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This thesis presents the results of numerical modelling of ultra hlgh-speed transmi
usmg DM solitons. The theory of propagation in optical fibres is presented with .
reference to. optical commumcatlon systems. Thxs theo r hen expanded to. 1ncorpor _te,,

The first part of this work focuses on ultra “hig}
propagation in short period dispersion maps. Initially,

problem of noise- 1nduced mteractlons whlch is where the acc
neighbouring dispersion-managed solitons to interact. In a
sensitive to initial conditions as the data rate increases,
The second part of the work focuses on conirasting the i
propagation regimes, from quasi-linear through to soliton
single channel and WDM dispersion managed transm ’
optimal single channel performance was acl
WDM performance was achieved for prﬁpagatiﬁﬂ reg
gsoliton-like. ’

Hon-linear optics, optical communication sysiems
dispersion managemeni, optical netwaorks, optical i—ab gs o
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Chapter 1 Introduction

The last two decades have witnessed a rapid growth in the demand for telecommunication
services, which in turn, has lead to increased research efforts being focused on optical
communications. Transmission using optical fibre shows great potential to meet this increasing
demand, as so much of the available bandwidth currenily remains unutilised. Of course, the
question of effective utilisation is an incredibly important topic and is currently the focus for a
vast amount of research [1-5].

In this chapter, we review the types of optical networks and the modulation formais

used. We also present an overview of the work included in this thesis.

1.1 Communication networks

In modern times, the telecommunication network covers the vast expanse of the world. In order
to achieve such coverage, the network is divided into a hierarchical structure with different
levels providing different functionality. The principle structure of the network is shown in
Figure 1.1.

Starting at the bottom of the hierarchy in Figure 1.1, the lowest level is the distribution
area network. The distribution area network connects end users to a public communications
network, facilitating the distribution of signals from local exchanges to the end user.

The access area network sits above the distribution area networks and muliiplexes the
signals from the end users into higher speed signals. Signals directed in or out of the access area
netwark are routed either from or into the transport network. Typical areas covered by acosss

area networks would be a large city or large conurbation,
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Figure 1.1: Simplified hierarchy of telecommunication netwarks

The next level in the hierarchy is the transport netwaork, which routes large capacity data
without breaking them into component streams. Receiving signals from the access area neiwork,
it multiplexes them together and then routes them to their destination. On arrival at the correct
destination, the high-speed signals are sent back down to the access level network.

Moving up in the hierarchy, we have information highways. These very high capacity
systems connect together different transport area networks. Typically, these networks expand
over large geographical areas such as the whole of Europe or the USA.

At the top of the hierarchy are submarine networks, which connect different transport or
highway networks across oceans. The main submarine links, such as the Atlantic links
connecting Europe with North America, are around 6,000 km in length, and the Pacific links
connecting Asia with North America, are round 9,000 km in length.

In the context of this thesis, we are only interested in propagation distances ranging from
1,000 km to 10,000 km. These distances cover the transport area neiworks, information
highways and submarine links. Throughout the thesis, as we have done here, we shall not refer
to the network topology, as we assume that all network topologies can be construcied from
poini-to-point links.
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1.2 Data transmission

In the modern era of telecommunications, the nature of the transmitted information has changed
from mainly analogue telephony to digital data transmission. Currently, data traffic exceeds
telephony traffic and it is predicted that this trend will continue to grow over coming years [6].
Therefore, in this thesis we are concerned solely with digital transmission. Digital data is the
representation of information using streams of ones and zeros, with a threshold being used o
classify the incoming data signal. The two main modulation formats that are used to transmii
optical signals are Return-to-Zero (RZ) and Non-Return-to-Zero (NRZ). With the NRZ formai,
the pulse width and bit period are identical, so the pulse occupies the whole bit slot and exhibits
a rectangular shape. In contrast, RZ pulses only occupy part of the bit period with the pulae
intensity returning to zero at the beginning and end of the bit period. Although the NRZ format
is more Spectrally efficient, better performance is achieved for the RZ modulation format [7-9].
Soliton based optical communications are always RZ format. However, in recent developments

other modulation formats have been considered in order to improve the spectral efficiency [10].

1.3 Thesis overview

The aim of this thesis is to investigate ultra high-speed tranamission using dispersion managed
solitons. In particular, the limitations and robusiness of these systems are examined. In chapier
2, we review the theory of pulse propagation in optical fibres. This section reviews some of the
limiting factors of optical communication systems. In addition, the concept of both the optical
soliton and optical soliton communication systema are introduced.

In chapter 3, we introduce the concept of dispersion management and deiall ihe

behaviour of the dispersion managed (DM) soliton, Also we investigate the dynamics of the T0M
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solitons in the short period dispersion management regime, where DM solitons retain th@if
soliton-like behaviour even for short pulse widths. In addition, W@_ ‘pI’O'Vide an int@rpr@tatiéﬁ Qf‘ i
how the amplifier placement within dispersion managed systems effects the energy of the DM
soliton.

The next three chapters focus on single channel transmission using short period
dispersion management. Investigating propagation for long haul to short haul transmission, we
optimise the system, and then determine the limitations of the system. Chapter 4 is concerned
with 80 Gbit/s transmission, chapter 5 with 160 Gbit/s and chapter 6 with 320 Ghbit/s,

In chapter 7, we investigate the important question of whether the DM soliton or quasi
linear transmission is the optimal information carrier for high capacity systems. We contrast
system performance for four propagation regimes, for both single channel and WDM
transmission. The simulation results indicate that for both quasi-linear and DM solion
propagation large inter channel penaliies are incurred, whereas for propagation regimes that sl
between these regimes the inter channel penalty can be reduced.

Finally, we present the conclusions of the work undertaken in the thesis. Some

suggestions for future work are also outline
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Chapter 2 Propagation ln optical
fibres

2.1 Introduction

In this chapter, we review some of the main features of pulse propagation in optical fibres.
Initially we focus on the physical properties of optical fibres that are of importance to optical
communication systems. We then derive the Non Linear Schridinger (NLS) equation, which
describes the pulse propagation in optical fibres. Next, we consider how non-linear and
dispersive effects influence pulse propagation. Finally, we consider soliton propagation in

optical fibres and their limitations as information carriers in an optical communication syatem.

2.2 Properties of optical fibre

In this section, we review the optical fibre, which is the transmission medium used for the work
in this thesis. Initially, we examine the construction of an optical fibre, and then review some of

its physical properties, with specific emphasis on the application of optical communications.

2.2.1 Fibre characteristics

Step-index fibres are the simplest form of optical fibre, and are constructed from & central core,
surrounded by a cladding layer that has a lower refractive index. Therefors, light can be

contained in the care through total internal reflection. A schematic representation of a atep-index
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fibre is shown in Figure 2.1. Such fibres are charact,,criscd«.by the refractive index difference

between the core and cladding [11, 12], A, defined as

n, —
A x.ul.wmﬁzm (2.1)

and the normalised frequency V [13], defined as

V=kya (n,2 —-n3 )”2 (2.2)
where ny,2 are the refractive indices of the core and cladding, ko is the wave number, and a {8 the
core radius. Typically A = 3x10™. In this thesis, we are exclusively concerned with single mode

fibres, which impases the condition V < 2.405. As a result, we shall discard discussion of any

other fibre types.

Protective jacket Cladding

Figure 2.1: Schematic representation of a step index fibre.

2.2.2 Fibre loss

The fundamental limitation of transmission in optical fibres (as with any iransmisslon mediim

ia the pawer loss incurred as signals propagate through the fibre, I Py Ia the launched power,
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then after propagation distance L, the output power P, is given by Pou = Pyexp(-al), where o

is the attenuation constant or fibre loss. Re-arranging in terms of the fibre loss:

|
_ '“""“"“l o .
o=-7 n“‘“‘“m (2.3)
More commonly, fibre loss is quoted in dB/km, in which case op is given as:
10 P, .
Ol = w“‘z"log(*ﬁ:—) (2.4)

where o and g are related by ayp = 10a logio(e).

Attenuation in optical fibres is due to absorption and acattering, and conssquently
displays frequency dependence. These processes and their relative contributions to the overall
fibre attenuation at each wavelength, can be observed in Figure 2.2. Absorption is a complex
process phenomenon that is governed by the laws of energy exchange at the atomic level, In the
mid-infrared region (above 1.8 pum), the energy is transferred mainly by vibrational transitions,
whereas in the ultraviolet region, the absorption is mainly due to electronic and molecwlar
transitions. Scattering loss, the other influential factor, is caused by numerous phenomena,
Figure 2.2 shows that Raleigh scatiering, which is caused by variations in the refractive index of
the transmission medium over distances shorter than the wavelength, is the dominant scatiering
loss. The resulting loss from Raleigh scattering is proportional to @' (A" and the optimum
transmission conditions lie close to the Raleigh lower limit. The presence of the QI absarption
peaks limits transmission to three main windows at 0.85 pm, 1.3 um and 1.5 jm. Modemn
telecommunications use the 1.5 pm tranamission window to take advantage of the low filire loas

of around 0.2 dB/km.
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Figure 2.2: Loss charactoristics of standard fibre.

2.2.3 Chromatic dispersion

The frequency dependence of the refractive index n(w) of optical fibres, gives rise to chromatic
dispersion. The origin of chromatic dispersion is related to the characteristic resonance
frequencies at which the medium absorbs the electromagnetic radiation through oscillations of
the bound electrons, and far from the medium resonances can be approximated by the Sellmeier

equation [11]

no B ,
W (@) =1+ 3k (2.9

Where w; is the resanance frequency and B; is the strength of the j* resonance, which are
ohtained from experimental data.

The effect chromatic dispersion has on pulse propagation is to cause the different
spectral components of a pulse to experience a different r‘ﬁf_raatives index; which reaulia In pulee
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broadening. The effects of fibre dispersion can be analysed by e/xpandivng the mode-propagation

constant fin a Taylor series about the centre frequency wp:

B@)=n(0)2 = B, + B(0-,)+ B0 -, ) + .6

where

_| 4B .
B" - [dmn }m:m‘, igi })

The pulse envelope maves at the group velocity v, = f;/, whilst f; is responsible for pulse

broadening. These parameters are related to the refractive index through:

1 n 1
Bl=~[n+u)i'}-)=—g=m (2.8)
c dw c v,
1{ dn d*n w din A din
=—| 22— = - = 2”9
b c[ du)Hdez) c dw® " 2nc® A\ (&)

where n, is the group index.
A quantity often used in fibre-optics literature in place of f3, is the dispersion parameter D given

by

2.
_dfy 2w Adn (2.10)
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2.2.4 Birefringence

Single mode fibres can support two degenerate modes that are dominantly polarised in two
orthogonal directions. However, imperfections in the fibre cause a mixing of the two
polarisation states by breaking the mode degeneracy. This is the phenomenon of birefringence.
Mathematically, the propagation constant f becomes slightly different for each of the
polarisations and therefore we introduce propagation constants f, and /3, for each polarisation.
Birefringence causes the polarisation of a monochromatic field to have a periodic evolution
during propagation with a beat length:

2% .
L= 2B (2.11)

where AB = B, - B, is a measure of the fibre birefringence. In other words, the field processes the
same state of polarisation at z and z + Ly.

Taking the expansion in (2.6), a pulse launched into a fibre, whose state of polarisation
does not coincide with one of the modes, broadens due the different group velocities of the
modes. This pulse broadening can be measured by a quantity called the differential group delay

[B1:(wp) - Bry(@o)]z, whilst the term

Aﬁl(mo):ﬁnx(ﬂ)u)“ﬁu(ﬂju) (2.12)

is the polarisation made dispersion (PMD) of a uniform fibre. However, this is only a simplified
model of PMD in a uniform fibre and is not a valid description of veal fibres, aa impariant

effects such as random mode coupling have been neglected.
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2.2.5 Random mode coupling

The phenomenon of random mode coupling [14, 15] arises from the random ﬂuctua_t‘imis in th@
fibre structure that induce random power exchange between modes. Therefore, after a short
propagation distance (typically a few meters), the power contained in a single mode is randomly
distributed between the polarisations modes.

In conventional fibres, random mode coupling is weak, nevertheless coupling cannot be
neglected in describing the changing field polarisation [16]. The effect of random maode
coupling can be reduced by using high birefringent fibres [17], however cost prevents this from

being a practical solution.
2.2.6 Polarisation Mode dispersion

As described in section 2.2.4, polarisation mode dispersion resulis from the differing group
velocity dispersions of the two fibre polarisations. When random mode coupling is also
considered, as described in section 2.2.5, the power is randomly distributed between thcs_e
polarisations. In the simple case of a fibre structure with a constant differential group delay per
unit length (deterministic birefringence) plus weak random coupling, then two types of
behaviour occurs, depending on the ratio of z and Ly, where Ly is the random mode coupling
characterisation length (the distance over which the power is scrambled between the two LPy
modes).

If the condition z << Ly is satisfied, the random mode caﬁpling has no effect and the
differential group delay at the link output is simply 47 = Aff;z. Alternatively if the condiiion 2

>> Ly, the PMD has a Maxwellian probability written as [ 18]

3
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The PMD mean value and standard deviation are givenby

8zL (3n-8)zL, ’
(at)= =48, Oy = wg;EMABl (2.14)

An important feature of (2.14) is that the average PMD increases proportionally to Jz. More

commonly, as the transmission distance is variable, PMD is defined as

L1l \/w——« AB, (2.15)

with the units ps/Vkm. The numerical implementation of PMD is discussed in Appendix 13,

2.2.7 Nonlinear susceptibility (or fibre nonlinearity)

In general, the evolution of an optical field in a dielectric medium can be given by [19]

1 *°E 0*P(E)
25 ——
v E 62 atz P«o ar2

(2.16)

where the polarisation P characterises the medium, and is a function of the electric fieid. In the
case of optical fibre, where the nonlinearity of the medium is weak, the polarisation can b

expressed by the Taylor expansion

P=e, %" E+x™EE+yVERE } @.17)
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where & is the vacuum permittivity, and ¥ (j = i,Z, 3) i,js/ the }m Qrd@f Susccptibility! ’fh@ ;ﬁﬁ@j@f
susceptibility %"’ represents the dominant contribution to P and its effects are included through
the refractive index n and the attenuation constant «. The second and third order tensors ;g(z)n and
A% are responsible for the nonlinear behaviour. In optical fibres, 3 vanishes as a result of the
inversion symmetry at the molecular level of silica glasses. Thus, second-order nonlinear effects
are not normally present in optical fibres. The nonlinear behaviour of the optical fibres is mainly
due to third order susceptibility ¥, which is responsible for phenomena such as third-harmonic
generation, four-wave mixing (FWM), and the Kerr effect (nonlinear refraction) [20, 21].
Without special effort in satisfying the phase matching conditions, the non-linear processes
which involve the generation of new frequencies (eg third-harmonic generation and FWM) are
very inefficient and most of the non-linear effecis in optical fibres result from the Kerr
nonlinearity. The third order susceptibility is also responsible for stimulated inelaatic scattering
such as stimulated Raman scattering (SRS) and stimulated Brillouin acattering (SBS), although

we shall defer discussion of these phenomena to section 2.7.4.

2.2.8 Kerr effect

The Kerr nonlinearity (also referred to as non-linear refraction) is a phenomenon that refers to
the intensity dependence of the refractive index resulting from ™. The refractive index then

becomes
%(m,]E[z) = n(w)+n, B[ (2.18)

where n(w) is the linear part as shown in (2.5), [B[® is the optical field intensity and nz 1a the none

linear-index coefficient given by [20]
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where Re is the real part and the optical field is assumed to be linearly polarised so that only one
component X3 of the fourth rank tensor contributes to the refractive index. The Kerr effect,

depending on the pulse shape, manifests itself in the form of self-phase modulation (SPM),
cross-phase modulation (XPM) and four-wave mixing (FWM). These effects will be discussed

in more detail in sections 2.5 and 2.7.4.

2.3 Derivation of the Non-linear Schridinger equation

In this section, we derive the Non-Linear Schrddinger (NLS) equation, which can be used io
model short pulse (10 ns ~ 10 fs) propagation in optical fibres, where both non-linear and
dispersive effects influence the pulse shape and spectrum. The starting point arising from

Maxwell’s equations can be given as [22]:

1 0’E 0'P 9°Py,

£y - L 2.20
VE JEREW o e +Hhg YD ( )

Where ¢ is the velocity of light, uo is the vacuum permeability, E is the electric field E(r,t), and

PL and Pno are the linear and non-linear induced polarisations, which are related to the electric

)] )]

field through the dielectric tensors )" and '~ respectively.

In order to solve (2.20), three simplifying assumptions must be made. Firstly, Py, can be
treated as a small perturbation fo Pp. This assumption is valid since optical fibves are only
weakly non-linear, the non-linear refractive index is small compared to the refractive index of
silica. Secondly, the optical field is assumed to be linearly polarieed, therefors iis polarisation

atate does not vary with propagation, and so a acalar approach is valid [23]. Thirdly, fhe aptioal

fud
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field is assumed to be quasi-monochromatic, i.e. the bandwidth of the field Aw is much smaller
than the carrier frequency wp, which is valid for pulse widths > 0.1 ps [24]. As we are concerned

with the slowly varying envelope approximation, it is convenient to separate out the rapidly

varying part of the electric field, which can be written as:
I . .
E(r,t) = 5x[E(r,t)cxp(- zmot)+c.cg] (2.21

where xis the polarisation vector of the light and c.c. is the complex conjugate. Likewise, the
polarisation components Py, and Py, can be expressed in a similar manner. For pulse widtha » 1
ps, the nonlinearity can be assumed to be instantaneous. Therefore, the Fourier transform of the

electric field is defined as:
E r W=, J-E(r t)exp[ u) 0)0 t]dt (2.22)

which satisfies the equation

A

V2 B+ e(w)k? E =0 (2.23)
Where ko = w/c and e(w) = 1 + X" + env is the dielectric constant whose non-linear part &y, s

given by enp. = /X [B(x,1)[. The dielectric constant can be used to define the refractive index:
n=n+n,|B (2.24)
3
where n, = ?R@(x ) is assumed not to change with frequency.

We assume a solution to (2.23) of the form
26




A

E(r,0-w,)= F(x, y)ﬁ;(z,m ~, Jexp(iByz) (2:25)

where A(z,m —mo) is a slowly varying function of z, f is the wave number and F(x,y) is the

modal distribution of the fundamental mode in a single mode optical fibre. Substituting (2.25)

into (2.23) leads to the following two equations for F(x,y) and A?a(z,m) :

*F O*F

™ +-5;;+[8(m)k§ -p*JF=0 (2.26)
20, %+ (B -p2)A=0 (2.27)

In (2.27) the second derivative d *A/ dz”is neglected since ;\(z,(u) is assumed to be a slowly

varying function of z. Re-arranging (2.27) and substituting for -, gives:

A

98 ipw) + 28, JA 228)

Where Aff can be found from the modal distribution F(x,y) and An is the perturbation in the

refractive index due to nonlinearity and loss [25]. 4n is given by:

o
An =B+ 2

2k, (229)

[} can be expanded in a Taylor series:
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where

Substituting for § and A, and taking the inverse Fourier transform, noting that w-ay is replaced

0
by the operator = gives:

ot

dA ~ 0A | _ 0*A «a 2
= — (2.32
Oz 1 Bl af Bz EYE "1 MAI ( )
Where the non-linear coefficient is given by;
_n0,
Y = A, (2.33)

The substitution of AB explicitly shows the effects of loss and nonlinearity in equation (2.32). In
equation (2.33), A,y is the effective area, which can be found from the modal distribution [26].

Changing to a frame of reference moving with the pulse

Z
T=i-fiz=i-> (2.34)

g

where vy is the group velocity of the pulse. Therefore, equation (2.32) can be written as



0A i 1A | 4 s
5, = 70A 5B -vAl A (2.35)

The three terms on the right hand side of (2.35) are responsible for the effects of absorption,
dispersion and nonlinearity on pulses propagating inside optical fibres.

Analysis of the pulse evolution in equation (2.35) can be made by determining the
relative contributions of dispersive and non-linear effects. This can be achieved by defining the
length scales on which these effects become important. The length scale on which dispersive

effects become important is defined as

3

(2.36)

=]
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where Lp is the dispersion length and T is the initial pulse width. Likewise, the non-linear

length can be defined as

L, =— (2.37)

where Py is the initial pulse power. The relative lengths of Lp and Ly, determine which of the
effects dominate propagation and can accordingly be classified into four regimes. Considering
the case of propagation over a distance L, the first regime is characterised by L << Lp and L <<
Lyr. In this regime, neither dispersive nor non-linear effects are important. The second regime ia
L2 Lpand L << Ly, this regime, where the dispersive effects dominate propagation, will he
considered in section 2.4. The third regime is L << Lp and L = Ly, where non-linear effecis

dominate propagation, and will be considered in section 2.5, The fourth vegime is characieriaed




by L 2 Lp and L 2 Ly, where propagation is dominated by both non-linear and dispersive effects

will be discussed in more detail in section 2.6.

2.3.1 Vector non-linear Schriodinger equation

An assumption made in section 2.3, was the field could be treated as being scalar. However, real
fibres possess two polarisations, and as discussed in section 2.2.4, the difference in the refractive
indexes of these polarisations leads to birefringence [27, 28]. Therefore, a more accuraie

description of propagation in optical fibres is given by the vector NLS equation [29, 30]:

95_‘.{., o1 ﬁzw#‘l‘;A +iK(2)A, exp(~iABz)
Z
»i}/(]A] +/|A ‘ )A Wy Alexp(-2iaf2)
a ;|  0°A, « . ,
-;_ﬁz ---a—l;--z-y—+~£y—Ay +iK(z)A, exp(+iABz)

yaz

”’ 42 A2 exp(+2iAB2) (2.38)
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Where k(z) is the random coupling coefficient, AB = fBdwo) - By(wo) is the birefringence
parameter and ¢, are the loss values of each polarisation. Equation (2.38) describes
propagation in a linearly birefringent fibre.

The equations (2.38) can be simplified further when modelling propagation in optical
fibres. The first simplification is to remove the random coupling term «(z), and simulaie the
random mode coupling numerically, as described in Appendix B. Secondly under the conditions
of high and low birefringence the fast rotating terms of equation (2.38) simplify. Under the low
hirefringence condition, where AP << [, the effect of the birefringence s Tow in the

dispersion length, so the exponential terms can be sei fo 1. Under high hirefringence condition,
30




where Afty® >> [, the exponential terms fluctuate rapidly in the dispersion length and so can be
set to 0. The high birefringence conditions are normally met by modern telecommunication

fibres. Therefore, applying these simplifications, equation (2.38) becomes

0A, ., 0A, i, 0%A, a, _“,( 2 z)A
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(2.39)
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2.4 Group velocity dispersion

Under the conditions L 2 Lp and L << Ly, the effect of group velocity dispersion (GVD)
dominates propagation within optical fibres [31]. The main effect of GVD is to cause different
frequency components to travel at different velocities causing a pulse to broaden with
propagation. For propagation in fibre with a normal dispersion (f; > 0), longer wavelengths
travel more quickly, whereas in anomalous dispersion fibre (5, < 0), shorter wavelengths travel
more quickly.

The effect of GVD on pulse propagation can be observed in Figure 2.3, which illustrates
how the pulse broadens with distance. Also, throughout propagation, the spectrum and energy of
the pulse remain unchanged. Neglecting the non-linear terms in equation (2.35), the pulse width

after a propagation distance of z, can be predicted using the formula [32]

2“')4
= ({1+(%%») J (2.40)
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where 1 is the initial pulse width and 7; is the pulse width after propagation over z km. From

equation (2.40), it is clear that for an identical 3, short pulses broaden more quickly.

Power

20

Figure 2.3: A Gaussian pulse broadening with propagation distance for an initial pulse width of 20 ps and fi, = 10
ps“/km

Another type of behaviour can be observed if the initial pulse has a non zero chirp. In the case of
the initial chirp being the same sign as the dispersion, then the pulse will broaden more rapidly
compared to an initially unchirped pulse. Conversely, if the chirp and dispersion have an
opposite sign, then the pulse initially compresses before expanding. In this second case, the
frequencies in the leading edge of the pulse are propagating at a lower group velocity than the
frequencies at the trailing edge, causing the pulse width and chirp to decrease until the pulse is

unchirped. The chirp then changes sign and the broadening behaviour described in the firsi case

begins.
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2.4.1 Higher order effects

Whenever the dispersion coefficient f; — 0, then higher order terms from the Taylor expansion
in equation (2.6) must be considered. The inclusion of the third order dispersion coefficient fi;

complicates the evolution of a propagating pulse [33]. In a similar way as for B, the length scale

on which the effects due to higher order dispersion become important is defined by [33]

3

L =i (2.41)
8,

where 1o is the initial pulse width. The evolution of a 20 ps pulse through a fibre with f; = 0 and
fs = 0.2 ps’/km is shown in Figure 2.4 at z = 0 and z = 3Lp". The effects of the higher order
dispersion are (o creale an asymmetry in the propagating pulse and an oacillating tail. From

equation (2.41), it can be seen that these effects are enhanced for short pulse widths.
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Figure 2.4: The sffect of third arder dispersion on a propagating pulse. The waveforms are shown ai (aolid Hine) =
0 and (dashed Ting) z = 3Lp".
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2.5 Non-linear effects

Under the conditions L 2 Ly, and L << Lp, the effect of Kerr nonlinearity dominates propagation
within optical fibres [34]. The effect of nonlinearity can be investigated by setting f = 0 in

equation (2.35), which yields for the evolution of a pulse [34]:

Az,t)= A(O,t)exp(idim (Z,t)) (2.42)

Where A(0,1) is the field at z = 0 and ¢y, is the non-linear phase shift given by

b (2.) =AY (25 1 L) (2.43)

2y =[1-exp(~az)]/ & (2.44)

where zq5 is the effective length scale in a lossy system with fibre loss a. Two main effects arise
from this nonlinearity: Self-Phase Modulation (SPM) and Cross-Phase Modulation (XPM).
SPM produces an intensity dependant phase shift of the pulse’s spectrum, whereas XPM is the
distortion of one pulse on another that depends on their local intensities. Figure 2.5 illustrates
the influence of SPM on the spectral evolution of a 20 ps Gaussian pulse, with Ly, = § km, The
temporal evolution remains undistorted due to SPM. However, it can he seen that the spectrum
broadens with propagation, with the oscillations in the spectrum arising from the interference of
two points of the pulse that have the same instantaneous frequency.

Other non-linear effects not originating from the Kerr nonlinearity include Stimulated
Raman Scattering (SRS) [35] and Stimulated Brillivon Scattering (SRS) [36], which will s
discussed in section 2.7.4.
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Figure 2.5: The spectrum of a 20 ps Gaussian pulse as it undergoes self-phase modulation, in the absence of fibre
dispersion.

2.6 Soliton Solutions of the Non-linear Schrodinger
Equation

2.6.1 Introduction

The existence of solitary waves in optical fibres and their subsequent use in optical
communication systems, are a direct consequence of two seminal papers published in the early
1970s. The first in 1972 was by Zakharov and Shabat who showed that the NLS equation
belongs to a class of equations that could be integrated using the inverse scattering method and
admit soliton solutions [37]. The second paper in 1973, by Hasegawa and Tappert, proposed the
use of solitons for optical communications [38]. However, it was not uniil 1980 that solitons

were abserved under experimental conditions by Mollenauer et al. [39].




2.6.2 Soliton propagation in optical fibres

Solitons result from the interplay between the fibre nonlinearity and the anomalous dispersion,
creating pulses that can propagate undistorted over long distances. Therefore they exist in a

regime such that L 2 Lp and L = Ly;. In its most general form it is given as [40]

A(z,t)=sech(t)exp(iz/2) (2.45)

The corresponding peak power of the soliton is defined as

If a hyperbolic secant shaped pulse with a peak power given by equation (2.46) is launched into
a lossless fibre then it will propagate over an infinite distance without any change in pulse
shape. An example of the propagation of a fundamental soliton can be seen in Figure 2.6, which
also shows the evolution of the spectrum and chirp over a single soliton period. The soliton

period is defined as

wid
. (2.47)
2B :

VA
ZO :ELD =

For higher arder solitons, this length scale represents the distance over which the soliton returna

to iis original pulse shape. The soliton period is also the length scale over which the aoliton
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phase changes by 7/2, although more commonly used is the length over which the phase
changes by 2z which is 8Z.

An important factor in soliton propagation is that if a pulse is launched into a fibre that
does not have exactly the correct peak power, then over several soliton periods, the pulse will
shed radiation and approach the required energy of the soliton. This is an incredibly useful
feature, especially in laboratory experiments. Likewise, if the soliton is subject to external

perturbations, then again the soliton will regain its initial shape.
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Figure 2.6: The (a) temporal, (b) chirp and (c) spectral solution of the fundamental soliton.

As well as the fundamental soliton, higher order solitons exist where the initial power
determines the order of the soliton [41]. The initial conditions of higher order solitons take the

form:

A(0,1)= Nsech(r) (2.48)

where N defines the order of the soliton. For an identical pulse width, a higher order soliton has
a peak power that is N* times that of a first order soliton. Figure 2.7 demonstrates the evolution
of a second and third soliton over a single soliton period. It is apparent, that unlike the
fundamental soliton, higher order solitons have a complicated evolution for which the initial
pulse shape returns only at the end of the soliton period. This behaviour occurs for higher order
solitons because Lwi < Lp, therefore the pulses become chirped which causes the pulse o aplit,

which then interact and eventually return to the ariginal pulse shape.
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2,7 Soliton based communication systems
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Solitons as information carriers, in the conceptual sense, would appear to be the ideal solution
for optical communication because of there properties. However, in the transmission
environment, there are additional factors that limit performance such as loss, soliton
interactions, noise, and higher order non-linear effects. We shall now consider each of these

factors in more detail.

2.7.1 Solitons and fibre loss

Although in the strict mathematical sense, solitons cannot exist in the presence of loss, it was
found that under certain conditions solitons could in fact propagate in fibres with loss. When
solitons propagate through a fibre that contains loss, the balance between the dispersive and
non-linear effects no longer holds, as the nonlinearity is continually modified by the fibre losa.
A possible solution is to taper the fibre to have an exponential reduction in GVD thus
maintaining the non-linear-dispersion balance [42, 43]. Another approach is to just compensate
for the fibre loss using amplification. There are two main types of amplification, leading to
different soliton propagation, namely Raman amplification and lumped amplification. In the
case of Raman amplification, the gain is distributed over a distance beyond the dispersion
length, causing the soliton to behave adiabatically i.e. the area occupied by the field envelope
stays the same [44, 45]. In the case of lumped amplification, the most common form of which is
Erbium Doped Fibre Amplifiers (EFDAs) [46], the soliton behaves non-adiabatically giving rise
to the “average” (or “centre guiding™) soliton [47, 48]. The average soliton theory shows that as
long as the peak power of the pulse averaged over the amplifier span is equal to the first order
soliton power, then stable propagation is possible. If the average soliton criteria are not met the

propagating pulse breaks up [49].

2.7.2 Soliton interactions




Communication systems based on optical solitons are limited by soliton interactions, which take
place through the Kerr nonlinearity [21]. Interactions between solitons results in a loss of
information, therefore neighbouring solitons must be well separated in order to minimise these
interactions. Interactions have been extensively studied [50-52], and Figure 2.8 shows collision
of a pair of solitons. For solitons of equal amplitude and phase, the force between the two
solitons is attractive, which causes the solitons to collide. After the collision has taken place the
interaction process continually repeats. However, it has been shown that the interaction process
is dependant on both the relative magnitudes and phases of the solitons, thus extending the
collision distance [53-55].

Figure 2.9 demonstrates the exiension of the collision distance between a pair of solitons
with a 10 % difference in amplitudes. By comparing Figure 2.9 with Figure 2.8, it can be clearly
seen that interactions have been reduced. The effect of having a phase difference between the
solitons is illustrated in Figure 2.10, which shows propagation for A¢ = /2 and A¢ = /4. 1t can
be seen that the introduction of a phase difference causes the solitons to repel each other.

Soliton interactions also occur between solitons of different frequencies, which is the
case in WDM systems. Unlike interactions between solitons of the same frequency, the
interaction is not periodic, because of the different GVD for each soliton. An interaction
between two solitons of different frequencies can be observed in Figure 2.11. The spectral
evolution reveals a frequency shift that occurs as the solitons collide, which can be reduced by
increasing the frequency separation between the solitons. This frequency shift is caused by the
difference in the non-linear shift experienced in the first and second half of the collision process,
Other factors that influence the frequency shift are the initial overlap of pulses [56], and the ratio

between the collision length and amplification period [57-59].
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Figure 2.8:The collision of a pair of solitons of equal magnitude and phase. The initial collision is shown in (a) and
the repetitive cycle of collisions is shown in (h).
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Figure 2.11: The collision of a pair of solitons of different frequencies. (a) temporal evalution and (b) spectral
evolution.

2.7.3 Gordon-Haus timing jitter

A major limiting factor of soliton based communication systems is Gordon-Haus (GH) timing

jitter [60], which arises from ASE noise, generated by aptical amplifiers. GH timing jivter 18
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caused by the soliton absorbing the ASE noise which induces a random change in the solitons
central frequency leading to a timing jitter. After propagation over long distances, these random
fluctuations in the central frequency build up, placing a limitation on the maximum possible
transmission distance. For idealised amplifiers and average soliton conditions, the transmission

distance set by GH timing jitter alone is [61]

T Ay Z
L <0137 0 (2.49)
n,y Dh(G-1)
where 7 is the pulse width, 27 is the bit period, Z, is the amplifier span, yis the non-linear
coefficient of the fibre (cm®/W) and O is the average soliton factor given by
=% (2.50)
1-exp(~aZ,) o

which accounts for the variation in soliton amplitude between amplifiers. From equation (2.49),

it is clear that the maximum transmission distance Ly, increases proportional to Vr, i 7o, and

AV1/D therefore GH timing jitter can be reduced by reducing the bit rate and dispersion, and
increasing the pulse width.

GH timing jitter can be controlled using optical filters, which reduces the build up of
ASE noise from the amplifiers. On interaction between the soliton and the filter, the soliton re-
cenires its spectrum around the central frequency of the filter, which reduces the walk-off from
the centre of the bit slot [62-65]. To compensate for the removal of part of the epecirum,
additional gain is required, which consequently increases the amplifier noise. With the inclusion
of filters, the GH timing jitter anly accumulates proportional to Jz rather than '%/? a8 i the

unfiliered case.
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Further improvements can be achieved by using a chain of filters, which have a central
frequency that slides along the chain [66-69]. With solitons aligning their spectrum to the central
frequency of the filter, the solitons follow the filters whereas the noise is removed. However,
this technique requires more excess gain to compensate for the larger portion of the specirum

that is removed, although narrower filters can be used than in the fixed frequency case.

2.7.4 Higher order non-linear effects

Two further non-linear processes, which have so far been neglected in the discussion, are those
of Stimulated Brillouin Scattering (SBS) [36, 70], and Stimulated Raman Scattering (SRS) [3§,
71]. SBS is the acoustic interaction between the propagating light wave and the laitice, with the
scattered light propagating in the opposite direction to the signal. SBS only significantly affects
signals with a very narrow bandwidth, and consequently does not seriously affect saliton based
communication systems.

SRS results from the interaction between the light-wave and the infrared optical
vibration of the lattice. The incident photons are absorbed, a phonon at an infrared frequency
and a photon, with a frequency equal to the difference between the original photon and the
phonon, are emitted. Also, a less likely event is that the photon and phonon combine to create an
up-shifted phonon. Therefore, SRS creates the growth of side bands in the spectra, with a more
intense lower sideband.

The SRS process can be stimulated by a pump signal at the side band frequency so that
interactions occur more quickly. Consequently, SRS produces a cumulative effect that can lsad
to a sequence of scattered sub-sidebands. For short pulse widths (typically < 1 ps), thelr
spectrum becomes wide enough for the pumping of the wavelengths in the edges of the
spectrum. This causes a continuous downshifi of the average frequency, referred to as ihe

Soliton Self Frequency Shift (SSFS). The rate of SSFS can be given as
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dw, _—-4t,p,
dz 1514

(2.51)

where g is the Raman pulse width below which the self frequency shift becomes significant and
ay is the central frequency of the soliton. Experimental analysis has shown 7z = 1 ps, therefore
in this thesis, as 7 >> 1 ps, we use the Generalised Non-Linear Schridinger equation (GNLS)

[72], which accounts for the non-linear response and the Raman gain coefficient of silica optical

fibres.
Another effect arising from the 3 nonlinearity is Four Wave Mixing (FWM) [73],
FWM is a parametric process which occurs when two waves at frequencies @y and @ interact

through a non-linear medium to produce two new waves af frequencies ws and ay, such that:

W, + W, =, +a, (2.52)

The phase matching condition, given below, must also be satisfied for efficient conversion:

ky+tk,~k —k, =0 (2.53)

()130)3 -i~n4a)4 —nla)] ~n20)2)_“
c

0 (2.54)

where £; is the phase per unit length, n; the refractive index at frequency wj, and ¢ is the apeed of
light. FWM can cause serious problems in WDM systems during collision between salitons of
different channels [74]. It is still possible to generate FWM from initial waves of the same

frequency. In this case the conservation of energy and momentum are:
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W, + 0, =W, + 0, (2.55)

ky+k, =2k = 0 (2.56)

In this case, the two input frequencies are identical and produce two new frequencies, one up-
shifted and one down-shifted. This type of FWM is not possible in soliton systems as the
process is only properly phase matched at zero dispersion. However, as we shall see in Chapter
7, this type of FWM is a major limiting factor in quasi-linear RZ transmission systems with low

dispersions.

2.7.5 Soliton control techniques

There are a number of techniques that can be used to improve the performance of saliton hased
transmission systems, we have already seen an example of this in sections 2.7.2 and 2.7.3.
Control techniques for transmission systems include amplitude modulation, which can be used
to suppress GH timing jitter and reduce interactions. Amplitude modulation works by pushing
the central peak of the pulse back into the centre of the bit slot. However, this active technique
requires a recovered clock signal and must operate at the transmission rate. Despite the
complexity, amplitude modulators have successfully demonstrated an improvement in
transmission performance [75-78].

Another control technique is that of phase modulation. Phase modulation works by
giving a pulse that moves out of its time slot a chirp. This chirp induces a change in the central
frequency of the soliton, which compensates for the original frequency change and the pulse
drifts back towards its required position. Phase modulators, therefore, correct for both temporal
position and frequency [79-82].

Saturable absorbers are another control technique, which improves SNR, reduces the

build up of CW background radiation and reduces interactions [B3-85]. Saturable abanrhers
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remove the low intensity parts of the propagating pulse, where the cut-off intensity is
predetermined. Saturable absorbers can be constructed from non-linear polarisation rotation,
loop mirrors or from multiple quantum wells [85-89].

Another control technique is optical phase conjugation, which transforms the soliton into
its complex conjugate. Optical phase conjugation reverses the chirp that has accumulated in the
propagation, and can be placed either at the mid-point of the transmission link or at each
amplifier [90]. Optical phase conjugation can reduce interactions [91, 92], GH timing jitter [93,

94], and reverse interactions [92, 95].
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Chapter 3 Dispersion Management

3.1 Introduction

Dispersion management has a played a significant role in the explosive growth of system
capacity observed in recent years [1, 5, 96-99]. In its simplest form, dispersion management can
be defined as the continual variation of the chromatic dispersion within a system. Dispersion
management can be used in different ways to achieve slightly different goals. For example, in
optical soliton transmission the fibre dispersion can be tailored to follow the exponential loss of
the fibre, which can be achieved using a manufactured exponential profile of the fibre disperaion
[100-102] or approximated using a siep profile using dispersion sections with decreasing
magnitudes [103, 104]. More commoanly, dispersion management is referred to the case where
alternate sign dispersion sections are concatenated to compensate for the large dispersion.
Historically, the necessity of dispersion management results from the migration of optical
sources from 1.3 pm to 1.55 pm, which meant that the installed optical fibre that had low
dispersion at 1.3 um now had a much larger dispersion at 1.55 pwm. It was found that the high
local dispersion of Standard Monomode Fibre (SMF) at 1.55 um (= 18 ps/nmvkm) could be
compensated at each amplifier by a relatively short length of Dispersion Compensating Fibre
(DCF) (= -80 ps/nm/km). This basic ideal can be extended to more elaborate dispersion
management schemes, as described in section 3.5.2. Throughout the remainder of the thesis, we
shall confine our discussion of dispersion management to salely refer to the use of alternating
sign dispersion fibres, which on average reduce the total dispersion.

In this chapter, we review the Dispersion Managed (DM) solitan, and iniroduce our awn
interpretation of short period dispersion management, and the concept of effective average

dispersion.
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3.1.1 A note on convention

In dispersion managed systems, we normally need to label the individual sections with a
subscript to denote whether the dispersion is anomalous or normal, therefore the conventional
notation used previously in Chapter 2 must be slightly amended. For dispersion managed
systems, the coefficients from equation (2.6), £, Bz, f5 etc will be replaced by A, A%, A thus
allowing the subscript for anomalous and normal dispersion sections to be included as A, and

P2, respectively.

3.2 The dispersion managed soliton

As stated previously, in this context, dispersion management refers to the compensation of large
chromatic dispersion by either a dispersive element or a fibre section that has alternate sign
dispersion. In is simplest form dispersion management consists of two equal length sections of
fibre which have the same magnitude of chromatic dispersion, but with opposing signs (i.e. one
anomalous dispersion fibre section and one normal dispersion fibre section). This is represented
schematically in Figure 3.1. Within these dispersion maps, a pulse which exhibits soliton-like
properties can exist, called the Dispersion Managed (DM) soliton. Analogous to the classical
soliton, the balance between dispersion and nonlinearity needs to achieved, this in tumn
determines the initial conditions of the DM soliton [105-110]. These initial conditions (shape,
width, chirp, energy) can be found using the numerical averaging method of Nijhof et al. [111].
An important quantity that is used to determine the characteristica of the DM soliton is

the dispersion map strength, S, which can be defined as [105]:

(B& -p2 )1, - (B -p2)1, a0

G =



where %, and l,, are the dispersions and lengths of the anomalous and normal dispersion

fibre section respectively, and 7 is the minimum pulse width. %, is the average dispersion and

is defined as:

@ B(")la + ﬂﬂ)i

= 3.2
) (3.2)

As with classical solitons, DM solitons show a linear dependence on average dispersion. The
map strength, defined in equation (3.1), can be used to indicate the amount of pulse spreading
displayed by the DM soliton as it propagates through the map. Also, the shape of the DM soliton
is dependant upon § [[106, 112], where for weak S, the DM soliton shape is close to hyperbolic-
secant, whereas for strong S, the shape is more Gaussian.

In Ref. {107], it was discovered that the energy of the DM soliton was greater than that
of the classical soliton for the same average dispersion. The empirical relationship for the energy

enhancement was given as:

E,, Es,,,t1+o7((ﬁ(2) ﬂ,ﬁfj)(, (ﬂm e by ” (3.3)

Ep, =E, (1+as?) (3.4)

where Epy and Ky, are the energies of the DM and first order classical soliton respectively.
When fibre loss is included, the relationship in equation (3.3) becomes more complex, this will
be discussed in more detail in section 3.6. Additionally, the energy of the DM soliton depends
on the depth (A7) of the dispersion map. It was shown by Nijhof er al. [113], that accounting

for AF?, the energy of the DM saliton could be more accurately described by
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where a, b and ¢ are normalised dimensionless fitting parameters with the vales a = 0.2, b = 3.7

and ¢ = 180, § is the normalised depth of the dispersion map, and 7 is the energy enhancement
factor. The dependence of the DM soliton energy on 4% is quite intuitive, because as Aﬁjj
increases, more nonlinearity is required to balance the increased dispersion, hence the DM
soliton power increases.

The DM soliton also possesses a remarkable property of being able to propagate at
anomalous, zero and normal average dispersions [110, 114-118]. DM solitons can only exist for
zero and normal average dispersions for strong §. It was found [110], that for § < 3.9 DM
solitons only existed for anomalous average dispersions and for § = 3.9, DM solitans exisi for
anomalous, zero and normal average dispersions. This phenomenon was eloquently described in
Ref. [119], in terms of the effective average dispersion ﬂmm. The effective average dispersion
took into account the pulse bandwidth in each of the fibres, which was greatest in the anomalous
dispersion fibre. Therefore, the dispersion induced chirp on the pulse can be anomalous even if
the average dispersion is zero or normal. We shall return to the effective average dispersion in
section 3.6.1, where we use it to interpret the consequences of amplifier location within

dispersion managed systems.
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Figure 3.1: Schematic representation of a dispersion map. The lengths of the anomalous and normal dispersion fibre

sections are [, and [, respectively, AF? is the depth of the dispersion map, and Z, the dispersion management
period.

3.2.1 Dispersion managed soliton dynamics

Dispersion managed soliton solutions in optical fibres can be found using an averaging method
[111]. The dynamics of the DM soliton can be divided into two classes, dependent on the length
scale upon which they affect propagation. These two classes are referred to as the fast and slow
dynamics [120], with the fast dynamics occurring on a length scale < Z, and the slow dynamics
occurring on a length scale > Z,. Investigating each of these dynamics in turn we start with the
fast dynamics.

In dispersion managed systems, we have the case of the local dispersion being much
greater than the average dispersion. Therefore, at any point, the powers are low relative to the
local dispersion and so dispersive effects dominate. However, nonlinearity still plays an
important role. Let us consider what happens when a pulse propagates though a aection of
anomalous and normal dispersion fibre, neglecting higher order non-linear and dispersive
effecis, and fibre loss.

Let us assume a chirp free Gaussian pulse is launched into an anomalous dispersion fibre
with high local dispersion (%) and an energy much less than that of the soliton required far
% As described in section 2.4, the pulse broadens with propagation and quickly acquires &
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chirp, in which the leading edge is up shifted in frequency and trailing edge is down shifted in
frequency. However, the fibre nonlinearity reduces the frequency of the front of the pulse and
increases the frequency of the trailing edge of the pulse. Therefore, the extremes of the spectrum
are compressed resulting in a decrease in bandwidth.

A Gaussian pulse launched into a normal dispersion fibre, under the same conditions as
the previous paragraph, similarly broadens with propagation distance. This time the pulse
acquires a chirp, with an opposite sign to that of the anomalous dispersion fibre, in which the
leading edge is down shifted in frequency and the trailing edge up shified in frequency. The
nonlinearity has the same effect as in the anomalous dispersion fibre and therefore the
bandwidth of the propagating pulse increases.

Therefore, the DM soliton solution is supported by a combination of the dispersive and
non-linear effects in each of the anomalous and normal dispersion fibres, More intuitively, the
DM soliton evolution over Z, is shown in Figure 3.2. The periodic expansion and contraction of
the DM soliton evolution in Figure 3.2 is referred to as the “breathing” of the pulse. It is clear
that after propagating over Z,, the DM soliton returns to its initial shape.

The behaviour exhibited in Figure 3.2 can best be described using piece-wise analysis,
breaking the evolution into three parts: (i) propagation through /2, (ii) propagation through I,
and (iii) propagation through /,/2. We consider propagation starting at /,/2 as this corresponds to
the location where the DM soliton is unchirped. In the first section, as the initially unchirped
pulse propagates through the anomalous dispersion fibre, the pulse broadens (decreasing
bandwidth). Observation of the phase plane, Figure 3.3(a), reveals the pulse width and chirp
evolution. The rapid chirp acquired by the pulse is clearly visible along with the increasing pulse
width. From the phase plane diagram, it can be seen that on entering the normal dispersion fibre
section the pulse is chirped. In the second section, Figure 3.3(b), we abserve that initially hoth
the pulse width and the chirp decrease (increasing bandwidth) until the chirp undergoes a sign

reversal that results in the pulse broadening again (decreasing bandwidth). On entering the third
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section, Figure 3.3(c), the chirp is such that it causes the pulse width to decrease, thus returning
to its initial conditions.

Observation of Figure 3.2(b), which shows the DM soliton on a logarithmic scale,
reveals the rather curious shape of the DM soliton. At the locations in the dispersion map where
the chirp free points occurs, it can be seen that the DM soliton appears to have oscillatory tails.
This observation was first made by Turitsyn ez al. [106], who described the structure of the DM
soliton in terms of two parts: a central section (or core) and the oscillatory tails.

In the previous paragraphs, we were concerned with the DM soliton evolution over Z,,
where we observed the DM soliton has an identical pulse shape at beginning and end of Z,, The
slow dynamics are concerned with the evolution of the returning DM soliton shape. An example
of the evolution of the slow DM soliton dynamics can be seen in Figure 3.4, which shows
propagation in both linear and logarithmic scales. The slow dynamics illustrate thai the DM
soliton evolution is extremely stable for propagation on a terrestrial scale. However, if the DM
soliton was subjected to an external perturbation then it is likely that we would observe an
evolution in the slow dynamics. Additionally, if the exact DM soliton shape were not launched,
then we would observe a periodic evolution of the slow dynamics. This is often the case when a
Gaussian or hyperbolic secant shaped pulse, with the same initial conditions are used to

approximate a DM soliton.
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Figure 3.2: DM soliton evolution over a single dispersion management period, shown in (a) linear scale and (b)
logarithmic scale.
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Figure 3.4: Evolution of the slow DM solitan dynamics showed stroboscopically at the mid-point of the anomalous
dispersion fibre. (a) Linear scale and (b) logarithmic scale.
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3.3 Properties of DM solitons

As described in section 3.2, the DM solitons possess a greater energy than the classical soliton
for the same path-average dispersion. With the introduction of fibre loss and amplification into
the transmission system, see section 3.6.1, this enhanced energy of the DM soliton benefits
performance relative to the classical soliton. In section 2.7.3, we described that the effect of
amplification noise in transmission systems, manifests itself in the form of reduced SNR and
Gordon-Haus timing jitter.

The dependence of SNR on propagation can be given by [121]:

E,2,

SNR =
1,(G-1)hvZ

(3.6)

Where Ej is energy at the output of the amplifier, Z, is the amplifier span, 7, is the spontaneous
emission factor of the amplifier, G is the gain, h is Planks constant and v is the frequency.
Therefore, it is clear from equation (3.6) that SNR ec Eg, which illustrates the improved SN'"R of
DM solitons compared to classical solitons.

The effect of Gordon-Haus timing jitter on DM solitons is somewhat more complex as it
is dependent on many factors [122-126] including the bandwidth of the pulse. The Gordon-Haus

timing jitter after n amplifiers can be given by [121]:

<5f2> ZTLP 1)]’!V(§:£2 /32 ZZ Tmm) (3.7

where (¥ is the quadratic bandwidth, f is the cumulative dispersion after the i" amplifier and
Twin the minimum pulse width. From equation (3.7), it can be seen that the iiming jitier
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dependant on the bandwidth of the pulse at the point of amplification and inversely dependant
on the DM soliton energy. Relative to the classical soliton, the cumulate dispersion is also much

lower in dispersion managed systems.

3.4 Interactions between DM solitons

Analogous to classical solitons, DM solitons exhibit an interactive force between co-propagating
pulses that significantly degrades the performance of transmission systems. It is therefore
understandable that a lot of research has been focused on understanding the interaction process
of DM solitons [104, 127-137]. The interaction process of DM solitons, whilst similar in nature
to that of classical solitons detailed in section 2.7.2, some fundamental differsnces remain. One
difference arises from the shape of the DM solitons, which is hyperbolic secant-like for weak §
and Gaussian-like for stronger S. In the case of Gaussian shaped pulses, the leading and trafling
edges fall off more rapidly, which means that the effect of pulse tails on interactions is reduced.
Another difference results from the dynamic breathing of the DM soliton as it propagates
through the link. As the DM soliton breathes, the temporal separation between the pulses varies,
which can increase interactions. Another difference is due to the chirped tails of the DM soliton,
which means that the tails do not necessarily interfere constructively.

Interactions between DM solitons are, unsurprisingly, dependant on §, which was
defined in equation (3.1), which are minimised for § = 1.65 [127]. The type of interaction is also
dependant on the map strength, for S < 1.65, the interactive force between the DM solitons is
repulsive whereas for § > 1.65, the interactive force is atiractive. The region § > 1.65, is where
interactions are strongest, however, it has been shown that for § > 50 the collision disiance
actually increases [138]. However, for § > 50, the DM solitons behave more as quasi-linear
pulses which are discussed in Chapter 7. In addition, when fibre loss is considered, the amplifier
Jocation within the dispersion map is also a critical determining factor in the sirength of the

interactions [137].
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3.5 Scaling in dispersion managed systems

So far, we have neglected the effects of fibre loss. When fibre loss is taken into account, it adds
an extra dimension of scaling into the DM soliton propagation. The dynamics of the propagating
DM soliton are significantly affected by the length scale of the periodic loss and amplification
(Z4), and the dispersion management period (Z,). The scaling in dispersion managed systems can

be conveniently categorised into two main groups based on their properties.

3.5.1 Conventional dispersion management regime

We define the conventional dispersion management regime as Z, < Z,, although it is possible o
still further divide this into the two further subclasses defined by Z; = Z, and Z; < Z,. Theas
subclasses are shown schematically in Figure 3.5. The case Z, = Z, is the so-called “resonance
model” [139] and is currently the most common form of dispersion managed system, partially
due to upgrading of installed systems. Another reason the common occurrence of this dispersion
management regime is that the dispersion map is identical between each amplifier. In this case,
the DM solitons are periodic in both Z, and Z,.

The other subclass is Z;, < Z,, also called long period dispersion management, as the
dispersion management period is long compared to the amplifier span. In this regime, the DM
soliton dynamics are close to those of the lossless regime. However, if we assume a practical
amplifier spacing (40 km — 80 km) and use of commercially available fibre types, then in this
regime, Z, is incredibly large, yielding high map strengths at the pulse widths required for
transmission at = 20 Gbit/s. As was discussed in seciion 3.4, interactions increase for large

values of S.
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Figure 3.5: Schematic representation of scaling in dispersion managed systems. (top) The resonance model where
Z, =Z, and (bottom) long period dispersion management where Z, < Z,.

3.5.2 Short period dispersion management regime

At high transmission rates, which require short pulses, the dispersion management regimes
detailed in section 3.5.1 become prohibitive because of the associated increases in pulse energy
and breathing that lead to increased interaction [127]. Nevertheless, short pulses can be
supported if S is kept low enough. For practical amplifier spacings, S can be controlled by

reducing the local dispersion, but in the conventional dispersion management regime, the local
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dispersion rapidly approaches the average dispersion, and the maps become less effective in
reducing four-wave-mixing impairments. An alternative approach is to use short period
dispersion management [140-143], characterised by Z, << Z,. An n section Short Period
Dispersion Map (SPDM) can be seen in Figure 3.6 where n denotes the number of alternate-sign
dispersion sections per amplifier spacing. In these maps (which have also been referred to as
short-scale dispersion maps [140] and dense periodic fibre maps [144]), the lengths of the
dispersion sections ; » can be significantly reduced, making it possible to sustain short pulses in

dispersion maps with high local dispersion at map strengths that avoid significant penalties from

interactions.
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Figure 3.6: A schematic representation of an n-section SPDM that is characterised by Z, << Z,.

As mentioned in section 3.2, DM soliton solutions of the NLS equation can be found in SPDMs
using an averaging method [111]. As an example, Figure 3.7(a) illustrates the pulse width
dynamics over a single amplifier period for an eight-section SPDM and a conventional two-
section dispersion map. In both cases the map strength is fixed to be S = 4, the average
dispersion ﬂmm =-0.02 ps2/km, and the minimum pulse width in the amplification period is Zuin
= 2.5 ps. Throughout, we consider Z, = 0 corresponds to the start of the anomalous dispersion
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fibre and the fibre loss is 0.2 dB/km. The stability of the DM solitons in these maps is verified
by propagation of the solutions over 10,000 km.,

Figure 3.7 shows that the DM soliton dynamics in the SPDM are different from those in
the two-step dispersion map. This is principally because the pulse energy is reduced in each
period of the SPDM, owing to fibre loss. Therefore the DM soliton dynamics are no longer
periodic in Z, (as they are in the lossless case), but they are periodic in Z,. Figure 3.7 illustrates
the regular form of the pulse width evolution over Z,, which displays a convergence of the pulse
width minima, and a global minimum that occurs in the first anomalous fibre section. Such
regular dynamics are in contrast to the non-uniform behaviour observed previously for small §
[140] in SPDMs, and are consistent with an exponential reduction in the nonlinearity across the
amplifier span. This reduction is reflected in Figure 3.7(b), which shows the bandwidth
evolution over Z,. For the eight-section SPDM we observe large spectral variations in the
leading sections that diminish as the non-linear effect becomes less dominant.

We now consider the effects of amplifier position within the dispersion map on the
stable pulse energy. Figure 3.8 compares the energy enhancement factors of the stable pulses in
the eight-section SPDM and the conventional two-section map, for the parameter values given
previously. The enhancement factor (7)) is taken as the ratio of the DM soliton energy to the
conventional average (or centre guiding) soliton energy [47] for the same average dispersion and
(minimum) pulse width. It is apparent that, although the shape of the energy dependence in both
maps is broadly similar, for the SPDM the absolute value of the energy is greater on average,
and the relative variation is much smaller. In both cases the maximum energy occurs when the
amplifier is placed toward the end of the anomalous dispersion fibre, a feature that is observed

in all the dispersion maps investigated.
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Figure 3.7: DM soliton dynamics for an eight-section SPDM (solid line) and a conventional two-section dispersion

map (dashed line) with the amplifier positioned at the start of the anomalous dispersion fibre section (Z, = 0). (a)
Pulse width dynamics over Z,. (b) Spectral bandwidth evolution over Z,.
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Figure 3.8: Energy enhancement as a function of amplifier position within Za for an eight-section SPDM (solid
line) and a conventional two-section dispersion map (dashed line).

The results of Figure 3.8 are summarised and extended in Figure 3.9, which plots the
minimum and maximum energy enhancement factors as a function of the number of dispersion
sections for values up to n = 32. In Figure 3.9(a) we can clearly observe for S = 2 a gradual
increase and convergence of the minimum and maximum DM soliton energies as n increases.
The increase in energy enhancement can be explained in terms of the increase in map depth, & =
AB®/|B®,ve|, which scales linearly with 7. It has been shown previously that in lossless systems
the DM soliton energy is dependant on the map depth, as well as the map strength [113]. Figure
3.9(a) confirms that a similar dependence holds for stable solutions obtained in SPDMs
(including loss) for weak S. For large enough n, however, we find only pseudo-periodic
solutions, similar to those observed by Favre et al. [145], at certain amplifier locations toward
the end of the anomalous fibre, which occur at lower values of n with increasing S. The
influence of these solutions is visible in Figure 3.9(b), in which we can obhserve for § = 4 a
divergence in the minimum and maximum energies. Justification of their inclusion in Figure

3.9(b) results from their stable propagation over tens of thousands of kilometres,
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Next, we determine how interactions are influenced by the number of dispersion sections
in a SPDM. Figure 3.10 shows how the collision distance of a pair of DM solitons changes as &
function of amplifier position for an eight-section SPDM and a conventional two-section map
with § = 4. Once again, there is a broad similarity between the forms of these curves, however,
the collision distance is greater for the two-section system, and the variation of this distance is
much smaller in the eight-section map. In each case, there is a strong inverse corvelation
hetween the pulse energy and the collapse distance, as noted previously for (wo-ssction
dispersion maps [136]. Thus, the increased interactions in the SPDM can be attributed o (he

greater enhanced energy of the DM soliton (a similar correlation holds for the reduced
@9

e 0 M T



variation). However, note that, for the amplifier positioned at 0 km, Figure 3.10 shows that the
collision distances for both dispersion maps are similar, although from Figure 3.8 it can be seen

that the pulse energy in the SPDM is more than twice that in the two-section map.

B
(=]

—
(24

(24

Collision distance (fMmy)
[

0 10 20 30 40 §0
Amplifier position (km)

Figure 3.10: Dependence of the collision distance on the amplifier position with Z,, for a pair of pulses separated by
20 ps (equivalent to SO0 GHz transmission).

In this section, we have compared the characteristics of DM solitons in the conventional
dispersion management regime, with a regime characterised by having a dispersion management
period that is much shorter than the amplification period. We have shown that DM solitons in
SPDMs exhibit regular dynamics over a single amplifier span and possess a greater energy
enhancement factor, for fixed S, compared to a conventional dispersion map. This additional
energy enhancement is a direct result of the increased local dispersion. We have found that for
wealk S, as n increases, the variations in energy reduce and thus we approach a regime similar (o
that of the lossless model. Contrasting behaviour was observed for strong S, where we observe
increasing variations in energy as n increases. Shown also are the increased interactions in

SPDMs that result from greater energy enhancement of the DM solitons.

3.6 Implications of amplifier placement in dispersion
managed systems
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Having introduced the notion of scaling in dispersion managed systems, we then investigate
how propagation of DM solitons is influenced by the location of the amplifier within the

dispersion map.

3.6.1 Interpretation of the energy variations due to amplifier
positioning

The implication of the amplifier location within the dispersion map on propagating DM solitons
was first considered by Chin ez al. [146]. They concluded that the insertion of periodic loss and
amplification into a dispersion managed system decreased the energy enhancement factor (1) of
the DM soliton. A later paper [147], then reported that 1 in fact increased with periodic loas and
amplification. Investigating a dispersion map constructed from 2 equal length sections, where
the amplification period (Z,) is equal to the dispersion management period (Z,) we illustrate how
the effective average dispersion (f,q) can be used to interpret the energy variations observed as
the amplifier occupies different positions within the dispersion map.

A characteristic of DM soliton propagation in the time domain is that the pulse
undergoes periodic expansion and compression, which results in chirping. In the spectral
domain, these expansions and contractions of the pulse effectively alter the dispersion. It was
shown by Nijhof er al. [119], that in fact by balancing the non-linear and dispersive
contributions, DM solitons create an effective or non-linear average dispersion that is greater
than the linear average dispersion of the map ... This can be used to explain some of the
interesting properties of DM solitons, such as enhanced energy and propagation for normal
linear average dispersions. Derived previously [119, 148] the effective average dispersion can

be expressed as
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where %, is a piecewise function describing the local dispersion, () is the spectral
bandwidth of the propagating pulse and < > implies averaging over the period.

In the case of propagation through a lossless dispersion map, the DM soliton energy
remains invariant, which means the nonlinearity is constant. Consequently, for a fixed map
strength (S) and minimum pulse width (%,,) only a single DM soliton solution exists. The
introduction of fibre loss and periodic amplification modifies the nonlinearity as the pulse
propagates through the dispersion map. Therefore, for a fixed map strength (S) and minimum
pulse width (%un), adjustment of the amplifier position within the dispersion map resulis in a

unique bandwidth evolution.
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Initially, we investigate the different bandwidth evolutions that arise from changing the
position of the amplifier within the dispersion map. Again, stable periodic DM soliton solutions
are found through numerical integration of the NLS and application of the averaging method of
Nijhof er al. [111]. Figure 3.11(a) illustrates the bandwidth evolution over a single dispersion
management period as the amplifier occupies different positions within the dispersion map, The
bandwidth evolution for three specific amplifier positions is shown in Figure 3.11(b). The RMS
bandwidth has been used in Figure 3.11, as the pulses used are not exactly Gaussian. It is clear
that with the amplifier placed at 22.5 km, the bandwidth in the anomalous fibre is far in excess
of the bandwidth in the normal fibre. Moving the amplifier to 15 km, the bandwidths in each
fibre section are now more even and with the amplifier positioned at 0 km, we again obaerve a
greater bandwidth in the anomalous dispersion fibre relative to the normal dispersion fibre.
These bandwidth evolutions are then used to numerically evaluate %, with the aid of equation
(3.8). The effective average dispersions for the amplifier locations in Figure 3.11(b) are shown
by symbols in Figure 3.12. The corresponding average dispersions are -0.26 ps®/km (0 km), -

0.12 ps*/km (15 km) and -0.29 ps¥/km (22.5 km).
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The importance of the concept of effective average dispersion is highlighted by Figure 3.12,
This figure shows how the effective average dispersion (§%.s) and the energy enhancement
factor (n) of the DM soliton depend on amplifier location within the dispersion map.
Observation of Figure 3.12 suggests a strong inverse correlation between the effective average

dispersion and the enhancement factor of the DM soliton. More formally, we can calculate the

cross-correlation coefficient, defined as

1 N-i
"ﬁ%x, () x,(n)

1 N1 N-i
E[Zxﬂmz«x;(n)

=0 n=(}

P2 = ])4 (3.9)

where x;2 are discrete data sequences of length N. For the data in Figure 3.12, the crosa-
correlation coefficient p;2 is -0.99, which shows an exiremsly strong inverse correlaiion
between the effective average dispersion and the energy enhancement factor of the DM soliion.
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It is known that, for the lossless case, the DM soliton energy is dependent on average dispersion
[110] and here we have demonstrated that for the lossy case, the DM soliton energy is dependent
on the effective average dispersion. In the lossless model, where nonlinearity is invariant with
propagation distance as stated previously, for single map strength (S) (and minimum pulse
width) there exists only a single %,,. Hence this is the reason why S can be used effectively to
calculate the DM soliton energy [105, 113], for the lossless case. However, because of the
modification of the nonlinearity which occurs with propagation»distance, resulting from fibre
loss and periodic amplification, means that the bandwidth evolution and hence f%,, depend
critically on the amplifier location within the dispersion map for fixed § and %y Therefore in
amplified systems, § no longer provides an accurate quantity in characterising DM solitons

because it neglects the differing bandwidih evolutions that result from amplifier placement

within the dispersion map.
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Figure 3.13: Diminishing variations in the effective average dispersion with increasing fibre loss. The mm‘xhai“%
indicate the fibre loss per km, with the lossless case heing shown by the thin cantinuous line, for § = 4, %, = § pa.

Using the concept of effective average dispersion, we determing how filbre lose influences ihe

sffective average dispersion. Figure 3.13 illustrates how %, varies with different fibre lnsses
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as a function of the amplifier position within the dispersion map, where the lossless case has
been added for completeness. In Figure 3.13, we observe a general trend that as the fibre loss
increases, f%.. approaches %, which is intuitive from our understanding of the effects of
fibre loss. In addition, we observe a type of resonant behaviour which peaks for a fibre loss of
0.1 dB, that can produce a §%,, that is greater than the lossless model, hence 7 will be larger
than for the lossless model. Therefore, if we look only at specific amplifier positions, one could
observe either an ascending or descending energy enhancement factor depending on the
amplifier location. For example, if the amplifier was positioned at 10 km, then with increasing
fibre loss a decreasing energy enhancement factor of the DM soliton, would be ohserved.
Whereas if the amplifier was located at 22 km then the energy enhancement factor of the DM
would initially increase before reducing as fibre loss increases. Figure 3.13 concurs with the

observations of Refs. [146, 147].
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minimum pulse width (% = 5 pa), the fibre loss 0.2 dB/km and vary only the lneal dispersion
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to maintain a fixed map strength of 4. Figure 3.14 illustrates how the minimum and maximum
effective average dispersions, found as a function of amplifier position, vary as Z, increases,
where the effective average dispersion for the lossless case has been included. In Figure 3.14,
we find that for short Z, we observe large variations in %, resulting from the high local
dispersion, but as Z, increases (reducing local dispersion) we find the minimum and maximum
B?.. converge. Also, as Z, increases, /%, becomes smaller than the lossless case, and thus for
all amplifier positions 7 will be less than the lossless madel. This demonstrates, along with
Figure 3.13, that it is not only the amplifier position that is important in determining 7, but also
the fibre loss is an important consideration.

Finally, we show how the effective average dispersion depends on map strength. From
PFigure 3.15, we can clearly see the general trend of increasing % with S and again F%, is
exiremely sensitive on amplifier location which grows with increasing §. An interesting feature
of Figure 3.15 is the movement of the central trough of each of the curves, which as § increases
traverses from the anomalous to the normal dispersion fibre. Also, Figure 3.15 illustrates that a
consequence of increasing S is the divergence of ﬂmea and ﬂmm, as ﬂz’ea increases in
magnitude. This reinforces our intuitive understanding on why DM soliton transmission can be

supported with a normal average dispersion for strong S [119].
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Therefore, we have shown that the energy enhancement of the dispersion-managed
soliton can be explained in terms of the effective average dispersion. We have shown thai in
amplified systems the simple relationship between the DM soliton energy and the map strength
no longer holds, as it does for the lossless model, as the definition of map strength (S) neglects
the modification in nonlinearity that occurs. To accurately characterise and understand DM
soliton propagation in amplified systems we must use the concept of effective average

2)

dispersion (B2’). This concept provides a means to interpret the results of previous studies [146,

147).

3.6.2 Reconstruction of the lossless dynamics

As detailed in section 3.6.1, the amplifier position within the dispersion map determines the
energy of the DM soliton. It is unsurprising then, that the dynamics of the DM soliton are
affected by the positioning of the amplifier.

In the lossless case, there is only a single DM soliton solution for each dispersion map,

due to the constant nanlinearity, provided that the conditian |J*q = [ e
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is aailafied [148).




For lossless propagation, the dynamics of which can be seen in Figure 3.3, the DM soliton has
the chirp-free points at the mid-points of the anomalous and dispersion fibre sections and the
pulse width displays a symmetric evolution about the centre of the dispersion map.

In contrast, when fibre loss and periodic amplification is introduced into the system we
observe differing DM soliton dynamics, as the amplifier occupies a different location in the
dispersion map. This is shown in Figure 3.16, which details the evolution of the width, chirp and
bandwidth of the pulse. From Figure 3.16 it is clear that the pulse width evolution displays an
asymmetrical evolution that changes as the amplifier position moves through the dispersion
map. Therefore, if the amplifier is located at the points where the asymmetry in the pulse width
dynamics changes, then the lossless dynamics should be reconstructed. Figure 3.17 confirms this
observation, which contrasts the lossy and lossless dynamics for the two amplifier positions (one
in the anomalous dispersion fibre and one in the normal dispersion fibre), where the pulse width
dynamics are symmetrical. It is apparent that the losay dynamics are extremely similar fo
lossless dynamics with the exception of a small region around one of the minima in Figure
3.17(a) and one of the maxima in Figure 3.17(b). These points, where the lossless dynamics are

reconstructed correspond to the point where coherent interactions are minimised.
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Figure 3.17: Reconstruction of the lossless dynamics for two specific amplifier locations in the dispersion map.
(solid line) lossless dynamics and (dot and dash line) dynamics with periodic loss and amplification. (a) Amplifier
at 5.5 km in the anomalous dispersion fibre, and (b) amplifier at 28 km in the normal dispersion fibre.

3.7 DM Soliton control techniques

Analogous to the classical soliton, various control techniques can be applied to the DM soliton
to further improve system performance. A common control technique in dispersion-managed
system is that of fixed frequency [150-153] and sliding frequency filiering [150, 154, 155],
which reduces the accumulation of timing jitter. In the regime of weak dispersion managemen
(§ < 3), similar control techniques that can be applied to classical soliton propagation can alsa
be used to reduce interactions such as phase modulation and amplitude modulation [156-158].
Also, device based techniques such as amplitude modulators [10] and saturable absorbers [#3]
can also improve performance. In additional, the soliton-like nature of DM solitons allows iha
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use of optical regenerators as described in Refs. [98, 159, 160], which facilitate propagation

over virtually unlimited distances.

3.8 Variational approaches to modelling of dispersion
managed systems

Like other partial differential equations, numerical integration of the NLS equation is ofien
costly in terms of both time and computation power. This often limits the parameter space that
can be explored by numerical simulations. However, this computation burden can be reduced
making a variational approximation of the NLS that effectively reduces the NLS into a set of
coupled ordinary differential equations. These ordinary differential equations that determine the
evolution of the key parameters can be quickly and easily integrated using a simple integration
technique such as the Runge-Kutta method.

This technique was first applied to classical soliton propagation in optical fibre by
Anderson [161] and later generalised in terms of dispersion managed systems by Shapiro et al.
[162]. Since then a huge amount of work has been undertaken investigating DM soliton
propagation employing this approach [110, 119, 120, 148, 163-166], with specific analysis of
intra channel interactions [129, 135, 136, 167], inter channel interactions [58, 168], DM soliton
control {152, 169, 170], and system modelling [171, 172]. However, whilst the variational
approach yields a good approximation of DM soliton behaviour under certain conditions, more
complicated effects such as FWM and SRS have not yet been included in the model. Thia
method also neglects the continuum dynamics that are ofien a source of instability, especially
when control elements such as filters are included. Although the variational approximation
provides a good understanding of the physical mechanisms of DM soliton propagation, unill
effects such as FWM are included into the model, then accurate estimations of aysiem

performance at high data rates does not remain a possibility.
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3.9 Conclusion

We have reviewed some of the basic principles of dispersion management and introduced the
soliton-like pulse that exists in such systems called the DM soliton. We have then investigated
the properties of DM soliton propagation in a regime called SPDM that is suitable for ultra-high
speed transmission. This regime is characterised by Z, << Z,, which confines pulse breathing
thus allowing DM solitons to exist for short pulse width and practical amplifier spans. These
properties are then used to help design and understand the ultra high-speed transmission systems
in chapters 4, 5 and 6.

This chapter also investigated the implications of the amplifier location within the
dispersion map. We described how the energy enhancement of the DM soliton, in the losssy
case, can be more accurately described using the concept of effective average dispersion, In
addition, we also showed that by locating the amplifier at specific points in the dispersion majp,

the dynamics of the lossless DM soliton could be achieved.



Chapter 4 80 Gbit/s transmission

4.1 Introduction

The seeds of DM soliton transmission were sown in the pioneering experiments of KDD
Laboratories undertaken during the mid-1990s [173-175], which demonstrated for the first time
transoceanic transmission at 10 Gbit/s. These experiments and the subsequent progress on DM
transmission drew heavily on the research into propagation of classical solitons in optical fibres
that had been under taken during the previous decade [176-182]. The subsequent years have
born witness to a massive explosion in both fransmission capacity and transmission distance,
with many experiments demonstrating successful 10 Gbit/s [133, 183-188], 20 Ghii/a [B0, 175,
190-193] and 40 Gbit/s transmission [194-201]. Partially a result of technology advances and
partially a consequence of dispersion management, massive WDM experiments emerged with
capacities in excess of 1 Tbit/s [97, 202, 203].

Although some systems display a total transmission capacity exceeding 1 Tbit/s, it has
largly been achieved using many wavelength channels each operating a low data rate. However,
there exists the potential to increase the spectral efficiency of these systems by utilising the same
spectrum but with fewer wavelength channels each operating at a much higher data raie. In
addition, arguments regarding system cost and complexity support this approach. With this in
mind, this chapter investigates ultra high speed channel transmission at 80 Ghit/s. Such high
transmission rates require a change in the design of dispersion managed transmission sysiema
because of the short pulse widths required. The manifestations of this problem are evident in 4()
Ghit/s systems [204, 205], where due to the short pulse widihs and large dispersion of installed
standard fibre, transmission occurs in a quasi-linear regime where the propagating pulsea loae
many of their soliton-esque praperties. This propagation regime has the additional disadvaninge
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of being limited by FWM, which imposes limitations on the maximum transmission distance
achievable [205]. Currently only a small amount of published literature exists focussing on 80

Gbit/s transmission [83, 141], with even fewer transmission experiments reported [206-208].
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Figure 4.1: Schematic representation of the short period dispersion used for 80 Gbit/s transmission

In this chapter, adopting the novel approach of short period dispersion management,
which was detailed in section 3.5.2, we investigate transmission at 80 Gbit/s by numerical
simulation. To begin with, we explore and optimise propagation over transoceanic distances
determining the conditions under which transmission can be supported. After which we
investigate transmission over medium and short haul transmission distances before finally

investigating transmission using standard fibre sections.

4.2 Single pulse propagation

The basis of our transmission simulations are formed by finding stable, periadic DM aolitons in

SPDMs, by applying an averaging methad [111] to the numerical integration of the Non-Linear
86




Schrédinger Equation (NLS) (neglecting higher order dispersive and non-linear terms).
Throughout this chapter we consider Z, = 50 km and fix the following fibre properties: loss, =
0.2 dB/km, effective area, A,z = 50 um® and non-linear index, n; = 2.6x10%° m¥W. We focus
on a dispersion map strength S = 1.65, which has been shown to be the optimal map strength to
minimise interactions in the lossless case [127]. An example dispersion map is illustrated in
Figure 4.1. Fixing the minimum pulse width 7, = 2 ps, to allow a large enough mark-to-space
ratio, a freedom still exists to determine the number of dispersion sections per amplifier spacing,
n = 2Z,Z,. In these systems n should be chosen so that Z, and %, are practical, i.e. the map

period is not too short, and the dispersion values are not too small,

(a) (b)

[
H
;:

N
T
i

FWHM Pulse width (ps)
no
[6,}

0 10 20 30 40 50
Propagation distance (kmn)

02 : f ;

2 32 84 2§ 2@
FWHM Pulsa widih (psj

0 10 20 30 40 50
Propagation distance (km)

Figure 4.2: DM soliton evolution evolution over Z, for a 16-section short period dispersion map. (a) Pulse widih
and chirp evolution (b) Phase plane dynamics.

The evolution of the DM soliton dynamics over Z, for an SPDM with n = 16, with § = 1.65,
FP e = -0.02 ps*lkm and T = 2 ps ia shown in Figure 4.2. In this case, the magnitudes of the
local dispersion sections are %, = -1.076 ps*/km and A%, = 1036 pa*fkm. Unliks ihe
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conventional dispersion management regime (Z, 2 Z,) the pulse width dynamics are no Iénger
periodic in Z, (as they are in the lossless model), but are periodic in Z, The pulse width
evolution over Z, exhibits a highly regular form with a convergence of the local pulse width
minima, and is consistent with a gradual reduction in the nonlinearity across the amplifier span.
For identical simulation parameters as used in Figure 4.2, Figure 4.3 illustrates the temporal and
spatial evolution over Z,, where the rapid pulse ‘breathing’ relative to the amplification span is
clearly visible. The evolution of the slow dynamics of the DM soliton can be seen for a

propagation distance of 10,000 km in Figure 4.4.

003«

Time (ps)

Figure 4.3: DM soliton propagation over a single dispersion management period (1 = 16).

The selection of the minimum pulse (%) width resulted from observation of the interactions
between two co-propagating DM solitons. For 7., > 2 ps interaction increases because of the
greater overlap between the two DM saolitons. The minimum pulse width Tww = 2 p8 waa
selected because it was the longest pulse width for which interactions between adjacent DM
solitons were negligible over the domain of interest (< 10,000 km), while reducing the influence
of higher order non-linear and dispersive effecis that increase as the pulse widih becomes

sharter. Interactions can also be further reduced by decreasing the average diapersion.
i
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Figure 4.4: Evolution of the slow dynamics of the DM soliton shown over 10,000 km.

4.3 Simulations

For the 80 Gbit/s transmission simulations, we use the Generalised Non-Linear Schrdinger
equation (GNLS) [72], which includes the effects of dispersion slope and higher order non-
linear effects. Following Refs. [142, 209], dispersion slope compensation is provided by each of
the fibre sections having alternative sign dispersion slopes with magnitudes: 7, = -, = 0.07
ps’/km. Therefore dispersion slope compensation occurs over a length scale of Z,, which
becomes an increasingly important factor for short pulse widths. The only control element in the
transmission line is a Gaussian filter (£,pcq1) of bandwidth 1 THz (FWHM), located directly
after each amplifier. A schematic representation of the transmission line is illustrated in Figure
4.5. The noise figure of the amplifiers is taken to be 4.5 dB and the introduction of the filier
requires an additional gain of 0.09 dB. The receiver is modelled by a non-optimised Lorentzian
electrical filter of bandwidth 50 GHz (62.5 percent of the bit rate). In this system, the amplifier
is located at the start of one of the anomalous dispersion fibre sections, and therefore, pulse
amplifications and filtering occurs where the DM soliton is highly chirped within fis perodie

cycle.
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Figure 4.5: Schematic representation of transmission line used for 80 Gbit/s transmission
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Figure 4.6: Dependence of performance on the dispersion management period for a fixed map strength. (thin solid
line) n = 16, (thick solid line) n = 32, and n = 64 (dashed line).

The performance of the transmission system is evaluated using Q-value estimates based on a 2.

1 bit pseudo random sequence, with the computation applied to 4 blocks each containing 32 hita,

The Q-values are defined from the equation

p=Hth
N Y

a0




where U0 are the respective mean levels of the 1 and 0, and o7 are standard deviations of the 1

and O respectively. The standard deviations are calculated using:

(4.2)

where n is the number of 1's in the data pattern, p; is the peak power of the pulse i and y; is the
mean level of the 1's. These Q values can then be equated to the Bit Error Rate (B.E.R) that is
used in laboratory experiments, assuming a Gaussian distribution in the 1's and 0's, then the

relationship between BER and Q can be given as

-9
1L 2 (4.3)

BER = i s
2n 0

Using equation (4.3) a BER of 107 is equivalent to a Q value of 6. Although the distribution of
the 1's and 0’s may possess an alternate statistical distribution {210, 211], for soliton-like

transmission, equation (4.3) provides an adequate approximation of a physical system.

The system performance as a function of propagation distance is illustrated in Figure 4.6 for n =
16, 32 and 64. The simulation parameters S = 1.65, A%,,, = -0.02 ps¥km, P = A7, = 0.07
ps’/km, Qopiicr = | THz and the corresponding local dispersions for n = 16, 32 and 64 are %,
= £ | ps*/km, + 2 ps*/km and + 4 ps¥/km respectively. Considering the stochastic nature of the
simulation, the performance of the three dispersion maps in Figure 4.6 is fairly similar, This ia a
consequence of the DM soliton energy saturation that occurs for large n, a8 detailed in seciion
3.5.2. Thus, in the case of single channel transmission, we can simulate the compuiationally less

intensive map (n = 16) and generalise the reaults for n = 32 and 64. Fowever, ihis
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approximation is not valid if multiple wavelengths are used as in WDM, this is because the inter
channel FWM efficiency is dependant on the magnitudes of the local dispersion. Therefore,
throughout the rest of the chapter we shall be exclusively concerned with the map n = 16 only,
We observe that after the initial steep decline in performance that occurs for short transmission
distances ( < 1,000 km), which occurs due to the initial introduction of noise, the system
performance degrades gradually with propagation distance. The performance of the system is
limited by the accumulation of timing jitter and the growth of continuous wave background
instabilities that arise from the strong filtering. Nevertheless, for all three SPDMs we have found

that transmission with Q > 6 can be achieved for distances in excess of 9,000 km.
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Figure 4.7: Depedence of system performance on average dispersion. (dashed line) 2 .= -0.008 psz/km (thin
solid line) §%,,. = -0.02 ps’/km, and (thick solid line) A%,,, = -0.05 ps*/km.

The dependence of system performance on average dispersion (ﬁ’Z)W) is shawn in Figure
4.7, as a function of propagation distance, the rest of the simulation parameters remain invariant,
It can be seen that there is a clear optimal average dispersion for ﬁmm = -(3.02 pfﬁ/km and that
movement either side of this value results in a significant reduction in system performance.

When A%, < -0.02 ps¥/km, interactions between adjacent pulses increass which limiia



performance and when %, > -0.02 ps®/km, the system suffers from a poor Signal-to-Noise
Ratio (SNR) which leads to increased timing jitter. The sensitivity to average dispersion in this
system arises from the short pulse width (%, = 2 ps), which means that the DM soliton energy
scales more rapidly with %,,.. This sensitivity could be reduced by increasing the pulse width

but this leads to increased interactions at S = 1.65, in this system for 80 Gbit/s transmission.
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Figure 4.8: System performance as a function of filter bandwidth. (dashed line) £2,,.,; = 0.8 THz, (thin solid line)
$2opic = 1 THz and (thick solid line) £2,,ic = 2 THz

Next, we consider the influence of the filter on the performance of the system. Figure 4.8 shows
system performance as a function of propagation distance for filler FWHM bandwidths, £opmeq
= 0.8 THz, 1 THz and 2 THz. For & = 0.8 THz the performance is similar 1o £gpica = 1
THz over short propagation distances, but rapidly deteriorates as a result of the increased growth
of continuous wave background instability resulting from the strong filtering. The result of the
instabilities in the continuous wave background, as described in Ref. [212], can be seen in
Figure 4.9. The problem introduced is that the transmiited pulses become indistinguishable fram
the background resulting in information loss. If the filier is too wide, a8 for fdepuea = 2 THa, then
performance degrades even more rapidly due to timing jitter and the concomitani Interactions.

93



Nevertheless, for Q4. = 1 THz a balance is struck between these two limiting factors

described for the €2, = 0.8 THz and 2 THz, and a combination of these limiting factors

ultimately kills the performance at ~10,000 km.

Figure 4.9: Growth of the continuous wave background due to strong optical filtering
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Figure 4.10: Robusiness of system performance due to imperfect dispersion slope compensation. (thin solid line)
7, = 0 p&’/km, (dashed Tine) A", = 0.01 ps*/km, and (thick solid line) A7 = 0.03 pa*fem
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4.4 Higher order non-linear and dispersive effects

At this point in the investigation we have worked on the assumption that we have a zero residual
dispersion slope, defined as 7 = (Vs + B7)/2 (as I; = I2), by assuming the dispersion slopes
in the anomalous and normal dispersion have identical magnitudes ﬁma = ~ﬁ(3),,, We now break
this relationship so that f7, # -7, and investigate the tolerance of the optimised system
performance to imperfect dispersion slope compensation. With increasing data rates, which use
shorter pulse widths, higher order dispersive effects like the dispersion slope begin to play an
increasingly important role. In Figure 4.10 the residual dispersion slopes are constructed from
the following dispersion slopes in each of the fibre sections f7 = 0 pa¥/km (7 = -, = 0.07
ps*/km), AV = 0.01 ps¥/km (B7, = 0.07 ps*/km, f7, = -0.05 ps’/km) and F7 = 0.03 ps¥/km
(A = 0.08 ps*/km, fY, = -0.02 ps'/km). From Figure 4.10 it is apparent that for residual
dispersion slopes < 0.03 ps*/km the system performance remains relatively unaffected and thess
residual dispersion slopes are of the same order of those previously manufactured (0.004
ps/nm*/km) in Ref. [142).

We extended our investigation by removing the higher order dispersion compensation,
= f7,= 7., in the SPDM. In Figure 4.11 the residual dispersion slopes are constructed as
B =0 ps*km (B, = -, = 0.07 ps’/km), 7 = 0.04 ps*/km (Y, = f7, = 0.04 ps*/km),
and 7 = 0.07 ps*km (Y, = 7, = 0.07 ps*/km). Figure 4.11 demonstrates that system
performance remains relatively unaffected by 7, = 0.04 ps*/km but for large dispersion slopes
7, = 0.07 ps’/km system performance has significantly deteriorated. Figure 4.12 illustrates
how the dispersion affects pulse propagation for A7, = 0.07 ps¥/km. Tt can be seen that the
dispersion slope breaks the uniform evolution of the slow pulse dynamics as shown in Figure
4.4, and induces a more complex evolution in these slow dynamics resulting in the DM solitan

shedding radiation.
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Figure 4.11: Robustness of system performance without dispersion slope compensation. (thin solid line) A" = 0
ps*/km, (dashed line) A7, = 0.04 ps*/km, and (thick solid line) A7, = 0.07 ps¥/km.

Following Ref. [213], we compare the relative contributions of the average disparsion
and dispersion slope by their respective dispersion lengths Lp = 7 ,,,,-,,/]ﬂ(z)ave[ and Lp' =
T i
We are only concerned with the length scale of the residual dispersion slope because dispersion
slope compensation occurs on the length scale Z, and generally the condition Z, << fn,;,,/lﬂj)a,ﬂ
is satisfied. For this system, the simulations showed that the influence of the residual dispersion

slope was negligible under the conditions Lp 2 Lp” and only became significant for Lp < Lp’.
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Figure 4.12: Effects of dispersion slope on 2 ps pulse propagation. Noiseless prapagation is shown with no
dispersion compensation (7, = §7, = {7V, = 0.07 ps*/km).

Thus far, our transmission simulations have included higher order non-linear effects.
Until this point, we have not established how SRS influences transmission performance. By
switching the Raman coefficients of the GNLS on and off we are able to isolate the effecta of
SRS. The simulation results indicate that SRS is having a negligible impact on transmission
performance with little effect being observable in both single pulse propagation and
transmission simulations. However, for completeness we continue to include the Raman
coefficients in our numerical integration, even though their role is only minor and could be
neglected.

Another influential effect that so far in the discussion has been neglected is polarisation
mode dispersion. We simulate PMD by integration of the 2-dimensonal birefringent NLS [214,
215] with the effects of random mode coupling simulated by a random rotation of the
birefringent axis and a random phase shift being applied to the propagating pulse on a length
scale much shorter than Lp. Figure 4.13 illustrates the dependence of system performance on
various values of PMD. For large values of PMD we observe that performance is significantly
reduced, however for lower and more moderate values of PMD long haul transmission is still
feasible. Therefore, this indicates the requirement for PMD to be conirolled to leas than 0.08

ps/Vkm for transoceanic transmission.
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Figure 4.13: The effect of polarisation mode dispersion on 80 Gbit/s transmission. (thin solid line) PMD = (.02
ps/km, (dashed line) PMD = 0.05 ps/Vkm, and (thick solid line) PMD 0.07 ps/Vkm.

The optimised performance of the system and its limiting factors can be quantitatively
observed in Figure 4.14, which shows the eye diagrams shown at propagation distances of 1,000
km, 3,000 km, 5,000 km and 8,000 km where higher order non-linear and dispersive effecis
have been included with a residual dispersion slope A7, = 0.03 ps*/km. At 1,000 km, we
observe an extremely clean eye with little amplitude jitter, and by 3,000 km the increasing
timing jitter is clearly observable. At 5,000 km, this timing jitter has increased further and
finally at 8,000 km the pulses exhibit considerable timing jitter, with a small amount of

amplitude jitter also being present and the continuous wave background instabilities are present.
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Figure 4.14: Bye diagrams taken at (a) 1,000 km, (b) 3,000 ki, (c) 5,000 km and () 8,000 km.

An important consideration is the experimental realisation of the theoretical transmission
link. Until this point, we have made the assumptions that the pulses possess the exact DM
soliton shape. However, the reality is that in the laboratory such complex pulse shapes may
prove difficult to generate, whereas Gaussian shaped pulses can be generated relatively easily.
Therefore, we should investigate how the substitution of the DM soliton shape for a Gaussian
shape influences the performance of the system. Taking the initial chirp found using the
averaging method described previously, we perform a sweep of the initial power of the Gaussian
pulse against the average dispersion for the optimised system parameters. The simulation results
can be observed in Figure 4.15, which also gives an indication of how sensitive the system is on
initial conditions. It can be seen in Figure 4.15 that transoceanic transmission is posaible uaing
Gaussian shaped pulses. It is also clear that when the initial power is not in the region of thai
required for a DM soliton for that particular average dispersion, then system performance {a
poor due to the propagation characteristics. Also, for normal average dispersions perfarmance ia

again extremely poor, although DM solitons do exist with a normal average dispersion [110,




115, 116, 119], when loss is present the initial power required for stable propagation is

extremely high. At high powers, the rapid decline in system performance is also visible which

results from increased interactions between neighbouring pulses.
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Figure 4.15: Contour plot revealing systems performance as a function of average dispsrsion and initial power for
Guassian shaped pulses. Contour lines indicate the maximum achievable propagation distance in km.

4.5 Medium haul transmission

Apart from transoceanic transmission, two other transmission distances are important for 80
Gbit/s transmission, namely medium haul (~3,000 km) and short haul (~1,000 km). We shall
defer discussion of short haul transmission to section 4.6, and focus on medium haul
transmission. In both this section and section 4.6, we once again replace the exact DM soliton
shape with a Gaussian pulse of the same pulse width, energy and chirp.

We compare the performance of the two systems each with identical dispersion
management periods of Z, = 6.25 km but differing amplification spans of Z, = 50 km and Z, =
75 km so we can gauge the impact of SNR on system performance. Figure 4.16 illuairates ihe
transmission performance as a function of minimum pulse width and initial power over & fixed
link of 3,000 km for the two different amplification spang. For each of the pulse widihs we fix
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the average dispersion f%4. = -0.02 ps¥/km, adjust the local dispersion such that § = 1.65, and
fix the ratio between the pulse width and the inverse filter bandwidth. As with the previous
simulations we include higher order non-linear effects and introduce a residual dispersion slope
of 0.02 ps*/km. For the case Z; = 50 km, it can be seen that for a broad range of pulses widths
and powers, performance in excess of Q = 6 is achieved with optimum performance being
achieved for a pulse width of 2 ps and initial power of 27 dBm, For the case Z, = 75, we observe
a similar dependence to Z, = 50 km but with a Q factor penalty of = 15, with a slightly longer
optimum pulse width of 2.5 ps and a slightly lower initial power of 22 dBm. For both Z, = §0
km and Z, =75 km, we observe the classical DM soliton dependence of increasing power with
shortening pulse width. At low powers, SNR and propagation characteristics limit performance
whereas at high powers, interactions dominate the decline in ftransmission performance
observed. In addition, for longer pulse widths, interactions become more significant due (o the
overlap between adjacent pulses whereas for shorter pulse widths higher order non-linear and

dispersive effects significantly influence performance.
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Figure 4.16: Dependence of transmission performance on initial conditions for 80 Gbit/s transmission over 3,000
km using Gaussian shaped pulses. (a) Z, = 50 km and (b) Z, = 75 km. Contour lines indicate the Q value estimale

after 3,000 km.

4,6 Short haul transmission
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Analogous to section 4.5, we provide the same comparison for Z, = 50 km and Z, = 75 km using
identical simulation parameters for a transmission distance of 1,000 km in Figure 4.17. Again,
for both amplification spans, it can be seen that general dependence is similar to those observed
in Figure 4.16, and that in both cases a large region for which Q 2 6 exists. In the case of Z, = 50
km, an optimum Q values > 90 is achieved for a pulse width of 2 ps and an initial power of 27
dBm. For the longer amplification span of Z; = 75 km, the optimum pulse width is increased to
2.5 ps, the optimum power has been reduced to 23 dBm and the Q value has fallen to 60. It is
also clear from a comparison of Figure 4.17 and Figure 4.7 that over 1,000 km the range for
which error free transmission is supported is larger. These results indicate that short period
dispersion managed systems that allow high powered DM solitons to propagate al low average
dispersions demonstrate a robustness to the influence of noise, which manifests itself in the form

of SNR and timing jitter.
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Figure 4.17: Dependence of transmission performance on initial conditions for 80 Gbit/s transmission over 1,000
km using Gaussian shaped pulses. (a) Z, = 50 km and (b) Z, = 75 km. Contour lines indicate the Q value estimate
after 1,000 km.
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4.7 Transmission using standard fibre

Standard Monomode | Reverse Dispersion
Fibre Fibre
(SMF) (RDF)
Dispersion at 1550 nm (ps/nm/km) 18 -18
Dispersion Slope at 1550 nm (ps/nm”/km) 0.06 -0.06
Effective area A (um) 7 80 30
Fibre loss (dB/km) 0.18 0.24

Table 4.1: Fibre dimensions of Standard Monomode Fibre (SMF) and Reverse Dispersion Fibre (RDF).

As well as using specially manufactured fibre as the cases of Ref. [142], short period dispersion
managed transmission can be accomplished using commercially available standard fibre (SMF)
and reverse dispersion fibre (RDF) by simply splicing together the fibre sections. The fibre
dimensions for SMF and RDF are shown in Table 4.1. We also introduce a splice loss (&) inio
our model and as the effective areas of SMF and RDF are so differeni we set o = 0.2 dB,
Setting the amplifier span Z, = 50 km, the sections of SMF and RDF are cut down to 0.5 km
sections producing a dispersion management period Z, = 1 km. We then launch chirp free
Gaussian pulses at the mid-point of the anomalous dispersion fibre sections and set the gain of
the amplifiers to equal the fibre loss plus the splice loss (a.Z, + n.q,). Figure 4.18 illustrates the
performance of 80 Gbit/s single channel transmission as a function of pulse width and initial
power for transmission over 1,000 km for an average dispersion Dy, = 0.02 ps/nm/km. Tt is
evident that for a large region of Figure 4.18 transmission with Q = 6 can be achieved.

In contrast to Figure 4.16 and Figure 4.17, Figure 4.18 maintains a fixed dispersion map,
which means that varying the pulse width alters the map strength. From Figure 4.18, the
optimum performance is obtained for a pulse width of 2 ps and an initial power of 20 dBm.
These optimum conditions correspond to a map strength of § ~ 6, which is far stronger than the
optimum strength for which interactions are minimised. Such a strong § can be explained in

terms that a higher SNR is required due to the additional splice loss and secondly as the length
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of the transmission link is only 1,000 km it is still shorter than the collision distance, even for
strong S. We observe that in this particular case, for § = 2 performance is some what lesser than
the optimum conditions. Away from the optimum conditions, good performance is still achieved
for longer pulse widths (increasing spectral efficiency) by reducing pulse power. This illustrates
the potential of creating short dispersion managed systems from splicing together commercially

available fibre sections.
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Figure 4.18: Dependence of transmission performance on initial conditions for 80 Gbit/s transmission over 1,000
km using sections of SMF and RDF spliced together. Contour lines indicate the Q value estimate after 1,000 km.

4.8 Conclusion

In conclusion, we have demonstrated, by numerical simulations, the feasibility of 80 Ghii/s
single channel transmission over distances in excess of 9,000 km using short period disperaion
management. This performance has been achieved by careful optimisation of the system
parameters and we have identified the need for careful control of the average dispersion. We
have demonstrated the robusiness of the system to the dispersion slope, with and without
compensation, and shown that by optimisation of the system parameiers improved performance
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compared to other SPDM simulations at this transmission rate [141] can be achieved. In
addition, we investigated transmission over short and medium haul distances, and demonstrated
a robustness of these systems to noise. Finally, we investigated a short period dispersion
managed system using commercially available SMF and RDF fibre demonstrating that whilst
continuous drawn short period dispersion managed fibre, as in Ref. [142], achieves the best
performance, enhancements can still be achieved creating the short period dispersion map by

splicing together fibre sections.



Chapter 5 160 Gbit/s transmission

5.1 Introduction

In the preceding chapter, we demonstrated the possibility of transoceanic single channel
transmission at 80 Gbit/s. The next logical challenge is to further increase the data rate to 160
Gbit/s. Since the last chapter elucidated the effectiveness of short period dispersion
management, we continue to use this technique for increasing bit rates. This chapter investigates
the feasibility, through optimisation of the sysiem parameters, of single channel transmission at
160 Gbit/s over transoceanic distances. In addition, we investigate transmission over short and
medium haul distances.

Although by utilising WDM techniques, transmission capacities of 160 Gbit/s and
beyond are common in the literature (see Refs. [154, 216-219] for example), to date there has
been little investigation into single channel transmission at data rates as high as 160 Gbit/s.
Previous investigations have been concerned with 160 Gbit/s single channel transmission and
short period dispersion management [220]. However, a short period dispersion map with an
exponentially decaying profile was used and only a transmission distance of 2,000 km was
predicted. Experimental transmission at 160 Gbit/s has been demonstrated by Feiste et al. [221]
over 42 km of standard fibre. However, at slightly lower transmission rates short period
dispersion managed transmission has been experimentally demonstrated at 100 Gbit/s [144,
222].

At ultra high data rates, transmission performance is significantly hindered by the
problems of system scaling that have been outlined by Marcuse e al. [223]. As pulse widihs
become shorter, propagation becomes increasingly affected by higher order non-linear and
dispersive effects. Furthermore, the effect of PMD becomes increasing important. Tnieractions
between DM solitons also become more prevalent at higher data rates resuliing from ihe
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increasing map strength, although this effect can be controlled using short period dispersion

management.

5.2 Single pulse propagation

Initially we investigate pulse propagation using pulse widths suitable for use in 160 Gbit/s
transmission. As the basis of our simulations, we find stable, periodic DM soliton solutions in
the SPDM using an averaging method [111], (neglecting higher-order non-linear and dispersive
effects). Again, we make the distinction that when we refer to the DM soliton we mean ihe
exactly periodic DM soliton found by the averaging method. Therefore, the energy can be
uniquely defined by the minimum pulse width, average dispersion, the depth of the dispersion
map, and amplifier position within the dispersion map [109, 110, 224].

For the simulations we fix the amplifier period Z, = 50 km and the following fibre
properties: loss = 0.2 dB/km, effective area = 50 pm® and non-linear index, 2.6 x 102° cn/W.
We elect to operate with a dispersion map strength S = 1.65 (defined previously in section 3.4),
to minimise interactions [127]. Therefore within the bounds of practical limitations we are free
to vary the minimum pulse width (7.,) and the number of dispersion sections n, which

determines the dispersion management period (Z,) and local dispersion (ﬂz)a,,,).
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Figure 5.1: Dynamical evolution of the DM soliton over Z,. (a. left) Pulse width evolution and (b. right) Pulse
evolution over Z,. Simulation parameters: §%, = -1.25 ps%km, %, = 1.24 pszlkm. ﬂz’m = -0.05 psl/kmY Tiin =1 P8
and Z, = 50 km.

Figure 5.1 shows how the DM soliton pulse width evolves over a single amplifier period
Z, with n = 32, for which f%, = -7, = 0.5 ps’/km, %, = -0.005 ps¥/km and T = 1 ps. It
can be seen that the pulse width evolution displays a regular form, and has a breathing raiio of
approximately 1.55:1 between the minimum and maximum pulse widths,

Along with the various properties that DM solitons in short period dispersion mapa
possess relating to the dispersion management period Z,, as detailed i section 3.5.2, an
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interesting feature is the saturation of the DM soliton energy that occurs as Z, decreases for a
fixed map strength. This is a similar feature to that observed by Nijhof er al. [113] in
conventional dispersion managed systems. In the short period dispersion management regime,
this phenomenon provides two main benefits that occur for a fixed map strength and large n: (i)
local dispersion (f%,,) and dispersion management period (Z,) can be traded freely without
significantly affecting performance, in the case of single channel transmission, and (ii) as a
direct result of (i) more rapid computation can be achieved by increasing Z,, thus reducing the

computation step in AZ, and generalising the results for shorter Z,.

5.3 Transmission simulations

For the transmission simulations at 160 Gbit/s, we use the Generalised Non-Linear Schridingsr
equation (GNLS) [72], including higher order non-linear and dispersive effects. Following Refs.
[142, 209], dispersion slope compensation is provided by an alternate sign of dispersion slope in
each fibre section with magnitudes: 87, = -f%, = -0.07 ps*/km. We introduce an amplifier noise
figure of 4.5 dB and place a Gaussian filter directly after each amplifier, introducing additional
amplifier gain as a result of the inclusion of the filter. The receiver is modelled as a non-
optimised Lorentzian electrical filter of bandwidth of 0.14 THz (87.5 percent of the bit rate). In
the simulations, we place the amplifier at the beginning of the anomalous dispersion fibre
sections as this location has previously been shown to be optimal for transmission performance
[225]. The performance of the transmission system is evaluated using Q-value estimates based

on a 2’ —1 bit pseudo random binary sequence.
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Figure 5.2: System performance as a function of minimum pulse width. To reduce the influence of the filier we fix
the ratio between tmin (0.5, 1, 1.5, 1.75, 2, 2.5, 3} (ps) and Qf {9 4.5 3 2.63 1.26 1.81 1.5) (THz). Simulation
parameters: § = 1.65, f(2)ave = -0.05 ps2/km and Za = 50 km.

Optimising the performance of dispersion managed systems presents an arduous task
resulting from the shear number of parameters that exist. To be completely assured of aptimal
performance, one must simulate the system using all reasonable values for each of the
parameters, which is currently too computationally demanding. With this in-mind, we adopt the
following methodology to optimise the performance of the system. Firstly locate the optimurn
pulse width, then in turn taking this optimum pulse we then seek to optimise performance in
terms of the average dispersion and filter bandwidth. We then repeat the procedure for values of
Tmin AT to the optimum. Therefore, when we refer to optimal performance we mean optimal
relative to this procedure.

Initially we determine the system dependence on pulse width. As a result of the amplifier
spontaneous emission noise we include wide filters, however at this point we do not want the
filters to influence system performance so for each pulse width we fix the ratio of minimum
pulse width to inverse filter bandwidth (7..(ps): 1/8(THz)) to be 1:4 which is sufficient o
achieve this. Figure 5.2 illustrates how sysiem performance depends on the minimum pulse
width for § = 1.65, where it clearly can be seen that an aptimum pulse width exisis for %y, &
1.75 ps. For longer pulse widths, interactions dominate and we ohserve [his increasing with %y
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.For shorter pulse widths higher order dispersive effects limit the performance. However even at

the optimal pulse width of 7, = 1.75 ps transmission performance is limited to below 5,000

km.
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Figure 5.3: System performance as a function of average dispersion for %, = 1.75 ps. (dashed ling) ¥ e = <0.01
ps'/km, (continuous line) §% . = -0.005 ps*/km and (dot and dashed line) f% g, = -0.0025 ps¥/km.

Utilising the information from Figure 5.2 that the optimal pulse width is in the region of
1.75 ps we investigate the dependence of system performance on the average dispersion. Figure
5.3 demonstrates the system dependence on average dispersion for f%,. = -0.0025, -0.008, -
0.01 ps*/km. It is immediately apparent that the optimal average dispersion varies for different
propagation lengths. For example, over relatively short transmission distances = 1,000 km
higher average dispersions show improved performance, resulting from the greater signal-to-
noise ratio (SNR). However, over longer propagation distances the greater energy of the DM
solitons is causing an increase in interactions, thus limiting the propagation distance. With low
average dispersions, performance is limited by SNR and although a greater propagation distance
is achieved, performance over short-medium distances is inferior. The optimum average
dispersion is achieved by balancing interactions and SNR.

Bxploiting the resulis of Figure 5.2 and Figure 5.3, we then seek to opiimise (he

bandwidth of the filters located directly after the amplifiers. The system requires the use of
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filters to reduce the significant timing jitter that accumulates over the transmission distance. As
stated previously we investigate pulse widths close to the optimum and find that the best
performance is achieved for 7., = 1.5 ps. Figure 5.4 demonstrates how dependent system
performance is upon filter bandwidth (£). When the filter bandwidth is excessively wide (£ =
3 THz) noise significantly degrades system performance, the resulting collisions between
adjacent pulses are clearly evident. Alternatively, when the filter bandwidth is too narrow then
transmission performance is limited by the growth of the continuous-wave background
instability. Balancing these limiting factors, with a filter bandwidth &y = 1.273 THz FWHM, one

can achieve performance in excess of 9,000 km, as seen in Figure 5.4.
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Figure 5.4: System performance as a function of filter bandwidth. (dashed line) £ = 0.9 THz, excess gain
coefficient Ag = 0.18 dB, (continuous line) £ = 1.273 THz, excess gain coefficient Ag = 0.1 dB and (dot and
dashed line) £ = 3 THz, excess gain coefficient Ag = 0.02 dB.

Figure 5.5 shows the eye diagrams at 1,000 km, 3000 km, 5,000 km and 8,000 km that
illustrate the system performance for the optimised system. It can be seen that for distances up o
3,000 km the eye diagrams are very clean, but at 5,000 km we begin to observe some jiiier on
the pulses, as well as the first signs of the continuous wave background instability generated by
strong filtering. At 8,000 km, the degradation of performance is evident as the eye diagram

shows severe jitter and large growth in the continuous wave background instability.
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Figure 5.5: Eye diagrams taken at (a) 1,000 km, (b) 3,000 km, (c) 5,000 km and (d) 8,000 km. Simulation
parameters: § = 1.65, f%,,, = -0.005 ps¥/km, £ = 1.273 THz, excess gain coefficient Ag = 0.1 dB.

5.4 Higher order non-linear and dispersive effects

With the optimised transmission, we then focus on the tolerance of the system to higher
order non-linear and dispersive effects. As the bit rate increases, dispersion slope compensation
becomes evermore critical as the dispersion slope length Ly = 1 / |#”] becomes increasingly
short. The result of which is that for large dispersion slopes non-linear interactions greatly
increase [226]. At this point, we have only considered the case iy = -, = -0.07 pa'flan.
Figure 5.6a demonstrates the sensitivity of performance on the residual dispersion slape, where
the residual dispersion slope over Z, is defined as A e = (BVde + AP0 1 U + 1), Likewise

the accumulated residual dispersion slope over Z, is simply (V). Tt 18 clearly svident thai ag
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the residual dispersion increases we observe a rapid decline in performance resulting from the
increased interactions. Although for small residual dispersion slopes, the effect on transmission
performance is negligible, for trans-oceanic transmission it must be confined to the region

0.01 ps’/km. Although this condition imposes serious constraints on the manufacture of fibre,

they are in excess of those manufactured in Ref, [142].

(a)

10000 ; | ; . ,

90001

& (km)

70001
8O00F
50001
4000}

3000F A

Propagation distance for Q

20001

100 ; i ; ; H
—~(9.03 -0.02 -0.01 0 0.01 0.02 0.03
Residual dispersion slope (psalkm)

(b)

30

—— Haman terms included
“1 - ~~- Raman terms excluded |

a1

10

(0] 2000 4000 3000 8000 10000
Propagation distance (km)

Figure 5.6: (a) Tolerance of system performance to residual dispersion slope. (b) Influence of stimulated Raman
Scattering (SRS) on system performance. Simulation parameters: § = 1.65, §%,,, = -0.008 ps2/km, {3 = 1.273 THz,
excess gain coefficient 4g.

So far, the simulations have included the effects of Stimulated Raman Scaitering (SRS)
but to establish the effect of SRS on transmission performance, we tum off the Raman

coefficients in the GNLS. From Figure 5.6b, it can be seen thai the performances of the fwo
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cases In question are broadly similar which shows that the SRS is only playing a relatively
minor role in limiting system performance.

An important physical effect that we have not considered so far is that of Polarisation
Mode Dispersion (PMD). We simulate the effects of PMD by numerical integration of the 2-
dimensional birefringent GNLS. Following [214, 215], the effects of random mode coupling are
simulated by breaking the fibre into equal length sections of 200 m, where the fields are rotated
by 6 (with a uniform distribution in [0 : ]) and a random phase difference ¢ imposed between
the two orthogonal components (with a uniform distribution in [0 : 7]). Including SRS and f7
= 0.005 ps’/km, Figure 5.7 illustrates the performance for different values of PMD. For low
values of PMD (0.02 ps/\/km), the maximum transmission distance is reduced by around 1,000
km to 8,000 km. However, as the PMD is increased, a dramatic reduction in performance is
observed where for PMD = 0.05 ps/Vkm performance is limited to 5,000 km and for PMD =
&07pyVMnonWamnmmnmmmimﬁmweGijGORnnmnbemmmvmlTﬁm%ﬁweﬁhﬁﬁﬁmww&
severe limitations on system performance which must controlled to be less than 0.02 ps/\/km to

support trans-oceanic transmission.
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Figure 5.7: System tolerance to Polarisation Mode Dispersion (PMD). (dushed line) PMD = 002 paikm,
(comtinuous line) PMD = 0.05 ps/Nkm and (dot and dashed line) PMD = 0.07 ps/Nkm. Simulation parameters
(including SRS): § = 165, T = 1.5 ps, #%. = -0.005 ps*km, AV, = 0.008 ps*/km, &= 1.273 THz, 4g = 0.1 4B,
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5.5 Noise induced interactions

Until this point in the discussion, we have overlooked the main limiting factor of the system, in
the absence of PMD, which is noise induced interactions. Recall our previous observation,
which stated that as the filter bandwidth increased, interactions between neighbouring DM
solitons also increased. This phenomenon was first considered in the case of classical soliton
propagation by Georges [227]. In this particular system, we observe the recurrence of this
phenomenon as a key limiting factor for two reasons: (1) the large bandwidth of the propagating
DM soliton and (2) the close proximity of neighbouring DM solitons.

We formulate this observation explicitly in Figure 5.8, which shows a pair of DM
solitons with the initial conditions of the optimal system. For clarity, we have neglected higher
order and non-linear effects. In the case of noiseless propagation, we observe no interaction over
20,000 km, however when ASE noise is introduced by the amplifiers (noise figure = 4.5 dB and
$Jr = 3 THz) the DM solitons collide at approximately 9,000 km. The source of this interaction
results from the accumulation of jitter inside of the filter bandwidth. Therefore, to optimise
performance the filter bandwidth must be selected to reduce as much of the jitter as possible
without exciting instabilities in the continuous wave background. In addition, we found that the
pattern propagation length was shorter than the collision length for a pair of DM solitons and
that as anticipated, the inclusion of a residual dispersion slope further increases the interactiona.
Increasingly, for higher bit rates this phenomenon will become more dominant. A possible
control technique that can be used to reduce interactions between neighbouring DM solitons is
phase-alternation [104]. Figure 5.8c demonstrates this technique for the case of a 5 THz filier

and shows that even in the presence of noise the pulses still maintain their phase dependence.
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Figure 5.8: Reduction in the collision length between a pair of DM solitons resulting from noise. (a leff) No
amplifier noise, no third order dispersion, no filter and (b right) amplifier noise figure = 4.5 dB, no third order
dispersion and broad filter. (¢ bottom) With phase alternation. Simulation parameters as Figure 5.5.

5.6 Robustness of transoceanic transmission

So far in this chapter, we have only considered propagation using the exactly periodic DM
soliton. However, under experimental conditions the DM soliton shape cannot be replicaied
casily. Therefore based on our knowledge of the optimised conditions for DM soliton
propagation, we investigate transmission where the DM soliton has been replaced by a Gausaian

shaped pulse with the initial parameters. Although at low map strengths the ime-bandwidih
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product of the DM soliton is closer to that of a hyperbolic secant pulse, we select a Gaussian

pulse shape as this is more commonly used in the laboratory environment.
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Figure 5.9: Contour plot detailing the dependence of system performance as a function of pulse width and initial
power. For each of the pulse widths § is fixed to 1.65 by adjusting the local dispersion. Simulation parameters (SRS

included): 7, = -0.005 ps*km and f7,.; = 0.005 ps’/km. Contour lines indicate the maximum achievable
propagation distance.

We use this section to confirm our observations of the previous sections and validate our
approach of investigating 160 Gbit/s long haul transmission using only the exactly period DM
soliton. Firstly, we investigate the dependence of system performance on the initial power and
pulse width of the DM soliton. With both Z, (= 50 km) and Z, (= 1.5625 km) fixed, we follow
our previous approach and adjust the local dispersion to fix § = 1.65 for each pulse width. We
also introduce phase aliernation between consecutive pulses in order to reduce interactions, In
Figure 5.9 we include SRS, a residual dispersion slope ™7, = 0.005 ps*/km and set the average
dispersion f%a. = -0.005 ps*/km (which was the optimised condition from Figure §.3). Ag in
Figure 5.2, we fix the ratio between minimum pulse width and inverse of the filler bandwidih ao
that at Tus = 1.5 ps we have the optimised filter bandwidth of 1.273 THz. Figure 5.9 illusirales

the typical behaviour we expect to observe in the pulse widih ~ initlal power plans for DM
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solitons. It is apparent that the optimum transmission performance is achieved for T, = 1.5 ps
and that as the power deviates significantly from that of the exactly periodic DM soliton,
performance declines rapidly. Also visible in Figure 5.9 is the rapid growth in interactions at
high powers and the increasing penalties due to higher order non-linear and dispersive effects
that occur for short pulse widths. Contrasting Figure 5.4 and Figure 5.9, there appears to be little
penalty in terms of transmission distance for trading the exact DM soliton shape for a Gaussian
pulse shape.

Examining closer the behaviour at the optimised pulse width %, = 1.5 ps, Figure 5.10
investigates the dependence on average dispersion. It can be seen that the optimal conditions are
extremely dependant on both the initial power and average dispersion. The limiting factors have
been included in Figure 5.10. In the regions labelled ‘propagation stability’, transmission
performance is extremely poor due to the fact that DM soliton propagation cannot be sustained
for any considerable distance, i.e. there is a mismaich between the initial power of the pulse and
the average dispersion. This behaviour is demonstrated in Figure 5.11, which illustrates the
pulse evolution for three specific locations in Figure 5.10. Additionally, at low powers,

performance is limited by SNR and at high powers intra channel interactions dominate.
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5.7 Medium haul transmission
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Figure 5.12: Transmission performance over 3,000 km as a function initial power and pulse width. Contour lines
indicate the Q value estimates at 3,000 lan.
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Figure 5.13: Transmission performance over 3,000 km as a function of initial power and average dispersion for
= | ps. Contour lines indicate the Q value estimaies at 3,000 km.
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Transmission over transoceanic distances imposes stringent conditions on propagation, and it
allows us to understand the limitations of performance, although ofien transmission distances
over a smaller distance is all that is required. Now we investigate propagation over a fixed
transmission distance of 3,000 km utilising our knowledge of transoceanic transmission, Figure
5.12 illustrates system performance as a function of initial power and pulse width for a fixed
average dispersion of —0.005 ps*/km. It is evident that optimum performance is achieved for a |
ps pulse which is shorter than the optimum pulse width of 1.5 ps for transoceanic transmission,
For longer pulse widths, interactions due to the pulse overlap limit performance and for very
short pulse widths, the higher order non-linear and dispersive effects force a rapid decline in
system performance. It is evident from Figure 5.12 that a large region exists for which Q = 6
showing that the sysiem maintains a certain degree of robustness. When we evaluate syatem
performance in terms of the initial power and average dispersion for the optimum pulse width of
1 ps, as in Figure 5.13, a different pattern begins to emerge. Here we observe that system
performance depends critically on average dispersion and that slight deviations from the
optimum results in a rapid decline in performance. This sensitivity to average dispersion is a
direct consequence of the short pulse being used, therefore longer pulse widths would create
larger transmission regions. However at the optimum average dispersion a reasonable range of

initial powers can be tolerated to achieve transmission for Q = 6.

5.8 Short haul transmission

Another target distance that is important to optical communications ig 1,000 km. In a similar
manner to section 5.7 we illustrate performance as a function of initial power and pulse widih

over 1,000 km for %4, = -0.005 ps’/km. Contrasting Figure 5.14 and Figure 5.12 we see {hai



there is a broadly similar dependence in the general performance characteristics, but with Figure
5.14 having twice the performance observed in Figure 5.12, Again we find the optimum pulse
width is 1 ps with an initial power of 21 dBm, but now as a result of the shorter propagation
distance the transmission region for which Q 2 6 has increased. Utilising the optimum pulse
width of 1 ps we then proceed to map out performance in terms of initial power and average
dispersion, which can be seen in Figure 5.15. Here we observe a much broader transmission
region compared to Figure 5.13, and that the optimal average dispersion has increased to -0.01
ps’/km. This indicates that over short transmission distances SNR can be traded for increased

interactions leading to improved performance.
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Figure 5.14: Transmission performance over 1,000 km as a function of initial power and initial pulse widih,
Contour lines indicate the Q value estimates at 1,000 km.
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Contour lines indicate the Q value estimates at 3,000 km.

5.9 Conclusions

In conclusion, we have demonstrated numerical simulations of 160 Gbit/s single channel
transmission over trans-oceanic distances. This performance was achieved by using short period
dispersion management, which supports short pulse propagation and reduces interactions
between neighbouring DM solitons. We demonstrated that by optimising the system parameiera
of pulse width, average dispersion and filter bandwidth, that the transmission distance can be
significantly increased. We then substituted the exact form of the DM goliton with a Gaussian
pulse shape and verified that only a small penalty was incurred. We investigated the tolerance of
the optimised system to higher order non-linear and dispersive effects and found that
transmission performance was sensitive to both the residual dispersion slope (A7) and
polarisation mode dispersion (PMD). However, trans-oceanic transmission is aiill possible if
these two factors can be confined fo some tolerable limita that have been definad. In addition,
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transmission over medium and short haul distances were investigated, which revealed that
system performance was quite robust to initial conditions. However, these systems did exhibit a

sensitivity to average dispersion that must be closely controlled if good performance is to be

achieved.
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Chapter 6 320 Gbit/s transmission

6.1 Introduction

In the preceding chapters, we have focused on single channel transmission at 80 Gbit/s and 160
Gbit/s. In this chapter, we now increase the data rate again to investigate single channel
transmission at 320 Gbit/s. Although transmission capacity in excess of 320 Gbit/s is becoming
more commonplace amongst the published literature [202, 218, 219, 228-230], however, most of
these approaches involve massive WDM strategies. To date, relatively little published material
has focussed on ultra high speed single channel transmission [143, 231].

In this chapter, we continue our approach of using short period dispersion management
and investigale transmission using numerical simulations. We determine the distances aver
which 320 Gbit/s single channel transmission is feasible and then focus specifically on short

haul transmission.

6.2 Single pulse propagation

As in the previous two chapters, we initially investigate single pulse propagation by finding
stable, period DM solitons using an averaging method [111]. Again we fix the amplifier span Z,
= 50 km and the following fibre properties: fibre loss o = 0.2 dB/km, effective area Az = 50
pm’ and non-linear index nz = 2.6x10%° m¥W. To minimise interactions between neighbouring
DM solitons we operate at a map strength of 1.6.

Following the logic applied in the previous two chapters, we focus initially on a 64
section short period dispersion map, which equates to Z, = 1.5628 km. Figure 6.1 provides a

schematic representation of the dispersion map used for 320 Ghit/s transmission with the pulse
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width evolution for the exactly periodic DM soliton being shown in Figure 6.2. It can eaéily be
seen that the pulse width oscillates extremely rapidly and that we begin to observe additional
dynamics creeping into the pulse width evolution that were not observed in previous chapters.
With the extremely rapid oscillation in pulse width, Figure 6.3 shows that the pulse evolution
over Z, looks more akin to that of the classical soliton than the DM soliton. Even though the
number of dispersion sections per amplifier span has greatly increased we still find that these

DM soliton solutions are stable and can propagation over distances in excess of 10,000 kwm, as

shown in Figure 6.4.
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Figure 6.1: Schematic representation of the short period dispersion map used for 320 Gbit/s transmission.
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Figure 6.2: Pulse width evolution over Z, for a 64 section SPDM.
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Figure 6.3: Dynamical evolution of the DM soliton over Z,.
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Figure 6.4: DM soliton propagation over 10,000 km shown stroboscopically at the amplifiers.

6.3 Transmission simulations

For the transmission simulations at 320 Gbit/s we use the Generalised Non-Linsar Schridinger
equation (GNLS) including higher order non-linear and dispersive effscia, Again as in (he
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previous chapters, dispersion slope compensation is provided by an alternate sign of dispersion
slope in each fibre section with magnitudes: 7, = -7, = 0.07 ps*/km. We take the noise figure
of the amplifier to be 4.5 dB and place a Gaussian filter after each amplifier to suppress the
accumulation of ASE noise, as detailed in Figure 6.5. Once again, the receiver is modelled by a
non-optimised Lorentzian electrical filter of 280 GHz (87.5 percent of the bit rate). In this
particular system, we place the amplifiers at the beginning of the anomalous dispersion fibre

section and therefore pulse amplification and filtering occurs where the pulse width is relatively

broad.

EDFA Short period dispersion map EDFRA

Optical filter Optical filier

Figure 6.5: Schematic representation of transmission line used for 320 Gbit/s transmission

The performance of the system is evaluated using Q value estimates taken from a 2'-1 bit
pseudo random binary sequence. Initially we determine the dependence of system performance
on the minimum pulse width 7, for a fixed map strength of S = 1.65. To allow for the differing
spectral bandwidths and to reduce the effect filters have on propagation, we fix the ratio of
minimum pulse width to inverse filter bandwidth (7, : £29) to be 0.25, such that the filiers are
broad relative to the pulse width at that point. Figure 6.6 details the dependence of system
performance on minimum pulse width. It is clear that an optimum minimum pulse width exists
for T, = 1.5 ps and that for longer pulse widths interactions increase limiting performance. For
shorter pulse widths performance declines as a result of higher order non-linear and disperaiva
effects. At the optimum minimum pulse width a balance is obtained beiwsen interactions and
higher order effects, thus a transmission distance of 3,400 km is achieved.
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Figure 6.6: System performance as a function of minimum pulse width.

Taking the optimum minimum pulse width from Figure 6.6, we then seek io optimise system
performance for this specific pulse width. Firstly we optimise the performance in terms of
average dispersion, which can be seen Figure 6.7. It is apparent from Figure 6.7, that for average
dispersions that are greater in magnitude than the optimum average dispersion, we observe that
although performance improves over shorter distances (< 1,000 km), for longer propagation
distances, declines rapidly due to interactions. The performance of the optimum average
dispersion over short haul distances is considerably poorer due to SNR, however the lower
energy of these DM solitons facilitates longer propagation distances before interactions become
significant. For average dispersions that are smaller in magnitude than the optimum, SNR

severely limits performance.
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Figure 6.7: Dependence of system performance on average dispersion.(dashed line) [F%,, = -0.004 ps*/km, (solid
line) f%4, = -0.002 ps*/km and (dot and dash line) A%, = -0.001 ps*/km.

By breaking the relation ¥, = p7,, a residual dispersion slope 7. is created which allows the
tolerable limits of system performance to ) to be investigated. Figure 6.8 illustrates the
sensitivity of the system to the residual dispersion slope. Transmission performance I8
significantly affected by the residual dispersion slope, so much so that when iﬁ"%t = (3,005

ps*/km propagation is limited to 1500 km.
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Figure 6.8: Tolerance of system performance to residual dispersion slope.

133




At this point, we have optimised the system to minimise interactions and higher order
effects, and maximise SNR. The performance of the system can further be enhanced by
optimising the bandwidth of the optical filters that are located after each amplifier. In this
particular system, the role of filters is to simply suppress the ASE noise generated by the
amplifiers, which reduces the timing jitter of the pulses [62, 63] and does not suppress the
frequency shift of interacting solitons [55, 232). The effects that filter bandwidth has on
propagation is demonstrated in Figure 6.9. For £ = 2 THz, it can be seen that whilst the noise in
the DM soliton spectra is significantly reduced, the narrow bandwidth of the filter excites the
Continuous-Wave (CW) background instability [212] which destroys the transmitted
information as the DM solitons become less distinguishable from the background. The other
extreme is observable in Figure 6.9(c), where £ = 5 THz, in this case the filter is so wide that
the continuum is not excited, but the noise in the spectrum leads to a significant accumulation of
timing jitter. In this scenario, we seek a balance between these twa effects which is shown in
Figure 6.9(d), where the greatest amount of noise is removed from the spectrum without leading
to significant build up of the continuum until relatively large propagation distances have been

achieved.
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Figure 6.9: The effect of filter bandwidth on DM soliton propagation. (a) &= 2 THz, (b) Qy= 3THz and (c) & =
5THz.

As stated previously, ASE noise manifests itself in the form of timing jitter that can be observed
from the eye diagram at the receiver. However, when DM solitons have a broad spectrum (short
pulse widths), then as we observed in the previous chapter the timing jitter leads to interactions
between solitons. These induced interactions can be seen in Figure 6.10. Again, we see that the
collision distance can clearly be related to the amount of noise in the DM soliton spectrum.
Without ASE noise and filters, the collision distance for a pair of DM solitons is greater than
10,000 km where as with ASE noise and no filters the collision distance is reduced o less than

4,000 km.
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Figure 6.10: Reduction of the collision distance between a pair of DM solitons due to noise. (a) No ASE noise, no
filter, (b) ASE noise, 3 THz filter, and (c) ASE noise, no filter.
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Figure 6.11: Optimal system performance as a function of propagation distancs.

Using the optimised conditions for %, ¥ and & Figure 6.11 details system
performance as a function of propagation distance. It is observable that propagation over 6,500
km can be achieved under optimal conditions. A more detailed look at the transmission
performance can be seen in Figure 6.12 that shows the eye diagrams at 1,000 km intervals, From
Figure 6.11 and Figure 6.12, it can be seen that the effects of accumulated noise kill the
performance. For propagation distances between 3,000 km and 6,000 km, the increasing timing
jitter of the pulses is clearly observable. At 6,000 km the CW background instabilities become
visible. By 7,000 km, interactions stimulated by the noise are evident in the eye diagram along

with the increasing growth of the CW background.
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6.4 Higher order non-linear and dispersive effects

Having determined the optimal conditions for transmission performance, we now turn our
attention to the robustness of this system to higher order non-linear and dispersive effects.
Firstly, we investigate the effects of dispersion slope. As stated previously, in this system,
dispersion slope compensation is provided on the length scale of Zp, which becomes
increasingly important as the pulse width becomes shorter. In this particular case, we are mainly
concerned with the residual dispersion slope 7, as the dispersion lengths associated with each
of the dispersion slopes of the individual fibre sections is much smaller than Zy (Lp' < &)
However due to the short pulse width, we are faced with an incredibly short dispersion length
associated with 7, relative to desirable transmission lengths of 1,000 km and upwards, The
effects of the residual dispersion slope on propagation can be seen in Figure 6.13. In the case of
7,5 = 0.005 ps*/km, Lp’ = 84 km, we observe thai even for propagation distances >> Lp’ anly a
small amount of radiation is shed and propagation largely remains unaffected. As B,
increases, the effect on propagation becomes more noticeable. For /3(3)m = 0.025 ps3/km, Lp' =
17 km, the smooth propagation of the DM soliton is destroyed and instead we observe a pseudo-
random evolution of the slow DM soliton dynamics which sheds a lot of radiation. Increasing
[, further, we observe the DM soliton shedding a large amount of radiation which eventually

destroys the propagating pulse.
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Figure 6.13: Effect of residual dispersion slope on propagation. (a) ﬂ”,,. = 0.005 ps3/km, (b) ﬁ'”,, = (0.025 psalkm,
(©) f,s = 0.05 ps*/km.

The effects of Stimulated Raman Scattering (SRS) become increasingly important for short
pulse widths. Figure 6.14 illustrates noiseless propagation of the optimal DM soliton including
the effects of SRS. From Figure 6.14(a) no filter has been included and it appears the SRS has
little effect on propagation. However, from Figure 6.14(b) and Figure 6.14(c) the SRS induced
frequency shift becomes visible. In this case, the observed frequency shift is small due to the
relatively lower power of the DM soliton making the SRS process inefficient. Neveriheleas this

is not always the case as is detailed in section 6.5,
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Figure 6.14: Effect of SRS on short pulse propagation with no noise and no filter. (a) 3D evolution, (b) 2D
evolution showing temporal shift due to SRS, (c) Frequency shift.

Polarisation Mode Dispersion (PMD) is another limiting factor that must be considered.
As in previous chapters, we use the birefringent 2-dimensional GNLS including the effects of
random mode coupling. Figure 6.15 demonstrates how influential polarisation mode dispersion
is on single channel transmission at 320 Gbit/s. For relatively low values of PMD we observe
that transmission is limited to around 4,500 km, which is a reduction of 1,500 km. However,
performance declines rapidly as the PMD increases due to the instability of the propagating
pulse [215]. For PMD = 0.07 ps/Vkm, only a small transmission distance of around 250 kim ia
possible, which indicates that for short pulses the main performance limiting factor is the PMD

induced instability of the propagating pulse.
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Figure 6.15: The effect of polarisation mode dispersion on 320 Gbit/s transmission. (solid line) PMD = 0.02
ps/Vkm, (dashed line) PMD = 0.05 ps/Ykm, and (dot and dashed line) PMD = 0.07 ps/Vkm.

6.5 Long haul transmission

Following the convention adopted in the preceding two chapters, we investigate transmission at
320 Gbit/s using a Gaussian shaped pulse with the initial conditions of the DM soliton, The
difference in profile of the exactly periodic DM soliton and a Gaussian pulse with the same
initial conditions are shown in Figure 6.16. It is apparent that over the core (centre) of the pulse
there is little to distinguish between the two pulses, but the Gaussian pulse has tails that decay
much faster than those of the DM soliton. Whilst this may reduce interactions that originate
from overlapping of pulses, it also induces a quasi-periodic motion in the slow dynamics of the

propagating DM soliton. These dynamics can be seen in Figure 6.17.
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Figure 6.17: Propagation of a Gaussian shaped pulse with the initial conditions of the DM soliton.

We investigate transmission distance for which Q 2 6 as a function of the average
dispersion and initial pulse power. These simulation results for 7, = 0.75 ps are observable in
Figure 6.18. Clearly, performance is incredibly sensitive to average dispersion and only small
average dispersions can be folerated. At the aptimum point in Figure 6.18, a transmission
distance greater than 6,000 km can be achieved. Figure 6.18 exhibits the same general shape that

we have observed in previous chapters and therefore we shall not dwell too much on Timiting
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factors discussed in the previous chapters. In addition, it should be noted that the thimumv
average dispersion in Figure 6.18 is identical to that found using the DM soliton in Figure 6.7.

An interesting feature of Figure 6.18 is that the optimum conditions of the propagation
using Gaussian pulses are not those of the exactly periodic DM soliton. For Gaussian pulses,
optimum performance is achieved for an initial power of 19 dBm, whereas the DM soliton
power is 10 dBm. This is quite astonishing when we investigate the effect of SRS at high
powers. Figure 6.19 illustrates noiseless propagation (without any filters) for Gaussian shaped
pulses with the initial conditions of the DM soliton and those of the optimum conditions
observed in Figure 6.18. We can see that in the case of the high power Gaussian pulse, the SRS
process is extremely efficient with a large frequency shift being observable, which is a direct
result of the increased power. In contrast, Figure 6.19(b) exhibits little variation in propagation
characteristics with only a small frequency shift visible. Therefore how come we achieve
improved performance with an increased amount of SRS?. The answer becomes evident in
Figure 6.20, when we include an optical filter of 3THz located directly afier the amplifier,
analogous to the previous studies [233, 234]. We observe that the SRS induces a frequency shift
that causes some of the spectrum to be cut away by the filter. Therefore, we undergo a form of

SRS enhanced regeneration of the propagating pulse.
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Figure 6.18: Dependence of transmission performance on average dispersion and initial power for 7= 0.75 p.
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Figure 6.20: Control of SRS for a Gaussian pulse of initial power 18 dBm by using a 3 THz filter located after sach
amplifier

6.6 Short haul transmission over 1,000 km

In addition to long haul transmission, we focus here on short haul transmission at 320 Gbit/s.
The constraints on short haul transmission are often more relaxed than for transoceanic systems,
with this in mind we use two different pulse widths to investigate performance. Figure 6.21 and
Figure 6.22 illustrate the transmission performance over 1,000 km as a function of initial power
and average dispersion for 7., = 0.75 ps and T, = | ps respectively. In each case, the initial
conditions of the Gaussian pulses were that taken from the exact DM soliton with S fixed to 1.65
and higher order non-linear and dispersive effects were included. Once again, the general
dependence of Figure 6.21 and Figure 6.22 is broadly similar to those observed in previous
chapters but with a vastly reduced set of tolerable average dispersions. It i clear that
transmission is supported over a larger region for %, = 0.75 than for %, = 1 ps. This indicates
that the overwhelming limiting factor is interactions between adjacent pulses a8 %y = 1 ps
exhibits a greater tolerance to higher order non-linear and dispersive effects, In addition, the

lower optimum power for 7m, = 1 ps is also indicative of the system being interaction limited.

=
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Although the optimum performance is similar in both cases, the optimum region is far larger in
Figure 6.21, which is more desirable. Therefore, at a transmiésion rate 320 Gbit/s little
additional freedom is gained when we reduced the transmission distance to only 1,000 km.
However, what is apparent when Figure 6.21 is compared to Figure 6.18 is the greater optimum

average dispersion for transmission over 1,000 km compared to long-haul transmission.
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Figure 6.21: Contour plot detailing system performance as a function of initial power and average dispersian for 7=
0.75 ps over 1,000 km. Contour lines indicate the Q values at the receiver.
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Figure 6.22: Contour plot detailing system performance as a function of initial power and average dispersion for 7=
I ps over 1,000 km. Contour lines indicate the Q values at the receiver.

6.7 Conclusion

In conclusion, we demonstrated the possibility of 320 Gbit/s single channel transmission over
distances in excess of 6,000 km. This performance was achieved by methodical optimisation of
the system parameters. We found that performance was limited mainly by noise induced
interactions although the system was extremely sensitive to higher order dispersive effects. In
order to achieve reasonable performance, the average dispersion must be tightly controlled. Also
the use of optical filters can be used along with SRS to improve performance. Over short haul
distances, good transmission performance can be achieved for a velatively large parameter
space. In addition, we have shown that system performance is severely limited by PMI. In the
case of strong PMD, stable pulses cannot be supported and shatter afier only a relatively short
propagation distance. However, transmission in excess of 4,000 km is possible if the PMI) is

below the tolerable limit defined in the chapter.



Chapter 7 Quasi-linear versus
dispersion managed soliton
propagation

7.1 Introduction

In the previous chapters, our work has focussed specifically on DM soliton transmission
systems. Nevertheless, dispersion managed systems support a whole spectrum of propagation
regimes that range from quasi-linear to non-linear soliton-like propagation. As described
previously, DM solitons exist for low to moderate dispersion map strengths (S), however, as §
increases beyond a certain threshold, DM soliton propagation is no longer supported [110]. The
reason for this is that for strong S, the energy required to create a DM soliton is foo great,
However, in this region of strong S (S > 12), another form of propagation exists, which is
referred to as quasi-linear propagation. In quasi-linear propagation, the pulses have an energy
that is far below that required for the formation of a DM soliton, and therefore non-linear effects
significantly impair the performance of these systems. Quasi-linear behaviour can still be
observed for low to moderate map strengths by simply reducing the energy of the pulses.

Interest in quasi-linear propagation arises from the combination of commercially
available fibres (including legacy fibres) with large dispersions at 1550 nm, and the desire for
ever increasing data rates. Typically, fibre types such as SMF, RDF, DCF and their varianis
continue to dominate the fibre market. Adopting the conventional design of diapersion managed
systems where Z, 2 Z,, although Z, = Z, is more commonly found amongst the published
literature, then for practical amplifier spans (Z, = 35 km) and increasing fransmission rales
(implying shorter pulse widths), the strength of the dispersion management soon exceeds the

limit for DM solitons. Therefore, in such systems, the quasi-linear propagation regime ia
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imposed on the designers of such systems. For this reason, propagation in this regime has
received considerable attention [96, 98, 138, 173, 194, 204, 235]. Although this propagation
regime has the advantage, compared to soliton-like systems of reduced interactions [138], this
propagation regime is significantly limited by Intra Channel Four Wave Mixing ICFWM) [205,
236}, a phenomena that is virtually nonexistent in soliton-like propagation.

Quasi-linear propagation, often referred to as “pulse-overlapped” transmission, is
characterised by pulses which experience massive breathing where pulses overlap a significant
number of their nearest neighbours. It is during the periods where the pulses are overlapped that
the ICFWM builds, which manifests itself in the form of amplitude jitter and formation of
“ghost” pulses.

In this chapter, we contrast the performance of quasi-linear propagation, with soliton-like
propagation for 40 Gbit/s based transmission for both single channel and WIDM transmission. In
addition, we investigate means by which performance can be improved in both soliton-like and

quasi-linear systems by optimisation of the carrier pulse shape.

7.2 Comparison of propagation regimes

In order to contrast the propagation regimes, we construct the dispersion maps from fixed fibre
types, namely SMF and RDF. The reasons for the selections arise from the availability of such
fibres and because of the alternate sign dispersion slopes of each fibre. The different propagation
regimes are therefore achieved by altering the dispersion management period (which conversely
varies S) for a fixed amplifier span, Z;, = 40 km. The four dispersion maps investigated are

shown in Figure 7.1.
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Figure 7.1: Schematic representation of the dispersion maps investigated. Bach map is constructed using sections of
SMF and RDF with Z, = 40 km. Map 1: Z, = 40 km, Map 2: Z, = 20 km, Map 3: 2y = 10 km, and Map 4: Z, = 4 km.

In the case of map 1, we have Z, = Z, = 40 km, therefore S is sirong and pulse
propagation will be quasi-linear in nature. In map 2, the dispersion management period is
reduced to Z, = 20 km, therefore Suqp2 = Suqpi/2 and consequently the propagation will still be
quasi-linear but with more confined breathing of the pulse. For the map 3, we start to approach a
more non-linear propagation regime with Z, = 10 km and Syap3 = Snapi/4. Finally, in the case of

map 4, Z, << Z, meaning that we are into the regime of short period dispersion management and

for suitable pulse widths DM soliton behaviour should be observable.

7.3 Single channel transmission

For each of the four dispersion maps illustrated in Figure 7.1, performance is evaluated using Q
value estimates based on a 2’-1 PRBS. The amplifiers are taken to have a noise figure of 4.5 dB,
with a wide Gaussian filter of 1.5 THz, located directly after the amplifier, to remove fhe
accumulation of ASE noise. Including higher order non-linear and dispersive effects we
introduce a residual dispersion slope of D, = 0.01 pa/nm*km. Fixing the average dispersion,

Daye = 0.05 ps/nm/km, we compare the system performance for each of the dispersion ApE.
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Propagation in dispersion map 1 is illustrated in Figure 7.2, which depicts the evolution
of both a single pulse and the Q value. It can be seen that the propagating pulse exhibits massive
expansions and contractions in pulse width, with the original pulse shape emerging after
propagation over nZ,. It is clear that when the pulse width is at its maximum, it extends over
many neighbouring bit periods. The Q value evolution also provides an interesting insight into
propagation in this regime, where it can be seen that only periodically is the transmitted data
pattern reconstructed, with these points of reconstruction corresponding to the points where the
pulse is most compressed. For all other points, the pulses are so overlapped that they become
indistinguishable from each other. Also from Figure 7.2(b), the changing periodicity of the
reconstruction of the data pattern is clearly evident which is due to SPM.

The dependence of transmission performance on pulse width and initial power for map 1
can be seen in Figure 7.3. We observe that broadly the dependence is that of the DM soliton
where initial power increases with shortening pulse width, and improved performance being
achieved for stronger map strengths. At high powers, non-linear effecis limit performance and ai
short pulse widths, low powers impede performance.

Moving onto propagation in map 2, shown in Figure 7.4, the breathing of the pulse is
now more confined and therefore extends over fewer of the adjacent pulses. Examination of the
Q value evolution in Figure 7.4 shows that although we still have this periodic reconstruction of
the transmitted paper, this period is far shorter than in map 1. Again, we see the effect of SPM
that gradually increases this reconstruction period. From Figure 7.5, it is clear that map 2
displays a similar behaviour to map 1, but with a reduced transmission distance. Also, we do not
observe the increasing performance for shorter pulse widths, with optimum performance being
achieved for longer pulse widths.

Propagation in map 3 represents a departure from the behaviour observed for maps 1 and
2, this behaviour can be seen in Figure 7.6. The breathing of the pulse is now rapid and well
confined, giving the appearance of more soliton-like propagation. This behaviour ia alao evideni
in the evolution of the Q factor, where it can be seen that although the small amaunt of brsathing
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leads to some variation in the Q values, generally the transmitted pattern can be detected at any
point along the propagation. The evidence of more soliton-like behaviour is also evident in
Figure 7.7, where a solitary peak of optimal performance can be seen. Away from this peak, the
dependence shows similarities with those from maps 1 and 2.

True DM soliton behaviour is observable in map 4, which can be seen in Figure 7.8, In
this case, the high-powered pulses display a short rapid breathing motion that results in the
transmitted pattern being maintained continuously throughout propagation. This is evident from
the Q value evolution in Figure 7.8(b). Observation of Figure 7.9 confirms the soliton-like
nature of the propagation in map 4 due to the sharp peaks that are clearly evident. The stronges(
of the peaks in Figure 7.9 occurs for the critical map strength S. = 1.65 where interactions
between neighbouring DM solitons are minimised [127]. An interesting feature is that for § =
S/2 and § = 25, we observe two resonant performance peaks. Away from these peaks,

performance is considerably degraded.
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Figure 7.2: Propagation in dispersion map 1. (a) Single pulse prapagation over 2 dispersion management periods (v
= 10 ps) and (b) evolution of Q as a function of propagation distance for Py = 0 dBm and v= 10 ps.
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Figure 7.3: Surface plot detailing the system dependence on pulse width and initial power for 40 Ghit/s
transrmission using dispersion map 1.
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Figure 7.4: Propagation in dispersion map 2. (a) Single pulse propagation over 2 dispersion management perinds (7
= 10 ps) and (b) evolution of Q as a function of propagation distance for #; = -2 dBm and 7= 10 A
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Figure 7.5: Surface plot detailing the system dependence on pulse widih and initial power for 40 Ghit/s
transimission using dispersion map 2.
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Figure 7.6: Propagation in dispersion map 3. (a) Single pulse propagation over 2 dispersion management periods (v
= 10 ps) and (b) evolution of Q as a function of propagation distance for Po= 6 dBm and 7= 10 Ps.
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Figure 7.7: Surface plot detailing the system dependence on pulse width and initial power for 40 Gbit/s
transmission using dispersion map 3.
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Figure 7.8: Propagation in dispersion map 4. (a) Single pulse propagation over 2 dispersion management periods (v
= 10 ps) and (b) evolution of Q as a function of propagation distance for Py =7 dBm and t= 10 8.
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transmission using dispersion map 4.



7.4 WDM Transmission

Having investigated single channel transmission at 40 Gbit/s, we take a subset of the pulse
widths used in section 7.3 and investigate WDM transmission using 4 channels. Throughout, we
fix the channel spacing AC = 150 GHz, which scales to achieve 1 Tbit/s transmission capacity
from a single EDFA window. Figure 7.10 through to Figure 7.13 display both 1x40 Gbit/s single
channel and 4x40 Gbit/s transmission for pulse widths =8, 9, 10, 12, 14 ps for maps 1 1o 4.

In the case of map 1, we observe that in general WDM performance is limited by that of
the single channel, which in this case is Intra-Channel Four Wave Mixing (ICFWM). Also it can
be seen that the maximum propagation distance achieved is similar for sach of the pulse widtha
investigated. Another interesting point from Figure 7.10 is that the optimal power for WM
transmission is far greater than the power for aptimal single channel performance.

A similar phenomenon is noticeable in Figure 7.11 but with a general reduction In
performance relative to map 1. Again, there appears to be little sensitivity of the WDM
performance on pulse width, but this is a result of the poor performance of the single channel.

In Figure 7.12, we observe a departure from the previous behaviour of Figure 7.10 and
Figure 7.11. It can be seen that the optimal initial power now coincides for both single channel
and WDM transmission and that a large WDM penalty is incurred. In general, the maximum
achievable transmission distance for WDM is approximately half that achievable for gingle
channel transmission.

For the soliton-like propagation in Figure 7.13, it can clearly be seen that & large WDM
penalty is occurring at the optimal initial power. For certain pulse widths the maximum WDM
distance is approximately a quarter of the maximum single channel transmission distance. In
addition, whilst the single channel transmission displays a dependence on the pulse width, the
WDM performance remains largely invariant with respect to the pulse widths investigated.

Therefore, if we take a pulse width of 10 ps and contrast the performance abtained fram
each of the dispersion maps, we observe that although significant variations in single channel
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performance, the maximum achievable WDM distance is extremely similar. However, what is

different is the limiting factors of the systems. For maps 1 and 2, we observe that WDM
performance is limited by the performance of the single channel, i.e. ICFWM. For maps 2 and 3,
where the propagation is more soliton like, we observe large penalties occurring from inter
channel effects such as FWM and XPM.

From the previous analysis, it is apparent that the inter channel interaction process
behaves differently for each of the dispersion maps investigated. We can achieve a better
understanding of this interaction process by investigating the interactions between a pair of
propagating pulses, separated by a channel spacing AC = 150 GHz. Figure 7.14 illustrates the
frequency shift as a function of propagation distance for two pulses, with an initial temporal
separation of 500 ps. The different inter channel collision mechanisms are clearly visible in
Figure 7.14. For map 1, the interaction process takes place over a long distance, due to the large
breathing of the pulses, however, from the frequency shift we can see that the collisions are not
too severe, due to the low intensities of the pulses during temporal overlap. At the other
extreme, in map 4 we observe that the inter channel collisions are shorter and more severe,
which is a result of the reduced breathing and increased intensities of the pulses during temporal
overlapping. Between the extremes of maps 1 and 4, we observe that for maps 2 and 3 a trade
off between collision severity and collision length occurring. The post collision residual
frequency shift is also increasing as the severity of the interaction increases. From Figure 7.14 it
can be seen that the inter channel collision process can be controlled by adjusting the dispersion
management period. Therefore, this offers the potential to optimise WDM transmission

performance.
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Figure 7.14: The frequency shift resulting from the inter channel interactions between a pair of DM solitons
separated by a channel spacing of 150 GHz. (a) Map 1, (b) map 2, (c) map 3 and (d) map 4.

7.5 Optimisation of average dispersion

In the previous sections, we contrasted performance for a fixed average dispersion. However,
each of the propagation regimes has differing values of optimal average dispersion. Therefore,
to truly contrast propagation ranging from quasi-linear to soliton-like, we must optimise the
average dispersion for each regime. Based on the findings in section 7.4, we confine our
analysis to focus on pulse widths of 10 ps. Figure 7.15 illustrates the single channel performance
as a function of average dispersion and initial power for each of the dispersion maps using a 10
ps pulse. For map 1, we observe the quasi-linear type dependence on average dispersion, i.e.

reasonably insensitive, with an optimum corresponding to a normal average dispersion of —0.04
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ps/nm/km. Map 2 shows a movement from the quasi-linear to the more solitqn like propagation
regime, in that performance is highly dependant on average dispersion and also contains a large
performance peak for zero average dispersion. For map 3, this soliton-like dependence continues
with the optimal average dispersion moving firmly into anomalous dispersion region. Also, we
have a small region of high performance with performance declining rapidly as we move away
from the optimal conditions. Finally, map 4 again exhibits strong single channel soliton-like
performance. In addition, as the maps range from 1 to 4, it can be seen that the maximum
achievable propagation also increases, where for soliton propagation a distance in excess of
7,000 km can be achieved.

Having optimised the average dispersion, we then seek to investigate how this influences
the WDM performance. Figure 7.16 contrasts the optimal single channel and WDM
performance for maps 1-4. Evident from Figure 7.16 is that large WDM penalties are incurred
in maps 1 and 4, which arise from the inter channel collision processes described in section 7.4,
For maps 2 and 3, we see that the differences in optimal performances between single channel
and WDM are much smaller, so we are seeing the benefits of trading inter channel interaction
severity with interaction length. The optimal WDM performance is actually achieved using map
3, with map 1 displaying the worst performance. However, only map 4 displays the potential of
significantly increasing propagation distance for larger channel spacing, which would be
required in transoceanic systems. It appears that for any significant propagation distance, the

soliton-like propagation characteristics appear to exhibit the best performance.
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pulse width (1) of 10 ps. (a) Map 1, (b) map 2, (c) map 3 and (d) map 4.
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Figure 7.16: Optimal single channel and WDM performance for a pulse width (7) of 10 ps. (a) Map 1, D,,, = -0.04
ps/nm/km, (b) map 2, D,,,. = 0 ps/nm/km, (c) map 3, D,,. = 0.02 ps/nm/km, and (d) map 4, D,,, = 0.02 ps/nm/km,

7.6 Optimisation of quasi-linear transmission

Having contrasted the performance of both quasi-linear and DM soliton transmission, we next
focus on how performance of quasi-linear systems, which appear abundantly in the published
literature [10, 198, 237-239], can be improved. As demonstrated in the previous section, quasi-
linear propagation is severely limited by non-linear effects, which impose severe restrictions on
the achievable transmission distance. Our motivation is to investigate techniques that can be

applied in general to quasi-linear systems.
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To investigate the quasi-linear regime we select a dispersion map-as shown in Figure
7.17. This dispersion map is constructed from SMF and RDF fibre sections with Z, = Z, = 40
km and is analogous to map 1 from section 7.2. In such a dispersion map, the dispersion is high

enough to enable quasi-linear propagation for pulse widths suitable for 40 Gbit/s transmission.

<% Zp L

Figure 7.17: Schematic representation of the dispersion map used to investigate quasi-linear propagation. Z, = Z, =
40 km.

As described previously in this chapter, the overwhelming limiting factor in quasi-linear systems
is Intra-channel Four Wave Mixing (ICFWM), which results in both amplitude jitter and the
generation of ghost pulses. Although regimes have been identified for which ICFWM is
minimised [240], it still seriously limits the reach of these systems. As ICFWM manifests
through the Kerr nonlinearity, which is also responsible for SPM and XPM, reducing the non-
linear phase shift should also decrease ICFWM. A prediction from the analytical work of
Zakharov et al. [241] suggests that the non-linear phase shift decreases with increasing S and
therefore subsequent improvements in transmission should be achieved. This hypothesis is
tested using the dispersion illustrated in Figure 7.17 for 40 Gbit/s transmission, where
performance is equated using Q value estimates taken from a 2’-1 PRBS, with the inclusion of

higher order non-linear and dispersive effects. The Simulation results are shown in Figure 7.18.
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Figure 7.18: System performance illustrated as a function of initial power and map strength. Simulation parameters
D,,. = 0.05 ps/nm/km and D, = 0.01 ps/nm%km.

Figure 7.18 illustrates the dependence of quasi-linear propagation on the strength of the
dispersion management, where S is varied by adjustment of the pulse width only. The predicted
strong dependence of transmission performance on S is clearly visible, with performance
increasing with S up to a region where optimal performance is achieved for § = 200-300. For
stronger values of S (> 300), we observe a saturation in the reduction of the non-linear phase
shift and also higher order non-linear effects become increasingly important, although the rapid
decline in performance, that would be observed in a soliton-based system under these
conditions, is not apparent, due to the massive breathing of the pulses. Therefore, provided that
the pulse width does not become too short, improvements in performance can be gained by

increasing S.
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Figure 7.19: Schematic representation of the 3 dispersion maps constructed from SMF and RDF fibre sections, used
to investigate the effects of increasing the dispersion management period for a fixed amplifier span.

Figure 7.18 indicates that stronger map strengths, up to the point where higher order non-linear
effects become significant, are better for quasi-linear transmission. In a dispersion-managed
system, the simplest means by which S can be varied is to alter Z, (assume Z, is fixed).
Therefore continuing with the SMF and RDF fibre types, we investigate three different
dispersion management periods, as illustrated in Figure 7.19. For map A, Z, = 40 km, for map
B, Z, = 80 km and for map C, Z, = 160 km, therefore in terms of map strength, map B is twice
as strong as map A and map C is twice as strong as map B. Figure 7.20 demonstrates the effect
changing Z, has on transmission performance for 10 ps pulses. Figure 7.20 reveals that the
dependence of system performance on S is more complex and cannot be universally extrapolated
from the results in Figure 7.18. The inferior performance observed for increasing Z, can be
attributed to the amount of physical time that the pulses remain overlapped, which increases
ICFWM. With these constraints in mind, the results indicate that increasing the magnitude of the

fibre dispersion may be a superior way of increasing the map strength in quasi-linear systems.
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Figure 7.20: System performance at 40 Gbit/s as a function of initial power for 7= 10 ps and Z, = 40 km. (solid
line) Map A, Z, = 40 km, (dashed line) Map B, Z, = 80 km and (dor and dash line) Map C, Z, = 160 km.

7.6.1 Pulse shape optimisation for quasi-linear transmission

Another prediction from the analytics of Zakharov er al. [241], was that the non-linear phase
shift is also dependant on the spectral intensity of the pulse. In other words, for a fixed pulse
width, the spectral intensity can be changed by varying the pulse shape. Therefore, the steeper
the edges of the pulses are then the larger the bandwidth, which in turn reduces the intensity of
the constituent frequency components.

Again using SMF and RDF fibre sections with Z, = Z, = 40 km, D,, = 0 ps/nm/km and 7
= 10 ps (FWHM) transmission performance is contrasted again at 40 Gbit/s for hyperbolic
secant and super Gaussian shaped pulses. The simulations results are shown in Figure 7.21.
Observations of Figure 7.21 reveal that although the general dependence is broadly similar, the
region of optimal performance is considerably larger for the super Gaussian pulses of order 2
and above. Simulations results showed that the Gaussian and hyperbolic secant pulses displayed
an extremely similar dependence. Likewise, for super Gaussian pulses of order 2 and above,
transmission performance exhibited a similar behaviour, which indicates a saturation of the

phenomenon. Also apparent from Figure 7.21, and the simulations of the other pulse shapes, is
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that performance away from the optimal conditions remains largely unaffected by the shape,

indicating that other effects dominate performance in these regions.
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Figure 7.21: Propagation distance as a function of initial power and average dispersion for a pulse width of 10 ps
(FWHM). (a) Gaussian pulse, (b) Hyperbolic secant pulse, (c) a super Gaussian pulse of order 2, (d) a super
Gaussian pulse of order 3 and (e) super Gaussian pulse of order 100.
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7.7 Pulse shape optimisation for soliton-like
transmission

Having demonstrated in section 7.6.1 the performance improvements achieved from
optimisation of the pulse shape, we next focus on ways in which the pulse shape can be
optimised for soliton-like systems. Transmission using soliton-like propagation is limited
mainly by interactions between adjacent pulses. Interactions in such systems manifest through a
combination of coherent and incoherent interactions. In incoherent interactions, the process
takes place through the nonlinearity whereas for coherent interactions, although the process is
identical, it is aided by overlapping of pulse tails. When the motivation is spectral efficiency,
adjacent pulse tails overlap which fuels coherent interactions. Previously, techniques such as
phase alternation have been used to reduce the coherence of the pulse tails, thus reducing
interactions [156]. However, influence of coherent interactions could be diminished by simply
reducing the tails of the pulses, for an identical FWHM pulse width. Suitable pulse shapes for
comparison are hyperbolic secant, Gaussian and parabolic, which are illustrated in Figure 7.22.
Clearly evident are the reduced tails of the parabolic shaped pulses relative to those of the

hyperbolic secant and Gaussian pulse shapes.
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Figure 7.22: Comparison of shapes for a 10 ps (FWHM) pulse. (dashed line) hyperbolic secant, (solid line)
Gaussian and (dot and dash line) parabolic.
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To maintain continuity with the rest of the results in this chapter, we investigation this
propagation regime using SMF and RDF fibre sections with the condition Z, = 5Z,, where Z, =
40 km. Therefore, the dispersion map strength is close to the optimal conditions for interactions
as described in Ref. [127]. Figure 7.23 illustrates transmission performance as a function of
initial power for the three pulse shapes detailed in Figure 7.22. It is apparent that the hyperbolic
secant shaped pulses have the worst performance of the three pulses. The Gaussian shaped
pulses exhibit a similar dependence to the hyperbolic secant pulses at low powers, but as the
power increases, improved performance is achieved by the Gaussian pulses. This improvement
of performance can be directly attributed to the reduced tails of the Gaussian pulse relative to

the hyperbolic secant pulse.
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Figure 7.23: A comparison of transmission performance at 40 Gbit/s using 10 ps FWHM pulses. (dashed line)
hyperbolic secant, (solid line) Gaussian and (dot and dash line) parabolic.

The best performance in Figure 7.23 is achieved using parabolic pulses. Also it can be
seen that the optimal initial power has increased which shows that SNR is improved as a
consequence of reduced interactions. Another interesting feature of Figure 7.23 is that for lower

powers the parabolic shaped pulse performs worse than the Gaussian and hyperbolic secant

174



pulses. This poorer performance can be attributed to the imbalance between the non-linear and
dispersive effects for this pulse shape at these lower powers. For stronger map strengths,
interactions tend to be dominated by coherent interaction, unless the pulses are extremely well
separated, in such cases the use of parabolic pulses will bring little improvement in system

performance.

7.8 Conclusion

In conclusion, we have investigated dispersion managed propagation regimes ranging from
quasi-linear to soliton-like. The simulation results indicate that for the case of a fixed average
dispersion all 4 dispersion maps have similar achieved propagation distances for WDM
transmission. However, for each of the maps, we observed different constraints on the systems.
For quasi-linear transmission, performance was limited by ICFWM, whereas for soliton-like
propagation inter channel effects dominated. Analysis of the inter channel interaction process
revealed that the in quasi-linear systems the interaction process takes place over a long length of
time, where as for soliton propagation this process is much swifter. For the regimes between
these 2 extremes, we found that the length and severity of the inter channel collisions could be
exchanged, leading to an improvement in performance. We demonstrated this by optimising the
average dispersion for each propagation regime, where we found that the best performance was
achieved using map 3, which had the smallest WDM penalty. In addition, only map 4 displays
the potential of significantly increasing propagation distance for larger channel spacing, which
would be required in transoceanic systems.

We also demonstrated that transmission performance in quasi-linear systems could be
further improved by optimising both the dispersion map strength and the pulse shape. We
observed that performance increases with increasing S until higher order non-linear effects
become significant, and that the dependence on S is not unconditional, where for long Z,,

ICFWM builds due to the amount overlapping between pulses. In addition, enhancements in
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performance can be achieved by optimisation of the carrier pulse shape to reduce the non-linear
phase shift. These simulation results are in good agreement with previous analytical results
[241].

For soliton based systems, we showed that transmission performance could be improved
by using a pulse shape which has smaller tails than the conventional pulse shapes used in

dispersion managed systems.
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Chapter 8 Conclusion

This thesis has presented the results of numerical simulations of high bit rate dispersion
managed optical communication systems. Initially, the background theories of pulse propagation
in optical fibres and dispersion management were presented in chapters 2 and 3. The results of
the thesis can be broadly grouped into 2 main areas. Firstly, soliton-like propagation in short
period dispersion managed system is investigated in chaptefs 3, 4, 5 and 6. Secondly, the
performance of soliton-like and quasi-linear propagation is contrasted for both single channel
and WDM transmission is investigated in chapter 7.

Chapter 3 investigated how the properties of the DM soliton depend on the ratio Zy:Z, in
a short period dispersion management regime characterised by Z, << Z,. The results showed that
DM solitons in SPDMs exhibited a similar behaviour relative to DM solitons in the conventional
dispersion management regime characterised by Z, > Z,. The DM solitons in SPDMs displayed
a greater SNR for an identical map strength, which is a direct consequence of the increased
depth of the dispersion map, with the dependence on map depth taking a similar form as
predicted for conventional dispersion managed systems. Thus, interactions between
neighbouring solitons also increased. In addition, as Z, becomes increasingly smaller than Z,,
DM solitons become less dependant on the amplifier Aposition within the dispersion map.

Additionally in this chapter, the implication of the amplifier location with dispersion
maps was investigated. It was found that when periodic fibre loss and amplification are
introduced into DM systems, the classic definition of the dispersion map strength no longer
accurately characterises DM soliton propagation. In this case, the more complex definition of
the effective average dispersion is required for accurate characterisation.

Chapter 4 determined the conditions under which single channel transmission at 80

Gbit/s could be achieved using soliton-like pulses in short period dispersion maps. The
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simulation results indicated that transmission in excess of 9,000 km' could be achieved by
optimisation of the key system parameters, which was more robust that previous system
simulations at 80 Gbit/s [141]. The main limiting factor of the system was the accumulation of
noise generated by the amplifiers, due to the short pulse widths required to reduce interactions.
Therefore, optimisation of the ASE filters was a critical factor in achieving the maximum
propagation distance. Over shorter transmission distances, it was found that additional freedoms
exist to trade interactions for SNR, thus improving the overall performance and tolerance of the
system.

Embracing the results of chapter 4, chapter 5 determines the conditions under which
transmission at 160 Gbit/s using short period dispersion management can be supported. At this
data rate, the mark to space ratio is confined by the higher order non-linear and dispersive
effects. Therefore, the jitter arising from the accumulation of noise along the transmission link is
sufficient to induce interactions between adjacent DM solitons, which is main limiting factor of
the system. The effects of polarisation mode dispersion also became increasingly important.
However, the simulations demonstrated that transmission over transoceanic distances was still
possible, although the performance depended critically on the initial conditions of the system.

Chapter 6 examines the robustness of short period dispersion managed transmission to a
data rate of 320 Gbit/s. The short pulse width is now the overwhelming dominating factor, in
terms of the increased higher order non-linear and dispersive effects, and the scaling of the DM
soliton energy with the average dispersion. Therefore, both the residual dispersion and average
dispersion must be strictly controlled. Limiting the accumulation of noise is also critical factor
along with polarisation mode dispersion. The system is also sensitive to initial conditions. If the
polarisation mode dispersion can be confined to the tolerable limits defined in chapter 6, then
propagation in excess of 4,000 km can be achieved.

Finally, in chapter 7 the optimal propagation regimes for single channel and WDM 40
Gbit/s based transmission were investigated. The simulations show that in the case of single
channel transmission, performance improved as the propagation became more soliton-like.
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However, in the case of WDM transmission, the soliton-like propagation regime suffered large
inter channel penalties, with the main limitation of quasi-linear systems arising from the inter
channel interactions. Optimal performance was achieved by a propagation regime that lay
between these two extremes of soliton-like and quasi-linear. In addition, ways in which
transmission performance could be improved by optimising the carrier pulse shape in both
soliton-like and quasi-linear propagation was investigated. In the case of soliton-like
propagation, parabolic shaped pulses reduced interactions, whereas in the case of quasi-linear

transmission systems, ICFWM could be reduced using super Gaussian shaped pulses.

8.1 Future work

One area of future work concerning the topics addressed in this thesis, is that of random
variations of the fibre parameters in dispersion managed systems [242, 243], with specific
reference to short period dispersion management [244, 245]. This is an important subject
because of the process involved in the manufacture of short period dispersion maps. As Z,
becomes increasingly small, it becomes impractical to produce short period dispersion maps
from splicing fibre section together due to both splicing loss and complexity. Therefore fibre
where the short period dispersion maps are drawn into the fibre [142, 209], are required.
However, a consequence of this manufacturing process is that random variations in the fibre
parameters occur, which significantly impairs transmission performance, especially in short
period dispersion maps where these perturbations accumulate more rapidly [245]. Therefore,
work defining the tolerable limits of such variations would be of great importance.

Another area of future work would relate to investigating WDM transmission at 80, 160
and 320 Gbit/s, using the short period dispersion maps detailed in chapters 3,4 and 5. These
systems offer the potential benefit of requiring less wavelengths to be used, which would require
less guard bands between the wavelengths and improve overall spectral efficiency. The scope of

this could be broadened to encompass data rates such as 20 and 40 Gbit/s, in order to find the
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optimum data rate — number of channels combination for dispersion managed transmission

[246].
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Appendix B - N umerical simulations

In this section, we review some of the techniques used in the numerical simulations found in this
thesis. Several methods can be used to integrate the NLS equation, which fall into two main
groups namely, finite difference methods and pseudospectral methods. Generally, the
pseudospectral methods are up to an order of magnitude faster for the same accuracy, than the
finite difference methods [247]. One of the important pseudospectral methods is the Split Step
Fourier Method (SSFM) [247], which obtains its computational speed from employing the Fast
Fourier Transform (FFT) algorithm. Throughout the thesis, we use the SSFM method in all of
the numerical simulations.

The SSFM method splits the integration into two parts, with separate differential
operators accounting for the non-linear and dispersive effects. Therefore, the NLS equation

(2.35) can be written in terms of

A (BeR)a (B.4)

where Dis the differential operator that accounts for dispersion and absorption in a linear

medium and N is the non-linear operator that governs the effects of fibre nonlinerities. These

operators are given by

A ] 3 «a
D==sPrys—s ®.5)

N =iy|A] (B.6)

The SSFM makes the approximation that the nonlinearity and dispersion act independently,

which is reasonable approximation, provided the step size 4 is short. More specifically, the
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propagation from z to z+# is carried in two steps. In the first step, the nonlinearity acts alone and

D =0, and in the second step the dispersion acts alone N = 0. Mathematically this is given by

Az +h,T)=exp(nD Jexp(nl Ja(z,T) (B.7)

The non-linear operator is evaluated in the Fourier domain, which when employing the FTT
algorithm improves the computational efficiency of the SSFM. The accuracy of the SSFM can
be improved further by including the effects of nonlinearity in the middle of the dispersive steps

[248], which can be shown as

zth

A(z+h,r)zexp(§f>)exp( {&(z')dz-]exp(gzs),q(z,r) B3)

Equation (B.8) is known as the Symmetrised Split Step Fourier Method (SSSFM) due the
symmetric place of the dispersive operators.

To successfully utilise the SSFM, the temporal and spectral resolution, and the step size
have to be decided. The temporal/spectral resolution is dependant on the bandwidth of the
propagating signal. In the case of WDM simulations, where the signal occupies a much wider
bandwidth, then a higher resolution is required. The best approach for determining the step size
is to use a method that measures physical quantities of the propagation [249]. For example, the
bandwidth of a propagating pulse provides an indication of how non-linear the problem is,
although for WDM, unless the individual channel bandwidths are measured, then this method
will give overly small step sizes. However, too large steps in WDM simulations produce
spurious FWM products that degrade system performance [249]. Also in single channel
transmission, too large step sizes produce sidebands that are phase matched to the step length. In
the simulations used in this thesis, we employ a stepper algorithm to continually determine the

required step size. The algorithm is based on the  spurious side-band formation [249] by
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calculating how linear and non-linear the propagation is. The nonlinearity is calculated in terms
of the non-linear coefficient, the total intensity of the light and how concentrated it is and the
linearity is measured from the energy in the fibre and the loss of the fibre.

Analogous to scalar model, the SSFM can be applied to the vector (birefringent) NLS
under the conditions of high and low birefringence [250]. The effects of random mode coupling
can be simulated by fixing the SSFM step size to be smaller than the characteristic length of the
random coupling [214]. Under this condition, the coupling between the polarisation modes can
be neglected when solving the propagation within a single step. After each step, the birefringent

axes are randomly rotated and a random phase shift is introduced between the fields [214, 215,

251, 252].
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