

Fiat nna ee
AUTOMATIC SPEECH RECOGNITION

THE USE OF FORMAL GRAMMARS IN AUTOMATIC SPEECH RECOGNITION
A Thesis submitted to The Department of Mlectrical and Electronic
Engineering, The University of Aston in Birmingham for the degree
of Doctor of Philosophy By CHAIYAPORN CHIRATHAMJAREE B.E., M.Sc.

FEBRUARY 1979
SUMMARY

An automatic isolated-word recognition (IWR) system normally
consists of a feature extractor (FH) followed by a recognition
processor. Some form of 'training' is usually required in order to

combat problems of variations in speech. This thesis presents the
application of formal grammars to model a FE in an IWR system. The
method is to construct, in the training mode, one grammar for each
word in the vocabulary, directly from a set of sample strings of
'features' represented by symbols. In the recognition mode, an incoming
string is analysed to determine which grammar, if any, could have
generated it.

Inference algorithms for both finite-state grammars (FSG's)
and context-free grammars (CFG's) considered here are based on the
eriterion of maximizing the similarity between various strings of the
same word. The classification of a string involves the use of the
‘weighted matching network' technique in the FSG approach and the
computation of the minimisation matrix M for the CFG approach.

Both the FSG and CFG models offer comparable recognition
performances whilst the use of the CFG approach results in an increase
in the amount of computation required. It appears, therefore, that
there is no advantage gained, in terms of recognition performance and
computational requirement, from the use of CFG approach over that of
the FSG in the recognition of isolated words.

The use of formal grammar approach over the direct storage
of strings in isolated-word application makes possible the
*generalisation' of strings in the training set. This can reduce the
number of strings required by the learning process. Another advantage
of the linguistic method is the reduction in the amount of computation
in the FSG approach which is a result of the merging between similar
segments of various strings during the training process.

KEYWORDS: Formal grammars, automatic speech recognition, finite-state
grammars, context-free grammars, grammar inference .

iii

ACKNOWLEDGEMENTS

It is the author's pleasure to thank his supervisor, Dr. M. He

Ackroyd, for constant guidance, helpful suggestions and encouragement

throughout the duration of the research and for introducing him to the

subject of formal languages.

Special thanks are also due to Professor Je E. Flood, and the

University of Aston in Birmingham for providing the financial assistance

in the form of a University research studentship without which it would

not be possible to carry out this work.

iv

LIST OF PRINCIPAL SYMBOLS AND ABBREVIATIONS USED

(Subscripts and/or superscripts may be attached to symbols)

& the start symbol

& the terminating node

€ set membership

uv set union

n set intersection

> can be replaced or rewritten by (used in rewriting rules or

productions)

= directly derives

=> derives ie. = for some i20 where =4s denotes the

i-fold product of =>

+
—- derives in a nontrivial way tenes for some i21

ASR automatic speech recognition

AWSL average weighted string length

A,B,C nonterminal s

Ag nonterminal with hierarchy level i

a

Ay nonterminal corresponding to bs in a terminating rule Ay — by
a a

ayb terminals

4,p,,8 strings of nonterminals and terminals

ay the jth symbol of s

aon the ith symbol of BS in S

es the last symbol of 5, in 5. where 2 is the length of 8,

cr context-free

CFG context-free grammar

CFL context-free language

cs context-sensitive

CSG context-sensitive grammar

CSL context-sensitive language

a (xk)

e(i, 3)

FE

FSG

PSL

H(k)

IWR

1(s,)

minimum value of a, (k) for all values of k

minimum value of a (x) for all words in the vocabulary

absolute value of the difference between WSL of a string s

and AWSL associated with word We

WLD between a string s and the CFG associated with word w,
k

element in row i and column j of the WIN

feature extractor

finite-state grammar

finite-state language

finite-state transition network

non-negative deletion function

non-negative insertion function

non-negative substitution function

number of string =

estimated probability of s, in 5,
j

grammar inference

a phrase-structure grammar or just grammar

grammar constructed from the first string in 8 ie. the SG

the (n-1)th inferred grammar

the nth inferred grammar

SNCFG

SFSG

hierarchy level (of a nonterminal)

hierarchy level of a nonterminal AL

isolated-word recognition

number of steps in the derivation of y

symbol index

number of distinctly different derivations of a string Vy in

word w,
k

string index

vi

the j index of My ae corresponding to a substring of length i

optimal path number

word index, row index of WMN

Levenshtein distance

linear predictive coding

left side (of a rule)

language generated by @

length of the longest member in any rewriting rule of G

string length

the empty or null string

maximum-likelihood criterion

minimisation matrix

number of distinct strings in 8,

number of strings in Ss.

number of strings in word k

number of nodes in FIN

ean element of M matrix

nondeterministic event

number of times that production Ay aPae is used in the

derivation of 55

expected (estimated) number of times that rule Ao? a,

is used in parsing all strings in 5,

push-down transition network

set of ordered pairs (p,q) such that AL — AAS is a rule

of a CFG

product of any combinations of Ppl; sys PL(b) 9 and

P5435)

summation of Fe for all optimal path number K

vii

P(s,) probability of 8;

P(w,) the a priori probability of word wy,

P(s5/m,) » Qk) product of all production probabilities corresponding

to word wy whose rules are used in parsing 55

P(u,, 85) probability that s; is in word w,

Po (ay sx probability that a; is deleted from a string in word wy,

P(b), probability that b is inserted into a string in word wy

Po (83 ii probability that as; is substituted by a symbol b

Puy? Pay? Pyy production probability

p(b) probability of symbol b

p(a, 5/%,) probability of as given that it is in word w,,

p(b/w,) probability of b given that it is in word w,

p(w,/a; 5) probability that a5 is in word w,

»,(s,) probability of the production used at the ith step of the

derivation of -

a, maximum value of Q(k) for all values of k

RS right side (of a rule)

R a finite set of productions or rewriting rules

ae rules of SNCFG

R rules of SFSG
s

ell number of rules (total) in a grammar

||| number of bielement rules (not including start rules)

in a CG

[II number of terminating rules in a CFG

ll2sll number of start rules in a CFG

om number of nonterminals in a Chomsky normal form CFG

SCF-B stochastic context-free B (recognition system)

SFSG stochastic finite-state grammar

SFS-A

SFS-B

SG

SNCFG

viii

stochastic finite-state A (recognition system)

stochastic finite-state B (recognition system)

skeleton grammar

stochastic normal form context-free grammar

stochastic template matching B (recognition system)

"positive information' sample set

a string of symbols

the jth string in S,

the nth observed string

a transition matrix

deletion coefficient

insertion coefficient

substitution coefficient

element of T matrix associated with a rule Ay _ tie of

a PSG

an alphabet or a finite set of terminals

the set of all strings, including 2, consisting of symbols

from Z

the set of all strings in z excluding A

number of terminals of a grammar

a finite set of nonterminals and terminals from the union

of Vy and =

the set of all strings, including A, consisting of symbols

from V

the set of all strings in V excluding A

premise nonterminal (or node)

a finite set of nonterminals

the set of all strings, including A, consisting of symbols

from Vy

WN

WSL

ix

node nearest to the beginning of a string

consequence nonterminal (or node)

number of terminals and nonterminals in a grammar

number of nonterminals in a grammar

the empty set

weighted hierarchy level

weighted Levenshtein distance

weighted matching network

weighted string length

number of words in the vocabulary

number of words that correspond to string s
j

one of the words in Wy

weighted minimisation matrix

weighted hierarchy level of AR

length of string x

a string associated with word Wy,

number of links of a FIN

number of links of a FIN associated with the FSG approach

number of links of a set of FPIN's associated with template

matching approach

=x=

CONTENTS

SUMMARY

ACKNOWLEDGEMENTS

LIST OF PRINCIPAL SYMBOLS AND ABBREVIATIONS USED

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.2 Systems for the recognition of speech

1.2.1 Feature extraction

1.2.2 Classification

1.3 Linguistic approach to ASR

1.4 Outline of the thesis presentation

CHAPTER 2 FORMAL GRAMMARS AND IWR SYSTEMS

2e1 Preliminary definitions, notation and concepts

2e2 Grammar—based modelling in word recognition

CHAPTER 3 PINITE-STATE GRAMMAR BASED MODELLING

3.1 Graphical representation of a FSG

3.2 Inference of a FSG

3e2el Criteria for the FSG inference process

34202 FSG Inference algorithm

3.203 Illustrative example

3.3 A recognition scheme for FSG models

3-4 Finite-state grammar based decoding methods

304-1 A parsing algorithm

3e4¢2 A maximum likelihood criterion

30403 A 'weighted matching network' technique

3.4.4 A stochastic algorithm

ii

iii

iv

22

23

27

35

39

39

42

49

56

CHAPTER 4

41

4.2

4.3

4.4

45

4.6

4eT

CHAPTER 5

5el

502

5-3

Ses

CONTEXT-FREE GRAMMAR BASED MODELLING

Motivation

Graphical representation of a CFG

Computation of the minimisation matrix

4.301 Nonweighted M-matrix

4302 Weighted M—-matrix

Inference of a CFG

44.1 Formulation of the initial set of

rewriting rules

44.2 Updating the existing grammar

Illustrative example of a CFG inference

A recognition scheme for CFG models

4.6.1 The wi-matrix as a recognition matrix

4.6.2 Selection of the most likely word

4.6.3 The AWSL criterion

4.6.4 A recognition algorithm

Discussion

MODEL EVALUATION AND EXPERIMENTAL RESULTS

Basic recognition systems

Evaluation and comparison of models

5e2e1 Recognition performance

5e2e2 Measure of complexity

5-23 Discussion

Symbol-source modelling versus direct storage

of strings

63

63

65

68

69

15

Y

81

82

85

89

93

97

99

101

104

105

105

109

109

118

123

125

CHAPTER 6

6.1

6.2

APPENDICES

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

REFERENCES

- xii-

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

Future work

6.1.1 Real-time problem

6.1.2 Improvements of recognition performance

6.1.3 Other work

Conclusions

A method for testing the recursiveness of a FSG

Table of significance values of symbols

Training set of symbol strings

Recognition set of symbol strings

Rules of the inferred grammars

Eel Rules of the FSG's

Ee2 Rules of the CFG's (weighted)

Ee3 Rules of the CFG's (nonweighted)

i3L

131

131

135

137

137

142

143

147

148

150

154

154

157

161

165

=le

CHAPTER 1

INTRODUCTION

1.1 Introduction

Since the early days, man-machine interaction has usually been

accomplished by manipulating some mechanical devices such as keyboards,

push-buttons, dials, switches etc. This form of communication poses

several limitations and drawbacks to the smooth and effective running

of machines. For example, it is usually necessary for a human operator

to adapt himself to the operational requirements of machines. This

requires substantial training of personnels concerned in order to obtain

basic physical skill needed for speedy and efficient operations. Also,

special preparations of input data, the format of which is governed

by the machine concerned, are required before it can be accepted and

processed.

A more attractive and better preferred mode of man-machine

communication is by means of speech-man's most natural, convenient

and basic method of communication. This considerably reduces the dis-

advantages associated with non-speech man-machine communication systems

(1-5) and offers many desirable features and advantages)such as the

increase in speed of communication, possibilities for mobility and

freeing hands and eyes where required, reduction in operating cost etc.

In addition, the ability of a machine to respond directly to verbal

interrogation fulfils the ultimate aim in communications between man

and machine.

Much effort has been put into the research of man-machine

communication by speech and recently, several voice input systems,

though limited in capability, are available commercially and have

been in operation in various fields of applications, some of which

are summarized below:-

(a) Aids for the ends oemmenC) (eg. to control bed, lights etc.)

(b) Automated material Hengiine (9) (eg. air-line baggage handling,

parcel/mail post destination sorting etc.)

(c) Quality control and Rnapaetion coy (eg. inspection of pull-ring

can lids, television faceplate, automobile assembly line etc.)

(a) Applications in airorart(™) (eg. to adjust radio receiving channel

etc.)

(e) Applications to computer-based Byatenn (eg. parts programming

for numerical control of machine tools etc.)

1.2 Systems for the recognition of speech

Basically, an automatic speech recognition (ASR) system is one

which can recognize, interpret and respond to speech sound uttered by

a human talker. There are several types of ASR machines (2711) though

all of them can be broadly categorized into two groups: continuous

and isolated speech recognition systems. In the latter, an isolated-

word recognition (IWR) machine included, short pauses are required

before and after utterances to be recognized whilst there is no such

restriction in the former.

Following the common practice in the field of pattern

Pescedition = » an IWR system can be considered as to consist of a

feature extractor (FE) followed by a recognizer or classifier as shown

in Fig. 1.1 . In this configuration - which is also used by many

experimental systens (1713-21) - when a word is uttered, a decision is

made by the recognizer as to which word, if any , in the vocabulary

has been spoken. The descriptions for each subsystem follow.

- FEATURE
input RECOGNIZER Butane

speak ea EXTRACTOR |—Zopgqrea >| (CLASSIFIER) }—>
decision

(Fz)

Fig. 1.1 Block diagram of an isolated—word recognition system

1.2.1 Feature extraction

After being converted into electrical energy by a transducer

(eg. a microphone or a telephone), the speech wave undergoes the first

stage of preprocessing operation designed to enhance the quality of the

signal and to reduce the degradation caused by noise. A further process

involves the development of procedures for extracting relevant parameters

or 'features' from the speech signal. At this stage, some sort of ‘data

compression' is performed. The aim of a FE is to reduce the data rate

of the signal to a manageable level. This is accomplished by discarding

irrelevant elements of the signal whilst carefully preserving data

which is important and necessary to the recognition of the signal.

Several techniques are employed by various research workers

to extract relevant parameters from the speech wave such as spectrum

analysie(?2), approximation by orthogonal functions, zero-crossing

(20, 23-25)) (26-27) | analysis and linear predictive coding technique (LPC

The speech parameters or features extracted can be presented at the

hs

output of a FE as strings of symbols which are then processed by a

recognizer or a classifier and thereby creating a description of the

input speech.

1.2.2 Classification

The process of classification can be described as one which

identifies the input utterances using the knowledge from strings of

features at the output of a FE, The classification methods in many

speech recognition systems can be broadly categorized into two main

groups.

In the first group, commonly known as the 'template matching’

technique or 'pattern matching' method, a set of templates which are

the representative patterns or structures of all words in the vocabulary

is stored in the system memory. An incoming string from the output of

a FE is then compared with each stored template to obtain the

"best match' satisfying some specified criteria(tTs19)28-31) | In the

second group, the stored rules for constructing strings corresponding

to words in the vocabulary are used in the classification of unknown

strings (20-21 » 32-36) |

In general, a person does not always speak the same word in

the same way. This unconscious alteration of the pronunciation of a

word,even spoken by the same talker, may be due to the emotional and

physical states of the speaker, the ambient noise level of the sur-

rounding an@ free variation from trial to trial. Hence, it is important

to incorporate some form of 'training' or ‘learning' into the speech

recognition system, as show in Fig. 1.2 . In the learning mode, a set

of sample strings from the chosen vocabulary is fed into the machine

-5-

several times until the representative structures or rules for the

construction of each word are formed. This will make the recognition

machine able to adapt itself to the characteristics of the talker and

thereby reducing the problem of variations in speech.

 inant FEATURE peeace RECOGNIZER carat

ee DiS ere ACTOR aa |e en oF | ene
speech (FE) (CLASSIFIER) decision

RECOGNITION woDE #

sample LEARNING

————_ utterances ALGORITHM

LEARNING MODE

Figs 1.2 Block diagram of an IWR system with 'learning' facility

1.3 Linguistic approach to ASR

(12, 37-39) from the

(20, 36)

The classical decision-theoretic methods

field of pattern recognition, as well as some heuristic methods

have commonly been used in the past to produce classifiers for processing

strings of features from the outputs of FE's in IWR systems.

Another approach, which belongs to the second group of

classification methods mentioned in the previous section, is to make

use of the technique of formal language theory. This approach, which

stemmed from the fields of mathematical linguistics and computer

(33,40-44) 04 science, has recently received increasing attention

-6-

provides some promising results in pattern recognition. The essence

of the linguistic methods in pattern recognition is to have a grammar

for each class of patterns to be recognized. In most cases, a suitable

set of grammars are obtained based on a priori knowledge of the charac-

teristics of the patterns together with the experience of the designer

of the recognition system under indy 426 In other applications such

as ASR, the underlying process of producing patterns may not be clearly

understood. In such cases, the only information available, namely, a

set of sample patterns is used to construct the required grammars. The

search for suitable grammars based on a set of sample strings or

patterns is known as ‘grammatical inference! (42448)

(46)
‘grammar

discovery' or ‘linguistic learning' (47),

Basically, the linguistic method as applied to ASR works as

follows. In the training stage, sets of syntactic rules or grammars

are constructed, one for each word in the vocabulary, from a given

set of sample strings of features. In the recognition mode, an incoming

string from the output of a FE is analysed to determine which grammar,

if any, could have generated it. The word corresponding to such grammar

is then said to have been recognized.

The 'formmal grammar' approach is sometimes known as the

‘syntactic' or 'structural' approach because of the analogy between

the hierarchical structure of features or 'patterns' and the syntax

of a language. It is attractive to use due to the availability of

mathematical linguistics as a tool. In addition, it seems to be well-

suited to the problem of an IWR system where only a finite number of

features are generated from each utterance. Practical applications of

syntactic methods include the design of programming languages, artificial

intelligence, information retrieval, scene analysis, chromosome analysis

and many others 24),

The work presented in this thesis is concerned with the

application of linguistic methods to the design and implementation of

classifiers for the recognition of isolated words from a limited

vocabulary. It forms part of the research programme on automatic

recognition of telephone speech at the Department of Hlectrical and

Electronic Ingineering, the University of Aston in Birmingham.

1.4 Outline of the thesis presentation

Chapter 2 introduces preliminary definitions, notation and

concepts concerning formal grammars and languages that are related to

the present work. Other definitions also appear in subsequent chapters

whenever they are required. The second part of this chapter describes

the principles involved in the use of formal grammars to model a FE

for isolated—word recognition. Basic assumptions and criteria together

with some important issues regarding the modelling or the inference

process are also givene

Chapters 3 and 4 present the modelling of an IWR system using

finite-state grammars (FSG's) and context-free grammars (CFG's) res-

pectively. Methods are given for the construction of a finite-state

transition network to graphically represent a FSG and a push-dowm

transition network for a CFG. Inference algorithms and suitable decoding

methods for both types of grammars are presented in the appropriate

chapters. The FSG approach involves the use of the ‘weighted matching

network' technique in the recognition process whereas the minimisation

matrix M is utilized in both the learning and recognition parts in the

CFG approach.

-8-

Chapter 5 presents the evaluation and comparison of FSG and

CFG models in terms of recognition performance and the computational

requirements. Basic recognition systems required for the experimentation

are also described. In addition, descriptions are given of the advantages

and disadvantages associated with the formal grammar approach and

template matching technique.

Chapter 6 presents conclusions and directions for further

work which includes the real-time problem and improvements of recognition

performancese

-9-

CHAPTER 2

FORMAL GRAMMARS AND IWR SYSTHIS

This chapter describes the principles and methods involved in

the application of the techniques of formal language theory to the

recognition of isolated words. The problem of designing a recognizer

in an IWR system can be broadly divided into two areas: the construc-

tion of models based on formal grammars to represent the characteristics

of the symbol-generating source and the search for suitable decoding

methods for efficiently analysing the strings from the source using

rules or grammars of the models previously created.

The next section introduces necessary definitions and concepts

fundamental to succeeding sections. Other definitions will be given

whenever required. For comprehensive treatments of formal grammars

see, for example, references 54 and 55 .

21 Preliminary definitions, notation and concepts

In IWR systems, words are spoken in isolation with short gaps

between utterances. This leads to the following assumptions:—

(i) Only a finite number of features (represented by symbols) are

generated by a FE and only one symbol can be present at a particular

time.

(44) Each word uttered results in a sequence of symbols of some finite

length.

From the foregoing statements, the following definitions can

be made concerning the output of a FE.

Definition 2.1 An alphabet is a set of any finite number of symbols

from the output of a FE representing various parameters or features

extracted from the input speech wave.

met One

Definition 2.2 A string is any sequence of finite length composed of

symbols from the alphabet. The beginning and end of each string are

well-defined. A string which contains no symbols is the empty(or null

string A . The length of a string x denoted by |x| , is the number

of symbols contained in x .

Definition 2.3 If S is an alphabet, then = denotes the set of all

strings consisting of symbols from &, including the empty string A .

Also define 2 as s” - {Aa} .

Developments of the theory of formal languages started when

Chomsky first formulated the concept of the hierarchical structures

in grammars in 1956 (55), Basically, a grammar or a set of rules can be

described as a mathematical system for defining a language, as well as

a device for giving a useful structure to the strings in the language.

Formally, a grammar is defined as follows .

Definition 2.4 A phrase-structure grammar G (54-55) » or Chomsky

grammar 91-58) is defined as :-

G = (VyyZ, R, &) (2.1)

where

Vy is a finite set of nonterminals .

& is a finite set of terminals .

v4 = = § (the empty set) .

VY = is denoted by V .

The terminals in S consist of all symbols from the alphabet.

411 other symbols are nonterminals which rank higher than the terminals

in the hierarchical structure of the grammar.

R is a finite set of productions or rewriting rules of the form

a> Bp (This implies that « can be replaced or

rewritten by B)

where m& is a string in vt

-ll-

Pp is a string in v .

& is the start symbol . It is in Vy and signifies the beginning

of a string or a word .

Note A rewriting rule with the start symbol & at the left side (LS)

of the rule is known as the start rewriting rule or the

start production e Por example, £—»aA, &—»bAC, and

&— AB are all start rewriting rules .

Before going on to describe various types of grammars, conven—

tions are given regarding the different types of letters or characters

representing terminals and nonterminals .

CONVENTIONS

(a) NONTERMINALS : Capital LATIN - alphabet letters .

(b) TERMINALS : Lower case letters at the beginning of the LATIN alphabet.

(c) STRINGS OF TERMINALS : Lower case letters near the end of the LATIN

alphabet .

(a) STRINGS OF NONTERMINALS AND TERMINALS : Lower case GREEK letters.

Grammars can be classified according to the format of their

rewriting rules .

Definition 2.5 (54-59) Let G = (Vy22Ro&) be a grammar .

The grammar defined in definition 2.4 is a type OQ or unrestricted

grammar .

G is said to be :-

(a) type 1 or context-sensitive (CS)

if each production in R is of the form J4%A&8 — xfs

where A isin V,
N

% and & are in ua

p isinv*
ie. ‘'A' is rewritten as 'g' only in the context of J...5 e

-12-

(b) type 2 or context-free (CF)

if each production in R is of the form AB

where 4 is in Vy

p is in vt

ie. the rewriting is done independently of the context .

(c) type 3 or regular or right-linear or K-grammar (Kleen's grammar) (60)

if each production in R is of the form A->aB or A->a

where A and B are in Vy

aisinZ.

A regular grammar is also know as a finite-state grammar (Fs¢) .

This is because the FSG corresponds to a machine with a finite number

of states. The application of a rewriting rule is represented by a

transition from a state corresponding to the nonterminal at the left—

side of the rule to a state corresponding to that at the right .

A grammar with a higher type number is included in the one

with a lower type number as shown in Fig. 2.1 .

type 0
ype

type 2

Fig. 2.1 A simplified representation of relationships between various

types of grammars

we oie

The formal definition of "language' is given next.

Definition 2.6 The language generated by a grammar G, denoted by L(G)

is defined as:- 1(¢) = {x |x in” ana 2 => x} (2.2)

where & => x means the string x can be derived from & in grammar G.

In other words, the language of a grammar consists of all strings of

terminals, including the null string, that can be obtained by successive

applications of the rewriting rules commencing from the start symbol.

The languages derived from a FSG, a context-free grammar (CKG)

and a context-sensitive grammar (CSG) are know as a finite-state

language (FSL), a context-free language (CFL) and a context-sensitive

language (CSL) respectively.

22 Grammar—based modelling in word recognition

This section describes, in general, the use of formal grammars

in the formulation of the problem of automatic recognition of isolated

words from a limited vocabulary. Fig. 2.2 depicts a generalized block

diagram of an IWR system based on formal grammar concepts.

First, one aspect of the learning process is formally defined.

Definition 2.7 A supervised learning is one where the labels of

strings in the sample set are known beforehand (eg. a teacher or an

observer is available) .

In Fig. 2.2, the FE together with its speech input can be

considered as a linguistic information source whose output consists of

a collection of finite-length sequences of symbols. The decoder and

the models constructed during the learning mode make up the recognizer

of the IWR system. It is a normal practice to assume a supervised

learning. Thus an observer is present during the learning stage.

speech ~——-=

input |; Pe i=

ek ae

strings of

DECODER |_| output

(ie pyre . decision
LINGUISTIC | | INFORMATION SOURCE RECOGNITION

| MODE

ae Nie pe i a aL
| Grammar—based |

aa EG | LEARNING
| MODE

»| Observer :

| RECOGNIZER Lec nif sale ot 3 real

Fig. 22 Block diagram of a grammar—based IWR system

Grammar inference (GI) can be viewed as the process whereby

formal grammars are employed to model the source whose characteristics

are very little, if at all, known. The method is to have, in the

training mode, a user repeating each word in the vocabulary a number

of times. Each time the same word is spoken, a similar but not necessarily

the same string of symbols is produced by the source. Grammar—based

models, one for each word in the vocabulary, are then automatically

constructed and stored in the system memory for future use. In addition

to producing all the strings in the corresponding sample set, each

model is also capable of predicting other similar strings. The building

of models can also be regarded as a useful encoding of strings.

In the recognition mode, an incoming string is processed

using suitable decoding algorithms to determine which model, if any,

S25

corresponds or nearly so to the word spoken. If the most compatible

model is found, the corresponding word is then indicated as to have

been recognized. Otherwise, the recognition fails and the word is

rejected.

The problem of using formal grammars to model a source or GI

and its solutions has been studied and its significance stated by

(61-63) various researchers « Comprehensive surveys and reviews of

previous work and results have also been given (42244263564) |

Generally, there are two main approaches to the solution of

the problem of learning. They are briefly described below.

(a) Enumerative approach

In this approach, an algorithm is used to produce all grammars

of the specified type in an ordered manner. Assuming each class of

grammars constructed is denumerable, a method is then established to

test these grammars to obtain at least one that meets a given set of

criteria.

Although the approach is often shown to give an optimal solution

requiring only a minimal amount of information presented, it may be

impractical for many applications, for example ASR. This is due to the

astronomical amount of computations involved in the exhaustive searching

for a suitable grammar. However, the discouragingly enormous amount of

combinations involved can be reduced to a certain extent by designing

the method such that at any finite time only a finite number of grammars

need to be tested.

Some techniques which are inductive as well as probabilistic

in nature have been employed in this approach (4294661 65466) |

See

(b) Constructive approach

This method, for example reference 48, constructs one or more

grammars directly from the strings in the sample set. The useful, if

not optimal grammars based on direct observations of the properties of

the strings can be produced in a not too excessive amount of time.

Some criteria may also be used to accept or reject the inferred grammars.

Discussions are now made of some important issues concerning

the problem of using formal grammars to model the FE in an IWR system.

(1) Data and its structure

Apart from the assumptions about the output of the FE, the

only information available during the training mode is a collection of

strings of symbols together with their labels. This type of information

is known as 'positive information’ or ‘sert-oresentationt col since

only valid strings are known or given. Thus, if probabilistic

information is required then it must be estimated from the given

sample set. The size of the sample set is arbitrarily specified

(ege five or ten repetitions per word in the vocabulary), though it

will be large enough to ensure that the inferred grammar covers a

reasonable number of variations of strings representing the same word.

(2) Determination of grammar types

The GI problem is known to be unsolvable for a general (ie.

unrestricted) grammar. Thus, many researchers consider the subsets of

the general rewriting systems or grammars such as FSG's or CFG's. In

many cases of GI, the observed strings from a linguistic source are

assumed to have been generated by a precisely defined class of grammars.

In IWR systems or even the general ASR systems, it is not

known whether any class of grammar can represent exactly the

ots

characteristics of the ill-defined FE. Indeed, this has been exemplified

by gora(S2) who stated that with only positive information available

(as in the case of the FZ), not even the FSG's are 'identifiable in

the limit’ - ie. not even the FSG's can be found that will exactly

model the FE,

Consequently, the research carried out in this thesis is

concerned with finding well-formed approximations to an ill-—formed

problem (vaguely defined FE) . The types of grammars investigated will

be limited to types of up to and including CFG's. The CSG's are not

considered here because several problems, such as the closure properties

and decidability, are still unsolvable. In addition, the decoding

methods for the CSG's are much more complicated than those of the

grammars of higher type numbers.

(3) Other criteria

One important requirement in the modelling of a FE by means

of formal grammars is that the inferred grammars should be powerful

enough to adequately describe data from speech. That is, each grammar

should generate all of the known strings (positive information)

representing one spoken word in addition to predicting other strings

similar in some ways to the observed strings. Ideally, the grammar

should also generate none of the known 'non-strings' ie. strings

corresponding to other words in the vocabulary.

As mentioned earlier, only positive information is available

in IWR systems and hence it is doubtful whether any class of grammars,

if any, can describe precisely the nature of the FE. Consequently,

speech recognition is a situation where a quick and reasonable

inference is more useful than a time-consuming and computationally

laborious inference which exhaustively searches for an optimal solution.

~=18 —

It is for these reasons that all the inference algorithms presented

in this thesis are mainly constructive in nature.

(4) Basic assumptions

In general, one or more assumptions are normally formed

concerning the solution to an inference problem. The following des-

cribes some basic assumptions as applied to all the inference

methods given in this thesis.

(2) The languages generated by the inferred grammars are assumed to

be A-free. It is meaningless to consider empty strings in any practical

application such as ASR where a null string corresponds to no input

to the system. This assumption does not restrict the languages in

any way.

(b) The generation of grammars in this work is algorithmic in nature

to guarantee the convergence of the process.

(c) The inference methods are incremental in the sense that it is

possible to update a previously inferred grammar upon receiving a new

set of data without the need to store the strings observed earlier

ie. there is no need to redo the inference again from the beginning.

(a) The positive information sample set Sy consists of a finite number

of strings each of a finite length. This follows from the assumption

about the FE given in section 2.1 .

(e) Sy is "structurally complete’ (42,65,68) i ee each production in the

inferred grammar is used at least once in deriving at least one string

in Sy.

= 19 =

CHAPTER 3

FINITE-STATE GRAMMAR BASED MODELLING

There are many approaches to the learning of a specific

vocabulary in the recognition of isolated words. The simplest and

obvious method is to directly store one or more strings as the re-

presentative 'templates'. Another way is by means of ‘sequential

matohingt (32) where an attempt is made to generate sequential structures

or lattices from a number of sample utterances. The structures are

obtained through successive matching and merging of symbols between

strings in the training set. Normally, the criterion used in such

processes is to maximize the similarity between the sample strings

corresponding to the same word. An alternative approach, for example

reference 20, is to construct an algorithm suitable for each word

based on observations of sequential characteristics of symbols in each

word, allowing alternative and/or optional characters in some positions.

This chapter describes the grammar inference approach to the

learning problem based on FSG's. Fig. 3.1 illustrates the general

outline of the approach. The jth string in the positive information

sample set 5. is denoted by aie The inference algorithm automatically

constructs a FSG directly from 8, on the basis of pre-specified

criteria. Suitable decoding techniques are also presented.

FE 8, = {s,]iq1,...,m5} PSG
Speech a Inference Inferred
A (SOURCE) 7) Algorithm se
a 6. =) bab, eed,

j 3, dy Je

Fig. 3.1 Inference of a FSG in an IWR system

- 20-

3-1 Graphical representation of a FSG

This section shows how a graph can be applied to portray a

FSG such that it is easier to visualize and understand the underlying

mechanism of the grammar involved. First, the formal definition of such

@ graph is given.

Definition 3.1 A finite-state transition network (FIN) is a directed

graph having a finite number of nodes or states. A link connecting

one node to another indicates the transition originating from the

former and terminating in the latter.

A terminal symbol is associated with each and every transition.

Every FSG can be represented by a FIN as follows.

(a) There exist nodes of the FTN corresponding in a one-to-one relation-

ship to nonterminals in Vy of the grammar.

(b) The initial node or the start node of the FIN corresponds to the

start symbol & of the grammar.

(c) A special node called the terminating node & designates the end

of a string.

(a) For each production of the form A—»aB , there is a path or

transition labelled 'a' from node corresponding to 'A' to node

corresponding to 'B'.

(e) For each production of the form A—sa, there is a path labelled

‘a! from node corresponding to 'A' to the terminating node & .

Example 3.1 Consider the grammar Ga = (VysE,R,&) with the

following rewriting rules :-

' ' 1

&—-U &—e MA &—>VB &—»-TH

'

a'—> vB" Bac’ C—T H'-—al! I'—>V

where Vy = (8, (AES Beet, ator!)

and = (a, A, M, T, U, V)

aol es

The corresponding FIN is depicted in Fig. 3.2 below.

Fig. 3.2 A FIN corresponding to the grammar G in example 3.1
3-1

The FIN shown in Fig. 3.2 is similar to Moore's model of

sequential meokine Ol? in the sense that each of the nodes in the FIN,

except the initial and terminating nodes, is associated with one and

only one symbol. In other words, the symbol produced during a transition

corresponds only to the node where the transition ends irrespective of

the number of transitions leading to that node. In order to keep the

number of nodes (and hence the nonterminals in Vy) small, the terminating

node & is allowed to be associated with any number of terminals. The

starting node is, of course, associated with none of the symbols since

it represents the starting point for all transitions within the FIN.

The inference algorithm described in section 3.2.2 imposes the

above constraints upon FIN's in the automatic construction of FSG's.

male =

3.2 Inference of a FSG

The inference of a FSG can be considered as the building of a

FIN from a number of sample utterances. Any path that can be traced

through the FIN starting from the initial node and ending at the ter-

minating node constitutes the word. It is well known that the relation-

ship between a grammar and the language that it can generate is not

unigue. That is, there are many grammars that can produce a given

language. For example, one grammar may generate exactly those strings

in the sample set whilst another may produce not only the strings in

the given language but also many other strings. The problem is to find

a suitable grammar between these two extremes such that it produces all

the strings in the sample set as well as some other strings of similar

characteristics.

The following describes some of many advantages and attractive

features associated with the use of a FSG in the modelling of a FE in

the recognition of isolated words.

(i) A FSG, being the least complicated type of grammars, is simple to

construct and test.

(ii) The structure in time of symbol strings from the output of a FE

is sequential ie. symbols are assumed to be presented and

responded to, at discrete points in times This resembles very well

with the sequential format of a FSG thus rendering the classifica-—

tion problem more attractive to solve.

(iii) The properties and characteristics of a FSG are well established.

There exist algorithms to answer many questions such as ambiguity,

closure properties and decidability.

(iv) It is easy to read off directly sequences of symbols composing a

string corresponding to a word by tracing through the FIN from the

initial state to the terminating state.

ok a

3.21 Criteria for the FSG inference process

Basic assumptions regarding all the inference methods described

in this thesis have already been given in section 2.2 . First, some

terminology are formally defined in preparation for the presentations

to follow.

Definition 3.2 The nondeterministic event (NE) is the situation where

an incoming string is assigned by a classifier or a recognizer as

corresponding to two or more words in the vocabulary. This indicates

the overlapping between strings corresponding to differnt words.

Definition 3. 3(55) AFSG G= (Vy2Z, R, &) is said to be recursive

if there exists at least one derivation of the form a=» xA where

AeV,, xe =* and = >implies that the derivation is obtained by the

application of one or more rewriting rules. That is, a recursive

grammar signifies the occurrence of at least one loop or a closed path

in the corresponding FIN.

A method is given in appendix A for testing whether a specified

FSG is recursive or not.

The following presents the criteria and related constraints

governing the formulation of the FSG inference algorithm to be presented

in the next section.

I. The inferred grammar is finite-state.

II. The similarity between strings that can be derived from the inferred

grammar should be maximized. This follows from the basic require—

ment in GI that the grammar created should generate as few non-

strings as possible.

III. In the experimental observation of the output of a FE, a training

set can consist only of a finite number of finite-length strings.

In this situation, it is intuitively felt that a non-recursive FSG

IV.

-4-

would be appropriate and sufficient to model the FE. Consequently,

for each sample string individually considered, no recursive struc-

tures are formed or included in the corresponding subset of rules.

This also restricts the number of non-strings that the grammar may

generate. However, other constraints necessary to the inference

process may indirectly give rise to the recursiveness. For example,

the addition of new links and/or nodes on the basis of other con-

straints may produce one or more loops in the FIN. Combining the

two requirements above results in the following criterion :-

‘Suppress the recursive structure of the inferred grammar as

far as is possible but, subject to other constraints, not completely'.

A Moore's model of the FIN is assumed (see section 3.1) . However,

two or more nodes (except, of course, the start node) may be

associated with the same terminal symbol, though this is kept to a

minimum. 4s an example, in Fig. 3.3 nodes A and D are associated

with the same terminal s . This is done to avoid inferring a grammar

that is too general ie. one that generates too many non-strings.

The above also satisfies criterion III .

eS he Gre)
Fig. 3.3 A FIN corresponding to string 'sipsx' with two nodes (A and D)

ve

associated with terminal s .

In the derivation only of the inferred grammar, each node from the

path in the FIN corresponding to a sample string is used once only.

For example, the terminal s appears twice (neither of the s's is

the last symbol) in the sample string 'sipsx' . Instead of sharing

‘the same node (node A in Figs 3-4), the two s's are assigned to two

= 65 =

different nodes (A and D) as shown in Fig. 3.3 . Again, this is to

satisfy criterion III.

Note also that if the second s happens to be the last symbol of

the string, the sharing of the same node by the terminal s would

automatically be inhibited. This follows because there can not be

any outgoing transition from the terminating node.

Fig. 3.4 A FIN corresponding to string 'sipsx' with the two s's

VI.

sharing the same node (node A) resulting in a recursive

structure in the grammar.

Tail-end constraint

This is a constraint designed to reduce the occurrence of the

NE to the lowest possible level. It determines whether an outgoing

link from a current node can be connected to one or more existing

nodes corresponding to the next symbol in the string under

consideration. The constraint is :-

"Reject the node if neither of the following is satisfied:

(a) The node is a pre-terminating node (ie. the terminating node

but one) AND the position of the next symbol is the last symbol

but one.

OR

(b) The node is NOT a pre-terminating node AND the position of

the next symbol is NOT the last symbol but one. *

VII. Strings of short lengths (<2) are separately dealt with. As an

= 26 —

example, the node corresponding to the first symbol of a length-2

string can only be reached by the start node only. It is also

desirable that rules inferred from strings whose lengths are

greater than two should not generate any string of length two.

This is because strings of short lengths tend to modify and influence

the structure of the inferred grammar in such a way that the grammar

becomes too general.

It is also of interest to consider the situation where each

word in the vocabulary contains exactly one string of unit length

in addition to some longer strings. Assuming all length-1 strings

are distinct, the maximum number of words that can be correctly

recognized is the number of distinct symbols that can be produced

by a FE ie. the size of the alphabet. This imposes the limit to the

vocabulary size of an IWR system. Such unit length strings are also

liable to symbol mutilation since only one alteration is required

to corrupt a length-l string. Fortunately, the foregoing situation

rarely happens in any practical application.

The following describes a constraint related to short-length

strings.

Front-end constraint
"All nodes corresponding to the nonterminals at the right side

(RS) of the start rewriting rules of a FSG cannot be reached by

any other nodes except the start node.'

The above will :-

(a) take care of the case of strings of length-2.

(b) ensure that rules inferred from strings whose lengths are

greater than two will not generate additional length-2 strings.

(c) keep down the occurrence of the NE.

VIII. If two or more nodes are available for selection, choose the one

as near to the beginning of the string concerned as is possible,

= 27 =

provided other constraints are also satisfied. This is to maximize

the possibility of branching afterwards from the selected node

which results in a greater number of similar strings being produced.

IX. The complexity of the inferred grammar, that is the number of nodes

and/or links in the corresponding FIN, should be as near minimum

as is possible, subject to other constraints. This implies that the

Similarity between different strings derivable from the inferred

grammar is maximized.

3.262 FSG Inference algorithm

A learning algorithm is presented in this section for the

automatic generation of a FSG or the corresponding FIN directly from

the observed sample strings of sequential features. The method, based

on criteria and constraints specified in the previous section, can be

briefly explained as follows.

First, 'the skeleton’ grammar (SG) q, is constructed from the

first string in the sample set such that Gg can generate only that

string. Other strings in the sample set are then individually operated

upon in the following recursive manner. The nth observed string 5, is

analysed with the (n-1)th inferred grammar G,_, to determine whether s,

can be derived from G. - If G
1 1

no augmentation of Goo is required. Otherwise, new rules and/or links

can generate 5,9 then G@ = Guy and

are added to the FIN of G.. 0 produce the nth inferred grammar Ge

Before proceeding to present the inference algorithm, some

necessary definition and notation are introduced.

Definition 3-4 The nonterminals at the LS and RS of a production of a

FSG are known as premise nonterminal and consequence nonterminal

= 26 =

respectively. For example, in the production A—» aB the premise ai

consequence nonterminals are 'A' and 'B' respectively.

Notation

vig = premise nonterminal (or node)

Vas = consequence nonterminal (or node)

Vp = node nearest to the beginning of a string

£ = length of a string

N(k) = number of strings in word k

W = number of words in the vocabulary

54 = the jth string in the set of a word

b a = the ith symbol of =

x = symbol index

a = string index

k = word index

The following is algorithm 3.1 which is employed to auto—

matically infer FSG's directly from sample strings of a given set of

words in the specified vocabulary. A flow diagram of the inference

algorithm is also given in Fig. 3.5.

Algorithm 3.1

Step 1 Set k w o

Step 2 Setk=k+1

if tte.

Set j= 1 .

Read tri rae b, b, end evetring x. aed

" ca

Tame .

Step 3

Step 4 Set Yug

Step 5 Set Vp =0 .

(5a) If i =2, go to step 9.

Cee

Generate 'the skele-
ton' grammar, Gy

Input next string

awit
Li ek

ar)
we She pea

nenel

N
joe

ink n generate the a
ith symbol See

Ss x

Vagreonsequence node ‘orm a new
of link n [Link connec-

[ting Vig to
ithe appropri-

Does late Vp

Apply constraint

L_-—___|VIII to select
one Vp

Pig. 3.5 Flow diagram of the algorithm for the inference of a FSG

(5b)

Step 6

where

Step 8

Step 9

(9a)

(9b)

where

-30-

Compare Ph with the terminal 'a' in a production of the form

A —® aB, subject to constraint V.

If no such production exists, go. to step 6.

Compare Vis with the nonterminal 'A' .

af Vig = "At, go to step 7.

Otherwise, go to step 8.

Form a new production of the form A —» aB and include it

in the production set R :-

‘At is set to V,
LS

"at is set to b
ay

, af set to V, if V, #0

is a new nonterminal if VD =O

= '3Bt Set Vs B

as mde LA? te,

Go to step 5.

If 'B' does not satisfy 'front-end' and 'tail-end' constraints,

go to step 5a.

if Vp = 0, set Vp = 'B' and go to step 5a.

Otherwise, apply constraint VIII to select one value of Vpe

Go to step 5a.

Find a production of the form A—» a having 'A' and ‘at

identical to V., and b, respectively.
LS dg

If no such production exists, go to step 9b.

Otherwise, go to step 9c.

Form a new production of the form A —» a and include it in

the production set R :-

'A' is set to Vs

‘at is set to b. .
2

-31-

(9c) If k Wand j =M(k) end.

if j M(k), go to step 2.

Otherwise, go to step 3.

Although the skeleton grammar G

Fig. 3.5, no special routine is required to generate it. This is

is depicted explicitly in

because algorithm 3.1 is formulated in such a way as to automatically

include the creation of Gy. It is also of interest to note that the SG

G is similar to the canonical grammar as defined by FU and poory(42)

in the sense that they both generate exactly those strings in the

sample set. In the case of Gg there is, of course, only one string that

it can generate. The PSG's inferred by algorithm 3.1, for example the

grammars in the next section, can also be viewed as one form of derived

(42). erammars

32.3 Illustrative example

Example 3.2 Consider a sample set S = (s,| Tm Ls Suet ot)
342

where 5) = dIc 85 = ekf 8, = bdeDi

84 = Jg 55 = bJdcg Be = MeCh

= bKj a 87 j

The following illustrates the resulting FSG Gq, (show in the

form of FIN) after each string Si has been presented to algorithm 3.1.

The strings that can be derived from each grammar Gs are also given.

ve O.O+O2-O
Strings generated by G : dic

Pig. 3.6 FIN corresponding to Gy the skeleton grammar

=e

Strings generated by G, : dIc
e

ekf

Pig. 3-7 FIN corresponding to g.

Strings generated by G : dIc

ekf
bdeDi

Fig. 3.8 FQN corresponding to G.

3

strings generated by G, : dIc
ekf
bdcDi

JE

Fig. 3.9 FIN corresponding to G
chaste ine een a

= 33-

s,=bS dcg

Strings generated by ac : dIc
ekf
bdeDi

JE
bddcg

Fig. 3.10 FIN corresponding to g5

Strings generated by Ge 3: dIc
ekf
bdeDi

JE
bJdcg

* bdJdch
MeCh

* denotes strings predicted * MeCg

by G,

Fige3.11 FIN corresponding to G,

8, =bKj

Strings generated by &, : dIc

* MeCg
vKj

* DbKE

* denotes strings predicted by &

Fige3.12 EDN corresponding to G,

-35-

3.3 A recognition scheme for FSG models

This section describes a scheme for the recognition of isolated

words on the basis of pre-inferred rules or representative strings.

The general characteristic of the recognition scheme, called scheme A,

is outlined in Fig. 3.13 . Fig. 3.14 depicts a recognition system using

scheme A of the recognition method and FSG's inferred from the previous

section. The explanation of the system follows.

In the learning mode, algorithm 3.1 is employed to automatically

construct FSG's, one for each word in the specified voeabulary. The

inference process produces rewriting rules directly from the observed

sample strings in response to the words spoken.Production probabilities

are also estimated (see section 3.4.2) during the learning process.

In the recognition mode, each unknown string presented to the recognizer

is classified or decoded using the rules obtained earlier.

As shown in Fig. 3.14, the recognition process can be considered

as to consist of three main levels of operation in terms of the

complexity involved. The recognition always starts at the lowest level

ie. level 1. A higher level is applied only if the previous one fails

to classify a string according to some criteria. One sublevel is also

incorporated in level l.

Before presenting the overview of various levels of the

recognition process, it is necessary to introduce some definitions

which are as follows.

Definition 3.5 Parsing or syntactic analysis is the process of con—

structing a derivation of a string s in a grammar G ie. it is a process

of finding the syntactic structure associated with the string s. The

corresponding derivation tree is called a parse or a parsing-tree .

If a parse can be found in a grammar G for a string s, the word

B56

er. strings

Learning algorithm

+
Estimation of string LEARNING MODE

probabilities

rules} or
representative strings

 RECOGNITION MODE

y

unknown Find an exact success- /string cor-
string match for the ful Tespond to more
input string than one

word ?

Failed

Find a closest Apply a stochastic
match for the algorithm to select
string the most likely

word

osest
atch correspond

to more than one N
word ?

Apply a stochastic
algorithm to select
the most likely
word oe a ee el

Fig. 3.13 Diagram of the recognition scheme A

37 =

sample strings

 Inference of a Fst
(Algorithm 3.1) +
Estimation of produc-
tion probabilities
(Section 3.4.2)

rewriting rules

 RECOGNITION MODE

LEARNING MODE

unknown Parsing algorithm

string | Accep output
input (Algorithm 3.2) pond to more decision

than one

Failed

Apply a stochastic Sub-
algorithm(Algorithm3.4) |Tevel 1
to select the most cal
likely word

wre some | fateh corre
gond to more than

match Die usha tele Level 2
(Section 3.4.3) ee

x
ipply a stochastic

algorithm
(Algorithm 3.4) to
select the most
likely word Level 3

Fige 3.14 A schematic diagram of a FSG—based recognition system

usi. recognition scheme A

aacok.

corresponding to G is said to have been recognized. Parsing can also be

considered as the process of tracing through a FTN corresponding to a

grammar G such that a path from the start node to the terminating node

is found for a string s.

Definition 3.6 A stochastic algorithm is a finite sequence of instruc—

tions that involves the use of some statistical methods including

stochastic grammars (to be defined in definition 3.7). It does not

refer to an algorithm whose behaviour is uncertain or unpredictable.

A discussion concerning different levels of the recognition

process is now given.

Level 1

In this simplest level of the recognition process, an unknown

string is tested by means of the parsing algorithm (algorithm 3.2) to

determine which grammar, if any, could have generated it. If the string

is accepted by one grammar only, the corresponding word is indicated

at the output. For unsuccessful parsing, the method of level 2 is then

applied to decode the string. When two or more grammars can generate

the string ie. the occurrence of the NE, it is necessary to employ the

process of sub-level 1 to decide which grammar is the most likely to

have produced the string. In this method, a stochastic algorithm

(algorithm 3.3) is applied to find one "best word' according to a

maximum likelihood criterion (MLC). If two or more of such words are

possible, the string is rejected.

Level 2

When the parsing algorithm in the preceding level of recognition

process fails to find any grammar that can generate the unknown string,

the method of the next higher level (ie. level 2) is called for. The

technique of the ‘weighted matching network' (WMN) is utilized to find

the 'closest match' for the string ie. the grammar that could nearly

have generated the string. It is basically a dynamic programming method

= 39. =

of optimizimg the similarity between two functions.

Level 3

This is the highest and the most complicated level of the

recognition process since the operations in the two lower levels have

to be performed in order to reach level 3 . It is applied when there

exist two or more closest-matched words corresponding to the string.

Another stochastic algorithm (algorithm 3.4) is employed to choose the

most likely closest-matched word. As in level 1, the string is rejected

if two or more of such words are found.

3.4 Finite-state grammar based decoding methods

This section presents in details the FSG based decoding methods

or syntactic decoders for the classification of unknown strings as

applied to the recognition of isolated words. The overall recognition

process which employs various decoding methods in different levels of

recognition operation has already been described in the previous section.

3-4-1 A parsing algorithm

The parsing algorithm to be presented is a simple top-down

parse ie. it starts from the start symbol and ends with a string of

terminals. In other words, the derivation of the parsing tree progresses

from the root to the leaves. Backtrack facility is provided such that

when a path is blocked during parsing, alternative configuration, if

any, can be tried by retracing the last moves. A push—down stack is

provided to store sequences of productions or rules encountered in

parsing the string. The stack also aids in the backtracking process.

= 40 =

The following is a formal presentation of the parsing algorithm

with the corresponding schematic diagram shown in Fig. 3.15 . Symbols

employed in the algorithm follow the notation given earlier.

Algorithm 3.2

Step 1 Read a string s = BL Doeeeby .

Step 2

(2a) Set i=1

Wg tk .

(2b) Set 24.40) 2

Step 3 Set j=j+il.

If i =2, go to step 7.

Step 4
(4a) Check production j of the form A— » aB whether 'A' and tat

are identical to ‘us and by respectively.

(4b) If unsuccessful, increase j by one and go to step (4a).

If productions are exhausted, go to step 6.

Step 5 Set Vis mY a

Put j on top of stack.

Set i=sit+l.

Go to step (2b).

Step 6 If the stack is empty or only one element remains in the

stack, parsing fails; END.

Otherwise, pop up j from the stack.

Set V,, = ‘At of rule j.

Set i-si-l.

Go to step 3.

ie

Prisma

{
j=0

|
j=j+il

Is
i the last

symbol?

Get rule j
of the form
Amma

Get rule j of the
form A—» aB

‘Ls
Put j on top of
stack
isi¢+l

pop up j
from stack

V, Ls of

rule j

stat

Fige 3.15 A schematic diagram of

isi-1l

the parsing algorithm

Parsing

successful

 production
exhausted?

=-42-

Step 7

(Ta) Check production j of the form A—» a whether 'A' and 'at

are exactly identical to Vis and by respectively.

(Tb) If unsuccessful,increase j by one and go to step (7a).

If productions are exhausted, go to step 6.

Otherwise, parsing is successful ;END.

304-2 A maximum-likelihood criterion

The NE mentioned in the sublevel 1 of the recognition process

(section 3-3) can be caused by noise or disturbances of some sort. It

may also be due to the overlapping of inferred grammars which is

equivalent to the overlapping of pattern classes in the case of pattern

recognition. The nature of the learning algorithm and the inherent

characteristics of features forming the strings are the two main

causes of overlapping.

It seems that the use of phrase-structure grammars or Chomsky's

grammars alone, where restrictions are placed only on the form of the

productions (eg. FSG's, CFG's etc.) may not be adequate to solve the

problem of the NE. Recently, there have been much research done on

imposing restrictions upon the use of, in addition to restrictions on

the form of the productions. The work concerning the way in which a

grammar is permitted to generate strings includes, for example, an

(69) (70) (71) ordered grammar » 2 matrix grammar

72)

>» &@ programmed grammar

and a grammar with a control aa

Another approach along this line of research is to introduce

probabilities to the grammars ie. probabilistic grammars (p-grammars)

(68,73,74) | or stochastic grammars Cea), In this

-43-

approach, probabilities are assigned to each production and each

derivation of a string is associated with a probability. A more general

(76) case is a weighted grammar in which some arbitrary values replace

probabilities in a p-grammar or an s-grammar. Both the probabilities and

the weights are usually assumed to be rational. By including probabilities

into a grammar, not only the structures of different sequences of

strings, but also their importance can be determined.

Formally, a stochastic finite-state grammar can be defined

as follows.

Definition 3.7 A stochastic finite-state grammar (SFSG), G, is defined

as t-

Gos (Vy Zs Ry £) (3.1)

where Vyo 2s and & have the same meanings as before

R, is 5 finite set of stochastic productions each of the form

Ay a aa; 5 Ay» eit As Wy

or AQ La aes

where Pi 4? Py are the production probabilities with the following

properties :-

= Puy = 1 (3-2)

a Pj =} (3-3)

Note that a SFSG is obtained by assigning probabilities to all the

rules in a given FSG. The corresponding FSG (with no probabilities

attached to the rules) is called a characteristic grammar .

Since the only input data available to the recognizer is the

positive information sample set, the required production probabilities

of a SFSG have to be estimated from this sample set. Techniques for the

determination of rule probabilities for unambiguous grammars have been

developed based on a maximum likelihood estimation (©3?96:77),

-44-

The first stage of this method involves the parsing of each and every

string in the sample set. For each production ij (ie. a link from node

i to node j in the corresponding FIN), a count is made of the number

of times that rule ij is used in the derivation of all strings in the

sample set. The production probability of link ij is then obtained from

the ratio of the above count to the number of times that all the links

originating from node i are used in parsing the same set of strings.

More formally, the technique for the estimation of production

probabilities can be described as follows :-

1. Let the sample strings (all distinct) be

So (s; j= 1,2, +0sMy) (3-4)

where My is the number of distinct strings in set S,-

260 £59 the estimated probability of string By is determined by the

relative frequency of its occurrence ie.

oak MMs (3-5)

where : = number of string 55

My = number of total strings.

3+ For a production A, —» a, in grammar G = (Wyo =, R, &) where

= ad, or a 5 find My,(85)s the number of times that production

AS > a. is used in parsing string ae

4. ni? the expected number of times that rule Ay oe a. is used in

parsing all ane sample strings in 5, is given by :-

ioe £4 (8,) (3.6)

5- The maximum-likelihood estimate for Pay? the production probability

of rule Ay —> a is obtained by
kK

Pi, = 2 / EM (3-7)

-45-

A formal proof of the above result given by equation 3.7 can

be found in, for example, references 42 and 68.

The estimated production probabilities thus obtained are added

to the rules of the characteristic grammar G to form the required

SFSG. The method just described is expected to be adequately accurate

when applied to the problem of the approximations of an ill-defined

FE by means of formal grammars. In the actual implementation, some

saving of the execution time can be achieved by incorporating the

counting operations into the learning process. This follows because the

parsing of strings is done at the same time as the characteristic

grammar is being inferred.

The following example illustrates the estimation process.

Example 3.3 Let the strings in the sample set 83 3 be =
°

8, = Le 8, = Lh 8, = lg

84 = Le oh = KeCd aces Lh

8] = Jf 5g = Nh 89 = M2

5,97 Ka 8,,= JeDe 510° Nk.

By applying algorithm 3.1, “the following characteristic grammar is

constructed.

es. (Vy ZR, £)

were 7 (Bs BpsAy2Aqr dashes M79 Ag Ag)

= = (C,DyJ,K,LyMyN,c,d,e,g,h, j,2)

R = all the rules in table 3.1

The expected number of times that each rule in R is used in

the derivation of all of the above strings together with the corres—

ponding estimated production probability are given in table 3.1 .

CAG

Rule ij y5 Pi5

& —» LA, 5 5/le2

& —> KA, 2 2/12

& —» Ihe 2 2/12

&—> wa, 2 2/12

& —> Mag a 1/12

As g 3 3/5

4m h 2 2/5

Ay oA, 1 1/2

Aya x 1/2

Ayo CA, 1 1/2

Ay DAg 2 1/2

Az a 1 1

Ame j if 1/2

seme cA, 1 1/2

A 1 1/2

4 Q 1 1/2

Ag L 2 1

— e 1 1

Table 3.1 The estimated production probabilities of rules

in example 3.3

tht

The problem of the NE where a string 5, corresponds to two or

more words can be handled as follows.

Applying a maximum likelihood criterion, a given string 8, is

classified as corresponding to word wy if and only if P(w,/s 5) isa

maximum.

From Bayes! ru $!8) P(wy, 8,) can be expanded into :-

P(w, s;) = P(w.985)-P(s5) (3-8)

Since P(s,) is constant for a given 859 only the term P(w,985) needs

to be maximized.

Rewriting P(W958 2 using Bayes' rule yields :-

P(w.985) = P(s,/m,) . P(w,) (3-9)

To ensure that there exists no initial bias towards any particular

word, the a priori probability P(w,,) is assumed to be equal for every

word in the vocabulary.

Thus only the term P(s/m,) is required to be maximized if and only

if 85 is to be classified to word Wy where P(s5/w,,) is the product of

all production probabilities correspond to word w,
k

Summarizing : In the case of the NE, a given string is classified to

used in parsing 55°

the word with the 'maximum-likelihood' probability obtained from the

product of all production probabilities of the corresponding grammar

which are used in the derivation of that string.

The following presents an algorithm for dealing with the NE

based on a MLC previously described. The corresponding schematic

diagram is shown in Fig. 3.16 .

Algorithm 3.3

Step 1 Read (w, | islyeeesily)» all the words that correspond to the

string oe 3

where W. is the number of such words.
N

Set k=0 .

- 48 -

Input all words
corresponding to aS

Calculate Qa

|
Find word wy,

where Q(k)=@,

6r more
such words

Output w, as the

k
most likely word

Fig. 3.16 A schematic diagram of algorithm 3.3

- 49 -

Step 2 Set k=k+l1l.

Calculate and store Q(k)

I(s.)
where Q(k) = J P(e)

ete td

where 1(s;) = number of steps in the derivation of 85

Pp, (s,) = probability of the production used at the ith step

of the derivation of 8, .

If k = Wyy

Otherwise, go to step 2.

go to step 4.

W,
Calculate @. = ils a(x)

If there are two or more words associated with ay reject 553

END.

Otherwise, decide that eS corresponds to word Wy if

Q(k) = Q, 5 END.

3-4-3 A ‘weighted matching network' technique

The unsuccessful decoding of a string by the parsing algorithm

(algorithm 3.2) may be caused by one or more of the following factors.

The word spoken (and hence the string representing that word) may not

be in the vocabulary. If the word is known to be outside the vocabulary

and it is intended to add the new word to the existing vocabulary, then

a@ new grammar has to be created to accomodate that word. It is also

possible for errors to appear in the string. This may be due to noise

or some disturbance or free variation of speech as a result of the

speaker's characteristics. In addition, the ambiguity of speech signal

and procedures of segmentation and labelling may also induce errors.

In the case of telephone-grade speech, the string is subjected to an

oO

even greater chance of being corrupted. This is caused by various

characteristics of the telephone system such as the restricted band-

width, background noise and impulsive noise, nonlinear distortion,

variation of sensitivity and gain and so on.

From the foregoing discussion, it appears that the simple top-

down parsing technique is inadequate for dealing with errors. This is

because it can only indicate the presence of errors but not their

locations. This section presents a WIN technique for finding a closest

match between the corrupted string and the strings derivable from

grammars with a facility for pinpointing errors. The technique is well

suited for applying to FSL's since it is based on the concept of FIN.

Before presenting the WIN and its associated technique, formal

definitions are now given of different types of symbol errors or

symbol alterations.

Definition 3.6 A deletion error is one which causes the correct input

symbol oe to appear as 2 at the output, where A is the null string

symbol. In other words, si is deleted from the input string.

Definition 3.9 4n insertion error is one which causes an extra symbol

by to be inserted into the current string.

Definition 3.10 A substitution error is one where the correct input

symbol 3; is replaced by a symbol by which appears at the output.

Concept of a distance concerning the above types of errors

is defined next.

Definition 3.11 The minimum number of symbol alterations consisting

of any combination of deletion, insertion and substitution errors,

needed to convert an observed string x to a prototype string y is

known as the Levenshtein distance (LD) (79) ,

If various weights are assigned to each of the symbol

Sie

alterations, the corresponding distance becomes weighted Levenshtein

distance (WLD) .

The WIN technique is basically a method of optimizing the

similarity between two functions. The first function is an observed

string whilst the second is the set of all strings that can be

generated by the grammar concerned ie. the dictionary. The aim is there—

fore to determine the LD or the WLD of an observed string and a given

grammare

The problem of spelling correction by matching a given string

with the dictionary has been studied by many researchers including

(345 3580-84, 88) | The common approach to solving the problem as given

by Velichko and zagoruyko (8!) is based on the construction of a 2-D

array. The array is formed by associating one function with one axis

or one dimension of the array and the other function with another axis

(85) or dimension. The principle of dynamic programming is then applied

to search through the array for an optimal solution.

Descriptions are now made concerning the WMN and how it can

be used to obtain the required closest match (ie. LD or WLD).

The WIN, also a 2-D array of the kind mentioned above, can be

constructed as follows. First, a FTN is built from the FSG under con-

sideration. This forms the first row of the WIN. The remaining rows

are then obtained by repeating the FIN Q times directly below the first

row, where Lis the length of an observed string. The overall structure

just created becomes an array of (2+ 1) * m nodes where there are m

nodes in the FIN.

The next stage involves the connections between nodes in

adjacent rows which is accomplished in the following manners.

= 52

(i) There is a link from each and every node in row k to each and

every node directly underneath in row k+l .

(ii) For every transition ij from node i to node j in the FIN, there is

a link from node i in row k to node j in row k+l.

The above procedures are applied recursively starting from

k=eltok=Q.

This completes the construction of the WMN except for the

determination of the content of each element in the array which will be

dealt with later. Fig. 3.17 exemplifies the WIN for a length-3 string

and a given FIN. Appendix B gives numerical values of significance of

various symbols. As illustrated by double-lined arrows, an optimal path

always starts from the top left node (ie. element (1,1) of the array)

and terminates at the bottom right node (ie. element (f4+1,m)). Thus,

the general direction of a path in the WIN is from top to bottom and

left to right. The number inside each node represents the minimum

penalty incurred in traversing from node (1,1) to that node. Conse-

quently, the content of node (1,1) is always zero. The minus sign

indicates that the number concerned is a penalty and not a reward.

The absolute value of element (041m) gives the LD or WLD as required

(it is WLD in Fig. 3.17).

Various types of symbol errors defined earlier can be

graphically represented by the WMN in the following ways. A horizontal

link denotes an omission of a symbol associated with that link from an

observed string ie. it represents a deletion error. A symbol extra-

neously inserted into an observed string resulting in an insertion

error is depicted by a vertical link. For a diagonal link ij connecting

node i in row k and node j in row k+l, a substitution error occurs if

and only if the kth symbol in the observed string is not identical to

the symbol corresponding to link ij in the FIN.

=153—

(a) a FIN corresponding to a FSG

(b) @ WIN obtained from FIN in (a)

The required optimal path is designated by double-lined arrows.

Fig. 3.17 Matching of a string with a FSG using WMN technique

= 54 =

A method is now presented for computing the contents of

various nodes in the WMN in the search for an optimal path.

The process is divided into two stages. The first stage is

concerned with the calculations of the first row of the WIN whilst the

second stage determines the contents of elements in subsequent rows.

Stage I Computation of elements in the first row

Let e(i,j) be the element in row i and column j of the WIN.

Given that e(1,1) = O .

All other elements in the first row of the WMN are calculated iteratively

using the following equation :;-

e(tsa) + wae [s8) - 2y(a)] (310)
all iin

A, aA. yralits
A, — > a.

2 J
where

indices i and j denote the column positions corresponding to

AS and 4, respectively in production Ay — a4, .

j= nm for production Ay —_ a °

BG) is a non-negative ‘deletion function!

defined as :-

F = significance of 'a|' 3.11 (4) eni. j ()

where significance of te," is the weight associated with a5

obtained from a priori knowledge of the symbol yee .

Stage II Computation of clements in row k (l<k <2+4)

(i) Due to the previous row ie. row k-l

e(#) (k,j) = Max[{ Max —
all ii . .

aa | eGrts ere) |
a Jd

A. —>P a.
a J

e(k-1,j) - F(x)

(3.12)

epee

where FL (x) is a non-negative ‘insertion function' given by :—

FL (ic) =

significance of b,) (3-13)

where by, is the (k-L)th symbol in the observed string.

P,(Jk) is a non-negative ‘substitution function' defined as:—

F, (ike) =|(significance of b,_,)- (significance of ra;")|

(3-14)

(ii) Due to the same row ie. row k

of8) (uy 5) = max{ (405 3), max fo) - 2,3] \
all iin
Ay — aA, (3-15)
A, —r a.

a J

The procedure in stage II is repeated until the last row

(ie. k =Q2+1) has been processed.

The final value of element (£+ 1,m) obtained from the above

computations indicates the minimum penalty incurred if the observed

string is to be generated from a given set of rewriting rules. This

is the case of finding WLD whose value together with the contents of

other elements of WIN are shown in Fig. 3.17 .

To obtain the LD, substitute the followings in equations

310,312 and 3.15

we Fd) =
P(x) =

(ik) ty if and only if b.

(3-16) w

bt? *5
QO otherwise

The technique of the WMN can be applied to select one best

word which is the closest match to an observed string as follows.

Find WLD for every word in the vocabulary and choose the word with the

smallest value of WLD as the required best word.

- 56 -

In concluding this section, some issues concerning the WN

are discussed below.

(2)

(b)

It is possible to obtain two or more optimal paths for an observed

string and a given set of rules. This implies that the string

selected from the grammar to represent the observed string as

the prototype string may or may not correspond to an original error—

free stringe However, this poses no problem to the application in

the recognition of isolated words. Provided representative strings

are generated by the same set of rules, the word selected as a best

word is always the same irrespective of which representative

string is chosen.

The method of WMN can, of course, be employed to test whether an

observed string is derivable from a FSG. That is,it can be used to

perform the function of the parsing algorithm (algorithm 3.2) .

The string is said to have been generated by the grammar concerned

if, and only if, the element (24 1,m) of the WIN is zero.

In general, the time required to parse a string is longer for the

WMN technique than that required for the parsing algorithm. There-

fore, in applications where it is required to know only the exis—

tence of errors but not their locations, the simple parsing method

is preferable to the method of WMN.

304-4 A stochastic algorithm

As pointed out in section 3.3, the WMN technique is applied

to decode an observed string which has been unsuccessfully analysed

by the parsing algorithm. Even in this case, it is still possible for

two or more words to be assigned the same value of WLD. An example of

this type of situation is illustrated in Fig. 3.18 . As before,

-57-

significance of each symbol can be determined from appendix B.

This section presents a decision criterion using probabilities

for the selection of a word that is most likely to represent the string.

From the previous section, the overall penalty of an optimal

path is obtained by adding the contributions from each individual link

comprising that path. Likewise, the method to be presented below is

based on the same assumption, namely, that an optimal path can be

divided into independent links. All of the individually optimized

links are then combined to form a final optimal solution.

In outline, the method works as follows.

For each link in an optimal path of the WMN which contributes an error,

an estimation is made of the likelihood of that symbol alteration.

The final result of an optimal path is the product of probabilities

estimated above of all such links comprising that path. The procedure

is repeated for all optimal paths appearing in the WMN. Results of each

path are then combined to give the final solution.

The above process is applied to all eligible words ie. words

associated with the same WLD. The word with the largest value of the

final solution is then selected as the one most likely to generate the

string. If two or more such words are possible, the string is rejected

as before.

Techniques for the estimation of probabilities associating

with each type of symbol alterations are given next.

~ 59 =

(a) Deletion errors

Let Ppl 5) be the probability that ay 5? the terminal symbol corres=

ponding to link ij is deleted from a string in word We This is subject

to the followings :-

(i) deletion coefficient +, which determines how probable a
D

particular symbol alteration is due to deletion event (rather

than substitution or insertion).

(ii)the conditional probability p(a, (f* j,)2 the probability that the

symbol deleted is a; 4g given that it is in a string corresponding

to word Wye

The selection of P(a; 5/%,) rather than P(w,/2; 5) results from

the rewriting of P(w,,/a; 5) using derivations similar to

equations 3.8 and 3.9 and the application of the assumption

given in section 34.2 .

The criterion for the case of deletion errors is as follows :-

Decide that the symbol deleted is as 3

is the largest for all words, where

(25 sre = t)- pla; 3%) (3.17)

corresponding to word w, if

Pi (4; ie

(b) Insertion errors

Let Pb), be the probability that the terminal symbol b is inserted

into an observed string in word w, This is governed by :- hc?

(i) insertion coefficient ty .

(ii) the frequency of occurrence of the inserted symbol b, p(b),

That is, the more frequent b occurs, the more likely that it

is effected by noise or disturbance etc.

The conditional probability p(b/w,) is not used in this case.

This is because, it has been determined experimentally that any

symbol can be inserted into a string corresponding to any word,

- 60 =

even though that particular symbol may never appear in that

word during the training mode.

The criterion for the case of insertion errors is :-

Decide that the string, where a symbol b has been inserted, corresponds

to word w, if P,(),, is the largest for all words,

where

Pi(b), = 4, + (bd) (3.18)

(¢) Substitution errors

Let Po; sy

associated with link ij is substituted by a symbol b.

be the probability that oi? the terminal symbol

This is affected by :—

(i) substitution coefficient ts °

(ii) the conditional probability (a, 5/%,) .

The probability of a symbol b is not considered since the

importance of b relative to a5 has already been taken into account

in the WIN.

Thus, the criterion for the case of substitution errors is :-

Decide that the symbol being substituted (by a symbol b) is 855

corresponding to word wy af P4(2, jy is the largest for all words,

where

Po(85 5) a ty + P(a, 5/%,) (3-19)

erie

The following is an algorithm for finding the most probable

word, whose corresponding grammar could nearly have generated an

observed string. The techniques described above are employed to estimate

the required probabilities of various symbol alterations. The associated

flow diagram is depicted in Fig. 3.19 .

Algorithm 3.4

Step 1

Step 2

(2a)

(2)

Ste

Read (w, isl, eoe,tiy)» all the words corresponding to parame 8

with the same smallest value of WLD.

Set k 0

K O , where K is the optimal path number .

Set k = k+l.

Set K = K+l1.

For each symbol alteration found in path K and word Wes

calculate P85 she Pi(b),. or Po(85 sic depending on

the type of the error.

Calculate Pe which is the product of any combination of

7 i hh a Poe PL(b), and Po (855), estimated from path K ani

word Wye

If current value of K is the last one, go to step 5.

Otherwise, go to step (2b).

ke s pk
Calculate Pa pies Py

If k = W,, go to step 7.
N

Otherwise, go to step (2a).

If Max Pa corresponds to two or more words, reject 833 END.
k

k

Otherwise, decide that 54 corresponds to word wy ae Pa

is the largest for all the words ; END.

- 62—-

Input all words asso=

ciated with the
smallest WLD

w
R

uu

KeKkK+il
Calculate P_(a, .)

Dyrastk? PP (>), or Py (a5 5)x

|
Calculate ee

k Max Po corres—

pond to two or more
words ?

 Output Ww, as the most

likely word

Ga >-—___
Fig. 3-19 A schematic diagram of algorithm 3.4

= 63 —

CHAPTER 4

CONTEXT-FREE GRAMMAR-BASED MODELLING

4.1 Motivation

The first application of CFG's to programming languages was

probably made by Backus 85) in specifying the syntax of the ALGOL

language. Since then, the use of CFG's has become common among research

workers in the computing field. In contrast, as already mentioned in

section 2.2, it is not clear at present what type of grammar best re~

presents strings of symbols associated with an IWR system. In principle,

the use of a nonrecursive FSG would be adequate to model the FE where

only finite-length strings are involved. However, it is possible that

the use of less-restricted grammars may provide models which are

preferable in some way. For example, a model constructed on the basis

of a CFG may have fewer nodes and/or links than a FSG—-based model

using the same data.

The above is analogous to digital filtering. It is possible,

in principle, to use a nonrecursive digital filter whenever a finite-

length impulse response is required. However, it is sometimes better

to use a recursive filter despite the type of the required impulse

response. This is because the volume of necessary computation may be

greatly Fednoed<° 1) .

In addition, the use of a CFG provides the model with a

push—down mechanism which makes it possible to temporarily suspend the

processing of a constituent of a language or a string at a given level.

This is done so that an embedded constituent can be processed using the

same grammar. The foregoing operation thus allows many regularities

of the language, if any, to be captured. As an example, a substring oc-

curring in a number of different contexts may be represented by a single

sehen

rule instead of by a number of independent rules for each of the

different contexts. For the above reasons, it is of interest to have

methods for the construction of nonrecursive CFG's.

This chapter is concerned with the application of CFG's to

the modelling of a FE in the recognition of isolated words. The

general approach of the CFG inference problem follows the outline of

the approach based on FSG's as given in Fig. 3.1 . The FSG depicted

in Fig. 3.1 is, of course, replaced by a suitable CFG. A method is

given for the direct construction of a proper nonrecursive CFG from

a set of sample strings. The inference method to be presented generates

compact CFG's having a near minimal number of rules and/or nonterminals,

compatible with the requirement to be able to generate all strings

in the sample set.

The basis of the inference method involves a comparison

between an incoming string and an existing CFG. The matching process

requires the computation of the minimisation matrix, M, (to be defined

later) whose elements reveal the compatibility or otherwise between

the string, its substrings and the grammar. If any incompatibility

exists, appropriate rules and/or nonterminals and terminals are

appended such that the augmented CFG can generate the string.

In contrast to enumerative techniques, the method mentioned

above is computationally efficient. This is because it is based on

direct construction of a grammar from sample strings. In addition,

the method is conformed to basic assumptions about an inference

process in general as given in section 2.2 - Suitable decoding

techniques are also described.

aS

4.2 Graphical representation of a CFG

In this section, a method is given for the construction of a

network, which is essentially a set of FIN's applied recursively, to

represent a CFG in a graphical format. The network is fully explained

in the following definition.

Definition 4.1 A push-dow transition network (PTN) is a collection

of directed graphs with a unique start node and a special set of ter—

minating nodes together with a push-down store. The network consists

of a principal graph which contains the start node and optionally, a

number of auxiliary graphs . Hach and every link or transition in the

network is associated with either a terminal or a nonterminal but not

both.

Transitions involving nonterminals and a push-down stack can

be interpreted as follows.

If a nonterminal C is encountered during a transition from

node A to node B, the processing of an observed string at the present

level is temporarily suspended. This is followed by the saving of the

nonterminal associated with node B on a push-down stack. The processing

then resumes with the new transition, commencing from the state or node

corresponding to nonterminal C which is either in the present graph

or in another graph. In other words, the transfer of control from one

level of the process to another can be viewed as a procedure of a

subroutine call to another graph or the current one. Upon reaching a

terminating node, the symbol on top of the stack is poped-up, removed

from the stack and used as the new starting point. An attempt to pop

up an empty stack after the last symbol of a string has just been

processed signifies the acceptance of the string.

- 66 -

All the CFG's considered in this thesis are assumed to be

proper so as to eliminate as many unnecessary rules as possible. The

formal definition follows.

Definition 4.2 ACKG G = (Wy, R, &) is said to be pooper 22) if:

(a) R has no A-productions (A —»Afor all A in Vy) ie. G is A-free,

(b) there is no derivation of the form amtoa where Aev, ie. Gis

cycle-free, and

(c) G has no useless symbols ie. there does not exist a nonterminal

that does not generate any terminal strings.

A proper CFG can be transformed to a PTN in the following

manners.

(i) Partition the rules of a given CFG into groups of rules where

rules in each group have identical LS nonterminals.

(ii) Construct the principal graph, beginning with the set of start

rules, based on the constraints given below.

(adi) Apply the same constraints to the remaining sets of rules, if

any, to obtain appropriate auxiliary graphs.

The general procedures employed in the construction of a PTN

follow those of a FIN. The following describes constraints governing

the creation of links and/or nodes of a PIN from a set of rules of

a CFG.

A rule in the CFG can be in one of the following forms : -

+
Form 1 A—> oB where “EV ; A, B evy (4.1)

*
Form 2 A—» ga where BEV and a€Z. (4-2)

For a given rule, there are as many links as the number of

elements in “ orB 3 except when fis a null string where there will

be exactly one link. Each link created from and associated with an

aieixe

element of & or sconnects the current node to a new node except for the

last element of d. In that case, the link corresponding to the last

element of aterminates at the node associated with nonterminal 'B',

For a rule of the second form,the final link of the rule,

associated with a terminal 'a',ends at one of the terminating nodes.

The above procedure can be illustrated by the following example.

Example 4.1 Consider a CFG Gas (Vig 2, R, &) whose rules have

already been partitioned into various groups as given below.

R: &— bA A—> bea B—» abB Cc —> cB

& —> ab A—> ab B—> be C—>c

A—pa Bo,rb

where Vy = (£, A, B, C)

= = (a, by c)

The PTN constructed using the above procedure is depicted

in Fig. 4.1 .

(a) the principal graph

(b) an auxiliary graph

Fig. 4.1 A PIN corresponding to the CFG in example 4.1

- 68 —

4.3 Computation of the minimisation matrix

It is usually more difficult to deal with the problem of gram-

mar inference of a CFG than that of a FSG. This is because many proper-

ties that are decidable for a FSG become undecidable for a CFG. In

particular, it is known (54) that a general algorithm does not exist

to test whether two CFG's are equivalent. For these reasons, many CFG

inference algorithms are confined to specific types of CFG's. Likewise,

the CFG's to be inferred are assumed to be in a normal form whose

definition follows.

Definition 4.3 A CFG in Chomsky normal form(28) is one in which the

productions are of the following forms only.

A—» BC where A, By GC € Vy (4.3)

A—ea where aes (4.4)

Rewriting rules of the first form are called bielement rules, and

those of the second form are known as terminating rules .

Any CFG can be converted into an equivalent CFG in Chomsky

normal form (54,55) so that no generality is lost by dealing only with

CFG's in this form. An example of such transformation is given in

reference 54.

Before the inference method can be given, it is necessary

to describe the minimisation matrix, M, which forms the basis of the

inference process. This is done in the following two sections where

iterative procedures for the computation of the nonweighted and

weighted versions of the M-matrix are presented respectively.

= 691

4.3.1 Nonweighted M-matrix

This section describes the nonweighted version of the M-matrix

and presents an iterative procedure for the computation of its elements.

Discussion of the matrix is now given.

Definition 4.4 Let s = By Doweeby be a string of length 2, where bez

for i=l,.ees ZL. rora given CFG in Chomsky normal form and for a

string s, the minimisation matrix (nonweighted) , M (hereafter referred

to as M-matrix) is a three dimensional, Qs ke > matrix. r is the

number of nonterminals in the grammar. Element my of M denotes the
jk

minimum number of symbol alterations (any combinations of deletions,

insertions or substitutions) required if the length-i substring of s,

whose first symbol is oS is to be generated by the grammar from Aye

the kth nonterminal.

Alternatively, element Ms ae can be viewed as the LD between

an observed length-i substring of sywhose first symbol is pe and a

prototype string y derivable from Aye As an example, suppose A.

generates a string cd and that s = deded. Two deletions are then

required from the length-4 substring cded to change it to the string

ed, which can be derived from Ay In this case, m, 24" 26
?

A, is arbitrarily chosen from the nonterminals to represent

the start symbol, so that the element Mp is zero if, and only if, the

string s can be generated by the grammar.

Before proceeding to present a method for computing the M—

matrix, various types of bielement rules are discussed.

==

Definition 4.5 The hierarchy level (HL) of a nonterminal Ay» denoted by

H(k), is the number of symbols in a string derivable from that

nonterminal.

In general, the HL of a nonterminal in a CFG is not unique.

However, because of the nature of the construction procedure described

later, it is guaranteed that every nonterminal in the CFG's to be

considered will have a unique-value hierarchy level, except for the

start symbol Ans whose HL may be multi-valued. The HL of AL is, of

course, equal to he the length of the string under consideration.

By definition, the HL of any nonterminal in a terminating

rule is unity for the CFG's inferred in this chapter.

In order for the elements of the M-matrix to have the meaning

given above, it is necessary for nonterminals in bielement rules of the

form A, _ aA » where As ‘S and A é€ Vy te have hierarchy levels

satisfying at least one of the following conditions :-

H(k) = H(p) +1 (445)

H(k) = H(a) +1 (4.6)

That is, the HL of AL should differ from that of o or a by exactly

one.

This condition excludes, from CFG's to be constructed, bielement rules

of the form AL — Bea where neither 4 nor oa are in the

terminating rules.

Permissible types of rules are where :-

(type 1) Both 4 and Ay are in terminating rules (4.7)

(type 2) 4 or As put not both, are in the terminating rules(4.8)

The HL's of various nonterminals in a CFG can be computed

as follows.

ath

(a) HL's of nonterminals in terminating rules

H(k) = 1 for all A, —» a, of the CFG. (4.9)

This follows from the definition of the HL.

(>) HL's of nonterminals in bielement rules

H(k) = Min [se) + (<) | (4.10)
P,GEP,

where PL is the set of ordered pairs (p,q) such that yA Andy is

a rule of the CFG.

The above follows because nonterminal AY is replaced by nonterminals

A and A via a bielement rule of the form AL — AA, so that HL's
Pp qa pP@

corresponding to , and a need to be added, The final result is the

smallest of this sum taken over all rules in the set Pye

The following describes an iterative procedure for computing

the M-matrix. The procedure is in two parts; the first part is for th

terminating rules whilst the second is for the bielement rules.

Part 1 : Terminating rules

(i) a=1

Oo; if and only if AL oe by is a rule of the CFG

Mh jie cs SG otherwise

(4411)

This follows from the definitions of M and of terminating rules.

(33 ea = 2535 005
j+i-l

Tic = Max [oe = na | (4.12)

The above follows because the number of alterations required

for a substring of length i to be derivable from AY is i-l, if Ay

= 72 =

generates any of the symbol in the substring, otherwise it is i.

Part 2 : Bielement rules

(444) i =1

2.7 are ae [sot H(a), ™ jot x(p)] j (413)

where PL is defined as before.

This follows because nonterminal AY is replaced by nonterminals A, and

Ag via a bielement rule of the form AR — aaa? so that the element

of the M-matrix and HL corresponding to A, and A, respectively, or vice

versa, need to be added. The smallest of this sum is selected because

the minimum number of alterations needed to convert a string, derivable

from Aw into a substring of length unity cannot be less than the HL

of H(p) or H(a), whichever is smaller.

(Fad are, 3y een

m,. = Min {Min [m,, + H(a), m,. + H(p),
ijk PG eP, [1JP 2194

228 Waser inn, joaya 1S (4.14)

where PL is defined as before.

The above follows in a way similar to the preceding case, with the

extra consideration that the substring of length i is itself divided

into two sub-substrings of lengths u and i-u, for u = 1,...,i-l. The

first of these sub-substrings starts at the jth symbol and the second

at the (j+u)th symbol.

A unit length string generated by the grammar can be repre-

sented by a rule A, _ Soca where either 4 or is arbitrarily

chosen to act as a 'dummy' nonterminal. That is, the chosen dummy

cao] Base

nonterminal never appears in any other rules of the grammar, except

in the specified start rule. The other nonterminal is, of course, in

a terminating rule. This is done in order to preserve the format of

the normal form of the CFG. The contribution of such a rule to the

content of the element of the M—matrix corresponding to LS nonterminal ,

ie. Als is equal to the content of the element of M corresponding to

non-dummy nonterminal (either Ss or 4) .

It is possible to achieve some savings in the computation of

the M-matrix. This is because not all elements of the M-matrix are

required to be computed. Elements Ms ay for which i+j>2+1 need not be
3

computed, as there are no substrings of s corresponding to such values

of i and j. In addition, provided that the length of s exceeds unity,

elements for which i = 1 and which correspond to the start symbol,

ie. k = r, need not be computed.

The following example illustrates a completely filled M-matrix

for a given string and a specified CFG.

Example 4.2 Consider a normal form CFG Gos (VysZ.R,&)

where Wy = (Ay sAprAy Apr tesdgs dos Aas hgordy eA, =6)

= = (B,C,D,E,e, j,h)

R= A —e Ay _ AA, A. _ AzoAy

Ay — EF Aso —> AnS AL —_ 4s Asy

Ay —~ h 3 —_ AgAy

he —- D

4s —~ sB

AG — j

eer) ©

The M-matrix (nonweighted) for the string s = BjC and the

grammar G

=T4 =

is given in table 4.1 below.

4e2

i iu 3

Zz 1 2 3 1 2 z

substring B J Cc Bj jc Bjc

A e 1 At 2 2 3

Ay 1 1 ak 2 2 3

A3 1 1 2 2 2 3

A = iS 4 ib él 2 3

> oO 1h z z 2 2

Ag 1 ° XL i 1 2

Ay 2 ah ° 2 1 2

Ay 2 2 2 2 2 3

Ayo 3) 3 3 3 3 3

A533 2 1 1 2 0 1

A, - - - 1 a 0

Table 4.1 M-—matrix for string s = BjC and grammar G
4.2

-%-

423-2 Weighted M-matrix

This section describes an iterative procedure for computing

the weighted version of the M-matrix. This type of the M-matrix is

usually employed if it is decided to attach some sort of 'significance'

to each and every symbol in the alphabet. Not all parts of the iterative

procedure for computing the nonweighted M-matrix need to be modified

in order to obtain the weighted one. Thus, unless stated otherwise,

all definitions and derivations required for the computation of the

weighted M-matrix are assumed to be the same as those given in the

previous section.

First, some definitions necessary for the discussion of the

iterative procedure are given below.

Definition 4.6 For a given CFG in Chomsky normal form and for a

string s as described in definition 4.4, the weighted M-matrix (here-

after referred to as wil-matrix), wM, is a three dimensional, Lele vr

matrix ; where land r have the same meanings as in definition 4.4 .

Element ic of wi denotes the WLD between an observed length-i sub—

string of s, whose first symbol is iy and a prototype string y

generated from Ays the kth nonterminal.

Using the same example that exemplifies definition 4.4,

where AY derives cd and that s = deded, the content of element m
4, 2,k

of the wi-matrix associated with substring cded becomes |significance

of ret + | significance of tar| - Substituting for the significance

values of symbols 'e' and 'd' as given by the table in appendix B

yields m oe = OE aoe
4,2,

Definition 4.7 The weighted hierarchy level (WHL) of a nonterminal Aus

denoted by wH(k), is the sum of the absolute values of the significance

= 16. =

of all symbols in a string derivable from Aye

As before, every nonterminal in the CFG's to be inferred will

have a unique-valued WHL,except for the start symbol An

The following is a procedure for computing the WHL's of non—

terminals in a CFG.

(a) WHL's of nonterminals in terminating rules

wH(k) = |significance of ay, for a rule AL > a in the cré

(4415)

This, again, follows from the definition of the WHL.

(b) WHL's of nonterminals in bielement rules

wH(k) = Min [vate) + waa)] (4.16)
P,GEP,

where Py is defined as before.

The above follows from the same reasons given for equation 4.10 .

4n iterative procedure for the computation of the wi-matrix

to be presented below is also divided into two parts, one each for the

terminating and bielement rules. The part for bielement rules is the

Same as part 2 of the procedure for the computation of the M-matrix,

except that all the HL's are replaced by their corresponding WHL's.

Part 1 : Terminating rules

Gyr ea

™ ak = significance of by - significance of a, (4.17)

for a rule AY a in the CFG.

This follows from the definitions of wi-matrix and of terminating

rules.

-M1-

(GA) rt ee, 3 see

j+i-1 =

m. = aes {ut 2 Slee n ics amet of v,|
ij

Wz [stentiomee of b,| } (4018)

The above follows because a substring of length-i, whose first symbol

starts at position j can be considered as to consist of i sub-substrings,

each of unit length. Only one of these sub-substrings can be matched

against ays the terminal in a rule AY =a of the CFG.

Part 2: Bielement rules

(444) G=1

™ ic = Min { in[my ,, +wH(a), m, ae jot *HC0)] i (4.19)
Po aeP,

where PL is defined as before.

This follows from the same reasons as those given for equation 4.13

with the replacement of H(p) and H(a) by wH(p) and wH(a) respectively.

(SR) 2 e953, sang ®

Ti se = Min { win [mn m, jptWH(a)) mj at wH(p),
P,eP,

Min (m
Agger Die. nia S29)

where PL is defined as before.

This also follows from the same reasons that elucidate equation 4.14,

with H(p) and H(a) being replaced by wH(p) and wH(a) respectively.

An example of a wii-matrix is illustrated by table 4.2. The

string is s = BjC and the grammar is the CFG G taken from example 4.2.
4.2

Values of significance of various symbols can be found in appendix B.

- 78 =

i t 3

j a 2 Bi L 2 1

substring B i c Bj ic BjC

4 T a 8 a 8 10

Ay 3 515 a 13 te 14

A, 10 2 UL 4 5 1

Ay 2 eh 1 12 11 13

4s QO) ake ah 10 Ld 23

Ae 12 GCickS 2 a 5

Ar lie 3 0 ait 10 12

Ag 8 10 1 Le itd 9

Ayo LO Le, 25 10 15 ws,

433 LE 3. 210 5 0 2

4A, — gi, 3 2 0

Table 4.2 wM-matrix for a string s = BjC and the grammar G
he2

=19'=

4.4 Inference of a CFG

The inference method presented in this section is based on a

search for incompatibility between each string in the sample set and

the current grammar.For each occurrence of such incompatibility, the

grammar is augmented such that a new grammar is produced which can

generate the present string. Fig. 4.2 illustrates the overall structure

of the inference method which can be explained as follows.

The symbol strings in the sample set 5, are assumed to be

arbitrarily labelled 8 Sorecer Sy © The first step is to select the

Ss

required type of the M-matrix (weighted or otherwise). An initial cre

is constructed from the first string 5 such that G generates exactly

that string ie. Gq is a SG. If there exists only one string in 8.» the

required grammar is Ge Otherwise, the inference method is applied

recursively as follows. The nth string, Sy) is matched against the

(n-1)th inferred cre Gy? for n = 2,...,M,. The matching process involves

the computation of the appropriate M-matrix whose elements reveal the

shortcomings of the CFG in relation to its ability to generate the

and no string. If the element Mir = 0, 5, is derivable from Ga

change is required, ie. qs = G in-1° Otherwise, information from the

particular M-matrix is used to augment Ga by appending additional
1

terminals, nonterminals and rules, as appropriate, so that the new

grammar G, can generate the string. The above method is repeated until

all strings in 5, have been processed.

The inference method just described will be presented in two

stages. The first stage is concerned with the creation of the initial

set of productions from the first string in the sample set. In the

second stage of presentation, the selected type of the M-matrix is

computed using the procedures given in the previous section. The current

80 =

(START)

Select type of the
M-matrix

Input lst

Construct SG, G.

(Algorithm 4.1)

last string

2

N

Input next string

Compute appropriate

M-matrix

(Section 4.3)

Pr
Update grammar

i

Output the
final grammar

(Algorithm 4.2)

Fig. 4.2 A schematic diagram of an inference method of a CG

- &-

grammar is then updated where necessary to form an augmented grammar

as required.

4.4.1 Formulation of the initial set of rewriting rules

In the first stage of the inference method, it is arbitrarily

chosen to process the first string from left to right starting from the

left most symbol of the string. A set of terminating rules is formed

first. Then a bielement rule of type 1 is constructed from two non-

terminals corresponding to the first two symbols of the string. This

is followed by the formulation of successive bielement rules of type 2,

where only a is in a terminating rule, until the entire string is

dealt with.

4n algorithm for forming the initial CFG is now given.

Algorithm 4.1

Step 1 Read the first string 5) = By Paveeby where s, is arbitrarily

drawn from the sample set.

Step 2 Form a set of terminating rules as follows.

For i =1 tot:

Unless a rule has already been formed with b; on its RS,

create a new nonterminal Ay and a new terminating rule
di

“UR _— bs °

(The notation introduced here indicates that 4, is the

nonterminal corresponding to b,) . i

The nonterminals derived above form the set of nonterminals

having unity hierarchy level.

Step 3 Create a new nonterminal of hierarchy level 2 and a bielement

rule of type 1 from the nonterminals corresponding to the

first two symbols of : —> A St eds >, “bs

= §2—

(4, denotes a nonterminal with hierarchy level i) .
i

ir Q- 2, Ay (= re) is the start symbol, and the formation of

G is aes ta)

Otherwise, further bielement rules of type 2 are formed

as follows.

For i = 3 tof:

Create a new nonterminal Ay and a new bielement rules
i

“i, oe By ;

a (=4,) is the start symbol. This completes the construction of G,.

The corresponding schematic diagram is depicted in Fig. 4.3 .

4.4.2 Updating the existing grammar

The following algorithm is employed in the formulation of Gq.

from Gi for n =2yeeesllee

Algorithm 4.2

Step 1 Read a string ooh Dy boeweby °

Step 2 Find iteratively, using the procedures in section 4.3, all

necessary entries of the chosen type of M-matrix for S,°

Step 3 If Mp is not zero, go to step 4.

Otherwise, G. = G+

Tf 5, is the last string, END.

Otherwise, increase n by one and go to step l.

Step 4 Formation of terminating rules

For i=l tol:

Create a new nonterminal A, and a new terminating rule
a

Ay = by if, and only if, there does not exist a rule
a

with by at its RS.

PB ose

(START)

Read lst string

Form a set of
terminating rules

Create a nonterminal of

hierarchy level 2 and

a type 1 bielement rule

a a)
N

Form further new

nonterminals and

bielement rules of type 2

Fige 403 A schematic diagram of algorithm 4.1

Ste

= 84.—

Formation of bielement rules

Select a set of indices Jy 2

For i=2-1;

Select Jp as the least j for which m is minimum.
$-1,5,7

For i = (0-2), (2-3),..02 2

Select dy as the least j for which Mir is minimum and

for which jy Sm} Jia

Each J is the j index of Ts ake corresponding to a substring of

length i.

Each will lie in the range 1< j,s Q-i+l because, as explained

previously in section 4.3.1, there are no substrings for

values outside this range.

Form the new bielement rules.

For. J mx2)'3

Create a new nonterminal Ay and a new rule — Ay a 4
2 2 eve

unless these nonterminals and the rule have already been

created. A. and A. are the nonterminals in the
Jo doth

terminating rules having b. and b. » respectively,
Jo dott

on the RS.

For i= 3 tol:

ar: Jy-1 7 94? form a new bielement rule “h > Aj Ma-1?

where An is a newly created nonterminal, unless there
i

is already a rule of the form ae — BA, “1? in which case
i

oo is used as Ay + (B represents an arbitrary nonterminal).
a:

af Sie
> A. » where is a newly created An An-145,+8(h,-1) Ah;

= dy? form a new bielement rule

nonterminal, unless there is already a rule of the form

= 85 =

oa — “n-1? in which case as is used as AL .

Represent ne as A, » the start symbol.

Lf: 5, is the last string, END.

Otherwise, increase n by one and go to step 1.

A schematic diagram of the above algorithm is depicted in Fig. 4.4

4.5 Illustrative example of a GFG inference

The following set of sample strings, taken from Bezdel and

Briate(2°), represents the output from the FE in a speech recognition

system when the word 'SEVEN' was spoken by different speakers.

The strings are :

5, = sauau

8, = fsau
2

a, = fsu

Ss an saiaua

Bees eet

se = fpsau

87 = saiau

The following illustrates the step-by-step operation of the

inference method using the nonweighted M-matrix. Only the elements of

the M-matrix relevant to the augmentation of the CFG's are shown, ie.,

the entries My jp For i =2ye-0, and j = lyese, L+1-i. The indices ae

selected are indicated by a prime on the associated element of M. The

rules added at a given stage are indicated by the use of ~ lines

underneath the rules.

= 8 =

 Input a string s,

Compute the

appropriate M-matrix

N

Form terminating

rules

Select a set

of J

Form bielement

rules

nene+1

Fige 4.4 A schematic diagram illustrating an algorithm for

updating a CFG

mi64, =

Stage 1

Formation of a directly from s-

8) = sauau Gs era 213 a pie Soap als

tg 2 43 Aaly
dae Ay Aya4o

Stage 2

85 = fsau G,: A —s A — AA, i, as

z Lees A, — a A3 > AAs pom a Aatis

2S 3° 3. Au Aan Aste

Mel] 34-2" aS

4]3

Stage 3

53> fsu G5: 4 —s No _ AA, Saas aes

Ne Spina ats ee ais ee eS
2 eee A, — Ag At fet Aish

M= ~~
3 - ae 715 fai

Stage 4

84 = saiaua Gt A —~s Alo _ AA, A, — eT AS

Pl ese ae Bes Se Sa ene recat
2 toss) 3S Ayu Aly — AvoAsS AS ae es

~ ~en
Sl e2t 13 tee 2 A,—f Ag Asks A — ALete

M=| 4 | 2" 2 2 Ase i A AA

Daan ees 46> Ay ahs
~ ~nw

ew 2
At the end of this stage, G, predicts three additional 4

strings, namely, sauaua, saiau, and fsai.

= 88 —

Note that the predicted string saiau subsequently appears in the set

as 8.

q°

Stage

as = sau Ges 4 —s Alo — AAS A. — A ahs

A, —a 43— Ay oAS boomed AA

aN ae oo eee oars ea oot ee

eee ale! 2 diaper ain 1 3 eee 6 2
Je 1 PS mie Poem gama oye

~~

iG las

Stage 6

85 = fpsau Gee 4 —s 4s — AAS A, a Aas

4, — a 443 — Aleds 4, —e Ayan

woe a$ She eked 3, ae Loe etre
i BOVE Sena silica! icky A, — Agds

Me 3 2-e2) 0! oe Aps AA, A, AAS

4 @ 1? Ag — P Algae “143 Ae

a, ~ ~n
5) | 2 47 Achy

~~ ~nNw

The string fpsai is added to the set by Gee

Since 87 = saiau is already in the set, the final grammar is Ge.

A PIN of Ge is depicted in Fig. 4.5.

(2) Principal graph

Fig. 4.5 A PIN of the inferred grammar G,

4.6 A recognition scheme for CFG models

Figs 4.6 displays the general features of the recognition

scheme B which is another method of the recognition of isolated words.

Two major differences distinguish scheme B from scheme A described in

section 3.3 and Pig. 3.13. The first difference is that, in scheme B,

production probabilities are employed to select the most likely word

in both of the following cases : (i) an exact match - where two or more

grammars can generate the observed string, and (ii) a closest match —

where two or more grammars could nearly have generated the string with

the same penalty incurred. The second difference is concerned with the

use of the AWSL criterion (to be explained later) in place of 2 stochas—

tic method in scheme A.

- 90 -

sample strings

peers a ee oo LEARNING MODE
Estimation of string
probabilities

rul¢@s or
representative strings

aan Find a best match

(including an exact

match) for the string

 RECOGNITION MODE

string input

‘fe best match cor— output

respond to more deotat

+k one ecision

Apply string probabilitieg

to select the most

likely word

Apply the AWSL criterion

to select the most

suitable word

Fig. 4.6 Flow diagram of the recognition scheme B

-9-

The following outlines a recognition system whose flow diagram

is shown in Fig. 4.7 based on the above mentioned recognition scheme B

and pre-inferred CFG's.

4s in scheme A (and in many IWR systems), the recognition

system consists of two phases of operation - the learning phase followed

by the recognition process. In the learning mode, normal form CFG's,

one for each word in the vocabulary, are directly constructed from a

set of sample strings using the method of section 4.4 . The inference

process involves the computation of either a wM or an M-matrix whose

elements can be iteratively computed by the procedures given in section

4.3 « The prior knowledge of the significance of symbols involved (or

the lack of it) influences the selection of the type of the M-matrix.

Estimation of production probabilities of the inferred CFG's is also

carried out during the learning operation.

In the recognition mode, an incoming string is analysed to

determine which grammar, if any, could have generated it. The determina~

tion of a best match for the string, which can be either an exact

match or a closest match, is accomplished by using the wi-matrix as

a recognition matrix. The foregoing statement assumes, of course, that

the significance of various symbols in the alphabet is known or can be

determined beforehand. The wi rather than the M-matrix is chosen

because, from experimental observations, the recognition performance

when employing the former improves significantly over that when the

latter is used.

Appropriate decision is given at the output of the system if

the best match found above corresponds to only one word in the

vocabulary. Otherwise, production probabilities are employed to select

the word that is the most likely (probabilistically) to have correspond

- 92 -

sample strings

|
Inference of a CFG
(Computation of M or wi-

matrix) +
Estimation of production LEARNING KODE
probabilities

rewriting | rules

Compute the wi-matrix soe (Section 4.3.2) RECOGNITION MODE

string to find a best match
input for the string

he best match
correspond to more

than one word ?

N output

decision

Apply production
probabilities to select
the most likely word
(Section 4.6.2)

Is
there more

than one such
word ?

Apply the AWSL criterion
to select the most
suitable word
(Section 4.6.3)

Fig. 4.7 A CFG-based recognition system using scheme B of

the recognition method

1936

to the best match. For the case where there occur two or more such

equally likely words, a selection is made of the most suitable word

according to the AWSL. criterion.

In the following sections, descriptions are given of various

recognition operations mentioned above. These will be followed by the

formal presentation of a recognition algorithm comprising the fore-

mentioned methods for the representation of the overall recognition

process.

4.6.1 The wi-matrix as a recognition matrix

The determination of structures or syntactic analysis of

strings generated by CFG's have been studied and investigated by many

researchers in the computing field. Numerous algorithms have been

proposed for the recognition of CFL's, for example, those in references

89-94. Among the algorithms mentioned above, that of Younger 94) is

similar to the one presented here in the format of presentation.

Major features of each method can be described as follows. In the

recognition matrix of Younger, an incoming string is accepted as

belonging to the language of a given CFG provided a certain element of

this matrix is 1. If the element of the matrix is zero, the string is

rejected. In the method to be given below, a certain element of the

wi-matrix represents the smallest distance (WLD) between an input

string x and some string y generated by the given CFG. In other words,

the string x is parsed to completion on the basis of minimizing the

number of syntax errors or symbol alterations. If the content of this

element of the wi-matrix is zero, x becomes an exact match of y.

Descriptions are now given of how to apply the wi-matrix in

the recognition of isolated words. First, assume thet all CFG's

-94-

associated with each word in the vocabulary are in, or have been

reduced to Chomsky normal form. A recognition can then be performed on

an input string s of length Q as follows. Form a wil-matrix for the

string s and each of the CFG using the procedure described in section

4.3.2 . Decide that the string s corresponds to word Wy, if, and only

if, the element m(2,1,r) of the wi-matrix associated with word Wy. is

the largest for all such elements corresponding to all words in the

vocabulary, where A, is the start symbol.

The above follows immediately from the definition of the

wi-matrix. In essence, the method is concerned with the determination

of the smallest WLD between the string s and some strings derivable

from each of the CFG's under consideration. For the case where there

occur two or more words associated with the same value of WLD, the

technique of the next section is applied to select the most probable

word.

The foregoing method also, of course, works with the M-matrix

(ie. nonweighted version). Computation of the required M-matrix is

accomplished via the appropriate application of the procedure of

section 4.3.1 . In this case, the element m(,1,r) of the M-matrix

denotes the LD between the string s and some string y derivable from

the given CFG.

Although, both types of the M-matrix can be employed in the

recognition of isolated words, the weighted version is preferable to

the nonweighted one. This is because the use of the former as a recog-

nition matrix considerably reduces the ocourrence of the situations

where two or more grammars can generate the string s with the same

minimum number of alterations . The above is hardly surprising since

more information about the strings is available to the weighted type

= 95>

of the M-matrix than that available to its counterpart.

A parse (or parses) for the string s can be readily determined

from either the wil-matrix or the M-matrix in the following manners.

For the string s to be accepted by a given CFG, all entries of the M—

matrix (or the wi-matrix) associating with a parse of s must be zero.

This follows because in order for the entry m(2,1,r) to become zero,

each nonterminal in the rules that are employed in the derivation of

s must contribute exactly zero alteration to its associated element of

the M-matrix. These zero entries can then be used to construct a

parse for that string as illustrated by the following example.

Example 4.3 Consider a string s = uau and a given normal form CFG

G37 (Vyo%sR&) where :-

Wy = Cyr Age dys 918 394 gods rA ee)
= = (a,i,u)

R Segre eal ag eee nt ar ate

Ae at 2 eee Ae

Sa 1S eri ate eb

Say Aes. op eed
A, — 3

The M-matrix of s with respect to &, 3 is shown in table 4.3 .

i a§ 2 3

j 2 2 3 pes a

substring | u a u ua au uau

O21 0 gad 2

A, TOL = es 2

43 Ded UL Bate: 3

Ao on Oa aE

4 3 task Oh 20 1

4 4 2 ae ee 0

Table 4.3 The M-matrix for string s and grammar G Ae}

Since the nonterminal 43 does not appear in any of the start

rewriting rules, the entry m(2,2,13), even though its value is zero,

cannot be considered in the construction of the parse of s. Although

the nonterminal ANA is in a start rewriting rule, that rule does not

contribute zero penalty to the element m(3,1,r), and therefore 4a is

not valid for the determination of the parse of s. A similar argument

applies to element m(2,2,r). All valid zero entries in table 4.3 are

shown underlined. Fig. 428 depicts the one and only one parse of s.

=o =

ve
Alo

Vee
eer
u u

Fig. 4.8 A parse of string s = uau w.r.t. grammar Gy 2

4.6.2 Selection of the most likely word

This section describes a method for dealing with the situation

mentioned in the previous section where the best match between an in-

coming string s and a given set of CFG's corresponds to two or more

words in the vocabulary. For the case of an exact match, the above

situation becomes, of course, the NE. The method presented here

most closely related to that of section 3.4.2 in the following way.

Both methods are based on the approach of using stochastic grammars to

determine the importance of various strings in probabilistic terms.

The approach involves the counting of the frequency of usage of rules

of the CFG's. However, the method given below is applied not only to

cases of exact match, as is the method of section 3.4.2, but also to

those of closest match.

The following definition follows closely that of a SFSG

stated in definition 3.7 .

Definition 4.8 A stochastic normal form context-free grammar (SNCFG),

Gas is defined as :—

G@, = (Wy E> Rios £) (4-21)

where Vy =, and & are as defined earlier.

==99)=

a is a finite set of normal form stochastic productions,

each of the form

Ays By Se © Vy

or

4€ {ty- eh , a,€%

where Psy and Py? the production probabilities, are as

defined in equations 3.2 and 3.3 , respectively.

Estimation of the above production probabilities follows the

method given in section 3.4.2 .

Discussion is now presented concerning the forementioned

method of selecting the most likely word. The basis of the approach

which is based on the framework of Khert (95) on the investigation of

the entropy of CFL's can be explained as follows.

It is of a normal practice to assume that the estimated

probabilities associated with the productions of the SNCFG are indepen—

dent. Given also that an input string s can be matched nearest to some

string yeL(¢,.) which can be generated from J distinctively different

derivations in Ge It follows from the independence of the productions

that the probability of generating y by one of the J derivations is

equal to the product of the probabilities of sequence of productions

employed in that derivation. The sum of the probability of each of

these J derivations gives the overall probability associated with y.

The method is then to apply the above procedure to each grammar that

generates some string y having the same smallest value of WLD from the

string s. Word we is selected as the most likely word whose grammar

could most nearly have generated s if the above probability of string

y corresponding to word wy, is the largest for all the words associated

- 99 -

with the same WLD.

4.6.3 The AWSL criterion

As mentioned earlier, the application of the method given in

the last section to the recognition of a string s can result in the oc-

currence of two or more equally likely words. In such a situation, it

is necessary to employ the technique given below to select only one

word that is the most suitable according to a given criterion. Before

proceeding with the presentation of the method, some definitions are

first introduced as follows.

Definition 4.9 ‘The average weighted string length (AWSL) for a given

CFG is the sum of the absolute value of the significance of each and

every symbol appearing in all strings in the sample set that has been

used to infer that grammar, divided by the number of total sample

strings.

Mathematically expressed, the AWSL can be calculated in the

following manner.

Let the sample set be

S, = (s, | j = 1,2,+++)M,) (4.22)

ih SLL Bore eD. is the jth stri in 5 where s Ps je is the jth string i
Lee

My is the number of total strings in S.

QL is the length of string as .

From the above definition,
Mt

awst = > = significance of b, (4.23) N a
jel ial

Definition 4.10 The weighted string length (WSL) of a string s is the

sum of the absolute value of the significance of all symbols in s.

- 100 -

, 2
ie. WSL of s = S |significance of bs (4224)

isl

where s= BL Pyveedy for a string s of length L.

The method is to compute the AWSL for CFG's associated with

every word in the vocabulary. For an input string s, select word wy

as the most suitable word, provided the WSL of s is closest to the AWSL

for the CFG corresponding to word w, Ne in comparison with all words in

the vocabulary.

The foregoing procedure is based on experimental observations

of various sets of strings corresponding to different words in the

vocabulary. It is found that values of AWSL's for different sets of

strings are reasonably placed from one another provided the number of

strings in each set is not too small. The above technique based on the

AWSL criterion thus provides a quick, simple and reasonably reliable

method for solving the uncertainty situations such as those where there

occur two or more equally likely words. Since the procedure is applied

as the final stage, rather than as any of the earlier stages of the

recognition process, the method can only improve the overall recognition

performance and not impair it. It can be seen that the above is so if

it is realized that the method is only applied when the output decision

has to be made on two or more equally likely words. In this situation

and without applying the AWSL criterion, it would not be possible to

select one word from many equally probable alternatives, except for the

arbitrary selection or guessing of the output. The result, in the worst

case, with the inclusion of the criterion in the recognition process

would be the same as above, when it is not included.

- 101 -

406.4 A recognition algorithm

The following is a formal presentation of an algorithm that is

employed in the recognition system of Fig. 4.7 for the recognition of

isolated words. All three methods previously described are incorporated

in the algorithm to form the overall recognition process. Unless stated

otherwise, all symbols appearing in the algorithm have the same meanings

as before. A schematic diagram of the algorithm is also depicted in

Figs 4.9 .

Algorithm 4.3

Step 1 Read an input string s = Dy doeeedy .

Step 2 Fork=1, We

Compute the wi-matrix for string s and the CFG associating

with word Wy using the procedure of section 4.3.2 .

Store a (k) = m(Q,1,r) corresponding to word Wye

where a (x) is the WLD between s and the CFG associated with

word Wye

Step 3 Compute Di = Min a (k)
kel

Step 4 Find an index k whose value of a(x) equals that of D .

If there exist two or more such k indices, go to step 5.

Otherwise, decide word Wy associated with index k to be the

required output; END.

Step 5 Let Wy be the number of words associated with the same value

of Ds
m

For kel, W. ¢
N

Compute and store Q(k)

Zt X(y,)
where x)= = TT P; (¥%,)

dal del

where is a string generated by the CFG associated with
%

word W, with a WLD between y, and s of the value D..

- 102 -

(START)

/ Read a string s ;

Compute d_(k)
for k=1,W »

W

Compute b= ee 4 (k)
k=1

output Ww, as the

required word

Compute Q(k)

fork=1, Wy

Wy
Compute Q =Nax Q(k)

kel

Compute dg(k)

fork =1, Wy

W,
Compute D, = wid a (k) ae 2

Fige 469 A schematic diagram of algorithm 4.3

—

Step 6

Step 7

Step 8

Step 9

Step 10

- 103 -

I(y,) is the number of steps in the derivation of Yer

p, (y,) is the probability of the production used at the

ith step of the derivation of ye

J is the number of distinctively different

derivations of Jy

W,

Compute Q. = nal Q(k)
kel

If there occur two or more words associated with the same value

of Q go to step 8.

Otherwise, decide that wy

Q(k) = Q, 5 END.

Compute the WSL of s.

is the required word if

Let Wy be the number of words associated with the same value

of Qa:

For k = 1, Wy

Compute (kk) = |WSL of s — AWSL associated with word : Mx

Wy
Compute Dy = Min dy (i)

kel

If there are two or more words associated with the same Dg»

reject s and END.

Otherwise, output w, as the most suitable word, ic
if p(k) = Dy 5 END.

= 104 =

4.7 Discussion

The inference algorithm presented in this chapter employs an

incremental method for the construction of nonrecursive CFG's.

Consequently, the inferred grammars produce only strings of some finite

length. This is appropriate for applications such as automatic

recognition of isolated-words, where finite-length strings only are

involved.

It is, of course, possible to generate grammars for non-finite

languages by modifying the way new nonterminals and rules are appended

at each stage of the inference process. One way this can be done is to

remove restriction on the recursivity of nonterminals allowed in bi-

element rules, for example by permitting productions of the form

An — AAD .

The method presented is guaranteed to generate a proper non-

recursive CFG that is capable of producing all the given strings,

irrespective of the order in which they are presented to the algorithm.

In addition, any other strings created by the grammar will be similar

to those in the training set. The method inherently produces compact

CFG's having a near—minimal number of rules and nonterminals. These

are due to the way the grammar is augmented. At each stage of the

process, the algorithm determines the parts of the current grammar

that most nearly generate the present string, so that the additions

represent minimal change.

MODEL EVALUATION AND EXPERIMENTAL RESULTS

5el Basic recognition systems

This chapter is concerned with various evaluation and

analytical experiments regarding the application of formal grammars to

model a FE in the recognition of isolated words. The experimentation

mentioned above involves the use of four basic recognition systems

which can be described as follows.

(1) A SFSG-based recognition system using scheme A of the recognition

method given in Fig. 3.13

This system will later be referred to as SFS-A recognition system. It

is, of course, the system described in chapter 3 and its corresponding

flow diagram can be found in Fig. 3.14.

(2) A SNCFG—based recognition system with the recognition scheme B

of Fig. 4.6

Chapter 4 provides detailed descriptions of the system which will be

known as SCF-B recognition system. The associated schematic diagram is

depicted in Fig. 4-7 «

(3) A SFSG-based recognition system using the recognition scheme B

The above system, hereafter referred to as SFS-B, is implemented and

included in the proposed recognition systems for the following reasons.

In one of the presentations given below, it is required to evaluate the

performances of the inference of two types of grammars, namely the FSG

and the CFG, in the modelling of a FE. In such an application, it is

necessary for the two recognition systems concerned to use the same

recognition scheme. Two options are available for the selection of the

required system : either to use the SCF-A or the SFS-B system.

- 106 -

It is found , however, that the former is more difficult to implement

than the latter. It is for these reasons that the SFS-B system is

implemented. Additionally, this system together with the SFS-A system

are also used in comparing the performances of the two recognition

schemes A and B . Methods of sections 4.6.2 and 4.6.3 are employed in

the recognition part of the SFS-B system. This is illustrated by the

flow diagram of Fig. 5.1. The CFG's involved in the method of section

40622 are , of course, replaced by appropriate FSG's.

(4) A recognition system based on direct storage of strings in the

training set and using the recognition scheme B

This system whose flow diagram is depicted in Fig. 5.2 will subsequently

be known as the stochastic template matching-B (STM-B) recognition

system. It is implemented in an attempt to determine whether the use

of formal grammars offers any advantage over the direct storage of

strings in the recognition of isolated words. In the learning mode of

this system, the probabilities of the representative templates are

estimated by counting the frequency of occurrence of strings in the

training set. The matching of an incoming string to a set of templates

during the recognition mode involves the application of the WMN

technique described in section 3.4.3 . In this case, the required FIN

is directly constructed from a given set of sample strings such that it

represents exactly those strings in the training set and no other

strings. The principles of sections 4.6.2 and 4.6.3 are again applied

as appropriate in determining the decision of the output.

For simplicity and for fast development of the computer pro—

grammes involved, all four systems described above are implemented in

FORTRAN on a 28K PDP 1lv03 minicomputer. Data required for the

experiments is taken from a vocabulary of ten digits 'ZERO' to 'NINE"

uttered by a single speaker (A.J.PUTMAN) . Putman also designed and

107 =

sample , strings

Inference of a FSG
(Algorithm 3.1)
Estimation of produc-
tion probabilities
(Section 3.4.2)

LEARNING MODE

rewriting | rules

RECOGNITION MODE

Output
unknown, Parsing algorithm Accepted “string correspond decision

4 to more than string (Algorithm 3.2) a input one word?

Failed

Apply WMN technique

to find a closest

match (Section 3.4.3)

Apply production
probabilities to
select the most
likely word
(Section 4.6.2)

flatch correspond

to more than one

 there more

han one such

word ?

Apply the AWSL
eriterion to select
the most suitable
word (Section 4.6.3)

Fige 5-1 A SFSG—based recognition system using the recognition scheme B

unknown
——»| to find a best match

string
input

~ 108 -

sample strings

Store strings as templates

+
Estimation of probabilitiep
of templates

repregentative
templates

 Apply the WMN technique

(including an exact match)
(Section 3.4.3)

the best match

correspond to more
than one word ?

Apply probabilities of

templates to select the

most likely word

ere more than

one such word?

Apply the AWSL criterion

to select the most suitabl +——»

word (Section 4.6.3)

LEARNING MODE

RECOGNITION MODE

output

decision

Fig.5.2 SIM-B recognition system using template matching

and recognition scheme B

mELO9

built the rl96) which is used to generate the required data. The

speech signal of the spoken digits is of telephone-grade quality. This

is obtained from a normal telephone set via a circuit representing two

limiting local lines. Deatils of this circuit together with those of

the hardware and software parts of the FE can be found in reference 96.

Appendix C gives a training set of 100 strings representing

ten spoken digits, each of ten repetitions, obtained from the FE as

described above. The symbol strings which will be used as a recognition

set are provided by appendix D. The set consists of 500 strings in

total with 50 strings for each of the ten digits spoken. Numerical

values representing the significance of various symbols can be found

in appendix B.

52 Evaluation and comparison of models

In this section, some aspects of the modelling of a FE by FSG's

and CFG's in the recognition of isolated words are investigated and

their results are evaluated. This involves running the appropriate

recognition systems described in the previous section using relevant

control parameters. The results obtained are then analysed and com—

parison is made between different models concerned.

502.1 Recognition performance

A simple and useful method for evaluating different types of

recognition systems implemented in the previous section is to determine

their respective recognition performances using the same set of data.

The confusion matrices resulting from the test runs of SFS-A, SFS-B,

the weighted and nonweighted SCF-B and SIM-B systems are given in

tables 5.1 to 5.5 respectively. Details of data employed in all test

-110-

0 z 2 3 4 5 6 1 8 9 0 | Rej. | Cor.
Rece

1 |]4 2 iu 4.

2 43 | 1 5 1 43

3 Bal Pe3q|2 a aes |e |e 23

Agi Gt (eed 38 3 4 38

5 AT 3 AT

6 42 8 42

1 1 4 34 1 1 3 34

8 2 125/136 36

9 2 1 2 5 27 5 27

0 2) 6 | 3 1 |) D238) eae 34

Table 501 Confusion matrix of SFS-A system (Pp/P,/Pg = 1.0/2.0/2.0)

0] 1 2 3 | 4 5 6 1 8 9 0 | Rej. | Cor.
Rec.

z

1 ia i 1 1 41

2 44] 1 4 i 44

3 8 26.952 1. Pa oe te 26

4 1 3 39 3 4 39

5 4T 3 AT

6 4. 9 4.

1 Ki 5 32 2 1 3 32

8 i oh Le |eot 37

97-9 ay ak be 2 28 | 5 28

0 2 iT i3 Mie bod [se 32
Table 5-2 Confusion matrix of SFS-B system

- lll -

e 1 2 3 4 5 6 7 8 9 O | Rej. ee

1 ia 1 1 1 4l

2 44 | 1 4 i 44

3 Bet 1 9 | 4 21

AGleiel os 39 3 4 39

5 41 3 41

6 43 7 43

1 i 6 30, | eles = |e 30

8 1 9 i 539) 39

9 9 1 1 a 2 27 5 27

o | Pu Salis 3 | 4 |29 | 2

Table 5.3 Confusion matrix of SCF-B system (weighted)

° | 1 2 3.4 5 6 7 8 9 O | Rej Blicax
x Rece

1 ia a 1 1 41

2 44 1 4 1 44

3 8 | a7} 1 it 9 | 27

4 aD 3 39 3 4 39

5 47 B 41

6 45 5 45

1 " 6 2952 elk 5 29

8 1 ee 2 ST 3T

2 9 1 1 5 2 27 2 27

0 2 9 3 r 3 4 | 2 28

Table 5.4 Confusion matrix of SCF-B system (nonweighted)

-112-

bw

Ls)

3

4

5

6

1

8

9

0

Table 5e5 Confusion matrix of SIM-B system

system} sFs-A SFS-B SCF-B STB
weighted fnonweighted

Total 365 367 366 364 365
Cor.Rec.

+

% 7300 1304 13062 72.8 7320
Table 5.6 Recognition performances of various recognition systems

- 113 -

runs have already been described in section 5.1 . Table 5.6 sums up the

overall performances of various recognition systems whose confusion

matrices appear in tables 5.1 to 5.5 . To facilitate the presentation

and enhance its format, results of the STM-B system are also included

in the tables mentioned above, though they will not be discussed until

in section 5.3.

Before the comparison of the recognition performances between

FSG and CFG models can be presented, it is essential to discuss some

possible sources of errors that cause incoming strings to be incorrectly

recognized. Basically, the performance in terms of strings correctly

decoded by a recognition system depends on the followings :-

(a) Feature extractor

One significant factor which governs the recognition per-

formance is the degree of overlapping between strings associated with

different words. It is possible for a FE to produce very similar

strings or even exactly the same strings representing various words

in a given vocabulary. For example, string 'Q' appears in both of the

words 'TWO' and 'THREE' of the testing set given in appendix D. In

another illustration, string 'JoC' from word 'FOUR' of the training set

in appendix C also appears in word 'SEVEN' of the testing set. For the

occurrence of such strings,it immediately follows that the strings

concerned will be misrecognized. Thus, the importance of a FE and its

influence on the overall performance of an IWR system and the need for

a good FE cannot be overemphasized. In general, the basic criterion

governing the design of a FE is to obtain the largest possible intra-

string distances (LD or WLD) between all words concerned. This should

cut down the number of overlapping strings with the consequent improve-—

ment of the recognition performance.

= 114 =

(b) Learning algorithm

The learning part of a grammar—based recognition system can

contribute to the overlapping of strings and henge inducing errors in

the recognition process in the following manner. The grammar inferred

for one word can predict or generate strings, in addition to strings

in the training set, which are similar or very similar to strings of

other words. This depends to a large extent on the intra-distances of

strings between different words in the training set and to some extent

on the learning algorithm used. As an example, string 'BdEj@h' in word

'‘SIX' of the testing set is wrongly recognized as word 'EIGHT' by the

weighted SCF-B recognition system . This is because the inferred gram-

mar associated with word ‘EIGHT’ predicts an additional string 'Gjoj'

from strings 'Gj@Bf' and 'GjHj' in the training set of the same word.

This in turns is caused by a small WLD between strings 'Gj@Bf' and

‘Gk@f' in words 'EIGHT' and 'SIX' respectively in the training set.

Since the string under test 'BdBj@h' resembles more closely (in terms

of WLD) to the predicted string 'Gj@j' than to the training string

‘Gkef', the recognition system gives the incorrect output decision as

described earlier.

In an effort to restrain the occurrence of the above situation

as far as possible, many learning algorithms are formulated on the

basis of the following requirement. The algorithm should be such that

the inferred grammar, apart from producing strings which are similar

to the ones in the training set of the same word, generates as small

as possible the number of strings that are closely resembled to strings

of other words. One criterion usually adopted to satisfy the above

requirement is to construct the inference algorithm so as to maximize

the similarities between strings corresponding to the same word in the

training set. As described in chapters 3 and 4, all learning algorithms

-115-

presented in this thesis employ the above criterion in the construction

of various grammars.

(c) Probabilistic part of recognition algorithm

In the recognition process, it frequently happens that two or

more grammars could have equally generated an incoming string with the

same minimum penalty (LD or WLD) incurred. This nondeterministic situa-

tion resulting from either or both of the sources in (a) and (b) can

be broadly divided into two groups. In the first category, one of the

candidate grammars correctly produces the string whilst in the second

group none of the grammars provide the correct recognition. Methods

using probabilities have been developed in both recognition schemes A

and B to select only one grammar which is the most suitable according

to some criteria. For obvious reasons, the second group of the non-

deterministic situation inevitably yields incorrect decision irrespec-

tive of whatever probabilistic method is used. For the first group, the

methods can make a wrong decision which may be caused by the inadequacy

of the sample set used in the estimation of production probabilities.

As an example, consider the classification of string 'Fjc'

taken from word 'THREE' of the testing set using the weighted SCF-B

system. The string 'FjC' could have equally been derived from grammars

of words 'THREE' and 'NINE' with the same minimum penalty of 5 from

strings 'HiF' and 'Ihc' respectively. Since the string probability of

‘IhC' is greater than that of 'EiF', 'NINE' is wrongly selected as the

word most likely to correspond to string 'FjC'. Although the above

shows some defects of the probabilistic parts of recognition algorithms,

the methods still provide better performances when compared with an

arbitrary selection of one grammar from a set of equally suitable

grammars in the nondeterministic case.

- 116 -

From the inspection of table 5.6, it can be seen that the

highest recognition performance that can be achieved is only 73.4%

(SFS-B system). This is much lower than the performance normally claimed

by many experimental systems for the recognition of isolated-words using

the same vocabulary. For example, the system of white?) is reported

to obtain around 96 % correct recognition for a vocabulary of the same

ten digits. By investigating further, it is found that most of the

errors (about 90 % of total errors) occurring in all recognition systems

of table 5.6 are due to the FE as already described in part (a) of

sources of errors. If most of these errors were rectified, the overall

performances of the recognition systems in table 5.6 would become

comparable to that mentioned in the literature. Since, according to

reference 96, only about one-third of useful features extracted from

the input speech signal are used in the encoding of symbol strings such

as those given in appendices C and D, it is hardly surprising that the

overall recognition performances stated in table 5.6 do not measure up

to those of comparable systems appearing in the literature. It is also

interesting to notice that 'THREE' appears to be the worst recognized di-

git as shown by the given confusion matrices. This may result from the

difficulty in pronouncing the digit such that the generated strings do

not resemble too closely with strings of other digits.

From tables 542,5+3,5-4 and 5.6, it seems that the use of FSG's

and CFG's to model a FE offers comparable recognition performances with

less than 1 % variation between any of the associated systems. This,

in a way, is to be expected since learning algorithms for the inference

of both types of grammars are based on a similar criterion of maximizing

the similarities between strings in the sample set. Thus, there appears

to be no advantage, as far as the recognition performance is concerned,

for the use of CFG approach over that of FSG in the modelling of a FE

-117 -

in isolated-word recognition. The above is true for grammars inferred

in this thesis and it is expected to hold true for general FSG's and

CFG's provided they are constructed on the basis of similar criteria.

Comparison is now made between the use of weighted and non-

weighted M-matrices in the inference of CFG's. Again, there appears to

be no significance differences between the weighted and nonweighted

versions of the SCF-B system, though the former gives a slightly

better performance than the latter. This is because the learning

algorithm using the weighted M-matrix is provided with additional

information about the training data via the knowledge of significance

of various symbols.

Performances of two recognition schemes A and B are considered

next. Although tables 5.1, 5.2, and 5.6 show the performance of scheme

B to be slightly better than that of scheme A, the differences obtained

are not significant enough to suggest the superiority in the recognition

performances of B over A. However, since it is easier to implement

scheme B than to do scheme A, the former is preferable to the latter.

In the recognition scheme A, the values of Pps Pho and PS given in table

5-1 represent the deletion, insertion and substitution coefficients of

equations 3.17 to 3.19 respectively. These values are the design para-

meters and are determined experimentally in an attempt to improve the

recognition performance. For the data given in appendices C and D, the

improved performance achieved when P_ = Ps = 2Py compared with Py = P.
Ls ct

= Py = 1 indicates that insertion and substitution events of the

recognition scheme A are equally likely to occur and that both are more

likely than the deletion event. These design parameters can be adjusted

experimentally to suit a given set of data

- 118 -

5+2e2 Measure of complexity

This section presents the comparison between FSG and CFG models

in terms of computational requirements or complexity measure of the

grammars. Appendix E gives the rules of FSG's, of the weighted and

nonweighted versions of CFG's constructed directly from the training

set in appendix C.

In general, the measure of complexity of the required grammars

involves the determination of the followings :-

(i) The length of the longest member in any rewriting rule, Ly of the

grammar;

ie. L,, = Max (ol, |p|) for all a—» p ink (501)

Due to the formats of the rules in the grammars concerned, all FSG's

and CFG's inferred in this thesis have Li = 2. This is the smallest Li,

that can be associated with any grammar apart from grammars which

generate only single-symbol strings.

(ii) Number of terminals and nonterminals created by the grammars.

(iii) Number of rules in the grammars.

The number of terminals, nonterminals and rules mentioned in (ii)

and (iii) of various inferred FSG's and CFG's are presented in tables

57 to 5.9 .« Notation of symbols appearing in these tables is as follows:-—

lal = number of terminals in a grammar

[all = number of nonterminals in a grammar

Iv ll = number of terminals and nonterminals in a grammar

[z ll = number of rules (total) in a grammar

[Pall = number of terminating rules in a CFG

ee

ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE ZERO

=i A342 10 Ly) 19 27 18 18 al 12 15

Iw l Snr Cle e026.) 20 wieo0 24 8 26

Ill 22 17 & 19) 139) 2 53. 40. 40 45 2

le] LOLOL 5 0 SL 6 LAP a AO) 34: 39 cde 16 Sa 46,

Table 5.7 Complexity measure of inferred FSG's

ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE ZERO

1213 10 12) 19” 27), 18) as ey Sea 15

| 4 3 3 14 29 26 («19 al 3 39

WIL 17 «13 14 2D 56 44 37 42 15 54

[2x 13, 10-4 a1) 19 ait “16 as CL S12 = 15

[5s 3 2 2 13 28 28° 48 22 2 38

[Esl 810

pel Zhe 322) 2) 42”) 65) 56 6 530 723 4963

@
 10 10 10: S220 10 9 10

Table 5.8 Complexity measure of inferred CFG's (weighted)

- 120 -

ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE ZERO

l=] 13-19 1 19 27 18 18 21 12 15

[wl 4 3 3 14 29 28 18 al 3 31

Wl aie Weel A, 83 5Gn- 46. 36 40 15 46

[Fo] po ceo, Lie S10 Sy = 18. a8 AS 25

ell 3 a2 221s ee eg! 37 Se cr

[Pst 8 10 6 20610." 10-40 20 9 10

Te eek are 22 AP 65! 57) 245533 2 23 85g

Table 5.9 Complexity measure of inferred GFG's(nonweighted)

system | srs-a | SFS-B SCR-B STu-B
weighted | nonweighted

hr:min: sec

Training
0:20:18 | 0:03:18 | 0:1:13 0:31:00 0:0:18

time

Recognition

0:26:25 | 0:25:12 | 1:20:18 1:19:25 0322311
[time

Number of training strings = 100

Average length of training strings = 3.56 symbols/string

Number of testing strings = 500

Average length of testing strings = 3245 symbols/string

Table 5.10 Time required for training and testing of various

recognition systems

eel as

{al number of bielement rules (not including start

rules) in a CFG

[sel = number of start rules in a CFG

(iv) Complexity of learning and recognition algorithms.

(a) for FSG's

The number of operations for the construction of rules of a

FSG from a given string is roughly proportional to the string length.

In the recognition process, the size of the current WMN governs the

complexity required to classify an incoming string. This depends on the

number of rules in the grammar concerned and the length of the string

and can be formally expressed as follows.

Number of operations required to classify a string of length Q using

el] rules in a given grammar = (+1). Rl] (502)

As in the learning process, the number of operations required in the

recognition of a string is again proportional to the length of that

string.

(b) for CFG's

Since the M-matrix (either weighted or nonweighted) is

employed in both the learning and recognition processes, the required

complexity for CFG's is obtained by determining the number of steps

necessary in the computation of the M-matrix for a string of length Q .

This can be estimated as follows.

Terminating rules

for i= 1 and from equation 4.11

no. of steps required W [Fa nek (563)

for i> 1 and from equation 4.12

no. of steps required [Pal- 2 (fet-i).(i-1) (504)

- 122 -

Bielement rules

for i =1 and from equation 4.13 :

no. of steps required = (| + [Bsel Vek (565)

for i >1 and from equation 4.14 :

noe of steps required = ([al + [sel)- (t-i)(i-1)
i=2

(5-6)

combining equations 5.3 to 5.6 yields,

total number of steps required

(Pol + [Esl] * sel) 2 + ([Ral + fl + [sel 2 2 (ta) (44)

2
I(t) 2[- Gay] Ga}

fel (4+ Saar) - S(i1)?}
a ine

Ie] (e+ 2 20 - v}

dal (g? +52) (5.7)

That is, the number of operations required either to construct rules

of a CFG from a string or to decode an unknown string is proportional

to the cube of the length of the string concerned. This is in accordance

with the complexity expected of a CFG. Table 5.10 presents the com-

plexity of the learning and recognition algorithms in the form of the

time required for training and testing of strings for various recognition

systems. The table also includes the results associated with the

SIM—B system for the same reason given in the previous section.

Generally, the use of CFG's should provide models that are

more compact than those obtained from the approach of using FSG's.

That is, the number of rules and nonterminals in the former case should

be smaller than those in the latter. However, results in tables 5.7

to 59 indicate that this is not so. Two main factors account for the

- 123 -

above situation which is not unexpected. First, it is caused by the

inherent characteristics of the Chomsky normal-form grammars employed

in the system. A normal form CFG, due to its format, usually requires

a larger number of nonterminals and rules than a FSG does in the

representation of the same set of strings. Secondly, the way the

learning algorithm is formulated for CFG's also contributes to the

increase in the number of the corresponding rules and nonterminals in

the following manner. The algorithm applies a constraint on the extent

which the number of nonterminals and/or rules can be reduced by the

possible merging of similar segments of various strings. This is done

to ensure that the inferred grammar does not generate too many strings

which are similar to strings of other words.

Prom equations 5.2 and 5.7 and table 5.10, it can be seen that

the CFG approach requires a larger amount of computation in both the

training and recognition operations than the amount involved in the

approach of using FSG's in the modelling of a FE. This, in a way, is to

be expected since the increased descriptive power of strings obtained

from the use of a more general class of grammars has to be paid for in

terms of the increase in the computation required of the system.

The foregoing presentation, thus seems to indicate that there

is no advantage gained in terms of computational requirements of the

systems concerned for the use of CFG's over that of FSG's for the

modelling of a FE in isolated word recognition.

52.3 Discussion

From the results of sections 5.2.1 and 5.2.2, it appears that

there is no advantage for the use of CFG's over the FSG approach, as

- 124 -

far as recognition performance and computational requirement are

concerned, in isolated word recognition. This may be because, as the

name implies, only a single isolated word, and not a complete sentence,

needs to be recognized and this does not require the knowledge of the

syntax of the word concerned.

There are, however, other situations where there may be an

advantage for CFG approach. One of these is the recognition of connected

or continuous speech. One difficult problem in continuous speech

recognition is the determination of word and sentence boundaries, which,

unlike the case in isolated speech where words are spoken in isolation,

are usually obscured. Another problem is that acoustic parameters of

words pronounced connectedly are, depending on the context, very

different from those obtained from the same words spoken in isolation.

The characteristics of continuous speech as described above

can induce errors in various words spoken. Other possible sources of

errors include the inadequacies of many processes in the earlier stages

of the system such as segmentation and transcription of acoustic data,

the introduction of spurious words and the presence of foreign noises.

In such a situation, it is desirable to be able to start processing at

any point in the sentence in an attempt to uniquely identify a correct

or least-error word. Once a starting point representing a correct word

has been pinpointed, other words or phrases can then be predicted by

the syntax recognizer on the basis of the inferred grammar and local

context. The above requires a parser which is capable not only of pro-

ceeding from left to right or vice versa but also of starting anywhere

in the utterance and continuing to parse in both directions.

- 125 -

The use of a parser based on a FSG thus seems to fall short of

the above requirements. On the other hand, a CFG, because of its greater

generative power in the sense that the grammar does not require to

produce terminal symbols in a strictly left-to-right order, can be used

in the above situation. Thus, the application of CFG's in continuous

speech can provide some sort of advantage such as that already described,

when compared with the FSG approach. Other applications where the CFG

approach may prove useful in the description of the language concerned

include the analysis of chromosome, picture and scene analysis, character

recognition, recognition of two-dimensional mathematical expressions

(45351-5397) | and finger print identification

5-3 Symbol-source modelling versus direct storage of strings

This section investigates the pros and cons between the

approach of using formal grammars to model a FE by constructing rules

from sample strings generated from the FE and that of directly storing

the strings ie. template matching approach in isolated word recognition.

In the comparison of the two approaches, it is necessary to apply the

same recognition scheme to various recognition systems concerned. This

is done to ensure that conclusions drawn from the comparison tests are

independent of the recognition scheme used and only depend on the method

of representing sample strings. This is because the use of different

recognition schemes in the approaches can affect the final outcome

of the comparison in such a way that the result obtained is incorrect

and misleading. It is decided to select scheme B, for reasons given in

section 5.1, as the required recognition scheme. Thus, the recognition

systems concerned are SFS-B, SCF-B and STM-B.

The advantages and disadvantages associated with the two

approaches can be described as follows.

- 126 -

(i) One of the advantages of representing strings as a set of rules

of formal grammars instead of simply storing the strings themselves is

that when the language is very large or even infinite, it would be im

practical or even impossible to store the strings. In addition, it is

neither desirable nor possible to put an upper limit on the length of

the longest strings in the languages of many applications such as

(45) (97), chromosome analysis or finger print identification problems

This type of languages cannot be specified by an exhaustive enumeration

of the strings of the language concerned. Thus, the representation of

strings by means of formal grammars provides a capability for using a

set of rules of finite size to describe a set of strings which may not

be finite. An attractive aspect of this capability is the use of the

recursive nature of a grammar as illustrated by the following example.

A non—finite language consists of strings ab"c for n = 1, 2, «+. can be

represented by a grammar whose rules are :—

&— ah B—= bB

A—> bB Bo,ec

where &, A, B are nonterminals and a, b, c are terminals.

(ii) For many problems of pattern recognition, not only the classi-

fication of patterns but also their descriptions are required in the

determination of the solution. Such problems include chromosome

(45) | picture processing and scene Beelyaip sce

(52)

analysis » character

recognition » recognition of two-dimensional mathematical expres—

(97) sions‘>>), finger print identification and continuous speech

mecoeniitent c/s For these applications, methods based only on the

classification mechanism such as the template matching technique may,

by themselves, be inadequate. It is then necessary to employ syntactic

methods such as the formal-grammar approach to explicitly exploit the

- 127 -

structural relations of the patterns in the description process.

(iii) The use of symbol-source models makes possible the

‘generalisation' of strings in the training set. In other words, in

addition to the training strings, the inferred grammar also predicts

or generates other strings which are similar to the ones in the training

set. This means that the formal grammar approach includes a wider range

of strings than does the approach of using template matching technique

for a given training set. Thus, a larger sample size is needed if the

latter is to cover the same number of strings as for the case of the

former. For example, the CFG inferred in section 4.5 requires only 6

training strings in order to cover strings s) to 87 whereas if the

method of direct storage of strings is used, it will be required to

store 7 strings to achieve the same result. Incidently, the CFG also

predicts three additional strings which are similar to 8) 9859 and 86

respectively. Thus, the inferred CFG covers a total of 10 strings from

a sample set of 6 strings. In another example, string 'HoC' from the

recognition set in appendix D is correctly predicted as word 'FOUR' by

the FSG inferred in chapter 3.

Table 5.11 displays strings in the testing set that are

correctly recognized as a result of 'generalisation' created by the use

of formal grammars.

Although, the formal grammar approach does give correct

recognition to many strings, as shown in table 5.11, which are mis—-

Tecognized by the approach of using template matching technique, the

overall recognition performance of the former is only slightly better

than that of the latter as illustrated by table 5.6 . This,

unfortunately, is caused by factors described in section 5.2.1 .

- 128 -

Grammars FSG CFG(weighted)

Digits SIX SEVEN EIGHT ZERO EIGHT

cFQ@BgC | EdDi Bce@Ba cfDe Fi@h

Gi@Ce Bg@a ChFf Dk@B j

Strings
Hhef Becf

Gicft
Table 5.11 Strings correctly recognized due to the use of formal grammars

By the inspection of various rules given in appendix E, other

strings generated by the grammars concerned in addition to strings in

both the training and recognition sets can also be determined.

(iv) For the approach of using FSG's, it is possible to obtain some

reduction in computation involved in the recognition process when

compared with the method of direct storage of strings. As demonstrated

by table 5.10, the time required for training a given set of strings

is the same for both cases mentioned above. The CFG approach is not

considered here since it requires, for reasons given in section 5.2.2,

a larger amount of computation than do the methods of FSG's and tem-

plate matching.

The reduction in computation obtained from the FSG approach

is made possible because of the use of merging between various seg-

ments of similar strings during the training process. This leads to a

reduction in the number of nonterminals and rules produced by the

grammar. This, in turns, cuts down the computational requirements of

the recognition process.

= 129 -

The following presents the estimation of number of operations

required in the computation of the WMN's which govern the necessary

amount of computation of the recognition algorithms in the FSG and

the template matching approaches.

The number of operations needed to compute a WMN constructed from a

FIN of Z links and an incoming string of length 2 is equal to :

(L+1) 2.2 (5-8)

For a FIN created from a FSG, the value of Z is equal to the number of

all rules of the grammar, as given by equation 5.2 .

ie. Z= 2, = [al (5-9)

where Zn is the number of links of a FTN associated with the FSG

approach.

In the approach of direct storage of strings, each and every distinct

string in the training set is compared with an incoming string to obtain

the best match. This requires a set of WMN's each of which is constructed

from each distinct training string.

Mp
Thus, Z= & = = g (510)

i=.

where Zen = number of links of a set of FIN's associated with

template matching approach

g. = length of the ith distinct string in the training set

= 1 number of distinct strings in the training set .

Table 5.12 presents values of Zn and Zn for the training

strings of appendix C. The values of ey are, of course, the corres—

ponding values of [[R|| in table 5.7 .

- 130 -

Digits | ONE TWO THREE FOUR FIVE SIX SEVEN RIGHT NINE ZERO

Zap 16) MO SUF ysl. 42) | 2401p 34 39 = 6h alae

2 LOA e1 5) 9-33, 4B 52-39 BA = -20\~ 58

Table 5.212 Number of links of FIN's for FSG and template matching

approaches

From the results in table 5.12, it can be seen that the

approach of using FSG to describe a given set of strings provides a

reduction in the computation of the WMN compared with the approach of

direct storage of strings. This, however, is not reflected in the

recognition time of the SFS-B and STM-B systems given in table 5.10.

This is because the rules of the inferred FSG's have not been rearranged

in the ascending order of the LS nonterminals as those given in

appendix E. That is, rules are created and stored in the system memory

according to the order of presentation of strings. Consequently, it is

necessary to compute the WMN at least twice for the FSG approach to

ensure that contents of all elements of the WMN reach steady-state

values. The foregoing computation can be speeded up if the rules are

arranged, after the training operation, in the proper sequence as

described above.

-131-

CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 Future work

6.1.1 Real-time problem

Many implementations of word recognition algorithms are

carried out using a computer. This may not be fast enough for some

practical applications where real time responses are required. This

section suggests the possible use of special purpose hardware in

addition to a general purpose computer in an attempt to implement the

algorithms in real-time. Only parts of algorithms that require large

amount of computation will be considered. This implies the implemen-

tation of the computation of the WMN in FSG models and that of the M-

matrix in the CFG approach.

(a) Implementation of the computation of the WMN

Fig. 6.1 outlines a possible scheme of implementing the com—

putation of the WMN using special hardware. Each rectangular unit re-

presents hardware implementation of a FTN and consists of as many

storage elements as the number of nodes in the FTN. All storage elements

are interconnected according to the configuration of the FTN and each

connecting link is associated with only one symbol determined by the

grammar concerned. There is also a special logic circuit for each

storage element whose incoming links form the input of the circuit.

The function of the logic circuit is to select the largest of the

values presented by incoming links for a given input symbol. These

rectangular units are repeated as often as the length of the string to

be analysed and are connected in the same way as the corresponding WMN.

The logic circuits mentioned in Fig. 6.1 receive a short pulse from the

clock every time an input symbol appears. Outputs of these circuits are

such that only the rectangular unit which corresponds to the current

+ 132 =

symbol is activated. For example, unit 2 is associated with the lst

symbol and unit 3 with the 2nd symbol and so on. The circuits also

provide two pulses for each pulse from the clock. The first pulse is

used to control the computation of various elements in the present unit

due to elements in the preceding unit. The second activates the com

putation within the same unit. Output from the appropriate element of

the final unit associated with the last symbol gives the WLD as required.

The processor described above is for one grammar only. To in-

crease the speed of operation, similar processors corresponding to

other grammars need to be applied in parallel. The grammar with the

smallest value of WLD is then selected as the grammar which could have

generated the string.

clock

Logic circuits

symbol
input

i Ter SA" deen gee rg aa
fi raenere

Fig. 6.1 A hardware scheme for the WMN and a length-3 string

- 133 -

(b) Implementation of the computation of the M-matrix

A generalised block diagram of a hardware scheme for the com-

putation of the M-matrix and a string of length 3 symbols is depicted

in Fig. 6.2 . Elements Ms ik of the M-matrix together with appropriate

logic circuits are represented by rectangular units as shown. There

are as many storage elements in each unit as the number of distinct

LS nonterminals in the corresponding types of rules ie. terminating

rules or bielement rules. A special unit contains values of hierarchy

levels of all nonterminals predetermined from the rules of the CFG.

Input symbols are presented to units corresponding to terminating rules

and i = 1 under the control of logic circuits and clock pulses in the

same way as in the case of WMN. Elements of these units are then com—

puted. Other units are computed in the order shown in Fig. 6.2 . That

is, the remaining elements corresponding to terminating rules and

elements associated with bielement rules for i = 1 are processed at

the same time. Other units for bielement rules are then computed in the

order of increasing values of i, the substring length, until the WLD

is found. As in case (a), the above processor is repeated for other

grammars and they are applied in parallel in order to speed up the

computation involved.

The above schemes of computing WLD involves the processing of

all strings in the dictionary ie. all strings generated by the grammars

concerned. This may take too long if the dictionary is large. In order

to reduce the time required, it may be necessary to use some other

methods in addition to the above schemes eg. techniques involving n—

grams might be used.

clock

Logic circuits

met yaeee

symbol

input & &

; , ; Q C + : Termi: i jet] |ie2] | 543 >} | sat] |se2 je ee

is i=2 is3

@ UY @

: ; a: ‘ : Biel del] | 3-4 | 53 de] | 3-2] Ey) | ot] | a ee

isl in2 is3

ae

Hierarchy
H(X) levels

Fig. 6.2 A hardware scheme for the M-matrix and a length-3 string

=135 =

6.122 Improvements of recognition performance

For various recognition systems implemented in this thesis,

many of the errors in word recognition are due to the characteristics

of the FE used as described in section 5.2.1 . The most obvious way to

improve word accuracies is to develop a better and more sophisticated

FE. However, this approach, which is still a research problem, is

outside the scope of the work reported in this thesis and consequently

will not be investigated here. Other possible methods that can improve

the recognition performance are as follows :-

(i) As mentioned earlier, the overlapping between strings of different

words is mainly caused by the fact that the transcribed symbol strings

represent only a small fraction of acoustic parameters extracted

from the FE. The method is then to find a way of utilizing a large

number of parameters in the construction of the models. One such

approach is to use several symbols simultaneously instead of only one

symbol at a time, where each symbol represents a different parameter.

This is the concept of 'vector valued features'. One simple solution is

to build a grammar for each of the parameters extracted for one word.

In the recognition mode, each of the strings representing various para-

meters associated with the word spoken is individually processed by

the appropriate grammar. The final decision as to which word has been

spoken is determined, say, by the majority votes of the strings concerned.

(ii) It is commonly appreciated that as well as the order of appearance

of symbols in a string, but also their duration are important in the

descriptions of a spoken word. Consequently, concept of duration of

features can be used to improve the performance of an inferred grammar.

This can be implemented as self-loops in the FTN's or PIN's with

probabilities of the loops denoting duration lenghts. In the case of

= 136 =

FIN, this is similar to the quasi-Markov process.

(iii) The use of the negative sample set, if available, in addition to

the positive one, can improve the system's performance. That is, if a

set of strings is known not to belong to a given word, the grammar

corresponding to that word can then be modified such that these strings

are excluded from the language of the grammar. The problem in this case

is to find such a negative sample set for a particular application.

(iv) In many pattern recognition problems, the frequencies of occurrence

of different types of errors, namely insertion, deletion and substitution,

depend on the nature of the application concerned. For example, optical

character recognition rarely introduces insertion or deletion errors.

By observing such characteristics of a given data set and applying this

knowledge in the recognition algorithms, it becomes possible to obtain

an improvement in the recognition performance. One way to achieve this

is by setting appropriate multiplicative factors (instead of unity) in

equations 3.11, 3.13, and 3.14 for the case of FSG approach and

equations 4.15, 4.17, and 4.18 for the CFG approach. The foregoing is

for WLD's. For applications involving LD's, the corresponding equations

that need to be modified are 3.16, 4.9, 4.11, and 4.12 .

(-v) Another approach that may improve the recognition performance

involves the introduction of various restrictions to the formats and

the applications of productions. This may, for example, include label-

ling the productions and coding of productions in terms of level

numbers according to the hierarchical significance of the productions.

This method of imposing restrictions on the productions may be well

suited to the situation where there are many overlapping strings.

- 137 -

6.1.23 Other work

One area of interest that is worthy of further investigation

is the study of the effects of various telephone impairments on the

models constructed in this thesis. This involves experimental tests of

appropriate recognition systems under the insertion of controlled de-

gradations such as continuous noise, variable frequency characteristics

and nonlinear distortion.

Another area is to extend this work to cover the recognition

of connected speech. In particular, it will be of interest to confirm,

or otherwise, the inadequacy of the use of a FSG in continuous speech

and also of the advantage of the CFG approach over that of the FSG as

suggested in section 5.2.3 « It is also of interest to study the

practicality of the application of formal grammars to the synthesis of

speech which is the reverse process of this work.

662 Conclusions

An automatic isolated-word recognition system normally consists

of a feature extractor or a preprocessor of some sort followed by a

recognizer or a recognition processor. Because of the inherent variations

in speech when a word is uttered even by the same speaker, it is

necessary to incorporate some form of 'training' or '‘learning' process

into the system.

Apart from the classical decision-theoretic methods, techniques

of formal language theory or the syntactic methods provide another

useful approach to the solution of classification and description in a

speech recognition system. The linguistic method proves to be very

attractive to use due to the availability of mathematical linguistics

- 138 -

as a tool. The method also seems to be well-suited to the problem of

an IWR system where only a finite number of features are generated

for each utterance.

The application of linguistic approach to an IWR system can

be viewed as the process whereby formal grammars are employed to model

the FE whose characteristics are very little, if at all known.Basically,

the method works as follows. In the training stage, sets of syntactic

rules or grammars are constructed, one for each word in the vocabulary,

directly from a given set of sample strings of features represented by

symbols. Constructive approach of grammar inference is chosen so that

model of the FE can be formed more realistically. Supervised learning

is also assumed. In the recognition mode, an incoming string is analysed

to determine which grammar, if any, could have generated it. The word

corresponding to such grammar is then said to have been recognized.

In IWR systems, unlike many applications of grammar inference

where the class of grammars to be inferred is precisely defined, it is

not clear what types of grammars best represent the FE. Only two types

of grammars are considered here, namely the FSG's and the CFG's. The

FSG approach is selected initially because of its simple and well-

established characteristics and its sequential nature similar to that

of the string symbols. In addition, many efficient computational

techniques are known for the FSG methods. The CFG approach is introduced

in an attempt to determine whether there is any advantage from the use

of a more powerful grammar in isolated-word recognition.

Inference algorithms of both approaches are based on the

criterion of maximizing the similarity between various strings of the

same word. The basis of the inference process which applies to both

FSG's and CFG's can be explained as follows. The skeleton grammar Gq is

- 139 -

first constructed from the first string in the sample set such that

Gg can generate only that string. Other strings are then individually

processed in the search for incompatibility between each string and the

current grammar, If the nth observed string s, can be derived from the

(n-1)th inferred grammar Gua then G = 6G and no augmentation of n-1

G ine) 28 required. Otherwise, Gi is augmented such that Gg. is produced

which can generate the present string. For the CFG approach, the

matching process between an incoming string and an existing CFG

requires the computation of the minimisation matrix, M, whose elements

reveal the compatibility or otherwise between the former and the latter.

There are two different recognition schemes, A and B, employed

in various recognition processors. In scheme A, an incoming string is

tested to determine whether there exists an exact match for the string.

In the case of unsuccessful matching, an attempt is made to find a

closest match for the string. This is supplemented, if necessary, by a

stochastic algorithm to select only one word that is the most likely to

correspond to the string. For the case where the exact match is asso-—

ciated with two or more grammars, another stochastic algorithm is

applied to select only the most likely grammar. For the recognition

scheme B, an attempt is made to find a best match which also includes

an exact match for an incoming string. A stochastic technique is

applied if two or more grammars are equally likely to have generated

the string. If, after applying this technique, the output is still un-

decided, a selection is made of the most suitable word according to the

AWSL criterion.

The recognition algorithms of both schemes are thus not too

restrictive in the sense of immediate rejection of an erroneous string

but rather trying to find a grammar that could most likely have generated

the string. This can be very useful in many applications involving

= 140 -

noisy strings. In the FSG approach, the WMN technique based on the

principle of dynamic programming is employed to find the best match for

an incoming string. The determination of the best match for a string in

the CFG approach is accomplished by using the wM-matrix (or M-matrix)

as a recognition matrix. Performances in terms of number of strings

correctly recognized of the two recognition schemes are comparable with

one another. However, scheme B is preferable to scheme A because it is

easier to implement the former than to do the latter.

Both the FSG and CFG models offer comparable recognition per—

formances with less than 1 % variation in word accuracies between any

of the associated systems. The increased descriptive power of strings

obtained from the use of a more powerful CFG is, as expected, paid

for by the increase in the amount of computation required of the system

concerned. Consequently, there appears to be no advantage gained in

terms of recognition performance and computational requirement, from

the use of CFG approach over that of FSG in the modelling of a FE in

isolated-word recognition. This may be because the isolated-word

application does not require the knowledge of the syntax of the word to

be recognized since only a single isolated-word, and not a complete

sentence, is required to be recognized.

The representation of strings by a set of rules of formal

grammars instead of direct storage of strings makes possible the

‘generalisation' of strings in the training set. That is, the inferred

grammar generates, in addition to the training strings, other strings

which are similar to the ones in the training set. This means that a

larger sample size is needed for the approach of using template

matching technique if it is to cover the same number of strings as for

the case of formal grammar approach. The approach of using FSG's

=14 =

also provide a reduction in the amount of computation required by the

recognition process. This is possible because of the reduction in

number of nonterminals and rules produced by the grammar as a result

of the merging between similar segments of strings during the training

process.

The use of 'linguistic' variables instead of or in addition to

numeric variables provides an effective and useful means of approxima-

tions of complex or ill-defined systems such as the FE,where it is

difficult or even impossible to apply precise mathematical analysis.

Experimentation, though expensive in terms of labour and equipment,

is essential to automatic speech recognition problem as to many other

applications in pattern recognition such as chromosome analysis in

biomedical application. This is because it is difficult to predict the

required recognition performance theoretically due to noisy nature of

strings involved. It is hoped that the knowledge and experience gained

from the design, construction and experimentation of speech recognition

systems will pave the way to better and increased insight into speech

perception in humans.

A

= 113 =

APPENDIX A

A METHOD FOR TESTING THE RECURSIVENESS OF A FSG

The following presents a method for testing whether a given

FSG is recursive or not. It is based on the construction of a tran-

sition matrix T whose elements represent the number of direct paths

between different states of the associated FIN. The method can be

simply explained as follows. The transition matrix T is repeatedly

being multiplied by itself until for some value of n either all elements

of T are zero OR two or more diagonal elements of T" are no longer

zero. The grammar is then said to be nonrecursive in the former case

and recursive in the latter. It is assumed that the grammar does not

contain rules of the form A —» aA where 'A' and tat are a nonterminal

and a terminal respectively. In other words, there are no self loops

in the corresponding FTN. A method is also given for computing the

number of distinct strings whose lengths do not exceed n that can be

derived from the grammar.

Formally, the method can be described in the following steps.

(1) Construct a FIN from a given FSG.

(2) Construct an m * m transition matrix T from the FTN; where

m is the total number of states in the PIN including

the terminating state & ie. m is the number of nodes

in the FIN.

+(i,3) denotes the number of direct paths from state

corresponding to nonterminal Ay to that associated

with nonterminal - for a rule oe, ag in the

grammar, where 25 is the terminal produced when

traversing from Ay to a

(3) Construct meg, go (A.1)

for k = 253,ecen

=—144 =

where n is an integer value when either of the following

occurs t=

(a) all elements of T are zero. This implies that the grammar

is nonrecursive. This follows because of the followings. By definition,

element +¥(4,4) of matrix T denotes the number of distinct strings,

each of length k, that can be generated from the FIN by traversing from

node Ay to node Ay. If there is no loop in the FIN (ie. the grammar is

nonrecursive), then there must exist a value of n which exceeds the

length of the longest string generated by the grammar. Hence, all

elements of 1 are zero. The smallest value of n is, of course, equal

to the longest string length plus one.

(b) two or more diagonal elements of T” are nonzero which

indicates that the grammar is recursive. This follows because all

diagonal elements of T are zero due to the assumption of no self-loops

in the FIN. The nonzero diagonal elements of r for some value of n

thus indicate that there are transitions starting and ending at the

same node associated with a diagonal element of tT". This is the

condition of looping in the FIN and consequently the grammar is

recursive. In this case, the states of the FIN associated with diagonal

elements of T” whose values are nonzero define one or more of the

loops in the FIN.

fo illustrate the foregoing method, consider the following

example.

Example Ael Let G, 1 = (Vys%sRy&) be a FSG whose FIN is depicted in

Fig. Ael and where ;-

Vy (4) (=£) 1Ap9 Ags Aga Aas Ags Ay)

= (41,0)

4) —= UA, Aiea See soe oes

= 145 =

4 4 ‘2 oo ok, Soares

Ay —= AAS Pr US e ene caer 47 — I

45> 14, 4 4, I

Fige Ael A FIN of the grammar G

First, a 8*8 T matrix is constructed as shown below.

INCOMING STATES

By Ao eye 8a 8G AG! Br ©

0 Oey [Os ee OF 0 Et 0

U
mp dae |G). Orel nek O enor .@

G
COA 0 ee Cte? Meee Oe

ie
ee aye foes Ono Oaegh me Oe

G
Delo oe oe gO tee

8
soe Oe OF ers LO et Ol 0) 8

A
x CeO TG: IOlr Gr Oe -6 ay aot
S 6s" 1.05 10-7050" 6" On 07 30

The next step is to find a value of n which satisfies either

condition (a) or (b). As shown in the matrix 7 below, diagonal elements

= 146 -

of 7 are no longer zero. Since elements (3,3), (4,4) and (5,5) are

nonzero, nodes Ass ay and As are in the loop. This is confirmed by

the inspection of the graph. From the above results where condition (b)

is satisfied, it can be concluded that G, 1 is recursive.

INCOMING STATES

en Oe de

Oo A 0 0 1 2 1 O° 1 5

U

7p Ay 0 0 1 0 i Oo ah 3

G

0 A, {0 0 Eb 2

3 2 :
em N aa 0 0 0 2

G

Bk 10. (6: o£ ee aS
“a 0 #0 0 3 a
2 0 0 0 0 ear
5s & |0 0 ° 0

Finally, the computation of the number of distinct strings

whose length do not exceed n follows immediately from the definitions

of T and c. That is, the number of distinct strings of lengths <n

derivable from a given FSG is equal to :

ae:
= +t (1.54) (4.2)
kel

As an example, for the grammar G, the number of distinct

strings of lengths < 3 is equal to 0+0+5=5

= 147 —

APPENDIX B

TABLE OF SIGNIFICANCE VALUES” OF SYMBOLS

Symbols Values Symbols Values Symbols Values

A 1 U al 3 -10

B 2 Vv 22 k -11

c 2 W 23 L -12

D 4 x 24 m -13

E 5: Y 25 n -14

F 6 6 26 ° -15

G 7 7 27 P -16

H 8 8 28 qa -17

I 9 9 29 2 -18

J 10 0 30 s -19

K i @ 100 t -20

L 12 a -1 u -2l

M 13 b 2 v 22

N 14 c -3 w -23

° 15 d -4 x 24

P 16 e -5 y -25

Q 17 £ -6 % -26

R 18 g& -7 2 27

Ss 19 h -8 2 -28

= 20 2 -9 4 29

5 -30

*the above values are applicable to symbols generated by the FE

of reference 96 .

- 148 -

APPENDIX C

TRAINING SET OF SYMBOL STRINGS

The followings are a training set of 100 symbol strings

obtained from the FE of reference 96. The strings represent ten digits

'ZERO' to 'NINE' spoken by a single talker (A.J.P.) with ten repetitions

in each digit. Values of significance of various symbols are provided

in appendix B.

ONE

Pi

Mkc

Lj

NmD

NSE

Pm

FOUR

JoG

Hre

CnFc

GoF

DpF

TWO

iD

£ca

FIVE

BnRj

HjESPi

CgCnRk

Fo0g

En0h

HpMk

THREE

°
BhE

Cc

He

fF

BhE

‘SIX

Bn@dCe

FR@cCe

Cj@Ba

Ck@c

bCj@Re

Bi@Cc

= 149 =

FOUR(Cont.) FIVE(Cont.) ‘SIX(Cont.)

IoGe Irkh checfD

HoB BfEnQk Fk@Co

FREA HgRi Gkot

LtH EdCnSe By@Db

SEVEN EIGHT NINE
peda GjeBr FR

Gn Ff@e Ee

FeEgDf De@g Lk

Co GjH The

bFmCeC Cirk JE

BoEL Ekcg Lk

HeFp Cd@Ej gh

Beko Thok He

Eq DiCcEd Ji

CcDpc Th@b ILE

ZERO ZERO(Cont.)

CcDmF EfDhDeEd

CcDiEgE FhEhE

BaFeFeG EgDeC

DhFiG EfEgc

DeDhGe FeDiF

- 150 -

APPENDIX D

RECOGNITION SET OF SYMBOL STRINGS

The following presents a recognition set of 500 symbol strings

representing ten digits 'ZERO' to 'NINE’. Each digit is uttered 50

times by a single speaker (A.J.P.) using the FE of reference 96.

Appendix B gives the values of significance of various symbols

appearing in the recognition set.

ong TWO
Nk M2 Lm ga BL qa

Ph Pg Mg ° L Bm

Mai Nk ML p BoC Bk

Lj Ni Mj n ° Eo

Pj Nh Nk ° Be Ei

Nj Mh Ik Bp Do &

Mi Rk oi ° q ced

Lh Nj PL Bn r Bo

Lkc Pg MiE a m m

Mg Kh Oe n Bp k

Mfr Kf 2 °

Oh Hd ° &

oj Nh qa Bm

Om Kh n p

Ng Qh Bp +

PL Og ° s

Nh Kn ° EL

Oj Nn qa m

Ke Ip m nD

LkD eKj Dn i

BL

FgCa

cDiA

cach

DED

cic

Gj

ibf

Eecf

Jheg

CcDhD

EeC

Dhe

bEL

EfEj

BiD

THREE

Ff

DiB

Ghc

CE

bba

bDj

Bes

BeD

FgC jE

CE

BgB

Fjc

cdDd

Bez

BhH

Fed

GEG

Gic

Bho

Did

GwB

BxE

IuD

DvE

NwE

LvG

KuE

EsD

Pvc

BsD

sc

Itz

EtG

IrD

EqD

HsF

IqE

JsD

Kuc

Gq

- 151

Ho

EpE

JoD

jciz

CoF

Jai

IgB

IpD

JtF

HaE

HRDe

MmcfG

EpF

EoH

Joce

KoF

ciB

FicgE

HQDiFo

Ijcic

DnG

EpD

BsH

FIVE

EdDkPc

GdDmR

NhDkKR

LgekP

Qicgs

JgDjqa

cfDmRe

NjDio

GfckQ

JiDkPf

GsSf

GfCjN

Jhcgt

LiFmsdaD

EnEiQk

BjC jah

IfDmTn

HnSj

CeEnRm

EhDjPo

DgEnMi

CeCk0j

GdEoRE

GmOc

HeC jN

IoPi

IgC jM

GqPc

EQ0i

BgPe

BaDsOj

EjNe

CoP

EnQa

Hnge

FaDngd

GfCmNh

DnPg

DeDoQi

Dogg

GeCmPf

EeEnRk

GpSh

ogt

GdCnPe

eFgNe

EeDnQp

SIX

Decfebj Bjed

cFg@BgC Be@bDe

m@Dh Bg@cD

Enefh f@c

m@dA. Bg@cE

Le@DfB Fhe@DeDd

Cm@BeE Bke@Ba

LeDfB D£e@EfC

Dk@BeE Dj@c

i@Ce DjefDe

Ei@Co Cg@ce

Bjedda ief

Dge@cDn Dm@bB

2@BoC Fie@ecd

BheDeF Bfebc

i@EcC Ch@c

n@DhD Fk@Cc

Cn@gD Ci@Be

Fj@eB Eh@DgE

kedG f@A

En@CgG Gi@Ce

Ci@bF Bakjeh

fefrD Eged

keG Bge@d

bed@Bt Ch@De

- 152

SEVEN

BoFi

EdGo

Dee

din

BaFm

DeDj

EeFo

BeDk

BaloB

D£CkD

CfFiCe

G£Gp

EL

oD

DeGo

CfHm

Joc

CdFo

FaDj

bDk

EaDi

Fekk

FdFgDa

Ch

CeEjCe

Dj

Cm

Gp

GnEa

FmEe

EnC

Hndg

Cec jcfc

FeCfCe

CcoEp

Gn

Fn

&
e

eDi

cHn

IcCQDe

cac

BdGma

cEk

Fa

DeFp

E =I

Diek

e@h

Fi@h

Iiej

Gj@e

FjC@n

Cfe@aci

Dfek

Ce@Bi

Boe@Ba

Eeetg

Ce@e

Dfed

Bej

Bdeg

Ca@e

Bd@e

bBed

bed

Bg@a

De@cCg

cfed

Fg@c

Ig@eB

Ej@g

Eicf

De@f

Efef

Cde@g

Eh@e

FhoBe

Fj@c

Hhef

CheBf

Brog

EgGe

He@Ba

Gf@e

Fief

Cf@e

Hi@BeCg

Jeet

Dke@B j

Eg@bCh

Fget

Fg@ch

Gg@g

Hm@Be

Ek@Bg

Ioc

Hg

PtC

veg

5

HD

Lk

z

2

Kfbdg

Ik

BmE

In

GgCc

Ked

GR

Ti

NINE

HEI

Mk

Ogde

FeBic

Jk¢

Lk

Ti

IeEh

KL

KeBj

KLE

InE

JnD

R

Jee

Mo

Gdci

Ng

IkB

= 153

ZERO

Gfet

IgDgD

GhcfF

BJF

Gicha

Gdacic

GjEfD

BeA

HhCe

BdEhc

chcgc

Ger

EjH

Chr

cfDe

Gjc

EecfD

EfCo

CiFgG

eDaD

FeDgCa

ChFgCcD

C£C {GPG

eCgCcB

BiEhE

jp

ChEhE

D£DhD

DnGeB

jE

ChFf

EcEhDa

IdcfDe

EfDeDi

Becf

GhDfGd

gEcD

Gicf

Igkf

FgEfD

EhFhF

FdDe

GdEeCic

GdEjCeE

- 154 -

APPENDIX E

RULES OF THE INFERRED GRAMMARS

The following presents rules of FSG's, weighted and non-

weighted CFG's constructed directly from the training set in appendix C.

The appropriate inference algorithms used can be found in chapters 3

and 4 . The set of terminal symbols is assumed to consist of all

symbols appearing in appendix B. All other symbols including the start

symbol & are in the set of nonterminals.

Eel Rules of the FSG's

ONE

& —» PA, & > Kay A, — KA, 4g —e mA, ap D

& —- MA, Asm i Ae Ag > fA, Ag = E

& —- LA, A, > m seed Ag > k Aor

& —» NA

TWO

& — id, &—-~m & —— nA Binge CA Ag —~ EA,

& — oa, gee gn ane Ag = D

&—-p mae CA, A,» D 4, =k a ea

&~k

THREE

& > fA, & — Ba, &- BAL A, > ba, Ag =o

gc & — Ch, R—~f A, E Ay ids

&—> JA

& — HA

& — Cae

dN

gt TAL

FIVE

& — BA,

& —> HA,

&— CA yo

t+ FA,

ee
&—~— IA

A, —> nA.

A, —~ fA

A, ~» RA

SIX

Chg

- 155 -

Ag~rc

fctrere

Ag = fAy9

eT ae

aS
4g = @A,

Ag > Chg

Ao > 34,

Ay ~~ SS

‘Taig

py ena)

#15 Smee

Sr te

Saat O15
#5 ae

a5 a

Gea a tT

Bie oe aes

47 SPAS

Nei 1g

#20, <2 721

rae Ne

Smeets
An al ea,

“39 14

aye

a eee

eo

eae
Ag — tag

20

2
a
e
 '

Pe
er

o
F
 SF

Sie cag

* 6a 0:

Ags > eA,

Ag > en,

Any > ra

EIGHT

&— GA

ai Fag

& = Diy

arto

24

> JA,

NINE

& > FA

& > IA

&> LA

& > Jag

& > HA

And

A, wh

Aye BAe

= 156 —

eT eres

AP e8
4g = fa,

a emi

25 ae

Noe 1

Shea el

Age
Ag = 2
Ag > b

#9 7 10
by = 24),

Ao S45

ane?

ate eens

A, > Jag

A,~k

Ag Cc

Agwm sé

emgmcens geeiy sae

PCS qgisecles gece

frase plone”

Pina tel 6 Guo! ne

ai ea) cat anaes
Ag Day yn > 6

aT a

gisebe Greakpeact
437 Fa, tga

Bia) a chp ole ol
Ay >~k Ag > @dg

ATO ima 16) ie 2oiae On23

Sie ate “17 ealan te
AW ~ Ee Aggy > hay

Ag a @h,

Ag > h

Ag mi

ms
Ag~ E

ZERO

&t-> cA,

ce ek

fom DAs

i> EAL

a> aA

Ay > cA,

A DA
ie ot 3

Ay > 2

Ay > iA;

Ay > bA ¢

ei ear

See

ag > EAL

Ag F

Ay = By
pserrs
3 ae

tg c
Sethe

EO ay get

- 157 -

4, > 44,

eng aay

eae

iG ie 6

P15 gperele

S16 tae

iG aeean 9)

E.2 Rules of the CFG's (weighted)

ouE
&~— AA,

eas
Rm beh

i> A37410

ee A612

TWO

io AAS

Bm Ayed,

Bom AC

Doers,

i dg

eee

&—— AA,

er isd

eines

Ay mi

E> Aya As

eo t

92

A,>M

A,wm>k

Ae cee

Ag wl

4d

Ama

A, > D

A, ed

A, mC

Bema

Be = Ase
Ag > BA,

4a

Aig Day

eta aces

20 21

20 ~~ Sh26
Ay) > DA,

ol cay

Ag WN

tose

4ow?

Ant

43

Ag p

Ak

Ag > m

Ag =n

Aowme

cai cee
Ag > AA

Seas o

6 ei

Aan om ALA
36 374

Aay > 4410

Sie schs

3773

Be oo10
iw A7Aj0

Per oaeT
endo

a> M55

meee yeah
FIVE

in Aa7Ay

L> aoa

QL A oMgs

Rais a7
~ Aga, 49

Foon

A053

bert 57

Beer e5n59
in 45863

4 > B

A, =n

”
Fo}

»

e

ae

a9 310
g~ shy

&> A

4 >?

A, > F

£ > Aypay

Awd

A, 0

A,~>C

A, = E

453

Aga

he E

4g = 0

A,—m>j

a

Ag >=

aot

Ag > P

dg i

Mowe

Aine @

Ag > 0

45 0

em

by E

Foam

vile

B12.

aS eect

BA

oe

fe) ae

360 ke

Ag ¢

Ag ~ H

Alo

a
A356

Ae

sl)

436

a7

446

47 > A643 Aso

~e

>i

= Ack,

ot

>t

a AA,

ar ibs
> ate

Fae
= Beno

= 41042

> Aah

Sete

= 436%
J aaa

AAO

> aA,

Safes tae

243 sa tU3eo

4g Agshio
Aas > Aya,

$16 = “116

4y7 > “4649

4p > AsAig

45) ~ Asotle

*52 aol 3

#53 “5217
beg 7m Ans

455 = Asa*a

nay “Aone 856: = “655

= *10%3 “st % *22%56
eM cAg sao ots

= Ast5 459 > 45849

me en) “6G 7b 86

Garei6*15) 61) ser 60-37

fal 48°17 "62.0 410/61

™ Aistig 463 > Aos4eo

SIX

E> Ak A, +e

> tA, Aya

£m beh bg > C

E> bgig Ag ec

Fe fees) Ai
£> AAS, Ag > 2

E> begh, tye

e160: Sat ohm’

Pan 8°59 |) jain

£56712) «te a”

gah nate aie aes
Ag n A feee >

ZERO

aan ye

iS Asni, ee ee
Em Aygh, Ag i

eateries ead

Oe ast 8 ane

ie Aone lomaano) een

fo scah lone

Seung etme Tanne

eee TOnlek mele. cay

po osiicrcy ay
oe Meee

Ape c got

A, D Ayg > AA,

Hog =

aos

eae

ere ae”

BGwie iD

BTig 33623

B36 aT ha

459 > Ase4s

Aga,

nots

Ayo > Ams

43 “aot

+
v
4

An > A564

Sa

Bota foe7

AsAs9

i = 72°40

ea wage,

#43 i> 742"8

‘ng Ants
445 A5*a4

Ana > 4043

45 7 Aga*h
46

An >
47

Ang >

454 ~ 45346

5 a 153

456 ~ 45455

oOT ai 56>

A54a7 458 As74i6

Bag = A5kag 459 = Ags

Aig! Bien. S59) 47 16

450 = Ast 3 460 = Aso4e

459 > AgoAy7

4a = Aso%s

Sepa dna

453 > sats

> 44584

13

>

450 ~ AsMag 463 Acoka

Boy > Asots 464 = 46347

Soo Ayatt3 465 Fe F8e3

453 ~ 45452 465 — “7 4e5

454 Aleds3 467 > Acote

Boy yhg44l 0G me “TS

45g = 434.4 469 > Acaty

457 = *56°3 470 “69°8

$8 5 Si 5712

4n6 > Aotgs 459 @ Asa4i2 “72 ~ An 43

tay > Aghas
yg > Ags 4a

yg = ahs

60 Sy 59 973 7 “726

46047

AO alAeT

oD
4,4,

Aahs

Asay

teh

is
 y o

> ' 2

F
F

T
Y

»
w&

Mowe

Ager

Aa o

aoe t

&— Age

fF 10%9
i Agha

&-> Agro

A >F

- 160 -

B61 te
Ay _ 51

=o Ges862 AB neay 247

#39 Age41 Aug 4a4n

Ayo ~ 43949 450 = AisAyg

Pp 8g 451 = AA

Ayo Se Aphis “Asoc Ai5*o

Hag “azt10 453 = Arotse

244 = -ta3"7

445 ~ Aogg

“46 ~ “sts
Aat AeA?

Aa7 = AseAio Aga = AagArg

#38 7 A574 449 = Agpte

#39 oe 25034) “OM eeTA 3

40 ~ “6439 An = “L650

#4 o7°3 251 = 420%50

Beer fats Aeoie “Bere

*i3 7G eb 53 se 5e 1)

Ang “gs“13 454 = A5atig

§y5 Ash B55 Asahg

46 Aas

Mat 715°3

Ap ee howmt

Ag> J Aye = AjAG

Boi. Ag7 ™ Aja,

how

is

E.3 Rules of the CFG's

one
&~ AVA,

ee
gE eonT

fer 376

a esa

TWO

eo ty
rate es

iw A

o> aA,

eed

fe ian

4?
A, >i

Ro A

mA ‘4 7
i Ag As

bas
Rr toes

b= Aho
aot

&k> A

4 ~f

A, wm F

& —— Aga

b> body
Be ah

ae ST Le
Ao?

- 161 -

nonweighted

4g > N

mye

AowmD

ae

Sea

Ag > P
Apo

Ag > m

torte

Aowms

Ag C

bg H

AiO see

a
e656

Amc

Ago J

bye

to. 42
Aymi

ai Sorat
Ay. —~ ALA 36 34

Teese

Aid il

Ass > Asay

437 <2 "9°10

[ajeam lee

Ane

ASG > AAs

FOUR

B63

AyAs7
Ee AzoAg

fe 24D es

fe edt

oie ei eAS

Baga

Bo Asks

Ce ATG

FIVE

E>

komA

- 162 -

lee #18 aoe a4) doe

ome 49 Tae Aaa sa AA3tio
4,>D B36 AA Ags Aylty

pie aan P37 eae AO mT 16

213 aga Ag ~~ 4345 fag > Ayety

af ee #39 77 “3847 0°48 = “ekg
45 — B Ano > AU Ae

Aig = 2 Ay = Aods

bay ih #42 2 P12)

aT mee 438 4544 451 = AsoArg

8 =? 230\ 7% 130360) 52 7p 421s

219 cia #40, = *29%7 453 *20*52

Oia Saye PANS 54 ate

Soiree Bye Pots 455 =| Aas

open 443 AloAyo 456 = A55 Ao

=23 nee 44 ~ 4q34re 457 ~~ A564a3

on aie Aa5 = AiAga 45a 7 A5Aog

fos ee #46 = A13°14 959) Tee 58.3

a6 Aut = 446415 460 > A64a5

or fe #48 = 16°15 61 “wie0 510

#36 a 1 2 40 ea 6 AB 6am ee

renee Byeha. 850) TSG tesen 262 26

SIX

ti Azg4e

t= 743,9
Bw Aya,

& > Aedes

E> Al oAag

t-> Aske

oe sonty
in Asok¢

re ae

C6212
4 > sB

A,~n

SEVEN

ed A37A3

oe eS
&- Sean

Se Fear
gE Ays4o

i> Ano

£— Ayoh7

i> Mag

Sag

eee
4om?

43758

Aywi

- 163 -

peo o iae

364.

58\i a7!

39 ~ A345

edie
An > Agar

f4cde edt

243 Ta e425

tym t

Ao

Sula

43-5

45m e

C16 ae

A=

Aya > A5AL0

245 ee AA

yg = Ags
4G > 445413

Pie td
Ang > AngAs

449 ~ Agoke
450 = AvaAs

a ai 50

ae
453 7 4545

454 4534s

sia” ¢

Sioue e

Oo a 361

a8 aa 82

A59 = Ase

yo ~ “3949

Ay = AyMgo

Rio O"7

ister Warde

455 ~~ A545

456 ~ AssAi6

S57 aaa es

45a AyAs7

458 = Ave4s7

459 = AsaAs

#60 = *10%3

261 oie 41456

46o ~ AeA

~ AeAas

45 = AoMaa

446 “ahs

a7 Age4s

48 ~~ AveAy

“49 Anste

450 = AtoAls

431 Te 501

A52 > “SULT

EIGHT

ey

fe 8407

{ eeihe

2372

or Vials
i> 4 Ane

Ayo

E = tnhs
Bm Aoshs
ears or
4 > G

ZERO

See 385

be ome Sa

Str a5 13

(ome aes
ee sorte

E25 3°10

ae eT
rey S598

Sm Te2
i- ao Ace

Ac

A, moc

A, ~>D

he ek

Ag mi

"dian

en

43 ~k Aa7 ~~ Ax640

{qe AB a 34

5 yee Ayg Ags
Ne > J Ano = Az943

AT —~h An — Aga,

43> g Ano > Ay Ay

219 ae *93.t etre

Boon yg Ay3te
Ay —-b Ans ~ eg

A 36.7e ie. | 446 A345

ape a6 oS AT ae at 1S

Als >f ANG > pola

Ass > AA, Aggy > *16*s

~_ Angas Ao Ayo 3

P
L

oa Aisa 2 AGS

38 As74e Aya > Aarts

Aap: se As8hy P48 = AT Le

Bap Aa9%e 449 Ta ieMar

Mie a5 Ou 340

Myo A548 An Avstas

#43 Gp 10842 *52ce 7 51

GAdae 9°43 AS, ome olay

445 ~ Ana*ie 454 = A5Aig

>

at's

49 ~ Agetvg

0 Seal (as
451 = Ale4so

4s = AzoAso

459 = Aphis

453 = Asaf

454 4534.9

455 AsaAls

B55 Asa*y

A5g Anshg
Asy 7 Aahie

458 = Agas7

B59 = Ar Ass

60 5 78

46. AooAL

62 Aster

63 ~ Asks

4eq —~ Agats
765 oor

le

26

36

Ae

5

6.

Te

9.

10.

ll.

12.

E165)—

REFERENCES

M.B. HERSCHER and R.B. COX, 'Talk to the computer : an adaptive

isolated-word speech recognition system’, NAVMIRO Manufacturing

Technology Bulletin, no. 45, August 1973.

D.R. HILL, 'Man-machine interaction using speech", in F.L.Alt,M.

Rubinoff and M.C.Youits, Hds., Advances in Computers, vol. II, pp.

165-230, New York : Academic Press, 1971.

WeA. LEA, ‘Establishing the value of voice communication with com—

puters', IEEE Transactions on Audio and Hlectroacoustics, vol. AU-

16, pp. 184-197, June 1968.

N. LINDGREN, 'Speech - man's natural communication', IEEE Spectrum,

vol. 4, ppe 75-86, June 1967.

D.R. REDDY, "Speech recognition by machine : a review', Proceedings

of the IEEE, vol. 64, no. 4, pp. 501-531, April 1976.

‘A voice-controlled computer terminal for the severely disabled',

Information note of Scope Electronics Inc., Reston, Virginia 22090.

JW. GLENN, "Machines you can talk to', Machine Design, pp. 72-75,

May 1, 1975.

‘Voice recognition systems', A brochure of EMI Threshold Ltd.,

Hayes, Middlesex, England.

‘fell your cartons where to get off ', Traffic Management, pp. 24-

27; Denver, CO : Cahners Publisher, February 1975.

T.B. MARTIN, ‘Practical applications of voice input to machines',

Proceedings of the IEEE, vol. 64, no. 4, pp. 487-501, April 1976.

M.J. UNDERWOOD, 'Machine that understand speech', The radio and

electronic engineer, vol. 47, no. 819, pp. 368-376, August /Septem—

ber 1977-

R.O. DUDA and P.E. HART, Pattern Classification and Scene Analysis,

New York : John Wiley & Sons, Inc., 1973.

13.

14.

15.

16.

17.

18.

19.

20.

226

23.

- 166 -

S. CHIBA, 'Spoken word recognition by multiple linear separation’,

The 6th International Congress on Acoustics, Tokyo, Japan, pp.

B123-Bl26, August 21-28, 1968.

JH. KING, Jr. and C.J. TUNIS, 'Some experiments in spoken word

recognition', IBM Journal, pp. 65-79, January 1966.

T.G. von KELLER,'An on-line recognition system for spoken digits',

Journal of the Acoustical Society of America, vol. 49, no.4

(part 2), pp. 1288-1296, 1971.

S. INOUE and A, KUREMATSU, 'Speech recognition with time—normalized

frequency pattern', The 6th International Congress on Acoustics,

Tokyo, Japan, ppe B1l27-Bl30, August 21-28, 1968.

L.C.W. POLS, ‘Real-time recognition of spoken words', IEEE Transac~

tions on Computers, vol. C-20, pp. 972-978, September 1971.

C.F. TEACHER, H.G. KELLETT and L. FOCHT, ‘Experimental limited

vocabulary, speech recognizer', IEEE Transactions on Audio and

Electroacoustics, vol. AU-15, no. 3, September 1967.

G.M. WHITE, 'Simple techniques for transforming speech to quasi—

phoneme strings', Speech Communication Seminar, Stockholm,

August 1-3, 1974.

W. BEZDEL and J.S. BRIDLE, "Speech recognition using zero-crossing

measurements and sequence information’, Proceedings IEE, vol. 116,

no. 4, ppe 617-623, April 1969.

MeR. SAMBUR and L.R. RABINER, 'A speaker—independent digit-

recognition system’, BSTJ vol. 54, pp. 81-102, January 1975.

JelLe FLANAGAN, Speech analysis, synthesis and perception,

New York : Academic Press, 1972.

K.H. DAVID, R. BIDDULPH and S, BALASHEK, ‘Automatic recognition of

spoken digits', Journal of the Acoustical Society of America,

vole 24, pp. 637-642, 1952.

24.

256

26.

271.

28.

296

30.

326

336

- 167 -

G.D. EWING, 'Computer recognition of speech using zero—crossing

information', IEEE Transactions on Audio and Electroacoustics,

vol. AU-17, noe 1, ppe 37-40, March 1969.

Re de MORI, "Speech analysis and recognition by computer using

zero-crossing information’, Acoustica, vol. 25,pp. 269-279, 1971.

B.S, ATAL and S.L. HANAUER, 'Speech analysis and synthesis by linear

prediction of the speech wave', Journal of the Acoustical Society

of America, vol. 50, no. 2 (part 2), pp. 637-655, 1971.

R.G. CRICHTON and F, FALLSIDE, "Linear prediction model of speech

production with applications to deaf speech training’, Proceedings

IEE, vol. 121, no. 8, pp. 865-873, August 1974.

P. DENES and M.V. MATHEWS, ‘Spoken digit recognition using time—

frequency pattern matching', Journal of the Acoustical Society of

America, vol. 32, pp. 1450-1455, November 1960.

JP. HATON, 'A practical application of a real-time isolated—word

recognition system using syntactic constraints', IEEE Transactions

on Acoustics, Speech, and Signal Processing, vol. ASSP-22, pp.416—

419, December 1974.

D.E. WALKER, ‘Speech understanding through syntactic and semantic

analysis', IEEE Transactions on Computers, vol. C-25, no. 4,

pp. 432-439, April 1976.

H. DUDLEY and S. BALASHEK, ‘Automatic recognition of phonetic

patterns in speech', Journal of the Acoustical Society of America,

vol. 30, pp» 721-739, August 1958.

W.J. STEINGRANDT and S.S. YAU, ‘Sequential feature extraction for

waveform recognition', Spring Joint Computer Conference, pp. 65-

76, 1970.

L.W. FUNG and K.S. FU, 'Maximum-likelihood syntactic decoding’,

IEEE Transactions on Information Theory, vol. IT-21, no. 4,

ppe 423-430, July 1975.

34.

356

36.

31

38.

390

4.

42.

43.

44.

- 168 -

G.R. DOWLING and P.A.V. HALL, 'Hlastic template matching in speech

recognition, using linguistic information’, Second International

Joint Conference on Pattern Recognition, Copenhagen, pp. 249-250,

August 13-15, 1974.

G.R. DOWLING, 'A trainable recognizer for spoken sentences', Pro-

ceedings of International Computer Symposium, vol. I, pp. 386-391,

1975-

T.B. MARTIN, 'Automatic recognition of a limited vocabulary in

continuous speech', Ph.D. dissertion, Department of Electrical

Engineering, University of Pensylvania, 1970.

K.S. FU, Sequential Methods in Pattern Recognition and Machine

Learning, New York : Academic Press, 1968.

K, FUKUNAGA, Introduction to Statistical Pattern Recognition,

New York ; Academic Press, 1972.

H.C. ANDREWS, Introduction to Mathematical Techniques in Pattern

Recognition, New York : Wiley, 1972.

R. de MORI, 'A descriptive technique for automatic speech recog—

nition', IEEE Transactions on Audio and Electroacoustics, vol.

AU-21, no. 2, pp. 89-100, April 1973.

N. CHOMSKY, Aspects of the Theory of Syntax, Cambridge, Mass. :

MIT Press, 1964.

K.S. FU and T,L. BOOTH, 'Grammatical inference : introduction and

survey', IEEE Transactions on Systems, Man and Cybernetics, vol.

SMG-5, no. 1, ppe 95-111, January 1975 (Part I) and vol. SMC-5,

no. 4, pp- 409-423, July 1975 (Part II).

K.S. FU and P.H. SWAIN, 'On syntactic pattern recognition’, in

J.T.Tou, Ed., Software ineering, vol. 2, New York : Academic

Press, 1971.

K.S. FU, Syntactic Methods in Pattern Recognition, New York :

Academic Press, 1974.

456

46.

4Te

496

50.

51.

52.

536

54.

- 165 —

R.S. LEDLEY, L.S. ROTOLO, T.J. GOLAB, J.D. JACOBSEN, M.D. GINSBURG

and J.B. WILSON, 'FIDAC : Film input to digital automatic computer

and associated syntax-directed pattern recognition programming

system', in J.T. Tippett et al., eds., Optical and Electro-Optical

Information Processing, chapter 33, pp. 591-614, Cambridge, Mass. :

MIT Press, 1965.

R.J. SOLOMONOFF, 'A new method for discovering the grammar of

phrase structure languages', Information Processing, Paris, 1960.

R.J. SOLOMONOFF, 'The mechanization of linguistic learning’,

Proceeding of the Second International Congress on Cybernatics,

Namur, Belgium, 1962.

JeA. FELDMAN, 'First thought on grammatical inference', Stanford

Artificial Intelligence Project Memo. no. 55, Stanford University,

Stanford, California, August 1967.

JA. FELDMAN and D, GRIES, ‘Translator writing systems', Communica-

tions of the ACM, vol. 11, pp. 77-113, 1968.

P.R. ROSENBAUM, 'A grammar base question-answering procedure’,

Communications of the ACM, vole 10, pp. 630-635, 1967.

T.G. EVANS, ‘Grammatical inference techniques in pattern analysis’,

in J.T. Tou, Ed., Software Engineering, vol. 2, New York : Academic

Press, 1971.

H. GENCHI, K.I. MORI, S. WATANABE and S, KATSURAGI, 'Recognition

of handwritten numerical characters for automatic letter sorting’,

Proceedings of the IEEE, vol. 56, ppe 1292-1301, 1968.

S.K. CHANG, 'A method for the structural analysis of two-dimensional

mathematical expressions', Information Sciences, vol. 2, ppe 253-

272, 1970+

J.B. HOPCROFT and J.D. ULLMAN, Formal languages and their relation

to automata, Reading, Mass. : Addison-Wesley, 1969.

55e

56.

51-

58.

59¢

60.

6l.

62.

63.

646

65.

=2170;=

A.V. AHO and J.D. ULLMAN, The Theory of Parsing, Translation and

Compili vol.I : Parsing, Englewood Cliffs, N.J. : Prentice

Hall, Inc., 1972.

N. CHOMSKY, 'Three models for the description of language’, IRE

Transactions on Information Theory, vol. IT-2, no. 3, pp. 113-

124, September 1956.

N. CHOMSKY, ‘On certain formal properties of grammars', Information

and Control, vol. 2, ppe 137-167, 1959.

N. CHOMSKY, ‘Formal properties of grammars', in R.D. Luce, R.R.

Bush and E. Galanter, eds., Handbook of Mathematical Psychology,

vol. II, New York : Wiley, 1963.

S. GINSBURG, The Mathematical Theory of Context-Free Languages,

New York : McGraw-Hill, 1966.

S.C. KLEEN, 'Representation of events in nerve nets and finite

automata’, in Automata Studies, Princeton, N.J. : Princeton

University Press, 1951.

E.M. GOLD, "Language identification in the limit', Information

and Control, vol. 10, pp. 447-474, 1967.

R. SOLOMONOFF, 'A formal theory of inductive inference', Informa-

tion and Control, vol. 7, pp. 1-22, 224-254, 1964.

J.J. HORNING, 'A study of grammatical inference', Ph.D. disserta-

tion, Department of Computer Science, Stanford University, 1969.

A.W. BIERMANN and J.A, FELDMAN, 'A survey of results in gramma-

tical inference', in S, Watanabe, ed., Frontiers of Pattern

Recognition, pp. 31-54, New York : Academic Press, 1972.

F.J. MARYANSKI, ‘Inference of probabilistic grammars', Ph.D.

dissertation, Department of Computer Science, University of

Connecticut, 1974.

66.

67.

68.

69.

106

Tle

T2.

13.

14.

D6

166

Tle

=i =

AR. PATEL, 'Grammatical inference for probabilistic finite-state

languages’, Ph.D. dissertation, Department of Electrical

Engineering, University of Connecticut, Storrs., 1972.

T.L. BOOTH, Sequential Machines and Automata Theory, New York :

John Wiley and Sons, Inc., 1967.

FJ. MARYANSKI and T.L., BOOTH, ‘Inference of finite-state proba—

bilistic grammars', IEEE Transactions on Computers, vol. C-26,

noe 6, ppe 521-536, June 1977.

I. FRIS, 'Grammars with partial ordering of the rules', Information

and Control, vol. 12, pp. 415-425, 1968.

S. ABRAHAM, "Some questions of phrase structure grammars', Compu—

tational Linguistics, vol. 4, pp. 61-70, 1965.

D.J. ROSENKRANTZ, ‘Programmed grammars and classes of formal

languages', Journal of the Association for Computing Machinery,

vol. 16, pp. 107-131, 1969.

S.GINSBURG and E.H. SPANIER, ‘Control sets on grammars',

Mathematical Systems Theory, vol. 2, ppe 159-177, 1968.

R.A. THOMPSON, ‘Determination of probabilistic grammars for

functionally specified probability-measure languages', IEEE Tran—

sactions on Computers, vol. C-23, no. 6, pp. 603-614, June 1974.

R.A. THOMPSON, ‘Language correction using probabilistic grammars',

IEEE Transactions on Computers, vol. C-25, no. 3, pp. 275-286,

March 1976.

K.S. FU, 'On syntactic pattern recognition and stochastic

languages', in S. Watanabe, ed., Frontiers of Pattern Recognition,

New York : Academic Press, 1972.

K.S. FU and T, HUANG, ‘Stochastic grammars and languages', Inter-

national Journal of Computing and Information Science, vol. 1, 1972.

K.S. FU, 'Stochastic languages for picture analysis', Computer

Graphics and Image Processing, vole 2, no. 3/4, December 1973.

78.

196

80.

8l.

82.

83.

84.

85.

86.

87.

= 172 =

D.V. HUNTSBERGER and P, BILLINGSLEY, Blements of Statistical

Inference, Boston, Mass. : Allyn and Bacon, Inc., 1977.

V.I. LEVENSHTEIN, "Binary codes capable of correcting deletions,

insertions, and reversals', Soviet Physics-Doklady, vol. 10, no. 8,

ppe 707-710, February 1966.

LeR. BAHL and F,JELINEK, "Decoding for channels with insertions,

deletions, and substitutions with applications to speech recog—

nition', IEEE Transactions on Information Theory, vol. IT-21,

noe 4, ppe 404-411, July 1975.

V.M. VELICHKO and N.G. ZAGORUYKO, ‘Automatic recognition of 200

words', International Journal of Man-Machine Studies, vol. 2,

PPe 223-234, 1970.

R.A. WAGNER and M.J. FISCHER, 'The string—to-string correction

problem", Journal of the Association for Computing Machinery,

vol.21, noel, ppe 168-173, January 1974.

D. SANKOFF, 'Matching sequences under del etion/insertion con—

straints', Proceedings of National Academic Science USA, vol. 69,

noe 1, pp. 4-6, January 1972.

H. SAKOE and S. CHIBA, 'Dynamic programming algorithm optimization

for spoken word recognition', IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. ASSP—26, no. 1, ppe 43-49,

February 1978.

R.E. BELLMAN, Dynamic Programing, Princeton, N.J. : Princeton

University Press, 1957.

J. BACKUS, 'The syntax and semantics of the proposed international

algebraic language of the Zurich ACM-GAMM conference', Proceedings

of the International Conference on Information Processing, UNESCO,

Paris, June 1959.

P.A. LYN, ‘Economic linear—phase recursive digital filter’,

Electronics Letters, vol. 6, p. 143, 1970.

88.

89.

906

91.

926

93-

94.

956

96.

91

98.

-173-

C.N. ALBERGA, 'String similarity and misspellings', Communications

of the ACM, vol. 10, no. 5, pp. 302-313, May 1967.

S. KUNO and A.G. OETTINGER, 'Multiple-path syntactic analyser’, in

Information Processing 62, pp. 306-312, Amsterdam ; North-Holland,

1963.

J. EARLEY, 'An efficient context-free parsing algorithm', Communi-

cations of the ACM, vol. 13, noe 2, ppe 94-102, February 1970.

G. LYON, ‘Syntax-directed least-error analysis for context-free

languages: a practical approach", Communications of the ACM,

vol. 17, noe 1, ppe 3-14, January 1974.

D.G. HAYS, 'Language-data processing’, in H. Borko, Ed., Computer

Applications in the Behavioral Sciences, pp. 394-423, Englewood

Cliffs, N.J. : Prentice-Hall, Inc., 1962.

A.V. AHO and T.G, PETERSON, 'A minimum distance error-correcting

parser for context-free languages", Siam Journal on Computing,

vole 1, now 4, ppe 305-312, December 1972.

D.H. YOUNGER, ‘Recognition of context-free languages in time net,

Information and Control, vol. 10, ppe 189-208, 1967.

M.M. KHERTS, ‘Entropy of languages generated by automata of

context-free grammar with a single-valued deduction’, Naucho-

Tekhnicheskaia Informatsia, Ser. 2, no. 1, January 1968.

A.J. PUTMAN, 'Feature extraction for automatic recognition of

telephone speech', Ph.D. Thesis, Department of Electrical and Hlec—

tronic Engineering, University of Aston in Birmingham, England,

to be submitted in 1979.

G. LEVI and F, SIROVICH, ‘Structural description of fingerprint

images', Information Sciences, vol. 4, ppe 327-356, 1972.

K.P. LI, GW. HUGHES and T.B. SNOW, 'Segment classification in con-

tinuous speech', IEEE Transactions on Audio and Electroacoustics,

vol. AU-21, pp. 50-57, 1973.

