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SUMMARY

This study is concerned with the theoretical design of
rebalance control systems for inertial sensors using digital
controllers. Specific attention is given to the case where
a two-degree-of-freedom gyro is used as an attitude sensor
in a strapdown inertial measurement system. Because of the
similarity of the dynamical behaviour of gyros and
accelerometers, the method can be extended to accelerometers
without great difficulty.

A new design method has been developed to yield control
algorithms for the digital control elements. Control
functions are synthesized to achieve a minimum settling time
and eliminate interactions between the gyro control axes. It
is shown that the method can be used when filters are included
to remove pick-off noise, and can be adapted to take account
of finite processing delay in the digital controller.

Sensitivity of the system to control loop gain variations
and mismatch in the controller elements is examined.
Sensitivity analysis is exploited to allow overall compromise
between response speed and the system sensitivity.

The need for high frequency sampling in the control loops
imposes restrictions on the execution time in the digital
processor. Various methods of reducing the controller
complexity are investigated with a view to reducing the
computation time. A method of compensation for the effects
of rounding coefficients in the control algorithm is
developed for the specific problem involwving the dry-tuned-
gyro. This consideration is extended to identify how the
choice of processor is influenced for the gyro rebalance
system.

RKeywords Accelerometers, direct digital control,
gyroscopes, sensitivity analysis, strapdown
navigational systems.
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CHAPTER 1

INTRODUCTION

1.1 Strapdown system definition and sensor requirements

The basic concept of inertial navigation is that if the
acceleration of a vehicle with respect to a known fixed
co-ordinate system is measured, the vehicle's velocity and
position with respect to the co~ordinate system, may be

computed by time integration of the acceleration signal.

Inertial navigation problem in three dimensions is
complicated because of co-ordinatised acceleration information.
In the case of a stabilized platform, three orthogonally
mounted accelercmeters are aligned with the reference
co-ordinate frame, using either 3 single-degree-of-freedom
or 2 two-degree-of~-freedom gyroscopes. Such a scheme
effectively isoclates the 'stable elements' containing the
inertial instruments from any rotational motions of the

vehicle.

In strapdown navigational systems (Ref. 1.4) the
accelerometers and gyros are strapped on to the vehicle
frame.l Since gyros provide direct measures of the:. rotational
rates of the vehicle, the instantaneous rotation of the
vehicle with respect to the reference co-ordinate frame
can be computed. This information is then used to resolve
the measured acceleration components on to the reference

frame for integration into velocity and position.

Strapdown systems are rapidly becoming the preferred



way for low cost because of the elimination of the platform
gimbal structure and its associated electronics. Halamandaris
(Ref. 1.7) and more recently Kirk (Ref. 1.9) in their papers,
suggested that with the current state of two-degree-of-
freedom dry-tuned gyros with inertial grade accuracy and
wide dynamic range, the cost of a strapdown system is

further reduced compared to systems using single-degree-of-

freedom gyroscopes.

A significant portion of the hardware content and cost
of strapdown system is attributed to the servo-electronics
required for sensor confrol. In a strapdown mode the sensor
torquing currents are fed through precision resistances to
develop voltages which are proportional to the vehicle
angular rates, in case of gyroscopes, and to acceleration, in
the case of accelerometers. These voltages are then converted
into equivalent digital numbers for use in the navigation and

attitude equations which are solved by the navigation computer.

1.2 Methods of torgue rebalance

In a strapdown mode the inertial sensors convert the
signal to be measured into a torque within the feedback loop,
by means of compensation. To achieve high accurac& in
measurements of angular rates and accelerations, voltage
outputs of these sensors must be digitized for further
processing in the digital computer. Rahlfs (Ref. 1.11)
and Sutherland (Ref. 1.12) pointed out that the integrating

digital readout of these sensors by means of pulse rebalance



loops is particularly advantageous for high accuracy
measurements. Binary pulse width modulated (BPWM)
rebalance configuration suggested by Bendett and Blalock
(Ref. 1.1 and 1.2), is commonly used compared to simple
binary or ternary schemes, mainly because of constant two-
level power operation of the torque motor, and at the same
time linear behaviour of the servo-loop. It is important
to note that all these configurations use analogue control

methods of designing rebalance systems.

1.3 General performance requirement

Rebalance systems outlined above have been developed
using analogue control schemes (Ref. 1.4 and 1.8), where
the requirement for rapid response has not been important.
However, in exploiting the maximum capability of a sensor
there are advantages in using a digital processor as
controller. A digital controller offers the advantages of
flexibility in the realization of complex control algorithms
and their accurate implementation is not affected by
component tolerances. A possibility of time sharing the
processor between separate control functions can also
reduce hardware requirements. Where rapid response is
required the signal sampling rate must be high and for time
sharing to be possible it is important to minimize the

computation time required for any control algorithm.

A new method for the design of rebalance control system
for a dry-tuned gyro using a digital controller has been

developed. This digital control method is synthesised to



achieve a minimum settling time in the transient response.
The need to eliminate interactions between the gyro control
axes is also included in the design. The new method enables
the controller to have four elements and allows the designer
to exploit the sensitivity analysis to show how coefficients
in the control functions may be rounded to allow reduced
computation time in the processor. Because of the similarity
of the dynamical behaviour of gyros and accelerometers the

method can be extended to accelerometers.

1.4 Dry-tuned gyro and its performance as a control sensor

This gyro, with its two-degrees of freedom, has a rotor
and gimbal assembly suspended on the springs. At the designed
rotation speed the spring constants are matched to cancel
the inertial torques due to the gimbals, so that the rotor
behaves as a free gyro. The basic construction of a single-
gimbal tuned gyro is shown in Fig. 1.1. The connection
between the rotor and gimbal is provided by an elastic
spring, 52, which permits the rotor to deflect relative
to the gimbal about the axis of spring 52. A second spring,
Sl' orthogonal to 52, connects the gimbal to the drive
shaft. The rotor-gimbal assembly is thus free to ;otate
with respect to the drive shaft about the axis of Sl‘ The
drive motor spins the rotor and gimbal assembly at a high

angular velocity relative to the casing.

Operation as a rate gyro is achieved by forming a

position control system to align the rotor with the external



casing. Signals from the position pick=-offs are used to
provide feedback control of the torques applied to the rotor.
The precession rates are then measured by signals derived
from the torgue~-motor currents. Two of these rebalance
control loups are required fo; each gyro. In the strapdown
mode the rebalance loops must be designed for adequate
dynamic response, i.e. a short transient settling time or

a wide frequency response bandwidth. When the system band-
width approached the nutational frequency of the gyro it is
no longer possible to regard the two rebalanced loops as
independent systems. Interact;on between the control axes
demands that the system must be analysed as a multivariable
control system. The design must also aim to counteract the
inherent interaction.

Gimbal

Drive shaft
r Inner flexure. S,

Quter flexure. S,

i Basic construction of 'a single-gimbal tuned gyro




1.5 Gyro transfer function and proposed ddc structure

Differential equations for the dry-tuned gyro were
developed by Bortz (Ref. 1.3), Craig (Ref. 1.6) and Coffman

(Ref. 1.5) and may be written as

I8 + H8 =M

X 4 X

h J (L)
I8 ~H6 =M

' X Y

where BX and BY are angles of rotation of the rotor about
orthogonal control axes on which torques Mx and M_ are
applied. 1Inertial constant I = Ixr + —%3, involving the

principal moments of inertia of the rotor and gimbal along

X-axis, and H, the angular momentum can be given as

£3:2)

>> = i ' ' i '
as I ng Izr is the principal moment of inertia of
the rotor along z-axis. w4 represent gyro motor spin speed.
Laplace transformation of Equation (l.l) gives a transfer

function matrix equation

Gx hl - h21 Qx
= (). 30
GY h2 hl Qy
W
hl = 1 ; hz = n
(s2+ @ 2) s(s? + u 2)
n n
I (53]
. G el < T
with W™ T = Zu,d
Since Ixr 5 ng and Izr ~ ZIxr’ and Qx' Qy the normalized

RI- L_ .
torgues JX/I, wy/I



The transfer function in Equation (1.3) may be identified
with a block diagram structure for the complete rebalance

system as shown in Fig. 1.2.

Controller D(z) Gyro P(z)
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Pia 1.2 Proposed direct digital control rebalance svstem

Elements V represent zero-order hold functions. Synchronous
sampling switches indicate the effect of analogue-digital
signal conversions, and it is assumed at this stage that
there is negligible computing delay in the digital processor.
Inputs Ty and r, represent the case position angles to which

the system responds.

The pulse transfer function of the gyro P(z) for a
proposed ddc structure can be found using a standard

z-transform table (Ref. 1.10) which gives



1 2
P(z) = Kl (1.4)
N, Hy
with
(Tl-s}z-‘l i
Ry =1 = T
wn3(l—z y{1=2c2 “+z -)
i =2
N, = e(l-z°)
N, = (14dz T427)
= Cos(Tl)

7 2(8-(1'1'1)
Tl—d

where T,is the dimensionless sampling frequency equal to %;
b is the ratio of system sampling frequency to gyro nutational

frequency.



CHAPTER 2

EXISTING DESIGN METHODS

In this chapter, two methods reported in the literature
for designing multivariable digital control systems in

general are discussed.

2.1 Synthesis method due to Nishida

In 1960, Nishida reported a synthesis technique for
multivariable Control Systems by means of sampled-data
compensations (Ref. 2.2), which is the extension of single
loop design of Jury and Schroeder (Ref. 2.1). The system
considered consists of a linear model.of the plant as

shown in Fig. 2.1 and 2.2.

P(z)
L E
R—-}— D(z) \T‘ — 2.0.H. Plant -—:—-—— ¢
|
AR Y il PRSI 4 d

FLge 21 System with series compensator D(z)

+
r—a/

D'(ZW-—“:\\—‘ P(z) C

T

Fig. dud Equivalent feedback system
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Nishida approach presents a general design procedure
of non-interacting and finite settling multivariable digital
control systems where the plant is stable. The method
assumes that the number of outputs is equal to that of the
inputs and all inputs have transforms of mth order. In this
method, the series controller transfer matrix elements are

specified by

dip(z) = pi(szip'(z) (2.1)

where pi(z) is the lowest order polynomial of z-l which

has the zeros at each pole of the elements belonging to

the ith column of the transform matrix P(z). And dip'(z)

is any polynomial of an order equal to or higher than (m-1).
In this method it is important to note that the plant
transfer function including the hold circuit must have at
least one matrix element to each row, the mth or higher
order pole of which is at s = 0. Otherwise it is necessary
to introduce as many integrators as required in front of

the corresponding inputs of the plant.

Once Series Controller D(z) is determined the
equivalent controller transfer function matrix D'(z) in the

feedback system is obtained by
' L =1,
D'(z) = [I - D(z)P(2)] "D(z) (2.2)

This method has several advantages for example a flat
response of zero overshoot after a prescribed finite time

is obtainable. Also the designer has a large degree of



freedom in obtaining the desired response.

There are, however, some disadvantages. Should the
overshoot be unacceptable then no method is outlined for
its improvements. This problem can be more severe when
any element in the plant contains complex conjugate poles
very near to the unit circle. Furthermore, when any one
or more elements of the plant have an unstable pole,
straightforward application of this method is not possible,
In this situation Nishida suggested addition of a second
minor feedback loop which means one additional controller
in the system. He also suggested introduction of an
auxiliary controller parallel to hold circuits, where a
reduction in settling time by one sampling interval may be

necessary.

2.2 Deadbeat response method due to Viswanadham and

Deekshatulu

Viswanadham and Deekshatulu (Ref. 2.3) have proposed
a synthesis technique for multivariable sampled data control
system by the use of state difference equations. The

system structure considered is shown in Pigl 2.3

In this design technique the multivariable process

is defined by vector matrix equations

x(t) Ax(t) + Bu(t)

(2:3)

]

v(t) Cxit)

where x(t) is nxl state vector, A is the (nxn) coefficient

matrix of the process, B is the (nxm) constant input



D(z) Plant &

Fig. 2.3 System considered by Viswanadham and Deekshatulu

.distribution matrix. u is an mxl control vector. Then

y(s) = P(s) u(s) (2.4)

where

P(s) = C[sI-a] 1B (2.5)

The solution of the discretised version of Equation
(2.3) at sampling instants is (Ref: 2.3)
k-1
X(kT) = o(kT)X(0)+ § &{(k=-1-3)T}D(T) u(§T) (2.6)
j=1
The state vector X(kT) at and after the settling
instant is chosen to satisfy the non-interaction condition
and the deadbeat response specifications. Once the initial
state X(0) and the final desired value X(kT) are éhosen,

-~

the optional control sequence u® can be determined, then

e(kT) = Blr(kT} - Szx{kT) {2

components of e(kT) are the inputs to the compensators and

their inputs are the control sequence; so
-1
0 g R I
Dn{z) = = (2.8)

@ 10 i BUDY T F ¢ iintes

n n(



The main advantage of this method is that it can be
extended to the case where nonlinearities exist before

the plant.

This approach alsc has some disadvantages. The
achievement of noninteraction and deadbeat response depends
on the order of the direct transfer function Pii(s) and
also the degree of the input. For instance if the input is
a step and Pii(s) is of zero order, then to obtain deadbeat
response, the control signal in the ith path should be some
constant value, but for noninteraction it should be zero.
Hence it is not possible to achieve both. The same happens
when the input is a ramp and Pii is of order 1. The transfer
function approach does not suffer these limitations, since
the contributions from the interacting paths to the outputs
are cancelled by a negative signal fed to the outputs through

a direct path.



CHAPTER 3

A NEW SYNTHESIS METHOD

DL Introduction

The design of single-loop minimum system response
time (Ref. 3.1) is extended to cover a new design method
for multivariable digital control systems. The objective
has been to include those aspects which differ from single-
loop design. The method is also extended for the case when
settling time is not required to be finite and a method of
retarded response offers considerable advantages where speed
of response can be traded for sensitivity reduction in a
systematic way. The further advantage of this procedure is
that sensitivity is reduced without any increase in the

complexity of the control algorithms required.

3.2 Basic design method

The system configuration in Fig. 3.1 has a multi-
variable plant with an mxm pulse-transfer function matrix
P(z) and m control loops are formed, each with unity feed-
back gain. The digital controller has the structufe of an

mxm array of pulse-transfer functions as represented in D(2z).

The error pulse function E(z) is given by

~

E = [I+8D] "R (3.1)

Also the overall closed~loop response function

c = [1 + pp] ‘ppR (3.2)



Plant P(z)

Fig. 3.1 System Configuration

from which we designate the closed-loop transfer function

and system error transfer function matrices.

I -Ww=[I+ pD]'lPD (3.3)

w= [I+ PDj'l (3.4)

A requirement for non-interacting response is that a
test signal applied at any single input should produce a
response at the corresponding output and have no effect on
the other outputs. This implies that I - W must be a
diagonal matrix. Furthermore, if the system as a whole is
to settle in minimum time, the response time in each loop

may be made the same* so that
where f(z) is the common closed~loop pulse~-transfer function
for all loops. Following from this we may define

W= el (3.6)

*It is shown by Steel and Puri (Ref.3.6) that this applies
to all stable, minimum phase open-loop system.



where ¢(z) is the common error pulse-transfer function.

The design method proceeds in a similar manner to
that used with single-loop systems, by defining the
required closed-loop function f and computing the necessary
control function matrix D. The relationship giving D

follows from Egquation (3.3) as

ok e =LA READ )
D. =5 P ‘Eﬁ%ﬁ (3. 1)
A minimum prototype response function f may be
assigned depending on the form of input R to which the
optimum response is required. For example a unit step
input applied to any one of the loops leads to an error
¢ (z)

i in that loop and zero error in all others.
1-2

The steady-state error will be zero provided that ¢(z)

response

contains a factor (l—z_l). We note that £ = 1-9 sc that
f=z-1 for this condition and the response settles in one
sample interval. Having assigned f and ¢ as compatible
functions they may be substituted in Equation (3.7) to
define D. Two conditions need to be observed however, one
that det(P) may be zero outside the unit circle in the
z-plane, and also that unstable modes in P will present
poles in the same region. These conditions have been
examined in detail by Steel and Puri, and they also

examined the implications of the design poclicy when some

loops have a shorter settling time than othersgwah*h,@oby,aybmirﬁ

The procedure is the same in principle as that used
in single-loop system design (Ref. 3.1), with one exception

that the zeros of det(P) and unstable modes of P are the
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determining features rather than poles and zeros of an
individual transfer function element. A significant
difference between single-loop design and the multivariable
equivalent is that of locating the zeros of det(P). This
does not follow in any obvious way from the knowledge of

the poles and zeros of the elements of P. Normally the
numerator polynomial of det(P) must be formulated explicitly
so that its zeros can be found by standard numerical
techniques (Ref. 3.2 and 3.3). This later problem may be
avoided by a test to see whether there are zeros outside the
unit circle, for example using the Jury test (Ref. 3.5).

If all the zeros are inside the unit circle in the z-plane,

their position need not be accurately known.

The need to allocate zeros tc £ and ¢ based on the
unstable modes of P and zeros of det(P) (Ref. 3.@p7219ads
to a tedhnique where arbitrary coefficients of £ and ¢

are found by matching ¢ to (1-£f) term by term.

e Retarded response design

The design procedure outlined above yields a response
which settles in a minimum and finite number of sampling
intervals. This is the result of designating the closed-

loop response function as a polynomial in z*l. Steel and

(PIS)
Puri(have shown that some advantage in reduced sensitivity
can be gained by removing the requirement of minimum and
finite settling time. The inclusion of a single or more

poles in f away from the origin, but inside the unit circle,

has the effect of achieving a retarded response. For



example a single pole in f will introduce an exponential
mode, whereas a complex conjugate pair of poles gives a
damped oscillatory mode in the response. The effect of

this on the design procedure is that the same denominator
must be allocated to ¢ in consequence of equation f = l-¢.
Terms introduced in this way cancel in Equation (3.7), and

so do not appear directly in the control functions. The
general complexity of the elements in D remains unaltered
but coefficients are modified due to changes in the initially

undetermined coefficients in £ and 4.

3.4 Generalised sensitivity relationships

The design method described in Section (3.2) results
in a response which settles in minimum number of sampling
intervals. This requirement may be relaxed with the
advantage of reduced sensitivity. Considerations of the
sensitivity of the response to small parameter variations
can be judged by the change in stability of the system
(Ref. 3.4) which for multivariable system is given by
closed-loop characteristic polynomial det(I+PD) = 0. If

P is subjected to variations so that
P! :P +H t3-8)

where H is the deviation matrix such that elements hij is
the variationinp,.. Therefore one must examine the zeros

13
of det(I + P'D) = O, recognising that under nominal design
conditions I + PD = %I and D = % P L. Therefore

det (I + P'D) = det(I + fHP L) = o (3.9)

Il
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defines the closed-loop modes resulting from a change H;
provided the zeros of ¢ do not coincide with any of the

roots of determinant.

Small variations anticipated in P may be identified
as loop gain changes or movements of the poles and zeros
of individual elements. These effects have been examined
separately in detail (Ref. 3.6PMand results giving sensitivity
conditions have been developed which are of considerable
generality and significance. This leads to the conclusion
that by placing a requirement of finite settling time on
the system a design may result which is both sensitive and
unnecessary complex in the control algorithm required.

A retarded response method based on systematic analytical
technique can be used by which speed of response can be

traded for sensitivity (Ref. 3.6,p2s)

Sia o An assessment of the method

From the discussion in Chapter 2 of the method

described by Nishida, it is apparent that the above technique

and Nishida's method have some common aspects.

Firstly, both are based on transfer function approach.
éecondly, both use a finite settling time design téchnique
to the presentation of the analysis. The proposed method
is a minimum settling time design which enables a means of
establishing ultimate performance capabilities where high

speed of response is required. ==

A retarded response design method based on analytical
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technique has been developed by Steel and Puri, by which
some of the complex conjugate pair of poles or zeros of

det (P) which are inside but very close to the unit circle,
need not be assigned to f and ¢. Sensitivity to parameter
variations which will move these poles or zeros on to or
outside the unit circle can be avoided by putting constraint
on to the movement of root loci at these points. This will
result in a system which is less sensitive ana at the same

time less complex in the controller elements.

Sensitivity effects to loop gain variations have also
been identified by Steel and Puri, and methods are proposed

for their improvement.
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CHAPTER 4

APPLICATION OF THE DESIGN METHOD TO A MODEL OF DRY-TUNED

ROTOR GYROSCOPE

421 Introduction

In the previous chapter, the brief review of a design
method of multivariable digital control algorithms for
minimum settling time response was given. In this section
the method is applied to a linear model of dry-tuned rotor

two-degree~of-freedom gryroscope.

In the rebalance control system of Fig. 1.2 pulse-
transfer function matrices P(2) and D(z) are used to decribe
the gyro and the digital controller. The objective of this
study is to design a digital controller to close the re-
balance torque loops such that torque depends on the
angular position error of the axis about which that torque

results in precession.

4.2 Minimum settling time design

The system design proceeds with the basic result
of Egquation (3.7) as developed in Chapter 3. 1In this
equation the functions f and ¢ are first of all constrained
by the requirement for zero steady state error, which
means ¢ must contain (l-z*l)n, where n depends on the
form of input R, e.g. n = 1 for a step input and n = 2
for a ramp input. Further constraints are due to the need

to avoid some cancellations between elements of P and D

in the product PD which gives the open loop pulse-transfer



function matrix. Cancellations on or outside the unit
circle in the z-plane can lead to a sensitive design in
which instability will result from a small mismatch in the
controller. General rules for avoiding such sensitivity
problem can be drawn up assuming an arbitrary form of
matrix P(Ref. 3.6). However in the case of the dry-tuned
gyro, the inherent symmetry of the dynamic structure, as
given by Equation (1.4), leads to some simplifications.
All four elements of P have a common pole pair on the unit
circle due to the undamped oscillatory characteristics of
the gyro. This would normally lead to a pair of zeros in
each element of P*l at a corresponding position. But as a
result of cross coupling between the gyro axes det(P) is
zero at the same point in the z-plane, so that this mode

is cancelled from P-l.

Apart from the zeros of det(P) which coincide with
the poles of the elements of P there are two other zeros
which appear on the unit circle. To avoid sensitivity

this pair of zeros must be allocated to f.

Therefore the general method proceeds by designating

ik

2 2 A(z) B(z)

and (4.1)

-1l.n

9= dem o) L)

where A(z) contains the uncancelled pair of zeros of det (P)
on the unit circle. Polynomials B(z) and L(z) have
undetermined coefficients as necessary to allow equation

f =1 -9to be satisfied. Once f and ¢ are explicitly

known the necessary control function matrix D can be
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defined from Equation (3.7).

4.2.1 Class T and class II systems and their comparisons

A class I system is defined as having a finite steady
state error in response to a constant rate input change.
The class II system gives zero error with a constant rate
input and a finite error with a constant acceleration input.
Steady state alignment is clearly best in the class II
design but comparisons have been made (Ref. 1.5), which
showsthat a small constant steady state error in the class
I design may be acceptable. It is interesting to compare
the design results with the minimum settling time digital
controller. The class I design is achieved by designating

n = 1 in Equation (4.1) and class II with n = 2.
The following general features emerge

(i) Settling time following a step input change
Class I: 1In this case n = 1 in Equation (4.1l) and to
satisfy £ =1 -~ ¢, Bl{z) =1 and L(z) will
be a second order polynomial with two

undermine coefficients, hence the settling

. time = 3T.

Class II: n = 2, therefore B(z) and L(z) will contain
unknown polynomials of degrees 1 and 2
respectively. In this case settling time

= 4T.

(ii) Steady state error calculations

Steady state error along each axis at any sampling
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instant (gT) consists of terms proportional to the input,
the input velocity, the input acceleration and in general
still higher derivatives of the input signal (Ref.4.4) and

is given by

c c
e(qT) = Sr(aD)+C ri{al)+ 5% 2" (@D +....+ B Pgr) ...
(4.2)
& (s) * (m)
¢ e X2 ASL = 4 M0y mm0,l,2 (4.3)
m dsm
S=0

*
where ¢ (s) is the system error pulse-transfer function in
terms of the starred transform which is obtainable from

$(2) by substituting z = exp(Ts)

If A(z2) = (l+£z—l+z-2) represents the uncancelled set
of zeros of det(P), it is possible to solve undetermined
coefficients of ¢ in term of 2 for a class I design and
the resulting expression gives

e ii% 2L 4 E%E 272 (4.4)

and corresponding error series along each axis can be

written as

l s 1+%
e(gT)=T(1l+—— +2 2+£) (qT) ==+ 2 l+3(2+£)+5(

P
2+£er (qT)

S REULN (4.5)
If the gyro is displaced at a constant rate ¢ along the
axis then the inspection of Equation (4.5) reveals that

the steady state error at the sampling instant for class I

would be 2Tp whereas it will be zero for class II design.

(iii) Controller complexity

Because of an additional unknown factor in B(z)
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an extra term is required in the numerator and

denominator polynomials for the class II case.

This section has shown how the minimum settling design
method can be employed for designing rebalance control
system for a dry-tuned gyro and the general features of
class I and class II systems. It is now possible to do
further comparisons by taking specific value of b, the ratio

of sampling frequency to gyro nutational frequency.

4.2.2 Design using a specific gyro model

In this section the design for a specific gyro model
is described in which further comparisons for class I and

class II systems will be made. If we select

R system sampling frequency _
gyro nutational frequency

5, Equation (l.4) gives

p=g Ay =W
Ly N
2 1] (4.6)
and
N N
el X, 1 2
where
K, = 0.306 z‘l/mn3(1-z'l}(1-o.6 N T s,
K, = 0.536u0_°(1-z"1) /z 1 (1+1.825 27 + 272 (4.7)
e
N, = 2.254(1~27%)
N, = (143.67 z 1 + 272
The term (1 + 1,825 z-l = z-_z} in K2 has zeros on the

unit circle, therefore this must be assigned to f in Equation

(3.7) . The resulting design factors are as follows:
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(1) Closed-loop pulse-transfer function £f(z)

i3 Lo, 2

class I : 0.2614z (l+l.8252— +z )

class IT : 0.7843z L(1+1.825z *+27%) (1~0.6672 %)
(ii) Error-pulse transfer function ¢(z)

L 4 0.261427%)

2

class 1 : (l—z"l)(l+o.?3862_

i

class II : (1-z'l)z(l+1.2157z" - 0.5229z 9)

(iii) Digital controller D(z)

Control function for class I and class II design is

d d
Digl =Ry Lé i
2 1l
where
a, = 2.254 (122}
4, = (130672 s s)
Common factor K3
O.l402un3
class I : =1 =2
(1+0.7386z ~+ 0.2614z <)
0. 42070 °(1=0.667z )
class II : s | z =Y =3
(1-z ) (1+1.2157z ~=-0.5229z °)

(iv) Steady state error for a tuned gyro with nutational
frequency of 480 Hz and for 100 deg/sec. input rate

class I : 0.08°
class I1I : zZero

(v) Maximum torque for constant rate input
clagss T : 1.2 Mo

clagss TL : 2.5 Mo

where Mo is steady state torgue.



Comparison of general and specific features leads to
the conclusion that the class I design is preferred since
it offers reduced complexity in the control functions and
lower torgque demands, while the steady state error is

acceptably small.

4.3 Sensitivity considerations

The minimum settling time design developed for gyro
rebalance control system vields a response which settle in
three sampling intervals. It has been suggested (Ref. 4.2)
that such systems are potentially sensitive to parameter
variations. This is in part due to the cancellations
generated between the controller and the plant transfer
functions and also due to multiple poles in the closed loop
response at the origin of the z-plane. Sensitivity must
therefore be examined carefully to ensure that the design

will remain satisfactory over a range of parameter changes.

In the case of rebalance control loops the gyro is
designed to have an accurately reprcducible dynamic
characteristics and wide linear range of operation. The
pick-off gain is however, one of the less consistent
features. This, and the possibility of rounding off
coefficients in the digital processor algorithm, will be

considered in detail.

4.3.1 Control loop gain variations

A variation in the pick-off gain § in loop i results in a

gain change applied to all the elements of P in row i. When
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same mode of variation, in this case the gain factor, is
present in several elements of P, the component 8§ is the
same in each element, so that the deviation matrix H given
in Equation (3.8) has elements hij = Pijs when an element
pij is changed and zero otherwise. Therefore it is useful
to write

H = 6K (4.8)
where § is a scalar multiplier and K contains pij or zero
in each element. The general sensitivity condition of

Equation (3.9) is now modified to

det (I + féKP_l) =0 (4.9)

Matrix K will contain the elements of P in row i and
zero elements elsewhere. We may write K = SP where the
matrix S has a element Sii= 1l on the diagonal toc correspond
with row i in P and all other elements are zero. Then the

matrix product KP_l in Eguation (4.9) reduces to S so that

the determinant is satisfied by one equation
1S =50 (4.10)

The movements of the zeros as a function of § may be
investigated by root locus solution of this equation. When
£(z) is a polynomial in 2z, as in the case with a finite
settling time design, all its poles are at the origin. The
root loci move out from the origin to terminate on the
zeros of £(z) or at infinity. Stability limits are reached
when ¢ is large enough to place roots on the unit circle.
For the class I system design example Equation (4.10) can

be written as
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L =2

0. 36147 = (3% 1,808 27 i 2%y = ~% (411]

The stability limit is reached when Equation (4.11) has a

solution on the unit circle as the complex variable z moves
along the circumference of the unit circle about the origin
of the z-plane. The complex variable z and the frequency W

are related by
z = exp(sT) = exp(jwT)= cos(wT) + jsin(wT) (4.12)

Limiting value of § can be computed by equating absolute
values on either side of Equation (4.11) when angle
condition on left hand side approaches 180° and for this
design example the value of § is 2.1. However such large
variations will not happen in practice, and it is more mean-
ingful to examihe the effect of small variations on the
closed loop response by simulation. The programme is
discussed in Appendix C. Fig. 4.1 shows the result of a

10% variation in gain in the error response following a unit

step change of case position.

It is to be noted from Fig. 4.1 that there is an
increase in response settling time when the loop—-gain is
deviated from its optimum value. Also there is s;ight
overshoot of about 5% for the response corresponding to + 10%
gain variation. But it is important to observe that despite
the slight overshoot and the greater settling time, the

system remains stable.

4.3.2 Controller mismatch

Minimal response time design technique yields the four

transfer functions of the control algorithm in the form of
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Fig. 4.1 Effect of gain changes

matrix D. It is always desirable to round-off some of the
coefficients used in the digital control algorithm as far

as possible without effecting the overall response. A
solution to this problem will be developed for a gyrc balance

system.

The general form of digital controller transfer function
D is given by Equation (3.7) and when P has the structure as
given in Equation (4.6) D becomes
N N
- g S
b= = | (4.13)

o e e Ll
(N, 2+ N, )K1¢L N, NlJ

Cancellations are performed in this equation so that the
common factor simplifies. For example in the class I design

it becomes 0.1402mn3£l - z-l)/®. We may consider first the
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possible mismatch in the common factor in realizing D. If
n(z) is a small change added to ¢ the zeros of det(I + PD)

are given by
L=, =20 (4.14)

where zeros of ¢ are given as z =-0.3693 + jo.3536 and are
well inside the unit circle, this is not a condition in
which root locations are sensitive. The coefficients in the
common denominator of D may therefore be rounded without
significantly affecting the overall response. In the design
example for the class I system the denominator of K, as given

1 2

in Section (4.2.2) may be rounded to (1+0.75z ~ + 0.25z <)

with negligible effect on the dynamic response.

Mismatch in the numerator polynomials Nl and N2 raises
a special sensitivity problem in the case of gyro rebalance
control system. If &l(z) and Az(z) are small changes added

to polynomials N, and N, such that

il 2
f;+ £(N A 4N, ,) £(N,A5N,4)
(N, *+N,_ %) (N 24N, 2)
I+PD=% % e 2 AT (4.15)
~£(N 4,-N,4) e £(N A #N,A,)
2 s 2
(N ) N, SHIREL
then the zeros of det(I+PD) are given by
y [ 2ema o]
37 ‘l+ e = 0 (for small ﬁl and &2)
+ | (N12+N22)
i (4.16)

The zeros of (N12+ N,?) give pole positions at which

root locus branches emerge for il = ﬂz = 0. In the case of



tuned-gyro there are two pairs of such zeros located on the
unit circle. One pair is cancelled however, by the corres-
pending zero assigned to f. The remaining pair occur at the
nutational frequency and it is significant that root loci from
these zeros will enter the region outside the unit circle.
When the zeros of Equation (4.16) fall outside the unit

circle the system will be unstable. This can be avoided by

matching the changes A

A
1 and 4, so that
A N
g ﬁi (4.17)
1 2
in the region of the z-plane close to the zeros of (N12+N22)
N ,
at frequency Wy * For the tuned gyro e == at z = exp(jmnT).

By
The polynomials Nl and N2 given in the example Equation
(4.6) and (4.7) indicate a need to consider rounding the
coefficients 3.67 in N, with a change a2=522“1. If a change

is also made in the gain coefficient 2.254 of N. with

b’
&l = Sl(l—z ) then at z = exp(jmnT),
Soie gt Sl C g Rl He B0 1
R T~ i 2jsin(w _T) Seib
3 1 1=z B W n
hence Equation (4.18) is satisfied when
f2 - ;
= = 2810 (. 1) (4.19)
ul n

and the coefficient changes will cancel each other. This

‘ : : s -1
relationship assumes small changes in coefficient of z

in N2 and gain of (1—2_2} in Nl. System response plot of

Fig. 4.2 indicates in (i) the result of such a compensating



adjustment in which 3.67 in d, is rounded to 4; this is
compensated by a change in the gain factor 2.254 in dl as

required by Egquation (4.19).
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Fig. 4.2 Response with adjusted parameters

It is significant to observe tliat the system response with
adjusted parameters would undoubtedly be looked upon with
more favour despite little overshoot and increase in
settling time.

Equation (4.19) assumes small changes in coefficient

2 and gain of (1*2_2) in Nl. When larger changes

are contemplated, further compensation may be necessary to

of z_l in N

prevent unsatisfactory performance. This can be achieved

by retarding the system response.

4.4 Effect of retarded response

In section (3.3) it has been shown that some advantage
in reduced sensitivity can be gained by removing the require-

ment of finite settling time. A term (1-vz ') allocated as



a pole in £ and ¢ results in an overall system response which
: =T
includes a mode having a time constant T such that e /T= Y

and the response will settle exponentially.

With uncertainty in the pick-off gain Equation (4.10)
applies and the added pcle in f replaces one of the poles at
the origin. The reduced multiplicity of the pcle leads to
reduced sensitivity (Ref. 3.6). In the design example a
pole assigned to £ at v= 0.6 results in Equation (4.11) to

be modified to

1 =2

(11,8252 T+27%)

4

0.1045z
(1-0.62

1
il (4.20)

which increases the stability margin from 6= 2.1 of previous
value to 4.0. The reduced sensitivity is evident from the
response graph of Fig. 4.1 where a 10% change of lcop-gain has

been introduced.

The variations in the numerator polynomials of D
results in root locations given by Equation (4.16). When a
simple pole is introduced in f its effect is to alter the
angle of departure and the magnitude of the movement of the
root loci. In the case of gyro rebalance system the locus
from z=exp{jwnT} is of particular concern. By choosing
the pole position the root locus can be set tangential to
the unit circle so that a residual mismatch in changes al
and 32 will have minimum effect on stability. 1In the
design example the locus alignment is achieved with v=0.6,

which corresponds to a retardation with a mode having a

time constant of approximately twice the sample interval.



It is also significant to note that the magnitude of the
movement of the root loci (Ref. 3.6) is also reduced, for
example in this design the value is reduced to one fourth of

its original value.

When system response is retarded the common factor K

3
in D for class I design will be
0.0561 mn3
Ky = = ) (4.21)
(1+0.2954z ~+0.1045z °)

and the denominator of which may be rounded to (l+0.252_l +

0.1252_2) with negligible effect on the dynamic response.
The response (ii) in Fig. 4.2 shows the further effect of
including the retardation factor. This response represents
the overall compromise between response speed, sensitivity
and controller complexity. The resulting Fig. 4.3 shows a
frequency response bandwidth is approximately half the

nutational frequency of the gyro.
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Fig. 4.3 Frequency response plot




4.5 Control looos interaction sensitivity

Because of diagonalization of closed~loop pulse transfer
function (Equation 3.5) each input is paired with an output

and these input-output pairs do not imferact with each other.

In the case of a gyro rebalance system design it is
important to observe how the changes of loop gain and
rounding=-off coefficients affect the interaction between
control axes. When there is a variation in loop gain in
one or both loops, the matrix of the open loop pulse-
transfer function PD remains diagonalized and therefore
doés not affect the interaction. Also the changes in the
common multiplying factor K3 in D do not affect this
diagonalized pulse=-transfer function matrix, therefore
interaction is not introduced by loop gain changes or by

changes in the denominator of the polynomial.

On the other hand, when the mismatch in the polynomials
Nl and N2 is considered, the interaction between the control
axes 1s only cancelled when off-diagonal elements of

Equation (4.15) are equated to zero, this gives

&=

99"

1

g (4.22)
TE

ZIZ
= o

Variations in the numerator polynomials have been

considered in Eguation (4.17). In the gyro equations
N N
1
evaluated at the nutational frequency ﬁ: =-~ﬁ£ so that
L L
2 il

the condition for the non-interaction is the same as that
of cancellation of coefficient changes in this particular

case. Some interaction will appear at other frequencies



but it is important to note that it is cancelled at the

nutational frequency where it has its maximum effect.

4.6 Design with noise filter included

In some dry-tuned gyros design problems have emerged
due to pick-off noise at the spin frequency or its harmonics.
The elimination of such a noise signal can be accomplished
with a notch filter (Ref. 4.1). This filter may be implemented
in analogue or digital form. For analogue filter the transfer
function is given as
SZ“"QZ

gle). = SR (4.23)
s?+vs+n?

The plot of the magnitude function [g(juw)| is sketched in

Fig. 4.4

lg(jw) |0}

db
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Frequency (w)
+Fig. 4.4 Frequency response characteristics of the notch filter

This shows that w=Q is the notch frequen01 at which there
is no transmission through the filter. Within the frequency
band centered at w=Q and of width v, signal components are

attenuated more than 3-db, the rejection bandwidth.

For the digital notch filter the algorithm



(z_2+l)-2alz—l+a2(z-2+l)
g(z) = =1 =5 (4.24)
(l—alz ta,z )
with
Liov2
al 2(129 )
(1-0%+v) (4.25)
S (1+2%-v)
2

(1+Q%+v)
gives zero transmission at the notch frequency and unity gain
at high and low frequencies.

When the notch filter is implemented in digital form, the
design procedure is applied with P-l replaced by %P-l in
Equation (3.7). The numerator polynomial of g(z) is assigned
to £ and the denominator to ¢. This results in the minimum
settling time being increased from 3 to 7 sample intervals
in the class I design. Also there is an increase in the
controller complexity with fourth order polynomials in the
numerator and denominator. Sensitivity to parameter changes
is increased. The same problem arises when the corresponding
analogue filter in the form of Equation (4.23) is implemented

before the analogue to digital converter.

A compromise is reached if a non-recursive digital filter
is employed. This provides a pair of zeros at the notch
frequency which are also allocated to f. The result is a
minimum settling time of 5 sample intervals and controller
functions with second order numerator and fourth order
denominator polynomials. For such a design for class I
system £, ¢ and the common factor K, in D can be written

3
as



£ = 06841z " (1+1.825% “4+2 2) (1~1.61782 “4z °)
b = (1-2“1)(1+o.31582“l+o.1741z'2+o.8258z'3+o.684lz"4)
(4.26)
0.367wn3L1—1,6173z'l+z“2)
iy = iy =3 s =)
(1+0.31582 ++0.1741z 2+0.8258z >+0.6841z" )

When such a filter is included in the design the steady
state error at sampling instant can be computed from
Equation (4.3). For such a design A(z) as given in
Equation (4.1) takes the form.

1 2

3 -

A(z)=(140.3158z ~+0.1741z “+0.8258z ~+0.6841lz

)

(4.27)
and thereforethe steady state error for class I design will
be 3Tr'(gT). For a nutational frequency of 480 Hz for the
gyro and 100 deg/sec. input rate this value of the error

is 0.125°. This is due to the fact that when such a filter

is included in the design there is incresase in the order

of the polynomial A(z).

It is significant to note that when such filters are to
be included in the design the interaction between gyro
control axes is not affected because Equation (4.22) condition

still holds good.

In all these cases the overall bandwidth must be less
than the notch frequency. This means that attainment of
adequate response speed for strapdown applications is

considerably impaired by the need for such filtering.



4.7 Processing delay

The execution time of the digital processor implementing
the control algorithm may well amount to a significant
fraction of the sample interval. This results in an
additional delay in the rebalance loops. Fig. 4.5 shows
the system response with such delays in the control function

for a class I design.
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Fig. 4.5 Respcnse with processing delay

From Fig. 4.5 it has been observed that for small
computing délays up to 0.5 times the sampling interval,
the system response may be acceptable in practice. This
is due to three main reasons. Firstly the system remains
stable in the presence of such delays. Secondly the out-
put converges to its final value in finite time though it
is relatively greater than the minimal response time, and

finally, the controller complexity is not affected.
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The overall settling time can be improved by taking
account of the delay in the design equations. For such a
design the analytical procedure outlined here may be
implemented with the modified, or delayed z-transform
functions (Ref. 1.10). A system of this type can be
described by a transfer function P(s), each element of which
includes a multiplicative term e *'° where AT is the
processing delay in the system. To be able to design a
digital controller for such systems it is necessary to
obtain the pulsed-transfer function P(z,X) which takes into

account a plant transfer lag in each element where
k = A+4 (4.28)

The constant k is an integer representing the delay in the
pulsed-transfer function, and A is a fraction. Since in a
given gyro rebalance design the processing delay is a
fraction of the sample interval therefore k will always be
unity. The system function for a plant of this type can be
represented by

lT1
ATs eATs

Pls,A) = B(s)a *P8= o~Pog (4.29)

where P(s) is the plant transfer fuynction without processing
delay. The z-transform for a system function of this type

becomes
P(z,A) =z "P(z,-A) (4.30)

The design method now proceeds in a similar manner to that
used with conventional multivariable design as given in

section (3.2), by defining the required closed loop function



f and evaluating the necessary control function D as

©|H

= zg

Adj (P (z,)))
d

-1 P Adj (P(z,-4))
B Az,M. = 5 a0y det (P

(z,-4))

(4.31)

When such a delay is introduced in the proposed system,

the pulse-transfer function of the gyro as given by Equation

(1.4)

by

is modified and new values of Kl, Nl and N2 are given

I

4 -1
{le~51n(th)}z

mn3(l-z_l)(l—2aé_l+z-2)

-1 -1 -1
lz +a22 Yo hl=2 )
2 2-3

=3 =
(l+dlz +d22 +d3 )

c(l+a

l—COS(KTl)

ATl—SLn(ATlJ

Cos(le)+Cos(l—A)Tl-2CosT
1-Cos\T

1

1 (4.32)

l-Cos(l-A)Tl

1-005(1T1) ‘

(l-h)Tl—ZATlCosTl+Esin(ATl

lTl~sin(AT

)—sin(l*A)Tl'

1)

aTl—E(l-l)TlCosTl—sin(lTl)+2sin(l—l)Tl

lTl-SLn(ATl)

(l-AJTl-Sin(l—K)T

A;l—51n(ATl)

1




The minimum prototype response function f may be assigned
depending on position of zeros of det(P(z,\)) for which the
optimum response is desired. For a prescribed computing
delay, it is possible to evaluate P-l(z,k). It has been
observed that for a known value of the delay )\, there is no
cancellation between the elements of P(z,A) which form a
common pole pair on the unit circle and the corresponding
zeros of det(P(z,A)). Therefore in this design, the

common pole pair on the unit circle due to undamped
oscillatory characteristics of the gyro must be assigned to
polynomial ¢ to avoid sensitivity problem. Also the poly-
nomial det (P(z,A)) which is of sixth order must be evaluated
for its roots and any zeros of this which lie on or outside
the unit circle in the z-plane must be assigned to response
function £f. The final design results in the minimum settling
time being increased, and also there will be an increase in
the conroller complexity. Because of increase in the number
of zeros at the origin of the polynomial £, sensitivity to
parameter variations is also increased. Because of increased
dimensionality with high order polynomials, this will result
in the need for more elaborate control algorithms. There-
foreit is for this reason that in implementing suéh a design
one must decide about the increased complexity in the system

which might result.

4.8 Summagz

The methed described has enabled the gyro rebalance

system to be designed for class I and class II cases. The



method of design proposed here has the advantage that it
exploits direct analysis in the z-plane and takes account
of the behaviour of the rebalance system of a dry-tuned gyro
as a multivariable control system. The need to eliminate
interaction between the gyro control axes has been included

in the design policy.

Comparisons for class I and class II design leads to
the conclusion that class I system is preferred, since it
offers reduced complexity in the control functions, lower
transient torque-motor capability, while the steady state

error is acceptably small.

Results giving sensitivity conditions have been
developed which are of considerable impdrtance and
significance. This involves a differential adjustment of
coefficients on the one hand, and an optimal reduction of
sensitivity by retardation of the dynamic response on the

other.

It has been shown that the design method may be
implemented at the expense of increased controller
complexity when noise filters are to be included to
remove pick-off noise. It is also shown that the 'method
may be adapted when it is necessary to incorporate
processing delay but the design will be mors complex in
terms of increased dimentionality of the controller
elements and will be more sensitive to parameter changes.
On the other hand a compromise may be reached if the
slighly increased overshocot and settling time as shown in

Fig. 4.5 is acceptable for a prescribed computing delay.



CHAPTER 5

IMPLEMENTATION OF THE DIGITAL CONTROL ALGORITHM

T i Introduction

The design procedure outlined in the previous chapter
yields a control algorithm in the form of matrix D,
implementation of which most conveniently involves a
digital processor. 1In this chapter considerations are
given to the requirements of a processor for such applications.
The limited speed of less expensive digital processors
dictates that functions must be performed using minimum
number of computer instructions. Various methods of
recucing the complexity of the control algorithm will be
examined, which will allow a more flexible choice of the

pProcessor.

e Reduction of control algorithm complexity

Implementation of the four transfer functions of D by

a digital processor involves a combination of multiplication,
addition and data store operations. It is important to
ensure that the processing of each new pair of error

samples, together with their conversion from analogue to
digital form, can be completed in less than a sample
interval. Timing calculations show that with a high
sampling frequency required for such applications, there

is a need to select the processor carefully particularly

where a digital noise filter is to be included.



Multiplication is potentially the most time consuming
arithmetic operation involved. There may be need to involve
a separate hardware multiplier to overcome the slow operation
of software multiplication. Limitations on the choice of
processor are considerably relaxed if the number of multi-
plications can be reduced as far as possible. Various
methods of analytical approximation and reduction in
processor computing time are investigated to minimize the

computation time.

5.2.1 Analytical approximation methods

It is always desirable and sometimes necessary to
reduce the order of the control function to allow a more
flexible choice of the processor in implementing a given
algorithm. Several model reduction techniques have been
developed and it has been recognised that the most powerful
method for the reduction of higher order transfer function
model, is that developed by Chen (Ref. 5.2) for continuous
multivariable control systems based on single loop design
(Ref. 5.3). 1In this method one expands the given transfer
function into a Cauer-type continued fraction about s=0.
This ensures that the model gives the correct steady state
response, but the approximation to the transient response
may not be good. Furthermore, the stability of the model
is not guaranteed even if the original system is stable.
Chuang (Ref. 5.4) modified the Chen's method to obtain a
more accurate initial transient :esponse.lby expanding

into a Cauer-type continued fraction about s=0 and s=



respectively. Shamash (Ref. 5.12) extended this approach

for discrete time systems.

The above analytical methods were used in the case of
rebalance control loops of the gyro for reducing the
complexity of the controller, but they lead to system
stability problems. To overcome this, an optimisation pack-
age using simplex method (Ref. 5.7) was used with SLAM
simitlation, in explicit mode, to minimize the sum of the
mean square errors at sampling instants. It was observed
that the method consumes a considerable amount of digital
simulation time to give optimum values of the reduced order
controller coefficients. The digital simulation program is

discussed in Appendix D.

5.2.2 Arithmetic simplification

An alternative approach to the problem is to avoid
multiplications as far as possible. One method of achieving
this is to round-off coefficients to values represented by
simple binary operations. In this way whole word multi-
plications are replaced by a small number of gquicker shift

and add operations.

The design method has been developed with this
possibility in mind. It provides a means of rounding
coefficients without adverse effect on the system performance.

For example it has been shown in section (4.3.2) that the

polynomials (l+3.6?z_l+z—2) may be rounded to (l+4z_l+z—2J

L 1

and also (1+0.7386z = + 0.26142 %) is changed to (140.75z

+ 0-252-2). When system response is retarded (section 4.4),



)

the factor (1+0.2954z ~ + 0.10452—2} can be rounded to

% + 0.1252_2). Multiplications involving the new

(1+0.25z
coefficients 4, 0.75 and 0.25 or 0.25 and 0.125 for the
retarded response case may be implemented by simple shift

and add operations with significant saving in processing

time.

The effect of rounding coefficients in the control
algorithm can be further studied by using the simulation
program given in Appendix C. Since this method is not
based on the iterative design procedure for reducing the
controller complexity, a significant saving in digital
computer simulation time can be achieved. Moreover, the
method of rounding the coefficients described above is
ideally suited for this design because of significant

saving on the digital processor reguirement.

B n Digital processor regquirement

In the previous section the advantages of rounding
coefficients in the control algorithm to reduce the
computation time have been identified. This allows a more
flexible choice of processor for implementing the digital

controller.

In the case of the gyro rebalance system, any component
of the rate about the gyro input axis produces a gyroscopic
torque which causes the position of the rotor to move about
its output axis. Any sensed deviation of the rotor position
with respect to the case from its null position is sensed

by signal pick-offs which produce a proportional amplitude



modulated a.c. signal. Control of the torque motors is
achieved through binary pulse width modulated rebalancing

schemes, as discussed in Appendix A,

When a digital processor is usedas a controller for
exploiting the maximum capability of the gyro, both the
compensation loops servo functions are mechanised as digital
computations. The inputs to the analogue to digital converter
are the gyro pick-off signals. The torgquing signals  are
computed digitally using software programming technigues
and then converted to analogue signal which can be used to
restore the sensors. Digital computations may be performed
by time sharing in the main navigational computer, or in a

separate special purpose processor.

The arithmetic operations necessary in implementing
the programming techniques are multiplication and addition.
In the previous sections, the method of rounding the
coefficients to minimize the processing time for efficient
use of the instruction set are discussed. These are
applicable to most processors. There is almost no call
for instructions other than load, add, store and data
shift in implementing the required control algorithm. This
is an important consideration in the selection of a

processor for this application.

The basic structure to be realized in the case of
‘rebalance cornitrol loops of the gyro for class I design is

given in Fig. 5.1, in which ey and e,, represent A/D

converted pick-off signals and ell* and 922* are the modified
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error signals after performing digital computations. It is
to be noted that Fig. 5.1 is drawn taking into account

coefficients rounding in the control algorithm.

2.4269
.

)
©

) =0.75 (: -0.25

2,4269

=025

Fig. 5.1 Implementation of control algorithm for class I design

The structure of Fig. 5.1 to be realized is of
second order, and the equations which result from this

flow graph are

-2 -1 -2 3 -1 e A -2
*= - 4 T, o *
e 2.4269(6ll Z ell)+(822+-z 5,12 22) 7 1" e
=1\ 3% = 3 =1 g
*= +4 + + - — e S
55 (ell z ey t2 ell) 2.4269(e22 z e22) 12 8 1% ey, {5 1)
where 117 €55 and ell*, e22* are the input and the output



sequences corresponding to sampling time intervals. Two
multiplications, 12 additions/subtractions and 4 shift/add
operations are the main arithmetic instructions required in
implementing this design. The realization of such an
algorithm, for example on a TMS 9900 microprocessor (Ref.
5.12 and 5.13) using fixed point software multiplication will
require about 200 us. If the sampling frequency as high as
2.4 kHz is selected, which is five times higher than the
dominant pole frequency of the gyro, then this implementation

time is almost half the sample interval.

5.4 System performance Vs processor word length and speed

It has been shown that a strapdown system employing a
digital control for the tuned gyros, the servo-loop functions
are mechanized as digital computations and the torguing
signals are computed digitally, converted to analogue form,
and, after power amplification, used to restore the rotor
with the external casing. These same digital torguing
signals can be used directly for attitude and navigational
computations as well. When a pulse-rebalance loop
configuration is desired the torquing signals after digital
computations, must be sent to the quantizer where the
switchover from negative to positive can be made to occur

in synchronism with the sampling freguency.

Selection of the sampling frequency which represents
the maximum rate at which the information may be extracted
from the rebalance loop, depends upon the minimization of

tinming errors and improved torguer-current linearity (Ref.l.2).



The quantization frequency is selected based on the
dynamic range of operation required in a.given application
and minimum value of this frequency equals the ratio of the
maximum input rate to be rebalancedto the required attitude
guantization. The attitude quantization specification is
based on overall vehicle attitude determination (Ref. 1.4).
Depending upon this information which gives the total number
of current pulses required in each limit cycle, one can select
the corresponding word length for the processor. It has been
observed that in most cases a 8-bits word length processor
will be sufficient. Since real time digital processing is
to be carried out in each sampling interval, close attention
must be paid to the time taken to perform addition, multi-
plication, load and store data operations, which are the main

instructions needed.

A twos-complement number representation, using fixed-
point arithmetic may be chosen for this application. Floating
point arithmetic, in which the magnitude of the number is
represented by a fraction, with separate word to locate the
radix point, is more useful in some signal processing
applications (Ref. 5.6) where error accumulation due to
coefficient round-off leads to intolerably high noise and
coefficient sensitivity. Floating point arithmetic employs
substantially more memory and the incremental calculations
are correspondingly slower. Twos-complement representation
have advantages for the execution of arithmetic coperation

(Ref. 5.10), for example the addition and subtraction of



numbers can be performed as though they were unsigned
numbers and also when more than two numbers are added, it
does not matter if overflow occurs on intermediate
summations as long as the final result is in the allowed

range.

Sometimes a software multiply instruction may not be
available on a processor (Ref. 5.8), and a programme to perform
multiplications of two numbers might require a considerable
processing time. To overcome this difficulty a fast hard-
ware multiplier unit may sometimes be necessary. The
multiplier appears to the processor as two adjacent memory
locations (at an address normally reserved for ROM). Memory
reference instructions are normally used to access the
multiplier. Loading the two numbers in to the registers
initiates the multiplication which is normally completed

within one processor cycle.

A new generation of bipolar bit slice processors
provides a means of increasing the speed performance by a
factor of about 10 and one such device is by Advanced Micro
Devices AM2901 (Ref. 5.2 and 5.9), where the emphasis is on
executing the calculations in minimum time. AM2901 is a
four -bit processor slice cascadable to any number of bits.
Because of the additional hardware associated with these

devices, the overall cost of the system is also increased.

The best choice of speed improvements can be anticipated
when processors are specially optimised for this particular

application.
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5D Implementation of noise filters

It has been shown that the design method may be
implemented when filters are to be included to remove
pick-off noise. To implement digital notch filter the
transfer function given by Equation (4.24) is characterized

by two distinct parameters a, and a, which can be realized

by a digital filter containing only two multipliers with

coefficients a and a, .- Hirano, Nishimura and Mitra

(Ref. 5.5) have shown that the notch frequency can be changed

while keeping the 3-db rejection band and d.c. gain constants

just by varying only aj, and the reject bandwidth by varying a, .

To implement the noise filter g(z) given by

Equation (4.24) can be rewritten as

Z-. -alz_l+a

l—alz-l+a22

2

gl(z) = 1+ )

(5.2)

According to Hirano (Ref. 5.5), such a filter can be
realized using two multipliers, several two-input adders
and few delay elements. A method proposed by Abu-El-Haiza
and Peterson (Ref. 5.1) for implementation of digital
notch filters based on digital incremental computers 1is
particularly suitable where very low 3-db rejection band-
width is necessary. This avoids conventional structures
of large word lengths because increments of the signals

are processed more quickly than the signals themselves.

They also proposed that if the inputs to the incremental
multipliers ares restricted to be ternmary, no hardware

multipliers would be necessary.



When a compromise is reached for implementing a non-
recursive digital filter along with necessary control algorithm,
as proposed in section 4.6, there may be a need to involve
a separate hardware multiplier to overcome the slow

operation of software multiplication.

L) Summary

In this chapter the implementation aspect of the
digital control algorithm developed in Chapter 4 for a
model of a dry-tunedrotor gyro has been considered.
Several techniques of reducing the control algorithm
complexity were studied. It has been shown that the
rounding of coefficients in the control algorithm is
the best choice for this application because this allows
a more flexible choice of processor in implementing the
necessary control functions. Various factors affecting the
digital processor requirement such as speed, word length
are also discussed to give more insight when implementing
such a digital controller in practice. The implementation

aspect of digital notch filter is also included.



CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 Finite settling time design

The design method developed is an extension of the
technique which has previously been used for single loop
systems. In the case of multivariable systems several distinct
problems emerge as a result of interaction between control
loops. The need to avoid sensitive design conditions in
which mismatch between the controller and the plant may
produce instability, requires the avoidance of complete pole/
zero cancellations between the controller and the plant in
single loop design. It has been shown by Steel and Puri that
in multivariable systems it is acceptable for poles of the
plant transfer functions to be matched by zerocs of the
controller functions in certain combinations of elements, so

that partial cancellation occurs.

Existing techniques for the design of multivariable
digital control systems have been examined. The work of
Nishida (Ref, 2.3) indicatss a promising approach to the
engineering design of this class of systems. This method
has a feature common to that of the proposed design, namely

both use transfer function approach.

Nishida's technigque is developed based on single loop
design method of Jury and Schroeder (Ref. 2.1) but there are

three principal areas in which problems arise. Firstly, the
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method does not apply when the plant contains complex
conjugate poles very near to the unit circle. This severely
restricts the flexibility of the design. Secondly, should
the system overshoot be unacceptable then no method is out-
lined for its improvement. Finélly, when any one or more
elements of the plant have an unstable pole, straightforward

application of the method is not possible.

The new finite settling time synthesis method described
by Steel and Puri (Ref. 3.6) overcomes these problems. The
chief advantage of this method is that it guarantees the best
possible dynamic performance of the system, and at the same
time eliminates interaction. Results giving sensitivity
conditions have been developed which are of considerable
generality and significance. These lead to the conclusion
that by placing a requirement of finite settling time on the
system, a design may result which is both sensitive and

unnecessarily complex in the control algorithm regquired.

The retarded response design technique has been used
to extend the scope to allow sensitivity to be traded for
speed of response. A consequence is that a complex conjugate
pair of poles or zeros of det(P) which are inside,' but very
close to the unit circle, need not be assigned to f or 6.
This avoids an increase in controller complexity. Sensitivity
to parameter changes which will move those poles or zeros on
to or outside the unit circle, can be avoided by constraining
the displacement of these poles or zeros to either follow a

circular path centered at the origin, or alternatively reduce
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the magnitude of the displacement of the mode. This can be
achieved in practice by allocating a single or two poles

to £ and ¢ and adjusting these pole positions to give
minimal sensitivity condition as proposed in the paper by
Steel and Puri. This will result in a system which is less
sensitive and at the same time of least complexity in the
controller elements. The analytical method of sensitivity
reduction as given in this paper has the advantage that it
avoids the need for iterative processes and gives compact
results which the designer, can readily appreciate. It
remains however, that the overall effect on the transiernt
response can only be seen by simulation since the detailed
effect of pole and zero movements cannot be anticipated

in the time domain.

6.1.1 Application to tuned-gyro model

The method has been applied to a model of a two-axis
dry-tuned-rotor gyro. The proposed design method has the
advantage that it takes account of the behaviour of the
rebalance system of a gyro as a multivariable control
system. The cross-loop controller elements decouple the
response and permit system operation with a closed~-loop
bandwidth greatly in excess of that produced by Kao and Hung
(Ref. 1.8), and Catton (Ref. 1.4), using analogue control
methods. This is an important factor to exploit the
maximum capability of a gyxro as an attitude sensor in a
strapdown environment. Furthermore, the digital controller
offers the advantages of flexibility in the realization

of complex control algorithms and their accurate implementation
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is not affected by component stability and tolerances.

The design method can also be extended when it is
necessary to include notch filters to remove noise inter-
ference in the pick off signals, in which case the overall
bandwidth will be less than the notch frequency. It is also
shown how the controller complexity is affected when processing

delay is to be included in the design.

6.1.2 Sensitivity relationships

It has been suggested by several authors (Ref. 1.10 and
4,.2), that the minimum settling time design systems are very
sensitive because of the multiplicity of the closed=-loop poles,
all of which are at the origin of the z-plane, this has been
shown to give infinite sensitivity with respect to changes
in parameters of the system. According to Kuo (Ref. 1.10),
the particular measure of sensitivity implies that any
arbitrary small variation of a parameter away from its
design value results in an infinite percentage movement of

the pole.

A more meaningful measure of sensitivity for finite
settling response systems is the sensitivity of (some
measure of) the time response of the system with respect
to system parameter changes. Therefore a study on the
sensitivity has been carried out in the case of the gyro
rebalance design. Sensitiyvity of the step response of the
optimal system as a function of pick-off gain variation
in any one or both loops, and also coefficient variations
in the digital control algorithm are investigated in great

detail.
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It has been observed that, in the case of loop gain
variation, the root loci move away from the origin to
terminate on the zeros of f(2z), or at infinity (Equation
4.12), and it is concluded that the optimal system remains
stable for changes in gain up to + 210%. Since such large
variations in loop gain will never happen, the effect of
small variations on the closed-loop response were studied
by simulation. The system simulation method as developed
in Appendix C may be a very powerful tool for evaluating
more meaningful measure of sensitivity for minimum settling
response systems. As may be seen from Fig. 4.1 that a 10%
gain variation around the optimal value, there is small
change in the stability margin of the system. Though there
is a slight increase in overshoot and settling time, the

resulting system response may be quite acceptable in practice.

In addition to finding the effects of changes in loop-—
gain variations, a solution to the sensitivity of the system
response to mismatch in the controller elements has been
developed for the special case of the gyro rebalance control
loops. This involves a means of rounding coefficients in
the controller elements without adverse effect on the system
performance. In this case the sensitivity design is utilized
as part of a policy for simplifying control functions to

reduce the computation time.

The residual mismatch in numerator polynomials of the
controller coefficients results in a pole pair, occur at the

nutational fregquency and the root loci from these zeros will



enter the region outside the unit circle. When a simple

pole is added in polynomials £ and ¢, the effect is to

alter the angle of departure as well as reduce the magnitude
of the root loci movement. This mismatch will have minimum
effect on system stability when a pole position is selected
such that the root locus can be set tangential to the unit
circle and at the same time reduces the magnitude of the root
loci movement. In the case of gyro rebalance design, a pole
(1-0.62z"1) in £ and ¢ satisfies both these conditions. It

is also shown that such a pole increases the stability margin

of the system to loop gain variations from 210% to 400%.

The resulting design method proposed for the solution
to the sensitivity problem in the case of gyro rebalance
system design involves a differential adjustment of contxoller
coefficients on one hand, and an optimal reduction of
sensitivity by retardation of the dynamic response on the
other. The final design represents the overall compromise
between response speed. sensitivity and the controller

complexity of the system.

6.1.3 Implementation of control algorithm

The gyro rebalance system design yields a defined
control algorithm which involves four transfer functions to

be implemented using a digital processor.

In a given design the real time processing of each new
pair of error samples, together with their conversion from

analogue to digital form, must be completed in less than a
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sample interyval. The high frequency sampling in the control
loops imposes restrictions on the computation time. The
number of multiplications involved consumes most of the
computing time in implementing such an algorithm. Therefore
the design method has been developed to avoid fixed point
multiplications as far as possible without adverse effect on
the system performance. The method is based on rounding the
coefficients in the control function to simple binary values.
This will ultimately allow a more flexible choice of
processor for implementation. Other important factors
associated in selecting the processor are fixed/floating

point arithmetic operations, processor speed and word length.

Various methods available for implementing a digital notch
filter are considered. For a gyro rebalance system in presence
of pick-off noise, one such filter must be included in each
loop. It is also shown that when such a filter is included
in its non-recursive form in the digital control algorithm,
then there may be a need to involve a separate hardware
multiplier to overcome the slow operation of the software
multiply instruction, due to high coefficient accuracy

reguirements.

6.1.4 Limitations of the method

The general scope for application of synthesis method
to multivariable systems is limited by the analytical
complexity involved. Increased dimentionality means that
high order polynomials may be involved and in many cases
this will result in the need for elaborate control algorithms.

The designer must decide where the increased complexity in
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computation and implementation is worth the improyvement in
performance which might result. The problem simplifies when
the plant transfer function elements, as in the case of tuned-

gyro, have common poles.

The synthesis assumed linearity of the control elements
which is appropriate to the dry-tuned gyro designed for
strapdown applications where linear torquing characteristics

over a wide dynamic range are an inherent requirement.

When digital noise filters are to be implemented to
remove pick-off noise, there is an increase in the controller
complexity, hence one must take into account the finite
processing time in the digital processor. 1In this situation
there may be a need to involve a fast hardware multiplier.
The controller complexity is also increased when this design
is to be implemented in its modified z-transform, to take

into account any processing delay which might result.

6.2 GENERAL CONCLUSIONS

A method for the design of rebalance control systems
for a dry-tuned gyro using a digital controller has been
developed. The synthesis method is based on minim;sing'
settling time in the transient response. Since the tuned-
gyro has two control loops which interact, therefore a

multivariable control technigque has been used.

The design method presented enables a controller to be
designed at the lowest level of complexity. Cross-coupled
control functions are included which ensure flexibility

in design as well as improved performance.



Sensitivity of the system to pick-off gain in one or
both loops and the possibility of rounding coefficients
in the digital controller algorithm is analysed. A
solution to the sensitivity problems have been developed.
It has been shown that the method of rounding the coefficients
to values represented by simple binary operations is the
best choice for this application. In this way a significant
improvement in operating speed can be obtained because whole
word multiplications are replaced by a small number of

quicker shift and add operations.

6.3 Further work

There are several important areas in which the finite
settling time technique for the synthesis of multivariable
digital control algorithms described could benefit from
development. For example, it may be possible to extend this
approach to a model of 2-axis servo-accelerometer, described
in Appendix B. There is also some scope for compromise when
non-recursive noise filters are to be included to remove
the pick-off noise in some tuned gyros. Further studies may
be needed to qualify this design technique when there is a

“

significant processing delay in the system.

In general it could be beneficial to apply this design
technique to various inertial sensors in practice, in order
to gualify the method in the light of further practical
experience. However, the concept of direct digital control

of inertial guidance sensors is sound, and has grown more



certain with the development of the proposed design method,
for éiﬁple and efficient control algorithms, necessary in

the torque-rebalance loop.



~BE -

APPENDIX A

EXISTING ANALOGUE AND PULSE REBATLANCE CONTROL SCHEMES

In conventional strapdown system mechanizations (Ref. 1.4
and 1.9) the sensor servo-compensation and control functions
are carried out using analogue control methods. In the case
of analogue rebalance loops of Fig. A.l the sensor torquing
currents are fed through precision resistances to develop
voltages which are proportional to the vehicle angular rates
or accelerations. The analogue rebalance loop designs have
been proposed by Coffman (Ref. 1.5) comparing both class I
and class II systems. These methods are based on linear

characteristics of the torque motor.

The pulse rebalance locop configurations are advantageous
where inegrating digital readout for high accuracy measure-
ments are required and various such schemes have been
developed (Ref. 1.8 and A.l). The binary pulse width
modglated (BPWM) mechanization (Fig.A.l) is preferred
because in addition to provide direct digital readout it
minimizes the requirement on torque motor linearity by
restricting operation to two plus-minus torgue levels.

This assumption has been made in the design methoa
developed in this thesis. 1In addition BPWM affords the

following advantages over other schemes.

(1) Resoluticn is not limited by the torgue motor time

constant.

(ii) The torquer operates at a constant power level which

minimizes thermal disturbances.
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(iii) The servo loops behaye linearly with well-defined

performance characteristics.

(iy) The torquing waveform has a fixed fundamental frequency

which limits variation in a.c. reaction torques.

The main problems associated with BPWM is that of high
power consumption and lower information rate compared to

other two schemes.

The essence of this mechanization is the ability to
obtain a precise digital measure of the average current fed
to the torgue motor during each 1limit cycle period. Know-
ledge of the restoring torgue is directly translatable into
vehicle angular motion sensed by the gyroscopes or linear

acceleration in case of accelerometers.
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APPENDIX B

EXTENSION OF THE METHOD TO SERVO-ACCELEROMETERS

The direct digital control scheme developed for tuned-
gyros can also be extended for the accelerometers. Because
of the similarity of the dynamical behaviour of accelerometers
and mechanical rate gyros, the design problem is further

simplified.

Various accelerometers of inertial quality have been
developed which can be single axis or two axes ones. In the
case of a single axis, any acceleration applied along the
sensitive axis tends to move the pendulum from its equilibrium
position, and a pick-off provides an a.c. signal of phase and
amplitude in relation with the measured deviation. After
amplification, demodulation and necessary compensation, this
signal is applied to the torgue motor to balance the action
of the accelerometer and brings the pendulum to its original
position. The current going to the torque motor is the
measure of input acceleration. Both analogue and pulse
rebalance loop system configurations have been developed for

single axis accelerometers (Ref. 1.4 and 1.9).

In the case of a two-axes accelerometer (Ref.B:l) based
on the development of tuned-suspension gyroscopes, a two-axes
suspension carries the torgue motor, which consists of magnets
and flux return path that establishes a radially oriented field
within the airgap. The torque motor is made pendulum

relative to both torsional axes of the suspension system.



In the presence of acceleration along any axis perpendicular

to the axis of symmetry of the suspension system, the pendulum

mass is deflected angularly relative to the accelerometer

housing. This deflection is sensed by the pick-offs whose

output drives the current through the torguer coils, exerting

a moment on the pendulous mass in such a direction as to

null the pick-offs. Thus the current through each torgue

motor is the measure of applied acceleration along

corresponding axis.

Most of the strapdown systems developed so far use

single axis accelerometers in analogue or pulse rebalance

mode. Incoflex two axes accelerometers developed more

recently by Russell and Craig, the torgquing loop electronics

used is an analogue design and a pulse torquing scheme has

been proposed. The main advantage of a two axis unit is

its low cost per axis.
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Once the accelerometer model is known, it is possible
to design a rebalance control system using a digital

controller in the same way as has been investigated here

for the tuned-gyro.



R i

APPENDIX C

COMPUTER SIMULATION OF GYROSCOPE DDC SYSTEM USING 'SLAM'

C.1 Basic description of SLAM

SLAM, the simulation language for analogue modelling
(Ref. C.1 and C.2), is a high level language written by
staff members of the ICL. The programme provides an
application oriented language which allows problem
formulation either directly from the system block diagrams
or from the system mathematical equations. Included in the
programme package is a basic set of functional blocks which
allow the representation of a continuous system statement
for defining the connections between these blocks (Ref. C.1).
One of the greatest advantages of using SLAM from the users
point of view is that one is not required to devote consider-

able time in programming details as in Fortran.

SLAM uses a translatory method of operation, i.e. source
programme translated into Fortran, any Fortran statements
being passed through without alteration. The resulting
Fortran programme may then be compiled by a Fortrah compiler

loaded and executed.

The basic programming structure may be defined by the

programmer and these are

(a) Implicit structure

(b} Explicit structure



A SLAM programme that makes use of the structuring
ability of the translater is knwon as an Implicit mode
programme. In this mode, all executable statements with the
exception of those included in NOSORT blocks (executable
statements which do not comply with the rules of sortability
in SLAM), are automatically sorted by the translator into

initial, dynamic and terminal regions.

A SLAM programme, in which the internal segment structure
is explicitly defined by the programmer is known as an
Explicit mode programme. This mode is more comprehensive
than the Implicit mode, and offers greater programming
flexibility and permits the design of programmes better
suited to a particular task. For example when analytical
approximation method is used for reducing controller
complexity, it is best to use SLAM in an Explicit mode for
minimizing the sum of the mean square error at each sampling

instant.

C.2 Simulation of multivariable digital control systems

Fig. C.l1 shows the role of the digital processor in
the form of digital controller in multivariable direct
digital control systems. The error signals become the
input to a properly defined control algorithm. The emphasis
in this section is placed on simulating the control algorithm

in the form of matrix D(z) along with continuous plant P(s).

The programme listing C.3 gives one method of simulating

the gyro system along with the digital control algorithm. The



Digital controller Continuous
plant
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PUtS T D(z) [ - ZOH P(s) —- OULPULS

Fig. C.1 Digital control system for simulation

initial region encompasses all those calculations, input/
output operations, and initializing procedures that must be
performed prior to simulation. Those initializing operations
of a more permanent nature (e.g. designation of a particular
integration algorithm) should be performed prior to entering
the dynamic region. The dyanmic region is that portion of
the simulation which takes an active part in the interaction
between the digital computer and the external world. It
represents all the calculations and I/@ coperations performed
at each user-defined discrete value of the independent
variable. The terminal region receives control from the
dynamic region and returns control to the simulat?on entry.
The terminal region contains the calculations and I/0 necessary

to properly terminate a single simulation.

The integration system in the dynamic region has two
main entries, one for the initialization and one for
integration. In addition to setting up initial conditions
on the state variables of the integration, the initialization

entry alsc calls the appropriate integration and initialization



algorithms into memory from the library and allocates memory
for the history information required by these algorithms.
The integration entry transfers control to the appropriate
algorithm to integrate the specified derivative section over

its communication interwval.

The simulation of the digital controller algorithm in the
form of D(z) is given in a NOSORT block in the programme
listing. Statements given in this block are not sorted and
are thus executed much the same way as Fortran statements.
The IF statement is inserted to ensure that the algorithm

will not be executed except at the sampling instants.

In summary this appendix illustrates how one can simulate
digital multivariable control system using simulation
language SLAM. If the digital controller D(z) is other than
minimum settling time design, then the expression for D(2)
can be expressed as an algorithm and executed in a NOSORT
block in a similar manner, as illustrated in programme
listing. Therefore it is concluded that SLAM can be easily
adapted to simulate digital control systems and digital
filters. The advantage is that the designer can guickly
assess the design before making actual hardware implement-

ations.
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gramme listing

REAL ALPHA, BETA, K, MX, MY, QX, QOX1, 0X2, QY, Qvl, QY2, WN
C-- INITIALIZATION

INPUT T, TD, WN1l, B, WN
ALPHA = COS(T1)

BETA = SIN(T1)

K = (WN*WN) /(T1-BETA)

C = 1.-ALPHA/(T1-BETA)

D = (ALPHA*T1-BETA)/(T1-BETA)
Tl = 27/B

Bl = 2*ALPHA + 4* (T1**2*COST1-T1*SINT1+SINT1**2-T1*SINT1*COSTI
(2 # T12*2 =2*COSTI-2*T1*SINT])
Al = (13#Bl)/(2.+Bl)

A2 = 1./(2.+Bl)

Ell = 1.0

E22 = 0.0

T3 = 0.0

QX2 = 0.0

QX1 = 0.0

QY2 = 0.0

QY1 = 0.0

THXO = 0.0

THYO = 0.0

El2 = 0.0

E13 = 0.0

E23 = 0.0

E24 = 0.0

T2 = 8.0

T = 0.0

C-- SIMULATION OF DIGITAL CONTROLLER
WOSORT (MX, MY, 'OX, QY = OQX1, OX2, Q¥1, Qv2, El11l, BEZ,

i:

El3,
Fl =
L e

£ CT12

QX2
QX1
E13
E12
E24
E23
QX2
QYl
E11l
E22
QX=K*
+ A2*
QY =
+ A2*
F2
T2
rd

O ¢ | oA | o R

nno

E22, E23, E24, THX, THY)

TIME /T

IFIX(F1)

EQ.T2.0R.TIME.EQ.TD)GZ T@ 9

QX1

QX

E1l2

E1ll

E23 ‘
E22

QY1

QY

1.-THX

- THY

(A2*C*E1ll - A2*C*E1l3 + A2*E22 + A2*D*E23
E24) = Al*QX1 -A2*QX2

K* (-A2*E1l = A2*D*E12 - A2*E1l3 + A2*C*E22
C*E24) - Al*QYl - A2*QY2

TIME /T

IFIX(F2)

TIME-TD/T
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11

T4 = IFIX(F4)
IF(T4.NE.T3.0R.TIME.EQ.TD) Gg T@ 10

cg Tg 11

MX = QX

MY = QY

F3 = (TIME-TD) /T
T3 = IFIX(F3)
END

SIMULATION OF CONTINUOUS PLANT
DYNAMIC EQUATIONS

THX = INTGRL(D1THX,THXO)

THY = INTGRL(D1THY,THYO)

D1THX = INTGRL(D2THX, 0.0)
D1THY = INTGRL(D2THY, 0.0)
D2THX = MX - WN*D1THY - WN1*DI1THX -
D2THY = MY + WN*DLITHX - WN1*D1THY
INTINF

ALG: RKFS

CI:CI = 0.417E - 04
MONITOR : IMON = 2
RELERR : RLER = 0.005
END
@UTECI TIME, THX, THY, QX, QY, MX, MY
TERMINATE (TIME. GE.Q,0417)
END
FINISH



APPENDIX D

COMPUTER SIMULATION FOR ANLYTICAL APPROXIMATION METHOD

D.1l Introduction

The purpose of this program is to enable the system
designer to apply model reduction technique for optimising
a digital controller based on analytical approximation

method described in Chapter 5.

The main programme and all subroutines are written in
high level language SLAM in its explicit mode. The programme
computes and minimizes the sum of the mean square error at
each sampling instant with an optimisation package, using
simplex method (Ref. D.l). The programme permits the
designer to check these values and arrive at optimum

controller elements.

D.2 Subroutine outlines

The main subroutines (which are called Segments in

explicit mode) are briefly outlined below:

s FUNCT - Computes value of mean square error and

controller elements to terminate a single simulation.

Za MONIT - Used to print out the current values of the

parameters to terminate a single simulation.

3. EQ4CCF - minimizes mean square error at each sampling

instant.
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D.3 Programme listing

MASTER DIGSIM

EXTERNAL FUNCT, MONIT

REAL T@L, R, F, X(2), SIM(6,5), W1(S), W2(5), W3(5), W4 (5), W5(5)
INTEGER N@UT, N, N1, MAXCAL, IFAIL, I

TERMINAL
N@S@RT (X, F=)

X(l)y = 2.254

X(2) = 4.67

TPL = SGRT(X02AAF(R))
N =2

Nl =N +1

IFAIL = Q

MAXCAL = 100

CALL EO4CCF(N,X,F,TgL, N1, Wl,W2,W3,W4,W5,SIM,FUNCT, M@ZNIT,
MAXCAL, IFAIL)

END

@uTPUT X,F

END

END

SEGMENT FUNCT(N,XC,FC=)

REAL MX, MX1, MX2, MY, MYl, MY2, MXO, MYQ, K1, Ll, L2, FC, XC,ALPH?
BETA, T, WN

INTEGER N

ARRAY XC(2)

INITIAL

0

(@]

I
==

C30 = 1.E-05
3015.94

T = 0.417E-03

DX = 0.

ALPHA = C@gS (WN*T)
BETA = SIN(WN*T)
S1 = BETA/(T*WN)

E

S2 = 1.-S1

S3 = T*WN*S2

S4 = (1.-ALPHA)/S3
El = S4%*2+]

S5 = T*52

S6 = WN/SS

Al = S6/E1

S7 = (S1-ALPHA) *4
E2 = S7/S2

Bl = 2.*ALPHA + E2/El
KL = 1./(2.481)
Ell = 1.0

E22 = 0.0

MXO = 0.0

TO = 0.417E-03
D30 = 1.E-05



- 80 =

MX1l = 0.0
MYl = 0.0
MX2 = 0.0
T2 =0.0
THXO = 0.0
THYO- = 0.0
E12 = 0.0
E13 = 0.0
E23 = 0.0
E24 = 0,0
MY2 = 0.0
END
DYNAMIC
DERIVATIVE

THX = INTGRL(D1THX, THXO)
THY = INTGRL(D1THY, THYO)

D1ITHX = INTGRL(D2THX, 0.0)
D1THY = INTGRL(D2THY, 0.0)
D2THX = MX-WN*DITHY-DX*D1THX
D2THY = MY+WN*D1THX-DX*D1THY

C2 = INTGRL(C,CO)

D2 = INTGRL(D,DO)
C4 = INTGRL(C3,C30)
D4 = INTGRL(D3,D30)

FC4 = INTGRL (FC2,FC20)

FC = INTGRL(FCl, FClO0)

N@S@RT (MX ,MY ,T@RQ1,T@RQ2,C,D,C3,D3,FC1l,FC2 = MX1,MY1,
MX2 ,My2,E11,E22,E12,E23,E24,THX,THY)

F1 = TIME/TO

Tl = IFIX(Fl)

IF(T1.EQ.T2)CZ T@ 9

MX1l = MX
MYl = MY

E13 = E12
El1Z = El1
E24 = E23
E23 = E22
Bll = 1.~THX
B22 = -THY

MX = Al*K1*XC(1l)*E1ll - Al1*K1*XC(1l)*EL1l3 + Al*K1*E22
+ Al*K1*XC(2)*E23 - MX1l

MY =-R1*K1*El1l - AL*RI*XC(2)*E12+A1*K1*XC(1)*E22 ,
-AL*K1*XC (1) *E24 - MY1

= E117E1d

= E22*E22

TIME*C

TIME*D

FCl = C + DELTA*D

FC2 = C3 + GAMMA*D3

TPRQL = MX*R1

TPRQ2 = MY*R1

F2 = TIME/TO

T2 = IFIX(F2)

END

C
D
e3
D3

[l



INTINF

ALG:RKFS

CI:CI = 0.417E-04

M@NIT@R : IMON =2

RELERR : RLER = 0.05

END

END

TERMINATE (TIME.GE.4.17E-03)
END

END

SUBROUTINE M@NIT (FMIN,FMAX,SIM,N,N1,NCALL)
INTEGER N, N1,NCALL,J,I

REAL FMIN, FMAX, SIM

DIMENSI@N SIM(N1,N)

WRITE (6,1)NCALL,FMIN

WRITE(6,2) ((sIM(I,J) ,J=1,N),I = 1,N1)
RETURN

F@PRMAT (6H AFTER, IS5, 30H FUNCTI@N CALLS, THE VALUE
IS, E10.8, 14H WITH SIMPLEX)

F@RMAT (3(2E12.8/))

END

FINISH
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DIRECT DIGITAL CONTROL OF DRY-TUNED
ROTOR GYROS

G. K. Steel and S. N. Puri

Department of Electrical and Electronic Engineering, University of Aston,
Birmingham, U.K.

Abstract.

A method of designing the rebalance control system for a dry-

tuned gyro using a digital controller is described. Control fimctions are
synthesised to achieve a minimum settling time in the transient response.
The need to eliminate interactions between the gyro control axes is

included in the design policy.

Sensitivity of the system to mismatch in the controller is examined and
methods suggested to inprove this aspect of performance. Sensitivity
aalysisis exploited to show how coefficients in the control functions
may be rounded to allow reduced computation time in the processor.

Keywords. CGyroscopes, torque control, inertial navigation, strapdown systems,
direct digital control, control system synthesis, sensitivity analysis.

INTRODUCTION

he development of the dry-tuned gyro (Craig,
1972) has contributed significantly to the
jrowing interest in strap-down navigaticnal
systems (Kirk, 1978). This has been
orimarily due to the need to achiewe a wide
Bymamic range in a sensor which is subjected
to the wehicle motion rather than that of a
stabilized platform. The dry-tuned gyro has
oeen developed to a point where this require—
Tent can be met with inertial grade accuracy
and at reduced cost.

This gyro, with two degrees of freedom, has
a3 rotor and ginbal assembly suspended on
springs. At the designed rotation speed the
spring constants are matched to cancel the
inertial torques due to the gimbals, so that
the rotor behaves as a free gyro.

Cperation as a rate gyro is achieved by
forming a pesition control system to align
the rotor with the external case. Signals
from position pick-offs are used to provide
feedback control of the torgques applied to
the rotor. The precessicn rates are then
measured by signals derived from the torgue
motor currents. Two of these 'rebalance'
control loops are required for each gyro.

In the strap—down mode the rebalance loops
must be designed for adequate dynamic
response i.e. a short transient settling time
or a wide frequency response bandwidth. When
the system bandwidth approaches the nutational
frequency of the gyro it is no longer
pessible to regard the two rebalance loops

as incdependent systems. Interaction between
the control axes demands that the system
must be analysed as a multivariable control
system. The design must also aim to counter-

act the inherent interaction.

Rebalance systems hawe been constructed using
analogue control methods (Coffman, 1974;
Blalock, 1975; Kirk, 1978)where the require-
ment for rapid response has not been import-
ant. However, in exploiting the maxdmum
capability of the gyro there are advantages
in using a digital processor as controller.
A digital controller offers the advantaces
of flexibility in the realization of complex
cantrol algorithms and their accurate
implementaticn is not affected by component
tolerances. The possibility of time-sharing
the processor between separate control
finctions can also reduce hardwars require-
ments. Where rapid response is required the
signal sampling rate must be hich and for
time-sharing to be possible it is important
to minimise the computation time required
for any control algorithm.

In this paper an analytical method is out-
lined which has been used to design cantrol
algorithms giving a minimum settling fime and
eliminating interaction. The design method
is adapted to take account of sensitivity to
parameter variaticns and methods of reducing
sensitivity are introduced. Sensitivity
reduction is examined as part of a policy
for simplifying control functions to reduce
computation time. y

GYRO TRANSFER FUNCTICNS
Differential equations for the dry-tuned gyro

were developed by Bortz (1972), Craig (1972)
and Coffman (1974) and may be written as
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where 6 and 68 one angles of rotation of the

rotor about orE.‘*ogmal control axes on which
torgues M a.nd M a.re applied. Inertial
constant T = 9/2, involving the
principal eruen inertia of the rotor
and gimbal, and ﬂ is the rotor angular
momentum. Laplace transformation of these
equations gives a transfer fimction matrix
equation,
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hy = /(524w ?) hy wn/s(s"+ w %)
with w_ = H/I being the nutational frequency

in radian/sec. andQ
torcques \dx/I, MV/I

The transfer fimctions in Equaticn (2) may
be identified with a block diagram structure
for the complete rebalance system as shown in
Fig. 1. Elements V represent zeroc—order hold
finctions. Synchronous sampling switches
indicate the effect of analogue-digital
signal ccnversions and it is assumed at this
stage that there is negligible computing
delay in the digital processor. Inputs 2
and r, represent the case position angles
wh.Ech the system responds.

Oy the normalised

Analysis of the system proceeds by calculating
the pulse transfer function of the gvro P(z),
using a standard z-transform table (Kuo,1963)
which gives -

N, - N
Bln) =it L2 (3)
> A
T(1-8/T )z
K, = :
1 un{l-—z-lj (1-202" T4z ~2)
N, = c(l~z"))
N, = 1+ dz o+ 272
with a = cos (unTJ

g = sin(tunT!'

(9]
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(1=c) /”I‘r.ur1 (l*B/I‘an
=2 (-Jt*-d/TwnJ /(l-&/l‘tun)

o
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ANALYTICAL DESIGN METHOD

In the rebalance control system Fig, 1 pulse
transfer finction matrices P(z) and D(z) are
used to describe the gyro and the digital
controller. The error pulse sequence E(z)
is given by

. =1
E=[I+PD] "R (4)
where I is a wnit matrix and R is a colum

matrix containing the two case position
angles £ and L. Also the overall closed-

Steel and S. N. Puri

locp respense is given by

= [1 +20] " poR (5)

For non-interacting response a case movement
in one axis should produce a rotor movement
in the corresponding axis and have no effect
on the other axis. We therefore designate

[z + PD]'l PD =1 £(2) (6)
where f(z) is the common closed-loop pulse
transfer function of the two loops.
Similarly the error pulse transfer functicn
is

[z +20] 7" = Io(2) %)

given £ and ¢ we may compute the control
function D from

I a3 o £|ﬂ|
PS5 F 5 |G| ®

Also f and ¢ must satisfy
f=1=-19 (9)

The result in Equation (8) is equivalent to
that used in the design of single~loop
systems for minimum settling time (Bertram,
1956) and has been examined in detail by
Steel and Puri (1979) for the general class
of multivariable systems.

The functions £ and ¢ are first of all con-
strained by the requirement for zero steady
state error. 'Fﬁs means that ¢ must contain
a factor (l-z where n depends on the
form of input R g n=l for a step input.
Further constraints are due to tha need to
avoid some cancellations between elements

of P and D in the product PD which gives the
cpen loop transfer function matrix.
Cancellaticns on or outside the unit circle
in the z-plane can lead to a sensitive
desicn in which instability will result from
a small mismatch in the controller. General
rules for avoiding such sensitivity problems
can be drawn up assuming an aribitrary form
of matrix P. However in the case of the dry-
tune gyro the inherent symmetry of the
dyvnamic structure leads to some simplific—
atiens. All four elements of P have a
common pole pair on the wnit circle dwe to
the undamped oscillatory cmaracteristic of
the gyro. This would normally leadlto a
pair of zercs in each element of P~ at a
corresponding position. But as a result of
the cross coupling between the gyro awes

det (P) is zero at this same point in the
z-plane, so that the mode is cancelled

from p~1,

Apart from the zeros of det(P) which coin-
cide with the poles of the e;erents of P
there are two other zeros which appear on
the it circle. To aveoid senaﬂvz.‘-y J‘u.s
pair of zeros must be allocated to £.

The general method proceeds by designating
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A(z) B(z)

l % c(2)
where A contains the zercs of det(P) on the
mit circle. Polynomials B and C have
undetermined coefficients as necessary to
allow Equation (9) to be satisfied.

z_
= (l=-z

(10)

Class I and Class II Systems

A class I system is defined as having a
finite steady state error in response to a
constant rate input change. The class II
system gives zero error with a constant rate
input and a finite error with a constant
acceleration input. Steady state alignment
is clearly best in the class II design but
comparisons have been made (Coffman, 1974)
which show that provided the steady state
error is kept small the class I design may be
acceptable. It is interesting to compare
the design results with the minimum settling
time digital controller. The class I design
is achieved by designating n = 1 in Equation
(10) and the class II with n = 2.

The following general features emerge,

(1) Settling time following a step input
chanze
class I: IT
class II: 4T

(ii) Steady state error
class I: 2To (p = rate input)
class II: zero

(iii)Controller camplexity
An extra term is required in the
enurerator and dencminator polynomials
for the class II case.

Further compariscons can be made by taking a
specific gyro as an example.

81
Cesign Exanple
lNutational frequency: 480 Hz = £
Sampling frequency: 5 fn q
N N " N, N
p=x |t 2-9"1=K2 - 2 (11)
Ly N |’ N. N
2 1j B G
= 2.254 (1-z 2)
£ e
N, = 1+3.671 2z ~ + z
5 £ -t 2
Kl =2z “/29.66x107(1-z ) (1-0.6z +z )
K, = 4.879:10% (1271 2L (141,825 271+ 279
The term (1+1.825 z - + 2_2) in X, has zeros

on the unit circle and this is as8Signed to
f in Equation (8). The resulting design
factors are given in Table 1.

This comparison leads to the conclusion that
the class I design is preferred since it
offers reduced camplexity in the control
functions and lower torque demands while

the steady state error is acceptably small.

Fetarded Response

The above design procedure yields a system
response which settles in a minimum and
finite number of sample intervals. It will
be shown later that some advantage in
reduced sensitivity can be gained by removing
the requirement of a finite settling time. If
a term (1-Y z~1) is allocated as the
dencminator of f the overall system response
will include a having a time constant t
such that e “T/T= v and will settle
exponentially. The effect of this on the
design procedure is firstly that the same

Table 1 System Design Factors

Design Factor Class I Class II
£(2) | 0.2614 271(141.825 2 T42™%) | 0.7843 2 T(1+1.825 z - + 2 2) (1-0.667 2 )
5(2) (1-z71) (140.7387 2" 140.261427F (1271 %(141.2157 27 10,5229 272
Ky 1.276x10° 3.827x10°(1-0.6667 2°%)
: (140.7386 z ~+0.2614 2 2) (1-2 ) (141.2157 z -- 0.5229 z %) ‘
Pia) 4, |2.254(1-27% 2.254(1-2"7%) ‘
4 - | - -
&y | 143.671 2 54 22 [ (1+43.671 27 + 279
Steady state 0.08° zero
error X
Maximum Torque* | 1.2Mo 2.5 Mo
e et
t Control function D =k, 1 |
1, &

X For ].Coo/sec input rate

* For constant rate input,

C.AC5—G

where Mo is steady

state torgue
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dencminator must be allocated to ¢ in
consequence of equation (9). Terms intro-
duced in this way cancel in Equation (8) and
so do not appear directly in the control
functions. The general comwplexity of the
elements in D remains wmaltered but
coefficients are modified due to changes in
the initially undetermined coefficients in

f and 9.

SENSITIVITY CONSICERATICNS

Systems designed for minimum settling time
are potentially sensitive to parameter
variaticns (Stanley, 1959). This is in part
due to the cancellations generated between
the controller and plant transfer functions.
Also the design for finite settling time
produces multiple poles in the closed locp
respanse at the origin of the z-plane which
represents a sensitive condition. Sensit-
ivity must therefore be examined carefully
to ensure that the design will remain
satisfactory over a rance of parameter
changes.

In the case of the rebalance control loops
the gyro is designed to have an accurately
reproducible dynamic characteristic and wide
linear range of cperation. The pick-off
gain is however, cne of the less consistent
features. This,and the possibility of
rounding off cocefficients in the digital
processor algorithm, will be considered
further.

Sensitivity will be studied with reference
to the movement of the poles of the closed
loop transfer fumction. It can be shown
that the pole positions correspond to the
zercs of det(I + PD).

Control Loocp Gain Variations

Uncertainty in the pick-off gain, in one or
both locps, which represents a fractional
change & in the lcop gain,leads to the
result that the zercs of det(I + PD) are
given by

1+ £(z) =0 (12)

The movement of the zeros as a function of
¢ may be investigated by root-locus solution
of this equation. When £(z) is a polynomial
in z71, as is the case with a finite settling
time design, all its poles are at the origin.
The root loci move out fram the origin to

terminate on the zeros of £(z) or at infinity.

Stability limits are reached when § is larce
enough to place roots on the unit circle.
For the class I system design example the
limiting of value of 8 is 2.1. Such large
variaticn will not happen in practice, and
it is more meaningful to examine the effe
of small variaticns on the closed-loop
response by simulation. Figure 2 shows the
results of a 10% increase in gain on the
error response following a unit step change
of case position.

Controller Mismatch

The general form of the control fimction D
is given by equation (8) and when P has the
structure given in equation (11) D becomes

3 oty i (13)
@Kl(lem 3 |-N

D=
2

Cancellations are formed in this expression
so that the common factor simplifies. For
exanplelj.n the class I design it becomes
a{l;;-—) where o is a gain factor. We may
consider first the possible mismatch in this
comon factor in realizing D. If n(z) is a
small change added to ¢ the zeros of
det(I+PD) are oiven by

£
1- Eﬂ =0 (14)

When the zercs of ¢ are well inside the wnit
circle this is not a condition in which rcot
locations are sensitive. The coefficients
in the common denominator of D may therefore
be rounded without undue detriment to the
overall response. In the design example for
the class I system the denamination of K3
given in Table 1 may be rounded to

(1+ 0.75 z=1 + 0.25 2z=2) with negligible
effect on the dynamic response.

Mismatch in the numerator polynamials Nl and
N, raises a special sensitivity prcblem in
tﬁe case of the gyro rebalance system.

If L\l{z} and A, (z) are small changes added
to Ny and N tﬁe zeros of det(I + PD) are

givek by 2

A ——ﬁ-——mlalmzaz: 20 (15
b (N 240, %) 1

The zeros of (N,?#N.?) give pole positionsat
which root locu brénches ererce for 4,=A,0.
In the dry-tuned gyro there are two rs
of such zeros located on the wnit circle.
One pair is cancelled however by the corres-
pending zero assicmed to £. The remaining
palr occur at the nutational frequency and
it is significant that root loci from these
zeros will enter the region outside the wnit
circle. When the zeros of equation (15)
fall outside the wnit circle the system will
be wnstable. This can be avoided by
matching the changes 4, and ﬁz so that

E
A N
T (16)
=i =2
in the region of the z-plane close to the

zercs of (N, %+ Nza) at frequency w,. For
the gyro N]}N2 =xj atz = exp(jujT).

The polynomials N, and N, given in the
example equation ]fll) indicate a need to
consider rounding the coefficient 3.671 in
N, with a change A, = 6, z~l. Ifa
change is also made in rﬁ.e gain ccefficient
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2.254 of N, with 4,=5, (I-z"2) then at
2=exp(jmnTT

A, 5 z-l 62 =1 1 5
— = 1"’( = =l (1
4 RS 5, -23sin (%)
Hence Eq. (16) is satisfied when
3 = 2si 18
02/5 1 2sin (wnTJ (18)

and the ccefficient changes will cancel each-
other. This relationship assumes small
changes are made and where larger changes
are contemplated further compensatiocn may be
necessary to prevent unsatisfactory
performance. This can be achieved by

retarding the response.

Effect of Retarded Response

The retardation of the response by adding a2
pole to £ and ¢ has been described earlier
and it can now be shown that this results in
a reduced sensitivity to parameter
variations.

For locop gain variations Eg. (12) applies and
the added pole in £ replaces cne of the poles
at the origin. The reduced multiplicity of
the pole leads to reduced sensitivity. (Kuo,
1963). In the design example a pole at v=0.6
increases the stability margin fram §=2.1 to
4.0. The reduced sensitivity is evident fram
the response graphs Fig. 2 where a 10% change
of lcop gain has been introduced.

Variation in the numerator polynomials of D
results in root locations given by Eg. (15).
When a pole is introduced in f its effect is
to alter the angle of departure of the rcot
loci; the locus from z=exp(jw T) is of
particular concern. By chosing the pole
position the root locus can be set
tangential to the unit circle so that a
residual mismatch in changes 4,,4, will have
minimm effect on stability. In %19 design
example the locus alignment is achieved with
¥=0.6, which corresponds to a retardation
with a mode having a time constant of
approximately twice the sample interval.

The response graphs Fig. 3 indicate in (A)
the result of such a compensating adjustment
in which 3.671 in is rounded to 4.0; this
is compensated by a change in the gain
factor 2.254 in d, as required by Eq. (18).
The response (B) Shows the further effect of
including the retardation factor. This
respanse represents the cverall compramise
between response speed, sensitivity and
controller complexity. The resulting
frequency response bandwidth is approximately
half the autaticnal frequency of the gyro.

Interaction Sensitivity

It is important to obse:ive how the changes of
loop gain and coefficients affect the inter-
action between control axes. Interactions
are cancelled when

(19)

H P
=

I—'leu

Changes in the cammon multiplying factor K,
in D do not affect this relatimship so that
interaction is not introduced by loop gain
changes, or by changes in the dencminator
polynamial.

Changes in the numerator polynaomials have
been constrained by Eg. (16). In the gyro
equations,evaluated at the nutatiaonal
frequency, Nl;N2=-N {, so that the conditicn
for no interdction Is the same as that for
cancellation of coefficient changes in this
particular case. Same interaction will
appear at other frequencies but it is
important that it is cancelled at the
nutational frequency where it has maximum
effect.

FURTHER DEVELOPMENTS
Noise Filters

In same dry-tuned gyro designs problems have
emerged due to pick-off noise at the spin
frequency or its harmonics. Noise components
at such a discrete frequency can be removed
by a nctch filter. This may be implemented
in analogue or digital form. For the digital
filter the algorithm

(143, 2 14z72)
g(z)=g =
e
9 =(@2+1) /7 (@+1) 2 (20)

9, =2 (@%-1)/ (@3+1)
q3 =(1-0) /(1+2)
R =tan(s1/2)

Wo is the notch frequency.

gives zero transmission at the rotch
frequency and unity gain at high and low
frecuencies.

The deisgn proeedure is applied with g
replaced by L P71 in Eg.(8). The numerator
polynamial of*g is assigned to £ and the
dencminator to $. This results in the
minimum settling time being increased from 3
to 7 sample intervals in the class I design.
Also there is an increase in the controller
camplexity with fourth order polynomials in
the numerator and dencminator. Sensitivity
to parameter changes is increased. The same
problem arises when the corresponding
analogue filter is implemented before the
analogue to digital converter,

A compromise is reached if a non-recursive
digital filter is employed. This provides a
pair of zeros at the notch frequency which
are also allocated to £. The result is a
minimm settling time of 5 sample intervals
and controller functions with secord order
nurerator and fourth order denominator poly-
nomials.
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In all these cases the overall bandwidth must
be less than the notch frequency. This means
that the attainment of adequate response
speed for strap—down applicatians is
considerably impaired by the need for such
filtering.

Processing Delay

The execution time of the digital processor
implementing the control function may well
amount to a significant fracticn of the sample
interval. This results in an additional
delay in the rebalance loops.

The analytical design methcod outlined here
may be implemented with the modified, or
delayed, z-transform functions incorporating
the processing delay. This results in co-
eificient changes but no general change in
controller complexity. The system response
is delayed by the corresponding processing
time delay.

IMPLEMENTATICON OF DIGITAL CONTRCL

The design procedure yields a control
algorithm in the form of matrix D, Implement-
ation of the four transfer functicns involved
in a digital processor inwolves a cocmbination
of multiplication and addition operations. It
is important to ensure that the processing of
each new pair of error samples, together with
their conversion from analogue to digital
form, can be completed in less than the sample
interval. Timing calculations show that with
a sampling frecuency as high as 2,4kHz there
is a need to select the processor carefully
to meet this requirement, particularly where
a digital noise filter is to be included.

Multiplication of flcating point numbers is
potentially the most time consuming
arithmetic operation involved. There may be
a need to involve a separate hardware
multiplier to overcome the slow operation of
software multiplication. Limitations on the
choice of processor are considerably rslaxed
if floating point multiplication can be
avoided as far as possible, One means of
achieving this is to round off coefficients
to values represented by simple binary
operaticns. In this way whole word
multiplications are replaced by a small
number of quicker shift and add operations.

The design methcd has been developed with
this possibility in mind. It provides a
means of rounding coefficients without
adverse effect on the system performance. For
exampls it _has_ shown that the polynomial
(1+#3.671 z "+z °) may be rounded to

(1+4 2 "+ 272) and also (140.7386 z~1 +
0.2614 z-2) is changed to (1+0.75 z~1 +

0.25 z~2), Multiplications involving the
new coefficients 4, 0.75 and 0.25 may be"
implemented by shift and add cperaticns with
a significant saving in processing time.

Steel and S.

N. Puri

CONCLUSION

The method of design proposed here has the
advantage that it exploits direct analysis in
the z-plane and takes account of the
behaviour of the rebalance system of a dry-:
tuned gyro as a multivariable control system,
The chief advantage of this synthesis
technique is that it guarantees the best
possible dynamic performance and eliminates
interaction. Achievement of such ideal
performance can lead to problems of
sensitivity to parameter variations. Where
it is desirable to round off the coefficients
used in the digital control algorithm such
sensitivity is a disadvantage. A solution
to this problem has been develcped for the
special case of the gyro rebalance control
leops. This involves a differential adjust-
ment of coefficients on the one hand and an
optimal reducticn of sensitivity by
retardation of the dynamic response on the
other,

The design method may be implemented when
filters are included to remove pick-off noise
and may be adapted to take account of finite
processing time in the digital controller,

The possible advantages of rounding
coefficients in the control algorithm to
reduce the computation time have been
identified. This will ultimately allow a
more flexible choice of processor for
implementation of the controller.

The synthesis assumes linearity of the
control elements which is appropriate to the
dry-tuned gyro designed for strap-down
applications where linear torquing
characteristics over a wide range are an
inherent requirement.
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Summary .

The method of minimum, finite settling time design used for
single-loop systems is extended to cover multivariable systems.
Sensitivity analysis is applied and results of considerable
generality are derived which indicate the effects of gain changes
and pole or zero movement in the plant transfer functions. A
design policy is developed which satisfies the need for low sensi-
tivity in implementation.

Further development evolves a design technique in which speed
of response can be systematically traded for sensitivity. At the
same time the technique satisfies the need to achieve a digital
control algorithm of minimal complexity.

The method of design has been shown to be particularly
relevant to systems with lightly damped open-loop modes and an

example of this type of system is analysed in detail.
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List of Principal Symbols

C, Ci(z) Matrix of system output transforms.

D, D(z) Controller transfer function matrix.

E, Efz) Matrix of system error transforms.

P, P(z) Plant transfer function matrix.

£: £02) Closed-loop transfer function.

d, d(z) Closed-loop error transfer function.
fii’ ¢ii Functions f and ¢ for loop 1i.

£ 5 Minimal polynomials in £ and ¢.

pij Element cof P.

&ij Cofactor of an element of P.

det (P) Determinant of P.

s Laplace transform variable.

z z-transform variable.

PRE o Position of open-loop complex pole pair.
8, B* Position of open-loop complex zero pair.
A General variational factor.

0 Fractional gain change. .

8y &% Displacement of open-loop poles.

Ne A® Displacement of open-loop zeros.

gl Position of closed-loop complex pole pair.



L. “Introduction.

The analytical technique of designing digital control algo-
rithms for minimum system response time have been long established

in the case of single-loop system(l'Z).

Given a plant transfer
function the analysis computes the pulse-transfer function of a
digital controller which will cause the closed-loop system to
respond in the minimum number of sample intervals. The solution
depends on the form of test input considered, for example a step
or ramp function, and the response is tuned to settle in a finite
number of sample intervals without overshoot and with zero steady-
state error.

The settling time attainable is limited chiefly by the
incidence of unstable plant modes, that is poles of plant pulse-
transfer function outside the unit circle in the z-plane. Also
zeros in the same region have a similar effect. This is because
cancellation of poles and zeros outside the unit circle by cor-
responding zeros and poles in the controller transfer function
leads to a sensitive design condition in which mismatch between
the controller and the plant will render the closed-loop system
unstable. The result of avoiding such cancellation is to extend
the settling time, but the response time remains at the minimum
practicable value. The settling time may also be increased by the
need to avoid unstable modes in the controller. These modes can
appear even when a direct cancellation of a zero of the'plant

ransfer function is not involved. It has been shown that by
extending the settling time by one sample interval the increased
design flexibility allows this to be avoided in at least one
example(S].

With these refinements the design results in the ideal response

for a given test input. However, as would be expected, the technique
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has limitations. Most significant among these is the need for
accurately known dynamics, a dependence on linearity, potential
complexity of the control function and the need for its accurate
realization. These limitations arise chiefly from the fact that
a finite settling time design is sensitive to parameter
variations(ll). For these reasons the design method has not been
widely adopted. The design method remains valuable as a means of
identifying the ultimate performance capability of the system and
may be necessary where a high speed of response is required.

In this paper the design method is extended to cover multi-
variable control systems. It assumes feedback of the primary system
output variables alone and is based on transfer function analysis.

(8,13)

Other work in this field has concentrated on state space

analysis in which feedback of a complete state vector is a funda-

(9)

mental requirement. Nishida has developed a design method

applicable to this class of system based on single-loop design by

Jury and Schroeder(6).

It is a transfer function method and is
attractive where the requirement for rapid response is not important.
However, the use of this method is restricted to systems where
all poles and zeros are well inside the unit circle. When any
element in the plant contains complex conjugate poles very near
to or outisde the unit circle simple application of this method is
not possible. The new method developed here overcomes these
difficulties and is therefore particularly relevant for systems with
lightly damped modes.

Section 2 outlines the main features of the procedure and
emphasises those aspects which differ from single-loop system
design. Section 3 develops a design procedure for the case when the

settling time is not required to be finite. It is shown that such

a retarded response offers considerable advantages when seeking a
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design with the minimum complexity of controller functions.
Section 4 leads to a set of very general relationships governing
the sensitivity of the system response to mismatch between the
controller and the plant. These relationships are used to develop
a technique which allows speed of response to be traded for
sensitivity in a systematic analytical procedure. The paper con-
cludes with a design example which shows how a design for minimum

sensitivity can be achieved.
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2. Basic Design Method.

The system configuration shown in FIG.(l) has a multivariable
plant with an m x m pulse-transfer function matrix P(z) and m con-
trol loops are formed, each with unity feedback gain. The digital
controller has the structure of an m x m array of pulse-transfer
functions as represented in D(z).

The error response function is given by

-1
E=[I+PD] R (1)
from which we designate the system error transfer function matrix
1—1

W= [I+PD (2)

Also the overall closed-loop response function is defined by

c = [1 +pp]"t pOR (3)

and the closed-loop transfer function matrix is recognised as

I -w=[z+pp]! e, (4)

A requirement for non-interacting response is that a test signal
appiied at any single input should produce a response at the cor-
responding output and have no effect on the other output points.
This implies that I - W must be a diagonal matrix. Furthermore
for simplicity at this stage it will be assumed that all loops

are designed to have the same response* so that

I = W = £T (5)

where £(z) is the common closed-loop pulse-transfer function for

* It will be shown later that this applies to all stable, minimum

phase open=-loop systems.
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all the loops. Following from this we may define

W= 41 (6)

where ¢ (z) is the common error pulse-transfer function.
The design method proceeds, in a similar manner to that used

in single-loop systems(l)

, by defining the required closed loop
function f and computing the necessary control function matrix D.

The relationship giving D follows from equation (4) as

— f) l‘adj (p)] (7)

R - =
Br=iigs P s % gl

-

A minimum-prototype response function may be assigned to f depending
on the form of input R to which the optimum response is required.
For example a unit step input applied to any one of the loops leads

1

to an error response ¢(z)/(l - z ) in that loop and zero error in

all others. The steady-state error will be zero provided that ¢ (z)

contains a factor (1 - zﬂl). Also we note that £f = 1 - ¢ and when

¢ takes the minimal form ( 1 - z

), £ becomes z - and the system
response settles in one sample interval. Having assigned £ and ¢
as compatible functions they may be substituted in equation (7) to
obtain D. This basic method must be varied to take account of
special conditions in the plant transfer function matrix P, these
arise from

(1) Unstable open-loop modes. ‘

(ii) Transfer function zeros outside the unit circle.

(1) Zeros of det(P) outside the unit circle.

2.1 Unstable Elements.

2.1.1 Design Policy.

In single-loop system design instability of the

plant, which places poles of the pulse-transfer function
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outside the unit circle, requires that corresponding

zeros must be assigned to ¢. If this is not observed
zeros are placed in the controller transfer-function
which cancel the poles in the plant transfer function.
This results in a condition of high sensitivity where

a small mismatch between the cancelling terms will lead

to instability of the closed-loop system(7). For similar
reasons the cancellation of zeros of the plant transfer
function outside the unit circle must be prevented as this
leads to an unstable control function.

In the multivariable case it will be showﬁ in
Section 4.2 that unstable plant modes must be compensated
by allocating corresponding zeros to ¢. The further
effect of this may be to produce unstable control elements
which, while unacceptable in the single-loop case, is not
always a sensitive condition in multivariable systems.
One consequence of this may be that some loops will have
a longer settling time than others.

We will first generalise by assuming that all loops
do not necessarily have the same settling time.

The general definitions of matrices F and ¢ are

i

y (8)
F= (I +PD) PD

¢ = (I + PD)

where F and 9 remain diagonal to achieve non-interacting
control but the diagonal elements are not necessarily
equal.

It follows that

B =D o F (9)
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and also that ¢ F, which gives the transmission matrix

PD of the forward path, is a diagonal matrix with elements
fii/¢ii' The closed-loop natural modes are given by the

zeros of det(I + PD) which leads to

m oy
il (1 + fii/¢ii) = 0 (10)

1

-
Il

The zeros of each term in this product may be considered
separately. We notice that fii/¢ii arises from the
matrix product PD with row i of P multiplied by column
i of D. Now if any element in row i of P has a pole at
2 = o this will appear in fii/¢ii unless it is cancelled
by a zero in the appropriate element of column i of D.
When z = o lies outside the unit circle this is a sensitive
cancellation which must be avoided by allocating a zero at
2 =a in ¢ii'

The design policy may therefore be stated as follows:

Policy (1)

If one or more elements in row i of P are unstable
and have a common pole at z = a on or outside the
unit circle a zeroc must be placed in ¢ii at z = o
as part of the design procedure.

2.1.2 Unstable Control Elements.

The effect of Policy (l) on the control functions
D is seen in equation (9). In forming P‘“l = adj (P) /det (P)
with P an m X m matrix we assume that an arbitrary dis-
tribution of elements in P carry a simple pole at z = a.
The multiplicity of the terms (z - a) in P T is signi-
ficant and may be assessed as follows:

In forming adj(P) the (m - 1) sguare minors of P
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are used to form cofactors. If the highest multiplicity
of the pole in any cofactor is n, with ng¢ m - 1, the

multiplicity in det(P) is either n or n + 1. Therefore

the eleliants of B - must be zeroon finite at z = a.
When a zero is placed in ¢ii at z = a the elements
of column i of P ' are divided by (z = @) in forming D

from equation (9). It is significant that any element
in column 4 of Pﬂl which is finite at z = a will lead to
a corresponding element of D with a simple pole at this
point. When o is outside the unit circle this control
element will be unstable. Other elements of D will
remain finite or zero at z = a.

The presence of unstable control elements produced
in this way is not a sensitive condition as complete
cancellation between poles in P and zeros in D is pre-
vented as long as ¢ii =0 at z = a.

When the controller is implemented in a digital

processor there is no difficulty in realizing poles out-

side the unit circle and a satisfactory design is possible.

2.2 Condition det(P) = O Outside the Unit Circle.

When the zeros of all the elements of P are inside the
unit circle, i.e. they represent minimum phase transfer

functions, poles are introduced into P+

by the zeros of

det (P). 1If these are transferred to D in equation (7) the
control elements will be unstable and furthermore this will
later be shown to give a sensitive design. Sensitivity can
be avoided by allocating the zeros of det(P) to £; the design

policy becomes,

Policy (2)

If det(P) = O on or outside the unit circle, and

10



these points do not coincide with zeros of the
elements of P, all such zeros of det(P) must be

allocated to £ as part of the design procedure.

Zeros outside the unit circle may appear in the
elements of P and, when the same zero is common to
several elements, det(P) can become zero at the

same point. When these zeros are distributed so
that det(P) is not zero at the same point there is
no problem of sensitivity if f and ¢ are given their
minimal form. In other cases cancellations occur in
forming P T so that a simple zero in elements of P
leads to at most a simple pole in the elements of
P-l. The design policy in this case can be stated
as follows:

Policy (3)

When zeros of det(P) coincide with zeros of the
separate elements of P, and lie on or outside the
unit circle, corresponding zeros must be assigned

to £ as part of the design procedure. A simple

zero in elements of P is accommodated with a simple

zero in f.

One such case of particular interest arises when a zero

‘

is common to all elements of one row of P, due for example to

an output component in one loop. When this occurs in row i

it follows from the results of Section 2.1.1 that it is only

necessary to assign a simple zero to fii' We therefore define

a further design policy.

Policy (4)

When all elements of row i of P have a common zero

11



- o7 —

at z = a, on or outside the unit circle, a simple
zero at z = a must be assigned to fii as part of

the design procedure.

A further aspect is that it may be desirable to apply
the above procedures to all the zeros of det(P), including
those inside as well as outside the unit circle. This ensures
that the output sequences from the controller are of finite
duration. These sequences are given by P_l FR which become
finite in duration when all the poles of P_l are cancelled in
F. It should be noted however that in the multivariable case
this can lead to a considerable extension of the settling time

and an increased complexity in the controller.

2.3 Effect on Synthesis Procedure.

The need to allocate zeros to f and ¢ based on the un-
stable modes of P and the zeros of det(P) leads to a change in
the computational technique. For example, if a zero is

assigned to £ at z = a we define

f=gzl (1L-az? (11)
and consequently ¢ must change so that ¢ = 1 - £. We there-

fore define

1

s = (1 = z_l)(l + b z ) * (12)

with b an arbitrary coefficient. The values of b and g are
found by matching ¢ to (1 - f) term by term.

When more than one zero is assigned to £ the polynomial

¢ is extended so that the degree of zul in ¢ matches that in

£f. There are then sufficient undefined coefficients in ¢ for

12
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a solution to be possible. The final result is to extend the
settling time by one sample interval for each zero allocated
to £.

Similarly when zeros are allocated to ¢ extra terms must
be placed in f with undefined coefficients. Again the settling
time is extended.

This procedure is the same in principle as that used in
single-loop systems.

2.4 Loops Having Different Settling Times.

It has been shown above that if an unstable mode is
present in any elements of one row of P a cancelling zero
need only be placed in %54 corresponding to row i. Similarly
if a zero outside the unit circle is present in all elements
in row i alone a cancelling zero is placed in fii' In either
case the result is to extend the settling time of loop i
leaving the other loops unaffected.

The designer can choose to make all loops have the same
settling time, equal to the longest so obtained. To do this
the same zeros can be allocated to all fii and %i4 polynomials
Oor an arbitrary choice of zeros may be made to bring all poly-
nomials up to the same degree. This will seldom be of any
advantage however as the result will be increased controller
complexity and the sensitivity to gain changes will be increased.

It remains however that for stable open-loop éystems having
no transfer function zeros on or outside the unit circle all
loops will have the same minimum settling time. Also when poles
outside the unit circle appear in every row of P the same
applies. And again, if a common zero on or outside the unit
circle appears in every element in one column of P all loops

will be affected. This happens in particular when an input

13
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actuator gives rise to the pole or zero.
Thus for the majority of cases of practical interest the
design procedure will lead to all loops having identical closed

loop response.

14
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3. Retarded Response.

The design method outlined in Section 2 yields a response
which settles in a finite number of sample intervals. This is
the result of designating the closed-loop response function f as
a polynomial in z_l. It will be shown later that the requirement
for a finite settling time may be relaxed with advantage in
reduced sensitivity. If a pole on the positive real axis is
introduced in £ an exponential mode will appear in the response.
This is referred to as "retarding" the response and, while the
settling time is theoretically infinite, in practice the steady-state
is adequately achieved in a finite number of sample intervals.

Alternatively a second order response component may be intro-
duced by placing a complex pair of poles in £.

The analytical consequences of this policy are outlined as
follows for the case where a single pole is introduced. We assume

that the open-loop system is stable and write,

g £ (=)
f bt (13)
l - vz

where fO is a designated minimal polynomial of degree n in z-l
containing zeros of det(P). The value of y fixes the position of
the pole. Gain factor g takes the value fo(l)/(l - y) to satisfy
the requirement that £ must approach unity for z = 1, giving the

steady-state conditions of zero error. It follows that

?

Q

l -+vz2

where Y is a polynomial of degree n, equal to that of fo' with
arbitrary coefficients (there being no zeros assigned to s when

the system is open-loop stable). Now it is required that £ = 1 - ¢

15
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so that

gf, = L-yz™h) -4 (15)

the solution of this is find the n undetermined coefficients in
b, now proceeds by equating coefficients with the same power of
z“l.

The above process is subject to some variation when the
open-loop system is unstable. Zeros will be assigned to ¢o to coincid
with poles of elements of P. Depending on how many zeros are so
assigned it will be necessary to augment fo with extra terms to
provide the freedom of coefficient adjustment to satisfy
equation (15).

It is important to note that in either case the inclusion of
a simple pole in £, and s will not affect the degree of the
numerator polynomials. Hence the complexity of the control
algorithms in D is unchanged when the response is retarded in this
way, only coefficient values are changed.

The above procedure can be extended to allow more than one
pole in £ and ¢. This can be done without changing the complexity
of the control algorithm provided that the total number of poles
does not exceed the degree of the polynomials in fo and b5+ In
practice it will be seldom necessary to use more than two extra
poles. It will be shown later that the use of a complex pair of
poles, giving a damped oscillatory mode in the response, offers

advantages in sensitivity reduction compared with a simple pole.
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4, Generalised Sensitivity Criteria.

The sensitivity of the closed-loop response to parameter
variations can be judged by observing the change in the natural
modes. In a multivariable system these are identified by the roots
of the closed-loop characteristic polynomial det(I + PD) = O.

If P is subject to ?ariations we write P, =P + H where H is

the deviation matrix such that element hij contains the change in

pij' The zeros of det(I + PlD) are found from

1

det(I + fHP ) = 0O (16)

since I + PD = ¢-l, and D = P-lf¢_l. It is assumed that the zeros

of equation (16) do not coincide with the roots of ¢.

The changes anticipated in P may be identified as simple gain
factor changes or in movements of the poles and zeros of individual
elements.

A gain change in element pij is represented as pij = (1 + g)pij

where p is the fractional change in gain. Hence

hij = PPy 4 (17)

A pole or zero movement is most significant when close to
the unit circle. We therefore consider the case where a complex
pair of poles or zeros change position.

When Piq has complex poles at a, a*;p,. = qij/(z = o)A )

i3

and allowing changes § and é* in a and o* respectively we have

(6 + 8*) [z = (8a* + 6*a) /(8 + 6%)]
19 [z = (a + 8)] [z = (a* + &%) ]

s =p (18)

ij
for small & and §%*.

Similarly complex zeros in p..

£ are represented as

L7
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Py = qij(z - B)(z - B*). Changes n and n* added to 8 and B*

then give

h,. =p.. (n+ n*)[Z = (nB* + n*8)/(n + n*)] (19)
] +J (2. = Btz = B*)

for small n and n¥*.

The three conditions derived above in equations (17), (18)
and (19) all have the general form hij = Py A where X contains
all the variation terms. When several elements in P change in
the same manner it is useful to write H = AK where ) is a scalar

multiplier and matrix K has ki. = or zero. The element is

Jio Py
zero in K when no change is present in pij'

Equation (16) is now modified to

det(I + £ A KP ) =0 (20)

and the detailed implications of this can be worked out for each

form of variation given in equations (17), (18) and (19).

4.1 Gain Variations.

Two cases of gain variation are considered; firstly
where the change affects one element of the plant transfer
function matrix and secondly, where there is a systematic
change of several elements due to actuator or transducer
gain changes.

4.1.1 Change of One Element.

When element Pij is subject to a gain change, matrix
K 'contains pij as its only non-zero element. On sub-
stituting this in equation (20), and noting that from
equation (17) A = p we get
Pis 844 o
I wiof $14 ij =0 (21)
det (P)

18
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where Aij is the cofactor of element pij in P. Now if
det (P) = O outside the unit circle, and pij or &ij are
not zero at the same point, the root locus solution of
equation (21) will indicate a root close to the zeros of
det(P) for small variation o. The resulting closed loop
system will be unstable. This can be avoided if zeros
are assigned to f which cancel those of det (P) outside
the unit circle. The result of this is stated in

Policy (3) above.

This conclusion is modified if there are zeros of
the elements pij or &ij outside unit circle which coincide
with those of det(P). We must observe how the multi-
plicity of the zero in Py 5 Aij relates to that in det(P).
In forming det(P) summations of terms Pij &ij are used
and the multiplicity of the zero of det(P) will egual the

lowest multiplicity in any pij aij term. Therefore the
ratio Pij aij/det(P) will have no pole at the point in
guestion.

We conclude that a coincidence of zeros of elements
of P which makes det(P) = O outside the unit circle at
the same point does not lead to sensitivity to gain
change if £ retains its minimal form.

4.1.2 Actuator and Transducer Gain Changes.

A change in transducer gain at output i éives a
gain change in all elements of row i in P. Now matrix K
will contain elements of P in row i and zero elsewhere.
We may write K = SP where matrix S has element Sii =1
on the diagonal and all other elements are zero. Then
the product X P~ ' in equation (20) reduces to S so that

we have

19
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I, #. &% .=.0 (22)

A change in actuator gain at input i is equivalent
to a change in all elements in column i of P. Thus K
will contain the elements of P in column i and zero
elsewhere. We may write K = PS with s;y = 1 and all
other elements of S zero. On substitution into
equation (20) the result again reduces to equation (22).

Design for minimum settling time results in £ having

the form

q< 2 (23)

and from equation (17) A = p so that equation (22)

becomes;

19 (-5))
o= ] 4
1 + pg =0 (24)

zi

where for small o the solutions are assumed to be close
to the origin in the z-plane. The requirement £ = 1
for z = 1 fixes g in equation (23) and on substituting
this in equation (24) we get

—a.

|z] = |, 1% (25)

(+—2)
il
giving for small variations, the magnitude of the dis-
placement of the closed-loop modes away from the origin
in the z-plane. This implies a generally sensitive
Situation since %, being the degree of the polynomial

in f serves to determine |z| in terms of the 2th root of

20
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p. For small values of p the root is larger in magnitude
than p and the value of |z| increases substantially as

2 increases, i.e. as the system settling time increases.
Thus the sensitivity of the minimum settling time design
is apparent as it places all the poles of f at the origin.

4.1.3 Effect of Retarded Response.

Sensitivity is reduced by retarding the response as
described in Section 3. If a pole (1 - y z—l) is intro-

duced in f and ¢. Equation (25) is modified to

1 - v 19 ( i
-y ‘4 =11 = a,
%

lz|=]0o( (26)

Similarly when a complex pair of poles is introduced

. J;
Sl sy (L =yl R T &t =7
|z[—lp Yy * i = l(I—:-E;J (27)

Equations (26) and (27) show significantly that the intro-
duction of poles in f reduces the degree of the root &

to £ - 1 and ¢ - 2. This considerably reduces the value
of |z| when o is small.

A further reduction in |z| can be obtained by choosing

1l - v

Y to reduce the factor in equation (26). For this
factor to be less than 1 we require y > 0.5 and the
sensitivity decreases uniformly as the respornse is retarded
more severely with y approaching 1.

Similarly the factor (1 - ») (1 = y*)/yy* 4in
equation (27)reduces the sensitivity when Re y > 0.5,

The essential compromise between speed of response

O
Hh

the closed-loop system and sensitivity to gain changes

is thus identified.

21
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4,2 Movement of Poles.

The change hij given in equation (18) applies and is

J
variation terms. 1In equation (20) matrix K contains each element

identified as equivalent to hi' = pij A where A contains the

pij involving the pole pair which are assumed to move and zero

elements elsewhere. At points in the z-plane close to the

pole at z = a, limit [(z - a) K] = (z - a)P and therefore

i zZ—>0
limit [KP J = I, so that equation (20) reduces to 1 + £ = O
e o

and on substituting for A we get

Lz = (sa* + ad*) /(8 + 6*)]_

LA EIE 4 SN T - L )

0 (28)

valid for small §. The displacement of the mode can be
extracted and becomes

z -a=6(L-f(a)) =
z - a* = §(L - £(a%))

)

§ ¢ (o
=& ¢(a*)

(29)
when z - a and 2 - a* are small.

The significance of this is that the system is potentially
sensitive to movement of the open-loop poles unless ¢ = O at
2 = o and ao*. 1In the controller design equation (7) the poles
of elements of P become zeros of D or are absorbed in ¢. By
allocating zeros to ¢ which match the open-loop poles of P we
thus ensure that poles of the closed-loop response do not appear
adjacent to the open-loop poles when a small chanée of pole
position takes place. It also follows from equation (29) that
simple zeros in ¢ at o, a* are sufficient tp compensate for any
distribution of the unstable mode among elements of P. We must
therefore assign zeros to ¢ corresponding to poles of P on or

outside the unit circle to elimihate sensitivity in this

critical region of the z-plane.

22
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4.3 Movement of Zeros.

The change hij given in equation (19) is identified

with h,. = p..
+] ~J
n and n*. In equation (20) matrix K contains elements Pj s

A where )\ contains the variation terms due to

involving the zero pair which have been assumed to move and
zero elements otherwise. Thus at z = 8 and 8*, K = O.
Evaluation of the term KP*l, involved in equation (20), at

z = 8 and 8* depends on whether P-l has poles at these points
i.e. on whether det(P) has zeros there. Two cases arise.

4.3.1 Case of det(P) # O at z = 8, B*.

This arises when the zeros (z - 8)(z - g*) are
distributed among the elements of P so that not all
separate terms in det(P) contain at least one element
with these zeros. 1In this case no element of P-l has
a pole at z = 8, 8% so that KP_l is zero at these points
and equation (20) shows that the closed loop system cannot
have modes adjacent to 8 and 8* for changes n and n* in

the open loop zeros.

4.3.2 Case of det(P) = 0 at z = 8, B*.

If element pij contains a complex zero pair outside
the unit circle and this is assumed to move the matrix
K contains Pi as its only non-zero element. Equatioﬁ
(20) then reduces to

Ll
1+Afp—l-3—l-1=o : (30)

det (P)
Now A in this case has poles at 8, B8* which cancel the
zeros in pij we are therefore left to consider Aij/det(PJ.
If the same zeros are present in other elements of P such
that det(P) = O at B, B* the cofactor dij may also be

zero at the same points so that cancellations occur.
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However the multiplicity of the zero in det(P) can at
most be one greater than that in any cofactor so that
&ij/det(P) may have only a simple pole. In this case

we must assign to f a simple zero at B, B* to ensure
that a solution of equation (30) does not exist close to
these points in the z-plane.

Further insight is obtained by considering a move-
ment of the zero pair taking place in several elements
of P at once. For example when the zeros are common to
all elements in one row or column of P. In practice this
occurs when the zeros are associated with an actuator or
transducer component. A similar situation has been con-

sidered in Section 4.1.2 where it was shown that the

characteristic equation reduced to 1 + £ O. With the

form of A implied by equation (19) we have

SO, I 1 i i - 1l i il ) (o
l+f(ﬂ+ﬂ)[ (Z—B)(Z*f'*) ]—0 (31)

and when the displacement of the mode from B8, 8* is small

this reduces to
(32)

For zero sensitivity we then clearly require £(8) and
f(8*) to be zero and this is achieved by allocating zeros

at 8, B* to £ as part of the design procedure.

The overall conclusion becomes that a sensitivity problem
only exists when the zeros are common to elements of P
such that det(P) = O at the zeros. This is particularly

significant when the zeros are close to or outside
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the unit circle. Sensitivity can be avoided by assigning
simple zeros to f at the same point. This principle gives

rise to Policy (3) stated above.

4.4 Sensitivity Compensation by Retarded Response.

In the previous section it has been shown that a pole
of any element of P on or outside the unit circle must be
taken into account by allocating a corresponding zero to
9. Also when det(P) has zeros on or outside the unit circle
matching zeros must be allocated to £. Failure to observe
this rule would create a closed loop system in which a small
change in the pole or zero positions and gain would render
the system unstable.

When the poles of P or zeros of det(P) fall close inside
the unit circle it is not essential to make allocations to ¢
and f£f. But if this is not done the response will be sensitive
to plant variation and may become unstable.

However allocating zeros to ¢ and f to remove sensitivity
is not wholly advantageous. The settling time is extended by
one sample interval for each extra zero placed in ¢ or f£.

Also the multiplicity of the poles of f at the origin is
increased and this results in greater sensitivity to gain
variations. Finally the controller complexity is increased as
the elements of D contain polynomials of higher order.

These latter difficulties can be avoided by systematic
use of the retarded response as described in Section 3. It
was shown in Section 4.1 that the sensitivity to gain
variations is improved by allocating poles to f and ¢. Results
will nd& be obtained to show that the same policy can reduce

sensitivity to pole and zero movements and that in these cases
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optimum positions may be found for the poles allocated to f

and ¢.

4.5 Analytical Method of Sensitivity Compensation.

As an example of the technique for examining the effect
of response retardation on sensitivity the method will be
demonstrated for the case where a pair of complex conjugate
poles are placed in f and ¢. A similar more restricted method
may be used when a single real pole is used but the complex
pair are generally more effective.

For the case of an open-loop stable system we define

z?2 fO(z)

= g
S RS N CREE) g

where £,(z) is the polynomial to which all zeros of det(P)
on or outside the unit circle have been assigned*. For an
open-loop stable system ¢ contains no allocated zeros and

there are no undetermined coefficients in fo,- Hence we obtain

_ (L = y) (L = y*)

on recognising that £ = 1 at z = 1.

4.5.1 Movement of Poles.

When an open-loop pole pair at a, a* move to
(a + 8), (a* + &%) equation (29) gives the displacement
of the closed-loop mode. This applies close to z = a
and at this point equation (31), together with (32)

gives

* Having regard to cancellations due to zeros of
the elements of P which coincide with zeros of
det (P) .
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_a?(l - y)(1 - yn) E5le)
S (¢ = yv)(a = v*) £, (1) S
and equation (29) becomes
z2 —a=§(1l - f£(a)) (34)

Now f(a) is a complex number depending on the value of

the conjugate pole positions y,y*. Some restrictions

can be usefully placed on y since this determines the

form of closed-loop mode introduced to retard the response.
If the damping ratio of the mode is specified it may be
shown that values of y must lie on the loci shown in

FIG. (2).

Now f (o) can be evaluated using equation (33) for values
of vy on one of these loci and a locﬁs plotted as shown

in FIG.(3).

It is immediately apparent that the wvector A /8 in this
diagram represents (z - a)/6. Both the magnitude and
angle of this vector are important. If A < 1 the distance
2 - a is less than the magnitude of open-loop pole dis-
placement § and based on this an optimum value of y may

be found which minimises the vector length A. This
criterion is useful when the direction of the displacement
§ is arbitrary.

If the direction of the change § is defined the
sensitivity to that particular change may be further
adjusted by noting that the direction of movement z - «
is that of § rotated by angle 8. It may then be appropriate
to choose y so that the displacement z - o« moves away from
the unit circle or in the limit tangential to a circle

through the pole.
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If the minimum settling time response is used the
movement z - & is obtained using f(a) = fO(a)/fo(l) i.e.
for vy = O in equation (33). The effectiveness of the
retarded response in reducing the movement is obvious on
comparison of this value with A obtained above.

4.5.2 Movement of Zeros.

When the zero pair g8, B* move to (B8 + n), (B* + n*)
the displacement of the closed-loop mode (z - 8) is given

by equation (30). For values of z close to B we get
2.~ 8 = =n L£(R) (35)

where, for an open-loop stable system £(8) is found using
equation (33) with B replacing a. The magnitude and angle
of £(8) then indicate directly the movement z - 8 relative
to the change n. A locus of £(8) for values of y as
indicated in FIG.(3) will reveal an optimum choice which
minimises the magnitude of f(B8) or gives an angle which
directs (z - 8) in a preferred direction. A measure of
the improvement in sensitivity obtained may be observed

by comparison with the wvalue fo(B)/fofl) which applies to

the minimum settling time design.

The same basic analytical technique may be used when a
simple pole is allocated to f. In detail the method is
simplified by the fact that the pole may be restricted to lie
cn the positive real axis inside the unit circle. It can be
shown that this necessarily limits the degree of sensitivity
compensation which can be achieved i.e. the extent to which
f(a) can be brought close to 1 + jO in FIG.(3). More flexi-

bility exists with a complex pole pair.
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5. Design Example.

The details of a design example using the method of Sections
4 and 5 are given in the Appendix. This example represents a
two input/two output system with a common lightly damped resonant
mode in all open-loop elements. It is shown that if the minimum
settling time design is applied the result is a sensitive system
which becomes unstable if the damping ratio of the open-loop mode
is reduced. Also the response is considerably affected by a
10% change in loop gain and in particular the settling time is
extended from 5 to 9 sample intervals.

The introduction of a retarded response with a damping ratio
of 0.5 leads to an optimum choice of response which minimises the
magnitude of pole movement under changes of open-loop mode damping.
This is seen to considerably improve the sensitivity to damping
changes.

It should be noted that the sensitivity reduction is achieved
without any increase in the complexity of the control algorithms.
The alternative procedure which is to assign the open-loop poles
close to the unit circle to ¢ has the significant disadvantage
that sensitivity reduction is only gained at the expense of con-

troller complexity.
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6. Conclusion.

The synthesis method developed here is an extension of the
technique which has previously been used for single-loop systems.

In the case of multivariable systems several distinctive problems
emerge as a result of the interaction between the control loops.

The need to avoid sensitive design conditions, in which mis-
match between the controller and the plant may produce instability,
is an important consideration. This requires the removal of com-
plete pole/zero cancellation between the controller and the plant
when such poles and zeros are on or outside the unit circle in the
z-plane. While this is simple to visualise in the single-loop case
the multivariable case required more detailed study taking account
of matrix manipulations of the transfer functions involved. It is
significant to note that when some transfer function elements of
the open-loop system are unstable the avoidance of sensitive can-
cellations can lead to a requirement for unstable control elements.
Also, in contrast to the single-loop case, zeros of the open-loop
elements on or outside the unit circle do not necessarily lead to a
sensitive minimal design. The zeros of the determinant of the plant
pulse transfer function matrix play a similar role in the multi-
variable problem to that of the zeros of the single-loop plant
transfer function. Sensitivity problems arise when the zeros of the
determinant lie close to or outside the unit circle.

Analysis of the sensitivity conditions has produced results of
considerable general significance. The effect of gain changes in
the plant.and movements of its poles and zeros have been considered.
These results show clearly how sensitivity can be avoided in the
design process. However, the achievement of a minimal, finite
settling time . response in the closed-loop system can lead to a

result which is sensitive to gain changes and complex in the control
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algorithms required.

It has been shown that by designing a closed-loop response
which has poles as well as zeros in its transfer function the
sensitivity can be improved. A method has been devised for
analytically assigning such poles in order to minimise sensitivity.
This leads to a design which offers the fastest possible response
subject to sensitivity constraints and shows how speed of response
can be traded for sensitivity. The further advantage of this
procedure is that sensitivity is reduced without any increase in
the complexity of the control algorithms required.

In the majority of cases the design process will result in
all loops having the same closed-loop response. Exceptions to
this can occur when the open-loop system has unstable elements or
transmission zeros outside the unit circle.

The general scope of the application of this design method
to multivariable systems is limited. First of all the analytical
complexity increases rapidly with the number of loops involved.
This may also lead to the need for elaborate control algorithms
involving high order polynomials. The problem simplifies signi-
ficantly when the transfer function elements have common poles
and zeros. Systems such as missile flight control systems in
which the dynamics are closely integrated exhibit this property.
Such closely integrated dynamic systems frequently exhibit lightly
damped modes and in this context sensitivity considerations and
the method of sensitivity compensation developed here is most
important. A further requirement is that the system must be linear
over an adequate dynamic range and the system dynamics well defined.
It is unlikely that many process control configurations will meet
this requirement but useful results have been obtained in the case

of gyroscope control systems where dynamic precision is a fundamental
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requirement(lZJ. With these limitations the method is useful
in establishing ultimate performance capabilities against which

sub-optimal designs may be judged.
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List of Captions

FIG. (1) System configuration.

FIG. (2) Values of y for constant damping ratio.
FIG. (3) Locus of f(a).

FIG. (4) Effect of gain changes.

FIG. (5) Effect of damping ratio changes.

FIG. (6) Design locus of f(a).

35



= i

APPENDIX

Design Example

Al. Plant Transfer Function.

Consider a 2 input - 2 output plant with transfer function

matrix.

& P11 P12
Pid) = | s
Pa1 P22
L 4 wo Al

where p.. = p,, =
AL 2% s(s? & 2¢ wys + w_2)

1

2 2
(s? + 2z ws + w_?)

G g e

The quadratic factor contributes a lightly damped mode
when 7 is small with undamped natural frequency w,+ We chose a
sampling frequency of 5 times the undamped natural frequency so
that the dimensionless sampling interval T i, - 2m/5 and a value
; = 0.05 for the damping ratio.

The z-transform of the elements of the pulse-transfer-function

matrix, P(z), including the zero-order hold operations, are found

to be
Byy = Pyp =1:18 _ 27 (1 + 3.572 271 + 0.933 272
w3 (1 - 2 ) (1 -~ 0.5812 z * + 0.8818 z %)
A2
' ¥ s i
Diy = =p.. = 0.6643 e L Ly
12 21 - -
wo3 (L - 0.5812 z + 0.8818 z %)

All these elements have a common pole pair just inside the
unit circle at z = O.939{i 72° due to the lightly damped mode. On

forming P-l = Q the elements of Q become
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i 7, p 2
937 =995 = F(L £'3.572 2 ~ + 0.933 z )
= sl W 056 BUL ~ 7 YL + 0,956 2~ 5
912 931 : : A3
0.645 w_ *(1 - z71) (1 - 0.581227 + 0.8818 272)
F o= - - . ~
(Lt BB 2 o+ 10,67 & % 4 5098 > 4 0.88L % 1)

A2. Minimum Settling Time Design.

The forth order polynomial in the denominator of F provides
the zeros of det(P) and these are found by numerical solution3'4
to be.

(a) z = -0.294 + j 0.166

(b)

2]
i

-2.4138 + § 1.37

The pair (a) lie inside the unit circle while (b) lie outside.
The zeros (b) must be assigned to £ in accordance with Policy (2)
to avoid sensitivity. By further assigning the zeros (a) to f the
controller output sequence is of finite duration and the system
will settle completely in five sample intervals.

Thus we define the minimal form of £ to be

£ ow O0438 2 L (1 % 5.416 27> % 10.67 272 % 5.09 272
Ad
+.0.881 2z~ %4
and get
$ = (1 ~2"M @ +0.957 2% + 0.722 ¢~ +.0.,2589 z
e A5
+ 0.0382z ) .
where the additional coefficients in ¢ have been computed to
satisfy 1 - £ = ¢.
The controller functions are calculated from D = P-l £/¢ so
that
d,, = d.. = H(l v 3572 7" 404933 2-21 A6
i B ! X

| -
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mr e D H[o.560(1 - z71y (1 + 0.956 z_lJ}
12 21
A6
0.028 ¢_? (1 - 0.5812 2 % & .0.8818 2-2)
H =
1 #0987 2% +0.182 2 ° + 0.2589 2 > % 0.0389 z %

The resulting response of the system to a unit step change
of one input is obtained by a digital simulation of the system
and appears as shown on FIG.(5). There is no interaction with
the other output. On the same diagram the effects of 10% change
of gain in one loop are indicated.

The effect of changing the damping of the open-loop mode to
one third of its designed value is shown to produce instability

as indicated on FIG. (6).

A3. Retarded Response.

The method described in Section 4.5 will be implemented. To
do this, we construct f(a) as defined in equation (33) with £,
corresponding to £ given in equation (A4) and z = a = 0.939 ZZ;?
fixing the pole position. When f(a) is evaluated for values of
Yy on the locus FIG.(2), corresponding to a mode of damping ratio
0.5, we obtain the design locus FIG.(6). From this diagram the
minimum value of 1 - f£(a)is found to be 0.912 /-9.8° for

y =0.64 + j Q.37. With this value f is given by

g - 0.01156 z71(1 + 5.416 277 + 10.67 272 + 5.09 273 + 0.881 274

=% 2 ik e yhig oy

-1 3

s = (L= 2z 1)(1-0.201 27" +0.192 272 + 0.069 2"
(1 -y z7hH @ -y* 27

+ 0.01 2.8

The corresponding control functions are unchanged apart from
the common factor H which is of the same order of complexity but

has some different numerical coefficients i.e.
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1 2

+ 0.8818 z

0.00745 wo3(l - 0.5812 z~
+0.192 z~2

(1 - 0.291 z %

)
+ 0.069 z

H =

3 4

D01 2 )

Simulation of the resulting system gives the response shown
on FIG.(5) to a unit step applied at one input. There is again
no interaction with the other output.

The effect of 10% gain change in one loop is also shown on
the graph FIG.(5). The reduction of sensitivity expected as a
result of retarding the response is not immediately apparent.
Sensitivity of the movement of poles of f away from the origin
has been used as the basis of the theoretical assessment. This
has the effect of extending the settling time. It is difficult
to form a basis for comparison between the two cases seen here
except to observe that the settling time is proportionately less
affected in the case of the retarded response.

Changing the damping ratio of the open-loop mode to a third
of its design value produces the response shown in FIG.(6). The
system is now seen to be considerably less sensitive than was the
minimum settling time design. This may be observed to result
from the reduction in the sensitivity factor (z - a)/86 = 1 - f(a).
Without the poles added to f the value of f(a) is found to be
0.65 /142.2° so that for the minimum settling time design (z - a)/8
1.565 Z~l4.70. This is to be compared with the value 0.912 [;Q;Q?
found on FIG.(6). s

The fact that the magnitude of (z - «)/6 is greater than unity
in the case of the minimum settling time design means that the
closed-loop poles move further then the Open;100p poles and cross
the unit circle while the open-loop damping is still finite. This
cannot happen in the retarded case, as the magnitude is now less
than unity, and the system will remain stable even when the

damping is taken to zero.
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