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SUMMARY 

This study is concerned with the theoretical design of 
rebalance control systems for inertial sensors using digital 
controllers. Specific attention is given to the case where 
a two-degree-of-freedom gyro is used as an attitude sensor 
in a strapdown inertial measurement system. Because of the 
similarity of the dynamical behaviour of gyros and 
accelerometers, the method can be extended to accelerometers 
without great difficulty. 

A new design method has been developed to yield control 
algorithms for the digital control elements. Control 
functions are synthesized to achieve a minimum settling time 
and eliminate interactions between the gyro control axes. It 
is shown that the method can be used when filters are included 
to remove pick-off noise, and can be adapted to take account 
of finite processing delay in the digital controller. 

Sensitivity of the system to control loop gain variations 
and mismatch in the controller elements is examined. 
Sensitivity analysis is exploited to allow overall compromise 
between response speed and the system sensitivity. 

The need for high frequency sampling in the control loops 
imposes restrictions on the execution time in the digital 
processor. Various methods of reducing the controller 
complexity are investigated with a view to reducing the 
computation time. A method of compensation for the effects 
of rounding coefficients in the control algorithm is 
developed for the specific problem involving the dry-tuned- 
gyro. This consideration is extended to identify how the 
choice of processor is influenced for the gyro rebalance 
system. 

Keywords Accelerometers, direct digital control, 
gyroscopes, sensitivity analysis, strapdown 
navigational systems.
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LIST OF PRINCIPAL SYMBOLS 

oF angle of rotation of the rotor about x-axis 

ey angle of rotation of the rotor about y-axis 

ae principal moment of inertia of the rotor about x-axis 

Tee principal moment of inertia of the rotor about z-axis 

Tig principal moment of inertia of the gimbal about x-axis 

H angular momentum of the gyro 

We gyroscope motor spin speed 

Oy gyroscope nutational frequency 

P(z) pulse transfer function matrix of the gyroscope 

ae identity matrix 

E(z) matrix of the error z-transforms 

R(z) matrix of reference inputs, z-transforms 

E, (2) matrix of modified error sequence, z-transforms 

C(z) Matrix of plant outputs, z-transforms 

D(z) matrix of digital controller discrete time 

transfer function, z-transforms 

£(2z) common closed loop pulse transfer function for all 

the loops 

(2) common error pulse transfer function 

det( ) determinant of 

Adj() adjoint matrix of 

s Laplace operator 

2 complex variable defined by a complex z-plane 

e input rate 

My steady state torque 

w angular frequency



(vi) 

Q notch frequency of the noise filter 

v 3-db rejection bandwidth 

k an integer representing delay in the pulsed transfer 

function 

Other symbols are defined in the text.



CHAPTER 1 

INTRODUCTION 

1.1 Strapdown system definition and sensor requirements 

The basic concept of inertial navigation is that if the 

acceleration of a vehicle with respect to a known fixed 

co-ordinate system is measured, the vehicle's velocity and 

position with respect to the co-ordinate system, may be 

computed by time integration of the acceleration signal. 

Inertial navigation problem in three dimensions is 

complicated because of co-ordinatised acceleration information. 

In the case of a stabilized platform, three orthogonally 

mounted accelerometers are aligned with the reference 

co-ordinate frame, using either 3 single-degree-of-freedom 

or 2 two-degree-of-freedom gyroscopes. Such a scheme 

effectively isolates the 'stable elements' containing the 

inertial instruments from any rotational motions of the 

vehicle, 

In strapdown navigational systems (Ref. 1.4) the 

accelerometers and gyros are strapped on to the vehicle 

frame. Since gyros provide direct measures of the. rotational 

rates of the vehicle, the instantaneous rotation of the 

vehicle with respect to the reference co-ordinate frame 

can be computed. This information is then used to resolve 

the measured acceleration components on to the reference 

frame for integration into velocity and position. 

Strapdown systems are rapidly becoming the preferred



way for low cost because of the elimination of the platform 

gimbal structure and its associated electronics. Halamandaris 

(Ref. 1.7) and more recently Kirk (Ref. 1.9) in their papers, 

suggested that with the current state of two-degree-of- 

freedom dry-tuned gyros with inertial grade accuracy and 

wide dynamic range, the cost of a strapdown system is 

further reduced compared to systems using single-degree-of- 

freedom gyroscopes. 

A significant portion of the hardware content and cost 

of strapdown system is attributed to the servo-electronics 

required for sensor control. In a strapdown mode the sensor 

torquing currents are fed through precision resistances to 

develop voltages which are proportional to the vehicle 

angular rates, in case of gyroscopes, and to acceleration, in 

the case of accelerometers. These voltages are then converted 

into equivalent digital numbers for use in the navigation and 

attitude equations which are solved by the navigation computer. 

1.2 Methods of torque rebalance 

In a strapdown mode the inertial sensors convert the 

signal to be measured into a torque within the feedback loop, 

by means of compensation. To achieve high aeaareee in 

measurements of angular rates and accelerations, voltage 

outputs of these sensors must be digitized for further 

processing in the digital computer. Rahlfs (Ref. 1.11 

and Sutherland (Ref. 1.12) pointed out that the integrating 

digital readout of these sensors by means of pulse rebalance



loops is particularly advantageous for high accuracy 

measurements. Binary pulse width modulated (BPWM) 

rebalance configuration suggested by Bendett and Blalock 

(Ref. 1.1 and 1.2), is commonly used compared to simple 

binary or ternary schemes, mainly because of constant two- 

level power operation of the torque motor, and at the same 

time linear behaviour of the servo-loop. It is important 

to note that all these configurations use analogue control 

methods of designing rebalance systems. 

eis General performance requirement 

Rebalance systems outlined above have been developed 

using analogue control schemes (Ref. 1.4 and 1.8), where 

the requirement for rapid response has not been important. 

However, in exploiting the maximum capability of a sensor 

there are advantages in using a digital processor as 

controller. A digital controller offers the advantages of 

flexibility in the realization of complex control algorithms 

and their accurate implementation is not affected by 

component tolerances. A possibility of time sharing the 

processor between separate control functions can also 

reduce hardware requirements. Where rapid response is 

required the signal sampling rate must be high and for time 

sharing to be possible it is important to minimize the 

computation time required for any control algorithm. 

A new method for the design of rebalance control system 

for a dry-tuned gyro using a digital controller has been 

developed. This digital control method is synthesised to



achieve a minimum settling time in the transient response. 

The need to eliminate interactions between the gyro control 

axes is also included in the design. The new method enables 

the controller to have four elements and allows the designer 

to exploit the sensitivity analysis to show how coefficients 

in the control functions may be rounded to allow reduced 

computation time in the processor. Because of the similarity 

of the dynamical behaviour of gyros and accelerometers the 

method can be extended to accelerometers. 

1.4 Dry-tuned gyro and its performance as a control sensor 

This gyro, with its two-degrees of freedom, has a rotor 

and gimbal assembly suspended on the springs. At the designed 

rotation speed the spring constants are matched to cancel 

the inertial torques due to the gimbals, so that the rotor 

behaves as a free gyro. The basic construction of a single- 

gimbal tuned gyro is shown in Fig. 1.1. The connection 

between the rotor and gimbal is provided by an elastic 

spring, Sy, which permits the rotor to deflect relative 

to the gimbal about the axis of spring S5. A second spring, 

Si, orthogonal to So, connects the gimbal to the drive 

shaft. The rotor-gimbal assembly is thus free to eouaee 

with respect to the drive shaft about the axis of S The 1 

drive motor spins the rotor and gimbal assembly at a high 

angular velocity relative to the casing. 

Operation as a rate gyro is achieved by forming a 

position control system to align the rotor with the external



casing. Signals from the position pick-offs are used to 

provide feedback control of the torques applied to the rotor. 

The precession rates are then measured by signals derived 

from the torque-motor currents. Two of these rebalance 

control loups are required for each gyro. In the strapdown 

mode the rebalance loops must be designed for adequate 

dynamic response, i.e. a short transient settling time or 

a wide frequency response bandwidth. When the system band- 

width approached the nutational frequency of the gyro it is 

no longer possible to regard the two rebalanced loops as 

independent systems. Interaction between the control axes 

demands that the system must be analysed as a multivariable 

control system. The design must also aim to counteract the 

inherent interaction. 

Gimbal 

  

   

    
Drive shaft 

¢ Inner flexure, S, 

  

Outer flexure. S, 

BAG Ly Basic construction of ‘a single-gimbal tuned gyro



1.5 Gyro transfer function and proposed ddce structure 
  

Differential equations for the dry-tuned gyro were 

developed by Bortz (Ref. 1.3), Craig (Ref. 1.6) and Coffman 

(Ref. 1.5) and may be written as 

Te. me Bo = M. 

= * (1.1) 
ré_. - Ho. =M 

Y: x b 

where a. and oy are angles of rotation of the rotor about 

orthogonal control axes on which torques M, and Mare 
I y 

applied. Inertial constant I = Sea + =, involving the 

principal moments of inertia of the rotor and gimbal along 

x-axis, and H, the angular momentum can be given as 

H = (I iia) WS 0 
an xg d Zr 50 (1-2) 

as ie >> or ie is the principal moment of inertia of 

the rotor along z-axis. Wg represent gyro motor spin speed. 

Laplace transformation of Equation (1.1) gives a transfer 

function matrix equation 

9x Be : ny Ox 

= (2.3) 

oy hy Ay Q, 

i = a AEs *n 

te ist yet)» vat a) 

= w 
wee a 

with ones Tt = 204 

Since Le >> ane and qe 2 ate and Quer Qy the normalized 

torques ML/T, Moe



The transfer function in Equation (1.3) may be identified 

with a block diagram structure for the complete rebalance 

system as shown in Fig. 1.2. 
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Bic. 1.2 Proposed direct digital control rebalance system 

Elements V represent zero-order hold functions. Synchronous 

sampling switches indicate the effect of analogue-digital 

signal conversions, and it is assumed at this stagé that 

there is negligible computing delay in the digital processor. 

Inputs ry and ry represent the case position angles to which 

the system responds. 

The pulse transfer function of the gyro P(z) for a 

proposed ddce structure can be found using a standard 

z-transform table (Ref. 1.10) which gives



NaN, 

P(z) = kK, (1.4) 

N, Ni 

with 

(T,-8) 27 
ee Ae Te eee ee 

e w.? (1-27) (12027424) 

oi. eee 
Ny = c(l-z ~) 

Eby (1+az7+4277) 

a = Cos(T,) 

BS sin(T,) 

Pet 

nae 
2(8-aT, ) 

deena Ty B 

where T,is the dimensionless sampling frequency equal to 2 

b is the ratio of system sampling frequency to gyro nutational 

frequency.



CHAPTER 2 

EXISTING DESIGN METHODS 

In this chapter, two methods reported in the literature 

for designing multivariable digital control systems in 

general are discussed. 

Ze. Synthesis method due to Nishida 

In 1960, Nishida reported a synthesis technique for 

multivariable Control Systems by means of sampled-data 

compensations (Ref. 2.2), which is the extension of single 

loop design of Jury and Schroeder (Ref. 2.1). The system 

considered consists of a linear model of the plant as 

shown in Fig. 2.1 and 2.2. 
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Nishida approach presents a general design procedure 

of non-interacting and finite settling multivariable digital 

control systems where the plant is stable. The method 

assumes that the number of outputs is equal to that of the 

inputs and all inputs have transforms of mth order. In this 

method, the series controller transfer matrix elements are 

specified by 

aro) = peer oa) (221) 

where p, (2) is the lowest order polynomial of zt which 

has the zeros at each pole of the elements belonging to 

the ith column of the transform matrix P(z). And i 

is any polynomial of an order equal to or higher than (m-1). 

In this method it is important to note that the plant 

transfer function including the hold circuit must have at 

least one matrix element to each row, the mth or higher 

order pole of which is at s =O. Otherwise it is necessary 

to introduce as many integrators as required in front of 

the corresponding inputs of the plant. 

Once Series Controller D(z) is determined the 

equivalent controller transfer function matrix D! (2) in the 

feedback system is obtained by 

D'(z) = [I - D(z)P(2)]~*p(z) (2.2) 

This method has several advantages for example a flat 

response of zero overshoot after a prescribed finite time 

is obtainable. Also the designer has a large degree of



freedom in obtaining the desired response. 

There are, however, some disadvantages. Should the 

overshoot be unacceptable then no method is outlined for 

its improvements. This problem can be more severe when 

any element in the plant contains complex conjugate poles 

very near to the unit circle. Furthermore, when any one 

Or more elements of the plant have an unstable pole, 

straightforward application of this method is not possible. 

In this situation Nishida suggested addition of a second 

minor feedback loop which means one additional controller 

in the system. He also suggested introduction of an 

auxiliary controller parallel to hold circuits, where a 

reduction in settling time by one sampling interval may be 

necessary. 

Zee Deadbeat responsemethod due to Viswanadham and 

Deekshatulu 

Viswanadham and Deekshatulu (Ref. 2.3) have proposed 

a synthesis technique for multivariable sampled data control 

system by the use of state difference equations. The 

system structure considered is shown in Fig. 2.3. 

In this design technique the multivariable process 

is defined by vector matrix equations 

X(t) = Ax(t) + Bu(t) 

(253) a y(t) Cx (t) 

where x(t) is nxl state vector, A is the (nxn) coefficient 

Matrix of the process, B is the (nxm) constant input
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Fig. 2.3 System considered by Viswanadham and Deekshatulu 

, distribution matrix. u is an mxl control vector. Then 

u y(s) P(s) u(s) (2.4) 

where 

P(s) = C{st-a]7+s (2.5) 

The solution of the discretised version of Equation 

(2.3) at sampling instants is (Ref: 2.3 

ce 
X(kT) = $(kT)X(O)+ J Of (k-1-j)T}D(T) U(¥T) (2.6) 

421 

The state vector X(kT) at and after the settling 

instant is chosen to satisfy the non-interaction condition 

and the deadbeat response specifications. Once the initial 

state X(O) and the final desired value X(kT) are chosen, 

the optional control sequence u? can be determined, then 

etkt = 8, x(kT) ar 85X(kT) (nie 

components of e(kT) are the inputs to the compensators and 

their inputs are the control sequence; so 
° ° es 

uy (0) + * GB) eMere cscs 
ace ae ae (2.8)  



The main advantage of this method is that it can be 

extended to the case where nonlinearities exist before 

the plant. 

This approach also has some disadvantages. The 

achievement of noninteraction and deadbeat response depends 

on the order of the direct transfer function P.,(s) and 

also the degree of the input. For instance if the input is 

a step and Pi4(s) is of zero order, then to obtain deadbeat 

response, the control signal in the ith path should be some 

constant value, but for noninteraction it should be zero. 

Hence it is not possible to achieve both. The same happens 

when the input is a ramp and Pia is of order 1. The transfer 

function approach does not suffer these limitations, since 

the contributions from the interacting paths to the outputs 

are cancelled by a negative signal fed to the outputs through 

a direct path.
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CHAPTER 3 

A_NEW SYNTHESIS METHOD ee ee 

Syagt Introduction 

The design of single-loop minimum System response 

time (Ref. 3.1) is extended to cover a new design method 

for multivariable digital control systems. The objective 

has been to include those aspects which differ from single- 

_loop design. The method is also extended for the case when 

settling time is not required to be finite and a method of 

retarded response offers considerable advantages where speed 

of response can be traded for sensitivity reduction in a 

systematic way. The further advantage of this procedure is 

that sensitivity is reduced without any increase in the 

complexity of the control algorithms required. 

ee Basic design method 

The system configuration in Fig. 3.1 has a multi- 

variable plant with an mxm pulse-transfer function matrix 

P(z) and m control loops are formed, each with unity feed- 

back gain. The digital controller has the structure of an 

mum array of pulse-transfer functions as represented in D(z). 

The error pulse function E(z) is given by 

B = [I + Pp] 7R (3.0) 

Also the overall closed-loop response function 

c = [xr + pp]7tppr (392)
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Pig, 3.1 System Configuration 

from which we designate the closed-loop transfer function 

and system error transfer function matrices. 

I -w = [rt + Pp] pp (22) 

w= [I + pp] + (3.4) 

A requirement for non-interacting response is that a 

test signal applied at any single input should produce a 

response at the corresponding output and have no effect on 

the other outputs. This implies that I - W must be a 

diagonal matrix. Furthermore, if the system as a whole is 

to settle in minimum time, the response time in each loop 

may be made the same* so that 

I - W = £1 Kir 5) 

where f(z) is the common closed-loop pulse-transfer function 

for all loops. Following from this we may define 

W = or (3.6) 

  

*It is shown by Steel and Puri (Ref.3.6) that this applies 
to all stable, minimum phase open-loop system.



where $(z) is the common error pulse-transfer function. 

The design method proceeds in a similar manner to 

that used with single-loop systems, by defining the 

required closed-loop function f and computing the necessary 

control function matrix D. The relationship giving D 

follows from Equation (3.3) as 

-1 _ £ Ad3(P) Pi = asctey 5) (3.7) 

A minimum prototype response function f may be 

0 u [hh
 

assigned depending on the form of input R to which the 

optimum response is required. For example a unit step 

input applied to any one of the loops leads to an error 

response 2(2)_ in that loop and zero error in all others. 
i-z 

The steady-state error will be zero provided that 4(z) 

contains a factor (ezae We note that £ = 1-0 so that 

faz for this condition and the response settles in one 

sample interval. Having assigned f and » as compatible 

functions they may be substituted in Equation (3.7) to 

define D. Two conditions need to be observed however, one 

that det(P) may be zero outside the unit circle in the 

Z-plane, and also that unstable modes in P will present 

poles in the same region. These conditions have been 

examined in detail by Steel and Puri, and they also 

examined the implications of the design policy when some 

loops have a shorter settling time than Others (Refer to Jeapay at loack biz 

The procedure is the same in principle as that used 

in single-loop system design (Ref. 3.1), with one exception 

that the zeros of det(P) and unstable modes of P are the
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determining features rather than poles and zeros of an 

individual transfer function element: A significant 

difference between single-loop design and the multivariable 

equivalent is that of locating the zeros of det(P). This 

does not follow in any obvious way from the knowledge of 

the poles and zeros of the elements of P. Normally the 

numerator polynomial of det(P) must be formulated explicitly 

so that its zeros can be found by standard numerical 

techniques (Ref. 3.2 and 3.3). This later problem may be 

avoided by a test to see whether there are zeros outside the 

unit circle, for example using the Jury test (Ref. 3.5). 

If all the zeros are inside the unit circle in the z-plane, 

their position need not be accurately known. 

The need to allocate zeros to f and $ based on the 

unstable modes of P and zeros of det(P) (Ref. 3.6,p7)leads 

to a technique where arbitrary coefficients of £ and 6 

are found by matching 9 to (1-f) term by term. 

Bee Retarded response design 

The design procedure outlined above yields a response 

which settles in a minimum and finite number of sampling 

intervals. This is the result of designating the closed- 

loop response function as a polynomial in Ze Steel and 
cpis) 

Puri have shown that some advantage in reduced sensitivity 

can be gained by removing the requirement of minimum and 

finite settling time. The inclusion of a single or more 

poles in f away from the origin, but inside the unit circle, 

has the effect of achieving a retarded response. For
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example a single pole in f will introduce an exponential 

mode, whereas a complex conjugate pair of poles gives a 

damped oscillatory mode in the response. The effect of 

this on the design procedure is that the same denominator 

must be allocated to $ in consequence of equation £ = 1-$. 

Terms introduced in this way cancel in Equation (3.7), and 

so do not appear directly in the control functions. The 

general complexity of the elements in D remains unaltered 

but coefficients are modified due to changes in the initially 

undetermined coefficients in f and $6. 

3.4 Generalised sensitivity relationships 

The design method described in Section (3.2) results 

in a response which settles in minimum number of sampling 

intervals. This requirement may be relaxed with the 

advantage of reduced sensitivity. Considerations of the 

sensitivity of the response to small parameter variations 

can be judged by the change in stability of the system 

(Ref. 3.4) which for multivariable system is given by 

closed-loop characteristic polynomial det(I+PD) = 0. If 

P is subjected to variations so that 

BIC= Pi +08 (3.8) 

where H is the deviation matrix such that elements hag is 

the variation in P,. Therefore one must examine the zeros 43° 

of det(I + P'D) = 0, recognising that under nominal design 

conditions I + PD = 31 and D = é p+. Therefore 

1 det (I + P'D) = det(I + fHP~) =0 (3.9)



ai 

defines the closed-loop modes resulting from a change H; 

provided the zeros of 9 do not coincide with any of the 

roots of determinant. 

Small variations anticipated in P may be identified 

as loop gain changes or movements of the poles and zeros 

of individual elements. These effects have been examined 

separately in detail (Ref. 3.6piJand results giving sensitivity 

conditions have been developed which are of considerable 

generality and significance. This leads to the conclusion 

that by placing a requirement of finite settling time on 

the system a design may result which is both sensitive and 

unnecessary complex in the control algorithm required. 

A retarded response method based on systematic analytical 

technique can be used by which speed of response can be 

traded for sensitivity (Ref. 3.6, p25) 

S55 An_ assessment of the method 

From the discussion in Chapter 2 of the method 

described by Nishida, it is apparent that the above technique 

and Nishida's method have some common aspects. 

Firstly, both are based on transfer function approach. 

Saconay) both use a finite settling time design technique 

to the presentation of the analysis. The proposed method 

is a minimum settling time design which enables a means of 

establishing ultimate performance capabilities where high 

speed of response is required. = 

A retarded response design method based on analytical
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technique has been developed by Steel and Puri, by which 

some of the complex conjugate pair of poles or zeros of 

det (P) which are inside but very close to the unit circle, 

need not be assigned to f and ¢. Sensitivity to parameter 

variations which will move these poles or zeros on to or 

outside the unit circle can be avoided by putting constraint 

on to the movement of root loci at these points. This will 

result in a system which is less sensitive and at the same 

time less complex in the controller elements. 

Sensitivity effects to loop gain variations have also 

been identified by Steel and Puri, and methods are proposed 

for their improvement.
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CHAPTER 4 

APPLICATION OF THE DESIGN METHOD TO A MODEL OF DRY-TUNED 

ROTOR GYROSCOPE 

4.1 Introduction 

In the previous chapter, the brief review of a design 

method of multivariable digital control algorithms for 

minimum settling time response was given. In this section 

the method is applied to a linear model of dry-tuned rotor 

two-degree-of-freedom gryroscope. 

In the rebalance control system of Fig. 1.2 pulse- 

transfer function matrices P(z) and D(z) are used to decribe 

the gyro and the digital controller. The objective of this 

study is to design a digital controller to close the re- 

balance torque loops such that torque depends on the 

angular position error of the axis about which that torque 

results in precession. 

4.2 Minimum settling time design 

The system design proceeds with the basic result 

of Equation (3.7) as developed in Chapter 3. In this 

equation the functions f and $ are first of all constrained 

by the requirement for zero steady state error, which 

means @ must contain Gay where n depends on the 

form of input R, e.g. n = 1 for a step input and n = 2 

for a ramp input. Further constraints are due to the need 

to avoid some cancellations between elements of P and D 

in the product PD which gives the open loop pulse-transfer



function matrix. Cancellations on or outside the unit 

circle in the z-plane can lead to a sensitive design in 

which instability will result from a small mismatch in the 

controller. General rules for avoiding such sensitivity 

problem can be drawn up assuming an arbitrary form of 

Matrix P(Ref. 3.6). However in the case of the dry-tuned 

gyro, the inherent symmetry of the dynamic structure, as 

given by Equation (1.4), leads to some simplifications. 

All four elements of P haye a common pole pair on the unit 

circle due to the undamped oscillatory characteristics of 

the gyro. This would normally lead to a pair of zeros in 

each element of one at a corresponding position. But as a 

result of cross coupling between the gyro axes det(P) is 

zero at the same point in the z-plane, so that this mode 

is cancelled from Pp}, 

Apart from the zeros of det(P) which coincide with 

the poles of the elements of P there are two other zeros 

which appear on the unit circle. To avoid sensitivity 

this pair of zeros must be allocated to f. 

Therefore the general method proceeds by designating 

# = 21 a(z) B(z) 

oo (4.1) 
=i\n 

= (Ueze)h Bee) 

where A(z) contains the uncancelled pair of zeros of det(P) 

on the unit circle. Polynomials B(z) and L(z) have 

undetermined coefficients as necessary to allow equation 

£ = 1-9to be satisfied. Once f and > are explicitly 

known the necessary control function matrix D can be
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defined from Equation (3.7). 

4.2.1 Class I and class II systems and their comparisons 

A class I system is. defined as having a finite steady 

state error in response to a constant rate input change. 

The class II system gives zero error with a constant rate 

input and a finite error with a constant acceleration input. 

Steady state alignment is clearly best in the class II 

design but comparisons have been made (Ref. 1.5), which 

showsthat a small constant steady state error in the class 

I design may be acceptable. It is interesting to compare 

the design results with the minimum settling time digital 

controller, The class I design is achieved by designating 

n = 1 in Equation (4.1) and class II with n = 2. 

The following general features emerge 

(i) Settling time following a step input change 

Class I: In this case n = 1 in Equation (4.1) and to 

satisfy f = 1 - ¢, B(z) =1 and L(z) will 

be a second order polynomial with two 

undermine coefficients, hence the settling 

- time = 3T. 

Class II: n = 2, therefore B(z) and L(z) will contain 

unknown polynomials of degrees 1 and 2 

respectively. In this case settling time 

= 4T. 

(ii) Steady state error calculations 

Steady state error along each axis at any sampling
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instant (qT) consists of terms proportional to the input, 

the input velocity, the input acceleration and in general 

still higher derivatives of the input signal (Ref.4.4) and 

is given by 

c c 
e(qT) = Cx(qt)+C,r" (qr) + wer M(q@)+....+ 8 x(q) e., 

(4.2) 
: 

te a al 
m 

= s=oO 

Poy mao ay (4.3 

* 

where > (s) is the system error pulse-transfer function in 

terms of the starred transform which is obtainable from 

o(z) by substituting z = exp(Ts) 

If A(z) = (1422714274) represents the uncancelled set 

of zeros of det(P), it is possible to solve undetermined 

coefficients of @ in term of 2% for a class I design and 

the resulting expression gives 

g(2) = (lazy (a+ SAR ot + Ea) (4.4) 

and corresponding error series along each axis can be 

written as 

Sorel 1+2 
e (qT) =T (1+ —— FL topp)e (qt) Sr 1+3 (555) +5 ( es 

mrt (qT) 

Salvatore (4.5) 

If the gyro is displaced at a constant rate p along the 

axis then the inspection of Equation (4.5) reveals that 

the steady state error at the sampling instant for class I 

would be 2Tp whereas it will be zero for class II design. 

(iii) Controller complexity 

Because of an additional unknown factor in B(z)
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an extra term is required in the numerator and 

denominator polynomials for the class II case. 

This section has shown how the minimum settling design 

method can be employed for designing rebalance control 

system for a dry-tuned gyro and the general features of 

class I and class II systems. It is now possible to do 

further comparisons by taking specific value of b, the ratio 

of sampling frequency to gyro nutational frequency. 

4.2.2 Design using a specific gyro model 

In this section the design for a specific gyro model 

is described in which further comparisons for class I and 

class II systems will be made. If we select 

pe oe ee eg eciecion Mule eee gyro nutational frequency 

~ My (4.6) 
and 

pole e[ a “2| 
“Ny Ny] 

where 

K, = 0.306 27 /u? (1-2-4) (1-0.6 2b +277) * 
Ky = 0.536u,3(1-2-*) /2 (141.825 2+ + 27) a7 

Y= 2.284(1=227) 

N, = (143.67 Ze en) 

The term (1 + 1.825 27) + iy in K, has zeros on the 

unit circle, therefore this must be assigned to £ in Equation 

(3.7). The resulting design factors are as follows:
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(i) Closed-loop pulse-transfer function f(z 

1 (1$1.8252714277 
a 

class I : 0.26142" 

1 class II : 0.784327" (141.8252 -+z27-) (1-0.6672,-) 

(ii) Error-pulse transfer function $(z) 

pe olgeiies-) 
2 

Glass eee = cu l(1+0. 738025 

1 class II: (1-z74)2(141.215727+ = 0.522927 

(iii) Digital controller D(z) 

Control function for class I and class II design is 

  

a d i 2 
D(z) =K 

Ces a oi 

where 

20254(1-2"-) 

(LEaneae sateen 
ay 

oy 

Common factor K 

i 

3 
3 0.14020, 

class «I 3 T 
(140.73862 ++ 0.261422) 

0.4207, 9(1-0.6672 *) 
class If ; a 

(azn) (21572 0.52292 

(iv) Steady state error for a tuned gyro with nutational 

frequency of 480 Hz and for 100 deg/sec. input rate 

class I : 0.08° 

class II : zero 

(v) Maximum torque for constant rate input 

class 1; lie2 Mo 

class It ; 2-5 (Mo 

where Mo is steady state torque.



Comparison of general and specific features leads to 

the conclusion that the class I design is preferred since 

it offers reduced complexity in the control functions and 

lower torque demands, while the steady state error is 

acceptably small. 

4.3 Sensitivity considerations 

The minimum settling time design developed for gyro 

rebalance control system yields a response which settle in 

three sampling intervals. It has been suggested (Ref. 4.2) 

that such systems are potentially sensitive to parameter 

variations. This is in part due to the cancellations 

generated between the controller and the plant transfer 

functions and also due to multiple poles in the closed loop 

response at the origin of the z-plane. Sensitivity must 

therefore be examined carefully to ensure that the design 

will remain satisfactory over a range of parameter changes, 

In the case of rebalance control loops the gyro is 

designed to have an accurately reproducible dynamic 

characteristics and wide linear range of operation. The 

pick-off gain is however, one of the less consistent 

features. This, and the possibility of rounding off 

coefficients in the digital processor algorithm, will be 

considered in detail. 

4.3.1 Control loop gain variations 

A variation in the pick-off gain é in loop i results in a 

gain change applied to all the elements of P in row i. When
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same mode of variation, in this case the gain factor, is 

present in several elements of P, the component 6 is the 

same in each element, so that the deviation matrix H given 

in Equation (3.8) has elements a = eS when an element 

os is changed and zero otherwise. Therefore it is useful 

to write 

H = 6K (4.8) 

where 6 is a scalar multiplier and K contains Bay or zero 

in each element. The general sensitivity condition of 

Equation (3.9) is now modified to 

det (I + £6KP 7) 70) (4.9) 

Matrix K will contain the elements of P in row i and 

zero elements elsewhere. We may write K = SP where the 

matrix S has a element sa 1 on the diagonal to correspond 

with row i in P and all other elements are zero. Then the 

matrix product xp7+ in Equation (4.9) reduces to S so that 

the determinant is satisfied by one equation 

Less =%0 (4.10) 

The movements of the zeros as a function of 6 may be 

investigated by root locus solution of this equation. When 

£(z) is a polynomial in ie as in the case with a finite 

settling time design, all its poles are at the origin. The 

root loci move out from the origin to terminate on the 

zeros of f(z) or at infinity. Stability limits are reached 

when § is large enough to place roots on the unit circle. 

For the class I system design example Equation (4.10) can 

be written as



Pe OG 

1 1 ae G.2614 2 — (2 + Les 2h a ey - 2 (4.11) 

The stability limit is reached when Equation (4.11) has a 

solution on the unit circle as the complex variable z moves 

along the circumference of the unit circle about the origin 

of the z-plane. The complex variable z and the frequency 

are related by 

Zz = exp(sT) = exp(jwT)= cos(wT) + jsin(wT) (4.12) 

Limiting value of § can be computed by equating absolute 

values on either side of Equation (4.11) when angle 

condition on left hand side approaches 180° and for this 

design example the value of § is 2.1. However such large 

variations will not happen in practice, and it is more mean- 

ingful to examine the effect of small variations on the 

closed loop response by simulation. The programme is 

discussed in Appendix C. Fig. 4.1 shows the result of a 

10% variation in gain in the error response following a unit 

step change of case position. 

It is to be noted from Fig. 4.1 that there is an 

increase in response settling time when the loop-gain is 

deviated from its optimum value. Also there is slight 

Overshoot of about 5% for the response corresponding to + 103% 

gain variation. But it is important to observe that despite 

the slight overshoot and the greater settling time, the 

system remains stable. 

4.3.2 Controller mismatch 

Minimal response time design technique yields the four 

transfer functions of the control algorithm in the form of
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Pig. 4.1 Effect of gain changes 

matrix D. It is always desirable to round-off some of the 

coefficients used in the digital control algorithm as far 

as possible without effecting the overall response. A 

solution to this problem will be developed for a gyro balance 

system. 

The general form of digital controller transfer function 

Dis given by Equation (3.7) and when P has the structure as 

given in Equation (4.6) D becomes 

N N. : eae 
ae queen (4.13) 

Nj ten, 1K1¢)-Np Ny 
ot 

Cancellations are performed in this equation so that the 

common factor simplifies. For example in the class I design 

it becomes 0.1402w, 9 (1 - 20) es. We may consider first the
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possible mismatch in the common factor in realizing D. If 

n(z) is a small change added to $ the zeros of det(I + PD) 

are given by 

1- in =0 (4.14) 

where zeros of > are given as z =-0.3693 + jo.3536 and are 

well inside the unit circle, this is not a condition in 

which root locations are sensitive. The coefficients in the 

common denominator of D may therefore be rounded without 

significantly affecting the overall response. In the design 

example for the class I system the denominator of K3 as given 

i 2 in Section (4.2.2) may be rounded to (1+0.75z > + 0.252 ) 

with negligible effect on the dynamic response. 

Mismatch in the numerator polynomials Ny and Ny raises 

a special sensitivity problem in the case of gyro rebalance 

control system. If 4, (2) and 4, (2) are small changes added 

to polynomials Ny and Ny such that 

ms £(N,4,+N,4,) F(N,A5N,4)) 

| (N. 24 By (N 24N zy 

I+PD =F oe 2 : ; 2 . (4.15) 
~f£(N,4,-NUA,_) £(N +N A | ie iar ee ne, | 

2 2 2 (Ny +N,) (Ny *+N,7) 

then the zeros of det(I+PD) are given by 

[  2€(N,a,+N,4,)] 
e | ae 

ae 1+ —————_=—| = © (for small 4, and 45) 
(N,7+N,7) 

(4.16) 

The zeros of (N\?+ N,*) give pole positions at which 

root locus branches emerge for Ay = Ay =O. In the case of



tuned-gyro there are two pairs of such zeros located on the 

unit circle. One pair is cancelled however, by the corres- 

ponding zero assigned to £f. The remaining pair occur at the 

nutational frequency and it is significant that root loci from 

these zeros will enter the region outside the unit circle. 

When the zeros of Equation (4.16) fall outside the unit 

circle the system will be unstable. This can be avoided by 

matching the changes Ay and 45 so that 

A N 
2 A, seo ak (4.17) 

NO H 

in the region of the z-plane close to the zeros of (Ny ?+N,?) N : 

at frequency Oy + For the tuned gyro =-j at z = exp (ju,T) - 
7 

The polynomials Ny and Ny given in the example Equation 

(4.6) and (4.7) indicate a need to consider rounding the 

coefficients 3.67 in Ny with a change Bemsoz If a change 

is also made in the gain coefficient 2.254 of N, with 

  

  

2 

Ay = 8, (1-27) then at z = exp(jw,7), 

Se ay aot a 
et =e) me (4.18) 

z dy thee, L 

hence Equation (4.18) is satisfied when 

= 2sin(w T) (4.19) 

  

and the coefficient changes will cancel each other. This 

relationship assumes small changes in coefficient of oe 

in Ny and gain Of (1-27?) in Ny: System response plot of 

Fig. 4.2 indicates in (i) the result of such a compensating



adjustment in which 3.67 in d, is rounded to 4; this is 

compensated by a change in the gain factor 2.254 in ay as 

required by Equation (4.19). 
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Fig. 4.2 Response with adjusted parameters 

It is significant to observe that the system response with 

adjusted parameters would undoubtedly be looked upon with 

more favour despite little overshoot and increase in 

settling time. 

Equation (4.19) assumes small changes in coefficient 

= 2 
of 2 in Ny and gain of (1-2 “) in N,. When larger changes 

de 

are contemplated, further compensation may be necessary to 

prevent unsatisfactory performance. This can be achieved 

by retarding the system response. 

4.4 Effect of retarded response 

In section (3.3) it has been shown that some advantage 

in reduced sensitivity can be gained by removing the require- 

ment of finite settling time. A term (i-v274 allocated as



a pole in f and @ results in an overall system response which 

includes a mode haying a time constant tT such that A v 

and the response will settle exponentially. 

With uncertainty in the pick-off gain Equation (4.10) 

applies and the added pole in f replaces one of the poles at 

the origin. The reduced multiplicity of the pole leads to 

reduced sensitivity (Ref. 3.6). In the design example a 

pole assigned to f at v= 0.6 results in Equation (4.11) to 

be modified to 

i 1 72) (141.8252 “+z 

4 
0.10452 2 aes =-¢ (4.20) 

which increases the stability margin from 6= 2.1 of previous 

value to 4.0. The reduced sensitivity is evident from the 

response graph of Fig. 4.1 where a 10% change of loop-gain has 

been introduced. 

The variations in the numerator polynomials of D 

results in root locations given by Equation (4.16). When a 

simple pole is introduced in f its effect is to alter the 

angle of departure and the magnitude of the movement of the 

root loci. In the case of gyro rebalance system the locus 

from z=exp (jw,T) is of particular concern. By choosing 

the pole position the root locus can be set tangential to 

the unit circle so that a residual mismatch in changes 4) 

and Ay will have minimum effect on stability. In the 

design example the locus alignment is achieved with v=0.6, 

which corresponds to a retardation with a mode having a 

time constant of approximately twice the sample interval.



It is also significant to note that the magnitude of the 

movement of the root loci (Ref. 3.6) is also reduced, for 

example in this design the value is reduced to one fourth of 

its original value. 

When system response is retarded the common factor K 

  

3 

in D for class I design will be 

0.0561 ow, 

K3 = =r = (4.21) 
(1+0.2954z ~+0.1045z “) 

and the denominator of which may be rounded to (140.2527 s 

0.1252 7) with negligible effect on the dynamic response. 

The response (ii) in Pig. 4.2 shows the further effect of 

including the retardation factor. This response represents 

the overall compromise between response speed, sensitivity 

and controller complexity. The resulting Fig. 4.3 shows a 

frequency response bandwidth is approximately half the 

nutational frequency of the gyro. 
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4.5 Control looos interaction sensitivit 
  

Because of diagonalization of closed-loop pulse transfer 

function (Equation 3.5) each input is paired with an output 

and these input-output pairs do not inleract with each other. 

In the case of a gyro rebalance system design it is 

important to observe how the changes of loop gain and 

rounding-off coefficients affect the interaction between 

control axes. When there is a variation in loop gain in 

one or both loops, the matrix of the open loop pulse- 

transfer function PD remains diagonalized and therefore 

does not affect the interaction. Also the changes in the 

common multiplying factor R3 in D do not affect this 

diagonalized pulse-transfer function matrix, therefore 

interaction is not introduced by loop gain changes or by 

changes in the denominator of the polynomial. 

On the other hand, when the mismatch in the polynomials 

Ny and Ny is considered, the interaction between the control 

axes is only cancelled when off-diagonal elements of 

Equation (4.15) are equated to zero, this gives 

pu
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Variations in the numerator polynomials have been 

considered in Equation (4,17). In the gyro equations 
N N 1 

evaluated at the nutational frequency aT =~ so that D D 
2 a3 

the condition for the non-interaction is the same as that 

of cancellation of coefficient changes in this particular 

case. Some interaction will appear at other frequencies
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but it is important to note that it is cancelled at the 

nutational frequency where it has its maximum effect. 

4.6 Design with noise filter included 

In some dry-tuned gyros design problems have emerged 

due to pick-off noise at the spin frequency or its harmonics. 

The elimination of such a noise signal can be accomplished 

with a notch filter (Ref. 4.1). This filter may be implemented 

in analogue or digital form. For analogue filter the transfer 

function is given as 

$7+Q? 

g(s) = —— (4523) 
s*+vst+n? 

The plot of the magnitude function [g(jw)| is sketched in 

Fig. 4.4 

|a(jw) Jo} 

db 

  

  

Q 
Frequency (w) 

‘Fig. 4.4 Frequency response characteristics of the notch filter 

This shows that w=2 is the notch frequency at which there 

is no transmission through the filter. Within the frequency 

band centered at w= and of width v, signal components are 

attenuated more than 3-db, the rejection bandwidth. 

For the digital notch filter the algorithm
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Ge oa 2 tea, (z 741) 
(2) = ——+> 2, ___ (4.24) 

(1-a,z tayz ) 

with 

2 2 oe ) 

(rege tw (4.25) 
e (1+22~v) 

2 (142? +v) 

gives zero transmission at the notch frequency and unity gain 

at high and low frequencies. 

When the notch filter is implemented in digital form, the 

design procedure is applied with ne replaced by 2 in 

Equation (3.7). The numerator polynomial of g(z) is assigned 

to £ and the denominator to #. This results in the minimum 

settling time being increased from 3 to 7 sample intervals 

in the class I design. Also there is an increase in the 

controller complexity with fourth order polynomials in the 

numerator and denominator. Sensitivity to parameter changes 

is increased. The same problem arises when the corresponding 

analogue filter in the form of Equation (4.23) is implemented 

before the analogue to digital converter. 

A compromise is reached if a non-recursive digital filter 

is employed. This provides a pair of zeros at the notch 

frequency which are also allocated to f. The result is a 

minimum settling time of 5 sample intervals and controller 

functions with second order Timer ioy and fourth order 

denominator polynomials. For such a design for class I 

system £, 6 and the common factor K, in D can be written 
3 

as
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$ = (1-274) (140.31582 7140. 174127240. 825827 240.68412 74) 

(4.26) 

@ ay 1, 61762 nen) 
es a 

: (140. 31582 71+0.174127°+40. 82582 7+0.68412~°) 

When such a filter is included in the design the steady 

state error at sampling instant can be computed from 

Equation (4.3). For such a design A(z) as given in 

Equation (4.1) takes the form. 

i 2 3 4 A(z) =(1+0.31582 ~+0.1741z “+0.8258z ~4+0.6841z —) 

(4.27) 

and thereforethe steady state error for class I design will 

be 3Tr'(qT). For a nutational frequency of 480 Hz for the 

gyro and 100 deg/sec. input rate this value of the error 

is 0.125°. This is due to the fact that when such a filter 

is included in the design there is increase in the order 

of the polynomial A(z). 

It is significant to note that when such filters are to 

be included in the design the interaction between gyro 

control axes is not affected because Equation (4.22) condition 

still holds good. 

In all these cases the overall bandwidth must be less 

than the notch frequency. This means that attainment of 

adequate response speed for strapdown applications is 

considerably impaired by the need for such filtering.



Aa Processing delay 

The execution time of the digital processor implementing 

the control algorithm may well amount to a significant 

fraction of the sample interval. This results in an 

additional delay in the rebalance loops. Fig. 4.5 shows 

the system response with such delays in the control function 

i 

| 
| 

for a class I design. 
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Fig. 4.5)” Response with processing deley: 

From Fig. 4.5 it has been observed that for small 

computing delays up to 0.5 times the sampling interval, 

the system response may be acceptable in practice. This 

is due to three main reasons. Firstly the system remains 

stable in the presence of such delays. Secondly the out- 

put converges to its final value in finite time though it 

is relatively greater than the minimal response time, and 

finally, the controller complexity is not affected.
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The overall settling time can be improved by taking 

account of the delay in the design equations. For such a 

design the analytical procedure outlined here may be 

implemented with the modified, or delayed z-transform 

functions (Ref. 1.10). A system of this type can be 

described by a transfer function P(s), each element of which 

includes a multiplicative term ee where \T is the 

processing delay in the system. To be able to design a 

digital controller for such systems it is necessary to 

obtain the pulsed-transfer function P(z,) which takes into 

account a plant transfer lag in each element where 

k = AtA (4.28) 

The constant k is an integer representing the delay in the 

pulsed-transfer function, and A is a fraction. Since in a 

given gyro rebalance design the processing delay is a 

fraction of the sample interval therefore k will always be 

unity. The system function for a plant of this type can be 

represented by 

Tr 
ATs eAts Pi(s\)= B(s)es "= 6: Big) (4.29) 

where P(s) is the plant transfer function without processing 

delay. The z-transform for a system function of this type 

becomes 

P(z,A) = z P(z,-A) (4.30) 

The design method now proceeds in a similar Manner to that 

used with conventional multivariable design as given in 

Section (3.2), by defining the required closed loop function
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£ and evaluating the necessary control function D as 

ail _ £ AA(P(2,0)) _ £ Aaj (P(z,~A)) 
HAM2sA) = 5 deriete ayy a) 4p cee (2 (a, -A)) 

0 ul 

|
 

(4.31) 

When such a delay is introduced in the proposed system, 

the pulse-transfer function of the gyro as given by Equation 

(1.4) is modified and new values of Ki, Ny and Ny are given 
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AT) sia(iT,) 

Cos (AT, ) +Cos (1-\) T, -2CosT, 
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i-Cos (1-A) T) 
a, = 

2 T=Cos AT) 

nea (1-A) T, -2AT, CosT, +2sin (AT) -sin(1-)) Ty 

1 AT, -sin(AT)) 

Ps AT, ~2(1-A) T,CosT, ~sin(AT,) +2sin(1-A)T, 

2 AT, -sin(AT,) 

ce (1-A) T)-sin (1-)) T) 

3 AT, ~sin(A\T))



The minimum prototype response function f may be assigned 

depending on position of zeros of det(P(z,\)) for which the 

optimum response is desired. For a prescribed computing 

delay, it is possible to evaluate BEE Ae It has been 

observed that for a known value of the delay \, there is no 

cancellation between the elements of P(z,\) which forma 

common pole pair on the unit circle and the corresponding 

zeros of det (P(z,A)). Therefore in this design, the 

common pole pair on the unit circle due to undamped 

oscillatory characteristics of the gyro must be assigned to 

polynomial 9 to avoid sensitivity problem. Also the poly- 

nomial det(P(z,\)) which is of sixth order must be evaluated 

for its roots and any zeros of this which lie on or outside 

the unit circle in the z-plane must be assigned to response 

function f. The final design results in the minimum settling 

time being increased, and also there will be an increase in 

the conroller complexity. Because of increase in the number 

of zeros at the origin of the polynomial f, sensitivity to 

parameter variations is also increased. Because of increased 

dimensionality with high order polynomials, this will result 

in the need for more elaborate control algorithms. There- 

foreit is for this reason that in implementing such a design 

one must decide about the increased complexity in the system 

which might result. 

4.8 Summary 

The method described has enabled the gyro rebalance 

System to be designed for class I and class II cases. The



method of design proposed here has the advantage that it 

exploits. direct analysis in the z-plane and takes account 

of the behaviour of the rebalance system of a dry-tuned gyro 

as a multivariable control system. The need to eliminate 

interaction between the gyro control axes has been included 

in the design policy. 

Comparisons for class I and class II design leads to 

the conclusion that class I system is preferred, since it 

offers reduced complexity in the control functions, lower 

transient torque-motor capability, while the steady state 

error is acceptably small. 

Results giving sensitivity conditions have been 

developed which are of considerable importance and 

significance. This involves a differential adjustment of 

coefficients on the one hand, and an optimal reduction of 

sensitivity by retardation of the dynamic response on the 

other. 

It has been shown that the design method may be 

implemented at the expense of increased controller 

complexity when noise filters are to be included to 

remove pick-off noise. It is also shown that the’method 

may be adapted when it is necessary to incorporate 

processing delay but the design will be more complex in 

terms of increased dimentionality of the controller 

elements and will be more sensitive to parameter changes. 

On the other hand a compromise may be reached if the 

slighly increased overshoot and settling time as shown in 

Fig. 4.5 is acceptable for a prescribed computing delay.



CHAPTER 5 

IMPLEMENTATION OF THE DIGITAL CONTROL ALGORITHM 

Die Introduction 

The design procedure outlined in the previous chapter 

yields a control algorithm in the form of matrix D, 

implementation of which most conveniently involves a 

digital processor. In this chapter considerations are 

given to the requirements of a processor for such applications. 

The limited speed of less expensive digital processors 

dictates that functions must be performed using minimum 

number of computer instructions. Various methods of 

recucing the complexity of the control algorithm will be 

examined, which will allow a more flexible choice of the 

processor. 

562 Reduction of control algorithm complexity 

Implementation of the four transfer functions of D by 

a digital processor involves a combination of multiplication, 

addition and data store operations. It is important to 

ensure that the processing of each new pair of error 

samples, together with their conversion from analogue to 

digital form, can be completed in less than a sample 

interval. Timing calculations show that with a high 

sampling frequency required for such applications, there 

is a need to select the processor carefully particularly 

where a digital noise filter is to be included.



Multiplication is potentially the most time consuming 

arithmetic operation involved. There may be need to involve 

a separate hardware multiplier to overcome the slow operation 

of software multiplication. Limitations on the choice of 

processor are considerably relaxed if the number of multi- 

plications can be reduced as far as possible. Various 

methods of analytical approximation and reduction in 

processor computing time are investigated to minimize the 

computation time. 

5.2.1 Analytical approximation methods 

It is always desirable and sometimes necessary to 

reduce the order of the control function to allow a more 

flexible choice of the processor in implementing a given 

algorithm. Several model reduction techniques have been 

developed and it has been recognised that the most powerful 

method for the reduction of higher order transfer function 

model, is that developed by Chen (Ref. 5.2) for continuous 

multivariable control systems based on single loop design 

(Ref. 5.3). In this method one expands the given transfer 

function into a Cauer-type continued fraction about s=0. 

This ensures that the model gives the correct steady state 

response, but the approximation to the transient response 

May not be good. Furthermore, the stability of the model 

is not guaranteed even if the original system is stable. 

Chuang (Ref. 5.4) modified the Chen's method to obtain a 

more accurate initial transient response, by expanding 

into a Cauer-type continued fraction about s=O and s=~
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respectively. Shamash (Ref. 5.12) extended this approach 

for discrete time systems. 

The above analytical methods were used in the case of 

rebalance control loops of the gyro for reducing the 

complexity of the controller, but they lead to system 

stability problems. To overcome this, an optimisation pack- 

age using simplex method (Ref. 5.7) was used with SLAM 

similation, in explicit mode, to minimize the sum of the 

Mean square errors at sampling instants. It was observed 

that the method consumes a considerable amount of digital 

simulation time to give optimum values of the reduced order 

controller coefficients. The digital simulation program is 

discussed in Appendix D. 

5.2.2 Arithmetic simplification 

An alternative approach to the problem is to avoid 

multiplications as far as possible. One method of achieving 

this is to round-off coefficients to values represented by 

simple binary operations. In this way whole word multi- 

plications are replaced by a small number of quicker shift 

and add operations. 

The design method has been developed with this 

possibility in mind. It provides a means of rounding 

coefficients without adverse effect on the system performance. 

For example it has been shown in section (4.3.2) that the 

polynomials Ciestoie oe) may be rounded to (1+4274+27? 
i aE and also (1+0.73862 + + 0.2614z~*) is changed to (1+0.75z_ 

+ 0.25277). When system response is retarded (section 4.4),
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vy the factor (1+0.2954z2.> + 0.1045277) can be rounded to 

i + Grose. )e Multiplications involving the new (14052525 

coefficients 4, 0.75 and 0.25 or 0.25 and 0.125 for the 

retarded response case may be implemented by simple shift 

and add operations with significant saving in processing 

time. 

The effect of rounding coefficients in the control 

algorithm can be further studied by using the simulation 

program given in Appendix C. Since this method is not 

based on the iterative design procedure for reducing the 

controller complexity, a significant saving in digital 

computer simulation time can be achieved. Moreover, the 

method of rounding the coefficients described above is 

ideally suited for this design because of significant 

saving on the digital processor requirement. 

Deo Digital processor requirement 

In the previous section the advantages of rounding 

coefficients in the control algorithm to reduce the 

computation time have been identified. This allows a more 

flexible choice of processor for implementing the digital 

controller. 

In the case of the gyro rebalance system, any component 

of the rate about the gyro input axis produces a gyroscopic 

torque which causes the position of the rotor to move about 

its output axis. Any sensed deviation of the rotor position 

with respect to the case from its null position is sensed 

by signal pick-offs which produce a proportional amplitude



modulated a.c. signal. Control of the torque motors is 

achieved through binary pulse width modulated rebalancing 

schemes, as discussed in Appendix A. 

When a digital processor is usedas a controller for 

exploiting the maximum capability of the gyro, both the 

compensation loops servo functions are mechanised as digital 

computations. The inputs to the analogue to digital converter 

are the gyro pick-off signals. The torquing signals .are 

computed digitally using software programming techniques 

and then converted to analogue signal which can be used to 

restore the sensors. Digital computations may be performed 

by time sharing in the main navigational computer, or in a 

separate special purpose processor. 

The arithmetic operations necessary in implementing 

the programming techniques are multiplication and addition. 

In the previous sections, the method of rounding the 

coefficients to minimize the processing time for efficient 

use of the instruction set are discussed. These are 

applicable to most processors. There is almost no call 

for instructions other than load, add, store and data 

shift in implementing the required control algorithm. This 

is an important consideration in the selection of a 

processor for this application. 

The basic structure to be realized in the case of 

rebalance control loops of the gyro for class I design is 

given in Fig. 5.1, in which 211 and ®5 represent A/D 

converted pick-off signals and e,,* and &55* are the modified
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error signals after performing digital computations. It is 

to be noted that Fig. 5.1 is drawn taking into account 

coefficients rounding in the control algorithm. 
So 

1+) 

  

)   
    
  

          

}-0.75 =0.25 

  
      

        
        
      

Sr 
Fig. 5.1 Implementation of control algorithm for class I design 

The structure of Fig. 5.1 to be realized is of 

second order, and the equations which result from this 

flow graph are 
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@55 and Sige 25° are the input and the output
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sequences corresponding to sampling time intervals. Two 

multiplications, 12 additions/subtractions and 4 shift/add 

Operations are the main arithmetic instructions required in 

implementing this design. The realization of such an 

algorithm, for example on a TMS 9900 microprocessor (Ref. 

5.12 and 5.13) using fixed point software multiplication will 

require about 200 us. If the sampling frequency as high as 

2.4 kHz is selected, which is five times higher than the 

dominant pole frequency of the gyro, then this implementation 

time is almost half the sample interval. 

5.4 System performance Vs processor word length and speed 

It has been shown that a strapdown system employing a 

digital control for the tuned gyros, the servo-loop functions 

are mechanized as digital computations and the torquing 

signals are computed digitally, converted to analogue form, 

and, after power amplification, used to restore the rotor 

with the external casing. These same digital torquing 

Signals can be used directly for attitude and navigational 

computations as well. When a pulse-rebalance loop 

configuration is desired the torquing signals after digital 

computations, must be sent to the quantizer where the 

switchover from negative to positive can be made to occur 

in synchronism with the sampling frequency. 

Selection of the sampling frequency which represents 

the maximum rate at which the information may be extracted 

from the rebalance loop, depends upon the minimization of 

timing errors and improved torquer-current linearity (Ref.1.2).
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The quantization frequency is selected based on the 

dynamic range of operation required in a given application 

and minimum value of this frequency equals the ratio of the 

maximum input rate to be rebalancedto the required attitude 

quantization. The attitude quantization specification is 

based on overall vehicle attitude determination (Ref. 1.4). 

Depending upon this information which gives the total number 

of current pulses required in each limit cycle, one can select 

the corresponding word length for the processor. It has been 

observed that in most cases a 8-bits word length processor 

will be sufficient. Since real time digital processing is 

to be carried out in each sampling interval, close attention 

must be paid to the time taken to perform addition, multi- 

plication, load and store data operations, which are the main 

instructions needed. 

A twos-complement number representation, using fixed- 

point arithmetic may be chosen for this application. Floating 

point arithmetic, in which the magnitude of the number is 

represented by a fraction, with separate word to locate the 

radix point, is more useful in some signal processing 

applications (Ref. 5.6) where error accumulation due to 

coefficient round-off leads to intolerably high noise and 

coefficient sensitivity. Floating point arithmetic employs 

substantially more memory and the incremental calculations 

are correspondingly slower. Twos-complement representation 

have advantages for the execution of arithmetic operation 

(Ref. 5.10), for example the addition and subtraction of
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numbers can be performed as though they were unsigned 

numbers and also when more than two numbers are added, it 

does not matter if overflow occurs on intermediate 

summations as long as the final result is in the allowed 

range. 

Sometimes a software multiply instruction may not be 

available on a processor (Ref. 5.8), and a programme to perform 

multiplications of two numbers might require a considerable 

processing time. To overcome this difficulty a fast hard- 

ware multiplier unit may sometimes be necessary. The 

multiplier appears to the processor as two adjacent memory 

locations (at an address normally reserved for ROM). Memory 

reference instructions are normally used to access the 

multiplier. Loading the two numbers in to the registers 

initiates the multiplication which is normally completed 

within one processor cycle. 

A new generation of bipolar bit slice processors 

provides a means of increasing the speed performance by a 

factor of about 10 andone such device is by Advanced Micro 

Devices AM2901 (Ref. 5.2 and 5.9), where the emphasis is on 

executing the calculations in minimum time. AM2901 is a 

four-bit processor slice cascadable to any number of bits. 

Because of the additional hardware associated with these 

devices, the overall cost of the system is also increased. 

The best choice of speed improvements can be anticipated 

when processors are specially optimised for this particular 

application.
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525 Implementation of noise filters 

It has been shown that the design method may be 

implemented when filters are to be included to remove 

pick-off noise. To implement digital notch filter the 

transfer function given by Equation (4.24) is characterized 

by two distinct parameters a, and a5 which can be realized 

by a digital filter containing only two multipliers with 

coefficients ay and a: Hirano, Nishimura and Mitra 

(Ref. 5.5) have shown that the notch frequency can be changed 

while keeping the 3-db rejection band and d.c. gain constants 

just by varying only aj, and the reject bandwidth by varying aa: 

To implement the noise filter g(z) given by 

Equation (4.24) can be rewritten as 

oe i 
Zz aoe tay 

g(z) = 1+ =) = (552) 
i-a,z +a5Z 

According to Hirano (Ref. 5.5), such a filter can be 

realized using two multipliers, several two-input adders 

and few delay elements. A method proposed by Abu-El-Haiza 

and Peterson (Ref. 5.1) for implementation of digital 

notch filters based on digital incremental computers is 

particularly suitable where very low 3-db rejection band- 

width is necessary. This avoids conventional structures 

of large word lengths because increments of the signals 

are processed more quickly than the signals themselves. 

They also proposed that if the inputs to the incremental 

multipliers are restricted to be ternary, no hardware 

multipliers would be necessary.



When a compromise is reached for implementing a non- 

recursive digital filter along with necessary control algorithm, 

as proposed in section 4.6, there may be a need to involve 

a separate hardware multiplier to overcome the slow 

operation of software multiplication. 

5.6 Summary 

In this chapter the implementation aspect of the 

digital control algorithm developed in Chapter 4 for a 

model of a dry-tunedrotor gyro has been considered. 

Several techniques of reducing the control algorithm 

complexity were studied. It has been shown that the 

rounding of coefficients in the control algorithm is 

the best choice for this application because this allows 

a more flexible choice of processor in implementing the 

necessary control functions. Various factors affecting the 

digital processor requirement such as speed, word length 

are also discussed to give more insight when implementing 

such a digital controller in practice. The implementation 

aspect of digital notch filter is also included.



CHAPTER 6 

DISCUSSION AND CONCLUSION 

6.1 Finite settling time design 

The design method developed is an extension of the 

technique which has previously been used for single loop 

systems. In the case of multivariable systems several distinct 

problems emerge as a result of interaction between control 

loops. The need to avoid sensitive design conditions in 

which mismatch between the controller and the plant may 

produce instability, requires the avoidance of complete pole/ 

zero cancellations between the controller and the plant in 

single loop design. It has been shown by Steel and Puri that 

in multivariable systems it is acceptable for poles of the 

plant transfer functions to be matched by zeros of the 

controller functions in certain combinations of elements, so 

that partial cancellation occurs. 

Existing techniques for the design of multivariable 

digital control systems have been examined. The work of 

Nishida (Ref. 2.3) indicatss a promising approach to the 

engineering design of this class of systems. This method 

has a feature common to that of the proposed design, namely 

both use transfer function approach. 

Nishida's technique is developed based on single loop 

design method of Jury and Schroeder (Ref. 2.1) but there are 

three principal areas in which problems arise. Firstly, the
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method does not apply when the plant contains complex 

conjugate poles very near to the unit circle. This severely 

restricts the flexibility of the design. Secondly, should 

the system overshoot be unacceptable then no method is out- 

linet for its improvement. Finally, when any one or more 

elements of the plant have an unstable pole, straightforward 

application of the method is not possible. 

The new finite settling time synthesis method described 

by Steel and Puri (Ref. 3.6) overcomes these problems. The 

chief advantage of this method is that it guarantees the best 

possible dynamic performance of the system, and at the same 

time eliminates interaction. Results giving sensitivity 

conditions have been developed which are of considerable 

generality and significance. These lead to the conclusion 

that by placing a requirement of finite settling time on the 

system, a design may result which is both sensitive and 

unnecessarily complex in the control algorithm required. 

The retarded response design technique has been used 

to extend the scope to allow sensitivity to be traded for 

speed of response. A consequence is that a complex conjugate 

pair of poles or zeros of det(P) which are inside, but very 

close to the unit circle, need not be assigned to for 6 

This avoids an increase in controller complexity. Sensitivity 

to parameter changes which will move those poles or zeros on 

to or outside the unit circle, can be avoided by constraining 

the displacement of these poles or zeros to either follow a 

circular path centered at the origin, or alternatively reduce
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the magnitude of the displacement of the mode. This can be 

achieved in practice by allocating a single or two poles 

to f£ and @ and adjusting these pole positions to give 

minimal sensitivity condition as proposed in the paper by 

Steel and Puri. This will result in a system which is less 

sensitive and at the same time of least complexity in the 

controller elements. The analytical method of sensitivity 

reduction as given in this paper has the advantage that it 

avoids the need for iterative processes and gives compact 

results which the designer, can readily appreciate. It 

remains however, that the overall effect on the transient 

response can only be seen by simulation since the detailed 

effect of pole and zero movements cannot be anticipated 

in the time domain. 

@.1.1 Application to tuned-gyro model 

The method has been applied to a model of a two-axis 

dry-tuned-rotor gyro. The proposed design method has the 

advantage that it takes account of the behaviour of the 

rebalance system of a gyro as a multivariable control 

system. The cross-loop controller elements decouple the 

response and permit system operation with a closed-loop 

bandwidth greatly in excess of that produced by Kao and Hung 

(Ref. 1.8), and Catton (Ref. 1.4), using analogue control 

methods. This is an important factor to exploit the 

maximum capability of a gyro as an attitude sensor in a 

strapdown environment. Furthermore, the digital controller 

offers the advantages of flexibility in the realization 

of complex control algorithms and their accurate implementation
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is not affected by component stability and tolerances. 

The design method can also be extended when it is 

necessary to include notch filters to remoye noise inter- 

ference in the pick off signals, in which case the overall 

bandwidth will be less than the notch frequency. It is also 

shown how the controller complexity is affected when processing 

delay is to be included in the design. 

6.1.2 Sensitivity relationships 

It has been suggested by several authors (Ref. 1.10 and 

4.2), that the minimum settling time design systems are very 

sensitive because of the multiplicity of the closed-loop poles, 

all of which are at the origin of the z-plane, this has heen 

shown to give infinite sensitivity with respect to changes 

in parameters of the system. According to Kuo (Ref. 1.10), 

the particular measure of sensitivity implies that any 

arbitrary small variation of a parameter away from its 

design value results in an infinite percentage movement of 

the pole. 

A more meaningful measure of sensitivity for finite 

settling response systems is the sensitivity of (some 

measure of) the time response of the system with respect 

to system parameter changes. Therefore a study on the 

sensitivity has been carried out in the case of the gyro 

rebalance design. Sensitivity of the step response of the 

optimal system as a function of pick-off gain variation 

in any one or both loops, and also coefficient variations 

in the digital control algorithm are investigated in great 

detail.
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It has been observed that, in the case of loop gain 

variation, the root loci move away from the origin to 

terminate on the zeros of f(z), or at infinity (Equation 

4.12), and it is concluded that the optimal system remains 

stable for changes in gain up to + 210%. Since such large 

variations in loop gain will never happen, the effect of 

small variations on the closed-loop response were studied 

by simulation. The system simulation method as developed 

in Appendix C may be a very powerful tool for evaluating 

more meaningful measure of sensitivity for minimum settling 

response systems. As may be seen from Fig. 4.1 that a 10% 

gain variation around the optimal value, there is small 

change in the stability margin of the system. Though there 

is a slight increase in overshoot and settling time, the 

resulting system response may be quite acceptable in practice. 

In addition to finding the effects of changes in loop- 

gain variations, a solution to the sensitivity of the system 

response to mismatch in the controller elements has been 

developed for the special case of the gyro rebalance control 

loops. This involves a means of rounding coefficients in 

the controller elements without adverse effect on the system 

performance. In this case the sensitivity design is utilized 

as part of a policy for simplifying control functions to 

reduce the computation time. 

The residual mismatch in numerator polynomials of the 

controller coefficients results in a pole pair, occur at the 

nutational frequency and the root loci from these zeros will
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enter the region outside the unit circle. When a simple 

pole is added in polynomials f£ and 9, the effect is to 

alter the angle of departure as well as reduce the magnitude 

of the root loci movement. This mismatch will have minimum 

effect on system stability when a pole position is selected 

such that the root locus can be set tangential to the unit 

circle and at the same time reduces the magnitude of the root 

loci movement. In the case of gyro rebalance design, a pole 

(1-0.627+) in £ and 6 satisfies both these conditions. It 

is also shown that such a pole increases the stability margin 

of the system to loop gain variations from 210% to 400%. 

The resulting design method proposed for the solution 

to the sensitivity problem in the case of gyro rebalance 

system design involves a differential adjustment of controller 

coefficients on one hand, and an optimal reduction of 

sensitivity by retardation of the dynamic response on the 

other. The final design represents the overall compromise 

between response speed. sensitivity and the controller 

complexity of the system. 

6.1.3 Implementation of control algorithm 

The gyro rebalance system design yields a defined 

control algorithm which involves four transfer functions to 

be implemented using a digital processor. 

In a given design the real time processing of each new 

pair of error samples, together with their conversion from 

analogue to digital form, must be completed in less than a



6 ln= 

sample interyal. The high frequency sampling in the control 

loops imposes restrictions on the computation time. The 

number of multiplications involved consumes most of the 

computing time in implementing such an algorithm. Therefore 

the design method has been developed to avoid fixed point 

multiplications as far as possible without adverse effect on 

the system performance. The method is based on rounding the 

coefficients in the control function to simple binary values. 

This will ultimately allow a more flexible choice of 

processor for implementation. Other important factors 

associated in selecting the processor are fixed/floating 

point arithmetic operations, processor speed and word length. 

Various methods available for implementing a digital notch 

filter are considered. For a gyro rebalance system in presence 

of pick-off noise, one such filter must be included in each 

loop. It is also shown that when such a filter is included 

in its non-recursive form in the digital control algorithm, 

then there may be a need to involve a separate hardware 

multiplier to overcome the slow operation of the software 

multiply instruction, due to high coefficient accuracy 

requirements. 

6.1.4 Limitations of the method 

The general scope for application of synthesis method 

to multivariable systems is limited by the analytical 

complexity involved. Increased dimentionality means that 

high order polynomials may be involved and in many cases 

this will result in the need for elaborate control algorithms. 

The designer must decide where the increased complexity in
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computation and implementation is worth the improyement in 

performance which might result. The problem simplifies when 

the plant transfer function elements, as in the case of tuned- 

gyro, have common poles. 

The synthesis assumed linearity of the control elements 

which is appropriate to the dry-tuned gyro designed for 

strapdown applications where linear torquing characteristics 

over a wide dynamic range are an inherent requirement. 

When digital noise filters are to be implemented to 

remove pick-off noise, there is an increase in the controller 

complexity, hence one must take into account the finite 

processing time in the digital processor. In this situation 

there may be a need to involve a fast hardware multiplier. 

The controller complexity is also increased when this design 

is to be implemented in its modified z-transform, to take 

into account any processing delay which might result. 

6.2 GENERAL CONCLUSIONS 

A method for the design of rebalance control systems 

for a dry-tuned gyro using a digital controller has been 

developed. The synthesis method is based on minimising 

settling time in the transient response. Since the tuned- 

gyro has two control loops which interact, therefore a 

multivariable control technique has been used. 

The design method presented enables a controller to be 

designed at the lowest leyel of complexity. Cross-coupled 

control functions are included which ensure flexibility 

in design as well as improved performance.



Sensitivity of the system to pick-off gain in one or 

both loops and the possibility of rounding coefficients 

in the digital controller algorithm is analysed. A 

solution to the sensitivity problems have been developed. 

It has been shown that the method of rounding the coefficients 

to values represented by simple binary operations is the 

best choice for this application. In this way a significant 

improvement in operating speed can be obtained because whole 

word multiplications are replaced by a small number of 

quicker shift and add operations. 

6.3 Further work 

There are several important areas in which the finite 

settling time technique for the synthesis of multivariable 

digital control algorithms described could benefit from 

development. For example, it may be possible to extend this 

approach to a model of 2-axis servo-accelerometer, described 

in Appendix B. There is also some scope for compromise when 

non-recursive noise filters are to be included to remove 

the pick-off noise in some tuned gyros. Further studies may 

be needed to qualify this design technique when there is a 

significant processing delay in the system. 

In general it could be beneficial to apply this design 

technique to various inertial sensors in practice, in order 

to qualify the method in the light of further practical 

experience. However, the concept of direct digital control 

of inertial guidance sensors is sound, and has grown more
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certain with the development of the proposed design method, 

for simple and efficient control algorithms, necessary in 

the torque-rebalance loop.
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APPENDIX A 

EXISTING ANALOGUE AND PULSE REBALANCE CONTROL SCHEMES 

In conventional strapdown system mechanizations (Ref. 1.4 

and 1.9) the sensor servo-compensation and control functions 

are carried out using analogue control methods. In the case 

of analogue rebalance loops of Fig. A.1 the sensor torquing 

currents are fed through precision resistances to develop 

voltages which are proportional to the vehicle angular rates 

or accelerations. The analogue rebalance loop designs have 

been proposed by Coffman (Ref. 1.5) comparing both class I 

and class II systems. These methods are based on linear 

characteristics of the torque motor. 

The pulse rebalance loop configurations are advantageous 

where inegrating digital readout for high accuracy measure- 

ments are required and various such schemes have been 

developed (Ref. 1.8 and A.1). The binary pulse width 

modulated (BPWM) mechanization (Fig.A.1) is preferred 

because in addition to provide direct digital readout it 

minimizes the requirement on torque motor linearity by 

restricting operation to two plus-minus torque levels. 

This assumption has been made in the design method 

developed in this thesis. In addition BPWM affords the 

following advantages over other schemes. 

(i) Resolution is not limited by the torque motor time 

constant. 

(ii)The torquer operates at a constant power level which 

minimizes thermal disturbances.
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(iii) The servo loops behave linearly with well-defined 

performance characteristics. 

(iv) The torquing waveform has a fixed fundamental frequency 

which limits variation in a.c. reaction torques. 

The main problems associated with 

power consumption and lower information 

other two schemes. 

The essence of this mechanization 

obtain a precise digital measure of the 

BPWM is that of high 

rate compared to 

is the ability to 

average current fed 

to the torque motor during each limit cycle period. Know- 

ledge of the restoring torque is directly translatable into 

vehicle angular motion sensed by the gyroscopes or linear 

acceleration in case of accelerometers.
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APPENDIX B 

EXTENSION OF THE METHOD TO SERVO-ACCELEROMETERS 

The direct digital control scheme developed for tuned- 

gyros can also be extended for the accelerometers. Because 

of the similarity of the dynamical behaviour of accelerometers 

and mechanical rate gyros, the design problem is further 

simplified. 

Various accelerometers of inertial quality have been 

developed which can be single axis or two axes ones. In the 

case of a single axis, any acceleration applied along the 

sensitive axis tends to move the pendulum from its equilibrium 

position, and a pick-off provides an a.c. signal of phase and 

amplitude in relation with the measured deviation. After 

amplification, demodulation and necessary compensation, this 

signal is applied to the torque motor to balance the action 

of the accelerometer and brings the pendulum to its original 

position. The current going to the torque motor is the 

measure of input acceleration. Both analogue and pulse 

rebalance loop system configurations have been developed for 

single axis accelerometers (Ref. 1.4 and 1.9). 

In the case of a two-axes accelerometer (Re£.B. 1) based 

on the development of tuned-suspension gyroscopes, a two-axes 

suspension carries the torque motor, which consists of magnets 

and flux return path that establishes a radially oriented field 

within the airgap. The torque motor is made pendulum 

relative to both torsional axes of the suspension system.



In the presence of acceleration along any axis perpendicular 

to the axis of symmetry of the suspension system, the pendulum 

mass is deflected angularly relative to the accelerometer 

housing. This deflection is sensed by the pick-offs whose 

output drives the current through the torquer coils, exerting 

a moment on the pendulous mass in such a direction as to 

null the pick-offs. Thus the current through each torque 

motor is the measure of applied acceleration along 

corresponding axis. 

Most of the strapdown systems developed so far use 

single axis accelerometers in analogue or pulse rebalance 

mode. Incoflex two axes accelerometers developed more 

recently by Russell and Craig, the torquing loop electronics 

used is an analogue design and a pulse torquing scheme has 

been proposed. The main advantage of a two axis unit is 

its low cost per axis. 
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Fig. B.1 Block diagram of a pendululous accelerometer
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Once the accelerometer model is known, it is possible 

to design a rebalance control system using a digital 

controller in the same way as has been investigated here 

for the tuned-gyro.
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APPENDIX C 

COMPUTER SIMULATION OF GYROSCOPE DDC SYSTEM USING 'SLAM' 

C.1 Basic description of SLAM 

SLAM, the simulation language for analogue modelling 

(Ref. C.1 and C.2), is a high level language written by 

staff members of the ICL. The programme provides an 

application oriented language which allows problem 

formulation either directly from the system block diagrams 

or from the system mathematical equations. Included in the 

programme package is a basic set of functional blocks which 

allow the representation of a continuous system statement 

for defining the connections between these blocks (Ref. C.1). 

One of the greatest advantages of using SLAM from the users 

point of view is that one is not required to devote consider- 

able time in programming details as in Fortran. 

SLAM uses a translatory method of operation, i.e. source 

programme translated into Fortran, any Fortran statements 

being passed through without alteration. The resulting 

Fortran programme may then be compiled by a Fortran compiler 

loaded and executed. 

The basic programming structure may be defined by the 

programmer and these are 

(a) Implicit structure 

(b) Explicit structure



A SLAM programme that makes. use of the structuring 

ability of the translater is knwon as an Implicit mode 

programme. In this mode, all executable statements with the 

exception of those included in NOSORT blocks (executable 

statements which do not comply with the rules of sortability 

in SLAM), are automatically sorted by the translator into 

initial, dynamic and terminal regions. 

A SLAM programme, in which the internal segment structure 

is explicitly defined by the programmer is known as an 

Explicit mode programme. This mode is more comprehensive 

than the Implicit mode, and offers greater programming 

flexibility and permits the design of programmes better 

suited to a particular task. For example when analytical 

approximation method is used for reducing controller 

complexity, it is best to use SLAM in an Explicit mode for 

minimizing the sum of the mean square error at each sampling 

instant. 

C.2 Simulation of multivariable digital control systems 

Fig. C.1 shows the role of the digital processor in 

the form of digital controller in multivariable direct 

digital control systems. The error signals become the 

input to a properly defined control algorithm. The emphasis 

in this section is placed on simulating the control algorithm 

in the form of matrix D(z) along with continuous plant P(s). 

The programme listing C.3 gives one method of simulating 

the gyro system along with the digital control algorithm. The
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Fig. C.l Digital control system for simulation 

initial region encompasses all those calculations, input/ 

output operations, and initializing procedures that must be 

performed prior to simulation. Those initializing operations 

of a more permanent nature (e.g. designation of a particular 

integration algorithm) should be performed prior to entering 

the dynamic region. The dyanmic region is that portion of 

the simulation which takes an active part in the interaction 

between the digital computer and the external world. It 

represents all the calculations and I/@ operations performed 

at each user-defined discrete value of the independent 

variable. The terminal region receives control from the 

dynamic region and returns control to the simulation entry. 

The terminal region contains the calculations and I/O necessary 

to properly terminate a single simulation. 

The integration system in the dynamic region has two 

Main entries, one for the initialization and one for 

integration. In addition to setting up initial conditions 

on the state variables of the integration, the initialization 

entry also calls the appropriate integration and initialization



algorithms into memory from the library and allocates memory 

for the history information required by these algorithms. 

The integration entry transfers control to the appropriate 

algorithm to integrate the specified derivative section over 

its communication interval. 

The simulation of the digital controller algorithm in the 

form of D(z) is given in a NOSORT block in the programme 

listing. Statements given in this block are not sorted and 

are thus executed much the same way as Fortran statements. 

The IF statement is inserted to ensure that the algorithm 

will not be executed except at the sampling instants. 

In summary this appendix illustrates how one can simulate 

digital multivariable control system using simulation 

language SLAM. If the digital controller D(z) is other than 

minimum settling time design, then the expression for D(z) 

can be expressed as an algorithm and executed in a NOSORT 

block in a similar manner, as illustrated in programme 

listing. Therefore it is concluded that SLAM can be easily 

adapted to simulate digital control systems and digital 

filters. The advantage is that the designer can quickly 

assess the design before making actual hardware implement- 

ations.
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3 Programme’ listing 

REAL ALPHA, BETA, K, MX, MY, QX, QX1, QX2, QY, QY1, QY2, WN 

C-- INITIALIZATION 
INPUT T, TD, WN1, B, WN 
ALPHA = COS(T1) 
BETA = SIN(T1) 
K = (WN*WN) /(T1-BETA) 
C = 1.-ALPHA/(T1-BETA) 
D = (ALPHA*T1-BETA) /(T1-BETA) 
Tl = 27/B 

Bl = 2*ALPHA + 4* (T1**2*COST1-T1*SINT1+SINT1**2-T1*SINT1*COSTI 
(2-141 2 COS TL —2* TT AS IND) 
Al = (1aB1) /(2.+B1) 
A2 = 1./(2.+B1) 
Bll = 1.0 
E22 = 0.0 
C3 =-0.0 
QX2 = 0.0 
Qxl = 0.0 

QY2 = 0.0 
QY¥1l = 0.0 
THXO = 0.0 

THYO = 0.0 
El2 = 0.0 
E13 = 0.0 
E23 = 0.0 
E24 = 0.0 
22) = 0.0 
T4 =0.0 

C-- SIMULATION OF DIGITAL CONTROLLER 

ak 
NOSORT (MX, MY, QX, Q¥Y = QX1, QX2, QY1, QY2, Ell, E12, 
B13, E22, B23, E24, THX, THY) 
Fl = TIME/T 
Tl = IFIX(F1) 
IF(T1.EQ.T2.OR.TIME.EQ.TD)G¢ TP 9 
QxX2 = QX1 
QX1l = Qx 
E13 = £12 
El2 = Ell 
E24 = E23 ’ 
E23 = E22 
Qx2 = QY1 
QYI = oY 
Ell = 1.-THx 
B22 = = Cay 
QX=K* (A2*C*E11 - A2*C*E13 + A2*E22 + A2*D*E23 
+ A2*E24) - Al*QX1 -A2*QX2 
Q¥Y = K*(-A2*E11 - A2*D*E12 - A2*E13 + A2*C*E22 
+ A2*C*E24) - Al*QY1 - A2*QY2 
F2 = TIME/T 
D2 = PTX (F2) 
F4 = TIME-TD/T
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T4 = IFIX(P4) 
IF(T4.NE.T3.OR.TIME.EQ.TD) GZ TY 10 
Gg Tg 11 
MX = QX 
MY = QY 
F3 = (TIME-TD) /T 
T3 = IFIX(F3) 
END 

SIMULATION OF CONTINUOUS PLANT 
DYNAMIC EQUATIONS 
THX = INTGRL(D1THX,THXO) 
THY = INTGRL(DI1THY ,THYO) 
DITHX = INTGRL(D2THX, 0.0) 
DITHY = INTGRL(D2THY, 0.0) 
D2THX = MX - WN*DITHY - WN1*D1THX - 
D2THY = MY + WN*DITHX - WN1*D1THY 

INTINF 
ALG: RKFS 
CI:CI = 0.417E - 04 
MONITOR : IMON = 2 
RELERR : RLER = 0.005 
END 
GUTECI TIME, THX, THY, QX, QY, MX, MY 
TERMINATE (TIME. GE.0,0417) 
END 

FINISH
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APPENDIX D 

COMPUTER SIMULATION FOR ANLYTICAL APPROXIMATION METHOD 

D.1 Introduction 

The purpose of this program is to enable the system 

designer to apply model reduction technique for optimising 

a digital controller based on analytical approximation 

method described in Chapter 5. 

The main programme and all subroutines are written in 

high level language SLAM in its explicit mode. The programme 

computes and minimizes the sum of the mean square error at 

each sampling instant with an optimisation package, using 

simplex method (Ref. D.1). The programme permits the 

designer to check these values and arrive at optimum 

controller elements. 

D.2 Subroutine outlines 

The main subroutines (which are called Segments in 

explicit mode) are briefly outlined below: 

Ey) FUNCT - Computes value of mean square error and 

controller elements to terminate a single simulation. 

2 MONIT - Used to print out the current values of the 

parameters to terminate a single simulation. 

3s EO4CCF - minimizes mean square error at each sampling 

instant.
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D.3 Programme listing 

MASTER DIGSIM 
EXTERNAL FUNCT, MONIT 
REAL TL, R, F, X(2), SIM(6,5), W1(S), W2(5), W3(5), w4(5), W5(5) 
INTEGER N@UT, N, Nl, MAXCAL, IFAIL, I 
TERMINAL 
NQYS@RT (X, P=) 
X(L) = 22254 
X(2)..= 4.67 
T@L = SGRT(XO2AAF(R) ) 
N=2 
Nl =N#1 
IFAIL = 0 
MAXCAL = 100 
CALL EO4CCF(N,X,F,T@L, Nl, W1,W2,W3,W4,W5,SIM,FUNCT,MQNIT, 
MAXCAL, IFAIL) 
END 
QUTPUT X,F 
END 
END 

SEGMENT FUNCT(N,XC,FC=) 
REAL MX, MX1, MX2, MY, MY1, MY2, MXO, MYO, Kl, Ll, L2, FC, XC,ALPHI 
BETA, T, WN 
INTEGER N 
ARRAY XC(2) 

ALPHA = CYS (WN*T) 
BETA = SIN(WN*T) 
$1 = BETA/(T*WN) 
$2 = 1.-S1 
$3 = T*WN*S2 
$4 = (1.-ALPHA) /S3 
El = $4**241 
$5 = T*s2 
S6 = WN/S5 
Al = S6/E1 
S7 = (S1-ALPHA) *4 
E2°= S762 
Bl = 2.*ALPHA + E2/E1 
Kl = 1./(2.+B1) 
Ell = 1.0 
B22) = 0.0 
MXO = 0.0 
TO = 0.417E-03 
D30 = 1.5-05
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MX1 
MYL 
MX2 
T2 
THXO 
THYO. 
E12 
E13 
E23 
E24 
MY2 
END 

“o
u 

ut 
vo

u 
h
u
u
u
d
 

DYNAMIC 
DERIVATIVE 
THX = INTGRL(DITHX, THXO) 
THY = INTGRL(DITHY, THYO) 
DLTHX = INTGRL(D2THX, 0.0) 
DITHY = INTGRL(D2THY, 0.0) 
D2THX = MX-WN*DI1THY-DX*D1THX 
D2THY = MY+WN*D1THX-DX*DLTHY 
C2 = INTGRL(C,CO) 
D2 = INTGRL(D,DO) 
C4 = INTGRL(C3,C30) 
D4 = INTGRL(D3,D30) 
FC4 = INTGRL(FC2,FC20) 
FC = INTGRL(FC1, FC1O) 
NGS@RT (MX ,MY ,TORQ1,TPROQ2,C,D,C3,D3,FC1,FC2 = MX1,MY1, 
MX2 ,MY2,E11,£22,512,£23,£24,THX,THY) 
Fl = TIME/TO 
Tl = IFIX(Fl) 
IF(T1.EQ.T2)G¢ TO 9 
MX1 = MX 
MYl = MY 
E13 = £12 
El2Z = Ell 
E24 = E23 
E23 = E22 
Ell = 1.-THX 
B22>= -THY 

MX = A1*K1*XC(1)*E11 - Al*K1*XC(1)*E13 + A1*K1*E22 
+ Al*K1*XC(2)*E23 - MX1 

MY =-AL*KI*E11 - Al*KI*KC(2) *E124A1*K1* xC(1) 4822 
~AL*K1* XC (1) *E24 - MYL 

= BLI*E1L 
= E22*E22 

= TIME*C 
= TIME*D 

FCl = C + DELTA*D 
FC2 = C3 + GAMMA*D3 
TORQ] = MX*R1 

T@RQ2 = MY*R1 
F2 = TIME/TO 
T2 = IFIX(F2) 

Cc 
D 
C3 
D3
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INTINF 
ALG: RKFS 
CI:CI = 0.417E-04 
M@NIT@R : IMON =2 
RELERR : RLER = 0.05 
END 
END 
TERMINATE (TIME.GE.4.17E-03) 
END 
END 

SUBROUTINE M@NIT(FMIN,FMAX,SIM,N,N1,NCALL) 
INTEGER N, N1,NCALL,J,1I 
REAL FMIN, FMAX, SIM 
DIMENSIQN SIM(N1,N) 
WRITE (6,1)NCALL,FMIN 
WRITE (6,2) ((SIM(I,J) ,J=1,N) ,I = 1,N1) 
RETURN 

FQ@RMAT(6H AFTER, I5, 30H FUNCTIQN CALLS, THE VALUE 
Is, E10.8, 14H WITH SIMPLEX) 
FORMAT (3(2E12.8/) ) 
END 
FINISH
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DIRECT DIGITAL CONTROL OF DRY-TUNED 

ROTOR GYROS 

G. K. Steel and S. N . Puri 

Department of Electrical and Electronic Engineering, University of Aston, 
Birmingham, U.K. 

Abstract. A method of designing the rebalance control system for a dry- 
tuned gyro using a digital controller is described. Control fimctions are 
synthesised to achieve a minimm settling time in the transient response. 
The need to eliminate interactions between the gyro control axes is 
included in the design policy. 

Sensitivity of the system to mismatch in the controller is examined and 
methods suggested to improve this aspect of performance. Sensitivity 
@malysisis exploited to show how coefficients in the control functions 
may be rounded to allow reduced computatim time in the processor. 

Keywords. Gyroscopes, torque control, inertial navigation, strapdown systems, 

direct digital control, control system synthesis, sensitivity analysis. 

INTRODUCTION 

The development of the dry-tumed gyro (Craig, 
1972) has contributed significantly to the 

growing interest in strap-down navigatical 
systems (Kirk, 1978). This has been 
brimarily due to the need to achieve a wide 
dynamic range in a sensor which is subjected 
to the vehicle motion rather than that of a 
stabilized platform. ‘The dry-tunmed gyro has 
een developed to a point where this require- 
ment can be met with inertial grade accuracy 
and at reduced cost. 

This gyro, with two degrees of freedom, has 
a rotor and gimbal assembly suspended on 
springs. At the desicned rotation speed the 

spring constants are matched to cancel the 
inertial torques due to the gimbals, so that 
the rotor behaves as a free gyro. 

Operation as a rate gyro is achieved by 
forming a position control system to aligqn 
the rotor with the extemal case. Siqnals 
from position pick-offs are used to provide 
feedback control of the torques applied to 
the rotor. The precession rates are then 
measured by signals derived from the torque 
motor currents. ‘Two of these 'rebalance’ 
control loops are required for each gyro. 
In the strap-down mode the rebalance loops 
must be designed for adequate dynamic 
response i.e. a short transient settling time 
or a wide frequency response bandwidth. When 
the system bandwidth approaches the nutational 
frequency of the gyro it is no longer 
possible to regard the two rebalance loops 
as independent systems. Interaction between 

the control axes demands that the system 
must be analysed as a miltivariable control 
system. The design must also aim to counter- 

act the inherent interaction. 

Rebalance systems have been constructed using 
analogue control methods (Coffman, 1974; 

Blalock, 1975; Kirk, 1978)where the require- 
ment for rapid response has not been import- 

ant. However, in exploiting the maximum 
capability of the gyro there are adventaces 
in using a digital processor as omtrolier. 

A digital controller offers the advantages 
of flexibility in the realization of complex 
control algorithms and their accurate 
implementation is not affected by component 
tolerances. The possibility of time-sharing 
the processor between separate control 

functions can also reduce hardware require- 
ments. Where rapid response is required the 
signal sampling rate must be hich and for 

time-sharing to be possible it is important 
to minimise the computation time required 
for any control algorithm. 

In this paper a analytical method is out- 

lined which has been used to desim cmtrol 
algorithms giving a minimum settling time and 

eliminating interaction. The design method 
is adapted to take account of sensitivity to 
parameter variations and methods of reducing 
sensitivity are introduced. Sensitivity 
reduction is examined as part of a policy 

for simplifying control iimetions to reduce 

computation time. 

GYRO TRANSFER FUNCTIONS 

Differential equations for the dry-tumed gyro 

were developed by Bortz (1972), Craig (1972) 
and Coffman (1974) and may be written as
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where oe and 6 one angles of rotation of the 

rotor about orthogonal control axes on which 
torques M. ae M a applied. Inertial 
constant “I = Fxg/2s involving the 
principal ae lertia of the rotor 
and gimbal, and H is Ee rotor angular 
momentum. Laplace transformation of these 
equations gives a transfer fumction matrix 
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hy = 1/(s?4u.*) hy = w,/s(s*+ 4,”) 

with w. = H/I being the nutational frequency 
in radian/sec. and Q,, oF the normalised 
torques M/I, wf. 

The transfer finctions in Equation (2) may 
be identified with a block diagram structure 
for the complete rebalance system as shown in 
Fig. 1. Elements V represent zero-order hold 
fimctions. Synchronous sampling switches 
indicate the effect of analogue-digital 

signal conversions and it is assumed at this 
stage that there is negligible computing 

delay in the digital processor. Inputs ry 
and ©, represent the case position angles 

to which the system responds. 

Analysis of the system proceeds by calculating 
the pulse transfer function of the gyro P(z), 
using a standard z-transform table (Kw,1963) 
which gives r 

|N, =. 

  

twee P(z) =K (3) 
1 [Sa Ny 

TQ=8/t 2 
Sle ee wi (1-27) (1-202 44274) 

Ny = e(1-2*) 

alt de ty 2? 

with a = cos (wt) 

B= sin(u 7) 

o u (1-a) /Ty, (1-8 /Tw,) 

@ = -2(a-B/Pw,) /(1-8/Tu) 

ANALYTICAL DESIGN METHOD 

In the rebalance control system Fig. 1 pulse 
transfer fimction matrices P(z) and D(z) are 
used to describe the gyro and the digital 
controller. ‘The error pulse sequence E(z) 
is given by 

B= (r+pp} eR (4) 

where I is a mit matrix and R is a colum 
matrix containing the two case position 

angles ¥) and r+ Also the overall closed- 
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loop response is given by 

c= (t+pp]~ por (8) 

For non-interacting response a case movement 
in one axis should produce a rotor movement 
in the corresponding axis and have no effect 
on the other axis. We therefore designate 

(t +20] pp =r 212) (6) 
where f(z) is the common closed-loop pulse 
transfer function of the two loops. 
Similarly the error pulse transfer fimction 
is 

(z+ Po] = ra(z) a 

given f£ and $ we may compute the control 
function D from 

£ |adj(P)| 
“oe |geeeer} eo 

  

Also £ and 4 must satisfy 

fel-¢ (9) 

The result in Equation (8) is equivalent to 
that used in the design of single-loop 
systems for minimum settling time (Bertram, 
1956) and has been examined in detail by 
Steel and Puri (1979) for the general class 
of multivariable systems. 

The fimctions £ and 9 are first of all cn- 
strained by the requirement for zero steady 
state error. _' means that > must contain 
a factor (1-z ~)", where n depends on the 
form of input R e.g. n=l for a step input. 
Further constraints are due to the need to 
avoid some cancellations between elements 
of P and D in the product PD which gives the 
open loop transfer fimction matrix. 
Cancellations on or outside the unit circle 
in the z-plane can lead to a sensitive 
desicn in which instability will result from 

a small mismatch in the controller. General 
rules for avoiding such sensitivity problems 
can be drawn up assuming an aribitrary form 
of matrix P. However in the case of the dry- 
tune gyro the inherent symmetry of the 

dynamic structure leads to some simplific— 
ations. All four elements of P have a 

common pole pair on the unit circle due to 
the undamped oscillatory cmaracteristic of 
the gyro. This would normally lead, to a 
pair of zeros in each element of P~ at a 
corresponding position. But as a result of 
the cross coupling between the gyro axes 

det (P) is zero at this same point in the 
z~plane, so that the mode is cancelled 
from p~1, 

Apart from the zeros of det(P) which coin- 
cide with the poles of the elements of 2 
there are two other zeros which appear on 

the unit circle. To avoid sensitivity this 
pair of zeros must be allocated to f. 

The general method proceeds by designating
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g=27 A(z) B(2) 
Stn (10) 

o= (1-2) C(z) Desi¢n E. 15 

where A contains the zeros of det(P) on the a8 . 
mit circle. Polynomials B and C have See eee ee 
undetermined coefficients as necessary to See Seay n 
allow Equation (9) to be satisfied. hh 

N, -N. N, ON. 
p=x,|? 2| pie oe ad GE) Class I and Class IT systens 1 ; 2 Ny yy wy ON 

A class I system is defined as having a Ny = 2.254 (1-22) a 
finite steady state error in response to a Sore ees 
constant rate input change. The class II Ny = ues 671 z # Zz 
system gives zero error with a constant rate 2 
input and a finite error with a constant Sr a "723. séxao° Hae. ee as ) =) 
acceleration input. Steady state alignment K = 4.879x10° We 1 1 a41.825 Zt Zi 0) 
is clearly best in the class II design but ay. a5 
comparisons have been made (Coffman, 1974) The term (1+1.825 z ~ +z “) in has zeros 
which show that provided the steady state 

error is kept small the class I design may be 
acceptable. It is interesting to compare 

the design results with the minimm settling 
time digital controller. The class I design 
is achieved by designating n = 1 in Equation 
(10) and the class II with n = 2. 

The following general features emerge, 

(i) Settling time following a step input 
change 
class I: 3 
class II: 4T 

(ii) Steady state error 
class I: 2To (p = rate input) 
class II: zero 

(idd) Controller camlexity 
An extra term is required in the 

enumerator and denominator polynomials 
for the class II case. 

Further comparisons can be made by taking a 
specific gyro as an exanple. 

on the unit circle and this is as$iqned to 
£ in Equation (8). The resulting design 
factors are given in Table 1. 

This comparison leads to the conclusion that 
the class I design is preferred since it 

offers reduced complexity in the control 
functions and lower torque demands while 
the steady state error is acceptably small. 

Retarded Response 

The above design procedure yields a system 
‘response which settles in a minimum and 

finite number of sample intervals. It will 
be shown later that some advantage in 
reduced sensitivity can be gained by removing 
the requirement of a finite settling time. If 
a term (1-7 z7l) is allocated as the 
denominator of f the overall system response 
will include a having a time constant t 
such that e “T/'= y and will settle 
exponentially. The effect of this on the 
design procedure is firstly that the same 

Table 1 System Desicn Factors 

  

Design Factor | 
  

  

  

        

Class I Class IT 

£(2) | 0. 264 fy 825 2 t4z*) 0.7843 2 t(1+1.825 2) + 27°) (1-0.667 2-5 
o(2) (ee (190.7387 2° 1.261424 (1-274) ?(141.2157 27+-0.5229 27) | 

3 1.276x10° 3.827x10° (1-0.6667 24) 
: (140.7386 27 440.2614 274) (1-274) (141.2157 2 t- 0.5229 2°) ; | 

Die) 4, | 2.254(1-2-%) 2.254(1-277) . 
a, | 143.671 2+ 2 \(43.e71 2 + 272) 

Steady state he o8° zero 
error * 
Maximum Torque* [2.2m 12.5 Mo 

ay [ ay 4] $ Control fimction D =k, | 
Bs 4)   

x For 100°/sec input rate 

* 

cAcs—6 

For constant rate input, where Mo is steady state torque
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denominator must be allocated to ¢ in 

consequence of equation (9). Terms intro- 
duced in this way cancel in Equation (8) and 

so do not appear directly in the control 
functions. The general complexity of the 
elements in D remains maltered but 
efficients are modified due to changes in 
the initially undetermined coefficients in 
£ and 9. 

SENSITIVITY CONSIDERATIONS 

Systems designed for minimum settling time 
are potentially sensitive to parameter 
variations (Stanley, 1959). This is in part 
due to the cancellations generated between 
the controller and plant transfer functions. 
Also the design for finite settling time 
produces multiple poles in the closed loop 
response at the origin of the z-plane which 
represents a sensitive condition. Sensit- 
ivity must therefore be examined carefully 
to ensure that the design will remin 

satisfactory over a range of parameter 
changes. 

In the case of the rebalance control loops 
the gyro is designed to have an accurately 
reproducible dynamic characteristic and wide 
linear range of operation. The pick-off 
gain is however, one of the less consistent 
features. This, and the possibility of 
rounding off coefficients in the digital 
processor algorithm, will be considered 
further. 

Sensitivity will be studied with reference 
to the movement of the poles of the closed 
loop transfer fimction. It can be shown 
that the pole positions correspond to the 
zeros of det(I + PD). 

Control Loop Gain Variations 

Uncertainty in the pick-off gain, in one or 
both loops, which represents a fractional 
change 6 in the loop gain, leads to the 

result that the zeros of det(I + PD) are 
given by 

1+ £(z) 6=0 (12) 

The movement of the zeros as a fimction of 
6 may be investigated by root-locus solution 
of this equation. When £(z) is a polynamial 
in zl, as is the case with a finite settling 
time design, all its poles are at the origin. 
The root loci move out from the origin to 
terminate on the zeros of f(z) or at infinity. 
Stability limits are reached when § is larce 
enough to place roots on the unit circle. 

For the class I system design example the 
limiting of value of 6 is 2.1. Such large 
variation will not happen in practice, and 
it is more meaningful to examine the effect 
of small variations on the closed-loop 
response by simulation. Figure 2 shows the 
results of a 10% increase in gain on the 
error response following a unit step change 
of case position. 

Controller Mismatch 

The general form of the control fimction D 
is given by equation (8) and when P has the 
structure given in equation (11) D becomes 

£ |X N. 
D= —— 2 (13) 

ok, (Ny +N’) N. 
  

Cancellations are formed in this expressim 

so that the common factor simplifies. For 
example, in the class I design it becomes 

a = ) where a is again factor. We may 

consider first the possible mismatch in this 

common factor in realizing D. If n(z) is a 
small change added to > the zeros of 
det(I+PD) are given by 

  

  

foe 1- Gn=0 (14) 
When the zeros of » are well inside the wit 
circle this is not a condition in which root 
locations are sensitive. The coefficients 
in the common denominator of D may therefore 
be rounded without undue detriment to the 
overall response. In the design example for 
the class I system the denomination of K, 
given in Table 1 may be rounded to 

(1+ 0.75 2-1 + 0.25 272) with negligible 
effect on the dynamic response. 

Mismatch in the numerator polynomials Ny and 
N, raises a special sensitivity problem in 

the case of the gyro rebalance system. 

If 4 (2) and 4,(z) are small changes added 
tout and N, the zeros of det(I + 2D) are 
giveh by 7 

fe 2 te z | + Perera ey =O (15) 
eee 7 

Ie 

The zeros of (N,*+N,”) give pole positionsat 
which root locus branches emerve for A,=1,=0. 
In the dry-tuned gyro there are two = 
of such zeros located on the wit circle. 
One pair is cancelled however by the corres- 
ponding zero assigned to f. The remaining 
pair occur at the nutational frequency and 

it is significant that root loci from these 
zeros will enter the region outside the mit 
circle. When the zeros of equation (15) 
fall outside the wit circle the system will 
be mstable. This can be avoided by 
matching the changes & and 4, so that. 

& 2 

(16) 

Pe
s w ' 

wi
l 

in the region of the z-plane close to the 
zeros of (N, 7+ N,*) at frequency wy. For 
the gyro uN, =sj at z exp(ju,7) .   

The polynomials N, and N, given in the 
example equation ti) indicate a need to 
consider rounding the coefficient 3.671 in 
N with a change A, = 6, 2 Ifa 
change is also made in ee gain coefficient
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2.254 of N, wath )=8; (1-2) then at 
2=exp (jw, ty 

    

Hence Eq. (16) is satisfied when 

4/5 = 2sin (wT) (18) 

and the coefficient changes will cancel each- 

other. This relationship assumes small 

changes are made and where larger changes 

are contemplated further compensation may be 

necessary to prevent unsatisfactory 

performance. This can be achieved by 

retarding the response. 

Effect of Retarded Response 

The retardation of the response by adding a 

pole to f and 6 has been described earlier 
and it can now be shown that this results in 
a reduced sensitivity to parameter 
variations. 

For loop gain variations Eq. (12) applies and 
the added pole in f replaces one of the poles 
at the origin. The reduced multiplicity of 
the pole leads to reduced sensitivity. (Kuo, 
1963). In the design example a pole at y=0.6 
increases the stability margin from §=2.1 to 

4.0. The reduced sensitivity is evident fran 
the response graphs Fig. 2 where a 10% change 
Of loop gain has been introduced. 

Variation in the numerator polynomials of D 
results in root locations given by Eq. (15). 

When a pole is introduced in f its effect is 
to alter the angle of departure of the root 

loci; the locus from z=exp(ju,T) is of 
particular concern. By chosing the pole 
position the root locus can be set 
tangential to the unit circle so that a 
residual mismatch in changes 4,,4, will have 
minimm effect on stability. 1h the desim 
example the locus alignment is achieved with 
y=0.6, which corresponds to a retardation 

with a mode having a time constant of 
approximately twice the sample interval. 

The response graphs Fig. 3 indicate in (A) 
the result of such a compensating adjustment 
in which 3,671 in is rounded to 4.0; this 

is compensated by a’change in the gain 
factor 2.254 in d, as required by Eq. (18). 
The response (B) Shows the further effect of 
including the retardation factor. This 
response represents the overall compromise 

between response speed, sensitivity and 
controller complexity. The resulting 
frequency response bandwidth is approximately 
half the autational frequency of the gyro. 

Interaction Sen: y 

It is important to observe how the changes of 
loop gain and coefficients affect the inter- 
action between control axes. Interactions 
are cancelled when 
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(19) 

P|
 = N 

Changes in the common multiplying factor K3 
in D do not affect this relatimship so thet 
interaction is not introduced by loop gain 
changes, or by changes in the denominator 

polynanial. 

Changes in the numerator polynomials have 
been coristrained by Eq. (16). In the gyro 
equations, evaluated oe the nutational 
Exequency, Ny/N7=-N,/N, so that the condition 
for no interaction is ‘be same as that for 
cancellation of coefficient changes in this 
particular case. Same interaction will 
appear at other frequencies but it is 
important that it is cancelled at the 
nutational frequency where it has maximum 
effect. 

FURTHER DEVELOPMENTS 

Noise Filters 

In same dry-tuned gyro designs problems have 
emerged due to pick-off noise at the spin 
frequency or its harmonics. Noise components 
at such a discrete frequency can be removed 
by a notch filter. This may be implemented 
in analogue or digital form. For the digital 

filter the algorithm, 2 
(14g,27"+27°) 

g(2)=9. = 1 ( 332 1)2 

= (041) / (41)? 
=2 (07-1) / (0741) 
= (1-2) / (142) 

=tan (uT/2) 

wy is the notch frequency. 

gives zero transmission at the notch 

frequency and unity gain at high and low 
frequencies. 

H (20) 

33 
33 
g 

The deis¢n proeedure is applied with P a 

replaced by 27! in Eq. (8). The numerator 
polynomial of is is assigned to £ and the 
denominator to $, This results in the 
minimum settling time being increased from 3 

to 7 sample intervals in the class I design. 
Also there is an increase in the controller 
complexity with fourth order polynomials in 
the numerator and denominator. Sensitivity 

to parameter changes is increased, The same 
problem arises when the corresponding 
analogue filter is implemented before the 
analogue to digital converter. 

A compromise is reached if a non-recursive 

digital filter is employed. This provides a 
pair of zeros at the notch frequency which 
are also allocated to f. The result is a 
minimum settling time of 5 sample intervals 
and controller functions with second order 

numerator and fourth order denominator poly- 
nomials.
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In all these cases the overall bandwidth must 
be less than the notch frequency. This means 
that the attainment of adequate response 
speed for strap-down applications is 
considerably impaired by the need for such 
filtering. 

Processing Delay 

The execution time of the digital processor 

implementing the control function may well 
amount to a significant fraction of the sample 

interval. This results in an additional 
delay in the rebalance loops. 

The analytical design method outlined here 

may be implemented with the modified, or 
delayed, z-transform functions incorporating 
the processing delay. This results in co- 
efficient changes but no general change in 

controller complexity, The system response 
is delayed by the corresponding processing 
time delay. 

IMPLEMENTATION OF DIGITAL CONTROL 

The design procedure yields a control 

algorithm in the form of matrix D, Implement- 
ation of the four transfer functions involved 
in a digital processor involves a combination 
of multiplication and addition operations. It 
is important to ensure that the processing of 
each new pair of error samples, together with 
their conversion from analogue to digital 
form, can be completed in less than the sample 
interval. Timing calculations show that with 
a sampling frequency as high as 2.4kHz there 
is a need to select the processor carefully 
to meet this requirement, particularly where 
a digital noise filter is to be included. 

Multiplication of floating point numbers is 
potentially the most time consuming 
arithmetic operation involved. There may be 
a need to involve a separate hardware 
multiplier to overcome the slow operation of 

software multiplication. Limitations on the 
choice of processor are considerably relaxed 
if floating point multiplication can be 
avoided as far as possible. One means of 
achieving this is to round off coefficients 
to values represented by simple binary 

Operations. In this way whole word 
multiplications are replaced by a small 
number of quicker shift and add operations. 

The design method has been developed with 

this possibility in mind. It provides a 
means of rounding coefficients without 
adverse effect on the system performance. For 
example it_has | shown that the polynomial 
(1+3.671 z “+z “) may be rounded to 
(14 2+ 272) and also (140.7386 27) + 
0.2614 2-2) is changed to (140.75 2-1 + 
0.25 2-2), Multiplications involving the 
new coefficients 4, 0.75 and 0.25 may be” 
implemented by shift and add operations with 

a significant saving in processing time. 

Steel and S. N. Puri 

CONCLUSION 

The method of design proposed here has the 
advantage that it exploits direct analysis in 
the z-plane and takes account of the 
behaviour of the rebalance system of a dry- 
tuned gyro as a multivariable control system, 
The chief advantage of this synthesis 

technique is that it guarantees the best 

possible dynamic performance and eliminates 
interaction. Achievement of such ideal 
performance can lead to problems of 

sensitivity to parameter variations. Where 

it is desirable to round off the coefficients 
used in the digital control algorithm such 

sensitivity is a disadvantage. A solution 
to this problem has been developed for the 
special case of the gyro rebalance control 

loops. This involves a differential adjust- 
ment of coefficients on the one hand and an 
optimal reduction of sensitivity by 
retardation of the dynamic response on the 
other. 

The design method may be implemented when 

filters are included to remove pick-off noise 
and may be adapted to take account of finite 
processing time in the digital controller. 

The possible advantages of rounding 
coefficients in the control algorithm to 
veduce the computation time have been 
identified. This will ultimately allow a 
tore flexible choice of processor for 
implementation of the controller. 

The synthesis assumes linearity of the 
control elements which is appropriate to the 
dry-tuned gyro designed for strap-down 
applications where linear torquing 
characteristics over a wide range are an 
inherent requirement. 
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Summa. y- 

The method of minimum, finite settling time design used for 

single-loop systems is extended to cover multivariable systems. 

Sensitivity analysis is applied and results of considerable 

generality are derived which indicate the effects of gain changes 

and pole or zero movement in the plant transfer functions. A 

design policy is developed which satisfies the need for low sensi- 

tivity in implementation. 

Further development evolves a design technique in which speed 

of response can be systematically traded for sensitivity. At the 

same time the technique satisfies the need to achieve a digital 

control algorithm of minimal complexity. 

The method of design has been shown to be particularly 

relevant to systems with lightly damped open-loop modes and an 

example of this type of system is analysed in detail.
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List of Principal Symbols 

P, 

£, 

or 

det 

a, 

8, 

Ne 

a, 

C(z) 

(P) 

a*® 

B* 

Matrix of system output transforms. 

Controller transfer function matrix. 

Matrix of system error transforms. 

Plant transfer function matrix. 

Closed-loop transfer function. 

Closed-loop error transfer function. 

Functions f and ¢ for loop i. 

Minimal polynomials in f and 9. 

Element of P. 

Cofactor of an element of P. 

Determinant of P. 

Laplace transform variable. 

z-transform variable. 

Position of open-loop complex pole pair. 

Position of open-loop complex zero pair. 

General variational factor. 

Fractional gain change. 

Displacement of open-loop poles. 

Displacement of open-loop zeros. 

Position of closed-loop complex pole pair.



1. Introduction. 

The analytical technique of designing digital control algo- 

rithms for minimum system response time have been long established 

in the case of single-loop system (172) | Given a plant transfer 

function the analysis computes the pulse-transfer function of a 

digital controller which will cause the closed-loop system to 

respond in the minimum number of sample intervals. The solution 

depends on the form of test input considered, for example a step 

or ramp function, and the response is tuned to settle in a finite 

number of sample intervals without overshoot and with zero steady- 

state error. 

The settling time attainable is limited chiefly by the 

incidence of unstable plant modes, that is poles of plant pulse- 

transfer function outside the unit circle in the z-plane. Also 

zeros in the same region have a similar effect. This is because 

cancellation of poles and zeros outside the unit circle by cor- 

responding zeros and poles in the controller transfer function 

leads to a sensitive design condition in which mismatch between 

the controller and the plant will render the closed-loop system 

unstable. The result of avoiding such cancellation is to extend 

the settling time, but the response time remains at the minimum 

practicable value. The settling time may also be increased by the 

need to avoid unstable modes in the controller. These modes can 

appear even when a direct cancellation of a zero of the ‘plant 

rvansfer function is not involved. It has been shown that by 

extending the settling time by one sample interval the increased 

design flexibility allows this to be avoided in at least one 

example!) 

With these refinements the design results in the ideal response 

for a given test input. However, as would be expected, the technique
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has limitations. Most significant among these is the need for 

accurately known dynamics, a dependence on linearity, potential 

complexity of the control function and the need for its accurate 

realization. These limitations arise chiefly from the fact that 

a finite settling time design is sensitive to parameter 

variations +) For these reasons the design method has not been 

widely adopted. The design method remains valuable as a means nee 

identifying the ultimate performance capability of the system and 

may be necessary where a high speed of response is required. 

In this paper the design method is extended to cover multi- 

variable control systems. It assumes feedback of the primary system 

output variables alone and is based on transfer function analysis. 

Other work (8/13) in this field has concentrated on state space 

analysis in which feedback of a complete state vector is a funda- 

(9) mental requirement. Nishida has developed a design method 

applicable to this class of system based on single-loop design by 

Jury and Schroeder ‘®) , It is a transfer function method and is 

attractive where the requirement for rapid response is not important. 

However, the use of this method is restricted to systems where 

all poles and zeros are well inside the unit circle. When any 

element in the plant contains complex conjugate poles very near 

to or outisde the unit circle simple application of this method is 

not possible. The new method developed here overcomes these 

difficulties and is therefore particularly relevant for systems with 

lightly damped modes. 

Section 2 outlines the main features of the procedure and 

emphasises those aspects which differ from single-loop system 

design. Section 3 develops a design procedure for the case when the 

settling time is not required to be finite. It is shown that such 

a retarded response offers considerable advantages when seeking a
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design with the minimum complexity of controller functions. 

Section 4 leads to a set of very general relationships governing 

the sensitivity of the system response to mismatch between the 

controller and the plant. These relationships are used to develop 

a technique which allows speed of response to be traded for 

sensitivity in a systematic analytical procedure. The paper con- 

cludes with a design example which shows how a design for minimum 

sensitivity can be achieved.
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2. Basic Design Method. 

The system configuration shown in FIG.(1) has a multivariable 

plant with an m x m pulse-transfer function matrix P(z) and m con- 

trol loops are formed, each with unity feedback gain. The digital 

controller has the structure of an m x m array of pulse-transfer 

functions as represented in D(z). 

The error response function is given by 

he 
Ee (r+ pp] R (1) 

from which we designate the system error transfer function matrix 

dae w= [I + PD (2) 

Also the overall closed-loop response function is defined by 

c = (1 + pp]~? por (3) 

and the closed-loop transfer function matrix is recognised as 

I= w= [p+ pp])- Pp. (4) 

A requirement for non-interacting response is that a test signal 

applied at any single input should produce a response at the cor- 

responding output and have no effect on the other output points. 

This implies that I - W must be a diagonal matrix. Furthermore 

for simplicity at this stage it will be assumed that all loops 

are designed to have the same response* so that 

I- W= £1 (5) 

where £(z) is the common closed-loop pulse-transfer function for 

  

* It will be shown later that this applies to all stable, minimum 

phase open-loop systems.
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all the loops. Following from this we may define 

w= or (6) 

where $¢(z) is the common error pulse-transfer function. 

The design method proceeds, in a similar manner to that used 

in single-loop systems ‘?) , by defining the required closed loop 

function f and computing the necessary control function matrix D. 

The relationship giving D follows from equation (4) as 

bay onl set, fads te) Dead) Pa a) ae) (7) 

A minimum-prototype response function may be assigned to f depending 

on the form of input R to which the optimum response is required. 

For example a unit step input applied to any one of the loops leads 

1 
to an error response ¢(z)/(l1 - z ~) in that loop and zero error in 

all others. The steady-state error will be zero provided that ¢(z) 

1 
contains a factor (1 - z ~~). Also we note that f =1 - @ and when 

1) £ becomes z! and the system @ takes the minimal form (1- z 

response settles in one sample interval. Having assigned f and ¢ 

as compatible functions they may be substituted in equation (7) to 

obtain D. This basic method must be varied to take account of 

special conditions in the plant transfer function matrix P, these 

arise from 

(i) Unstable open-loop modes. ‘ 

(ii) Transfer function zeros outside the unit circle. 

(iii) Zeros of det(P) outside the unit circle. 

2.1 Unstable Elements. 

2.1.1 Design Policy. 

In single-loop system design instability of the 

plant, which places poles of the pulse-transfer function
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outside the unit circle, requires that corresponding 

zeros must be assigned to ¢. If this is not observed 

zeros are placed in the controller transfer-function 

which cancel the poles in the plant transfer function. 

This results in a condition of high sensitivity where 

a small mismatch between the cancelling terms will lead 

to instability of the closed-loop system’), For similar 

reasons the cancellation of zeros of the plant transfer 

function outside the unit circle must be prevented as this 

leads to an unstable control function. 

In the multivariable case it will be enor in 

Section 4.2 that unstable plant modes must be compensated 

by allocating corresponding zeros to 9. The further 

effect of this may be to produce unstable control elements 

which, while unacceptable in the single-loop case, is not 

always a sensitive condition in multivariable systems. 

One consequence of this may be that some loops will have 

a longer settling time than others. 

We will first generalise by assuming that all loops 

do not necessarily have the same settling time. 

The general definitions of matrices F and ¢% are 

=o 2D) 
= (8) 

Fo= (1 + PD) PD 

where F and remain diagonal to achieve non-interacting 

control but the diagonal elements are not necessarily 

equal. 

It follows that
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and also that ee F, which gives the transmission matrix 

PD of the forward path, is a diagonal matrix with elements 

tii/%aae The closed-loop natural modes are given by the 

zeros of det(I + PD) which leads to 

: - (Et e/a = 0 (10) 

The zeros of each term in this product may be considered 

separately. We notice that £ii/Paa arises from the 

matrix product PD with row i of P multiplied by column 

iof D. Now if any element in row i of P has a pole at 

z =a this will appear in £54 oas unless it is cancelled 

by a zero in the appropriate element of column i of D. 

When z = a lies outside the unit circle this is a sensitive 

cancellation which must be avoided by allocating a zero at 

z2=a in 9iae 

The design policy may therefore be stated as follows: 

Policy (1) 

If one or more elements in row i of P are unstable 

and have a common pole at z = a on or outside the 

unit circle a zero must be placed in oat atz=a 

as part of the design procedure. 

2-1.2 Unstable Control Elements. 

The effect of Policy (1) on the control functions 

D is seen in equation (9). In forming Ea = adj (P) /det (P) 

with P an m xX m matrix we assume that an arbitrary dis- 

tribution of elements in P carry a simple pole at z = a. 

The multiplicity of the terms (z - a) in P+ is signi- 

ficant and may be assessed as follows: 

In forming adj(P) the (m - 1) square minors of P
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are used to form cofactors. If the highest multiplicity 

of the pole in any cofactor is n, with n< m- 1, the 

multiplicity in det(P) is either n or n +1. Therefore 

the elements of pt must be zero or finite at z = a. 

When a zero is placed in oa at z = a the elements 

of column i of P+ are divided by (z - a) in forming D 

from equation (9). It is significant that any element 

in column i of ae which is finite at z = a will lead to 

a corresponding element of D with a simple pole at this 

point. When a is outside the unit circle this control 

element will be unstable. Other elements of D will 

remain finite or zero at z = a. 

The presence of unstable control elements produced 

in this way is not a sensitive condition as complete 

cancellation between poles in P and zeros in D is pre- 

vented as long as Pa ee Oat 2 e=-4-- 

When the controller is implemented in a digital 

processor there is no difficulty in realizing poles out- 

side the unit circle and a satisfactory design is possible. 

Condition det(P) = 0 Outside the Unit Circle. 

When the zeros of all the elements of P are inside the 

unit circle, i.e. they represent minimum phase transfer 

functions, poles are intreduced into P 2 by the zeros of 

det (P). If these are transferred to D in equation (7) the 

control elements will be unstable and furthermore this will 

later be shown to give a sensitive design. Sensitivity can 

be avoided by allocating the zeros of det(P) to £; the design 

policy becomes, 

Policy (2) 

If det(P) = O on or outside the unit circle, and 

10
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these points do not coincide with zeros of the 

elements of P, all such zeros of det(P) must be 

allocated to f as part of the design procedure. 

Zeros outside the unit circle may appear in the 

elements of P and, when the same zero is common to 

several elements, det(P) can become zero at the 

same point. When these zeros are distributed so 

that det(P) is not zero at the same point there is 

no problem of sensitivity if f and ¢ are given their 

minimal form. In other cases cancellations occur in 

forming pe so that a simple zero in elements of P 

leads to at most a simple pole in the elements of 

Peas The design policy in this case can be stated 

as follows: 

Policy (3) 

When zeros of det(P) coincide with zeros of the 

separate elements of P, and lie on or outside the 

unit circle, corresponding zeros must be assigned 

to f as part of the design procedure. A simple 

zero in elements of P is accommodated with a simple 

zero in f. 

One such case of particular interest arises when a zero 

is common to all elements of one row of P, due for example to 

an output component in one loop. When this occurs in row i 

it follows from the results of Section 2.1.1 that it is only 

necessary to assign a simple zero to tiie We therefore define 

a further design policy. 

Policy (4) 

When all elements of row i of P have a common zero 

Li
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at z =a, on or outside the unit circle, a simple 

zero at z = 4 must be assigned to fay as part of 

the design procedure. 

A further aspect is that it may be desirable to apply 

the above procedures to all the zeros of det(P), including 

those inside as well as outside the unit circle. This ensures 

that the output sequences from the controller are of finite 

duration. These sequences are given by pa FR which become 

finite in duration when all the poles of we are cancelled in 

F, It should be noted however that in the multivariable case 

this can lead to a considerable extension of the settling time 

and an increased complexity in the controller. 

2.3 Effect on Synthesis Procedure. 

The need to allocate zeros to f and » based on the un- 

stable modes of P and the zeros of det(P) leads to a change in 

the computational technique. For example, if a zero is 

assigned to f at z = a we define 

= 
f=g2 (Pome ze ) ee 

and consequently » must change so that 4 =1- £. We there- 

fore define 

as fia (2 uch jeebees) : (12) 

with b an arbitrary coefficient. The values of b and g are 

found by matching ¢ to (1 - f) term by term. 

When more than one zero is assigned to £ the polynomial 

¢ is extended so that the degree of Zz in ¢$ novenes that in 

£. There are then sufficient undefined coefficients in for 

12



— \o8- 

a solution to be possible. The final result is to extend the 

settling time by one sample interval for each zero allocated 

to £. 

Similarly when zeros are allocated to ¢ extra terms must 

be placed in f with undefined coefficients. Again the settling 

time is extended. 

This procedure is the same in principle as that used in 

single-loop systems. 

2-4 Loops Having Different Settling Times. 
  

It has been shown above that if an unstable mode is 

present in any elements of one row of P a cancelling zero 

need only be placed in Say corresponding to row i. Similarly 

if a zero outside the unit circle is present in all elements 

in row i alone a cancelling zero is placed in tiie In either 

case the result is to extend the settling time of loop i 

leaving the other loops unaffected. 

The designer can choose to make all loops have the same 

settling time, equal to the longest so obtained. To do this 

the same zeros can be allocated to all faa and dag polynomials 

or an arbitrary choice of zeros may be made to bring all poly- 

nomials up to the same degree. This will seldom be of any 

advantage however as the result will be increased controller 

Complexity and the sensitivity to gain changes will be increased. 

It remains however that for stable open-loop systems having 

no transfer function zeros on or outside the unit circle all 

loops will have the same minimum settling time. Also when poles 

outside the unit circle appear in every row of P the same 

applies. And again, if a common zero on or outside the unit 

circle appears in every element in one column of P all loops 

will be affected. This happens in particular when an input 

iT
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actuator gives rise to the pole or zero. 

Thus for the majority of cases of practical interest the 

design procedure will lead to all loops having identical closed 

loop response. 

14
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3. Retarded Response. 

The design method outlined in Section 2 yields a response 

which settles in a finite number of sample intervals. This is 

the result of designating the closed-loop response function f as 

a polynomial in “ae, It will be shown later that the requirement 

for a finite settling time may be relaxed with advantage in 

reduced sensitivity. If a pole on the positive real axis is 

introduced in £ an exponential mode will appear in the response. 

This is referred to as "retarding" the response and, while the 

settling time is theoretically infinite, in practice the steady-state 

is adequately achieved in a finite number of sample intervals. 

Alternatively a second order response component may be intro- 

duced by placing a complex pair of poles in f. 

The analytical consequences of this policy are outlined as 

follows for the case where a single pole is introduced. We assume 

that the open-loop system is stable and write, 

g £.(z) 
st 2 (13) we 

where fy is a designated minimal polynomial of degree n in zt 

containing zeros of det(P). The value of y fixes the position of 

the pole. Gain factor g takes the value E71 - y) to satisfy 

the requirement that £ must approach unity for z = 1, giving the 

steady-state conditions of zero error. It follows that 

*o (14) ¢ = -— lL 4 
1 - yz - 

where we is a polynomial of degree n, equal to that of for with 

arbitrary coefficients (there being no zeros assigned to os when 

the system is open-loop stable). Now it is required that f = 1 - 9 

LS
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so that 

g f= (2 y 27) - 65 (15) 

the solution of this is find the n undetermined coefficients in 

o, now proceeds by equating coefficients with the same power of 

=1 
Bias 

The above process is subject to some variation when the 

open-loop system is unstable. Zeros will be assigned to %, to coincid 

with poles of elements of P. Depending on how many zeros are so 

assigned it will be necessary to augment fy with extra terms to 

provide the freedom of coefficient adjustment to satisfy 

equation (15). 

It is important to note that in either case the inclusion of 

a simple pole in fy and os will not affect the degree of the 

numerator polynomials. Hence the complexity of the control 

algorithms in D is unchanged when the response is retarded in this 

way, only coefficient values are changed. 

The above procedure can be extended to allow more than one 

pole in f and 9. This can be done without changing the complexity 

of the control algorithm provided that the total number of poles 

does not exceed the degree of the polynomials in fy and oo- In 

practice it will be seldom necessary to use more than two extra 

poles. It will be shown later that the use of a complex pair of 

poles, giving a damped oscillatory mode in the response, offers 

advantages in sensitivity reduction compared with a simple pole.
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4. Generalised Sensitivity Criteria. 

The sensitivity of the closed-loop response to parameter 

variations can be judged by observing the change in the natural 

modes. In a multivariable system these are identified by the roots 

of the closed-loop characteristic polynomial det(I + PD) =0. 

iL 

the deviation matrix such that element a contains the change in 

If P is subject to variations we write P, = P + H where H is 

Pie The zeros of det(I + P,D) are found from 

1 det(I + £fHP ~) =0 (16) 

since I + PD = eas and D = Pe eiale It is assumed that the zeros 

of equation (16) do not coincide with the roots of $9. 

The changes anticipated in P may be identified as simple gain 

factor changes or in movements of the poles and zeros of individual 

elements. 

A gain change in element Pay is represented as Pi, = (1+ eS 

where p is the fractional change in gain. Hence 

h (17) tye ES 

A pole or zero movement is most significant when close to 

the unit circle. We therefore consider the case where a complex 

pair of poles or zeros change position. 

When Pay has complex poles at a, a*; Lhz =a) (Zaman) 
Lag 5 

and allowing changes 6 and é* in a and a* respectively we have 

it lee (6 + 6*) [z - (80% + 6*0)/(8 + 6*)] 
ij ~ Pig Iz - (@ + 8)][z- (a* + O*)] 
  (18) 

for small 6 and 6*. 

Similarly complex zeros in Pij are represented as 

L7
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Py, = 4,,(2 - 8) (z - 8*). Changes n and n* added to 8 and g* 
) 

then give 

ij 

Hg yy ent ie = nes ent) 7 (non) (19) 
2 3 (2 - 8) (z - B*) 

for small n and n*. 

The three conditions derived above in equations (17), (18) 

and (19) all have the general form aa = Pi3 \ where \ contains 

all the variation terms. When several elements in P change in 

the same manner it is useful to write H = \K where \ is a scalar 

multiplier and matrix K has ky. = Py, or zero- The element is 
J i 

zero in K when no change is present in Pi: 

Equation (16) is now modified to 

1 det(I + £AKP~) =0 (20) 

and the detailed implications of this can be worked out for each 

form of variation given in equations (17), (18) and (19). 

4.1 Gain Variations. 

Two cases of gain variation are considered; firstly 

where the change affects one element of the plant transfer 

function matrix and secondly, where there is a systematic 

change of several elements due to actuator or transducer 

gain changes. 

4.1.1 Change of One Element. 

When element Pi; is subject to a gain change, matrix 

K ‘contains Piy as its only non-zero element. On sub- 

stituting this in equation (20), and noting that from 

equation (17) \’ =p we get 

1+ of Piz “ij = 0 (21) 
det (P) 

18
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where 444 is the cofactor of element Piy in P. Now if 

det(P) = O outside the unit circle, and Py. Or are Seay 
not zero at the same point, the root locus solution of 

equation (21) will indicate a root close to the zeros of 

det(P) for small variation o. The resulting closed loop 

system will be unstable. This can be avoided if zeros 

are assigned to f which cancel those of det(P) outside 

the unit circle. The result of this is stated in 

Policy (3) above. 

This conclusion is modified if there are zeros of 

the elements Pi, or ne outside unit circle which coincide 

with those of det(P). We must observe how the multi- 

plicity of the zero in Pi Aa relates to that in det(P). 

In forming det(P) summations of terms Pay 455 are used 

and the multiplicity of the zero of det(P) will equal the 

lowest multiplicity in any Ps 4 term. Therefore the 
ij 

ratio By ayo /cet te) will have no pole at the point in 

question. 

We conclude that a coincidence of zeros of elements 

of P which makes det(P) = O outside the unit circle at 

the same point does not lead to sensitivity to gain 

change if f recaing its minimal form. 

4.1.2 Actuator and Transducer Gain Changes. 

A change in transducer gain at output i Gives a 

gain change in all elements of row i in P. Now matrix K 

will contain elements of P in row i and zero elsewhere. 

We may write K = SP where matrix S has element say =l 

on the diagonal and all other elements are zero. Then 

the product K pe in equation (20) reduces to S so that 

we have 

19



Ns 

Ly FER ESO) (22) 

A change in actuator gain at input i is equivalent 

to a change in all elements in column i of P. Thus K 

will contain the elements of P in column i and zero 

elsewhere. We may write K = PS with sj; = 1 and all 

other elements of S zero. On substitution into 

equation (20) the result again reduces to equation (22). 

Design for minimum settling time results in f having 

the form 

q< 2 (23) 

and from equation (17) A = 9 so that equation (22) 

becomes ; 

m7 (-,,) 
iai 4 

1 +pg ————- = 0 (24) 
2” 

where for small p the solutions are assumed to be close 

to the origin in the z-plane. The requirement f = 1 

for z = 1 fixes g in equation (23) and on substituting 

this in equation (24) we get 

fz aaipy et oat 
ie 

7 (25) 

  

giving for small variations, the magnitude of the dis- 

placement of the closed-loop modes away from the origin 

in the z-plane. This implies a generally sensitive 

Situation since 2, being the degree of the polynomial 

in £ serves to determine |z| in terms of the 2th root of 

20
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p. For small values of 9 the root is larger in magnitude 

than p and the value of |z| increases substantially as 

& increases, i.e. as the system settling time increases. 

Thus the sensitivity of the minimum settling time design 

is apparent as it places all the poles of f at the origin. 

4.1.3 Effect of Retarded Response. 
  

Sensitivity is reduced by retarding the response as 

described in Section 3. If a pole (1 - y 27+) is intro- 

duced in f and 4. Equation (25) is modified to 

(26) 

  

Similarly when a complex pair of poles is introduced 

  = = 5 gq z 
lz|= oe Z 1! RU? went a7) 

      

Equations (26) and (27) show significantly that the intro- 

duction of poles in f reduces the degree of the root 2 

to 2 - land2 - 2. This considerably reduces the value 

of |z| when p is small. 

A further reduction in |z| can be obtained by choosing 

y to reduce the factor L=+¥   in equation (26). For this 

factor to be less than 1 we require y > 0.5 and the 

sensitivity decreases uniformly as the resporise is retarded 

more severely with y approaching l. 

Similarly the factor (1 - y)(1 - y*)/vy* in 

equation (27)reduces the sensitivity when Re y > 0.5. 

The essential compromise between speed of response 

of the closed-loop system and sensitivity to gain changes 

is thus identified. 

21
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4.2 Movement of Poles. 

The change Bis given in equation (18) applies and is 

identified as equivalent to eas) = Pay A where \ contains the 

variation terms. In equation (20) matrix K contains each element 

Pi involving the pole pair which are assumed to move and zero 

elements elsewhere. At points in the z-plane close to the 

pole at z =a, limit [(z - a) K] = (z - a)P and therefore 
Z—a 

limit [kp-4] = I, so that equation (20) reduces to 1 + £1 = 0 

and on substituting for A we get 

Lets en) ee ie ae sudo (2a) 

valid for small 6. The displacement of the mode can be 

extracted and becomes 

Sirie i= 6(l) = f£la)jo = 
Zs ee 6 (Die 8\(g*)i) 

) 8 ola 

= 6 9(a*) (29) 

when z - a and z = a* are small. 

The significance of this is that the system is potentially 

sensitive to movement of the open-loop poles unless 4 = 0 at 

2 =a and a*. In the controller design equation (7) the poles 

of elements of P become zeros of D or are absorbed in $. By 

allocating zeros to ¢ which match the open-loop poles of P we 

thus ensure that poles of the closed-loop response do not appear 

adjacent to the open-loop poles when a small change of pole 

position takes place. It also follows from equation (29) that 

simple zeros in ¢ at a, a* are sufficient to compensate for any 

distribution of the unstable mode among elements of P. We must 

therefore assign zeros to $ corresponding to poles of P on or 

outside the unit circle to eliminate sensitivity in this 

critical region of the z-plane. 

22
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4.3 Movement of Zeros. 

The change ne given in equation (19) is identified 

with hi. = po. 
3) = 

n and n*. In equation (20) matrix K contains elements Piy 

involving the zero pair which have been assumed to move and 

\ where A contains the variation terms due to 

zero elements otherwise. Thus at z = 8 and 8*, K = 0. 

Evaluation of the term xp, involved in equation (20), at 

z = 8 and 8* depends on whether SEP has poles at these points 

i.e. on whether det(P) has zeros there. Two cases arise. 

4.3.1 Case of det(P) 4 O at z = 8, B*. 

This arises when the zeros (z - 8) (z - 6*) are 

distributed among the elements of P so that not all 

separate terms in det(P) contain at least one element 

with these zeros. In this case no element of pee has 

a pole at z = 8, 8* so that xp is zero at these points 

and equation (20) shows that the closed loop system cannot 

have modes adjacent to 8 and 8* for changes n and n* in 

the open loop zeros. 

4.3.2 Case of det(P) = 0 at z 

  

B, B*. 
  

Tf element Piy contains a complex zero pair outside 

the unit circle and this is assumed to move the matrix 

K contains Pi5 as its only non-zero element. Equation 

(20) then reduces to 

pau, oe, 

1+ aft Sh aebtey n ° (30) 

Now \} in this case has poles at 8, 8* which cancel the 

zeros in Pay we are therefore left to consider Bae eae 

If the same zeros are present in other elements of P such 

that det(P) = 0 at 8, 8* the cofactor ae May also be 

zero at the same points so that cancellations occur. 

23
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However the multiplicity of the zero in det(P) can at 

most be one greater than that in any cofactor so that 

Aer KE) May have only a simple pole. In this case 

we must assign to f a simple zero at 8, 8* to ensure 

that a solution of equation (30) does not exist close to 

these points in the z-plane. 

Further insight is obtained by considering a move- 

ment of the zero pair taking place in several elements 

of P at once. For example when the zeros are common to 

all elements in one row or column of P. In practice this 

occurs when the zeros are associated with an actuator or 

transducer component. A similar situation has been con- 

sidered in Section 4.1.2 where it was shown that the 

characteristic equation reduced to 1 + £4 = 0. With the 

form of \ implied by equation (19) we have 

om (nett eae Bnet nee Lost Lith Ene) EHee |] =0 (31) 

and when the displacement of the mode from 8, 8* is small 

this reduces to 

z= 8 = nf (es) 
(32) 

Zi See ne Ee*) 

For zero sensitivity we then clearly require £(8) and 

£(8*) to be zero and this is achieved by allocating zeros 

at 8, 8* to f as part of the design procedure. 

The overall conclusion becomes that a sensitivity problem 

only exists when the zeros are common to elements of P 

such that det(P) = 0 at the zeros. This is particularly 

significant when the zeros are close to or outside 
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the unit circle. Sensitivity can be avoided by assigning 

simple zeros to f at the same point. This principle gives 

rise to Policy (3) stated above. 

4.4 Sensitivity Compensation by Retarded Response. 

In the previous section it has been shown that a pole 

of any element of P on or outside the unit circle must be 

taken into account by allocating a corresponding zero to 

¢- Also when det(P) has zeros on or outside the unit circle 

matching zeros must be allocated to £. Failure to observe 

this rule would create a closed loop system in which a small 

change in the pole or zero positions and gain would render 

the system unstable. 

When the poles of P or zeros of det(P) fall close inside 

the unit circle it is not essential to make allocations to ¢ 

and f. But if this is not done the response will be sensitive 

to plant variation and may become unstable. 

However allocating zeros to $ and f to remove sensitivity 

is not wholly advantageous. The settling time is extended by 

one sample interval for each extra zero placed in ¢ or f. 

Also the multiplicity of the poles of f at the origin is 

increased and this results in greater sensitivity to gain 

variations. Finally the controller complexity is increased as 

the elements of D contain polynomials of higher order. 

These latter difficulties can be avoided by systematic 

use of the retarded response as described in Section 3. It 

was shown in Section 4.1 that the sensitivity to gain 

variations is improved by allocating poles to f and ¢. Results 

will noe be obtained to show that the same policy can reduce 

sensitivity to pole and zero movements and that in these cases 
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optimum positions may be found for the poles allocated to f 

and 9$. 

4.5 Analytical Method of Sensitivity Compensation. 

As an example of the technique for examining the effect 

of response retardation on sensitivity the method will be 

demonstrated for the case where a pair of complex conjugate 

poles are placed in f and $. A similar more restricted method 

may be used when a single real pole is used but the complex 

pair are generally more effective. 

For the case of an open-loop stable system we define 

22 £_ (2) 
un) See ee ee 
Se yea) 32) 

where £,(z) is the polynomial to which all zeros of det(P) 

on or outside the unit circle have been assigned*. For an 

open-loop stable system $ contains no allocated zeros and 

there are no undetermined coefficients in f,. Hence we obtain 

_ tL -y) (1 - y*) 
g £ (1) (82) 

On recognising that f = 1 at z=l1. 

4.5.1 Movement of Poles. 

When an open-loop pole pair at a, a* move to 

(a + 6), (a* + 6*) equation (29) gives the displacement 

of the closed-loop mode. This applies close to z = 4 

and at this point equation (31), together with (32) 

gives 

  

* Having regard to cancellations due to zeros of 

the elements of P which coincide with zeros of 

det (BP). 
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= 21 = y) (1 - y*) £2) 
tele Gaye =) ELOY ve 

and equation (29) becomes 

z- a = 6(1 - £(a)) (34) 

Now f(a) is a complex number depending on the value of 

the conjugate pole positions y,y*. Some restrictions 

can be usefully placed on y since this determines the 

form of closed-loop mode introduced to retard the response. 

If the damping ratio of the mode is specified it may be 

shown that values of y must lie on the loci shown in 

FIG. (2). 

Now f(a) can be evaluated using equation (33) for values 

of y on one of these loci and a locus plotted as shown 

in FIG. (3). 

It is immediately apparent that the vector A /@ in this 

diagram represents (z - 4)/é. Both the magnitude and 

angle of this vector are important. If A< 1 the distance 

z - a is less than the magnitude of open-loop pole dis- 

placement 6 and based on this an optimum value of y may 

be found which minimises the vector length A. This 

criterion is useful when the direction of the displacement 

6 is arbitrary. ; 

If the direction of the change 6 is defined the 

sensitivity to that particular change may be further 

adjusted by noting that the direction of movement z - a 

is that of 6 rotated by angle 6. It may then be appropriate 

to choose y so that the displacement z - a moves away from 

the unit circle or in the limit tangential to a circle 

through the pole. 
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If the minimum settling time response is used the 

movement z - a is obtained using f(a) = £, (0) /£, (1) i.e. 

for y = 0 in equation (33). The effectiveness of the 

retarded response in reducing the movement is obvious on 

comparison of this value with A obtained above. 

4.5.2 Movement of Zeros. 

When the zero pair 8, 8* move to (8 + n),(B* + n* 

the displacement of the closed-loop mode (z - 8) is given 

by equation (30). For values of z close to 8 we get 

2-78 = =n £08) (35) 

where, for an open-loop stable system £(8) is found using 

equation (33) with 8 replacing a. The magnitude and angle 

of £(8) then indicate directly the movement z - 8 relative 

to the change n. A locus of £(8) for values of y as 

indicated in FIG.(3) will reveal an optimum choice which 

minimises the magnitude of £(8) or gives an angle which 

directs (z - 8) in a preferred direction. A measure of 

the improvement in sensitivity obtained may be observed 

by comparison with the value £,(8)/£,(1) which applies to 

the minimum settling time design. 

The same basic analytical technique may be used when a 

simple pole is allocated to f. In detail the method is 

simplified by the fact that the pole may be restricted to lie 

on the positive real axis inside the unit circle. It can be 

shown that this necessarily limits the degree of sensitivity 

compensation which can be achieved i.e. the extent to which 

f(a) can be brought close to 1 + jO in FIG.(3). More flexi- 

bility exists with a complex pole pair. 
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5. Design Example. 

The details of a design example using the method of Sections 

4 and 5 are given in the Appendix. This example represents a 

two input/two output system with a common lightly damped resonant 

mode in all open-loop elements. It is shown that if the minimum 

settling time design is applied the result is a sensitive system 

which becomes unstable if the damping ratio of the open-loop mode 

is reduced. Also the response is considerably affected by a 

10% change in loop gain and in particular the settling time is 

extended from 5 to 9 sample intervals. 

The introduction of a retarded response with a damping ratio 

of 0.5 leads to an optimum choice of response which minimises the 

magnitude of pole movement under changes of open-loop mode damping. 

This is seen to considerably improve the sensitivity to damping 

changes. 

It should be noted that the sensitivity reduction is achieved 

without any increase in the complexity of the control algorithms. 

The alternative procedure which is to assign the open-loop poles 

close to the unit circle to 4 has the significant disadvantage 

that sensitivity reduction is only gained at the expense of con- 

troller complexity. 
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6. Conclusion. 

The synthesis method developed here is an extension of the 

technique which has previously been used for single-loop systems. 

In the case of multivariable systems several distinctive problems 

emerge as a result of the interaction between the control loops. 

The need to avoid sensitive design conditions, in which mis- 

match between the controller and the plant may produce instability, 

is an important consideration. This requires the removal of com- 

plete pole/zero cancellation between the controller and the plant 

when such poles and zeros are on or outside the unit circle in the 

z-plane. While this is simple to visualise in the single-loop case 

the multivariable case required more detailed study taking account 

of matrix manipulations of the transfer functions involved. It is 

significant to note that when some transfer function elements of 

the open-loop system are unstable the avoidance of sensitive can- 

cellations can lead to a requirement for unstable control elements. 

Also, in contrast to the single-loop case, zeros of the open-loop 

elements on or outside the unit circle do not necessarily lead to a 

sensitive minimal design. The zeros of the determinant of the plant 

pulse transfer function matrix play a similar role in the multi- 

variable problem to that of the zeros of the single-loop plant 

transfer function. Sensitivity problems arise when the zeros of the 

determinant lie close to or outside the unit circle. 

Analysis of the sensitivity conditions has produced results of 

considerable general significance. The effect of gain changes in 

the Bieae sea movements of its poles and zeros have been considered. 

These results show clearly how sensitivity can be avoided in the 

design process. However, the achievement of a minimal, finite 

settling time. response in the closed-loop system can lead to a 

result which is sensitive to gain changes and complex in the control 
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algorithms required. 

It has been shown that by designing a closed-loop response 

which has poles as well as zeros in its transfer function the 

sensitivity can be improved. A method has been devised for 

analytically assigning such poles in order to minimise sensitivity. 

This leads to a design which offers the fastest possible response 

subject to sensitivity constraints and shows how speed of response 

can be traded for sensitivity. The further advantage of this 

procedure is that sensitivity is reduced without any increase in 

the complexity of the control algorithms required. 

In the majority of cases the design process will result in 

all loops having the same closed-loop response. Exceptions to 

this can occur when the open-loop system has unstable elements or 

transmission zeros outside the unit circle. 

The general scope of the application of this design method 

to multivariable systems is limited. First of all the analytical 

complexity increases rapidly with the number of loops involved. 

This may also lead to the need for elaborate control algorithms 

involving high order polynomials. The problem simplifies signi- 

ficantly when the transfer function elements have common poles 

and zeros. Systems such as missile flight control systems in 

which the dynamics are closely integrated exhibit this property. 

Such closely integrated dynamic systems frequently exhibit lightly 

damped modes and in this context sensitivity Considerations and 

the method of sensitivity compensation developed here is most 

important. A further requirement is that the system must be linear 

over an adequate dynamic range and the system dynamics well defined. 

It is unlikely that many process control configurations will meet 

this requirement but useful results have been obtained in the case 

of gyroscope control systems where dynamic precision is a fundamental 
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requirement ‘42) , With these limitations the method is useful 

in establishing ultimate performance capabilities against which 

sub-optimal designs may be judged. 
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APPENDIX 

Design Example 

Al. Plant Transfer Function. 

Consider a 2 input - 2 output plant with transfer function 

matrix. 

Pll Pl2 
a P(s) a as 

Pai 2 

eS 2 aes Al 
where p =p = ——$—$——— _________ 

2 22 ie soe s(s* + 2¢ ws + a, ) 

L: 

2 2 (s* + 2¢ o8 + 8, ) 

  Piper eeh ai 

The quadratic factor contributes a lightly damped mode 

when ¢ is small with undamped natural frequency &,: We chose a 

sampling frequency of 5 times the undamped natural frequency so 

that the dimensionless sampling interval T a= 27/5 and a value 

¢ = 0.05 for the damping ratio. 

The z-transform of the elements of the pulse-transfer-function 

matrix, P(z), including the zero-order hold operations, are found 

  

  

to be 

Pq, = Pop =Hel8 _2 7 + 3.572 21 + 0.933 272) 
wo3 (2 - 2-4) - 0.5812 2+ + 0.8818 2%) 

f a2 
e . “fl er Pio = ~P1 = 0:6643 eee 195602 Et) 

f iy =3 
Ce (1 - 0.5812 2 ~ + 0.8818 z 

All these elements have a common pole pair just inside the 

unit circle at z = 0.939/+ 72° due to the lightly damped mode. On 

forming Dae Q the elements of Q become 
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@ i = = 
91 = Ing = F(L + 3.572 2 ~ + 0.933 2”) 

= -q,, = 0-56 F(1 - 24) (1 + 0.956 274) F12 a5 ‘ . A3 
0-645 uj3(1 - 277) (1 - 0.58122 + + 0.8818 2-2) 

Fs = = = = 
(GTS ccf doves 21> © 5tes'2s> olssiee 4) 

A2. Minimum Settling Time Design. 

The forth order polynomial in the denominator of F provides 

the zeros of det(p) and these are found by numerical solution?"4 

to be. 

(a) z= -0.294 + j 0.166 

(Bb) gos 254136 + 4 1.37 

The pair (a) lie inside the unit circle while (b) lie outside. 

The zeros (b) must be assigned to f in accordance with Policy (2) 

to avoid sensitivity. By further assigning the zeros (a) to f the 

controller output sequence is of finite duration and the system 

will settle completely in five sample intervals. 

Thus we define the minimal form of f to be 

£ = 0.0434 2+ (1 ¥ 5c416 z 2 + 10.67 27° + 5.09 a> : 
A 

+ 0.881 2°) 

and get 

§ =8(l => Zi )\(l + 0.957 21> + 01722 2 + o1e5g92 
AS 

4 + 0.03822 -) j 

where the additional coefficients in ¢ have been computed to 

satisfy 1 - £ = 9. 

The controller functions are calculated from D = pre £/$ so 

that 

Pe -1 -2 4), =4,, = ala 4 3.592 25> 4800933. 2 | AG 

Bo.
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= dt) = dss im |Os560(1 = z+) (1a 0.956 2) Teer a6 
0.028 53 (1 - 0.5812 27+ + 0.8818 272) 

H= 

i orgs7iz +s 0.720172 74 0.2589 2 > + o1osegl 2 4 

The resulting response of the system to a unit step change 

of one input is obtained by a digital simulation of the system 

and appears as shown on FIG.(5). There is no interaction with 

the other output. On the same diagram the effects of 10% change 

of gain in one loop are indicated. 

The effect of changing the damping of the open-loop mode to 

one third of its designed value is shown to produce instability 

as indicated on FIG. (6). 

A3. Retarded Response. 

The method described in Section 4.5 will be implemented. To 

do this, we construct f(a) as defined in equation (33) with fy 

corresponding to f given in equation (A4) and z = a = 0.939 fe 

fixing the pole position. When f(a) is evaluated for values of 

y on the locus FIG.(2), corresponding to a mode of damping ratio 

0.5, we obtain the design locus FIG.(6). From this diagram the 

minimum value of 1 - f£(a)is found to be 0.912 /-9.8° for 

y = 0.64 + 3 Q.37,. With this value f is given by 

  

  

¢ = 0.01156 2 *(1 + 5.416 2+ + 10.67 22 + 5.09 2 3 + 0.881 274) 
(sya ja -y 4 

and AT 

p = a2) - 0.291 27) + 0.192 2°? + 0.069 2°93 + 0.01 274) 
S 1 (= y 24) a = y* 2}) 

The corresponding control functions are unchanged apart from 

the common factor H which is of the same order of complexity but 

has some different numerical coefficients i.e. 
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uM, 2 + 0.8818 z_ 0.00745 4 3(1 - 0.5812 2— 

+ 0.192027" Gol 2stie 
) 

+ 0.069 z 

H= 
3 4 + 0.01 z 

Simulation of the resulting system gives the response shown 

on FIG.(5) to a unit step applied at one input. There is again 

no interaction with the other output. 

The effect of 10% gain change in one loop is also shown on 

the graph FIG.(5). The reduction of sensitivity expected as a 

result of retarding the response is not immediately apparent. 

Sensitivity of the movement of poles of £ away from the origin 

has been used as the basis of the theoretical assessment. This 

has the effect of extending the settling time. It is difficult 

to form a basis for comparison between the two cases seen here 

except to observe that the settling time is proportionately less 

affected in the case of the retarded response. 

Changing the damping ratio of the open-loop mode to a third 

of its design value produces the response shown in FIG.(6). The 

system is now seen to be considerably less sensitive than was the 

minimum settling time design. This may be observed to result 

from the reduction in the sensitivity factor (z - a)/é = 1 - £(a). 

Without the poles added to f the value of f(a) is found to be 

0.65 /142.2° so that for the minimum settling time design (z - a)/6 

1.565 /+14.7°. This is to be compared with the value 0.912 /-9.8° 

found on FIG. (6). ane 

The fact that the magnitude of (z - a)/é is greater than unity 

in the case of the minimum settling time design means that the 

closed-loop poles move further then the open-loop poles and cross 

the unit circle while the open-loop damping is still finite. This 

cannot happen in the retarded case, as the magnitude is now less 

than unity, and the system will remain stable even when the 

damping is taken to zero. 
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