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Sumary

A wire drive pulse echo method of measuring the spectrum of salid
bodies is described. Using an 's' plane representation, a general
analysis of the transient response of such solids has been carried out.
This was used for the study of the stepped amplitude transient of high
order modes of disks and for the case where there are two adjacent
resonant frequencies. The techniques developed have been applied to the
measurement of the elasticities of refractory materials at high
temperatures.

In the experimental study of the high order in-plane resonances of
thin disks it was found that the energy travelled at the edge of the disk
and this initiated the work on one dimensional Rayleigh waves. Their
properties were established for the straight edge condition by following
an analysis similar to that of the two dimensional case. Experiments were
then carried out on the velocity dispersion of various circuits including
the disk and a hole in a large plate - the negative curvature condition.
Theoretical analysis established the phase and group velocities fior these
cases and experimental tests on aluminium and glass gave good agreement
with theory. At high frequencies all velocities approach that of the one
dimensional Rayleigh waves.

When applied to crack detection it was observed that a signal burst
travelling round a disk showed an ancmalous amplitude effect. In certain
cases the signal which travelled the greater distance had the greater
amplitude. An experiment was designed to investigate the phenamenon and
it was established that the energy travelled in two modes with different
velocities. It was found by analysis that as well as the Rayleigh surface
wave on the edge, a second mode travelling at about the shear velocity was
excited and the calculated results gave reascnable agreement with the
experiments.

SURFACE WAVE, MODE PROPAGATION, MATERIAL CHARACTERISATION
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from the spectrum. Because of this importance, the coupling
term (expressed as a 'Q' factor) has been calculated as
described in Chapter 2 from the theoretical equations for the
radial and tangential components of vibration of a variety of
modes. Of these the radial expansion and the three nodal
diameter distortion modes are particularly important as they
are the best pair for elasticity measurements. Unfortunately,
in metals, the freguencies are sufficiently close to prevent
direct measurement and only by comparison of theoretical
responses obtained from the model with those obtained

experimental can true values of the frequency be obtained.

To perform the inversion of this 's' plane model with
several complex pole and zero pairs 1is a formidable task.
However, the coupling term is very small compared to mode
frequencies and this enables the inversion to be made by
using an on-line mini-computer which provides an output to the
graphical display unit. The pattern normally takes 1~3
minutes to plot and can be compared directly to the
oscilloscope display. This computer programme was used to
resolve the adjacent fregquency modes referred to above
providing an improved method of measuring Poisson's ratio. In
later investigation, it was found that anisotropy of the
material results in split modes and again this technique was

used to resolvye them.

In Chapter 6, this technique 1s extended to measure the
elastic constants of materials at high temperatures since the

electronic eguipment is remote from the resonator. Various



materials, for example, hot-pressed silicon nitride, silica,

graphite etc, had been studied.

When investigating high order in-plane modes on disks,
it was at once apparent that these were equivalent to two
surface waves travelling in opposite directions. It was
decided to investigate these one dimensional waves in more
detail. TFor the case of a straight edge, a double wire drive
was used. The results showed the characteristic fall off
with depth of the vertical and horizontal components of
displacement and a velocity equal to that of one dimensional
Rayleigh wave. The wave of this type was first described by
Mason and Ash in their micro-sound waveguides. A theoretical
and experimental discussion of one dimensional Rayleigh wave

is given in Chapter 3.

One dimensional surface waves also exists on edges with
curvature but are dispersive. The dispersion can be described
by the use of phase and group velocities. Theoretical and
experimental studies of wave propagating on the edges of disks,
holes, ends of cylindrical shell are presented in Chapter 4,

A simple polynominal expression is obtained to show how the

wave velocities converge to their asymptotic-wvalues.

The edge surface waves have been applied successfully to
detect and locate very shallow surface cracks. In studying
signal amplitude, a crack was produced on the edge of a disk
giving two echoes, one haying travelled a greater distance
than the other. An unusual phenomenon was observed; the wave

travelling a longer distance has a larger amplitude than that



of a short distance. The phenomenon occurs because the
waves leaving the drive source can be divided into several
modes which travel at different velocities but all modes are
confined to the surface. This effect appears on positive
curvature only. The existence of high order modes is
analogous to the 'whispering gallery effect' first described
by Lord Rayleigh using a ray theory. A study of additional
roots in the disk frequency equation and their longitudinal
and shear potentials gives the velocity and fall off
characteristic with depth. The waves travel at different
velocities and result in a periodic increase and decrease in
amplitude analogous to a beating effect. Comparison of
experimental and theoretical echo amplitude gave good

gualitative agreement. This effect is discussed in Chapter 5.

Another phenomenon exhibiting very similar characteristic=
in nature to that of surface wave is end resonance. The
propagation of this wave is associated with the complex
propagation constants and its precise eigenvalues for strips
were obtained by Bell and Karlmarczie. A 45° drive to the
width end of a strip excites the end resonance mode efficiently.
Their results were normalised, as is usual to the shear
velocity in the material. When normalised to the one
dimensional Rayleigh wave velocity the eigenvalues obtained
were much less dependent on Poisson's ratio. This indicated
that all end resonance phenomena might better be investigated
by a surface wave approach . Measurement of elastic constants
based on the end resonance is proposed and included in

Chapter 6.
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CHAPTER 2

A MODEL FOR THE TRANSIENT BEHAVIQUR OF DISTRIBUTED

MECHANICAL RESONATORS

2.1 Introduction

The pulse-echo technique, originally designed for
Ultrasonic Thermometry(l), can also be used to obtain the
resonant frequency spectrum of solid objects, the geometrical
forms used for material characterisation are thin disks (driven
in plane) or rods driven longitudinally. A schematic diagram
of the pulse-echo system is shown in Fig. 2.l. From the
known spectrum of an isotropic disk, Young's modulus and
Poisson's ratio can be obtained by comparing the mode
frequencies which are governed by different elastic constants
such as the plate and longitudinal modulus. These measurements
can be made with high precision. A long thin line is used to
couple the magnetostrictive transducer to the resonator. This
gives a large separation between the resonator and the signal
equipments and enables measurement to be carried out over a

(2)

wide temperature range .

To analyse the echo pattern, a mathematical model of a
simple lossless line resonator has been developed by Sharp(3).
This is, in effect, a lumped circuit representation of each
resonance and makes use of a dominant pole in the plane of the
Laplace transform variable 's'. The position of the pole is

determined by the frequency of the resonance being considered

and its coupling to the line. A typical 's' plane diagram




and echo plot using this model are shown in Figs. 2.2 and

2.3. The early part of the echo in Fig. 2.3 shows the
transient interaction with the drive frequency and the natural
resonant freguency, the late part of the echo shows the
approach to the steady state situation. However, it has been
observed experimentally that when high order modes are excited,
the echo pattern develops a 'stepped' change of amplitude while
a computer plot using this simple model gives a pure exponential
echo pattern and the stepping effect does not appear. The
stepping effect is dominated by the fundamental mode: the step
interval for any mode corresponds to the period of the
fundamental and the energy transit time. Using this approach,
a more detailed 's' plane model for high order modes where each
resonance is represented by a pole and zero pair has been
developed. With approximation, the complete inversion is

possible and shows good agreement with experimental echo patterns.

The spectrum of even simple bodies can be very extensive.
Close resonant modes are frequently encountered, particularly
when the material is anisotropic and this results in a complex
echo pattern which changes rapidly in form with the drive
frequency. Typically two closely associated resonances have
been analysed by considering the two pairs of poles and zeros.
Comparison of the theoretical computer plot and the experimental
pattern enables the values of resonant freguencies to be

determined.

This 's' plane model can be used with a resonator other

than a rod provided that the appropriate coupling value (B)



and the eigenvalues of the vibration modes are known. The
model developed by Sharp is obtained by using the mechanical
impedance approach from the ratio of force to velocity and
expressing the impedance in terms of the coupling and
relaxation term in Laplacian form. Consider the thin disk

of which the vibrations are two dimensional. To obtain the
impedance expression using the previous method would demand
laborious mathematical manipulation to express the force

and velocity functions. In this case, the coupling factor is
obtained in terms of the equivalent mass of a resonant system

(4)

by employing a Rayleigh's energy method involving energy
considerations alone. This method requires only the
eigenfunction expression for the velocity function. An 's'
plane model is thus developed. The result shows that all the
low order distortion modes (nodal diameters only) have the
same order of coupling with a small dependence on Poisson's

ratio. For metals (0=0.3), the changes in coupling value

are insignificant.

The echo plots can be obtained from an 'on line'
mini-computer graphic unit which allows a direct comparison

with the experimental display.



2.2 The Echo Technigue and Magnetostrictive Transducer

As shown in Fig. 2.1, a magnetostrictive launcher is
used to transmit and receive a burst of high frequency
longitudinal stress waves. The acoustic line is made of
nickel wire or telcoseal (nickel - iron alloy). The number
of oscillations is selected to allow sufficient information
to be extracted. The lines are annealled and stretched to
minimize the attenuation in the line material and scattering
from the grain boundaries. The effect of magnetostriction is
guadratic and requires a standing magnetic bias, or where
space is limited, a solenoia, concentric with the launching
coil, driven by a constant current source is used. The coil
design enables full use of the characteristic to be obtained
with a swing #15V. In general, this gives an echo signal
to the order of 0.5 volt which is sufficiently strong for
electronic noise to be negligible. The presence of the
spurious echoes from the line arising from kinks, supports
and grains, are the factors which ultimately limit the
accuracy. The line is made sufficiently long to avoid
standing waves. At the other extreme, the length should not
produce the problem of excessive attenuation. Within these
limits, line lengths are chosen to suit the physical environment.
Typically, a 2 metre line can have a burst of 40 oscillations

at 50 kHz before standing waves occur.

For a single open ended launcher, the centre of the coil

is positioned A/4 from the end of the wire to make use of the

/



first reinforcement between the forward and reflected wave.
This, in effect, doubles both the transmitted and received

signal.

The Magnetostrictive Driver, using digital TTL circuits
throughout generates a burst of variable frequency pulses in
the range of 10 kHz - 1 MHz. The digital technigues employed
enable the number of oscillations in the burst and their
repetition rate to be preselected. The coil is tuned by

means of a decade capacitor.

Resonance occurs when the transmitted frequency is
exactly egqual to the mode frequency of the resonator. The
echo in this situation produces a distinctive, phase sensitive

'hull' providing a precise setting of frequency.

The resonator itself can have a variety of geometrical
forms which depend upon the parameter to be measured and will
also be determined by the availability of empirical or

theoretical solutions.

The characteristic of the echo will be discussed in the

next section.
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2.3 A Rod Resonator Using the Transmission Line Theory

In this analysis, a low impedance transmission line is
considered to be terminated by a line resonator of much larger
diameter. Plane waves are assumed given the familiar harmonic
resonator spectrum. The echo arises from the reflection of a
burst of oscillations at the resonator. Only longitudinal

propagation is considered. A suitable linearized equation of

motion<5) for propagation is given in equation (2.1).
2 2
4o-233 i a2z (2.1)
C 2 2 2
o) 0z CO 0z

H is the relaxation term which accounts for material
losses. For constant loss angle, H is inversely proportional

to frequency.

CO is the rod velocity of longitudinal plane waves and
L
equals (E/p)?. In this case, Cl refers to the line and C2 to

the resonator.
Equation (2.1) has the solution of

u(z) = (Aexp j(—qlz) + Bexp j(qlz)) exp (juwt) (2.2)

This is similar to the electrical transmission line
theory which represents two waves travelling in opposite
directions with the complex propagation constant which is

given by eguation (2.3)

- . 2 . wH
ql o ___,2__,___(‘.0___ =, -—-(—i—l) (l - j:)—‘ (2.3)
CO + JjwH C
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To describe the echo the analysis used the concept of
mechanical impedance defined by the ratio of force to

(6)

displacement velocity. Pollard has obtained the input
and transfer impedance equation and the reflection coefficient
showing each has a structure identical to those of electrical

theory. The reflection coefficient is given as

- B __0
R = 3 (2.4)

ZO is the characteristic impedance and equal to

: L
pArCO(l + 19%)2 which is in general taken as pC A .

C
o

ZL is the load impedance at the end of the line and for

a line resonator of finite length L, ZL = ZO tanh qlL.

Using equations (2.3), (2.4) and the boundary condition,
Sharp(3) has obtained the first reflection expression resulting

from sinusoidal input in its Laplacian form as

W (s—B+n20L)2 + wi
R(0,8) = =5 _ (2.5)

s +wi (s+B+n2a)2 + W

n

where we = angular transmitting frequency

w, = angular resonator fundamental frequency
n = mode order

g2
o = 5 = relaxation term which accounts for

2L
material loss
C2 1
= e—— — = i ad

B 2Lloge(R) coupling term depends on the

reflection R given in eguation (2.4).
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This is a lumped circuit model having a single resonance.
2 lumped circuit consisting of the mass spring and dashpot has
a similar equivalence to the model developed by Sharp.
Equation (2.5) is inverted by using a dominant pole approximation
which is valid for the energy in a signal near the resonant
frequency being considered and the theorem given in

equation (2.6).

L "F(s) = residues of F(s)exp(st) (2.6)

The solution to this problem is given in Ref. (3) and for

lossless material.

aw BS
C o s 1 _ .
R(O,t) = Sln(wst+el) + —< 5. exp ( Bt)Sln(wnt+82)
n 2 3
(2.7)
= 2 2, %
where Sl = (B™ + wn)
_ 2 2.5
S, = (B™ + (wn+ws) )
_ 2 _ 2.5
s, = (B" + (w ~w)")
- -2w_B
6, = 2tan” 1 5 25 5
B +(wn—ws)
2_ 2
-1 Bwn + wn<wn ws)
6, = tan 3 > 2
BT + w. +w.
n s

Various approximationsand simplifications of the equation

are dealt with in the next section.
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2.4 The Characteristic of the Echo

This section describes the echo in terms of significant
parameters and factors. The typical echo shown in Fig. 2.2
essentially consists of two components, the echo signal and
echo decrement. The echo signal is the return of the wa&e
incident on the resonator and it is at the transmitted
freguency. The echo decrement which follows, is the exponential
radiation of the stored energy and is always at the natural
frequency of the resonator. Theoretical consideration shows
that these two signals'from the coupling mismatch and the
re-radiation are in anti-phase and the echo return is the

difference between the two signals.

The crossover is the most sensitive criterion of resonance,
detuning even by 0.1% of the transmitted frequency causes a
noticeable change in the crossover. From an experiment, a null
crossover is obtained by adjusting the transmitted frequency

and this value is equal to the natural resonant freguency.

The resonator is often described in terms of Q factor,

frequency or its related parameter, number of oscillations to

crossover. In practice, wn>>6 and at resonance w =w_, therefore
. (@] .
for lossless material S;=w_, 5,=2w,, S3=B; 6,2180 and 92=o°,
equation (2.7) reduces to
R(O,t) = —Sinwst (1 - 2exp(=Bt)) (2.8)

The number of oscillations to crossover ng is obtained

by setting the right hand side of equation (2.8) to zero which
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leads to equation (2.9).
loge(2)
n =n —mm—— (2.9)
* log (—l—)
e R
It will be seen that n, is proportional to mode number n

and R, being a constant for this particular resonator. This

does not necessarily apply to other structures.

In general, the resonant parameters can be expressed with
appropriate approximations in terms of acoustic parameters.

Thus the term ——EB—T— becomes the coupling Q of the system.

log, ()
It is related to the log decrement and can be expressed as

— = exp(ﬂﬁ) (2.10)

where A, and A are the amplitude of first and Nth pulses
respectively in exponential decay. In the absence of material
loss (H=0), and at crossover AI/AN=2 giving equation 2.1l which

is frequently used in practice.

= — =
0, = To5. @) n, = 4.53 ng (2.11)
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2.5 Two Close Modes With Different Coupling

In using the pulse-echo technique, a burst of oscillation
at frequency f will contain significant power in band
£(1 i%—) where Pn is the number of oscillations in the burst
which will excite any mode close to this frequency band. 1In
general, resonators have very extensive spectra and modes can
be sufficiently close to be excited by the same burst. These
signals will interact and produce an elaborate echo pattern.
In practice, a full analysis for the case of two closely
associated modes require knowledge of the respective

frequencies and line coupling.

The single mode echo pattern merely shows the transient
response of the resonator which is highly dominated by a pair
of complex poles and zeros close to the burst frequency.
Therefore, the analysis of two interacting resonances can be
considered by introducing another pair of complex poles and
zeros which is close to it. An appropriate 's' plane diagram

is shown in Fig. 2.4.

Using this approach, equation (2.12) gives Laplacian form
the first reflection expression for a lossless resonator with

two close modes resulting from a burst of sinusoidal input,

E_(0,5) = R (0,s) [1 - exp(-sT) ) (2.12)
where o [(sr6ﬁ2+w§][(s-az)2+w§]
R _(0,s) =
¢ sz+w§ [(5—822+w§] [(s+52)2+w§]
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T = burst duration

RC(O,S) is inverted by summing 6 residues from the poles

using equation (2.6).

By means of suitable substitution and space - consuming

manipulation, equation (2.13) gives the expression for EC(O,t).

EC(O,t) = Rc(olt) - H(t_T)Rc(Ort) (2.13)
where
4Blwsexp(—81t) X§+y§ ¥
RC(O,t) = Sln(wst+6) + m ( > 2) 51n(wlt+6l)
u2+v2
482w exp (-8 t) x§+y§ 5
+ = ( ) sin(w,t+6,)
w 2 2 2
2 u3+v3
and
2 2. 2 2 2
X, = (B +W —ws)(82+w2-ws)—48182ws
y, = 20 [8, (Bi+w —w? 2y48 (B§+w§—w§)]
-1 Y
§ = -2tan l(;{-l)
l
2 2
x, = B, [(B+8,) 2swi-wl]-20 (8,+8,)

N Nl\)

y, = wl[(81+82) +w —wl+281(81+82)]

o, = 20y (8 (8,8 2ewl-u?)= (8,-8)) (83 +ul-ud)]

2 2
v, = (5i+w§-wi)[(8 -8 )2+w§—wi]+4wiﬁl(82-81)
§, = tan_l(Ei) - tan-l(éf)
xy = B, [ (B+6)) whru) =203 (8, 46,)
vy = wz[(51+52)2'w§+wi+252(81+82)J

2_2, 2 2, 2_ 2
u, = 2w,[8,{(8,=8;) —wot H (B8 ) (B twg-w)) ]
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2, 2 2 2 2 2 2
= -+ - -— - - -
vy = (Brul-w5) [(B,-8)) -wyrul]-4u38, (By=8))
-1 4 1 Y
§, = tan l(\-73’-) - tan T (=3
3 *3
W, = transmitted angular freguency
Wy sy = resonant angular frequency of first and second
modes
8 ; flloge(Z)
1 n,
1
- leoge(2)
2 n
2
fl, f2 = resonant frequencies of first and second modes
D 4 n, = number of oscillations to crossover of first
1 o2

and second modes.

In using equation (2.13), Fig. 2.5 shows the echo pattern
from an on-line mini-computer graphic unit in which the modal
frequencies and the drive frequency are equal. The couplings
are assumed to have a ratio of 3 to 1. Two crossovers are
observed and each crossover corresponds to one of the modes.

A tighter coupling is observed from the pattern and this

would require another mathematical interpretation and would

not obey the expression given in equation (2.9). The echo
pattern has extensive modulations and the apparent steady state
amplitude is not necessarily equal to the initial amplitude

for a lossless material. Figs.2.6 to 2.8 show the effect of
detuning in the elaborate echo pattern. The two modal
frequencies are equal and the drive frequency is 0.5%, 1% and

1.5% higher than the mode frequency. In these cases, no
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crossover is observed and the echo pattern changes rapidly
as the detuning increases. This illustrates that the crossover

is still frequency sensitive.

To simulate the practical situation, the frequency
separation of the modal frequencies are fixed at 1 to 5% in
interval of 1%. The drive frequency is varied to search for
the crossover and the ratio of the coupling is chosen to be
3 to 1. Figs.(2.9) to (2.13) show the echo patterns obtained
from the graphic unit. The result shows that a crossover can
be obtained at two different drive frequencies neithef of which
is equal to the mode frequencies. The deviation of the drive
frequency to obtain the crossover is sensitive to the percentage
separation of the two modal frequencies and the coupling terms

have only a small effect on this drive frequency.

When the value of the coupling term is available, a direct
comparison between the computer plot and the experimental
display allows the values of two close resonant frequencies

to be determined.
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2.6 The High Order Mode Echo - "Stepped Decrement"

A line resonator has a harmonic spectrum of resonances,
so that w =Nw, . The computer plot for modes above the
fundamental using equation (2.7) gives a pure exponential echo

pattern and gives the correct null position but the stepping

effect observed experimentally does not appear.

This stepping effect is observed for modes above the
fundamental. The step interval is equal to the resonator
transit time and hence the number of oscillations per step is
approximately equal to the mode number. Strictly speaking,
the fundamental is also stepped, having one oscillation per
step. The effect is seen to be dominated by the fundamental

mode.

Using this ideas, the poles considered in the 's' plane
diagram for high order mode is not only the pole adjacent to
the transmitted freguency but also all the harmonically
related pdles below the transmitted frequency. Equation (2.14)
gives the general first reflection expression for a 'n'
stepped mode resulting from a sinusoidal input in its Laplacian

form.

W k=n (s—sk)2+w
Rn(O,S) = —5—> I
s +ws k=

(2.14)

LS

Z
1 (s+8k) +w

where wk’= kwl and n = 1,2,3,ccc..

The inversion of equation (2.14) is obtained by

summing 2(n+l)vresidues from the poles. For mode n=3, the
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numbers of summing residues is 8. Fig. 2.14 shows an
appropriate 's' plane diagram for mode n=3. The mathematical
expression for n>3 would be considerably more elaborate than
that already obtained and would demand excessive effort to
perform if a full solution were attempted.: However, the poles
and zeros are well separated in frequency and in practice as
ws>>B; the mathematical term contributed by the lower half
plane can be neglected without loss of the essence of

the model. With this simplification, the inversion assuming
three arbitrary modes, have the form shown in equation (2.15).
22627l8 W

212425 (ws+wl)

Ry(0,t) = Sin[w_t-2(a +a,+aj)}-

2

+a,—a,—-a,-a

exp(—Blt)Sin(wlt+a7 g~a173y 5)

2kt b0 Y ,
+ 22£5211 ws+w2 exp(—th)51n(w2t+alo—a7—a5—a2-all)
2i2i12j12 - iz3 exp(—B3t)Sin(wst—aB—a4—a8-all_alO)
(2.15)
whereg, = [Bif(wsjwl)zj% a, = tan—lwzlwl
b= (e o2l a = tan_ligégg
Yy T [(81'83)24“(‘*’s"”1)2];2 G tan_l%fggi
£5 = [(81—82)2+(w2-wl)2J;2 ag = tan—lgf;gi
L = 28

6 1
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_ 2,2 2 -172 71
L = - 2 =
7 [(Bl+82)+(w2 wl) ] a7 tan 5 1B
1 72
_ 2 2% _ -1%37%1
g = [(B+85) T+ (w_~w ) 7] ag = tan g7
173
Rg = 282
_ 2 2% _ -1%¥37%
%10 [(82+B3) +(wa=w,) ] a,;,= tan 5,
_ a2 o 2% _ L =137
f11= [(B,=85) T+ (wg-w,) 7] 2117 tan g
212— 283
£
_ 71
By = H;' log_(2)
1
f2
82:.,:= E.;__. log2(2)
2
f3
83 = n—x—' loge(Z)
3
fl, f2, f3 = resonant frequencies of first, second and
third modes.
n. , n_ ,n = number of oscillations to crossover of
*1 *2 %3

first,second and third modes.

For a line resonator has the properties that the overtones
are harmonic (wn= nwl) and the coupling is such that nx/n is
constant. Equation (2.15) simplifies to equation (2.16).

R3(Oft) = ZrOSin(wst+60)+2rlexp(-Blt)Sln(wlt+el)

+2r exp(—Blt)Sin(w2t+82)

2

+2r3exp(—61t)8in(w3t+e3)

(2.16)
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where
= ;’ —3 -
ro 5 GO m 2(al+a2+u3)
W L,L.L
S 47577
r. = 8. = m1-(a,=0,~0_)
1 (W, +w )2 2L L2 1 174 5
1l 7s 176
2
r = ws L4L7 8 = =Q
2 (2w, +w ) 2 2 2
1l s L6L2
W L. L_L
47577
r, = 6, =m-(a,+a , +0_)
30 (Buytug) oy 12 3 345
376
and
_ 2 .2.% B -1 %s™
Ll = [(ws-wl) +Bl] a; = tan VBlf
L
-2W
- 2 2% _ -1 %s 1
L, = [(wg-20,) +Bl] o, = tan 5
-3w
_ 2. .21% _ -1 1
L, = [(ws-3wl) +Bl] ay = tan 5
L, = £w2+(28 )2]% a, = tan"l Sl—
= [(20,)%+(28,) 2" - tan”! 2L
L5 = [( wl) ( Bl o 81
f
_ _ 71 log_ (2)
Lg =9 P17 e
1
Ly = 28

Numerical solutions of equation (2.15) are shown
graphically in Figs. 2.15 and 2.17 where n=2 and 3 respectively.
Here the drive and resonant freguencies are equal and the
characteristic stepped pattern occurs with the crossover at
the calculated values. Figs. 2.16 and 2.18 show corresponding
experimental results for n=2 and 3. The agreement between

experimental and theoretical patterns are excellent and all
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the main features correspond. There is some deviation in
the experimental display due to the inherently finite

bandwidth of the transducer.
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2.7 's' Plane Model for the Contour Vibration of Isotropic

Disks

2.7.1 Mathematical Analysis

The one dimensional plane wave resonator was analysed by
Sharp. The mechanical impedance is obtained from the ratio
of force to velocity in Laplacian form and expressed in terms
of B value and frictional losses (a). If the echo pattern
of any body is konwn, this 's' plane model can be used with
the appropriate B value to obtain the response to a known

excitation.

The two dimensional resonator represented by a thin disk
has been widely used for the precise determination of elastic
constant and ultrasonic characterisation of material(7). The
displacement involved in this case are radial (ur) and

tangential (u,). The analysis giving the coupling of a thin

S

disk is derived here.

To obtain the model using the previous method would
become very complicated and difficult to solve. In this
case, the Rayleigh Energy method(4) is employed to express
the B value in terms of the equivalent mass at resonance.
The equivalent mass (Meql of a resonant system can be

evaluated through equation (2.17).

g ffia?a, a4,

M. ), = T (2.17)
= (u)
2 T ™x
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For a contour extensional vibration of a thin disk

which involves no transverse displacement. The radial and

(8),(9)

tangential displacements are given as

. dJn(Kr/al .nBl
u_ = [A + J (KHr/a)]cosn@coswt (2.18)
r 1 n
dr r
nA, dJ  (XBr/a)
ug = [—E~ Jn(Kr/a) + Bl ]sinnecosnt (2.19)
dr
where
2
L -
El _ Jn(K) s (KA) n(n+l)+Mn(K)
A, J (X8 n[M_(KB) - (n+1) ]
_ Wba 2 _ 2
K=z B =15

r : radial distance
a : radius of the disk

J (X)
Mn(X) = X

Using equation (2.17), the equivalent mass as seen at the
driving point (8=OO) on the edge of the disk is given in
equation (2.20).

a2m 9du_ 2 9Ju, 2

X S
_enf fg (e +&Gg) Jr dp 4y 5 5
Meq = su_ 2 ouy 2 (2.20)

6
5€ )

+ (gg—)

h : thickness of the disk

Equation (2.21) is obtained by inserting equations (2.18)

and (2.19) into equation (2.20).
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2
M1 (K)+I, (K)+T5 (I, (KB)+I, (KB))+2nT, (I5+1,)]

Meq =
Tl+T2+T3
(2.21)
where
a . aJn(Kr/a) )
I.l(_K)_ = (Tlr dr
a ani(Kr/a)
I, (K) = o - d,
I, (K)+I,(K) = sK°0072, ) (4337 (K)=0 (K) [3, 5 (R) 433, _,(K)])
a BJn(Kr/a)
I,(K) = fo J, (KBr/a) —— d,
9J (kBr/a)
a 1N
1, = [, In (Kr/a) 3T dy

I,(K) + I,(K) = J_ (K) J (KB)

3 n
2 2 2
_ [4.0_ r - KO
T,= laggr I, &) = [9 () - I 41 (K]
2
T, = [nT,7 (x®)]
i p)
T3 = 2nT4aJn(KH)§E Jn(Kr/a)
= nKT, g &e) (I _; (K)-T_ 4 (X))
By
T, = —— (as in equation (2.18))
4 Al

M = static mass of the disk.

A good reference on integrals of Bessel functions could

be found in Luke(lol.
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In addition to the asymmetric modes, the expression of
Meq for the pure radial mode at the driving point and on

the edge of the disk is reduced to

' r
=) 2
ZIQ[BJO(Kl,R a)] rdr
_ e} or ‘
M = 5 (2.22)
! k2 3% (K, .)
1,R"1"1,R"
Equation (2.18) can be simplified to give
M J (K J, (K, .
eq - 1 - o( l,R) 2( l,R) (2.23)
M J2(K ) :
171,R°
and Kl R is determined from the characteristic equation
14
My (Ky g} = 1-0 (2.23a)

Using the same procedure, equation (2.24) gives the

ratio of Meq/M for the pure tangential mode.

M J (K B)J. (K 2]
eq _ 7 - o( 1,7 ) 2( l,T‘) L1 (2.24)
M J% (K. @) )

171,T
and Kl T is determined from the characteristic
1 4
equation
Ml(Kl,T) = 2 (2.24a)

From equation (2.23) the values of Meq/M for the pure

radial mode was evaluated and also indluded iniTable 2.1.

In echo systems, the resonator is often described in

terms of its coupling Qc and the number of oscillations
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to crossover nx‘ Qc is related to the log decrement by

Qc = ﬂ/DC where DC is log decrement and from equation (2.7),

can be shown to be o

.= “E' (2.25)

Using equation (2.11), and (2.25), the coupling value of
a contour extensional wvibration of a thin disk Bd is thus

obtained once Meq is known and shown in equation (2.26).

g
2y
= s — .2

Bd,n 2 ( ) (2.26) |

eg'n
Bdin : coupling value of a thin disk of mode order n
4
(M__)_ : equivalent mass of mode order n on the edge of

the disk, radius a

Using equation (2.21), Table 2.1 represents the ratio of
(Meq)n/M against mode order n for a useful range of Poisson's
ratio in interval of 0.1l. Once the choice of dimensions

and mode of vibrations corresponding to any frequency have

been made, the Meq at the driving point can be evaluated.

An inspection of Table 2.1 reveals some interesting facts.
First, the equivalent mass of the lowest order mode (n=2)

will have a higher value than half the static mass. The 3

result arises from the fact that the amplitude component

reaches a maximum near the periphery and at the«drive point,
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it has fallen significantly(ll).

The value of M does
eq
drop as n increases. Second, from the tabulated value of

eigenvalues Kl 0 for the lowest five modes, the K M_ )

l,n " eg’'n

is approximately constant. This is consistent to the
experience of the author that the coupling of the lowest
five asymmetric - disk eigenmodes are approximately constant.
Fig. 2.19 shows the coupling Q value of a thin disk and
compares to the thin rod. The coupling Qc is normalised

to Qc of mode order 2 and the Poisson's ratio is assumed to
be 0.3 (typically of most metal). It can be seen that the
effective change in coupling of a thin disk is small as

compared with the rod resonator and not easily observed if the

nX value is small.

With the use of derived Meq values, the 's' plane model
for a thin disk is obtained. Eguation (2.27) gives the
expression of low order mode for a thin disk in Laplacian form

resulting from a sinusoidal input is

2 2
~ w g n (S’Bd,k)'+wl;k
R(O,S) = zﬂnz kzz - )Zﬁuz (2.27%
S Mg X7 a,k’ 71,k
where Bd Kk = B value of a disk of mode n and derived from

equation (2.26)

The separation of Wy g is obtained from the eguation
i 4

drived by Love(lz).

The computer plot can be easily adapted
for this case. Fig. 2.20 shows an 's' plane diagram for

the case of a disk for the asymmetric mode up to four and the

b
|
]
i
1

T —
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pure radial mode (1,R) is included. As the radial drive to
the disk, the asymmetric and the 1,R modes are excited but

not to the tangential mode.

2.7.2 Comparison with Experiments

To test the values of eguivalent mass derived above,
measurements were carried on a series of thin disks. The
Meq values can be evaluated by equation (2.26) once the line
impedance is known. To determine the accurate line
impedance without any known acoustic data, a brass specimen
6.5 mm diameter; 100 mm long had a weight of 25.047 gm was
used. A 0.7 mm diameter nickel wire excited the rod
longitudinally, the resonant frequencies and the number of
oscillations to crossover were measured. For a thin rod
resonator, Qc is proportional to mode number so long as the
waves are plane and from equation (2.9), it deduces nxn=nxl/n
where Non is the number of oscillations to crossover of |

it

nth mode. It can be shown that the driving line impedance

Z2 can be expressed as
‘anl
Z, = = loge(Z) (2.28)
XN =

where Ml is the static mass of the rod resonator.

Therefore the acoustic impedance of the line could be
found experimentally. The experiment was repeated with a

1 mmm diameter nickel wire. Table 2.2 shows these wvalues.
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The O.7 mm line was then fitted radially to the edge of
an aluminium thin disk of 35.5 mm diameter and 1.56 mm thick.
The disk weighed 3.880 gm. The Poisson's ratio of this
specimen was found to be 0340 using the technique described in
a later chapter. The in-plane frequency spectrum and
corresponding n values for all the low order modes were
measured. By substituting the measured values of frequenacies
and number of oscillations to crossover for each mode into
equation (2.11) and (2.28), the value of Meq were found.

A comparison was then made with calculated values from
equation (2.21). Table 2.3 shows the results. The experiments
were repeated for thin brass and sfeel disks with the 1 mm

and 0.7 mm diameter line drive respectively. Table 2.4 and

2.5 show the results.

With the exception of only one mode (for aluminium disk),
all the experimental values are considered as satisfactory
results. This effect when n=3, is due to the interaction of
two modal freguencies. It has been shown earlier that when
two modes of equal frequency interacts>each other, the
resulting value in n, will be significantly altered depending
on their B values. A satisfactory agreement on the ratio of
(Meq)n/M between the theory and experiments was obtained.

The accuracy is, of course, limited by the uncertainty of
+% on the value of N - A large reduction in the acoustic
line diameter would minimise the uncertainty of n, but would
reguire a much longer line which may create inconvenience and

problems in measurement. Nevertheless, the deviation in this

case is small and good enough to justify the ‘s' plane model




for a thin disk shown in fig. 2.20.

This model is particularly useful in the analysis of the
signal from two adjacent freguency modes and in giving
details of the stepped signal and decrement which is a
feature of all high order modes. Adjacent freguencies such
as the distortion mode with 3 nodal diameters (1,3) and the
pure radial mode (1,R) for aluminium described above and
possibly of greater importance the two resonances which occurs
when a mode is split due to elastic anisotropy dealt with in
Chapter 6. The Poisson's ratio measurement depends on
obtaining the frequencies of distortion mode 1,3 and the pure
radial mode 1,R. In an experimental test, a 50.8 mm
diameter steel disk was excited by a 1 mm nickel wire, the
modes :1,3 and 1,R were found to interact and have frequencies
of 73.682 kHz and 69.991 kHz respectively. The coupling Qc
of modes 1,3 and 1,R were found to be 113.25 and 262.74.
The successive computer plots of this particular case show that
the exact values of modes 1,3 and 1,R should be 73.650 kHz
and 70.000 kHz. The actual frequency separation is 4.96%. The
correction obtained from these two modal frequencies enables
an imporved value of Poisson's ratio to be obtained. Figs.
2.21 - 2.24 show the echo patterns of modes 1,3 and 1,R

obtained from the mini-computer graphic unit and the

oscilloscope display.

The experiment was repeated on a 99.99% pure tantalum
disk and the separation of fregquencies and couplings were

much closer than the steel disk. = Figs. 2.25 - 2.28 show
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the calculated and experimental echo apttern in this case.

The computer plots using the 's' plane model of a disk

produce exactly the same patterns as in the experiments.




- 34 -

2.8 TResonators With Losses

The echo analysié'described so far is :lossless.
Including losses inside the resonator results dramatic
changes occur in the shape of the echo. Therefore, a brief

analysis is given in terms of the discussion above.

For the material with loss and within the condition

§>n2a, the echo expression at resonance from equation (2.5)

becomes
B_. 2 -
R(0,£) = - —=2(1 - 28 xp(~8-na)t)sinnt
B+n“a B -n“a
(2.28)
Using equations (2.10), (2.15) and (2.18), three Q values
are related to the resonator.
Qc = 1f/B = coupling Q (2.29a)
Q = ﬂf/n2a = material Q (2.29Db)
m
and
-1 -1
= = Total (2.30)
Qp = (@ 7+0p") 0

From equation (2.28), the number of oscillations to

i i i iven in
crossover for the material with losses (n ) is g

equation (2.31).

£ 28 (2.31)
= {log ( )] 2.
Pxm B+n2@[ < ﬁ—nza

Using the Q relationships, the relative steady state

amplitude A /A can be expressed in terms of Q. and Qp as
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(1 -0./0)

A
. .
A
O

.32
1+ 0 /9 (2.32)

Equation (2.32) can be transposed to express QC/Qm in

terms of directly observed AO and A_ values.

9 _ 1 ¥ A/ .
% 1-ay/a (2.33)
o/ T
Equation (2.31) then becomes ‘13’
0,
Pxm m(1+0_/Q ) log, [2/(1-0 /2] (2.34)

In the absence of material losses, A_=A_, Q;}=O and
N "Ny From which it follows that the steady state echo
amplitude will decrease and the number of oscillations to

crossover will increase because of the lower value of QT'

Fig. 2.29 shows the resulting 's' plane diagram with
material losses and figs. 2‘30'2f32' how the shape of the
echo varies with increased losses. Figf 2.31 shows that'if
Qc=Qm’ the steady state echo amplitude is zero because.Fhe'
reflected echo amplitude is equal to the steady state edhp
amplitude inside the resonator. Fig. 2.32 shows that
crossover is lost when the large proportions of power is

dissipated inside the lossy material and for this case, the

seros in the 's' plane diagram will;shift to the left of the

frequency axis.
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From the echo observations, Ao' A n_, QT can be

! Txm

obtained directly so the values of material loss Q can be
m

measured provided the line is long enough to obtain the

steady state amplitude of the eacho.

Using this approach, fig. 2.33 shows the variation of
Q. of an aluminium disk against temperature. A locus plot
of a single zero corresponding to this case is also given

in fig. 2.34.
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2.9 © Conclusion

This chapter presents a generalised 's' plane model of
a resonator. It has been used to analyse the interaction
of two modal frequencies and the stepped echo pattern which
are frequently encountered in practical case. The coupling
values of contour vibrations of isotropic disks which involves
two dimensional displacements has been derived. This iwas
necessary for the full 's' plane model of a thin disk to be

developed.

The characteristic of the stepped echo pattern plays an
important role in studying high order mode vibration which is
the limit when n is large results in an explanation of the
dispersion of one dimensional edge surface wave which travels
round the periphery of various geometrical structures. This

will be discussed in the next chapters.
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?\/4

Line Rod resonator
eseese: { ™
Electronic .
Display
Box

Figure 2.1 Schematic diagram of pulse-echo system.

The magnetostrictive transducer coil allows the generation

and reception of a burst of longitudinal waves in the

acoustic line. The line must be sufficiently long +to

separate the transmission from the retum echo. The thin

rod resonator shown can be considered as the *termination of

this line and analysis of the echo is carried out in these

terms.
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Figure 2.2 s~plane diagram of a simple lossless resonance.

As sharp resonances are required, the line coupling is made small
representing a low coupling loss (high QC). The data shown in {he
diagram were evalua{ed by assuming fundamental frequency = 50 kHg
and the reflection coéffioient = 0.95. This gives QC = 60.

Echo Signal BEcho Decrement
< . >

ey
— -

Figure 2.3 The resultant computer plot for +he rod resonator using

the s—plane diagram of fig.2.2. The burst number is 50. A lossless

material gives the steady state echo signal equal *o the initial signal.



© e A AN

- 39 -

jw§K103 s-"|

X ¥ 1007 )
| 2.5
! T
px 103 &~
X 4 0}
.-st

Figure 2.2 s-plane diagram of a simple lossless resonance.

As sharp resonances are required, the line coupling is made small
representing a low coupling loss (high Qc). The data shown in the
diagram were evaluated by assuming fundamental frequency = 50 kHgz

and the reflection coefficient = 0.95. This gives Qc = 60.

Echo Signal Echo Decrement
. , o

Figure 2.3 The resultant computer plot for the rod resonator using

the s-plane diagram of fig.2.2. The burs+ number is 50. A lossless

material gives the steady state echo signal equal to the initial signal.
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— —
X * 1 o
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Figure 2.4 s-plane diagram for two adjacent modes.

As in fig. 2.2, the real axis is greatly expanded. In the

case shown, the second resonance has a slightly higher frequency

and a lower Qo' The drive frequency will contribute a pair of

conjugate poles along the imaginary axis.
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6.0

O

- 4-0 -
c2

Thin rod

Thin disk

Mode order

Figure 2.19 Representation of the coupling Q values of a thin rod
and disk. For comparison, the coupling QC is normalised +o the mode
number 2 and Poisson's ratio is assumed to be 0.3. The coupling
values of the thin disk change slightly as compared to the thin rod.

This means that the n_ values of a thin disk vary insignificantly

with mode order.
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Frequency axis
X 14.00 o
3.08
A t2.00 ©
Poles due to the radial mode O'I66 , 1i'114
1.01.23 Coupling axis
P ©
x * ° o
X @)

Figure 2.20 1In this s~plane diagram, three contour modes (having
nodal diameters only) and the radial (breathing) modes are shown.
The Poisson's ratio is assumed to be 0.3. The vertical frequency

axis is normalised %o %m,l,z and horizontal coupling axis tOP’I,Z .

The frequencies here are not harmonic; unlike the thin rod resonator,

the coupling increases slowly with mode order 'n!'.
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Fig. 2.33 The variation of material losses for an

aluminium disk with temperature,. A peak is observed at 500°C.

Frequency axis x1O3 in Hz

120 T ?DRoom Temperature(QOoC)
l"
L 7
. /
o. T .©35FC
400°G, |-
o SRS AN
450 Co — —©~ Q =
e ) c Qm
- 425°C
SOOOC C£_~ o T 100
T 50~ 609%
550°C QT
625°0
Relaxation Peak i
—~
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i ] ] ] | ] ] | I 1| |
=12 ~8 - 0 4 8

Fig. 2.34 s-plane zero locus diagram with temperature as
a parameter. The corresponding pole has a similar locus but

displaced by zn amount dependent on the coupling term.
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Poisson's
Ratio f&ﬂ
M

MODE 0 0.1 0.2 0.3 0.4 0.5
1,2 0.4778  0.4932 0.5056 0.5158 0.5242 0.5314
1,3 0.3347  0.3532 0.3689 0.3823 0.3936 0.4037
1,4 0.2764  0.2932 0.3082 0.3215 0.3337 0.3434
1,5 0.2410  0.2563 0.2705 0.2831 0.2945 0.3046
1,6 0.2154  0.2296 0.2429 0.2550 0.2659 0.2758
1,7 0.1953  0,2086 0.2211 0.2327 0.2432 0.2528
1,8 0.1788  0.1914 0.2033 0.2144 0.2246 0.2338
1,9 0.1651  0.1770 0.1884 0.1990 0.2088 0.2177
1,10 0;1534 0.1648 0.1756 0.1858 0.1952 0.2039
1,R 0.7050  0.7317 0.7562 0.7832 0.8111 -0.8401
Table 2.1 Calculatéd. ;%31 for the in-plane modes of circular disks

as a function of Poisson's ratio.

(

!quz
0]

ratio of edge equivalent mass to static mass )

e e it
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imm Nickel Line Drive

O.7mm Nickel Iiine Drive

1
MODE Frequency(Kiz) n_ Q, Zg = 2nf 2 (Q) || Frequency(KHz) n_ Q, 7(8)
Do
2 33.081 20 90.647 28.72 33.101 41 185.73  14.024
3 49.549 30 135.97 28.622 49.552 62 280.86 13.883
mean Z, = 28.671 mean Zg = 13.9%4
Table 2.2 The experimental line impedance data from a brass rod of 100mm long

and s*atic mass (M) of 25.047 gm.

e I Ty % g e A W L
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Poisson's Ratio of the aluminium disk = 0.340

Diameter of the aluminium disk = 35.50 mm

Thickness = 1.56 mm

b .

;. Stati M =

% atic mass (M) 3.88 em

z Driven line impedance (Z ) = 13.954Q

§ MODE F M 2 "

£ requency(KHz) nX Mﬁ_(E@')': £ M 210@‘32 Mﬁica‘l')
1,2 66.704 13 0.5056 0.5193
1,3/1,R| 102.711 11 - 0.3871
1,4 134.042 18 0.3484 0.3263
1,5 163,361 18 0.2859 0.2878
1,6 192,626 17 0.2290 0.2595

M
Table 2.3 Calculated and experimen*kalm—&q— values on an
aluminium disk. The equivalent mass (Meq) is normalised to

the s+atic mass (M).
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Poisson's Ratio of the brass disk

=_0.355

Diameter of the brass disk = 53.848 mm

Thickness = 1.5 mm

Static mass (M) = 35.15 gm

Driven line impedance (Z ) = 28.671 Q
MODE Frequency(KHz) n Mé Meq

quency % 9 (Exp.) (cal.)
M

1,2 30.506 27 0.5208 0.5202
1,3 25.976 31 £.3882 0.3882
1,4 £1.412 36 0.3449 0.3275
1,5 74..904 37 0.2906 0.2890
1,6 87.890 36 0.2410 0.2606
1,R 48.591 60 0.7265 0.7970

Table 2.4 The normalised edge equivalen’t mass of a brass
disk associated with the first five asymmetric and +the

pure radial in-plane modes.
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:g Poisson's Ratio of the steel disk = 0.287

b Diameter of the steel disk = 50.80 mm

“i Thickness = 1.50 mm

; Static mass (M) = 23.193 gm

Driven line impedance (Z ) = 13.954 Q

" N N

{? MODE Frequency(KHz) n_ _ﬁgg(Exp.) _ﬁgg(Cal.)
1,2 48.148 52 0.4687 0.5148
1,3 73.822 63 © 0.3704 0.3810
1,4 96.250 67 0.3021 0.3200
1,5 116.305 70 0.2612 0.2819
1,R 70.103 112 0.6934 0.7805

Table 2.5 As in table 2.3 and 2.4, this shows the normalised

edge equivalent mass of a steel disk.
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CHAPTER 3

ONE DIMENSIONAL RAYLEIGH SURFACE WAVE ON STRIPS

3.1 Introduction

In 1855, Lord Rayleigh(l4) showed mathematically that
acoustic waves can propagate on the surface of isotropic
materials. He pointed out that the energy of such waves
spreading in two dimensions only, would fall off in inverse
proportion to the distance while in the three dimensional case,
the inverse square law applies. The application of his ideas
to the study of the earth's crust have led a better
understanding of energy propagation from earthquake zones and
these surface waves have since been known as "Rayleigh Waves".
With the recent application of surface wave to microelectronics,
many review articles of these waves appear in the literature.
White(ls) has given a good description of the physics of
surface acoustic waves (SAW). The low velocity, the ease of
access to the signal and their non-dispersive characteristic
have led to significant applicationsin the field of signal

processing and non-destructive testing. The annual I.E.E.E.

(16) (17)

and Surface Wave Abstracts provide

Ultrasonic Symposium

an up to date account of references to SAW.

The work described here establishes theoretically and
experimentally that Rayleigh waves can also propagate on the
edges of various geometrical structures, they are then one

dimensional and suffer no spreading loss. In common with two

dimensional waves, the energy is confined to the boundary and

the waves are non-dispersive for a straight edge. Because of
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these features, microsound waveguides consisting of a ridge

above a surface make the basis of the ridge waveguides of

Mason and Ash(l8),

They first reported the existence of two propagation modes
in which the displacements are horizontal and vertical in
ridge guides for SAW. They make use of a transverse (flexural)
wave which has a very low phase velocity and is highly
dispersive. Rayleigh waves, which are the subject of this work
have no transverse component, their displacement being in depth
and parallel to the direction of propagation. The other ridge
mode is similar to the one dimensional Rayleigh wave of this

(19) has been made

investigation. Hitherto, no extensive study
of these waves, probably due to the difficulty in their
generation. Using the wire drive technigue, however strong

coupling is obtained and this has led to the experimental and

theoretical studies described here.

For theoretical analysis, the plate thickness is assumed
to be indefinitely small in comparison with the wavelength.
The frequency equation is obtained by considering the edge
itself and assuming the existence of a surface wave. It will
be shown that the Rayleigh-Lamb frequency equation converges

to the same form at small wavelength in an indefinitely thin

plate.

The particle displacement on the free edges of an infinite
strip follows the two dimensional case very closely. The
phase velocity is slightly lower than that of the two

3 1 § 2
dimensional case except at Poisson's ratio equal to zero where
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the velocities are equal. In both cases, the waves are non-

dispersive i.e. phase and group velocities are equal. The
pulse~echo technigue previously described in Chapter 2 has
been used to test the theoretical results and gives an

excellent verification. %

i
§
$
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3.2 The Derivation of Elastic Wave Equation of an Unbounded

Plates

The most general expression for the behaviour of an
extended elastic isotropic solid under dynamic conditions
is obtained by the application of Newton's third law to an ‘
element of Ehe bulk material. This, in carterian form gives

the well known wave equation shown in equation(3.1).

r g ~N ~ 9_ - a
XX Xy Xz X Y
2
o ) i
T o] T — = ) — u 3.1
yX yy yz 3% P 202 y (3.1)
3
g sz z2y Ozz/ § 3z § 4y

Further abbreviation gives the concise vector form of

eqguation(3.1la).

2 2 .- _ =
CBAV - ZCS VXxw = u
- 1 :
A = DIV u w = 5 curl u i

Cy and CS are the bulk and shear velocities respectively

o..and T . the longitudinal and shear component defined by
i i

their subscripts

u : displacement vector 3

For the case of a strip, the shear strains are in one

plane and appears as e, .r €y,r €., and ez’ Cxy’ v being

zero (see Fig. 3.1). This leads to the result that the shear
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stresses Txy’ Tyz vanish. Furthermore, in the nature of the

wave, there is no particle displacement in y direction other
than that arising from the Poisson's ratio. This leaves the
term Oyy‘ In the case of plane stresses in the xz plane, the
components ¢ T and T are z isplacement u
P vy’ Txy vz ero, but the displa y
is possible, thus introducing the plate rather than the bulk

modulus of the equation. Therefore, the elastic wave equation

reduces to the two dimensional form as

0
O%x Txz X 52 Ux
3 =p -3 (3.2)
Tex Y2z 3y ot Uz
For isotropics materials in general(zo)
r - N
exx‘w l -0 -0 Oyx
e I o (3.3)
Yy E - Yy
L €zz S0 =0 1) 9y
g N 0 L) N 7
AN u
Txy oy 99X ° X
) )
= n— —— u (3-3a)
Tyz B0 0z 0dY Yy
) 9 a
sz jz 0 Bx/ ~ "z

For the case of a strip, it simplifies to

Txx p P s 90X (3.4)
S I PP 2| | X
Ozz CP-CS p 0z
.
T = C s + .iiEJ (3.4a)
XZ- P Zz : X
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Substitute (3.4), (3.4a) into equation (3.2) gives

ou 9 2
2 & u2]+cza_[a&_auz_au
p 9x '9x 3z s 9z 3z 3% } 12
u - 5 (3.5)
C2 3 [_x + _ZJ + 2 3 [3112 _ 311}(] _ 9%u,
p 9z '9x 0z s 0x Lox 0z at2

Equation(3.5) .can be written in the same vector form

as equation (3.la).

2 20 = _ = .
CPV2A 2CSV2Xw =1 (3.5a)
The subscript (2) here denotes that the dimension of

elastic wave equation is two. Compare equation (3.5a) to

(3.1la), it shows they differ by replacing Cq by Cp.
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3.3 Rayleigh Wave on the Edge of an Infinite Strip

Equation (3.5a) can be analysed to derive the properties
of plane Rayleigh surface waves, (their velocity being
designated clR) along the x axis on the straight edge of an
infinite isotropic strip. The particle displacement u may be

expressed in terms of scalar potential ¢ and a vector

potential Y. Because the motion is independent on co-ordinate
y and only the component of vector potential ¥y along the y axis

has a non-zero magnitude, this is denoted as w§; therefore

K,
L

u =9 +Vx (Yy) (3.6)

In using equation (3.5a) and Helmholtz's theorem(zl),

the potential ¢ and ¥ satisfy the following equations of wave

motion,
2
2. _ 1 3%
Ve == 2
c ot
P (3.7)
2
2 1 3%y
Vv = o T2
cZ et

V2 : the Laplace operator of continuity.

By working in parallel with the two dimensional case,

equation 3.7 leads to the expression for ¢ and y as
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¢ = A exp(-gz) exp(i(2nft - %ﬂx))

(3.8)
Y = B exp(-pz) exp(i(2nft - %ﬂx))

where
2 _ 27,2 2nf, 2
g = (A )T - (E——)
P
2 _ 2m,2 _ 2mf 2
p (A - (E;_)

For a stress free surface at z=0, the boundary conditions

in terms of ¢ and Yy are

2 2 2 2
2% . 2%y 2% _ 3%y
o =p C [ + + o - ) =0
. z2Z P 822 0X02z axz 9Xd2z ]
(3.9)
PR 7 it SRS R TR S Y S
xz P “slixsz © 2 w2 352 ] =

To obtain a non-trivial solution for the unknowns A and B,
the determinant of their coefficient matrix must vanish. When"
the determinant of the coefficient matrix is set equal to zero,
it is known as freguency equation. This is obtained by

substituting equation (3.8) into (3.9).

5 Ré % 0 %
(RO - 2) = 4(1 - —E) (1L - RO) (3.10)
8
where R_ is the Rayleigh wave velocity normalized to the shear
e}

velocity, i.e. ClR/Cs .

Inspection shows that the equation for the one dimensional

case differs from that of two dimensions in that the two
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dimensional mod 2 - _1-20 =9
imens modulus factor g° = T(1-o) 1is replaced by ig*,

o here being Poisson's ratio. Again, the absence of a

wavelength term shows the velocity to be non-dispersive. The

root of RO corresponds to the one dimensional Rayleigh wave
which lies bewteen O and 1. Figure 3.2 shows the calculated
value of the two velocities for a wide range of Poisson's
ratio. It will be seen that the surface wave which propagates
along an edge always has a lower velocity than that on a flat
surface. The velocities and eigenfunctions are equal at 0=0
when both 52 terms are 1/2. Both velocities are less than

the shear velocity for all possible values of o. Equation (3.1l1)
gives the components u, and u, of the particle displacement
along the x and z axes respectively by using equations (3.6),
(3.8) and (3.9).

2T 2pg exp (=pz) . _ 2m
u = A T—[exp(—gz) - 5 TN, ] sin (2nft X)

X + (X”) A
(3.11)
2(%1)2exp(-pz) 4 T
u =Ag [exp(—gz)- 5 57> ]cos(2nft- —x)
z p? + (7_

Fig. 3.3 shows the variation with depth of displacement
amplitude U, and u, for the two cases in a Rayleigh wave case.

The displacement amplitude is normalized to the vertical

displacement u_ at z=0. It is apparently that the two patterns
z

of displacement follow very closely, with the exception that
the displacements parallel to the propagated direction change

sign at a depth 0.19) and 0.17x in the one and two

dimensional cases respectively (assumed 0=0.34). Fig. 3.4a
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and 3.4b show the two energy distributions with depth.
The energy is normalized to the value associated with z=0.
Carrying out the numerical calculation, for 0=0.34, it was

found that 50% of energy is above 0.1825) and 99% above

1.10) for the one dimensional case. For two dimensions,

the figures are 0.242)\ and 1.15\. It follows that the
energy in one dimensional surface waves is slightly nearer
the edge except for o=O, they are equal. Since the particle
motion at the free boundary is less constrained than the

free surface, a lower phase velocity is expected. Because

of this lower phase Vechity, the energy does not propagate
into the interior of the medium and has a smaller penetration
effect. Table 3.1 shows the general comparison for two

cases.
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3.4 Experiment

Two velocity measurements are possible. By observing

the time of travel of a burst of oscillation, the group

velocity is obtained. Measurement of successive resonances
associated with standing waves give the phase velocity. The .
latter, being in effect a resonance method is very much more

accurate. The group velocity is readily obtained from the

; phase velocity by the relationship given in equation (3.12)

and (3.13).
fn
? C¢ = 2L - (3.12)
'
g
L where fn is the frequency for n standing waves
_ daf

Cg = 2L an (3.13)
% where %g is the frequency difference between successive
t resonances.

A simple and commonly used method of obtaining standing
waves is by reflecting a forward travelling wave at a free
boundary and examine the resonance arising from the result
standing waves. This method is not possible for waves on a
straight strip as reflection at a free boundary is accompanied

by the considerable loss of energy due to mode conversion.

The line drive method previously described in Chapter 2

avoids this by exciting the edge with a double wire drive as




;
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shown in Fig. (3.5). The two ends of the wire are fitted

normally into the edge at a reasonable distance apart. The
transducer coil is symmetrically placed for equal delays on
each drive. The first echo return is the sum of the echo from
each drive point and the second is that of the waves travelling
clockwise and counter-clockwise round the circuit. The
additional delay arises from Rayleigh waves on the strip.

Both ends of the strip are covered with plasticine to remove
any small reflection which might create additional signals.

A burst of oscillation of sufficient duration is selected to
combine both echoes. As the frequency is changed, the
overlapping of the first and second echoes gives rise to maxima
and minima and hence determines phase velocity. The electronic
technique described in Appendix 1 provides a simple and quick

method to determine the number of nodes 'n' along the edge.

Table 3.2 shows observations on the edge of a 1 mm thick
aluminium strip with a drive separation of 342.9 mm. Figs.
3.6 and 3.7 show the oscilloscope displays for short and long
oscillation bursts. A disk was cut from the same aluminium
sheet and the precise values of Poisson's ratio plate and

shear velocity were measured using the method described in

Chapter 6 and included in Table 3.2.

From Table 3.2, the independence of Rayleigh wave velocity

on wavelength is very apparent, confirming the non-dispersive

characteristic and giving C¢=Cg. The ratio of ClR/Cs is

0.9194 when compared to the value of 0.9207 derived from

equation (3.10) shows a difference of only 0.14%.
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3.5 Rayleigh-Lamb Frequency Equation for One Dimension

The theory for the propagation of waves in an infinite
plate was published independently by Rayleigh(22) and Lamb(23).
These waves occur between the two free boundary defining the
plate and are known as Lamb waves. Lamb identified two types
of wave each having two perpendicular displacements. In both
types of waves, the displacements occur both in the direction
of propagation but in type designated as symmetrical, the
displacement is symmetrical about a centre plane and in the
antisymmetrical type, the displacement is the same throughout
the plate and is flexural in nature. Fig. 3.8 shows the

relative types of motion in plate. The eigenvalues of the

plate waves for the symmetrical case is shown in equation (3.14).

2 2 2
E C C C

: tanh (32 /- 2 ) /Aé; ) a- b
- C c c

; S = 4 B S

5 (3.14)
§ h C¢ Ei 2
| tanh (3= /(1= =5) (2 = =5 )
C C
! B s

where h is the plate thickness

C_ > Cs > C

B ¢

This is sometimes known as Rayleigh~Lamb frequency equation.

For the type of wave considered in this work, the

displacement is predominantly in the direction of wave

propagation and in the plane of the plate (see Fig. 3.8a).

There is a slight symmetrical motion with respect to the

. . ; ' io and is
thickness direction. This is due to Polisson’'s ratio
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covered by the use of the plate velocity. Equation (3.14) can

be adapted for the case here. 1In the limit, the one

dimensional Rayleigh frequency equation should be recovered

from equation (3.14).

The wave equations, given in equation (3.7) are applicable
as they stand for the theory of the plates. The solutions to
equation (3.7) for a symmetrical wave propagated in x direction

with the displacements dominant in the x, z direction are

given as:

2
C

¢ = C cosh E%E 1- —% exp (jut - 2%5
C
p

(3.15)

2
C

Y = D sinh 2§5- / 1- —% exp (jwt - 3§§)

Q
n

For a strip, the boundary conditions to be satisfied are
that both plane and shear stresses at z = b must be zero.
Substitution of equation (3.15) into equation (3.9) gives the

following frequency equation.

2 2
C C
(1- = - =5
C C
S - 4 2 > = (3.16)
c? Cs,2
tanh %2 a- —%» (2= =)
sy Cq

> C
where CP > Cs o

This is the Lamb wave equation applicable to the case

considered. It will be noted that here the plate velocity

C ‘occurs where in the plate wave case, the bulk velocity cB
p .
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must be used. The thickness h term in equation (3.14) is

replaced by the width term b. Eguation (3.16) have an

infinite number of waves, each pPropagating at a velocity

dictated by its frequency, width, density and elasticity.

For long wavelength (A>>b), the argument may be
substituted for their hyperbolic tangent. Eguation (3.16)

reduces to

(==) = 2(1l+0) (3.17)

and C¢=Co (bar velocity)

-For the limit for short wave (b>>1), their hyperbolic tangent

term becomes unitv. Equation (3.16) becomes

2 2 2
C. 2 C, % cT ¥
2-=" =40- D a- P
c C C
s P s

This is the equation for one dimensional Rayleigh surface

wave propagating on the edge of an infinite strip as given in

equation (3.10).
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Figure 3.1 Stress components acting on a strip.

The displacement (u) may be resolved parallel to the x, y, 2z

axes into components ux, uy, uz. This gives six strain

components as

ou ou
. _ Bux e - Y e - g—z—z'
XX 9 yy 9y 2z
: u Ju ou
5 du,  du _ EEE s E_E o=y Tk
2' eyz = 3y t 57 €2x T 9z 0X Xy 0X 9y

For the case considered these simplify to the terms shown

in equation (3.4).
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Fig. 3.2 The dependence of Rayleigh wavesg velocity

on Poisson's ratio for one and two dimensions.

Poisson's ratio
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one dimension

— — = ——  %two dimensions

@w®.w.wewmmwmﬁwmomsms&wswwwﬁﬁmmw u_ mSm u, of Rayleigh surface waves on the depth z.

The amplitude is normalised to the amplitude u_ on the surface. The ampli®ude u changes

phase at a depth of 0.19X and 0.17X for one and two dimensional cases respectively.
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Area under curve = 0,37885
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l , |
0 0.1825 1.10

Fig. 3.4a The energy distribution of one dimensional surface waves
(c = 0.34) along the penetration depth. The energy is normalised %o

that on surface (z = 0).
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Fig. 3.4b As in fig. 3.4a, here shows the case of two dimensional
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Plastic¢ine

Pig. 3.5 The arrangemen’t of double wire drive.

The %ransducer sends equal signals in both directions and the

two signals always have the same travel time. This technique enables

the Rayleigh waves velocity on straight edge to be obtained.

The plasticine is used to damp any small reflection arising

from the edges.
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Fig. 3.8 The wave motion of Lamb waves on a plate.
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Fig. 3.8a The deformation of a plate for the case considered

here where the displacement is in z direction during propagation.




TWO DIMENSION
ONE DIMENSION

Wave Equa‘t ions

C, 8t
B CP ot
2
2
2y = L 2 72y = L 3%
Cs ot C2 8t2
S
Depth Function  exp(-gz)
2 2 2
(2m)® _ (2nt > ot
g = - ) g = T - [ —
Prequency Equation
Ry = Rayleigh Velocity/Shear Velocity
2 z z
2 2 1l 2
(2-R") = 4(1-r/E ) (1-Ry)
B = CS/CB 8= CS/CP
Amplitude Ratio (uz/ux) =0
1.4679 G = 0.25 1.4184
1.5741 o = 0.34 1.4717
? Table 3.1 General comparison of surface waves.

v ' .
The major difference is the use of CB and CP in the case of two an

one dimension respectively.

g2 v i

and smaller amplitude ratio (w/u) o

Consequently, this gives a slower velocity

. For 0 = 0, however they are equal.
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0 Frequency (kHz) o (m/sec.) C = 2L{91;:;5¥L(m/sec-)
g BT B
o7 223.733 2842
o8 232.310 2845
29 240.572 2845 m
30 248.901 2845
Y 2840
42 348.678 2847
i 356.533 2843 7
44 364.781 2843
52849
50 414,568 2843
51 423.011 2844 7
52 431.187 2843
$2850
6 498.140 2847
61 506.138 2845 -
62 514.616 2846

C¢ (mean) = 2844.5 m/sec. o.057%
¢ (mean) = 2846.3 m/sec. $0.19%
g

Table 3.2 shows velocities obtained experimentally on an aluminium

strip ( 2L = 342.90mm ), Cp = 5418 m/sec. ,
ici ' to confirm the equality
The values of Cg are sufficiently close to C¢ o con ,

bearing in mind the errors sssociated with the frequency differences of

two large numbers.

Cg = 3094 m/sec. , 0 = 0.347 .



CHAPTER 4

ONE DIMENSIONAL RAYLEIGH WAVES ON CURVED BOUNDARIES

4.1 Introduction

4,2 The Circular Disk

4,3 The Circular Hole

4,4 The Cylindrical Shell
4,5 Experiments

4,6 Conclusion

T T e T L IR o S, e




~ 86 -

CHAPTER 4

4.1 Introduction

In a two dimensional surface wave, the wavefront must be
long in comparison with the wavelength. In one dimension, the
reverse is necessary and this condition is fulfilled by
propagation along the edge of a thin sheet. The two
dimensional wave on a curved surface can be analysed by
considering the surface of an infinite cylinder. Here the
wavefront is parallel to the axis and travels round the cylinder.

(24)

This approach was used by Viktorov , the analysis of the

Pochhammer-Chree wave equation established the dispensive
nature of such waves. The velocity approached the flat surface

non-dispersive Rayleigh wave velocity as the wavelength to

radius ratio approaches zero.

Tn this work, three edge types have been studied, the disk
with positive curvature, a circular hole with negative curvature
and for the curvature to be parallel to the wavefront, the

end of a cylindrical shell. Fig. 4.1 shows the photograph of

the specimens used in the experiments. In all cases, the

thickness of the sheet must be small compared to the wavelength.

No analysis appears to have been carried out hitherto, although

solutions are readily obtainable from the general solution

presented by Love(l2). The ability to generate these waves

has motivated this study.
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The theoretical results can be obtained, in principle,
either by taking the equation of the in-plane vibration of
thin plates of relevant geometry or less rigorously by
considering the edge itself ang assuming the existence of a
surface wave. Here the former more rigorous method was
available for the disk and hole but only the latter method
could be used for the Cylindrical shell. The solution must
give the straight edge velocity (RO) as the wavelength
approaches zero. For a wave travelling round the periphery

of a disk, A=mrd/n where n is the number of nodal diameters.
Thus from a knowledge of n and the disk resonance fn’ the
phase velocity can be obtained as C¢=fﬁkn. Unlike the straight
edge, in all ‘these cases where there is curvature, the wave is
dispersive. The group veldcity can be obtained directly from
the successive values of resonances. For a disk and a hole,
the first root of the high order 'n' frequency equation
represents the surface wave and explicit solutions can be
obtained for all values of n. An algebraic expression is

derived to show how the wave velocity approaches its asymptotic

Rayleigh value.

Using the wire drive technique, extensive experiments were
carried out on edges of positive and negative curvatures, the

end of a cylindrical shell and combinations of curved and

straight edges. This technigue has also been used to generate

waves round the surface of a sphere (the case for two

dimensional curvature). Experimental results show a good

agreement to the theory developed.



- 88 -

4.2 The Circular Disk

The in-plane frequency equation of a thin isotropic disk
was derived by Love but the eigenvalues were not calculated
until comparatively recently. onoe () and Holland (1©) gave
the eigenvalues of the lower order modes up ‘to 10 for selected
valuesvof Poisson's Ratio. The results were made the bésis
for the precise measurement of the elastic constants of
isotropic and orthotropic materials by Bell, Sharp(z) and

(7)

- the author . Equation (4.1) gives the frequency equation

normalised to the shear velocity Cs where Q. (the first root

1

for a given n value) = ﬂfd/Cs, the wavelength is equal to wd/n;

thus Ql/n is the ratio of phase to shear velocity.

211 212
=0 (4.1)
221 222
. P
where 2 Q
Q, 9
1 1
aj; = —Jn(ﬁ—)E§~ -n(n + 1) + Mn(§5]
ay, =nd_ (@) (M @) - (o +1)]
Q
a,, = _an(Ql)[Mn(é) - (n + l)]
2 _
! (n + 1) + M_(Q,)]
ay; = 9@ (77 - nle n1

(25)
M (x) is sometimes known as Onoe's Modified Bessel quotient
-

2
and is equal to XJn-l (X)/Jn (x) and 8 =2/(1-0).
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The equation has an infinite number of roots which

correspond to the infinite modes of vibration. These are

characterised by two integers m, the number of nodal circles,

and n (the order of Bessel function in equation (4.1)), the

number of nodal diameters. In the present case, the solution

for nodal diameters only is considered so that m is always

unity representing a central nodal point. This means
obtaining the lowest argument solution for each successive

order nof the Bessel functions in equation (4.1).

To study comprehensively the dispersive characteristic of
the edged surface wave, Ql values for high order n over a wide
range of Poisson's ratio must be evaluated. The phase and

group velocities are obtained from equation (4.2) and (4.2a).

oy ~
dg,
Cg, = I CS (4.2a)

The computation is carried out, using Newton-Raphson method

as

'.F(;Qi)

Q41 7 94 Fr @)

The only difficulty in using this ‘method is in obtaining
the defivative.of the complicated frequency equation. However
F'(Qi).can be represented by

: F(QilrF(ﬂi_l)

F! (Ql)_ = 0. =0

| (4.4)
i i-1
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provided that Qi‘Qi-l is small and hence equation (4.3) becomes

q - _ F (Ql)Ql-l - F ?,Qi_.l.) Qi (4 5)
1+ )
F(,) - F(2,_)

1

The readily available values of Jo(x) and Jl(x) are
obtained from library sources or the expression of polynominal

. (26 .
approximation ). Then using the recursion relationship,

T2 @ =23 0 -3 (4.6)
with equation (4.5) makes the computation of lower order modes
easy. Examination of these low order modes showed that the
phase velocity rapidly falls below the shear velocity (Ql<n),
thus making the argument of the functions less than the order.
Equation (4.7) then becomes available for evaluation and avoids
without the problem of accumulated error. The precise value
of Jn(x) is represented by the series shown in equation (4.7).

The series converges rapidly when x<<n,

(-l)P(x/Z)n+2P (.7

p=0 P! (n+P)!

Using equations (4.5), (4.6) and (4.7), the precise
eigenvalues of equation (4.1) up to circumferential order n

of 100 were evaluated. Beyond this value, the normal

(27)

algorithm saturates the computer. The Debye's expansion

used below avoids this and values to n=w are ‘-obtainable.

cexpnugagl) 11 s
= 1+ = - ) + ...] (4.8)
Jn(nx) = [ n 8“0 24113 ]

(2nnuo)% o
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where
"l+uo
ao = lOge(‘ X )
11C2)=l--x2

The eigenvalues for n3l00 are conveniently determined by

re-writing equation (4.1) in the form:
2. 2

,[Ql_ L1 +-Mﬁtﬂl/ﬁ)' x..ﬂl L1, MH(Ql)]
2n2 n n2 ‘2n2 n n
_ [faffiffl Sl [faffil g1 (4.9)
n n n n J *

For large order n, Mn(Ql)/n can be expressed as

Mo ()
~I—=— = (14u_)exp (-1 )exp[-n(u -1 -a s )] (4.10)
where
_ 2, %
Uo = (l"Rl)
(n%uZ - 2n + 1)*
My % n-1
1+,
o
a, = log_( R, )
(nzu2 - 2n +_l)%
= 1o n-1 o) J
ao ) ge an ‘ an
Ry = Q./n = ratio of Rayleigh phase velocity to the shear for
1 : ,

the case considered. (R, is used for the straight

edge asymptote).
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By using the established theorem concerning limit,

Lim _ Lim .
wmfw)xg@)—wme)xﬁzgm) (4.11)

Lim Lim '
soeo LX) = 00 £(£)  where t = 2 (4.11a)
Equation (4.10) can be expressed as
M_(R,) Q § :
l — i;l 2
— = Q) [1+ 25+ =5+ ... ] (4.12)
where
1
S, = U_ = 57—
1 o 2uo
o=y - b o L
2 o) 2”6‘ 6113

and again n>Ql.

A derivation of equation (4.12) is given in Appendix (2).
This gives equation (4.13) which has been put in the form of

equation (4.9) with the addition of dispersive terms which are

2.
polynominals in 1/n and 1/n".

2
R b Gmigley R T (1+y )6,
—_ - —_ % X |== - _— —_—
(3 1 +3 2 ) 2 n 2

= [t - T 2 x Yo F n : 2
Po n n n

(4.13)

1
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where

e
1 1
§, = Y. - -
4
o ZYO GYg

Using equations (4.5), (4.6), (4.7) and (4.13), the
eigenvalues for selected orders of n were evaluated with a
range of Poisson's ratio 0.0 to 0.5 in intervals of 0.1 as
shown in Table 4.1. Inspection shows equation (4.13) to
have the same form‘as equation (3.10) as the wavelength
approaches zero. To investigate their dispersive characteristic,
the phase and group velocities of the waves travelling round
the edge of the disk were also calculated and included in
Table 4.1. It is apparent that the phase velocity is higher
than the corresponding group velocity and that for low order n,
both velocities are greater than the shear velocity. This
condition does not really represent the surface wave as the
energy will no longer be confined to the edge. As the
frequency is increased, both velocities become lowér than that
of shear wave. It has been shown that in Chapter 2, the
equivalent mass of the in-plane disks will fall considerably
as n increases. The theoretical and experimental result of a
mild steel annular disk given in ref (4) confimms this, the

in-plane resonant frequencies of modes n3;8 were unchanged and

identical to the disk, the frequency does fall when inner

radius is 3 a/2.  This means that the energy becoming more
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and more confined to the edge and approaching surface wave

situation. For small curvature, equation (4.14) gives a second

form showing how the normalised Phase velocity approaches the

straight ddge Rayleigh wave velocity (RO).

‘ ‘bl .b2
Rp =Rl + =~ %4 ) (4.14)
where
bl = 1,986
b2 = 3,609

The wariation of coefficients b with Poisson's ratio is
very small as the velocity has already been normalised to the
straight edge velocity (RO). Differentiating equation (4.14)
and substituting into equation (4.2a) gives the group velocity

for small curvature.

C
=2 = R (1 + 24 ... (4.15)
S

The positive term in l/n2 of equation (4.15) means that
while the group is less than the phase velocity, it is greater
than the asymptotic value RO' The group velocity converges
more rapidly to the asymptotic straight edge value than that
of phase velocity-because its first polynominal term has the

multiplier of l/n2. This feature was used to determine its

asymptotic value during the experiments.
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4.3 The Circular Hole

This structure, which is the inverse of a circular disk,
can be considered as a hole inside a sheet which is an isotropic
homogeneous medium eXtending to infinity. The analysis is | |
similar to that for a disk and the characteristic equation is
similar to equation (4.l1) with the Bessel function of first kind
replaced by Hankel function having the same argument. The

Hankel function Hn(x)(ZB)

represents the wave radiating energy
away from the guiding concave edge. Equation (4.16) gives the
characteristic equation for the wave propagating along the

edge«of a circular hole.

[QE_ . i . Nnég) 3 [QEE o 1 +,Nn(i/ﬁ)]
2n2 n n 2n n n
= N_(Q) 1 Nn(Q/H) 1
- nn -1 - 'ﬁ] » [ — - = - 1] (4.16)
where x)
X
Nn(x) = X n-l
Hn(.X)
and
B (x) = J_(x) + 1Y, (x)

The properties of Hankel function result in characteristic

equation (4.16) will have no solution for any real values of n.

The wavenumber n that corresponds to Rayleigh wave here is

complex.

For large value of n and 1<x<0, Jn(nx) and Yn(gx) can be
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represented as

o
\ ’

exp[niﬁo'aoll

R

Jn (nx)

(,ZTTnpo)_% (4.17)

..exp[n(aoapo)]

R

¥, (nx) - > (4.18)
n (% nUO).z

It is apparent that Yn(nx) and Jn(nxl are exponentially
decaying and growing respectively and eventually Nn(Q)=Mh(Q)
as 1/n approaches zero. This shows the Jn(Q) term will dominant
thean(R) when n is large and suggests that the wave will only
propagate when 1/d is small. Consequently, the wave will
propagate with attenuation as the wave energy radiates inside
the medium. The velocity again approaches the asymptotic

value RO at very high frequency.
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4,4 The Cylindrical Shell

Consider the surface wave propagating along the edge of a
cylindrical shell of means radius a, thickness h where there
is no radial component. The vertical (uz) and tangential (ue)

displacements can be expressed as

2 13
Uy “5%" Ea‘g (4.19)
i K 1 ﬂ ﬂ

Y9 T 336 T 3z (4.20)

i
;.
?
g

.The potential functions ¢ and Yy are postulated to be of the

form for surface wave on a straight edge. Therefore,

¢ = epr-gZ]eXp[i(g%ge - wt)] (4.21)
P = exp[—pz]exp[i(?gae - wt)] (4.22)

For a stress free edge, the boundary conditions are the

stress resultant U,z and stress couple Tze must vanish at z=0.

(29)

They are given as -

2 2
h g oU
o = C2 aU,Z_ + .O;(l - l) —"—Q'J (4.23)
aU 2 1 9Yy
o - e2 18 P S S A (4.24)
where
2 240

01 T 24(1-9)
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Inserting equations (4.21) and (4.22) into equations (4.23)

and (4.24) gives the frequency equation. Tt takes the form of

the determinant of equation (4.1), the terms become

2 2
= o2 2m, 2 hol
a1 =9 - 0(—-0 (1 - 3 )
a
2 2
. h%g
= i 2m 1,
a1, = i plo- —=) - 1]
a
: )
= § 2T h
a,; =159 2+
4a
L2 2 ‘
855 = (31) +.p2(l + eﬁ—)
22 1a°

As in the case of a circular disk, this has been put in the
form of equation (4.25) again with the addition of dispersive

term (h/a).

: (2 - &2+ 22=h )« - &2+ a - RD 5 b2
R2 " hg
= 4x@-rH7x (1—;52- NS - W P SR Bt By
(4.25)

where .
R = velocity normalised to the shear velocity.
s

The dependent variable Rg of equation (4.25) is completely

described by Table 4.2 over a reasonable wide range of the

independent variable h/a and ¢. In this case, it is noted that

Rs has a slightly higher value than that of straight eggei(Ro),

L while the deviation of the velocity ratio due to the h/a term is

very small indeed and the charactersitic of this wave is

essentially the same as the straight edge.
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4.5 Experiments .

Experiments were carried out on the three edges considered
theoretically in earlier sections i.e. disks, holes and the
ends of cylindrical shells., The technique was extended to the

two dimensional dispersive case, the waves on the surface of a

sphere.

The closed circuit is essential to the production of
standing surface waves as the reflection method is ineffective.
This is because of mode conversion, only a small fraction of
the energy of a surface waves is reflected as a surface wave,
the rest is converted to other wave propagating modes. In
the analysis of surface wave production and detection, the -
loss of energy to other modes must always be considered. Edge
curvature and frequency were found to have a conspicuous effect
on the efficiency of the wire drive as a source of surface
waves. Standing wave resonances can be determined by the
normal technique of the pulse-echo system of observing a null
or minimum of the echo. Successive resonances represent a-
unity increase of one wavelength in the circuit. A mathematical
treatment on the stepped echo has been illustrated in Chapter 2;
the plots from the mini-computer graphic unit show the
characteristic of the stepped echo and null represents the
resonance, This technique can give the group velocity directly
by observing burst transit or phase velocity with high precision

by resonances. Successive resonances can also be used to obtain

the group velocity and this has been found to be the more

accurate method.
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The drive line diameter and the length of the line is

chosen to minimize the line loss and give reasonable coupling

when operating in high frequency region. Normally a 0.25%0.5mm

diameter nickel wire is most suitable for all thin specimens.
The line is stretched in ambient temperature in order to
minimize the kinks and attentuation; the end of the line is
(30)

annealled to give the maximum magnetostrictive effect.

Since the attentuation and scattering of surface waves depends

.considerably on the degree of surface finish, therefore the

edges of various circular structures used in the experiments
are polished and machined with strict uniformity in order to

avoid the influence of those factors.

In using the wire drive technique which is applicable to
any materials, the measurements were first made on an aluminium
disk of 200 mm diameter, 1 mm thick and a glass disk of 117.50 ‘mm
diameter , 3.3 mm thick. A 0.5 mm line was used to excite the
specimens and a good coupling was observed throughout the

experiments. Some lossy material, for example plasticine , was

covered round the centre region of the disk as the energy from

the line radiates into the body of the plate as well as the

surface wave. The plasticine removes the : unwanted vibrations

and interferences to': the echo pattern. It has been shown in

Chapter 2 that the equivalent mass of the disk will fall

considerably as n increases, this means that the energy becomes

more and more confined to the edge and approaches the surface

wave situation. Tables 4.3 and 4.4 show the variation of

elocity and velocity ratio f
nd 2 to 50 respectively. ?his

rom the aluminium
measured phase V

and glass disks for n=2 to 100 a
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also gives its correspondj i ' i
ponding Poisson S ratio. As the wave is

dispersive, its group velocity is calculated by successive

resonances from t - daf s ,
he expression 7d dn: This dispersive effect

can also demonstrate in the stepped echo pattern. In experiments,
it is not possible to observe the progress of any individual
wave in a group and hence the velocity directly measured from
the oscilloscope trace will give only group velocity. Therefore,
the number of oscillations per step resulting from the
overlapping of echoes arises from the propagation at the group
velocity. Because of this dispersion of velocity, the number

of oscillations per step is not necessarily equal to the mode
number n. Fig. (4.3) shows the stepped echo pattern of an
aluminium disk from oscilloscope trace in which the number of
oscillations per steps have a value of 6,and higher than the
mode number (n=5). This illustrates the phase velocity of a

disk travelling faster than its group velocity at a ratio

about 6/5, this result is well within the limit of the
experimental error. From the experimental results, the
extrapolation of the group velocity to zero l/n gives a

valuable figure for the straight edge velocity RO. Figs. (4.4)
and (4.5) show-the graphs for the phase velocity ratio of the
disks against the mode number n. Figs. (4.4a) and (4.5a) shows
the extrapolated curves of velocity ratios against the reciprocal

of mode number i.e. l/n. From the results, it concludes that

the wave is dispersive with the condition 1>R,>R,-for n220 and

differences in phase and group velocity diminishes as 1l/n
approaching zero and are equal to the asymptotic velocity R,

! . i
(AR}

which is governed by the equation (3.10). The asymptotic
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velocities derived from the graphs correspond to the values

calculaﬁed from the elasticity data.

Measurements were also carried out on a rectangular plate

with two semi~-circular ends, The dimension and measured

result were shown in Figs. 4,6 and 4.6a respectively. A
better coupling effect is obtained by driving at the curved
edge and gives 'a-better match. It is evident that the
dispersion in this case is originating from the cruved
boundary with C¢>Cg and the extrapolated velocity ratio has
the same consistency with the calculated value as the disk.
To'demanstrate the originality of the dispersion further,
Fig. 4,7 shows the graph of velocity ratio against A/27mr
where r is the radius of the semi—cifcular end and compares
to the calculated velocity of the disk. A fair agreement
is achieved but it clearly févours the high order values

although the frequency is not high enough to make it more

decisive.

The next investigation of in-plane surface waves was
carried on the edge of a cylindrical shell, Good coupling

was obtained ‘with a 0.5mm nickel line on a cylindrical shell

mean diameter 149mm, thickness 3mm, this enables an accurate

velocity measurement for n=15 to 45. The result of phase

velocity plotted against 1/n is shown in Figure 4.8. The

features given in the theory that the asymptotic velocity is

slightly higher than the straight edge value is apparent.
The résult shows a small dispersion which is not predicted
Qithin the theory, a more rigorous anlaysis would require
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another pOStulated potential function and to satisfy the

wave equation of a thin shell rather than the two dimensional

elastic wave equation.

On a concave edge, Rayleigh waves are also dispersive,
the investigation would not have been complete without
demonstrating this experimentally, A circular hole of .308mm
diameter was cut inside a large aluminium sheet 1.6mm thick.
A O.5mm line was used FQ launch the wave round the hole which
had been machined and polished to give maximum uniformity. No
echo was observed at lpw frequency region (£<200 kHz); As
the frequency was increased, a weak echo appeared and‘
combined with the initial reflection from the drive point to
give maxima and minima from which the phase velocity could
,be obtained in the normal way. The coupling is poor as
considerable energy radiates into the body of the plate. This
prevented the appearance of a phase null in the echo?' Careful
measurements were made for n values of 80 to 200. The
average group velocity was evaluated from the expressipn
cg = nd %% with groups of six adjacent phase velocity values.

The result is shown in Table 4.5. The experimental results

show C _>C and 1>R >R _where R is the normalised ratio of
g’ ¢ 0" ¢C c )

phase:» velocity of a hole to the shear Veloci?y, This is an

inverse result to the circular diskf

To confirm the result further, a curve fitting program

is used to obtain the algebraic expression of phase velocity

from its experimental values. This gives equation(4.26],
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16
Rc - RO(J. —_-;7-"‘.0.’...».) (4.26)

where Cl‘ 1.962

0
i

4.326

The positive value of the coefficient term C2iconfirms
the group velocity is higher than the asymptotic value Rye
In comparing the equations (4.14) and (4.26) and for large
order n, it is noted that the first coefficient term is
approximately equal and only differing in sign. This
strongly suggests that equation (4.14), derived from the
theory, is valid with n and -n for circular disk and hole
respectively. In using equation (4.14) and (4.26), figure
4.9 shows the phase and group velocities against the value
of +t1/n. The velocities were normalised to RO in which
+l/n represents the region of a circular disk, =-1/n, the
circular hole and zero l/n, the straight edge. Fig. 4.11

shows the curve is continuous and smooth between the

transition region of convex and concave edges.

It was considered that to complete the experimental

studies, an attempt to launch surfiace waves on a sphere using

the wire drive technigue should be made. In this-case, the

surface wave is two dimensional. A billiard ball was

selected as being of light material and readily machinable.

The drive can be considered as occurring at the north pole

with the wave fronts travelling round the sphere as lines

of latitude returning to tha; region onee per circuit. The
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billiard ball diameter 48.5mm was driven by a lmm line

The velocity was measured for n=2 to 22 in ihterval of 1

After the measurement, a thin circular disk was cut from the

billiard ball to enable values of shear velocity and

Poisson's ratio to be obtained. The result was plotted in

fig. 4.10. With no exeeption, the wave was dispersive with
C¢>Cg and approaching to its asymptotic velocity as 1l/n
diminishes. A good agreement of the two dimensional asymptotic
velocity ratio between the values derived from the
extrapolated curve and the elasticity data is obtained. The
percentage difference is 0.54%, High precision will have

been obtained if higher order resonances had been measured

but this was limited by the internal friction of the material.
In Figs. 4.l1l1(a) and 4.11(b), the oscillograms show the
single pulse and the corresponding echo pattern produced by
the overlapping of standing waves on the billiard ball. An
unexpected result was the very low velocity (1123m/sec) in the
material. This probably accounts for the fact that the click

of the billiard ball is audible. The extreme hardness of

the material adds to the paradox.
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An exposition of the,theory of the propagation of one
dimensional surface waves on the edge of various circular

struc?ures as well as the experimental investigation, .is

given in this chapter.

» Table 476 describes'the essential features of one
dimgnsional surface waves on circular disks, holes,
cylindrical shells and the straight edge; Although the
dispersive characteristic is a parallel to the two
dimensional case and Rayleigh waves have received considerable
attention in view of their usefulness but the applications
are mainly two dimensional. The suggestions of neglecting

these waves are

(1) The experimental problem involved with the efficient
coupling to this mode on the edge of thin specimen. The wave
velocity convergence is slow, a very accurate experimental
technique is needed to determine its dispersion. However, the

magnetostrictive line drive has been imporved by the author

to operate up to 1 MHz. This enables the phase and group

velocities to be determined with high precision.

(2) Recause of the frequency limitation, the edged surface

wave does not appear to be so relevant to the applications

such. as SAW filter, electro-mechanical delay line and surface

flaw detection and have therefore been ignored. Probably the

most important application that this investigation has shown
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is that the edged surface wave provides a fast and simple
non-destructive testing method of any defects near the edge
of the disk. This application will be described in the

next chapter.
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Figure 4.1 Photograph of the specimens used to investigate

the characteristics of Rayleigh wave velocity on curved

boundaries.
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Poisson's Ratio of the glass disk

0.226

Diameter of the glass disk

117.50 mm

Cq 3356 m/s
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Fig. 4.5 Velocity ratio (EB) for the glass disk as a

CS
function of 'n!'.
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Fig. 4.5a Velocity ratio for the glass disk as a

function of (1/n).
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" Pigure 4.6a Experimental velocity ratio as'a function of .

wavelength/perimeter for the circuit shown above.
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Figure 4.8 shows the edge surface waves velocities on an
aluminium cylindrical shell. Mean diameter = 149mm,
thickness = 3mm, Poisson's ratio = 0.34 and CS = 3094 m/sec.
The curves gives an asymptotic velocity of 0.924 which is

slightly higher than the calculgted value of 0.9201.
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Poisson's
Ratio 91
: n 0.0 0.10 0.20 0
f .30 0.40 0.50
5 11 10.9505  11.1569 . 11.3199 11.4501 11,5559 11,6428
é 12 11.8380 12,0641 12,2428 12,3860 12.5028 12.5984
x« 13 12,7231 12,9692 13.1634 13.3193 13.4462 13.5510
5 14 13.6080 13.8723 14.0822 14.2507 14.3880 14.5014
} 15 14.4904  14.7743  12.9995  15.4804  15.3279 15.4514
16 15.3728  15.6752  15.9155 16,1089  16.2666  16.3970
17 16.3198  16.5752 16,8306  17.0362  17.2039 17,3428
18 17.1342 17.4742 17.7447 17.9625 18.1403 18.2874
19 18.0871 18.3726 18.6581 18,8880 19.0757 19.2311 |
20 18.8940 19.2708 19.5708 19.8127 20.0103 21,7398
30 27.6704 28.2294 28.6752 29.0348 29.3289 29.5727
40 36.4310 37.1691 37.7574 38.2320 38.6202 38.9420
50 45.1852 46,1000 46.8294 47.4178 47.8980 48.2974
100 88.9398 90.7080 92,1361 93.2839 94.2216 94,9971
200 176.34 179.86 182.64 184.88 186.68 188.14

Table 4.1 Q, values for the circular disks.
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5 s
0.0
o/ 0.1 0.2 0.3 0.4 0.5
0 0.87400 0.89140 0.90520 0.91620 0.92515 0.93250

0.02 | 0.87405 0.89143 0.90521

o

91622 0.92517  0.93253

0.04 | 0.87411 0.89148 0.90523 0.91625 0.92519 0.93255

0.06 | 0.87421 0.89155  0.90529  0.91630  0.92523 0.93257

o

.93261

o

.92528

o

91636

(@

-87434 89166 0.90537

(@
o
(0]
(@

89180 0.90548  0.91645  0.92534  0.93266

o

0.10 | 0.87452

.91655 0.92542 0.93272

o
o

.90561

o

0.12 | 0.87473 .89196

o

.87498 0.89216 0.90577 0.91677 . 92551 0.93279

@)
N
~
o

.89239 0.90594 0.91680 0.92562 0.93287

(@)

0.16 | 0.87527

.91696 0.92574 0.93296

(@

.89264 0.90614

(@

0.18 |0.87560

o

. 93306

o

.90636 0 91713 .92587

o

.89292

o

0.20 |0.87596

Table 4.2 Asymptotic velocity ratio for the wave travelling

on the edge of the cylindrical shell as a function of h/a and o .
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n Freq. (kHz) C¢ (m/sec.) R, (Expt.) R, (Cal.)
o 11.550 3614.40 1.1682 1.1732
3 17.745 3716.50 1.2012 1.2026
4 23.150 2636.39 1.1753 1.1750
5 28.200 3543.72 1.1454 1.1453
6 33.095 3465.70 1.1202 1.1198
7 37.880 3400.10 1.0990 1.0994
8 42.620 3347.37 1.0819 1.0818
9 47.320 3303.56 1.0678 1.0676
10 51.905 3261.29 1:0541 1.0556
11 56.595 3232.69 1.0449 1.0455
12 61.230 3206.00 1.0362 1.0368
13 65.855 3182.92 1.0288 1.0292
14 70.465 3162.46 1.0222 1.0226
15 75.075 '3144.73 1.0164 1.0167
16 79.640 3127.46 1.0108 1.0115
17 84.260 3114.24 1.0066 1.0068
18 88.830 3100.75 1.0022 1.0026
19 93.395 3088.52 0.9983 0.9988
20 98.000 3078.76 0.9951 0.9953
30 143.535 3006.19 0.9716 0.9725
40 189.150 2971.16 0.9603 0.9604
50 234.420 2945.80 0.9521 0.9529
100 460.730 2894.85 0.9357 0.9373

Table 4.3 Experimental results on a 200mm

(R1= cwms)

diameter aluminium disk.
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n Freq. (kHz) C¢(m/sec.) R, (Expt.) R,(Cal.)
2 21.336 3937.95 1.1734 1.1734
3 32.701 4023.84 1.1990 1.1985
4 42.508 3922.82 1.1689 1.1683
5 51.732 3819.24 1.1380 1.1370
6 60.567 3726.26 1.1103 1.1098
7 69.285 3653.67 1.0887 1.0882
8 77.914 3595.12 1.0713 1.0705
9 86.458 3546.10 . 1.0566 1.0560
10 94..956 3505.18 1.0445 1.0438
11 103.423 3470.66 1.0342 1.0343
12 111.893 3442.00 1.0256 1.0233
13 120.261 3414.83 1.0175 1.0157
14 128.672 3392.69 1.0109 1.0090
15 137.069 3373.15 1.0051 1.0032
16 145.386 335421 0.9995 0.9979
17 153.796 3339.52 0.9951 0.9932
18 162.143 3325.17 0.9908 0.9890
19 170.504 3312.60 0.9871 0.9852
20 178.808 3300.23 0.9834 0.9817
30 261.630 3219.25 0.9593 0.9590
40 344.730 A 3181.32 0.9480 0.9471
50 427.460 3155.83 0.9404 09400

Table 4.4 Measured velocity on

(R, = C/CS)

a 117.5mm diameter glass disk.

o r—————— o
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n Freq. (kHz) Cy(m/sec.) C¢/C1R Cg(m/sec) Ch/Cyp
80 229.90 2780.49 0.9761

85 244.48 2782.82 0.9769

90 259.20 2786.47 0.9782

95 273.98 2790.36 0.9796 f 2853.0 1.0016
100 288.64 2792.67 0.9804

105 303.44 2796.06 0.9816

110 318.28 2799.50 0.9828 Y

115 332.96 2801.30 0.9834

120 347.70 2803.43 0.9842

125 362.46 2805.52 0.9849 2850.5 10007
130 377.16 2807.02 0.9854

135 391.88 2808.56 0.9860

140 406.66 2810.40 0.9866

145 421.44 2812.11 0.9872 \

150 436.22 2813.71 0.9878

155 450.95 2814.88 0.9882 > 2849.5 1.0003
160 465.68 2816.00 0.9886

165 480.38 2816.86 0.9889 J)

170 495.08 2817.68 0.9891

175 509.82 2818.67 0.9895 \

180 524.48 2819.17 0.9897

185 539.22 2820.07 0.9900 }2848.5 1.0000
190 553.94 2820.81 0.9903

195 568.62 2821.32 0.9904 /}

200 583,30 2821.81 0.9906

e ke s e e

Mable 4.5 Experimenta

1 results from a 308mm diameter hole.
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—

Edge

Shell

not rigorous

Dispersion Theory Coupling
(1) Straight None Comple+e Medium
(2) Convex C¢);>Cg Complete Strong
(3) Concave Cg>>C¢ g?a?§§ sign Weak
(4) Cylindrical C¢> Cg Complete but Strong

Table 4.6 Characters of one dimensional surface waves on different

edges.

e = i AR Pl e e e
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CHAPTER 5

e A e g e e e e S gl S 1

THE PROPAGATION OF MULTI-SURFACE WAVE MODES ON CTRCULAR DISKS

5.1 Non-Destructing Testing of Circular Disks |

Ultrasonics is well established as one of the basic
techniques in the examination of defects in metals. A recent
application is the use of surface waves to measure and locate
defects near a surface. The journal, Material Evaluation,

published by American Society for Non-destructing (N.D.T.) and

British Journal of N.D.Tf are a good source of information on
application in those fields. Reference (31) provides a brief
summary of those works. Normally, the reflected pulse and
amplitude is used as the reference .in sizing the defects.

A mathematical itreatment on those reflected echoes from a
shallow groove in the surface can be found in references (32)
and (33). Similarly, Lamb waves are widely used to inspect

. (34),(3
thin geometrical structures using a scanning process(3 )1 (35)

(24) This is rather slow for manual operation and complicated

for automatic operation.

The wire-drive technigue previously described in.Chapter

2 is a very suitable instrument to inspect the defects along

the edges of thin continuous structures. A single surface

wave probe attached to the edge of the circular disk shown in

Fig. 5.1 launches the surface wave in both directions

around the circumference and receives the signal on

completion of the circuit. Any defect near the edge will

reflect signals within this transitional peviod and shown on
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the oscilloscope display (Fig. 5.2). various types of

specimen such as ends of a cylindrical shell, elliptical
plate and rectangular strip have been tested and proved to
be effective. The time of flight measurement locates the
defect and the reflected echo amplitude produces a good
estimate of defect size. Fig. 5.3 shows the effect of the
reflected echo of a strip on the crack depth. A crack, even
a small fraction of wavelength deep, intercepts considerable
wave energy and produces a-::large reflection. The reflected
echo amplitude is almost linear with the small crack depth,

this is consistent with the results reported in reference

(32) ., The ease and simplicity should make this technique very

attractive for unskilled or automated operation. The technique

is also applicable to all other materials and could be

extended to rapidly locate edged defects in propellers, turbines

and compressor blades and other components.
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5.2 Generation and Identification of a Second Surface Wave Mode

In carrying out the experiments, an unusual phenomenon

was observed. The reflected echo amplitude from the defects

which travelled the longer route had a larger amplitude than
that of the echo on the much shorter route. To investigate
this paradox, experiments with two wires were performed on the
edges of a circular disk and subsequently other structures.
Fig. 5.4 shows the experimental arrangement, a wire is used

to launch the surface wave round the circumference and a

second wire situated at a position 6 from the drive point is

used as a receiver. Two echoes of amplitudes El and E2 for
the routes 6 and 27-6 were observed and recorded. The
phenomenon was un-ambiguously confirmed, Fig. 5.4a being a

good example. This paradox of a stronger signal at the greater ;

distance occurring in radio communications where a direct

wave and one reflected form the ionisphere combine in phase
to increase and decrease the signal depending on the relative
path lengths. In shallow water sonar, there is a similar

effect when the energy travels in two propagation modes. The

signal interference effect occurs because, while the distances

are the same, the mode velocities are different. The latter

was ultimately established as the case described here. Figs-

(5.5) and (5.6) show the corresponding echo amplitudes El and

E, on the end of a cylindrical shell and the circular hole in

a large sheet of metal. These observations strongly suggest

that the phenomenon appears on convex boundaries only. It

. : i tion of
is noted that the amplitude ratio (EZ/Ell is a functi ‘
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frequency and the received position §. . The amplitude ratio

(EZ/El) has an oscillatory nature along the frequency axis for

a fixed value of 6 and a value greater than one in most

frequencies.
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5.3 Second Surface Wave Mode

The previous analyses have only considered the first root
of equation (4.1) which represents the normal Rayleigh surface
wave and other solutions are neglected. Nevertheless, it is
possible that the high order modes are excited and a second

signal combines with the normal surface wave mode.

The disk frequency equation (4.1) must contain this
second mode solution which like the Rayleigh surface waves
will have both lognitudinal and shear components. To analyse
the character of such modes, the particle displacement S may
be expressed in terms of wave potentials ¢m and wm
representing the longitudinal and shear components of mode m
respectively. From the well established relations, the ¢
and wm satisfy the equation of wave motion (equation (3.7)).
In polar co-ordinates, they have the form:

o = A_J_(k r) cos nf

m m n-ml
} (5.1)

wm'= Bm Jn(km,srl sin nb6

where
m, & Cp B a
B
m,s Cg @

This represents the angular waves propagating in the ©
direction in the absence of attenuation. The expression of

. ] components is -
radial.(Ur) and tangential (Uel displacement P
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obtained by using equation (5.2)

~ ( R
U 3 12 ] |
r or r 56 O
U 1a  _a (5.2)
0 J | 96 5T | wm

They have the same form as shown in equations (2.31) and
(2.32) when m is 1. The edge of the disk being free, the étress
Orr and Tre vanish at r=a giving the characteristic frequency
equation already shown in equation (4.1). The first root (Ql)
of this equation has been analysed extensively in a preceding
chapter in terms of the Rayleigh surface waves. The second
mode can be obtained from equation (4.1) by following the
second root for each 'n' value. It was found that the phase
velocity, unlike the first root solution was always greater
than the shear velocity and thus prevented the use of the
Debye's expansion of equation (4.8). The velocity «
characteristics of the next two additional roots of equation

(4.1) designated as 92 and 93 with n values up to 100 for

5=0.34 were evaluated. Fig. 5.7 shows the calculated phase

and group velocities of the first two higher modes. The

velocity is‘normalised to the shear. It is evident.;ha; both
s 2,

: . 3
velocities .are greater than the shear velocity 1i.e. H—>He>l,

This is true even at very high frequency where A/a is small

and the straight edge condition is approached. A polynominal

curve fitting program wWas used to determine the extrapolated

velocity ratio at 1/n=0. This also provides a simple

mathematical expression for the phase and group velocities

which gives,
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C =c [1 4+ 12.58 155,30
?‘m=2 S [ T n n2 .....1 (5. 3)
= 21,06 325.17
% C - .
- ¢,m=3 CS [l + n 2 Oo-o.] (5.4)
n

For the group velocity, the expressions are therefore

155, 30
© =c 1+ == ... 5.5 o
X
325.17 |
C = C [l =2l . (5.6) |
g m=3 S n2 ] i

It is the combination of these waves with the Rayleigh
waves which gives the anomalous echo amplitude observed
experimentally. The velocity difference is considerable as
the first wave travels at about the one dimensional Rayleigh
waves velocity and others at the shear velocity. Thus for
aluminium, the waves would be in phase every eleven

wavelengths.

Tt is of interest that the velocity for these hiigh order

modes converges to the shear velocity. This has a parallel

in the Lamb waves in plates. While the asymmetric and

symmetric modes of zero order approach the two dimensional

Rayleigh wave velocity as a limit, the high order modes

(36)

approach the shear velocity .

Concentrating now on the wave potential functions and

from equation (4.8), the Bessel term in equation (5.1) when

A/a is small can be approximately expressed as
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3 (Dr) = &xp[-n(tanha - o))
i (27n tanhq) ?

(5.7)

where

‘n

br = cosha

This expression is valid for n>Dr which is the condition
for the first surface wave mode developed in the previous
analysis. Consider the wave propagating near the edge so

that %E=$%. Then for large values of 'n'

n(tanha - a) = (L - sechza)d(fan) (5.8)
where
=D
secha = S
do - EY
d(1/n) D2 %
(1 -
€
and
e = 2T
A

From this, it follows that the potentials for the first

normal surface wave mode have the Drm:

A

L (a=z) = constant X exp(-glz)
¢ = /% expgd,
e - (5.9)
B
= t x exp(=p,2)
wl = exppl(a-zl constan p (=P,

(2npla2‘ . (5.10)

Where z=a-r which is the penetration depth and a>>z is assumed.
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2 2 2
91 =% T ki

2 2 2
Py =€ -k g

- | Qi ,

B, 9, (2,/8) (2 -0 aym
i S

1 n $iy1 n{M_(2,) - n - 1)

The above equations show that the potentials of shear
and longitudinal components represent the propagation along
the 0 direction but have an exponential decay away from the
edge. This is the classical Rayleigh wave functions and

having similar form to that for straight edge of equation (3.8).

With various approximations, the Ur and Ue displacement

components can be obtained . In using equation (4.12) and

retaining the first linear term,

'Rl 1 Ri %
B, (pl)%x (= -1+ 5Q- 35) ] x ejp[gl-lzlia]
A. g, % (1=2R%) = (1+2R%) (1-R{) ?
1 1 (l‘Ri) *?l{[ 1 1 1)

%
2 (1'R§1) ’ (5.11)

where Rl==the velocity of first surface wave mode
normalised to the shear velocity.

Combining egquations (5.9), (5.10),(5.11) and (5.2) the

displacements U_ and U, for m=1 are
[ (— z) _ Xl exp. (.—p l.z ) ]
gl X exp gl -Ri %
(1--=5)
B

A
U =2

- T
T im=1 (21Tgla)2

exp (g,2)

(5.12)
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2
R R?
(l-'-—-]-'-“_-;-l _ 1
where ¥, = 7 ) 54 a2)

2 2 R
L - (1-2R7) = (1+ - s
- 2
2(1 R7)
A
. _ _lexp(gla) . [ex : |
—_— - _ _
¥ m=1 (2mg,a)* pl=g;2)-x,expl plz)]
(5.13)
R? 2

(1= ==)+ 'H(l_ —=)

where Xy =

. (l—2R§)*(l+2R§)(l-Ri)%
1+ =i~
n 2(1—Ri)%

The 1/n terms occur in equations (5.11) and (5.12) arising
from the nature of curvature. For n2100, the 1/n terms are
small compared to their adjacent terms, hence the curvature
does not have a significant effect on the amplitude functions
when 26.063. Tt follows that a surface wave propagating along

the boundary is not feasible for high A/a values when C¢2Cs

because equations (5.12) and (5.13) are no longer valid and

displacements would not decay exponentially with depth.

As n+* which is the situation for zero curvature and

for o0=0.34, equations (5.12) and (5.13) reduce to

U = constant X gl[exp(-ng)-l.7337eXp(-plz)] (5.14)

constant X € [exp(rglz)—0.5768exp(-plz)] (5.15)

c
I
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Py

Substituting the numerical values of El and —
€ €

and

+the radial component at

normalised the above equations to U
r
o

r=a, this becomes

U
r

= — = 2.363exp (~2.463z/))-1.363exp (-5.334z/1) (5.16)
rO

Ys

g~ = -0-926exp(-2.4632/1)+1.606exp (-5.3342/A) (5.17)
(@]

This is the exact expression for the displacements in straight

edge.

Because of the velocity difference,the waves of the higher
order modes will behave differently from the normal Rayleigh |
wave. Consider the wave potential of the shear component (wz)
of the first higher mode, the Debye's asumptotic expansion is
not applicable as the argument term has a value larger than
the order, i.e. Q,>n. It is necessary to express the wz at

2
very high frequencies (A/a is small) by the approximation of

egquation (5.18).

A

5 Y exp (inb) (5.18)

A

<
N
R

n'2,s

and

Le)

- 2
kz,s T a

A is the Airy integral and it is expressible in integral
» l

= _ L. 2 -3 -k r .
form and Y = (kz sr) (n-k, o )
2
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Consider the waves propagating near the edge and let

2’Sr)=(e-k2,s)a+k

where z is the distance measured from the edge towards its

r~a except for the term (n-kz’sr), then (n-k 2

2,s

centre and z<<a2_k§ecause.the values of € and k2'S are close,
then ek, = 245  nppores
2,s 2k2 N . ererore Y can be expressed as
4
o 2/3 1/3
_ 1 2 2 2
Y = (.—21 P, a + .(.292)_ z/a (5.19)
2Q
2 .
where i
, i

p, has the same form as the depth function of the shear
potential in a straight edge, but the shear potential is

represented by the Airy integral.

In transforming the term Y of equation (5.18) into the
form shown in equation (5.19), the asymptotic relations of

(38)

the Airy function™ can be used, 1In this case, as 92>n,

the function Ai(Y) has an oscillatory behaviour for negative
'Y' with a period and amplitude which slowly diminish with

For >>1, the following asymptotic relation

increasing |Y|.

is valid,

~1/4 L, T,
A, (0)=(-¥Y)  SinC+ -2+ ..

‘(--Yl_-l/4cos@+' 0 ';_l - _g. =2 ] (5.20)

‘ 2
where T = % (—YL3/
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T = 2. 5.11) »
and Ly = T3y e,y = —2e 27
1.2+ (72)
: - 5.11 .... (6n-1)+7°13 .... (6n-5)

lQ2 e e o 0 n(72)_n

The properties of the Alry functions are fully described

in reference (39).

The wm(m;2) oscillates away from the boundary and is not

confined to the edge.

For the wave potential of the longitudinal component ¢

2I
Q
equation (5.17) is still valid as ﬁg<n, therefore
¢2 = B2 ¢2 exp (inb) (5.21)

A exp (g,a)

where ¢2 = Jn(kZ,lr) = — exp(—gzz)
(Zﬂgza)

2. 2 2

and g, =€ = k2,2

This is similar to the classical Rayleigh wave function
which has an exponentially decaying motion and can be

considered as a wave near the edge but with a smaller

decaying rate as 95,997«

The above analysis for a disk thus identifies another
type of wave termed second surface wave mode which travel
fasterrthag the shear wave. The ¢2 component behaves as the
normal Rayleigh mode, but wz oscillates away from the
boundary. The higher order modes (m>3) are not considered in

detail since gg>nland neither of the components ¢ and ¢
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will have exponentially decaying motion so that a surface

wave mode in this case is not feasible. Table 5.1 shows

the calculated value of Ql, 92 and Q3 for 0=0.34 with 'n’

up to 100. The phase and group velocities for each case

are also included.
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5.4 Comparison with Experiments

The characteristics of the first and second normal wave
modes both of which are assumed to be excited by the line
drive enable a theory for the oscillatory nature of signal
amplitude to be developed. The two types of wave propagate
along the surface of the circular disk but with different

velocities, the longitudinal echo amplitudes E., and E., at

1 2
receiving position 6 and (27-6) for lossless medium are

designated as:

E, = {Ulcos(vlel - Uzcos(vze)] exp (ind) (5.22)

E, = [Ujcos (v, (2m-8)) - U,cos (v, (2m-6)) ] exp (in6)
(5.23)

where Ul and U2 are the amplitude constants of the first and
second surface wave modes as excited by the drive. The ratio
of U2/Ul is assumed to be freguency independent and has a

value of less than one,

Q

and v, = 28 - ?i
1 RlCS Rl

y _ ba =.82
2 T RC_, Ry

In retaining the first linear term, R, and R, can be

expressed as

k

-1
= 1 + —).
Ry = Ro U Fq (5.23a)
ky -
"R.=R_ (1 +="]

9 o - o
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where kl and k, are determined by the best straight line
fit program and found to be 1.7885 and 9.4773 respectively
(for 0=0.34).

Substituting equation (5.23a) into expression vl and
Vo yields
wa
v, = =— = 1,7885
1 ClR ,
} (5.23b)
= a _
Vo = G 9.4773
s
In so doing, equation (5.22) can be expressed as
_ 2
E, = u, {1+0°-20 cos | vy v2)_6|} cos (v,6+e,) (5.24)
sinv.6 - Usinv,© U
where e, = L 2 and U = ﬁg
cosv.06 = Ucosv,b 1

1 2

Since vy and v, are unequal, the amplitude of first and
second surface mode continually shifts in relative phase as

the wawves travel. After a propagation distance L=m1d6 such

that [_E_ - £ +,ZL§§§§—] L = 27, they are in antiphase.
ClR Cs md
Because of this beating effect, E; will have a periodic:: v

value along the propagation distance. The 'beat wavelength'

A the length of one spatial period of the waves between an

bl
in-phase and anit-phase condition, is

.2 R,
2R

A T TR

(5.24a)

For aluminium, R, ='O.92,>kb = 11X,
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Because the input amplitude is arbitrary, the normalisation
of the echo amplitude El is necessary, Since there is no

interference between the amplitude El and E2, the ratio of

E2/El can be expressed as:

E2 1 +vU2 —.2Ucos[£vl+v2)(2n-6)] E
J (5.25)

1l + U2 - 2Ucos[(vl+v2)8]

From equation (5.25), it also follows that the echo ratio
E2/El is not only a function of frequency and receiving

position 6, but also the disk diameter.

The two wire experiments were then carried out on two
thin aluminium disks of diameter 308 mm, 185.16 mm and
thickness 1 mm. To minimize the effect arising from
attenuation, the receiving positions were chosen at 639oof
Therefore a short burst of frequency 'f' was launched along
the edge in both directions and the echo amplitudes E, and
E, which travel a distance of a6 and a(2m-6) were measured
carefully. Fig. 5.8a shows the experimental echo ratio
E2/El as a function of the launched frequency 'f' from a
185.16 mm diameter disk, 6 being 1200; the calculated curve
in using eguation (5.25) is also shown in Fig. 5.8b where U
is assumed to be 0.3. For the receiving position 6=9OO,
Figs.5;9a and 5.9b give the corresponding experimental and

calculated results, To demonstrate the effect of disk

diameter on E,/E,, Figs 5.10a and 5,100 show the results on

e}
a 308 mm diameter disk with 06=120 .
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Examination of the graphs showsquite good qualitative
agreement between theory and experiment but the correspondence

is not complete. The deviations could arise from:

(1) Only the second surface wave is considered and all the
other high surface wave modes are ignored.

(2) The energy of high surface wave modes will only confine
to the edge when A/a is very small. This explains why
the experimental result ;of Ez/El is approximately one
when £<500 kHz.

(3) The attenuation of the surface waves is neglected in the
theory and this would cause error particularly when \/a
is very small. Care was taken to minimize the scattering
by polishing the edges.

(4) The spurious signals arising from the supports, joints

eventually limit the accuracy in experiments.

A further refinement of the theory would require the
exac£ information of the field distribution on the first and

the higher surface wave modes. Moreover, the attenuation

shouldibe iincluded.

The oscillatory nature of the signal amplitude is
evident in both theory and experiments. The periodicity
changes considerably with disk diameter and both theory and

experiments show this.change. It is considered that the

phenomenaon observed experimentally has been confirmed by the

analysis and impxoves the understanding of the propagation

"of waves on a curved surface.
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Figure 5.1 Cross section of a surface wave probe
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Figure 5.10 Comparing with fig. 5.9, the pattern is seen

+o vary with disk diameter.
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20 0.99482 0.93037 1.38175 1.12010 | 1.58715 1.22618
30 0.97196 0.92500 | 1.28303 1.07470 | 1.44102 1.12781
40 0.95991 0.92313 | 1.22847 1.05861 | 1.35748 1.09735
50 0.95243 0.92216 | 1.19350 1.04998 | 1.30355 1.08195 =
60 0.94733 0.92153 | 1.16897 1.04274 | 1.26563 1.07327
80 0.94081 0.92104 | 1.13652 1.03595 | 1.21538 1.05951
% 100 0.93681 ~ .=~ " | 1.11576 - 1.18319 -

Table 5.1 Phase and group velocities of first normal Rayleigh

mode, first and second sub-surface waves modes as a function

of 'm' .
( @/n = ratio of phase velocity to the shear and
| 40 _  patio of group velocity to the shear.)

,
, dn
3
|
!
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CHAPTER 6

ELASTIC CONSTANT MEASUREMENTS AT HIGH TEMPERATURE

6.1 Introduction

The elasticities and internal energy loss of solids are

of great impertance in engineering as they are necessary as

design parameters. In high temperature applications such as
rocket motors the refractory throat materials tungsten,

graphite composites and refractory oxides and nitrides are

bonded to a cooled former. A full stress analysis reguires

knowledge of the various elastic constants over the working

temperature range. Measurements on small guantity of
materials can be used for gquality control and in the

development of improved materials.

Where possible, the resonance method described in Chapter

2 has been used. This requires the losses to be small

giving at Q of, say 20. In practice, a higher loss than this

would probably mean that the material was beyond its useful

temperature limit. A wide choice of resonators and modes of

vibration is available. Typically rods in longitudinal and

torsional vibrational modes give Young's modulus and the

shear respectively. Young's modulus and Poisson's ratio are

usually used in engineexring design as the latter varies only

slightly with temperature, Thin disks are particularly

suitable for high temperatures as the spectrum at once gives

both elastic moduli, Other modes such as end and shear
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resonance in strips have been investigated but are not

practicable at high temperature. The wire drive has the

advantage that the transducer will separate from the
resonatar. The echo observation enables the frequency
and internal friction to be measured concurrently. This

gives useful NDT information.

For very high internal friction, resonance methods cannot

be used and the velocity is best determined by the Sing—round(4o)

(41) (42)

or Double-Pulse Superposition methods. The pulse

(43)

attenuation method gives the internal friction.

In the furnace arrangement, the resonator is situated
into the bottom of a furnace tube and heated by convection.
The Argon or Helium gas was flowihg into the bottom at a slow
rate; a chromel-alumel or platinum thermocouple is located
near the resonator for temperature measurement. Alternatively,

the transducer and the resonator are situated into the

vacuum furnace tube. Only the transducer section of the line

need be of magnetostrictive material and situated inside
the low temperature section and theirest of the line is
integral with the resonator so the high temperature joint

is removed.




6.2 Various Driving Technigues -

The degree of coupling to a particular resonance depends
on tre resenator parameters, line impedance and the direction
of vibration at the point of drive. Four drive techniques

have been developed, these are shown in Fig. 6.1.

In the first, thin disks and plates can be driven into
a wide variety of modes both in plane and flexural. The
coupling is most efficient when the drive is at an antinode.
In the second, axial drive excites longitudinal modes in
rods and strips. Torsional mode in rods can also be exicted
if the wire is polarized circumferentially and in the third,
a tangential drive excites torsional waves in rods and disks.
A 45° drive to the width end of a strip excites the end
resonances(A4) strongly. The use of a double wire is rather
cumbersome but by using "push-pull" or "push~-push" can excite
modes selectively. The phase relationships are determined by
adjusting the position of the coil to make the line lenghhs
either equal for in phase (push-push) or different by-%_'for
anti-phase (push-pulll. For both ends of line driving

tangentially at opposite ends of a rod, the torsional mode is

more efficiently excited than the simple tangential wire.

Amongst the four driye techniques, the normal and axial

drives are frequently used at high temperature measurements.
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6.3 Rods and Strips

The rods sustain longitudinal vibration. For the diameter

is very small compared to wavelength, the governing modulus

is E and simply

£ 2 -
E = (=) aL?p (6.1)

where L : the length of the rod

o) : the density

'fn : resonant frequency of mode order n.
As-%  decreases, the resonant frequency of a given mode

)

decreases. Lord Rayleigh(44 introduced the transverse

dilatational correction which is given as:

cE 2 2 ﬂ%%Z 'ﬂ4o4a4
E=i%£)4LpD& > + S ] (6.2)
2L 16L

This is only valid for a large value of % .

A more rigorous mathematical analysis is the use of the

(45) (46)

Pochhammer and Chree equation, many authors have

studied the problem. The numerical reslults obtained by

A
Bancroft(47) has proved to be accurate to large values of =

and are used in the rod application. He presented éhe

results in the form of a table giving the value of E;_ against

two variables X and o where Cph'is the phase longitudinal
var: 3 ‘

wave yleocity derived from the experiments. Using the Bancroft

correCtion'(Bc):

R e S SRR TRl
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_ £ .2 2
BT g ke (6.3)

and

_ £
Co T B
c

SIN
=

(6.4)

This is much more accurate than the Rayleigh equation.

When the vibration spectrum is known, a curve fitting .
procedure may be used to determine the Poisson's ratio. The

ratio of H%—'is a constant with 'n' if ¢ is postulated
c

correctly. This also provides a check on the degree of

isotropy and constancy of elastic constant over a wide

frequency range. Materials were selected with this feature

in mind.

In experiments, a rod of poco graphite, a very fine
grained material recently developed by National Bureau of
Standards was measured. Only the rod sample was available.
A curve fitting procedure on the longitudinal vibration

spectrum yields a Poisson's ratio of 0.25 which is high

The ratio of £ with n for

compared to ordinany graphite. )
c

6=0.25 remains constant with a standard deviation of 0.07%

only. Fig. 6.2 shows the result and the constancy demonstrgtes

the high isotropy of poco graphite. To compare the relatiwve

isotropy, several nominally isotropic rods of known Poisson's

ratio have been measured over a wide fregquency range. The

deviation of _£ value with mode n for aluminium, brass, silicon
v c ‘

nitride and poco graphite rods are s

e reference line (0%) represen;ing a

hown in Fig. 6.3. The

fluctuation from th
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perfectly isotropic material gives useful information on
non~destructive material eyaluation (NDE). From Fig. 6.3,
the silicon nitride is relatively more isotropic than other
specime?s but the constancy of elastic behaviour of pcéo

graphite is comparable to the highly isotropic material,

aluminium.

Figf 6.4 shows the high temperature measurement on the
poco graphite rod. The internal friction up to lOOOOC was
not apparent. Like the ordinary graphite, it’exhibited a
minimum velocity at about 200°C and then increased with the
When velocity and expansion data are available,

Fig. 6.5 shows the result on a four axis logarithmic graph(48),

temperature.

this gives comprehensive data display.

A hot pressed silicon nitride rod was also measured.

Fig. 6.6 shows the result with temperatures up to 800°C. A

gh bar velocity (210,000 m/sec) was experienced

st;c;ty material (31. 767Xlolon-m )

very hi
indicating a very high ela

ature coefficient was only 17.1 p.p.m/K

The tempera elV1nf

An analytlcal solution hasnot been found for'the:free

rectangular.strlps while the solution does exist for the

But an exact solution on end resonances

cylindrical solution.

of strips had been obtained. In end resonances, the energy

of vibration is confined to a region near the boundary which

has a similar characterlstxc to the surface waves. They are

first explained by Folk( 2) and M;ndlln( O) and associated

with cut—off modes in an isotropic plate which have complex

o :I:‘:.—%‘ir‘.;m

~f&~}!é§c‘_‘£‘::?#§k:—§;:;&.};¥% =
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wave numbers and occurred in conjugate pair. The precise

eigenvalue )
g S (Qe) of end resonances on strips have been

obtained by Bell and Karlmarczie(44) and they can be represented

by a quadratic equation as shown in equation (6.5).

= 2
Qe = 1,9860 + 0.8990 + 0,310 (6.5)
w b
where Q = —
e C
S
and wy = angular end resonant frequency
2b = width of strips.

2 90° drive to the width end of strips excites the end
resonance mode and the plate wave mode (with one nodal line
along the length) efficiently. If the ratio of length to

width is greater than 10, the latter mode essentially propagates

at plate velocity (CP)(Sl) with wavelength of 4b. By

comparing the freqguencies of end resonance (fe) and the plate

wave (fp), the Poisson's ratio of a rectangular strip can be

determined experimentally. Table 6.1 gives the results of

(fp/fe) against Poisson’s ratio which are also shown
graphically in Fig. 6.7.
trips of known Poisson's ratio have been

Several s

measured and Table 6.2 shows the experimental results for

strips of brass, aluminium, steel and nuclear graphite. The

results are consistent to the known values and accurate better

than 3% which is the limit axising from variation in material

properties and experimental errors.

S

e R R

SR L AR

R AR

i e b

e
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6.4 Disk Resonators

For a circular disk, the theoretical analysis for
extensional and flexural vibrations are well established.
They are, in effect, the corresponding in-plane and the

(52)

Chladni's plate vibration. For elasticity measurements,

only the lowoorder modes need to be considered. :

For disks vibrating in out of plane flexural modes, the
£(53)

SR <o g iy S RS

classical theory of Poisson and Kirchof is valid only

for a disk with a very small thickness to diameter ratio.

A more rigorous differential eguation has been derived

s

including the influence of shear and rotary inertia by Ufyand(54)

and Mindlin(ss). Martincek(56) has made use of flexural

- i Gnin 8 Bt

vibration to determine the Poisson's ratio of a disk, but
no report of its use are known because it requires different
arrangements to excite a pair of flexural resonances and not

preferable in temperature measurement. The flexural mode

(57) (58)

vibration has more applications in mechanical filters

rathef than the elasticity measurement.

For in-plane vibration of a disk, the frequency equation

10
was derived by Love(lz). Onoe(g) and Holland( ) have

completed the theoretical analysis of the low order resonant

spectrum. The frequency equations of distortion, radial and

(2.23a) and

tangential modes Wwere shown in equation (4.1),

(2.23b) respectively. The distortipn modes are governed by

shear modulus, the radial mode is more dependent on Young's

e as the area change in the

modulus. This is understandabl
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former group is small, while in the latter it is large

Fig. 6.8 shows the first four mode patterns. A single radial

drive will efficiently excite the distortion and the radial

modes. A frequency ratio of the pure radial mode (fl R) and
7

three nodal diameters (f . .
C 1,3), f2,l and fl,5’ f2,R and fl,9 gives

Poisson's ratio with good sensitivity. The Poisson's ratio for
the value of the above frequency ratio concerned, can be read
from the nomogram shown in Fig. 6.9. The plate velocity is
obtainable from one of the mode frequencies. The frequency
ratio is not sensitive to the thickness, Ambati(sg) has shown
the correction for thickness as, in virtually all modes,
unnecessary for diameter to thickness ratio greater than 10.
The only dimension to be measured is the diameter which can

be machined with high precision.

Hot pressed silicon nitride is typical of the materials

. (60)
investigated. They are used on the structures of gas turbines.

because of their high resistance to corrosion and stable

thermophysical properties. Three disks of 38.lmm diameter

from same batch were measured. The disk was fixed radially to

a O0.7mm nickel line with a high temperature adhesive

i : i nid thermocouple mV were
'Autostick'. Readings of fl,R and fl,3 a P

taken. A least-sguare curve fitting is necessary to smooth

out the raw data. The Poisson's ratio then can be calculated

from frequency fl,R/fl,3 aF selec;ed intervals of

o
temperature. The internal friction at high temperature (1000 C)

to the limit of the experiment was very low. Fig, 6.10 shows

; i disks against
the variation of Poisson's ratlo from three di g

temperature. All disks show very similar characteristics,

et
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a fall in Pqisspn's ratio which is the reverse of most metals.
There was a conspicuous difference in Poisson's ratio and
,velocity even from the same batch which suggests that the
measurements could be very sensitive to the degree of

nitriding.

The refractory material silica is of great interest. A
disk of 50mm diameter was fused to a lmm silica tube about
600mm Long. The tube was then joined to a magnetostrictive
line of diameter giving a good acoustic match. The disk
was then located in the hotiregion of a furnace.  The silica
tube being in the region of the temperature gradient thus
kept the magnetostrictive joint at room temperature . .The
.and £ were measured as the disk temperature was

1,3 1,R
slowly cycled., Fig. 6.11 shows the variation of Poisson's

f

ratio and the plate velocity with temperature. Unlike the
silicon nitride, the Poisson's ratio increases with the
temperature but most surprisingly the velocity increases with

the temperature and reaches a maximum as the melting point -

approaches.

A variety of graphites including isotatically pressed,

extruded, pyrolytic (the orthotropic form) and carbon fibre

and carbon-fibre-carbon composites are potentially useable in

the throat of rocket motexs, high power internal combustion

engines and nuclear reactors., Stress analysis of these

structures ovyer the operational temperature range is necessary

and the data obtained in these measurements along with other

thermophysical data enable this to be carried out. Figures

S
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6.12 and 6.13 show the change of elasticity and Poisson's
ratio with temperature on materials which were made from
powdered coke, extruded with a tar binder and then
graphitised. The variation in Poisson's ratio with
temperature is consistently small but there is a wide
difference between specimens. The large difference in
Poisson's ratio for graphite can have a large effect on

manufacturing.

The annealling has significant effect on elastic
constants of most metals. A test was carried out on an
aluminium disk. The disk is spot butt welded to a O.7mm
line. On the initial run, the readings of f2,l and fl,S'for
temperature up to 600°C were measured. The disk was allowed
to cool down at ambient temperatures. A second run was then
carried out by similar procedure. Figure 6.14 shows the
change in Poisson's ratio - of the temperature on the initial

and second runs. The change in Poisson's ratio in the two runs

is very large. Initially, a rise in Poisson's ratio to 0.42

at temperature 500°C was noted and this suddenly fell to 0.38

as the temperature was further increased. The second run

generally has a similar temperature coefficient but the peaking

is removed by the first annealling run. An appreciable

change in internal friction at high temperature was observed,

-1 . .
the variation on loss (Qm ) has been shown previously in

Fig. 2.33. The disk was cycled a number of times and the

results showed very similar characteristic to that of the

second run.
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The work has extended to investigate the disk of simple
anisotropy empirically, Moderate anisotropy occurs in rolled
metal where the maximum and minimum elasticities are
perpendicularf It is evident only at the lowest mode, that
with two nodal diameters, the elasticity removes the mode
degeneracy and the mode spli#s, In one, the nodal diameters ;é
are symmetrical about the elastic axis and in the other they
are aligned. As the wire drive has maximum coupling at an
antinode, placing the drive at an elastic axis excites only ;

the symmetrical modes. As it is moved to the 45 degree

position, the second mode appears. An arbitrary 's' plane

model may be used to resolve the resonant frequencies, the

separation of freguencies was as large as 4% for rolled

aluminium disk. This is an indication on the degree of "
anisotropy. Annealling has been found effective in weakening

the mode degeneracy and the separation on frequencies

becomes smaller.




6.5  Conclusion

The pulse-echo technique developed can be used to
examine the spectrum of a large number of solid structures.
An important application is the characterisation of materials
in which elasticity and Poisson's ratio can be measured
over a wide range of temperature. The technique has been

extended to identify anisotropy on materials.
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Figure 6.1 Wire drive techmiques. The

the coupling or to select a particular

drives were selected either

+0 maximize
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Figure 6.2 shows the variations in Mw. against the mode number n
c

using two different Poisson's ratio values. It is apparent that

0= 0.25 is the better postulated value for poco graphite.
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Figure 6.3 The % deviation of =5 against mode number n for 4 different rod specimens.
c

This provides a check on the constancy of the elastic behaviour and the degree of

isotropy of the specimens.
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Figure 6.4 Resultant curve.from temperature run on poco graphite.
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Figure 6.5 shows the comprehensive temperature run data on

poco graphite. The bar velocity (CO), Young's modulus
(E=p02) and the characteristic impedance (Zo=pCO) are
o .

displayed on one graph only.
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Pigure 6.6 Data on hot pressed silicon nitride. The temperature

coefficient is only 17.1 p.p-m/k, this indicates this material

has a very stable +hermophysical properties at high temperatures.
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Figure 6.7 shows the sensitivity of fp/fe against Poisson's ratio. .

Teale fs,)
A measure of sensitivity is fp do . Using this expression,

the sensitivities are 0.1 and 0.5 for o = 0.05 and 0.35 respectively.

The sensitivity is good enough for most metals.
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Figure 6.8 Nomenclature of the principle modes used. The first shear mode

has an antinode (maximum rotation) at the centre. All the others have

central nodes which are classified as circles.




0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 IR
f
rﬁ“ il __ wd_____»___ “___“ ___“ Lt 1_ L _ / _____ | u ______ _____ J L __ ; Ll —__ ﬂ_ 13
-0.10 —-0.05 0.00 0.05 0.10  0.15 0.20 0.25 0.30 0.35 0.40 o
f
21
o._mo 0.95 1.00 1.05 1.10
15
“_:_:___.: __.___ _____ L __ | _.___.___ 1 __ Ly i Ll | ._ Lt _ 1 .___;__ _
A o
-~0.10 ~0.05 0,00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
o
I
by
0.80 0.85 0.90 0.95 1.00 2R
— i — 1 _ A _ i _ 1 F 1 _ 1 _ ] _ i _ 1 — _ L Wx_w
~____—____~____~____—____——__ __ _-_ ____P_______* —_‘___ .___._— __ _____.__J-__ )

-0.10 -0,05 0.00 0.05 0.10 0.15 0.20 0.25 0.30° 0.35 0.40

Figure 6.9 Nomogram giving Poisson's ratio in terms of the frequency ratio. The sensitivities

for T1R | T21 ana ToR respectively are 1.0, 0.6 and 0.65 for o= 0.3 .
15 T3 f1g




Poisgon's Ratio

- 174 -
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Fig. 6.10 All three disks are from the same batch.

The Poisson's ratios are virtually identical but

i +
the specimen variations exceed the femperature

effect.
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increases nearly linea
rature of about 125000

is reached at the surprisingly high tempe

above which +he material begins +o soften.




Figure 6.12 The elasticity graphs on nuclear graphite.
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Fig. 6.13 As in fig. 6.12, the graph shows the variation in Poisson's ratio

with temperature. P cut specimen has a lower Poisson's ratio.
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Figure 6.14 Temperature runs on a rolled aluminium disk.

This shows the annealling has a significant effect on

elastic constants.
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0.30 0.35 0.40 0.45 0.50

Poisson's 0 0.05 0.10 0.15 0.20 0.25
Ratio
2, 1.9870 2.0302 2.0728 2.1139 2.1534 2.1914 2.2278 2.2627 2.2960 2.3278  2.3580
wv / £, 1.1180  1.1226  1.1297 1.1398  1.1533  1.1705 1.1918 1.2177 1.2491 1.2868  1.3323
Do\mo 2.2735 2.2987 2.3253  2.3522 2.3789  2.4055 2.4316 2.4571 2.4816  2.5057  2.5287

Table 6.1 The ratios of w@\wo and @m\mo against Poisson's ratio.

The Poisson's ratio of a long strip can be found by measuring two frequencies and the shear
velocity can be determined from bm once the Poisson's ratio is known. When normalised +*o
the Rayleigh wave velocity the parameter is much less dependent on Poisson's ratio than

the shear normalised values. This indicates that a physical picture of the end resonance is

that of standing surface waves.
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Maters .
aterials Width (mm) £, (kHz) £ (kHz) fp/fe Poisson's

ratio
Brass 57.5 27.346 32,390 1.2210 0.355
Aluminium 48.0 47.038 56.402 1.1991 0.336
Steel 51.2 45.204 53.487 1.1832 0.280
Nuclear 25.4 30.820 34.950 1.1337 0.120
Graphite -

Table 6.2 shows the experimentally measured Poisson's ratio on strips.

The results are in close agreement with the known values.
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LIST OF SYMBOLS

disk radius

elements of determinant
Airy function

initial echo amplitude
steady state echo amplitude
half width of strips
Bancroft correction

phase velocity

group velocity

Rayleigh velocity

rod velocity = (E/p)ly2
plate velocity = CO/(l - 02)%

%
-CO/(Z(l + o))

]

shear velocity

%C
{1-=-0) “Cp

bulk velocity = . -
(L - 20)%(1 +0)°

Young's modulus

depth functions
Heavigide transform

Hankel function of first kind

(-1) 7

Bessél function of first kind
Jn-l(xl

x_____..—————-

I (x)
edge equivalent mass

static mass
mode numbex

number of oscillation to C

and lossY resonators respectively

rogsover in losgsless
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coupling Q factor

material Q factor

total Q factor

polar co-ordinates

velocity ratio normalised to shear where i=0,1,h,s
for straight edge, disk, hole and shell respectively
Laplace variable

time

burst duration

displacement function

dx

dt

du

factorial x

Bessel function of second kind
characteristic impedance
acoustic line impedance

relaxation term accounts for material loss
coupling term for rods

coupling term:for disks

transmitted angular frequency

resonant angular frequency

density
2/ - q)
Poisson's ra?ip

____...———-——"'
24 (1 = Q)
wavelength

propagation constant 21/A
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Gij : plane stress
Tij : shear stress
o,V : longitudinal and shear potentials respectively
K : eigenvalues of disk_# %5
P
Q- : eilgenvalues of disk = »a
1 C
S
. . wb
Qe : eigenvalues of end resonance on strips = &
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APPENDIX 1

This section describes an electronic system to identify
the nodes along the edges of a strip resulting from the

standing waves.

A magnetostrictive wire probe is used to observe the
signal along the edge and is connected to the 'x' input of
an oscilloscope. A delay and sample circuit is used to gate
part of the echo decrement signal which is applied to the
'y' input of the oscilloscope. This gives a 'clean'
Lissajou figure on the display. As the probe samples the
signal across a node, the signal falls to zero and then
reverses phase. Thus by counting the number of phase changes

along the edge, the number of nodes is determined. Precise

tuning is necessary to make phases and z€ros well defined.

The operation of the electronic circuit will not be

described in detail, however, the schematic circuit diagram

and the waveform at various points are shown in Figures A.l

and A.2.respectively.
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of the gate and sample system.
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APPENDIX 2

From equation (4.10)

_Mn(ﬂl)

= (1) exp (=1 ) exp{-n(po—pi—qo+qu}

This is valid for n>Ql and nz100 only.

Let
F(k) = expl-n(u_-uj-a +0))} = exp{G(k)} (a2.1)
where k = 1/n

coshOLo = n/Ql

coshal = (n-l)/Ql

= - 2
Uo = (1 Rl)
}
(n2u0-2n+l)2
Hy - n-1
1+y
o = loge( R )
n-1 (n2u0-2n+l)
a = log {—=— +
1 e nR, nR,

. The function G(k) will have a Maclaurin's series and can
be expressed as

2
60+61k+§2k Fovneasaossns

Therefore

) J 2+ E+ (Asz)
g - o = k 6]( .».....o-oc
HJ p,+d al 6 k+6] 2 .



The coefficients 60, 61, 62,...... can be obtained by

successive differentiation in equation (A2.2) with respect

to k and taking the limit k*0. This produces

o o
6 o=y oL
17 Yo T 7 (a2.3)
_ I T |
8, = ¥ 21 3
o 6
o)
Substituting equation (A2.3) in (A2.1) gives
k) = ) (8. k+8.k)
F(k) = exp(n ) exp(o k+d,
2
= exp(uo)(l+61k+52k ....... )
M_(2,) :
Therefore —Eﬁ——— can be expressed into a polynominal

form by putting equation (A2.4) in (4.10), this gives

M_(2,) S s
n' 1l 1 2
= = (I4p ) (It == F 5 T eeeenns )



