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SUMMARY 

An automatic isolated-word recognition (IWR) system normally 
consists of a feature extractor (FH) followed by a recognition 
processor. Some form of 'training' is usually required in order to 

combat problems of variations in speech. This thesis presents the 
application of formal grammars to model a FE in an IWR system. The 
method is to construct, in the training mode, one grammar for each 
word in the vocabulary, directly from a set of sample strings of 
'features' represented by symbols. In the recognition mode, an incoming 
string is analysed to determine which grammar, if any, could have 
generated it. 

Inference algorithms for both finite-state grammars (FSG's) 
and context-free grammars (CFG's) considered here are based on the 
eriterion of maximizing the similarity between various strings of the 
same word. The classification of a string involves the use of the 
‘weighted matching network' technique in the FSG approach and the 
computation of the minimisation matrix M for the CFG approach. 

Both the FSG and CFG models offer comparable recognition 
performances whilst the use of the CFG approach results in an increase 
in the amount of computation required. It appears, therefore, that 
there is no advantage gained, in terms of recognition performance and 
computational requirement, from the use of CFG approach over that of 
the FSG in the recognition of isolated words. 

The use of formal grammar approach over the direct storage 
of strings in isolated-word application makes possible the 
*generalisation' of strings in the training set. This can reduce the 
number of strings required by the learning process. Another advantage 
of the linguistic method is the reduction in the amount of computation 
in the FSG approach which is a result of the merging between similar 
segments of various strings during the training process. 

KEYWORDS: Formal grammars, automatic speech recognition, finite-state 
grammars, context-free grammars, grammar inference .
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Since the early days, man-machine interaction has usually been 

accomplished by manipulating some mechanical devices such as keyboards, 

push-buttons, dials, switches etc. This form of communication poses 

several limitations and drawbacks to the smooth and effective running 

of machines. For example, it is usually necessary for a human operator 

to adapt himself to the operational requirements of machines. This 

requires substantial training of personnels concerned in order to obtain 

basic physical skill needed for speedy and efficient operations. Also, 

special preparations of input data, the format of which is governed 

by the machine concerned, are required before it can be accepted and 

processed. 

A more attractive and better preferred mode of man-machine 

communication is by means of speech-man's most natural, convenient 

and basic method of communication. This considerably reduces the dis- 

advantages associated with non-speech man-machine communication systems 

(1-5) and offers many desirable features and advantages )such as the 

increase in speed of communication, possibilities for mobility and 

freeing hands and eyes where required, reduction in operating cost etc. 

In addition, the ability of a machine to respond directly to verbal 

interrogation fulfils the ultimate aim in communications between man 

and machine. 

Much effort has been put into the research of man-machine 

communication by speech and recently, several voice input systems, 

though limited in capability, are available commercially and have 

been in operation in various fields of applications, some of which



are summarized below:- 

(a) Aids for the ends oemmenC) (eg. to control bed, lights etc.) 

(b) Automated material Hengiine (9) (eg. air-line baggage handling, 

parcel/mail post destination sorting etc.) 

(c) Quality control and Rnapaetion coy (eg. inspection of pull-ring 

can lids, television faceplate, automobile assembly line etc.) 

(a) Applications in airorart(™) (eg. to adjust radio receiving channel 

etc.) 

(e) Applications to computer-based Byatenn (eg. parts programming 

for numerical control of machine tools etc.) 

1.2 Systems for the recognition of speech 

Basically, an automatic speech recognition (ASR) system is one 

which can recognize, interpret and respond to speech sound uttered by 

a human talker. There are several types of ASR machines (2711) though 

all of them can be broadly categorized into two groups: continuous 

and isolated speech recognition systems. In the latter, an isolated- 

word recognition (IWR) machine included, short pauses are required 

before and after utterances to be recognized whilst there is no such 

restriction in the former. 

Following the common practice in the field of pattern 

Pescedition = » an IWR system can be considered as to consist of a 

feature extractor (FE) followed by a recognizer or classifier as shown 

in Fig. 1.1 . In this configuration - which is also used by many 

experimental systens (1713-21) - when a word is uttered, a decision is 

made by the recognizer as to which word, if any , in the vocabulary 

has been spoken. The descriptions for each subsystem follow.
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Fig. 1.1 Block diagram of an isolated—word recognition system 

1.2.1 Feature extraction 

After being converted into electrical energy by a transducer 

(eg. a microphone or a telephone), the speech wave undergoes the first 

stage of preprocessing operation designed to enhance the quality of the 

signal and to reduce the degradation caused by noise. A further process 

involves the development of procedures for extracting relevant parameters 

or 'features' from the speech signal. At this stage, some sort of ‘data 

compression' is performed. The aim of a FE is to reduce the data rate 

of the signal to a manageable level. This is accomplished by discarding 

irrelevant elements of the signal whilst carefully preserving data 

which is important and necessary to the recognition of the signal. 

Several techniques are employed by various research workers 

to extract relevant parameters from the speech wave such as spectrum 

analysie(?2), approximation by orthogonal functions, zero-crossing 

(20, 23-25) ) (26-27) | analysis and linear predictive coding technique (LPC 

The speech parameters or features extracted can be presented at the
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output of a FE as strings of symbols which are then processed by a 

recognizer or a classifier and thereby creating a description of the 

input speech. 

1.2.2 Classification 

The process of classification can be described as one which 

identifies the input utterances using the knowledge from strings of 

features at the output of a FE, The classification methods in many 

speech recognition systems can be broadly categorized into two main 

groups. 

In the first group, commonly known as the 'template matching’ 

technique or 'pattern matching' method, a set of templates which are 

the representative patterns or structures of all words in the vocabulary 

is stored in the system memory. An incoming string from the output of 

a FE is then compared with each stored template to obtain the 

"best match' satisfying some specified criteria(tTs19)28-31) | In the 

second group, the stored rules for constructing strings corresponding 

to words in the vocabulary are used in the classification of unknown 

strings (20-21 » 32-36) | 

In general, a person does not always speak the same word in 

the same way. This unconscious alteration of the pronunciation of a 

word,even spoken by the same talker, may be due to the emotional and 

physical states of the speaker, the ambient noise level of the sur- 

rounding an@ free variation from trial to trial. Hence, it is important 

to incorporate some form of 'training' or ‘learning' into the speech 

recognition system, as show in Fig. 1.2 . In the learning mode, a set 

of sample strings from the chosen vocabulary is fed into the machine
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several times until the representative structures or rules for the 

construction of each word are formed. This will make the recognition 

machine able to adapt itself to the characteristics of the talker and 

thereby reducing the problem of variations in speech. 

  
  inant FEATURE peeace RECOGNIZER carat 

ee DiS ere ACTOR aa |e en oF | ene 
speech (FE) (CLASSIFIER) decision           

  

RECOGNITION woDE # 

    
sample LEARNING 

————_ utterances ALGORITHM 

      

LEARNING MODE 

Figs 1.2 Block diagram of an IWR system with 'learning' facility 

1.3 Linguistic approach to ASR 

(12, 37-39) from the 

(20, 36) 

The classical decision-theoretic methods 

field of pattern recognition, as well as some heuristic methods 

have commonly been used in the past to produce classifiers for processing 

strings of features from the outputs of FE's in IWR systems. 

Another approach, which belongs to the second group of 

classification methods mentioned in the previous section, is to make 

use of the technique of formal language theory. This approach, which 

stemmed from the fields of mathematical linguistics and computer 

(33,40-44) 04 science, has recently received increasing attention
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provides some promising results in pattern recognition. The essence 

of the linguistic methods in pattern recognition is to have a grammar 

for each class of patterns to be recognized. In most cases, a suitable 

set of grammars are obtained based on a priori knowledge of the charac- 

teristics of the patterns together with the experience of the designer 

of the recognition system under indy 426 In other applications such 

as ASR, the underlying process of producing patterns may not be clearly 

understood. In such cases, the only information available, namely, a 

set of sample patterns is used to construct the required grammars. The 

search for suitable grammars based on a set of sample strings or 

patterns is known as ‘grammatical inference! (42448) 

(46) 
‘grammar 

discovery' or ‘linguistic learning' (47), 

Basically, the linguistic method as applied to ASR works as 

follows. In the training stage, sets of syntactic rules or grammars 

are constructed, one for each word in the vocabulary, from a given 

set of sample strings of features. In the recognition mode, an incoming 

string from the output of a FE is analysed to determine which grammar, 

if any, could have generated it. The word corresponding to such grammar 

is then said to have been recognized. 

The 'formmal grammar' approach is sometimes known as the 

‘syntactic' or 'structural' approach because of the analogy between 

the hierarchical structure of features or 'patterns' and the syntax 

of a language. It is attractive to use due to the availability of 

mathematical linguistics as a tool. In addition, it seems to be well- 

suited to the problem of an IWR system where only a finite number of 

features are generated from each utterance. Practical applications of 

syntactic methods include the design of programming languages, artificial 

intelligence, information retrieval, scene analysis, chromosome analysis



and many others 24), 

The work presented in this thesis is concerned with the 

application of linguistic methods to the design and implementation of 

classifiers for the recognition of isolated words from a limited 

vocabulary. It forms part of the research programme on automatic 

recognition of telephone speech at the Department of Hlectrical and 

Electronic Ingineering, the University of Aston in Birmingham. 

1.4 Outline of the thesis presentation 

Chapter 2 introduces preliminary definitions, notation and 

concepts concerning formal grammars and languages that are related to 

the present work. Other definitions also appear in subsequent chapters 

whenever they are required. The second part of this chapter describes 

the principles involved in the use of formal grammars to model a FE 

for isolated—word recognition. Basic assumptions and criteria together 

with some important issues regarding the modelling or the inference 

process are also givene 

Chapters 3 and 4 present the modelling of an IWR system using 

finite-state grammars (FSG's) and context-free grammars (CFG's) res- 

pectively. Methods are given for the construction of a finite-state 

transition network to graphically represent a FSG and a push-dowm 

transition network for a CFG. Inference algorithms and suitable decoding 

methods for both types of grammars are presented in the appropriate 

chapters. The FSG approach involves the use of the ‘weighted matching 

network' technique in the recognition process whereas the minimisation 

matrix M is utilized in both the learning and recognition parts in the 

CFG approach.



-8- 

Chapter 5 presents the evaluation and comparison of FSG and 

CFG models in terms of recognition performance and the computational 

requirements. Basic recognition systems required for the experimentation 

are also described. In addition, descriptions are given of the advantages 

and disadvantages associated with the formal grammar approach and 

template matching technique. 

Chapter 6 presents conclusions and directions for further 

work which includes the real-time problem and improvements of recognition 

performancese
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CHAPTER 2 

FORMAL GRAMMARS AND IWR SYSTHIS 

This chapter describes the principles and methods involved in 

the application of the techniques of formal language theory to the 

recognition of isolated words. The problem of designing a recognizer 

in an IWR system can be broadly divided into two areas: the construc- 

tion of models based on formal grammars to represent the characteristics 

of the symbol-generating source and the search for suitable decoding 

methods for efficiently analysing the strings from the source using 

rules or grammars of the models previously created. 

The next section introduces necessary definitions and concepts 

fundamental to succeeding sections. Other definitions will be given 

whenever required. For comprehensive treatments of formal grammars 

see, for example, references 54 and 55 . 

21 Preliminary definitions, notation and concepts 

In IWR systems, words are spoken in isolation with short gaps 

between utterances. This leads to the following assumptions:— 

(i) Only a finite number of features (represented by symbols) are 

generated by a FE and only one symbol can be present at a particular 

time. 

(44) Each word uttered results in a sequence of symbols of some finite 

length. 

From the foregoing statements, the following definitions can 

be made concerning the output of a FE. 

Definition 2.1 An alphabet is a set of any finite number of symbols 

from the output of a FE representing various parameters or features 

extracted from the input speech wave.
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Definition 2.2 A string is any sequence of finite length composed of 

symbols from the alphabet. The beginning and end of each string are 

well-defined. A string which contains no symbols is the empty(or null 

string A . The length of a string x denoted by |x| , is the number 

of symbols contained in x . 

Definition 2.3 If S is an alphabet, then = denotes the set of all 

strings consisting of symbols from &, including the empty string A . 

Also define 2 as s” - {Aa} . 

Developments of the theory of formal languages started when 

Chomsky first formulated the concept of the hierarchical structures 

in grammars in 1956 (55), Basically, a grammar or a set of rules can be 

described as a mathematical system for defining a language, as well as 

a device for giving a useful structure to the strings in the language. 

Formally, a grammar is defined as follows . 

Definition 2.4 A phrase-structure grammar G (54-55) » or Chomsky 

grammar 91-58) is defined as :- 

G = (VyyZ, R, &) (2.1) 

where 

Vy is a finite set of nonterminals . 

& is a finite set of terminals . 

v4 = = § (the empty set) . 

VY = is denoted by V . 

The terminals in S consist of all symbols from the alphabet. 

411 other symbols are nonterminals which rank higher than the terminals 

in the hierarchical structure of the grammar. 

R is a finite set of productions or rewriting rules of the form 

a> Bp (This implies that « can be replaced or 

rewritten by B ) 

where m& is a string in vt
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Pp is a string in v . 

& is the start symbol . It is in Vy and signifies the beginning 

of a string or a word . 

Note A rewriting rule with the start symbol & at the left side (LS) 

of the rule is known as the start rewriting rule or the 

start production e Por example, £—»aA, &—»bAC, and 

&— AB are all start rewriting rules . 

Before going on to describe various types of grammars, conven— 

tions are given regarding the different types of letters or characters 

representing terminals and nonterminals . 

CONVENTIONS 

(a) NONTERMINALS : Capital LATIN - alphabet letters . 

(b) TERMINALS : Lower case letters at the beginning of the LATIN alphabet. 

(c) STRINGS OF TERMINALS : Lower case letters near the end of the LATIN 

alphabet . 

(a) STRINGS OF NONTERMINALS AND TERMINALS : Lower case GREEK letters. 

Grammars can be classified according to the format of their 

rewriting rules . 

Definition 2.5 (54-59) Let G = (Vy22Ro&) be a grammar . 

The grammar defined in definition 2.4 is a type OQ or unrestricted 

grammar . 

G is said to be :- 

(a) type 1 or context-sensitive (CS) 

if each production in R is of the form J4%A&8 — xfs 

where A isin V, 
N 

% and & are in ua 

p isinv* 
ie. ‘'A' is rewritten as 'g' only in the context of J...5 e
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(b) type 2 or context-free (CF) 

if each production in R is of the form AB 

where 4 is in Vy 

p is in vt 

ie. the rewriting is done independently of the context . 

(c) type 3 or regular or right-linear or K-grammar (Kleen's grammar) (60) 

if each production in R is of the form A->aB or A->a 

where A and B are in Vy 

aisinZ. 

A regular grammar is also know as a finite-state grammar (Fs¢) . 

This is because the FSG corresponds to a machine with a finite number 

of states. The application of a rewriting rule is represented by a 

transition from a state corresponding to the nonterminal at the left— 

side of the rule to a state corresponding to that at the right . 

A grammar with a higher type number is included in the one 

with a lower type number as shown in Fig. 2.1 . 

type 0 
ype 

type 2 

Fig. 2.1 A simplified representation of relationships between various 

types of grammars
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The formal definition of "language' is given next. 

Definition 2.6 The language generated by a grammar G, denoted by L(G) 

is defined as:- 1(¢) = {x |x in” ana 2 => x} (2.2) 

where & => x means the string x can be derived from & in grammar G. 

In other words, the language of a grammar consists of all strings of 

terminals, including the null string, that can be obtained by successive 

applications of the rewriting rules commencing from the start symbol. 

The languages derived from a FSG, a context-free grammar (CKG) 

and a context-sensitive grammar (CSG) are know as a finite-state 

language (FSL), a context-free language (CFL) and a context-sensitive 

language (CSL) respectively. 

22 Grammar—based modelling in word recognition 

This section describes, in general, the use of formal grammars 

in the formulation of the problem of automatic recognition of isolated 

words from a limited vocabulary. Fig. 2.2 depicts a generalized block 

diagram of an IWR system based on formal grammar concepts. 

First, one aspect of the learning process is formally defined. 

Definition 2.7 A supervised learning is one where the labels of 

strings in the sample set are known beforehand (eg. a teacher or an 

observer is available) . 

In Fig. 2.2, the FE together with its speech input can be 

considered as a linguistic information source whose output consists of 

a collection of finite-length sequences of symbols. The decoder and 

the models constructed during the learning mode make up the recognizer 

of the IWR system. It is a normal practice to assume a supervised 

learning. Thus an observer is present during the learning stage.
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Grammar inference (GI) can be viewed as the process whereby 

formal grammars are employed to model the source whose characteristics 

are very little, if at all, known. The method is to have, in the 

training mode, a user repeating each word in the vocabulary a number 

of times. Each time the same word is spoken, a similar but not necessarily 

the same string of symbols is produced by the source. Grammar—based 

models, one for each word in the vocabulary, are then automatically 

constructed and stored in the system memory for future use. In addition 

to producing all the strings in the corresponding sample set, each 

model is also capable of predicting other similar strings. The building 

of models can also be regarded as a useful encoding of strings. 

In the recognition mode, an incoming string is processed 

using suitable decoding algorithms to determine which model, if any,
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corresponds or nearly so to the word spoken. If the most compatible 

model is found, the corresponding word is then indicated as to have 

been recognized. Otherwise, the recognition fails and the word is 

rejected. 

The problem of using formal grammars to model a source or GI 

and its solutions has been studied and its significance stated by 

(61-63) various researchers « Comprehensive surveys and reviews of 

previous work and results have also been given (42244263564) | 

Generally, there are two main approaches to the solution of 

the problem of learning. They are briefly described below. 

(a) Enumerative approach 

In this approach, an algorithm is used to produce all grammars 

of the specified type in an ordered manner. Assuming each class of 

grammars constructed is denumerable, a method is then established to 

test these grammars to obtain at least one that meets a given set of 

criteria. 

Although the approach is often shown to give an optimal solution 

requiring only a minimal amount of information presented, it may be 

impractical for many applications, for example ASR. This is due to the 

astronomical amount of computations involved in the exhaustive searching 

for a suitable grammar. However, the discouragingly enormous amount of 

combinations involved can be reduced to a certain extent by designing 

the method such that at any finite time only a finite number of grammars 

need to be tested. 

Some techniques which are inductive as well as probabilistic 

in nature have been employed in this approach (4294661 65466) |
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(b) Constructive approach 

This method, for example reference 48, constructs one or more 

grammars directly from the strings in the sample set. The useful, if 

not optimal grammars based on direct observations of the properties of 

the strings can be produced in a not too excessive amount of time. 

Some criteria may also be used to accept or reject the inferred grammars. 

Discussions are now made of some important issues concerning 

the problem of using formal grammars to model the FE in an IWR system. 

(1) Data and its structure 

Apart from the assumptions about the output of the FE, the 

only information available during the training mode is a collection of 

strings of symbols together with their labels. This type of information 

is known as 'positive information’ or ‘sert-oresentationt col since 

only valid strings are known or given. Thus, if probabilistic 

information is required then it must be estimated from the given 

sample set. The size of the sample set is arbitrarily specified 

(ege five or ten repetitions per word in the vocabulary), though it 

will be large enough to ensure that the inferred grammar covers a 

reasonable number of variations of strings representing the same word. 

(2) Determination of grammar types 

The GI problem is known to be unsolvable for a general (ie. 

unrestricted) grammar. Thus, many researchers consider the subsets of 

the general rewriting systems or grammars such as FSG's or CFG's. In 

many cases of GI, the observed strings from a linguistic source are 

assumed to have been generated by a precisely defined class of grammars. 

In IWR systems or even the general ASR systems, it is not 

known whether any class of grammar can represent exactly the
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characteristics of the ill-defined FE. Indeed, this has been exemplified 

by gora(S2) who stated that with only positive information available 

(as in the case of the FZ), not even the FSG's are 'identifiable in 

the limit’ - ie. not even the FSG's can be found that will exactly 

model the FE, 

Consequently, the research carried out in this thesis is 

concerned with finding well-formed approximations to an ill-—formed 

problem (vaguely defined FE) . The types of grammars investigated will 

be limited to types of up to and including CFG's. The CSG's are not 

considered here because several problems, such as the closure properties 

and decidability, are still unsolvable. In addition, the decoding 

methods for the CSG's are much more complicated than those of the 

grammars of higher type numbers. 

(3) Other criteria 

One important requirement in the modelling of a FE by means 

of formal grammars is that the inferred grammars should be powerful 

enough to adequately describe data from speech. That is, each grammar 

should generate all of the known strings (positive information) 

representing one spoken word in addition to predicting other strings 

similar in some ways to the observed strings. Ideally, the grammar 

should also generate none of the known 'non-strings' ie. strings 

corresponding to other words in the vocabulary. 

As mentioned earlier, only positive information is available 

in IWR systems and hence it is doubtful whether any class of grammars, 

if any, can describe precisely the nature of the FE. Consequently, 

speech recognition is a situation where a quick and reasonable 

inference is more useful than a time-consuming and computationally 

laborious inference which exhaustively searches for an optimal solution.
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It is for these reasons that all the inference algorithms presented 

in this thesis are mainly constructive in nature. 

(4) Basic assumptions 

In general, one or more assumptions are normally formed 

concerning the solution to an inference problem. The following des- 

cribes some basic assumptions as applied to all the inference 

methods given in this thesis. 

(2) The languages generated by the inferred grammars are assumed to 

be A-free. It is meaningless to consider empty strings in any practical 

application such as ASR where a null string corresponds to no input 

to the system. This assumption does not restrict the languages in 

any way. 

(b) The generation of grammars in this work is algorithmic in nature 

to guarantee the convergence of the process. 

(c) The inference methods are incremental in the sense that it is 

possible to update a previously inferred grammar upon receiving a new 

set of data without the need to store the strings observed earlier 

ie. there is no need to redo the inference again from the beginning. 

(a) The positive information sample set Sy consists of a finite number 

of strings each of a finite length. This follows from the assumption 

about the FE given in section 2.1 . 

(e) Sy is "structurally complete’ (42,65,68) i ee each production in the 

inferred grammar is used at least once in deriving at least one string 

in Sy.



= 19 = 

CHAPTER 3 

FINITE-STATE GRAMMAR BASED MODELLING 

There are many approaches to the learning of a specific 

vocabulary in the recognition of isolated words. The simplest and 

obvious method is to directly store one or more strings as the re- 

presentative 'templates'. Another way is by means of ‘sequential 

matohingt (32) where an attempt is made to generate sequential structures 

or lattices from a number of sample utterances. The structures are 

obtained through successive matching and merging of symbols between 

strings in the training set. Normally, the criterion used in such 

processes is to maximize the similarity between the sample strings 

corresponding to the same word. An alternative approach, for example 

reference 20, is to construct an algorithm suitable for each word 

based on observations of sequential characteristics of symbols in each 

word, allowing alternative and/or optional characters in some positions. 

This chapter describes the grammar inference approach to the 

learning problem based on FSG's. Fig. 3.1 illustrates the general 

outline of the approach. The jth string in the positive information 

sample set 5. is denoted by aie The inference algorithm automatically 

constructs a FSG directly from 8, on the basis of pre-specified 

criteria. Suitable decoding techniques are also presented. 

  
  

            

FE 8, = {s,]iq1,...,m5} PSG 
Speech a Inference Inferred 
A (SOURCE) 7) Algorithm se 
a 6. =) bab, eed, 

j 3, dy Je 

Fig. 3.1 Inference of a FSG in an IWR system
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3-1 Graphical representation of a FSG 

This section shows how a graph can be applied to portray a 

FSG such that it is easier to visualize and understand the underlying 

mechanism of the grammar involved. First, the formal definition of such 

@ graph is given. 

Definition 3.1 A finite-state transition network (FIN) is a directed 

graph having a finite number of nodes or states. A link connecting 

one node to another indicates the transition originating from the 

former and terminating in the latter. 

A terminal symbol is associated with each and every transition. 

Every FSG can be represented by a FIN as follows. 

(a) There exist nodes of the FTN corresponding in a one-to-one relation- 

ship to nonterminals in Vy of the grammar. 

(b) The initial node or the start node of the FIN corresponds to the 

start symbol & of the grammar. 

(c) A special node called the terminating node & designates the end 

of a string. 

(a) For each production of the form A—»aB , there is a path or 

transition labelled 'a' from node corresponding to 'A' to node 

corresponding to 'B'. 

(e) For each production of the form A—sa, there is a path labelled 

‘a! from node corresponding to 'A' to the terminating node & . 

Example 3.1 Consider the grammar Ga = (VysE,R,&) with the 

following rewriting rules :- 

' ' 1 

&—-U &—e MA &—>VB &—»-TH 

' 

a'—> vB" Bac’ C—T H'-—al! I'—>V 

where Vy = (8, (AES Beet, ator!) 

and = (a, A, M, T, U, V)
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The corresponding FIN is depicted in Fig. 3.2 below. 

  

  

Fig. 3.2 A FIN corresponding to the grammar G in example 3.1 
3-1 

The FIN shown in Fig. 3.2 is similar to Moore's model of 

sequential meokine Ol? in the sense that each of the nodes in the FIN, 

except the initial and terminating nodes, is associated with one and 

only one symbol. In other words, the symbol produced during a transition 

corresponds only to the node where the transition ends irrespective of 

the number of transitions leading to that node. In order to keep the 

number of nodes (and hence the nonterminals in Vy) small, the terminating 

node & is allowed to be associated with any number of terminals. The 

starting node is, of course, associated with none of the symbols since 

it represents the starting point for all transitions within the FIN. 

The inference algorithm described in section 3.2.2 imposes the 

above constraints upon FIN's in the automatic construction of FSG's.
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3.2 Inference of a FSG 

The inference of a FSG can be considered as the building of a 

FIN from a number of sample utterances. Any path that can be traced 

through the FIN starting from the initial node and ending at the ter- 

minating node constitutes the word. It is well known that the relation- 

ship between a grammar and the language that it can generate is not 

unigue. That is, there are many grammars that can produce a given 

language. For example, one grammar may generate exactly those strings 

in the sample set whilst another may produce not only the strings in 

the given language but also many other strings. The problem is to find 

a suitable grammar between these two extremes such that it produces all 

the strings in the sample set as well as some other strings of similar 

characteristics. 

The following describes some of many advantages and attractive 

features associated with the use of a FSG in the modelling of a FE in 

the recognition of isolated words. 

(i) A FSG, being the least complicated type of grammars, is simple to 

construct and test. 

(ii) The structure in time of symbol strings from the output of a FE 

is sequential ie. symbols are assumed to be presented and 

responded to, at discrete points in times This resembles very well 

with the sequential format of a FSG thus rendering the classifica-— 

tion problem more attractive to solve. 

(iii) The properties and characteristics of a FSG are well established. 

There exist algorithms to answer many questions such as ambiguity, 

closure properties and decidability. 

(iv) It is easy to read off directly sequences of symbols composing a 

string corresponding to a word by tracing through the FIN from the 

initial state to the terminating state.
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3.21 Criteria for the FSG inference process 

Basic assumptions regarding all the inference methods described 

in this thesis have already been given in section 2.2 . First, some 

terminology are formally defined in preparation for the presentations 

to follow. 

Definition 3.2 The nondeterministic event (NE) is the situation where 

an incoming string is assigned by a classifier or a recognizer as 

corresponding to two or more words in the vocabulary. This indicates 

the overlapping between strings corresponding to differnt words. 

Definition 3. 3(55) AFSG G= (Vy2Z, R, &) is said to be recursive 

if there exists at least one derivation of the form a=» xA where 

AeV,, xe =* and = >implies that the derivation is obtained by the 

application of one or more rewriting rules. That is, a recursive 

grammar signifies the occurrence of at least one loop or a closed path 

in the corresponding FIN. 

A method is given in appendix A for testing whether a specified 

FSG is recursive or not. 

The following presents the criteria and related constraints 

governing the formulation of the FSG inference algorithm to be presented 

in the next section. 

I. The inferred grammar is finite-state. 

II. The similarity between strings that can be derived from the inferred 

grammar should be maximized. This follows from the basic require— 

ment in GI that the grammar created should generate as few non- 

strings as possible. 

III. In the experimental observation of the output of a FE, a training 

set can consist only of a finite number of finite-length strings. 

In this situation, it is intuitively felt that a non-recursive FSG
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would be appropriate and sufficient to model the FE. Consequently, 

for each sample string individually considered, no recursive struc- 

tures are formed or included in the corresponding subset of rules. 

This also restricts the number of non-strings that the grammar may 

generate. However, other constraints necessary to the inference 

process may indirectly give rise to the recursiveness. For example, 

the addition of new links and/or nodes on the basis of other con- 

straints may produce one or more loops in the FIN. Combining the 

two requirements above results in the following criterion :- 

‘Suppress the recursive structure of the inferred grammar as 

far as is possible but, subject to other constraints, not completely'. 

A Moore's model of the FIN is assumed (see section 3.1) . However, 

two or more nodes (except, of course, the start node) may be 

associated with the same terminal symbol, though this is kept to a 

minimum. 4s an example, in Fig. 3.3 nodes A and D are associated 

with the same terminal s . This is done to avoid inferring a grammar 

that is too general ie. one that generates too many non-strings. 

The above also satisfies criterion III . 

eS he Gre) 
Fig. 3.3 A FIN corresponding to string 'sipsx' with two nodes (A and D) 

ve 

associated with terminal s . 

In the derivation only of the inferred grammar, each node from the 

path in the FIN corresponding to a sample string is used once only. 

For example, the terminal s appears twice (neither of the s's is 

the last symbol) in the sample string 'sipsx' . Instead of sharing 

‘the same node (node A in Figs 3-4), the two s's are assigned to two
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different nodes (A and D) as shown in Fig. 3.3 . Again, this is to 

satisfy criterion III. 

Note also that if the second s happens to be the last symbol of 

the string, the sharing of the same node by the terminal s would 

automatically be inhibited. This follows because there can not be 

any outgoing transition from the terminating node. 

  

Fig. 3.4 A FIN corresponding to string 'sipsx' with the two s's 

VI. 

sharing the same node (node A) resulting in a recursive 

structure in the grammar. 

Tail-end constraint 
  

This is a constraint designed to reduce the occurrence of the 

NE to the lowest possible level. It determines whether an outgoing 

link from a current node can be connected to one or more existing 

nodes corresponding to the next symbol in the string under 

consideration. The constraint is :- 

"Reject the node if neither of the following is satisfied: 

(a) The node is a pre-terminating node (ie. the terminating node 

but one) AND the position of the next symbol is the last symbol 

but one. 

OR 

(b) The node is NOT a pre-terminating node AND the position of 

the next symbol is NOT the last symbol but one. * 

VII. Strings of short lengths (<2) are separately dealt with. As an
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example, the node corresponding to the first symbol of a length-2 

string can only be reached by the start node only. It is also 

desirable that rules inferred from strings whose lengths are 

greater than two should not generate any string of length two. 

This is because strings of short lengths tend to modify and influence 

the structure of the inferred grammar in such a way that the grammar 

becomes too general. 

It is also of interest to consider the situation where each 

word in the vocabulary contains exactly one string of unit length 

in addition to some longer strings. Assuming all length-1 strings 

are distinct, the maximum number of words that can be correctly 

recognized is the number of distinct symbols that can be produced 

by a FE ie. the size of the alphabet. This imposes the limit to the 

vocabulary size of an IWR system. Such unit length strings are also 

liable to symbol mutilation since only one alteration is required 

to corrupt a length-l string. Fortunately, the foregoing situation 

rarely happens in any practical application. 

The following describes a constraint related to short-length 

strings. 

Front-end constraint 
"All nodes corresponding to the nonterminals at the right side 

(RS) of the start rewriting rules of a FSG cannot be reached by 

any other nodes except the start node.' 

The above will :- 

(a) take care of the case of strings of length-2. 

(b) ensure that rules inferred from strings whose lengths are 

greater than two will not generate additional length-2 strings. 

(c) keep down the occurrence of the NE. 

VIII. If two or more nodes are available for selection, choose the one 

as near to the beginning of the string concerned as is possible,
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provided other constraints are also satisfied. This is to maximize 

the possibility of branching afterwards from the selected node 

which results in a greater number of similar strings being produced. 

IX. The complexity of the inferred grammar, that is the number of nodes 

and/or links in the corresponding FIN, should be as near minimum 

as is possible, subject to other constraints. This implies that the 

Similarity between different strings derivable from the inferred 

grammar is maximized. 

3.262 FSG Inference algorithm 

A learning algorithm is presented in this section for the 

automatic generation of a FSG or the corresponding FIN directly from 

the observed sample strings of sequential features. The method, based 

on criteria and constraints specified in the previous section, can be 

briefly explained as follows. 

First, 'the skeleton’ grammar (SG) q, is constructed from the 

first string in the sample set such that Gg can generate only that 

string. Other strings in the sample set are then individually operated 

upon in the following recursive manner. The nth observed string 5, is 

analysed with the (n-1)th inferred grammar G,_, to determine whether s, 

can be derived from G. - If G 
1 1 

no augmentation of Goo is required. Otherwise, new rules and/or links 

can generate 5,9 then G@ = Guy and 

are added to the FIN of G.. 0 produce the nth inferred grammar Ge 

Before proceeding to present the inference algorithm, some 

necessary definition and notation are introduced. 

Definition 3-4 The nonterminals at the LS and RS of a production of a 

FSG are known as premise nonterminal and consequence nonterminal
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respectively. For example, in the production A—» aB the premise ai 

consequence nonterminals are 'A' and 'B' respectively. 

Notation 

vig = premise nonterminal (or node) 

Vas = consequence nonterminal (or node) 

Vp = node nearest to the beginning of a string 

£ = length of a string 

N(k) = number of strings in word k 

W = number of words in the vocabulary 

54 = the jth string in the set of a word 

b a = the ith symbol of = 

x = symbol index 

a = string index 

k = word index 

The following is algorithm 3.1 which is employed to auto— 

matically infer FSG's directly from sample strings of a given set of 

words in the specified vocabulary. A flow diagram of the inference 

algorithm is also given in Fig. 3.5. 

Algorithm 3.1 

Step 1 Set k w o 

Step 2 Setk=k+1 

if tte. 

Set j= 1 . 

Read tri rae b, b, end evetring x. aed 

  

" ca
 

Tame . 

Step 3 

Step 4 Set Yug 

Step 5 Set Vp =0 . 

(5a) If i =2, go to step 9.



Cee 

  

  

Generate 'the skele- 
ton' grammar, Gy         

  

    

  

Input next string 
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Does late Vp       
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Pig. 3.5 Flow diagram of the algorithm for the inference of a FSG
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Step 6 

where 

Step 8 

Step 9 

(9a) 

(9b) 

where 
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Compare Ph with the terminal 'a' in a production of the form 

A —® aB, subject to constraint V. 

If no such production exists, go. to step 6. 

Compare Vis with the nonterminal 'A' . 

af Vig = "At, go to step 7. 

Otherwise, go to step 8. 

Form a new production of the form A —» aB and include it 

in the production set R :- 

‘At is set to V, 
LS 

"at is set to b 
ay 

, af set to V, if V, #0 

is a new nonterminal if VD =O 

= '3Bt Set Vs B 

as mde LA? te, 

Go to step 5. 

If 'B' does not satisfy 'front-end' and 'tail-end' constraints, 

go to step 5a. 

if Vp = 0, set Vp = 'B' and go to step 5a. 

Otherwise, apply constraint VIII to select one value of Vpe 

Go to step 5a. 

Find a production of the form A—» a having 'A' and ‘at 

identical to V., and b, respectively. 
LS dg 

If no such production exists, go to step 9b. 

Otherwise, go to step 9c. 

Form a new production of the form A —» a and include it in 

the production set R :- 

'A' is set to Vs 

‘at is set to b. . 
2
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(9c) If k Wand j =M(k) end. 

if j M(k), go to step 2. 

Otherwise, go to step 3. 

Although the skeleton grammar G 

Fig. 3.5, no special routine is required to generate it. This is 

is depicted explicitly in 

because algorithm 3.1 is formulated in such a way as to automatically 

include the creation of Gy. It is also of interest to note that the SG 

G is similar to the canonical grammar as defined by FU and poory(42) 

in the sense that they both generate exactly those strings in the 

sample set. In the case of Gg there is, of course, only one string that 

it can generate. The PSG's inferred by algorithm 3.1, for example the 

grammars in the next section, can also be viewed as one form of derived 

(42). erammars 

32.3 Illustrative example 

Example 3.2 Consider a sample set S = (s,| Tm Ls Suet ot) 
342 

where 5) = dIc 85 = ekf 8, = bdeDi 

84 = Jg 55 = bJdcg Be = MeCh 

= bKj a 87 j 

The following illustrates the resulting FSG Gq, (show in the 

form of FIN) after each string Si has been presented to algorithm 3.1. 

The strings that can be derived from each grammar Gs are also given. 

ve O.O+O2-O 
Strings generated by G : dic 

Pig. 3.6 FIN corresponding to Gy the skeleton grammar
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Strings generated by G, : dIc 
e 

ekf 

Pig. 3-7 FIN corresponding to g. 

    

Strings generated by G : dIc 

ekf 
bdeDi 

Fig. 3.8 FQN corresponding to G. 

  

3 

  

strings generated by G, : dIc 
ekf 
bdcDi 

JE 

Fig. 3.9 FIN corresponding to G 
chaste ine een a
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s,=bS dcg 

  

Strings generated by ac : dIc 
ekf 
bdeDi 

JE 
bddcg 

Fig. 3.10 FIN corresponding to g5 

  

Strings generated by Ge 3: dIc 
ekf 
bdeDi 

JE 
bJdcg 

* bdJdch 
MeCh 

* denotes strings predicted * MeCg 

by G, 

Fige3.11 FIN corresponding to G,



8, =bKj 

  

Strings generated by &, : dIc 

* MeCg 
vKj 

* DbKE 

* denotes strings predicted by & 

Fige3.12 EDN corresponding to G,
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3.3 A recognition scheme for FSG models 

This section describes a scheme for the recognition of isolated 

words on the basis of pre-inferred rules or representative strings. 

The general characteristic of the recognition scheme, called scheme A, 

is outlined in Fig. 3.13 . Fig. 3.14 depicts a recognition system using 

scheme A of the recognition method and FSG's inferred from the previous 

section. The explanation of the system follows. 

In the learning mode, algorithm 3.1 is employed to automatically 

construct FSG's, one for each word in the specified voeabulary. The 

inference process produces rewriting rules directly from the observed 

sample strings in response to the words spoken.Production probabilities 

are also estimated (see section 3.4.2) during the learning process. 

In the recognition mode, each unknown string presented to the recognizer 

is classified or decoded using the rules obtained earlier. 

As shown in Fig. 3.14, the recognition process can be considered 

as to consist of three main levels of operation in terms of the 

complexity involved. The recognition always starts at the lowest level 

ie. level 1. A higher level is applied only if the previous one fails 

to classify a string according to some criteria. One sublevel is also 

incorporated in level l. 

Before presenting the overview of various levels of the 

recognition process, it is necessary to introduce some definitions 

which are as follows. 

Definition 3.5 Parsing or syntactic analysis is the process of con— 

structing a derivation of a string s in a grammar G ie. it is a process 

of finding the syntactic structure associated with the string s. The 

corresponding derivation tree is called a parse or a parsing-tree . 

If a parse can be found in a grammar G for a string s, the word
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Fig. 3.13 Diagram of the recognition scheme A 
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sample strings 

  Inference of a Fst 
(Algorithm 3.1) + 
Estimation of produc- 
tion probabilities 
(Section 3.4.2)   
  

rewriting rules 

  RECOGNITION MODE 

  

    
  

LEARNING MODE 
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match Die usha tele Level 2 
(Section 3.4.3) ee 

x 
ipply a stochastic 

algorithm 
(Algorithm 3.4) to 
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Fige 3.14 A schematic diagram of a FSG—based recognition system 

usi. recognition scheme A
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corresponding to G is said to have been recognized. Parsing can also be 

considered as the process of tracing through a FTN corresponding to a 

grammar G such that a path from the start node to the terminating node 

is found for a string s. 

Definition 3.6 A stochastic algorithm is a finite sequence of instruc— 

tions that involves the use of some statistical methods including 

stochastic grammars (to be defined in definition 3.7). It does not 

refer to an algorithm whose behaviour is uncertain or unpredictable. 

A discussion concerning different levels of the recognition 

process is now given. 

Level 1 

In this simplest level of the recognition process, an unknown 

string is tested by means of the parsing algorithm (algorithm 3.2) to 

determine which grammar, if any, could have generated it. If the string 

is accepted by one grammar only, the corresponding word is indicated 

at the output. For unsuccessful parsing, the method of level 2 is then 

applied to decode the string. When two or more grammars can generate 

the string ie. the occurrence of the NE, it is necessary to employ the 

process of sub-level 1 to decide which grammar is the most likely to 

have produced the string. In this method, a stochastic algorithm 

(algorithm 3.3) is applied to find one "best word' according to a 

maximum likelihood criterion (MLC). If two or more of such words are 

possible, the string is rejected. 

Level 2 

When the parsing algorithm in the preceding level of recognition 

process fails to find any grammar that can generate the unknown string, 

the method of the next higher level (ie. level 2) is called for. The 

technique of the ‘weighted matching network' (WMN) is utilized to find 

the 'closest match' for the string ie. the grammar that could nearly 

have generated the string. It is basically a dynamic programming method
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of optimizimg the similarity between two functions. 

Level 3 

This is the highest and the most complicated level of the 

recognition process since the operations in the two lower levels have 

to be performed in order to reach level 3 . It is applied when there 

exist two or more closest-matched words corresponding to the string. 

Another stochastic algorithm (algorithm 3.4) is employed to choose the 

most likely closest-matched word. As in level 1, the string is rejected 

if two or more of such words are found. 

3.4 Finite-state grammar based decoding methods 

This section presents in details the FSG based decoding methods 

or syntactic decoders for the classification of unknown strings as 

applied to the recognition of isolated words. The overall recognition 

process which employs various decoding methods in different levels of 

recognition operation has already been described in the previous section. 

3-4-1 A parsing algorithm 

The parsing algorithm to be presented is a simple top-down 

parse ie. it starts from the start symbol and ends with a string of 

terminals. In other words, the derivation of the parsing tree progresses 

from the root to the leaves. Backtrack facility is provided such that 

when a path is blocked during parsing, alternative configuration, if 

any, can be tried by retracing the last moves. A push—down stack is 

provided to store sequences of productions or rules encountered in 

parsing the string. The stack also aids in the backtracking process.
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The following is a formal presentation of the parsing algorithm 

with the corresponding schematic diagram shown in Fig. 3.15 . Symbols 

employed in the algorithm follow the notation given earlier. 

Algorithm 3.2 

Step 1 Read a string s = BL Doeeeby . 

Step 2 

(2a) Set i=1 

Wg tk . 

(2b) Set 24.40) 2 

Step 3 Set j=j+il. 

If i =2, go to step 7. 

Step 4 
(4a) Check production j of the form A— » aB whether 'A' and tat 

are identical to ‘us and by respectively. 

(4b) If unsuccessful, increase j by one and go to step (4a). 

If productions are exhausted, go to step 6. 

Step 5 Set Vis mY a 

Put j on top of stack. 

Set i=sit+l. 

Go to step (2b). 

Step 6 If the stack is empty or only one element remains in the 

stack, parsing fails; END. 

Otherwise, pop up j from the stack. 

Set V,, = ‘At of rule j. 

Set i-si-l. 

Go to step 3.
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Step 7 

(Ta) Check production j of the form A—» a whether 'A' and 'at 

are exactly identical to Vis and by respectively. 

(Tb) If unsuccessful,increase j by one and go to step (7a). 

If productions are exhausted, go to step 6. 

Otherwise, parsing is successful ;END. 

304-2 A maximum-likelihood criterion 

The NE mentioned in the sublevel 1 of the recognition process 

(section 3-3) can be caused by noise or disturbances of some sort. It 

may also be due to the overlapping of inferred grammars which is 

equivalent to the overlapping of pattern classes in the case of pattern 

recognition. The nature of the learning algorithm and the inherent 

characteristics of features forming the strings are the two main 

causes of overlapping. 

It seems that the use of phrase-structure grammars or Chomsky's 

grammars alone, where restrictions are placed only on the form of the 

productions (eg. FSG's, CFG's etc.) may not be adequate to solve the 

problem of the NE. Recently, there have been much research done on 

imposing restrictions upon the use of, in addition to restrictions on 

the form of the productions. The work concerning the way in which a 

grammar is permitted to generate strings includes, for example, an 

(69) (70) (71) ordered grammar » 2 matrix grammar 

72) 

>» &@ programmed grammar 

and a grammar with a control aa 

Another approach along this line of research is to introduce 

probabilities to the grammars ie. probabilistic grammars (p-grammars) 

(68,73,74) | or stochastic grammars Cea), In this
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approach, probabilities are assigned to each production and each 

derivation of a string is associated with a probability. A more general 

(76) case is a weighted grammar in which some arbitrary values replace 

probabilities in a p-grammar or an s-grammar. Both the probabilities and 

the weights are usually assumed to be rational. By including probabilities 

into a grammar, not only the structures of different sequences of 

strings, but also their importance can be determined. 

Formally, a stochastic finite-state grammar can be defined 

as follows. 

Definition 3.7 A stochastic finite-state grammar (SFSG), G, is defined 

as t- 

Gos (Vy Zs Ry £) (3.1) 

where Vyo 2s and & have the same meanings as before 

R, is 5 finite set of stochastic productions each of the form 

Ay a aa; 5 Ay» eit As Wy 

or AQ La aes 

where Pi 4? Py are the production probabilities with the following 

properties :- 

= Puy = 1 (3-2) 

a Pj =} (3-3) 

Note that a SFSG is obtained by assigning probabilities to all the 

rules in a given FSG. The corresponding FSG (with no probabilities 

attached to the rules) is called a characteristic grammar . 

Since the only input data available to the recognizer is the 

positive information sample set, the required production probabilities 

of a SFSG have to be estimated from this sample set. Techniques for the 

determination of rule probabilities for unambiguous grammars have been 

developed based on a maximum likelihood estimation (©3?96:77),
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The first stage of this method involves the parsing of each and every 

string in the sample set. For each production ij (ie. a link from node 

i to node j in the corresponding FIN), a count is made of the number 

of times that rule ij is used in the derivation of all strings in the 

sample set. The production probability of link ij is then obtained from 

the ratio of the above count to the number of times that all the links 

originating from node i are used in parsing the same set of strings. 

More formally, the technique for the estimation of production 

probabilities can be described as follows :- 

1. Let the sample strings (all distinct) be 

So (s; j= 1,2, +0sMy) (3-4) 

where My is the number of distinct strings in set S,- 

260 £59 the estimated probability of string By is determined by the 

relative frequency of its occurrence ie. 

oak MMs (3-5) 

where : = number of string 55 

My = number of total strings. 

3+ For a production A, —» a, in grammar G = (Wyo =, R, &) where 

= ad, or a 5 find My,(85)s the number of times that production 

AS > a. is used in parsing string ae 

4. ni? the expected number of times that rule Ay oe a. is used in 

parsing all ane sample strings in 5, is given by :- 

ioe £4 (8,) (3.6) 

5- The maximum-likelihood estimate for Pay? the production probability 

of rule Ay —> a is obtained by 
kK 

Pi, = 2 / EM (3-7)
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A formal proof of the above result given by equation 3.7 can 

be found in, for example, references 42 and 68. 

The estimated production probabilities thus obtained are added 

to the rules of the characteristic grammar G to form the required 

SFSG. The method just described is expected to be adequately accurate 

when applied to the problem of the approximations of an ill-defined 

FE by means of formal grammars. In the actual implementation, some 

saving of the execution time can be achieved by incorporating the 

counting operations into the learning process. This follows because the 

parsing of strings is done at the same time as the characteristic 

grammar is being inferred. 

The following example illustrates the estimation process. 

Example 3.3 Let the strings in the sample set 83 3 be = 
° 

8, = Le 8, = Lh 8, = lg 

84 = Le oh = KeCd aces Lh 

8] = Jf 5g = Nh 89 = M2 

5,97 Ka 8,,= JeDe 510° Nk. 

By applying algorithm 3.1, “the following characteristic grammar is 

constructed. 

es. (Vy ZR, £) 

were 7 (Bs BpsAy2Aqr dashes M79 Ag Ag) 

= = (C,DyJ,K,LyMyN,c,d,e,g,h, j,2) 

R = all the rules in table 3.1 

The expected number of times that each rule in R is used in 

the derivation of all of the above strings together with the corres— 

ponding estimated production probability are given in table 3.1 .
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Rule ij y5 Pi5 

& —» LA, 5 5/le2 

& —> KA, 2 2/12 

& —» Ihe 2 2/12 

&—> wa, 2 2/12 

& —> Mag a 1/12 

As g 3 3/5 

4m h 2 2/5 

Ay oA, 1 1/2 

Aya x 1/2 

Ayo CA, 1 1/2 

Ay DAg 2 1/2 

Az a 1 1 

Ame j if 1/2 

seme cA, 1 1/2 

A 1 1/2 

4 Q 1 1/2 

Ag L 2 1 

— e 1 1         
  

Table 3.1 The estimated production probabilities of rules 

in example 3.3
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The problem of the NE where a string 5, corresponds to two or 

more words can be handled as follows. 

Applying a maximum likelihood criterion, a given string 8, is 

classified as corresponding to word wy if and only if P(w,/s 5) isa 

maximum. 

From Bayes! ru $!8) P( wy, 8,) can be expanded into :- 

P(w, s;) = P(w.985)-P(s5) (3-8) 

Since P(s,) is constant for a given 859 only the term P(w,985) needs 

to be maximized. 

Rewriting P( W958 2 using Bayes' rule yields :- 

P(w.985) = P(s,/m,) . P(w,) (3-9) 

To ensure that there exists no initial bias towards any particular 

word, the a priori probability P(w,,) is assumed to be equal for every 

word in the vocabulary. 

Thus only the term P(s/m,) is required to be maximized if and only 

if 85 is to be classified to word Wy where P(s5/w,,) is the product of 

all production probabilities correspond to word w, 
k 

Summarizing : In the case of the NE, a given string is classified to 

used in parsing 55° 

the word with the 'maximum-likelihood' probability obtained from the 

product of all production probabilities of the corresponding grammar 

which are used in the derivation of that string. 

The following presents an algorithm for dealing with the NE 

based on a MLC previously described. The corresponding schematic 

diagram is shown in Fig. 3.16 . 

Algorithm 3.3 

Step 1 Read (w, | islyeeesily)» all the words that correspond to the 

string oe 3 

where W. is the number of such words. 
N 

Set k=0 .
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Fig. 3.16 A schematic diagram of algorithm 3.3
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Step 2 Set k=k+l1l. 

Calculate and store Q(k) 

I(s.) 
where Q(k) = J P(e) 

ete td 

where 1(s;) = number of steps in the derivation of 85 

Pp, (s,) = probability of the production used at the ith step 

of the derivation of 8, . 

If k = Wyy 

Otherwise, go to step 2. 

go to step 4. 

W, 
Calculate @. = ils a(x) 

If there are two or more words associated with ay reject 553 

END. 

Otherwise, decide that eS corresponds to word Wy if 

Q(k) = Q, 5 END. 

3-4-3 A ‘weighted matching network' technique 

The unsuccessful decoding of a string by the parsing algorithm 

(algorithm 3.2) may be caused by one or more of the following factors. 

The word spoken (and hence the string representing that word) may not 

be in the vocabulary. If the word is known to be outside the vocabulary 

and it is intended to add the new word to the existing vocabulary, then 

a@ new grammar has to be created to accomodate that word. It is also 

possible for errors to appear in the string. This may be due to noise 

or some disturbance or free variation of speech as a result of the 

speaker's characteristics. In addition, the ambiguity of speech signal 

and procedures of segmentation and labelling may also induce errors. 

In the case of telephone-grade speech, the string is subjected to an
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even greater chance of being corrupted. This is caused by various 

characteristics of the telephone system such as the restricted band- 

width, background noise and impulsive noise, nonlinear distortion, 

variation of sensitivity and gain and so on. 

From the foregoing discussion, it appears that the simple top- 

down parsing technique is inadequate for dealing with errors. This is 

because it can only indicate the presence of errors but not their 

locations. This section presents a WIN technique for finding a closest 

match between the corrupted string and the strings derivable from 

grammars with a facility for pinpointing errors. The technique is well 

suited for applying to FSL's since it is based on the concept of FIN. 

Before presenting the WIN and its associated technique, formal 

definitions are now given of different types of symbol errors or 

symbol alterations. 

Definition 3.6 A deletion error is one which causes the correct input 

symbol oe to appear as 2 at the output, where A is the null string 

symbol. In other words, si is deleted from the input string. 

Definition 3.9 4n insertion error is one which causes an extra symbol 

by to be inserted into the current string. 

Definition 3.10 A substitution error is one where the correct input 

symbol 3; is replaced by a symbol by which appears at the output. 

Concept of a distance concerning the above types of errors 

is defined next. 

Definition 3.11 The minimum number of symbol alterations consisting 

of any combination of deletion, insertion and substitution errors, 

needed to convert an observed string x to a prototype string y is 

known as the Levenshtein distance (LD) (79) , 

If various weights are assigned to each of the symbol
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alterations, the corresponding distance becomes weighted Levenshtein 

distance (WLD) . 

The WIN technique is basically a method of optimizing the 

similarity between two functions. The first function is an observed 

string whilst the second is the set of all strings that can be 

generated by the grammar concerned ie. the dictionary. The aim is there— 

fore to determine the LD or the WLD of an observed string and a given 

grammare 

The problem of spelling correction by matching a given string 

with the dictionary has been studied by many researchers including 

(345 3580-84, 88) | The common approach to solving the problem as given 

by Velichko and zagoruyko (8!) is based on the construction of a 2-D 

array. The array is formed by associating one function with one axis 

or one dimension of the array and the other function with another axis 

(85) or dimension. The principle of dynamic programming is then applied 

to search through the array for an optimal solution. 

Descriptions are now made concerning the WMN and how it can 

be used to obtain the required closest match (ie. LD or WLD). 

The WIN, also a 2-D array of the kind mentioned above, can be 

constructed as follows. First, a FTN is built from the FSG under con- 

sideration. This forms the first row of the WIN. The remaining rows 

are then obtained by repeating the FIN Q times directly below the first 

row, where Lis the length of an observed string. The overall structure 

just created becomes an array of (2+ 1) * m nodes where there are m 

nodes in the FIN. 

The next stage involves the connections between nodes in 

adjacent rows which is accomplished in the following manners.
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(i) There is a link from each and every node in row k to each and 

every node directly underneath in row k+l . 

(ii) For every transition ij from node i to node j in the FIN, there is 

a link from node i in row k to node j in row k+l. 

The above procedures are applied recursively starting from 

k=eltok=Q. 

This completes the construction of the WMN except for the 

determination of the content of each element in the array which will be 

dealt with later. Fig. 3.17 exemplifies the WIN for a length-3 string 

and a given FIN. Appendix B gives numerical values of significance of 

various symbols. As illustrated by double-lined arrows, an optimal path 

always starts from the top left node (ie. element (1,1) of the array) 

and terminates at the bottom right node (ie. element (f4+1,m)). Thus, 

the general direction of a path in the WIN is from top to bottom and 

left to right. The number inside each node represents the minimum 

penalty incurred in traversing from node (1,1) to that node. Conse- 

quently, the content of node (1,1) is always zero. The minus sign 

indicates that the number concerned is a penalty and not a reward. 

The absolute value of element (041m) gives the LD or WLD as required 

(it is WLD in Fig. 3.17). 

Various types of symbol errors defined earlier can be 

graphically represented by the WMN in the following ways. A horizontal 

link denotes an omission of a symbol associated with that link from an 

observed string ie. it represents a deletion error. A symbol extra- 

neously inserted into an observed string resulting in an insertion 

error is depicted by a vertical link. For a diagonal link ij connecting 

node i in row k and node j in row k+l, a substitution error occurs if 

and only if the kth symbol in the observed string is not identical to 

the symbol corresponding to link ij in the FIN.
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(a) a FIN corresponding to a FSG 

        

  

(b) @ WIN obtained from FIN in (a) 

The required optimal path is designated by double-lined arrows. 

Fig. 3.17 Matching of a string with a FSG using WMN technique
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A method is now presented for computing the contents of 

various nodes in the WMN in the search for an optimal path. 

The process is divided into two stages. The first stage is 

concerned with the calculations of the first row of the WIN whilst the 

second stage determines the contents of elements in subsequent rows. 

Stage I Computation of elements in the first row 

Let e(i,j) be the element in row i and column j of the WIN. 

Given that e(1,1) = O . 

All other elements in the first row of the WMN are calculated iteratively 

using the following equation :;- 

e(tsa) + wae [ s8) - 2y(a)] (310) 
all iin 

A, aA. yralits 
A, — > a. 

2 J 
where 

indices i and j denote the column positions corresponding to 

AS and 4, respectively in production Ay — a4, . 

j= nm for production Ay —_ a ° 

BG) is a non-negative ‘deletion function! 

defined as :- 

F = significance of 'a|' 3.11 (4) eni. j ( ) 

where significance of te," is the weight associated with a5 

obtained from a priori knowledge of the symbol yee . 

Stage II Computation of clements in row k (l<k <2+4) 

(i) Due to the previous row ie. row k-l 

e(#) (k,j) = Max[{ Max — 
all ii . . 

aa | eGrts ere) | 
a Jd 

A. —>P a. 
a J 

e(k-1,j) - F(x) 

(3.12)
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where FL (x) is a non-negative ‘insertion function' given by :— 

FL (ic) = 
  
significance of b, ) (3-13) 

where by, is the (k-L)th symbol in the observed string. 

P,(Jk) is a non-negative ‘substitution function' defined as:— 

  
F, (ike) =|(significance of b,_, )- (significance of ra;")| 

(3-14) 

(ii) Due to the same row ie. row k 

of8) (uy 5) = max{ (405 3), max fo) - 2,3] \ 
all iin 
Ay — aA, (3-15) 
A, —r a. 

a J 

The procedure in stage II is repeated until the last row 

(ie. k =Q2+1) has been processed. 

The final value of element (£+ 1,m) obtained from the above 

computations indicates the minimum penalty incurred if the observed 

string is to be generated from a given set of rewriting rules. This 

is the case of finding WLD whose value together with the contents of 

other elements of WIN are shown in Fig. 3.17 . 

To obtain the LD, substitute the followings in equations 

310,312 and 3.15 

we Fd) = 
P(x) = 

(ik) ty if and only if b. 

(3-16) w 

bt? *5 
QO otherwise 

The technique of the WMN can be applied to select one best 

word which is the closest match to an observed string as follows. 

Find WLD for every word in the vocabulary and choose the word with the 

smallest value of WLD as the required best word.
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In concluding this section, some issues concerning the WN 

are discussed below. 

(2) 

(b) 

It is possible to obtain two or more optimal paths for an observed 

string and a given set of rules. This implies that the string 

selected from the grammar to represent the observed string as 

the prototype string may or may not correspond to an original error— 

free stringe However, this poses no problem to the application in 

the recognition of isolated words. Provided representative strings 

are generated by the same set of rules, the word selected as a best 

word is always the same irrespective of which representative 

string is chosen. 

The method of WMN can, of course, be employed to test whether an 

observed string is derivable from a FSG. That is,it can be used to 

perform the function of the parsing algorithm (algorithm 3.2) . 

The string is said to have been generated by the grammar concerned 

if, and only if, the element (24 1,m) of the WIN is zero. 

In general, the time required to parse a string is longer for the 

WMN technique than that required for the parsing algorithm. There- 

fore, in applications where it is required to know only the exis— 

tence of errors but not their locations, the simple parsing method 

is preferable to the method of WMN. 

304-4 A stochastic algorithm 

As pointed out in section 3.3, the WMN technique is applied 

to decode an observed string which has been unsuccessfully analysed 

by the parsing algorithm. Even in this case, it is still possible for 

two or more words to be assigned the same value of WLD. An example of 

this type of situation is illustrated in Fig. 3.18 . As before,
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significance of each symbol can be determined from appendix B. 

This section presents a decision criterion using probabilities 

for the selection of a word that is most likely to represent the string. 

From the previous section, the overall penalty of an optimal 

path is obtained by adding the contributions from each individual link 

comprising that path. Likewise, the method to be presented below is 

based on the same assumption, namely, that an optimal path can be 

divided into independent links. All of the individually optimized 

links are then combined to form a final optimal solution. 

In outline, the method works as follows. 

For each link in an optimal path of the WMN which contributes an error, 

an estimation is made of the likelihood of that symbol alteration. 

The final result of an optimal path is the product of probabilities 

estimated above of all such links comprising that path. The procedure 

is repeated for all optimal paths appearing in the WMN. Results of each 

path are then combined to give the final solution. 

The above process is applied to all eligible words ie. words 

associated with the same WLD. The word with the largest value of the 

final solution is then selected as the one most likely to generate the 

string. If two or more such words are possible, the string is rejected 

as before. 

Techniques for the estimation of probabilities associating 

with each type of symbol alterations are given next.
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(a) Deletion errors 

Let Ppl 5) be the probability that ay 5? the terminal symbol corres= 

ponding to link ij is deleted from a string in word We This is subject 

to the followings :- 

(i) deletion coefficient +, which determines how probable a 
D 

particular symbol alteration is due to deletion event (rather 

than substitution or insertion). 

(ii)the conditional probability p(a, (f* j,)2 the probability that the 

symbol deleted is a; 4g given that it is in a string corresponding 

to word Wye 

The selection of P(a; 5/%,) rather than P(w,/2; 5) results from 

the rewriting of P(w,,/a; 5) using derivations similar to 

equations 3.8 and 3.9 and the application of the assumption 

given in section 34.2 . 

The criterion for the case of deletion errors is as follows :- 

Decide that the symbol deleted is as 3 

is the largest for all words, where 

(25 sre = t)- pla; 3%) (3.17) 

corresponding to word w, if 

Pi (4; ie 

(b) Insertion errors 

Let Pb), be the probability that the terminal symbol b is inserted 

into an observed string in word w, This is governed by :- hc? 

(i) insertion coefficient ty . 

(ii) the frequency of occurrence of the inserted symbol b, p(b), 

That is, the more frequent b occurs, the more likely that it 

is effected by noise or disturbance etc. 

The conditional probability p(b/w,) is not used in this case. 

This is because, it has been determined experimentally that any 

symbol can be inserted into a string corresponding to any word,
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even though that particular symbol may never appear in that 

word during the training mode. 

The criterion for the case of insertion errors is :- 

Decide that the string, where a symbol b has been inserted, corresponds 

to word w, if P,(),, is the largest for all words, 

where 

Pi(b), = 4, + (bd) (3.18) 

(¢) Substitution errors 

Let Po; sy 

associated with link ij is substituted by a symbol b. 

be the probability that oi? the terminal symbol 

This is affected by :— 

(i) substitution coefficient ts ° 

(ii) the conditional probability (a, 5/%,) . 

The probability of a symbol b is not considered since the 

importance of b relative to a5 has already been taken into account 

in the WIN. 

Thus, the criterion for the case of substitution errors is :- 

Decide that the symbol being substituted (by a symbol b) is 855 

corresponding to word wy af P4(2, jy is the largest for all words, 

where 

Po(85 5) a ty + P(a, 5/%,) (3-19)
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The following is an algorithm for finding the most probable 

word, whose corresponding grammar could nearly have generated an 

observed string. The techniques described above are employed to estimate 

the required probabilities of various symbol alterations. The associated 

flow diagram is depicted in Fig. 3.19 . 

Algorithm 3.4 

Step 1 

Step 2 

(2a) 

(2) 

Ste 

Read (w, isl, eoe,tiy)» all the words corresponding to parame 8 

with the same smallest value of WLD. 

Set k 0 

K O , where K is the optimal path number . 

Set k = k+l. 

Set K = K+l1. 

For each symbol alteration found in path K and word Wes 

calculate P85 she Pi(b),. or Po(85 sic depending on 

the type of the error. 

Calculate Pe which is the product of any combination of 

7 i hh a Poe PL(b), and Po (855), estimated from path K ani 

word Wye 

If current value of K is the last one, go to step 5. 

Otherwise, go to step (2b). 

ke s pk 
Calculate Pa pies Py 

If k = W,, go to step 7. 
N 

Otherwise, go to step (2a). 

If Max Pa corresponds to two or more words, reject 833 END. 
k 

k 

Otherwise, decide that 54 corresponds to word wy ae Pa 

is the largest for all the words ; END.
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Fig. 3-19 A schematic diagram of algorithm 3.4 
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CHAPTER 4 

CONTEXT-FREE GRAMMAR-BASED MODELLING 

4.1 Motivation 

The first application of CFG's to programming languages was 

probably made by Backus 85) in specifying the syntax of the ALGOL 

language. Since then, the use of CFG's has become common among research 

workers in the computing field. In contrast, as already mentioned in 

section 2.2, it is not clear at present what type of grammar best re~ 

presents strings of symbols associated with an IWR system. In principle, 

the use of a nonrecursive FSG would be adequate to model the FE where 

only finite-length strings are involved. However, it is possible that 

the use of less-restricted grammars may provide models which are 

preferable in some way. For example, a model constructed on the basis 

of a CFG may have fewer nodes and/or links than a FSG—-based model 

using the same data. 

The above is analogous to digital filtering. It is possible, 

in principle, to use a nonrecursive digital filter whenever a finite- 

length impulse response is required. However, it is sometimes better 

to use a recursive filter despite the type of the required impulse 

response. This is because the volume of necessary computation may be 

greatly Fednoed<° 1) . 

In addition, the use of a CFG provides the model with a 

push—down mechanism which makes it possible to temporarily suspend the 

processing of a constituent of a language or a string at a given level. 

This is done so that an embedded constituent can be processed using the 

same grammar. The foregoing operation thus allows many regularities 

of the language, if any, to be captured. As an example, a substring oc- 

curring in a number of different contexts may be represented by a single
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rule instead of by a number of independent rules for each of the 

different contexts. For the above reasons, it is of interest to have 

methods for the construction of nonrecursive CFG's. 

This chapter is concerned with the application of CFG's to 

the modelling of a FE in the recognition of isolated words. The 

general approach of the CFG inference problem follows the outline of 

the approach based on FSG's as given in Fig. 3.1 . The FSG depicted 

in Fig. 3.1 is, of course, replaced by a suitable CFG. A method is 

given for the direct construction of a proper nonrecursive CFG from 

a set of sample strings. The inference method to be presented generates 

compact CFG's having a near minimal number of rules and/or nonterminals, 

compatible with the requirement to be able to generate all strings 

in the sample set. 

The basis of the inference method involves a comparison 

between an incoming string and an existing CFG. The matching process 

requires the computation of the minimisation matrix, M, (to be defined 

later) whose elements reveal the compatibility or otherwise between 

the string, its substrings and the grammar. If any incompatibility 

exists, appropriate rules and/or nonterminals and terminals are 

appended such that the augmented CFG can generate the string. 

In contrast to enumerative techniques, the method mentioned 

above is computationally efficient. This is because it is based on 

direct construction of a grammar from sample strings. In addition, 

the method is conformed to basic assumptions about an inference 

process in general as given in section 2.2 - Suitable decoding 

techniques are also described.
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4.2 Graphical representation of a CFG 

In this section, a method is given for the construction of a 

network, which is essentially a set of FIN's applied recursively, to 

represent a CFG in a graphical format. The network is fully explained 

in the following definition. 

Definition 4.1 A push-dow transition network (PTN) is a collection 

of directed graphs with a unique start node and a special set of ter— 

minating nodes together with a push-down store. The network consists 

of a principal graph which contains the start node and optionally, a 

number of auxiliary graphs . Hach and every link or transition in the 

network is associated with either a terminal or a nonterminal but not 

both. 

Transitions involving nonterminals and a push-down stack can 

be interpreted as follows. 

If a nonterminal C is encountered during a transition from 

node A to node B, the processing of an observed string at the present 

level is temporarily suspended. This is followed by the saving of the 

nonterminal associated with node B on a push-down stack. The processing 

then resumes with the new transition, commencing from the state or node 

corresponding to nonterminal C which is either in the present graph 

or in another graph. In other words, the transfer of control from one 

level of the process to another can be viewed as a procedure of a 

subroutine call to another graph or the current one. Upon reaching a 

terminating node, the symbol on top of the stack is poped-up, removed 

from the stack and used as the new starting point. An attempt to pop 

up an empty stack after the last symbol of a string has just been 

processed signifies the acceptance of the string.
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All the CFG's considered in this thesis are assumed to be 

proper so as to eliminate as many unnecessary rules as possible. The 

formal definition follows. 

Definition 4.2 ACKG G = (Wy, R, &) is said to be pooper 22) if: 

(a) R has no A-productions (A —»Afor all A in Vy) ie. G is A-free, 

(b) there is no derivation of the form amtoa where Aev, ie. Gis 

cycle-free, and 

(c) G has no useless symbols ie. there does not exist a nonterminal 

that does not generate any terminal strings. 

A proper CFG can be transformed to a PTN in the following 

manners. 

(i) Partition the rules of a given CFG into groups of rules where 

rules in each group have identical LS nonterminals. 

(ii) Construct the principal graph, beginning with the set of start 

rules, based on the constraints given below. 

(adi) Apply the same constraints to the remaining sets of rules, if 

any, to obtain appropriate auxiliary graphs. 

The general procedures employed in the construction of a PTN 

follow those of a FIN. The following describes constraints governing 

the creation of links and/or nodes of a PIN from a set of rules of 

a CFG. 

A rule in the CFG can be in one of the following forms : - 

+ 
Form 1 A—> oB where “EV ; A, B evy (4.1) 

* 
Form 2 A—» ga where BEV and a€Z. (4-2) 

For a given rule, there are as many links as the number of 

elements in “ orB 3 except when fis a null string where there will 

be exactly one link. Each link created from and associated with an
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element of & or sconnects the current node to a new node except for the 

last element of d. In that case, the link corresponding to the last 

element of aterminates at the node associated with nonterminal 'B', 

For a rule of the second form,the final link of the rule, 

associated with a terminal 'a',ends at one of the terminating nodes. 

The above procedure can be illustrated by the following example. 

Example 4.1 Consider a CFG Gas (Vig 2, R, &) whose rules have 

already been partitioned into various groups as given below. 

R: &— bA A—> bea B—» abB Cc —> cB 

& —> ab A—> ab B—> be C—>c 

A—pa Bo,rb 

where Vy = (£, A, B, C) 

= = (a, by c) 

The PTN constructed using the above procedure is depicted 

in Fig. 4.1 . 

  

(a) the principal graph 

(b) an auxiliary graph 

Fig. 4.1 A PIN corresponding to the CFG in example 4.1
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4.3 Computation of the minimisation matrix 

It is usually more difficult to deal with the problem of gram- 

mar inference of a CFG than that of a FSG. This is because many proper- 

ties that are decidable for a FSG become undecidable for a CFG. In 

particular, it is known (54) that a general algorithm does not exist 

to test whether two CFG's are equivalent. For these reasons, many CFG 

inference algorithms are confined to specific types of CFG's. Likewise, 

the CFG's to be inferred are assumed to be in a normal form whose 

definition follows. 

Definition 4.3 A CFG in Chomsky normal form(28) is one in which the 

productions are of the following forms only. 

A—» BC where A, By GC € Vy (4.3) 

A—ea where aes (4.4) 

Rewriting rules of the first form are called bielement rules, and 

those of the second form are known as terminating rules . 

Any CFG can be converted into an equivalent CFG in Chomsky 

normal form (54,55) so that no generality is lost by dealing only with 

CFG's in this form. An example of such transformation is given in 

reference 54. 

Before the inference method can be given, it is necessary 

to describe the minimisation matrix, M, which forms the basis of the 

inference process. This is done in the following two sections where 

iterative procedures for the computation of the nonweighted and 

weighted versions of the M-matrix are presented respectively.
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4.3.1 Nonweighted M-matrix 

This section describes the nonweighted version of the M-matrix 

and presents an iterative procedure for the computation of its elements. 

Discussion of the matrix is now given. 

Definition 4.4 Let s = By Doweeby be a string of length 2, where bez 

for i=l,.ees ZL. rora given CFG in Chomsky normal form and for a 

string s, the minimisation matrix (nonweighted) , M (hereafter referred 

to as M-matrix) is a three dimensional, Qs ke > matrix. r is the 

number of nonterminals in the grammar. Element my of M denotes the 
jk 

minimum number of symbol alterations (any combinations of deletions, 

insertions or substitutions) required if the length-i substring of s, 

whose first symbol is oS is to be generated by the grammar from Aye 

the kth nonterminal. 

Alternatively, element Ms ae can be viewed as the LD between 

an observed length-i substring of sywhose first symbol is pe and a 

prototype string y derivable from Aye As an example, suppose A. 

generates a string cd and that s = deded. Two deletions are then 

required from the length-4 substring cded to change it to the string 

ed, which can be derived from Ay In this case, m, 24" 26 
? 

A, is arbitrarily chosen from the nonterminals to represent 

the start symbol, so that the element Mp is zero if, and only if, the 

string s can be generated by the grammar. 

Before proceeding to present a method for computing the M— 

matrix, various types of bielement rules are discussed.
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Definition 4.5 The hierarchy level (HL) of a nonterminal Ay» denoted by 

H(k), is the number of symbols in a string derivable from that 

nonterminal. 

In general, the HL of a nonterminal in a CFG is not unique. 

However, because of the nature of the construction procedure described 

later, it is guaranteed that every nonterminal in the CFG's to be 

considered will have a unique-value hierarchy level, except for the 

start symbol Ans whose HL may be multi-valued. The HL of AL is, of 

course, equal to he the length of the string under consideration. 

By definition, the HL of any nonterminal in a terminating 

rule is unity for the CFG's inferred in this chapter. 

In order for the elements of the M-matrix to have the meaning 

given above, it is necessary for nonterminals in bielement rules of the 

form A, _ aA » where As ‘S and A é€ Vy te have hierarchy levels 

satisfying at least one of the following conditions :- 

H(k) = H(p) +1 (445) 

H(k) = H(a) +1 (4.6) 

That is, the HL of AL should differ from that of o or a by exactly 

one. 

This condition excludes, from CFG's to be constructed, bielement rules 

of the form AL — Bea where neither 4 nor oa are in the 

terminating rules. 

Permissible types of rules are where :- 

(type 1) Both 4 and Ay are in terminating rules (4.7) 

(type 2) 4 or As put not both, are in the terminating rules(4.8) 

The HL's of various nonterminals in a CFG can be computed 

as follows.
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(a) HL's of nonterminals in terminating rules 

H(k) = 1 for all A, —» a, of the CFG. (4.9) 

This follows from the definition of the HL. 

(>) HL's of nonterminals in bielement rules 

H(k) = Min [ se) + (<) | (4.10) 
P,GEP, 

where PL is the set of ordered pairs (p,q) such that yA Andy is 

a rule of the CFG. 

The above follows because nonterminal AY is replaced by nonterminals 

A and A via a bielement rule of the form AL — AA, so that HL's 
Pp qa pP@ 

corresponding to , and a need to be added, The final result is the 

smallest of this sum taken over all rules in the set Pye 

The following describes an iterative procedure for computing 

the M-matrix. The procedure is in two parts; the first part is for th 

terminating rules whilst the second is for the bielement rules. 

Part 1 : Terminating rules 

(i) a=1 

Oo; if and only if AL oe by is a rule of the CFG 

Mh jie cs SG otherwise 

(4411) 

This follows from the definitions of M and of terminating rules. 

(33 ea = 2535 005 
j+i-l 

Tic = Max [oe = na | (4.12) 

The above follows because the number of alterations required 

for a substring of length i to be derivable from AY is i-l, if Ay
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generates any of the symbol in the substring, otherwise it is i. 

Part 2 : Bielement rules 

(444) i =1 

2.7 are ae [sot H(a), ™ jot x(p)] j (413) 

where PL is defined as before. 

This follows because nonterminal AY is replaced by nonterminals A, and 

Ag via a bielement rule of the form AR — aaa? so that the element 

of the M-matrix and HL corresponding to A, and A, respectively, or vice 

versa, need to be added. The smallest of this sum is selected because 

the minimum number of alterations needed to convert a string, derivable 

from Aw into a substring of length unity cannot be less than the HL 

of H(p) or H(a), whichever is smaller. 

(Fad are, 3y een 

m,. = Min {Min [m,, + H(a), m,. + H(p), 
ijk PG eP, [ 1JP 2194 

228 Waser inn, joaya 1S (4.14) 

where PL is defined as before. 

The above follows in a way similar to the preceding case, with the 

extra consideration that the substring of length i is itself divided 

into two sub-substrings of lengths u and i-u, for u = 1,...,i-l. The 

first of these sub-substrings starts at the jth symbol and the second 

at the (j+u)th symbol. 

A unit length string generated by the grammar can be repre- 

sented by a rule A, _ Soca where either 4 or is arbitrarily 

chosen to act as a 'dummy' nonterminal. That is, the chosen dummy
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nonterminal never appears in any other rules of the grammar, except 

in the specified start rule. The other nonterminal is, of course, in 

a terminating rule. This is done in order to preserve the format of 

the normal form of the CFG. The contribution of such a rule to the 

content of the element of the M—matrix corresponding to LS nonterminal , 

ie. Als is equal to the content of the element of M corresponding to 

non-dummy nonterminal (either Ss or 4) . 

It is possible to achieve some savings in the computation of 

the M-matrix. This is because not all elements of the M-matrix are 

required to be computed. Elements Ms ay for which i+j>2+1 need not be 
3 

computed, as there are no substrings of s corresponding to such values 

of i and j. In addition, provided that the length of s exceeds unity, 

elements for which i = 1 and which correspond to the start symbol, 

ie. k = r, need not be computed. 

The following example illustrates a completely filled M-matrix 

for a given string and a specified CFG. 

Example 4.2 Consider a normal form CFG Gos (VysZ.R,&) 

where Wy = (Ay sAprAy Apr tesdgs dos Aas hgordy eA, =6) 

= = (B,C,D,E,e, j,h) 

R= A —e Ay _ AA, A. _ AzoAy 

Ay — EF Aso —> AnS AL —_ 4s Asy 

Ay —~ h 3 —_ AgAy 

he —- D 

4s —~ sB 

AG — j 

eer) © 

The M-matrix (nonweighted) for the string s = BjC and the



grammar G 

=T4 = 

is given in table 4.1 below. 

  

  

  

  

  

  

          

4e2 

i iu 3 

Zz 1 2 3 1 2 z 

substring B J Cc Bj jc Bjc 

A e 1 At 2 2 3 

Ay 1 1 ak 2 2 3 

A3 1 1 2 2 2 3 

A = iS 4 ib él 2 3 

> oO 1h z z 2 2 

Ag 1 ° XL i 1 2 

Ay 2 ah ° 2 1 2 

Ay 2 2 2 2 2 3 

Ayo 3) 3 3 3 3 3 

A533 2 1 1 2 0 1 

A, - - - 1 a 0 

  

Table 4.1 M-—matrix for string s = BjC and grammar G 
4.2 
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423-2 Weighted M-matrix 

This section describes an iterative procedure for computing 

the weighted version of the M-matrix. This type of the M-matrix is 

usually employed if it is decided to attach some sort of 'significance' 

to each and every symbol in the alphabet. Not all parts of the iterative 

procedure for computing the nonweighted M-matrix need to be modified 

in order to obtain the weighted one. Thus, unless stated otherwise, 

all definitions and derivations required for the computation of the 

weighted M-matrix are assumed to be the same as those given in the 

previous section. 

First, some definitions necessary for the discussion of the 

iterative procedure are given below. 

Definition 4.6 For a given CFG in Chomsky normal form and for a 

string s as described in definition 4.4, the weighted M-matrix (here- 

after referred to as wil-matrix), wM, is a three dimensional, Lele vr 

matrix ; where land r have the same meanings as in definition 4.4 . 

Element ic of wi denotes the WLD between an observed length-i sub— 

string of s, whose first symbol is iy and a prototype string y 

generated from Ays the kth nonterminal. 

Using the same example that exemplifies definition 4.4, 

where AY derives cd and that s = deded, the content of element m 
4, 2,k 

of the wi-matrix associated with substring cded becomes |significance 

of ret + | significance of tar| - Substituting for the significance 

values of symbols 'e' and 'd' as given by the table in appendix B 

yields m oe = OE aoe 
4,2, 

Definition 4.7 The weighted hierarchy level (WHL) of a nonterminal Aus 

denoted by wH(k), is the sum of the absolute values of the significance
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of all symbols in a string derivable from Aye 

As before, every nonterminal in the CFG's to be inferred will 

have a unique-valued WHL,except for the start symbol An 

The following is a procedure for computing the WHL's of non— 

terminals in a CFG. 

(a) WHL's of nonterminals in terminating rules 

wH(k) = |significance of ay, for a rule AL > a in the cré 

  

(4415) 

This, again, follows from the definition of the WHL. 

(b) WHL's of nonterminals in bielement rules 

wH(k) = Min [vate) + waa) ] (4.16) 
P,GEP, 

where Py is defined as before. 

The above follows from the same reasons given for equation 4.10 . 

4n iterative procedure for the computation of the wi-matrix 

to be presented below is also divided into two parts, one each for the 

terminating and bielement rules. The part for bielement rules is the 

Same as part 2 of the procedure for the computation of the M-matrix, 

except that all the HL's are replaced by their corresponding WHL's. 

Part 1 : Terminating rules 

Gyr ea 

™ ak = significance of by - significance of a, (4.17) 

for a rule AY a in the CFG. 

This follows from the definitions of wi-matrix and of terminating 

rules.
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(GA) rt ee, 3 see 

j+i-1 = 

m. = aes {ut 2 Slee n ics amet of v,| 
ij 

Wz [stentiomee of b,| } (4018) 

The above follows because a substring of length-i, whose first symbol 

starts at position j can be considered as to consist of i sub-substrings, 

each of unit length. Only one of these sub-substrings can be matched 

against ays the terminal in a rule AY =a of the CFG. 

Part 2: Bielement rules 

(444) G=1 

™ ic = Min { in[ my ,, +wH(a), m, ae jot *HC0)] i (4.19) 
Po aeP, 

where PL is defined as before. 

This follows from the same reasons as those given for equation 4.13 

with the replacement of H(p) and H(a) by wH(p) and wH(a) respectively. 

(SR) 2 e953, sang ® 

Ti se = Min { win [mn m, jptWH(a)) mj at wH(p), 
P,eP, 

Min (m 
Agger Die. nia S29) 

where PL is defined as before. 

This also follows from the same reasons that elucidate equation 4.14, 

with H(p) and H(a) being replaced by wH(p) and wH(a) respectively. 

An example of a wii-matrix is illustrated by table 4.2. The 

string is s = BjC and the grammar is the CFG G taken from example 4.2. 
4.2 

Values of significance of various symbols can be found in appendix B.
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i t 3 

j a 2 Bi L 2 1 

substring B i c Bj ic BjC 

4 T a 8 a 8 10 

Ay 3 515 a 13 te 14 

A, 10 2 UL 4 5 1 

Ay 2 eh 1 12 11 13 

4s QO) ake ah 10 Ld 23 

Ae 12 GCickS 2 a 5 

Ar lie 3 0 ait 10 12 

Ag 8 10 1 Le itd 9 

Ayo LO Le, 25 10 15 ws, 

433 LE 3. 210 5 0 2 

4A, — gi, 3 2 0     

Table 4.2 wM-matrix for a string s = BjC and the grammar G 
he2
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4.4 Inference of a CFG 

The inference method presented in this section is based on a 

search for incompatibility between each string in the sample set and 

the current grammar.For each occurrence of such incompatibility, the 

grammar is augmented such that a new grammar is produced which can 

generate the present string. Fig. 4.2 illustrates the overall structure 

of the inference method which can be explained as follows. 

The symbol strings in the sample set 5, are assumed to be 

arbitrarily labelled 8 Sorecer Sy © The first step is to select the 

Ss 

required type of the M-matrix (weighted or otherwise). An initial cre 

is constructed from the first string 5 such that G generates exactly 

that string ie. Gq is a SG. If there exists only one string in 8.» the 

required grammar is Ge Otherwise, the inference method is applied 

recursively as follows. The nth string, Sy) is matched against the 

(n-1)th inferred cre Gy? for n = 2,...,M,. The matching process involves 

the computation of the appropriate M-matrix whose elements reveal the 

shortcomings of the CFG in relation to its ability to generate the 

and no string. If the element Mir = 0, 5, is derivable from Ga 

change is required, ie. qs = G in-1° Otherwise, information from the 

particular M-matrix is used to augment Ga by appending additional 
1 

terminals, nonterminals and rules, as appropriate, so that the new 

grammar G, can generate the string. The above method is repeated until 

all strings in 5, have been processed. 

The inference method just described will be presented in two 

stages. The first stage is concerned with the creation of the initial 

set of productions from the first string in the sample set. In the 

second stage of presentation, the selected type of the M-matrix is 

computed using the procedures given in the previous section. The current
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( START ) 

Select type of the 
M-matrix       

     

  

Input lst 

    
Construct SG, G. 

(Algorithm 4.1) 

last string 

2 

N 

Input next string 

Compute appropriate 

M-matrix 

(Section 4.3) 

Pr 
Update grammar 

i 

      

Output the 
final grammar     

  

      

      
(Algorithm 4.2) 

      

Fig. 4.2 A schematic diagram of an inference method of a CG
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grammar is then updated where necessary to form an augmented grammar 

as required. 

4.4.1 Formulation of the initial set of rewriting rules 

In the first stage of the inference method, it is arbitrarily 

chosen to process the first string from left to right starting from the 

left most symbol of the string. A set of terminating rules is formed 

first. Then a bielement rule of type 1 is constructed from two non- 

terminals corresponding to the first two symbols of the string. This 

is followed by the formulation of successive bielement rules of type 2, 

where only a is in a terminating rule, until the entire string is 

dealt with. 

4n algorithm for forming the initial CFG is now given. 

Algorithm 4.1 

Step 1 Read the first string 5) = By Paveeby where s, is arbitrarily 

drawn from the sample set. 

Step 2 Form a set of terminating rules as follows. 

For i =1 tot: 

Unless a rule has already been formed with b; on its RS, 

create a new nonterminal Ay and a new terminating rule 
di 

“UR _— bs ° 

(The notation introduced here indicates that 4, is the 

nonterminal corresponding to b,) . i 

The nonterminals derived above form the set of nonterminals 

having unity hierarchy level. 

Step 3 Create a new nonterminal of hierarchy level 2 and a bielement 

rule of type 1 from the nonterminals corresponding to the 

first two symbols of : —> A St eds >, “bs
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(4, denotes a nonterminal with hierarchy level i) . 
i 

ir Q- 2, Ay (= re) is the start symbol, and the formation of 

G is aes ta) 

Otherwise, further bielement rules of type 2 are formed 

as follows. 

For i = 3 tof: 

Create a new nonterminal Ay and a new bielement rules 
i 

“i, oe By ; 

a (=4,) is the start symbol. This completes the construction of G,. 

The corresponding schematic diagram is depicted in Fig. 4.3 . 

4.4.2 Updating the existing grammar 

The following algorithm is employed in the formulation of Gq. 

from Gi for n =2yeeesllee 

Algorithm 4.2 

Step 1 Read a string ooh Dy boeweby ° 

Step 2 Find iteratively, using the procedures in section 4.3, all 

necessary entries of the chosen type of M-matrix for S,° 

Step 3 If Mp is not zero, go to step 4. 

Otherwise, G. = G+ 

Tf 5, is the last string, END. 

Otherwise, increase n by one and go to step l. 

Step 4 Formation of terminating rules 
  

For i=l tol: 

Create a new nonterminal A, and a new terminating rule 
a 

Ay = by if, and only if, there does not exist a rule 
a 

with by at its RS.
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( START ) 

  

Read lst string 

  

Form a set of 
terminating rules 
  

    
Create a nonterminal of 

hierarchy level 2 and 

a type 1 bielement rule       

a a) 
N 

  

Form further new 

nonterminals and 

bielement rules of type 2       

Fige 403 A schematic diagram of algorithm 4.1
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Formation of bielement rules 

Select a set of indices Jy 2 

For i=2-1; 

Select Jp as the least j for which m is minimum. 
$-1,5,7 

For i = (0-2), (2-3),..02 2 

Select dy as the least j for which Mir is minimum and 

for which jy Sm} Jia 

Each J is the j index of Ts ake corresponding to a substring of 

length i. 

Each will lie in the range 1< j,s Q-i+l because, as explained 

previously in section 4.3.1, there are no substrings for 

values outside this range. 

Form the new bielement rules. 

For. J mx2)'3 

Create a new nonterminal Ay and a new rule — Ay a 4 
2 2 eve 

unless these nonterminals and the rule have already been 

created. A. and A. are the nonterminals in the 
Jo doth 

terminating rules having b. and b. » respectively, 
Jo dott 

on the RS. 

For i= 3 tol: 

ar: Jy-1 7 94? form a new bielement rule “h > Aj Ma-1? 

where An is a newly created nonterminal, unless there 
i 

is already a rule of the form ae — BA, “1? in which case 
i 

oo is used as Ay + (B represents an arbitrary nonterminal ). 
a: 

af Sie 
> A. » where is a newly created An An-145,+8(h,-1) Ah; 

= dy? form a new bielement rule 

nonterminal, unless there is already a rule of the form
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oa — “n-1? in which case as is used as AL . 

Represent ne as A, » the start symbol. 

Lf: 5, is the last string, END. 

Otherwise, increase n by one and go to step 1. 

A schematic diagram of the above algorithm is depicted in Fig. 4.4 

4.5 Illustrative example of a GFG inference 

The following set of sample strings, taken from Bezdel and 

Briate(2°), represents the output from the FE in a speech recognition 

system when the word 'SEVEN' was spoken by different speakers. 

The strings are : 

5, = sauau 

8, = fsau 
2 

a, = fsu 

Ss an saiaua 

Bees eet 

se = fpsau 

87 = saiau 

The following illustrates the step-by-step operation of the 

inference method using the nonweighted M-matrix. Only the elements of 

the M-matrix relevant to the augmentation of the CFG's are shown, ie., 

the entries My jp For i =2ye-0, and j = lyese, L+1-i. The indices ae 

selected are indicated by a prime on the associated element of M. The 

rules added at a given stage are indicated by the use of ~ lines 

underneath the rules.
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    Input a string s, 

    
Compute the 

appropriate M-matrix 

    

        

N 

Form terminating 

rules 

  

  

  

Select a set 

of J 

  

    
Form bielement 

rules       

   

  

  

  
nene+1 

  

  

Fige 4.4 A schematic diagram illustrating an algorithm for 

updating a CFG 
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Stage 1 

Formation of a directly from s- 

8) = sauau Gs era 213 a pie Soap als 

tg 2 43 Aaly 
dae Ay Aya4o 

Stage 2 

85 = fsau G,: A —s A — AA, i, as 

z Lees A, — a A3 > AAs pom a Aatis 

2S 3° 3. Au Aan Aste 

Mel] 34-2" aS 

4 ]3 

Stage 3 

53> fsu G5: 4 —s No _ AA, Saas aes 

Ne Spina ats ee ais ee eS 
2 eee A, — Ag At fet Aish 

M= ~~ 
3 - ae 715 fai 

Stage 4 

84 = saiaua Gt A —~s Alo _ AA, A, — eT AS 

Pl ese ae Bes Se Sa ene recat 
2 toss) 3S Ayu Aly — AvoAsS AS ae es 

~ ~en 
Sl e2t 13 tee 2 A,—f Ag Asks A — ALete 

M=| 4 | 2" 2 2 Ase i A AA 

Daan ees 46> Ay ahs 
~ ~nw 

ew 2         
At the end of this stage, G, predicts three additional 4 

strings, namely, sauaua, saiau, and fsai.
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Note that the predicted string saiau subsequently appears in the set 

as 8. 

  

  

        

  

  

        

q° 

Stage 

as = sau Ges 4 —s Alo — AAS A. — A ahs 

A, —a 43— Ay oAS boomed AA 

aN ae oo eee oars ea oot ee 

eee ale! 2 diaper ain 1 3 eee 6 2 
Je 1 PS mie Poem gama oye 

~~ 

iG las 

Stage 6 

85 = fpsau Gee 4 —s 4s — AAS A, a Aas 

4, — a 443 — Aleds 4, —e Ayan 

woe a$ She eked 3, ae Loe etre 
i BOVE Sena silica! icky A, — Agds 

Me 3 2-e2) 0! oe Aps AA, A, AAS 

4 @ 1? Ag — P Algae “143 Ae 

a, ~ ~n 
5) | 2 47 Achy 

~~ ~nNw 

The string fpsai is added to the set by Gee 

Since 87 = saiau is already in the set, the final grammar is Ge. 

A PIN of Ge is depicted in Fig. 4.5.



  

(2) Principal graph 

Fig. 4.5 A PIN of the inferred grammar G, 

  

4.6 A recognition scheme for CFG models 

Figs 4.6 displays the general features of the recognition 

scheme B which is another method of the recognition of isolated words. 

Two major differences distinguish scheme B from scheme A described in 

section 3.3 and Pig. 3.13. The first difference is that, in scheme B, 

production probabilities are employed to select the most likely word 

in both of the following cases : (i) an exact match - where two or more 

grammars can generate the observed string, and (ii) a closest match — 

where two or more grammars could nearly have generated the string with 

the same penalty incurred. The second difference is concerned with the 

use of the AWSL criterion (to be explained later) in place of 2 stochas— 

tic method in scheme A.
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sample strings 

  

peers a ee oo LEARNING MODE 
Estimation of string 
probabilities     
  

rul¢@s or 
representative strings 

aan Find a best match 

(including an exact 

match) for the string 

  RECOGNITION MODE 

string     input 
  

     

     

   

    

‘fe best match cor— output 

   
respond to more deotat 

+k one ecision 

Apply string probabilitieg 

to select the most 

likely word 

    
  

  

Apply the AWSL criterion 

to select the most 

suitable word 

  
    
  

Fig. 4.6 Flow diagram of the recognition scheme B
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The following outlines a recognition system whose flow diagram 

is shown in Fig. 4.7 based on the above mentioned recognition scheme B 

and pre-inferred CFG's. 

4s in scheme A (and in many IWR systems), the recognition 

system consists of two phases of operation - the learning phase followed 

by the recognition process. In the learning mode, normal form CFG's, 

one for each word in the vocabulary, are directly constructed from a 

set of sample strings using the method of section 4.4 . The inference 

process involves the computation of either a wM or an M-matrix whose 

elements can be iteratively computed by the procedures given in section 

4.3 « The prior knowledge of the significance of symbols involved (or 

the lack of it) influences the selection of the type of the M-matrix. 

Estimation of production probabilities of the inferred CFG's is also 

carried out during the learning operation. 

In the recognition mode, an incoming string is analysed to 

determine which grammar, if any, could have generated it. The determina~ 

tion of a best match for the string, which can be either an exact 

match or a closest match, is accomplished by using the wi-matrix as 

a recognition matrix. The foregoing statement assumes, of course, that 

the significance of various symbols in the alphabet is known or can be 

determined beforehand. The wi rather than the M-matrix is chosen 

because, from experimental observations, the recognition performance 

when employing the former improves significantly over that when the 

latter is used. 

Appropriate decision is given at the output of the system if 

the best match found above corresponds to only one word in the 

vocabulary. Otherwise, production probabilities are employed to select 

the word that is the most likely (probabilistically) to have correspond
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sample strings 

| 
Inference of a CFG 
(Computation of M or wi- 

  

matrix) + 
Estimation of production LEARNING KODE 
probabilities       

rewriting | rules 

  

Compute the wi-matrix     soe (Section 4.3.2) RECOGNITION MODE 

string to find a best match 
input for the string 
  

    

  

he best match 
correspond to more 

than one word ? 
       

     
    

N output 

    

decision 

  

Apply production 
probabilities to select 
the most likely word 
(Section 4.6.2)       

    

  

      

Is 
there more 

than one such 
word ? 

  

Apply the AWSL criterion 
to select the most 
suitable word 
(Section 4.6.3) 

    

      

Fig. 4.7 A CFG-based recognition system using scheme B of 

the recognition method
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to the best match. For the case where there occur two or more such 

equally likely words, a selection is made of the most suitable word 

according to the AWSL. criterion. 

In the following sections, descriptions are given of various 

recognition operations mentioned above. These will be followed by the 

formal presentation of a recognition algorithm comprising the fore- 

mentioned methods for the representation of the overall recognition 

process. 

4.6.1 The wi-matrix as a recognition matrix 

The determination of structures or syntactic analysis of 

strings generated by CFG's have been studied and investigated by many 

researchers in the computing field. Numerous algorithms have been 

proposed for the recognition of CFL's, for example, those in references 

89-94. Among the algorithms mentioned above, that of Younger 94) is 

similar to the one presented here in the format of presentation. 

Major features of each method can be described as follows. In the 

recognition matrix of Younger, an incoming string is accepted as 

belonging to the language of a given CFG provided a certain element of 

this matrix is 1. If the element of the matrix is zero, the string is 

rejected. In the method to be given below, a certain element of the 

wi-matrix represents the smallest distance (WLD) between an input 

string x and some string y generated by the given CFG. In other words, 

the string x is parsed to completion on the basis of minimizing the 

number of syntax errors or symbol alterations. If the content of this 

element of the wi-matrix is zero, x becomes an exact match of y. 

Descriptions are now given of how to apply the wi-matrix in 

the recognition of isolated words. First, assume thet all CFG's
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associated with each word in the vocabulary are in, or have been 

reduced to Chomsky normal form. A recognition can then be performed on 

an input string s of length Q as follows. Form a wil-matrix for the 

string s and each of the CFG using the procedure described in section 

4.3.2 . Decide that the string s corresponds to word Wy, if, and only 

if, the element m(2,1,r) of the wi-matrix associated with word Wy. is 

the largest for all such elements corresponding to all words in the 

vocabulary, where A, is the start symbol. 

The above follows immediately from the definition of the 

wi-matrix. In essence, the method is concerned with the determination 

of the smallest WLD between the string s and some strings derivable 

from each of the CFG's under consideration. For the case where there 

occur two or more words associated with the same value of WLD, the 

technique of the next section is applied to select the most probable 

word. 

The foregoing method also, of course, works with the M-matrix 

(ie. nonweighted version). Computation of the required M-matrix is 

accomplished via the appropriate application of the procedure of 

section 4.3.1 . In this case, the element m(,1,r) of the M-matrix 

denotes the LD between the string s and some string y derivable from 

the given CFG. 

Although, both types of the M-matrix can be employed in the 

recognition of isolated words, the weighted version is preferable to 

the nonweighted one. This is because the use of the former as a recog- 

nition matrix considerably reduces the ocourrence of the situations 

where two or more grammars can generate the string s with the same 

minimum number of alterations . The above is hardly surprising since 

more information about the strings is available to the weighted type
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of the M-matrix than that available to its counterpart. 

A parse (or parses) for the string s can be readily determined 

from either the wil-matrix or the M-matrix in the following manners. 

For the string s to be accepted by a given CFG, all entries of the M— 

matrix (or the wi-matrix) associating with a parse of s must be zero. 

This follows because in order for the entry m(2,1,r) to become zero, 

each nonterminal in the rules that are employed in the derivation of 

s must contribute exactly zero alteration to its associated element of 

the M-matrix. These zero entries can then be used to construct a 

parse for that string as illustrated by the following example. 

Example 4.3 Consider a string s = uau and a given normal form CFG 

G37 (Vyo%sR&) where :- 

Wy = Cyr Age dys 918 394 gods rA ee) 
= = (a,i,u) 

R Segre eal ag eee nt ar ate 

Ae at 2 eee Ae 

Sa 1S eri ate eb 

Say Aes. op eed 
A, — 3 

The M-matrix of s with respect to &, 3 is shown in table 4.3 .



  

  

  

  

  

  

i a§ 2 3 

j 2 2 3 pes a 

substring | u a u ua au uau 

O21 0 gad 2 

A, TOL = es 2 

43 Ded UL Bate: 3 

Ao on Oa aE 

4 3 task Oh 20 1 

4 4 2 ae ee 0 

              

Table 4.3 The M-matrix for string s and grammar G Ae} 

Since the nonterminal 43 does not appear in any of the start 

rewriting rules, the entry m(2,2,13), even though its value is zero, 

cannot be considered in the construction of the parse of s. Although 

the nonterminal ANA is in a start rewriting rule, that rule does not 

contribute zero penalty to the element m(3,1,r), and therefore 4a is 

not valid for the determination of the parse of s. A similar argument 

applies to element m(2,2,r). All valid zero entries in table 4.3 are 

shown underlined. Fig. 428 depicts the one and only one parse of s.
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ve 
Alo 

Vee 
eer 
u u 

Fig. 4.8 A parse of string s = uau w.r.t. grammar Gy 2 

4.6.2 Selection of the most likely word 

This section describes a method for dealing with the situation 

mentioned in the previous section where the best match between an in- 

coming string s and a given set of CFG's corresponds to two or more 

words in the vocabulary. For the case of an exact match, the above 

situation becomes, of course, the NE. The method presented here 

most closely related to that of section 3.4.2 in the following way. 

Both methods are based on the approach of using stochastic grammars to 

determine the importance of various strings in probabilistic terms. 

The approach involves the counting of the frequency of usage of rules 

of the CFG's. However, the method given below is applied not only to 

cases of exact match, as is the method of section 3.4.2, but also to 

those of closest match. 

The following definition follows closely that of a SFSG 

stated in definition 3.7 . 

Definition 4.8 A stochastic normal form context-free grammar (SNCFG), 

Gas is defined as :— 

G@, = (Wy E> Rios £) (4-21) 

where Vy =, and & are as defined earlier.
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a is a finite set of normal form stochastic productions, 

each of the form 

Ays By Se © Vy 

or 

  

4€ {ty- eh , a,€% 

where Psy and Py? the production probabilities, are as 

defined in equations 3.2 and 3.3 , respectively. 

Estimation of the above production probabilities follows the 

method given in section 3.4.2 . 

Discussion is now presented concerning the forementioned 

method of selecting the most likely word. The basis of the approach 

which is based on the framework of Khert (95 ) on the investigation of 

the entropy of CFL's can be explained as follows. 

It is of a normal practice to assume that the estimated 

probabilities associated with the productions of the SNCFG are indepen— 

dent. Given also that an input string s can be matched nearest to some 

string yeL(¢,.) which can be generated from J distinctively different 

derivations in Ge It follows from the independence of the productions 

that the probability of generating y by one of the J derivations is 

equal to the product of the probabilities of sequence of productions 

employed in that derivation. The sum of the probability of each of 

these J derivations gives the overall probability associated with y. 

The method is then to apply the above procedure to each grammar that 

generates some string y having the same smallest value of WLD from the 

string s. Word we is selected as the most likely word whose grammar 

could most nearly have generated s if the above probability of string 

y corresponding to word wy, is the largest for all the words associated
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with the same WLD. 

4.6.3 The AWSL criterion 

As mentioned earlier, the application of the method given in 

the last section to the recognition of a string s can result in the oc- 

currence of two or more equally likely words. In such a situation, it 

is necessary to employ the technique given below to select only one 

word that is the most suitable according to a given criterion. Before 

proceeding with the presentation of the method, some definitions are 

first introduced as follows. 

Definition 4.9 ‘The average weighted string length (AWSL) for a given 

CFG is the sum of the absolute value of the significance of each and 

every symbol appearing in all strings in the sample set that has been 

used to infer that grammar, divided by the number of total sample 

strings. 

Mathematically expressed, the AWSL can be calculated in the 

following manner. 

Let the sample set be 

S, = (s, | j = 1,2,+++)M,) (4.22) 

ih SLL Bore eD. is the jth stri in 5 where s Ps je is the jth string i 
Lee 

My is the number of total strings in S. 

QL is the length of string as . 

From the above definition, 
Mt 

awst = > = significance of b, (4.23) N a 
jel ial 

Definition 4.10 The weighted string length (WSL) of a string s is the 

sum of the absolute value of the significance of all symbols in s.
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, 2 
ie. WSL of s = S |significance of bs (4224) 

isl 

where s= BL Pyveedy for a string s of length L. 

The method is to compute the AWSL for CFG's associated with 

every word in the vocabulary. For an input string s, select word wy 

as the most suitable word, provided the WSL of s is closest to the AWSL 

for the CFG corresponding to word w, Ne in comparison with all words in 

the vocabulary. 

The foregoing procedure is based on experimental observations 

of various sets of strings corresponding to different words in the 

vocabulary. It is found that values of AWSL's for different sets of 

strings are reasonably placed from one another provided the number of 

strings in each set is not too small. The above technique based on the 

AWSL criterion thus provides a quick, simple and reasonably reliable 

method for solving the uncertainty situations such as those where there 

occur two or more equally likely words. Since the procedure is applied 

as the final stage, rather than as any of the earlier stages of the 

recognition process, the method can only improve the overall recognition 

performance and not impair it. It can be seen that the above is so if 

it is realized that the method is only applied when the output decision 

has to be made on two or more equally likely words. In this situation 

and without applying the AWSL criterion, it would not be possible to 

select one word from many equally probable alternatives, except for the 

arbitrary selection or guessing of the output. The result, in the worst 

case, with the inclusion of the criterion in the recognition process 

would be the same as above, when it is not included.
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406.4 A recognition algorithm 

The following is a formal presentation of an algorithm that is 

employed in the recognition system of Fig. 4.7 for the recognition of 

isolated words. All three methods previously described are incorporated 

in the algorithm to form the overall recognition process. Unless stated 

otherwise, all symbols appearing in the algorithm have the same meanings 

as before. A schematic diagram of the algorithm is also depicted in 

Figs 4.9 . 

Algorithm 4.3 

Step 1 Read an input string s = Dy doeeedy . 

Step 2 Fork=1, We 

Compute the wi-matrix for string s and the CFG associating 

with word Wy using the procedure of section 4.3.2 . 

Store a (k) = m(Q,1,r) corresponding to word Wye 

where a (x) is the WLD between s and the CFG associated with 

word Wye 

Step 3 Compute Di = Min a (k) 
kel 

Step 4 Find an index k whose value of a(x) equals that of D . 

If there exist two or more such k indices, go to step 5. 

Otherwise, decide word Wy associated with index k to be the 

required output; END. 

Step 5 Let Wy be the number of words associated with the same value 

of Ds 
m 

For kel, W. ¢ 
N 

Compute and store Q(k) 

Zt X(y,) 
where x)= = TT P; (¥%,) 

dal del 

where is a string generated by the CFG associated with 
% 

word W, with a WLD between y, and s of the value D..
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( START ) 

/ Read a string s ; 

Compute d_(k) 
for k=1,W » 

  

      
W 

Compute b= ee 4 (k) 
k=1       

  

      

  

output Ww, as the 

required word    

  

Compute Q(k) 

fork=1, Wy 

  

    

Wy 
Compute Q =Nax Q(k) 

kel       

  

  

Compute dg(k) 

fork =1, Wy 

W, 
Compute D, = wid a (k) ae 2 

  
  

  

    
  

  
Fige 469 A schematic diagram of algorithm 4.3
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Step 6 

Step 7 

Step 8 

Step 9 

Step 10 
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I(y,) is the number of steps in the derivation of Yer 

p, (y,) is the probability of the production used at the 

ith step of the derivation of ye 

J is the number of distinctively different 

derivations of Jy 

W, 

Compute Q. = nal Q(k) 
kel 

If there occur two or more words associated with the same value 

of Q go to step 8. 

Otherwise, decide that wy 

Q(k) = Q, 5 END. 

Compute the WSL of s. 

is the required word if 

Let Wy be the number of words associated with the same value 

of Qa: 

For k = 1, Wy 

Compute (kk) = |WSL of s — AWSL associated with word : Mx 

Wy 
Compute Dy = Min dy (i) 

kel 

If there are two or more words associated with the same Dg» 

reject s and END. 

Otherwise, output w, as the most suitable word, ic 
if p(k) = Dy 5 END.
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4.7 Discussion 

The inference algorithm presented in this chapter employs an 

incremental method for the construction of nonrecursive CFG's. 

Consequently, the inferred grammars produce only strings of some finite 

length. This is appropriate for applications such as automatic 

recognition of isolated-words, where finite-length strings only are 

involved. 

It is, of course, possible to generate grammars for non-finite 

languages by modifying the way new nonterminals and rules are appended 

at each stage of the inference process. One way this can be done is to 

remove restriction on the recursivity of nonterminals allowed in bi- 

element rules, for example by permitting productions of the form 

An — AAD . 

The method presented is guaranteed to generate a proper non- 

recursive CFG that is capable of producing all the given strings, 

irrespective of the order in which they are presented to the algorithm. 

In addition, any other strings created by the grammar will be similar 

to those in the training set. The method inherently produces compact 

CFG's having a near—minimal number of rules and nonterminals. These 

are due to the way the grammar is augmented. At each stage of the 

process, the algorithm determines the parts of the current grammar 

that most nearly generate the present string, so that the additions 

represent minimal change.



MODEL EVALUATION AND EXPERIMENTAL RESULTS 

5el Basic recognition systems 

This chapter is concerned with various evaluation and 

analytical experiments regarding the application of formal grammars to 

model a FE in the recognition of isolated words. The experimentation 

mentioned above involves the use of four basic recognition systems 

which can be described as follows. 

(1) A SFSG-based recognition system using scheme A of the recognition 

method given in Fig. 3.13 

This system will later be referred to as SFS-A recognition system. It 

is, of course, the system described in chapter 3 and its corresponding 

flow diagram can be found in Fig. 3.14. 

(2) A SNCFG—based recognition system with the recognition scheme B 

of Fig. 4.6 

Chapter 4 provides detailed descriptions of the system which will be 

known as SCF-B recognition system. The associated schematic diagram is 

depicted in Fig. 4-7 « 

(3) A SFSG-based recognition system using the recognition scheme B 

The above system, hereafter referred to as SFS-B, is implemented and 

included in the proposed recognition systems for the following reasons. 

In one of the presentations given below, it is required to evaluate the 

performances of the inference of two types of grammars, namely the FSG 

and the CFG, in the modelling of a FE. In such an application, it is 

necessary for the two recognition systems concerned to use the same 

recognition scheme. Two options are available for the selection of the 

required system : either to use the SCF-A or the SFS-B system.
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It is found , however, that the former is more difficult to implement 

than the latter. It is for these reasons that the SFS-B system is 

implemented. Additionally, this system together with the SFS-A system 

are also used in comparing the performances of the two recognition 

schemes A and B . Methods of sections 4.6.2 and 4.6.3 are employed in 

the recognition part of the SFS-B system. This is illustrated by the 

flow diagram of Fig. 5.1. The CFG's involved in the method of section 

40622 are , of course, replaced by appropriate FSG's. 

(4) A recognition system based on direct storage of strings in the 

training set and using the recognition scheme B 

This system whose flow diagram is depicted in Fig. 5.2 will subsequently 

be known as the stochastic template matching-B (STM-B) recognition 

system. It is implemented in an attempt to determine whether the use 

of formal grammars offers any advantage over the direct storage of 

strings in the recognition of isolated words. In the learning mode of 

this system, the probabilities of the representative templates are 

estimated by counting the frequency of occurrence of strings in the 

training set. The matching of an incoming string to a set of templates 

during the recognition mode involves the application of the WMN 

technique described in section 3.4.3 . In this case, the required FIN 

is directly constructed from a given set of sample strings such that it 

represents exactly those strings in the training set and no other 

strings. The principles of sections 4.6.2 and 4.6.3 are again applied 

as appropriate in determining the decision of the output. 

For simplicity and for fast development of the computer pro— 

grammes involved, all four systems described above are implemented in 

FORTRAN on a 28K PDP 1lv03 minicomputer. Data required for the 

experiments is taken from a vocabulary of ten digits 'ZERO' to 'NINE" 

uttered by a single speaker (A.J.PUTMAN) . Putman also designed and
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sample , strings 

  

  

Inference of a FSG 
(Algorithm 3.1) 
Estimation of produc- 
tion probabilities 
(Section 3.4.2)     

LEARNING MODE 

  

  

  

      

  

    

     

  

rewriting | rules 

RECOGNITION MODE 

Output 
unknown, Parsing algorithm Accepted “string correspond decision 

4 to more than string (Algorithm 3.2) a input one word? 

Failed   

  

  

  
Apply WMN technique 

to find a closest 

match (Section 3.4.3)     

  

Apply production 
probabilities to 
select the most 
likely word 
(Section 4.6.2)       

    
flatch correspond 

to more than one       
  

    

   there more 

han one such 

word ?        

  

  

Apply the AWSL 
eriterion to select 
the most suitable 
word (Section 4.6.3)           

Fige 5-1 A SFSG—based recognition system using the recognition scheme B



unknown 
——»| to find a best match 

string 
input 
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sample strings 

  

  

Store strings as templates 

+ 
Estimation of probabilitiep 
of templates     

repregentative 
templates 

  
  

  Apply the WMN technique 

(including an exact match) 
(Section 3.4.3)   
  

    

   

   

   
the best match 

correspond to more 
than one word ? 

  

  

Apply probabilities of 

templates to select the 

most likely word     

       
  

ere more than 

one such word? 

  

  

Apply the AWSL criterion 

to select the most suitabl +——» 

word (Section 4.6.3)     

LEARNING MODE 

RECOGNITION MODE 

output 

      

decision 

  
Fig.5.2 SIM-B recognition system using template matching 

and recognition scheme B
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built the rl96) which is used to generate the required data. The 

speech signal of the spoken digits is of telephone-grade quality. This 

is obtained from a normal telephone set via a circuit representing two 

limiting local lines. Deatils of this circuit together with those of 

the hardware and software parts of the FE can be found in reference 96. 

Appendix C gives a training set of 100 strings representing 

ten spoken digits, each of ten repetitions, obtained from the FE as 

described above. The symbol strings which will be used as a recognition 

set are provided by appendix D. The set consists of 500 strings in 

total with 50 strings for each of the ten digits spoken. Numerical 

values representing the significance of various symbols can be found 

in appendix B. 

52 Evaluation and comparison of models 

In this section, some aspects of the modelling of a FE by FSG's 

and CFG's in the recognition of isolated words are investigated and 

their results are evaluated. This involves running the appropriate 

recognition systems described in the previous section using relevant 

control parameters. The results obtained are then analysed and com— 

parison is made between different models concerned. 

502.1 Recognition performance 

A simple and useful method for evaluating different types of 

recognition systems implemented in the previous section is to determine 

their respective recognition performances using the same set of data. 

The confusion matrices resulting from the test runs of SFS-A, SFS-B, 

the weighted and nonweighted SCF-B and SIM-B systems are given in 

tables 5.1 to 5.5 respectively. Details of data employed in all test
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0 z 2 3 4 5 6 1 8 9 0 | Rej. | Cor. 
Rece 

1 |]4 2 iu 4. 

2 43 | 1 5 1 43 

3 Bal Pe3q|2 a aes |e |e 23 

Agi Gt (eed 38 3 4 38 

5 AT 3 AT 

6 42 8 42 

1 1 4 34 1 1 3 34 

8 2 125/136 36 

9 2 1 2 5 27 5 27 

0 2) 6 | 3 1 |) D238) eae 34 

Table 501 Confusion matrix of SFS-A system (Pp/P,/Pg = 1.0/2.0/2.0) 
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Table 5-2 Confusion matrix of SFS-B system 
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Table 5.3 Confusion matrix of SCF-B system (weighted) 
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Table 5.4 Confusion matrix of SCF-B system (nonweighted)
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Table 5e5 Confusion matrix of SIM-B system 

  

system} sFs-A SFS-B SCF-B STB 
weighted fnonweighted 
  

  

  

Total 365 367 366 364 365 
Cor.Rec. 

+ 

% 7300 1304 13062 72.8 7320                 
Table 5.6 Recognition performances of various recognition systems
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runs have already been described in section 5.1 . Table 5.6 sums up the 

overall performances of various recognition systems whose confusion 

matrices appear in tables 5.1 to 5.5 . To facilitate the presentation 

and enhance its format, results of the STM-B system are also included 

in the tables mentioned above, though they will not be discussed until 

in section 5.3. 

Before the comparison of the recognition performances between 

FSG and CFG models can be presented, it is essential to discuss some 

possible sources of errors that cause incoming strings to be incorrectly 

recognized. Basically, the performance in terms of strings correctly 

decoded by a recognition system depends on the followings :- 

(a) Feature extractor 

One significant factor which governs the recognition per- 

formance is the degree of overlapping between strings associated with 

different words. It is possible for a FE to produce very similar 

strings or even exactly the same strings representing various words 

in a given vocabulary. For example, string 'Q' appears in both of the 

words 'TWO' and 'THREE' of the testing set given in appendix D. In 

another illustration, string 'JoC' from word 'FOUR' of the training set 

in appendix C also appears in word 'SEVEN' of the testing set. For the 

occurrence of such strings,it immediately follows that the strings 

concerned will be misrecognized. Thus, the importance of a FE and its 

influence on the overall performance of an IWR system and the need for 

a good FE cannot be overemphasized. In general, the basic criterion 

governing the design of a FE is to obtain the largest possible intra- 

string distances (LD or WLD) between all words concerned. This should 

cut down the number of overlapping strings with the consequent improve-— 

ment of the recognition performance.
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(b) Learning algorithm 

The learning part of a grammar—based recognition system can 

contribute to the overlapping of strings and henge inducing errors in 

the recognition process in the following manner. The grammar inferred 

for one word can predict or generate strings, in addition to strings 

in the training set, which are similar or very similar to strings of 

other words. This depends to a large extent on the intra-distances of 

strings between different words in the training set and to some extent 

on the learning algorithm used. As an example, string 'BdEj@h' in word 

'‘SIX' of the testing set is wrongly recognized as word 'EIGHT' by the 

weighted SCF-B recognition system . This is because the inferred gram- 

mar associated with word ‘EIGHT’ predicts an additional string 'Gjoj' 

from strings 'Gj@Bf' and 'GjHj' in the training set of the same word. 

This in turns is caused by a small WLD between strings 'Gj@Bf' and 

‘Gk@f' in words 'EIGHT' and 'SIX' respectively in the training set. 

Since the string under test 'BdBj@h' resembles more closely (in terms 

of WLD) to the predicted string 'Gj@j' than to the training string 

‘Gkef', the recognition system gives the incorrect output decision as 

described earlier. 

In an effort to restrain the occurrence of the above situation 

as far as possible, many learning algorithms are formulated on the 

basis of the following requirement. The algorithm should be such that 

the inferred grammar, apart from producing strings which are similar 

to the ones in the training set of the same word, generates as small 

as possible the number of strings that are closely resembled to strings 

of other words. One criterion usually adopted to satisfy the above 

requirement is to construct the inference algorithm so as to maximize 

the similarities between strings corresponding to the same word in the 

training set. As described in chapters 3 and 4, all learning algorithms
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presented in this thesis employ the above criterion in the construction 

of various grammars. 

(c) Probabilistic part of recognition algorithm 

In the recognition process, it frequently happens that two or 

more grammars could have equally generated an incoming string with the 

same minimum penalty (LD or WLD) incurred. This nondeterministic situa- 

tion resulting from either or both of the sources in (a) and (b) can 

be broadly divided into two groups. In the first category, one of the 

candidate grammars correctly produces the string whilst in the second 

group none of the grammars provide the correct recognition. Methods 

using probabilities have been developed in both recognition schemes A 

and B to select only one grammar which is the most suitable according 

to some criteria. For obvious reasons, the second group of the non- 

deterministic situation inevitably yields incorrect decision irrespec- 

tive of whatever probabilistic method is used. For the first group, the 

methods can make a wrong decision which may be caused by the inadequacy 

of the sample set used in the estimation of production probabilities. 

As an example, consider the classification of string 'Fjc' 

taken from word 'THREE' of the testing set using the weighted SCF-B 

system. The string 'FjC' could have equally been derived from grammars 

of words 'THREE' and 'NINE' with the same minimum penalty of 5 from 

strings 'HiF' and 'Ihc' respectively. Since the string probability of 

‘IhC' is greater than that of 'EiF', 'NINE' is wrongly selected as the 

word most likely to correspond to string 'FjC'. Although the above 

shows some defects of the probabilistic parts of recognition algorithms, 

the methods still provide better performances when compared with an 

arbitrary selection of one grammar from a set of equally suitable 

grammars in the nondeterministic case.
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From the inspection of table 5.6, it can be seen that the 

highest recognition performance that can be achieved is only 73.4% 

(SFS-B system). This is much lower than the performance normally claimed 

by many experimental systems for the recognition of isolated-words using 

the same vocabulary. For example, the system of white?) is reported 

to obtain around 96 % correct recognition for a vocabulary of the same 

ten digits. By investigating further, it is found that most of the 

errors (about 90 % of total errors) occurring in all recognition systems 

of table 5.6 are due to the FE as already described in part (a) of 

sources of errors. If most of these errors were rectified, the overall 

performances of the recognition systems in table 5.6 would become 

comparable to that mentioned in the literature. Since, according to 

reference 96, only about one-third of useful features extracted from 

the input speech signal are used in the encoding of symbol strings such 

as those given in appendices C and D, it is hardly surprising that the 

overall recognition performances stated in table 5.6 do not measure up 

to those of comparable systems appearing in the literature. It is also 

interesting to notice that 'THREE' appears to be the worst recognized di- 

git as shown by the given confusion matrices. This may result from the 

difficulty in pronouncing the digit such that the generated strings do 

not resemble too closely with strings of other digits. 

From tables 542,5+3,5-4 and 5.6, it seems that the use of FSG's 

and CFG's to model a FE offers comparable recognition performances with 

less than 1 % variation between any of the associated systems. This, 

in a way, is to be expected since learning algorithms for the inference 

of both types of grammars are based on a similar criterion of maximizing 

the similarities between strings in the sample set. Thus, there appears 

to be no advantage, as far as the recognition performance is concerned, 

for the use of CFG approach over that of FSG in the modelling of a FE
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in isolated-word recognition. The above is true for grammars inferred 

in this thesis and it is expected to hold true for general FSG's and 

CFG's provided they are constructed on the basis of similar criteria. 

Comparison is now made between the use of weighted and non- 

weighted M-matrices in the inference of CFG's. Again, there appears to 

be no significance differences between the weighted and nonweighted 

versions of the SCF-B system, though the former gives a slightly 

better performance than the latter. This is because the learning 

algorithm using the weighted M-matrix is provided with additional 

information about the training data via the knowledge of significance 

of various symbols. 

Performances of two recognition schemes A and B are considered 

next. Although tables 5.1, 5.2, and 5.6 show the performance of scheme 

B to be slightly better than that of scheme A, the differences obtained 

are not significant enough to suggest the superiority in the recognition 

performances of B over A. However, since it is easier to implement 

scheme B than to do scheme A, the former is preferable to the latter. 

In the recognition scheme A, the values of Pps Pho and PS given in table 

5-1 represent the deletion, insertion and substitution coefficients of 

equations 3.17 to 3.19 respectively. These values are the design para- 

meters and are determined experimentally in an attempt to improve the 

recognition performance. For the data given in appendices C and D, the 

improved performance achieved when P_ = Ps = 2Py compared with Py = P. 
Ls ct 

= Py = 1 indicates that insertion and substitution events of the 

recognition scheme A are equally likely to occur and that both are more 

likely than the deletion event. These design parameters can be adjusted 

experimentally to suit a given set of data
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5+2e2 Measure of complexity 

This section presents the comparison between FSG and CFG models 

in terms of computational requirements or complexity measure of the 

grammars. Appendix E gives the rules of FSG's, of the weighted and 

nonweighted versions of CFG's constructed directly from the training 

set in appendix C. 

In general, the measure of complexity of the required grammars 

involves the determination of the followings :- 

(i) The length of the longest member in any rewriting rule, Ly of the 

grammar; 

ie. L,, = Max (ol, |p|) for all a—» p ink (501) 

Due to the formats of the rules in the grammars concerned, all FSG's 

and CFG's inferred in this thesis have Li = 2. This is the smallest Li, 

that can be associated with any grammar apart from grammars which 

generate only single-symbol strings. 

(ii) Number of terminals and nonterminals created by the grammars. 

(iii) Number of rules in the grammars. 

The number of terminals, nonterminals and rules mentioned in (ii) 

and (iii) of various inferred FSG's and CFG's are presented in tables 

57 to 5.9 .« Notation of symbols appearing in these tables is as follows:-— 

lal = number of terminals in a grammar 

[all = number of nonterminals in a grammar 

Iv ll = number of terminals and nonterminals in a grammar 

[z ll = number of rules (total) in a grammar 

[Pall = number of terminating rules in a CFG
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Table 5.7 Complexity measure of inferred FSG's 

  

ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE ZERO 

  

1213 10 12) 19” 27), 18) as ey Sea 15 

| 4 3 3 14 29 26 («19 al 3 39 

WIL 17 «13 14 2D 56 44 37 42 15 54 

[2x 13, 10-4 a1) 19 ait “16 as CL S12 = 15 

[5s 3 2 2 13 28 28° 48 22 2 38 

[Esl 810 

pel Zhe 322) 2) 42”) 65) 56 6 530 723 4963 

@
 10 10 10: S220 10 9 10         

Table 5.8 Complexity measure of inferred CFG's (weighted)
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Table 5.9 Complexity measure of inferred GFG's(nonweighted) 

  

  

  

  

                

system | srs-a | SFS-B SCR-B STu-B 
weighted | nonweighted 

hr:min: sec 

Training 
0:20:18 | 0:03:18 | 0:1:13 0:31:00 0:0:18 

time 

Recognition 

0:26:25 | 0:25:12 | 1:20:18 1:19:25 0322311 
[time 

Number of training strings = 100 

Average length of training strings = 3.56 symbols/string 

Number of testing strings = 500 

Average length of testing strings = 3245 symbols/string 

Table 5.10 Time required for training and testing of various 

recognition systems



eel as 

{al number of bielement rules (not including start 

rules) in a CFG 

[sel = number of start rules in a CFG 

(iv) Complexity of learning and recognition algorithms. 

(a) for FSG's 

The number of operations for the construction of rules of a 

FSG from a given string is roughly proportional to the string length. 

In the recognition process, the size of the current WMN governs the 

complexity required to classify an incoming string. This depends on the 

number of rules in the grammar concerned and the length of the string 

and can be formally expressed as follows. 

Number of operations required to classify a string of length Q using 

el] rules in a given grammar = (+1). Rl] (502) 

As in the learning process, the number of operations required in the 

recognition of a string is again proportional to the length of that 

string. 

(b) for CFG's 

Since the M-matrix (either weighted or nonweighted) is 

employed in both the learning and recognition processes, the required 

complexity for CFG's is obtained by determining the number of steps 

necessary in the computation of the M-matrix for a string of length Q . 

This can be estimated as follows. 

Terminating rules 

for i= 1 and from equation 4.11 

no. of steps required W [Fa nek (563) 

for i> 1 and from equation 4.12 

no. of steps required [Pal- 2 (fet-i).(i-1) (504)
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Bielement rules 

for i =1 and from equation 4.13 : 

no. of steps required = ( | + [Bsel Vek (565) 

for i >1 and from equation 4.14 : 

noe of steps required = ( [al + [sel )-  (t-i)(i-1) 
i=2 

(5-6) 

combining equations 5.3 to 5.6 yields, 

total number of steps required 

(Pol + [Esl] * sel) 2 + ( [Ral + fl + [sel 2 2 (ta) (44) 

2 
I(t) 2[- Gay] Ga} 

fel (4+ Saar) - S(i1)?} 
a ine 

Ie] (e+ 2 20 - v} 

dal (g? +52) (5.7) 

That is, the number of operations required either to construct rules 

of a CFG from a string or to decode an unknown string is proportional 

to the cube of the length of the string concerned. This is in accordance 

with the complexity expected of a CFG. Table 5.10 presents the com- 

plexity of the learning and recognition algorithms in the form of the 

time required for training and testing of strings for various recognition 

systems. The table also includes the results associated with the 

SIM—B system for the same reason given in the previous section. 

Generally, the use of CFG's should provide models that are 

more compact than those obtained from the approach of using FSG's. 

That is, the number of rules and nonterminals in the former case should 

be smaller than those in the latter. However, results in tables 5.7 

to 59 indicate that this is not so. Two main factors account for the
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above situation which is not unexpected. First, it is caused by the 

inherent characteristics of the Chomsky normal-form grammars employed 

in the system. A normal form CFG, due to its format, usually requires 

a larger number of nonterminals and rules than a FSG does in the 

representation of the same set of strings. Secondly, the way the 

learning algorithm is formulated for CFG's also contributes to the 

increase in the number of the corresponding rules and nonterminals in 

the following manner. The algorithm applies a constraint on the extent 

which the number of nonterminals and/or rules can be reduced by the 

possible merging of similar segments of various strings. This is done 

to ensure that the inferred grammar does not generate too many strings 

which are similar to strings of other words. 

Prom equations 5.2 and 5.7 and table 5.10, it can be seen that 

the CFG approach requires a larger amount of computation in both the 

training and recognition operations than the amount involved in the 

approach of using FSG's in the modelling of a FE. This, in a way, is to 

be expected since the increased descriptive power of strings obtained 

from the use of a more general class of grammars has to be paid for in 

terms of the increase in the computation required of the system. 

The foregoing presentation, thus seems to indicate that there 

is no advantage gained in terms of computational requirements of the 

systems concerned for the use of CFG's over that of FSG's for the 

modelling of a FE in isolated word recognition. 

52.3 Discussion 

From the results of sections 5.2.1 and 5.2.2, it appears that 

there is no advantage for the use of CFG's over the FSG approach, as
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far as recognition performance and computational requirement are 

concerned, in isolated word recognition. This may be because, as the 

name implies, only a single isolated word, and not a complete sentence, 

needs to be recognized and this does not require the knowledge of the 

syntax of the word concerned. 

There are, however, other situations where there may be an 

advantage for CFG approach. One of these is the recognition of connected 

or continuous speech. One difficult problem in continuous speech 

recognition is the determination of word and sentence boundaries, which, 

unlike the case in isolated speech where words are spoken in isolation, 

are usually obscured. Another problem is that acoustic parameters of 

words pronounced connectedly are, depending on the context, very 

different from those obtained from the same words spoken in isolation. 

The characteristics of continuous speech as described above 

can induce errors in various words spoken. Other possible sources of 

errors include the inadequacies of many processes in the earlier stages 

of the system such as segmentation and transcription of acoustic data, 

the introduction of spurious words and the presence of foreign noises. 

In such a situation, it is desirable to be able to start processing at 

any point in the sentence in an attempt to uniquely identify a correct 

or least-error word. Once a starting point representing a correct word 

has been pinpointed, other words or phrases can then be predicted by 

the syntax recognizer on the basis of the inferred grammar and local 

context. The above requires a parser which is capable not only of pro- 

ceeding from left to right or vice versa but also of starting anywhere 

in the utterance and continuing to parse in both directions.
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The use of a parser based on a FSG thus seems to fall short of 

the above requirements. On the other hand, a CFG, because of its greater 

generative power in the sense that the grammar does not require to 

produce terminal symbols in a strictly left-to-right order, can be used 

in the above situation. Thus, the application of CFG's in continuous 

speech can provide some sort of advantage such as that already described, 

when compared with the FSG approach. Other applications where the CFG 

approach may prove useful in the description of the language concerned 

include the analysis of chromosome, picture and scene analysis, character 

recognition, recognition of two-dimensional mathematical expressions 

(45351-5397) | and finger print identification 

5-3 Symbol-source modelling versus direct storage of strings 

This section investigates the pros and cons between the 

approach of using formal grammars to model a FE by constructing rules 

from sample strings generated from the FE and that of directly storing 

the strings ie. template matching approach in isolated word recognition. 

In the comparison of the two approaches, it is necessary to apply the 

same recognition scheme to various recognition systems concerned. This 

is done to ensure that conclusions drawn from the comparison tests are 

independent of the recognition scheme used and only depend on the method 

of representing sample strings. This is because the use of different 

recognition schemes in the approaches can affect the final outcome 

of the comparison in such a way that the result obtained is incorrect 

and misleading. It is decided to select scheme B, for reasons given in 

section 5.1, as the required recognition scheme. Thus, the recognition 

systems concerned are SFS-B, SCF-B and STM-B. 

The advantages and disadvantages associated with the two 

approaches can be described as follows.
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(i) One of the advantages of representing strings as a set of rules 

of formal grammars instead of simply storing the strings themselves is 

that when the language is very large or even infinite, it would be im 

practical or even impossible to store the strings. In addition, it is 

neither desirable nor possible to put an upper limit on the length of 

the longest strings in the languages of many applications such as 

(45) (97), chromosome analysis or finger print identification problems 

This type of languages cannot be specified by an exhaustive enumeration 

of the strings of the language concerned. Thus, the representation of 

strings by means of formal grammars provides a capability for using a 

set of rules of finite size to describe a set of strings which may not 

be finite. An attractive aspect of this capability is the use of the 

recursive nature of a grammar as illustrated by the following example. 

A non—finite language consists of strings ab"c for n = 1, 2, «+. can be 

represented by a grammar whose rules are :— 

&— ah B—= bB 

A—> bB Bo,ec 

where &, A, B are nonterminals and a, b, c are terminals. 

(ii) For many problems of pattern recognition, not only the classi- 

fication of patterns but also their descriptions are required in the 

determination of the solution. Such problems include chromosome 

(45) | picture processing and scene Beelyaip sce 

(52) 

analysis » character 

recognition » recognition of two-dimensional mathematical expres— 

(97) sions‘>>), finger print identification and continuous speech 

mecoeniitent c/s For these applications, methods based only on the 

classification mechanism such as the template matching technique may, 

by themselves, be inadequate. It is then necessary to employ syntactic 

methods such as the formal-grammar approach to explicitly exploit the
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structural relations of the patterns in the description process. 

(iii) The use of symbol-source models makes possible the 

‘generalisation' of strings in the training set. In other words, in 

addition to the training strings, the inferred grammar also predicts 

or generates other strings which are similar to the ones in the training 

set. This means that the formal grammar approach includes a wider range 

of strings than does the approach of using template matching technique 

for a given training set. Thus, a larger sample size is needed if the 

latter is to cover the same number of strings as for the case of the 

former. For example, the CFG inferred in section 4.5 requires only 6 

training strings in order to cover strings s) to 87 whereas if the 

method of direct storage of strings is used, it will be required to 

store 7 strings to achieve the same result. Incidently, the CFG also 

predicts three additional strings which are similar to 8) 9859 and 86 

respectively. Thus, the inferred CFG covers a total of 10 strings from 

a sample set of 6 strings. In another example, string 'HoC' from the 

recognition set in appendix D is correctly predicted as word 'FOUR' by 

the FSG inferred in chapter 3. 

Table 5.11 displays strings in the testing set that are 

correctly recognized as a result of 'generalisation' created by the use 

of formal grammars. 

Although, the formal grammar approach does give correct 

recognition to many strings, as shown in table 5.11, which are mis—- 

Tecognized by the approach of using template matching technique, the 

overall recognition performance of the former is only slightly better 

than that of the latter as illustrated by table 5.6 . This, 

unfortunately, is caused by factors described in section 5.2.1 .
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Grammars FSG CFG( weighted) 

Digits SIX SEVEN EIGHT ZERO EIGHT 

cFQ@BgC | EdDi Bce@Ba cfDe Fi@h 

Gi@Ce Bg@a ChFf Dk@B j 

Strings 
Hhef Becf 

Gicft                 
Table 5.11 Strings correctly recognized due to the use of formal grammars 

By the inspection of various rules given in appendix E, other 

strings generated by the grammars concerned in addition to strings in 

both the training and recognition sets can also be determined. 

(iv) For the approach of using FSG's, it is possible to obtain some 

reduction in computation involved in the recognition process when 

compared with the method of direct storage of strings. As demonstrated 

by table 5.10, the time required for training a given set of strings 

is the same for both cases mentioned above. The CFG approach is not 

considered here since it requires, for reasons given in section 5.2.2, 

a larger amount of computation than do the methods of FSG's and tem- 

plate matching. 

The reduction in computation obtained from the FSG approach 

is made possible because of the use of merging between various seg- 

ments of similar strings during the training process. This leads to a 

reduction in the number of nonterminals and rules produced by the 

grammar. This, in turns, cuts down the computational requirements of 

the recognition process.
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The following presents the estimation of number of operations 

required in the computation of the WMN's which govern the necessary 

amount of computation of the recognition algorithms in the FSG and 

the template matching approaches. 

The number of operations needed to compute a WMN constructed from a 

FIN of Z links and an incoming string of length 2 is equal to : 

(L+1) 2.2 (5-8) 

For a FIN created from a FSG, the value of Z is equal to the number of 

all rules of the grammar, as given by equation 5.2 . 

ie. Z= 2, = [al (5-9) 

where Zn is the number of links of a FTN associated with the FSG 

approach. 

In the approach of direct storage of strings, each and every distinct 

string in the training set is compared with an incoming string to obtain 

the best match. This requires a set of WMN's each of which is constructed 

from each distinct training string. 

Mp 
Thus, Z= & = = g (510) 

i=. 

where Zen = number of links of a set of FIN's associated with 

template matching approach 

g. = length of the ith distinct string in the training set 

= 1 number of distinct strings in the training set . 

Table 5.12 presents values of Zn and Zn for the training 

strings of appendix C. The values of ey are, of course, the corres— 

ponding values of [[R|| in table 5.7 .
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Table 5.212 Number of links of FIN's for FSG and template matching 

approaches 

From the results in table 5.12, it can be seen that the 

approach of using FSG to describe a given set of strings provides a 

reduction in the computation of the WMN compared with the approach of 

direct storage of strings. This, however, is not reflected in the 

recognition time of the SFS-B and STM-B systems given in table 5.10. 

This is because the rules of the inferred FSG's have not been rearranged 

in the ascending order of the LS nonterminals as those given in 

appendix E. That is, rules are created and stored in the system memory 

according to the order of presentation of strings. Consequently, it is 

necessary to compute the WMN at least twice for the FSG approach to 

ensure that contents of all elements of the WMN reach steady-state 

values. The foregoing computation can be speeded up if the rules are 

arranged, after the training operation, in the proper sequence as 

described above.
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CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

6.1 Future work 

6.1.1 Real-time problem 

Many implementations of word recognition algorithms are 

carried out using a computer. This may not be fast enough for some 

practical applications where real time responses are required. This 

section suggests the possible use of special purpose hardware in 

addition to a general purpose computer in an attempt to implement the 

algorithms in real-time. Only parts of algorithms that require large 

amount of computation will be considered. This implies the implemen- 

tation of the computation of the WMN in FSG models and that of the M- 

matrix in the CFG approach. 

(a) Implementation of the computation of the WMN 

Fig. 6.1 outlines a possible scheme of implementing the com— 

putation of the WMN using special hardware. Each rectangular unit re- 

presents hardware implementation of a FTN and consists of as many 

storage elements as the number of nodes in the FTN. All storage elements 

are interconnected according to the configuration of the FTN and each 

connecting link is associated with only one symbol determined by the 

grammar concerned. There is also a special logic circuit for each 

storage element whose incoming links form the input of the circuit. 

The function of the logic circuit is to select the largest of the 

values presented by incoming links for a given input symbol. These 

rectangular units are repeated as often as the length of the string to 

be analysed and are connected in the same way as the corresponding WMN. 

The logic circuits mentioned in Fig. 6.1 receive a short pulse from the 

clock every time an input symbol appears. Outputs of these circuits are 

such that only the rectangular unit which corresponds to the current
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symbol is activated. For example, unit 2 is associated with the lst 

symbol and unit 3 with the 2nd symbol and so on. The circuits also 

provide two pulses for each pulse from the clock. The first pulse is 

used to control the computation of various elements in the present unit 

due to elements in the preceding unit. The second activates the com 

putation within the same unit. Output from the appropriate element of 

the final unit associated with the last symbol gives the WLD as required. 

The processor described above is for one grammar only. To in- 

crease the speed of operation, similar processors corresponding to 

other grammars need to be applied in parallel. The grammar with the 

smallest value of WLD is then selected as the grammar which could have 

generated the string. 

clock 

  

Logic circuits 

        
  

symbol 
input         

    

i Ter SA" deen gee rg aa 
fi raenere 

                        

Fig. 6.1 A hardware scheme for the WMN and a length-3 string
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(b) Implementation of the computation of the M-matrix 

A generalised block diagram of a hardware scheme for the com- 

putation of the M-matrix and a string of length 3 symbols is depicted 

in Fig. 6.2 . Elements Ms ik of the M-matrix together with appropriate 

logic circuits are represented by rectangular units as shown. There 

are as many storage elements in each unit as the number of distinct 

LS nonterminals in the corresponding types of rules ie. terminating 

rules or bielement rules. A special unit contains values of hierarchy 

levels of all nonterminals predetermined from the rules of the CFG. 

Input symbols are presented to units corresponding to terminating rules 

and i = 1 under the control of logic circuits and clock pulses in the 

same way as in the case of WMN. Elements of these units are then com— 

puted. Other units are computed in the order shown in Fig. 6.2 . That 

is, the remaining elements corresponding to terminating rules and 

elements associated with bielement rules for i = 1 are processed at 

the same time. Other units for bielement rules are then computed in the 

order of increasing values of i, the substring length, until the WLD 

is found. As in case (a), the above processor is repeated for other 

grammars and they are applied in parallel in order to speed up the 

computation involved. 

The above schemes of computing WLD involves the processing of 

all strings in the dictionary ie. all strings generated by the grammars 

concerned. This may take too long if the dictionary is large. In order 

to reduce the time required, it may be necessary to use some other 

methods in addition to the above schemes eg. techniques involving n— 

grams might be used.



clock 

  

  
Logic circuits 
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ae 

Hierarchy 
H(X) levels 

      

Fig. 6.2 A hardware scheme for the M-matrix and a length-3 string 
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6.122 Improvements of recognition performance 

For various recognition systems implemented in this thesis, 

many of the errors in word recognition are due to the characteristics 

of the FE used as described in section 5.2.1 . The most obvious way to 

improve word accuracies is to develop a better and more sophisticated 

FE. However, this approach, which is still a research problem, is 

outside the scope of the work reported in this thesis and consequently 

will not be investigated here. Other possible methods that can improve 

the recognition performance are as follows :- 

(i) As mentioned earlier, the overlapping between strings of different 

words is mainly caused by the fact that the transcribed symbol strings 

represent only a small fraction of acoustic parameters extracted 

from the FE. The method is then to find a way of utilizing a large 

number of parameters in the construction of the models. One such 

approach is to use several symbols simultaneously instead of only one 

symbol at a time, where each symbol represents a different parameter. 

This is the concept of 'vector valued features'. One simple solution is 

to build a grammar for each of the parameters extracted for one word. 

In the recognition mode, each of the strings representing various para- 

meters associated with the word spoken is individually processed by 

the appropriate grammar. The final decision as to which word has been 

spoken is determined, say, by the majority votes of the strings concerned. 

(ii) It is commonly appreciated that as well as the order of appearance 

of symbols in a string, but also their duration are important in the 

descriptions of a spoken word. Consequently, concept of duration of 

features can be used to improve the performance of an inferred grammar. 

This can be implemented as self-loops in the FTN's or PIN's with 

probabilities of the loops denoting duration lenghts. In the case of
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FIN, this is similar to the quasi-Markov process. 

(iii) The use of the negative sample set, if available, in addition to 

the positive one, can improve the system's performance. That is, if a 

set of strings is known not to belong to a given word, the grammar 

corresponding to that word can then be modified such that these strings 

are excluded from the language of the grammar. The problem in this case 

is to find such a negative sample set for a particular application. 

(iv) In many pattern recognition problems, the frequencies of occurrence 

of different types of errors, namely insertion, deletion and substitution, 

depend on the nature of the application concerned. For example, optical 

character recognition rarely introduces insertion or deletion errors. 

By observing such characteristics of a given data set and applying this 

knowledge in the recognition algorithms, it becomes possible to obtain 

an improvement in the recognition performance. One way to achieve this 

is by setting appropriate multiplicative factors (instead of unity) in 

equations 3.11, 3.13, and 3.14 for the case of FSG approach and 

equations 4.15, 4.17, and 4.18 for the CFG approach. The foregoing is 

for WLD's. For applications involving LD's, the corresponding equations 

that need to be modified are 3.16, 4.9, 4.11, and 4.12 . 

(-v) Another approach that may improve the recognition performance 

involves the introduction of various restrictions to the formats and 

the applications of productions. This may, for example, include label- 

ling the productions and coding of productions in terms of level 

numbers according to the hierarchical significance of the productions. 

This method of imposing restrictions on the productions may be well 

suited to the situation where there are many overlapping strings.
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6.1.23 Other work 

One area of interest that is worthy of further investigation 

is the study of the effects of various telephone impairments on the 

models constructed in this thesis. This involves experimental tests of 

appropriate recognition systems under the insertion of controlled de- 

gradations such as continuous noise, variable frequency characteristics 

and nonlinear distortion. 

Another area is to extend this work to cover the recognition 

of connected speech. In particular, it will be of interest to confirm, 

or otherwise, the inadequacy of the use of a FSG in continuous speech 

and also of the advantage of the CFG approach over that of the FSG as 

suggested in section 5.2.3 « It is also of interest to study the 

practicality of the application of formal grammars to the synthesis of 

speech which is the reverse process of this work. 

662 Conclusions 

An automatic isolated-word recognition system normally consists 

of a feature extractor or a preprocessor of some sort followed by a 

recognizer or a recognition processor. Because of the inherent variations 

in speech when a word is uttered even by the same speaker, it is 

necessary to incorporate some form of 'training' or '‘learning' process 

into the system. 

Apart from the classical decision-theoretic methods, techniques 

of formal language theory or the syntactic methods provide another 

useful approach to the solution of classification and description in a 

speech recognition system. The linguistic method proves to be very 

attractive to use due to the availability of mathematical linguistics
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as a tool. The method also seems to be well-suited to the problem of 

an IWR system where only a finite number of features are generated 

for each utterance. 

The application of linguistic approach to an IWR system can 

be viewed as the process whereby formal grammars are employed to model 

the FE whose characteristics are very little, if at all known.Basically, 

the method works as follows. In the training stage, sets of syntactic 

rules or grammars are constructed, one for each word in the vocabulary, 

directly from a given set of sample strings of features represented by 

symbols. Constructive approach of grammar inference is chosen so that 

model of the FE can be formed more realistically. Supervised learning 

is also assumed. In the recognition mode, an incoming string is analysed 

to determine which grammar, if any, could have generated it. The word 

corresponding to such grammar is then said to have been recognized. 

In IWR systems, unlike many applications of grammar inference 

where the class of grammars to be inferred is precisely defined, it is 

not clear what types of grammars best represent the FE. Only two types 

of grammars are considered here, namely the FSG's and the CFG's. The 

FSG approach is selected initially because of its simple and well- 

established characteristics and its sequential nature similar to that 

of the string symbols. In addition, many efficient computational 

techniques are known for the FSG methods. The CFG approach is introduced 

in an attempt to determine whether there is any advantage from the use 

of a more powerful grammar in isolated-word recognition. 

Inference algorithms of both approaches are based on the 

criterion of maximizing the similarity between various strings of the 

same word. The basis of the inference process which applies to both 

FSG's and CFG's can be explained as follows. The skeleton grammar Gq is
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first constructed from the first string in the sample set such that 

Gg can generate only that string. Other strings are then individually 

processed in the search for incompatibility between each string and the 

current grammar, If the nth observed string s, can be derived from the 

(n-1)th inferred grammar Gua then G = 6G and no augmentation of n-1 

G ine) 28 required. Otherwise, Gi is augmented such that Gg. is produced 

which can generate the present string. For the CFG approach, the 

matching process between an incoming string and an existing CFG 

requires the computation of the minimisation matrix, M, whose elements 

reveal the compatibility or otherwise between the former and the latter. 

There are two different recognition schemes, A and B, employed 

in various recognition processors. In scheme A, an incoming string is 

tested to determine whether there exists an exact match for the string. 

In the case of unsuccessful matching, an attempt is made to find a 

closest match for the string. This is supplemented, if necessary, by a 

stochastic algorithm to select only one word that is the most likely to 

correspond to the string. For the case where the exact match is asso-— 

ciated with two or more grammars, another stochastic algorithm is 

applied to select only the most likely grammar. For the recognition 

scheme B, an attempt is made to find a best match which also includes 

an exact match for an incoming string. A stochastic technique is 

applied if two or more grammars are equally likely to have generated 

the string. If, after applying this technique, the output is still un- 

decided, a selection is made of the most suitable word according to the 

AWSL criterion. 

The recognition algorithms of both schemes are thus not too 

restrictive in the sense of immediate rejection of an erroneous string 

but rather trying to find a grammar that could most likely have generated 

the string. This can be very useful in many applications involving
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noisy strings. In the FSG approach, the WMN technique based on the 

principle of dynamic programming is employed to find the best match for 

an incoming string. The determination of the best match for a string in 

the CFG approach is accomplished by using the wM-matrix (or M-matrix) 

as a recognition matrix. Performances in terms of number of strings 

correctly recognized of the two recognition schemes are comparable with 

one another. However, scheme B is preferable to scheme A because it is 

easier to implement the former than to do the latter. 

Both the FSG and CFG models offer comparable recognition per— 

formances with less than 1 % variation in word accuracies between any 

of the associated systems. The increased descriptive power of strings 

obtained from the use of a more powerful CFG is, as expected, paid 

for by the increase in the amount of computation required of the system 

concerned. Consequently, there appears to be no advantage gained in 

terms of recognition performance and computational requirement, from 

the use of CFG approach over that of FSG in the modelling of a FE in 

isolated-word recognition. This may be because the isolated-word 

application does not require the knowledge of the syntax of the word to 

be recognized since only a single isolated-word, and not a complete 

sentence, is required to be recognized. 

The representation of strings by a set of rules of formal 

grammars instead of direct storage of strings makes possible the 

‘generalisation' of strings in the training set. That is, the inferred 

grammar generates, in addition to the training strings, other strings 

which are similar to the ones in the training set. This means that a 

larger sample size is needed for the approach of using template 

matching technique if it is to cover the same number of strings as for 

the case of formal grammar approach. The approach of using FSG's
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also provide a reduction in the amount of computation required by the 

recognition process. This is possible because of the reduction in 

number of nonterminals and rules produced by the grammar as a result 

of the merging between similar segments of strings during the training 

process. 

The use of 'linguistic' variables instead of or in addition to 

numeric variables provides an effective and useful means of approxima- 

tions of complex or ill-defined systems such as the FE,where it is 

difficult or even impossible to apply precise mathematical analysis. 

Experimentation, though expensive in terms of labour and equipment, 

is essential to automatic speech recognition problem as to many other 

applications in pattern recognition such as chromosome analysis in 

biomedical application. This is because it is difficult to predict the 

required recognition performance theoretically due to noisy nature of 

strings involved. It is hoped that the knowledge and experience gained 

from the design, construction and experimentation of speech recognition 

systems will pave the way to better and increased insight into speech 

perception in humans.



A 

 



= 113 = 

APPENDIX A 

A METHOD FOR TESTING THE RECURSIVENESS OF A FSG 

The following presents a method for testing whether a given 

FSG is recursive or not. It is based on the construction of a tran- 

sition matrix T whose elements represent the number of direct paths 

between different states of the associated FIN. The method can be 

simply explained as follows. The transition matrix T is repeatedly 

being multiplied by itself until for some value of n either all elements 

of T are zero OR two or more diagonal elements of T" are no longer 

zero. The grammar is then said to be nonrecursive in the former case 

and recursive in the latter. It is assumed that the grammar does not 

contain rules of the form A —» aA where 'A' and tat are a nonterminal 

and a terminal respectively. In other words, there are no self loops 

in the corresponding FTN. A method is also given for computing the 

number of distinct strings whose lengths do not exceed n that can be 

derived from the grammar. 

Formally, the method can be described in the following steps. 

(1) Construct a FIN from a given FSG. 

(2) Construct an m * m transition matrix T from the FTN; where 

m is the total number of states in the PIN including 

the terminating state & ie. m is the number of nodes 

in the FIN. 

+(i,3) denotes the number of direct paths from state 

corresponding to nonterminal Ay to that associated 

with nonterminal - for a rule oe, ag in the 

grammar, where 25 is the terminal produced when 

traversing from Ay to a 

(3) Construct meg, go (A.1) 

for k = 253,ecen
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where n is an integer value when either of the following 

occurs t= 

(a) all elements of T are zero. This implies that the grammar 

is nonrecursive. This follows because of the followings. By definition, 

element +¥(4,4) of matrix T denotes the number of distinct strings, 

each of length k, that can be generated from the FIN by traversing from 

node Ay to node Ay. If there is no loop in the FIN (ie. the grammar is 

nonrecursive), then there must exist a value of n which exceeds the 

length of the longest string generated by the grammar. Hence, all 

elements of 1 are zero. The smallest value of n is, of course, equal 

to the longest string length plus one. 

(b) two or more diagonal elements of T” are nonzero which 

indicates that the grammar is recursive. This follows because all 

diagonal elements of T are zero due to the assumption of no self-loops 

in the FIN. The nonzero diagonal elements of r for some value of n 

thus indicate that there are transitions starting and ending at the 

same node associated with a diagonal element of tT". This is the 

condition of looping in the FIN and consequently the grammar is 

recursive. In this case, the states of the FIN associated with diagonal 

elements of T” whose values are nonzero define one or more of the 

loops in the FIN. 

fo illustrate the foregoing method, consider the following 

example. 

Example Ael Let G, 1 = (Vys%sRy&) be a FSG whose FIN is depicted in 

Fig. Ael and where ;- 

Vy (4) (=£) 1Ap9 Ags Aga Aas Ags Ay) 

= (41,0) 

4) —= UA, Aiea See soe oes
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4 4 ‘2 oo ok, Soares 

Ay —= AAS Pr US e ene caer 47 — I 

45> 14, 4 4, I 

  

Fige Ael A FIN of the grammar G 

  

First, a 8*8 T matrix is constructed as shown below. 

INCOMING STATES 

By Ao eye 8a 8G AG! Br © 

0 Oey [Os ee OF 0 Et 0 

U 
mp dae |G). Orel nek O enor .@ 

G 
COA 0 ee Cte? Meee Oe 

ie 
ee aye foes Ono Oaegh me Oe 

G 
Delo oe oe gO tee 

8 
soe Oe OF ers LO et Ol 0) 8 

A 
x CeO TG: IOlr Gr Oe -6 ay aot 
S 6s" 1.05 10-7050" 6" On 07 30 

The next step is to find a value of n which satisfies either 

condition (a) or (b). As shown in the matrix 7 below, diagonal elements
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of 7 are no longer zero. Since elements (3,3), (4,4) and (5,5) are 

nonzero, nodes Ass ay and As are in the loop. This is confirmed by 

the inspection of the graph. From the above results where condition (b) 

is satisfied, it can be concluded that G, 1 is recursive. 

INCOMING STATES 

en Oe de 

Oo A 0 0 1 2 1 O° 1 5 

U 

7p Ay 0 0 1 0 i Oo ah 3 

G 

0 A, {0 0 Eb 2 

3 2 : 
em N aa 0 0 0 2 

G 

Bk 10. (6: o£ ee aS 
“a 0 #0 0 3 a 
2 0 0 0 0 ear 
5s & |0 0 ° 0    

Finally, the computation of the number of distinct strings 

whose length do not exceed n follows immediately from the definitions 

of T and c. That is, the number of distinct strings of lengths <n 

derivable from a given FSG is equal to : 

ae: 
= +t (1.54) (4.2) 
kel 

As an example, for the grammar G, the number of distinct 

strings of lengths < 3 is equal to 0+0+5=5
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APPENDIX B 

TABLE OF SIGNIFICANCE VALUES” OF SYMBOLS 

  

  

Symbols Values Symbols Values Symbols Values 

A 1 U al 3 -10 

B 2 Vv 22 k -11 

c 2 W 23 L -12 

D 4 x 24 m -13 

E 5: Y 25 n -14 

F 6 6 26 ° -15 

G 7 7 27 P -16 

H 8 8 28 qa -17 

I 9 9 29 2 -18 

J 10 0 30 s -19 

K i @ 100 t -20 

L 12 a -1 u -2l 

M 13 b 2 v 22 

N 14 c -3 w -23 

° 15 d -4 x 24 

P 16 e -5 y -25 

Q 17 £ -6 % -26 

R 18 g& -7 2 27 

Ss 19 h -8 2 -28 

= 20 2 -9 4 29 

5 -30           

*the above values are applicable to symbols generated by the FE 

of reference 96 .
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APPENDIX C 

TRAINING SET OF SYMBOL STRINGS 

The followings are a training set of 100 symbol strings 

obtained from the FE of reference 96. The strings represent ten digits 

'ZERO' to 'NINE' spoken by a single talker (A.J.P.) with ten repetitions 

in each digit. Values of significance of various symbols are provided 

in appendix B. 

ONE 

Pi 

Mkc 

Lj 

NmD 

NSE 

Pm 

FOUR 

JoG 

Hre 

CnFc 

GoF 

DpF 

TWO 

iD 

£ca 

FIVE 

BnRj 

HjESPi 

CgCnRk 

Fo0g 

En0h 

HpMk 

THREE 

° 
BhE 

Cc 

He 

fF 

BhE 

‘SIX 

Bn@dCe 

FR@cCe 

Cj@Ba 

Ck@c 

bCj@Re 

Bi@Cc
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FOUR(Cont.) FIVE(Cont.) ‘SIX(Cont.) 

IoGe Irkh checfD 

HoB BfEnQk Fk@Co 

FREA HgRi Gkot 

LtH EdCnSe By@Db 

SEVEN EIGHT NINE 
peda GjeBr FR 

Gn Ff@e Ee 

FeEgDf De@g Lk 

Co GjH The 

bFmCeC Cirk JE 

BoEL Ekcg Lk 

HeFp Cd@Ej gh 

Beko Thok He 

Eq DiCcEd Ji 

CcDpc Th@b ILE 

ZERO ZERO( Cont.) 

CcDmF EfDhDeEd 

CcDiEgE FhEhE 

BaFeFeG EgDeC 

DhFiG EfEgc 

DeDhGe FeDiF
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APPENDIX D 

RECOGNITION SET OF SYMBOL STRINGS 

The following presents a recognition set of 500 symbol strings 

representing ten digits 'ZERO' to 'NINE’. Each digit is uttered 50 

times by a single speaker (A.J.P.) using the FE of reference 96. 

Appendix B gives the values of significance of various symbols 

appearing in the recognition set. 

ong TWO 
Nk M2 Lm ga BL qa 

Ph Pg Mg ° L Bm 

Mai Nk ML p BoC Bk 

Lj Ni Mj n ° Eo 

Pj Nh Nk ° Be Ei 

Nj Mh Ik Bp Do & 

Mi Rk oi ° q ced 

Lh Nj PL Bn r Bo 

Lkc Pg MiE a m m 

Mg Kh Oe n Bp k 

Mfr Kf 2 ° 

Oh Hd ° & 

oj Nh qa Bm 

Om Kh n p 

Ng Qh Bp + 

PL Og ° s 

Nh Kn ° EL 

Oj Nn qa m 

Ke Ip m nD 

LkD eKj Dn i



BL 

FgCa 

cDiA 

cach 

DED 

cic 

Gj 

ibf 

Eecf 

Jheg 

CcDhD 

EeC 

Dhe 

bEL 

EfEj 

BiD 

THREE 

Ff 

DiB 

Ghc 

CE 

bba 

bDj 

Bes 

BeD 

FgC jE 

CE 

BgB 

Fjc 

cdDd 

Bez 

BhH 

Fed 

GEG 

Gic 

Bho 

Did 

GwB 

BxE 

IuD 

DvE 

NwE 

LvG 

KuE 

EsD 

Pvc 

BsD 

sc 

Itz 

EtG 

IrD 

EqD 

HsF 

IqE 

JsD 

Kuc 

Gq 
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Ho 

EpE 

JoD 

jciz 

CoF 

Jai 

IgB 

IpD 

JtF 

HaE 

HRDe 

MmcfG 

EpF 

EoH 

Joce 

KoF 

ciB 

FicgE 

HQDiFo 

Ijcic 

DnG 

EpD 

BsH 

FIVE 

EdDkPc 

GdDmR 

NhDkKR 

LgekP 

Qicgs 

JgDjqa 

cfDmRe 

NjDio 

GfckQ 

JiDkPf 

GsSf 

GfCjN 

Jhcgt 

LiFmsdaD 

EnEiQk 

BjC jah 

IfDmTn 

HnSj 

CeEnRm 

EhDjPo 

DgEnMi 

CeCk0j 

GdEoRE 

GmOc 

HeC jN 

IoPi 

IgC jM 

GqPc 

EQ0i 

BgPe 

BaDsOj 

EjNe 

CoP 

EnQa 

Hnge 

FaDngd 

GfCmNh 

DnPg 

DeDoQi 

Dogg 

GeCmPf 

EeEnRk 

GpSh 

ogt 

GdCnPe 

eFgNe 

EeDnQp



SIX 

Decfebj  Bjed 

cFg@BgC Be@bDe 

m@Dh Bg@cD 

Enefh f@c 

m@dA. Bg@cE 

Le@DfB Fhe@DeDd 

Cm@BeE Bke@Ba 

LeDfB D£e@EfC 

Dk@BeE Dj@c 

i@Ce DjefDe 

Ei@Co Cg@ce 

Bjedda ief 

Dge@cDn Dm@bB 

2@BoC Fie@ecd 

BheDeF Bfebc 

i@EcC Ch@c 

n@DhD Fk@Cc 

Cn@gD Ci@Be 

Fj@eB Eh@DgE 

kedG f@A 

En@CgG Gi@Ce 

Ci@bF Bakjeh 

fefrD Eged 

keG Bge@d 

bed@Bt Ch@De 
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SEVEN 

BoFi 

EdGo 

Dee 

din 

BaFm 

DeDj 

EeFo 

BeDk 

BaloB 

D£CkD 

CfFiCe 

G£Gp 

EL 

oD 

DeGo 

CfHm 

Joc 

CdFo 

FaDj 

bDk 

EaDi 

Fekk 

FdFgDa 

Ch 

CeEjCe 

Dj 

Cm 

Gp 

GnEa 

FmEe 

EnC 

Hndg 

Cec jcfc 

FeCfCe 

CcoEp 

Gn 

Fn 

& 
e 

eDi 

cHn 

IcCQDe 

cac 

BdGma 

cEk 

Fa 

DeFp 

E =I 

  

Diek 

e@h 

Fi@h 

Iiej 

Gj@e 

FjC@n 

Cfe@aci 

Dfek 

Ce@Bi 

Boe@Ba 

Eeetg 

Ce@e 

Dfed 

Bej 

Bdeg 

Ca@e 

Bd@e 

bBed 

bed 

Bg@a 

De@cCg 

cfed 

Fg@c 

Ig@eB 

Ej@g 

Eicf 

De@f 

Efef 

Cde@g 

Eh@e 

FhoBe 

Fj@c 

Hhef 

CheBf 

Brog 

EgGe 

He@Ba 

Gf@e 

Fief 

Cf@e 

Hi@BeCg 

Jeet 

Dke@B j 

Eg@bCh 

Fget 

Fg@ch 

Gg@g 

Hm@Be 

Ek@Bg



Ioc 

Hg 

PtC 

veg 

5 

HD 

Lk 

z
 

2 

Kfbdg 

Ik 

BmE 

In 

GgCc 

Ked 

GR 

Ti 

NINE 

HEI 

Mk 

Ogde 

FeBic 

Jk¢ 

Lk 

Ti 

IeEh 

KL 

KeBj 

KLE 

InE 

JnD 

R 

Jee 

Mo 

Gdci 

Ng 

IkB 

= 153 

ZERO 

Gfet 

IgDgD 

GhcfF 

BJF 

Gicha 

Gdacic 

GjEfD 

BeA 

HhCe 

BdEhc 

chcgc 

Ger 

EjH 

Chr 

cfDe 

Gjc 

EecfD 

EfCo 

CiFgG 

eDaD 

FeDgCa 

ChFgCcD 

C£C {GPG 

eCgCcB 

BiEhE 

jp 

ChEhE 

D£DhD 

DnGeB 

jE 

ChFf 

EcEhDa 

IdcfDe 

EfDeDi 

Becf 

GhDfGd 

gEcD 

Gicf 

Igkf 

FgEfD 

EhFhF 

FdDe 

GdEeCic 

GdEjCeE
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APPENDIX E 

RULES OF THE INFERRED GRAMMARS 
  

The following presents rules of FSG's, weighted and non- 

weighted CFG's constructed directly from the training set in appendix C. 

The appropriate inference algorithms used can be found in chapters 3 

and 4 . The set of terminal symbols is assumed to consist of all 

symbols appearing in appendix B. All other symbols including the start 

symbol & are in the set of nonterminals. 

Eel Rules of the FSG's 

ONE 

& —» PA, & > Kay A, — KA, 4g —e mA, ap D 

& —- MA, Asm i Ae Ag > fA, Ag = E 

& —- LA, A, > m seed Ag > k Aor 

& —» NA 

TWO 

& — id, &—-~m & —— nA Binge CA Ag —~ EA, 

& — oa, gee gn ane Ag = D 

&—-p mae CA, A,» D 4, =k a ea 

&~k 

THREE 

& > fA, & — Ba, &- BAL A, > ba, Ag =o 

gc & — Ch, R—~f A, E Ay ids



&—> JA 

& — HA 

& — Cae 

dN 

gt TAL 

FIVE 

& — BA, 

& —> HA, 

&— CA yo 

t+ FA, 

ee 
&—~— IA 

A, —> nA. 

A, —~ fA 

A, ~» RA 

SIX 

Chg 

- 155 - 

Ag~rc 

fctrere 

Ag = fAy9 

eT ae 

aS 
4g = @A, 

Ag > Chg 

Ao > 34, 

Ay ~~ SS 

‘Taig 

py ena) 

#15 Smee 

Sr te 

Saat O15 
#5 ae 

a5 a 

Gea a tT 

Bie oe aes 

47 SPAS 

Nei 1g 

#20, <2 721 

rae Ne 

Smeets 
An al ea, 

“39 14 

aye 

a eee 

eo 

eae 
Ag — tag 

20 

2 
a
e
 ' 

Pe
er

 
o
F
 SF 

Sie cag 

* 6a 0: 

Ags > eA, 

Ag > en, 

Any > ra



  

EIGHT 

&— GA 

ai Fag 

& = Diy 

arto 

24 

> JA, 

NINE 

& > FA 

& > IA 

&> LA 

& > Jag 

& > HA 

And 

A, wh 

Aye BAe 

= 156 — 

eT eres 

AP e8 
4g = fa, 

a emi 

25 ae 

Noe 1 

Shea el 

Age 
Ag = 2 
Ag > b 

#9 7 10 
by = 24), 

Ao S45 

ane? 

ate eens 

A, > Jag 

A,~k 

Ag Cc 

Agwm sé 

emgmcens geeiy sae 

PCS qgisecles gece 

frase plone” 

Pina tel 6 Guo! ne 

ai ea) cat anaes 
Ag Day yn > 6 

aT a 

gisebe Greakpeact 
437 Fa, tga 

Bia) a chp ole ol 
Ay >~k Ag > @dg 

ATO ima 16) ie 2oiae On23 

Sie ate “17 ealan te 
AW ~ Ee Aggy > hay 

Ag a @h, 

Ag > h 

Ag mi 

ms 
Ag~ E



ZERO 

&t-> cA, 

ce ek 

fom DAs 

i> EAL 

a> aA 

Ay > cA, 

A DA 
ie ot 3 

Ay > 2 

Ay > iA; 

Ay > bA ¢ 

ei ear 

See 

ag > EAL 

Ag F 

Ay = By 
pserrs 
3 ae 

tg c 
Sethe 

EO ay get 

- 157 - 

4, > 44, 

eng aay 

eae 

iG ie 6 

P15 gperele 

S16 tae 

iG aeean 9) 

E.2 Rules of the CFG's (weighted) 

ouE 
&~— AA, 

eas 
Rm beh 

i> A37410 

ee A612 

TWO 

io AAS 

Bm Ayed, 

Bom AC 

Doers, 

i dg 

eee 

&—— AA, 

er isd 

eines 

Ay mi 

E> Aya As 

eo t 

92 

A,>M 

A,wm>k 

Ae cee 

Ag wl 

4d 

Ama 

A, > D 

A, ed 

A, mC 

Bema 

Be = Ase 
Ag > BA, 

4a 

Aig Day 

eta aces 

20 21 

20 ~~ Sh26 
Ay) > DA, 

ol cay 

Ag WN 

tose 

4ow? 

Ant 

43 

Ag p 

Ak 

Ag > m 

Ag =n 

Aowme 

cai cee 
Ag > AA 

Seas o 

6 ei 

Aan om ALA 
36 374 

Aay > 4410



Sie schs 

3773 

Be oo10 
iw A7Aj0 

Per oaeT 
endo 

a> M55 

meee yeah 
FIVE 

in Aa7Ay 

L> aoa 

QL A oMgs 

Rais a7 
~ Aga, 49 

Foon 

A053 

bert 57 

Beer e5n59 
in 45863 

4 > B 

A, =n 

” 
Fo}

 
» 

e 

ae 

a9 310 
g~ shy 

&> A 

4 >? 

A, > F 

£ > Aypay 

Awd 

A, 0 

A,~>C 

A, = E 

453 

Aga 

he E 

4g = 0 

A,—m>j 

a 

Ag >= 

aot 

Ag > P 

dg i 

Mowe 

Aine @ 

Ag > 0 

45 0 

em 

by E 

Foam 

vile 

B12. 

aS eect 

BA 

oe 

fe) ae 

360 ke 

Ag ¢ 

Ag ~ H 

Alo 

a 
A356 

Ae 

sl) 

436 

a7 

446 

47 > A643 Aso 

~e 

>i 

= Ack, 

ot 

>t 

a AA, 

ar ibs 
> ate 

Fae 
= Beno 

= 41042 

> Aah 

Sete 

= 436% 
J aaa 

AAO 

> aA, 

Safes tae 

243 sa tU3eo 

4g Agshio 
Aas > Aya, 

$16 = “116 

4y7 > “4649 

4p > AsAig 

45) ~ Asotle 

*52 aol 3 

#53 “5217 
beg 7m Ans 

455 = Asa*a 

nay “Aone 856: = “655 

= *10%3 “st % *22%56 
eM cAg sao ots 

= Ast5 459 > 45849 

me en) “6G 7b 86 

Garei6*15) 61) ser 60-37 

fal 48°17 "62.0 410/61 

™ Aistig 463 > Aos4eo



SIX 

E> Ak A, +e 

> tA, Aya 

£m beh bg > C 

E> bgig Ag ec 

Fe fees) Ai 
£> AAS, Ag > 2 

E> begh, tye 

e160: Sat ohm’ 

Pan 8°59 |) jain 

£56712) «te a” 

gah nate aie aes 
Ag n A feee > 

ZERO 

aan ye 

iS Asni, ee ee 
Em Aygh, Ag i 

eateries ead 

Oe ast 8 ane 

ie Aone lomaano) een 

fo scah lone 

Seung etme Tanne 

eee TOnlek mele. cay 

po osiicrcy ay 
oe Meee 

Ape c got 

A, D Ayg > AA, 

Hog = 

aos 

eae 

ere ae” 

BGwie iD 

BTig 33623 

B36 aT ha 

459 > Ase4s 

Aga, 

nots 

Ayo > Ams 

43 “aot 

+ 
v
4
 

An > A564 

Sa 

Bota foe7 

AsAs9 

i = 72°40 

ea wage, 

#43 i> 742"8 

‘ng Ants 
445 A5*a4 

Ana > 4043 

45 7 Aga*h 
46 

An > 
47 

Ang > 

454 ~ 45346 

5 a 153 

456 ~ 45455 

oOT ai 56> 

A54a7 458 As74i6 

Bag = A5kag 459 = Ags 

Aig! Bien. S59) 47 16 

450 = Ast 3 460 = Aso4e 

459 > AgoAy7 

4a = Aso%s 

Sepa dna 

453 > sats 

> 44584 

13 

> 

450 ~ AsMag 463 Acoka 

Boy > Asots 464 = 46347 

Soo Ayatt3 465 Fe F8e3 

453 ~ 45452 465 — “7 4e5 

454 Aleds3 467 > Acote 

Boy yhg44l 0G me “TS 

45g = 434.4 469 > Acaty 

457 = *56°3 470 “69°8 

$8 5 Si 5712 

4n6 > Aotgs 459 @ Asa4i2 “72 ~ An 43 

tay > Aghas 
yg > Ags 4a 

yg = ahs 

60 Sy 59 973 7 “726 

46047 

AO alAeT



oD 
4,4, 

Aahs 

Asay 

teh 

is
 y o 

> ' 2
 

F
F
 

T
Y
 

» 
w&

 

Mowe 

Ager 

Aa o 

aoe t 

&— Age 

fF 10%9 
i Agha 

&-> Agro 

A >F 
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B61 te 
Ay _ 51 

=o Ges862 AB neay 247 

#39 Age41 Aug  4a4n 

Ayo ~ 43949 450 = AisAyg 

Pp 8g 451 = AA 

Ayo Se Aphis “Asoc Ai5*o 

Hag “azt10 453 = Arotse 

244 = -ta3"7 

445 ~ Aogg 

“46 ~ “sts 
Aat AeA? 

Aa7 = AseAio Aga = AagArg 

#38 7 A574 449 = Agpte 

#39 oe 25034) “OM eeTA 3 

40 ~ “6439 An = “L650 

#4 o7°3 251 = 420%50 

Beer fats Aeoie “Bere 

*i3 7G eb 53 se 5e 1) 

Ang “gs“13 454 = A5atig 

§y5 Ash B55 Asahg 

46 Aas 

Mat 715°3 

Ap ee howmt 

Ag> J Aye = AjAG 

Boi. Ag7 ™ Aja, 

how 

is



E.3 Rules of the CFG's 

one 
&~ AVA, 

ee 
gE eonT 

fer 376 

a esa 

TWO 

eo ty 
rate es 

iw A 

  

o> aA, 

eed 

fe ian 

4? 
A, >i 

Ro A 

mA ‘4 7 
i Ag As 

bas 
Rr toes 

b= Aho 
aot 

&k> A 

4 ~f 

A, wm F 

& —— Aga 

b> body 
Be ah 

ae ST Le 
Ao? 
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nonweighted 

4g > N 

mye 

AowmD 

ae 

Sea 

Ag > P 
Apo 

Ag > m 

torte 

Aowms 

Ag C 

bg H 

AiO see 

a 
e656 

Amc 

Ago J 

bye 

to. 42 
Aymi 

ai Sorat 
Ay. —~ ALA 36 34 

Teese 

Aid il 

Ass > Asay 

437 <2 "9°10 

[ajeam lee 

Ane 

ASG > AAs



FOUR 

B63 

AyAs7 
Ee AzoAg 

fe 24D es 

fe edt 

oie ei eAS 

Baga 

Bo Asks 

Ce ATG 

FIVE 

E> 

komA 

- 162 - 

lee #18 aoe a4) doe 

ome 49 Tae Aaa sa AA3tio 
4,>D B36 AA Ags Aylty 

pie aan P37 eae AO mT 16 

213 aga Ag ~~ 4345 fag > Ayety 

af ee #39 77 “3847 0°48 = “ekg 
45 — B Ano > AU Ae 

Aig = 2 Ay = Aods 

bay ih #42 2 P12) 

aT mee 438 4544 451 = AsoArg 

8 =? 230\ 7% 130360) 52 7p 421s 

219 cia #40, = *29%7 453 *20*52 

Oia Saye PANS 54 ate 

Soiree Bye Pots 455 =| Aas 

open 443 AloAyo 456 = A55 Ao 

=23 nee 44 ~ 4q34re 457 ~~ A564a3 

on aie Aa5 = AiAga 45a 7 A5Aog 

fos ee #46 = A13°14 959) Tee 58.3 

a6 Aut = 446415 460 > A64a5 

or fe #48 = 16°15 61 “wie0 510 

#36 a 1 2 40 ea 6 AB 6am ee 

renee Byeha. 850) TSG tesen 262 26



SIX 

ti Azg4e 

t= 743,9 
Bw Aya, 

& > Aedes 

E> Al oAag 

t-> Aske 

oe sonty 
in Asok¢ 

re ae 

C6212 
4 > sB 

A,~n 

SEVEN 

ed A37A3 

oe eS 
&- Sean 

Se Fear 
gE Ays4o 

i> Ano 

£— Ayoh7 

i> Mag 

Sag 

eee 
4om? 

43758 

Aywi 
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peo o iae 

364. 

58\i a7! 

39 ~ A345 

edie 
An > Agar 

f4cde edt 

243 Ta e425 

tym t 

Ao 

Sula 

43-5 

45m e 

C16 ae 

A= 

Aya > A5AL0 

245 ee AA 

yg = Ags 
4G > 445413 

Pie td 
Ang > AngAs 

449 ~ Agoke 
450 = AvaAs 

a ai 50 

ae 
453 7 4545 

454 4534s 

sia” ¢ 

Sioue e 

Oo a 361 

a8 aa 82 

A59 = Ase 

yo ~ “3949 

Ay = AyMgo 

Rio O"7 

ister Warde 

455 ~~ A545 

456 ~ AssAi6 

S57 aaa es 

45a AyAs7 

458 = Ave4s7 

459 = AsaAs 

#60 = *10%3 

261 oie 41456 

46o ~ AeA 

~ AeAas 

45 = AoMaa 

446 “ahs 

a7 Age4s 

48 ~~ AveAy 

“49 Anste 

450 = AtoAls 

431 Te 501 

A52 > “SULT



EIGHT 

ey 

fe 8407 

{ eeihe 

2372 

or Vials 
i> 4 Ane 

Ayo 

E = tnhs 
Bm Aoshs 
ears or 
4 > G 

ZERO 

See 385 

be ome Sa 

Str a5 13 

(ome aes 
ee sorte 

E25 3°10 

ae eT 
rey S598 

Sm Te2 
i- ao Ace 

Ac 

A, moc 

A, ~>D 

he ek 

Ag mi 

"dian 

en 

43 ~k Aa7 ~~ Ax640 

{qe AB a 34 

5 yee Ayg Ags 
Ne > J Ano = Az943 

AT —~h An — Aga, 

43> g Ano > Ay Ay 

219 ae *93.t etre 

Boon yg Ay3te 
Ay —-b Ans ~ eg 

A 36.7e ie. | 446 A345 

ape a6 oS AT ae at 1S 

Als >f ANG > pola 

Ass > AA, Aggy > *16*s 

~_ Angas Ao Ayo 3 

P
L
 

oa Aisa 2 AGS 

38 As74e Aya > Aarts 

Aap: se As8hy P48 = AT Le 

Bap Aa9%e 449 Ta ieMar 

Mie a5 Ou 340 

Myo A548 An Avstas 

#43 Gp 10842 *52ce 7 51 

GAdae 9°43 AS, ome olay 

445 ~ Ana*ie 454 = A5Aig 

> 

at's 

49 ~ Agetvg 

0 Seal (as 
451 = Ale4so 

4s = AzoAso 

459 = Aphis 

453 = Asaf 

454 4534.9 

455 AsaAls 

B55 Asa*y 

A5g  Anshg 
Asy 7 Aahie 

458 = Agas7 

B59 = Ar Ass 

60 5 78 

46. AooAL 

62 Aster 

63 ~ Asks 

4eq —~ Agats 
765 oor
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