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SUMMARY

An automatic isolated-word recognition (IWR) system normally
consists of a feature extractor "(FE) followed by a recognition
processor. Some form of 'training' is usually required in order to
combat problems of variations in speech. This thesis presents the
application of formal grammars to model a FE in an IWR system. The
method is to construct, in the training mode, one grammar for each
word in the vocabulary, directly from a set of sample strings of
'features' represented by symbols. In the recognition mode, an incoming
string is analysed to determine which grammar, if any, could have
generated it.

Inference algorithms for both finite-state grammars (FSG's)
and context-free grammars (CFG's) considered here are based on the
criterion of maximizing the similarity between various strings of the
same word. The classification of a string involves the use of the
'weighted matching network' technique in the FSG approach and the
computation of the minimisation matrix M for the CFG approach.

Both the FSG and CFG models offer comparable recognition
performances whilst the use of the CFG approach results in an increase
in the amount of computation required. It appears, therefore, that
there is no advantage gained, in terms of recognition performance and
computational requirement, from the use of CFG approach over that of
the FSG in the recognition of isolated words.

The use of formal grammar approach over the direct storage
of strings in isolated-word application makes possible the
'generalisation' of strings in the training set. This can reduce the
number of strings required by the learning process. Another advantage
of the linguistic method is the reduction in the amount of computation
in the FSG approach which is a result of the merging between similar
segments of various strings during the training process.

KEYWORDS: Formal grammars, automatic speech recognition, finite-state
grammars, context—free grammars, grammar inference .
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LIST OF PRINCIPAL SYMBOLS AND ABBREVIATIONS USED

(Subscripts and/or superscripts may be attached to symbols)
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the start symbol

the terminating node

set membership

set union

set intersection

can be replaced or rewritten by (used in rewriting rules or
productions)

directly derives

derives ie. :é} for some i20 where_—j.'_y denotes the
i-fold product of =

derives in a nontrivial way ie._—-i—.} for some izl
automatic speech recognition

average weighted string length

nonterminal s

nonterminal with hierarchy level i

nonterminal corresponding to b

i in a terminating rule Ab - b
3

terminal s

strings of nonterminals and terminals
the jth symbol of s

the ith symbol of Bj in S+
the last symbol of sj in S*Iwhere £ is the length of 85
context-free

context—-free grammar

context-free language

context—-sensitive

context-sensitive grammar

context-sensitive language

i



g minimum velue of dL(k) for all values of k
D minimum value of dm(k) for all words in the vocabul ary

dy (k) absolute value of the difference between WSL of a string s

and AWSL associated with word w

k
dm(k) WLD between a string s and the CFG associated with word W
e(iyj) element in row i and column j of the WMN
FE feature extractor
PSG finite-state grammar
FSL finite-state language
FTN finite-state transition network
Fn(j) non-negative deletion function
FI(k) non-negative insertion function
Fs(jk) non-negative substitution function
Fj number of string Bj
fj estimated probability of sj in S+
GI grammar inference
G a phrase-structure grammar or just grammar
Gl grammar consiructed from the first sitring in S+ ie. the SG
G 1 the (n~1)th inferred grammar
Gn the nth inferred grammar
Gns SNCFG
G SFSG
HL hierarchy level (of a nonterminal)
H(k) hierarchy level of a nonterminal A
IWR igolated-word recognition
I(Sj) number of steps in the derivation of 85
i symbol index
dJ number of distinctly different derivations of a string e in
word W,

J string index
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ji the j index of mijk corresponding to a substring of length i
K optimal path number
k word index, row index of WMN
LD Levenshtein distance
LPC linear predictive coding
LS left side (of a rule)
L(c) language generated by G
7 length of the longest member in any rewriting rule of G
' string length
a the empty or null string
MLC maximum-likelihood criterion
M minimisation matrix
HD number of distinct strings in S+
HS number of strings in S+
M(k) number of strings in word k
m number of nodes in FIN
mijk an element of M matrix
NE nondeterministic event
Nik(sj) number of times that production Ai ——rtxk is used in the

derivation of aj

n . expected (estimated) number of times that rule 4 — t!k
is used in parsing all strings in S+

PTN push-down transition network

Py set of ordered pairs (p,q) such that A =¥ ApAq is a rule
of a CFG

k 2 1

Py product of any combinations of PD(aij)k’ PI(b)k, and.

Pola; 3)x

summation of PE for all optimal path number K
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P(sj) probability of s

P(Wk) the a priori probability of word W

P(sj/wk) s Q(k) product of all production probabilities corresponding
to word W, whose rules are used in parsing sj

P ilit is i
(wk sj) probability that s, is in word w,_

PD(a.ij)k probability that 8,5 is deleted from a string in word Wy

PI(b)k probability that b is inserted into a string in word W

Ps(a.ij)k probability that 2 5 is substituted by a symbol b

pij, Py pkj production probability

p(b) probability of symbol b

p(aij/"k) probability of 3 5 given that it is in word w_
p(b/ﬁk) probability of b given that it is in word w,
p(“k/aij) probability that 2 5 is in word w,

pi(sj) probability of the production used at the ith step of the

derivation of Bj

Q maximum value of Q(k) for all values of k

RS right side (of a rule)

R a finite set of productions or rewriting rules
Rna rules of SNCFG

R rules of SFSG

<]
||R|‘ number of rules (total) in a grammar

llRB" number of bielement rules (not including start rules)
in a CFG
IIRT" number of terminating rules in a CFG

lIRst“ number of start rules in a CFG
r number of nonterminals in a Chomsky normal form CFG
SCF-B stochastic context-free B (recognition system)

SFSG stochastic finite-state grammar
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SFS—-A stochastic finite-state A (recognition system)
SFS-B stochastic finite-state B (recognition system)

SG skel eton grammar

SNCFG stochastic normal form context-free grammar

STM-B stochastic template matching B (recognition system)
S 'positive information' sample set

ByXyy a string of symbols

Sj the jth string in S+

s, the nth observed string

(5 a transition matrix

'I;D deletion coefficient

‘tI insertion coefficient

ts substitution coefficient

t(iyj) element of T matrix associated with a rule A — a‘ijAj of
a FsG

: 2 an alphabet or a finite set of terminals

2* the set of all strings, including R, consisting of symbols
from Z

" %the set of all strings in £ excluding A

(=l number of terminals of a grammar

v a finite set of nonterminals and terminals from the union
of VN and

'0'* the set of all strings, including A, consisting of symbols
from V

v the set of all strings in V. excluding A

s premise nonterminal (or node)

‘IN a finite set of nonterminals

v; the set of all strings, including A, consisting of symbols

from VN
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IVl

WLD
WMN

WSL

ax

node nearest to the beginning of a string
consequence nonterminal (or node)

number of terminals and nonterminals in a grammar
number of nonterminals in a grammar

the empty set

weighted hierarchy level

weighted Levenshtein distance

weighted matching network

weighted string length

number of words in the vocabul ary

number of words that correspond to string sj
one of the words in Hﬁ

weighted minimisation matrix

weighted hierarchy level of Ak

length of sitring x

a string associated with word W

number of links of a FIN
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CHAPTER 1

INTRODUCTION

l.1l Introduction

Since the early days, man-machine interaction has usually been
accomplished by manipulating some mechanical devices such as keyboards,
push-buttons, dials, switches etc. This form of communication poses
several limitations and drawbacks to the smooth and effective running
of machines. For example, it is usuvally necessary for a human operator
to adapt himself to the operational requirements of machines. This
requires substantial training of personnels concerned in order to obtain
basic physical skill needed for speedy and efficient operationse. Also,
special preparations of input data, the format of which is governed
by the machine concerned, are required before it can be accepted and

processed,

A more attractive and better preferred mode of man-machine
communication is by means of speech-man's most natural, convenient
and basic method of communicatione. This considerably reduces the dis-
advantages associated with non-speech man-machine communication systems

(1-5)

and offers many desirable features and advantages ssuch as the
increase in speed of communication, possibilities for mobility and
freeing hands and eyes where required, reduction in operating cost etce
In addition, the ability of a machine to respond directly to verbal

interrogation fulfils the ultimate aim in communications between man

and machine.

Much effort has been put into the research of man-machine
communication by speech and recently, several voice input systems,

though limited in capability, are available commercially and have

been in operation in various fields of applications, some of which



are summarized below:-

(a) Aids for the handicapped(s) (ege to control bed, lights etc.)

(b) Automated material handling(7"9) (ege air-line baggage handling,
parcel /mail post destination sorting etc.)

(¢) Quality control and inspection(lo) (egs inspection of pull-ring
can lids, television faceplate, automobile assembly line etc.)

(d) Applications in aircraft(7) (eg. to adjust radio receiving channel
etc.)

(

(e) Applications to computer-based systems 7510) (eg. parts programming

for numerical control of machine tools etc.)

1.2 Systems for the recognition of speech

Basically, an automatic épeech recognition (ASR) system is one
which can recognize, interpret and respond to speech sound uttered by
a human talker. There are several types of ASR machines(s’ll) though
all of them can be broadly categorized into two groups: continuous
and isolated speech recognition systems. In the latter, an isolated-
word recognition (IWR) machine included, short pauses are required
before and after utterances to be recognized whilst there is no such

restriction in the former.

Following the common practice in the field of pattern
recognition(lz) y an IWR system can be considered as 1o consist of a
feature extractor (FE) followed by a recognizer or classifier as shown
in Fige l.1 . In this configuration - which is also used by many
(1,13-21)

experimental systems - when a word is uttered, a decision is
made by the recognizer as to which word, if any , in the vocabulary

has been spoken. The descriptions for each subsystem followe



: FEATURE
input RECOGNIZER output
Spe;c—h—" EXTRACTOR foatures | (CLASSIFIER) f—
decision
(FE)

Fig. 1.1 Block diagram of an isolated-word recognition system

l.2.1 Feature extraction

After being converted into electrical energy by a transducer
(eg. a microphone or a telephone), the speech wave undergoes the first
stage of preprocessing operation designed to enhance the quality of the
signal and to reduce the degradation caused by noise. A further process
involves the development of procedures for extracting relevant parameters
or 'features' from the speech signal. At this stage, some sort of 'data
compression' is performed. The aim of a FE is to reduce the data rate
of the signal to a manageable level. This is accomplished by discarding
irrelevant elements of the signal whilst carefully preserving data

which is important and necessary to the recognition of the signal.

Several techniques are employed by various research workers
to extract relevant parameters from the speech wave such as spectrum
analysis(zz), approximation by orthogonal functions, zero-crossing

(20423-25) )(26-27)_

analysis and linear predictive coding technigue (LPC

The speech parameters or features extracted can be presented at the
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output of a FE as strings of symbols which are then processed by a
recognizer or a classifier and thereby creating a description of the

input speech.

l.2.2 Classification

The process of classification can be described as one which
identifies the input utterances using the knowledge from strings of
features at the output of a FE., The classification methods in many
speech recognition systems can be broadly categorized into two main

groups.

In the first group, commonly known as the 'template matching'
technique or 'pattern matching' method, a set of templates which are
the representative patterns or structures of all words in the vocabulary
is stored in the system memory. An incoming string from the output of
a FE is then compared with each stored template to obtain the
'best match' satisfying some specified critaria(17’19’28-31). In the
second group, the stored rules for constructing strings corresponding
to words in the vocabulary are used in the classification of unknown

strings(20_21’32-36).

In general, a person does not always speak the same word in
the same way. This unconscious alteration of the pronunciation of a
word, even spoken by the same talker, may be due to the emotional and
physical states of the speaker, the ambient noise level of the sur-
rounding and free variation from trial to trial. Hence, it is important
to incorporate some form of 'training' or 'learning' into the speech
recognition system, as shown in Figs. 1.2 « In the learning mode, a set

of sample strings from the chosen vocabulary is fed into the machine
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several times until the representative structures or rules for the
construction of each word are formed. This will make the recognition
machine able to adapt itself to the characteristics of the talker and

thereby reducing the problem of variations in speech.

input FEATURE Pataian RECOGNIZER output
speech (FE) (CLASSIFIER) decision

RECOGNITION MODE

LEARNING

ALGORITHM

LEARNING MODE

Fige 1.2 Block diagram of an IWR system with 'learning' facility

1.3 Linguistic approach to ASR

(12,37-39) from the

(20,4 36)

The classical decision-theoretic methods
field of pattern recognition, as well as some heuristic methods
have commonly been used in the past to produce classifiers for processing

strings of features from the outputs of FE's in IWR systems.

Another approach, which belongs to the second group of
classification methods mentioned in the previous section, is to make
use of the technique of formal language theory. This approach, which
stemmed from the fields of mathematical linguistics and computer

(33,40-44) _ o

science, has recently received increasing attention
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provides some promising results in pattern recognition. The essence
of the linguistic methods in pattern recognition is to have a grammar
for each class of patterns to be recognized. In most cases, a suitable
set of grammars are obtained based on a priori knowledge of the charac-
teristics of the patterns together with the experience of the designer
of the recognition system under study(45). In other applications such
as ASR, the underlying process of producing patterns may not be clearly
understood. In such cases, the only information available, namely, a
setl of sample patterns is used to construct the required grammars. The
search for suitable grammars based on a set of sample strings or

patterns is known as 'grammatical inference'(42’48)

(46)

y 'grammar

discovery! or 'linguistic learning'(47).

Basically, the linguistic method as applied to ASR works as
follows. In the training stage, sets of syntactic rules or grammars
are constructed, one for each word in the vocabulary, from a given
set of sample strings of features. In the recognition mode, an incoming
string from the output of a FE is analysed to determine which grammar,
if any, could have generated it. The word corresponding to such grammar

is then said to have been recognized.

The '"formmal grammar' approach is sometimes known as the
'syntactic!' or 'structural' approach because of the analogy between
the hierarchical structure of features or 'patterns' and the syntax
of a language. It is attractive to use due to the availability of
mathematical linguistics as a tool. In addition, it scems 10 be well-
suited to the problem of an IWR system where only a finite number of
features are generated from each utterance. Practical applications of
syntactic methods include the design of programming languages, artificial

intelligence, information retrieval, scene analysis, chromosome analysis



and many others(49-53).

The work presented in this thesis is concerned with the
application of linguistic methods to the design and implementation of
classifiers for the recognition of isolated words from a limited
vocabulary. It forms part of the research programme on automatic
recognition of telephone speech at the Department of Electrical and

El ectronic Engineering, the University of Aston in Birmingham.

l.4 Outline of the thesis presentation

Chapter 2 introduces preliminary definitions, notation and
concepts concerning formal grammars and languages that are related to
the present work. Other definitions also appear in subsequent chapters
whenever they are required. The second part of this chapter describes
the principles involved in the use of formal grammars to model a FE
for isolated-word recognition. Basic assumptions and criteria together
with some important issues regarding the modelling or the inference

process are also given.

Chapters 3 and 4 present the modelling of an IWR system using
finite-state grammars (FSG's) and context-free grammars (CFG's) res-
pectively. Methods are given for the construction of a finite-state
transition network to graphically represent a F5G and a push-down
transition network for a CFG. Inference algorithms and suitable decoding
methods for both types of grammars are presented in the appropriate
chapters. The FSG approach involves the use of the 'weighted matching
network! technique in the recognition process whereas the minimisation
matrix M is utilized in both the learning and recognition parts in the

CFG approach.
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Chapter 5 presents the evaluation and comparison of FSG and
CFG models in terms of recognition performance and the computational
requirements. Basic recognition systems required for the experimentation
are also described. In addition, descriptions are given of the advantages
and disadvantages associated with the formal grammar approach and

template matching technique.

Chapter 6 presents conclusions and directions for further
work which includes the real-time problem and improvements of recognition

performancese.
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CHAPTER 2

FORMAL GRAMMARS AND IWR SYSTHEMS

This chapter describes the principles and methods involved in
the application of the techniques of formal language theory to the
recognition of isolated words. The problem of designing a recognizer
in an IWR system can be broadly divided into two areas: the construc-
tion of models based on formal grammars to represent the characteristics
of the symbol-generating source and the search for suitable decoding
methods for efficiently analysing the strings from the source using

rules or grammars of the models previously created.

The next section introduces necessary definitions and concepts
fundamental to succeeding sections. Other definitions will be given
whenever required. For comprehensive treatments of formal grammars

see, for example, references 54 and 55 .

2.1 Preliminary definitions, notation and concepts

In IWR systems, words are spoken in isolation with short gaps
between utterances., This leads to the following assumptions:—

(i) Only a finite number of features (represented by symbols) are
generated by a FE and only one symbol can be present at a particular
time.

(ii) Bach word uttered results in a sequence of symbols of some finite

length.

From the foregoing statements, the following definitions can
be made concerning the output of a FE .
Definition 2,1 An alphabet is a set of any finite number of symbols
from the output of a FE representing various parameters or features

extracted from the input speech wave.
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Definition 2.2 A siring is any sequence of finite length composed of

symbols from the alphabet. The beginning and end of each string are

well-defined. A string which contains no symbols is the empiy(or null)

string A . The length of a string x denoted by |xI 5 is the number

of symbols contained in x .

*
Definition 2,3 If € is an alphabet, then = denotes the set of all

strings consisting of symbols from £ , including the empty string A .,
*
Also define £ as S - {A} .

Developments of the theory of formal languages started when
Chomsky first formulated the concept of the hierarchical structures
in grammars in 1956(56). Basically, a grammar or a set of rules can be
described as a mathematical system for defining a language, as well as

a device for giving a useful structure to the strings in the language.

Formally, a grammar is defined as follows .

Definition 2.4 A phrase-structure grammar G (54-55 ), or Chomsky
ggammar(57_58) is defined as :-

¢ = (2, R £) (2.1)
where

V. is a finite set of nonterminals .

N
Z is a finite set of terminals .

N = = @ (the empty set) .
VNU = is denoted by V .

The terminals in = consist of all symbols from the alphabet,.
A1l other symbols are nonterminals which rank higher than the terminals
in the hierarchical structure of the grammar.

R is a finite set of productions or rewriting rules of the form

oK —> B (This implies that & can be replaced or
rewritten by 8 )

where o is a string in vt



*
P is a string in V .

£ is the start symbol . It is in VN and signifies the beginning

of a string or a word .
Note A rewriting rule with the start symbol £ at the left side (LS)

of the rule is known as the start rewriting rule or the

start production o For example, £ —>aA, £ —»bAC, and

& —> AB are all start rewriting rules .

Before going on to describe various itypes of grammars, conven-
tions are given regarding the different types of letters or characters
representing terminals and nonterminals .

CONVENTIONS

(a) NONTERMINALS : Capital LATIN - alphabet letters .

(b) TERMINALS : Lower case letters at the beginning of the LATIN alphabet.

(¢c) STRINGS OF TERMINALS : Lower case letters near the emd of the LATIN
alphabet »

(d) STRINGS OF NONTERMINALS AND TERMINALS : Lower case GREEK letters.

Grammars can be classified according to the format of their
rewriting rules .
Definition 2.5 (54-59) Let G = (?N,i,R,a) be a grammar .

The grammar defined in definition 2.4 is a iype O or unrestricted

grammar .
G is said to be :-

(a) iype 1 or context-sensitive (CS)

if each production in R is of the form JAS —> yB8

where A is in VN

¥ and & areinV;
B isin V'

ie. 'A' is rewritten as 'g' only in the context of J.ee$ .
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(b) type 2 or context—free (CF)

if each production in R is of the form A—=>pA
where A is in VN
B is in V'
ie. the rewriting is done independently of the context .

(c) type 3 or regular or right-linear or K-grammar (Kleen's grammar) (60)

if each production in R is of the form A—>aB or A—a
where A and B are in VN
ais in £ .

A regular grammar is also known as a finite-state grammar (FSG) .

This is because the FSG corresponds to a machine with a finite number
of states. The application of a rewriting rule is represented by a
transition from a state corresponding to the nonterminal at the left-

side of the rule to a state corresponding to that at the right .

A grammar with a higher type number is included in the one

with a lower type number as shown in Fig. 2.1 .

type O
ype

type 2

Fig. 2,1 A simplified representation of relationships between various

types of grammars
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The formal definition of 'language' is given next.

Definition 2,6 The language generated by a grammar G, denoted by L(G)

is defined asi- L(C) = {x |x in€" and & = x} (2.2)
where & =%$’ x means the string x can be derived from £ in grammar G.
In other words, the language of a grammar consists of all strings of
terminals, including the null string, that can be obtained by successive
applications of the rewriting rules commencing from the start symbol.
The languages derived from a FSG, a context-free grammar (CFG)
and a context-sensitive grammar (CSG) are known as a finite-state
language (FSL), a context-free language (CFL) and a context-sensitive

language (CSL) respectively.

242 Grammar—based modelling in word recognition

This section describes, in general, the use of formal grammars
in the formulation of the problem of automatic recognition of isolated
words from a limited vocabulary. Fig. 2.2 depicts a generalized block
diagram of an IWR system based on formal grammar conceptse.

First, one aspect of the learning process is formally defined.

Definition 2.7 A supervised learning is one where the labels of

strings in the sample set are known beforehand (eg. a teacher or an

observer is available) .

In Fig. 2.2, the FE together with its speech input can be
considered as a linguistic information source whose output consists of
a collection of finite-length sequences of symbols. The decoder and
the models constructed during the learning mode make up the recognizer
of the IWR system. It is a normal praciice to assume a supervised

learning. Thus an observer is present during the learning stage.
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Fige 2.2 Block diagram of a grammar-based IWR system

Grammar inference (GI) can be viewed as the process whereby
formal grammars are employed to model the source whose characteristics
are very little, if at all, known. The method is to have, in the
training mode, a user repeating each word in the vocabulary a number
of times. Bach time the same word is spoken, a similar but not necessarily
the same string of symbols is produced by the source. Grammar-based
models, one for each word in the vocabulary, are then automatically
constructed and stored in the system memory for future use. In addition
to producing all the strings in the corresponding sample set, each
model is also capable of predicting other similar strings. The building

of models can also be regarded as a useful encoding of strings.

In the recognition mode, an incoming string is processed

using suitable decoding algorithms to determine which model, if any,
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corresponds or nearly so to the word spoken. If the most compatible
model is found, the corresponding word is then indicated as to have
been recognized. Otherwise, the recognition fails and the word is

rejected.

The problem of using formal grammars to model a source or GI

and its solutions has been studied and its significance stated by
(61-63)

various researchers « Comprehensive surveys and reviews of

previous work and results have also been given(42’44’63’64).

Generally, there are two main approaches to the solution of
the problem of learning. They are briefly described below.

(a) Enumerative approach

In this approach, an algorithm is used to produce all grammars
of the specified type in an ordered manner. Assuming each class of
grammars consiructed is denumerable, a method is then established to
test these grammars to obtain at least one that meets a given set of

criteria.

Al though the approach is often showm to give an optimal solution
requiring only a minimal amount of information presented, it may be
impractical for many applications, for example ASR. This is due to the
astronomical amount of computations involved in the exhaustive searching
for a suitable grammar. However, the discouragingly enormous amount of
combinations involved can be reduced to a certain extent by designing
the method such that at any finite time only a finite number of grammars

need to be tested.

Some techniques which are inductive as well as probabilistic

in_ nature have been e]-nployed in -bhis approach(42,46’61,65’66).
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(v) Constructive approach

This method, for example reference 48, constructs one or more
grammars directly from the sirings in the sample set. The useful, if
not optimal grammars based on direct observations of the properties of
the strings can be produced in a not too excessive amount of time.

Some criteria may also be used to accept or reject the inferred grammars.

Discussions are now made of some important issues concerning
the problem of using formal grammars to model the FE in an IWR system.

(1) Data and its structure

Apart from the assumptions about the output of the FE, the
only information available during the training mode is a collection of
strings of symbols together with their labels. This type of information
is known as 'positive information' or 'text—presantation'(le since
only valid strings are known or given. Thus, if probabilistic
information is required then it must be estimated from the given
sample set. The size of the sample set is arbitrarily specified
(ege five or ten repetitions per word in the vocabulary), though it
will be large enough to ensure that the inferred grammar covers a
reasonable number of variations of strings representing the same word.

(2) Determination of grammar types

The GI problem is known to be unsolvable for a general (ie.
unrestricted) grammar. Thus, many researchers consider the subsets of
the general rewriting systems or grammars such as FSG's or CFG's. In
many cases of GI, the observed strings from a linguistic source are

assumed to have been generated by a precisely defined class of grammars.

In IWR systems or even the general ASR systemsy, it is not

known whether any class of grammar can represent exactly the
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characteristics of the ill-defined FE. Indeed, this has been exemplified
by Gold(61) who stated that with only positive information available

(as in the case of the FE), not even the FSG's are 'identifiable in

the 1imit' - ie. not even the FSG's can be found that will exactly

model the FE,.

Consequently, the research carried out in this thesis is
concerned with finding well-formed approximations to an ill-formed
problem (vaguely defined FE) o The types of grammars investigated will
be limited to types of up to and including CFG's. The CSG's are not
considered here because several problems, such as the closure properties
and decidability, are still unsolvable., In addition, the decoding
methods for the CSG's are much more complicated than those of the
grammars of higher type numbers.

(3) Other criteria

One important requirement in the modelling of a FE by means
of formal grammars is that the inferred grammars should be powerful
enough to adequately describe data from speech. That is, each grammar
should generate all of the known strings (positive information)
representing one spoken word in addition to predicting other strings
similar in some ways to the observed sirings. Ideally, the grammar
should also generate none of the known 'non-strings' ie. strings

corresponding to other words in the vocabulary.

As mentioned earlier, only positive information is available
in IWR systems and hence it is doubtful whether any class of grammars,
if any, can describe precisely the nature of the FE. Consequently,
speech recognition is a situation where a guick and reasonable
inference is more useful than a time-consuming and computationally

laborious inference which exhaustively searches for an optimal solution.
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It is for these reasons that all the inference algorithms presented
in this thesis are mainly constructive in nature.

(4) Basic assumptions

In general, one or more assumptions are normally formed
concerning the solution to an inference problem. The following des—
cribes some basic assumptions as applied to all the inference
methods given in this thesis.

(2) The languages generated by the inferred gremmars are assumed to
be A-free. It is meaningless to consider empty strings in any practical
application such as ASR where a null string corresponds to no input

to the systeme. This assumption does not restrict the languages in
any way.

(b) The generation of grammars in this work is algorithmic in nature
to guarantee the convergence of the process.

(c) The inference methods are incremental in the sense that it is
possible to update a previously inferred grammar upon receiving a new
set of data without the need to store the strings observed earlier

ie. there is no need to redo the inference again from the beginning.
(d) The positive information sample set Sy consists of a finite number
of strings each of a finite length. This follows from the assumption
about the FE given in section 2.1 .

(42365’68) ie

(e) S is 'structurally complete! « each production in the
inferred grammar is used at least once in deriving at least one string

in S4e
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CHAPTER 3

FINITE-STATE GRAMMAR BASED MODELLING

There are many approaches to the learning of a specific
vocabulary in the recognition of isolated words. The simplest and
obvious method is to directly store one or more strings as the re-
presentative 'templates'. Another way is by means of 'sequential
matohing'(32) where an attempt is made to generate sequential structures
or lattices from a number of sample utterances. The structures are
obtained through successive matching and merging of symbols between
strings in the training set. Normally, the criterion used in such
processes is to maximize the similarity between the sample strings
corresponding to the same word. An alternative approach, for example
reference 20, is to construct an algorithm suitable for each word
based on observations of sequential characteristics of symbols in each

word, allowing alternative and/or optional characters in some positions.

This chapter describes the grammar inference approach to the
learning problem based on FSG's. Fig. 3.1 illustrates the general
outline of the approach. The jth string in the positive information
sample set S+ is denoted by sj. The inference algorithm automatically
constructs a FSG directly from S+ on the basis of pre-specified

criteria. Suitable decoding technigues are also presented.

FE s = {s.]d1,.00m} FSG
Speech J Inference Inferred
2 ( SOURCE) Mgorithm [ FsG °
1npu't s- = b- b- ...b-

Fige 341 Inference of a FSG in an IWR system




3«1 Graphical representation of a FSG

This section shows how a graph can be applied to portray a
FSG such that it is easier to visualize and understand the underlying
mechanism of the grammar involved. First, the formal definition of such
a graph is given.

Definition 3.1 A finite-state transition network (FIN) is a directed

graph having a finite number of nodes or states. A link connecting

one node to another indicates the transition originating from the
former and terminating in the latter.

A terminal symbol is associated with each and every transition.

Every FSG can be represented by a FIN as followse
(a) There exist nodes of the FIN corresponding in a one-to-one relation-
ship to nonterminals in VN of the grammar.

(b) The initial node or the start node of the FTN corresponds to the

start symbol £ of the grammar.

(c) A special node called the terminating node & designates the end

of a string.

(d) For each production of the form A—»aB , there is a path or
transition labelled 'a' from node corresponding to 'A' to node
corresponding to 'B'.

(e) For each production of the form A—=a , there is a path labelled

'a' from node corresponding to 'A' to the terminating node & .

Example 3.1 Consider the grammar G, , = (Vﬁ;E,R,a) with the

following rewriting rules :-

] 1 1
£—0U E—=MA £—=1VB £ —=TH
]
A'—r VB' B'--r-AC' C—T H'—al! It—=7
where vy = (B, A, B,. C', H, 1°)

and f_: (a.’ A, M’ T, U, VJ
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The corresponding FTN is depicted in Fig. 3.2 below.

Fig. 3.2 A FTN corresponding to the grammar G in example 3.1

el

The FTN shown in Fig. 3.2 is similar to Moore's model of
sequential machine(ST) in the sense that each of the nodes in the FTN,
except the initial and terminating nodes, is associated with one and
only one symbole In other words, the symbol produced during a transition
corresponds only to the node where the transition ends irrespective of
the number of transitions leading to that node. In order to keep the
number of nodes (and hence the nonterminals in Vﬁ) small, the terminating
node & is allowed to be associated with any number of terminals. The
starting node is, of course, associated with none of the symbols since

it represents the starting point for all transitions within the FIN.

The inference algorithm described in section 3.2.2 imposes the

above constraints upon FTN's in the automatic construction of FSG's.
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3,2 Inference of a FSG

The inference of a F3G can be considered as the building of a
FTN from a number of sample utterances. Any path that can be traced
through the FIN starting from the initial node and ending at the ter-
minating node constitutes the word. It is well known that the relation-
ship between a grammar and the language that it can generate is not
unigue. That is, there are many grammars that can produce a given
language. For example, one grammar may generate exactly those strings
in the sample set whilst another may produce not only the strings in
the given language but also many other strings. The problem is to find
a suitable grammar between these two extremes such that it produces all
the strings in the sample set as well as some other strings of similar

characteristics.

The following describes some of many advantages and atiractive
features associated with the use of a F35G in the modelling of a FE in
the recognition of isolated words.

(i) A FSG, being the least complicated type of grammars, is simple to
construct and teste.

(ii) The structure in time of symbol strings from the output of a FE
is sequential ie. symbols are assumed 1to be presented and
responded to, at discrete points in times This resembles very well
with the sequential format of a FSG thus rendering the classifica-
tion problem more attractive to solve.

(iii) The properties and characteristics of a FSG are well establisheds
There exist algorithms to answer many questions such as ambiguity,
closure properties and decidability.

(iv) It is easy to read off directly sequences of symbols composing a
string corresponding to a word by tracing through the FIN from the

initial gtate to the terminating state.
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Je2e.1 Criteria for the FSG inference process

Basic assumptions regarding all the inference methods described
in this thesis have already been given in section 2.2 . First, some
terminology are formally defined in preparation for the presentations
to follow.

Definition 3.2 The nondeterministic event (NE) is the situation where

an incoming string is assigned by a classifier or a recognizer as
corresponding to two or more words in the vocabulary. This indicates
the overlapping between strings corresponding to differnt words.
Definition 3. 5(55) AFSC G = (VN,i, R, £) is said to be recursive
if there exists at least one derivation of the form A==;$-xA where
AEVN, x€s and Lt}implies that the derivation is obtained by the
application of one or more rewriting rules. That is, a recursive
grammar signifies the occurrence of at least one loop or a closed path
in the corresponding FTN.

A method is given in appendix A for testing whether a specified

F5G is recursive or not.

The following presents the criteria and related constraints
governing the formulation of the FSG inference algorithm to be presented
in the next section.

I. The inferred grammar is finite-state.

II, The similarity between strings that can be derived from the inferred
grammar should be maximized. This follows from the basic require-
ment in GI that the grammar created should generate as few non-
strings as possible.

III. In the experimental observation of the output of a FE, a training
set can consist only of a finite number of finite-length strings.

In this situation, it is intuitively felt that a non-recursive FSG
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would be appropriate and sufficient to model the FE. Consequently,

for each sample string individually considered, no recursive struc-

tures are formed or included in the corresponding subset of rules.
This also restricts the number of non-strings that the grammar may
generate. However, other constraints necessary to the inference
process may indirectly give rise to the recursiveness. For example,
the addition of new links and/or nodes on the basis of other con-
straints may produce one or more loops in the FIN. Combining the
two requirements above results in the following criterion :-
!Suppress the recursive structure of the inferred grammar as
far as is possible but, subject to other comstraints, not completely'.
IV. A Moore's model of the FTN is assumed (see section 3.l) . However,
two or more nodes (except, of course, the start node) may be
associated with the same terminal symbol, though this is kept to a
minimum. AS an example, in Fige. 3.3 nodes A and D are associated
with the same terminal s . This is done to avoid inferring a grammar

that is too general ie. one that generates too many non-strings.

The above also satisfies criterion III .

Fig. 3.3 A FIN corresponding to string 'sipsx' with two nodes (A and D)

associated with terminal s .

V. In the derivation only of the inferred grammar, each node from the

path in the FIN corresponding to a sample stiring is used once only,
For example, the terminal s appears twice (neither of the s's is
the last symbol) in the sample string 'sipsx' . Instead of sharing

the same node (node A in Fige. 3.4), the two s's are assigned to two
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different nodes (A and D) as shown in Fig. 3.3 . Again, this is to
satisfy criterion III.

Note also that if the second s happens to be the last symbol of
the string, the sharing of the same node by the terminal s would

automatically be inhibited. This follows because there can not be

any outgoing transition from the terminating node.

Fige 3+4 A FTN corresponding to string 'sipsx' with the two s's

sharing the same node (node A) resulting in a recursive

structure in the grammar.

VI. Tail—end constraint

This is a constraint designed to reduce the occurrence of the
NE to the lowest possible level. It determines whether an outgoing
link from a current node can be connected to one or more existing
nodes corresponding to the next symbol in the string under
consideration. The constraint is :=
TReject the node if neither of the following is satisfied:
(2) The node is a pre-terminating node (ie. the terminating node
but one) AND the position of the next symbol is the last symbol
but one.
OR
(b) The node is NOT a pre-terminating node AND the position of
the next symbol is NOT the last symbol but one. !

VII. Strings of short lengths (<2) are separately dealt with. As an
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example, the node corresponding to the first symbol of a length-2
string can only be reached by the start node only. It is also
desirable that rules inferred from strings whose lengths are
greater than two should not generate any string of length two.
This is because strings of short lengths tend to modify and influence
the structure of the inferred grammar in such a way that the grammar
becomes too general.

It is also of interest to consider the situation where each
word in the vocabul ery contains exactly one string of unit length
in addition to some longer strings. Assuming all length-1 strings
are distinct, the maximum number of words that can be correctly
recognized is the number of distinct symbols that can be produced
by a FE ie. the size of +the alphabet. This imposes the limit to the
vocabulary size of an IWR system. Such unit length strings are also
liable to symbol mutilation since only one alteration is required
to corrupt a length-l string. Fortunately, the foregoing situation
rarely happens in any practical application.

The following describes a constraint related to short-length
stringse.

Front—-end constraint

*A11 nodes corresponding to the nonterminals at the right side
(RS) of the start rewriting rules of a FSG cannot be reached by
any other nodes except the start node.'
The above will 3=
(a) take care of the case of strings of length~2.
(b) ensure that rules inferred from strings whose lengths are
greater than two will not generate additional length-2 sirings.
(c) keep down the occurrence of the NE.

VIII. If two or more nodes are available for selection, choose the one

as near to the beginning of the siring concerned as is possible,
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provided other constraints are also salisfied. This is to maximize

the possibility of branching afterwards from the selected node

which results in a greater number of similar strings being produced.
IX. The complexity of the inferred grammar, that is the number of nodes

and/or links in the corresponding FTN, should be as near minimum

as is possible, subject to other constraints. This implies that the

similarity between different strings derivable from the inferred

grammar is maximized.

3e242 FSG Inference algorithm

A learning algorithm is presented in this section for the
automatic generation of a FSG or the corresponding FIN directly from
the observed sample strings of sequential features. The method, based
on criteria and constraints specified in the previous section, can be

briefly explained as follows.

First, 'the skeleton' grammar (SG) Gl is constructed from the

first string in the sample set such that Gl can generate only that

string. Other strings in the sample set are then individually operated
upon in the following recursive manner. The nth observed string s, is

analysed with the (n-1)th inferred grammar G 1

can generate S then Gn = Gn—l and

to determine whether an

can be derived from Gn_ s If an

1

is required. Otherwise, new rules and/or links

1

no augmentation of Gnrl

are added to the FTN of Gn 1to produce the nth inferred grammar Gn'

Before proceeding to present the inference algorithm, some
necessary definition and notation are introduced.

Definition 3.4 The nonterminals at the LS and RS of a production of a

FSG are known as premise nonterminal and consequence nonterminal
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respectively. For example, in the production A —» aB the premise and

consequence nonterminals are 'A' and 'B' respectively.

Notation

Vs = premise nonterminal (or node)

Vas = consequence nonterminal (or node)
’J’P = node nearest to the beginning of a string
L = length of a string

M(k) = number of strings in word k

W = number of words in the vocabul ary
sj = the jth string in the set of a word
b ji =  the ith symbol of Bj

i = symbol index

j = string index

k = word index

The following is algorithm 3.1 which is employed to auto-
matically infer FSG's directly from sample strings of a given set of
words in the specified vocabulary. A flow diagram of the inference

algorithm is also given in Fig. 3.5 .

Al gorithm 3.1

It
(=]

Step 1 Set k
St 2 Set k=k+1

F

j=‘0 -
Set j = 41

Read a string X. = D D, eesb. sesb, .

i =l .

Step 3
Step 4 Set VLS = £
Step 5 Set VP =0 o

(5a) If i =, go to step 9.
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START

/Inpu‘l; 1st strin,;/

Generate 'the skele-
ton' grammar, Gl

i

ZI nput next string /—

'

Vig= &

i=1

Yp

0
n 0

B Mol

ink n generate the
ith symbol

VRsaconsequence node orm a new

of link n link connec-
ting Vg to
the appropri-
ate Vp

Does

i=1i+l

Apply constraint

VIII to select

one VP

Fige 3.5 Flow diagram of the algorithm for the inference of a FSG
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Compare bji with the terminal 'a' in a production of the form
A —» 2B, subject to constraint V.
If no such production exists, go to step 6.
(5b) Compare V;  with the nonterminal '4' .
) i vLS = 'A', go to step T.
Otherwise, go to step 8.
Step 6 Form a new production of the form A —s 2B and include it

in the production set R :-

1A% 3§
where A' is set to VLS
ta' is set to b
Ji
1Rt
B{is set to Vj if v #0
is a new nonterminal if Vf = 10l e

Step T Set vLS = B
i = i+1 .
Go to step 5 .
Step 8 If 'B' does not satisfy 'front-end' and 'tail-end' constraints,
go to step 5a .
If Vf = 0, set V? = 'B' and go to step H5a.

Otherwise, apply constraint VIII to select one value of Vf.

Go to step Ha.

Step 9

(9a) Find a production of the form A —3 a having 'A' and 'a'
identical to VLS and bit respectively.
If no such production exists, go to step 9b.
Otherwise, go to step 9c.

(9p) Form a new production of the form A —» a and include it in
the production set R :-

where TA' is set to VLS

ta! is set to b, 2
i
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(9¢) If k= Wand j = M(k) end .

ifJ

M(k), go to step 2.

Otherwise, go to step 3 .

Al though the skeleton grammar Gl

Fig. 3.5, no special routine is required to generate it. This is

is depicted explicitly in

because algorithm 3,1 is formulated in such a way as to automatically
include the creation of Gl. It is also of interest to note that the SG

Gl is similar to the canonical grammar as defined by FU and BOOTH(42)

in the sense that they both generate exactly those strings in the

sample set. In the case of Gl there is, of course, only one string that

it can generate. The F5G's inferred by algorithm 3.1, for example the
grammars in the next section, can also be viewed as one form of derived

grammars(42).

3e2¢3 Illustrative example

Example 3.2 Consider a sample set S = (si] il b el

3e2
where 8 = dlc o eKf 33 = bdeDi
84 = Jg 35 = bJdCg 5g = MeCh
ﬂhK' -
87 3

The following illustrates the resulting FSG G, (shown in the
form of FIN) after each string s; has been presented to algorithm 3.l.

The strings that can be derived from each grammar Gi are also given.

I AR S )

dIc

Strings generated by Gl -

Fig. 3.6 FTN corresponding to qij the skeleton grammar




strings generated by G4 : dlc
ekf
bJebi
Jg

Fige 349 FTN corresponding to G




55=bJ dCg

Strings generated by G5 s dle

Fig. 3.10 FTN corresponding o G5

* denotes strings predicted * MeCg

by G6

Fige3.l1 FTN corresponding to Qé




S_=bKj

Strings generated by GT : dlc
ekf
* eKj
bJcDi
Jg
bJdCg
* bJdCh
MeCh
* MeCg
bKjJ
* DKf

* denotes strings predicted by GT

Fige3.12 EIN corresponding %o G,
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3e3 A recognition scheme for FSG models

This section describes a scheme for the recognition of isolated
words on the basis of pre-inferred rules or representative strings.
The general characteristic of the recognition scheme, called scheme A,
is outlined in Fige 3.13 . Fig. 3.14 depicts a recognition system using
scheme A of the recognition method and FSG's inferred from the previous

section. The explanation of the system follows.

In the learning mode, algorithm 3.1 is employed to automatically
construct FSG's, one for each word in the specified voeabulary. The
inference process produces rewriting rules directly from the observed
sample strings in response to the words spoken.Production probabilities
are also estimated (see section 3.4.2) during the learning process.

In the recognition mode, each unknown string presented to the recognizer

is classified or decoded using the rules obtained earlier.

As showmn in Fig. 3.14, the recognition process can be considered
as to consist of three main levels of operation in terms of the
compl exity involvede. The recognition always starts at the lowest level
ies level 1. A higher level is applied only if the previous one fails
to classify a string according to some criteria. One sublevel is also

incorporated in level 1.

Before presenting the overview of various levels of the
recognition process, it is necessary to introduce some definitions
which are as follows.

Definition 3.5 Parsing or syntactic analysis is the process of con-

structing a derivation of a string s in a grammar G ie, it is a process
of finding the syntactic structure associated with the sitring s. The

corresponding derivation tree is called a parse or a parsing-tree .

If a parse can be found in a grammar G for a string s, the word
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samp]le strings

Learning algorithm
+

Estimation of string LEARNING MODE

probabilities

rules| or
representative strings

— —_— —

RECOGNITION MODE

unknown Find an exact success— /string cor-
string match for the ful respond to more
input string than one
word ?
Failed
[ '

Find a closest Apply a stochastic

match for the algorithm to select

string the most likely

word

osest
atch correspond
to more than one

ouTpuT
PDECISION

word ?

Apply a stochastic
algorithm to select
the most likely

word

Fige 3413 Diagram of the recognition scheme A
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sample strings

erence ol a

(Algorithm 3.1) +
Estimation of produc-
tion probabilities
(Section 3e4.2)

rewriting | rules

LEARNING MODE

RECOGNITION MODE

!

Fige 3el4 A schematic diagram of a FSG-based recognition system

using recognition scheme A

unknown Parsing algorithm
string | string corres-— output
(Algorithm 3.2) pond to more fdecision
than one
word?
Failed Y
]
Apply a stochastic Sub-
algorithm(Algorithm3.3) [level 1
to select the most sl
likely word
Apply WMN technique match corres—
to find a closest Ll Ap st Akan
Natoh one word ? Level 2
(Section 3¢4.3) e
- - - - —_— - ¥ -
v Y
pply a stochastic
al gorithm
(Algorithm 3.4) to
select the most -
likely word Level 3
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corresponding to G is said to have been recognized. Parsing can also be
considered as the process of tracing through a FTN corresponding to a
grammar G such that a path from the start node to the terminating node
is found for a string s.

Definition 3.6 A stochastic algorithm is a finite sequence of instruc-

tions +that involves the use of some statistical methods including
stochastic grammars (to be defined in definition 3.7). It does not

refer to an algorithm whose behaviour is uncertain or unpredictable.

A discussion concerning different levels of the recognition
process is now given.
Level 1

In this simplest level of the recognition process, an unknown
string is tested by means of the parsing algorithm (algorithm 3.2) to
determine which grammar, if any, could have generated it. If the string
is accepted by one grammar only, the corresponding word is indicated
at the output. For unsuccessful parsing, the method of level 2 is then
applied to decode the string. When two or more grammars can generate
the string ie. the occurrence of the NE, it is necessary to employ the
process of sub-level 1 to decide which grammar is the most likely to
have produced the string. In this method, a stochastic algorithm
(algorithm 3.3) is applied to find one 'best word' according to a
maximum likelihood criterion (MLC). If two or more of such words are
possible, the string is rejected.
Level 2

When the parsing algorithm in the preceding level of recognition
process fails to find any grammar that can generate the unknown string,
the method of the next higher level (ie. level 2) is called for. The
technique of the 'weighted matching network' (WMN) is utilized to find
the 'closest match' for the string ie. the grammar that could nearly

have generated the string. It is basically a dynamic programming method
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of optimizimg the similarity between two functions.
Level 3

This is the highest and the most complicated level of the
recognition process since the operations in the two lower levels have
to be performed in order to reach level 3 . It is applied when there
exist two or more closesi-matched words corresponding to the string.
Another stochastic algorithm (algorithm 3.4) is employed to chocse the
most likely closest-matched word. As in level 1, the string is rejected

if two or more of such words are found.

3¢4 Finite-state grammar based decoding methods

This section presents in details the FSG based decoding methods
or syntactic decoders for the classification of unknown strings as
applied to the recognition of isolated words. The overall recognition
process which employs various decoding methods in different levels of

recognition operation has already been described in the previous section.

3e4.1 A parsing algorithm

The parsing algorithm to be presented is a simple top-down
parse ie, it starts from the start symbol and ends with a string of
terminals. In other words, the derivation of the parsing tree progresses
from the root to the leaves. Backtrack facility is provided such that
when a path is blocked during parsing, alternative configuration, if
any, can be tried by retracing the last moves., A push-down stack is
provided to store sequences of productions or rules encountered in

parsing the string. The stack also aids in the backtracking process.
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The following is a formal presentation of the parsing algorithm

with the corresponding schematic diagram shown in Fig. 3.15 . Symbols

employed in the algorithm follow the notation given earlier.

Algorithm 3.2

Step 1
Step 2
(22)

(2p)
Step 3

Step 4
(4a)

(4v)

Read a string s = blbz"'yl .

Set jﬂj'i'l .

If i =L, go to step T.

Check production j of the form A — aB whether 'A' and 'a!
are identical to VLS and bi respectively.

If unsuccessful, increase j by one and go to step (4a).
If productions are exhausted, go to step 6.

Set VLS = BV,

Put j on top of stack.

Set i=31i+1.

Go to step (2b).

If the stack is empty or only one element remains in the
stack, parsing fails; END.

Otherwise, pop up j from the stack.

Set Vig = 'A' of rule j.

Set i = i=-1 .

Go to step 3.
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Fige 3.15 A schematic diagram of the parsing algorithm
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Step T

(7a) Check production j of the form A —» a whether 'A' and 'a!
are exactly identical to VLS and bﬁ respectively.

(7v) If unsuccessful,increase j by one and go to step (7a).

If productions are exhausted, go to step 6.

Otherwise, parsing is successful §END.

3e4e2 A maximum—likelihood criterion

The NE mentioned in the sublevel 1 of the recognition process
(section 3.3) can be caused by noise or disturbances of some sort. It
may also be due to the overlapping of inferred grammars which is
equivalent to the overlapping of pattern classes in the case of pattern
recognition. The nature of the learning algorithm and the inherent
characteristics of features forming the strings are the two main

causes of overlapping.

It seems that the use of phrase-siructure grammars or Chomsky's
grammars alone, where restrictions are placed only on the form of the
productions (eg. FSG's, CFG's etce.) may not be adeguate to solve the
problem of the NE. Recently, there have been much research done on
imposing restrictions upon the use of, in addition to restrictions on
the form of the productions. The work concerning the way in which a
grammar is permitted to generate strings includes, for example, an

(71)

ordered grammar (69), a matrix grammar(To), a programmed grammar
and a grammar with a control set(Tz).

Another approach along this line of research is to introduce

probabilities to the grammars ie. probabilistic grammars (p-grammars)

(68’73’74)’ or stochastic grammars (S-grammars)(42’75’76). In this
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approach, probabilities are assigned to each production and each
derivation of a string is associated with a probability. A more general

(76)

case is a weighted grammar in which some arbiirary values replace
probabilities in a p-grammar or an s—grammar. Both the probabilities and
the weights are usually assumed to be rational. By including probabilities

into a grammar, not only the structures of different sequences of

strings, but also their importance can be determined.

Formally, a stochastic finite-state grammar can be defined
as follows.

Definition 3.7 A stochastic finite-state grammar (SFSG), C—El is defined

as t-
@, = (vn,z, R, £) (3.1)
where ‘J‘N, 2, and £ have the same meanings as before

Rs is a finite set of stochastic productions each of the form
P
3
Ay a, } Ay Ay Ay €T

Pl
or Ak —Elp a a €T

where pij’ pkj are the production probabilities with the following

properties :-

? pij = 1 (3.2)
l .

Note that a SFSG is obtained by assigning probabilities to all the
rules in a given FSG. The corresponding FSG (with no probabilities

attached to the rules) is called a characteristic grammar .

Since the only input data available to the recognizer is the
positive information sample set, the required production probabilities
of a SFSG have to be estimated from this sample set. Techniques for the
determination of rule probabilities for unambiguous grammars have been

doveloned baned én a Baxians 1ikeldhood sstimstion > HehTT)
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The first stage of this method involves the parsing of each and every
string in the sample set. For each production ij (ie. a link from node
i to node j in the corresponding FTN), a count is made of the number
of times that rule ij is used in the derivation of &all strings in the
sample set. The production probability of link ij is then obtained from
the ratio of the above count to the number of times that all the links

originating from node i are used in parsing the same set of strings.

lMore formally, the technique for the estimation of production
probabilities can be described as follows :=—

l., Let the sample strings (all distinct) be

S+ B (Bj J = 1,2,0..,“11) (3.4)

where HD is the number of distinct strings in set S+.

2e fj’ the estimated probability of string Bj is determined by the

relative frequency of its occurrence ie.

£y Fj/Ms (3.5)
where Fj = number of string aj

HS = number of total strings.

3« For a production Ai —» o, in grammar G = (Vﬁ,:&, R, £) where

k
o =ar or a; find Nik(sj), the number of times that production

ai i dk is used in parsing string sj-

de L) the expected number of times that rule Ai -—a-dk is used in
parsing all the sample strings in S+ is given by :-
M

n, = g%l ijik(aj) (3.6)

5« The maximum-likelihood estimate for Piy? the production probability

of rule Ai - O is obtained by

k

Rig ™ nik_/ %nik (3.7)
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A formal proof of the above result given by equation 3,7 can

be found in, for example, references 42 and 68.

The estimated production prcbabilities thus obtained are added
to the rules of the characteristic grammar G to form the reguired
SFSG. The method just described is expected to be adequately accurate
when applied to the problem of the approximations of an ill-defined
FE by means of formal grammars. In the actual implementation, some
saving of the execution time can be achieved by incorporating the
counting operations into the learning process. This follows because the
parsing of strings is done at the same time as the characteristic

grammar is being inferred.

The following example illustrates the estimation process.

Example 3.3 Let the strings in the sample set 33 3 be :=

8 = Lg s, = Lh 83 = Lg
34 = Lg 35 = KeCd 56 = Lh
6, = Jf sg = Nh By = MR
807 Kd 8,,= JcDe 8 o= N .
By applying algorithm 3.1,.the following characteristic grammar is
constructed,
G3.3 = (VN,E,R,ﬁ)
where vy - (£,A2,A3,A4,A5,£6,37,A8,A9)
= = (CyDyJyK,Lyli,Nycydyey8yh,y jsl)
R = all the rules in table 3.1

The expected number of times that each rule in R is used in
the derivation of all of the above strings together with the corres-

ponding estimated production probability are given in table 3.1 .
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Rule i} nij pij
£ —» LA, 5 5/12
£ —= KA, 2 2/12
£ —» Jh 2 2/12
£ —= N4, 2 2/12
£ —» MAg 1 1/12
A~ g 3 3/5
A~ h 2 2/5
Ay~ ch, 1 1/2
A3--l- d X 1/2
A== Chg 1 1/2
by~ DA 1 1/2
Ab_—- d 1 1
A ] 1 1/2
Ag—e oA, 1 1/2
b—= 1 1 1/2
by 2 1 1/2
A.a——h L 3 1
A9--l- e 1 i

Table 3.1 The estimated production probabilities of rules

in example 3.3
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The problem of the NE where a string sj corresponds to two or
more words can be handled as follows.

Applying a maximum likelihood criterion, a given string sj is
classified as corresponding to word w, if and only if P(Wk/aj) is a
maximume.

From Bayes' ru1£78), P(wk sj) can be expanded into :-

P(wk BjJ - P(wk,sj).P(sj) (3.8)
Since P(aj) is constant for a given 849 only the term P(Wk’sj) needs
to be maximized.

Rewriting P(Wk’sj) using Bayes' rule yields :-

Pwsss) = P(sj/wk)-P(wk) (3.9)
To ensure thait there exisits no initial bias towards any particular
word, the a priori probability P("k) is assumed to be equal for every
word in the vocabulary.

Thus only the term P(sj/wk) is required to be maximized if and only
if 55 is to be classified to word w,, where P(Bj/“k) is the product of
all production probabilities correspond to word Wy used in parsing aj.
Summarizing : In the case of the NE, a given string is classified to
the word with the '"maximum-likelihood' probability obtained from the

product of all production probabilities of the corresponding grammar

which are used in the derivation of that string.

The following presents an algorithm for dealing with the NE
based on a MLC previously described. The corresponding schematic
diagram is shown in Fig. 3.16 .

Algorithm 3.3

Step 1  Read (wi|i=l,...,wn), all the words that correspond to the
string Sj 3
where HN is the number of such words.

Set k=0 .
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Input all words
corresponding to sj

k = k+l

Calculate Q(k)

last k ?

 §

Calculate Qm

Find word W,
where Q(k)=Qm

Or more
such words

Output W, as the

most likely word

Fige 3.16 A schematic diagram

of algorithm 3.3
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Set k=k+1 .
Calculate and store Q(k)

_ Is.) 5
Q(k) {Eia Pi( j)

I(sj) number of steps in the derivation of F

pi(sj) = probability of the production used at the ith step
of the derivation of sj .

If k = Wy

Otherwise, go to step 2.

go to step 4.

W
Caloulate q = Mix Q(k)
k=1

If there are two or more words associated with qm, reject aj;
END.
Otherwise, decide that aj corresponds to word W ir

k) = q 3 mED.

3e4e3 A 'weighted maitching network' itechnique

The unsuccessful decoding of a siring by the parsing algorithm

(algorithm 3.2) may be caused by one or more of the following factors.

The word spoken (and hence the string representing that word) may not

be in the vocabulary. If the word is known to be outside the vocabulary

and it is intended to add the new word to the existing vocabulary, then

2 new grammar has to be created to accomodate that word. It is also

possible for errors to appear in the string. This may be due to noise

or some disturbance or free variation of speech as a result of the

speaker's characteristics. In addition, the ambiguity of speech signal

and procedures of segmentation and labelling may also induce errors.

In the case of telephone-grade speech, the string is subjected to an
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even greater chance of being corrupted. This is caused by various
characteristics of the telephone system such as the restricted band-
width, background noise and impulsive noise, nonlinear distortion,

variation of sensitivity and gain and so on.

From the foregoing discussion, it appears that the simple top-
down parsing technique is inadequate for dealing with errors., This is
because it can only indicate the presence of errors but not their
locations. This section presents a WMN technique for finding a closest
match between the corrupted string and the strings derivable from
grammars with a facility for pinpointing errors. The technique is well

suited for applying to FSL's since it is based on the concept of FIN.

Before presenting the WMN and its associated technique, formal
definitions are now given of different types of symbol errors or
symbol alterations.

Definition 3.8 A deletion error is one which causes the correct input

symbol ay to appear as A at the output, where A is the null string
symbol. In other words, aj is deleted from the input string.

Definition 3.9 4n insertion error is one which causes an extra symbol

bk 10 be inserted into the current string.

Definition 3,10 A substitution error is one where the correct input

symbol aj is replaced by a symbol bk which appears at the output.

Concept of a distance concerning the above types of errors
is defined next.

Definition 3.11 The minimum number of symbol alterations consisting

of any combination of deletion, insertion and substitution errors,
needed to convert an observed sitring x to a prototype siring y is

known as the Levenshtein distance (LD) (79).

If various weights are assigned to each of the symbol
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alterations, the corresponding distance becomes weighted Levenshtein

distance (WLD) .

The WMN technique is basically a method of optimizing the
similarity between two functionse. The first function is an observed
string whilst the second is the set of all strings that can be
generated by the grammar concerned ie. the dictionary. The aim is there-
fore to determine the LD or the WLD of an observed string and a given

grammar,

The problem of spelling correction by matching a given string
with the dictionary has been studied by many researchers including
(34’35’80-84’88). The common approach to solving the problem as given
by Velichko and Zagoruyko(al) is based on the construction of a 2-D
array. The array is formed by associating one function with one axis
or one dimension of the array and the other function with another axis

(85)

or dimensions The principle of dynamic programming is then applied

to search through the array for an optimal solution.

Descriptions are now made concerning the WMN and how it can
be used to obtain the required closest match (ie. LD or WLD).

The WMN, also a 2-D array of the kind mentioned above, can be
constructed as follows. First, a FTN is built from the FSG under con-
sideration. This forms the first row of the WMN. The remaining rows
are then obtained by repeating the FIN £ times directly below the first
row, where £ is the length of an observed string. The overall structure
just created becomes an array of (£ + 1) * m nodes where there are m

nodes in the FTN.

The next stage involves the connections between nodes in

adjacent rows which is accomplished in the following manners.
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(i) There is a link from each and every node in row k to each and
every node directly underneath in row k+l .
(ii) For every transition ij from node i to node j in the FIN, there is
a link from node i in row k to node j in row k+l.
The above procedures are applied recursively starting from

k=1tk=4_.

This completes the construction of the WMN except for the
determination of the content of each element in the array which will be
dealt with later. Fig. 3.17 exemplifies the WMN for a length-3 string
and a given FTN. Appendix B gives numerical values of significance of
various symbols. As illustrated by double-lined arrows, an optimal path
always starts from the top left node (ie. element (1,1) of the array)
and terminates at the bottom right node (ie. element ({+l,m)). Thus,
the general direction of a path in the WHN is from top to bottom and
left to right. The number inside each node represents the minimum
penal ty incurred in traversing from node (l,1) to that node. Conse-
quently, the content of node (1,1) is always zero. The minus sign
indicates that the number concerned is a penalty and not a reward.

The absolute value of element (ﬂ+1,m) gives the LD or WLD as required

(it is WLD in Fig. 3.17).

Various types of symbol errors defined earlier can be
graphically represented by the WMN in the following ways. A horizontal
link denotes an omission of a symbol associated with that link from an
observed string ie. it represents a deletion error. A symbol exira-
neously inserted into an observed string resulting in an insertion
error is depicted by a vertical link. For a diagonal link ij connecting
node i in row k and node j in row k+l, a substitution error occurs if
and only if the kth symbol in the observed string is not identical to

the symbol corresponding to link ij in the FTN.
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(a) a PIN corresponding to a FSG

(b) a WHMN obtained from FTN in (a)

The required optimal path is designated by double-lined arrows.

Fige 3.17 Matching of a string with a FSG using WMN technique
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A method is now presented for computing the contents of
various nodes in the WMN in the search for an optimal path.

The process isg divided into two stages. The first stage is
concerned with the calculations of the first row of the WMN whilst the

second stage determines the contents of elements in subsequent rows.

Stage I Computation of elements in the first row

Let e(i,j) be the element in row i and column j of the WMN.
Given that e(l,1) = 0 .
A1l other elements in the first row of the WMN are calculated iteratively

using the following equation :=—

e(l,j) = Max [e(l,i) - FD(;])] (3.10)

where
indices i and j denote the column positions corresponding to
A‘i and Aj respectively in production Ai — a.quj -
J = n for production Ai — aj B
FD(;i) is a non-negative 'deletion function!'
defined as :-
F = significance of 'a ! 3.11)
D(3) £ha ; (
where significance of 'aj' is the weight associated with 'a.j'

obtained from a priori knowledge of the symbol 'aj‘ .

Stage II Computation of elements in row k (1<k S £ +1)

(i) Due to the previous row ie. row k-l

e(i) (kyj) = Max rIvIax -
all i in , :
<A. —> a_ A, e(k=1,1) - FS(‘]k) 4
i 3:d
A, =3 a.
i J
\ e(k-1,3) - Fy(k)

(3.12)
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where FI(k) is a non-negative 'insertion function' given by :-

Fo (k) =

significance of b, , (3.13)
where by , is the (k=1)th symbol in the observed string.

Fs(jk) is a non-negative 'substitution function' defined as:—

Fs(jk) = |(significance of hkpl)—(signifiCance of 'aj')l
(3.14)
(ii) Due to the same row ie. row k
) (,3) « max{ W) 3), wax [ ® 001 - 7] }

all i in

A — ajAj (3.15)

A, = a.

i J

The procedure in stage II is repeated until the last row

(iee ¥ =@+ 1) has been processed.

The final value of element (f+ 1,m) obtained from the above
computations indicates the minimum penalty incurred if the observed
string is to be generated from a given set of rewriting rules. This
is the case of finding VLD whose value together with the contents of

other elements of WMN are shown in Fige. 3.17 .

To obtain the LD, substitute the followings in equations

3010’ 3.12 and 3.15

=

Fr(k) = 1 - (3.16)
Fs(jk) ={1 if and only if by, # a.j

(0] otherwise

The technigue of the WMN can be applied to select one best
word which is the closest match to an observed string as follows.
Find WLD for every word in the vocabulary and choose the word with the

smallest value of WLD as the required best word.
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In concluding this section, some issues concerning the WMN

are discussed below.

(2)

(b)

It is possible to obtain two or more optimal paths for an observed
string and a given set of rules. This implies that the string
selected from the grammar to represent the observed string as
the prototype siring may or may not correspond to an original error-
free string. However, this poses no problem to the application in
the recognition of isolated words. Provided representative strings
are generated by the same set of rules, the word selected as a best
word is always the same irrespective of which representative
string is chosen.

The method of WMN can, of course, be employed to test whether an
observed string is derivable from a FSG. That is,it can be used to
perform the function of the parsing algorithm (algorithm 3.2) .

The string is said to have been generated by the grammar concerned
if, and only if, the element (£ + 1,m) of the WHN is zero.

In general, the time required to parse a string is longer for the
WMN technique than that required for the parsing algorithm. There-
fore, in applications where it is required to know only the exis-~
tence of errors but not their locations, the simple parsing method

is preferable to the method of WMN.

3e4e4 A stochastic al gorithm

As pointed out in section 3.3, the WMN technique is applied

to decode an observed string which has been unsuccessfully analysed

by the parsing algorithm. Even in this case, it is still possible for

two or more words to be assigned the same value of WLD. An example of

this type of situation is illustrated in Fig. 3.18 . is before,



significance of each symbol can be determined from appendix B.

This section presents a decision criterion using probabilities

for the selection of a word that is most likely to represent the string,

From the previous section, the overall penalty of an optimal
path is obtained by adding the contributions from each individual link
comprising that pathe. Likewise, the method to be presented below is
based on the same assumption, namely, that an optimal path can be
divided into independent links. All of the individually optimized

links are then combined to form a final optimal solution.

In outline, the method works as follows.
For each link in an optimal path of the WMN which contiributes an error,
an estimation is made of the likelihood of that symbol alteration.
The final result of an optimal path is the product of probabilities
estimated above of all such links comprising that path. The procedure
is repeated for all optimal paths appearing in the WMN. Results of each

path are then combined to give the final solution.

The a2bove process is applied to 2ll eligible words ie. words
associated with the same WLD. The word with the largest value of the
final solution is then selected as the one most likely to generate the
string. If two or more such words are possible, the string is rejected

as before.

Techniques for the estimation of probabilities associating

with each type of symbol alterations are given next.
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(a) a WMN of word 1

(b) a wMN of word 2

Fige 3.18 An example of two words sharing the same value of WLD
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(2) Deletion errors

Let PD(aij)k be the probability that 3 52 the terminal symbol corres-
ponding to link ij is deleted from a string in word L This is subject
to the followings :-

(i) deletion coefficient t.. which determines how probable a

D
particular symbol alteration is due to deletion event (rather
than substitution or insertion).

(ii)the conditional probability p(aij/wk)’ the probability that the
symbol deleted is aij given that it is in a string corresponding
to word Wy e
The selection of p(aij/wk) rather than p(wk/aij) results from
the rewriting of p(wk/aij) using derivations similar to
equations 3.8 and 3.9 and the application of the assumption

given in section 3e4.2 .

The criterion for the case of deletion errors is as follows :-

Decide that the symbol deleted is aij

is the largest for all words, where

corresponding to word Wy if

Pp(ay 30
PD(a.ij)k = by . p(a.ij/wk) (3.17)

(b) Insertion errors

Let PI(b)k be the probability that the terminal symbol b is inserted
into an observed string in word Wy . This is governed by :-—
(i) insertion coefficient tI B
(ii) the frequency of occurrence of the inserted symbol b, p(b),
That is, the more frequent b occurs, the more likely that it
is effected by noise or disturbance etc.
The conditional probability p(b/wk) is not used in this case.

This is because, it has been determined experimentally that any

symbol can be inserted into a siring corresponding to any word,
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even though that particular symbol may never appear in that

word during the training mode.

The criterion for the case of insertion errors is :-
Decide that the string, where a symbol b has been inserted, corresponds
to word w, if PI(b)k is the largest for all words,

where

PI(b)k | Hpie p(b) (3.18)

(c¢) Substitution errors

Let Ps(aij)k be the probability that a,

associated with link ij is substituted by a symbol b .

5’ the terminal symbol

This is affected by :~

(i) substitution coefficient tg .

(ii) the conditional probability p(aij/“k} .

The probability of a symbol b is not considered since the
importance of b relative to aij has already been taken into account

in the WMN.

Thus, the criterion for the case of substitution errors is :-

Decide that the symbol being substituted (by a symbol b) is 24
corresponding to word L ir Ps(aij)k is the largest for all words,

where

Ps(aij)k = tS . p(aij/wk) (3'19)
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The following is an algorithm for finding the most probable
word, whose corresponding grammar could nearly have generated an
observed string. The technigues described above are employed to estimate
the required probabilities of various symbol alterations. The associated
flow diagram is depicted in Fig. 3.19 .

Algorithm 3.4

Step 1  Read (w, i=1,...,wN), all the words corresponding to stringsj

with the same smallest value of WLD.

Set k =20
K =0 , where K is the optimal path number .
Step 2
(2a) Set k = k+1 .
(2p) Set K = K+1 .

For each symbol alteration found in path K and word W9
calculate PD(aij)k’ PI('b)k or PS(aij)k depending on
the type of the error.

Step 3 Calculate Pk which is the product of any combination of

K
. i h d
PD(aij)k’ PI(b)k and PS(aij)k estimated from path K an
word e
Step 4 If current value of K is the last one, go to step He
Otherwise, go to step (2b).
k = ok
Step 5 Calculate PT A PK
Step 6 If k = HN, go to step Te.
Otherwise, go to step (2a).
Step T If Max PE corresponds to two or more words, reject S 43 END.
k
k

Otherwise, decide that sj corresponds to word W, A2 PIIl

is the largest for all the words ; END.
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( START )

Input all words asso~
ciated with the
smallest WLD

k=20

K=0

k = k4l
K=K+ 1

Calcul ate P (a

oy or P AE

k

Calculate PJI‘(‘

last K %

X
Calculate P%

pond to two or more
words 7

Reject s.
J ;

Output W, as the most

likely word

Fige. 3419 A schematic diagram of algorithm 3.4
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CHAPTER 4

CONTEXT-FREE GRAMMAR-BASED MODELLING

4ol Motivation

The first application of CFG's to programming languages was
probably made by Baokua(86) in specifying the syntax of the ALGOL
language. Since then, the use of CFG's has become common among research
workers in the computing field. In contrast, as already mentioned in
section 2.2, it is not clear at present what type of grammar best re-
presents strings of symbols associated with an IWR system. In principle,
the use of a nonrecursive FSG would be adequate to model the FE where
only finite-length strings are involved. However, it is possible that
the use of less-restricted grammars may provide models which are
preferable in some way. For example, a model constructed on the basis
of a CFG may have fewer nodes and/or links than a FSG-based model

using the same data.

The above is analogous to digital filtering. It is possible,
in principle, to use a nonrecursive digital filter whenever a finite-
length impulse response is required. However, it is sometimes better
to use a recursive filter despite the type of the required impulse
response. This is because the volume of necessary computation may be

greatly reduced(aT).

In addition, the use of a CFG provides the model with a
push—-down mechanism which makes it possible to temporarily suspend the
processing of a constituent of a language or a siring at a given level,
This is done so that an embedded constituent can be processed using the
same grammar. The foregoing operation thus allows many regularities
of the language, if any, to be captured. As an example, a substring oc-

curring in a number of different contexis may be represented by a single
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rule instead of by a number of independent rules for each of the
different contexts. For the above reasons, it is of interest to have

methods for the construction of nonrecursive CFG's.

This chapter is concerned with the application of CFG's to
the modelling of a FE in the recognition of isolated words. The
general approach of the CFG inference problem follows the outline of
the approach based on FSG's as given in Fig. 3.1 . The FSC depicted
in Fige. 3.1 is, of course, replaced by a suitable CFGe A method is
given for the direct construction of a proper nonrecursive CFG from
a set of sample strings. The inference method to be presented generates
compact CFG's having a near minimal number of rules and/or nonterminals,
compatible with the requirement to be able to generate all strings

in the sample set.

The basis of the inference method involves a comparison
between an incoming string and an existing CFG. The matching process
requires the computation of the minimisation matrix, M, (to be defined
later) whose elements reveal the compatibility or otherwise between
the string, its substrings and the grammar. If any incompatibility
exists, appropriate rules and/br nonterminals and terminals are

appended such that the augmented CFG can generate the string.

In contrast to enumerative techniques, the method mentioned
above is computationally efficient. This is because it is based on
direct construction of a grammar from sample strings. In addition,
the method is conformed to basic assumptions about an inference
process in general as given in section 2.2 . Suitable decoding

techniques are also described.
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4.2 Graphical representation of a CFG

In this section, a method is given for the construction of a
network, which is essentially a set of FIN's applied recursively, to
represent a CFG in a graphical format. The network is fully explained
in the following definition.

Definition 4.1 A push-down transition network (PTN) is a collection

of directed graphs with a unique start node and a special set of ter-
minating nodes together with a push-down store. The network consists

of a principal graph which contains the start node and optionally, a

number of auxiliary graphs . Each and every link or transition in the

network is associated with either a terminal or a nonterminal but not

both.

Transitions involving nonterminals and a push-down stack can
be interpreted as follows.

If a nonterminal C is encountered during a transition from
node A to node B, the processing of an observed string at the present
level is temporarily suspended. This is followed by the saving of the
nonterminal associated with node B on a push-down stack. The processing
then resumes with the new transition, commencing from the stale or node
corresponding to nonterminal C which is either in the present graph
or in another graph. In other words, the transfer of conirol from one
level of the process to another can be viewed as a procedure of a
subroutine call to another graph or the current one. Upon reaching a
terminating node, the symbol on top of the stack is poped-up, removed
from the stack and used as the new starting point. An attempt to pop
up an empty stack after the last symbol of a string has just been

processed signifies the acceptance of the string.
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Al the CFG's considered in this thesis are assumed to be
proper so as to eliminate as many unnecessary rules as possible. The
formal definition follows.

Definition 4.2 A CFG G = (vH,Z, R, £) is said to be pr0per(55) if

(a) R has no A-productions (A —e A for all A in VN) ie. G is A-free,
(b) there is no derivation of the form A= A where A €V, ie. G is
cycle-free, and

(c) G has no useless symbols ie. there does not exist a nonterminal

that does not generate any terminal strings.

A proper CFG can be transformed to a PTN in the following
manners.
(i) Partition the rules of a given CFG into groups of rules where
rules in each group have identical LS nonterminals,
(ii) Construct the principal graph, beginning with the set of start
rules, based on the‘conatraints given belowe.
(iii) Apply the same constraints to the remaining sets of rules, if

any, to obtain appropriate auxiliary graphs.

The general procedures employed in the construction of a PTN
follow those of a FTN. The following describes constraints governing

the creation of links and/or nodes of a PTN from a set of rules of

a CFG.
A rule in the CFG can be in one of the following forms : -
+
Form 1 A —» &B where &€V ; A, B E"JN . (4.1)
*
Form 2 A —» ga where p€V and a€Z ., (4.2)

For a given rule, there are as many links as the number of
elements in « or p; except when A is a null string where there will

be exactly one link. Each link created from and associated with an
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element of of or gconnects the current node to a new node except for the
last element of { « In that case, the link corresponding to the last

element of o terminates at the node associated with nonterminal 'B!.

For a rule of the second formythe final link of the rule,

associated with a terminal 'a'sends at one of the terminating nodes.

The above procedure can be illustrated by the following example.
Example 4.1 Consider a CFG Gpy = (VN, Z, R, £) whose rules have

already been partitioned into various groups as given below.

R s § = DA A = DBCA B —= 2BB C —» cB
g ——a= aBb A — af B —a D& C — c
A — a3 B —»Db

Where VN = (ﬁ, .A.’ B, C)
£ = (a, by ¢)
The PTN constructed using the above procedure is depicted

in Fige 4.1

(a) the principal graph

(b) an auxiliary graph

Fige 4.1 A PTN corresponding to the CFG in example 4.1
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4.3 Computation of the minimisation matrix

It is usually more difficult to deal with the problem of gram-
mar inference of a CFG than that of a FS5G. This is because many proper-
ties that are decidable for a FSG become undecidable for a CFG. In
particular, it is known (54) that a general algorithm does not exist
to test whether two CFG's are equivalent. For these reasons, many CFG
inference algorithms are confined to specific types of CFG's. Likewise,
the CFG's to be inferred are assumed to be in a normal form whose
definition follows.

Definition 4.3 A CFG in Chomsky normal form(ss) is one in which the

productions are of the following forms only.
A —w BC where 4, By C € V. (443)
A = a where a € = (4.4)

Rewriting rules of the first form are called biel ement rules, and

those of the second form are known as terminating rules .

Any CFG can be converted into an equivalent CFG in Chomsky
normal form (54,55) so that no generality is lost by dealing only with
CFG's in this form. An example of such transformation is given in

reference 54.

Before the inference method can be given, it is necessary
1o describe the minimisation matrix, M, which forms the basis of the
inference process. This is done in the following two sections where
iterative procedures for the computation of the nonweighted and

weighted versions of the M-matrix are presented respectively.
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4.3.1 Nonweighted M-matrix

This section describes the nonweighted version of the M-matrix
and presents an iterative procedure for the computation of its elements.

Discussion of the matrix is now given.

Definition 4.4 Let s = b,b,e.eby be a string of length £, where b, EZ
for i=l,...,4ﬂ. For a given CFG in Chomsky normal form and for a

string s, the minimisation matrix (nonweighted) , M (hereafter referred

to as M-matrix) is a three dimensional,'ﬂ*-g* r mairix. r is the

number of nonterminals in the grammar. Element m,

ij
minimum number of symbol alterations (any combinations of deletions,

X of M denotes the

insertions or substitutions) required if the length-i substring of s,
whose first symbol is bj, is to be generated by the grammar from Ak’

the kth nonterminal .

Alternatively, element m, o can be viewed as the LD between

jk
an observed length-i substring of sywhose first symbol is bj’ and a
prototype string y derivable from Ak. As an example, suppose Ak
generates a string cd and that s = dcded. Two deletions are then
required from the length~4 subsiring cded to change it to the string

= 2

cd, which can be derived from Ak. In this case, m4 2.k
1<y

Ar is arbitrarily chosen from the nonterminals to represent

the start symbol, so that the element my is zero if, and only if, the

lr

string s can be generated by the grammar.

Before proceeding to present a method for computing the M-

matrix, various types of bielement rules are discussed.
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Definition 4.5 The hierarchy level (HL) of a nonterminal Ay denoted by

H(k), is the number of symbols in a string derivable from that

nonterminal .

In general, the HL of a nonterminal in a CFG is not unique.
However, because of the nature of the construction procedure described
later, it is guaranteed that every nonterminal in the CFG's to be
considered will have a unigue~value hierarchy level, except for the
start symbol Ar, whose HL may be multi-valued. The HL of ﬂr is, of
course, equal to.ﬂ, the length of the string under consideration.

By definition, the HL of any nonterminal in a terminating

rule is unity for the CFG's inferred in this chapter.

In order for the elements of the M-matrix to have the meaning
given above, it is necessary for nonterminals in bielement rules of the

form Ak —s A A , where Ak’ Ap and aq_e vﬁ,to have hierarchy levels

Pa
satisfying at least one of the following conditions :-
H(k) = H(p) +1 (4.5)
H(k) = H(q) +1 (4.6)

That is, the HL of Ak should differ from that of Ap or Aq by exactly
one.

This condition excludes, from CFG's to be constructed, bielement rules
of the form Ak - Ap&q where neither Ap nor Aq are in the
terminating rules.

Permissible types of rules are where :-—

(type 1) Both Ap and Aq are in terminating rules (4.7)

(type 2) Ab or Aq, but not both, are in the terminating rules(4.8)

The HL's of various nonterminals in a CFG can be computed

as follows.
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(a) HL's of nonterminals in terminating rules

Hk) = 1 for all A — & of the CFG. (4.9)

This follows from the definition of the HL.

(b) HL's of nonterminels in bielement rules

H(k) = Min [H(p) +H(q):| (4.10)

p,quk

where Pk is the set of ordered pairs (pyq) such that A‘k — ApAq is
a rule of the CFG.

The above follows because nonterminal Ak is replaced by nonterminals
A and A via a bielement rule of the form Ak —= A A, so that HL's
P a P a
corresponding to Ap and Aq need to be added. The final result is the

smallest of this sum taken over all rules in the set Pk’
The following describes an iterative procedure for computing
the M=matrix. The procedure is in two parts; the first part is for the

terminating rules whilst the second is for the bielement rules.

Part 1 : Terminating rules
(1Y 2 =1
o, if and only if A —» bj is a rule of the CFG
N otherwise
(4.11)

This follows from the definitions of M and of terminating rules.

(13) % = 2535 ceasl

4 Jk e ) - Z u]: | (
. = ax i -1 ’ 4.1 2

The above follows because the number of alterations required

for a substring of length i to be derivable from ﬁk is i-1l, if #k
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generates any of the symbol in the substring, otherwise it is i.

Part 2 : Bielement rules

(idd) i =1

m g = Min { win [@13p+ H(a), m 4+ H(p)] | (4.13)

Pyq EP

where Pk is defined as before.

This follows because nonterminal Ak is replaced by nonterminal s AP and
Aq via a bielement rule of the form Ak — ApAq, so that the element

of the M-matrix and HL corresponding to Ap and Aq respectively, or vice
versa, need to be added. The smallest of this sum is selected because
the minimum number of alterations needed to convert a string, derivable
from Ak, into a subsiring of length unity cannot be less than the HL

of H(p) or H(q), whichever is smaller.

(4%)" 1 2.2, 3y vesyd

o= Hin Min .o H ...+ H
mi:lk !;’q_eék ml;lp (Q-)’ ml;lq (p)’
i l - . 4 .1
1‘M:n< i(mujp+ m’-"“s J+u,q )]} (4 4)

where Pk is defined as before.

The above follows in a way similar to the preceding case, with the
extra consideration that the substring of length i is itself divided
into two sub-substrings of lengths u and i-u, for u = lyessyi=l. The

first of these sub-substrings starts at the jth symbol and the second

at the (j+u)th symbol.

A uvnit length string generated by the grammar can be repre-
sented by a rule Ar — ApAq where either Ap or Aq is arbitrarily

chosen to act as a 'dummy' nonterminal. That is, the chosen dummy
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nonterminal never appears in any other rules of the grammar, except

in the specified start rule. The other nonterminal is, of course, in

a terminating rule. This is done in order to preserve the format of
the normal form of the CFG. The contribution of such a rule to the
content of the element of the M-matrix corresponding to LS nonterminal ,
iees Ar, is equal to the content of the element of M corresponding to

non-dummy nonterminal (either Ap or Aq) .

It is possible to achieve some savings in the computation of
the M-matrix. This is because not all elements of the M-matrix are

required to be computed. Elements m for which i+j>f+1 need not be

ijk
computed, as there are no substrings of s corresponding to such values
of i and j. In addition, provided that the length of s exceeds unity,
elements for which i = 1 and which correspond to the start symbol,

ie. k = r, need not be computed.

The following example illusirates a completely filled M-matrix

for a given string and a specified CFG.

Example 4.2 Consider a normal form CFG Gy, = (V. ,2,3,2)
where ‘J’N = (%332,33’A4,A5’A6,A.{, 313A32,A33,Ar=g)
Z = (B,C,DyEye,jyh)
R = Al-—-e A31——PA132 A—I"A324
A2 —_ I A32 — A31ﬁ3 ﬁ.r — A5A33
£L3 — h A33 —rm A6A7
A4 —_— 0
A.S — B

A.r—--C

The M-matrix (nonweighted) for the string s = BjC and the
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grammar G4 5 is given in table 4.1 below.

3 2 3
J 3 1 2 1
substring C Bj jc BjC
= ——— |
Al i 2 2 3
A2 1 2 2 3
A3 1 2 2 3
A
4 1 2 2 3
As 1 | 1 2 2
56 1 il 1 2
ﬂ? 0 2 1 2
531 2 2 2 3
Ay, 3 i a3 3
A33 1 2 0 1
Ar - % 1 (0]

Table 4.1 MN-matrix for string s =

BjC and grammar G,

L

.2
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de3e2 Weighted M-matrix

This section describes an iterative procedure for computing
the weighted version of the M-matrix. This type of the M-matrix is
usually employed if it is decided to attach some sort of 'significance!
to each and every symbol in the alphabet. Not all parts of the iterative
procedure for computing the nonweighted M-matrix need to be modified
in order to obtain the weighted one. Thus, unless stated otherwise,
all definitions and derivations required for the computation of the
weighted M-mairix are assumed to be the same as those given in the

previous section.

First, some definitions necessary for the discussion of the
iterative procedure are given below.

Definition 4.6 For a given CFG in Chomsky normal form and for a

string s as described in definition 4.4, the weighted M—matrix (here-

after referred to as wll-matrix), whM, is a three dimensional, 2xf% »
matrix ;3 where fLand r have the same meanings as in definition 4.4 .

Element m of wll denotes the WLD beltween an observed length-i sub-

ijk
string of s, whose first symbol is b;j’ and a prototype string y

generated from Ak’ the kth nonterminal.

Using the same example that exemplifies definition 4.4,

where Ak derives cd and that s = dcded, the content of element m 5.k
4y2,

of the wM-matrix associated with substring cded becomes lsignifioance
of 'e'l + |significance of 1d*| . Substituting for the significance

values of symbols 'e' and 'd' as given by the table in appendix B

yields m k=5+4=9°
]

452

Definition 4.7 The weighted hierarchy level (WHL) of a nonterminal Ay s

denoted by wH(k), is the sum of the absolute values of the significance



A
of all symbols in a string derivable from Ak.
As before, every nonterminal in the CFG's to be inferred will

have a unique~valued WHL,except for the start symbol Ar

The following is a procedure for computing the WHL's of non-

terminals in a CFG.

(a) HWHL's of nonterminals in terminating rules

wH(k) = |significance of for a rule o in the CFC
2 Ay =H 5

(4.15)
This, again, follows from the definition of the WHL.
(b) WHL's of nonterminals in bielement rules
wH(k) = Min [wH(p) + wH(q_)] (4.16)

Psqepk

where Pk is defined as before.

The above follows from the same reasons given for equation 4.10 .

An iterative procedure for the computation of the wM-matrix
1o be presented below is also divided into two parts, one each for the
terminating and bielement rules. The part for bielement rules is the
same as part 2 of the procedure for the computation of the M-matrix,
except that all the HL's are replaced by their corresponding WHL's.

Part 1 : Terminating rules

(1) 4. =12
ml:jk = |significance of ‘oj - significance of a (4.17)
for a rule Ak —> 3 in the CFG.

This follows from the definitions of wM-matrix and of terminating

rules.
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(1) vm i 8,3, b ol

J+i=-1 Q
m, ... = Min {mluk + = |significance of bvl
v=1

ijk 3
u=J
—lsignificance of ‘bul } (4.18)
The above follows because a subsiring of length-i, whose first symbol
starts at position j can be considered as 1o consist of i sub-substrings,

each of unit length. Only one of these sub-substrings can be matched

against 2 the terminal in a rule ‘Q'k — 2 of the CFG.

Part 2 : Bielement rules

(idd) 4 =1

m g = Min {Min[mljp-!-wﬂ(q), ™ 5ot wE(p)] } (4.19)

P’qEPk

where Pk is defined as before.

This follows from the same reasons as those given for equation 4.13
with the replacement of H(p) and H(g) by wH(p) and wH(q) respectively.
(%) "8 = 253, s umg b

+wH(a), m, . + wH(p),

B .. = Nin {Mm[mijp ijq

W g €F,
(4+20)

Min (m_. + m, . )]}
1€udi ujp 1=Uy J+Uy0Q
where Pk: is defined as before.

This also follows from the same reasons that elucidate equation 4.14,

with H(p) and H(q) being replaced by wH(p) and wH(q) respectively.

An example of a wiM-matrix is illustrated by table 4.2. The

string is s = BjC and the grammar is the CFG (}4 taken from example 4.2.

o2

Values of significance of various symbols can be found in appendix B.
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i 1 2 3
J 1 2 3 1 2 1
substring B J C Bj jc BjC
Y T B B | 8 10
A, 3 15 2 13 12 14
Ay 10 2. X 4 5 1
by . 14 1 12 L1 13
Ay Q" alg 3 1o SR ' 13
A 12 . 0. 13 2 3 5
iy  (RON I S 11 10 12
Ay 8§ 10 =¥ 12 T 9
Ayp 18 12 15 (- S 13
Ayq 11 3 10 5 0 2
A, - - - 3 2 0

Table 4.2 wi-matrix for a string s = BjC and the grammar G,

L o

2
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4.4 Inference of a CFG

The inference method presented in this section is based on a
search for incompatibility between each string in the sample set and
the current grammer.For each occurrence of such incompatibility, the
grammar is augmented such that a new grammar is produced which can
generate the present string. Fig. 4.2 illustrates the overall structure

of the inference method which can be explained as follows.

The symbol strings in the sample set S+ are assumed to be

arbitrarily labelled Sy 98 9eces Sy o The first step is to select the
S

required type of the M-matrix (weighted or otherwise). An initial CFG

is constructed from the first siring 5 such that Gl generates exactly
that string ie. Gl is a SGe. If there exists only one string in S+, the
required grammar is ql. Otherwise, the inference method is applied
recursively as follows. The nth string, S0 is matched against the

(n=1)th inferred CFG Gy q» for n = 2y...,M.. The matching process involves
the computation of the appropriate M-matrix whose elements reveal the
shortcomings of the CFG in relation to its ability to generate the

- = 0, s, is derivable from G and no

1 n=1

change is required, ie. Gh = Gn—l

string. If the element ml
« Otherwise, information from the
particular M-matrix is used to augment anl by appending additional
terminals, nonterminals and rules, as appropriate, so that the new
grammar Gn can generate the string. The above method is repeated until

all strings in S+ have been processed.

The inference method just described will be presented in two
stages. The first stage is concerned with the creation of the initial
set of productions from the first string in the sample set. In the
second stage of presentation, the selected type of the M-matrix is

computed using the procedures given in the previous section. The current
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< START )

y

Select type of the
M-matrix

/// Input 1lst string //

i

Construct 5G, G
(Algorithm 4.1)

1

last string

/ Input next string /
|

Compute appropriate
M-matrix

(Section 4.3)

Qutput the
final grammar

N
Update grammar

(Algorithm 4.2)

Fige 42 A schematic diagram of an inference method of a CFG
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grammar is then updated where necessary to form an augmented grammer

as required.

4.4.1 Formulation of the initial set of rewriting rules

In the first stage of the inference method, it is arbitrarily
chosen to process the first string from left to right starting from the
left most symbol of the string. A set of terminating rules is formed
first. Then a bielement rule of type 1 is constructed from two non-
terminals corresponding to the first two symbols of the string. This
is followed by the formulation of successive bielement rules of type 2,
where only Aq is in a terminating rule, until the entire string is

dealt with.

An algorithm for forming the initial CFG is now given.
A gorithm 4.1
Step 1  Read the first siring 5 = blb2"'§£ where 8 is arbitrarily
drawn from the sample set.
Step 2 TForm a set of terminating rules as follows.
For i = 1 tofQ:
Unless a rule has already been formed with bi on its RS,

create a2 new nonterminal Ab and a new terminating rule
i

gl G
i
(The notation introduced here indicates that A is the
nonterminal corresponding to bi) . ;
The nonterminals derived above form the set of nonterminals
having unity hierarchy level.
Step 3 Create a new nonterminal of hierarchy level 2 and a biel ement
rule of type 1 from the nonterminals corresponding to the

first two symbols of s ; - A
i 'ol“‘b2
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(AH denotes a nonterminal with hierarchy level i ) .
i

1f f=2, o, (= A) is the start symbol, and the formation of
Gl is compleie.

Otherwise, further bielement rules of type 2 are formed

as follows.

For i = 3 tof:

Create a new nonterminal AH and a new bielement rules
e !
—_— -
& LA
AH” (=Ar) is the start symbol. This completes the construction of G, .

The corresponding schematic diagram is depicted in Fig. 4.3 .

4e4.2 Updating the existing grammar

The following algorithm is employed in the formulation of Gn

from Gn—l’ for n n2,...,HS-

Algorithm 4.2

Step 1 Read a string R b1b2"'bl .

Step 2 Find iteratively, using the procedures in section 4.3, all
necessary entries of the chosen type of M-matrix for S,

Step 3 If Mgyp 18 not zero, go to step 4.

Otherwise, Gn = Gn-l
It s, is the last string, END.
Otherwise, increase n by one and go to step l.

Step 4 Formation of terminating rules

For'i =1 to ﬂ.:

Create a new nonterminal Ab and a new terminating rule
i

Ab — bi if, and only if, there does not exist a rule
i

with bi at its RS.
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( START )

\

i
/ Read lst string /

[

Form a set of
terminating rules

)
Create a nonterminal of

hierarchy level 2 and
a2 type 1 bielement rule

‘~’

N

Form further new
nonterminal s and
bielement rules of type 2

|

(=)

Fige 4.3 A schematic diagram of algorithm 4.1
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Formation of bielement rules

Select a set of indices ji :
For i =4-1
Select jl—l as the least j for which mﬁ—l,j,r is minimum.
For i = (£-2), (£=3)yece2 2
Select ji as the least j for which mijr is minimum and
for which ji = ji+1
Each ji is the j index of mijk corresponding to a substring of
length i. .
Each will lie in the range 1€ j s £-i+l Tbecause, as explained
previously in section 4.3.1, there are no substrings for
values outside this range.
Form the new bielement rules.
For i=2:

Create 2 new nonterminal Ah and a new rule —_— Aj Aj
2 2 A i

unless these nonterminals and the rule have already been

created. A. and A, are the nonterminals in the
32 32+1

terminating rules having b. and b, s respectively,
32 32+1
on the RS.
For i =3 tol:

5 \ ; i
H i o Ji_1:>3i, form a new bielement rule Ahi —_— Jiahi_l,

where Ah is a newly created nonterminal, unless there
i

is already a rule of the form Aq e Bﬁh -1? in which case
i
Aq is used as A, . (B represents an arbitrary nonterminal).
i

If ji 3l = ji’ form a new bielement rule
A — A, » Where is a newly created
n, Ahi—l 3y+H(B,-1) *n,

nonterminal, unless there is already a rule of the form

+1
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Aq — Ahi—lB’ in which case Aq is used as Ah .

Represent ﬂhg as Ar s the start symbol.
if 5, is the last string, END.
Otherwise, increase n by one and go to step 1.
A schematic diagram of the above algorithm is depicted in Fig. 4.4

4.5 Illustrative example of a CFG inference

The following set of sample strings, taken from Bezdel and
Bridle(zo), represents the output from the FE in a speech recognition
system when the word 'SEVEN' was spoken by different speakers.

The strings are :

Blaaauau.

8 = fsau

2
8y = fsu
84 = saiaua
8 = s&
8. = fpsau

s = paian

The following illustrates the step-by-step operation of the
inference method using the nonweighted M-matrix. Only the elements of
the M-matrix relevant to the augmentation of the CFG's are shown, ie.,
the entries m, . for i =2yc00sd and j = lyeeey L+l-i. The indices s
selected are indicated by a prime on the associated element of M. The
rules added at a given stage are indicated by the use of ~  lines

underneath the rules.
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/ Input a string s, /4 ]

(

Compute the

appropriate M-matrix

N
Form 'I;erﬁaina.ting
rules

n=n+1

Select a set
of 3

i
Form bielement

rules -J

Fige 44 A schematic diagram illustrating an algorithm for

updating a CFG
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Formation of G, directly from s

5

S‘ta_.ge 2

sSauan

fsan

=

[

w
W & W

3!

21

3

fsu

M=

no

2 4

(V8]

21

M= 2

Glz

o

b=
o

t

W

Ntb

Luh-

W

&

Laidt

-PP:

e

aipr o

—

———

|
18 1@

SRR

=

I A

1@

oo ddy 1 Ay~ Ak,
o L oo o e €
w Vel o W Ty L
15 T

I~ P

S T imat Ty T e e 1
T s Tl o a1, 1
by = gty & = ot
AT MR % T ety
A15 — .&4131

Mg~ B

At the end of this stage, {}4 predicts three additional

strings, namely, sauaua, saiau, and fsai.
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Note that the predicted string saiau subsequently appears in the set

as 8

7.
Stage
55 = sau
i e 2
]
M= 2 2' 2
el &
Stage 6
8g = fpsau
S - R
i
2 AR B B |
M= 3 22 an
O [ T
LA
The string fpsail
Since s

7

A PTN of G6 is depicted in Fig. 4.5 .

Al—-
Az-—n-
A —

A, —

A

As—i-

s
Qs Mol
gy e
o | Bagi €
Mg L
Mg=""%uls

by 7 B e

o 1 R T
o M s,
Na T
e T

e Mata
= s

is added to the set by Gé.

A i .{';14155.3

Ar _— A4A13
Ar Pt A15A3
B " Nehs

s "
~ o~

A == A14A3
o SRS v
Ar — A15A3
Ay == hhy
Ar e, I:\12A3
% iy

~ S mad

= saiau is already in the set, the final grammar is G6'



(2) Principal graph
G5
(b) auxiliary graphs

Fige 4.5 A PTN of the inferred grammar G5

4.6 A recognition scheme for CFG models

Fige 4.6 displays the general features of the recognition
scheme B which is another method of the recognition of isolated words.
Two major differences distinguish scheme B from scheme A described in
section 3.3 and Fig. 3.13. The first difference is that, in scheme B,
production probabilities are employed to select the most likely word
in both of the following cases : (i) an exact match - where two or more
grammars can generate the observed string, and (ii) a closest match -
where two or more grammars could nearly have generated the string with
the same penalty incurred. The second difference is concerned with the
use of the AWSL criterion (to be explained later) in place of a stochas~

tic method in scheme A.



- 90 -

sample strings

Learning algorithm

" LEARNING MODE

Estimation of string
probabilities

rulgs or
represenflative strings

¥

RECOGNITION MODE

Saiia Find a best match
String (including an exact

{xput match) for the string

e best match cor-

output
o

respond to more
than one

Apply string probabilitie
to select the most
likely word

than one such word ?

Apply the AWSL criterion

to select the most

suitable word

Fige 446 Flow diagram of the recognition scheme B

decision



- 9] -

The following outlines a recognition system whose flow diagram
is shown in Fig. 4.7 based on the above mentioned recognition scheme B

and pre-inferred CFG's.

As in scheme A (and in many IWR systems), the recognition
system consists of two phases of operation - the learning phase followed
by the recognition process. In the learning mode, normal form CFG's,
one for each word in the vocabulary, are directly constructed from a
set of sample sirings using the method of section 4.4 . The inference
process involves the computation of either a wil or an M-matrix whose
elements can be iteratively computed by the procedures given in section
43 « The prior knowledge of the significance of symbols involved (or
the lack of it) influences the selection of the type of the M-matrix.
Estimation of production probabilities of the inferred CFG's is also

carried out during the learning operation.

In the recognition mode, an incoming string is analysed to
determine which grammar, if any, could have generated it. The determina-
tion of a best match for the string, which can be either an exact
match or a closest match, is accomplished by using the wM-matrix as
a recognition matrix. The foregoing statement assumes, of course, that
the significance of various symbols in the alphabet is known or can be
determined beforehand. The wl rather than the M-matrix is chosen
because, from experimental observations, the recognition performance
when employing the former improves significantly over that when the

latter is used.

Appropriate decision is given at the outpui of the system if
the best match found above corresponds to only one word in the
vocabul ary. Otherwise, production probabilities are employed to select

the word that is the most likely (probabilistically) to have correspond
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Fige 4.7 A CFG-based recognition system using scheme B of

the recognition method
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to the best match. For the case where there occur two or more such
equally likely words, a selection is made of the most suitable word

according to the AWSL criterion.

In the following sections, descriptions are given of various
recognition operations mentioned above. These will be followed by the
formal presentation of a recognition algorithm comprising the fore-
mentioned methods for the representation of the overall recognition

process.

4.6.1 The wi-matrix as a recognition matrix

The determination of structures or syntactic analysis of
strings generated by CFG's have been studied and investigated by many
researchers in the computing field. Numerous algorithms have been
proposed for the recognition of CFL's, for example, those in references
89-94. Among the algorithms mentioned above, that of Ibunger(94) is
similar to the one presented here in the format of presentation.

Major features of each method can be described as follows. In the
recognition matrix of Younger, an incoming string is accepted as
belonging to the language of a given CFG provided a certain element of
this matrix is 1. If the element of the matrix is zero, the string is
rejected. In the method to be given below, a certain element of the
wil-matrix represents the smallest distance (WLD) between an input
string x and some string y generated by the given CFG. In other words,
the string x is parsed to completion on the basis of minimizing the
number of syntax errors or symbol alterations. If the content of this

element of the wM-matrix is zero, x becomes an exact match of y.

Descriptions are now given of how to apply the wM-matrix in

the recognition of isolated words. First, assume that all CFG's
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associated with each word in the vocabulary are in, or have been
reduced to Chomsky normal form. A recognition can then be performed on
an input string s of length { as follows. Form a wll-matrix for the
siring s and each of the CFG using the procedure described in section
4.3.2 . Decide that the string s corresponds to word iy if, and only
if, the element m(f,1,r) of the wM-matrix associated with word w, is

the largest for all such elements corresponding to all words in the

vocabul ary, where Ar ig the start symbol.

The above follows immediately from the definition of the
wil-matrix. In essence, the method is concerned with the determination
of the smallest WLD between the string s and some strings derivable
from each of the CFG's under consideration. For the case where there
occur +two or more words associated with the same value of WLD, the
technique of the next section is applied to select the most probable

word.

The foregoing method also, of course, works with the M-matrix
(ie. nonweighted version). Computation of the required M-matrix is
accomplished via the appropriate application of the procedure of
section 4.3.1 . In this case, the element m(ﬂ,l,r) of the M=matrix
denotes the LD between the string s and some string y derivable from

the given CFG.

Although, both types of the M-matrix can be employed in the
recognition of isolated words, the weighted version is preferable to
the nonweighted one. This is because the use of the former as a recog-
nition matrix considerably reduces the ocourrence of the situations
where two or more grammars can generate the string s with the same
minimum number of alterations . The above is hardly surprising since

more information about the strings is available to the weighted type
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of the M-matrix than that available to its counterpart.

A parse (or parses) for the string s can be readily determined
from either the wll-matrix or the M~-matrix in the following manners.
For the string s to be accepted by a given CFG, all entries of the M-
matrix (or the wiM-matrix) associating with a parse of s must be zero.
This follows because in order for the entry m(ﬂ,l,r) to become zero,
each nonterminal in the rules that are employed in the derivation of
s must contribute exactly zero alteration to its associated element of
the M—matrix. These zero entries can then be used to construct a

parse for that string as illustrated by the following example.

Example 4.3 Consider a siring s = uau and a given normal form CFG

Gy y = (vn,z,n,a) where :—

Uy = (Ashoslgsh ook 39y 4o hy 5o A =R)

= - (a,i,u)

A L Wt O e T R e i
i S e . A A T Aok

Ay == 4, L, A=Ak
ol ) R
Ar i A14A3

The M-matrix of s with respect to G

4.3

is shown in table 4.3 .



i 1 2 3
j 3 3 ; L) 1
substring | uw a u ua au uau

01 0 e 2
A, e | S o 2
AB s I3 L - g 3
A, s TR | [ 1
A13 ) AR R | 238 1
A14 L 3. ~3 0
515 3¢03 93 2 2
A, - - - ' 0

Table 43 [The M-matrix for string s and grammar G,
G

Since the nonterminal A13 does not appear in any of the start
rewriting rules, the entry m(2,2,13), even though its value is zero,
cannot be considered in the construction of the parse of s. Although
the nonterminal A14 is in a start rewriting rule, that rule does not
contribute zero penalty to the element m(3,1,r), and therefore by is
not valid for the determination of the parse of s. A similar argument
applies to element m(2,2,r). All valid zero entries in table 4.2 are

shown underlined. Fig. 4.8 depicts the one and only one parse of s.
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9
Mo

a/\\

AT

u a

Fig. 4.8 A parse of string s = uau w.r.t. grammer G, 2
el

4.6.2 Selection of the most likely word

This section describes a method for dealing with the situation
mentioned in the previous section where the best match between an in-
coming string s and a given set of CFG's corresponds to two or more
words in the vocabulary. For the case of an exact match, the above
situation becomes, of course, the NE. The method presented here is
most closely related to that of section 3.4.2 in the following way.
Both methods are based on the approach of using stochastic grammars to
determine the importance of various sirings in probabilistic terms.
The approach involves the counting of the frequency of usage of rules
of the CFG's. However, the method given below is applied not only to
cases of exact match, as is the method of section 3.4.2, but also to

those of closest match.

The following definition follows closely thatl of a SFSG
stated in definition 3.7 &

Definition 4.8 A stochastic normal form context-free grammar (SNCFG),

Gn“ is defined as :=-

w2

G o = (NpZ, R, &) (4.21)

where VN,E , and & are as defined earlier.
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Rns is a finite set of normal form stochastic productions,

each of the form

i
ij :
Ai i Bjcj Ay Bj’ Cj € VN
ij
or _Qk-_..-a,:l Aké {VN—£$ ,ajEE

where pij and pkj’ the production probabilities, are as

defined in equations 3.2 and 3.3 , respectively.

Estimation of the above production probabilities follows the

method given in section 3.4.2 .

Discussion is now presented concerning the forementioned
method of selecting the most likely word. The basis of the approach
which is based on the framework of Khert(95) on the investigation of

the entropy of CFL's can be explained as followse.

It is of a normal practice to assume that the estimated
probabilities associated with the productions of the SNCFG are indepen—
dent. Given also that an input string s can be matched nearest to some
string yel’..((}ns) which can be generated from J distinctively different
derivations in Gns' It follows from the independence of the productions
that the probability of generating y by one of the J derivations is
equal to the product of the probabilities of sequence of productions
employed in that derivation. The sum of the probability of each of
these J derivations gives the overall probability associated with y.
The method is then to apply the above procedure to each grammar that
generates some string y having the same smallest value of WLD from the

string s. Word w

- is selected as the most likely word whose grammar

could most nearly have generated s if the above probability of siring

¥ corresponding to word Wy is the largest for all the words associated
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with the same WLD.

4.6.3 The AWSL criterion

As mentioned earlier, the application of the method given in
the last section to the recognition of a string s can result in the oc-
currence of two or more equally likely words. In such a situation, it
is necessary to employ the technique given below to select only one
word that is the most suitable according to a given criterion. Before
proceeding with the presentation of the method, some definitions are
first introduced as follows.

Definition 4.9 The average weighted string length (AWSL) for a given

CFG is the sum of the absolute value of the significance of each and
every symbol appearing in all strings in the sample set that has been
used to infer that grammar, divided by the number of total sample

strings.

Mathematically expressed, the AWSL can be calculated in the
following manner,

Let the sample set be

s, = (ajl J = 1525000,M) (4.22)
where s. = b,.b, sesb., is the jth string in §
J J Jg +
5 il
MS is the number of total strings in S+

£ is the length of string 85 -

From the above definition,
M

1 S

AWSL = § = significance of bj_ (4.23)

J=1

T

M

I

S
i

Definition 4.10 The weighted string length (WSL) of a string s is the

sum of the absolute value of the significance of all symbols in s.
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ie. WSL of 8 = = |significance of b, (4+24)
i=]

where s = b byeesdy for a string s of length L .

2

The method is to compute the AWSL for CFG's associated with
every word in the vocabulary. For an input string s, select word W
as the most suitable wordyprovided the WSL of s is closest to the AWSL
for the CFG corresponding to word Wy in comparison with all words in

the vocabulary.

The foregoing procedure is based on experimental observations
of various sets of strings corresponding to different words in the
vocabulary. It is found that values of AWSL's for different sets of
strings are reasonably placed from one another provided the number of
strings in each set is not too small. The above technigue based on the
AWSL criterion thus provides a quick, simple and reasonably reliable
method for solving the uncertainty situations such as those where there
occur two or more egually likely words. Since the procedure is applied
as the final stage, rather than as any of the earlier stages of the
recognition process, the method can only improve the overall recognition
performance and not impair it. It can be seen that the above is so if
it is realized that the method is only applied when the output decision
has to be made on two or more equally likely words. In this situation
and without applying the AWSL criterion, it would not be possible to
select one word from many equally probable alternatives, except for the
arbitrary selection or guessing of the output. The result, in the worst
case, with the inclusion of the criterion in the recognition process

would be the same as above, when it is not included.
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4e604 A recognition algorithm

The following is a formal presentation of an algorithm that is
employed in the recognition system of Fig. 4.7 for the recognition of
isolated words. All three methods previously described are incorporated
in the algorithm to form the overall recognition process. Unless stated
otherwise, all symbols appearing in the algorithm have the same meanings
as before. A schematic diagram of the algorithm is also depicted in
Fige 449 .

Step 1 Read an input string s = blbz"’bl .

Step 2 Por k=1, W:
Compute the wil-matrix for string s and the CFG associating
with word Wy using the procedure of section 4.3.2 .
Store dm(k) = m(§,1,r) corresponding to word W .

where dmﬁk) is the WLD between s and the CFG associated with

word w, .
"k W
Step 3 Compute D = Min dm(k)
k=1
Step 4 TFind an index k whose value of dh(k) equals that of D .

If there exist two or more such k indices, go to step 5.

Otherwise, decide word Wy associated with index k to be the

required output; END.

SteE 5, Let HN be the number of words associated with the same wvalue

of D .
m
For k = 1, Wﬁ

Compute and store Q(k)

I I(y)
where k) = & T pi(yk)
j=1 i=1

where is a string generated by the CFG associated with

Ix
word W, with a WLD between y, and s of the value D .
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( START ’
/Rea,d a string s /

i

Compute dm(k)
for k=l,H

A

W
Compute D = I}n{i:]r} d.m(k)

output W, as the
required word

]

Compute Q(k)

fork =1, HN

"y

Compute Qm=!oIa.x (k)
k=1

one k with

k) = q 2

Compute dg(k)
for k = 1’ W

v

Wy
Compute D£= Min dﬂ-(k)

k=1

N

Reject s

Fige 449 A schematic diagram of algorithm 4.3
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I(yk) is the number of steps in the derivation of Tyc*
pi(yk) is the probability of the production used at the
ith step of the derivation of e
J is the number of distinctively different
derivations of Ve
W
Compute Q = Hal (k)
k=1
If there occur two or more words associated with the same value
of Q,» &° to step 8.
Otherwise, decide that Wy is the required word if
Q(k) = Q 5 END.
Compute the WSL of s.
Let HN be the number of words associated with the same value
of.gm.
For kx =1, W

N
Compute diﬁk) = |HSL of s — AWSL associated with word “k‘ .

Wy
Compute Dl = Min dy(k)
k=1
If there are two or more words associated with the same Dgs

reject s and END.

Otherwise, output Wy a8 the most suitable word,
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4eT Discussion

The inference algorithm presented in this chapter employs an
incremental method for the construction of nonrecursive CFG's.
Consequently, the inferred grammars produce only strings of some finite
length. This is appropriate for applications such as automatic
recognition of isolated-words, where finite-length strings only are

involved.

It is, of course, possible to generate grammars for non-finite
languages by modifying the way new nonterminals and rules are appended
at each stage of the inference process. One way this can be done is to
remove restriction on the recursivity of nonterminals allowed in bi-
element rules, for example by permitting productions of the form

A e AA .
n mn

The method presented is guaranteed to generate a proper non-
recursive CFG that is capable of producing all the given strings,
irrespective of the order in which they are presented to the algorithm.
In addition, any other strings created by the grammar will be similar
to those in the training set. The method inherently produces compact
CFG's having a near-minimal number of rules and nonterminals. These
are due to the way the grammar is augmented. At each stage of the
process, the algorithm determines the parts of the current grammar
that most nearly generate the present string, so that the additions

represent minimal change.



MODEL EVALUATION AND EXPERIMENTAL RESULTS

51 Basic recognition systems

This chapter is concerned with various evaluation and
analytical experiments regarding the application of formal grammars to
model a FE in the recognition of isolated words. The experimentation
mentioned above involves the use of four basic recognition systems

which can be described as follows.

(1) A SFSG~based recognition system using scheme A of the recognition

method given in Fig. 3.13

This system will later be referred to as SFS~A recognition system. It
is, of course, the system described in chapter 3 and its corresponding

flow diagram can be found in Fig. 3.14 .

(2) A _SNCFG-based recognition system with the recognition scheme B

of Fig. 4.6

Chapter 4 provides detailed descriptions of the system which will be
known as SCF-B recognition system. The associated schematic diagram is

depicted in Fige 4.7

(3) A SFSG-based recognition system using the recognition scheme B

The above system, hereafter referred to as SF5-B, is implemented and
included in the proposed recognition systems for the following reasons.
In one of the presentations given below, it is required to evaluate the
performances of the inference of two types of grammars, namely the FSG
and the CFG, in the modelling of a FE. In such an application, it is
necessary for the two recognition systems concerned to use the same
recognition scheme. Two options are available for the selection of the

required system : either to use the SCF-A or the SFS-B system.
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It is found , however, that the former is more difficult to implement
than the latter. It is for these reasons that the SFS-B system is
implemented. Additionally, this system together with the SFS-A system
are also used in comparing the performances of the two recognition
schemes A and B . Methods of sections 4.6.2 and 4.6.3 are employed in
the recognition part of the SF5~B system. This is illustrated by the
flow diagram of Fige 5el. The CFG's involved in the method of section

4¢6.2 are , of course, replaced by appropriate FSG's.

(4) A recognition system based on direct storage of strings in the

training set and using the recognition scheme B

This system whose flow diagram is depicted in Fig. 5.2 will subsequently
be known as the stochastic template matching-B (STM-B) recognition
system. It is implemented in an attempt to determine whether the use
of formal grammars offers any advantage over the direct storage of
strings in the recognition of isolated words. In the learning mode of
this system, the probabilities of the representative templates are
estimated by counting the frequency of occurrence of strings in the
training set. The matching of an incoming string to a set of templates
during the recognition mode involves the application of the WMN
technique described in section 3.4.3 . In this case, the required FIN
is directly constructed from a given set of sample strings such that it
represents exactly those strings in the training set and no other
strings. The principles of sections 4.6.2 and 4.6.3 are again applied

as appropriate in determining the decision of the output.

For simplicity and for fast development of the computer pro-
grammes involved, all four systems described above are implemented in
FORTRAN on a 28K PDP 11v03 minicomputer. Data required for the
experiments is taken from a vocabulary of ten digits 'ZERO' to 'NINE'

uttered by a single speaker (A.J.PUTMAN) . Putman also designed and
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Fige el A SFSG-based recognition system using the recognition scheme B
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built the FE(96) which is used to generate the required data. The
speech signal of the spoken digits is of telephone-grade quality. This
is obtained from a normal telephone set via a circuit representing two
limiting local lines. Deatils of this circuit together with those of

the hardware and software parts of the FE can be found in reference 96.

Appendix C gives a training set of 100 strings representing
ten spoken digits, each of ten repetitions, obtained from the FE as
described above. The symbol strings which will be used as a recognition
set are provided by appendix D. The set consists of 500 strings in
total with 50 strings for each of the ten digits spoken. Numerical
values representing the significance of various symbols can be found

in appendix B,

5«2 Evaluation and comparison of models

In this section, some aspects of the modelling of a FE by FSG's
and CFG's in the recognition of isolated words are investigated and
their results are evaluated. This involves running the appropriate
recognition systems described in the previous section using relevant
control parameters. The results obtained are then analysed and com—

parison is made between different models concerned.

5¢2.1 Recognition performance

A simple and useful method for evaluating different types of
recognition systems implemented in the previous section is to determine
their respective recognition performances using the same set of data.
The confusion matrices resulting from the test runs of SFS-A, SFS-B,
the weighted and nonweighted SCF-B and STM~B systems are given in

tables 5.1 to 5.5 respectively. Details of data employed in all test
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0 1 2 3 4 5 6 T 8 9 O | Rej. | Cor.
T Rec.
1 14 2 /) 41
2 43 | 1 5 1 43
3 8 | 23 1 1 11 21 X 23
e 1 4 38 3 4 38
5 47 3 47
6 42 8 42
1 7 4 34 1 1 3 34
8 1 12 1 |36 36
9 9 | 1 5 3 27 5 27
0 2 6 3 1 1 3 |34 34

Table 5.1 Confusion matrix of SFS-A system (PD/PI/PS = 1.0/240/2,0)

off 1 2 3 4 5 6 1 8 9 0 | Rej. | Cor.
Rec.
I

1 |4 1 1 7 4
2 44 | 1 4 1 44
3 8 |26 | 1 ) S s R R ol o 26
4 1 3 39 3 4 39
3 47 3 47
6 41 9 41
1 {; 5 32 2 1 3 32
8 1 11 L. §=37 37
9 9 1 1 4 2 28 5 28
0 st [ gl o, 4 |32 32

Table 5.2 Confusion matrix of SFS~-B system
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of 1 2 3 4 5 6 7 8 9 O | Reje | Cor.

I Rec,
1 (|4 1 1 7 41
2 44 1 4 1 44
3 8 |27 1 1 9 - 27
4 1 3 39 3 4 39
5 L 47 3 47
6 43 T 43
T_u | 6 30 gy 4 30
8 1 9.13 1» 39
g- 8- -9.b At Wl 5 2 -y 0N 27
0 ﬂ 2 9 3 2.0 & 129 29

Table 5.3 Confusion matrix of SCP-B system (weighted)

off 1 2 3 4 5 6 7 8 9 0 | Rej. || Core
L Rec,
1 (|4 1 1 7 41
2 44 1 4 1 44
3 8 | 271 1 & 9 4 27
|
4 1 3 39 3 4 39
5 47 3 47
6 45 5 45
T T 6 29 2 1 5 29
8 1 321 i 37 37
9 9 1 1 5 2 27 5 27
0 2 9 3 1 3 4 | 28 28
|

Table 5.4 Confusion mairix of SCF-B system (nonweighted)
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of 1 2 3 4 5 6 T 8 9 0 | Reje. || Cor.
I Rece
1 41 1 1 T 41
2 44 1 4 1 44
3 8 27 1 1 9 4 27
4 i 3 39 3 4 39
b 47 3 47
6 44 6 44
y | T 6 30 2 1 4 30
8 L 11 1 37 37
9 9 1 1 5 2 27 2 27
0 2 9 3 3 4 | 29 | 29
Table 5.5 Confusion matrix of STM-B system
system| sps-A SFS~B SCF-B STH-B
weighted pmonweighted
Total 365 367 366 364 365
Cor.Rec.
% 7300 73.4 73!2 72.8 73.0

Table 5.6 Recognition performances of various recognition systems
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runs have already been described in section 5.1 . Table 5.6 sums up the
overall performances of various recognition systems whose confusion
matrices appear in tables 5.1 to 5.5 . To facilitate the presentation
and enhance its format, results of the STM-B system are also included
in the tables mentioned above, though they will not be discussed until

in section 5.3 .

Before the comparison of the recognition performances between
FSG and CFG models can be presented, it is essential to discuss some
possible sources of errors that cause incoming strings to be incorrectly
recognized. Basically, the performance in terms of strings correctly

decoded by a recognition system depends on the followings :-

(a) Feature extractor

One significant factor which governs the recognition per-
formance is the degree of overlapping between strings associated with
different words. It is possible for a FE to produce very similar
strings or even exactly the same strings representing various words
in a given vocabulary. For example, string 'Q' appears in both of the
words 'TWO' and 'THRﬁE' of the testing set given in appendix D. In
another illustration, string 'JoC' from word 'FOUR' of the training set
in appendix C also appears in word 'SEVEN' of the testing set. For the
occurrence of such sirings,it immediately follows that the strings
concerned will be misrecognized. Thus, the importance of a FE and its
influence on the overall performance of an IWR system and the need for
a good FE cannot be overemphasized. In general, the basic criterion
governing the design of a FE is to obtain the largest possible intra-
string distances (LD or WLD) between all words concerned. This should
cut down the number of overlapping strings with the consequent improve-

ment of the recognition performance.
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(b) Learning algorithm

The learning part of a grammar-based recognition system can
contribute to the overlapping of strings and henge inducing errors in
the recognition process in the following manner. The grammar inferred
for one word can predict or generate strings, in addition to strings
in the training set, which are similar or very similar to strings of
other words. This depends to a large extent on the intra-distances of
strings between different words in the training set and to some extent
on the learning algorithm used. As an example, string 'BdEj@h' in word
'SIX' of the testing set is wrongly recognized as word 'EIGHT' by the
weighted SCF-B recognition system . This is because the inferred gram-
mar associated with word 'EIGHT' predicts an additional siring 'Gjej!
from strings 'Gj@Bf' and 'GjHj' in the training set of the same word.
This in turns is caused by a small WLD between strings 'Gj@Bf' and
tck@f' in words 'EIGHT' and 'SIX' respectively in the training set.
Since the string under test 'BAEj@h' resembles more closely (in terms
of WLD) to the predicted string 'Gj@j' than to the training string
'Ckef', the recognition system gives the incorrect output decision as

described earlier.

In an effort to restrain the occurrence of the above situation
as far as possible, many learning algorithms are formulated on the
basis of the following requirement. The algorithm should be such that
the inferred grammar, apart from producing strings which are similar
to the ones in the training set of the same word, generates as small
as possible the number of strings that are closely resembled to strings
of other words. One criterion usually adopted to satisfy the above
requirement is to construct the inference algorithm so as to maximige
the similarities between strings corresponding to the same word in the

training set. As described in chapters 3 and 4, all learning algorithms
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presented in this thesis employ the above criterion in the construction

of various grammars.

(e¢) Probabilistic part of recognition algorithm

In the recognition process, it frequently happens that two or
more grammars could have equally generated an incoming string with the
same minimum penalty (LD or WLD) incurred. This nondeterministic situa-
tion resulting from either or both of the sources in (a) and (b) can
be broadly divided into two groups. In the first category, one of the
candidate grammars correctly produces the string whilst in the second
group none of the grammars provide the correct recognition. Methods
using probabilities have been developed in both recognition schemes A
and B to select only one grammar which is the most suitable according
to some criteria. For obvious reasons, the second group of the non-
deterministic situation inevitably yields incorrect decision irrespec-—
tive of whatever probabilistic method is used. For the first group, the
methods can make a wrong decision which may be caused by the inadequacy

of the sample set used in the estimation of production probabilities.

As an example, consider the classification of string 'FjC!
taken from word 'THREE' of the testing set using the weighted SCF-B
system. The string 'FjC' could have equally been derived from grammars
of words 'THREE' and 'NINE' with the same minimum penalty of 5 from
strings '"EiF' and 'IhC' respectively. Since the string probability of
'IhC' is greater than that of 'EiF', 'NINE' is wrongly selected as the
word most likely to correspond to string 'FjC'. Although the above
shows some defects of the probabilistic parts of recognition algorithms,
the methods still provide better performances when compared with an
arbitrary selection of one grammar from a set of equally suitable

grammars in the nondeterministic case.
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From the inspection of table 5.6, it can be seen that the
highest recognition performance that can be achieved is only 73.4%
(SF5-B system). This is much lower than the performance normally claimed
by many experimental systems for the recognition of isolated-words using
the same vocabulary. For example, the system of Hhite(19) is reported
to obtain around 96 % correct recognition for a vocabulary of the same
ten digits. By investigating further, it is found that most of the
errors (about 90 % of total errors) occurring in all recognition systems
of table 5.6 are due to the FE as already described in part (a) of
sources of errors. If most of these errors were rectified, the overall
performances of the recognition systems in table 5.6 would become
comparable to that mentioned in the literature. Since, according to
reference 96, only about one-third of useful features extracted from
the input speech signal are used in the encoding of symbol strings such
as those given in appendices C and D, it is hardly surprising that the
overall recognition performances stated in table 5.6 do not measure up
to those of comparable systems appearing in the literature. It is also
interesting to notice that 'THREE' appears to be the worst recognized di-
git as shown by +the given confusion matrices. This may result from the
difficulty in pronouncing the digit such that the generated sirings do

not resemble too closely with strings of other digits.

From tables 5.2,5.3,5.4 and 5.6, it seems that the use of FSG's
and CFG's to model a FE offers comparable recognition performances with
less than 1 % variation between any of the associated systems. This,
in a way, is to be expected since learning algorithms for the inference
of both types of grammars are based on a similar criterion of maximizing
the similarities between strings in the sample set. Thus, there appears
to be no advantage, as far as the recognition performance is concerned,

for the use of CFG approach over that of FSG in the modelling of a FE
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in isolated-word recognition. The above is true for grammars inferred
in this thesis and it is expected to hold true for general FSG's and

CFG's provided they are constructed on the basis of similar criteria.

Comparison is now made between the use of weighted and non-
weighted M-matrices in the inference of CFG's. Again, there appears to
be no significance differences between the weighted and nonweighted
versions of the SCF-B system, though the former gives a slightly
better performance than the latter. This is because the learning
algorithm using the weighted M-matrix is provided with additional
information about the training data via the knowledge of significance

of various symbols.

Performances of two recognition schemes A and B are considered
next. Although tables 5.1, 5.2, and 5.6 show the performance of scheme
B to Dbe slightly better than that of scheme A, the differences obtained
are not significant enough to suggest the superiority in the recognition
performances of B over A. However, since it is easier to implement
scheme B than to do scheme A, the former is preferable to the latter.
In the recognition scheme A, the values of PD’ PI’ and PS given in table
5«1 represent the deletion, insertion and substitution coefficients of
equations 3.17 to 3.19 respectively. These values are the design para-
meters and are determined experimentally in an attempt to improve the
recognition performance. For the data given in appendices C and D, the
improved performance achieved when P_. = P_ = 2PD compared with PD =P

3 S

= Ps = 1 indicates that insertion and substitution eventis of the

1

recognition scheme A are equally likely to occur and that both are more
likely than the deletion event. These design parameters can be adjusted

experimentally to suit a given set of data
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D+242 Measure of complexity

This section presents the comparison between FSG and CFG models
in terms of computational requirements or complexity measure of the
grammars. Appendix E gives the rules of FSG's, of the weighted and
nonweighted versions of CFG's constructed directly from the training

set in appendix C.

In general, the measure of complexity of the required grammars

involves the determination of the followings :—

(i) The length of the longest member in any rewriting rule, L s of the
grammars

ie. L = Max (ju, |p|) for all «—= p in R (5.1)
Due to the formats of the rules in the grammars concerned, all FSG's
and CPG's inferred in this thesis have Lm = 2, This is the smallest L
that can be associated with any grammar apart from grammars which

generate only single-symbol strings.
(ii) Number of terminals and nonterminals created by the grammars.
(iii) Number of rules in the grammars.

The number of terminals, nonterminals and rules mentioned in (ii)
and (iii) of various inferred FSG's and CFG's are presented in tables

57 to 5.9 . Notation of symbols appearing in these tables is as follows:-

=l = number of terminals in a grammar

“VN“ = number of nonterminals in a grammar

v |l = number of terminals and nonterminals in a grammar
[® I = number of rules (total) in a grammar

uRT" = number of terminating rules in a CFG
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ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE ZERO
= 13- 10 11 19 27 18 18 21 12 15
ﬂvN" 9 7 8 20 26 22 22 24 8 26
vl 22 JX%. 397 39 53 40 40 45 20 4
I=] 16 16 15 31 42 40 34 39 16 46

Table 5.7 Complexity measure of inferred FSG's

ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE ZERO
=y 13 ‘106 11 19 27 18 18 21 12. 18
|vNu 4 =l oSS/ SR I 2 3 39
1Vl % LTSN 85 - Be sl 31 42 15 @ sa
¥ 16 % =11 2 18 =18 21 12 T
I | 22 e s
IRBU 3 2 2 13 28 28 18 22 2 38
IRst“ 8 10 8 10 10 106 10 10 9 10
I 2 a4 22 2L 42 65 TN 560 46 53N ay N6

Table 5.8 Complexity measure of inferred CFG's (weighted)
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ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE ZERO
1= 13 10 11 19 27 18 18 21 12 15
|vN| 4 3 3 14 29 28 18 21 3 31
|v" 17. 13 14 33 56 46 36 42 15 46
HRTI 13 10 11 19 27 18 18 21 12 15
IRBI 3 2 2 13 28 29 17 22 2 34
IRst“ 8§ 10 8 10 10 10 10 10 9 10
[l 24" 22 21 42 65 5T 45 93 23 59

Table 5.9 Complexity measure of inferred CFG's(nonweighted)

system SFS-A | SFS-B SCR-B STH=B
weighted | nonweighted
hr:min: sec
Training
0:0:18 | 0:0:18 | 0:1:13 0:1:00 0:0:18
time
Recognition
0:26:25 | 0:25:12 | 1:20:18 1:19:25 0:22:11
time
Number of training strings = 100

Average length of training strings = 3.56 symbols/string
Number of testing strings = 500

Average length of testing strings = 3.45 symbols/string

Table 5,10 Time required for training and testing of various

recognition systems
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number of bielement rules (not including start

[l

rules) in a CFG

number of start rules in a CFG

|24l

(iv) Complexity of learning and recognition algorithms.
(a) for FSG's
The number of operations for the construction of rules of a
FS5G from a given string is roughly proportional to the string length.
In the recognition process, the size of the current WMN governs the
complexity required to classify an incoming string. This depends on the
number of rules in the grammar concerned and the length of the string
and can be formally expressed as follows.
Number of operations required to classify a string of length f using
ﬂR“ rules in a given grammar = (fL+ 1). ||R" (5.2)
As in the learning process, the number of operations required in the
recognition of a string is again proportional to the length of that
string.
(b) for CFG's
Since the M-matrix (either weighted or nonweighted) is
employed in both the learning and recognition processes, the required
complexity for CFG's is obtained by determining the number of steps
necessary in the computation of the M-matrix for a string of length ﬂ .
This can be estimated as follows.

Terminating rules

for i = 1 and from equation 4.l1

no. of steps required

]

HRT" ) (5.3)

..

for i »' 1 and from equation 4.12

no. of steps required

[ fﬂa (£+1-1).(i-1) (5.4)
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Bielement rules

for i =1 and from equation 4.13 :

no. of steps required = ( "RB“ + "Rst" )e £ (5¢5)
for i > 1 and from equation 4.14 :
no. of steps required = ( "R'.B" - ERSt" )e é(lﬂ-i)(i—l)
i=2
(5.6)

combining equations 5.3 to 5.6 yields,

total number of steps required

("Rd+||BB“+ﬂRst|,)ﬂ+ (uR’IH+I'E'B||+HRS‘€u) ié(ﬂd_i)(i"l)
2
I8+ Z[- 6] G0}

]

£
]]Rl]{.€+ éz(i.l) & 2(1.1)2}
i=2 i=2

I=] {2 + L 2002 - 1)}
J]%l_ (13 +54) (5.7)

That is, the number of operations required either to construct rules

of a CPG from a string or to decode an unknown string is proportional

to the cube of the length of the string concerned. This is in accordance
with the complexity expected of a CFG. Table 5.10 presents the com-
Plexity of the learning and recognition algorithms in the form of the
time required for training and testing of strings for various recognition
systems. The table also includes the results associated with the

STM-B system for the same reason given in the previous section.

Generally, the use of CFG's should provide models that are
more compact than those obtained from the approach of using FSG's.
That is, the number of rules and nonterminals in the former case should
be smaller than those in the latter. However, resulis in tables 5.7

to 5.9 indicate that this is not so. Two main factors account for the
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above situation which is not unexpected. First, it is caused by the
inherent characteristics of the Chomsky normal-form grammars empl oyed.
in the system. A normal form CFG, due to its format, usually requires
a larger number of nonterminals and rules than a PSG does in the
representation of the same set of strings. Secondly, the way the
learning algorithm is formulated for CFG's also contributes to the
increase in the number of the corresponding rules and nonterminals in
the following manner. The algorithm applies a constraint on the extent
which the number of nonterminals and/or rules can be reduced by the
possible merging of similar segments of various strings. This is done
1o ensure that the inferred grammar does not generate too many strings

which are similar to strings of other words.

From equations 5.2 and 5.7 and table 5.10, it can be seen that
the CFG approach requires a larger amount of computation in both the
training and recognition operations than the amount involved in the
approach of using FSG's in the modelling of a FE. This, in a way, is to
be expected since the increased descriptive power of strings obtained
from the use of a more general class of grammars has to be paid for in

terms of the increase in the computation required of the system.

The foregoing presentation, thus seems to indicate that there
is no advantage gained in terms of computational requirements of the
systems concerned for the use of CFG's over that of FSG's for the

modelling of a FE in isolated word recognition.

He2e3 Discussion

From the results of sections 5.2.1 and 5.2.2, it appears that

there is no advantage for the use of CFG's over the FSG approach, as
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far as recognition performance and computational requirement are
concerned, in isolated word recognition, This may be because, as the
name implies, only a single isolated word, and not a complete sentence,
needs to be recognized and this does not require the knowledge of the

syntax of the word concerned.

There are, however, other situations where there may be an
advantage for CFC approach. One of these is the recognition of connected
or continuous speech. One difficult problem in continuous speech
recognition is the determination of word and sentence boundaries, which,
unlike the case in isolated speech where words are spoken in isolation,
are usually obscured. Another problem is that acoustic parameters of
words pronounced connectedly are, depending on the context, very

different from those obtained from the same words spoken in isolation.

The characteristics of continuous speech as described above
can induce errors in various words spoken. Other possible sources of
errors include the inadequacies of many processes in the earlier stages
of the system such as segmentation and transcription of acoustic data,
the introduction of spurious words and the presence of foreign noises.
In such a situation, it is desirable to be able to start processing at
any point in the sentence in an attempt to uniquely identify a correct
or least-error word. Once a starting point representing a correct word
has been pinpointed, other words or phrases can then be predicted by
the syntax recognizer on the basis of the inferred grammar and local
context. The above requires a parser which is capable not only of pro-
ceeding from left to right or vice versa but also of starting anywhere

in the utterance and continuing to parse in both directions.
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The use of a parser based on a FSG thus seems to fall short of
the above requirements. On the other hand, a CFG, because of its greater
generative power in the sense that the grammar does not require to
produce terminal symbols in a strictly left-to-right order, can be used
in the above situation. Thus, the application of CFG's in continuous
speech can provide some sort of advantage such as that already described,
when compared with the FSG approach. Other applications where the CFG
approach may prove useful in the description of the language concerned
include the analysis of chromosome, picture and scene analysis, character
recognition, recognition of two-dimensional mathematical expressions

and finger print identification\42791=53,91)

5¢3 Symbol-source modelling versus direct storage of strings

This section investigates the pros and cons between the
approach of using formal grammars to model a FE by constructing rules
from sample strings generated from the FE and that of directly storing
the strings ie. template matching approach in isolated word recognition.
In the comparison of the two approaches, it is necessary to apply the
same recognition scheme to various recognition systems concerned. This
is done to ensure that conclusions drawn from the comparison tests are
independent of the recognition scheme used and only depend on the method
of representing sample strings. This is because the use of different
recognition schemes in the approaches can affect the final outcome
of the comparison in such a way that the result obtained is incorrect
and misleading. It is decided to select scheme B, for reasons given in
section 5.1, as the required recognition scheme. Thus, the recognition

systems concerned are SF5-B, SCF-B and STM-B.

The advantages and disadvantages associated with the two

approaches can be described as follows.
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(i) One of the advantages of representing strings as a set of rules
of formal grammars instead of simply storing the strings themselves is
that when the language is very large or even infinite, it would be im-
practical or even impossible to store the strings. In addition, it is
neither desirable nor possible to put an upper limit on the length of
the longest strings in the languages of many applications such as

(45)

chromosome analysis or finger print identification problems‘gT).
This type of languages cannot be specified by an exhaustive enumeration
of the strings of the language concerned. Thus, the representation of
strings by means of formal grammars provides a capability for using a
set of rules of finite size to describe a set of strings which may not
be finite. An attractive aspect of this capability is the use of the
recursive nature of a grammar as illustrated by the following example.

A non=finite language consists of strings ab"c for n = l, 2y «s0 can e

represented by a grammar whose rules are :-—

£ —= al B —= bB
A — bB B—=c
where £, Ay B are nonterminals and a, b, ¢ are terminals.

(ii) For many problems of pattern recognition, not only the classi-
fication of patterns but also their descriptions are required in the
determination of the solution. Such problems include chromosome

(45), picture processing and scene analysis(5l)

(52)

analysis 3 Character

s, recognition of two-dimensional mathematical expres—

(97)

recognition
sions(ss), finger print identification and continuous speech
recognition(98). For these applications, methods based only on the
classification mechanism such as the template matching technique may,

by themselves, be inadequate. It is then necessary to employ syntactic

methods such as the formal-grammar approach tc explicitly exploit the
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structural relations of the patterns in the description process.

(iid) The use of symbol-source models makes possible the
'generalisation' of strings in the training set. In other words, in
addition to the training strings, the inferred grammar zlso predicts

or generates other strings which are similar to the ones in the training
set. This means that the formal grammar approach includes a wider range
of strings than does the approach of using template matching technique
for a given training set. Thus, a larger sample size is needed if the
latter is to cover the same number of strings as for the case of the
former. For example, the CFG inferred in section 4.5 requires only 6

training strings in order to cover strings 1 to s, whereas if the

> |
method of direct storage of strings is used, it will be required to
store T strings to achieve the same result. Incidently, the CFG also
predicts three additional strings which are similar to 8;18,9 and Sg
reapectivelyf Thus, the inferred CFG covers a total of 10 strings from
a sample set of 6 strings. In another example, string 'HoC' from the

recognition set in appendix D is correctly predicted as word 'FOUR' by

the FSG inferred in chapter 3.

Table 5.11 displays strings in the testing set that are
correctly recognized as a result of 'generalisation' created by the use

of formal grammars.

Al though, the formal grammar approach does give correct
recognition to many strings, as shown in table 5.11, which are mis-
recognized by the approach of using template matching technigue, the
overall recognition performance of the former is only slightly better
than that of the latter as illustrated by table 5.6 . This,

unfortunately, is caused by factors described in section 5.2.1 .
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Grammars FSG CFG(weighted)
Digits SIX SEVEN EIGHT ZERO EIGHT
cFR@BgC EdDi Be@Bd CfDec Fi@eh
GiecCe Bg@a ChFf Dk@B j
Strings
Hhef BeCf
GiGf

Table 5.11 Strings correctly recognized due to the use of formal grammars

By the inspection of various rules given in appendix E, other
strings generated by the grammars concerned in addition to strings in

both the training and recognition sets can alsoc be determined.

(iv) For the approach of using FSG's, it is possible to obtain some
reduction in computation involved in the recognition process when
compared with the method of direct storage of sirings. As demonstrated
by table 5.10, the time required for training a given set of sirings
is the same for both cases mentioned above. The CFG approach is not
considered here since it reguires, for reasons given in section 5.2.2,
a larger amount of computation than do the methods of FSG's and tem-

plate matching.

The reduction in computation obtained from the FSG approach
is made possible because of the use of merging between various seg-
ments of similar strings during the training process. This leads to a
reduction in the number of nonterminals and rules produced by the
grammar., This, in turns, cuts down the computational requirements of

the recognition process.
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The following presents the estimation of number of operations
required in the computation of the WMN's which govern the necessary
amount of computation of the recognition algorithms in the FSG and
the template matching approaches.

The number of operations needed to compute a WMN constructed from a
FTN of Z links and an incoming string of length f is equal to :

(Ls1) o2 (58)
For a FTIN created from a FS5G, the value of Z is equal to the number of
all rules of the grammar, as given by equation 5.2 .
ie. z = z, = |q (549)
where ZF is the number of links of a FTN associated with the FSG
approach.,

In the approach of direct storage of strings, each and every distinct
string in the training set is compared with an incoming string to obtain
the best match. This requires a set of WMN's each of which is constructed

from each distinct training string.

Mp
Thus, Z = %y = FE j':i. (5.10)
Cod=l
where Z'l‘ = number of links of a set of FTN's associated with

template matching approach

=
]

length of the ith distinct string in the training set

number of distinct strings in the training set .

=
1}

Table 5.l12 presents values of ZF and ZT for the training
strings of appendix C. The values of L @re, of course, the corres—

ponding values of "R“ in table 5.7
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Digits | ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE ZERO

Zy 16 6. 15, 3. e V4l 34 YR8 - 1648
Zp 19 -3 15 33 48 22 39 44 20 58

Table 5.12 Number of links of FIN's for FSG and template matching

approaches

From the results in table 5.12, it can be seen that the
approach of using FSG to describe a given set of strings provides a
reduction in the computation of the WMN compared with the approach of
direct storage of strings. This, however, is not reflected in the
recognition time of the SFS-B and STM-B systems given in table 5.10.
This is because the rules of the inferred FSG's have not been rearranged
in the ascending order of the LS nonterminals as those given in
appendix E. That is, rules are created and stored in the system memory
according to the order of presentation of strings. Consequently, it is
necessary to compute the WMN at least twice for the FSG approach to
ensure that contents of all elements of the WMN reach steady-state
values. The foregoing computation can be speeded up if the rules are
arranged, after the training operation, in the proper sequence as

described above.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 PFuture work

6elel Real-time problem

Many implementations of word recognition algorithms are
carried out using a computer. This may not be fast enough for some
practical applications where real time responses are required. This
section suggests the possible use of special purpose hardware in
addition to a general purpose computer in an attempt to implement the
algorithms in real-time. Only parts of algorithms that require large
amount of computation will be considered. This implies the impl emen-
tation of the computation of the WMN in FSG models and that of the M-
matrix in the CFG approach.

(a) Implementation of the computation of the WMN

Fig. 6.1 outlines a possible scheme of implementing the com-
putation of the WMN using special hardware. Bach rectangular unit re-
presents hardware implementation of a FTN and qonsists of as many
storage elements as the number of nodes in the FTN. All storage elements
are interconnected according to the configuration of the FTN and each
connecting link is associated with only one symbol determined by the
grammar concerned. There is also a special logic circuit for each
storage element whose incoming links form the input of the circuit.

The function of the logic circuit is to select the largest of the
values presented by incoming links for a given input symbol. These
rectangular units are repeated as often as the length of the string to
be analysed and are connected in the same way as the corresponding WMN.
The logic circuits mentioned in Fig. 6.1 receive a short pulse from the
clock every time an input symbol appears. Outputs of these circuits are

such that only the rectangular unit which corresponds to the current
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symbol is activated. For example, unit 2 is associated with the 1st
symbol and unit 3 with the 2nd symbol and so on. The circuits also
provide two pulses for each pulse from the clock. The first pulse is
used to control the computation of various elements in the present unit
due to elements in the preceding unit. The second activates the com-
putation within the same unit. Output from the appropriate element of

the final unit associated with the last symbol gives the WLD as required.

The processor described above is for one grammar only. To in-
crease the speed of operation, similar processors corresponding to
other grammars need to be applied in parallel. The grammar with the
smallest value of WLD is then selected as the grammar which could have

generated the string.

clock

'

Logic circuits

symbol
input -

G Rs G

Fige 6.1 A hardware scheme for the WMN and a length-3 string
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(b) Implementation of the computation of the M-matrix

A generalised block diagram of a hardware scheme for the com—
putation of the M-matrix and a string of length 3 symbols is depicted
in Fig. 6.2 . Elements mijk of the M-matrix together with appropriate
logic circuits are represented by rectangular units as shown. There
are as many storage elements in each unit as the number of distinct
LS nonterminals in the corresponding types of rules ie. terminating
rules or bielement rules. A special unit contains values of hierarchy
levels of all nonterminals predetermined from the rules of the CFG.
Input symbols are presented to units corresponding to terminating rules
and i = 1 under the control of logic circuits and clock pulses in the
same way as in the case of WMN. Elements of these units are then com-
puted. Other units are computed in the order shown in Fig. 6.2 . That
is, the remaining elements corresponding to terminating rules and
elements associated with bielement rules for i = 1 are processed at
the same time. Other units for bielement rules are then computed in the
order of increasing values of i, the substring length, until the WLD
is found. As in case (a), the above processor is repeated for other
grammars and they are applied in parallel in order to speed up the

computation involved.

The above schemes of computing WLD involves the processing of
all strings in the dictionary ie. all strings generated by the grammars
concerned. This may take too long if the dictionary is large. In order
to reduce the time required, it may be necessary to use some other
methods in addition to the above schemes eg. technigues involving n-

grams might be used.
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clock

'

Logic circuits

symbol
inpu'l:— & @

1®

Terminating
rul es

1| [3=2]| |3
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w

©
gl 6 —

j=1| |j=2 j=

i=1l i=3

20,

S e W ' o o Bielement
J= =3 =3 d=l =2 : J=1 rules
i= i=2 i=3
AN o AN
Hierarchy
H(k) levels

Fige 6.2 A hardware scheme for the M-matrix and a length-3 string
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6.142 Improvements of recognition performance

For various recognition systems implemented in this thesis,
many of the errors in word recognition are due to the characteristics
of the FE used as described in section 5.2.1 . The most obvious way to
improve word accuracies is 1o develop a better and more sophisticated
FE. However, this approach, which is still a research problem, is
outside the scope of the work reported in this thesis and consequently
will not be investigated here. Other possible methods that can improve

the recognition performance are as follows :-

(1) As mentioned earlier, the overlapping between strings of different
words is mainly caused by the fact that the transcribed symbol strings
represent only a small fraction of acoustic parameters extracted
from the FE. The method is then to find a way of utilizing a large
number of parameters in the construction of the models. One such

approach is to use several symbols simul taneously instead of only one

symbol at a time, where each symbol represents a different parameter.
This is the concept of 'vector valued features'. One simple solution is
to build a grammar for each of the parameters extracted for one word.
In the recognition mode, each of the strings representing various para~
meters associated with the word spoken is individually processed by
the appropriate grammar. The final decision as to which word has been

spoken is determined, say, by the majority votes of the strings concerned.

(ii) It is commonly appreciated that as well as the order of appearance
of symbols in a string, but also their duration are important in the
descriptions of a spoken word. Consequently, concept of duration of
features can be used to improve the performance of an inferred grammar.

This can be implemented as self-loops in the FTN's or PTN's with

probabilities of the loops denoting duration lenghts. In the case of



FTN, this is similar to the quasi-Markov process.

(iii) The use of the negative sample set, if available, in addition to
the positive one, can improve the system's performance., That is, if a
set of strings is known not to belong to a given word, the grammar
corresponding to that word can then be modified such that these strings
are excluded from the language of the grammar., The problem in this case

is to find such a negative sample set for a particular application.

(iv) In many pattern recognition problems, the frequencies of occurrence
of different types of errors, namely insertion, deletion and substitution,
depend on the nature of the application concerned. For example, optical
character recognition rarely introduces insertion or deletion errors.

By observing such characteristics of a given data set and applying this
knowledge in the recognition algorithms, it becomes possible to obtain
an improvement in the recognition performance. One way to achieve this
is by setting appropriate multiplicative factors (instead of unity) in
equations 3.11, 3.13, and 3.14 for the case of FSG approach and
equations 4.15, 4.17, and 4.18 for the CFG approach. The foregoing is
for WLD's. For applications involving LD's, the corresponding equations

that need to be modified are 3.16, 4.9, 4.11, and 4.12 .

( v) Another approach that may improve the recognition performance
involves the introduction of various restrictions to the formats and
the applications of productions. This may, for example, include label-
ling the productions and coding of productions in terms of level
numbers according to the hierarchical significance of the productions.
This method of imposing restrictions on the productions may be well

suited to the situation where there are many overlapping strings.
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6.1 . 3 Uther work

One area of interest that is worthy of further investigation
is the study of the effects of various telephone impairments on the
model s constructed in this thesis. This involves experimental tests of
appropriate recognition systems under the insertion of controlled de-
gradations such as continuous noise, variable frequency characteristics

and nonlinear distortion.

Another area is to extend this work to cover the recognition
of connected speech. In particular, it will be of interest to confirm,
or otherwise, the inadequacy of the use of a FSG in continuous speech
and also of the advantage of the CFG approach over that of the FSC as
suggested in section 5.2.3 « It is also of interest to study the
practicality of the application of formal grammars to the synthesis of

speech which is the reverse process of this work.

642 Conclusions

An automatic isolated-word recognition system normally consists
of a feature extractor or a preprocessor of some sort followed by a
recognizer or a recognition processor. Because of the inherent variations
in speech when a word is uttered even by the same speaker, it is
necessary to incorporate some form of 'training' or 'learning' process

into the system.

Apart from the classical decision-theoretic methods,techniques
of formal language theory or the syntactic methods provide another
useful approach to the solution of classification and description in a
speech recognition system. The linguistic method proves to be very

attractive to use due to the availability of mathematical linguistics
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as a tool. The method also seems to be well-suited to the problem of
an IWR system where only a finite number of features are generated

for each utterance.

The application of linguistic approach to an IWR system can
be viewed as the process whereby formal grammars are employed to model
the FE whose characteristics are very little, if at all known.Basically,
the method works as follows. In the training stage, sets of syntactic
rules or grammars are constructed, one for each word in the vocabul ary,
directly from a given set of sample strings of features represented by
symbols. Constructive approach of grammar inference is chosen so that
model of the FE can be formed more realistically. Supervised learning
is also assumed. In the recognition mode, an incoming string is analysed
to determine which grammar, if any, could have generated it. The word

corresponding to such grammar is then said to have been recognized.

In IWR systems, unlike many applications of grammar inference
where the class of grammars to be inferred is precisely defined, it is
not clear what types of grammars best represent the FE. Only two types
of grammars are considered here, namely the FSG's and the CFG's. The
FSG approach is selected initially because of its simple and well-
established characteristics and its sequential nature similar to that
of the string symbols. In addition, many efficient computational
techniques are known for the FSG methods. The CFG approach is introduced
in an attempt to determine whether there is any advantage from the use

of a more powerful grammar in isolated-word recognition.

Inference algorithms of both approaches are based on the
criterion of maximizing the similarity between various strings of the
same word. The basis of the inference process which applies to both

FSG's and CFG's can be explained as follows. The skeleton grammar Gl is
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first constructed from the first string in the sample set such that

Gl can generate only that string. Other strings are then individually
processed in the search for incompatibility between each string and the
current grammar. If the nth observed string s, can be derived from the
(n=1)th inferred grammar G, ;s then G, = G, _, and no augmentation of
anl is required. Otherwise, Gn—l is augmented such that Gn is produced
which can generate the present string. For the CFG approach, the
matching process between an incoming string and an existing CFG
requires the computation of the minimisation matrix, M, whose elements

reveal the compatibility or otherwise between the former and the latter.

There are two different recognition schemes, A and B, employed
in various recognition processors. In scheme A, an incoming string is
tested to determine whether there exists an exact match for the string.
In the case of unsuccessful maiching, an attempt is made to find a
closest match for the string. This is supplemented, if necessary, by a
stochastic algorithm to select only one word that is the most likely to
correspond to the string. For the case where the exact match is asso-
ciated with two or more grammars, another stochastic algorithm is
applied to select only the most likely grammar. For the recognition
scheme B, an attempt is made to find a best match which also includes
an exact match for an incoming string. A stochastic technique is
applied if two or more grammars are equally likely to have generated
the string. If, after applying this technique, the output is still un-
decided, a selection is made of the most suitable word according to the

AWSL criterion.

The recognition algorithms of both schemes are thus not too
restrictive in the sense of immediate rejection of an erroneous string
but rather trying to find a grammar that could most likely have generated

the string. This can be very useful in many applications involving
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noisy strings. In the FSG approach, the WMN technique based on the
principle of dynamic programming is employed to find the best match for
an incoming string. The determination of the best match for a string in
the CFG approach is accomplished by using the wM-matrix (or M-matrix)
as a recognition matrix. Performances in terms of number of strings
correctly recognized of the two recognition schemes are comparable with
one another. However, scheme B is preferable to scheme A because it is

easier to implement the former than to do the latter.

Both the FSG and CFG models offer comparable recognition per—
formances with less than 1 % variation in word accuracies between any
of the associated systems. The increased descriptive power of strings
obtained from the use of a more powerful CFG is, as expected, paid
for by the increase in the amount of computation required of the system
concerned. Consequently, there appears to be no advantage gained in
terms of recognition performance and computational requirement, from
the use of CFG approach over that of FSG in the modelling of a FE in
isolated~word recognition. This may be because the isolated-word
application does not require the knowledge of the syntax of the word to
be recognized since only a single isolated-word, and not a complete

sentence, is required to be recognized.

The representation of strings by a set of rules of formal
grammars instead of direct storage of strings makes possible the
'generalisation! of strings in the training set. That is, the inferred
grammar generates, in addition to the training sirings, other strings
which are similar to the ones in the training set. This means that a
larger sample size is needed for the approach of using template
matching technique if it is to cover the same number of strings as for

the case of formal grammar approach. The approach of using FSG's



- 141 =

also provide a reduction in the amount of computation required by the
recognition process. This is possible because of the reduction in
number of nonterminals and rules produced by the grammar as a result
of the merging between similar segments of strings during the training

proceSS.

The use of 'linguistic' variables instead of or in addition to
numeric variables provides an effective and useful means of approxima~-
tions of complex or ill-defined systems such as the FE, where it is
difficult or even impossible to apply precise mathematical analysis.
Experimentation, though expensive in terms of labour and equipment,
is essential to automatic speech recognition problem as to many other
applications in pattern recognition such as chromosome analysis in
biomedical application. This is because it is difficult to predict the
required recognition performance theoretically due to noisy nature of
strings involved. It is hoped that the knowledge and experience gained
from the design, construction and experimentation of speech recognition
systems will pave the way to better and increased insight into speech

perception in humans.
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APPENDIX A

A METHOD FOR TESTING THE RECURSIVENESS OF A FSG

The following presents a method for testing whether a given
FSG is recursive or not. It is based on the construction of a tran-
sition matrix T whose elements represent the number of direct paths
between different states of the associated FTN. The method can be
simply explained as follows. The transition mairix T is repeatedly
being multiplied by itself until for some value of n either all elements
of Tn are zero OR two or more diagonal elements of Tn are no longer
zero. The grammar is then said to be nonrecursive in the former case
and recursive in the latter. It is assumed that the grammar does not
contain rules of the form A —= aA where 'A' and 'a' are a nonterminal
and a terminal respectively. In other words, there are no self loops
in the corresponding FTN. A method is also given for computing the
number of distinct strings whose lengths do not exceed n that can be

derived from the grammar.

Formally, the method can be described in the following steps.
(1) Construct a FIN from a given FSG.
(2) Construct an m * m transition matrix T from the FTN; where

m is the total number of states in the PTN including
the terminating state & ie. m is the number of nodes
in the FTN.

t(i,j) denotes the number of direct paths from state
corresponding to nonterminal Ai to that associated
with nonterminal A;j for a rule A —w a'ijA;j in the
grammar, where aij is the terminal produced when
traversing from Ai to Aj.

(3) Construct T = T°%, T (A.1)

fOI‘ k = 2,3,.-.,1’1
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where n is an integer value when either of the following
occurs =

(a) all elements of T are zero. This implies that the grammar
is nonrecursive. This followe because of the followings. By definition,
el ement tk(i,;j) of matrix Tk denotes the number of distinct strings,
each of length k, that can be generated from the FIN by traversing from
node A, to node Aj. If there is no loop in the FTN (ie. the grammar is
nonrecursive), then there must exist a value of n which exceeds the
length of the longest string generated by the grammar. Hence, all
elements of T are zero. The smallest value of n is, of course, equal
to the longest string length plus one.

(b) two or more diagonal elements of T  are nonzero which
indicates that the grammar is recursive. This follows because all
diagonal elements of T are zero due to the assumption of no self-loops
in the FTN. The nonzero diagonal elements of Tn for some value of n
thus indicate that there are transitions starting and ending at the
same node associated with a diagonal element of ™, This is the
condition of looping in the FTN and consequently the grammar is
recursive., In this case, the states of the FIN associated with diagonal
elements of T whose values are nonzero define one or more of the

loops in the FIN.

To illustrate the foregoing method, consider the following
example.
Example A.l Let G, , = (VN,E,R,E) be a FSG whose FTN is depicted in
Fig. A.l and where ;-

Vi (31(=£)rA2’A3!A4’A5!A6!A7)
= (4,1,0)

Al-—-l-UA2 A3—hIA4 A5—-AA3 AG——A.A



1&2———.&}&3 A4—-DUA5115-—--A A.?—-I
Az——IA4 A4-—I-U A5—--I

Fige Aedl A FTN of the grammar G

Asl

First, a 8%8 T matrix is constructed as shown below.

INCOMING STATES

FAIA2A3A4A5A6AT&_
0

Lo s A e R 0
I-%;;200110000
gA300010001

T=§TA400001001
G1;,500100012
2%00101000
ga_(00000001
g&_oooooooo_

The next step is to find a value of n which satisfies either

condition (a) or (b). As shown in the matrix 7 below, diagonal elements
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of T3

are no longer zero. Since elements (3,3), (4,4) and (5,5) are
nonzero, nodes &3’ A4, and AS are in the loop. This is confirmed by
the inspection of the graph. From the above results where condition (b)

is satisfied, it can be concluded that GA 1 is recursive.

INCOMING STATES

A1A2A3A4A5A6A7&-

0 Al | 2pnd s RN 5
U
T 52 S ¢ o TR < PR S - e | 3
G
0 A3 9 9 i 2
3 I
™ = N A4 0, @ Qs 2
G
A. |10 © 0 1
g 5
g 4 |0 O 0 3
A
T 0 0 0 O
ey
S & e e 0 ©

Finally, the computation of the number of distinct strings
whose length do not exceed n follows immediately from the definitions
of T and ‘I’n. That is, the number of distinct strings of lengths <n
derivable from a given FSG is equal to :

ol
= t Q&) (8.2)
k=1

As an example, for the grammar GA 1? the number of distinct

strings of lengths < 3 is equal to 0+0 +5=5 .
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APPENDIX B

TABLE OF SIGNIFICANCE VALUES OF SYMBOLS

Symbol s Values Symbols  Values Symbols Values
A 1 U 21 3 ~10
B 2 v 22 k -11
c 3 W 23 L -12
D 4 X 24 m -13
E 5 Y 25 n -14
F 6 6 26 o =15
G T T 27 P ~-16
H 8 8 28 q =17
L 9 9 29 r -18
J 10 0 30 s =19
K 11 @ 100 t =20
L 12 a -1 u =21
M 13 b -2 v -22
N 14 c -3 W =23
0 15 a -4 x -24
P 16 e =5 Yy -25
Q 17 £ -6 1 -26
R 18 g -T 2 -27
S 19 h -8 3 -28
T 20 i -9 4 -29

5 -30

*The above values are applicable to symbols generated by the FE

of reference 96 .
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APPENDIX C

TRAINING SET OF SYMBOL STRINGS

The followings are a training set of 100 symbol strings
obtained from the FE of reference 96. The strings represent ten digits
'ZERO' to 'NINE' spoken by a single talker (A.J.P.) with ten repetitions
in each digit. Values of significance of various symbols are provided

in appendix B.

ONE WO THREE
Pi iD fF

MkC 2cd [

Lj P d

NmD k BhE
NLeE m Ce

Nk I3 He

Pm Ck fF

Km ngEd BhE

Nk n EiF

Lj nD g

FOUR FIVE SIX
JoC BnRj Bn@dCc
HrC HIEYPi Fg@cCe
CnFc CgCnRk C jeBd
FngE FoOg Ckac
GoF EmOh bC j@Ec

DpF HpMk Bi@Cc
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FOUR(Cont.) FIVE(Cont.) SIX(Cont.)
IoGe IrRh Ch@CfD
HoB BfEnQk Fk@Cc
FeEd HgRi Gkaf
LtH EdCnSc B j@Db
SEVEN EIGHT NINE
DgDd G jeBf L

Gn Ff@e Ie
FeESDE De@g Lk

Co GJHJ IhC
bFmCeC CiFk Jg
BeEL EkGg Lk
HeFp Cd@Rj Jh
BeEo Jhel Hg

Eq DiCcEd Ji
CcDpC Ih@b ILE
ZERO ZERO(Cont.)

CcDmP EfDhDeEd

CcDiEgE FhEhE

BdFFeCG EgDeC

DhFiG EfEgC

DeDhGe FeDiF
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APPENDIX D

RECOGNITION SET OF SYMBOL STRINGS

The fellowing presents a recognition set of 500 symbol strings
representing ten digits 'ZERO' to 'NINE'. Bach digit is uttered 50
times by a single speaker (A.J.P.) using the FE of reference 96.
Appendix B gives the values of significance of various symbols

appearing in the recognition set.

ONE WO

Nk ML Lm gh BL q
Ph Pg U8 4 o L Bm
Mi Nk ML P BoC Bk
LJ Ni M3 n o Eo
PJ Nh Nk o BL Ei
Nj Mh Ik Bp Do g
Mi Rk 0i [¢] q (¢]'30)
Lh N3 Pe Bn r Bo
LkC Pg MiE q m m
Mg Kh Oe n Bp k
Mf Kf r o

Oh Hd o !

03J Nh q Bm

Om Kh n P

NE Qh Bp t

PL Og o s

Nh Kn o EL

0j Nm a m

Ke Ip m nD

LkD eKj Dn i



BL

FgCa

cDiA

CdCh

DEfD

CiC

CJ

inf

EgCf
JhCg

CcDhD

EeC

DhC

bEf

EfEj

BiD

THREE

Bt

DiB

GhC

Ce

bbhd

BgD

FgCjE
Ce
BgB
Fjc
cdDd
BgE
BhH

FeD

GG

GiC

BhC

DiD

GwB
Bx®E

Tub

DvE

EwE

NwE
LvG
Kugl

EsD

BsD
sC

FvE
ItE
EtC
IrD
EqD
HsF

IgE

JsD
KuC

Gag
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HoC
EpE
JoD
JCiE
CoF
Jal
IgB
IpD
JiF
HqE
HrJ

HEDc

MmCEG
EpF
EoH
JoCe
KoF
CiB
FiCgE
HQDiFc
IjCciG

DnG

BsH

FIVE
EdDkPc
GdDmR
NhDkR
LgEkP
Qicgs
JgDhjQa
CfDmRe
NJjDio
GfCkQ
JiDkP{
Gssf
GfcjN
JhCQT
LiFmSdD
BEmEiQk
Bjcjeh
IfDmTn
HnSj
CeEnRm
EhDjPc
mPg
DgBEnMi
CeCkOj
GdEoRf

GmOc

HeC jN
IoPi
IgCjM
GaPc
EQOi
BgPc
BdD20Oj
Ejlle
CoP
BEnQd
HnQe
FdDnQd
GE£CmNh
DnPg
DecDoQi

DoQg

GeCmPf
EeEnRk
GpsSh
oQf
GdCnPe
eFilNe

EeDnQp



DgCf@Dj
cFp@BgC
m@Dh
BEm@fH
m@dA
L@DfB
Cm@BeE
£2@DfB
Dk@BeE
i@Ce
Ei@Co
B jedbd
Dg¢@cDm
2@BcC
Bh@DcF
i@EcC
n@bhD
Cn@gD

Fj@eB

En@CgG

Ci@bF

fefDd

bCd@Bf

S1X
Bjed
Be@bDc
Bg@cD
fac
Bg@ch
Fh@DcDd
BkeBd
Df@EfC
Djec
Dj@fDe
CgaCe
ief
Dm@bB
Fiecd
Bf@bcC
Ch@c
FkaCc
Ci@Bec
Eh@DgE
fei
GiecCe
BAEj@eh
Eg@d
Bgad

Ch@Dc
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SEVEN

BeFi

EdGo

DgGj
dIn
BdFm
DeDj
EeFo
BeDk
BdIoB

DfCkD

CfFiCc
GfGp
EL
cDg
DeGo
CfHm
JoC
CdFo

FdDj

EdDi
IeEk

FaFgDd

Ch
CeEjCe
Dj

Cm

Gp
GnEd
FmEe
EmC
HnDg
CeCjcfcC
FeClCe
CcEp
Gn

Fn

¥ 8

4

cDi
cHn
IcClDe
cec
BdGmA
cEk
Fq

DecFp

Fi@h
Ii@j

Gj@e

FjC@n
cf@dci
Df@el
Ce@Bi
Be@Bd
Ee@Cg
Ce@e
Df@d
B@j
Bdeg
CaR@e
Bd@e
bBed
baed
Bg@a
De@cCg
Ccfaed
Fgac
Ig@eB

Ejeg
Eicf
De@f
Efef
Cdeg
Eh@e
Fh@Be
Fj@c
Hhef
Ch@Bf
Bfeg
E@Ge
He@Bd
Gf@e
Fief
Cfae
Hi@BeCg
Je@f
Dk@B j
Eg@bCh
Fgef
Fg@Ch
Ge@g
Hm@Be

Ek@Bg



NINE

IoC

He

PtC

bGj

B

HeD

Lk

§ .

KfDg

Ik
BmE
In
GgCc
KD
GR

Ii

HfEi
Mk

OgDg

FeEiC

JkC
Lk
Ii
IeEh
K¢
KeEj
HnC

KQE

InE

JnD

=

Jec
Mo
GdCi
N

IkB

- 153 =

ZERO

GEfGE

IgDgDd

GhCfF

BjF
GiChA
Gdcic
GJELD
BeA
HhCe

BdENhC

ChCeC
GLF
EJH
ChF'
CfDe
Gjc
EeCfD
EfCe
CiFgC
eDdD

FeDglCa

ChFgCcD
C£CjefGe
eCgCcB
BiEhE
D
ChEhE
DfDhD
DnGeB
JB

DkE
ChFf
EcEhDd
IdCfDe
HiB
EfDcDi
BeCf
GhDfGad
gEcD
GiGf
IgEf
FgBEfD
EhFhF
FdDe
GdEcCiC

GAEjCeE
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APPENDIX E

RULES OF THE INFERRED GRAMMARS

The following presents rules of FSG's, weighted and non-

weighted CFG's constructed directly from the training set in appendix C.

The appropriate inference algorithms used can be found in chapters 3

and 4 . The set of terminal symbols is assumed to consist of all

symbols appearing in appendix B. All other symbols including the start

symbol &£ are in the set of nonterminals.

E.l1 Rules of the FSG's

ONE
£ - PA2
£ —- MAB

£ == L&5

£ - Nhﬁ

THO
£ = iA2
£ - QAB
£ == p

£ - Kk

THREE

£ - TA

£E —-= C

£ == Kkg
52 - i

A? - 1

A, — kA

A —

AL = j

£ - nA6

£ == n

£~z

£ - f

AG = mAT

A6 —— £AB
ﬁs - Kk

A, —= CA

A - d

A5 - Ik

A, ~= hA

ﬁu_ub B

37 - 1
AB - I
G

o g
'



£ —» JA
& —= HA

£ = FA

£ —» I£114
FIVE

£ —= BA

£ —= HA

ﬂ—bCAlO
i'.-—FAlB

R-PEA16

£ - IA
A  =» nhA
A, == TA
A, = RA
SIX

£ -+ BA

ﬂ-FA_{
£*CA10

i'.--'bﬂl5
& = GA

A, == nA

Ay = A,
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Aé—-c
As—he

A6 - fAZO

by =
o B T
AB—-@A4
A9—--CA6

Mo = Mg

All — 0.&3
Az Ty g
e B

po ¥ gl
1, 7
et

g e, 1

e | gl
Ahg ™ thy,

20

t
E

!

By

22

=

.
w

23
24
25
26

[
i

RA

Ch 5

=

'

=

i

he ™ 43

Als R @A4
ﬂ19 = @A4

A2l e KA13



NINE

£ = FA
£ = IA
£ -» LA

A, —=» @A
o T
A4--BA5
Ly = By
Ab.—u-f
.&G—bf&r
A,{-—@Aa
Aa-s-e

E.-m-HA7

J——

AL =1

AB-’-hAB
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e M o
g
Ag == QA
by =+ o
by = ©
Mo Tha
M 56 "o

3

Ag + &
Ag = £
hg = b
g =500
Ay = ik,
%o g
L Y imals
o i

A3-|-.EAB
A, == k

A.5+C

A6-b-g

he =Sy
ol Sl 1
g =@

He T e
he ™ Bhq
o gt

bhq+ 2

by = dhg
o & Mpali il V1
e i
=7 Sl

b5 Ehg
e s
% S

bg @k,

As-s-h
A,é-bi
-
A8+E

T, S

A, =» DA

A .. = C

kig
Alg-h-d
Ao == BA,
Azl—-@Aa

A22 g c£23

Mgt g

A24-- hA?_'I.



ZERO

£-U-CA2

£-|-BA9

£+DA15

£ - EA20

£ == Fﬂ24

A2 S cA3

A DA
Gl

3

A4 —> mA5
A4 - iA6
A4 - hAlG

A4-|- eﬂ14
A5—|-F
1‘16-|n-EA7
As—t-F
by~ ety
s B
by = B
dgoe €
g Sl

Mg = ¥4y,

= 157 -

o e 1312
e 5 lm ity 1

o W Lt
Y il
s Bl
By 040
o} Tt i s
e e

Ee2 Rules of the CFG's (weighted)

ONE
£ = A4,
€= Ae's
e

& = A37A10

£ - A38512
THO

£ - A1A2
£ - ABGAB

£-—A6

£-t-A,.{
f.—-—ﬂs

£-—A8A4
£-—-A1A9
R ghy
s el

Az--i

Y

¥

9 2

A, == M
A, -k

AS--C

AG--L

37-".'1

Al--i
A, = D

A, -» £

A == C

As--d.

Aa-t-N
A9--m
Alo--D

by =1

b= ¥

Aé-—p
AT-t-k
As-b-m
Agd-n

Alo-—E

e 1
23

hoy = Bl
foy o= she

A25
A26 - DA

=k
dy7 = Ighy
Bap me Aok

A - A_A

36 374
A37 o A9A10



A3643
f37%
£ = A39A8
iz Ak
£ = A41A7
Bat42
- ﬁMA14
i by

i

A1
£+A5A4l
4 ot45
& a7

As49

i
20853

Ashsg

Al-rB
A, == n

A
13—'-R

&% 2kio
£+A7A37
E.-h;&
s (i

A, = F

7 g

A, = 0
A, = C
A = H
A.s--r
Aé--n
A.z--F
AB--c

A, - j

5.5--}1

A6+E

A.9--i
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As—r-h

by = E
ho S
Sy
i M
i
¥
b5 "
¥
| it

o

2 = WO

o

A9--H

g ™ A
38 ™ A%
a9 = Mgl
g0 = A6y
Ahim= Aok,
heo = A ohy

Ayg == Aghy

31 ™ 23683 A5 = Ly

A3,.‘, —

Rey

e
Mo T
fgs
54

A55 =
456 =
v 3
&g
- Bas
Aso >

hady

i
Ayahyo

A4A2

o (-
Y4679
heho

)

A21 A3

50017
Aohos
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