

{ NEWMAN, SPROULL 1979 ]. In this project, the input device 

is the joystick (performing the picking function) and a 

keyboard for alphanumeric data input. 

3.3 GRAPHICS SOFTWARE 

To achieve device-independence, the graphics software 

is usually divided into three parts -- an application 

program, a standard graphics package (for the manipulation 

of the graphical item) and a device driver [ HEILMAN 1978 ], 

{ NEWMAN 1978 ], [ BERGERON 1978 ]. The application programs 

involve user written problem-solving programs, making full 

use of the graphics language for graphical input and output 

actions. The device driver is the program to activate the 

graphics hardware used. 

Some graphics systems are built in the form of a 

graphics package based on an existing programming language 

{ MEADS 1972), { Gino 1976 J, [ CALCoMP 1974 ], 

{ SIMPLEPLOT 1978 ]. Such graphics packages are sets of 

functions, subroutines (to provide the manipulation of the 

graphical objects) to be called by the application programs. 

The alternative is to cnoose an existing programming 

language and to extend and modify it to perform the graphics 

facilities [ KULSRUD 1968 ], [ SCHARK 1976 ]. The followings 

just a few examples of the languages being extended for 

graphics, Pascal [ THALMANN 1981 ], Algol [ JONES 1976 ] and 
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PL/I ( SMITH 1971 ]. The basic graphics facilities must 

include means for moving the cursor (or drawing pen), 

drawing line vectors and writing alphanumeric characters. 

3.4 GRAPHICS AND DATA STRUCTURE 

An important component of the graphics programs (and 

other general programs) is the DATA STRUCTURE. The graphic 

data structure is the software representation of the model 

being operated upon. The choice of the data structure has an 

influential effect on the algorithms used. To quote Wirth, 

“The decisions about structuring data cannot be made without 

knowledge of the algorithms applied to the data" [ WIRTH 

1976 ]. The general criteria for the graphic data structure 

design are 

(1) adequate representation of the problem. 

(2) sufficient flexibility. 

(3) facilitating the extraction and manipulation of 

information. 

(4) efficient in terms of memory storage space. 

Much work has been done in the area of data structure 

for graphics. Sutherland's work on SKETCHPAD [ SUTHERLAND 

1963 ] has heavily influenced the development in this area. 

Sutherland defined a ring structure to handle a very common 

class of picture (called the “network graphs"). These 

pictures are usually interconnected in a network fashion, 
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and can be decomposed in lower levels of “subpictures" 

(other smaller pictures). Early work was also carried out by 

Ross and Rodriguez [ ROSS, RODRIGUEZ 1963 ]. 

Sebsequent to SKETCHPAD, work has concentrated on the 

investigation and finding of more efficient graphic data 

structures. Various surveys of data structures for graphics 

have been carried out [ GRAY 1967 ], [ WILLIAMS 1971 jj, 

{ VAN DAM 1971 ]. Abrams [ ABRAMS 1971 ] has discussed the 

advantages and disadvantages of the general purpose and 

tailored graphic data structures. Other workers have 

discussed specific data structures, for example for the 

drawing of lines [ VAN DAM, EVANS 1967 ], [ FRANKS 1968 ] 

and for remote computer graphics [ COTTON, GREATOREX 1968 ]. 

3.5 GRAPHIC DATA STRUCTURE 

Most graphical data structures are pointer-type 

structures, with such pointers being explicitly or 

associatively addressed. Programming languages designed to 

work with such pointers greatly facilitates the construction 

of the data structure e.g. PASCAL and ADA. The design of the 

pointer scheme is a critical part of any data structure 

{[ DODD 1969 ]. Some programming languages are developed for 

the implementing and manipulation of general-purpose graphic 

data structure e.g. LEAP [ ROVNER, FLEDMAN 1968 ], Lé6 

{ KNOWTON 1969 ], ASP [ LANG, GRAY 1968 ] and a system by 

Evans and Van Dam [ EVANS, VAN DAM 1968 ]. 
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It is decided to use a specially tailored data 

structure for the graphics in this application in order to 

achieve efficient data storage. The iconic or symbolic data 

structure (introduced by Tanimoto [ TANIMOTO 1976 ]) for 

structuring pictorial data is a good basis upon which to 

build the tailored-purpose data structure. The scheme 

employs arrays whose elements are pointers to property list 

(table of attributes and other values) and pointers to other 

arrays [ SHAPIRO 1978 ]. Linn [ LINN 1979 ] has demonstrated 

the usage of such a scheme using tables to store the 

graphics information. 

Tables containing entries of fixed size in consecutive 

locations can be used but the choice of the size is 

critical, since "overflowing" may occur, when the reserved 

locations are filled up and more entries are required. In 

this project, the iconic data structure scheme is used, with 

the basic form of data storage being the SINGLE LINKED LIST. 

All the graphical information is stored in "records" within 

the linked list. Discussion on the different types of 

records is given in section (rae) (Graphic data 

structure). 

3.6 GRAPHIC PICTURE STRUCTURE AND PROGRAMMING METHODOLOGY 

The display diagram, composed of various block types 

and their interconnections and other textual information, is 

termed as a block-diagram or a "PICTURE". Each block diagram 

itself can contain other block-diagrams or graphical 
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pictorial entities. Such pictorial entity can be a simple 

block (this is the lowest level of decompositon, the very 

basic or fundamental "building brick"), or it can be 

composite in nature. 

Composite blocks are of two types : 

-- the subpicture, which is a collection of blocks (simple 

or composite) to be treated as a single entity in the 

picture. 

-- the macro block, similar to the subpicture but with the 

restriction that its internal structure (i.e. the 

constituent components) may not be modified. 

The main difference between the subpicture and the 

macro block lies in their usage. The subpicture is defined 

as a. “once-off" entity, ise.sit. is gused -only jonce in ‘a 

picture. Its usage is usually for conceptual or aesthetic 

purposes. Therefore, it is permissible to modify its 

internal structure as long as the number of terminals (input 

and output) is left unchanged. 

The macro block is intended for definition of a 

configuration of blocks for repeated use. The macro block 

definition is a "master" entity, and there can many usage of 

the block type ("instances") in a picture [ SUTHERLAND 

1963 ]. Modification of the macro block constituents is 

prohibited due to the "ripple" effect (any modifications in 

the master must be reflected through all the instances). It 
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is possible for the macro block and the subpicture to 

contain composite blocks themselves, resulting in a 

heirarchical structure. Figure (32) shows the 

heirarchical structure of the picture. 

Recursive block definition is strictly not allowed, for 

example it is not permitted to define block A to contain 

block B, if block B is defined in terms of block A 

(explicitly or implicitly). 

The composite blocks ( macro block and subpicture ) can 

be used for "information hiding". As long as the interface 

remains the same the internal composition may be varied 

without affecting the overall final results. Each composite 

block can be treated as a module with a single entry and a 

single exit. By using such composite blocks, the operator is 

encouraged to pursue the top-down programming methodology. 

The operator deals on only one level of decompositon at a 

time. Hence the advantages of the latest programming 

methodology can be reaped [ YOURDON 1975 ]. 

PICTURE (top) 

SUBPICTURE MACRO (composite) 

SIMPLE BLOCK (lowest) 

FIGURE 3.2 HIERACHICAL STRUCTURE OF PICTURE 
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CHAPTER 4 

DATA STRUCTURE 

This chapter deals firstly with the data structure 

adopted for effective computer graphics and secondly the 

data structure for efficient execution purposes during the 

run time phase. 

4.1 GRAPHIC DATA STRUCTURE (GDS) 
  

4.1.1 INTRODUCTION 

The diagrammatical description of the pictorial scheme 

must be mapped (represented) onto a data structure that 

allows easy manipulation and modification. This data 

structure keeps all the information necessary to define the 

pictorial signal flow diagram. These include the blocks used 

(their types, any associated text) and interconnections. 

The linked list is a versatile form of data structure. 

This contains of various "records" (set of values) all 

linked together via using linking pointers [ WIRTH 1976 ]], 

{ HOROWITZ, SAHNI 1976 ]. The main advantage of the linked 

list is that it is efficient in memory utilisation and can 

be readily expanded to accommodate requirements for larger 

storage area. The linked list is used in this project to 

represent the mapping of the signal flow diagram into 

internal data representation. Consideration of various data 

structures for graphics can be found in [ WILLIAM 1971 ] and 
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{ GRAY 1967 ]. The cons_dJeration for the choice of a 

purpose-tailored data structure and its internal component 

is well discussed by Linn [ LINN 1980 ]. One important 

consideration for the GDS is that it should be simple in 

mature and form. This allows the understanding of the 

"picture" by the operator in alphanumeric form, facilitating 

the manual entry of the graphical information in numbers (if 

this is ever required). The various records used in the GDS 

are = 

(1) graphic block (GB) record 

(2) graphic information (GI) record 

(3) graphic text (GTXT) record 

(4) input list (IL) record 

(5) macro expansion (MX) record 

(6) non-graphic data (NGD) record 

The internal structure of each record will be discussed in 

the following sections with their inter-relationship. 

4.1.2 GRAPHIC BLOCK (GB) RECORD 

The graphic block record is diagrammatically 

represented in the figure ( 4.1 ). Most of the allocations 

within the record are explained in the figure itself, but 

the following requires more attention 
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(A) 

(B) 

(Cc) 

(D) 

The block number (BLKNO) is the identification number 

given to the block (by the operator or the system). 

Other records may be identified with a particular block 

record via its block number or the block pointer (a 

pointer to the start of the GB record). 

the GIPTR (graphic information pointer) links this 

block record to the appropriate GI (graphic 

information) record where more information about the 

attributes and pictorial form of the block is kept. 

The position of the base of the block on the screen of 

the graphical terminal is given by XPOS and YPOS. 

These, in association with the pictorial information in 

the graphic information record, are used for the actual 

drawing of the symbol of the block as well as for the 

identification of the block when "picked" by the joy- 

stick (performing the pick function). 

Following the TXTPTR (text pointer) is the input set of 

two elements for the *irst input terminal (if a block 

has no input terminal then the input set is not 

allocated). The input set is repeated for each input 

terminal of the block. A input set contains any 

connection information to that associated input 

terminal. Within the input set are two entries, the 

BLKPTR (block pointer) and the O/PNO (output terminal 

number). If the input is connected to, say the output 

terminal 2 of block 25, then the BLKPTR points to the 

start of the GB record of block 25 and the O/PNO is 2. 
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(E) The representation of any output connection is handled 

by the ILPTR (input list pointer) which follows any 

input set. Each output terminal of the block is 

allocated a ILPTR entry. When an output is connected to 

some other input terminals, then the ILPTR points to 

the appropriate input list (IL) record where the 

information about the connection is kept. Section 

( 4.1.7 ) will deal more with the IL record. The IL 

record is output-oriented in the sense that only 

information of connection of output terminal to input 

terminals is kept. 

As indicated in the figure, the GB record may vary in 

the length as this depends on the number of input and output 

terminals. The minimum length ( minlength ) of a GB record 

is eight (8) entries. The first input set are at location 

eight (8) and nine (9) after the start ( or the base ) of 

the GB record. For the Nth input the input set starts at 

base + minlength + N*2 - 2 

Any ILPTR (for the output) follows the input sets, the 

position of the Nth output being given by 

base + minlength + NIP*2 +N -1 

where NIP is the total rumber of input for the block. The 

NIP can be found in the GI record. 
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4.1.3 GRAPHIC INFORMATION (GI) RECORD 

This record (figure (4.2 )) keeps most of the 

pictorial data of the block symbol and other information, 

most important of which are the number of inputs (NIP) and 

number of outputs (NOP). 

The following elements of the record are discussed in 

greater details 

(A) the graphic information link (GILINK) is used to link 

one GI record to the next. This allows a search through 

all the GI records for any particular required GI 

record (usually identified by the type number). 

(B) the type number (TYPENO) identifies the block function 

category. Each type number is unique in the whole 

system. 

(Cc) the class number (CLASSNO) allows differentiation 

between the various classes of the block type provided. 

The four classes of type are 

(1) The simple block type ( CLASSNO 0 ). This is the 

fundamental type of block and is a single block 

entity. 

(2) The macro block type ( CLASSNO 1). This is a 

collection of blocks (simple or otherwise) to be 

used as a separate single entity. It is analogous 
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(3) 

(4) 

to the “library" of general purpose subroutines in 

high-level programming languages. Modification of 

the internal structure of the macro block type is 

restricted as it may be used more than once in the 

picture. 

The subpicture type ( CLASSNO 2 ), similar to the 

macro type is also composite in nature. The 

exception is that it is only a "one-off" block (It 

is only used once in a picture). So the internal 

structure can be modified with no restriction. The 

subpicture can be viewed more as a "normal" 

subroutine (as opposed to general purpose 

subroutines) . 

The picture type ( CLASSNO 3 ). This is the top in 

the hierarchical level of the graphical entities. A 

picture normally consists of the three previously 

mentioned block types, namely simple, macro block 

and subpicture. The picture can be regarded as a 

composite type, allowing all its information to be 

stored in the GI reocrds. This eliminates the need 

for another data structure to indicate the picture 

presence. Each picture is uniquely identified by 

the type number (in this case a large number in 

excess of 1000). Whenever the graphic editor is 

called, the GI records can be search to see if the 

editing is to be carried out on an existing picture 

or to create a new picture. 
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(D) The non graphic data pointer (NGDPTR), valid only for 

simple block record, links to the NGD (non graphic 

data) record where non-graphic information is stored. 

(E) The MXPTR (macro expansion pointer) points to the macro 

expansion (MX) record, this is only valid for composite 

block records. The MX record keeps information about 

the internal structure of composite block. 

4.1.4 MACRO EXPANSION (MX) RECORD 
  

The macro expansion (MX) record is used only by the 

composite block type. Information about the internal 

structure of the block type is given in this record, 

represented in figure ( 4.3 ). The important elements of the 

MX record are as follows 

(A) MXLINK (macro block link). This is the pointer to the 

graphic block (GB) record of the first block in the 

internal structure of the composite type. 

(B) Following the length element, is an input set of two 

elements representing the first input terminal. The 

BLKPTR refers to the start of the GB record of the 

internal structure which is providing the actual input 

terminal numbered (I/PNO). The relative displacement 

from the base of the MX record for the Nth input is 

given by N*2. 

(C) Similar to the input, an output set (two elements) are 

used for each output terminal of the composite type. 
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The relative displacement from the base of the MX 

record of the output set for the Nth output is 

NiP*2 N=) 

where NIP is the number of inputs for the composite 

type, defined in the GI record. 

4.1.5 NON-GRAPHIC DATA (NGD) RECORD 

The non graphic data record (figure ( 4.4 )) contains 

all the information not related to the drawing of the symbol 

of the block. Non graphic data are those mainly used for the 

run time phase and the compiling phase. 

The significant elements of the NGD record are as 

follows 

(A) The number of internal variables (NIV) is the number of 

variables used by the run time routine of the block 

during its execution. 

(B) The general flag (GF), which is a collection of bits 

(in this case 16 bits) used to indicate attributes of 

the block type e.g. the first four bits are used to 

indicate if the block is of the retrospective or non- 

retrospective nature. Not all the bits are used at the 

present moment. 

(C) The reset output flag (ROF) has 16 bits, with each bit 

set showing if a particular output need to be reset 
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during initialization or restarting of the run time 

computation. 

(D) The logical input flag (LIF) ( 16 bits ) is used to 

show if the input to a particular input terminal must 

be of the logical variable nature. 

(E) The logical output flag (LOF) is similar to the LIF, 

except this shows if any output gives only logical 

value. 

(F) The constant value input flag (CIF) is used to indicate 

if any input is expecting only constant value, similar 

to the LIF. 

For LIF, LOF, CIF the input terminal numbers correspond to 

the bit positions in the flag word. Figure ( 4.5 ) shows the 

attributes of each of the flags in the NGD record. 

4.1.6 GRAPHIC TEXT (GTXT) RECORD 

Text can be used in a block diagram for naming, 

labelling and entering numerical values. Such text data are 

kept in the graphic text (GTXT) record (figure ( 4.6 )). The 

storage of text characters requires special explanation. The 

first text character follows the TXTYPOS. Each text 

character stored in a byte (8 bits), allowing 2 characters 

in a word (16 bits). The length of the record is specified 

in complete words. A “blank space" is added to the text if 

the number of characters is odd. The entries TLINK, LENGTH, 

TXTXPOS, TXTYPOS occupy 4 words so that the number of text 
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character in a record is given by (L-4) *2 where L is the 

length of the record. If the text length is, say 6 then the 

total number of text characters stored is (6-4)*2 (i.e. 4 

characters). The position of the text (TXTXPOS, TXTYPOS) is 

defined as the lower left corner of the first character in 

the text string. 

There are seven ( 7 ) different forms of text records 

corresponding to the different purposes that the text 

serves. Graphic text can be classified under two 

categories 

(A) The block specific text. This is the text that may be 

vary with each block. The block specific text are of 

the following categories : 

(1) the random text, mainly for commentary purposes 

(2) the block name 

(3) the engineering unit for the terminals 

(4) the constant text, for entering numerical values 

(5) the tag label, for tagging terminal for later 

identification. 

(B) The type specific text. This is fixed for a block 

type and includes : 

(1) the block type function 

(2) the block terminal name 

=§)=



Figure ( 4.7 ) and figure ( 4.8 ) show all the types of text 

records. The various forms of text record are differentiated 

by their TXTXPOS elements. The normal range of the TXTXPOS 

and TXTYPOS is limited by the size of the screen (in our 

case 1024 and 780 respectively). So identification of the 

various type of text record is possible by using excessively 

large values for TXTXPOS in combination with the TXTYPOS. 

The normal random text is identified by its TXTXPOS and 

TXTYPOS having values less than 1024 and 780 respectively. 

If the values of TXTXPOS and TXTYPOS are 3000 and O then, 

this is a block name text record. The values used for 

identification of the text record are all given in the 

figure ( 4.7 ) and figure ( 4.8 ). 

4.1.7 INPUT LIST (IL) RECORD 

The input list record (figure (4.9 )) keeps the 

information about the interconnection between the output of 

a block and the input terminals of blocks. The IL record is 

acessed by the ILPTR (input list pointer) entry in the GB 

record. If the first ( lst ) output of block, say block 

number 24 is connected to the input terminal numbered 2 of 

another block, say 31, then the ILPTR entry for the lst 

output of block 24 is updated to link with a IL record. In 

this IL record, the BLKPTR entry points to the start of the 

GB record of block 31 and the I/PNO is 2. 
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When the output terminal of a certain block is 

connected to more than one input terminal, then the ILLINK 

entry is used to link all the appropriate input list records 

together. The example in section ( 4.1.8 ) will further show 

the use of the IL record. 

4.1.8 RELATION BETWEEN THE RECORDS 

By combining together and relating the various records, 

an extremely efficient and and flexible data structure is 

obtained. The figure ( 4.10 ) shows the records required for 

a simple block with all their possible inter-relations. The 

plock record is linked to the GI record (of the correct 

TYPENO) by GIPTR. All block specific text is handled by the 

plock text pointer (TXTPTR) and all the output connections 

by the input list records. 

Figure (4.11 ) shows all the records required to 

represent a composite block with 3 constituent blocks. Here 

the MX record is used. A "picture" (the top level) is 

considered as a very special composite block type and thus 

is similar to figure ( 4.11 ). 
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4.2 THE GRAPHIC MENU 

The graphic menu is a display of all the different 

block types that is provided in the system. The menu shows 

the shape, size and the number of inputs and outputs of the 

each block. The type number is displayed next to the block 

picture as additional information. The operator uses the 

graphic menu to select the required block type to be used 

during synthesis of the pictorial program. The blocks in the 

graphic menu are drawn in their normal size to assist the 

user in laying out the picture. Whenever a selection is made 

from the graphic menu, the selected item is redrawn to 

provide the visual feedback. 

The data structure for the menu is different from that 

of the general graphics being simpler in nature. The menu 

data structure is shown in figure ( 4.12 ). It is separate 

from the graphic data structure, the only link being the 

pointer to the GI record. The menu is divided up into pages, 

where each page can have several block types (usually of a 

similar nature). For example one page can be used especially 

for the retrospective blocks. Each page in the menu is 

identified by the menu page number (MSPPNO). When using the 

menu to aid in the selection of the block types, pages of 

the menu can be "skipped" over, i.e. unwanted pages not 

displayed. 
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The menu data structure is in two forms, a menu page 

record and a page block record. The menu page record 

contains the menu page number (MSPPNO) and a pointer 

(MPBLINK) to the first page block within the page. All the 

menu pages are linked via the MPLINK element. The page block 

record contains the position of the base of the block within 

the menu in BXPOS and BYPOS. The GIPTR links to the GI 

record where all the drawing coordinates are stored. All 

page blocks within a page is linked by their MBLINK. 

Pages in the menu gives the flexibility and the ability 

to add on at some later stages, if necessary, new functional 

block types. The flexibility even allows the graphical menu 

to be modified, for example to discard unwanted block types 

or to group frequently used block types onto one page. 
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4.3 RUN TIME DATA STRUCTURE (RTD) 

4.3.1 INTRODUCTION 

The run time data structure serves a different purpose 

from that of the graphic data structure. The graphic data 

structure is designed for easy manipulation and modification 

of the graphical items on display screen and for the 

extraction of data during the actual drawing phase. The run 

time data structure is more concerned with the execution of 

the functional blocks within the picture. Here the 

efficiency with regards to the referencing of the input and 

output connections is important. The run time data structure 

contains only the essential information for the execution, 

hence the graphical information can be removed. 

Consideration as to the basic run time data structure is 

given by Linn [ LINN 1980 ]. The run time data records are 

as follows : 

(A) The RSB (run time simple block) record 

(B) The RCB (run time composite block) record 

(C) The ULN (upwards link) record 

(D) The RSTYPE (run time simple type) record 

(E) The RCTYPE (run time composite type) record 

(F) The RTXT (run time text) record 

(G) The RVT (run time value table). 
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The following sections will discuss each record in greater 

detail. 

4.3.2 RUN TIME BLOCK RECORDS 

There are two forms of block records in the run time 

data structure, one for simple block, and another for the 

more complex composite block (figure (4.13)). The following 

elements of the record are discussed 

(A) The ELINK (execution link) is used to link all the RSB 

records in the order in which the blocks will be 

processed during the execution phase. 

(B) The LBLKNO (local block number) is the block 

identification number (provided by the operator or the 

graphic system) during the synthesis of the signal flow 

block diagram phase. This is not necessarily unique, 

due to the usage of composite blocks. 

(C) The GBLKNO (global block number) is the block 

identification number provided by the system during the 

conversion from the graphic data to the run time data. 

This GBLKNO is unique for each block during run time. 

(D) The RVTPTR (run time value table pointer) is used to 

indicate the starting location of the run time data 

file of each block. The data file is stored in the RVT. 

The data file consists of entries for the input and 

output values and any internal variables necessary for 

the execution of the block. 
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(E) The IPPTR (input pointer) is used to repesent the 

connection between the blocks. One IPPTR entry is 

allocated for each input terminal of the block. This 

entry is used as a pointer to the RVT, pointing to the 

location in which the appropriate ouput value is 

stored. (This output is that which is connected to the 

input terminal.) 

(F) The MXPTR (macro expansion pointer), valid only for the 

composite block record, points to the first run time 

plock record of the internal structure of the composite 

block. 

The composite block record has no allocation for any 

IPPTR entry. The composite block during run time will be 

expanded down to simple blocks. Since all the simple blocks 

will contain the interconnection information in their IPPTR 

entries, it is not necessary to allocate IPPTR for the RCB 

(run time composite block) record. 

4.3.3 UPWARDS LINK (ULN) RECORD 

This is only used in conjunction with the RCB_ record. 

Figure ( 4.14 ) shows a ULN. The only element of interest is 

the CBNPTR (composite block record pointer) which is used to 

point back to the RCB record. The ULN record is used to 

indicate the end of the internal structure of the run time 

composite block. Figure ( 4.15 ) shows an example of a run 

time composite block with the ULN record. The ULN is 
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necessary as it provides the means of termination of the 

constituent records and the link back to the RCB itself. 

4.3.4 RUN TIME TYPE RECORDS 

The run time type records are used to store all the 

necessary run time (RT) information about the block type. As 

there are two categories of blocks, the simple and the 

composite, two different forms of type records are required. 

They are 

(1) the RT simple type (RSTYPE) record. 

(2) the RT composite type (RCTYPE) record. 

4.3.4.1 RUN TIME SIMPLE TYPE (RSTYPE) RECORD 
  

The RSTYPE record keeps all information for only the 

simple blocks, figure ( 4.16 ). The RSTYPE record is fixed 

in length, having 14 entries. Some of the entries are 

discussed below 

(A) the TLINK (type link). This is a pointer for linking 

all the RT type records together. It provides the 

routing for a search of any required type number 

( TYPENO ). 

(B) the TXTPTR (text pointer) is used to point to any 

associated RT type specific text records. 

(C) the various flags GF, ROF, LIF, LOF, CIF are identical 

to that in the NGD (non-graphic information) record and 
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have been discussed in section ( 4.1.5 ). 

(D) The CLASSNO (class number). This entry is always zero 

for the RSTYPE record. 

4.3.4.2 RUN TIME COMPOSITE TYPE (RCTYPE) RECORD 
  

The RCTYPE record differs from the RSTYPE record since 

it must contain more information about the internal 

structure of the block. Figure ( 4.17 ) shows a RCTYPE 

record. Most of the elements in the record are similar to 

those in the RSTYPE record. The following entries are 

different 

(A) CLASSNO (class number). The class number is used to 

differentiate between the various class of the block 

type, namely macro or subpicture. 

(B) MXPTR (macro expansion pointer). This is a pointer to 

the first block in the internal structure of the 

composite block type. 

(Cc) the input set of LBLKNO (local block number) and I/PNO 

(input terminal number). The definition of the input 

terminal of the composite block type in relation to the 

actual input terminal of the block in the internal 

structure is handled by this input set. An input set is 

allocated for each and every input terminal. For a 

particular input terminal set, the LBLKNO refers to the 

local block number of the block within the composite 

type ; and the I/PNO is the numbered input terminal of 
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that block. 

(D) the output set of two entries, LBLKNO and O/PNO (output 

terminal number). This defines the output terminal of 

the composite type in terms of the constituent block 

( see discussion of input set in (C) ). 

4.3.5 RUN TIME TEXT (RTXT) RECORD 

The format of the run time text differs from that of 

the graphic text record. The run time text keeps only the 

necessary data such as the block name, type name, 

engineering units and the terminal names. The random text in 

the graphic system is now not required. The general form is 

shown in the figure ( 4.18 ). 

The main element is the TEXT, which contains all the 

text characters. Each text character is allocated a byte (8 

bits), and the most significant bit (MSB) is used as a 

termination flag. When the character is the last of the text 

string, then its MSB is set. 

The run time text can be classified as follows 

(A) type-specific text. This record stores the text 

specifically related to the block type i.e. the block 

type function text and the terminal name text. The 

type-specific text is fixed for all blocks of the same 

type and is given during the definition of the block 

type. 
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(B) block-specific text. This record stores text relating 

to each specific block in the block-diagram. For 

example this may contain the block name and any 

engineering units to be associated with the terminal 

data values. 

Figure ( 4.18 ) shows the two run time text records. 

4.3.6 RUN TIME VALUE TABLE (RVT) 

The RVT is a floating point array where values of 

variables and parameters of the run time simple blocks are 

stored. These are grouped together to give a "module" of 

data file for each block. Further discussion on the 

allocation of the storage location can be found in section 

(9.1 ) (allocation of storage for run time block). 
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GRAPHIC BLOCK (GB) RECORD 

+ (GLINK) (LENGTH) (LLINK) (BLKNO) (GIPTR) 

  

LEGEND 

(GLINK ) global link to the next graphic block (GB) record 

linking all the block records. 
(LENGTH) length of the record. 
(LLINK ) local link to graphic block record which is in the 

same "picture level" ( hierarchical level ). 
(BLKNO ) block identification number. 
(GIPTR ) graphic information (GI) record pointer. 

(XPOS ) ] position of the base of block 
(ypos ) ] x & y coordinates. 

(TXTPTR) pointer to associated block-specific text ( GTXT ) 

record. 

(BLKPTR) pointer to block (GB) record. 
(0/PNO ) output terminal number. 

(ILPTR1) pointer to the input list (IL) record ( output 1 ). 
(ILPTR2) pointer to the input list (IL) record ( output 2 ). 

When the output is connected, then the ILPTR is 
pointed to the appropriate IL record. 

$----------------------- + 
+  (BLKPTR) (0/PNO) + INPUT SET 
4$----------------------- + 

This is the output terminal of graphic block to 
which the input terminal of the present block is 
connected to. 

FIGURE 4.1 THE GRAPHIC BLOCK RECORD 
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GRAPHIC INFORMATION (GI) RECORD 

  

(MXPTR) (TXTPTR) (NGDPTR) (BLKNOXPOS) (BLKNOYPOS) 

(I/P COORDS) (O0/P COORDS) (PIC COORDS) + 
       

-pictorial drawing coordinates...) 

LEGEND 

(GILINK ) link to the next graphic information (GI) 
record linking all the GI records. 

(LENGTH ) length of the record. 
(TYPENO ) type number, identification of block function. 

(CLASSNO) class number, various classes : 
0 - simple type 
i = macro ‘type 
2 - subpicture 
3 - picture 

(NIP ) number of inputs. 
(NOP ) number of outputs. 

(MXPTR ) pointer to the macro expansion (MX) record, 
valid for composite type only. 

(TXTPTR ) pointer to associated type specific text 
(GTXT) record. 

(NGDPTR ) pointer to the non-graphical data (NGD) 
record. 

(BLKNOXPOS ) ] starting position of the block 
(BLKNOYPOS ) ] number, relative to the base of block. 

(I/P COORDS) ] coordinates of the input & the output, 
(0/P COORDS) ] relative to the base of the block. 

(PIC COORDS) coordinates for the drawing of the symbol of 
the block. 

FIGURE 4.2 GRAPHIC INFORMATION RECORD 
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-+ 

(BLKPTR) (0/PNO) + 
  

LEGEND 

(MXLINK ) pointer to the first GB record of the "internal 
structure" of the composite block 

(LENGTH ) length of the record 
(BLKPTR ) pointer to the block record (GB) 
(I1/PNO ) input terminal number 
(o/PNO ) output terminal number 

FIGURE 4.3 MACRO EXPANSION (MX) RECORD 
  

NON GRAPHICAL DATA (NGD) RECORD 

$---------- - - - - = 5 re + 
+ (NGDLINK) (LENGTH) (NIV) (GF) (ROF) (LIF) (LIF) (CIF) + 
$o----------- $$ $n + 

NGD record is fixed in length ( 8 entries ) 

LEGEND 

(NGDLINK) pointer to the next NGD record 
(LENGTH ) length of record 
(NIV ) number of internal variables 
(GF ) general flag to indicate attributes of block type 
(ROF ) reset output flag 
(LIF ) logical input flag (16 bits) with each bit set to 

represent that the corresponding input terminal is 
logical in nature. 

(LOF ) logical output flag (16 bits) 
(CIF ) constant input flag (16 bits), each bit showing if 

the corresponding input terminal is expecting 
constant values. 

For the LIF; LOF;’ (COF “the terminal number 
corresponds to the bit position in the computer 

word 

FIGURE 4.4 NON GRAPHIC DATA (NGD) RECORD 
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ATTRIBUTES OF THE FLAGS IN THE NGD RECORD 

GENERAL FLAG ( GF ) 
16015 4 rae 12 2a910" 9h ise 7 6 Sy 4° 342 

  

      

    
Eaigce\e Z : 
$--4--+--+--4+--4-- 
lst four bits used to indicate nature of block 

- retrospective 
- non-retrospective 
- input interface 
- output interface 

LOGICAL INPUT FLAG ( LIF ) 

16S 14; 13.125 1059 
$--+--+--+--4+--4+--4--4+--4- 

    

   
  

lst and 4th input are logical in nature, i.e. they are 
expecting only binary (logical) values. 

LOGICAL OUTPUT FLAG ( LOF ) 

U6eLrSeie VS 2 eis) Bee, SCs 6a Se 
a-t--+--+--+--+--4--4+- 

   

lst and 4th output are logical in nature, 
are only binary (logical) values. 

  

CONSTANT INPUT FLAG ( CIF ) 

TESESI U4 UG 812. 2t TO Oe Bae Tae ee See 
$--t--+--+- 

    

  

3rd and 4th input are expecting only constant values 

FIGURE 4.5 ATTRIBUTES OF THE FLAGS IN NGD 
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GRAPHIC TEXT (GTXT) RECORD - GENERAL FORM 

  

$---------- = $= - $$ 5 nnn + 
+ (TLINK) (LENGTH) (TXTXPOS) (TXTYPOS) (( TEXT )) + 
+---- -+ 

LEGEND 

(TLINK ) pointer to next text (GTXT) record 
(LENGTH ) length of the record 
(TXTXPOS) ] starting position of the text relative to 
(TXTYPOS) ] the base of the block. 
((TEXT )) location where the TEXT is stored. 

FIGURE 4.6 GRAPHIC TEXT RECORD 

TYPE SPECIFIC TEXT RECORDS 

BLOCK TYPE NAME TEXT RECORD 
4+----------------------------------------------- + 
+ (TLINK) (LENGTH) (TXTXPOS) (TXTYPOS) ((TEXT)) + 
+----------------------------------------------- + 

(=2000) (=0) 

$a --- 3-2-3 $55 5 ee + 
+ (TLINK) (LENGTH) (TXTXPOS) (TXTTERMNO) ((TEXT)) + 
4+------------------------ = -- = - = - $5 === + 

(=2000) 

NOTE : the values of TXTXPOS and TXTYPOS given in bracket 
are the dummy values of the entries used to identify 
the various different text records. So if the 
TXTXPOS=2000 and TXTYPOS=0, this is a block type 
name record. 

LEGEND 

(TLINK ) link to the next graphic text (GTXT) record. 
(LENGTH ) length of the record. 
(TXTXPOS  ) x-coordinate of starting position of text. 

Also used to differentiate between various 
form of GTXT record. The normal range of 
txtxpos is 0-1024. 

(TXTYPOS ) y-coordinate of starting position of text. 
(TXTTERMNO ) terminal number to which the terminal text is 

associated. 

FIGURE 4.7 GRAPHIC TYPE SPECIFIC TEXT RECORDS 
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BLOCK SPECIFIC TEXT RECORDS 

RANDOM TEXT RECORD 
$---------------------- ----- = - - = - 5 5 = 5 == + 

+ (TLINK) (LENGTH) (TXTXPOS) (TXTYPOS) ((TEXT)) + 
$e nn rrr + 

    

T (GEIR) (LENGTH) (TKIXPOS) (TXTYPOS) ((TEXT)) + 
TEE PR soGoy an) ae 
ENG UNIT TEXT RECORD 

+ (LINK) (LENGTH) (TKEXEOS) (TXTO/PNO) ((TEXT)) + 
i ee fesdno Re Pe 

CONSTANT TEXT RECORD 

Thank) (ueN@?H) [@REXPOS) (TXTI/eNO) ((TEXT)) + 

RS Ws ie, Cgou ar a hema Al ‘ 
TAG TEXT RECORD 
fon nnn + 

+ (TLINK) (LENGTH) (TXTXPOS) (TXTTERMNO) ((TEXT)) + 

chilly, NRE alia net Mets i 

NOTE : values of the TXTXPOS,TXTYPOS given in bracket are 

dummy values of the entries used for 
identification of various text record type. 
TXTXPOS=3000 and TXTYPOS=0, this is a block 
text record. 

LEGEND 

(TLINK ) link to the next text (GTXT) record 
(LENGTH ) length of the record 
(TXTXPOS ) x-coordinate of starting position of text, also 

used to differentiate between various form of 
GTXT record. For random text, the txtxpos 
always less than 1024. 

(TXTYPOS ) y-coordinate of starting position of text 
(TXTO/PNO ) output terminal number to which the engineering 

unit text is associated. 
(TXTI/PNO ) input terminal number to which constant 

text is associated. 

(TXTTERMNO) terminal number to which terminal text 
associated. 

FIGURE 4.8 GRAPHIC BLOCK-SPECIFIC TEXT RECORDS 
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INPUT LIST (IL) RECORD 

IL record is fixed in length ( 4 entries ) 

LEGEND 

(ILLINK) 

(LENGTH) 
(BLKPTR) 
(1/PNO ) 

pointer to the next input list (IL) record used 
when the output of a block is connected to more 

than one input terminal 
length of record 

pointer to the block record 
input terminal number 

This set refers to the input terminal (given by 
I/PNO) of the block number (found in BLKPTR). 

FIGURE 4.9 INPUT LIST RECORD 
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GB (GRAPHIC BLOCK) RECORD 
--+ 

(ILPTR) + 
    

         
   

  

         
+ (GLINK) (LLINK) (BLKNO) (GIPTR) (TXTPTR) 

TO OTHER 
GB RECORD 

IL (INPUT LIST) RECORD    
GTXT (GRAPHIC TEXT) RECORD 

4+---L---------------------------- + 
+ (TLINK) (XPOS) (¥POS) ((TEXT)) + 

  

Sine See. 

TO OTHER RELATED GTXT RECORD 

GI (GRAPHIC INFORMATION) RECORD 
      

+ (GILINK) (TYPENO) (CLASSNO)...(NGDPTR) ( COORDS ) +   

  

  

TO OTHER 
GI RECORD 

NGD (NON GRAPHIC DATA) RECORD 
4+-----L------------------- --+ 
+ (NGDLINK) (NIV) (GF) (ROF) (LIF) (LOF) (CIF) + 
te 

  

TO OTHER NGD RECORD 

FIGURE 4.10 RELATION BETWEEN RECORDS FOR SIMPLE BLOCK 
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GB RECORD ( composite block ) 

  

      

  

--+ 

+ (GLINK) (LLINK) (BLKNO) (GIPTR) (ILPTR) + 

$o------ ---- -- - - = = = = 5 5 $$ f= + 

GI RECORD 

TO OTHER 
GI RECORD 

MX RECORD 

4---I_------------------------- === == 55555 - == + 

  

+ (MXLINK) (BLKPTR) (I/PNO)...(BLKPTR) (O/PNO) + 

    

GB RECORD 

   4+---1------------------------------ + 

+(GLINK) (LLINK) (BLKNO) (GIPTR) + 

GB RECORD 
--+ 

(GIPTR) + 
Br A ak, + 

   
LEGEND 
GI GRAPHIC INFORMATION 

MX = MACRO EXPANSION 
GB = GRAPHIC BLOCK 

   

FIGURE 4.11 RELATION BETWEEN RECORDS FOR COMPOSITE BLOCK 
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MENU PAGE RECORD 

      

Fe eA a ee ee 

+ (MPLINK) 
pe 

PAGE BLOCK RECORD 

4+----1------------------------------ + 
+ (MBLINK) (BXPOS) (BYPOS) (GIPTR) + 
4+----}------------------------------ + 

4+----41------------------------------ + 
+ (MBLINK) (BXPOS) (BYPOS) (GIPTR) + 
poe 

LEGEND 

(MPLINK ) menu page link, pointer to the next page in 
menu. 

(MPBLINK) menu page block link, pointer to the first 
block in this page. 

(MSSPNO ) menu page number, identification purpose 
(MBLINK ) menu block link, pointer to next block in the 

same page. 
(BXPOS ) ] position of the block within this page. 
(BYPOS ) J 
(GIPTR ) pointer to the GI (graphic information) record. 

FIGURE 4.12 GRAPHIC MENU DATA STRUCTURE 
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RUN TIME DATA STRUCTURE 

RSB (runtime simple block) 

+ (LINK) (LENGTH) (LLINK) (ELINK) (LBLKNO) (GLBKNO) 

  

(TYPEPTR) (TXTPTR) (RVTPTR) (MXPTR) (IPPTR1) + 

+ (LINK) (LENGTH) (LLINK) (ELINK) (LBLKNO) (GBLKNO) 

  

(TYPEPTR) (TXTPTR) (RVTPTR) (MXPTR) + 

LEGEND 

(LINK ) general link for all run time block records. 

(LENGTH ) length of each block record. 

(LLINK ) local link, use for linking local blocks in 
composite block internal structure. 

(ELINK ) execution link, linking blocks in the proper 
processing order (valid for simple block only). 

(LBLKNO ) local block number, identification purposes. 
(GBLKNO ) global block number, identification purposes. 

(TYPEPTR) pointer to run time type record. 
(TXTPTR ) pointer to any run time block-secific text (RTXT) 

record of the block. 

(RVIPTR ) pointer to the run time value table ( RVT ) which 
contain the data file for this block. 

(MXPTR ) applies to composite block, pointer to first block 
of the internal structure. For simple block 
record, this is a null entry. 

(IPPTR1I ) first input pointer to the run time value table 

(RVT) location of the output to which it is 

connected to. If input is not connected then IPPTR 

is null. 

FIGURE 4.13 RUN TIME BLOCK RECORDS 
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UPWARDS LINK ( ULN ) RECORD - for composite block only 

$---------------- = = 5-5 nnn + 

+ (LINK) (LENGTH) (LLINK) (CBNPTR) (GBLKNO) a 

$----------------- = -- == = 5-55 + 

LEGEND 

(LINK) pointer to link to next run time block record. 

(LENGTH) length of the record (fixed of 5 entries). 

(ILLINK) null entry. 
(CBNPTR) pointer back to the composite block (RCB) record, 

used to terminate the internal structure of a 

composite block. 

(GBLKNO) null entry. 

The (LENGTH) and the (GBLKNO) may be used to identify the 

ULN record from the other run time data records. 

FIGURE 4.14 UPWARDS LINK RECORD (ULN) 
  

RCB RECORD 

      

= 
+(LINK) (LLINK) (LBLKNO) (GLBKNO) .. (MXPTR) (IPPTR) + 

4$----------4-- = - - = - 5 5 5 nnn + 

RSB RECORD 
4---1---------------- - = - = - = 5 5 5 nnn + 

+(LINK) (LLINK) (LBLKNO) (GLBKNO) .. (MXPTR) (IPPTR) + 

fo -- fo nnn + 

RSB RECORD 
4+---1------------------- == === = = 5 55 ern + 

+(LINK) (LLINK) (LBLKNO) (GLBKNO) .. (MXPTR) (IPPTR) + 
pn fn nnn + 

ULN RECORD 
4---1------------------------ + 
+ (LINK) (LLINK) (CBNPTR) + 

  

  

  

LEGEND 
RCB -— RUN TIME COMPOSITE BLOCK 
RSB - RUN TIME SIMPLE BLOCK 

ULN - UPWARDS LINK 

FIGURE 4.15 EXAMPLE OF RUN TIME COMPOSITE BLOCK OF 
3 SIMPLE BLOCKS 
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RUN TIME TYPE RECORDS 

RUN TIME SIMPLE TYPE (RSTYPE) 

  

Cs Rieke) LL AGS eet ree. 

LEGEND 

(TLINK ) link to the next run time type record 
(LENGTH ) length of this record, fixed at 14 entries. 

(CLASSNO) class number of type, used for differentiate 
various classes of type, namely 

  

O -- simple type 
1 -- macro block type 
2 -- subpicture type 
3 -- picture type 

(TYPENO ) type number identification 
(SWIX ) switch index, for execution uses only for 

type 

(TXTPTR ) txtptr, pointer to any associated type-specific 
text (RTXT) record 

(NIP ) number of input 
(NOP ) number of output 
(NIV ) number of internal variables 

(GF ) general flag (set of bits) for indication 

attributes of the type e.g. retrospective & non- 

retrospective 

(ROF ) reset output flag 
(LIF ) logical input flag - bit is set to indicate 

corresponding input of a block type 
logical (binary) in nature 

(LOF ) logical output flag, as above applying 
output 

(CIF ) constant input flag - bit indication that 
input expects a constant value. 

FIGURE 4.16 RUN TIME SIMPLE TYPE RECORD 
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RUN TIME COMPOSITE TYPE (RCTYPE) 

  

(TXT) (NIP) (NOP) 

  

(LBLKNO) (1/PNO) .+  (LBLKNO) (0/PNO) + 

  

LEGEND 

(TLINK ) link to the next run time type record. 
(LENGTH ) length of this record. 
(CLASSNO) class number of type, used for differentiate 

various classes of type, namely 
0 -- simple type 
1 -- macro block type 
2 -- subpicture type 
3 -- picture type 

(TYPENO ) type number identification. 
(TXT ) txtptr, pointer to any associated text (RTXT) 

record. 

(NIP ) number of input. 
(NOP ) number of output. 
(MXPTR ) pointer to the first block record in the internal 

structure of the composite type. 

(LBLKNO ) local block identification, in the internal 
structure. 

(I/PNO ) input terminal number. 
(0/PNO ) output terminal number. 

input set to define the input 
terminal of the composite type. 

  

4------------------ + 
+ (LBLKNO) (0/PNO) + output set to define the output 
too 77-23 --- 5 + terminal of the composite type. 

Which input or output terminal of the composite to 
which the above sets refer to depends on their 

relative location in the type record. 

FIGURE 4.17 RUN TIME COMPOSITE TYPE RECORD 
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RUN TIME TEXT (RTXT) RECORD - GENERAL FORM 

$---------------- = + 

+ (TLINK) (LENGTH) ((TEXT) ) - 
foo rr + 

LEGEND 

(TLINK ) pointer to the next associated RTXT record. 

(LENGTH) length of the record in complete words. 

( (TEXT) ) text characters. Each character is stored in a 
byte. 

TYPE-SPECIFIC TEXT 
4$---------------- == = - = = 5-5 5 5 5 5 nnn + 

+ ‘ oF 

+ (TLINK) (LENGTH) BLOCK FUNCTION TERMINAL] NAME + 
$-------------------------------------------------- + 

4$-------------------------------------------------- + 
+ c 3 + 

+ (TLINK) (LENGTH) BLOCK NAME ENG UNIT f 

$-------- $= == $$ 5 5 enn nnn + 

NOTE : The dot above the character indicates that the most 

significiant bit ( MSB ) of the byte is set. 

FIGURE 4.18 RUN TIME TEXT RECORD 
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CHAPTER 5 

USER INTERFACE AND GRAPHIC EDITOR 

This chapter deals with the design and considerations 

of the man-machine interface and gives a general description 

of the graphic editor and its facilities. 

5.1 USER INTERFACE DESIGN 

5.1.1 INTRODUCTION 

The user interface design of a graphics system is of 

utmost important and a main contributer to the success of 

the system. A poorly designed interface is difficult to 

learn and to use. Considerations for designing of the user 

interface of a graphics system [ NEWMAN 1979 ], [ GooD 

1981 ] includes 

(1) the command language 

(2) the feedback 

(3) the information display 

Each consideration will be further dealt with below having 

regards to the user interface used in this project. (The 

display terminal used is a direct view storage tube display 

with a joystick control device and a keyboard.) 
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5.1.2 COMMAND LANGUAGES 

The command language should be designed to be as simple 

as possible and logically consistent so that it is easy for 

the user to learn. The followings are some methods of 

communication on which the command language may be based, 

(A) KEYBOARD DIALOGUE 

This is the simplest style of command language. The 

graphics system "prompts" the user to supply all the 

necessary information by printing question messages. 

The choice of answer may also be restricted to a set of 

responses offered to the user together with the 

question. 

(B) KEYBOARD COMMAND LANGUAGE 

An example for the graphics system is the command to 

delete a block, say block number 25, from the display 

as follows 

DELETE BLOCK 25 

This form of command language requires much less code 

than the keyboard dialogue. The processor must only 

recognize a limited vocabulary of commands. The user is 

however confronted with the task of memorising or 

keeping a record of the command set. 

=79—



(C) FUNCTION KEYS 

The commands are given with the aid of a set of 

function keys. Each function key can be assigned a 

specific function, such as DELETE or CREATE. It is 

possible to assign certain alphanumeric keys to act as 

function keys. An example is the character key D to act 

as the DELETE function key. 

(D) MENU-DRIVEN LANGUAGE 

This is a very general and flexible style of command 

language for the following reasons 

(1) The menu displays plainly on the screen the full 

range of the available options. A well designed 

menu can even be made to display different list of 

options during different stages of using the 

graphics system. 

(2) The menu can be easily changed e.g. to include new 

commands. When the command menu is displayed on the 

screen, the required command can be selected from 

the menu by use of the joystick. 

In implementation the function keys approach was 

adopted. The menu-driven language would be preferred but 

with the storage tube display terminal, the writing speed is 

limited. A trained user can operate much more quickly using 

single key strokes rather than having to wait for a menu to 

be displayed. However menu-driven facilities are also 
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included, particularly to describe the available block types 

(GRAPHIC MENU). The graphic menu lists much information 

about the block type, including the shape and the size of 

the block symbol and the number of inputs and outputs. 

5.1.3 FEEDBACK CONSIDERATIONS 

Feedback is an important ergonomical factor to be taken 

into account during user interface design. In the graphics 

system, visual feedback serves to assure the user that the 

system is responding to his command. One essential form of 

feedback is the "selection feedback" whenever some form of 

menu is used. When a choice is made by the user, selection 

feedback (e.g. highlighting or inversion) indicates that the 

system is responding to the selected item. Whenever the user 

selects a block, that block is redrawn to provide the visual 

feedback. (Highlighting and inversion are not permitted in 

storage tube display.) 

Another form of feedback is the “command feedback". 

This serves to indicate to the user that the system is 

responding to his non-visual commands (commands not 

affecting the display directly). One example is the saving 

of the system present status and data. The command feedback 

also prevents the user from giving a command when the system 

is not ready to receive it (the system may be busy doing 

some other functions). In this project, the command feedback 

is provided by the changing the shape of the cursor on the 

screen. Whenever the system is ready to accept commands, the 
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cursor is a blinking pointer (looking like an arrowhead). 

When the system is not ready for commands, a blinking alpha 

cursor (a shaded rectangle) appears. 

5.1.4 INFORMATION DISPLAY 

This section concerns the effectiveness in displaying 

information. The important question is "how should the 

information be presented on display in the most effective 

manner to promote the interaction between user and the 

graphics system ?". Problems in information display 

generally relate to overall layout or the representation of 

the object. 

(A) OVERALL LAYOUT 

Here utilization of the screen area is considered with 

regards to the picture display and the menu. The screen 

could be divided up into “windows", allowing the menu 

and the picture to appear simultaneously. Since the 

screen area is not very large, it is decided to use the 

whole screen for the picture display area. The graphic 

menu will be drawn separately upon user request. 

(B) OBJECT DISPLAY 

The graphical representation of the object item is 

chosen on the basis that (1) it must reinforce the user 

conceptual view of the item and (2) the symbol 

preferably is ome that the user is accustomed to. in 

this implementation, the symbology used is "borrowed" 
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from the commonly used and popular control block 

diagram representation. 
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5.2 THE GRAPHIC EDITOR 

5.2.1 INTRODUCTION 

The graphic editor enables interactive communication 

between the graphics system and the user for the synthesis 

of the GPL (graphical programming language) programs. The 

editor is used to create a new picture or to modify an 

existing picture. A picture is defined as a collection of 

related graphical entities which are displayed together. The 

facilities provided by the graphic editor are dependent on 

the graphics hardware used. The following section will give 

a brief description of the graphics hardware used. 

5.2.2 GRAPHICS HARDWARE DESCRIPTION 
  

The display terminal used is the TEKTRONIX 4051 

terminal, of the 4050-series storage CRI ( cathode ray 

tube ) display type [ TEKTRONIX 1976A ]. This is a popular 

and commonly used storage terminal which has been emulated 

by refresh type terminals. It has a drawing area of 19 cm by 

15 cm and has the addressing capability of 1024 x 780. A 

4051 data communication interface [ TEKTRONIX 1976B J] (a 

RS-232 compatible interface ) is used to connect the display 

terminal to a minicomputer as the host computer. The 

minicomuter used is the TEXAS INSTRUMENTS 990/10 model 

{ TEXAS INSTRUMENTS 1978 ]. The interface acts as a doorway, 

allowing streams of characters to flow to and from the 

graphics drawing hardware in the 4051 terminal. This 
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interface allows the 4051 terminal to emulate a TEKTRONIX 

4012 computer display terminal. Figure (oS. lee) shows 

diagrammatically the hardware equipment used in the project. 

+-------------- + +----------------- + 

+ - . + 

+ TEXAS + + + 
+ INSTRUMENTS +---------------- >+ [" DISPLAY J) + 
+ 990/10 + output + £ SCREEN ] + 
+ + + + 
+ + + + 
+ + + + 

* ee + SE JOYSTICK. | sat 
+ GPL & = input + [ KEYBOARD ] oF 
+ DATA BASE + + + 
+ + + TEKTRONIX 4051 + 
+-------------- + 4+----------------- + 

FIGURE 5.1 EQUIPMENT USED IN PROJECT 
  

By putting the data communication port into the 

terminal mode, the 4051 terminal becomes interactive and 

three other submodes are allowed [ TEKTRONIX 1976B ]. The 

ALPHA SUBMODE in which the incoming characters are displayed 

as lines of text. In this mode, the terminal works like an 

alphanumeric terminal except that the characters can be 

positioned anywhere on the screen. The GRAPHIC SUBMODE in 

which the incoming characters are decoded as screen 

locations, which are used for vectors (lines) drawing, 

allowing picture to be drawn. The GIN SUBMODE in which the 

location of the graphic cursor can be sent out through the 

data communication port, with the character typed on the 

keyboard. The graphic cursor is controlled by a joystick 

device ( TEKTRONIX 4952 ) [ TEKTRONIX 1976B ], which is used 

to move the cursor to any desired position on the screen. 
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Although storage displays do not permit dynamic 

movement of image (e.g. ("dragging"), they do generally 

provide better resolution and are less expensive than the 

refresh types [ PRESIS 1978 ]. Because of the storage 

display of the 4051 terminal, deleted blocks and connections 

do not disappear from the screen until the picture is 

redrawn. Redrawing of a picture may take a long time 

(depending on the complexity) due to the slow speed of 

drawing, so a picture is only redrawn if requested by the 

user. Futhermore, if necessary, the editor can be made to 

redraw the picture after each alteration by setting a 

software switch. The graphic editor can be easily adapted to 

handle a refresh type terminal with a light pen, by making 

the refresh type terminal emulate a storage tube display 

terminal. The basic editing actions will remain unchanged. 

5.2.3 PICK FUNCTION 

The pick function, using the joystick and the GIN 

submode, allows the operator to "pick" graphical entity on 

the srceen. The picking function is performed by comparing 

the cursor position to the position of the graphical 

entities. Identification algorithms for the pick function 

are discussed in the paper by Weller and co-workers [ WELLER 

1980 ]. General picking selection techniques are discussed 

by ([ NEWMAN 1979 ]. The pick window is defined as the area 

around the cursor within which the graphical item is chosen. 

The pick window is of a fixed size in this case. Any 

ambiguity of which graphical entities picked (when there are 
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more than one in the window) is resolved by picking the one 

nearest to the cursor location. The selected item is redrawn 

to provide the visual feedback to the operator. 

5.2.4 EDITING OF PICTURE 

This section on the graphic editor concentrates mainly 

on the creation of a new picture or modification of an 

existing picture, using elements from a menu of basic block 

types. A simplified model of the graphic editor is shown in 

figure (5.2 ).- 

+------------- + +------------------- + 
+ - + GRAPHIC TYPE DATA + 

user + GRAPHIC Are Dos ee if 

command------ >+ + + TEXT data + 

a EDITOR + BLOCK data 7 
+ + enn === 2 
$------9------ + 

+------------------- + 
+ EDITING ROUTINES + 
taooeate + 

t= + + =devere a 
+ GPs + + —join + 
+ Program + + -redraw a 

+ ty ee aa aT + 

  

---+ 

FIGURE 5.2 SIMPLIFIED MODEL OF GRAPHIC EDITOR 

Editing is initiated by giving the appropriate keyboard 

command and by giving the picture type number (unique for 

each picture). An example of the editing keyboard command 

set is given in the table ( 5.1 ). 
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GRAPHICAL EDITOR COMMANDS 

  

P = picture naming J = join terminal 
R = redraw of picture W = draw guidelines 

? = dump GDS Cc = create block 

: = save GDS D = delete connection 

X = open trace file B = delete block 
Z = close trace file * create junction 

G = get trace flags Q = quit edit 
O = open or "unfold" cuaposite block 

SELECT 

S = select 
next menu page ) used for controlling of 

  

previous menu page ) display of menu page 

TEXT EDITING 

= select block for text edit 
= block name text edit 
= block number edit 

random text edit 
constant input edit 
engineering unit edit 
finish text edit Y

w
A
Q
O
W
A
w
W
H
 

no
u 

TABLE 5.1 GRAPHIC EDITOR COMMAND CHARACTERS 

If the picture type number cannot be found in the GI 

(graphic information) records, then a new (empty) picture is 

created. Otherwise the existing picture will be drawn on the 

display screen. Addition of a block within a picture 

involves the selection of the required block type. This 

selection can be carried out in three ways : 

(1) by selecting a block of the required type (already 

present in the picture). 

(2) by selecting through the graphic menu (a display of 

all the available block types). 
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(3) by specifying the required type number. (This 

avoids the delay due to drawing of the graphic 

menu.) 

The cursor can then be located in the required position and 

the block created by a keyboard character command. 

The editor can be used to connect terminals of blocks. 

Terminals are “picked" by the cursor (controlled by the 

joystick) and validity checks applied before the connection 

of the two terminals is completed. The validity checks 

concentrate mainly on the correctness of the intended 

connection in the signal flow sense, i.e. an output to an 

input, or vice versa. Incorrect connections include attempts 

to connect two outputs (or inputs) together and the input 

terminal being already connected to another output. Any 

attempted incorrect connection will be reported back to the 

operator via a message on the display screen and the 

attempted editing action ignored. The difficulty involved in 

usage of the junction block is discussed in section 

ibm S i 

Deletion of a connection between blocks is relatively 

easy to implement. The simplest case is deletion at the 

input terminal, since there can be only one connection to an 

input terminal. Deletion at an output terminal requires more 

care, since it may be connected to several inputs. Deletion 

of a block requires even more attention (see section on 

recursive deleting in [ SUTHERLAND 1963 ]). When a block is 
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deleted, then all connections to and from it must be deleted 

as well. The editor removes the appropriate block record and 

updates all the connection information. 

The editing of the picture (with subpictures and macro 

plocks) is enhanced by the possibility to "expose" or 

"unfold" the internal composition of the composite blocks 

(i.e. to show the internal structure). The GB (graphic 

block) records and the GI (graphic information) records are 

scanned for the next lower level of the picture to find the 

required composite block. Validity check will prevent a 

macro block from being modified by any attempted editing. 

The creation of a composite block is very similar to 

the creation of a picture, except for the need to modify the 

class number entry in the GI (graphic information) record to 

the appropriate class number. (The class numbers are 1 for 

macro block, 2 for subpicture and 3 for picture.) 

5.2.5 CONNECTION TO AND FROM JUNCTIONS 
  

A junction block is normally used for aesthetic 

purposes since it just passes the signal along. A junction 

block in diagrammatical representation is just a big "dot" 

and its input and output terminals are coincident. Whenever 

a junction is "picked" for connection, the terminal which is 

chosen cannot be immediately identified as either the input 

or the output. This has to be worked out from other 

connection already made to the junction. A more complex 
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situation arises in the case of a multi-segment connection 

line (formed by connecting several junctions only). Here the 

whole length of the multi-segment connection must be scanned 

to determine the flow of the signal. 

5.2.6 TEXT EDITING 

Text associated with the block type (type specific 

text) may not be modified while creating a picture. Type 

specific text are text of the block function name and 

terminal names and can only be modified by recreating the 

block type. 

Block specific text (text associated with a particular 

block) can by edited using the editor. Text editing is 

initiated for example by first selecting the block in which 

the text is to be edited. The complete capabilities of the 

text editing include 

(1) addition or removal of commentary random text. 

(2) the changing of the block number subject to the 

restriction that the new block number is unique within 

the picture. 

(3) addition or removal of the engineering unit text to be 

associated with the terminal data value. 

(4) the association of constant numerical value to 

terminals. 
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(5) the changing of the block name. 

(6) the tagging of any terminal with a label so as to 

enable easy indentification during the execution phase. 

These changes are incorporated in the graphic text data 

structure (see section (4.1.6) for a description on the 

graphic text data structure). 
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CHAPTER 6 

THE GRAPHIC COMPILER 

6.1 INTRODUCTION 

After the graphical programming language (GPL) program 

is configured, it is passed over to the graphic compiler. 

The main output from the graphic compiler is the program 

structure table (PST), a numerical data representation of 

the picture. The PST comprises various inter-related run 

time data structure records (section 4.3). The functions of 

the graphic compiler can be outlined as the followings : 

(1) data transformation of type specific data from 

graphic to run time requirements. 

(2) expansion of the macro blocks and subpictures. 

(3) error checking of the picture, which is divided 

generally as : 

(a) missing essential connections. 

(b) illegal data type connections. 

(c) “algebraic loops" of non-retrospective blocks. 

(4) sequencing the blocks for execution. 

(5) allocation of data tables for the blocks. 

(6) initialization of the data tables. 

(7) listings and messages. 
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A simplified model of the graphic compiler is shown in 

figure ( 6.1 ). 

  

Sone Soe eae ae 

+ a macro expansion + 

+ NGD data ——-——— error checking + 
+ + sequencing + 

storage - 
allocation + 

initialization + 
ees ee + 

  

+------- t+ tena -SL------- + 
+ PROGRAM us ie + 

+ STRUCTURE + ne LISTINGS + 

. STABLE, Sr se a + 

$-------------- + $-------------- + 

FIGURE 6.1 SIMPLIFIED MODEL OF GRAPHIC COMPILER 

6.2 TRANSFORMATION OF GRAPHIC TYPE TO RUN TIME TYPE 

After the graphical synthesis of the picture scheme, 

the transformation of the graphics data (in terms of the 

blocks diagram) to the run time data (for more efficient 

execution and storage space) is to be carried out. Of the 

run time data, there are two groups, one of the type records 

and the other the block records. 
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This section will deal mainly with the type specific 

record information transformation. The type specific 

information are those relating to the particular type of the 

functional block provided and not with the graphical outline 

of the block. All the run time type records are formed using 

the information previously provided in the graphic data. The 

run time type record provides a compact form of all the 

essential information. (The actual elements of the text 

record can be found in section ( 4.3.4 ) (run time type 

record) ). 

There are two ways of dealing with the type-specific 

transformation, namely by transforming when the graphic 

compiler is called, implying that the transformation will be 

carried out with each compilation ; or by providing already 

transformed run time type record, leaving only newly 

provided functional block type to be transformed. The 

difference is only in the execution time required for the 

compilation. 

6.3 EXPANSION OF MACRO BLOCK AND SUBPICTURE 
  

The use of macro block or subpicture in a picture leads 

to compactness of the graphical representation and allows 

blocks that are related logically or computationally to be 

grouped as one entity. In most cases, the operator is only 

interested in the relationship between the inputs and 

outputs, and not the "internal structure computation", of 

the composite blocks. 
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During run time, the macro block and subpicture must be 

expanded, that is their internal structure are represented 

in terms of simple blocks. This results in only one single 

level of simple blocks. For further details on treatment of 

the subpicture and macro block, refer to the section (7.1) 

(run time treatment of composite blocks). 

6.4 ERROR CHECKING BY GRAPHIC COMPILER 
  

6.4.1 MISSING CONNECTIONS 

For the graphic compiler to function properly, certain 

ESSENTIAL connections in the picture must be present. If the 

operator may by mistake or otherwise has left out the 

connections and it is the function of the connection error 

checking module to detect these connections and inform the 

operator of the result. Essential connections include input 

(normal variable, logical or constant in nature) that may 

have been left “undefined". A simple but trivial example is 

that of one input of the multiplier function block is 

connected. With the other input left unconnected (i.e. 

undefined), the output of this block is obviously ambiguous. 

6.4.2 ILLEGAL DATA TYPE CONNECTIONS 
  

The inputs and outputs of the functional blocks are 

allocated one of the following data types, 
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(1) system normal variable 

(2) logical variable 

(3) constant. 

A system variable is one whose value is represented in 

floating point number whose range is determined by the 

implementation in the run time processor. A logical variable 

is represented as an integer with value one or zero (1 or 0) 

i.e. it is binary in nature. The constant data type applies 

particularly to the input, implying that a constant input 

value is expected at that input. It is also in floating 

point number representation and the constant values are held 

in a constant pool data table. 

Obviously it is improper or "illegal" to try to connect 

an output of the type "system variable" to an input of type 

“logical variable". Constant input can also be checked if 

the input value is actually a constant, since constant 

values are stored in the constant pool data table. This data 

table is a read only data base during the run time 

processing of the blocks. This data type-checking is similar 

to the type-checking function of the new programming 

languages ( e.g. Pascal and Ada ). 
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6.4.3 ALGEBRAIC LOOPS OF NON-RETROSPECTIVE BLOCKS 
  

Closed loops of non-retrospective blocks are not to be 

allowed in the picture, to prevent “algebraic loops". A 

algebraic loop is a situation such that the instantaneous 

value of any output is fed back to the inputs of the blocks 

in a closed loop. With reference to the figure consisting of 

a summer, a multiplier and a non-linear function generator, 

their interconnection cause the instantaneous output of the 

non-linear block to be fed back to the adder. This results 

in a algebraic loop, since a closed loop is formed. 

  

  

Non- LINEAR 

x3 x FUNCTION 
ADDER 

  
    

      
            MULTIPLIER 

  

    
  

FIGURE 6.2 EXAMPLE OF ALGEBRAIC LOOP 

The presence of any algebraic loops in a picture may 

not be obvious, especially if the picture is complex and/or 

using various macro blocks and subpictures. Further details 

on the algebraic loops can be found in section (7.2) (closed 

loop of blocks). These algebraic loops, if any, will have to 

be detected and if found to be reported to the operator. 

This will be expanded upon in the loop detection section 

Che soie 
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6.5 SEQUENCING THE BLOCKS FOR EXECUTION 

After the expansion of the macro blocks and the 

subpictures, and the completion of the error checking 

routines, a valid interconnected set of simple blocks 

results. It is necessary to sequence or sort the blocks to 

determine the processing order of these blocks during the 

run time execution. The blocks are either retrospective or 

non-retrospective in nature. Non-retrospective blocks 

require their present input values for the computation of 

their outputs while the retrospective blocks do not. 

Sequencing is only carried out among the non-retrospective 

blocks since all the retrospective blocks, by definition, 

are independent in their processing order. 

Sequencing is necessary to ensure that the computation 

conforms to the data flow requirements of the block diagram. 

For example if a non-retrospective block has an input value 

derived from an output of another block, the other block 

must be executed first so that the input value is updated 

before it is used [ ROSKO 1972 ]. The general discussion on 

sequencing (including the processing order) can be found in 

section (8.2). 

=09=



6.6 ALLOCATION OF DATA TAB..ES FOR BLOCKS 

Each block can now be allocated memory storage for the 

output, input and internal variables (if any) in the RVT 

(run time value table). These will be grouped together to 

give a data file for each block. Such data file gives a 

clear representation of a functional block in the data 

table, allowing easier recognition of the block than 

otherwise. The choice of the allocation of variables of 

block is discussed in the section (9.1). 

The general format of data file is clearly shown in the 

RVT (run time value table) in figure ( 6.3 ), i.e. the 

current outputs, current inputs, past inputs and internal 

variables in that order. The relation between the run time 

simple block (RSB) and its data file is also illustrated. 

The RVTPTR in the RSB record points to the first entry in 

the data file (RVT). This first entry is usually the first 

output variable. Thus the next output variable is located at 

RVTPTR+1 and can be refered to by RVT [ RVTPTR+1 ]. The 

first input variable is located at 

RVTPTR + NOP 

where NOP is the number of output of the block. The location 

of the Nth input is at 

RVIPL Re NOP Ng=. 1 

Knowing the NIP (number of input), the start of the internal 

variables can be found and easily accessed. The IPPTR entry 

in the run time simple block record is used to indicate the 
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connection of an output to the input. IPPTRNOl points to the 

output location (in RVT), that output being connected to the 

first input terminal. So the first input variable value is 

given by RVT [ IPPTRNO1] ], similarly the rest of the inputs 

can be found. Direct addressing of the output to the input 

is used to ensure more efficient and faster processing of 

the blocks. 
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RSB ( RUN TIME SIMPLE BLOCK ) RECORD 

(ELINK) (GBLKNO) (RVTPTR) (IPPTRNO1) (IPPTRNO2) 

  

RVT ( RUN TIME VALUE TABLE ) 
FLOATING POINT 

  

  

4+------------------------ + 
+ +] 

-—______»+ ( CURRENT OUTPUTNO1) + 

+ ( CURRENT OUTPUTNO2) + J 

(SS se + J] DATA 
+ ( CURRENT INPUTNO1 ) + ] FILE 

+ ( CURRENT INPUTNO2 ) +) OF 
Bataan = os lagaim + ] THE 
+ ( PAST INPUTNOL ) + ] BLOCK 
+ ( PAST INPUTNO2 eee er 
+ + J 
+ o2---85------- === +] 
+ ( INTERNAL VARIABLE1) + ] 
+ ( INTERNAL VARIABLE2) + ] 
+ +] 
4+------------------------ + 
+ + 
+ + 
+- + 

(IPPTRNO1])---> + ( CURRENT OUTPUTNO] ) + 
+ ( CURRENT OUTPUTNO2 ) + 
$------------------------ + 

LEGEND 

(ELINK ) Link to next block to process 

(GBLKNO_ ) Global block number, identification purpose 
(RVTPTR ) RVT pointer, points to first entry in data 

file 
(IPPTRNO1 ) Pointer to location in RVT where the output is 

stored, this output being connected to this 
input. 

FIGURE 6.3 RELATION BETWEEN DATA FILE AND BLOCK RECORD 
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6.7 INITIALIZATION OF THE RUN TIME DATA TABLE 
  

The data files of the blocks can now be initialized 

from the operator-provided values (with more values, 

computed from given values). The general philosophy involved 

in initialization is explained under section G92 5) 

(initialization of functional block). The initialization 

also allows the checking of the compatibility of the 

provided values to the terminals. The data table and the run 

time block data structure are now ready for execution. 

6.8 LISTINGS AND MESSAGES 

This function of the compiler provides the error 

reporting and general reporting facilities. Error reporting 

includes any error or warning messages arising from the 

previously mentioned functions of the compiler. This is 

consistent with the listings, error and warning reporting of 

conventional high level programming language compilers. The 

reporting facilities of the graphical compiler can be 

divided into the followings : 

(1) errors concerning the usage of macro blocks. These 

concentrate on the completeness and legality of the 

macro block and subpicture. By completeness, it is 

meant that the macro block is complete in its internal 

structure as opposed to a un-completed attempt at the 

construction of a macro block. Usage of such an invalid 

marco block or subpicture (detectable since they are 
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flagged) is forbidden. Legality of a subpicture 

includes the usage of a subpicture only once in a 

picture. 

(2) connection errors, include error listing of any missing 

essential connections, illegal data type connections 

and "algebraic" loops. Reports could include block and 

terminal references where the connection error occurs. 

(3) initialization report. Messages about operator-provided 

values, any incompatibility between such values, and 

any initialization difficulties (including insufficient 

initial values to provide for all the initialization 

requirements). 

General reporting would be on the listings of the 

blocks used in the picture and their interconnections in 

numerical form as opposed to the graphical form. This 

provides a separate form of documentation. Information about 

number of blocks used, their types, and total amount of 

memory storage for the graphic and run time representation 

can be provided. 

6.8.1 EXAMPLES OF LISTINGS AND WARNINGS 
  

Error reporting and warning listing can be implemented 

by providing a source of all the messages in a listing 

library. When an error is encountered, the appropriate 

message is selected and then listed. Some examples of the 

messages are provided below 

-104—



(1) Subpicture. 

SUBPICTURE USED MORE THAN ONCE 

(BLKID) (BLKID) 

(2) Connection errors. 

INPUT UNDEFINED (BLKID) (TERMID) 

ILLEGAL CONNECTION 

(BLKID)(TERMID) (BLKID) (TERMID) 

ALGEBRAIC LOOP (BLKID) (BLKID) (BLKID) 

(3) Initialization. 

INCOMPATIBILE INITIAL VALUES TYPE 

(BLKID) (TERMID) 

INCOMPLETE INITIALIZATION 

where (BLKID) is the identification block number and 

(TERMID) the terminal number of the block. 
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CHAPTER 7 

COMPILATION ACTIVITIES - PICTURE VALIDATION 

7.1 RUN TIME TREATMENT OF COMPOSITE BLOCKS 

There are two ways of treating a composite block (i.e. 

a collection of blocks to be treated as a single entity). 

Composite blocks are of two types - macro and subpicture, 

the main difference being the ease to which to modify the 

internal composition in the subpicture type but restricted 

in the macro block type. 

They can be looked upon as analogous to subroutines (or 

procedures) in normal high level programming languages. 

There will be no identity problems as shown in the figure 

( 7.1A ). The actual composite block is entered into the run 

time block records and a DUMMY structure (similar to the 

definition of a subroutine) is required to define its 

internal composition. The dummy structure is to be used 

during the processing of the composite block. Variables 

storage in the run time value table, RVT, must be allocated 

for each and every block inside the composite block, this 

storage being replicated for every occurrence of the 

composite block. Figure ( 7.1A ) shows the effect on the run 

time data structure. By treating composite blocks as 

subroutines, little space in the run time block record is 

required to indicate each occurrence but, in common with 

subroutine calls, more parameter passing is required, 

resulting in slower execution. Sequencing of the blocks in 
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their appropriate processing order now become more 

difficult, when composite blocks of a mixture of 

retrospective and non-retrospective blocks are used. 

If the composite blocks are treated as macros, they 

must be expanded down to the lowest level possible, thus 

resulting in only one level of simple blocks. Similar to the 

expansion of macro code statements, this requires more data 

storage (compared with the subroutine approach) since the 

structure of the macro is repeated for every occurrence of 

the composite block. Figure ( 7.1B ) shows the run time data 

structure using the macro approach. The advantage of this 

approach lies in the simplicity of the execution of the 

blocks, no dummy structure is required and the 

differentiation of composite block and simple block is not 

required. Sequencing is simplified, applying only to one 

level of all simple blocks. Unfortunately, the identity of 

the composite block is destroyed during the macro 

replacement. Another data record (the RCB, run time 

composite block, record) is used to maintain the composite 

block identity. 

In this project, the macro approach of the treatment of 

the composite blocks is adopted. So one of the functions of 

the graphic compiler is to deal with the macro replacement 

(expansion) of all the composite blocks down to the level of 

simple blocks. 
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BLOCK RECORDS RVT 

    

  

  

  

  

  

  

  

  

  

  

              

  

  

(simplified) value table 

BLK NO. | TYPE 

10 A blk 10 block 
LY Cc composite record 

2 B } pax ay 
27 D ae 

5 S composite blk 2 
blk 27 

fue 5 

dummy 
structure 
composite 
type 'C' 

FIGURE 7.1A SUBROUTINE AND EFFECT ON RUN TIME DATA 

BLOCK RECORD RVT 

(simplified) value table 

BLK NO. | TYPE 

10 blk 10 
nl (merci aie] 
n2 composite } blk 11 

block 11 
jonk ga, 

blk 27 

} bik, 5S 

composite 
block 5 

  

      

FIGURE 7.1B MACRO AND EFFECT ON RUN TIME DATA 

FIGURE 7.1 RUN TIME TREATMENT OF COMPOSITE BLOCK 
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7.2 CLOSED LOOPS OF BLOCKS 

In the graphical picture scheme, closed loops of 

interconnected blocks may be configured in order to realise 

the required control function. Such loops fall into two 

categories : 

(A) loops with non-retrospective blocks only 

(B) loops with at least one retrospective block. 

An example of the first category is found in the 

obtaining the square root function as shown in the figure 

(7.2 ). This is a common practice in the analog computing 

{ KORN, KORN 1972 ]. 

  

  

      
  
- oa 2 

be 

  ay)       i | 

      
      

FIGURE 7.2 SQUARE ROOT FUNCTION BLOCK DIAGRAM 
  

In this case the blocks forming the'closed loop are all non- 

retrospective, i.e. their outputs are instantaneous 

functions of their inputs. An ALGEBRAIC LOOP is formed 

equivalent to an implicit expression of the form 

y=F(x,y) 
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These loops present no problems to analog computing since 

the constituent blocks are processed simultaneously. The 

sequential operation of digital computing requires one block 

to be processed at a time and this leads to the requirement 

of an iterative solution. Solutions of implicitly expressed 

function via iterative process may be acceptable in 

simulation programs, but they are unacceptable in process 

control applications for the following reasons : 

(a) the number of iterations varies, depending on the 

specific data involved i.e. the processing time is 

undeterminate. 

(b) the convergence of the solution cannot be guaranteed. 

The problem can be avoided by creating a new functional 

block which defines the required function explicitly. 

Algebraic loops are therefore not to allowed in the 

pictorial scheme, and it is a part of the function of the 

graphic compiler to test for the existence of such loops and 

to terminate processing with an error message if a loop is 

found. 

The second situation exists, when at least one block in 

the closed loop is retrospective in nature i.e. its outputs 

are not dependent on the current value of its inputs. Such a 

block effectively "breaks" up the loop, allowing the blocks 

to be processed in a sequential manner [ SPECKHART, GREEN 

1976 J. 
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FIGURE 7.3 NON-LINEAR FILTER BLOCK DIAGRAM 

The integrator block C is implemented as a retrospective 

algorithm (see section (2.8.1)) so that the output d(n) does 

not depend upon the current input c(n). The block C has 

effectively "broken" the closed loop. Hence block C may be 

processed before blocks A ind B. Thereafter the processing 

order A B is found by tracing the signal flow round the loop 

starting at block C. The general technique is therefore to 

process all the retrospective blocks first, in any order ; 

then the remaining non-retrospective blocks in an order 

determined from the connections in the block diagram. 

7.3 ALGEBRAIC LOOP DETECTION 

7.3.1 INTRODUCTION 

Since algebraic loops are not allowed in the picture, 

they must be detected by the graphic compiler. For the 

purpose of loop detection, a flow graph can be obtained by 

replacing each block by a node. This allows the application 

of the topological theory to this problem. 
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If all the non-retrospective blocks (nodes) are placed 

in a set, S, then topological sorting can be used [ KNUTH 

1978 ]. The nodes in set S contain information as to their 

interconnections. This results in a partial sorted set since 

nodes can only be processed after the nodes connected to 

their inputs are already processed. The basic principle is 

to pick a first node not preceded by any other nodes. (The 

first node has no other nodes connected to its input or one 

with all its input defined.) There must be at least one such 

node otherwise a loop exists (since this only occurs when 

all the nodes are in a closed loop). This node is marked and 

its connection information deleted. The procedure is 

repeated until the set S is exhausted or when a loop is 

detected. The topological sorting method detects any 

existing loops but does not identify them. 

To enable identification of the nodes forming a 

algebraic loop, a method known as the "depth-first search" 

is used with some modifications [ AHO, ULLMAN 1977 ]. The 

search is initiated by finding the INITIAL NODE (one with 

all input defined, see figure (7.4 )). Using their 

connection relation to search for successive nodes (i.e. 

nodes connected to its ouput), the "tree" is traversed as 

far as possible. With each new node visted, the existence of 

this node in the path already “travelled" is checked for. A 

loop exists if this new node is already in the path and with 

the path intact, all the nodes forming the loop can be 

identified. Other possible paths may be formed via 

traversing to the preceding node to see if another 
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alternative route is possible. When all the nodes are 

"visited", all possible paths are exhausted and accounted 

for. 

Figure ( 7.4 ) shows the loop detection method in 

operation. Figure ( 7.4A ) shows the flow graph of the 

plocks, where node A is the initial node (all inputs 

defined). Two possible traversing sequences are shown in 

figure ( 7.4B ) as examples of the operation of "visiting" 

the nodes. 

D 

i or. 
F é 

FIGURE 7.4A FLOW GRAPH 
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FIGURE 7.4B EXAMPLES OF VISITING THE NODES 

FIGURE 7.4 LOOP DETECTION SCHEME 

=1t3-—



7.3.2 IMPLEMENTATION OF THE LOOP DETECTION SCHEME 

Loop detection applies only to all the non- 

retrospective blocks present in the picture. of the 

relationship between the blocks, these can be classified 

under := 

(A) "Isolated" block i.e. the block is not connected to any 

other blocks at the input or output ends. Isolated 

blocks can be ignored since closed loop will never 

exist for them. 

(B) Block having only input connection i.e. the output is 

not connected to other blocks. 

(C) Block having both inp-t and output connections. 

The general implementation is as follows : the blocks 

present in the picture are maintained in a linked list 

BLKLIST and their interconnection information in another 

linked list LINKLIST. The structure of both the lists are 

shown as follows 
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BLKLIST 

   

  

Ce Se ee oe ee 

+ (BLINK) 
speek ees 

LINKLIST 

4$----------------- === ---- === 5-5 - == + 

+ (LLINK) (FROMBLK) (TOBLK) (PATHLINK) + 
----+ 

LEGEND 

(BLINK , link to next block record 

(LLINK ) link to next connection entry record 

(BLKNO ) identification block number 

(BLKVISITED) flag to set when block is vistied 

( FROMBLK ) block where output is connected to (TOBLK) 

(TOBLK ) block where input is connected to (FROMBLK) 

(PATHLINK ) link to records of path "travelled" 

A block is now selected from the BLKLIST, the first on 

that list that is not marked visited. if this is an isolated 

block then, this block is marked visited i.e. the blkvisited 

flag is set. If this is type (B), then its connection can be 

deleted from the list LINKLIST and the block marked visited. 

This is possible since a block with no output connection 

cannot be part of a closed loop. 

For a block of type (C), with both input and output 

connections, the LINKLIST is used to proceed "forward" to 

the next block (the next block is that which connected to 

the output of the block). Each forward block is tested to 

check if it is already present in the current path 

(indicated by the PATHLINK entry). If it is not present, 

then the connection is inserted into the path, via updating 

the PATHLINK. This block is then marked as visited, the 
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connection record deleted from LINKLIST, and the procedure 

repeated going to the next forward block. A loop is detected 

if the same block appears more than once in a current path 

and the loop detection algorithm may be terminated. If no 

more forward block can be found, then "“backtracking" will 

accounts for all other possible paths. Backtracking involves 

the locating of the last but one block in the current path 

(blockback), deleting the last block from the path and using 

the block (blockback) as the focal point to search for 

another route. This is to ensure that blocks with output 

connected to more than one input terminals are thoroughly 

searched for alternative routes of the signal flow. So the 

path is created going forwarding and then deleted when 

backtracking if no loop is detected. The complete loop 

detection scheme is ended when all the block in BLKLIST are 

marked as visited or when a loop is detected and reported to 

the operator. 
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CHAPTER 8 

COMPILATION ACTIVITIES - SEQUENCING 

8.1 PROCESSING ORDER AMONGST CONTROL SCHEME BLOCKS 
  

This section deals with the order of execution amongst 

the various block types provided for control algorithms in 

DDC. The processing sequence during execution is indicated 

in the figure ( 8.1). At the start of the processing 

(computation) cycle, all the input interface blocks are 

processed first. Ordering between the input interface blocks 

is arbitrary and the processing order is determined by the 

sequence the interfaces are linked in the list. Execution of 

all the input interface blocks first ensure that the 

correct, up-to-date input values are presented to the rest 

of the picture scheme. 

Now all the outputs of the retrospective blocks can be 

computed as they are totally independent of each other. 

Ordering of the blocks in this group is of no significance. 

The order used is the order in which the blocks are linked 

in the list. 

The non-retrospective blocks can now be processed in 

the order determined by the sequencing algorithm via tracing 

the signal flow. At this point all the blocks except for the 

output interfaces have been evaluated for this cycle. Now 

all the input queues may be updated. These input queues 

belong to blocks (retrospective or non-retrospective) that 
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require their past input values for computation. 

To finish off the processing 

interfaces can be processed (in che 

cycle, 

order 

all the output 

that they are 

collected) to present the results of this computation cycle 

to the process environment. 

+ SPAR 
LG 

4+-------------1------------- + 
+ UPDATE INPUT INTERFACES 
ae 

+ UPDATE OUTPUT OF 

  

st RETROSPECTIVE BLOCKS 

  

+ UPDATE OUTPUT OF 
+ NON-RETROSPECTIVE BLOCKS + 

  

+ UPDATE OUTPUT INTERFACES 
$-------------47------------- + 

FIGURE 8.1 PROCESSING ORDER AMONGST CONTROL SCHEME BLOCKS 
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8.2 SEQUENCING FUNCTIONAL BLOCK 

8.2.1 INTRODUCTION 

Since the retrospective blocks as implemented do not 

use current input values in computing the current output, 

there is no need to arrange them in any particular sequence. 

Input interface and output interface blocks too need no 

sequencing at all. This leave only the non-retrospective 

blocks to be sequenced into a proper, correct processing 

order to ensure correct computation results. 

After the expansion of the macro blocks and the 

subpictures, a single level of only simple blocks with all 
  

the valid interconnections results. Firstly all the blocks 

are collected into their respective classifications, namely 

the input and output interfaces, retrospective and non- 

retrospective. This collection of the retrospective blocks 

will determine the order in which the individual block is 

processed, the first one being on the top of the collection. 

Input interface and output interface blocks are dealt in the 

same way. 

With other blocks "removed", the remaining non- 

retrospective blocks are usually in small groups of 

interconnected blocks. Replacing the block by node, the 

topological representation is shown typically in figure 

( 8.2 ). A node cannot be evaluated until all of its input 

values have been evaluated. It is therefore necessary to 
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derive the appropriate processing order for the nodes. This 

is always possible since closed loops are not permitted. 

i eee 

ye a nee 

SO OOO 
FIGURE 8.2 GROUP OF INTERCONNECTED NODES 

8.2.2 SEQUENCING METHOD IMPLEMENTATION 

To obtain an easy-to-prove algorithm for the 

“sequencing, all independent, possible signal paths in the 

picture (only for the non-retrospective blocks) are to be 

found. 

The approach to determine the independent paths is very 

similar to the “depth-first search" in topology [ AHO, 

ULLMAN 1977 ]. The search is initiated by finding the 

INITIAL NODE, in this case the node with all its inputs 

already defined. This is used as the starting node to search 

for the next linked node (node which is connected to it) and 

traversing as far as allowed. This gives the first path. 

Nodes "visited" are marked by setting an appropriate flag. 

Other paths may be formed by traversing to the preceding 
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node to check if an alternative signal route is possible. 

Else another initial node may be found and used as the 

starting node. When all the nodes have been “visited" then 

all the possible signal paths are found. 

Once all the computation (signal) paths are found, the 

nodes can now be sequenced fairly easily. Firstly all the 

starting nodes of all the paths are copied to the output set 

of nodes (nodes already sequenced). This is possible since 

the starting nodes are independent in their processing 

order. The next node is selected on the basis that all its 

preceding nodes in all the paths which the node is present 

have been evaluated. The nodes sequenced can be marked by 

negating the node number (the block identification number). 

Sequencing is completed when all the nodes in all the path 

are used. 

The figure ( 8.3 ) shows an example of the operation of 

the sequencing method. All possible computation paths are 

found ( figure 8.3B ). Picking up the starting nodes gives 

part of the sequence as AGI . The next node B can be 

evaluated because node A (the preceding node) is already 

evaluated. Node C is then selected since both A, B are 

processed. But the node D cannot be evaluated since the 

preceding nodes in path 2) and 3) (i.e. nodes E and F) are 

not yet evaluated. The next node is selected, E, since it is 

next on the available list. Applying the method till 

completion gives the final sequence as 
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Ota he 

(1) ABCD 

—(«) () (2) ABFD 

(3) AE PD 

(4) GF 

(4) I 

(2 )}— FIGURE 8.3B SIGNAL FLOW 
—1 1 

FIGURE 8.3A FLOW GRAPH 

FIGURE 8.3 BLOCK SEQUENCING EXAMPLE 
  

8.2.3 DATA STRUCTURE USED IN SEQUENCING 

All the blocks in the picture are maintained in a list 

BLKLIST. The interconnection information is to be found in 

the list LINKLIST. The BLKLIST and LINKLIST are the same as 

those used in the LOOP DETECTION (section ( 7.3.2 )). They 
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are used for the searching and finding of all the possible 

signal paths. The list PATHLIST maintains all the possible 

computation (signal) paths, via keeping all the block number 

of the blocks in a path together. 

LINKLIST 

(LLINK) (FROMBLK) (TOBLK) 

(BLINK) (GBLKNO) (BLKVISITED) 

  

PATHLIST 
  

(PLINK) (NOOFBLK) (BLKNOl) (BLKNO2) (BLKNO3) 

LEGEND 

(PLINK  ) pointer to next path record 
(NOOFBLK) number of block within the path 
(BLKNO1 ) identification block number of first block 
(BLKNO2 ) identification block number of second block 

FIGURE 8.4 DATA STRUCTURE USED IN SEQUENCING 

When all the blocks are sequenced, they are linked together 

via the ELINK (execution link) entry, in the run time block 

(RSB) record, in the order in which they are to be executed 

during run time. 

8.2.4 GENERAL COMMENTS ON SEQUENCING 

The method implemented is similar to the approaches 

used in loop optimization and code optimization in compiler 

design [ AHO, ULLMAN 1977 ]. There is an interesting 

relation between the flow graphs and the "gotoless" programs 
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which allows such programs to be checked for the logical 

flow of data. In modular programming, where the emphasis is 

mainly on structuring the programs in modules with single 

entry and single exit, the data flow is particularly 

highlighted. 

  

FIGURE 8.5 PROGRAM MODULES AND DATA FLOW 

N. Wirth [ WIRTH 1976 ] shows a very good example of 

the use of topological sorting which operate on set of nodes 

where partial ordering exists. The basic principle is 

similar to that used in the sequencing algorithm. His 

approach placed the main emphasis on the use of the correct 

data structure (in this case the linked list). 
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CHAPTER 9 

COMPILATION ACTIVITIES - DATA MANIPULATION 

9.1 ALLOCATION OF STORAGE FOR RUN TIME BLOCK 

9.1.1 INTRODUCTION 

There are four distinct classes of blocks, namely (i) 

retrospective, (ii) non-retrospective, (iii) input interface 

and (iv) output interface. The retrospective blocks are 

those whose present outputs can be computed without using 

the values of the present inputs (e.g. integrator) ; whereas 

the non-retrospective blocks have their current outputs 

dependent on their present inputs (e.g. multiplier and 

summer). The input interface and the output interface blocks 

can be considered..as non-retrospective blocks for the 

purpose of allocation of memory space. 

This allows us to divide all the blocks in the 

graphical programming language (GPL) program into the 

retrospective and non-retrospective groups. The fundamental 

structure of the program is classified by the processing 

(carrying out computation on) all the retrospective blocks 

separately from the non-retrospective blocks. Processing of 

the retrospective blocks can, in principle, be carried out 

in any arbitrary order. On the other hand, the non- 

retrospective blocks must be processed in an order 

determined by the interconnections. To fully maintain the 

arbitrary processing order, each retrospective block must be 
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totally independent of any other block as far as the 

computation of the output(s) is concerned. This is achieved 

if each block contains all the necessary data values 

(outputs, present and past inputs, and any internal 

variables) within its own data region. 

An alternative proposed by Linn [ LINN 1980 ] seeks to 

economise on data storage by using the principle that an 

input value will be obtained by accessing an output value 

table in accordance with the block connection pattern. 

However this approach implies that the retrospective blocks 

must be sequenced to give the correct result. Taking a 

simple example, where the output of a retrospective block A 

is connected to an input of retrospective block B. If block 

A is processed first, then its output is a(n+l). But since 

block B requires a(n) (which is over-written by a(n+l)), the 

processing order must be B A. 

9.1.2 DATA STRUCTURE FOR RETROSPECTIVE BLOCK 
  

In this implementation the data structure of the 

retrospective blocks is defined so as to allow retrospective 

blocks to be processed without sequencing. The main penalty 

of this approach is that more storage will be required by 

each block. Additional storage will duplicate the output 

value of a block to which an input is connected to. But the 

extra storage space is small compared with the storage for 

the rest of the variables of the block. (It will only take 

up two more storage for a block having two input terminals.) 
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The data file for each retrospective block has the 

following structure. The section denoted "current inputs" 

contains copies of the output values of the blocks to which 

the inputs are connected. This is updated at the end of each 

processing cycle when the new output values have been 

computed for all the blocks in the system. 

4+----------------- + 
+ CURRENT + 
7 OUTPUTS + ) 

4$----------------- ome) 
+ CURRENT +) 
+ INPUTS + ) DATA ORGANISATION 
$0 ------------- +7) 
+ PAST + ) FOR ONE BLOCK. 
+ INPUTS + ) 
Henne ‘+ ) 
+ INTERNAL +) 
+ VARIABLES + 
4+----------------- + 

FIGURE 9.1 RUN TIME DATA FILE STRUCTURE 

This approach has the following advantages :- 

(1) the retrospective blocks can be processed in any 

arbitrary order, no sequencing is required. This 

inherently allows closed loops of retrospective blocks. 

(2) all data required by the block are grouped together so 

that data accessing routines are simplified. 
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9.1.3 DATA STRUCTURE FOR NON-RETROSPECTIVE BLOCKS 
  

Interconnected non-retrospective blocks must be 

processed in a sequence which ensures that no block is 

processed until all its input values have been updated. This 

can be avoided by arranging the data structure but the 

advantages are seen in adopting the same data structure for 

the variables of every block to conform to that proposed for 

the retrospective block. This eliminates the necessity of 

the compiler to differentiate between the two classes of 

blocks when it comes to the allocation of the data areas. 

Each block has its own "modular" data file to operate on, 

simplifying the program structure and reducing the 

possibility of programming errors. 

=123-



9.2 INITIALIZATION OF FUNCTIONAL BLOCKS 

9.2.1 INTRODUCTION 

Since some functional blocks need their past values of 

the inputs and outputs for computation, memory storages must 

be allocated for these "variables". These will have to be 

initialized to some suitable values before the graphical 

programming language program (consisting of functional 

blocks) is executed. 

Consider the case of a LEAD-LAG functional block (see 

figure below, using the Laplace operator s), 

Tl = lead time constant 

T2 = lag time constant 
  

bw
 fl a 4 e 4 a sampling interval 

      
Tie Te = 1/T1 A 

FIGURE 9.2 STRUCTURE OF LEAD/LAG BLOCK 
  

This gives the relationship (using the z-transform method) 

-oT -xT 

Sree sn Glee Dee ee ee (9.1) 

Now at n=0 i.e. initially, from equation (9.1) 

T -«T -« 
Dre Gey) a + OK 

where \), and X, are the values of the output and the input 

respectively at time t = 0, 
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y-, and X., the values of the variables at time t = -l. 

Obviously, the memory storage values of the variables must 

be initialized to some suitable values before execution of 

the block program is possible. 

9.2.2 INITIALIZATION CRITERIA 

The following sections will discuss the different 

approaches of initialization of the functional blocks. There 

are in general three criteria for setting the initial 

conditions of a system [ PRITSKER 1969 J], [ WILSON, PRITSKER 

1978A;, -1978B" ) s- 

(1) The system is started "empty and idle", that is all the 

internal variables are set to zero, and the propagation 

of all the effects of the internal variables is allowed 

to work through the system before taking any serious 

measurements. This criterion has the advantage of being 

easy in implementation. 

(2) The system is started at the steady-state mode. This is 

the best approach but is difficult to implement since 

the steady-state determination is "tricky" and 

laborious. 

(3) The system is started at the steady-state mean. This is 

a compromise between approaches (1) and (2), with less 

propagation effects than approach (1). 
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From the three above-mentioned approaches, approach (3) 

is chosen, compromising between approaches (1) and (2). 

9.2.3 INPUT-OUTPUT INITIALIZATION 

The most elementary approach involves the provision 

(via the operator or other means) of ALL the initial output 

and input values of blocks. It is then possible to "trim" 

the variables to fit the given data. This arbitrary choice 

of initial values may leave the system in some undetermine 

state, unless a careful choice is made. 

Take the example of a FIRST ORDER LAG 

  

oe er 
ve sal ere 1 e, tre ve 

v Tt = time constant 
x—-s -------- i—+ y 

1 St T = sampling interval       

FIGURE 9.3 STRUCTURE OF FIRST ODER LAG BLOCK 
  

Now if the initial values are provided, say 

output, y=w ; input, x =u 

then 

w—-(- 

Bt) = ue yet) = eae Ne 

where A = exp(-T/c) 

giving y(0) = w= (1-A) x(-1) + A y(-1) 
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The above choice of the variables will fit the given data, 

since y(0) =w as expected. 

Judging from the above example, this method may appear 

easy to use. But when a sequence of blocks are connected 

together, then the choice of initial values are not 

arbitrary since the outputs may affect inputs, unless one is 

willing to accept the initial “settling down" period for the 

effects to propagate through. Given a sequence of blocks, it 

may be possible to initialize the blocks separately, however 

the system may not give the desired performance. 

Since this involves provision of all the data values 

via the operator (hence a potential source of error), this 

approach is dropped in favour of the other to be described 

later. 

9.2.4 STEADY-STATE INITIALIZATION 
  

To minimise the transient on start up of the control 

program, the steady-state relationship between the inputs 

and outputs is used. In this case, the retrospective blocks 

are effectively being "replaced" with their steady-state 

relationship. For the example of the lead/lag block, at 

steady state, from equation (9.1) 

x(n) = x(n-1) ) 
) STEADY STATE 

y(n) = y(n-1) ) 
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giving y(n) = x(n) = y(n-1) = x(n-1) 

Note that the value of the output remains the same 

during steady state, if the input remains unchanged. This is 

expected from the transfer function of the lead/lag block. 

It is now possible to determine the value of the input or 

the output, given the other. This also allows checking on 

the compatibility of the operator-provided initial 

conditions. 

Retrospective blocks which deliver a constant output 

with a constant input have a well defined steady-state 

behaviour. However, there are some functional blocks that 

differ radically from the above behaviour. A good 

representative is the INTEGRATOR type functional block 

implemented as follows, 

  

  

1 Yq — Ya-4 $2) a5 
Saas y 

s T = sampling interval       

INTEGRATOR 

Note that the output will be varying with each sampling 

period except when the input, x, is zero in value. That is 

y(n) = y(n-1) + T x(n-1) 

y(n), se y(n=1) at steady state. 

These blocks belong to a class, the "INTEGRATIVE", will 

require more attention and care during initialization. In 
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the case of the INTEGRATOR, two initial values, namely 

output value [ y(-1) ] and input value [ x(-1) ] must be 

provided externally. 

9.2.5 FURTHER CONSIDERATIONS 

9.2.5.1 STEADY-STATE INITIALIZATION 

Consider the example in figure ( 9.4 ), 
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FIGURE 9.4 INITIALIZATION BLOCK DIAGRAM 

In the above case, all the variables are marked xl, x2, x3, 

x4 and x5. If all five variables are provided with initial 

values, then it is only a trivial matter to select suitable 

values for the internal variables (using the steady state 

relationship). 
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Provision of all the variables may lead to OVER- 

SPECIFICATION. Consider the case below : 

i . 
; ' 

t 
T \ t 
1 ' 
' = ' 
1 Cxeck: | outeur, y 

  

  

    
      

Only two initial values needed to be provided, say SP and 

Pv. Since the variable error ( = PV-SP ) can be determined 

and since for the LEAD/LAG, at steady state, the output is 

equal to the input. Therefore the initial output is equal to 

the value ( PV-SP ). 

This over-specification is a trivial matter, since the 

specified value may be overwritten with the calculated 

required value, and a warning issused to the operator. In 

most cases, the inputs are used as valid data when over- 

specification occurs. 

Looking at figure (9.4 ) and considering only the 

EXTERNAL terminals need to be initialised. The external 

terminals are those marked with small circles. In this case, 

only three initial values are required, namely xl, x2 and 

x3. Using these values and with further manipulation, the 

rest of the variables ( x4 and x5 ) can be determined, and 

thus the retrospective blocks initialized. This approach 

reduces the workload on the operator considerably. 
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9.2.5.2 EXTERNAL TERMINAL INITIALIZATION 
  

Given the external initial values, the manipulation of 

these data with the functional blocks is important. One 

approach is to process all the blocks in the "correct 

sequence". By the correct sequence, it is meant that each 

block can be processed if and only if all its inputs are 

valid (i.e. previously defined). (By previously defined, it 

is meant that the values are provided via the operator or 

are output values of already processed blocks.) From the 

structure of figure ( 9.4 ), the correct processing sequence 

is obviously A, B, C, D, E. The retrospective blocks are 

replaced with their steady state relationship, making them 

behave like non-retrospective blocks. From block A, and 

given x3, x4 and e can be calculated. Variable x5 can then 

be found and thus all information needed for initialization 

are found. 

The choice of approach for initialization is that of 

the external terminal initialization approach. That is the 

operator needs provide only the initial values of the 

EXTERNAL TERMINALS and the outputs of the integrators. 
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CHAPTER 10 

SIMULATION 

This chapter covers the simulation of the mathematical 

model of a process. Such a model can be analytically derived 

from physical theorems or obtained by process identification 

methods [ SMITH 1972 ]. The chapter starts with a brief 

review of available simulation languages, then considers the 

crucial integration requirements and concludes with the 

implementation of some functional blocks. 

10.1 REVIEW OF DIGITAL SIMULATION LANGUAGES 
  

The early days of computer simulation were dominated by 

analog machines. the initial development of digital 

simulation languages serves two main purposes, namely (1) to 

provide an alternative tool to check the solutions of the 

analog machines and (2) as a back-up in case of the analog 

machine break-down [ STRAUSS 1968 ]. Early languages 

correspond closely to the use of analog computer, giving 

rise to a family of "Digital Analog Simulators" or BOSLs 

(block oriented simulation languages) such as MIDAS, MIMIC 

and DYSAC [ BRENNAN 1968 ]. Such early languages are 

relatively specialised programs and thus are rather simple 

and compact to implement allowing their use on small digital 

machines. However usually BOSLs are closed-ended with little 

facility for expansion [ GULLAND 1973 ]. 
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Meanwhile attempts had been made to develop languages 

that related to the structure of ordinary differential and 

algebraic equations (i.e. the EOSLs - equation oriented 

simulation languages) . The earliest landmark is the 

development of the DSL (digital simulation language) by IBM. 

Interests in this approach leads to the adoption of a 

“standard" for simulation languages by the SCi Committee on 

Simulation Software [ SCi SOFTWARE COMMITTEE 1967 ], a U.S. 

professional body. One important feature of EOSLs is the 

"macro facility" devised from advanced assemblers. This 

allows the repetitive use of a submodel which only needs to 

be defined once. 

One of the main drawbacks of many simulation programs 

has been their lack of close man-machine interaction caused 

by the use of batch processing rather than interactive 

processing { REVETT 1975} Recently more and more 

simulation languages are designed for interactive processing 

e.g. DARE-P [ LUCAS, WAIT 1975 ] and BEDSOCS [ EIDELSON 

1980 ]. 

BOSLs use the following principle : the system is 

represented by a block diagram using blocks from a library 

of standard blocks. The model specification is entered via a 

terminal consisting of the block details, the parameters and 

interconnections between the blocks in alphanumeric form. 

Examples of such languages include DYSAC [ HURLEY, SKILES 

1963 ], KALDAS [ DINELEY 1967 ] and a system by Payne 

{ PAYNE 1974 ]. 
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The process of manually translating the block diagram 

into the necessay numerical form for the simulation programs 

is an error-prone and tedious task. To bypass the manual 

translation, the simulation language in this implementation 

consists of the actual block symbols and their 

interconnections being communicated to the system by using 

graphics. Main features of the approach include (1) direct 

correspondence between the blocks and the physical systems 

and (2) the drawing on the display screen is all the 

documentation required to diagnose or debug the simulated 

model. The graphical approach is similar to the graphical 

programming language approach for the programming of control 

algorithms (section 2.3). The synthesis and most of the 

compilation of the pictorial program are identical. The most 

obvious differences are in the provision of different 

functional blocks and the allocation of storage locations. 

These differences will be discussed in section (10.9). 

10.2 STATE VARIABLE REPRESENTATION 
  

In the simulation of continuous systems, it is most 

convenient to represent th- system dynamics in the state- 

variable form as a set of simultaneous first order 

differential and algebraic equations. These equations are of 

the general form : 

YH YU te) 

where Y is a vector matrix of the state variables, 
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¥' the derivative vector 

Iq
 the independent input variables 

t the continuous time variable 

This is the most general form of system description 

embracing both linear and non-linear systems. To quote 

Brandin [ BRANDIN 1968 ], “simple algebraic techniques and 

approximations reduce virtually all systems to a set of 

simultaneous ordinary differential equations of the first 

order". The fundamental structure of state-variable form is 

a set of interconnected integrators. The basic dynamic 

element is the integrator for which the choice of numerical 

integration algorithm is of crucial importance. 

10.3 INTEGRATOR BLOCK IN SIMULATION 
  

10.3.1 INTRODUCTION 

The various numerical procedures for generation of 

solutions of the first order differential equations are very 

well discussed in the papers by Benyon [ BENYON 1968 ] and 

Brandin [ BRANDIN 1968 ]. The theoretical aspects and 

application of such procedures can be found in various books 

on numerical analysis such as [ GEARS 1971 ] and [ KOPAL 

1955 ]. The classical methods for the numerical solutions of 

ordinary differential equations can be classified as the 

following : 
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(1) 

(2) 

The single-step method, of which the most commonly 

used algorithm is that of the Runge-Kutta 4th 

order. 

The multi-step method or the predictor-corrector 

approach, one example being the Adams ( Moulton ) 

predictor-corrector. 

Figure ( 10.1 ) and ( 10.2 ) show typical examples of both 

the approaches applied to a single first order differential 

equation. 
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Ye ASE ey. Unmet) 

Kl = F ( Y[n], Ufn], tf{n] ) 
Vip =) YGn)-+) Ki s0n/ 20; ti = tin) Bo 

K2l= Pe yi eUlnl, Ct) 
¥2\ = ¥in] + K2 */H/2 ; +2 = t[n] +/H/2 

Ks. = Pe Cy2, -ulal,, £2 ) 
¥3 = Y[n] + K3 * H # t3)= tinlet o 

KA =F (Yo), UEnd, 3° ) 
y{n+1] = ¥[n] + H ( Kl + 2*K2 + 2*K3 + K4 )/6 

t{n+1] i condeden 

FIGURE 10.1 RUNGE KUTTA FOURTH ORDER INTEGRATION RULE 

R= PN a Uy tes) 

Vib = EC Yoni; vial, tiny) 

PREDICTED VALUE 
Zintl | = Yin] + (H/24)( S5¥"(n) - s9Y'[n-17 + 37¥"fn=2] 

= 9OY | Priaads) 

t[n+1] = t{[n] + #8 

Gitar) Ser ee Zintid; Ulin), tintd ia) 

CORRECTED VALUE 
Y{nt+l] = y{€n] + (H/24)( 9Z'{n+1] + 19¥'{n] - 5y'{n-1] 

+ -Y" En=29") 

FIGURE 10.2 ADAM-MOULTON FOURTH ORDER PREDICTOR-CORRECTOR 

LEGEND 

H - integration step size 
U - independent input variable 
t - continuous time variable 
Y - variable under consideration 
Y' - derivative of Y 
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10.3. 

(A) 

(Cc) 

2 FEATURES OF SINGLE-STEP AND MULTI-STEP APPROACHES 

The general features of the Runge Kutta algorithm are : 

It is self-starting. Past values of Y are not required 

so that the procedure can be started without 

initialization. 

It requires N evaluations of the derivatives for a Nth 

order method. 

The truncation error at each step is proportional to 

N+1 
H 

where H is the integration step size and N the order of 

the method. 

The predictor-corrector approach has the following 

features 

(A) 

(B) 

(c) 

It is not self starting since the previous values of Y 

ive. Y{n-1], yYf{n-2], Y{n-3] are required. Usually the 

first few parts of the solution are calculated by some 

other method such as a single-step approach. 

It may iterate the corrector until the required 

convergence is reached, although in practice this is 

rarely done. 

It provides an excellent estimation of the truncation 

error especially if the predictor and the corrector are 
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of the same order. 

(D) Previous information must be retained and maintained so 

that storage requirements are increased. 

The predictor-corrector approach usually requires fewer 

derivative evaluations per integration step than the single- 

step approach of the same order. However this does not 

necessarily imply that the predictor-corrector method is 

faster than the single-step approach in terms of overall 

computation speed. The single-step method deduces the rate 

of change in the variable by exploration of the values of 

the variable at various locations within the step. In the 

multi-step approach, the rate of change is deduced by 

extrapolation from what has been happening in the previous 

steps. The single-step approach also tends to have greater 

stability than the multi-step approach, making it possible 

to use a larger step length. Some variations of the multi- 

step approach had been found to give good stability as found 

in the work of Hamming [ HAMMING 1959 ], Milne and Reynolds 

{ MILNE, REYNOLDS 1960 ] and Gurk [ GURK 1955 ]. 

The choice between the two numerical solution 

approaches is subjected to the several factors [ KORN, WAIT 

1978 J, [ BRANDIN 1968 ] including : 

(1) the nature of the systems equations, in particular the 

degree of the non-linearity and the range of the time 

constants involved. 
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(2) the accuracy required and the stability of the 

solution. 

(3) the processing requirement in terms of computation time 

and memory space. 

A further development which is particularly useful for 

highly non-linear systems is based on varying the step 

length to control the error at each stage. 

10.3.3 ERROR ESTIMATION 

The normal Runge-Kutta (RK) approach does not provide 

any estimation of the error in the solution but variations 

of the basic method have been derived to give error 

estimation. The two approaches are 

(1) to use two Runge-Kutta procedures of different order 

and use the difference in each step to estimate the 

error. 

(2) to use the same procedure, but with two different 

integration step size and compare the two results. 

By the careful choice of intermediate points, some of 

the intermediate results are common to both the RK formulae 

and the computation can be minimized. Merson [ MERSON 1957 ] 

has devised a modified RK method that enables the error 

estimation to be made easily. The Runge-Kutta-Merson ( RKM ) 

fourth order integration algorithm increases the number of 
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evaluations of the derivative per integration step from 4 to 

5 and is shown in figure ( 10.3 ). Another development has 

been the Runge-Kutta-Fehlberg (RKF) variation [ FEHLBERG 

1969 ]. Work was also carried out on the RKM method by Chai 

and Burgin [ CHAI 1974 ], [ CHAI, BURGIN 1970 ]. Once the 

error at each integration step can be estimated, the 

adjustment of the integration step size is possible. This 

can minimize the computation time while keeping the error 

within bounds. 

SSF (Ys Ue, 

Kl = F ( Yf{nl, U[n], t{n] ) ] 
Yl = y{n] + (H/3)K1 7 t1 = t{n] + H/3 ] 1st stage 

K2 =P va, Ulnl atin) J 
Y2 = y[n] + H(K1+K2)/6 ; t2 = t{n] + H/3 ] 2nd stage 

Kj F ( Y2,) Ulin}, £2.) J 
¥3 = y[n] + H(K1+3*K3)/8 ; t3 = t{n] + H/2 ] 3rd stage 

KA =P ONS, Ulm tom) ] 4th 
y4 = y{n] + H(Kl - 3*K3 + 4*K4)/2 ; t4 = t[n] +H ] stage 

K5 = F ( ¥4, U[n], t4 ) 

y[ntl] = yn + H ( Kl + 4*K4 + K5 )/6 ; t{n+1] = t{[n] + H 

ERROR = H ( 2*Kl - 9*K3 + 8*K4 - K5 )/30 

H -- integration step size 

FIG. 10.3 RUNGE-KUTTA-MERSON FOURTH ORDER INTEGRATION RULE 

A careful study of many popular multistep and the 

Runge-Kutta methods had been carried out by Shampine and co- 

workers, and they concluded that "the fourth order RKF 

strategy is often a good choice as a general-purpose 

integration rule" [ SHAMPINE 1976 ]. An investigation into 
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the performance of integration routines used in general- 

purpose digital simulation programs was also carried out by 

Martens [ MARTENS 1969 ]. The performance was compared with 

respect to the overall speed, accuracy and convenience of 

use. He concluded that "for the general simulation of linear 

and non-linear systems, the variable step-size Runge-Kutta- 

Merson method proves to be most accurate and most 

efficient." 

The different conclus_ons in the two studies indicate 

that no one integration rule is best for all purposes. In 

this project, the RKM fourth order algorithm with variable 

integration step size is used. This algorithm is commonly 

used in simulation languages such as the SLAM package [ ICL 

1974 J, BEDSOCS package [ EIDELSON 1980 ] and DARE-P 

[ LUCAS, WAIT 1975 ]. 

10.3.4 CONTROL OF INTEGRATION STEP SIZE 

The absolute value of the integration error ( ABSERR ) 

and the relative magnitude of the error ( RELERR ) specified 

by the user can be compared with the actual error 

estimation. The total acceptable error TOTALERR of each 

integrator is calculated as 

TOTALERR = |ABSERR| + |RELERR*INTOP | 

where INTOP is the output value of the integrator. 
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The error measure used is 

(A) ESTERR > TOTALERR 

(B) ESTERR < TOTALERR 

(Cc) ESTERR < TOTALERR/2 

where ESTERR is the estimated error for each integrator. 

If condition (A) is met for at least one of the 

integrator present the integration step is halved and the 

integration step is repeated. If (B) is met for all the 

integrators present the next step is taken without any 

change in the step length. If (C) is met for all the 

integrators present the result is accepted but the step 

length is doubled for the next step. 

10.4 RELATIONS BETWEEN INTEGRATOR AND OTHER BLOCKS 
  

There are two phases in implementation of the forward 

integration algorithm in each computation cycle. Phase (1) 

is the derivative evaluation where the other blocks are 

processed to evaluate the derivative input to the 

integrators. The integrator blocks are not involved in this 

phase. Phase (2) is the integration evaluation where only 

the integrator blocks are involved. This phase advances the 

numerical solution to the next time step. 
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10.5 DISTINCTION BETWEEN H AND Tc 
  

Tl, logging interval 

  

  

CONTROL SIMULATED 

ALGORITHM <== =F MODEL OF 

SCHEME communication PROCESS 
interval, Te 

  

    
H, integration step 

FIGURE 10.4 DISTINCTION BETWEEN H AND Tc 
  

The communication interval Tc is the time interval when 

the results of the model under simulation are presented to 

the environment (in this case the control algorithm scheme) . 

In this implementation, the communication interval is 

identical to the sampling interval, Ts used in the control 

scheme (section 2.8). If the simulated model itself is under 

investigation, then the user may wish to know the values of 

the output in between Tc. This interval can be denoted as 

the "logging interval", Tl. In this implementation the 

logging interval Tl is the same as Tc. The changing of Tl to 

a value different from Tc is not implemented. 

The integration step length H is the time interval by 

which the integration algorithm will advance the numerical 

solution. In theory, the smaller the H the better is the 

result of the integration rule. However due to the limited 

precision in a small digital computer, the above does not 

apply due to truncation error and round-off error effects. 

There is an optimum choice of H for each system depending on 
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the integration rule used, specific computer used and the 

systems dynamics. 

10.6 

used 

(A) 

(B) 

(c) 

BLOCK TYPES IN SIMULATION 

There are four general types of functional block to be 

in simulation 

the integrator. This is the basic dynamic and most 

important element in the simulation process. The 

integrator is used to advance the numerical solution of 

the first order differential equation from one stage in 

time to another. The choice of the integration 

algorithm is crucial and involves a compromise to 

obtain sufficient accuracy without excessive computing 

time. 

the non-dynamic blocks. These blocks have no memory 

storage or past history of the input or output values. 

The blocks respond only to the current input values, 

examples include the summer, multiplier and function 

generator. 

the special dynamic blocks. A block of this class has 

“memory” i.e. it utilises the past history of the input 

or output values for the computation of the present 

output. Examples include the delay and derivative 

function. 
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(D) the interface blocks. The input and output interface 

blocks are for interaction with the environment and are 

similar to those discussed in section (2.7). 

(E) the composite blocks. Such a block is a collection of 

blocks to be treated as a single entity in graphic 

representation. During the compilation, the composite 

block will be expanded down to the simplest form in 

terms of blocks of the other classes. Examples include 

the first order lag and second order lag. In effect, 

the only elements appearing in the run-time system are 

blocks of type A, B, C and D. 

10.6.1 MINIMAL BASIC SET OF BLOCKS 
  

The minimal basic set of functional blocks required for 

effective simulation of a model is given below : 

- integrator 

- special dynamic blocks of delay and derivative function 

- non-dynamic blocks of summer, multiplier, function 

generator and junction block. 

- interfaces, input and output 

- composite blocks of first order lag and second order lag. 
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10.6.2 COMPOSITE BLOCK IMPLEMENTATION 
  

Composite blocks can be generally be divided into two 

classes : (A) those without an internal integrator component 

and (B) those with an integrator as one of the internal 

constituents. Implementation of class (A) is obvious and 

straightforward. The implementation of class (B) is carried 

out to ensure that the only dynamic element is the 

integrator. This is best illustrated by an example, the 

first order lag (see figure 10.5). 
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FIGURE 10.5 COMPOSITE BLOCK IMPLEMENTATION   

10.7 DELAY BLOCK IN SIMULATION 

x—-- DELAY IK——+ y 

    
The delay block function is an approximation to a 

continuous delay. With the Runge-Kutta-Merson RKM variable 

step algorithm used for the integrator function, it is not 

possible to provide delayed output values to correspond with 

the computation time used. It is also difficult to allocate 
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memory space for the d-layed output, the number of past 

values varies with the change of the integration step 

length. 

One solution will be to store the data at the end of 

each integration step. The output of the delay block is kept 

constant during the integration step interval. For the   

approximation to be accurate, the integration step should be 

kept as short as possible. 

10.8 DERIVATIVE BLOCK IN SIMULATION 

variable 

x 

  

  

dt     

  

“E rime, 

FIGURE 10.6 DERIVATIVE BLOCK & DIFFERENCE EQUATION APPROACH 

Two approaches to implement the derivative block are 

considered, (A) difference equation [ BIBBERO 1977 ]. The 

derivative of the variable X can be approximated at the time 

interval t[{n] to t{nt+l] by 

derivative = (X[n] - X{n-1])/(t£n] - t{n-1]) 

Note that this implementation will give a block the output 

of which varies only at the end of each integration step. 
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(B)the use of the integration function 
  

  

  

      

  

    K = s/K (K>>s) 
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FIGURE 10.7 DERIVATIVE FUNCTION FROM INTEGRATION 

In this implementation, the choice of K is important. 

The larger K is, the better is the approximation. However 

too large a K may make the time constant of the function so 

small that it may reduce the range of the integration step 

size used in the rest of the system. One interesting choice 

of K is 1/H where H is the integration step length to give 

the update of the derivative output within each integration 

interval as required by the RKM algorithm. 

In this project, the derivative function will be 

approximated by the first order difference equation approach 

for the following reasons 

(1) the integration function approach increases the 

processing time during execution due to the extra 

integrator and can have an advance effect on the step 

length. 

(2) the difference approach needs less memory space than 

the integration approach. 
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10.9 SIMULATION AND THE GRAPHIC COMPILER 
  

The graphic approach for the simulation of the model of 

process and the effects on the graphic compiler (chapter 6) 

are discussed below 

(1) 

(2) 

(3) 

CS) 

(6) 

(7) 

data tranformation of the type-specific data from 

graphic to run time. The mechanism is identical to that 

necessary for the compilation of the control program, 

so no modification is required. 

expansion of composite blocks. The basic expansion 

action is identical. 

error checking. In simulation, closed loops of non- 

dynamic blocks (algebraic loops) are not allowed. So 

the loop detection scheme need no changing. 

sequencing of blocks is further discussed under section 

CYO- 9. bu. 

the allocation of storage for the run time data file is 

discussed in section (10.9.2). 

initialization. In simulation, the special dynamic 

blocks need to be initialized (section 10.6). 

the listings and messages system is identical and 

changes are not required. 
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10.9.1 SEQUENCING OF BLOCKS 

For the simulation program, the block types that need 

no sequencing are the integrator (similar to the 

retrospective blocks used for control algorithms (section 

2.7)) and the interfaces. The rest of the blocks must be 

sequenced to ensure that the computation conforms to the 

data-flow requirements. The sequencing method is identical 

to that for the control scheme and the details are given in 

section (8.2.2). The execution order of the block types is 

shown in figure (10.8) 

START 

INPUT INTERFACE 

   

    

  

    

   

  

DERIVATIVE PHASE 

blocks except integrator 
executed in order of the 
signal flow 
  RUNGE-KUTTA 

MERSON 
ROUTINE 

  

INTEGRATION PHASE 

integrators executed 
in any arbitrary order       

OUTPUT INTERFACE   END 

FIGURE 10.8 EXECUTION ORDER AMONGST SIMULATION BLOCK 
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10.9.2 STORAGE ALLOCATION FOR BLOCKS 
  

As previously stated, the only dynamic block appearing 

in the program structure after the expansion of composite 

blocks is the integrator. Efficient computation of the 

integrator function is therefore important. To achieve this, 

ald thes Yaa Ki, K2, K3, K4, K5, Ynt+tl, ERROR (used in the 

Runge Kutta Merson RKM integration rule) are stored in 

linear floating-value arrays (figure 10.9). This allows the 

calculation of all the K's as one set. 

The other (non-integrator) blocks are just allocated 

data storage in the RVT, run time value table, and the data 

file is identical in structure to that for control algorithm 

(section 9.1). The linear arrays, RKMVALUES are totally 

separate from the storage in RVT. These extra storage 

necessary for the integrator affects the structure of the 

run time data records slightly. A new pointer (RKMVPTR) is 

required to indicate to the location in the RKMVALUES, where 

the values for the RKM routine are stored. Since the MXPTR 

entry in the RSB (run time simple block) record is always a 

null entry (section 4.3.2), this entry can be used for the 

RKMVPTR. Figure (10.9) shows the effects on the RSB record 

of an integrator. 
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neg 
Broce 
Cevrered 
  

  

      
    

    Linear 

AeRAYS 

RKMVALUES 

RSB (integrator ) 

(ELINK) (GBLKNO) (TYPEPTR)..(RVTPTR) (RKMVPTR) (IPPTR) 

LEGEND 

RSB run time simple block record. 
(RKMVPTR) pointer to location of linear arrays where va 

for Runge Kutta Merson routine are stored. 

(RVTPTR) pointer to RVT (run time value table), data 
for the block. 

The rest of the entries are identical to figure (4.13). 

FIGURE 10.9 DATA ALLOCATION FOR INTEGRATOR 
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CHAPTER 11 

TESTING OF CONTROL ALGORITHMS 

11.1 INTRODUCTION 

This chapter deals with the interaction of the control 

algorithm program with the simulated model of the process 

(figure 11.1). The control programs can be thoroughly tested 

and evaluated to ensure satisfactory performance. 

The two following publications gives some indications 

as to the importance and difficulties involved in the 

testing to obtain reliable control software : [ KRATZER 

1979 Jj, ({ D'HUSLTER 1979 ]. Kratzer described a system where 

the development of process control software is divided into 

three phases. The first phase covers the design of control 

algorithms and off-line simulation. Phase 2 comprises 

evaluating the control program on a process computer in a 

real-time environment. The final phase covers refined 

simulation on a dual computer system where one computer 

simulates the plant while the other is controlling the plant 

through realistic interfaces. 

In this implementation, a simpler approach is adopted. 

Both the simulation of the model and the control algorithm 

are to be carried out on one computer. Realistic interfaces 

can be obtained through the use of appropriate interface 

functional blocks. 
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The control program from the GPL (graphical programming 

language) system is totally self-contained since it only 

communicates through the input and output interfaces. These 

interfaces are implemented to communicate through reserved 

memory locations and are not interested in the actual 

process interface equipment used (figure 11.2 and section 

2.7.1). These same interfaces are used in the simulation of 

the model of the process. This is essential to ensure the 

independence of the control program. The control program 

does not and need not know that it is only trying to control 

a model of the process. This is important to avoid changes 

when the control program is transferred down to the 

dedicated processor controller for the actual applications 

(section 2.6). 

One of the most important parameter specification is 

the sampling interval, Ts, used in the control program. Ts 

is dependent on the actual process time constants. 

Variations of Ts can be carried out to check the effect on 

the control performance. Ts is also the communication 

interval between the two subsystems of process model and 

control scheme. 

11.2 INTERACTION SUPERVISOR 

Both the execution of the control program and the model 

of the process are to be carried out on the same host 

computer of the GPL system. For orderly interaction, an 

interaction supervisor (IS) is designed to "“sit" upon the 
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two programs (figure 11.1). The basic task of the IS is to 

transfer the control of the execution hardware from the 

control program to the process simulation program. 

The operation of IS is as follows for a computation 

cycle, 

(1) transfer the values of the process model output to the 

input interfaces of the control program. 

(2) start execution of the control program. 

(3) transfer the values of the output of the control 

program to the process model input. 

(4) execute the program to simulate the process model. 

The interaction communciation is handled by the IS in 

the following manner : all the terminals of interest of the 

input and output interface blocks are to be "tagged" by a 

label (see figure 11.1). The two terminals with the same tag 

label are to be related by value. Figure (11.3) shows the 

data structures used by the IS for the inter-communication. 

The interaction supervisor may be developed to any 

level of sophistication required. The minimal functions of 

Is include 

(1) the controlling of the start and ending of the whole 

process of interaction. 

(3) provides for interactive parameter display and 
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modifications such as the value of sampling interval, 

Ts. 

(4) the specification of parameters for logging and to 

perform the logging of the values. (Figure 11.3 shows 

the basic data structure required for this purpose.) 

  

    
  

  

  

  

    

            

    

          

  

INTERACTION 

SUPERVISOR 

input output 
interface thi Se aera interface 

CONTROL SIMULATED 

ALGORITHM MODEL OF 

SCHEME PROCESS 

output input 
interface Ee ae interface 

OuTI ou71 

Ts H 
sampling integration 

interval step   
        

tag label 

FIGURE 11.1 INTERACTION BETWEEN CONTROL SCHEME AND MODEL 
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FIGURE 11.2 INTERFACING TO ACTUAL PROCESS 
  

supervisor communication table (SCT) 
floating point 
  

  

value | high limit | low Limit 

     

  

  

  

      

    
supervisor input tag 

(LENGTH) (BLKNO) (TERMNO) (VALPTR) (TEXTTAG) 

  

  
(LINK) (LENGTH) (BLKNO) (TERMNO) (VALPTR) (TEXT ) 

logging record 

(LINK) (LENGTH) (INTERVAL) (TAGTEXT ) 
    

FIGURE 11.3 DATA STRUCTURE FOR INTERACTION COMMUNICATION 
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CHAPTER 12 

CONCLUSION AND RESULTS 

12.1 PROGRAMMING IMPLEMENTATION OF SYSTEM 
  

This section gives a general description of the 

development and implementation of the graphical programming 

language system. The program for the basic requirements for 

graphic editor has been completed and now occupies about 24K 

(16 bits) words. This however is not a good indication of 

the memory space required by the editor since that depends 

upon the level of sophistication required and the use of 

overlays to minimise the space requirement. Besides the 

essential editing routines, facilities are provided to 

initialize the graphic data structure records via reading in 

data records from a file on the storage disk. The format of 

the file is machine-independent and presents an easy means 

of access to the user. 

Most of the essentials of the compiler are completed, 

needing about 30K words of storage. Again the required 

sophistication level can affect the size and overlays can 

used. Only a limited number of the types of functional 

blocks (for the control algorithm and simulation) are 

provided at present. It would be relatively easy to expand 

the range of functional types. Appendix B shows the 

development of a graphical block with the corresponding 

algorithm procedure. 
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A basic minimal simple interaction supverisor has been 

built to test the working and co-operation between the two 

subsystems (control algorithm and model of process). 

12.2 CONCLUSION 

This research has focussed on a software engineering 

method offering a system which supports the designing and 

testing of process control algorithms using the facilities 

of computer graphics. The system offers an easy to use and 

fully documented programming facility based on drawings. By 

treating each software module block as a "black box", the 

top-down structured programming methodology is strongly 

encouraged and promoted. 

The application of the block diagram structure for 

process control is analysed. The frequently used features 

required for process control have been identified and 

provided for in terms of the appropriate standard functional 

blocks. Each graphical block corresponds to pre-defined 

software module performing a basic function. This approach 

eliminates the need for knowledge of formal programming, 

since the "programming" (the synthesis phase) is carried out 

by connecting the required functional blocks together using 

graphics. A facility to define composite blocks as 

subsections of a block diagram had been included. This 

allows segmentation of a block diagram or the repeated use 

of a combination of elementary blocks as a “macro” block. 
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Once the machine-independent graphical representation 

is completed, it is compiled to give a program structure 

table. The machine-independent program structure table is a 

compact numerical representation of the block diagrams. This 

compilation includes the following functions : macro 

expansion to give a level of basic simple blocks, error- 

checking to ensure logical flow of data signals, sequencing 

to determine the necessary order of execution of the blocks 

and allocation of the storage area necessary for each block. 

A program generator phase combines code segments relating to 

the functional routines of the blocks with the program 

structure table to give the final control program code 

appropriate to the target processor. 

The same graphics based technique has been used to 

develop a process simulator. This allows the investigation 

and evaluation of control algorithms through interaction 

with the simulated model of the process. The control 

algorithm and process model are run together in one host 

computer. This evaluation is essential to ensure reliable 

and satisfactory control schemes before committing them to 

dedicated process control hardware. 
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APPENDIX A 

Transfer function of blocks using z-transform method 

For digital computation, the analog actions such as 

integration must be transformed into their equivalent 

discrete forms appropriate to a sampled-data systems. There 

are various approaches to the tranformation operations 

{ RAGAZZINI 1958 ]. One approach is via the approximation of 

the sample and hold operation using a ZOH (zero order hold). 

The ZOH is important from a practical view since it is 

simple in nature and is readily implemented. To quote Smith, 

"In by far the majority of the process control applications, 

the zero-order hold is used" [ SMITH 1972 ]. So the z- 

transform method and a ZOH are used to implement some of the 

blocks provded for the DDC, some of the blocks are discussed 

below 

(a) INTEGRATOR 

    

27 —+ Zou   

            

  

a (s) = bal? z = backwards shift operator 
ea $2 

s = Laplace operator 

2(z) eo eae T = sampling interval x m4 
\-2"' 

See Sane wen 

This is a retrospective implementation. 
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(b) FIRST ORDER LAG 
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retrospective implementation 

(b) LEAD/LAG FUNCTION 
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APPENDIX B 

This section shows the development of the graphical 

details of the functional block symbol. The example of the 

integrator illustrates the development. Figures (B.1) and 

(B.2) show the graphical details while figure (B.3) shows 

the algorithm routine procedure. 

(80,60) 
yf BLK No. PasiTion 

Base Of Syueor 

  

      

af 

(-S0, 50) (50,50) 

(10,30) 
(20,30) 

(-S0,0) (50,0) 

20-3 NT ( 0) 
| G10,-303 

(-S07 50) T (s0,-So) 

(10, -20) 

FIGURE B.1 GRAPHICAL D°"'AILS OF INTEGRATOR BLOCK 

GRAPHIC INFORMATION 

typeno = 31 classno = 0 mxptr = -l (invalid) 

nip = 1 nop =l 

TERMINAL POSITION (-50,0) (50,0) 

BLOCK NUMBER POSITION (50,60) 

BLOCK OUTLINE (-50+2000,-50) (-50,50) (50,50) 

(50,-50) (-50,-50) 

(-20+2000,-30) (-10,-30) (10,30) (20,30) 
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NON-GRAPHICS INFORMATION 

NIN = (2) Gr = 2) ROPE= bie = 0) TOP ="0 ~ cir =90 

BLOCK TEXT 

TEXT =INT text position (10,-20) 

GI record 

  

  
7 | S31ar POL Wjoi 50/60 |-50 | 0 {50 | 0 i 

                                

  

BLOCK OUTLINE   pa
y 

      

  

    

    
NGD record N\ | Sp2"|.2 2 | 01010 

                

    
    

10 |-20 |IN|Ta oO
 

TEXT record a               

4= blank space 

The actual elements of each records are discussed in section 

(4.1). 

FIGURE B.2 GRAPHIC DATA RECORDS FOR INTEGRATOR BLOCK 

The CORAL66 procedure for the integrator in figure 

(B.3) should be read in conjunction with figure (6.3). 
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"CORAL' 

‘PROGRAM' INTEGRATOR 

'COMMENT' CORAL66 procedure for integrator block ; 
'DEFINE' VI "'VALUE''INTEGER'" ; 

‘EXTERNAL' ('PROCEDURE' INTEGRAL (VI) ; 
‘PROCEDURE' UPINTEGRAL (VI) ; ) ; 

‘EXTERNAL'('FLOATING' TSAMPLE ;(sampling interval 
‘FLOATING' 'ARRAY' RVT [1:5000] ; 
‘INTEGER''ARRAY' RDS [1:5000] ; 

(run time data structure array) 

Jess 
'‘DEFINE' RSBRVTPTR (PTR) "RDS [PTR+8S J" ; 

‘DEFINE' RSB NO BEFORE INPUT "10" ; 

“SEGMENT' INTEGRATOR 
“BEGIN' 
“INTEGER' BASE, INPTR,IPPTR ; 

‘COMMENT' Run time Value Table data file structure ; 
'‘DEFINE' OUTPUTNOW "RVT [BASE ]" (current o/p) 
‘DEFINE' INPUTNOW "RVT (BASE+1]" ; (current i/p) 

'‘DEFINE' INPUTPAST "RVT [BASE+2]" ; (past i/p ) 

‘DEFINE’ OUTPUTPAST "RVT [BASE+3]" ; (past o/p ) 

"COMMENT ! -------~=~ === == 5 === == = 5 nn 
INTEGRATOR -- RETROSPECTIVE 

outnow innow inpast outpast 

y(n) x(n) x(m-1) =y(n-1) 

algorithm y(n) = y(n-1) + T*x(n-1) 
BLKBASE - pointer to the start of the 

run time simple block (RSB) record. 

'"PROCEDURE' INTEGRAL ('VALUE''INTEGER' BLKBASE) 
‘BEGIN’ 

BASE := RSBRVTPTR (BLKBASE) ; 
OUTPUTNOW := OUTPUTPAST + 
INPUTPAST*TSAMPLE ; 

‘END! ¢ 

"COMMENT' -- update the input queue -- 

'PROCEDURE' UPINTEGRAL ('VALUE''INTEGER' BLKBASE ) 
‘BEGIN' 

  

BASE := RSBRVTPTR (BLKBASE) ? 
INPUTPAST := INPUTNOW ; (store previous i/p) 
OUTPUTPAST OUTPUTNOW ; (store previous o/p) 
INPTR BLKBASE + RSB NO BEFORE INPUT ; 
IPPTR RDS { INPTR ] ; (input pointer) 
INPUTNOW RVT [ IPPTR ] ; (current i/p) 

LEND = 7 

‘END' 
‘FINISH' 

FIGURE B.3 CORAL 66 PROCEDURE FOR INTEGRATOR 

-Lii—



ACM 

AFIPS 

FICC 

HMSO. 

IECI 

IEE 

IEEE 

IFAC 

LPL 

IMACS 

sgcc 

SIAM 

UMRCC 

UKAC 

ABBREVIATIONS USED IN REFERENCES 

Association of Computing Machinery 

American Federation of Information-Processing 

Societies 

Fall Joint Computer Conference 

Her Majesty Stationery Office (UK) 

IEEE Transactions on Industrial Electronics and 
Control Instrumentation 

Institute of Electrical Engineers (UK) 

Institute of Electrical & Electronic Engineers (NY) 

International Federation of Automatic Control 

International Federation of Information-Processing 

International Association for Mathematics & 
Computer in Simulation 

Spring Joint Computer Conference 

Society for Industrial & Applied Mathematics 

University of Manchester Regional Computer Centre 

(UK) 

United Kingdom Automation Council 

ee



LIST OF REFERENCES 

ABRAMS M.D. ( 1971 ) 

‘Data structure for computer graphics' 
Proc. symposium on “DATA STRUCTURE IN PROGRAMMING 

LANGUAGES", SIGPLAN Notice, Vol 6 No 2, Feb 1971, 

pp 268-286 

AcM ( 1979 ) 

‘Status report of the graphics standard committees of 

ACM/SIGGRAPH' 
Computer Graphics, Vol 13 No 3, 1979 

AHO A.V., ULLMAN J.D. (1977) 

‘principles of compiler design' 
Addison-Wesley, 1977 

ASTROM K.J. ( 1980 ) 
‘Design principles of self-tuning regulator 
Proc. of an International Symp. on "METHODS & 
APPLICATIONS IN ADAPTIVE CONTROL", Bochum 1980, 

(edited by Unbehaugen), pp 1-20, Springer-Verlag 

AUSLANDER D.M., TAKAHSHI Y., TOMIZUKA M. ( 1978 ’) 

‘Direct digital process control : practice and 

algorithms for microprocessor application' 

Proc. of IEEE, Feb 1978, Vol 68 No 2, pp 199-208 

BARNES J.C.P. ( 1975 ) 
'The use of RTL/2 for multitasking' 
Minicomputer Forum 1975, Conf. Proc., On-Line Conf. 
Ltd (UK) 1975, pp 157-166 

BATES D.G. ( 1968 ) 
"PROSPRO/1800' 
IEEE Transactions on Industrial Electronics and 

Control Instrumentation, Vol IECI-15 No 2, Dec 1968, 

pp 70-75 

BENYON P.R. ( 1968 ) 

'A review of numerical methods for digital 
simulation' 
Simulation, Nov 1968, Vol 11 No 5, pp 219-238 

BERGERON R.D., BONO. P.R., FOLEY J.D. ( 1978 ) 
‘Graphics programming using the CORE system' 
Computing Surveys, Vol 10 No 4, Dec 1978, pp 389-442 

BIBBERO R.J. ( 1977 ) 
‘Microprocessors in instruments and control’ 
John Wiley & Sons Inc., 1977 
pp 61-63 cascade control 
pp 155-176 PID and other algorithms 

—1/3—



BRANDIN D.H. ( 1968 ) 

‘Mathematics of continuous system simulations’ 
Proc. AFIPS 1968 FICC, Vol 33, pp 345-352 

BRENNAN R.D., LINEBURGER R.N. ( 1968 ) 

‘A survey of digital simulation : digital analog 
simulator programs 
in “SIMULATION : THE DYNAMIC MODELLING OF IDEAS & 

SYSTEMS WITH GRAPHICS", (edited by J.McLEOD), 

PP 244-255, McGraw Hill, 1968 

BRISTOL ( 1975 ) 
‘Bristol UCS 300 - the process controller 
(Technical Bulletin TM280A), American Chain and 

Cable Co. Inc. USA 

BRISTOL E.H. ( 1977 ) 
‘Designing and programming control algorithms for DDC 
systems’ 
Control Engineering, Jan 1977, Vol 24 No 1, pp 24-28 

CALCOMP ( 1974 ) 
‘CALCOMP Manual' 
University of Manchester Regional Computer Centre 
(UMRCC), 1974 

CARLSON E.D ( 1978 ) 
‘Graphic terminal requirements for the 1970's ' 
Computer, Aug 1978, pp 37-45 

CAZDOW J.A., MARTENS H.-A. ( 1970 ) 
'Discrete-time and computer control system' 
Prentice-Hall Inc, 1970 

CHAI A.S., BURGIN G.H. ( 1970 ) 
‘Comment on Runge-Kutta-Merson algorithm' 
Simulation, Aug 1970, Vol 15 No 2, pp 89-89 

CHIA A.S. ( 1974 ) 
‘Modified Merson's integration algorithm which saves 
two evaluations at each step' 
Simulation, March 1974, Vol 22 No 3, pp 90-93 

COTTON I.W., GREATOREX F.S. ( 1967 ) 
‘Data structure and techniques for remote computer 

graphics' 
Proc. AFIPS 1967 SJCC, Vol 26, pp 533-544 

DAVIS) M.R., ELLIS T.0., (( 1964 ) 

'The RAND tablet : A man-machine communication 
device' 
Proc. AFIPS 1964 FJCC, Vol 33, pp 325-331 

DEPLEDGE P.G. ( 1981 ) 

‘Fault-tolerant computer systems’ 
IEE Proc. Part A, May 1981, Vol 128 No 4, pp 257-272 

-174-



D'HULSTER F.M., DEKEYSER R.M., HEYSE J.E., 

VAN LAUWENBEWRGHE A.R. ( 1979 ) 

‘The computer as an aid for the implementation of 
advanced control algorithms on physical processes' 
Proc. of IFAC symposium on "COMPUTER AIDED DESIGN OF 

CONTROL SYSTEMS", Zurich Aug 1979, pp 31-36, 
Pergamon Press 

DINELEY J.L., PREECE C. ( 967 ) 

‘A manual of KALDAS programming' 
Oriel Press Ltd (UK) 1967 

DODD G.G. ( 1969 ) 

‘Elements of data management systems’ 
Computing Surveys, Vol 1 No 2, July 1969, pp 117-133 

DUYFJES G., DE JONG P.J., VERBRUGGEN H.B. ( 1977 ) 

‘Questionnaire on applications of modern control 
theory in process industry - results and comments’ 
Proc. of 5th IFAC/IFIP conf. on "DIGITAL COMPUTER 

APPLICATIONS TO PROCESS CONTROL", Hague 1977, 

pp 833-841, North-Holland Publishing Co. 

EDWARDS F., LEE F.P. ( 1972 ) 

‘Man and computer in process control’ 
pp 4-5, Institute of Chemical Engineers (UK), 1972 

EIDELSON A.F., ROBINSON I.J. ( 1980 ) 

‘Implementation of BEDSOCS : an interactive 
simulation language’ 
Computer Journal, British Computer Society, Feb 
1980, pp 233-240 

EVANS D., VAN DAM A. ( 1968 ) 
‘Data structure programming system' 
Proc. IFIP Congress 1968, pp 67-72, Spartan Books 
Ltd. 

FEHLBERG E. ( 1969 ) 

‘Low order classical Runge-Kutta formulas with step 
size control and their application to some heat 
transfer problems’ 
NASA REPORT TR R-315, G.C.Marchall Flight Center, 

Huntsville, Alabama, April 15 1969 

FOLEY J.D., WALLACE V.L. ( 1974 ) 

'The art of natural man-machine conversation' 
Proc. IEEE, Vol 62 No 4, April 1974, pp 462-471 

FRANKS A.J. ( 1968 ) 
"B-LINE, Bell line drawing language' 
Proc. AFIPS 1968 FJCC, Vol 33, pp 179-191 

-175-



EREVERT Te 1975 ) 
‘Realtime language PEARL - concepts of language 
design and implementation’ 
Minicomputer Forum 1975, Conf. Proc., On-Line Conf. 

Ltd (UK), pp 183-191 

GASPAR T.G., DOBROMTOFF V.V., BURGESS D.R. ( 1968) 

‘New process language uses English terms’ 

Control Engineering, Oct 1968, pp 118-121 

GEARS C.W. ( 1971 ) 
‘Numerical initial value problems in ordinary 
differential Equations’ 
Prentice-Hall, Englewood Cliffs, N.J., 1971 

GINO ( 1976 ) 

‘GINO-F user manual 
Computer Aided Design Centre, Cambridge, UK, 1976 

GOOD M. ( 1981 ) 
'ELUDE & the folklore of user interface design’ 
Proc. of ACM SIGPLAN SIGOA symposium on "TEXT 
MANIPULATION", Oregon, June 1981, SIGPLAN Notices, 
Vol 16 No 6, pp 34-43 

GRAY J.C. (1967 ) 

‘Compound data structure for computer aided design 
A survey' 
Proc. ACM National Meeting, 1967, pp 355-365 

GULLAND W.G. ( 1973 ) 

‘Continuous system simulation - a review paper’ 
Proc. of conf. on "COMPUTER AIDED CONTROL SYSTEM 

DESIGN", LEE, April 1973, pp 186-192 

GURK H.M. ( 1955 ) 

‘The use of stability charts in the synthesis of 
numerical quadrature formulae 

Quarterly of Applied Mathematics, Vol 13 No 1, April 

1955, pe 73-78 

HALLIWELL J.D., EDWARDS T.A. ( 1977 ) 

‘A course in standard CORAL 66' 
NCC Publication, National Computing Centre Ltd (UK) 

HAMMING R.W. ( 1959 ) 

‘Stable predictor-corrector methods for ordinary 
differential equations' 
Journal of the Association for Computing Machinery, 
Vol 6 No l, Jan 1959, pp 37-47 

HEALEY M. ( 1975 ) 
‘A survey of minicomputer applications in industrial 
control' 
Minicomputer Forum 1975, Conf. Proc., On-Line Conf. 
Ltd (UK), pp 493-503 

=176-—



HEILMAN R.L., MARCHANT J.M. ( 1978 ) 

'T1GS - an overview of the terminal independent 

graphics system' 
Proc. of SIGGRAPH 1978, 5th Annual Conf. on 
“COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES", 

Altanta, Aug 1978, ACM, pp 93-107 

HEROT C.F., WEINZAPFEL G. ( 1978 ) 
‘One point touch input of vector information for 
computer displays’ 
Proc. of SIGGRAPH 1978, 5th Annual Conf. on 

“COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES", Aug 

1978, ACM, pp 210-216 

HOBBS L.C. ( 1981) 
‘Computer graphics display hardware’ 
IEEE Computer Graphics and Applications, Vol 1 No l, 
Jan 1981, py25-39 

HOROWITZ E., SAHNI S. ( 1976 ) 
‘Fundamentals of data structures 
Pitman Publishing Ltd, 1976, pp 106-168 

HURLEY J.R., SKILES J.J. ( 1963 ) 

'DYSAC - a digitally simulated analog computer' 

Proc. of AFIPS 1963 SJCC, Vol 23, pp 69-82 

ICHBIAH J.D., HELIARD J.C., ROUBINE O., BARNES J.G.P., 

KRIEG-BRUECHNER B., WICHMANN B.A. ( 1979 ) 

‘Preliminary ADA re_crence manual’ 
SIGPLAN Notice, Vol 14 No 6, June 1979 

IcL ( 1974 ) 
‘SLAM - a simulation language for analogue modeling’ 
ICL 1900 series, ICL 1974 

IECI ( 1968 ) 
IEEE Transactions on Industrial Electronics and 
Control Instrumentation 
Vol IECI-15 No 2, Dec 1968 

LECT. (1969) ) 
IEEE Transactions on Industrial Electronics and 
Control Instrumentation 
Vol IECI-16 No 3, Dec 1969 

IPW/EWICS ( 1981 ) 
‘Draft Standard on Industrial Real Time FORTRAN’ 
Technical Committee of International Purdue Workshop 

on Industrial Computer Systems (IPW) and European 
Workshop on Industrial Computer Systems (EWICS), 
SIGPLAN Notice, Vol 16 No 7, July 1981, pp 45-60 

==



JACKSON A.S. ( 1960 ) 

‘Analogue computation’ 
McGraw Hill, 1960, pp 255-257 

JONES B. ( 1976 ) 
‘An extended ALGOL-60 for shaded computer graphics' 
Proc. ACM symposium on "GRAPHICS LANGUAGES, COMPUTER 
GRAPHICS", Vol 10 No l, 1976, pp 10-17 

KELLY V.H., WAKEFIELD A.J. ( 1967 ) 

"APEX - a new approach to programming for on-line 
control' 
Proc. 2nd UKAC control convention on "ADVANCES IN 
COMPUTER CONTROL", April 1967, IEE publication No 29 

KEY K.As, ( 1965. ) 

‘Analogue computer for beginners 
Chapman and Hall, London, 1965, pp 155-158 

KNOWLTON K.C. ( 1969 ) 

‘A programmer's description of L6é' 
Comm. ACM, Vol 9 No 8, Aug 1969 

KNUTH D.E. ( 1978 ) 

‘The art of computer programming Vol 1 : Fundamental 
Algorithms' 
Addison-Wesley, 1978, pp 258-268 

KOPAL Z. ( 1955 ) 

‘Numerical analysis 
Chapman and Hall, London, 1955. 

KORN G.A., KORN T.M. ( 1972 ) 

‘Electronic analog & digital computer' 
McGraw Hill, 1972 

KORN G.A., WAIT J.V. ( 1978 ) 

‘Digital continuous system simulation’ 
Prentice-Hall, 1978 
pp 79-99 DARE-P simulation language 
pp 169-184 integ-ation routines 

KORN G.A. ( 1979 ) 

"Real-time applications of computer-aided design' 
Proc. of IFAC symposium on "COMPUTER AIDED DESIGN OF 

CONTROL SYSTEMS", Zurich 1979, (edited by CUENOD), 
Pergamon Press, pp 649-668 

KRATZER G. ( 1979 ) 

‘Design and implementation of process control 
software under realistic environment conditions’ 
Proc. of 2nd IFAC/IFIP symposium on "SOFTWARE FOR 
COMPUTER CONTROL", Prague June 1979, (edited by 

NOVAK), pp 149-153, Pergamon Press 

—173-



KULSRUD H.E. ( 1968 ) 
‘A general-purpose graphics language 
Comm. ACM, Vol 11 No 4, April 1968, pp 247-254 

LANG C.A., GRAY J.C. ( 1968 ) 

‘ASP - a ring implemented associative structure 
package' 
Comm. ACM, Vol 11 No 8, Aug 1968, pp 550-555 

LEE W.T., BOARDMAN R.M., HIGHAM J.D. ( 1967 ) 

‘Block diagrammatic programming in computer control’ 
Proc. 2nd UKAC computer convention on "ADVANCES IN 
COMPUTER CONTROL", April 1967, IEE publication No 29 

LUCAS J.J, WAIT J.V. ( 1975 ) 

‘DARE-P - a portable CSSL-type simulation language' 
Simulation, Jan 1975, Vol 21 No 1, pp 17-27 

LUCIDO A.P. ( 1978 ) 
‘An overview of directed beam graphics display 
hardware’ 
Computer, Nov 1978, pp 29-36 

LINN C.¥., BARKER H.A. ( 1579 ) 
‘A process control system based on a graphical 
language' 
Proc. of 3th International Conf on "TRENDS IN ON- 
LINE COMPUTER CONTROL SYSTEMS", March 1979, IEE 

1979, pp 45-48 

LINN C.Y. ( 1980 ) 
‘Digital control system programming from process 
control diagram' 

PhD Thesis, Department of Electrical Engineering, 
University of Aston in Birmingham, July 1980. 

MACHOVER C., NEIGHBORS M., STUART C. ( 1977 ) 

‘Graphics Display 
IEEE Spectrum Vol 14 No 8 , Aug 1977, pp 24-32 
IEEE Spectrum Vol 14 No 10, Oct 1977, pp 22-27 

MACHOVER C. ( 1977A ) 

‘A brief personal history of computer graphics' 
Computer, Nov 1978, pp 38-45 

MARTENS H.R. ( 1969 ) 

‘A comparative study of digital integration methods 
Simulation, Feb 1969, Vol 12 No 2, pp 87-94 

McMANIGAL D.F., STEVENSON D.A. ( 1980 ) 
‘Architecture of IBM 3277 graphics attachment' 
IBM System Journal, Vol 19 No 3, 1980, pp 331-344 

tio



MEADS J.A. ( 1972 ) 

‘A terminal control language’ 
in "Graphics Languages" (edited by NAICE, ROSENFELD) 
North-Holland, 1972 

MERSON R.H. ( 1957 ) 

‘An operational method for the study of integration 
processes' 
Proc. of Symposium on "DATA PROCESSING", Weapons 
Research Estab., Salisbury, South Australia, 1957 

MILNE W.E., REYNOLDS R.P. ( 1960 ) 

‘Stability of a numerical solution of differential 
equations - part II' 
Journal of the Association of Computing Machinery, 
Vol 7 No 1, Jan 1960, pp 46-56 

MUSSTOPF G. ( 1979A ) 
‘Microprocessor hardware and software’ 
Proc. of 2nd IFAC/IFIP symposium on "SOFTWARE FOR 
COMPUTER CONTROL", Prague June 1979, pp 23-50, 
Pergamon Press 

MUSSTOPF G., ORLOWSKI H., TAMM B. ( 1979B ) 

‘Program generators for process control applications’ 
Proc. of 2nd IFAC/IFIP symposium on “SOFTWARE FOR 
COMPUTER CONTROL", Prague June 1979, pp 11-22, 

Pergamon Press 

NEWMAN W.M., SPROULL R.F. ( 1979 ) 

‘Principles of interactive computer graphics (2nd 

ed.) * 
McGraw Hill, 1979 
pp 147-158 graphical input devices 
pp 159-182 picking selection methods 
pp 443-478 userface interface design 

NEWMAN W.M, VAN DAM A. ( 1978 ) 
‘Recent efforts towards graphics standardisation' 
Computing Surveys, Vol 10 No 4, Dec 1978, pp 365-380 

NOBLE J.S. ( 1977 ) 

‘The evolution of process control software’ 
Proc. symposium on “DEDICATED DIGITAL CONTROL", 

University of Aston in Birmingham, 1977, Institute 
of Measurement and Control (UK) 

OHLSON M. ( 1978 ) 

‘System design consideration for graphics input 
devices’ 
Computer, Nov 1978, pp 9-18 

=180-



PAYNE C.A.J. ( 1974 ) 
‘Programming by block diagrams - a computer language 
to suit the process engineer' 
Canadian Control & Instrumentation, Dec 1974, Vol 13 
No 12, pp 25-30 

PIKEUH.E. (°1970 .) 

‘Process Control Software' 
Proc. of IEEE, Vol 58 No 1, Jan 1970, pp 87-97 

PIRE HOE. (°1972") ‘ 
"Future trends in software development for real-time 
industrial automation' 
Proc. AFIPS 1972 SJCC, Vol 40, pp 915-923 

PRESIS RB. WG L978) 
‘Storage CRT display terminals : evolution & trends 
Computer, Nov 1978, pp 20-26 

PRITSKER A.A.B., PEGDEN C.D. ( 1979 ) 

‘Introduction to simulation and SLAM' 
John Wiley & Sons, 1979 

RAGAZZINI J.R., FRANKLIN G.F. ( 1958 ) 

‘Sampled-data control system' 
McGraw Hill, 1958, pp 117-144 

REVETT M.-C. |( 1973) ) 

‘Control system design using ADSOL, an on-line 
digital simulation program’ 
Proc. of conf. on "COMPUTER AIDED CONTROL SYSTEM 

DESIGN", IEE, April 1973, pp 193-197 

ROSKO J.-S. ( 1972 ) 
‘Digital simulation of physical system’ 
Addison-Wesley, 1972 
pp 372 sorting & sequencing 
pp 402-422 integration approximation 

ROSS D.T., RODRIGUEZ J.E. ( 1963 ) 
‘Theoretical foundation for computer aided design 
system' 
Proc. AFIPS 1963 SJCC, Vol 23, pp 305-322 

ROVNER P.D., FLEDMAN J.A. ( 1968 ) 

‘The LEAP language & data structure’ 
Proc. IFIP Congress 1968, Vol 1, pp 579-585, Spartan 
Books Ltd. 

RZEHAK H. ( 1978 ) 
‘Redundancy in hardware and software of process 
control’ 
Proc. of IMACS symposium on "SIMULATION OF CONTROL 
SYSTEMS", (edited by TROCH I.), North-Holland 
Publishing Co., pp 7-15 

=18i—



SCHARK G. ( 1976 ) 
‘Design, implementation and experiences with a 
higher-level graphics language for interactive 
computer aided design purpose’ 
Proc. ACM symposium on "GRAPHICS LANGUAGES, COMPUTER 
GRAPHICS", Vol 10 No 1, 1976, pp 18-23 

SCIAM ( 1977 ) 
Scientific American - special issue on 
microelectronics. 
Sept. 1977, Vol 237 No 3. 

SCHOEFFLER J.D. , TEMPLE R.H. ( 1970 ) 

'A real-time langauge for industrial process control' 
Proc. IEEE, Jan 1970, Vol 58 No 1, pp 98-106 

SCHOEFFLER J.D. ( 1972 ) 

'The development of process control software’ 
Proc. AFIPS 1972 SJCC, Vol 40, pp 907-914 

SCi SOFTWARE COMMITTEE ( 1967 ) 
"The SCi continuous system simulation language 
(CSSL) ' 
Simulation, Dec 1967, pp 281-303 

SHAMPINE L.F., WAIT H.A., DAVENPORT S.H. ( 1976 ) 

‘Solving non-stiff ordinary differential equations - 
the State of the Art' . 
SIAM Review, Vol 1° No 3, July 1976, pp 376-411 

SHAPIRO K.G-*( 1978.) 

‘Data structure for picture processing’ 
Proc. of SIGGRAPH 1978 5th Annual Conf. on “COMPUTER 

GRAPHICS & INTERACTIVE TECHNIQUES", Altanta, Aug 

1978, pp 140-146 

SIMPLEPLOT ( 1978 ) 
‘SIMPLEPLOT manual' 
UMRCC, 1978 

SMITH C.Ls8C, 1972 >) 

‘Digital computer process control’ 
Intext Educational Publishers, 1972 
pp 91 quote on ZOH 
pp 166-179 PID 
pp 184-200 process identification methods 

SMITH D.N. ( 1971 ) 
‘"GPL/I : A PL/I extension for computer graphics' 
Proc. AFIPS 1971 SJCC, Vol 38, pp 511-528 

SPECKHART F.H., GREEN W.L. ( 1976 ) 
"A guide to using CSMP' 
Prentice-Hall Inc., 1976, pp 168-172 

—1a2—



STRAUSS J.C. ( 1968 ) 
‘Digital simulation of continuous dynamic systems : 
An overview' 
Proc. of AFIPS 1968 FJCC, Vol 33, pp 339-344 

STEUSLOFF H.U. ( 1979 ) 

‘Programming distributed computer systems with higher 
level languages' 
Proc. IFAC/IFIP workshop on "DISTRIBUTED COMPUTER 

CONTROL SYSTEMS", Tampa, Oct 1979, pp 39-50, 

Pergamon Press 

SUTHERLAND I.E. ( 1963 ) 
‘SKETCHPAD - A man-machine graphical communication 
device’ 
Proc. AFIPS 1963 SJCC, Vol 23, pp 329-346 

TANIMOTO ( 1976 ) 
‘An iconic/symbolic data structuring scheme' 
in "Pattern recognition and artificial 
intelligence", Academic Press, 1976, pp 453-471 

TEKTRONIX ( 1976A ) 

"Tektronix 4051 graphic system operator's manual' 
Tektronix Inc., 1976 

TEKTRONIX ( 1976B ) 
‘Tektronix 4051 option 1 data communication interface 
instruction manual’ 
Tektronix Inc., 1976 

TEXAS INSTRUMENTS ( 1978 ) 
“Model 990 computer reference manual, Volume 1 

Concepts and Facilities' 
Texas Instruments, 1978 

THALMANN N.M., THALMANN D. ( 1981 ) 
‘A graphical PASCAL extension based on graphical 
types' 
Software : Practice & Experience, Vol 11 Nol, Jan 
1981, pp 53-62 

TOCZYLOWSKI E. ( 1978 ) 
‘Large scale steady state process simulation in 
design of supervisory control' 
Proc. of IMACS symposium on "SIMULATION OF CONTROL 
SYSTEMS", (edited by TROCH LI.), Sept 1978, North 

Holland Pub. Co., pp 55-61 

VAN DAM A. ( 1971 ) 

‘Data and storage structure for interactive graphics' 
Proc. symposium on "DATA STRUCTURE IN PROGRAMMING 

LANGUAGES", SIGPLAN Notice, Vol 6 No 2, Feb 1971, 

pp 237-267 

—183—



VAN DAM A., EVANS D. ( 1967 ) 

‘A compact data structure for storing, retrieving and 
manipulating line drawings' 
Proc. AFIPS 1967 SJCC, Vol 30, pp 601-610 

VARGA A., SIMA V., POPTESCU Th., VASILIU C. ( 1979 ) 

‘Process control algorithms for microprocessors' 
Proc. of 2nd IFAC/IFIP symposium on "SOFTWARE FOR 
COMPUTER CONTROL", Prague 1979, pp 161-164, Pergamon 
Press 

WELLER D.L., CARLSON E.D., GIDDINGS G.M., PALERMO F.P., 

WILLIAMS R., ZILLES S.N. ( 1980 ) 
‘Software architecture for graphical interaction’ 
IBM System Journal, Vol 19 No 3, 1980, pp 314-330 

WILKE J.D.F. ( 1979 ) 

‘A microprocessor philosophy for process control 
systems' 
Proc. of 3rd International Conf. on "TRENDS IN ON- 
LINE COMPUTER CONTROL SYSTEMS", March 1979, IEE 

1979, pp 115-120 

WILLIAMS R. ( 1971 ) 

'A survey of data structure for computer graphics 
systems’ 
Computer Survey, Vol 3 No l, March 1971, pp 1-21 

WILSON J.R., PRITSKER A.A.B. ( 1978A ) 

‘A survey of research on the simulation start-up 
problem' 
Simulation, Vol 31 No 2, Aug 1978, pp 55-58 

WILSON J.R., PRITSKER A.A.B. ( 1978B) 

‘Evaluation of startup policies in simulation 
experiment’ 
Simulation, Vol 31 No 3, Sept 1978, pp 79-89 

WIRTH N. ( 1976 ) 
‘Algorithms + data structure = programs' 
Prentice Hall, 1976 
pp xiii quote for data & algorithm 
pp 163-182 linked list data structure 
pp 182-189 topological sorting 

WOODWARD P.M., WETHERALL P.R., GORMAN B. ( 1974 ) 

‘Official Definition of CORAL 66 (3rd Ed)' 

HMSO (UK) 1974 

YOURDON E. ( 1975 ) 
"Techniques of program structure and design' 
Prentice-Hall Inc., 1975, pp 36-77 

-184-


