-
o

L
W“"? W '?2,»;*:' ,/
() , /

/'\”/’/V/'\x\ .
- (’ ”'\7/' ‘\ . \/\,\R\‘\ar{(o
’\ e ,»\M’)\m\;\ \’Q
. . \\ \\()LL.W
.. . . /J /
; e r\/u\\)\r)\(m\mn/ o - - - / /(- .
- . .. -
e : e v,w - /(\ - \»\y\>\;r\,»,\»,,»\e),[,,\, - T v il o;’ e o U,/,msr;u,(m>*"r;j
; . "'w,, - - 3 - o
‘ ’ v,‘u\ Napeni e ,W(V,.m i
oy .
. . w/r . ,,/’,,,yg,,’\\s\g)

ose relating to

‘(i
. < s:\w(\ .

.

- . ,\ . \
7{0\ \,,,,\; 7///;»4 aw m, T T ”””\)\/\w :
F;m%a:ﬁ/;y,u - . \\’, - »,y,’@\\\,’%@’ .
m,\,,\u,w,)\,\ i . i /W}&’%
e \"/4 / i
- L e
o - »’r”\/\“%a\’o/’c\“\ . ,\,,"’l[,»‘/,iﬁ'
,'\\/\\’\,,J,,\){45 - ..,,3,,”,,)‘/’“ » \
. S “>

.
’ "‘”iiz\’z:»;?"” .
"‘\"ﬂ“\,;a’,\n,,w, :

. gf/,M ,u)\ o

”' ﬁ'ﬂ«;, ;
. o i

MOHD AIZAINI BIN MAAROF
Doctor of Philosophy

This copy of the thesis has been supphed of condltlon that anyone Who

consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived

from it may be published without proper acknowledgement.

Integrating Securlt 7 vmes Into
Computer Supported“C/fe‘operatrve Work

MoHD A1ZAINI BIN MOF -
Doctor of Philosophy
2000

THESIS SUMMARY

This research describes the development of a groupware system which adds security
services to a Computer Supported Cooperative Work system operating over the

Internet. The security services use cryptographlc tec to provide a secure

access control service and an information protectzon's‘ ,vLce These securlty services
are implemented as a protection layer for the groupware system These layers are
called External Security Layer (ESL) and Internal Security Layer (ISL) respectlvely
The security services are sufficiently flexible to allow the groupware system to

operate in both synchronous and asynchronous modes.

The groupware system developed - known as Secure Software Inspectlonf\’o' .

Groupware (SecureSIG) - provides security for a distributed group performing
software inspection. SecureSIG extends previous work on developing flexible
software inspection groupware (FlexSIG) (Sahibuddin, 1999). The SecureSIG model

extends the FlexSIG model, and the prototype system was added to the FlexSIG
prototype. The prototype was built by integrating existing software, communication .

and cryptography tools and technology. Java Cryptography Extension (JCE) and
Internet technology were used to build the prototype. To test the suitability and

transparency of the system, an evaluation was conducted. A questmnnalre was used

to assess user acceptability.

Keywords : Computer Supported Cooperative Work, Security Services,
Cryptography, Java, Internet.

To my Parent,

Hajjah Mariam Abdul Rahman &

My late father... Haji Maarof Haji Hussein

To my Wife,

Siti Salwa Abdul Samad

To my Children,

i eih s Raihan,
Abdullah Zahid,
Abdullah Munir,

Abdullah Zubayr,
et

Abdullah Mus'ab

ACKNOWLEDGEMENTS

Alhamdulil-laahirab-bil ‘alamiin.

I would like to thank my supervisor Mr Bernard S. Doherty for his invaluable advice

and assistance throughout the course of this research.

My thanks also go to the folks in Room 268, Shamsul, Vasilas, and Zul, and to the

support staff, Dr. Tony, Neil, and Nic, for their support.

I would like to acknowledge the University Technology of Malaysia for providing the

financial support for this research.

TABLE OF CONTENTS

CHAPTER ONE 21
INTRODUCTION
1.0 INTRODUCTION . ..ttt ettt 21
11 ORGANISATION OF THE THESIS. ..ttt 23
1.2 STRUCTURE OF THIS CHAPTER. . ..cettuiittrtittteeiieieiaeeeeaeee 25
1.3 BACKGROUND AND MOTIVATIONS OF THE RESEARCH....... [a dr 25
1.3.1 THE SECURITY OFINFORMATIONututiuintninttenenentiieeaieeaaaes e 27
14 COMPUTER SUPPORTED COOPERATIVE WORK........coviviiiiininnn. . 30
1 4.1 DEFINITION AND CLASSIFICATION OF CSCW. ... 30
1.5 CRY P TOGRAPH Y ittt 31
1.5.1 SECRET KEY CRYPTOGRAPHY ...utttitiititatiniiaieeeieiaeateiencen i 31
1.5.2 PUBLIC KEY CRYPTOGRAPHYoutitittitiinitteteieteie it 32
1.5.3 HYBRID SYSTEMS. ...t tttanttttit e sas ettt ettt 33
154 CRYPTOGRAPHIC KEY MANAGEMENT. ..ottt 34
1.6 IMPLEMENTATION ST 0 01 PO 34
1.6.1 JAVA TECHNOLOGY .. .uttntntnanattneaates et s sttt 34
1 6.2 INTERNET. ..ot eeteeneen et eae e e e et e e s e s e e es 35
1.7 THE AIM AND OBJECTIVES OF THE RESEARCH. oo 36

CHAPTER TWO 38
COMPUTER SUPPORTED COOPERATIVE WORK

2.0 INTRODUCTION . ..ttt ettt e e e e e 38
2.1 COMPUTER SUPPORTED COOPERATIVE WORK......ovveiiiiiiiiiiiaannnn, 39
2.1.1 CLASSIFICATION OF C OO W Lo, 40
2.1.2 DEVELOPMENT AND DESIGN ISSUESOF CSCW ... 42
2.2 CSCW AND SECURITY .ottt et e, 46
221 THE SECURITY AREAS IN CSCW ..ot 49
Information SECUTritY ATEaccioiiiiiiiiiiiiiiiiiiiii e 49
Group SECUTTEY ATCA .oiiveiiiiiiiie et 50
Content Exchange Security Areaccccoovoiiiiiiiiiiiiniineeeee e 51
Communication and Data Security Areaccccoveeeveiiiiiiiiiniii, 52

9 99 MAPPING ARTEFACT AREAS ONTO SECURITY AREASooiviiiiiieieeieene, 53

9 93 EXISTING INFORMATION SECURITY INCSCW ..., 55
ACCESS GO0 oo e e e e 55
Secure Group CommuniCation........ccccciviiiiiiiiiiiii 57

OB CTS oo e e 58

D 3 SECURITY MO D L ottt ettt e 59
2.4 SOFTWARE INSPECTION Lttt ittt eie ettt eiaaiaananes 60
241 SOFTWARE INSPECTION MODELS ...tutitiieiiieie et 61
249 (GROUPWARE SOFTWARE INSPECTION TOOLS ..ovvviiiiiiieiieiiiiicie 62
L ST o e 63

D 5 QUMM ARY ..ottt e 64
CHAPTER THREE 66

ENABLING TECHNOLOGY AND SECURITY SERVICES

3.0 INTRODUCTION ...ttt ettt ettt eaee cnnaes 66

3.1 THE ENABLING TECHNOLOGYvvneeeeeeeeeeeieeensinnenn, .

3.1.1 CRYPTOGRAPHY ..oviiiiiiieeieititiiiieee e s e e e e e e ettt e e e e e e ettt e e e e e e e e 67
Secret Key Cryptography.....oooeee e e 67
Public Key Cryptograpiy.....cooooe i 73

3.1.2 JAVA TECHNOLOGY .otiieeeeeeeeeieiiitet ettt a s 74
Java Security APL ... 75
Java Cryptography EXtension ..o 77

3.1.8 THE INTERNET .. .ouutiitiiteeeeeeiie e e e ettt e e e e e e et e e 78

3.2 SECURITY SERVICES AND MECHANISMSovviiiiiiiiiiiiiiiieeen 79

3.2.1 SECURITY SERVICES.....eittitiiiiitieieeee ettt 79
AUENENEICATION et 79
ACCESS COMET O] oottt 80
Data Confidentialityooooiiiiiiiiieee e 80
Data INEEETILY ©overeiiiiit et 81
NON-REPUALATION 1.ttt 82

3.2.2 SECURITY MECHANISMS ...uiiiieeiieeiiiiiiiieeeeeee et e 83

3.2.3 CRYPTOGRAPHY AND SECURITY MECHANISMSccoiiiiiiiiiiiieeniiinnees 85

3.3 CRYPTOGRAPHIC KEY MANAGEMENTovittiiiiiiiiiiiiiiiiiieeeieenens 86

3.3.1 SECRET KEY DISTRIBUTIONctvtunieiiuiiieiiiiineaeniiinesarinaeernineeennienni 86

3.3.2 PUBLIC KEY DISTRIBUTIONettttuieetiriiieeiiineeatiiesesin e s 87
Public Key CertifiCatesioouiiiiiiiiiiiiiie it 88
CeTtificate COMBEITS . oottt 89
N 509 CeTtifICALE oot et e 89

A SUMMARY .ottt 90
CHAPTER FOUR 93

RESEARCH PROBLEM, DESIGN AND PROCEDURES

40 INTRODUGCTION ...ttt ettt ettt e 93
41 SUMMARY OF LITERATURE ...ttt 94
A 1.1 SUMMARY «eeeeeeeeeeesieeeeetereee et e e st e e e st e s 95

4.3 RESEARCH DESIGN AND PROCEDUREcocvviiiiiiiiiiiiiiiiins 104

4.3.1 RESEARCH METHODOLOGY «rutrtit et e e e e e enaenes 104
4.3, RESEARCH DESIGN . ittt ettt et e anens 104
A 3.8 ASSUM P TIONS .ottt et e e e e e e e e e e e e e 105
4.3.4 OQOUTCOMES FROM THE STUDY . eutiuininiieteeieeneeeeeaenesneeeaeneeeneneaneans 106
A 4 SUMMARY .ot e e e e 107
CHAPTER FIVE 109

SECURESIG MODEL

5.0 INTRODUCTION ottt et ettt e e et 109
5.1 PROPOSED MODEL DESIGN ..ottt 110
5 1.1 THE FLEXSIG SOFTWARE INSPECTION MODEL.....ccoooviiiiiiiiiiaina, 110
51.9 THE PROPOSED SECURESIG MODEL.....viiiiiiiiiii e 111
592 (CONCEPTUAL FRAMEWORK OF SECURESIG ..., 113
591 CONSIDERATIONS ...ttt ettt e e etiaeessnn e eeeneeeaai s aaa e e e s b e eai et e e ennes 113
System Access CONTIOl... ..ot 113
CommMUNICAtION SECUTIEY «.vvvveieeeeeiiiiiee et 114
Stored Information Confidentiality ... 115
599 SECURITY REQUIREMENTS FOR THE MODELcocoviiiiiiniiiiiiiiiiinn 115
593 EXISTING SECURITY MODELS....coiiiiiiiiiiiiiiiieteteneneiiiiiii e 116
5.3 FUNCTIONAL MODEL OF SECURESIG oo i 117
531 COMPONENTS AND SERVICES FOR SECURESIG i 118

Secure Access Control

Key Pair Generation ..ot 119
Document Encryption ..o 120
Database Encryption ... e 120
Secure BriefIng. ..o 121
SeCure BrowsSIng. ..o 121
Secure COmMITUNICATION. ..ottt e e e e e e et e e e e eeeaa 122
5.3.2 TFUNCTIONALITY NOT PROVIDED IN THE MODELccooiiiiiiiiiiniii, 123
5.4 RECOMMENDED SECURITY MECHANISMS AND ALGORITHMS 123
5.4.1 RECOMMENDED SECURITY MECHANISMS....cccotiiiiiiiiieeiiiiiiineeeeciiinnn 124
Recommended Communications Security Mechanisms.......................... 124
Recommended Access Control Mechanismscccccoovveiiiii . 125
Recommended Information Stored Confidentiality Mechanisms........... 126
Other Security Recommendations. ... 126
5.4.2 RECOMMENDED SECURITY ALGORITHMS AND MECHANISMS.............. 126
Symmetric Encryption Algorithms ... 127
Asymmetric Encryption and Algorithms ... 129
Message Digest, Digital Signature and Session Key Exchange Algorithms
... 130
Data Origin Authentication Mechanisms..........ccoooii 130
Key Managementccooiiiiiiiiii e 131
B SUMMARY ..ottt e e et e e 132
CHAPTER SIX 133
PROTOTYPE OF SECURESIG
B.0 INTRODUCTION L.ttt ettt ia s e e 133
6.1 THE SECURESIG PROTOTYPE ..ottt 134
6.1.1 SECURE GROUPWARE ARCHITECTURE.......oottiiiiiiiiiiiiiiiiiiiin 134
6.2 SECURESIG ARCHITECTUREoviviiiiiiiii e 136
6.9.1 THE CRYPTOGRAPHIC PROTOCOL ...vvtiiiiiiiiiiiiisiinsiiis i 137
699 DATA TRANSMISSION ARCHITECTURE «...oooiiiiiiiiiiii i 138

e T S o U PP PP 144

6.3.2 SECURE ACCESS CONTROL .uuvttiriittteeeeeeeeniiiiiieeeeeeeeaeeeaeae e e 145
6.3.3 FILE ENCRYPTIONitiitiiiititirieitenenteieiiiiiieieiasaiisa e e e e e s e e e s eeeeeaesnsanees 147
6.3.4 KEY PAIR GENERATIONouttivueereiereettieniiieminainaiinnanaaaaasaeenererersiisnaes 148
6.3.5 SECURE BRIEFING.....ouiititiiiiieeertiii e eemi e e nenines st e e e e e e 149
6.3.6 SECURE DOCUMENT INSPECTIONtttitienetiriiaeiiiinieniinee i e e 149
6.3.7 SECURE COMMUNICATIONuvuuueunnneeetemmmiiinenenaeeaemiaeaeeeesmiseaeereeies 150
Secure Group Chat. ..o 150
SECUTE F-TN1ATL oo 150
6.3.7 COMMENT LOG. ... iiiiiii i 152
B.4 SUMMARY ..ottt e e e 152
CHAPTER SEVEN 153

USER EVALUATION OF THE PROTOTYPE

7.0 INTRODUCTION ittt ettt ettt a et ety 153
71 REVIEW OF EVALUATION DESIGN AND PROCEDURES 153
7.2 USER EVALUATION PROCEDURE ..ttt ettt iteeieaeaeeaanenans 154
721 DEVELOPING THE X P E RIMENT . tettteeettt i ieeeaieeeeeanaieee e iinnraeaaaanes 155
Selecting the TASKS ...ooiiiiiiiiie 155
Developing QUeStIONNAITe ..ot 156
Determine Procedures for Evaluation Sessions ..o 156
Selecting Test USEIS ..ottt 157

10

7.3 DATA COLLECTION PHASE .. oo .
7.3.1 EVALUATION OF THE PROTOTYPE......

7.3.2 QUESTIONNAIRE ...ovoooovsoooveeeeoeeeoe oo i
7.3.3 ANALYSIS OF QUESTIONNAIRE ON EVALUATIONoovin.. e 160
Analysis of Test USErs ...ccooiiiviiiiiiiieieeieereeieea R EUTTUTRURURR 160
Analysis of the Prototype......coooo 162
T4 SUMMARY ot e e 174
CHAPTER EIGHT 175

RESEARCH EVALUATION AND FUTURE WORK

80 INTRODUCTION oo, 175

81 AIMS OF RESEARCH ..ottt et 175
892 EVALUATION OF THE RESEARCH ..ottt 176
8.2.1 LITERATURE SURVEY ..o GEERL 176
$992 RESEARCH PROBLEM, DESIGN AND PROCEDURE...........ccovoovooeeirnries 178

8 9 3 THE M ODEL oottt e e e e e e e e e e a e e e o 178
8.9.4 THE PROTOTYPE ...oiiiiiiiieeeiiiieeeeiiieeeennn UTRUUOTIUUNOOROUR s = . 180
895 USER EVALUATION ..ottt e ettt 183
826 SECURITY AGAINST A SELECTIVE OF KNOWN ATTACKSovvwiiwiiiiiin. 184
Analysis Against a Selective Known Attacks ... 185
897 OVERALL EVALUATIONciiitiittiiiaaeeeeeriiieeeeeeasiae e 187
83 FUTURE WORK ..ottt ettt e 190
B A SUMMARY oottt e ettt 192

11

CHAPTER NINE
CONCLUSION
G0 INTRODUCTION oottt 194
9.1 LITERATURE ottt e 194
. L L OO W o e 195
9.1.2 ENABLING TECHNOLOGY AND SECURITY SERVICES.....ceivviiiiieineinennn. 195
9.2 RESEARCH PROBLEM, DESIGN AND PROCEDUREccoooonnie. 196
R T b = 1 0\ (6] 0] 0 T 197
O 4 THE PROTO T Y PE ..ttt e e 197
95 RESEARCH EVALUATIONS AND FUTURE WORKoooviiiiiiieenne, 198
O 68 SUMMARY e 199
G LOSSARY eeveeeensocctnsesssossssssssscasssssscossssses tevescecsssseccassaserannas 201
REFERENCE ..eeteeteeseeessssssessssssssscsssscsssss teesesecscnscseasenaenansncas 205
BIBLIOGRAPHY..... eteeessecncennessoseseasessessnancocsasscsenrnsnns ceneeeess 21D
APPENDICES
APPENDIX A —CLASSIFICATIONS OF CSCW .ottt 217
APPENDIX B — OVERVIEW OF CRYPTOGRAPHYc.oiviiiiiiiiiiiiiiieas 221

APPENDIX C — DATA ENCRYPTION STANDARD & INTERNATIONAL DATA

ENCRYPTION ALGORITHM. ...\ tttttntten ottt ateeeiene e 231
APPENDIX D — OTHER SECRET KEY BLOCK CIPHERS. ..o, 239
APPENDIX E — PUBLIC KEY CRYPTOSYSTEM.....ovvniiiiiiiiiiinnii, 241

12

APPENDIX F' — PBEWITHMD5ANDDES-CBC...... .

APPENDIX G — CLASSICAL CIPHERS . ..ottt oo i, 249
APPENDIX H — SECURITY ATTACKSeoeveeooi e 254
APPENDIX I — SECURESIG USER MANUAL........cooiiiiiiiiiie i, 258
APPENDIX J — SECURESIG EVALUATION GUIDELINE..............cceuvne.. 269
APPENDIX K — USER DETAILS. ...ttt 272
APPENDIX L — PROTOTYPE EVALUATION QUESTIONNAIRE................ 273
APPENDIX M — RESULT OF THE QUESTIONNAIRE........oovvviniiiiinennnn. 277
APPENDIX N — PROGRAM LISTINGottt 279

13

Figure 3.1

Figure 5.1
Figure 5.2

Figure 6.1
Figure 6.2
Figure 6.3

Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8

Figure 6.9

Figure 6.10 :
Figure 6.11 :
Figure 6.12 :

Figure 6.13 :

TABLE OF FIGURES

K509 CertifiCate ..ouuiuinineiiieiei e 90
F1eXSIG Model ...ovviiiiiieiieieie e 111
SecureSIG Model — External and Internal

Security LAYErs .ovveeiiiiii e 112
General Client-Server Architectureoo 135
General Internet-Based Client-Server Architecture 135
Secure Internet-Based Client-Server ;
Groupware SYSTEIMvvuririiiiii et R 136
The SecureSIG Architecturec..cooviiiiiiiniiii 137
Database Storage Architectureo.cooiiiiiii 140
Key Pair Generation Architecturec....coniinin, 140
Access Control Architectureooooiiiiiiiii 142
User Interface Architecturecococviiiiiiiiiiiiiii 144
Set-UP FTAME ..ovvuniiiiiii i 144
Generate Key Pair Frameoooois 145
Encrypt Data File frame ... 145
SecureSIG Login Frameocoooviii 146
System Login Passphrase Framec..ccooooiii 146

14

Figure 6.14 :

Figure 6.15 :
Figure 6.16 :
Figure 6.17 :

Figure 6.18 :

Figure 7.1
Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 8.1

Figure 8.2

Figure B.1

Figure C.1

Figure C.2

Moderator Main Menu Frame

Briefing File Encryption Frame

...

Program File Encryption Framecooo

Secure Group Chat Framec.c.cooiiiiii

Secure E-mail Framie ...ooonoriiii i e es

Respondent IT Experience
Test users respond regarding SecureSIG components
providing secure environment to the asynchronous

process

..

Test users respond regarding SecureSIG components
providing secure environment to the synchronous

process

Acceptability of the SecureSIG providing secure
working environment to asynchronous and

synchronous inspection process

Respond regarding the needs of Access Control in SecureSIG

...

Literature DiStribUtionooiiiiiiiiiieeiiiiieeertneieeens

Detail Distribution of the Literaturecocoooiins
Encryption and Decryption Process

DES Input-outputoooiiiiii

DES Computation Path ...

15

Figure C.3 : DES Inner Function : -

Figure C.4 : The International Data Encryption Algorithm (IDEA) 236

16

Table 2.1
Table 2.2
Table 2.3

Table 2.4

Table 3.1

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 8.1

Table G.1

Table I.1

Table 1.2

LIST OF TABLES

Johansen Space Time MatriX......c..cooviiiiiiiiiiiiii 41
A Functional View of CSCW Technologycccocoviiiiiiiiiinn. 47
Mapping Artefact Areas onto Security Areasc..ooeviiiiiieinnns 54

Time-Space Comparison between Groupware

INSPection TOOLS ..o.uiieniin it 63
Specific Security Mechanismscooiiiiiiiin i, 83
Means for Questionnaire on Asynchronous Mode...................coe. 163
Means for Questionnaire on Synchoronous Mode.................oeouee 165
Mean for Questionnaire on Specific Taskoooi, 167

Means for Questionnaire on Transparency of the

PrOtObYPE «evnivneinetiei et 169
SecureSIG — Security Against a Selective Known Attacks.............. 185
A Vigenére Tableauoooviiiiiiiiii 251
List of Username and PassPhrase..............oooin 260
List of Username and Password...........coooiiiiiiiiiiiiinn, 262

17

Table M.1 : User Details Information..........

Table M.2 : Prototype Evaluation Result............c.cocoo i 278

18

ANSI

CA
CBC
CFB
CSCwW
DES
D, (X)

ECB

IBM

IDEA

ABBREVIATIONS AND SYMBOLS

American National Standard Institute
Ciphertext

Certificate Authority

Cipher Block Chaining mode of operation
Cipher Feedback mode of operation
Computer Supported Cooperative Work

Data Encryption Standard

Decryption transformation of X with key K
Electronic Codebook mode of operation
Encryption transformation of X with key K
Institute for Applied Information Processing and Communications
International Business Machines Corporation

International Data Encryption Algorithm

19

1P
ISO

ITU-T

JCE
MAC
MD
NBS
OFB
PBE
PKCS
RSA
TCP
s, |1s,
XOR, ®

M|

Internet Protocol
International Organisation for Standardisation

International Telecommunication Union — Telecommunication

Standardisation Sector
Initialisation Vector

Java Cryptography Extension
Message Authentication Code
Message Digest

National Bureau of Standard
Output Freedback mode of operation
Passphrase-Based Encryption
Public Key Cryptography Standards
Rivest Shamir Adelman public key cryptosystem
Transport Control Protocol
Concatenation of string s, and s,
Exclusive-OR boolean operation

Length in octets of M

20

Chapter 1

INTRODUCTION

1.0 INTRODUCTION

This thesis present the results of research carried out by the author at Aston
University, Birmingham. It describes the development and evaluation of a model
and prototype system that adds security services to a Computer Supported
Cooperative Work (CSCW) system operating over the Internet. The lack of
security in CSCW system in general and software inspection groupware
specifically has been raised by Teufel et al. (1995) and Sahibuddin (1999),

respectively. This research adresses security deficiencies in CSCW systems. The

security deficiencies in CSCW systems can be handled by incorporating security

services, based on the following security requirements:

o Preventing unauthorised users accessing or participating in the CSCW

system.
o Ensuring against disclosure of information flow in the CSCW system.

o Ensuring against disclosure of information stored in the CSCW system.

21

HAPTER 1 INTRODUCTION .

The security services use cryptographic techniques to provide a secure =~

access control service and an information protection service. The CSCW system is

able to operate in both synchronous and asynchronous modes, and the security
services are sufficiently flexible to handle both synchronous and asynchronous

distributed environments.

The secure access control service has been implemented as a protection
layer for the CSCW system. It provides secure access control by encrypting all
access information to make sure that the system is accessible only to authorised

members of the group. This layer is called the External Security Layer (ESL).

The information protection service provides for secure transaction of
information within the CSCW system. This information protection service will
also provide protection to all the information stored in the system. This layer is

called the Internal Security Layer (ISL).

The system developed has been given the name Secure Software
Inspection Groupware (SecureSIG) system. SecureSIG is an extension of
previous work on developing flexible software inspection groupware (FlexSIG) by
Sahibuddin (Sahibuddin, 1999). The security model extends the FlexSIG model,

and the prototype security system was added to the FlexSIG prototype.

The prototype was built by integrating existing software, communication
and cryptography tools and technology. Both the model and the prototype are

evaluated and the results analysed.

This research has demonstrated that it is possible to create a security
system for groupware that is suitable, acceptable and transparent to the user,
based on the SecureSIG model developed in this research. The prototype based

on this model has been developed and evaluated by users.

22

particularly software inspection groupware, by providing a secure environment

PTER I INTRODUCTION

As a whole this research has extended current technology of grou

to the software inspection process. The main contributions of this research are

as follows:

A secure software inspection groupware system that is not limited to any one

of the four categories of the time and space taxonomy.
A model of a secure software inspection groupware.

A secure software inspection groupware system that is provided with a secure
access control mechanism to protect the system from unauthorised user gain

access to the system and resources.

A secure software inspection groupware that is provided with an encryption

mechanism to provide a safeguard to the information stored.

A secure software inspection groupware that is provided with an encryption
mechanism to provide protection to the information flow to and from the

system.

A secure software inspection groupware that is provided with two layers of

protection - the internal and external protection.

A secure software inspection groupware that is provided with a security shell

architecture for protection of CSCW environments.

The results and the findings obtained have indicated that the objectives

outlined have all been met.

1.1 ORGANISATION OF THE THESIS

The thesis is organised as follows:

23

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

JAPTER I INTRODUCTION

This chapter gives an overall introduction to th‘é‘ research. The \" .

aims and objectives of the research are also drawn out.

This chapter presents the area Computer Supported Cooperative
Work. The issue of software inspection, and in particular the

FlexSIG system is discussed.

This chapter presents the enabling technology used in this
research. The topics of security services, security mechanisms, and

cryptographic key management are also presented in this chapter.

This chapter focuses on the identification of the research problem,
the purpose and the importance of this research. Detailed research

design and procedure are presented.
This chapter discusses the proposed SecureSIG model.

This chapter mainly describes the development - and
implementation of the prototype of the model. The enabling

technology used in the development of the prototype is presented.

This chapter discusses the evaluation of the prototype based on

user evaluation.

This chapter discusses the evaluation of the research as a whole.
The areas that have been opened up for future extensions are also

presented.

This chapter gives a conclusion to the work in this research.

24

APTER I INTRODUCTION

1.2 STRUCTURE OF THIS CHAPTER

The rest of the chapter will briefly introduce the overall background nd ey

related to the research. The chapter is structured as follows:

¢ Section 1.3 gives the background and motivations of the research and the

need for a secure environment.

¢ Section 1.4 is an introduction to Computer Supported Cooperative Work

(CSCW).

e Section 1.5 is an introduction to the area of Cryptography, which is an
important technology used of this research. These include the introduction to
secret key cryptography, public key cryptography, hybrid systems, and

cryptographic key management.

e Section 1.6 gives an introduction to the technologies used in implementing
the prototypes for this research: these include the Internet and Java

technology (Java).

¢ Section 1.7 introduces the aims and objectives of this research.

1.3 BACKGROUND AND MOTIVATIONS OF THE RESEARCH

Modern Civilisations are becoming increasingly dependent on computers in daily
life. As computers have become smaller, cheaper, and more numerous, people
have become more interested in connecting them together to form networks and
distributed systems. The emergence of the personal computer as a major
presence in the 1970’s and 1980’s and the introduction of local- and wide area
networks into the personal computer environment, resulted in a trend to network

machines together (Engelbert & Lehtman, 1988). Networking allows systems to

25

APTER 1 INTRODUCTION

be designed to serve geographically dispersed groups or users _or’ Qrganfrs@ti"on‘s

Recent technological innovations in portable computing, user mterface |
computer networking make it feasible to explore and develop new facilities that
will help people work together more efficiently and conveniently. This has
opened possibilities for individuals working together as a group over networks,
and has created the need for specialised software to support group activities. To
support group activities, computer networks should make all programs, data,
and other resources available to everyone on the networks without regard to the

physical location of the resource and the user (Tanenbaum, 1981).

Modern Civilisation is entering the new phase, shifting from the
paradigm of an industrial society to the paradigm of an information society. Due
to the tremendous impact of computers and computer networks on society during
the past decade, this period in history has come to called the “information age”

(Black, 1993). In this new phase, Eltoweissy (1993) said that:

“The axiom that “information is power” and therefore should. be
doled out with extreme caution is replaced with the new axiom
“/nformation sharing is power” and everyone should therefore have
access to the information they need to perform their jobs. This
emanates from simple reality that, to be competitive in today’s global
economy, it will take the co-operative efforts of people with different

skills to create innovative solutions and innovative products.”

Much of today’s work is done not individually, but rather in a group
(Olson et al., 1993). Groups are here defined as sets of people who are knowingly
collaborating on a common goal, and who thus require communication and co-
ordination among group members. Much of today’s work is collaborative in
nature, due to the complexity of the task, the severe time constraints, or the

requirement for broad expertise (Olson et al., 1993). Today the success of most

26

HAPTER 1 INTRODUCTION

projects relies on the co-operative activities of people and this réqu:iil?e that

people communicate, jointly co-ordinate their activities, and share information . .

and ideas more than ever (Eltoweissy, 1993).

The innovations of recent technology in computing, user interfaces and
computer networking make it feasible to explore and develop new computer
facilities that will help people work together more efficiently and conveniently
(Eltoweissy, 1993). The field that deals with the development of such facilities
and research is generally termed Computer Supported Cooperative Work (CSCW)
(Greif, 1988). The purpose of CSCW is to provide computer support that

facilitates co-operation between users (Foley & Jacob, 1995).

A great deal of work has been done on the technological aspects of CSCW:
the problems of how one actually provides computer support for co-operation
(Foley & Jacob, 1995). But the aspects of information security of CSCW
technology have not received much attention (Teufel et al., 1995), especially
considering that shared information spaces and people working together in
groups are the basis of most CSCW applications. Furthermore, computer
technology, and especially in CSCW, enables for example the transmission of
critical information not only within the boundaries on an organisation, but also
around the world. This critical information is an asset, and it is vital that the
confidentiality of such information can be guaranteed in the CSCW application.
Teufel et al. (1995) stated that CSCW applications will be fully accepted only if
the security mechanisms implemented in CSCW applications support the full

complexity of interactions.

1.3.1 The Security of Information

Computers have brought about tremendous change in the way society lives and

27

APTER I INTRODUCTION.

operates, yet they have also brought additional threats and dangers. We rel 50

much on the information processed, stored and transmitted by co\mput,ers.’ .

Information is the most valuable asset in many organisations and sharing,
accessing and protecting it will become a priority in the future. The development
of inexpensive computers and computer networks has brought with it the
problem of unauthorised access and tampering with information. Increased
connectivity not only provides access to a larger variety of information resources
more quickly than ever before, it also provides an access path to the information

from virtually anywhere on the network (Power, 1995).

Information that flows on the network is vulnerable to unauthorised
access and tampering because it is transmitted through a communication link.
Without much difficulty, someone could tap into the communications and
monitor information being transmitted. Even more worrisome are scenarios that
involve criminals who actively try to detect weaknesses in information systems

and use them to their advantage.

The explosion in usage of the Internet has opened world-wide
opprtunities. But along with these opportunities come a number of security

concerns (IBM, 1997):

e Preventing eavesdropping on private or sensitive communications,
s ensuring that only an authorised user can access the system, and
e controlling access to confidential information.

For this reason there is a need for security services to provide information
security. In general, the security services fall into five groups (Davies & Price,
1989; ISO, 1989; Menezes, van Oorschot & Vanstone, 1997): authentication,

confidentiality, integrity, non-repudiation and access control. The International

28

TER 1 INTRODUCTION

Organisation for Standardisation (ISO) defines these basic security se

(ISO, 1989) as follow:

e Authentication. To ensures that a principal (user, process, host) is really

what it claims to be.

e Data Confidentiality. To ensures that only authorised principals can

understand the protected information.

e Data Integrity. To ensure that no modifications of data has been performed

by unauthorised principals.

e Non-repudiation. To ensures that a principal cannot deny performing some

action on the data.

e Access Control. To ensures that only authorised principal can gain access to

protected resources.

The security mechanisms that are used to provide the security services
listed above are: Encryption mechanisms, digital signature mechanisms, access
control mechanism, data integrity mechanisms, and authentication mechanisms
(ISO, 1989) (Hassler, 1997). The security services and security mechanism are
dealt in more detailed in Chapter Three. These security mechanisms can be
achieved using Cryptographyl. Cryptography is one of the main tools for
information security. The original purpose of cryptography is to conceal
information either while it is being transmitted or stored (Davies & Price, 1989).
According to Davies and Price (1989) wherever a high level of security is needed
a technique based on cryptography can be found. Cryptography will be
introduced in Section 1.5 as one of the tools used in this research, and will be

dealt with in more details in Chapter Three. Section 1.4 will briefly introduce

' Cryptography — means “hidden writing” from Greek kryptos meaning “hidden”, and graphia,

meaning “writing”.

29

CHAPTER 1 INTRODUCTION

the area of Computer Supported Cooperative Work, where the security will be -

built on an application.

1.4 COMPUTER SUPPORTED COOPERATIVE WORK

Computer Supported Cooperative Work (or CSCW) has recently been established
as the field that focuses on the role of computers to support co-operative work.
Computer Supported Cooperative Work is a computing term coined by Irene Greif
of Massachusetts Institute of Technology and Paul Cashman of Digital
Equipment Corporation in 1984 (Bannon & Schmidt 1991; Grudin, 1993; Wilson
1990, 1991). The term was a shorthand way of referring to a set of concerns
about supporting multiple individuals working together with computer system
with no intention to any special emphasis to the meaning of the individual words
within it (Bannon & Schmidt, 1991). Researchers and developers in this field
make use of advances in enabling technologies, mainly portable computing, user-
interfaces, and computer networking to connect disparate information systems,

link products with one another, and promote inter-person communication.

1.4.1 Definition and Classification of CSCwW

Wilson (1990, 1991) defines CSCW as a generic term that combines the
understanding of the way people work in groups with the enabling technologies
of computer networking and associated hardware, software, services and
techniques. Wilson’s definition embraced most of the other terms used to

describe this field including Groupware and Workgroup Computing.

Wilson (1990, 1991) divides the field of CSCW into two distinct but

interrelated fields: the group working process and the enabling technology

30

CHAPTER 1 INTRODUCTION

employ to support it. The group working process is further subd_iviﬂdedg.mgmtf -
areas: individual aspects, organisation aspects, group working desig,n-cisj;’ec’tsi and
group dynamics aspects. The enabling technology areas are subdivided, into four
areas: communication systems, shared work space systems, shared information

systems and group activity support systems. For details Wilson’s classification of

CSCW see Appendix A.

1.5 CRYPTOGRAPHY

Cryptography is the science of mapping readable text into unreadable format and
vice versa. The mapping process is a sequence of mathematical computations,
which affect the appearance of the data without changing its meaning. For more

details on the topic of cryptography see Appendix B.

Cryptography is used to provide the security services - Confidentiality,

Integrity, Authentication and Non-repudiation defined in Section 1.3.1.

There are two basic types of cryptography: secret key systems (also called
symmetric systems) and public key systems (also called asymmetric systems).
Often, these two types of cryptography are combined to form a hybrid system to
exploit the strength of each type. Secret key cryptography, public key
cryptography, and hybrid cryptographic system are briefly described in section

1.5.1,1.5.2, and 1.5.3 respectively.

1.5.1 Secret Key Cryptography

Secret key cryptography 1s characterised by the use of a single key to perform

both the encrypting and decrypting of data. Since the same cryptographic key is

31

 CHAPTER I INTRODUCTION

used for both encryption and decryption, it needs to be kept secret to protect the

plaintext data from recovery by unauthorised parties.

Secret key cryptography can be divided into two categories (Schneier,
1996): Stream ciphers and block ciphers. Stream ciphers operate on a stream of
bits or bytes. Stream ciphers are used either where a communications system
requires a continuous (synchronous) data link to be maintained or where there is
insufficient memory capacity to allow a block of data to be stored. Block ciphers
encrypt and decrypt fixed size block of data, usually 64 bits long. The size of the
blocks is dependent upon the particular algorithm, and each block is processed

independently of other blocks.

The best-known secret key cryptography block cipher is the Data
Encryption Standard (called DES), developed at International Business Machine
(IBM) and adopted by the National Bureau of Standards (NBS) in the mid-1970s.
It is the most widely accepted, publicly available cryptographic system today.
The American National Standards Institute (ANSI) has adopted DES as the
basis for encryption, integrity, access control, and key management standards
(NIST, 1994). Another block cipher that seems to be more secure is the
International Data Encryption Algorithm (called IDEA) (Schneier, 1996), was
developed by Xuejia Lai and James Massey in 1990 (Lai & Massey, 1990). The

DES and IDEA block cipher are used in this project and are discussed in Chapter

Three.

1.5.2 Public Key Cryptography

Public key cryptography was introduced by Diffie and Hellman in 1976 (Diffie &

Hellman, 1976). Public key cryptography differs from symmetric key

cryptography in that key material is bound to a single user. The key material is

32

CHAPTER 1 INTRODUCTION

divided into two components:

e aprivate key, to which only the user has access and is never transmitted , and
e apublic key, which may be published widely or distributed on request.

Each key generates a function used to transform text. The private key
generates a private transformation function, and the public key generates a
public transformation function. The functions are inversely related, i.e., if one
function is used to encrypt a message, the other is used to decrypt the message.
The order in which the transformations are invoked is irrelevant. These keys are

always generated in matching pairs.

There are several public-key cryptographic systems. One of the first
public key systems is RSA that was published in 1978 (Rivest, Shamir &
Adleman, 1978). It is named after its inventors: Rivest, Shamir and Adleman.
RSA is the most popular public key system in use today (Menezes, van Oorschot,
Vanstone, 1997). The RSA public key cryptography is used in this project and

will be discussed in Chapter Three.

1.5.3 Hybrid Systems

Public and secret key cryptography has relative advantages and disadvantages.
Public key cryptography is much slower than secret key cryptography because
the mathematical computations used to encrypt data in public key system
require more time (Markovitz, 1994). To maximise the advantages of both secret
and public key cryptography, hybrid system combines both types and used it in a
complementary manner, with each performing different functions. In a hybrid
system, public key cryptography 1s used to distribute cryptographic keys that are

used to encrypt and decrypt data using secret key cryptography.

33

 CHAPTER I INTRODUCTION:

1.5.4 Cryptographic Key Management

Key management is the set of processes and mechanisms which su‘pport(i{;y
establishment and the maintenance of ongoing keying relationships between
parties, including replacing older keys with new keys as necessary (Menezes, van
Oorschot, & Vanstone, 1997). Key management is the fundamental security
requirement in all cryptosystems. The most difficult requirement is that a key
must be chosen and made available at both ends of a communication path
(Davies & Price, 1984). The proper management of cryptographic key is essential
to the effective use of cryptography for security (NIST, 1994), because the
security of information protected by cryptography directly depends upon the
protected keys. The secret keys and private keys need to be protected against
disclosure. In real world, key management is the hardest part of cryptography
(Schneier, 1996). Key management issues will be discussed in detail in Chapter

Three.

1.6 IMPLEMENTATION ISSUES

To implement and develop the prototype for this research, three major
technologies were used: Cryptography, Java Technology and the Internet. The
topic of cryptography has been discussed in Section 1.4. The other two

technologies: Java Technology and the Internet are discussed below.

1.6.1 Java Technology

Java originated as part of a research project to developed advanced software for a
wide variety of network devices and embedded systems (Sun, 1995). Java was

developed in 1995. In 1990 Sun started to define Java based on C++, but without

34

_ CHAPTER 1 INTRODUCTION

its unclean and unsafe features (Ciancarini et al, 1996). New principles and
structure were inherited from a variety of languages such as Eiffel, ‘Smal*l-Télk',_
Objective C, and Cedar/Mesa. The result is a language environment that has
proven ideal for developing secure, distributed, network-based end-user
applications in environments ranging from networked-embedded devices to the
World Wide Web and the desktop (Sun, 1995). The Java Security Application
Program Interface (API) is a Java core API, built around the java.security
package (and its sub-packages). This API is designed to allow developers to
incorporate both low-level and high-level securities functionality into their Java
applications. Java Cryptography Extension (JCE) is a set of APIs and
implementations of cryptographic functionality, including symmetric,
asymmetric, stream, and block encryption. The architecture of the JCE follows
the same design principles found elsewhere in the Java Cryptography
Architecture (JCA).

1.6.2 Internet

In 1978, the United State Defence Advanced Research Projects Agency (DARPA)
initiated a research programs to investigate techniques and technologies for
interlinking data packets of various kinds. The objective was to develop
communication protocols that would allow networked computers to communicate
transparently across multiple, linked packet networks. This was called the
Internetting project and the system of the networks that emerged from the
research was known as the “Internet” (Leiner et al., 1998). The system of the
protocols that was developed became known as the TCP/IP Protocol Suite, after

the two initial protocols developed: Transmission Control Protocol (TCP) and

Internet Protocol (IP).

35

_ CHAPTER I INTRODUCTION

The Internet is the global Internet Protocol based (IP-based) network"-ove,r

which the World Wide Web and other popular information systems operate
(Hughes et al., 1997).

1.7 THE AIM AND OBJECTIVES OF THE RESEARCH

Information is the most valuable asset in many organisations, and sharing,
accessing and protecting it is a growing priority (Idris, 1995). The author of this
thesis is interested in protecting the information in a CSCW system by providing
two security layers, termed the External Security Layer (ESL) and Internal
Security Layer (ISL), as described in Section 1.0. When the ELS and ILS are
combined they provide an effective means of providing a secure CSCW

environment.

The aim was to model, develop and evaluate a prototype implementation
which was added to a distributed software inspection groupware system FlexSIG
(Sahibuddin, 1999), which will be used as a test-bed. The secure software
inspection process model is based on an extension of FlexSIG model. The
prototype utilised existing tools and technology to achieve security outlined in
the model developed. The system was evaluated and the results analysed.

Specifically the aims of this research were:
e to develop a secure software inspection model.

e to develop a prototype based on the model.

o to evaluate the prototype to measure the suitability and transparency of the

system.

The two securities layer, the ELS and ILS, were implemented on top of

FlexSIG to demonstrate the security ideas developed in the research reported in

36

 CHAPTER I INTRODUCTION

this thesis. The security model was sufficiently flexible to support the

asynchronous and synchronous mode provided by FlexSIG.

The main objectives of the research were to,

e provide a mechanism to protect the CSCW system from an unauthorised

user;

e provide a secure information flow for the CSCW system operating over the

Internet;
e provide information/data authentication;
o provide information/data integrity;
e provide a mechanism to protect information stored in the system;
e provide a secure prototype system that is transparent to users;

e provide a prototype system to demonstrate, test and evaluate the proposed

solutions.

37

Chapter 2

COMPUTER SUPPORTED
COOPERATIVE WORK

2.0 INTRODUCTION

This chapter introduces the area of Computer Supported Cooperative Working,

security related to it and the Flexible Software Inspection system which will used

as a test-bed in this research. The chapter is structured as follows:

Section 2.1 describes the overview history, classification, development,

design issues and examples of Computer Supported Cooperative Working.
Section 2.2 describes the security area related to area Computer Supported
Cooperative Working. Existing information securities in CSCW are also
discussed.

Section 2.3 highlights the security models that are used as a basis in this
research.

Section 2.4 highlights the existing groupware software inspections tools.

The FlexSIG system, used as a test-bed CSCW application in implementing

the security services, 1S discussed in detail.

38

CHAPTER 2 COMP 'ER SUPPORTED COOPERATIVE WORK

2.1 COMPUTER SUPPORTED COOPERATIVE WORK

Chapter One give an introduction to the area of Computer Supj)ortéd
Cooperative Work (CSCW). Computer Supported Cooperative Work (CSCW) is a
research field that investigates, on an interdisciplinary basis, how people co-
operate and how this co-operation is supported with modern computer technology
(Foley & Jacob, 1995). Its focus is on both the nature of cooperative work forms
and current work practice and on the way information technology can change,

augment, and support co-operative work pattern.

CSCW involves contributions from a variety of disciplines. In the CSCW

community (Eltoweissy, 1993):
e soclal scientists evaluate the impact of technology on group performance,

e computer scientists and electrical engineers explore new concepts and

facilities for developing computer and communication applications,
e software developers aiming at creating useful tools for group work, and

e practitioners try to combine the diverse systems, applications, and knowledge
about work groups to determine how changes can be made to the ways groups

work so group work is more productive.

CSCW applications are commonly known as groupware (Johansen, 1988;

Ellis et al., 1991; Grudin, 1991). The term groupware was coined by Peter and

Trudy Johnson-Lenz (1982) as follows:

“«GROUPWARE = intentional GROUP processes and procedures to
achieve specific purpose + softWARE applications designed to

support and facilitate the group’s work.”

Groupware is distinguished from formal software by the basic assumption

it makes: groupware makes the user aware that he/she is part of a group, while

39

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

most other software seeks to hide and protect users from each other. Groupware
is software that accentuates the multiple user environment, co-ordinating and
orchestrating things so that users can “see” each other, yet do not conflict with
each other (Liynch et al., 1990). In the new wave of groupware applications there
1s more consideration of group processes and how individuals can interact with

each other rather than just with their own computer system (Rogers, 1994).

2.1.1 Classification of CSCW

A wide variety of CSCW systems have been developed reflecting the many
different views of co-operation. The potential benefits of CSCW systems are
better understood in a framework for classifying these systems. The most widely
used classification of CSCW systems distinguishes them in term of their abilities

to bridge time and to bridge space (Ellis et al., 1991).

Wilson’s classification of CSCW has been presented in detail in the first
chapter. According to Wilson (1991), as mention in the first chapter, the field of
CSCW can be divided into two distinct but interrelated fields; the group working
process and the enabling technology employ to support it. Wilson further
subdivided these two areas. In the case of group process, individual,
organisational, group work design, and group dynamics are all aspects that
require addressing under the heading of CSCW. On the technical side, which
enables CSCW, communication systems, shared work space facilities, shared

information facilities, and group activity support facilities are identified as areas
of CSCW interest.

Ellis et al. (1991) present two taxonomies for viewing groupware. The

first taxonomy is based upon notions of time and space and the second taxonomy

is based on application-level functionality. These time and space considerations

40

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

suggest four categories of groupware: face to face interaction at the same .pl‘a,cé,
and in the same time (e.g., meeting room technology), asynchronous interact-ioﬁ
at the same place but in different time (e.g., physical bulletin board),
synchronous distributed interaction at different places but at the same time (e.g.,
real-time document editor), and asynchronous distributed interaction at different
places and in different times (e.g., electronic mail system). This view is similar
to the classification suggested by Johansen (1988), which is summarised in Table

2.1. A comprehensive groupware system serves the needs of all the categories

mentioned above.

Asynchronous
Interaction

Face-to-face Interaction

Synchronous Asynchronous
Distributed Interaction | Distributed Interaction

Table 2.1: Johansen Space Time Matrix

The second taxonomy proposed by Ellis ef al. is based on application-level
functionality. This taxonomy is intended primarily to give a general idea of the
breadth of the groupware domain. The second taxonomy can be classified into six
major categories, i.e. message systems, multi-user editors, group decision support
systems and electronic meeting rooms, computer conferencing, intelligent agents,
and co-ordination systems. Many of the defined categories overlap and there is

merging of these functionalities due to the increased demand for integrated
systems.
Looking at the classification of CSCW defined by Ellis et al. (1991) and

Wilson (1991) above, there is some similarity between their classification. This

41

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

similarity is between Ellis et al. application-level functionality taxonomy and
Wilson’s enabling technology classification. Both classifications divide and group
CSCW system and research area based on the type of application. Also, both

approaches consider applications and systems, even though they disagree on how

many classes they should have.

According to Blair & Rodden (1994), there is some difficulty in classifying
CSCW using the time and space taxonomy. The reason is that work often
switches rapidly between synchronous and asynchronous interactions. Blair &
Rodden (1994) mention that CSCW can be classified mainly by the form of co-

operation: purely asynchronous systems, purely synchronous systems, and mixed

systems.

Wilson’s (1990) description of CSCW will be used as a main reference
point because it embraces most of the other terms used to describe this field,
including Groupware and Workgroup Computing. See Appendix A for other

views on naming of CSCW. The term CSCW will be used throughout the thesis.

2.1.2 Development and Design Issues of CSCW

Among the first CSCW systems was the computer conferencing program (Opper
& TFersko-Weiss, 1992). According to Opper & Fersko (1992), the first
conferencing-like abilities were introduced on an existing email network in early
1970’s. Around the same time, a few systems were developed. The Electronic
Information Exchange System (EIES) was developed by Turoff and Hiltz, and
Notepad was developed by Vallee in the 1970’s (Opper & Fersko-Weiss, 1992). A
number of major computer vendors were also interested in this area and were

creating ad hoc internal CSCW systems to take advantage of their widespread

telecommunications facilities.

42

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

In the software universe, groupware is placed somewhere between single-
user applications and information systems that support organisations (Grudin,
1994). Each software development area emerged independently. Systems
designed to support organisations achieved prominence first. “Organisation
goals” are major goals typically defined by upper management. These research
activities have variously been labelled data processing (DP), information systems

(IS), management information systems (MIS), and information technology (IT).

In early 1980s, the spread of interactive and personal computing created
large markets for applications designed for individual users. Research and
development activities drew on existing human factors (HF) approaches to design
and evaluation prior to the emergence in the early 1980s of conferences and

journals under such banners as Human and Computer Interaction (HCI).

In the mid-1980s, the terms groupware and CSCW were coined and
conference series and literature appeared. According to Grudin (1994),

conditions that encouraged the emergence of CSCW in the 80’s included:

computation inexpensive enough to be available to all members;

e technological infrastructure supporting communication and co-ordination,

notably networks and associated software;
e widening familiarity with computers, yielding groups willing to try the
software;

e maturing single-user application domains that pushed developers to seek new

ways to enhance and differentiate products.

Grudin (1994) states that the emergence of CSCW in the 1980s in the

United States included both government contract projects and small-group

support projects, but is most strongly tied to the shift of attention to small

43

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

networked groups. Many United States researchers and developers focus on
experimental, observational, and sociological data. = However, European

contributions to CSCW are often driven by philosophy or social, economic or

political theory (Grudin, 1994).

Another study by Grudin (1991) said that European research in CSCW
focused on internal development to address organisational needs, while in United
States, the research is focused on off-the-shelf products, where it is a move by

product developers to expand beyond single-user applications.

Groupware is largely a new market for product developers, along with
telecommunications companies that have interest in multi-user applications.
Attendance at the first three CSCW conferences was primarily from software
product development companies (approximately 40%) and universities (30%)
with steady telecommunications presence (5% to 10%) (Grudin, 1994). This
confirms that early interest in groupware development is found largely among

developers and users of single-user applications.

As developers shift from supporting individual users to supporting groups,

many encounter for the first time the challenges described below.

Grudin (1994) listed eight major problems that stem from the social
dynamics of groups, drawn from developer experiences, descriptions of short-

lived products and research prototypes, and experimental and modelling studies

in the literature.

1. Disparity in work and benefit. Groupware applications often require

additional work from individuals who do not perceive a direct benefit from

the use of application.

44

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

Critical mass and Prisoner’s dilemma problems. Groupware may not enlist

Wt u . . sy e
the "critical mass" of users required to be useful, or can fail because it is

never to any one individual’s advantage to use it.

3. Disruption of social process. Groupware can lead to activity that violates

social taboos, threatens existing political structures, or otherwise demotivates

users crucial to its success.

4. Exception handling. Groupware may not accommodate the wide range of

exception handling and improvisation that characterises much group activity.

5. Unobtrusive accessibility. Features that support group process are used
relatively infrequently, requiring unobstrusive accessibility and integration

with more heavily used features.

6. Difficulty of Evaluation. The obstacles to meaningful, generalised analysis

and evaluation of groupware prevent us from learning from experience.

7. Failure of Intuition. Intuitions in product development environments are
especially poor for multi-user applications, resulting in bad management

decisions and error-prone design process.

8. The Adoption Process. Groupware requires more careful implementation in

the workplace than product developers have confronted.

Overall they call for better understanding of work environments and for
corresponding adjustments by developers. Progress on the first five points
requires better knowledge of the intended users' workplace. The final three
require changes in the development process. The final challenge in particular,
addressing the sensitivity of groupware to aspects of its introduction in

workplace, demands that product developers expand their conception of

45

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

development process and product to include concerns that have been outside

their sphere of activity.

Grudin (1994) wrote that computer support has focused on organisations
and individuals. Groups are different. Repeated, expensive groupware failures
(Grudin, 1994) result from not meeting the challenges in design and evaluation
that arise from these differences. They result from not understanding the unique

demands this class of software impose on developers and users.

Desktop conferencing, video conferencing, co-authoring features and
applications, email and bulletin boards, meeting support systems, voice
applications, work flow systems, and groupware calendars are common examples

of accepted groupware.

2.2 CSCW AND SECURITY

Foley & Jacob (1995) stated that a great deal of work has been done on the
technological aspects of CSCW that is the problem of how one actually provides
computer support for co-operation but information security aspects of CSCW
technology have not received as much attention (Teufel et al., 1995). Teufel et al.
(1995) stated that current approaches to information security are directed toward
the protection of an individual object or an individual person. With CSCW
technology the group aspect is introduced into the security discussion. CSCW
applications are group aware and also support the natural working environment
where people work together in groups, as opposed to information security models

which have been modelled on individual interacting with a system.

Teufel et al. (1995) introduce information security concepts and especially

address security requirements in the field CSCW. They first standardise CSCW

46

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

from a functional perspective. Table 2.2 depicts a functional view of CSCW

technology.
business
application level Strategic management B v— *2
)
5
CSCwW R
. . - =
application level DSS MSS BBS A
pp -— T
=
z
CSCW E
artefact level artefact areas L D
¢ pa ¢ rd 4____ g
|
!
I
|
Information scheduling pre-planning participant management :
s "l ‘mi aci p interacti i
Coordination br u‘n.stonmng mcx?g A agclm interaction < |
decision making monitoring voting |
I
: riting drawing joint design i
Information Wit
: collaborative writing collaborative painting modelling !
Presentation o i) -
painting collaborative drawing i
I
hari ival di icati I
: sharing retreiva audio communication 1
Information difyi accessing video communication !
Sharing modifying accessing i : - -
mailing workflow

Table 2.2: A Functional View of CSCW Technology

In this functional view of CSCW technology as shown in Table 2.2, Teufel
et al. (1995) categorise it into three levels: business application level, CSCW

applications level, and CSCW artefact level.

o Business application level: On the business area level different business units
within organisation will use different CSCW applications to fulfil their task,
e.g. a strategic management unit might use decision support systems (DSS)

and meeting support system (MSS) to improve the effectiveness of their

decision making process.

47

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

o CSCW applications level: On the CSCW application level there exists

different CSCW applications such as bulletin board systems (BBS) and

personal conferencing systems.

CSCW artefact level: The CSCW artefact level refers to artefacts usually
employed in the construction of CSCW applications. These artefacts are
grouped into three artefact areas and form a hierarchy: Information Co-

ordination, Information Presentation, and Information Sharing (see Table

2.2).

application area level a security requirem

O Information Co-ordination Area: Information co-ordination area refers to
all the artefacts facilitating the co-ordination and the manipulation of
information in the sense of evaluation, analysis, and agent interaction. In
CSCW applications where different multiple artefacts are used, it is
important to realise that the way agents interact also affects the security
requirements. Some of these artefacts are scheduling, voting, agent

interaction, and participant management.

0 Information Presentation Area: Some of these artefacts are: writing,

collaborative writing, drawing, modelling, and joint design.

0 Information Sharing Area: Information sharing artefacts support the

storage, retrieval, access to, sharing and mailing of information spaces.

These three artefacts are not independent of each other. The artefacts on
the higher levels are using the functionality of artefacts of the lower levels
to support their own facilities, e.g. the scheduling facility (information co-

ordination area) needs writing (information presentation area) and mailing

(information sharing area) to function.

The security requirements on each level will be different. At the business

ent from senior management might be

48

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

to authenticate the members participating in a strategic business meeting. The
CSCW application level with applications such as meeting support systems
might consider confidentiality as very important as compared to the lower
confidentiality requirements for BBS. It is clear that classical information

security criteria such as confidentiality have to be adapted and extended to fulfil

the requirements on the different level (Teufel et al., 1995).

2.2.1 The Security Areas in CSCW

Security areas that are relevant for CSCW applications are Information Security,
Group Security, Content Exchange Security, and Communication and Data

Security (Teufel et al., 1995).

Information Security Area

Information security for the exchange of information takes a general view that
not only includes but also encompasses information technology. Issues such as
inter-personal relationships and the use of information by humans to support

decisions are included. Criteria that are relevant to information security are

authenticity of content and goal conformity.

e Authenticity of Content. Authenticity is a widely accepted security criterion
for information systems. Authenticity requirements for CSCW environments
encompass the authenticity of communication partners. Authenticity of
content means that the representations can be validated according to the

original source of the information. Possible security mechanisms to ensure

authenticity of content could be digital signature, public key encryption, and

backups.

49

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

Goal Conformity. Goal conformity prevents the misuse of information, i.e. it

ensures that the use of information is bound to the intended goals of the
owner. Object classification, job description and Need-to-Know access control

mechanism could be used to guarantee goal conformity.

Group Security Area

The group security approach views a group as a dynamic entity. Selected
members of a group provide information on a dynamic basis (real time) about
members belonging to the group. Security mechanisms for CSCW applications
should be able to guarantee that anonymity is maintained in situation such as
anonymous voting (Teufel et al., 1995). Criteria that are relevant for group
security are group authentication, group identification, group accountability,

group integrity, and anonymity.

e Group Authentication. Group authentication encompasses the normal

definition for authentication. The requirement is to authenticate a group and

all the members belonging to this group. Group authentication is required in
a group activities where the participants may be at different places at the
same time or different time (asynchronous and synchronous distributed

interaction). Groups authentication could be ensured by using passwords and

mandatory access control (MAC).

e Group Identification. Group identification is a limited case of group
authentication. Some CSCW applications require that a group and members
belonging to a group have to be identified but not necessarily authenticated.
The identification is used for communication purposes where activities, such
as discussion of confidential information or decisions making, are not

required. Identification is needed when the participants of the group are at

50

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

the same place at the same time (synchronous interaction). Location specific

passwords and views are possibilities to fulfil the security requirement group

identification.

e Group Accountability. Group accountability provides the service of
maintaining a record of the activities not only of the members of the group
but also for groups. Group accountability tracks all group activities done in
the information co-ordination, information presentation, and information
sharing areas. Security mechanisms in the majority of cases provide for

accountability through the use of audit services.

o QGroup Integrity. CSCW applications should also preserve the integrity of
objects stored in both the information sharing area or displayed in the
information presentation area. Integrity for CSCW applications is much
more complex when compared to classical definitions of integrity, where
integrity is viewed as preserving the contents of objects. Possible security

mechanisms to ensure group integrity are digital signatures and passwords.

e Anonymity. Anonymity guarantees that an individual belonging to a group
may under certain circumstances not be identified. Anonymity has always
been a preferred requirement of voting procedures and should therefore be
adopted in the modelling of security requirements for CSCW applications.

Privileged attribute certificates (PAC) are one possibility to guarantee

anonymity.

Content Exchange Security Area

The pragmatic relevance of content exchange security is explained by the

statement that information is only useful because someone can do something

with it. CSCW applications require that content exchange additionally addresses

51

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

the semantics of inter-personal and inter-group communication. Criteria that

are relevant for context exchange security are acceptance of obligation and

personal accountability.

Communication and Data Security Area

Communication and data security refers to the fundamental building blocks of
information security perceived by many international standards available today.
CSCW applications are dependent on the secure functioning of the underlying
levels and use supporting security mechanisms for communication and data
security. Criteria that are relevant for communication and data security are
authenticity of communication partners, confidentially, availability, integrity, and

identification.

o Authenticity of Communication Partners. Authenticity of communication
partners is necessary to trace the source of exchanged information. CSCW
applications require a high degree of "trusted path" implementation.
Possibilities to ensure authenticity of communication partners could be the

use of inter-network rights or time validity mechanisms.

o Confidentiality. Confidentiality describes the state of being private or secret
i.e. only accessible by authorised people. Confidentiality is implemented by
using cryptography. The confidentiality requirements for CSCW require that
various roles played by members in groups are reflected in the access control
information. Access control information includes persons, processes, and

protected resources. The interaction between members in a group is
controlled by access rules which determines the flow of information. Access

rules such as (subject, object, access right) need to be redesigned to include

security.

52

CHAPTER2 COMPUTER SUPPORTED COOPERATIVE WORK

Availability. Availability is a state of existence or readiness of resources and
services. Availability within CSCW applications requires that all objects
belonging to the information co-ordination area, information presentation
area and the information sharing area are always available within the
protected environment. Possible security mechanisms to ensure availability

could be the use of privileged certificates (PAC), distributed file services,

mandatory access control (MAC), and backups.

e Integrity. Integrity relates to the internal state of objects in the information
co-ordination area, the information sharing area, and the information
presentation area. Digital signature, error detection mechanism, and object

classification are appropriate to secure integrity.

e Identification. Users are identified but not authenticated. Identification is
required for communication purposes where activity like discussion of
confidential information is not required. Network access control mechanisms

and access control lists are suitable possibilities to ensure identification.

2.2.2 Mapping Artefact Areas onto Security Areas

A generalised framework describing the major CSCW areas and security
requirements for CSCW applications have been discussed in the previous section
(Section 2.2 and 2.2.1 respectively). This section shows which security criteria
can be utilised to address the security requirements of specific CSCW artefacts.
For example, the integrity (security area: communication and data security)

could be ensured by using public key encryption in the specific CSCW

application. Table 2.3 shows the mapping of the various artefacts onto specific

criteria. The artefacts list as used in Table 2.3 is not fully representative of the

CSCW because CSCW is still a maturing technology (Teufel et al., 1995).

53

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

Consequently, the implementation of the information security concepts

with respects to a real CSCW application is the next step to be implemented

(Teufel et al., 1995).

Context
Information Group Exchange Communication
Security Security Security and Data Security
2 . £ z| &
) B = <!
s g8t 85| %
Security E o |2 = 2 .) = =3
Areas S 3 c g BB < 215§ &
z E|2%2 26 s SlzsE . 8
T &5 8 ssx|l8 2|ssEsE %
£ g |« < S E|] B|EE §EF &8
Artefact) o [T Y= W = W = o 8:1 L 5 F o8
R S5 5522 g2 &= B E
Areas E S22 288 & s 5158 § § 2 8
s 8|55 55 d|< 4|28 < 5 =
scheduling X X X X X
brainstorming X X| X X
o g decision making X X X X X X X X X X X X X
-E I&? pre-planning X X X X X
g £ tracing X X X X
EE monitoring X X X
5 8 participant management X X X X X
agent interaction X X X X X X X X X X
voting X X X X X| X X X X
writing X X X X
g g collaborative writing X X X X X X X X X X X X
;g ‘43 painting/drawing X X X
‘2 collaborative painting
Eﬁzo.alpl”’/ X X X XX X X X X
& @ drawing
5 & joint design X X X X X X X X X X
modelling X X X X X
eo sharing X X XX X X X X
E modifying X X X X| X X X X
& mailing X X X X X X
w
g retreival X X X X X
2 accessing X X XX X X
£ workflow X X X X X X|X X X X
é audio communication X X X X XX
.5 video communication X X X X X

Table 2.3: Mapping Artefact Areas onto Security Areas

Security areas that are relevant to CSCW have been laid out in previous

section. The research described in this thesis concentrates on the security areas

54

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

of Group Security and Communication and Data Security, as proposed by Teufel
et al. (1995). In a group security area, the area of interest is the issue of group
authentication. In data communication and data security, confidentiality and

Integrity are the areas of interest. These areas correspond to the objectives of

the research (Chapter One).

2.2.3 Existing Information Security in CSCW

Access Control

Shen & Dewan (1992), Kanawati & Riveill (1995), and Coulouris & Dollimore
(1994) in their research focus on access control issues for collaborative
environments. Shen & Dewan (1992) in their work stated that there has been
much research done in computer applications for facilitating collaboration among
multiple distributed users but there has been relatively little works done in
controlling access to the collaboration. Almost all available collaborative systems
or groupware applications provide all collaborators or users with the same rights

(Shen & Dewan, 1992; Kanawati & Riveill, 1995).

Shen & Dewan (1992) in their research proposed a new access control
model to meet the requirements of the collaborative environments. The model
that they proposed is based on a generalised editing model of collaboration,
which assumes that users interact with a collaborative application by
concurrently editing its data structures. It associates fine-grained data
displayed by a collaborative application with a set of collaborative rights, and
provides programmers and users with a multi-dimensional, inheritance-based
scheme for specifying these rights. They identified several requirements that a

generic access control model for collaborative environments should support. Due

to the limitations of the conventional model (Shen & Dewan, 1992) in supporting

55

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

the collaborative environments, they have extended the conventional model in
several ways to overcome these limitations. They are: Collaborative rights, by
defining a new set of access rights for generic collaborative model, negative
rights, by supporting the notion of negative right to allow explicit denial of
access, inheritance-based specification, by supporting an extended access matrix
that supports not only individual subjects, objects, and rights but also groups of
these entities, and automation, by including mechanisms that relieve an
application of the task of implementing the details of access control. Shen &
Dewan (1992) implemented all the extensions mention above in their "Suite"

multi-user framework.

Kanawati & Riveill (1995) in their work address the problem of specifying
user roles over the production space (e.g. the set of shared documents in a co-
authoring system). Kanawati & Riveill (1995) stated that almost all available
groupware applications provide all users with the same access rights. According
to Kanawati & Riveill (1995) it is obvious that collaborative tasks require
different users have different access control rights and few works have addressed
this question. They provide a flexible, dynamic fine-grained and easy to use role
attribution mechanism by proposing a model that is based on defining

hierarchical schemes over the three dimensions involved in access control: the

subject, the object and the requested rights.

Coulouris & Dollimore (1994) proposed a security model to support co-
operative work in which the security of the information used and produced is
critical, and where the participants are not equally trusted. They developed so
called "access control model" for security in which access to information objects is
controlled in accordance with a scheme of access rights. The model they

proposed has two levels at which access control is represented - user level and

programming level.

56

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

Secure Group Communication

Sakakibara et al. (1994) and Takizawa & Mita (1993) in their research focus on

secure group communication, and have published several papers on this.

Sakakibara et al. (1994) state that attention on CSCW has increased, and
1t has led to consideration of the needs of secure group communication. In order
to realise secure group communication, important data which is sent from a
member of a group to other members of the group should be encrypted by a
common cryptographic key of the group (i.e. group communication key)
(Sakakibara et al., 1994). Non-members of the group can not understand the
encrypted data under the group communication key of the group. In their
research they proposed an identity-based non-interactive group communication
key-sharing scheme using smart cards based on the modified copy key (MCK)
method. In the MCK method users did not hold group communication keys used
for enciphering and deciphering, but hold a common key and key generator
“Pjeces” which are positive integers instead of keys themselves. Each user gets a
communication key generated from a common key and Pieces held by himself,
when he makes cryptographic communications with other users. If more than
two users show their Pieces with each other, they can make any group
communication key. Users can share a same group communication key among
more than two users non-interactively. This method is however vulnerable to
conspiracy attack. In order to defend against this attack, Pieces that are
distributed and held by users must not be exposed to them but hidden in smart

cards, and handed to users by a trusted centre in an organisation.

Takizawa & Mita (1993) stated that in distributed applications like

teleconferencing and cooperative work, there is a need of secure group

communications among multiple communication entities. Takizawa & Mita

highlight that in the open system environment, computer systems can be easily

57

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

interconnected by the communication network. With this open environment, one
critical problem of how to protect the system from attacks by malicious entities
arises. One solution is to encipher the data by using a secret key cryptography,
and providing a secure communication channel among two entities using public
key cryptography (Takizawa & Mita, 1993). Takizawa & Mita (1993) named a
group of entities as a cluster and a subset of entities in the cluster as subcluster.
In their paper, Takizawa & Mita (1993) discuss how to provide secure group
communication for a cluster of multiple entities in the presence of attacks by
malicious entities by using a less-secure broadcast network like Internet and how

to established a secure sub-cluster communication in the cluster.

Others

Foley & Jacob (1995) show interest in what is meant by confidentiality security
in CSCW applications. They are less concerned with the technological aspects of
how security should be enforced and more concerned with how one might specify
the security requirements for CSCW applications and the resulting properties
that a CSCW system, providing support for the applications, should uphold. This

contributed to the motivation and formulation of the research problem.

Hanka & Buchan (1996) stated that the security of communications over
the Internet combined with the security of data servers is an importance issue to
be considered. In their health-related application they highlight the security
requirements which are access control, secure transmission of data,
quthentication and non-repudiation for data exchange, and an audit trail to
provide reliable and unalterable audit records. Hanka & Buchan (1996) also
highlighted the need of secure electronic mail because electronic mail is one of

the most used services over the Internet and is regarded as one of the

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

fundamental requirements of Internet access. This contributed to the conceptual

framework of the model discussed in Chapter Five (Section 5.2).

Idris (1995), addresses the problem of security interoperability in multi-
databases environments. He has focussed on the secrecy attribute and provided
interoperability by constructing two types of security mechanism in the
integrated environments, which he has termed the static mechanism (Static
Security Layer) and dynamic mechanism (Dynamic Security Layer). The static
mechanism is the default security which is blended within the integrated
database, while the dynamic mechanism is a refinement in access control
management. According to Idris (1995) the combination of both mechanisms has
successfully provided a degree of security between the distributed databases.
This contributed to the development of the model discussed in Chapter Five

(Section 5.1.2).

2.3 SECURITY MODEL

This section mainly discusses the distributed security model. The McGhie’s
(1994) and the SecureWay (IBM, 1997) security model are discussed. Both of

these models are used as the basis for the developing SecureSIG model.

McGhie’s distributed security model established security utilities and
services at the network level, supported by the central security group that

conforms to open system standards (McGhie, 1994). McGhie’s security model

consists of two main components, namely: primary components and supporting

components. McGhie’s primary components consist of four utilities and services,

namely: authentication, quthorisation, administration, and audit. The

supporting components consist of three utilities and services, namely: encryption,

external file transfer, and risk assessment and data classification.

59

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

The SecureWay (IBM, 1997) security model consists nine of components,
namely: Credential services, Authentication Services, Security Context Services,
Access Control Services, Cryptographic Services, Key Recovery Services, Secure
Content Distribution Services, SET Secure Electronic Transaction, Applet
Security. Credential services are responsible for the management and use of
credentials. Authentication services are responsible for establishing and proving
identities. Security context services make authentication more efficient across a
network by "remembering" that a user has been authenticated to a particular
system. Access control services check a user's credentials to verify that the
individual is authorised to access or use a specific resource and if so, what kind of
usage is allowed. Cryptographic services provide the ability to communicate
between parties in such a way that prevents other parties from accessing and
understanding the communication. Key recovery services provide a mechanism
to reconstruct cryptographic keys in case of the loss of a key. Secure content
distribution services enable copyrighted intellectual property to be distributed
while protecting the rights of the owners. Secure Electronic Transaction
provides a mechanism for securely and automatically routing payment
information among users, merchants, and their banks. Applet security enables
the end user to interface with the Java applet in the usual manner but be

transparently protected by cryptographic functions provided within the Java

environment.

2.4 SOFTWARE INSPECTION

As mentioned in the introduction section, in this research we are using Flexible

Software Inspection Groupware (FlexSIG) proposed by Sahibuddin (Sahibuddin,

1999) as the test-bed as CSCW application in the implementation of security

services.

60

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

The aim of inspection is to analyse a products or document to detect
defects (Fagan, 1976). Software inspection is a manual process. In the standard
software inspection procedure, participants attending the software inspection
meeting are assigned one of several roles: moderator: administer the meeting,
reader: reads the text of module being inspected, scribe: records any proposed
comment that are agreed on by the committee, author: author of the code being
inspected, who answers questions from the inspectors about the module, and an

inspector. The benefit of using inspection is well documented (Ackerman, 1984;

Kitchenham et al., 1986).

2.4.1 Software Inspection Models

There are three major formal software inspection methods, namely: Fagan’s
software inspection (1976), Humprey’s software inspection (1989), and Gilb &

Grahm’s software inspection (1993).

Fagan’s (1976) inspection process consists of five steps. The steps are
overview, preparation, inspection, follow-up, and rework. A planning step was
later added to improved versions of the inspection process (Fagan, 1986). There
are four people in Fagan’s inspection team. The number can be changed if
circumstances indicate otherwise (Fagan, 1976). The Fagan’s teams are assigned
one of several roles; moderator, author, reader, and tester (Fagan, 1986). In

Fagan’s (1976, 1986) software inspection process, one inspection session should
not last more than two hours.
Gilb & Grahm’s (1993) software inspection consists of ten inspection

process phases. The inspection process phases are request, entry, planning, kick-

off meeting, individual checking, logging meeting, edit, follow-up, exit, and

release. Two to three people are recommended for maximum efficiency in Gilb &

61

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

Grahm’s (1993) software inspection. Gilb & Graham’s (1993) inspection teams
consist of an inspection leader, author, and checker. A scribe is appointed during
the meeting. In Gilb & Graham’s (1993) software inspection process, one

Inspection session should not exceed two hours.

Humprey’s (1989) software inspection consists of preparation (consists of
entry criteria and opening meeting), preparation, and post-inspection activity.
Humprey’s (1989) inspection teams consist of moderator, producers, reviewer,
and recorder. Number of participants in the inspection team should not exceed 5

or 6 persons (1989). Time of inspection meeting should not exceed two hours per

session (Humprey, 1989).

2.4.2 Groupware Software Inspection Tools

The inspection process was first described by Fagan (1976). Since then there
have been many other inspection processes proposed by other researchers and
practitioners. Sahibuddin (1999) established that software inspection could be
described as a group activity. Among the first tools that supported software
inspection were ICICLE (Intelligent Code Inspection Environment in C
Language Environment) (Brothers et al., 1990) and InspeQ (Inspecting software
in phases to ensure Quality) (Knight & Myers, 1991; 1993). Both ICICLE and
InspeQ did not support distributed inspection, in fact, InspeQ is a software
inspection tool for one user only. Other software inspection tools such as
Collaborative Software Inspection (CSI) (Mashayekhi et al., 1993), Scrutiny
(Gintell et al., 1993), Collaborative Software Review System (CSRS) (Johnson,
1994), Asynchronous Inspector of Software Artefact (AISA) (Stein et al., 1997)
and FlexSIG (Flexible Software Inspection Groupware) (Doherty & Sahibuddin,

1996: 1997), (Sahibuddin, 1999), support distributed inspection either as

62

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

distributed asynchronous or distributed synchronous processes. Our interest in
this research is a groupware software inspection tool that supports distributed
inspection (CSI, CSRS, Scrutiny, AISA, and FlexSIG). FlexSIG is the system of
interest for the remainder of this research and it will be dealt in more detail.

Table 2.4 shows the time-space comparison between groupware software

inspection tools mentioned above.

FlexSIG

FlexSIG extends the code inspection groupware proposed by Brother et al. by not
limiting the meeting to the first quadrant (i.e. face-to-face interaction), but

allowing any quadrant of the Johansen space-time matrix as shown in Table 2.4.

Scrutiny AISA

CSI CSRS
FlexSIG FlexSIG
Scrutiny FlexSIG
FlexSIG

Table 2.4: Time-Space Comparison between Groupware Inspection Tools

FlexSIG enhances the system supporting the informal code review
session. In their system, the enabling technology and the integration platform
are handled by the World Wide Web (WWW). In the system they proposed, the
role of moderator is different from the formal software inspection meeting set up.
It is not necessary for the moderator to be on-line at the same time as the

inspector or the author because of the integration of electronic mail (e-mail) into

63

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

their system. With the e-mail facilities provided, an asynchronous

communication line can be established between moderator, author, and the

inspector.

The FlexSIG system takes little account of security aspects. However, in
an open distributed environment such as the Internet, systems connected to the
network can easily be accessed and information can easily be tapped. FlexSIG
provides only system access control, and it is handled by authorisation of the
client during login into the system. The system access control provided is not
secure because the password is passed back to the server program in a plaintext
form. The information can easily be tapped if the communication line is being
monitored. Furthermore, the authorisation file used is unprotected plaintext and
this results in the file being easily accessible by unauthorised parties. This
weakness also arises when determining the level of access for users. Another
weakness is that the system did not provide a way to ensure information
transferred on the network is secure. There is no protection scheme provided to
ensure this. Issues of integrity and authentication of information transferred
were not considered. Finally, in software inspection, source code is the most
valuable asset. With no protection of the stored source code, it is easily
accessible to unauthorised parties. If this issue is not taken into account, the
often highly valuable source code is at risk of loss. All these weaknesses can be

solved using Cryptography techniques, and will be discussed in Chapter Three,

Four, and Five.

2.5 SUMMARY

In summary, section 2.1 discussed and reviewed papers on CSCW related to

groupware, classification of CSCW, and development and design issues in CSCW.

Many classifications have been reviewed and discussed but the classification of

64

CHAPTER 2 COMPUTER SUPPORTED COOPERATIVE WORK

CSCW that has been given by Wilson will be used here.

Section 2.2, discussed and reviewed papers related to the information
security concepts, particularly to acquire security requirements in the field of
CSCW, computer security and security related to CSCW. An access control and
secure group communication related to CSCW were also considered. The
research described here will focus on the security aspects of CSCW, noting the

lack of consideration of security issues in reported work on CSCW.

Section 2.3 discussed and review papers of the existing distributed security
model. McGhie’s and the SecureWay security models are presented. These two
security models are the basis for the development of the Secure Software

Inspection Groupware discussed in Chapter Five.

Section 2.4, discussed and reviewed papers on the existing software
inspection tools and concentrated on the issue of code inspection. Existing
groupware software inspection tools were also highlighted. Flexible Software
Inspection Groupware (FlexSIG) will be used as the test-bed, and has been

discussed in detail.

65

Chapter 3

ENABLING TECHNOLOGY
AND SECURITY SERVICES

3.0 INTRODUCTION

The chapter discusses the issues of the enabling technology and the security
services. The topic of cryptographic key management is also discussed. The

chapter is structured as follows:

e Section 3.1 discusses the enabling technology used in the implementation.

These include Cryptography, Java technology (Java), and the Internet.

e Section 3.2 presents the security services and their mechanisms. The
security services from the security architecture proposed by International

Standards Organisation (ISO) are presented.

e Section 3.3 describes the cryptographic key management. The secret and
public key distributions are highlighted. ~ Public key certificates are
presented, pointing out their advantages in public key distribution. The

standard certificate, the X.509 certificate, is also presented.

66

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

3.1 THE ENABLING TECHNOLOGY

The section focuses on the issues of the enabling technology. Three types of
technologies that are of interest to this research are Cryptography, Java
Technology (Java), and the Internet. All three areas provide the technology to

enable this research to accomplish its goal.

3.1.1 Cryptography

Cryptography is the major enabling technology used in the implementation to
provide the tool for security. A brief introduction of cryptography has been given

in Chapter One. Cryptography is described in more detail in Appendix B.

Cryptographic systems fall into two general categories (identified by the
types of keys they use): secret key and public key systems (Russell & Gangemi,

1991).

Secret Key Cryptography

Secret key cryptographic systems are very widely used for the protection of
information (Davies & Price, 1989). One reasons for their widespread use is the
fact that secret key cryptographic systems are substantially faster to encrypt and
decrypt than public key cryptographic systems, and are considered harder to

break given equivalent key lengths (Schneier, 1996).

Secret key cryptography is principally applied in stream ciphers or block
ciphers. A stream cipher encrypts one bit of a plaintext message one at a time,

using an encryption transformation that varies with time (Menezes, van

Oorschot & Vanstone, 1997). A block cipher will encrypt a block of plaintext

typically 64 or 128 bits at a time. Block ciphers operate by taking a fixed length

o1 ASTON UNIVERSITY
LIBRARY & INFORMATION SERVICES

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

of plaintext as one block and generating the same number of bits of ciphertext.
The advantages and disadvantages of these stream and block cipher are
discussed in Appendix B. The secret key block cipher is used in this research and
the DES (Data Encryption Standard) and the IDEA (International Data
Encryption Algorithm) block cipher will be discussed in more detail due to their

adoption in the implementation of this research.

In secret key block ciphers there are four common modes of operation,
mainly: Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher
Feedback Mode (CFB), and Output Feedback Mode (OFB) (Menezes, van
Oorschot & Vanstone, 1997). All of them can be used with any block cipher. The
CBC mode is used in this research and it will be used in the development of the
prototype. Block ciphers can be either symmetric-key or public-key. Details of

these four common modes of block cipher operation are given in Appendix B.

The DES and IDEA Block Ciphers

This section focuses on the DES (Data Encryption Standard) and the IDEA
(International Data Encryption Algorithm) block ciphers. These two block
ciphers were adopted as the main block ciphers in the development of the
prototype in this project. Full details of the DES and IDEA block cipher can be
found in Appendix C. The DES block cipher was chosen because it has been the
most popular algorithm in the cryptanalytic research for the last 20 years. Since
it was introduced in 1977, the DES has been extensively analysed for its
cryptographic strength. Kerchoff’s (Schneier, 1996) principle stated that a cipher
is cryptographically strong only if it is publicised and still not broken. The DES
is probably the most widely accepted, publicly available, cryptoalgorithm today

due to two main reasons (Smid & Branstad, 1992): first, no one has demonstrated

68

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

a fundamental weakness of the DES algorithm; second, its endorsement by the
U.S. federal government — the only publicly available algorithm to have ever
been endorsed by the U.S. government. DES is a commonly accepted standard
encryption scheme, well known and well established (Karila, 1991). The IDEA
block cipher is an effective instance of theoretic background applied to cipher
design. Schneier (1996) stated that the IDEA block cipher is the most secure
block algorithm available to the public at this time. The IDEA is included in

Pretty Good Privacy’ (PGP), which alone ensures wide spread use of the

algorithm (Stallings, 1999).

There are many other block ciphers to be found in the literature (Schneier,
1996) (Menezes, van QOorschot & Vanstone, 1997), some of the examples are the
NewDES (Scott, 1985), FEAL (Shimizu & Miyaguchi, 1988), and SAFER

(Massey, 1994). See Appendix D for description of these block ciphers.

Security of the DES

There has been a fair amount of controversy about DES security. There has been
much speculation on the key length, number of iterations, and design of the S-
boxes (Schneier, 1996). Some have charged that the design was deliberately
sabotaged by the National Security Agency (NSA), or that the key size is just
small enough that a major government or large corporation could afford to build
a machine that tries all 2" possible keys for a given ciphertext (Cheswick &
Bellovin, 1994). It was argued that, since the design criteria of the substitution
tables (S-boxes), and indeed for the entire algorithm, were not made public, the
entries could have been selected in such a manner as to hide a “trapdoor”

(Stallings, 1999). According to Stallings (1999) a number of regularities and

* PGP is developed by Phil Zimmermann. It provides a confidentiality and authentication service that

can be used for electronic mail and file storage applications.

69

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

unexpected behaviours of the S-boxes have been discovered but despite this, no
one has so far suceeded in discovering the supposed fatal weaknesses in the S-
boxes. Despite the controversy over the security of DES, it is today the most

widely accepted, publicly available, cryptoalgorithm (Schneier, 1996).

A lot of research has been carried out concerning the security of the DES.
Research results by Biham & Shamir (1991) indicates that the basic design of the

DES is actually quite strong, and was certainly not sabotaged.

There are known weaknesses of the DES, but these do not limit the
effectiveness of the algorithm (Pfleeger, 1989). The first known weakness
concerns complement keys. In the round function of DES, the sub-keys are
XORed with the expanded right sub-block in every round and this configuration
result to a complementation property of the cipher. If E denote DES, and p’ the
bitwise complement of p, then ¢ = E, (p) implies ¢’ = E (p’), that is, bit-wise
complementing (replace all the Os with 1s and the 1s with 0s) both the key K and
the plaintext p results in complemented DES ciphertext. With this it means that
a chosen-plaintext attack against DES succeeds with only half the possible keys:
9%/9 = 2% keys instead of 2° (Pfleeger, 1989). It is still questionable whether the

complementation property is a weakness (Schneier, 1996).

The second known weakness concerns choice of key. This weakness occurs
because of the way the initial key is modified to get sub-key for each round of the
algorithm (Schneier, 1996). The initial value is split into two halves, and each
half is shifted independently. If all the bits in each half are either O or 1, the key
used for any cycle of the algorithm is the same for all the cycles of the algorithm.
This can occur if the key 1is entirely 1s, entirely Os, or if one half of the key is
entirely 1s and the other half is entirely 0s. If this scenario happened, the keys
produced are weak keys. There are also six pairs of semi-weak keys that select

the same DES permutation. Semi-weak key occur due to the way in which DES

70

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

generates sub-keys; instead of generating 16 different sub-keys, these keys
generate only two different sub-keys and each key is used 8 times in the
algorithm (Schneier, 1996). If this scenario happened some pairs of keys encrypt
plaintext to the identical ciphertext, this allows one key in the pair to decrypt
messages encrypted with the other key in the pair. However, the number of
these weak keys and semi-weak keys is very small and does not significantly

impact on the cryptosystem’s security.

The success of Biham & Shamir (1991) differential cryptanalysis was
found to be related to the number of rounds of the DES. Biham & Shamir found
that DES with any number of rounds fewer than 16 could be broken more
efficiently than by a brute-force attack. Before this result, variants of DES with
a reduced number of rounds had been cryptanalysed. DES variants with three or
four rounds were easily broken by Andelman & Reeds (1982). DES with six

rounds was broken some year later by Chaum & Evertse (1986).

According to Menezes, van Oorschot & Vanstone (1997), linear
cryptanalysis provides the most powerful attack on DES to date. Linear
cryptanalysis is a cryptanalytic attack developed by Matsui (1994). This attack
linearly approximates the S-boxes. Matsui (1994) illustrates that up to 8 DES S-
boxes, while strong against differential cryptanalysis, prove relatively weak
against linear cryptanalysis. Matsui (1994) has recovered a DES key for full 16-

round DES in 50 days using twelve HP9735 workstations.

The Security of IDEA

Lai (1992) has argued, but has not proven, that the standard IDEA cipher is
secure against differential cryptanalysis attack after only 4 of its 8 rounds.

According to Biham (1993), his related-key cryptanalytic attack does not work

71

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

against IDEA. Meier (1994) implemented a cryptanalysis attack on IDEA, his
attack is more efficient than brute-force for 2-round (2% operations), but less
efficient for 8-round IDEA or higher (normal IDEA with 8 rounds is safe).
According to Meier (1994) the impressive theoretical foundation behind the

design of IDEA provides a formal indication of security and any known attempt

to cryptanalyse the IDEA has failed.

IDEA’s key length is 128 bit, which is over twice as long as DES. By using
brute-force attack it would require 2" (10%®) encryptions to recover the key
(Schneier, 1996). However, double-IDEA implementation would be susceptible to
the same meet-in-the-middle attack’ as is the DES. However, because IDEA’s
key length is more than double DES’s, the attack is impractical because it

requires a storage space of 64%2" bits, or 10” bytes.

Daeman, Govaerts & Vandewalle (1994) found a class of IDEA weak keys,
but these keys are a small defect, because the chance of generating one of these
keys is very small, one in 2”. According to Schneier (1996) several academic and
military groups have cryptanalysed IDEA, but none of them have published

information about any successes they might have had.

Menezes, van Oorschot & Vanstone (1997) stated that for full 8-round
IDEA, other than attack on weak keys, no published attack is better than
exhaustive search on the 128 bit key space. They also stated that the security of
IDEA currently appears bounded only by the weaknesses arising from relatively

small (compared to its key length) block length of 64 bits.

> The man-in-the-middle attack occurs when an adversary acts as a third party in a two party
conversation. Both legitimate parties assume that they are talking securely with each other; in fact the
adversary is intercepting the entire conversation, decrypting it, re-encrypting it and sending it on to the

intended recipient.

72

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

Public Key Cryptography

Public key systems differ from secret key systems in that there is no longer a
single secret key shared by a pair of users. In the public key systems, each user
has his owns key material. Furthermore, the key material of each user is divided
into two portions, a private component known as private key and a public
component known as public key. The public key and private key is used for
encryption and decryption respectively and the decryption cannot be derived from
the encryption key. Secret key cryptography permits the public key to be public.
A cryptosystems that employ public key cryptography is known as public key
cryptosystem (PKCS). The main characteristic of PKCS is that the knowledge of
the public key does not reveal any significant knowledge about the private key,
which is why the public key may be published freely and be available to
communicating parties. On the other hand, only the intended recipient knows
the private key and thus, the decryption key (private key) is kept secret. There
are two major application areas for public key cryptosystems (Nechvatal, 1992):
distribution of secret keys and digital signatures (See Appendix B). The first
involves using PKCS for secure and authenticated exchange of data-encrypting
key between two parties. Second, PCKS providing authentication, non-

repudiation, and integrity checks.

Public key cryptosystems are slower to encrypt and decrypt than secret
key cryptosystems. For this reason, public key cryptosystems are usually limited

to the set-up of a communications session, for key distribution and key exchange.

There are many types of public key cryptography such as RSA

cryptosystems, Knapsack cryptosystems, ElGamal cryptosystems, Rabin

cryptosystems and others. In this research the RSA cryptosystem was used in

the development of the prototype because it was the most popular, widely

accepted and easiest to understand and implement (Schneier, 1996; Odlyzko,

73

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

1994). RSA public key is a full-fledged public key algorithm that supports
encryption and digital signatures. Other than that, since it was proposed RSA
has withstood extensive cryptanalysis (Schneier, 1996). Several public key
cryptosystems other than RSA have been proposed (Merkle & Hellman, 1978;
ElGamal, 1985; Rabin, 1979). See Appendix E for the description of RSA and

other public key cryptography systems.

3.1.2 Java Technology

Java was introduced in 1995. The Java programming language was designed to
meet the challenges of application development in the context of heterogeneous
network-wide distributed environments. It started out as a programming
language called Oak in 1991 (Linden, 1996). Oak was part of a research project
to develop advanced software for a wide variety of network devices and
embedded systems (Sun, 1995; Linden, 1996). Java was based on C++, but
without its unclean and unsafe features (Ciancarini et al., 1996). New principles
and structure were inherited from a variety of languages such as Eiffel,
SmallTalk, Objective C, and Cedar/Mesa (Sun, 1995; Linden, 1996). The result
is a language environment that has proven ideal for developing secure,
distributed, network-based end-user applications in environment ranging from
networked-embedded devices to the World Wide Web and the desktop (Sun,

1995). According to Linden (1996), Java contains libraries highly tuned to the

Internet environment.

Java is designed to enable the development of secure, high performance,
and highly robust applications on multiple platforms in heterogeneous,

distributed networks (Sun, 1995). The Java language is object oriented language

74

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

(Sun, 1995). The development of the prototype in this research is Java

applications based.

Java is suited for Internet related tasks, it is also a solid general purpose
language to be used in a variety of applications (Roberts 1996; Flynn & Clarke
1995). According to Flynn & Clarke (1995), Java standard classes also provide

all the basics blocks necessary for client-server implementation.

The interest in this research regarding Java is the security aspect.
Security is of paramount interest in a distributed environment. According to Sun
(1995) “the security features designed into java allow applications to be
constructed that are secure from intrusion by unauthorised code attempting to

get behind the scenes”.

Java Security API

The Java Security API (Application Program Interface) is a Java core API, built
around the java.security package (and its sub-packages) (Sun, 1997). The first
release of Java Security in JDK 1.1 contains a subset of this functionality,
including APIs for digital signatures and message digests. In addition, there are

abstract interfaces for key management, certificate management and access

control.

The "Java Cryptography Architecture” (J CA) refers to the framework for
accessing and developing cryptographic functionality for the Java Platform. It
encompasses the parts of the J DK 1.1 Java Security API related to cryptography,

as well as a set of conventions and specifications provided in this document. It

75

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

introduces a " provider " architecture that allows for multiple and interoperable

cryptography implementations.

The JCA was designed around the principles: implementation
independence and interoperability, and algorithm independence and extensibility
so that a new algorithm can be added later without much difficulty and can be
utilised in the same way as existing algorithms. In other words, the aim is to let
users of the API utilise cryptographic concepts, such as digital signatures and
message digests, without concern for the implementations or even the algorithms

being used to implement these concepts.

Implementation independence is achieved using a "provider'-based
architecture. A Cryptography Package Provider ("provider" for short) is a
package or set of packages that implement specific algorithms, such as the
Digital Signature Algorithm (DSA) or the RSA Cryptosystem (RSA). Applications
may simply request a particular type of object, such as a DSA object, and get an
implementation from an installed provider. If desired, an application may

instead request an implementation from a specific provider.

Algorithm independence is achieved by defining types of cryptographic
"engines" (algorithms), and defining classes that provide the functionality of
these cryptographic engines. These classes are referred to as engine classes, and

examples include the Message Digest and Signature classes.

Implementation interoperability means that various implementations can
work with each other, use each other's keys, or verify each other's signatures.
This would mean, for example, that for the same algorithms, a key generated by

one provider would be usable by another, and a signature generated by one

‘ Provider is short for Cryptography Package Provider which refer to a package (or a set of packages)
that supply a concrete implementation of a subset of the cryptography aspects of the Java.

76

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

provider would be verifiable by another. Algorithm extensibility means that new

algorithms that fit in one of the supported engine classes can be added easily.

Java Cryptography Extension

The Java Cryptography Extension (JCE) extends the JCA API with additional
features for supporting encryption and key exchange. Together, JCE and the

JCA provide a complete, platform-independent cryptography API (Sun, 1997).

There are few organisations that produce Java security software that
produced and used Java cryptography toolkits, namely: SUN Microsystems
(SunJCE), Institute for Applied Information Processing and Communications
(IAIK), Systemics Ltd. (Cryptix), and JCP Computer Services (JCP) (Knudsen,
1998). The SunJCE produced by SUN is hampered by U.S. export controls and it
is not available outside U.S. The other three security software sources, Cryptix,
TAIK, and JCP are a re-implementation of the original JCE (SunJCE) and not
hampered by U.S export law. They are available to be used outside U.S because

of their development outside the United States.

JAIK Java Security Software produced by Institute for Applied
Information Processing and Communications (IAIK), Graz University of
Technology (JAIK, 1998) was selected as a Java Cryptography Toolkit in
developing the prototype. IAIK Java Security Software offers IAIK Java
Cryptography Extension (JAIK-JCE). The TAIK Java Cryptography Extension
(IAIK-JCE) is a set of APIs and implementations of cryptographic functionality,
including symmetric, asymmetric, stream, and block encryption. The architecture
of the IAIK-JCE follows the same design principles found elsewhere in the Java

Cryptography Architecture (JCA). For detail regarding JCA refer to (Sun, 1997).

77

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

IAIK-JCE API includes all the functionality of Sun’s original Java

Cryptography Extension and is fully compatible for use within any Java
environment (IAIK, 1998).

3.1.3 The Internet

The term Internet refers to a global public networking utility which consists of
thousands of networks and hundred of thousands of computer (Hassler, 1997).
According to Leiner et al. (1998), the Internet has revolutionised the computer
and communication world. The Internet is at once a world-wide broadcasting
capability, mechanism for information dissemination, and a medium for
collaboration and interaction between individuals and their computers without

regard for geographic location (Leiner et al., 1998).

The internet model consists of four layers (Oppliger, 1998), namely the
network (or network access) layer, the Internet layer, the transport layer, and the
application layer. According to Oppliger (1998), the popularity of the TCP/IP
(Transmission Control Protocol/Internet Protocol) communications protocol suite
is due to its ability to be implemented on top of various technologies and
corresponding network access layer protocols. TCP/IP networking is an

internetworking technology. Internet protocol (IP) is the key for the TCP/IP

communications protocol suite.

The Internet Protocol (IP), the backbone of the Internet, is not a secure
protocol. To used an IP network securely, the cryptography needs to be applied

on top of the IP network (Knudsen, 1998).

78

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

3.2 SECURITY SERVICES AND MECHANISMS

In this research the security services from the security architecture proposed by
International Standards Organisation (ISO, 1989) were used. The security
services proposed by the ISO security architecture are protocol and system

neutral, they can be applied equally to TCP/IP and other network architectures.

3.2.1 Security Services

ISO (1989) defines security services in five major areas: authentication, access
control, data confidentiality, data integrity, and non-repudiation. Each of these

security services is discussed below.

Authentication

Authentication services deal with proof of identity. The ISO security architecture
defines two forms of authentication: peer entity authentication and data origin

authentication.

e Peer entity authentication is used between peer entities in a system,
communication, or transaction. Peer entity authentication establishes, to
some acceptable degree of certainty that an entity is in fact who it claims to
be. Various mechanisms exist to provide this security service; the degree of

certainty here ranges from marginal (simple password authentication) to high

(cryptographic means).

e Data origin authentication 18 used to prove the source of a given block of data.
This service is intended to allow the recipient of data to determine, to some

acceptable degree of certainty, the originator of that data. It is essential in

79

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

dealing with data forwarded by or stored on a system that did not originate

the data in question.

Authentication services are important because they are pre-requisite for

proper authorisation’, access control’, and accountability’ (Oppliger, 1998).

Access Control

Access control services, as their name implies, offer a means of controlling access
to a given system or system resource. This service generally makes use of peer
entity authentication (to authenticate the entity requesting resource usage), then
applies some rule-based mechanism to allow/deny access to the requested
resource. It may also require the use of other security services (e.g,
confidentiality, data integrity, or non-repudiation discussed below) when invoked
remotely. In general, access control services are the most commonly thought of

services in both computer and communication security (Oppliger, 1998).

Data Confidentiality

Data Confidentiality refers to the property that information is not made available
or disclosed to unauthorised individual, entities, or processes (Oppliger, 1998).

Thus, data confidentiality services are to provide for the protection of data from

unauthorised disclosure:

o A connection confidentiality service is to provide confidentiality for all data

transmitted in a connection. For connection confidentiality, the use of a

connection-oriented protocol, such as TCP, is assumed.

5 Authorisation refers Lo the process of granting rights, which includes the granting of access based on

access right. , o
¢ Access control refers to the process of enforcing access r1g ts. ‘ ‘ .
7 Accountability ensures that the actions of a principal may be traced uniquely to this particular

principal.

80

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

e A connectionless confidentiality service is to provide confidentiality of single

data units.

¢ A selective field confidentiality service is to provide confidentiality of only

certain fields within the data during a connection or a single data unit.

o A traffic flow confidentiality service is to provide protection of information

that may otherwise be compromised or indirectly derived from a traffic

analysis.

Confidentiality services typically require access control (to protect
information in storage on a given system) coupled with either physical control of

all communications media over which information is transmitted or some form of

cryptography.

Data Integrity

Data integrity refers to the property that informations is not altered or destroyed
in an unauthorised way (Oppliger, 1998). Thus, data integrity services are to

provide for the protection of data from unauthorised modifications:

e A connection integrity service with recovery 1is to provide integrity of data in a

connection. The loss of integrity is recovered, if possible.

o A connection integrity service without recovery is to provide integrity of data

in a conection. However, the loss of integrity is not recovered.

e A selective field connection integrity service 1s to provide integrity of specific

fields within the data during a connection.

e A connectionless integrity service is to provide integrity of single data units.

81

CHAPTER 8 ENABLING TECHNOLOGY AND SECURITY SERVICES

o A selective field connectionless integrity service is to provide integrity of

specific fields within single data units.

Data integrity services typically rely on the use of some type of error
detection code to provide the ability to detect alteration to data while in storage
or transmission. Sequence numbers and time stamping are typically used to

provide protection against insertion, deletion, or replay’.

Non-Repudiation

Non-repudiation services are to prevent one of the entities involved in a
communication later denying having participated in all or part of the
communication. Consequently, they have to provide some sort of protection
against the originator of a message or action denying that he has originated the
message or the action, as well as against the recipient of a message denying that
he has received the message. There are two non-repudiation services to be

distinguished:

o A non-repudiation service with proof of origin is to provide the recipient of a
message with a proof of origin. This service makes it impossible for the

originator to later repudiate (claim not to have sent) the data to the recipient.

e A non-repudiation service with proof of delivery is to provide the sender of a

message with a proof of delivery. This service makes it impossible for the

recipient to later deny receipt of the data in question.

Non-repudiation services are becoming increasingly important in the

context of electronic commerce on the Internet (Oppliger, 1998).

I —
$ Replay compromises the recording and replaying of previously sent messages or part thereof.

82

CHAPTER 8 ENABLING TECHNOLOGY AND SECURITY SERVICES

3.2.2 Security Mechanisms

The ISO (1989) security architecture also describes a number of specific security
mechanisms that may be used to implement the security services listed in
Section 3.2.1. These specific security mechanisms are shown in Table 3.1. The
last three mechanisms are not considered in this research because they are not

part of the requirements of this research.

o Encryption Mechanisms. Encryption is the transformation of data to hide
its information content, prevent undetected modification, and/or prevent its
unauthorised used. It is used to protect the confidentiality of data units and
traffic flow information, or to support or complement other security
mechanisms (Oppliger, 1998). Encryption mechanisms can be implemented
using secret key or public key cryptography (Hassler, 1997). Encryption
mechanisms provide data confidentiality by protecting information from being
accessible from unauthorised parties either during transmission or while it
was stored. The secret key block cipher is used in this research. Most ciphers
in use today employ secret key because the bulk data encryption of public key

cryptography is slower than secret key cryptography (Schneier, 1996).

1 Encryption mechanisms

2 Digital Signature mechanisms

3 Access Control mechanisms

4 Data Integrity mechanisms

5 Authentication Exchange mechanisms
6 Traffic Padding mechanisms

7 Routing Control mechanisms

8 Notarisation mechanisms

Table 3.1: Specific Security Mechanisms

83

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

e Digital Signature Mechanisms. Digital signature mechanisms provide for
proof of origin and provide protection against undetected modification of
information. Digital signature mechanisms involve the use of information by
the sender either to encrypt or to produce a message digest of data being
signed. Verification uses publicly available information and procedures from
which the signer’s private information cannot be derived to determine whether
the signature was in fact produced using the claimed signer’s private
information. Digital signature mechanisms can be implemented using public-
key cryptography (Hassler, 1997). Digital signatures using a public key allow
an authentic message to be broadcast to many destinations. Each of the
destinations can obtain the public key of the sender and check the authenticity
of the message, which would be unwise for authenticators using a secret key
since a widespread knowledge of the key would weaken its security (Davies &

Price, 1989).

e Access Control Mechanisms. Access control mechanisms wuse the
authenticated identity of an entity, information about the entity (e.g., group
memberships), or capabilities of the entity to enforce access rights (ISO, 1989).
They are typically based on access control information bases, authentication
information, entity capabilities (the possession and presentation of which is
taken as right to access the requested resource), security labelling, time of
day, routing, and duration. Access control mechanisms are tightly bound to

authentication (Hassler, 1997).

e Data Integrity Mechanisms. Data integrity mechanisms are concerned with
two forms of data integrity: the data integrity of a single data unit (field,
packet, etc.) and the data integrity of a sequence of data units. Some form of
message digest attached to the data unit and verified by the recipient typically

provides the integrity of a single data unit. This provides protection against

84

CHAPTER 8 ENABLING TECHNOLOGY AND SECURITY SERVICES

alteration, but does not provide any form of protection against replay of valid
data units (though time stamping can provide a limited form of protection
against single-unit replay). The integrity of a stream of data units (e.g., that
they arrive unaltered, in sequence, and without replay or the insertion of
spurious data) is typically provided through the addition of sequence
numbering, time-stamping, or cryptographic chaining. Data integrity
mechanisms protect stored or transmitted documents and messages from
unauthorised modification (Davies & Price, 1996). Data integrity mechanisms
mostly use digital signatures of message digests computed by a cryptographic
hash function (Hassler, 1997).

e Authentication Exchange Mechanisms. Authentication exchange
mechanisms provide proof of identity. These mechanisms typically fall into one
of four categories: authentication information exchange (e.g., a user
id/password system), entity characteristics or possessions (biometrics and
physical tokens are examples), and cryptographic techniques (e.g., digital
signatures), or systems using a combination of these other three techniques.
Authentication exchange mechanisms involving cryptographic techniques
typically also use some form of handshaking protocol to avoid the possibility of

replay.

The traffic padding mechanisms, routing control mechanisms, and

notarisation mechanisms are not described because they are not part of this

research.

3.2.3 Cryptography and Security Mechanisms

Schneier (1996) stated that the whole purpose of cryptography is to keep the

plaintext (or the key, or both) secret from eavesdroppers or attackers. These

85

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

secrets (plaintext and key) are vulnerable to eavesdroppers who are assumed to
have complete access to the communication between sender and receiver.

Successful cryptanalysis may recover the plaintext or the key.

As mentioned in the first chapter, cryptography can support all the
security mechanisms needed to provide security services to protect from
eavesdroppers. In the previous section the topics of cryptography and security
mechanisms have been discussed. The way in which they support the security

services will be discussed in detail in Chapter Five.

3.3 CRYPTOGRAPHIC KEY MANAGEMENT

Key management is the set of techniques and procedures supporting the
establishment and maintenance of keying relationship between authorised
parties (Menezes, van Oorschot & Vanstone, 1997). Regardless of whether a
secret or public key cryptosystem is used, it is necessary for a user to obtain the
other user’s key. Key management plays a fundamental role in cryptography as
the basis for securing cryptographic techniques providing confidentiality,

authentication, and digital signatures.

3.3.1 Secret Key Distribution

In secret key system, security is dependent on the secrecy of the key that is
shared between two users. These two users who wish to communicate securely
must first securely establish a common key. One possibility is to employ a third
party such as courier but there are several disadvantages to this implementation
(Smid & Branstad, 1992). An alternative is using a central issuing authority to

obtain a common key but due to the concentration of trust, a single security

86

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

breach would compromise the entire system. Also it would probably need to be
online, which in large networks might introduces a bottleneck, since each pair of
users needing a key must access a central node. If the number of users is n then
the number of pairs of users wishing to communicate privately must share a key,
so the number of keys needed could theoretically be as high as n(n - 1)/2, which
increases in proportion to the square of the number of people present (Hughes et
al., 1997). Furthermore, failure of the central authority disrupts the key

distribution system.

Another possibility is to employ public key cryptography. First, the secret
key and the public key are generated. Then, the sender encrypts the secret key
using the recipient’s public key. The encrypted secret key is sent to the recipient.
Upon receipt, the secret key is decrypted using the recipient’s private key. In
this project, distribution of secret keys using public key cryptography is

employed.

3.3.2 Public Key Distribution

The advantage of a public key is that two users can communicate securely
without exchanging a secret key. One means to distribute public keys is a
certificate. A certificate is a digital public document containing information
identifying a user, the user’s public key, the time period that the certificate is
valid, and other information. Certificates are typically issued, managed, and

signed by a central issuing authority called a CA (Certification Authority®).

% A Certificate Authority (CA) is a trusted entity whose central responsibility is certifying Fhe . .
authenticity of users. In essence, the function of a CA is analogous to that of the passport issuing office

in the Government.

87

CHAPTER 8 ENABLING TECHNOLOGY AND SECURITY SERVICES

Public Key Certificates

In order for a public key scheme to be successful, a user must guarantee that the
public key of another user truly belongs to that user. Public key certificate are a
vehicle by which public keys may be stored, distributed or forwarded over
unsecured media without danger of undetectable manipulation. The objective is
to make one entity’s public key available to others such that its authenticity and
validity are verifiable (Menezes, van OQorschot & Vanstone, 1997). Both
authentication and integrity in distribution of public components can be solved
by using the certificates (Kohnfelder, 1978). X.509 certificates are commonly

used in practice (Markovitz, 1994).

One method by which certificates can be distributed is described in the
following example. User A and User B register with a CA. During the
registration process, the users provide their public key information to the CA.
The CA, in turn, provides each user with a signed certificate containing the user’s
public key, and the public key information of the CA. The users store their
certificates in a public directory. To start off, User A (the originator) sends a
signed message to User B (the recipient) using the originator’s private key. Upon
receipt the recipient queries the public key directory to obtain the originator’s
public key certificate. The recipient first uses the CA’s public key to validate the
certificate’s signature, then verifies the originator’s message signature using the

public key contained in the certificate.

In the above example, the two users were registered with the same CA. In
practice, users may be certified by different CAs or self-certified. Our concern is
the self-certified certificate, because this scheme was employed in the public key
distribution scheme used in this project. In the self-certified scheme each user

himself computes their private key and corresponding public key.

88

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

Certificate Contents

A certificate associates a public key with the real identity of an individual,

server, or other entity, known as the subject. Certificate information consists of

information about:

Subject. Includes identifying information (the distinguishing name), and the
public key. The distinguishing name is used to provide an identity in a
specific context, for instance, an individual might have a personal certificate as

well as one for their identity as an employee.

e Issuer. Includes the identification and signature of the Certificate Authority

that issued the certificate.
e Period of Validity. The period of time during which the certificate is valid.

e Extensions. It may have additional information as well as administrative

information for the Certificate Authority’s use, such as serial number.

The most widely accepted format for certificates is defined by the ITU-T
X 509 international standard; thus, certificates can be read or written by any

application complying with X.509.

X.509 Certificate

An important part of X.509 is its structure for public key certificates. A trusted
Certificate Authority (CA) assigns a unique name to each user and issues a
signed certificate containing the name and the user’s public key. Figure 3.1

shows an X.509 certificate (CCITT, 1989). The certificate consists of the

following:

o Version - identifies the certificate formats.

89

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES
Serial Number - used to uniquely identify the certificate from among those
generated by a given CA;

Algorithm - used to sign the certificate, together with any necessary

parameters.

Issuer - the name of CA.

Period of Validity - pairs of date indicating the certificate is valid during the

time period between the two.

Subject - public key information includes the algorithm name, any necessary

parameters, and the public key, and

Signature - CA’s signature.

Version

Serial Number

Algorithm Identifier:
- Algorithm

- Parameters

Issuer

Period of Validity:
- Not Before Date
- Not After Date

Subject

Subject’s Public Key:
- Algorithm
- Parameters
- Public Key

Signature

Figure 3.1: X.509 Certificate

90

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

3.4 SUMMARY

As a summary, Section 3.1 discussed the enabling technology used in the
implementation in this research. These enabling technologies are Cryptography,

Java Technology and the Internet.

In Section 3.1.1, Cryptography which is the major enabling technology used
in the implementation, is discussed. Two main categories of cryptography: secret
key cryptography and public key cryptography are presented. Stream and block
ciphers secret key cryptography is highlighted. Greater detail is given on the
secret key cryptography block cipher due to it adoption in the implementation of
the prototype. The modes of block cipher operation mainly the ECB mode, the
CBC mode, the CFD mode, and the OFB mode are mentioned. The CBC mode is
highlighted because of it adoption in the research implementation. The security
of the two main secret keys block ciphers, the DES and the IDEA secret key block
cipher are discussed in detail. The DES was chosen because it is the most
extensively studied algorithm and has motivated a lot of research both in
cryptography and cryptanalysis. As for the IDEA it is a representative algorithm
of impressive theoretic foundations. Public key cryptography is also presented.
RSA public key cryptography was chosen in the implementation because it has
withstood extensive cryptanalysis, is the most popular, and is easiest to

understand and implement (Schneier, 1996).

In Section 3.1.2, Java, another enabling technology used for the
development of the prototype in this research is discussed. Features of Java are
highlighted. The Java Security API which is a Java core API is presented. The
JCE that extends JCA API for supporting encryption and key exchange 1is
discussed. The IAIK-JCE produced by Institute for Applied Information

Processing and Communications, Graz University of Technology was adopted

91

CHAPTER 3 ENABLING TECHNOLOGY AND SECURITY SERVICES

because there is no restriction on non United States version of JCE APIs. This

Java security APIs can provided security functionality for Java applications.

In Section 3.1.3, the Internet use as a platform for the prototype is
discussed. It adoption because of its ability to be implemented on top of various

technologies and corresponding network access layer protocol.

Section 3.2 discussed the security services and it mechanisms. The
security services from the security architecture proposed by International
Standards Organisation (ISO) were adopted in this research. Authentication,
access control, confidentiality, data integrity, and non-repudiation are presented.
The security mechanisms that are used to support the security services, mainly;
encryption, digital signature, access control, data integrity, and authentication

exchange are also presented.

Section 3.3 presented the importance of key management in cryptography.
Secret key and public key distribution are also presented. Public key certificates
are highlighted, pointing out its advantages in public key distribution. The

common certificates, X.509 certificates, are also presented.

92

Chapter 4

RESEARCH PROBLEM,
DESIGN AND PROCEDURE ISSUES

4.0 INTRODUCTION

This chapter describes the formulation of the research problem, research design,

and research procedure issues. This chapter is structured as follows:

Section 4.1 reviews the literature review of the previous chapters and
highlights their relation with the area interest in this research.

Contributions from the literature review are identified and listed.

Section 4.2 describes the formulation of the research problem. The

objectives, the purpose and the importance of this research are also

presented.

Section 4.3 discusses the research design and procedures. The research

methodology, research design, assumptions and the anticipated outcomes of

this research are also discussed.

93

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

4.1 SUMMARY OF LITERATURE

This section highlights the relation between the areas of CSCW, software
inspection groupware, the enabling technologies and security services found in

the literature review discussed in the previous chapters.

According to Olson et al. (1993) much of today’s work is done not
individually, but rather in a group. Furthermore, Olson et al. (1993) also
mentioned that most real work is collaborative in nature. Eltoweissy (1993)
mentioned that the success of most projects today relies on the co-operative
activities of people and this requires that people communicate, jointly co-ordinate
their activities, and share information and ideas more than ever (Eltoweissy,
1993). The advent of networked technologies and groupware applications make
possible the forming of work teams that are not physically collocated worked
together more efficiently and conveniently (Eltoweissy, 1993). Grief (1988)
mentioned that Computer Supported Cooperative Work (CSCW) is the field that

deals with the development of such facilities.

According to Teufel et al. (1995) information security aspects of CSCW
technology have not received as much attention compare to the work that has
been done on the technological aspects of CSCW (Foley & Jacob, 1995). Teufel et
al. (1995) introduced the information security concepts to the field of CSCW but
implementations of the information security concepts with respects to a real

CSCW applications are not described.

In this research, software inspection groupware used as a CSCW
application is taken as an example. Software inspection is a groupware activity
which aims to analyse a software product or document to detect defects (Fagan,
1976). There exist a few software inspection groupware systems but FlexSIG

(Sahibuddin, 1999) is used as a software inspection groupware test-bed in this

94

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

research because of it flexibility and it availability. FlexSIG provides flexibility
for the software inspection process but the issue of information security is not
considered. The enabling technology and the security services discussed can
overcome the information security aspects of CSCW in general and FlexSIG
specifically. By using cryptography as a main enabling technology supported by

Java, issues of information security in CSCW can be solved.

4.1.1 Summary

As a summary, the issue of information security has been raised. There is a need
of information security in CSCW in general and specifically to the software
inspection groupware process. The issue of information security in the group
working process of CSCW can be supported by the enabling technology and

security mechanisms discussed in the previous chapter.
Overall the literature has led to the identification of:
e the lack of research done in the security aspects of CSCW in general.

o existing software inspection groupware systems that have put no significant

security consideration in the systems.

e the information security concepts and especially acquisition of security

requirements in the field of CSCW.

e the enabling technology, security services, and security mechanisms that can

be used to solve the problem of information security in CSCW in general, and

specifically, software inspection groupware systems.

95

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

4.2 RESEARCH PROBLEM

This research is concerned with the issue of securing the groupware software
inspection process. The issues of security and transparency of the secure CSCW
system are also of interest to this research. This section identifies the research
problem based on the literature discussed in the previous chapters. The

objectives, the purpose and the importance of this research are also discussed in

this section.

4.2.1 Formulation of Research Problem

This section will discuss the design of the model and the tool for secure
groupware software inspection process. As mentioned before, FlexSIG
(Sahibuddin, 1999) is the system of interest in this research. In order to enhance
Sahibuddin’s model, and his tool for a software inspection system, the model is

first outlined, drawing from other models where needed.

The Drawbacks of Existing Software Inspection Groupware

Systems

As mentioned in Chapter Two there exist a small number of software inspection
groupware systems ranging from limited synchronous distributed system such as
CSI (Mashayekhi et al., 1993) to the most flexible systems such as FlexSIG
(Sahibuddin, 1999). All the existing groupware software inspection tools have
their limitations and their strengths (Sahibuddin, 1999), but one aspect that has
been identified as lacking by Sahibuddin and from literature is that all the
available software inspection groupware systems are deficient in security. The

lack of security in groupware in general has been raised by Teufel et al. (1995).

96

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

Security tool such as cryptography is available to handle the deficiency in
security of the software inspection groupware system. It can be tackled by
providing security services (ISO, 1989) to the system using cryptography as

discussed in Chapter Three as a tool.

The FlexSIG system (Sahibuddin, 1999) is the interest of this research
and was used as a test-bed in implementing the security services to provide
security through the External Security Layer (ESL) and Internal Security Layer
(ISL) of the system discussed in Chapter One. The security services are built on

the FlexSIG system.

FlexSIG Model

The FlexSIG model proposed by Sahibuddin (1999) provides an extension of
existing software inspection models that can resolve the limitations of the
existing inspection models while maintaining their strengths. The strengths and
limitations of these three major inspection models have been presented by
Sahibuddin (1999). The FlexSIG model considers processes, team membership,

roles of member, and propose four different operating modes.

Sahibuddin’s software inspection model consists of eight inspection

processes. These inspection processes are:

o Initiation. This process directs team members to a kick-off meeting or to
access on-line briefing meeting. Its goal is to start the inspection process.

This phase is initiates by the moderator.

o Kick-off Meeting. The aim of this phase is to inform the team members on

aspects of the document being inspect.

97

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

Briefing. The phase is initiated instead of kick-off meeting if the document

being inspected is to be distributed electronically.

Individual Inspection. In this phase, each inspector is instructed to study

the document being reviewed and log any potential defect or query.

Synchronous Group Inspection. This phase is to be conducted differently
depending on the mode of the software process either face-to-face mode or
distributed synchronous mode. In this phase the discussion is through the

synchronous communication component of the system.

Asynchronous Group Inspection. This phase is to be conducted in the
distributed asynchronous mode, team members access the system from
different places at different time. Discussion is through the asynchronous

communication component.

Consolidation. In this phase, the moderator merge all the defects, queries
and suggestions raised by the inspector during the inspection phase. The

overall metrics of the inspection process are also collected here.

Follow-up. In this phase, the moderator forwards the report on the

consolidation phase to the document author.

The roles in FlexSIG are based on existing software inspection models,

but with reduction of some roles that can be handled automatically by the

system.

Sahibuddin’s (1999) FlexSIG team members consists of:

Moderator,

Inspectors and

Author.

98

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

The moderator is responsible for planning the whole inspection process
and leads the inspection team. The role of author is to answer any query with
regard to a document being inspected. The role of inspectors is to maximise the

number of defects found in the document.

Sahibuddin (1999) extends the existing inspection process model by

offering flexibility while maintaining the strengths of existing models.

Extension of FlexSIG Model

The research aims to provide security extension to FlexSIG model while
maintaining its flexibility in terms of allowing distributed synchronous or
distributed synchronous working mode. The process model is retained. This

extension maintains the roles of the participants involved in FlexSIG model.

The extension aims to improve on the security aspects of the FlexSIG
software inspection model, with the addition of security based on the security
model discussed in Chapter Two to the model of the software inspection process
proposed by FlexSIG. The extension of the model seeks to provide security in
terms of providing a secure data transmission, secure data storage and secure

access control.

FlexSIG Tool
FlexSIG (Sahibuddin, 1999) contains six key components and services, namely:
o Access Control. This component used to handle team member authorisation.

e Briefing. This component describes the set-up information of the software

inspection process.

99

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

Browsing. This component consists of two-sub-component, which are the
facility to browse inspected document and to browse remotely document

inspected by other team members.

e Communication. This component consists of three sub-components, namely,
electronic mail, chat, and pop-up message. The aim of this component is to

support both the synchronous and asynchronous mode of communication.
e Data Logging. This component is used for collecting team member comments.

e Supporting Document. This component contains information with regard to

the document being inspected and also information about the FlexSIG

system.

Extension of FlexSIG Tool

The FlexSIG tool lacks security in terms of providing protection to the resources
stored and flow to and from the groupware software inspection system. In
FlexSIG, all data transmitted and stored are in the form of plaintext. FlexSIG
provides access control, but the password transmission and all the authorisation

databases are in plaintext.

The security extension to FlexSIG can be achieved using cryptography
tools as the main enabling technology together with standard security
mechanisms (ISO, 1989), as discussed in Chapter Three. How these securities
mechanism can provide security to FlexSIG and groupware applications in

general will be discussed in detail in the next chapter (Chapter Five).

100

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

4.2.2 Statement of the Problem

The problem identified is that the FlexSIG model and tools are not sufficiently
secure in terms of protecting their resources and the security of the information
flow on the network. Therefore, the objective of this research is to design and
build a groupware system that provides security services to secure its resources
from unauthorised outsiders. These services allow members of a distributed
group performing software inspection to be confident with the security of the
information stored and flowing on the network. Another objective that this
research intends to achieve is to build a secure groupware system such that its

securities mechanisms are transparent to the user(s).

The groupware system aims to provide a system that will improve
acceptability of groupware and provide a software inspection tool that is secure

and transparent.

4.2.3 Purpose of the Study

The purpose of this study is to develop a Secure Software Inspection Groupware

(SecureSIG) system that includes:

e the development of a secure software inspection model based on FlexSIG

software inspection groupware model
e an implementation of a prototype based on the model

e the evaluation of the prototype by users in order to measure the suitability

and transparency of the system

What it meant by secure in this research is that the system:

101

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

Provides a secure access control mechanism to protect against an

unauthorised outsider gaining access to or participating in a groupware

inspection system.

e Provides communication security by securing the information flow between

the user and the system or vice versa.

e Provides protection to the information (databases and documents) stored that

are used in the groupware inspection system.

The security services used to provide security can be achieved using the
security mechanisms which include encryption mechanisms, authentication
mechanisms, data integrity mechanisms, data confidentiality mechanisms, and
access control mechanisms (ISO, 1989). Recommended security mechanisms and
algorithm to be implemented to FlexSIG will be discussed in detailed in Chapter

Five.

Furthermore, the security services developed are intended to be
transparent to the user(s). Transparency for the user means they do not have
any distraction in doing their task because of the security mechanism provided.
For example, the user does not have to repeatedly enter the cryptographic key to
perform encryption processes which would interrupt the wuser and feel

inconvenient to them in doing their work.

A model of SecureSIG is constructed based on FlexSIG (Sahibuddin, 1999)
and security models (McGhie, 1994; IBM, 1997) discussed in Chapter Two with a
combination of security services defines by ISO (IS0, 1989) discussed in Chapter
Three. A prototype based on the model was built, using Internet and Java

technology. In order to make sure of the effectiveness of the security services

and the acceptability of the prototype, an evaluation is done on the prototype,

using information gathered through a questionnaire completed by users.

102

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

4.2.4 Importance of the Study

Anyone working in an environment where computers have assumed an
important role should be interested in computer security (Baskerville, 1988).
Protection of the important resources that are controlled by a computer system is
a concern of individuals, groups, or an organisation, and is an important issue
because resources are very valuable. By accessing, tapping, or altering the data,
an attacker can steal this valuable asset which can cause harm to individuals,

groups, or an organisation.

Interest in CSCW has been increasing recently, and wider application has
brought attention to the needs of security for CSCW applications. Several areas
related to the security of CSCW has been done by researchers such as access
control issues (Shen & Dewan, 1992; Kanawati & Riveill, 1995; Coulouris &
Dollimore, 1994), secure group communication (Sakakibara et al., 1994;
Takizawa & Mita, 1993), and confidentiality security in CSCW applications

(Foley & Jacob, 1995).

The survey done by Sahibuddin (1999) showed that security is needed in
CSCW generally and specifically to the software inspection process, and as

described earlier (Section 4.1) there has been little work on implementation of

secure CSCW system.

This problem is addressed by this research, which seeks to design a

CSCW system model and a prototype CSCW system that is secure.

This research will extend the current technology of software inspection
groupware by making it secure. Someone who is using the system will be
confident that unauthorised outsiders cannot gain access to the system and that

information that will flow on the network will not be tapped.

103

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

4.3 RESEARCH DESIGN AND PROCEDURE

In this section, the research design and procedure are discussed in more detailed.

The research methodology, research design, assumptions of the study, and the

anticipated outcomes from the study are set out.

4.3.1 Research Methodology
The approach for this research involved the following activities:

e Carrying out a study on security services based on the cryptography
techniques to be implemented on the model. This study was based on the

literature review.

e Implementing the security services to the proposed model by using

distributed software inspection process as a groupware application.

e Observing the way users use the system and evaluate the system using a

questionnaire given to the test users.

4.3.2 Research Design

The research was conducted in three stages. These stages are:
e Developing the model for secure software inspection process.
e Developing the prototype based on the model.

e Testing the system to evaluate the acceptability and transparency among the
user.
The first stage was the review of literature of on an existing software

inspection groupware tools, especially the FlexSIG. The FlexSIG model was

104

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

extended to provide security to the model. The model produced was used to

design the prototype. Chapter Five discusses in detailed the development of this

model.

In the second stage, the prototype was built to test the functionality of the
proposed security services model. The implementation of the prototype was
carried out using the enabling technology mention earlier. The development of

the prototype is discussed in detailed in Chapter Six.

In the third stage, a group of people was chosen to test the suitability,
transparency and security of the system. Data was gathered after collecting
responses from a questionnaire given to the test users. This is discussed in
Chapter Seven. After using the system, a questionnaire was given to the
members of the group in order to measure the suitability and transparency of the
system. To measure the usability of the prototype, the test users were requested
to execute a sequence of tasks given to them, and then answer question based on
their experience using the prototype. The results were analysed based on the
opinion rating given by the users in the questionnaire, giving information on the
suitability and transparency of the prototype, and thus the model. A basic
statistical tool was used to analyse the result. Developing an experiment for the

evaluation of the prototype is discussed in detailed in Chapter Seven.

4.3.3 Assumptions

There are a few assumptions that were made. In the development of the model

and prototype phase:

e The secure process extended in this research used some of the FlexSIG model

process, namely, the initiation, briefing, individual inspection, synchronous,

and asynchronous processes.

105

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

It was assumed that weak and semi-weak keys can be ignored in the DES
and IDEA block ciphers in the implementation. This was to avoid the

weakness of these block ciphers as mention in Chapter Three.

In the testing of the prototype phase:

o It was assumed that the evaluation in an educational setting reflects the “real

world” situation.

e It was assumed that the evaluation by a group of test users was sufficient in

determining the effectiveness and transparency of the system.

4.3.4 Outcomes from the Study

Prototype system: The prototype system provides a security service to protect
unauthorised outsiders gaining access to a groupware application, and also to
secure information flow among group members and to secure the information

kept in the system.

Subject and Data source: The subjects for this study are the test users who used
the prototype system. The data sources for the study come from a questionnaire

given to the test users after they have tested the prototype.

Evaluation: The success of an evaluation depends on the feedback of the test

users. The data collected from the test users was analysed. The data indicate

the suitability and transparency of the prototype.

Overall, the outcomes from this research provide the following:

e A model of a secure software inspection groupware.

106

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

A secure software inspection groupware system that is provided with a secure

access control mechanism to protect the system from unauthorised user gain

access to the system and resources.

e A secure software inspection groupware that is provided with an encryption

mechanism to provide a safeguard to the information stored.

e A secure software inspection groupware that is provided with an encryption
mechanism to provide protection to the information flow to and from the

system.

e A secure software inspection groupware that is provided with a data integrity
mechanism to provide protection against undetected modification or

alteration of information.

e A secure software inspection groupware that is provided with a digital

signature mechanism to provide proof of origin.

4.4 SUMMARY

As a summary, Section 4.1 presented the relation between the area of interest to
this research discussed in the previous chapters. The contributions from the

literature review are highlighted.

Section 4.2 discussed the formulation of the research problem. The
drawback of an existing software inspection groupware is pointed out. FlexSIG
groupware software inspection mode and tools are discussed in more detailed
because this research is based on it model and tools. Extension planned for
security to FlexSIG model and tools are also presented. The aim, the purpose,

and the importance of this research are also discussed in this section.

Section 4.3 details the issues of the design and procedure of this research

107

CHAPTER 4 RESEARCH PROBLEM, DESIGN AND PROCEDURES ISSUES

that includes the research methodology, assumptions that was made for this
research, the outcomes from the study and the research procedures were
discussed. This section also discussed the three stages involved in this research.
The first stage is to develop a model for secure flexible software inspection
process. The second stage is to develop the secure software inspection prototype,

and the third stage is to evaluate the prototype. A basic statistical tool was used

to analyse the result gathered.

The discussion of the development of the model is presented in the next

chapter (Chapter Five).

108

Chapter 5

SECURESIG MODEL

5.0 INTRODUCTION

This chapter discusses the model of Secure Software Inspection Groupware
(SecureSIG). The aim of the SecureSIG model is to provide security in terms of
information flow, information stored and system access. This chapter is

structured as follows:

e Section 5.1 discusses the model proposed for Secure Software Inspection

Groupware (SecureSIG).

e Section 5.2 gives the conceptual framework for SecureSIG. The elements

and security requirements considered in the development of the SecureSIG

model are pointed out.

e Section 5.3 discusses the SecureSIG functional model which include the

components and services offered by SecureSIG functional model.

e Section 5.4 discusses the recommended security mechanisms and algorithms

to be provided to the SecureSIG model and components.

109

CHAPTER 5 SECURESIG MODEL

5.1 PROPOSED MODEL DESIGN

This section discusses the model proposed for SecureSIG. The model proposed is
based on an extension of the FlexSIG model and the security model in the

literature review. The model aims to meet the goals and objectives outlined in

Chapter One and Chapter Four.

5.1.1 The FlexSIG Software Inspection Model

The FlexSIG software inspection model proposed by Sahibuddin (1999) is used
for the reasons set out in Chapter Four (Section 4.1). The FlexSIG will be the
basis of the development of this secure software inspection groupware

(SecureSIG). The FlexSIG model is shown in Figure 5.1.

Only part of the process of the FlexSIG model process are used (shown as
shadowed rectangles in Figure 5.1):
e Initiation process,
e Briefing process,
e Individual Inspection process,
e Synchronous process, and
e Asynchronous process.

In this research the process stops at the consolidation process because it is
a single user process and was therefore considered less critical. Incorporating
the consolidation process in the secured area is proposed for future work. The
processes listed above form a complete path, and encompass the four quadrants
of the Johansen (1988) space-time matrix. The processes form a usable core of

activities in the inspection process. The choosing of briefing as the alternative

110

CHAPTER 5 SECURESIG MODEL

between kick-off and briefing is based on the survey done by Sahibuddin (1999),

which stated that on-line briefing can replace the kick-off process.

[lustration removed for copyright restrictions

Figure 5.1: FlexSIG Model (Sahibuddin, 1999)

5.1.2 The Proposed SecureSIG Model

The proposed model in this research which has been described by Doherty &
Maarof (1997) is an extension of FlexSIG model proposed by Sahibuddin (1999)

combined with the security model and security services defined by ISO (IS0,

111

CHAPTER 5 SECURESIG MODEL

1989) found in the literature. Most parts of FlexSIG model, the process, the

roles, and techniques described are retained.

Initiation

AN

Kick-off > O Briefing

S

Individual
Inspection

Y\

Synchronous Asynchronous
Group Group
Inspection Inspection

N Y

Consolidation

Y

Follow-up

Figure 5.2: SecureSIG Model - External and Internal Security Layers

Two securities layer, the External Security Layer (ESL) and Internal
Security Layer (ISL), was implemented on top of FlexSIG model to achieve the
purpose of the proposed model (see Figure 5.2). The ESL provides a secure access
control process, while the ISL provides secure information flow and information

stored processes of the model. A new set-up process was added to the SecureSIG

112

CHAPTER 5 SECURESIG MODEL

model for generating public key pairs used for access control and encryption

process related to the model.

5.2 CONCEPTUAL FRAMEWORK OF SECURESIG

This section outlines the framework for SecureSIG which consists of the elements
needed to provided a secure environment for SecureSIG, security requirements

for SecureSIG and the existing security models on which SecureSIG was based.

5.2.1 Considerations

Among the elements considered when constructing the SecureSIG model are:
system access control, communication security, and stored information
confidentiality. These elements are taken from Teufel et al. (1995), McGhie
(1994) and security services defined by ISO (1989). These are summarised in the

literature review.

System Access Control

A secure software inspection model should prevent unauthorised users from
accessing or participating in the system. A model that includes system access
from remote locations should have some form of access control (Sahibuddin,
1999). Access control should involve a combination of some form of entity
identification with a rules-based permission system. An entity requesting access
to a system or system resources should first be authenticated (e.g., its identity is
verified) (McGhie, 1994). After authentication, a rule-based process determines
whether or not this entity is allowed access to the requested resource. Thus,

access control of the system must use different roles as one of it criteria (NIST,

113

CHAPTER 5 SECURESIG MODEL

1994). Shen & Dewan (1992), Kanawati & Riveill (1995), and Coulouris &
Dollimore (1994) also consider the access control based on role. Team members
with different roles should have different levels of access to the information

stored and to the functions they can perform.

Authentication, data integrity, and confidentiality were necessary in
system access control (IBM, 1997). Authentication verified the validity of the
information being transferred between client and server. Data integrity protects
the integrity of authentication information while being transferred.
Confidentiality is required during the transfer of access control requests and
responses and to protect the information in the database relating to system

access control.

Communication Security

A secure software inspection model should ensure that the information flow is
secure against being tapped or disclosed during the transmission. The need of
secured (encrypted) information transmitted across public and broadcast
networks has been raised by McGhie (1994), IBM (1997), and Hanka & Buchan
(1996). The communications security concerns will be limited to the
consideration of how to protect information when being transferred over

communications networks.

Other than the confidentiality of information, the integrity and
authentication of the information transmitted are communication security
concerns. A model that is implemented in a distributed mode or environment
must have some form of protection of the information flow. The information flow
should be in scrambled form rather than in a plaintext form to avoid the

disclosure of the information if it has been intercepted. Any information that is

114

CHAPTER 5 SECURESIG MODEL

transmitted from any team members in the software inspection process must be

kept secret, and should be disclosed only to intended recipients.

Stored Information Confidentiality

A secure software inspection model must ensure that the information stored
(databases or documents) is safe from being disclosed. The model must ensure
that the information stored is in unreadable form and may only be accessed by
authorised user. The information should not be kept in a plaintext form. This
follows the suggestion by McGhie (1994) that there is a need to encrypt

information stored on computer system.

5.2.2 Security Requirements for the Model

The security requirements are based on the secure distributed computing model
by McGhie (1994), and SecureWay security model (IBM, 1997). These security
requirements listed are considered to achieve the objectives mentioned in
Chapter One (Section 1.5). The security requirements considered for the

SecureSIG are as follows:
e Access Control.

o Data flow confidentiality.

e Data flow integrity.

¢ Data flow authentication.

e Database and dacument protection.

o All information is encrypted prior to transmission.

e Adaptable to a new encryption algorithm.

115

CHAPTER 5 SECURESIG MODEL

5.2.3 Existing Security Models

In Chapter Two, the security model proposed by McGhie (1994), and SecureWay
(IBM, 1997) and their components for providing secure computing environments

were discussed.

For access control both McGhie and SecureWay proposed an access control
verifying that the individual is authorised to access or use specific resources and
setting what kind of usage is allowed, based on roles and responsibilities. Access
control in SecureSIG took McGhie’s idea of primary and suporting components as
a model for access control. One of McGhie’s primary components was that
password should not be transmitted in plaintext across unprotected or

unencrypted networks.

In term of data flow protection both McGhie and SecureWay highlight the
need for protecting the data. SecureWay proposed cryptographic services
supporting security functions that provide data confidentiality, data integrity,
and data authentication, while McGhie highlighted the need to encrypt
information transmitted across public networks. Both these approaches were

adopted for SecureSIG data flow protection.

For database and document protection, only McGhie highlights the need
to encrypt information stored in the computer system, and her approach is

adopted for this purpose.

In summary, both papers pointed out the need for providing access control
services and secure information transfer services in their model. The need for

securing the data stored has been raised by McGhie.

116

CHAPTER 5 SECURESIG MODEL

5.3 FUNCTIONAL MODEL OF SECURESIG

The conceptual framework discussed in the previous section serves as the basis
for the functional model. As mentioned in Section 5.1.2, the SecureSIG
functional model retained the processes of the FlexSIG model with addition of
security based on the elements and security requirements considered in the
previous section. As stated by Sahibuddin (1999) the functional model is
described by examining its key components and services. The component and

services offered by the SecureSIG functional model are discussed.

In both the FlexSIG and the SecureSIG model, there are three different
user roles: the moderator who is responsible for planning the whole inspection
process and leads the inspection team, the author of the inspected document who
answers any query regarding the inspected document, and the inspector/s who

point out any defect found in the document.

In SecureSIG, the moderator controls all aspects of security. The author
and inspector/s can choose to generate or regenerate a key pair, but can do
nothing else. Only the moderator is able to setup the group involved in the
inspection process. In the Setup process, the moderator allocates access rights
and can perform the key pair generation process as well as the encrypt data file
process. Only the moderator is able to perform the encrypt data file process
(database encryption) which encrypts all the databases used for user
authentication in the SecureSIG system. In the normal running process, the
moderator is able to perform regeneration of the key pair and the document
encryption process which allows the moderator to encrypt all the briefing files

and the source code used in the software inspection process.

The author and the inspector/s are permitted only to perform key

generation during the setup process and regeneration of the key pair during

117

CHAPTER 5 SECURESIG MODEL

normal running process. Other capabilities of the moderator, author and the

inspector are similar to FlexSIG (Sahibuddin, 1999) as discussed in Section 5.3.1.

5.3.1 Components and Services for SecureSIG

There are seven components and services of SecureSIG. These components are
based on the FlexSIG (Sahibuddin, 1999) components with an extension of
providing protection to all of these components and the database related to it.
The components developed corresponds to the elements and security
requirements considered for the model discussed in Section 5.2.1 and 5.2.2.
Figure 5.1 shows the process model of FlexSIG. Extra components are provided
for the SecureSIG model: the set-up component to generate participant's key pair
and encryption all the documents and files used in the prototype. Other
SecureSIG components are secure access control, key pair generation, document
encryption, database encryption, secure briefing, secure browsing, and secure

communication.

Secure Access Control

Access control involves the granting of access to system resources. Shen &
Dewan (1992) discussed the importance of access control in collaborative work.
The access rights presented by Shen & Dewan (1992) provides the basis for

SecureSIG access control.

Access control into the system is managed by the access control
component by requiring team members to enter valid username and password.
To avoid passing plaintext password from client to server, a message digest is

send instead of the password (Knudsen, 1988). The information entered with

118

CHAPTER 5 SECURESIG MODEL

addition of time-stamp and random number is digested using a one-way hash
function. The digested information is then embedded with username, encrypted
time-stamp, and encrypted random number before being transmitted to the
authorisation server. Upon receipt by the server, this information is broken into
its component parts and all the encrypted information decrypted. The server
uses the given username to look up the password from the encrypted access
control database, then uses the given username, random number, time-stamp
and the password it has just retrieved to calculate a message digest. This digest
is compared to the digested information received from the client and thus
determines the access level of the user. Different roles have different access
levels. Menus presented to the user depend on their role. This means that

certain functions and services are not available to certain users.

Key Pair Generation

The key pair generation component allows participants in the team to generate
the public key pair required for them to access and use other components in the
SecureSIG system. There are two situations where key pair generation is
available. The first situation must be done before the first access to the
SecureSIG system. The second situation is after a successful first access to the
system, when a new public key pair is generated, which replaces the public key
pair generated before. Periodically regenerating the public key pair during the
software inspection process reduces the risk of information being tapped and
disclosured by a masquerade attack™. In other words, the exposure of these keys
to potential compromise is reduced. For both situations username and

passphrase are requested from the user. This passphrase is used to encrypt the

© A masquerade attack is one in which an attacker poses as a legitimate entity, in order to either gain
access to the particular data belonging to the user or to the system in general.

119

CHAPTER 5 SECURESIG MODEL

private key generated to protect the private key from being disclosed to an
attacker. Two distinct public key pairs are generated in both situations

mentioned above when this component is activated.

Document Encryption

The document encryption component is used to encrypt all the documents used in
SecureSIG. In SecureSIG documents are an asset, and it must be protected from
disclosure. The documents should not be kept in plaintext. The function of this
component is similar to McGhie’s (1994) encryption and utilities and service
component. The document encryption consists of two sub-components: encrypt
briefing file and encrypt program file. Both of the components are only available
to the moderator. The encrypt briefing file allows the moderator to encrypt the
briefing file (see Secure Briefing below). The encrypted program file allows the

moderator to encrypt all the source code to be used in SecureSIG system.

Database Encryption

The database encryption component is used to encrypt all the critical databases
used in the SecureSIG system. This database encryption component is similar to
McGhie’s (1994) encryption supporting components in terms of the requirement
to encrypt information stored in the computer system. Critical databases used
for user authentication in access control are encrypted using this component,
which should be available to the system administrator. The encryption of all

databases used in the SecureSIG system should be done before the start of the

software inspection meeting.

120

CHAPTER 5 SECURESIG MODEL

Secure Briefing

The secure briefing component is based on the briefing component of FlexSIG
(Sahibuddin, 1999) with addition of security. Sahibuddin (1999) has presented
the function of the briefing component. The briefing material is prepared by the
moderator and is presented to the team members. Before it is presented to the
team members, all the briefing materials are encrypted by a moderator to provide
confidentiality to the materials. The need to encrypt these briefing materials
stored on computer system has been pointed out by McGhie (1994). Users can
select a briefing file from a list of files. A file needs to be decrypted before it can
be browsed. A key is fetched from the server to decrypt the file. The information
provided in the briefing components is necessary before the actual inspection

phase can start.

Secure Browsing

The secure document browsing component is based on FlexSIG (Sahibuddin,
1999) with addition of security. This component contains two sub-components,
which are the secure document viewer and the secure remote viewer. The secure
document viewer provides the facility to browse the encrypted inspected
document (source code) while the secure remote viewer provides the facility to

browse remotely document inspected by other team members.

All the documents in these two sub-components are prepared by the
moderator and presented to the team members, after having been encrypted by

the moderator to ensure confidentiality of the document.

The first sub-component allows team members to choose and browse the
inspected document. Users can select a document to be inspected from a list of

files. By performing the selection of a document from a list, a secret key used to

121

CHAPTER 5 SECURESIG MODEL

decrypt the document is automatically fetched from the server. In the second
sub-component, users can browse the same document that other team members
are currently looking at. A list of other team members is given by names. Thus,
by choosing any name given from the list, a secret key is fetched from the server
to decrypt the corresponding document which is currently being browsed by other
users. Only the username of the user who is logged into the system is displayed

in the list.

Secure Communication

The secure communication component is similar to Sahibuddin’s proposal. The
communication component contains two sub-components, namely, secure

electronic mail and secure group chat.

The first sub-component, secure e-mail, allows users to send e-mail
securely from the sub-component to other team members. To send an encrypted
e-mail, a recipient public key should be selected from a key listing. The need for
security of electronic mail has been raised by Hanka & Buchan (1996) and
McGhie (1994). The second sub-component, secure group chat provides a secure
chatting facility to the team members. A secure chatting facility allows team
members of the group to chat between themselves in a secure environment by
encrypting all the message flows to and from the chat component. The message
in the secure group chat is encrypted and decrypted using the public key

generated during the process.

All the message types in the secure e-mail or secure group chat are
encrypted to provide confidentiality to the messages between the communicants.

Integrity and authentication of the messages are also provided.

122

CHAPTER 5 SECURESIG MODEL

5.3.2 Functionality Not Provided in the Model

The following functionalities that are not provided in the SecureSIG system:

e Excluding members of the group from participating in the system. For
example, if there is a moderator, 4 inspectors and the author involved in the
software inspection group meeting, the model is not able to exclude any

member(s) from the group during the software inspection meeting.

o Broadcasting information only to a certain user or certain number of users,
rather than the full group. Any information broadcast will be displayed to all

the members involved in the software inspection meeting.

¢ Detecting two users with the same user name attempting to access the

SecureSIG system.

e Recovering and decrypting old version of a file. Only the current key is
retained. Previous versions of documents are discarded along with their key

and they are thus not available.

e Decrypting the file (documents and source code) outside the SecureSIG

system.

5.4 RECOMMENDED SECURITY MECHANISMS AND ALGORITHMS

In this section, the recommended security mechanisms and security algorithms
used to provide the security services to SecureSIG are discussed. These
recommended security mechanisms and algorithms are the basis for the

development of the SecureSIG prototype covered in this chapter.

123

CHAPTER 5 SECURESIG MODEL

5.4.1 Recommended Security Mechanisms

This section provides recommendations for specific security mechanisms to be
used to provide security in the SecureSIG model and to be implemented into
SecureSIG components. All the security requirements describe in the previous
section (Section 5.2.1) can be grouped into three main areas, namely:
communications security, access control, and information stored confidentiality,
according to the elements considered in the development of SecureSIG model.

The security mechanisms recommended for these three main areas are:
e Encryption is required for information transmitted or stored.
e A combination of secret key and public key algorithms is recommended.

e Two distinct public key pairs recommended; one pair for key transfer and the

pair for digital signatures.
e The X.509 certification process is recommended for public key management.

¢ Confidentiality, data integrity, and digital signatures should be in access

control and communication security.

e A combination of authentication system (password and cryptography) is

recommended.

Recommended Communications Security Mechanisms

The use of Internet to transfer SecureSIG information indicates that encryption
is required. A secret key encryption algorithm is recommended for the
encryption of this data instead of public key encryption, as secret key encryption
algorithms are typically faster in encryption and decryption execution than

public key algorithms (Schneier, 1996).

124

CHAPTER 5 SECURESIG MODEL

Secret keys used for the encryption of SecureSIG information should be
locally generated on a per-session basis because per-session use of these keys
reduces the potential for compromise by exposure of the keys. This will ease the

problem posed by key distribution of secret keying material.

A public key cryptographic algorithm is recommended for the transfer of
per-session keys (symmetric key) between communicants. A combination of
secret key and public key cryptography are used to provide optimum security
(Knudsen, 1998): the relatively slow public key only suitable for encrypting small
amount of information while the faster secret key cryptography is suitable for
encrypting large amount of information. The public key cryptographic algorithm
can also be used in creating digital signatures (via signature of a message digest
from the entire message) to provide non-repudiation services and strong
authentication. Cryptographic hash function and digital signatures are

discussed in Appendix B.

All information transferred in a SecureSIG communications session
should be digitally signed by the sender and this signature verified by the

receiver. This provides data integrity for each SecureSIG data transfer.

Two different public key pairs are recommended in SecureSIG
communication security, one public key pair is used for key transfer (transferring
symmetric key) and the other public key pair is used for digital signature. Using

two distinct public key pair enhances the security of the information (Schneier,

1996).

Recommended Access Control Mechanisms

The critical importance of authentication to access control dictates that a strong

authentication system must be used. This system should be equally capable of

125

CHAPTER 5 SECURESIG MODEL

effecting strong authentication both locally and remotely. Additionally, it should

take in to account the possibility that intruders may examine its components.

A combination authentication system is recommended for SecureSIG
systems. This authentication should combine personal knowledge and
cryptography. This combination avoids transferring of password from client to
the server, also it provides authentication, integrity, confidentiality of the data
transferred during the access control process. A password coupled with

symmetric and asymmetric cryptography fulfils this requirement.

Recommended Information Stored Confidentiality Mechanisms

The critical nature of SecureSIG indicates that confidentiality of information
stored is an absolute requirement. It is recommended that all documents and
databases be encrypted to prevent information disclosure. A secret key
(symmetric key) encryption algorithm is recommended for the encryption of these

documents and databases.

Other Security Recommendations

Other general security measures are also appropriate for SecureSIG system is
the use of a firewall. A firewall provides a measure of protection by providing a

first level screening on traffic attempting to enter SecureSIG system.

5.4.2 Recommended Security Algorithms and Mechanisms

A SecureSIG system should not be tied to any specific security mechanism or

algorithm; its design should be flexible enough to support multiple mechanisms

126

CHAPTER 5 SECURESIG MODEL

and algorithms to perform security functions. This allows a system to specify the
algorithm it wishes to use for a given digital signature or encryption session. The
implementation of a SecureSIG system must select algorithms for use from
among the secret key algorithms, public key algorithms, cryptographic hash
function, and digital signatures available (see Appendix B). The following are the

recommended algorithms and mechanisms for use within SecureSIG systems:
e Symmetric Encryption Algorithm: DES and IDEA block cipher.

e Asymmetric Encryption: RSA.

e Session Key Exchange: RSA.

e Digital Signature: RSA using MD5.

e Message Digest: MD5.

¢ Data Origin Authentication Mechanism: Digital Signature.

¢ Key Management: X.509 Certification Hierarchy (asymmetric keys); Local
generation and asymmetric encryption (symmetric keys); Passphrase-based

encryption used for private key encryption; Self-certified public keys.

The rationale of the recommendations of the above security algorithms are
given below (Schneier, 1996; Smid & Branstad, 1992; Stallings, 1995, Girault,

1991; Odlyzko, 1994):

Symmetric Encryption Algorithms

The Data Encryption Standard, or DES (NBS, 1977) and International Data
Encryption Algorithm, or IDEA (Lai, 1992), are the recommended symmetric

encryption algorithm for use in SecureSIG system.

127

CHAPTER 5 SECURESIG MODEL

DES Advantages and Disadvantages

DES has several advantages. Among the advantages is that a DES is mature
and extensively analysed block encryption algorithm (Schneier, 1996). With this
features DES is cryptographically strong cipher because it has been publicised for
a long time and still not broken (Schneier, 1996). Furthermore, other features
such as no one has demonstrated a fundamental weakness DES and DES has
been endorsed by the U.S government while no other publicly available algorithm
has ever been endorsed (Smid & Branstad, 1992) makes DES widely accepted
and publicly available cryptoalgorithm today as discussed in Chapter Three
(Section 3.1.1). DES also has the advantage, with a 56-bit key, of potentially
being exportable under proposed new US Commerce Department export

guidelines (algorithms with longer keys are not) (Stallings, 1995).

There is a known weakness of the DES algorithm. Among the weaknesses
of DES as mentioned in Section 3.1.1 is the existing of the weak key, semi-weak
keys and complement keys in DES but these known weaknesses of the DES does

not limit the effectiveness of the algorithm (Pfleeger, 1989).

IDEA Advantages and Disadvantages

IDEA is relatively a new cryptographic algorithm, but it is seem to be the best
and most secure block cipher algorithm available to the public at this time
(Schneier, 1996). The advantages of IDEA as mentioned in Section 3.1.1 is that
it design is based on the impressive theoretical foundation, it has longer key
length (128 bits) than the DES, 128 bits, and it has withstood brute force attack"

(Schneier, 1996).

" A brute force attack is one in which an attacker searches the entire cryptographic key space until the
correct key is found.

128

CHAPTER 5 SECURESIG MODEL

Regarding the disadvantages of IDEA as mentioned in Section 3.1.1, there
is a class of IDEA weak keys found by Daeman, Govaerts & Vandewalle (1994),
but these keys are a small defect to IDEA due to the probability of generating one
of these keys being very small (one in 2. Other than that, IDEA algorithm is a

new and not extensively analysed (Schneier, 1996).

Asymmetric Encryption and Algorithms

The algorithm that recommended for general asymmetric encryption is the RSA
cryptosystem (Rivest, Shamir & Adleman, 1978). Among the advantages of the
RSA algorithm is that it has a long (20 year) history of scrutiny. Other
advantage is that since it is proposed RSA has withstood extensive cryptanalysis
(Schneier, 1996). Finally, the RSA algorithm is a complete cryptographic system,
supporting both digital signature and confidentiality (Schneier, 1996). This
means that it can serve multiple functions within a SecureSIG system, thus

reducing overall system complexity.

There are some limitations of public key cryptography. Among the
limitations is the computational burden they impose (Odlyzko, 1994). RSA is
only used for special tasks where its unique capabilities are needed, such as key
exchange, authentication, and digital signatures (Odlyzko, 1994). Another
reason why RSA public key cryptography is not used more widely is because of

patent licensing issues.

129

CHAPTER 5 SECURESIG MODEL

Message Digest, Digital Signature and Session Key Exchange
Algorithms

The MD5 (Rivest, 1992) algorithm is the recommended message digest algorithm
for producing digital signatures (Hash function and digital signatures are
presented in Appendix B). Like RSA, it widely accepted and used. MD5 is
specified as the message digest for use in RSA digital signatures by RSA Data
Security, Inc., in its public key cryptography standards (PKCS) (RSA, 1993). As
such, digital signatures based on MD5 and RSA are widely used, and many
products exist that can verify them. This combination is the recommended

digital signature combination for SecureSIG systems.

The MD5 hashing algorithm (Rivest, 1992) likewise is widely accepted and
used. While its digest length is somewhat smaller than other available
algorithms, the digest length (128-bits) is long enough for practical security. The

algorithm itself does not appear to have serious weaknesses.

Various alternatives to the MD5 message digest exist; however, among
these the Secure Hash Algorithm (SHA) (NIST, 1994) appears the best. The
major drawback to the use of the SHA message digest is the fact that it is not
widely used. Even though SHA dose not requires license (RSA does for
commercial use), the fact that it is not widely used is sufficient to make MD5 and

RSA the recommended algorithms for message digest and digital signature.

Data Origin Authentication Mechanisms

Data origin authentication (or message authentication) provides to the party
which receives a message assurance of the identity of the party which originated
the message. This counters the threat of masquerade attack (i.e., impersonation

of the message originator) (Markovitz, 1994). The mechanism proposed for data

130

CHAPTER 5 SECURESIG MODEL

origin authentication mechanisms is RSA digital signature using MD5 message
digests. A signature consists of a MD5 hash of the message which is encrypted
with the RSA private key of the originator. Data origin authentication implicitly
provides data integrity (Menezes, van Oorschot & Vanstone, 1997). The
advantages and disadvantages of RSA and MD5 have been discussed in the

previous sub-section.

Key Management

The mechanism recommended for asymmetric key management is the X.509
certification. Certification Authorities (CAs) certify identification and public
keying information concerning system users. This is done by having the CA
digitally sign an information structure consisting of user identification, public
keying, and administrative information regarding a system user; the digital
signature process irrevocably binds this information together in a structure

called a certificate.

The use of the X.509 certification hierarchy with public key simplifies the
management of symmetric keys as well. Simply put symmetric keys need not be
centrally managed. They may be locally generated on an as-needed basis,
encrypted with the public key of the intended recipient, and transferred along

with the data protected by the key.

Self-certified public keys are used for public key cryptography
management. Self-certified public keys do not require that the public keys are
accompanied by a separate certificate to be authenticated by other users (Girault,
1991). Both the authority and user compute the public key, so that the certificate
is embedded in the public key itself, and therefore does not take the form of a

separate value. Self-certified public keys contribute to reduce the amount of

131

CHAPTER 5 SECURESIG MODEL

storage and computations in public key schemes, while private key are still
chosen by the user himself and remain unknown to the authority (Girault, 1991).
The private key is kept secret using the passphrase-based encryption (PBE) as a
cipher key to encrypt and decrypt the private key. PBE is used because it is
easier to manage the passphrase than a cryptographic key (Knudsen, 1998). The
PBE with MD5 and DES (RSA, 1993) is recommended due to the MD5 and DES
features given in the previous section. In this particular variant of PBE
(PBEWithMD5AndDES), an MD5 digest is used to digest the passphrase, the
digest value is then used as a DES key. Detail of this PBE approach is given in

Appendix F.

5.5 SUMMARY

As summary, Section 5.1 presented the proposed model and elements considered

for the constructions of the SecureSIG model.

Section 5.2 discusses the components and services offered by the
functional model of SecureSIG. The functional model presented in this chapter is
the basis of the functional architecture of SecureSIG, which is discuss in the next

chapter.

Section 5.3 dicusses the security mechanisms and algorithms related to
the SecureSIG model and it components and services. Recommendations of
security mechanisms and algorithms to provide security to SecureSIG model and
components are discussed in detail. The advantages and disadvantages of the
recommended security algorithms have been pointed out. These recommended
security mechanisms and algorithms will be the basis for the implementation of

the components of SecureSIG prototype covered in the next chapter.

132

Chapter 6

PROTOTYPE OF SECURESIG

6.0 INTRODUCTION

The SecureSIG prototype was developed based on the services and components
provide by the functional model discussed in Chapter Five. This chapter is

structured as follows:

e Section 6.1 presents the functional architecture of a Secure Internet-Based

Groupware System based on the Internet and client-server architecture.

e Section 6.2 discusses the general client-server architecture and the Internet-
based client-server groupware system. It also discusses the architecture of the
SecureSIG which includes the data transmission, data storage, key pair
generation, access control, and user interface architectures. This includes the

discussion of how the security mechanisms provide security to the SecureSIG

system.

e Section 6.3 describes the components of the SecureSIG prototype in detail,

which includes examples of screen shots from the prototype.

133

CHAPTER 6 PROTOTYPE OF SECURESIG

6.1 THE SECURESIG PROTOTYPE

The SecureSIG prototype is based on the functional model developed earlier in
Chapter Five. The purpose of the prototype is to implement the model discussed
in Chapter Five in order to provide facilities to meet all the overall purposes of
this research. The prototype aims to address the security issue in software
inspection groupware. The development of the security services that provide the
security to the SecureSIG is based on the security mechanisms describes in
Chapter Three. The aspect of enabling technology and the security mechanisms

are re-examined from the perspective of the SecureSIG prototype in this chapter.

6.1.1 Secure Groupware Architecture

To understand the overall architecture of the system, first, the client-server
architecture has to be understood. The client-server system consists of three
components: the client, the server, and network connection that links the client
and the server as shown in Figure 6.1. A server is a process that is waiting to be
contacted by a client process so that the server can do something for the client. A

typical scenario is as follows (Stevens, 1990):

e The server process is started on some computer system. It initialises itself

then goes to sleep waiting for a client process to contact it requesting some

service.

e A client process is started, either on the same system or on another system
that is connected to the server's system network. The client process sends a

request across the network to the server requesting service of some form.

134

CHAPTER 6 PROTOTYPE OF SECURESIG

Server|:

Figure 6.1: General Client-Server Architecture

The Internet-based client-server groupware system can be derived by
expanding the general client-server architecture to operate in the Internet
environment. In this architecture the connection between the client and the
server is handled by the Internet instead of by a direct connection. Figure 6.2

shows the general Internet-based client-server groupware system.

Server|

Figure 6.2: General Internet-Based Client-Server Architecture

Finally a secure Internet-based client-server groupware system can be

derived by integrating the security services defined in Chapter 1 (Section 1.1)

135

CHAPTER 6 PROTOTYPE OF SECURESIG

with the system as shown in Figure 6.3. This architecture is based on the generic
TCP-based Client-Server Security Model (LANL, 1996). This security for
Internet-based client-server communications is based on the principles that

unencrypted sensitive information should not be transmitted on the network.

encrypted
Challnel — CUmmLI A L e SR

Figure 6.3: Secure Internet-Based Client-Server Groupware System

6.2 SECURESIG ARCHITECTURE

In this section, the SecureSIG architecture will be outlined. Based on the model
described in Chapter 5 and the general architecture of the secure Internet-based
groupware system in the previous section, the SecureSIG architecture can be
illustrated. The members of SecureSIG, namely: the moderator, the inspectors,
and the author(s), each connect to a server as a client. Figure 6.4 shows the

overall architecture of SecureSIG.

136

CHAPTER 6 PROTOTYPE OF SECURESIG

Inspector

encrypted
channel

Figure 6.4: The SecureSIG Architecture

6.2.1 The Cryptographic Protocol

In this project, a public key protocol was required for the transmission and
exchange of data (messages or keys) during a communication session between
the client and the server. The RSA public key cryptosystem was used in this
project. This protocol was invoked during the transmission of data and keys

between the client and the server.

Public key cryptosystems are not efficient for encrypting large volumes of
data, but combined with secret key cryptography they can be used to provide
authentication, integrity and secrecy in an efficient manner (Markovitz, 1994).

The following examples illustrate the idea.

A sender needs to send a signed, confidential message to a recipient. A
sender first computes a digital signature as a function of the sender’s private key
and a digest of the plaintext message. Second, the sender generates a secret key,

and uses this key to transform the plaintext to ciphertext. Third, the sender

137

CHAPTER 6 PROTOTYPE OF SECURESIG

encrypts the secret key using the recipient’s public key. The sender finally
appends the encrypted secret key and the digital signature to the ciphertext, and

transmits the information to the recipient.

Upon receipt, the secret key is decrypted using the recipient’s private key.
The secret key is then used to decrypt the ciphertext. Once the plaintext is
obtained, the recipients validate the message signature as a function of the
signature and the sender’s public key. Secrecy is guaranteed, because only the
recipient’s private key can be used to decrypt the secret key needed to decrypt
the message. Integrity is guaranteed because a digital signature was generated
using a digest of the original plaintext message. Finally, authentication is
achieved, because the digital signature provides unforgeable evidence that the

plaintext message was generated by the sender.

6.2.2 Data Transmission Architecture

The security of the information sent across the network during communication is
a very big concern. The security of the data transmitted is ensured by encrypting
the data at the client before it is transmitted and decrypting when the data
reaches the server (or vice versa). A combination of symmetric and asymmetric
cryptographic algorithm are used to provide this service. As recommended in
Chapter Five, the IDEA block cipher and DES block cipher are adopted as
symmetric cryptographic algorithm, while RSA is adopted as asymmetric
cryptographic algorithm. This combination provides flexibility of the asymmetric
cryptography with the speed of the symmetric cryptography (Hughes et al,
1996). The IAIK-JCE provides the implementation of the symmetric and

asymmetric cryptography mention above. To generate a key IAIK-JCE provides

138

CHAPTER 6 PROTOTYPE OF SECURESIG

the DES Key Generator and IDEA Key Generator to generate a DES key and the

IDEA key respectively. To generate the DES and IDEA key, an application uses

KeyGenerator des_keygen = KeyGenerator.getInstance(“DES”);

SecretKey des_key = des_keygen.generateKey () ;

and
KeyGenerator idea_keygen = KeyGenerator.getInstance(“IDEA");
SecretKey idea_key = idea_keygen.generateKey() ;

respectively.

Authentication and data integrity were handled by using digital
signatures and message digest respectively. The recommended digital signature
is the RSA using MD5 as mention in Chapter Five. The protocol to handled the
authentication, integrity and secrecy in the data transmission is based on the

protocol that was described in Section 6.2.1.

6.2.3 Database Storage Architecture

Sensitive documents, namely the program code, are an asset that should be
protected. All sensitive databases are encrypted and securely stored. The keys
used to decrypt the databases are only accessible through the server. Each
server can access certain files only and different keys are used to encrypt and
decrypt the files. Access to files also depends on the role of the client. For

example, the moderator can access all the files while the author has no access to

the file encryption component.

All the databases in the SecureSIG are encrypted either using DES or
IDEA block cipher. All the keys generated are stored securely using the

passphrase key, and can only accessible through the server as shown in Figure

6.5.

139

CHAPTER 6 PROTOTYPE OF SECURESIG

Secret Key File

i Encrypted User
1 Authorisation
» File

from client

Servers

! Encrypted

1 Tspected
: 1 Document

Encrypted

Channel —

to client

Log File

Figure 6.5: Database Storage Architecture

Generate Key Pair Generate Key Pair

i
|
SERVER | CLIENT
|
|
|
|

Encrypted | Public ccessidte o .

Private Key | Key Encrypted |
e mm = g Private Key
: Client - . , F :
! Public Key : !
! Files ! !

i 1
| |
, accessible i
i by the server

"accessible only
"to the clients

Figure 6.6: Key Pair Generation Architecture

6.2.4 Key Pair Generation Architecture

The server key pair is generated when the server providing user authorisation is
activated. The client key pair is pre-generated before using the system. Both
server and client use the self-certified certificates and passphrase key to store
their public key and secret key. Two key pairs are generated for each user, one

key pair is used to encrypt the secret key used to encrypt the message, and the

140

CHAPTER 6 PROTOTYPE OF SECURESIG

second key pair is used in digital signature and authentication of messages. A
copy of both generated client public key pairs are kept at the server, and used for
the encryption process when communicating with the client. This is to produce a

client public key list at the server. The whole process is shown in Figure 6.6.

6.2.5 Access Control Architecture

The access control issue is handled by authorisation of the client during login

into the system by the server.

The Client

In the login process, client is ask to enter a username and password (see Figure
6.7). This is follow by a request for the passphrase key. The plaintext password
is not sent to the server. The username, password and a random number is
digested then encrypted before being passed to the server program. The data is
encrypted using the secret key generated by the client. The secret key is
encrypted using the server public key fetched from the server before it is
transmitted to the server (step 1). The client computes a digital signature as a
function of the sender’s private key and a digest of the plaintext message. The
passphrase key is used to fetch and decrypt the pre-generated client private (step
2), the same passphrase key used to encrypt the private key when it was
generated must be used. A wrong passphrase key entered results in the system
displaying a warning message (step 3) and then exiting the user from the system.

Otherwise, the message is sent to the server through the encrypted channel (step

4).

141

CHAPTER 6 PROTOTYPE OF SECURESIG

i
I
CLIENT ! SERVER
i
|

Login Frame

{ Authorisation
username & password : Server
: ! o7 Encrypted
digest < encrypted 4 Authorisation
username Ch.(lllﬂel i)
_ o ;) : Database
password :
5
R TN
passphrase 1 i 6 client
._Servey public -
‘W key files :
| Y3 .
5’»)@) public (pb) encrypted : = LV -
0491,;' % private (pv) key file
....................... ‘ |
encrypted : L
private :
key files |
Warning : " Starting
Message ! Frame
{
I

Figure 6.7: Access Control Architecture

The Server

Upon receipt (see Figure 6.7), the secret key is decrypted using the server’s
private key (step 6). The secret key is then used to decrypt the ciphertext. Once
the plaintext messages is obtained, the server verifies the digital signature and
validate the message digest using the client’s private key (step 5). If either one of
the checks fails, the server will send an error message through the encrypted
channel to the client and display a warning message frame and ask the client to
login again. A valid digested message received is compared to the digested
message produced (calculated) from the authorisation file (step 7). The
authorisation file is encrypted, only the server can access the file. When the
comparison is valid, an encrypted success message 1s sent to the client and allows
the client to activate starting frame (step 8). Otherwise, if the comparison is not

valid a warning message frame is generated and displayed to the client. The

142

CHAPTER 6 PROTOTYPE OF SECURESIG

process of transmitting the messages to and from the client and the server is

through an encrypted channel.

The access level of users with regards to the database files and actions
that can be taken by the users can be dealt with by checking the roles of the

client from the encrypted authorisation file.

In this process, the client used different key pairs as mention in Section
6.3.4). One key pair is used for message encryption and the other key pair is

used to compute the digital signature and digest of the plaintext message.

6.2.6 User Interface Architecture

The SecureSIG user interface is based on the frame window interface. The
interface architecture is based on the standard architecture of frame window
interface. It is also based on the observation of the existing window interface
architecture. The user interface (frame) displayed is based on the role of user
and it is determined by the user authentication servers when the user logs in to
the system. Further actions depend on the options chosen by the user. The
options are presented in a button form. There are two possibilities that will be
displayed when an options button is pressed: another frame is displayed or an
information frame is displayed (see Figure 6.8). More than one option button
which displays either a sub-menu or an information frame can be used at the

same time, or closed without affecting the other component.

143

CHAPTER 6 PROTOTYPE OF SECURESIG

Moderator
Menu
Frame

e

Information
Frame

2

AR

Moderato

Login
Frame

A

Author =>

Menu Frame

Frame

Frame
....................... Inspector
- encrypted } Menu
. channel Frame

Figure 6.8: User Interface Architecture

6.3 COMPONENTS OF SECURESIG

This section describes the component of SecureSIG. Each component is describe
according to it function. These components are set-up, access control, file
encryption, key pair generation, briefing, document inspection, communication,
and comment log. The briefing, document inspection, communication, and

comment log components are taken from FlexSIG with an addition of security.

6.3.1 Set-up

The set-up component consists of

two options (see Figure 6.9). The

first option, Generate Key Pair, is

for all the team members or

participants in the software

Figure 6.9: Set-up Frame

inspection groupware and the

second option, Encrypt Data File, is for the system supervisor.

144

CHAPTER 6 PROTOTYPE OF SECURESIG

The generate key pair option is used by all the participants in the
software inspection process to generate their RSA key pair. The generate key
pair frame is shown in Figure 6.10. The encrypt data file option is used by the
system supervisor to encrypt authorisation file related to access control process

in the system. The encrypt data file frame is shown in Figure 6.11.

Both of the options in the set-up component above must be generated (pre-
generated) before accessing the SecureSIG. In a ‘real world’ implementation of
the SecureSIG system, the set-up component would be implemented separately

from the main SecureSIG system.

Username:s i

twinkle twinkle little stad

f
i
PassPhrase: i

fit

usrPasswd.daf

Figure 6.11: Encrypt Data File frame

6.3.2 Secure Access Control

The access control component authorises valid users and initiates and assigns
access levels of the users according to their roles. Access to the system is handle
by the login frame. The username, password and passphrase key are collected by

the frame (see Figure 6.12 and Figure 6.13).

145

CHAPTER 6 PROTOTYPE OF SECURESIG

Figure 6.14: Moderator Main Menu Frame

146

CHAPTER 6 PROTOTYPE OF SECURESIG

The username and password are digested with a random number and
then encrypted with the secret key generated. The secret key is encrypted using
server public key. The passphrase key is used to fetch the client private key used
in the encryption and decryption process with the server. Digital signature 1s
used to sign the digested data. The server will verify the information from the
authorisation file and send the confirmation back to the client. A frame based on
the role of the user is displayed as shown in Figure 6.14. This frame is an
extension of similar frame in FlexSIG, adding the top two buttons for the security

functions.

6.3.3 File Encryption

The file encryption button appears only on the moderator frame, is only available
to the moderator. This button is used by the moderator to encrypt the briefing
files and the program files (source code) used in the system. The file encryption
process is handled by a file encryption frame. Two options are given either 1) to
encrypt briefing files or 2) to encrypt program files. If option 1 is selected, a
briefing file encryption frame is displayed (see Figure 6.15). The filename is
collected by the frame. To activate the encryption process the user presses the
Encrypt button. A DES block cipher with CBC mode is used for the encryption

process.

If option 2 is selected, a file encryption frame is displayed (see Figure
6.16). The process is the same as option 1 only here the IDEA block cipher with
CBC mode is used for the encryption of the program. To activate the encryption

process press the Encrypt button.

147

CHAPTER 6 PROTOTYPE OF SECURESIG

Introduction

Figure 6.15: Briefing File Encryption Frame

Filename:

%
-
¢

CipherlS.java

Figure 6.16: Program File Encryption Frame

Secret keys used to encrypt the briefing files and the program files above
are protected by encrypting the key using the passphrase key by the server

program.

6.3.4 Key Pair Generation

The key pair generation button generates a new key pair for the users. Key pair
generation is handled by key pair generation frame. RSA is used for the key pair

generation process.

The passphrase key frame is displayed to collect the passphrase key used
to encrypt and decrypt the user private key generated. The process is the same

as the key pair generation in Section 6.3.1.

148

CHAPTER 6 PROTOTYPE OF SECURESIG

6.3.5 Secure Briefing

The secure briefing component assist users in understanding and using
SecureSIG in the software inspection process. The documents are prepared by
the moderator and placed in the server. All the briefing documents were
encrypted using the DES block cipher with CBC mode before being placed on the
server. The secure briefing is similar to FlexSIG with an addition of providing
secure fetching of a selected encrypted briefing file. The briefing document
fetching involved the process of interaction with the server to fetch the secret key
to decrypt the document. Using this key, the selected document is decrypted and

displayed on the frame.

6.3.6 Secure Document Inspection

The secure document inspection produce two types of frames that allow
browsing of the documents that need to be inspected: Code Viewer and Remote
Viewer. The Code Viewer allows the participants in the SecureSIG system to
select a document (program code) from a given list, while the Remote Viewer
allows the participants to view the other users code that is currently being
inspected. Both Code Viewer and Remote Viewer frames are similar to FlexSIG
in terms of screen format and display, but the process of fetching the selected
document is similar to secure briefing process described in Section 6.3.5. Using
this key, the selected document is decrypted and displayed on the frame. The
IDEA block cipher with CBC mode was used to encrypt and decrypt the

document for both Code Viewer and Remote Viewer.

As mentioned above the code viewer frame has to interact with the server
to fetch the secret key to decrypt the document. Using this key, the selected

document is decrypted and displayed on the code viewer frame. The process is

149

CHAPTER 6 PROTOTYPE OF SECURESIG

also the same for the remote viewer process, the only different is that the

document inspected is selected on the basis of username.

6.3.7 Secure Communication

The secure communication component can be divided into two sections; the
synchronous and asynchronous modes of communication. The secure
communication component is based on FlexSIG. The secure group chat is used in
a distributed synchronous mode of communication and the secure e-mail is used

in a distributed asynchronous mode of communication.

Secure Group Chat

Group chat is used to communicate in the synchronous distributed mode of
communication. It provides the support for synchronous distributed group
inspection. By using this group chat, the user can communicate immediately
with the other team members, provided that the other team members activate
the group chat frame on their screens as shown in Figure 6.17. This component
is based on FlexSIG with the addition of a secure process of communication by

encrypting the messages transmitted between the communicants.

Secure E-mail

Secure e-mail is used in the asynchronous distributed mode of communication.
To send an e-mail, the user needs to press the Compose button. The recipient’s e-
mail address is entered followed by a subject and then the message. A recipient’s
public key needs to be selected from the key pull-down menu (see Figure 6.18).

The Send button is pressed to activate the sending process. This public key is

150

CHAPTER 6 PROTOTYPE OF SECURESIG

used to encrypt the message before it is transmitted to the specific recipient. The
encrypted mail is kept in the mail server program. In the read mail facility, the
user can read their mail by pressing the Get button and the e-mail system

decrypts the message using the recipients private key.

= \WELCOME TO GROUP CHAT ***

To see active users type <?who>

(zaini] : 7who

Active Users:

Username: salwa Address: kojak/134.151.563.203 Encryption: OK
Username: zaini Address: kojak/134.151.53.203 Encryption: OK
{I[zaini] : hello salwa

salwa: hello can we start the discussion zaini

. fsalwa,
Ycan you have a look at line 68, Cipher.java Flle.
IRegards

%Zainﬂ

Figure 6.18: Secure E-mail Frame

151

CHAPTER 6 PROTOTYPE OF SECURESIG

6.3.7 Comment Log

The comment log is used for collecting team members comments, namely the
defects, the queries, and suggestions. It is similar with FlexSIG comment log

component with addition of encryption of process and project number stored.

6.4 SUMMARY

As a summary, Section 6.1 has presented the functional architecture of a Secure
Internet-Based Groupware System based on the Internet and client-server

architecture.

Section 6.2 presented the SecureSIG architecture, which includes the
cryptographic protocol, the access control architecture, the key pair generation

architecture, the file encryption architecture, and the database architecture.

Section 6.3 discussed the component of the SecureSIG prototype which
includes explanation of the set-up, secure access control, file key pair generation,
file encryption, secure briefing, secure document inspection, and secure

communication component and comment log.

152

Chapter 7

USER EVALUATION
OF THE PROTOTYPE

7.0 INTRODUCTION

This chapter presents the collected data analysis and results from user responses

after using the SecureSIG prototype. This chapter is structured as follows:

e Section 7.1 summarises the procedures of this research covered in chapter

four.
e Section 7.2 describes the procedures used to evaluate the prototype.

e Section 7.3 discusses and analyses data collected from the questionnaire

that formed part of the evaluation of the prototype.

71 REVIEW OF EVALUATION DESIGN AND PROCEDURES

The experimental design of this research was presented briefly in chapter four.
The experimental design involved three stages. The first stage involved

development of the model of the secure software inspection process. In the

153

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

second stage, based on the developed model, a prototype was developed using the
enabling technologies described in chapter three. In the final stage, the
prototype developed was evaluated, to find the suitability, transparency and
security of the SecureSIG prototype, by a group of post-graduate students in

computer science.

Data was collected from the users after using the prototype, using a
questionnaire. Rating scales were used in the questionnaire and basic statistical
analysis tools were used in analysing the gathered data to provide an evaluation
of the system. Among the methods employed are calculation of the mean,
median, standard deviation and percentage. The mean and the percentage are

used to show the tendency or the inclination of the sample.

In the next section, the procedure for development of the user evaluation

of the prototype is discussed.

7.2 USER EVALUATION PROCEDURE

As mentioned in the previous section, the purpose of evaluation is to measure the
suitability, transparency and security of the prototype. To measure these
features users were requested to execute a sequence of guided tasks presented to
them and then answer a questionnaire based on their experience using the
prototype. The reasons for providing the test users with guided tasks are as

follows:

e The test users can be taken through all aspect of the SecureSIG system.

e There is a necessary sequence to activate SecureSIG, and the test users were

required to follow this.

154

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

e The test users were fully informed of the operation of SecureSIG and this

gave a more complete view on transparency and suitability of the system.

e QGuided tasks are structured, making it quicker and easier for test users to

complete the testing, giving them more time to concentrate on evaluation of

the system.

e Unguided tasks test the robustness of the system more fully but this is not

one of the purposes of testing the system.

To support this, an experiment was developed and is discussed in the following

section.

7.2.1 Developing the Experiment

In this research, developing an experiment for the evaluation of the prototype

involved four main activities (Abdullah, 1994). These activities were:
o Developing tasks for users to perform.

e Preparing questionnaires.
o Determining procedures for the evaluation session.

e Selecting test users.

Selecting the Tasks

The tasks were selected to represent functions supported by the system and to
demonstrate the general capability of the system. The instructions to carry out

these tasks were listed on paper in the order in which users were asked to

155

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

perform them. The instructions provided were brief and indicate what the users

should do rather than how the users should do it.

Developing Questionnaire

Some guidelines regarding the questionnaire have been laid down by several

researchers. Among the guidelines are (Nielsen, 1993):

o It is recommended to use a short questionnaire (single page or at least the
two sides of a single sheet of paper). A short questionnaire stands a better

chance of receiving attention from the users.
o Ask questions to which you really want to know the answer.

o The rating scale should be the same throughout the questionnaire.

Determine Procedures for Evaluation Sessions

The success of an evaluation depends on the feedback from the users. Users
must be given a clear explanation of the system, the purpose of the evaluation,
the importance of their participation and what is expected from them at the

different stages of the evaluation.
The evaluation of the prototype can be divided into two main stages:

o Executing tasks: In this stage, users are required to execute the tasks that are

assigned to them.

o Answering the questionnaire: Users are requested to answer the

questionnaire based on their experience using the system.

In the first stage, the chosen group is requested to generate their RSA key

156

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

pair before accessing the system. They tested the system in two different

environments.

e Asynchronous distributed environment: members of the group were physically
and temporally distributed to test the system in different places and at

different times.

e Synchronous distributed environment: members of the group were physically

distributed to test the system in different places but at the same time.

Test users are given written instruction about the evaluation and its
procedures. According to Hix & Hartson (1993) this approach will ensure

consistency and remove some of the variances from test sessions.

Test users are requested to answer the questionnaire after they have
executed all the test tasks, but they were allowed to access the system when

answering the questionnaire.

Selecting Test Users

Test users are volunteers who help designers to evaluate the systems. It is
important to indicate to representative users taking part in evaluating the
systems that it is the system being tested and not the users. Since the prototype
was developed in the educational environment, the assumption was made that

test users in an educational environment act in a similar way to those in a non-

educational environment.

157

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

7.3 DATA COLLECTION PHASE

Data collection is related to the evaluation of the prototype developed. Data
collected from test users is used to contribute to the conclusion on the model and

prototype of SecureSIG.

As mentioned in section 7.2, the evaluation of the prototype was divided
into two main stages: executing tasks and answering the questionnaire. First test
users were asked to evaluate the prototype based on the guidelines given. Then
the test users were asked to complete a questionnaire to gather feedback from
their experience of using the prototype. The participants involved as test users
were a group of post-graduate students from School of Engineering and Applied
Science at Aston University. The data gathered from test users was analysed

based on the rating scaled used in the questionnaire.

7.3.1 Evaluation of the Prototype

In the evaluation of the prototype phase, the test users were asked to evaluate
the prototype using the user task given. These consist of three main sections in
the evaluation guidelines. The first section deals with the security related
features, which include the key pair generation, accessing the prototype and file
encryption. The second section deals with the asynchronous mode of
communication of the prototype. The evaluations of the secure e-mail, secure
document viewer and log entry component were carried out in the asynchronous
mode. The third sections deals with the synchronous mode of communication of
the prototype. The evaluation carried out in the synchronous mode was the

secure remote document viewer component and the chat component.

The complete written instructions for evaluating the prototype are given

in Appendix L.

158

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

7.3.2 Questionnaire

The questionnaire given is related to the evaluation of the prototype developed.
As mentioned in Section 4.2.5 and Section 7.1, a rating scale was used in the
questionnaire. The rating scale 1-5 used is based on the scale rating derived by
Nielsen & Ley (1993) with 1 is taken as the best and 5 is taken as the worst. The
complete test users detail questionnaire and questionnaire for evaluating the

prototype is given in Appendix J and K respectively.

There are two categories of question given to the user: test user details
and prototype related questions. In the user details category a few questions
were asked. This included the personal background and experience of the
participant in computer related fields and software inspection process. Examples
of questions from this category are the participant's academic background, their
gender, how many years of experience in computer related field, what areas they

have experience in, and have they ever used any software inspection process tool.

In the second category, there are twenty one questions given to the
participants. All the questions given deal with the evaluation of the SecureSIG

prototype. Examples of questions from this category are:

e Do you think that the remote viewer that helps you in accessing the file
viewed by other group member needs to secure it files by encrypting all the

related files?

e When using all the components in the SecureSIG system are you aware the

process of fetching the public key pair need for the encryption process?

Line spaces for writing any comment or suggestion for the betterment of

the prototype were also given.

159

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

7.3.3 Analysis of Questionnaire on Evaluation

The analysis of the questionnaire is based on the categories mentioned in the
previous section. Two categories of questionnaire were given to the test users:
test user details and the prototype evaluation. Appendix M gives test users

responses to these two categories of questionnaire.

Analysis of Test Users

Six test users participated in the evaluation of the prototype. The test users are
the post-graduate students at the Department of Computer Science and Applied
Mathematics, Aston University. All the test users have a degree in computer
science or are attending a computer science program. All the test users are male.

Almost all of them usually work on the UNIX platform.

In terms of experience working in information technology and computer
related field, thirty percent of the test users have experience of more than seven
years, fifty percent between four to five years, ten percent between three to four
year, and ten percent less than two year. In the area experience by the test
users, all of them have experience in programming. Twenty percent of the test
users have experience in system analysis. Twenty percent of the test users have
experience as network administrator. Only ten percent of the test users have
experience in software project management. None of the test users have
experience in data security. Ten percent of the test users have experience in
computer security. Thirty percent of the test users have experience in network
security and thirty percent of them have experience in cryptography. In the
questionnaire, the test users could chose more than one category of experience.

Figure 7.1 show the complete listing of the categories.

160

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

Cryptography

Netw ork Security
Computer Security
Data Security

S/W Proj. Managemen

Experience

Netw ork Admins

System Analysi

Programmin

0.0 20.0 40.0 60.0 80.0 100.0

Percentage

Figure 7.1: Respondent IT Experience

From the response gathered it shows that a larger number of the test users
have experience in programming and some number of the test users have
experience in areas related to network security and cryptography. From the
response, only thirty three percent of the test users have experience in using any
inspection or review techniques in software development. Thirty three percent of
the test users said that they have used code inspection techniques. Only around
seventeen percent of the test users said that they have used software audit

techniques.

The information gathered has contributed to the evaluation of the
SecureSIG. The information gathered was provided by test users with and
without experience of information security. The suitability of the chosen test

users is discussed in Chapter 8 (Section 8.2.5).

161

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

Analysis of the Prototype

The analysis is divided into two main sections based on the evaluation of the
prototype discussed in Section 7.3.1. These two main sections are the analysis of
the suitability and acceptability of the prototype and the analysis of the

transparency of the prototype.

Suitability of the Prototype

As mentioned in Section 7.1, the suitability of the prototype are measured by
analysis of the question asked of the test users concerning the degree of their
acceptance that the security functionality provided to the SecureSIG prototype is
appropriate to offer secure working environment. The analysis was done in both
asynchronous and the synchronous modes. In the questions regarding the
suitability of SecureSIG process all the question using the rating scale 1-5 with 1
is taken as storngly agree, 2 is taken as agree, 3 is taken as not sure, 4 is taken as

disagree and 5 is taken as strongly disagree.

Asynchronous Mode of Inspection

In the analysis of the suitability of SecureSIG in asynchronous process there are
seven questions asked. The summarised questions with the mean, median and

standard deviation from the test users responses are shown in Table 7.1.

With regard to the need to protect all the briefing files stored and to
secure the information flow related to the briefing process, around seventeen
percent of the test users chose 1 (strongly agree) and around eighty three percent
of the test users chose 2 (agree). The percentage and the mean (see Table 7.1)

indicated that there is a need to protect all the briefing files store and to secure

all the information flow related to the briefing process.

162

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

Questionnaire Mean Median SD

The need to protect all the related

briefing files stored. 1.83 2 0.41
The need to secure the information flow
related to the briefing process. 1.83 2 0.41
The need to protect all the files view in
the remote viewer process. 1.50 1.5 0.55
The need to protect all the information
flow involved in the remote viewer 167 9 0.59
process.
The need to protect information stored
d flow in the el i il.

and flow in the electronic mail 1.67 9 052
The need to protect information stored
and flow in the log entry process.

) 2.17 2 0.17
Do SecureSIG components provided
offer a secure working environment for
asynchronous mode of process 1.83 2 0.41

SD - Standard Deviation

Table 7.1: Means for Questionnaire on Asynchronous Mode

The majority of the test users agreed there is a need to protect the files in
the remote viewer process (see Table 7.1). Around eighty three percent of the
test users chose 1 (strongly agree) and around seventeen percent chose 2 (agree).
The mean from Table 7.1 and the percentage show that in asynchronous

meeting, all the files related to the remote viewer need to be protected.

On the question of the requirement to protect the information flow
involved in the remote viewer process, around seventeen percent chose 1
(strongly agree) and around eighty three percent chose 2 (agree). The mean from
Table 7.1 and the percentage regarding this question shows that the need for
protection of information flow in the remote viewer process is strongly supported

by the test users.

Around seventeen percent of the test users chose 1 (strongly agree) and

around eighty three percent chose 2 (agree) when they were asked the question

163

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

on the need to provide protection to the information stored and transmitted in
the electronic mail process. The statistics gathered (see Table 7.1) supported
that the test users agreed with the need for security of the electronic mail

process in SecureSIG system.

With regard to the question on the need to protect the log entry process,
all the test users chose 2 (agree). The percentage and the mean (see Table 7.1)

gathered showed that it is required to protect the log entry process.

In summary, the analysis from all the questions asked above regarding
the need of the secure components provided in the SecureSIG system indicated
the suitability of the secure components provided for SecureSIG performing
secure asynchronous mode of inspection (see Table 7.1). This analysis 1is
supported by a asking the test users a specific question “Do you think that the
SecureSIG components provided offered a secure working environment for
asynchronous mode of inspection?. Analysis from this question show an
agreement from the test users that SecureSIG offered a secure working
environment for asynchronous mode of inspection (see Figure 7.2 and Table 7.1)
with around seventeen percent of the test users chose 1 (strongly agree) and

eighty three percent chose 2 (agree).

[4] 5]

2]
83%

Figure 7.2: Test users respond regarding SecureSIG components providing secure
environment to the asynchronous process

164

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

Synchronous Mode of Inspection

In the analysis of the suitability of SecureSIG in synchronous process there are
six questions asked. The summarised questions and means for the questionnaire

on the synchronous mode of inspection are shown in Table 7.2.

Questionnaire Mean Median SD

The need to protect all the related

briefing files in synchronous process 1.83 2 0.41

The need to secure the information flow
related to the briefing process in 1.83 2 0.41
synchronous mode.

The need to protect all the files view in
the document viewer process. 1.33 1 0.52

The need to protect all the information
flow involved in the document viewer

The need to protect information flow in

the group chat process. 933 9 0.59
Do SecureSIG components provided

offered a secure working environment

for synchronous mode of process 2.00 2 0.63

Table 7.2: Means for Questionnaire on Synchronous Mode

On the questions regarding the need to protect all the briefing files stored
and to secure the information flow related to the briefing process, around
seventeen percent of the test users chose 1 (strongly agree) and around eighty
three percent of the test users chose 2 (agree). The percentage and the mean
from Table 7.2 shows that there is a need to protect all the briefing files stored
and to secure all the information flow related to briefing process in the

synchronous mode of inspection.

The majority of the test users agreed that there is a need to protect the

files in the remote viewer process (see Table 7.2). Around sixty seven percent of

165

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

the test users chose 1 (strongly agree) and around thirty three percent chose 2
(agree). The statistics indicate that in synchronous meeting, all the files related

to the remote viewer need to be protected (see Table 7.2).

With regard to the protection of the information flow involved in the
document viewer process, around thirty three percent of the test users chose 1
(strongly agree) and sixty seven percent chose 2 (agree). The mean from Table
7.2 and the percentage gathered showed the need for protection of information

flow in the document viewer process.

Around sixty seven percent of the test users chose 1 (strongly agree) and
around thirty three percent chose 2 (agree) when they were asked on the
question of the need to provide protection to the information stored and flow in
the group chat process. Even though the perceived need regarding this question
(see Table 7.2) is the lowest compared to other questions, it indicate that the test
users still agreed with the need for security of the group chat process in

SecureSIG system.

In summary, the analysis of the questions asked regarding the need
indicated the suitability of the provisions in SecureSIG in the secure
synchronous mode of inspection (see Table 7.2). As in the asynchronous mode
this analysis is supported by a specific question asked to the test users “Do you
think that the SecureSIG components provided offered a secure working
environment for synchronous mode of inspection?”. In responding to this
question the majority of the test users agreed that SecureSIG provided the
secure environment for the synchronous mode of inspection with seventeen
percent chose 1 (strongly agree), sixty six percent chose 2 (agree), and seventeen
percent chose 3 (not sure) (see Figure 7.3 and Table 7.2). This question is based

on the need of the security functions rather than evaluating the security

166

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

mechanisms and algorithms used in each of the components in SecureSIG for the

synchronous mode of inspection.

4] (5]

/ 0% [1]
17%

(2]
66%

Figure 7.3: Test users respond regarding SecureSIG components providing secure
environment to the synchronous process

With regard to a specific question asked of the user “Overall, do you think
that with all the secure components provided the SecureSIG offered a secure
working environment for an asynchronous and synchronous mode of inspection?,
the result indicated that the majority of the test users agreed that all the secure
components provided by SecureSIG offered a secure working environment for
with asynchronous and synchronous modes of process (see Table 7.3 and Figure
7.4). Around seventeen percent of the test users chose 1 (strongly agree), around

sixty six percent chose 2 (agree) and around seventeen percent chose 3 (not sure).

Questionnaire Mean Median SD

Does SecureSIG system offered a secure

| ; 2.00 2 0.63
working environment for asynchronous
and synchronous mode of process.

The need of secure access control in 117 1 0.41
SecureSIG.

Table 7.3: Means for Questionnaire on Specific Task

167

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

(4] (5]

2]
66%

Figure 7.4: Acceptability of the SecureSIG providing secure working environement

to asynchronous and synchronous inspection process

With regard to a specific question regarding the need for a secure access
control to the inspection process system, all the test users agreed that the system
must be provided with a secure access control (see Table 7.3 and Figure 7.5).
Around eighty three percent of the chose 1 (strongly agree) and around seventeen
percent chose (agree). This response indicated that the test users strongly

supported the secure access control provided to the software inspection process.

(3]

(4] o 5]
2] 0% % >
17% \ J 0%

i e

(1]
83%

Figure 7.5: Respond regarding the needs of Access Control in SecureSIG System

168

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

Transparency of the Prototype

The transparency of the prototype is measured by analysis of the questions asked
of the test users concerning the degree of their awareness that security
mechanisms were operating and whether they were distracted from their work
flow by the security functions in the SecureSIG system. In the questions
regarding the transparency of the prototype almost all the question using the
rating scale 1-5 with 1 is taken as not aware, 2 is taken as slightly aware, 3 1s
taken as don’t know, 4 is taken as aware, and 5 is taken as fully aware. The

summarised questions with it mean from the test users respond is shown in

Table 7.4.

Questionnaire Mean Median SD

Awareness of the encryption/decryption

. . 2.17 2 0.41
process during login process.
Awareness of the process of fetching the
public key for the encryption/decryption 1.00 1 0.00

process.

Awareness of the encryption/decryption
process in each process of the 1.00 1 0.00
SecureSIG component.

Awareness of the process of generating
and updating the public key pair. 1.83 9 0.75

Accessiblity of files and databases

during SecureSIG process. 1.00 1 0.55

The transparency of the encryption and
decryption process in the SecureSIG

1.67 2 0.52
system.

Table 7.4: Means for Questionnaire on Transparency of the Prototype

With regard to the question regarding the awareness of the encryption
and decryption process during login to the SecureSIG system, around eighty

three percent chose 2 (slightly aware) and around seventeen percent chose 3

169

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

(don’t know). KEven though the score is the lowest compared to the other
questions (see Table 7.4), it indicated that test users agreed that they were not
really aware of the encryption and decryption process. This result is expected
because the login process involved many information exchanges as well as the

encryption and decryption processes.

On the questions whether the test users were aware of the fetching of the
public key during the encryption process and did they realise the encryption and
decryption process were taking place in each process of the SecureSIG
components, all the test users agreed that they are not aware the encryption and
decryption process in both of the questions (see Table 7.4). All (100 percent) the

test users chose 1 (not aware).

Around thirty three percent of the test users chose 1 (not aware), fifty
percent chose 2 (slightly aware), and around seventeen percent chose 3 (don’t
know) when they were asked on their awareness of the process of generating and
updating the key pair. The statistic confirmed that the test users were not aware

of the encryption and decryption process (see Table 7.4).

The test users gave a positive answer to the question of the accessibility of
the files and databases every time they needed it. In this question a different
rating scale is used, 1 is refer to highly accessible, 2 is refer to easily accessible, 3
refer to neither good or bad, 4 refer to not eastly access, and 5 is difficult to access.
All the test users responded that they can access all the files when they needed,

all (100 percent) test users chose 1 (highly accessible).

With regard to a specific question regarding the transparency of the
encryption and decryption processing in SecureSIG system (see Figure 7.6). In
this question a different rating scale is used, 1 is refer to very transparent, 2 is
refer to transparent, 3 refer to not sure, 4 refer to slightly transparent, and 5 is

not transparent. Around thirty three percent of the test users chose 1 (very

170

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

transparent), and around sixty seven percent of the test users chose 2
(transparent). This result indicated that the majority of the test users agreed

that the SecureSIG system is transparent to them.

(2]
67%

Figure 7.6: Transparency of the SecureSIG System

Analysis Summary

The analysis of test users indicated that test users with a background of network
administrator and a security related background (cryptography, network
security, and computer security) showed more concern toward security issues.
For better analysis and result, test users should be taken from a wider range of
backgrounds, particularly potential users and is discussed in Chapter 8 (Section

8.2.5).

The prototype analysis results indicated the suitability of the SecureSIG
system to offer a secure working environment for asynchronous and synchronous
mode of software inspection process. Based on the results gathered on the
suitability of the prototype in synchronous (see Figure 7.2 and Table 7.1) and
asynchronous modes of inspection (see Figure 7.3 and Table 7.2) the results show
that the asynchronous mode of inspection is thought to be more suitable for
software inspection process. The results from the analysis (see Table 7.4 and

Figure 7.5) also indicated test users were satisfied with the transparency of the

171

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

SecureSIG system. The results also supported the need for and the suitability of

the secure access control in SecureSIG system.

Overall, the result from the analysis of the prototype supported the
suitability of the SecureSIG system for offering secure asynchronous and
synchronous working environment for software inspection process and it also

confirmed the transparency of the system.

In the suitability of the prototype questionnaire there is only one question
asked regarding the acceptability issue in every category of the questionnaire
(see Table 7.1, 7.2, and 7.3). This question (the “Do...” or “Does...”) is a
confirmation question asked to get confirmation from the test user regarding
their degree of acceptance toward the SecureSIG system. It avoids overlapping
questions regarding the suitability and transparency of the SecureSIG system.
It is also a leader to provoke the test user to make their comments toward the

end of the questionnaire.

Another issue that is not raised here is the testing of the robustness of the

SecureSIG system. This is discussed in Chapter 8 (Section 8.2.5).

The evaluation supported the suitability and the transparency of the
SecureSIG system. The test users were positive about the security, although the
security was not fully tested. Deeper testing of the security was not considered

necessary because:
e SecureSIG system using established secure methods, and

e most known cryptographic attack need processing power and time, due to the
nature of the software inspection meeting which not exceeded two hours,

SecureSIG has advantages on most of this known attack.

Resistance to known attacks is discussed in Chapter 8 (Section 8.2.6).

172

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

Comments
Among the comments provided by users are the following:

e Java is a developing programming language and Java is still not stable.
Since the development of Java, many version of Java has been released and

are inconsistent in the features supported.

e It is difficult to be confident of the security of the system by just using the

components of the system.

¢ Some of the components in the SecureSIG are slow to activate.

Suggestions
Among the suggestions given are as follows:

e SecureSIG should provide a user with flexibility in choosing the encryption

algorithm for different data in the system.

e Suggestion to rebuild the SecureSIG system using the World Wide Web as a

platform.

These useful suggestions are the only suggestion given and are not

incorporated in this research. They are proposed for future work.

The responses to this questionnaires address the need for and suitability of
the security functions for all the components, but do not seek to evaluate the
security mechanisms and algorithms used in each of the components in
SecureSIG. The question of how well the security function provided met the
needs is proposed for future work. Simply activating all the functional
components does not test the security. The real test is to attempt to break into

the system. This testing requires a different set of users performing different

173

G
-

CHAPTER 7 USER EVALUATION OF THE PROTOTYPE

tasks. The testing has addressed usability with security in place rather than

strength of the security.

7.4 SUMMARY

As a summary, the evaluation design and procedures have been presented. Four
activities involved in the development of an experiment for the evaluation of the
prototype were laid out. These four activities are selecting test users, selecting

the tasks, developing questionnaires, and determine a procedure for evaluation

sessions.

Data collection phase which is related to the evaluation of the prototype
has been discussed. In this section the analysis and the evaluation of model and
prototype of the SecureSIG was presented. Based on the responses gathered
from the test users, the results indicated the suitability of the SecureSIG system
as a secure working environment for software inspection process. The result also
indicated the users were content with the transparency of the SecureSIG system.
Overall the analysis of the prototype evaluation indicated the suitability and the

transparency of the SecureSIG system.

In the next chapter (Chapter Eight), the evaluation of this research and

future work will be discussed.

174

Chapter 8

RESEARCH EVALUATION
AND FUTURE WORK

T

8.0 INTRODUCTION

This chapter discusses the evaluation of the thesis as a whole and points out

several suggestions for future work. This chapter is structured as follows:

e Section 8.1 highlights the aims of the research.
e Section 8.2 provides the evaluation of this research.

o Section 8.3 gives suggestions for continuing the project in future work.

8.1 AiMS OF RESEARCH

This section reiterates the aims of this research. The aims of this research were:
¢ to develop a secure software inspection model.

e to implement a prototype based on the model.

175

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

e to evaluate the prototype in order to measure the suitability and

transparency of the system.

8.2 KEVALUATION OF THE RESEARCH

This section presents the evaluation of this research, which includes the
literature review, the formulation of the research problem, the model, the

prototype, the user evaluation, and the overall evaluation of this thesis.

8.2.1 Literature Survey

An extensive survey of the literature was successfully completed. A large
number of references, more than one hundred, from various sources such as
refereed journals, theses, books, conference publications, indexed search on
electronic libraries, as well as sources on the Internet. The scope of literature
found was spread evenly, covering the main issue of CSCW and it related
security area and the issue of the enabling technology and security services (see

Figure 8.1).

Enabling
Technology
& Security
Senices
49%

Figure 8.1: Literature Distribution

176

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

Many tools were used to gather all the literature, such as all the available
searching tools and databases' in Aston University library, abstracts and index
of theses, and Netscape Internet searching tools. The literature found was
filtered according to the scope of this research. The literature in CSCW covered
topics starting from general issues of CSCW and moving toward security areas
related to CSCW before focusing on the existing software inspection groupware
and the lack of security in this software inspection groupware process. The
literature survey also covered security services and the enabling technologies,
namely, cryptography, Java technology, and the Internet. Detail of the literature

distribution using these areas is shown in Figure 8.2.

Security
Senices CSCW
15% 18%

Java & Internet CSCW &

9% Security
10%
Cryptography) - Software
25% Inspection

23%

Figure 8.2: Detail Distribution of the Literature

The wide range of sources of information ensured the survey found most
of the related literature. This was supported by checking with the index of

theses, proceedings of the latest conferences related to the topic, and cross-

' BIDS (Bath Information and Data Services) is a collection of bibliographic databases.
INSPEC is a bibliographic database, providing references and summaries of mostly journal articles

and conference papers.
IDEAL® (International Digital Electronic Access Library) is an online electronic library.

177

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

referencing from literature on hand. The literature survey revealed a large
coverage of current literature in some areas and also showed that some areas

covered in this thesis have not yet been much reported.

8.2.2 Research Problem, Design and Procedure

The literature survey showed little integration of CSCW aspects of Software
Inspection Groupware with information security. Although around twenty three
percent of papers found discussed the topic of the software inspection process,
none addressed security in the software inspection process. The need to add
security to the software inspection process has been raised based on the survey
done by Sahibuddin (1999). This confirmed the work of Foley & Jacob (1995) and
Teufel et al. (1995) who pointed out that much work in CSCW and it applications
has been done on the technological aspects, but there is little focus on aspects of
information security of CSCW and related applications. Only Teufel et al. (1995)
covered, in general, information security concepts in CSCW, but they did not

implement any solutions.

The research method was conducted in three stages, namely; to develop a
model, followed by a prototype, and to perform user evaluation of the prototype.
A one-shot case study was used for the user evaluation of the prototype. Even
though the one-shot case study is not the best experimental method support for

this, but it is chosen because of the limited availability of time and participants.

8.2.3 The Model

The purpose of model is to provide a secure software inspection process to use all

the four quadrants of the Johansen (1988) space-time matrix and the time and

178

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

space taxonomy proposed by Ellis et al. (1991). A secure software inspection
process model was constructed based on an extension of FlexSIG model
(Sahibuddin, 1999), combined with a security model and security services based
on information in the literature. Recognising the security limitations of FlexSIG
and other existing inspection models, an extended security model was proposed.
The model addressed the issue of lack of security in the software inspection
groupware process and the evaluation of the model is based on this issue of

providing secure data process to the model.

Two securities layer, the External Security Layer (ESL) and Internal
Security Layer (ISL), was implemented on top of FlexSIG model to demonstrate
the security ideas developed in this research. The ESL provides a secure access
control process, while the ISL provides secure information flow and information
storage processes of the model. Each security layer built with established secure
technology and thus it is expected to be secure. The two security layers (ESL and
ISL) are independent with no interaction between both of them, so if each of the

layers is secure their combination is also expected to be secure.

To design the security model, the conceptual framework for the model was
firstly identified, then the functional components identified, and finally the
security mechanisms and algorithms proposed. The conceptual framework was
the basis to the development of the functional components of SecureSIG. The
security requirements identified for the SecureSIG model are mentioned in
Chapter Five (Section 5.2.1), namely: secure access control, data flow
confidentiality, data flow integrity, data flow authentication, database and file
protection, encryption of all information prior to transmission, and adaptable to a
new encryption algorithm. The security mechanism and algorithms adopted to

implement the functional components were based on publicised and established

179

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

secure techniques which implies (Schneier, 1996) that they are cryptographically

strong.

The model developed is considered secure because it provides secure
access control process, secure software inspection process flow, and secure
information stored which fulfil the security functional requirements mentioned
above. The model developed is not tied to any specific security mechanism or
algorithm, and the design is flexible enough to support multiple mechanisms and

algorithms and to allow any new stronger algorithm to be adopted later.

The model could be extended with different views of users and key
structure. The design of the model could possibly be improved further if the
security requirements were enhanced by user feedback derived from the
prototype and not merely based on the literature. Regarding the key structure a
secret sharing schemes® could possibly be added to enhance the security of the
access control process. Combining different secret key block cipher algorithms is
another requirement that could increase the security of data in transmission and

stored. These areas are put forward for future work.

Overall, the model is shown to provide a good basis for supporting secure
software inspection processes by incorporating the two security layers (ESL and
ISL layer) to enhance security to the process which is lacking in the existing

software inspection model.

8.2.4 The Prototype

The prototype was developed to implement the model propose to prove its

feasibility. What is meant by feasibility is that:

> In this scheme the secret key is broken up into small pieces and each piece is given to individuals
from the selected trusted group so that a quorum of them need to contribute their shares to reconstruct
the original secret or secret key. Without a quorum, the secret key would remain unknown.

180

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

the prototype can be implemented and perform required tasks accordance to

the security functional requirements mentioned in Section 8.2.3.

e the prototype components developed are fully functional.

e the prototype performance is satisfactory because all the component operate

correctly together so it fulfils it tasks.

e the prototype is flexibly constructed to be easily adapted to new encryption

algorithms.

e the prototype is flexible to work in the synchronous and asynchronous

working modes.

The prototype was also developed to provide a test bed for user evaluation of the

model in providing the security for the software inspection groupware process.

The prototype was based on the model described in Chapter Five and the
general architecture of the secure Internet-based groupware system discussed in
Chapter Six. The prototype developed is Java application based rather than
WWW based because during the early development of the prototype Java applet
security that support cryptography API for WWW which based on IAIK-JCE is
not yet supported. Even though, Sun-JCE applet security is available during the
early stage of the development but it is not available outside the United States

because of the U.S export policy. Currently SecureSIG consists of about 15K

lines of Java codes.

The prototype was developed using cryptography tools, Java technology

and the Internet. Utilising Java programming language with the cryptography
extension (JCE) handled the security functionality of the SecureSIG while

maintaining the flexibility in terms of different working modes (distributed

asynchronous and distributed synchronous modes).

181

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

The security mechanisms and algorithms provided in the SecureSIG tools
met the aims of the design. The security provision in SecureSIG can be assumed
secure because of the use of mechanisms and algorithms that are considered
secure and their use in a security architecture which does not compromise their

security. The algorithms used are:
¢ DES and IDEA block cipher for symmetric encryption algorithm.
e RSA for asymmetric Encryption algorithm.
e RSA for session key exchange.
¢ RSA using MD5 for digital signature.

The strength of the algorithms listed above has been discussed by Menezes, van
QOorschot & Vanstone (1997), Schneier (1996), Stallings (1995), Meir (1994), RSA
(1993), Smid & Branstad, (1992), Biham & Shamir (1991) as mentioned in

Chapter Three (Section 3.1.1) and Chapter Five (Section 5.3.2).

The prototype developed is thus considered secure because it was based
on de facto standard, known and established algorithms mentioned above that
have been put together to construct SecureSIG prototype. Architecture
combination (Idris, 1995) developed does nothing to weaken, because

independence of layer.

The prototype was able to generate all the required components in
SecureSIG. The secure tools provided to the SecureSIG prototype met the
purpose of the development. The encryption algorithm that built in object in
Java makes it adaptable to a new encryption algorithm. Different modules that
implemented different encryption algorithm were tested in the prototype and
proved successful. The development of the prototype could possibly be improved

further if the key quorum idea mentioned in the previous section were

182

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

implemented in the prototype. Furthermore, developing the prototype on more a
flexible platform such as WWW and providing flexible choice of algorithm by the

test user could also improve the SecureSIG prototype.

Overall, the SecureSIG prototype developed is successful in providing the
security missing from an existing software inspection tools because the

development is based on established secure technology.

8.2.5 User Evaluation

The user evaluation on the prototype was conducted in order to measure the
suitability and transparency of the prototype as mentioned in Chapter Seven.
Two categories of questionnaire were developed, namely; test user details and
the prototype evaluation. The information gathered from test users provides
evaluation of the prototype from the viewpoint of two different groups of test
users (with and without information security experience), and the test users
evaluation of the prototype is discussed. As a whole, based on the mean and
percentage of the tendency or the inclination of the test users, the result of the
questionnaire’s analysis indicated the suitability of the SecureSIG system in
providing a secure environment for the software inspection process. The analysis
also indicated the transparency of the SecureSIG system. The evaluation showed

that the prototype met the user aims outlined in Chapter Four.

The design of the experiment for the evaluation of the prototype was
based on the literature. The questionnaire developed was successful in extracting
the information needed from the test users because it tested the suitability,
transparency and security aspects, and because the comments from the test
users gave useful suggestions that could have improved the design of the system.

Test users selected were knowledgeable about computing and security, and made

183

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

no comment on the choice of question, implying the questions were appropriate.
Nevertheless, the contents of the questionnaire could be improved further if a

pilot study were conducted in order to check any bias in the design of the

questions.

In the evaluation, six people were involved as test users. The user
evaluation could have been done better with more people from a wider
background involved in the evaluation. This would result in stronger statistical
and experimental evaluation conclusions. Because of time and personnel
constraints, a single experiment was conducted. A single experiment is limited
because users evaluate, give comments and suggestions only once, and they don’t
see the prototype refinements generated from this input. A post testing was not
done, but should be done because test users were naive when doing the first
experiment, and with the experience that they have gained from the first testing,

different and more concrete replies may be gathered.

The background of the test users affects their answers, so a range of user
backgrounds gives a broader sample, and the result gained are more likely to be

widely applicable.

In addition, the evaluation by the test users should include unguided
task. Unguided task performed by the test users should test the transparency,

suitability and the security of the SecureSIG system.

8.2.6 Security Against a Selective of Known Attacks

This section lists some known attacks from the literature and considers the
ability of the SecureSIG system to stand against these attacks. Details of these
known attacks are given in Appendix H. These attacks were selected because

they are known to show a range of weaknesses in cryptographic system, and

184

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

were likely to be the most common in a distributed environment. The selected
attacks also demonstrate two different categories of attack, the protocol-based
attack (man-in-the-middle, replay attack, and ciphertext-only attack) and direct-
attack (dictionary attack, brute force attack, and masquerade attack). SecureSIG
contains known strong defences against each of the attacks. The ability of

SecureSIG to withstand known attacks is summarised in Table 8.1.

Known Attacks Ability
Man-in-the-middle Yes
Dictionary Attack Yes
Brute Force Attack Yes
Replay Attack No
Ciphertext-only Attack Yes
Masquerade Attack Yes

Yes - able to resist the attack.
No - Not able to resist the attack.

Table 8.1: SecureSIG — Security Against a Selective Known Attacks
(See Appendix H)

Analysis Against a Selective Known Attacks

e Man-in-the-middle. The man-in-the-middle attack occurs when an adversary
acts a third party in a two party conversation. The man-in-the-middle attack
can be prevented using certificates. The SecureSIG system using public key
certificates. By using the certified key pair (private key and public key) for
security communication purpose, the man-in-the-middle attack can be

handled by the SecureSIG system.

185

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

Dictionary Attack. This attack is a general threat to all passwords. The
hashed-password is not secure against the dictionary attack. By getting the
hashed-password, an attacker can perform a dictionary attack by performing
series of compution using every guest for the password. In the SecureSIG
system, besides hashing the password, the password is also encrypted before
being sent to the server for authorisation purpose. In other words, it is the
encrypted hashed-password that was transmitted to the server. The
encryption of the hashed-password secures the hashed-password from the
dictionary attack because the attacker need to decrypt the hashed-password

before the dictionary attack can be performed.

Brute Force Attack. A brute force attack searches the entire cryptographic key
space until the correct key is found. Brute force attack need processing power
and time. In SecureSIG, block cipher DES and IDEA with 56 and 128 key size
were used respectively. DES with 56 key size, needs a machine that tries all
possible 2% possible keys for a given ciphertext (Cheswick & Bellovin, 1994).
For block cipher IDEA with 128 key size, the brute force attack will require
2'% tries to recover the key (Schneier, 1996). For the software inspection
meeting which is suggested not to exceed two hours, it seems quite secure
against the brute force attack. Other than that, the passwords are changed

after each meeting.

Replay Attack. SecureSIG cannot withstand the replay attack. SecureSIG has
implemented only data origin authentication but not included the peer entity
authentication. Because this function is excluded, an attacker (third party)

can perform the replay attack by intercepting the message and replaying the

message.

Ciphertext-only-attack. A successful ciphertext-only attack is generally

difficult. In the secureSIG system all the information transmitted and stored

186

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

is encrypted. Encrypted information is secure from the ciphertext-only attack.
Other than that, time duriation of the meeting is short and the keys

generated are changed after each meeting.

e Masquerade Attack. It is difficult for an attacker to perform the masquerade
attack. The only legitimate user that the attacker can impersonate is
through login access. The attacker has to provide the password and the
passphrase used which provides two levels of security. Time duration of the
meeting is short and the chance to test all possible combinations of the
password and the passphrase is limited. The password and the passphrase

are changed after each meeting.

8.2.7 Overall Evaluation

From the evaluation, it can be concluded that this research has met its aims.

The evaluation has supported that this research has:

e developed a secure software inspection process model.

e implemented an effective prototype based on the model.

e implemented a suitable prototype system with good transparency.

The result also showed that the security and transparency of the system
align with the definitions of ‘secure’ and ‘transparent’ in Chapter Four. The

prototype was indicated to be secure and transparent in terms of the following:

e Allowed secured access to the system.
e Allowed the secured transmission of information in the system.

e Provided confidentiality to the documents, file, and databases.

187

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

e Allowed no awareness of the security mechanisms operating and distraction

of workflow by the security function in the system.

Overall, it can be concluded that the system developed is secure, based on
the implementation of the security mechanism and the use of algorithms that are
considered secure, which have been put together in a way that does not introduce
security ‘holes’. The independence of the layers developed should avoid
compromising the security of each layer when they are combined. This is

supported by the attack analysis of Section 8.2.6.

Despite the successful achieving of the aims, there are problems and
limitations inherent in this research. Some of the problems and limitation arose
from the need to further research to make the research more manageable and

some are caused by the limited availability of resources.

e In the development of the SecureSIG model, the basis of the development of
the secure model of software inspections is based on the literature review. A
‘real’ case study should be used to refine security requirements of the model

developed.

e The research would benefit from a more comprehensive procedure of
evaluation, using a bigger group. In this research the evaluation is
conducted using a small group of computer scientist with a little background
of security. Futhermore, security benchmarking is needed for the prototype
to validate it security performance. At present the system can only be

considerable secure because of the use of established secure techniques in the

implementation.

e In the implementation of the prototype the cryptographic key pair generated
is stored in an individual file. In the ideal situation there should be one

centre to generate the key pairs that produce the private and public keys.

188

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

The public keys could be kept in one database while the private keys could be

kept in secure different place, or a portable place such as Smart Card.

In the implementation of the prototype in this research, the encryption
algorithm provided for the information flow is fixed by the system. Provision
could be made to give users and the administrator flexibility in choosing their
own encryption algorithm for transmitted and stored information according

to their role.

In the development of the prototype, the system only considers the
confidentiality of the databases and document. In a real implemented

system, the integrity of the databases and documents should be included.

In the development of the model and prototype there are no audit services

provided to keep a record of the system activity.

The prototype only provides simple authentication protocols as the basis of
access control. More secure authentication protocols are needed to provide

more secure access control.

In the development of the prototype, the system authentication process is
based on personal knowledge (something we know). In a real environment a
more secure authentication process is required. The combination of personal
knowledge with something we have such as smart card, could provide a more

secure system authentication process.

The enabling technology used in this research is only limited to text. No
audio or video was used to support the system. Also, no graphical format

documents can be inspected.

The different version of Java and JCE API release caused an inconsistency in

the feature support.

189

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

8.3 KFUTURE WORK

The research has opened up a number of possibilities for future work. The

suggested list is provided below:

¢ There is much scope to include more advanced techniques in the secure
access control system. An inclusion of a secret sharing schemes (Shamir,
1979; Blakely, 1979) for secure group access will open up a new paradigm for

secure access control in distributed computing environment and CSCW.

e A combination authentication system that combines a physical token,
personal knowledge and cryptography will provide more security to the
system. Using a physical token such as smart card will provides a place to

store and protected user private key data and provide portability of the key.

¢ Many other password authentication protocol such as SRP Protocol (Secure
Remote Password Protocol) (Wu, 1998) and other available authentication
methods can be explored with a view to their being implemented in secure
system access for the CSCW application. SRP is a new mechanism for
performing secure password-based authentication and key exchange over any

type of network.

e The SecureSIG communication aspects are based on securing text.
Expanding the system to support graphical documents will open up the area
of image security. Furthermore, to improve the flexibility of the software
inspection groupware process, the inclusion of audio and video in the
communication suite should be provided. This inclusion will also open up to
an area of audio and video security issues in the distributing computing

environment in general and specifically to the area of CSCW.

e« Currently the public key pairs for the users in the system are kept in an

individual file. There should be one database at a central location that keeps

190

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

all the public key pairs for the users. This approach will make the handling

of these public key pairs much more secure, easier to access and to manage.

SecureSIG is limited to the confidentiality aspect of the databases and
documents. Integrity, which another important aspect of security in
databases and stored information, should be considered for future work.
Furthermore, this work did not deal with random access databases. This can

be further explored regarding their confidentiality and integrity.

Currently there is no integration of any standard database management
system with the developed system. The system utilises its own file system.
The integration with a standard database management system allows easier
access and timeliness in accessing documents. This also opens up the

broader scope of database security related to CSCW applications.

The system can be expanded to include audit utilities and services. Audit
trails can keep a record of system activity both by system and application
processes and by user activity of systems and applications. Audit trails can
provide a means to accomplish several security related objectives, including
individual accountability, reconstruction of events, intrusion detection, and
problem analysis (NIST, 1994). In the distributed computing environment,
there is an opportunity to consider exactly what audit and tracking
information is required. Exploring this area will open up many areas of

research related to security and CSCW.

SecureSIG can be expanded by providing security to the consolidation and

follow-up processes of the FlexSIG model.

The prototype can be fine-tuned to include more flexibility in providing
encryption services: flexibility in choosing encryption algorithm component is

one example. This component should allow a user to chose their own

191

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

encryption algorithm based on the choice given to encrypt all the information

transmitted in the prototype.

The work can be expanded to others aspects of CSCW applications that
require security support. The security requirements of the model in this
research can be applied to other CSCW applications, using the same or
different security classes, provided by other suppliers or by developing new

security classes.

Evaluation of the SecureSIG prototype is limited to the user evaluation.
Security benchmarking for SecureSIG system to evaluate the security of the
system should be extended. Further testing of the prototype in the real-life
working environments is needed in order to examine the acceptability and to

improve the model and the system.

The current SecureSIG is Java application based. Further development
could be implemented using the current available and implementable applet
security (IAIK, 1998) to provide SecureSIG web-based platform. The
development the web-based SecureSIG will provide easier implementation of

the system.

8.4 SUMMARY

To summarise this chapter, the evaluation was done on every aspect of this

research, comparing the research outcomes against the original aim. An

extensive survey of the literature was successfuily completed involved

investigating various sources available. The SecureSIG model and prototype

developed are successful in providing the security missing from the existing

software inspection process and tools. The user evaluation indicated the

suitability of the SecureSIG system for providing a secure software inspection

192

CHAPTER 8 RESEARCH EVALUATION AND FUTURE WORK

working environment. In addition, the transparency of the SecureSIG system

was also proven.

The overall evaluation of this research concludes that this research has
met its aims. Future work for further development of this research has been
proposed. The proposals extend the level of security of the software inspection
process. Furthermore, the proposals suggest new research areas in CSCW

security.

The next chapter will give the conclusions of this research.

193

Chapter 9

CONCLUSION

9.0 INTRODUCTION

This chapter covers the summary of the previous chapter and presents the

general conclusion.

9.1 LITERATURE

The literature was found by investigating various sources, such as journal,
indexed search of electronic libraries, books, as well as sources on the Internet
which provided an extensive source of relevant information. The literature
survey revealed extensive coverage in CSCW, enabling technologies and security,

but little on security applied to CSCW.

This research covered three main areas: Computer Supported Cooperative

Work (CSCW), security services and the enabling technologies.

194

CHAPTER 9 CONCLUSION

9.1.1 CSCW

The literature on CSCW concentrated on the technological aspects on CSCW
rather than it information security aspects (Foley & Jacob, 1995; Teufel et al.,
1995). Lack of published research in the security aspects of CSCW has been
confirmed by Teufel et al. (1995).

The security areas relevant to the CSCW applications were identified in
the literature. There is no specific security model for CSCW but the distributed

security models described in literature were adopted as a basis.

Specifically in the area of software inspection, the lack of security in
existing software inspection was identified and the need to add security to the

software inspection process raised (Sahibuddin, 1999).

9.1.2 Enabling Technology and Security Services

On the topic of enabling technology, the literature has identified that
cryptography is the main tool to support security. The literature suggests
adoption of established and publicised ciphers because they are cryptographically
strong (Schneier, 1996). The only limitation is their ‘expiration dates’ which
relate to their key length and the feasibility of an exhaustive search. The ability

of Java technology to support security functionality on Internet has been

identified.

Security services defined by ISO were adopted in this research, and
established and published security algorithm was adopted to implement the
security services.

Cryptographic key management, particularly key distribution, was

implemented by self-certified public key distribution based on X.509.

195

CHAPTER 9 CONCLUSION

9.2 RESEARCH PROBLEM, DESIGN AND PROCEDURE

The literature review showed that the security in CSCW has been little explore,
so the purpose of this research is to investigate security in CSCW, based on the
particular CSCW application of software inspection. The work provides a
security extension to FlexSIG software inspection model while maintaining the
flexibility, the process model and the roles of the participants involved in
FlexSIG model. The security additions to the model seek to provide secure data
transmission, to secure data stored and provide secure access control to the

system.

Specifically, the aim of this research is to develop the Secure Software
Inspection Groupware (SecureSIG) system which includes the development of
secure software inspection process model, the development of a prototype based
on the model, and the evaluation of the prototype in order to measure system

suitability and the transparency.
SecureSIG provides security in the context of:

e The ability to provide a secure software inspection process to use all the four
quadrant of the Johansen (1988) space-time matrix and the time and space

taxonomy proposed by Ellis et al. (1991).

e The ability to use a secure tool across the Internet.

This research was design to be experimental and used the one-shot case
study design. Three stages involved in the development of this research, with
each stage correspond to a specific aim of the SecureSIG development mentioned

above. Simple statistical method is use in the analysis, which includes, mean,

median, and standard deviation.

196

0

CHAPTER 9 CONCLUSION

9.3 THE MODEL

The development of the SecureSIG model is an extension of the FlexSIG model
developed by Sahibuddin (1999) in combination with the security model and
security services found in the literature. The model aims is to support a secure
software inspection process to use all the four quadrant of the Johansen (1988)

space-time matrix and the time and space taxonomy proposed by Ellis et al.

(1991).

To support the secure inspection process two securities layers, the
External Security Layer (ESL) and Internal Security Layer (ISL), were
implemented on top of the FlexSIG model. The ESL provides a secure access
control process, while the ISL provides the secure information flow and
information storage processes of the model. The model developed provides two-
levels of protections (external and internal) which are expected to be secure
because each layer was built with established technology that is considered to be
secured. The independence of the layers should avoid compromising the security

of each layer when they are combined.

The secure process of SecureSIG consists of the Set-up phase, follow by
secure briefing phase. The process flow merges again for the secure individual
inspection phase. For the group inspection phase, there is a choice between
secure synchronous and secure asynchronous group inspection. In the model the

main three roles involved are, the moderator, the author and several inspectors.

9.4 THE PROTOTYPE

The prototype developed is based on the SecureSIG model. The prototype aims to

test security in synchronous and asynchronous modes and also the ability to use

a secure tool across the Internet.

197

CHAPTER 9 CONCLUSION

The functional architecture of the secure internet-based groupware
system was presented. The secure architecture of the prototype is described by
the cryptographic protocol architecture, secure access control architecture, key
pair generation architecture, file encryption architecture, and secure databases.
The components of the prototype includes set-up, secure system access, key pair
generation, file encryption, secure briefing, secure document inspection, secure

communication, and comment log components.

Among the technologies that were used to achieve the aim are:
cryptography, Java technology, and the Internet. These technologies proved
suitable to provide the security functionality and the platform need in the
implementation of the prototype. The limitations brought out by the prototype
were the speed of performing the encryption/decryption processing and

inconsistency in the features support in different versions of Java technology.

9.5 RESEARCH EVALUATIONS AND FUTURE WORK

From the user evaluation of the prototype analysis, it can be concluded that this
research has met the aim outlined in the chapter four and repeated in section 9.3.

The findings, based on the analysis and the evaluations, relate to the original

aim of this research as follows:

o Develop a secure software inspection model. The secure software inspection
groupware (SecureSIG) model was developed based on FlexSIG model. The
lack of security in FlexSIG model has been overcomes by providing the

secure process flow to the model.

e Implement a prototype based on the model. The SecureSIG prototype was
constructed based on the model developed. Secure components were

developed using Java technology cryptography toolkits (Java Cryptography

198

CHAPTER 9 CONCLUSION

Extension) to provide secure environment for the software inspection

groupware process.

e KEvaluate the prototype. Test users have evaluated the SecureSIG prototype.
Analysis from the questionnaires verified the suitability and transparency of

the prototype.

This research is limited to the analysis and user evaluation of the
prototype due to the limited time available; the benchmarking of SecureSIG is
proposed for future work. Despite the successful achieving of the aim, there are

some problems and limitations which would benefit further research.

The research has opened up a number of possibilities for future work
enhancement of the SecureSIG model, prototype development, and evaluation
method. Other proposals that were suggested are the development of the
SecureSIG system using more advanced enabling technology (e.g. audio and
video), improvement of the key management and the issues of security n
databases and documents related to software inspections. Extending to securing

graphical documents was also proposed.

9.6 SUMMARY

As a conclusion, this research has demonstrated that it is possible to create a
secure system for groupware that is suitable and transparent to the user. A
secure software inspection groupware model has been developed. The prototype

based on this model has been developed and evaluated by users.

As a whole this research has extended current technology of groupware,

particularly software inspection groupware, by providing a secure environment

199

CHAPTER 9 CONCLUSION

to the software inspection process. The main contributions of this research are

as follows:

e A secure software inspection groupware system that is not limited to any one

of the four categories of the time and space taxonomy.

e A model of a secure software inspection groupware.

e A secure software inspection groupware system that is provided with a secure
access control mechanism to protect the system from unauthorised user gain

access to the system and resources.

e A secure software inspection groupware that is provided with an encryption

mechanism to provide a safeguard to the information stored.

e A secure software inspection groupware that is provided with an encryption
mechanism to provide protection to the information flow to and from the

system.

e A secure software inspection groupware that is provided with two layers of

protection - the internal and external protection.

o A secure software inspection groupware that is provided with a security shell

architecture for protection of CSCW environments.

The results and the findings obtained have indicated that the objectives

outlined have all been met.

200

(GLOSSARY

Access Control : The prevention of unauthorised access to resources including the

prevention on their use in an authorised manner.
Asynchronous : Occurring at different times.

Authentication : Providing assurance regarding the identity of subject or object,

for example, ensuring that a particular user is who he claims to be.

Author : A person or team who has written something (product) using a set of

source documents, in accordance with a set of rules.

Certificate : Data recorded that provides the public key of a principle, together
with some other information related to the name of the principle and the
certification authority that has issued the certificate. The certificate is
rendered unforgeable by appending a digital signature from a certification

authority.

Certificate Authority : Trusted third party that creates, assigns, and distributes
public key certificates.

Ciphertext : Data produced through the use of encryption. The semantic content

of the resulting data is not available. Encryption transforms plaintext into

ciphertext.

Confidentiality : The property that ensures that confidential information is not

made available or disclosed to unauthorised parties.

201

GLOSSARY

Cryptography : The discipline that embodies principles, means, and the methods
for the transformation of data in order to hide its information content, and
prevent its undetected modification or unauthorised use. The choice of

cryptographic mechanisms determines the methods used in encryption and

decryption.

CSCW : Computer Supported Cooperative Work. A term which combines the
understanding of the way people work in groups with the enabling technologies
of computer networking and associated hardware, software, services and

techniques.
Decryption : The opposite of encryption.
Defect : An error made in writing a document or code which violates a rule.
DES : Secret key cryptosystem (Data Encryption Standard).

Differential Cryptanalysis : A statistical attack that can be applied to any
iterated mapping (i.e., any mapping which is based on a repeated round

function).

Digital Signature : Data appended to or a cryptographic transformation of a data
unit that allows a recipient of the data unit to prove the source and integrity of

the data unit and to protect against forgery.
Document : A written set of information, which can be the subject for inspection.

Electronic Mail : Enable message to be sent to one or more people. The messages

are delivered to an electronic mailbox and are read at the time and the location

of recipient choosing.

Encryption : The transformation of original text (plaintext) into unintelligible text

(cipertext).

Groupware : A generic term for specialised computer aids that are designed for the

use of collaborative work.

IDEA : Secret key cryptosystem (International Data Encryption Algorithm).

202

GLOSSARY

Inspector : A person who examines a set related documents with the primary
objective of finding potential defects.

Integrity : The property that ensures that data is not altered undetected.
Internet : Internet(work) based on TCP/IP communications protocol suite.

Java : An object-oriented programming language for creating distributed,

executable applications.

Key generation - The act of creating a key.

Key Management : The generation, storage, distribution, deletion, archiving, and

applications of keys in accordance with a specific security policy.

Key pair - The full key information in a public-key cryptosystem, consisting of the
public key and private key.

Linear cryptanalysis - A known plaintext attack that uses linear approximations

to describe the behavior of the block cipher. See known plaintext attack.

Login : The process of identifying oneself to, and having one's identity

authenticated by, a computer system.

Man-in-the-middle-attack : Attacks that includes interception, insertion, deletion,
and modification of messages, reflecting messages back to the sender,

replaying old messages, and redirecting messages.

Masquerade : Posing as an authorised user, usually in an attempt to gain access to

a system.

Message digest - The result of applying a hash function to a message.

Moderator : The person who lead the inspection process.

Password : A secret sequence of characters that's used to authenticate a user's

identity.

Plaintext : Unencrypted text. Contrast with ciphertext.

203

GLOSSARY

Private Key : Cryptographic key used in public key cryptography to sign and/or
decrypt messages.

Private-key encryption : An encryption algorithm that uses only secret keys.

Public Key. The key used in an asymmetric cryptosystem that is publicly
available.

Public-key encryption : An encryption algorithm that uses a public key to encrypt

data and corresponding secret key to decrypt data.
RSA : Public key cryptosystem invented by Rivest, Shamir, and Adleman.

Secret Key : The key used in a symmetric cryptosystem that is shared between the

communicating parties.

Self-certified public key : Public key that is certified with its corresponding
private key.

Session Key : A temporary key shared between two or more principals, with a

limited lifetime.

Software Inspection : An evaluation technique to find defects and problems in a

product.
Synchronous : Occurring at the same time.

TCP/IP : Entire suite of data communications protocols. The suite gets its name
from two of its most important protocol, namely the transmission control

protocol (TCP) and the Internet protocol (IP).

Trusted Third Party : A security authority or its agent, trusted by other entities

with respect to security-related activities.

Workgroup Computing : Activities undertaken on a network using software

application programmes designed to support the members of a group.

204

REFERENCE

Abdullah, A. H. (1994), “Accessing Networked Services: A User Interface
Design Problem”, PhD Thesis, Aston University, Birmingham, United Kingdom.

Ackerman, A. F. (1984), “Software Inspections and the Industrial Production of
Software”, in Hause, H.L. (ed), Software Validation, Amsterdam: Elsevier,

Science Publishers.

Andelman, D. & Reeds, J. (1982), “On the Cryptanalysis of Rotor Machines
and Substitution-Permutation Networks”, IEEE Transactions of Information
Theory, IT-28(4), July, 578-584.

Bannon, L. and Schmidt, K. (1991), "CSCW: Four Characters in Search of
Context" in J.M. Bowers and S.D. Benford (eds): Studies in Computer Supported
Cooperative Work. Theory, Practice and Design, Amsterdam: North-Holland,.pp.
3-16.

Biham, E. & Shamir, A. (1991), “Differential cryptanalysis of DES-like
cryptosystems”, Journal of Cryptology, 4(1991), 3-72.

Biham, E. & Shamir, A. (1993), “Differential cryptanalysis of the full 16-round
DES”, Advances in Cryptology-CRYPTO92, Berlin: Spring-Verlag, pp. 487-496.

Black, U. (1993), Computer Networks: Protocol, Standards, and Interface (2™
Edition), New Jersey: Prentice Hall.

Blair, G. & Rodden, T. (1994), The Challenges of CSCW for Open Distributed

Processing, Bailrigg, Lancaster: Department of Computing, Lancaster University.

205

REFERENCE

Blakley, G. R. (1979), “Safeguarding Cryptographic Keys”, Proceedings of the

National Computer Conference, 1979, American Federation of Information
Processing Societies, v.48, 242-268.

Brothers, L., Sembugamoorty, V., & Muller, M. (1990), “ICICLE: Groupware
for Code Inspection”, CSW 90 Proceedings, October, ACM, pp. 169-181.

CCITT Recommendation X.509 (1989), “The Directory-Authentication
Framework”, Consultation Committee, International Telephone and Telegraph,

International Telecommunication Union, Geneva.

Chaum, D. & Evertse, J. H. (1986), “Cryptanalysis of DES with a Reduced
Number of Rounds; Sequences of Linear Factors in Block Ciphers”, Advances in

Cryptology-CRYPTO’85 Proceedings, Berlin: Spring-Verlag, pp. 192-211.

Cheswick, W. R. & Bellovin, S. M., (1994), Firewalls and Internet Security:
Repelling the Wily Hacker, Reading: Addison-Wesley.

Ciancarini, P., Knoche, A., Tolksdorf, R., & Vitali, F. (1996), “PageSpace:
An Architecture to Coordinate Distributed Applications on the Web”, Fifth
International World Wide Web Conference, Paris, France, May 6-10, 1996.

Coulouris, G. & Dollimore, J. (1994), "A Security Model for Cooperative
Work", Technical Report 674, Department of Computer Science, Queen Mary and
Westfield College.

Daeman, J., Govaerts, R. & Vandewalle, J. (1994), “Weak Keys for IDEA”,
Advances in Cryptology-CRYPTO’93 Proceedings, Berlin: Springer-Verlag, pp.
224-230.

Davies, D. W. & Price, W. L. (1989), Security for computer networks, an

introduction to data security in teleprocessing and electronic funds transfer (2™

Edition), Chichester: Wiley & Sons.

Diffie, W. & Hellman, M. E. (1976), “New Directions in cryptography”, IEEE
Transactions on Information Theory, 22, pp. 644-654.

Doherty, B. S., and Maarof, M. A., (1997), “Integrating Security Services Into

Collaborative Systems”, Proceedings of the World Conference of the WWW,

Internet. and Intranet (WebNet 97), Charlottesville: Association for the

206

REFERENCE

Advancement of Computing Education Publications, October, Toronto, pp. 761-
763.

Doherty, B. S., & Sahibuddin, S. (1996), "Modelling Distributed Code
Inspection System", Proceedings of the REDECS’96, Serdang, Malaysia:
Universiti Putra Malaysia Publications, June, pp. 69-73.

Doherty, B. S., & Sahibuddin, S. (1997), "Software Quality through
Distributed Code Inspection Groupware”, in Tasso, S., Adey, R. A., & Pighin, M.
(eds.), Software Quality Engineering, Southampton: Computational Mechanics
Publications, pp. 159-168.

ElGamal, T. (1985), “A Public_Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”, IEEE Transaction on Information Theory, IT-
31(4), 469-472.

Ellis, C. A., Gibbs, S. J. & Rein, G. L. (1991), "Groupware Some Issues and
Experiences”, Communications of the ACM, 34(1), January, 39-58.

Eltoweissy, M. Y (1993), "A framework for data sharing in computer-supported

co-operative environments”, Ph.D., Old Dominion University, U.S.A.

Engelbart, D. & Lehtman, H. (1988), "In Depth Groupware: Working
Together", BYTE Magazine, New York: McGraw-Hill, December 1988, pp. 245-
252.

Fagan, M. E. (1976), "Design and Code Inspections to Reduce Errors in Program
Development", IBM System Journal, International Business Machines, 15(1),
182-211.

Fagan, M. E. (1986), “Advances in Software Inspection”, IEEE Transactions on
Software Engineering, New York: IEEE Press, July, 12(7), 744-751.

Flynn, J. & Clarke, B. (1995), "The World Wakes Up To Java", Computer
Technology Review, Fal/Winter 1995, pp. 34-37.

Foley, S. N. & Jacob, J. (1995), “Specifying Security for CSCW Systems”, Eight
IEEE, Computer Security Foundations Workshop, June 13-15, IEEE Computer
Science Press, pp. 136-45.

207

. Knudsen,J (1998) Jaua Cry

Kohnfelder,L (1978) Towar’

Thesis, Massachusetts Instltut 0

Lai, X. & Massey, J. (1990
Advances in Cryptology-E URO
pp. 389-404.

Linden, Peter van der (199
Press, A Prentice Hall Tltle

Lynch, K. J, Snyder, J. M., '
Arizona Analyst Informatio

International Technological °

[EEE Sbﬁwa‘re} 1

'Pre,s,é, 66-75.

Massey, J. L. (1994), “SAFER K
Algorithm”, Fast Software E
Proceedings, Berlin: Springe

Matsui, M. (1994), “The Firs
Encryption Standard”, Advances
Spring-Verlag, pp. 1-11.

McGhie, L

Computer Security Journal, 10(2), 27-36.

Menezes, Alfred J., van OOrs \ott A. (1997) _

Handbook of Applied Cryptograp

Merkle, R. C. & Hellman, ¥
Trapdoor Knapsacks”, IEEE Tran
September, 525-530. '

Technology Adrmmstratmn U S Department of Commerce.

Productivity in Networked Organiz

Oppliger, R. (1998), Internet aﬁd I:h/ft'ran‘e/ ec

Pfleeger, C. P. (1989), Security in Computmg;iNveJ ersey: P’refi;ltic,e: Hall.

Power, R. (1995); Current and Future Danger, Computer Se

Francisco, California.

Rabin, M. O. (1979), “Digital Signature and P

MIT/LCS/TR212, January.

Rita, C. S. (1997), Secure Compu
McGraw-Hill. -

0d for obtaining

Rivest, R. L, Shamir, A., & Adleman
digital signature and public-key cryptosystem”, Com
pp- 120-126.

munchti’én of the

Rivest, R. L. (1992), “The MD5 Message

Roberts, B. (1996), “Groupware S;cfa’gegleg)
McGraw-Hill, July, pp. 68-78.

Rogers, A.S. (1994), “An introduction to ¢
Journal, 12(3), 7-11. -

RSA (1993), “PKCS #5: Password-Based Enc
Laboratories Technical Note, a division of R ecurity, Inc., -
(http://www.rsa.com/rsalabs/p ubs/PKCS/litml/pkc’s’-B‘.html, .e.m‘aijl,:'wpk

editor@rsa.com)

Russel, D. and Gangeml Sr., G. T. (1991
California: O’'Reilly and Assoc1ates

; Co wputer ~_ee

Sahibuddin, S. (1999), "FlexSIG: Flex
PhD Thesis, Aston University, B,irming

Sakibara, K., Seki, K., Okada, K. & Ma

he ID-based
Non-interactive Group Commumcatlon Key Sharir !

g Smart Cards',
Proceeding of 1994 International Conference on N , Boston, USA,

October 1994, pp. 91-98.

Schneier, B. (1996), Applied Cryptogrdplijf(é“d’jﬁéﬁfion), New York: Wiley &
Son.

Scott, R. (1985), “Wide Open Encryption Design Offers Flexible
Implementations”, Cryptologia, 9(1), January, 75-90.

Shamir, A. (1979), “How to Share a Secret” Commumcatzon of the ACM 24(11)
Nov. 1979, 612-613.

Shen, H. H. & Dewan, P. (1992), "A
Environments", Proceeding of ACM C

incryption Algorlthm FEAL”, N‘

.‘erlin:f .Sp'x;-ingell'-Verlag,‘ |

Shimizu, A. & Miyaguchi, S. (1988)“{ ,):
Advances in Cryptology - EUROCRYPT’87 P/"
pp. 267-278. ‘

Smid, M.E. & Branstad, D. K. (1992), “The Data Encryptlon Standard_ Past
and Future”, G.J. Simmons, editor, Contemporary Cryptology The Scwnce of
Information Integrity, New York: IEEE Press, pp 43 64 -

Stalling, W. (1995), Network and Interhetwork S = L don Prentice Hall

Stallings, W. (1999), Cryptography and Network Securzty (@ s Edition), London:

Prentice-Hall.

Stein, Micheal et al. (1997), “A Case Study of Dlstrlbuted, Asynchronous

Software Inspection”, Proceeding of the 19" Internatzonal Conference on Software

Engineering, New York: ACM Press pp. 107- 117.

Stevens, R. (1990), Unix Network Programming, London: Prentice Hall.

213

Sun (1995), A Java Language Environment: A White Pa;

California: Sun Microsystems Computer Company, O‘ctobef.

Sun (1997), Java Cryptography Archztecture Al
Microsystem, December,
(http:/java.sun.com/products/jdk/1. l/docs/gmde/

java-security@java.sun.com).

pecification & Reference, Sun

sec{unty/C«ryptoSpec html _email:

Takizawa, M., & Mita, H. (1993), "Secure Group Commumcatmn Protocol for
Distributed Systems", Proceedings of 7th International Computer Software and
Applications Conference (COMPSAC '93), pp. 169-165.

Tanenbaum, A. S. (1981), Computer Networks, New Jersey: Prentice Hall.

Teufal, S., Eloff, J. H. P., Bauknecht, K., & Karagiannis, D. (19\95), '
“Information Security Concepts in Computer Supported Cooperative Work?,
Norman Revell and A. Min Tjoa (eds), In Proceedings of 6th International
Conference on Database and Expert System Application, September 1995, Berlin
Springer Verlag, pp. 621-631.

Vaudenay, S. (1995), “On the need for muhpermutalon C
and SAFER”, B. Preneel (ed), Fast Software. Enc’/’ 7
Workshop, Berlin: Springer-Verlag, 1996 pp 27 32.

ptanalysis of MD4 .

1 International

Voydock V. L. & Kent S. T. (1983), “Security mechanis_ms in high level
network protocols”, ACM Computing Surveys, 15(2), June.

Williams, H. C. (1980), “A modification of the RSA Public-Key Encryptlon
Procedure”, IEEE Transactions on Information Theory, IT-26(6) November 1980,

726-729.

Wilson, P. (1990), Computer Supported Cooperative Work: An Introduction,
Oxford: Intellect Books. AT

Wilson, P. (1991), "Computer supported cooperative work: an overview',

Intelligent Tutoring Media, 1(3), 1990, 103'116 o

Wu, T. (1988), “The Secure Remote Password Protocol”, in Proceedings of the
1998 Internet Society Network and Distributed System Security Symposmm San

Diego, CA, pp. 97-111.

214

BIBLIOGRAPHY

Fayad, M. E., & Tsai W. (1995), "Object-Oriented Experiences", Communication
of the ACM, 38(10), October, 1995.

Ganesan, R., & Sandhu, R. (1994), “Securing Cyberspace”, Communication of
the ACM, 37(11), 30-32.

Huff, S. L. (1993), "Object-Oriented Programmlng" Busmess Quarterly, 58(2),
Winter 1993, 85-89.

Hughes, K. (1994), “Entering the Worldeidé WebAGuldeto beérspacé”,
Enterprise Integration Technologies, May 19941, 4
(http://www.afn.org/web/guide.61/).

Ingham, D., Little, M., Caughey, S., & Shrivastava, S. (1995) “WSObJects
Bringing Object-Oriented Technology to the Web”, Proceeding of the Fourth
International World Wide Web Conference, Boston, Mass., U.S.A, Dec. 1995.

Jerram, P. (1995), "Groupware Taps the Internet"‘,:BYTE Magazine, New York:
McGraw-Hill, December 1995.

Johnson, J. T. (1995), “Enterprise Security: Better,Safe Thgh/Sorry”, Data
Communications, 24(3), 110-127.

Kennedy, A. J. (1995), “The Internet and World Wide Web”, London: Rough

Guide Ltd..

215

Krakowiak, S. (1993), "Issues in Object-Oriented DlstrlbutedSyst]
International Conf. on Decentralized and Distributed Systems, IFIP W
Palma de Mallorca, pp. 1-12.

Kydd, C., & Ferry, D. (1991), “A behavioiai v1ew of computer-supported
cooperative Work tools”, Management Systems, 3(1), 55-67.

McGregor, J. D., & Sykes, D. A. (1992), Object-Oriented Software

Development: Engineering Software for Reuse, Van Nostrand Reinhold, New
York.

Meyer, B. (1987), "Reusability: The Case for Object-Oriented Design", I[EEE
Software, March 1987, pp. 50-64.

Mullender, S. J., & Tanenbaum, A. S. (1986), “The design of a capability-
based distributed operating system”, Computer Journal, 29(8), 289-299.

Neuman, B. C. (1993), “Proxy-based authorization and accounting for
distributed systems”, In Proceeding of the 13th International Conference on

Distributed Computing Systems, Plttsburgh Pennsylvama May 1993.

Nierstrasz, O. (1989), “A survey of Object- Orlented Concepts” In Won Kim and
Federick H. Lochovsky, editors, Object-Oriented Concepts, Database, and
Applications, pp. 3-22. Reading: Addison-Wesley.

Pernul, G. (1995), "Information systems security: scope, state-of-the-art, and
evaluation of techniques", International Journal of Information Systems, 15(3)
165-180.

Pinson, L. J, & Wiener, R. S. (1988), An Introduction to Object-Oriented
Programming and Smalltalk, Reading: Addison-Wesley.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W.
(1991), Object-Oriented Modelling & Design, New Jersey: Prentice-Hall.

216

Appendix A

CLASSIFICATION OF CSCW

A.0 INTRODUCTION

This appendix describes Wilson’s classification of CSCW. Other naming of
CSCW is also given in Section A.2.

A.1 WILSON’S CLASSIFICATION

Wilson (1990, 1991) divides the field of CSCW into two distinct but interrelated
fields: the group working process and the enabling technology employ to support

A.1.1 Group Working Process

Group working process was subdivided into four categories: individual aspects,
organisational aspects, group work design aspects, and group dynamics aspects. .

Individual Aspects

In individual aspects, the characteristics, skills, knowledge and artefact that
individuals bring with them to the group process have a crucial impact on group’s
effectiveness. Research in which work on individual aspects is being done
include human communication characteristics, individual work patterns and
interface design for group support systems. In human characteristic research,
the way humans talk to each other and take action is investigated. Individual
work pattern factors need to be taken into account in the design of group support
tools and working practices because when an alternative way of working is
adopted, the individual’s habits and predilections show through. Interface design

217

for group support systems depend on a combination of ingerrﬁity- an :
in fields such as human perceptions and cognitive psychology. '

Organisational Aspects

In the organisational aspects, representation of organisational knowledge,
organisation design, and management issues are investigated. In the area of
representation of organisational knowledge, knowing how an organisation is
structured is needed to get things done, but problems arise when too much
organisational information and information frequently changes. Organisation
design concerns the provision of tools to support organisational changes by
integrating pre-specified goals together with knowledge about how groups and
individuals work best. In management issues, as new support tools have been
created, new requirements appear for the management of activities, people and
resources.

Group Design Aspects

In the group design aspects, user involvement, prototyping and usability, and
group work design procedures are investigated. ~ Investigation of user
involvement is needed because people who have been mvolved in organising their
own work usually have more positive attitudes and are keener to make eventual
solution work. Prototyping and usability testing is needed because user
involvement is not enough to ensure success because human interaction within
work groups is complex and unpredictable. Design must be carried out under as
near real-world working situations as possible to ensure effective solutions.
Awareness of the need to provide clear guidelines for analysis and design of
CSCW systems resulted in research in group work design procedures.

Group Dynamics Aspects

The group dynamics aspects deal with the way individuals behave within a
group, and the way groups perform. In these aspects, the collaboration process,
group performance and group behaviour are considered. The collaboration
process need to be understood because it is of great value in contributing to the
design of group work tools. In group performance issues, relative effectiveness of
group performance with different media has been investigated. Group behaviour
research is closely allied to group performance and is done in real-world, non-

laboratory conditions, and in studies using prototypes.

218

A.1.2 Enabling Technologies

Enabling technologies were subdivided into four categorieé.: ‘;éammumcatzzo ‘
systems, shared work space facilities, shared information facilities, and group
activity support facilities. These enabling technologies are not mutually

exclusive. A CSCW system might possess facilities in any combination of the
categories.

Communication Systems

The main aims of this area are to make sure that technological support can be
provided so that informal communication can continue. Examples . of
communications systems are advanced electronic mail systems, X.500 electronic
mail directories incorporating group and organisational information, real-time
desktop video conference systems and room-based video systems. ' '

Shared Workspace Facilities

In this area, the role that shared workspaces play in group, and tools, which
support the process, is investigated. Examples of shared work space tools are
remote screen-sharing, face-to-face meeting support using shared individual
screens and large public screen, and electronically aided white board.

Shared Information Facilities

These facilities are a starting point for people working together. The facilities
are required to support the input, storage, navigation and retrieval of that
information by all members of the group. Examples of shared information are
multimedia, multi-user hypertext systems, shared optical disc systems, and

multi-user databases.

Group Activity Support F acilities

People who work together usually have common understanding of the work
process. Group activity support facilities must be able to meet the needs of
groups. Meeting these needs is a two part process, first, procedures must be
established and agreed; and, second, the procedures must be visible when carried

out. Examples of activity support tools are procedure processing, activity

processors which allow a more general form of procedure processing,

219

methodologies and support tools to aid groups in anal-ys’iﬂ's,,f procedures a
equipment with which they are to carry out a group activity, and many

A.2 OTHER VIEWS OF NAMING CSCW

In this section other definitions and classification of CSCW are given.

A.2.1 Other Definitions

There are varieties of term that have been used in describing CSCW. Among the

terms are Groupware, Workgroup Computing, Technology for Teams and
Computer-Aided Teams (Wilson, 1991).

Opper & Fersko-Weiss (1992) describe groupware as any information
system designed to enable groups to work together electronically. Meanwhile
Johansen (1988) describes groupware as groupware as a generic term for
specialised computer aids that are designed for the use of collaborative work
groups. Johansen described these groups as small project-oriented teams that
have important tasks and tight deadlines. Groupware can involve software,
hardware, services, and group process support.

A.2.2 Other Classification

Bannon & Scmidt (1991) divide CSCW into three main issues, namely;
articulating cooperative work, sharing an information space, and adapting the
technology to the organisation and vice versa. In any cooperative effort, tasks
are to be allocated to different members, where that worker is accountable for
accomplishing that task and finally combining all the efforts of individuals and
ensembles. Cooperative work can be conducted in a distributed way. Thus, any
computer systems must support retrieval of information by other co-workers in

order to support cooperative work.

220

Appendle .

OVERVIEW OF CRYPTOGRAPHY

B.O INTRODUCTION

This appendix describes the basic terminology and definition of Cryptography. The
two main category of cryptography; secret key and public key cryptography are
presented. Cryptographic hash function. And the digital signatures are also
presented.

B.1 BASIC TERMINOLOGY AND DEFINITIONS

In cryptographic terminology, the original message text P that we wish to transmit
over the network is known as the plaintext. A cryptographic algorithm or cipher
converts P to a form that is unintelligible to anyone monitoring the network. This

conversion process is called encryption. The unintelligible form is known as '

ciphertext. A cryptographic algorithm is a technique or rule selected for encryption
that determines how simple and how complex the process of conversion will be
(Russell & Gangemi, 1991). The precise form of the ciphertext ¢ corresponding to a
plaintext P depends on an additional parameter K known as the key.

The intended receiver of a ciphertext ¢ may Wlsh to recover the original
plaintext p. To do this, a second key K is used to reverse the process. This reverse
process is known as decryption. A method of encryption and decryption is called a
cipher. A system for encryption and decryption is called a cryptosystem Figure B.1
shows the encryption and decryption process.

221

APPENDIXB OVERVIEW OF CRYPTOGRAPHY

Plaintext Pl’aintext

P

RN s AR SNGR
Encryption Decryption

Figure B.1: Encryption and Decryption Process

The study of encryption and decryption is known as cryptography. The
process of trying to break an encrypted message without access to the key is called

cryptanalysis. Cryptology includes both cryptography and cryptanalysis (Russell &
Gangemi, 1991).

Cryptographic systems fall into two general categories (identified by the
types of keys they use): secret key and public key systems (Russell & Gangemi, 1991).
They are discussed in detail in the next section.

B.2 SECRET KEY CRYPTOGRAPHY

In secret key cryptography the encryption key K and the ‘decryption key K' are
usually the same. This key is called a secret key. The key K is used by both parties
(the sender and the receiver) to encrypt and decrypt messages to and from each
other. Anyone who holds the key can create ciphertexts corresponding to arbitrary
plaintexts and read the contents of arbitrary ciphertext messages. To ensure
security of communication this secret key is kept secret between the communicating
parties. Secret key cryptography is also refers as symmetric cryptography.

B.2.1 Classical Cryptography

Classical cryptography has typically used symmetric keys. Two basic components of
classical cipher techniques are substitution and transposition (Davies & Price, 1994).
A substitution cipher replaces the actual bits, characters, or blocks of characters
with substitutes (for example one letter replaces another letter). A transposition
cipher (sometimes called permutation cipher) rearranges or shuffles plaintext
characters or bits. The precise substitutions and transpositions made are deﬁned by

the key. Examples includes simple, homophonic, poly-alphabetic and polygram
substitution ciphers and columnar transposition ciphers and others (Davies & Price,

222

APPENDIXB OVERVIEW OF CRYPTOGRAPHY

1989), (Pfleeger, 1989), (Schneier 1996). Elements of transposition andsubstltutlo
are also included in modern-day algorithms. They are well documented‘ already
(Davies & Price, 1989; Pfleeger, 1989; Schneier, 1996). Appendix G presents some
example of the Classical Cryptography. -

C.2.2 Modern-day Cryptography

Modern-day secret key cryptography is principally stream ciphers or block ciphers.
The block ciphers will be discussed in great detailed due to it adoption in-the
implementation of this research.

Stream Cipher

Stream cipher encrypts one bit of a plaintext message one at a time, using an
encryption transformation that varies with time (Menezes, van Oorschot &
Vanstone, 1997). Advantages of stream ciphers are (Pfleeger, 1989):

e Speed of transformation. Each symbol is encrypted without regard for any other
plaintext symbols thus each symbol can be encrypted as soon as it read.

o Low error propagation. Each symbol is separately encoded, thus an error in the
encryption process will affect only on one symbol.

By contrast, from the security perspective the independence of the symbols
results in the disadvantages of the stream cipher. The disadvantages are (Pfleeger,
1989):

o Low diffusion. Each symbol is separately encrypted therefore all the information
about that symbol is contained in one symbol of the plaintext.

o Susceptibility to malicious insertions and modifications. Since each symbol is
separately encrypted, an active interceptor (intruder) can splice together pieces
of previous messages and transmit a spurious new message that may look

authentic.

Block Cipher

A block cipher will encrypt a block (typically 64 or 128) of plaintext bits at a time.
Block ciphers operate by taking a fixed length of plaintext as one block and

223

APPENDIXB OVERVIEW OF CRYPTOGRAPHY =

generating the same amount (number of bits) of ciphertext. A very gooﬁd’-’ overV1eW
block (and other) ciphers can be found in the book by Schneier’s (Schneier, 1994).

Block ciphers have advantages that stream ciphers lack, while the
disadvantages of block ciphers are the strength of stream ciphers. The advantages
of block ciphers are (Pfleeger, 1989):-

e Diffusion. Information from the plaintext is diffused into several ciphertext
symbols, it affects all ciphertext symbols of the generated block.

e Immunity to insertions. Since blocks of symbols are encrypted, this makes it
immune to insertions or modifications of ciphertext symbols in one block.

On the other hand, block ciphers have disadvantages. These disadvantages
are (Pfleeger, 1989):

e Slowness of encryption. It has to wait for a complete block to be read before
performing the encryption. This result to a slower cryptosystem.

o Error propagation. An error of a single symbol will effect all the transformation
of all other symbols in the same block. Thus an error in a single symbol result in
retransmission of the entire block.

Block Cipher Modes of Operation

The four common modes of block cipher operation are Electronic Codebook (ECB),
Cipher Block Chaining (CBC), Cipher Feedback Mode (CFB), and Output Feedback
Mode (OFB) (Menezes, van Oorschot & Vanstone, 1997). All of them can be used
with any block cipher. The CBC mode is the interest of this research and it will be
used in the development of the prototype. This mode is the most important mode of
operation (Cheswick & Bellovin, 1994). Block ciphers can be either symmetric-key
or public-key.

Electronic Codebook (ECB) Mode

ECB mode is the fundamental and simplest mode. This mode operates like a
codebook; for a given block of plaintext and a given key, it always produces the same
block of ciphertext. Because of this weakness, ECB mode should be used only for

transmission of keys and initialisation vectors (Cheswick & Bellovin, 1994).

Encryption and decryption in ECB are defined as: ¢, = E(x) and x, = E"(x),

224

APPENDIXB OVERVIEW OF CRYPTOGRAPHY

respectively, where K is the key, here. In this mode each plain_tei}ét"Aﬁibﬁék“i\}isf
enciphered independently of other block. Re-ordering ciphertext blocks results in
corresponding re-ordered plaintext blocks. This mode of operation has the
advantage of lack of error propagation; one or more bit errors in a single ciphertext
affect decipherment of that block only. Data integrity cannot be guaranteed, since
data blocks may be added, removed or modified without knowledge of the secret key.

Cipher Block Chaining (CBC) Mode

This mode was discussed in more detail because this mode was used in the
development of the prototype. This mode is the most important mode of operation
(Cheswick & Bellovin, 1994). CBC mode was an enhanced version of the ECB that
chains together blocks of ciphertext. In the CBC mode plaintext are concealed by
XOR-ing of the previous ciphertext block with the plaintext, thus precluding
undetected additions or removals of ciphertext blocks, hence overcome the weakness
of the ECB mode. Block i of plaintext is exclusively-ored (XORed) with block i-1 of
ciphertext and is then encrypted with the keyed block encryption function to form
block i of ciphertext. The processes continue until the end of the message. CBC
mode involves use of n-bit initialisation vector (IV) or value C, as a “seed” to
initialise the process. '

The algorithm of the CBC mode is given below initialisation vector (IV)
(Menezes, van Oorschot & Vanstone, 1997):

Input : k-bit key K; n-bit IV; n-bit plaintext blocks x,..., x,.

Summary : produce ciphertext blocks ¢,,..., ¢; decrypt to recover plaintext.
1. Encryption: ¢, - IV. For 1<j<t,¢; < E(c, ®x).
9. Decryption: ¢, « IV. For1<j<¢,x ¢ ¢,® E’'(c).

Properties of the CBC. In this mode identical ciphertext blocks will be produced
when the same plaintext is enciphered under the same key and IV (Menezes, van
Oorschot & Vanstone, 1997). Different ciphertext blocks will be produced when
different initialisation vector Or key is used. ECB chaining mechanism causes
ciphertext ¢, to depend on x and all preceding plaintext blocks. Consequently,
rearranging the order of ciphertext blocks affects decryption. Proper decryption of a
correct ciphertext block requires a correct preceding ciphertext block. This chaining

225

APPENDIX B OVERVIEW OF CRYPTOGRAPHY

mechanism hides repeated patterns. If a single bit error occurs in ciphertext bloék"\\c;: .

, it affect decipherment of block ¢, and c,, (since x, depends on ¢, and ¢_,). The CBC
mode has a property of self-synchronising or ciphertext autokey orr self-healing
(Pleeger, 1989), in the sense that if an error (including loss of one or entire blocks)
occur in block ¢, but not ¢, , c,,, is correctly decrypted to x,,.

There are some subtle attacks possible if initialisation vectors (IVs) are not
chosen properly; to be saved initialisation vectors (IVs) should be chosen randomly;
not used with more than one partner; and either transmitted encrypted in ECB

mode or chosen a new for each separate message, even to the same partner (Voydock
& Kent, 1983).

Cipher Feedback (CFB) Mode

While CBC mode processes plaintext n bit at a time (using an n-bit block cipher),
some application require that r-bit plaintext units be encrypted and transmitted
without delay (for r < n). In this case, Cipher Feedback Mode (CFB) maybe used. In
this mode, the previous ciphertext block is encrypted and the output produced is
combined with the plaintext block using XOR to produce current ciphertext block.
An initialisation vector (IV) or value c,is used as a “seed” for the process. In CFB
mode, data can be encrypted in units smaller than the size block (64-bits).
Encryption and decryption in CFB are defined as: Ci = P,® e(Ci,)) and Pi = C,®d(C,
), respectively. In CFB mode, patterns are also concealed in the ciphertext by the
use of the XOR operation.

Output Feedback (OFB) Mode

OFB mode is a method of running a block cipher as a synchronous stream cipher. It
is similar to the CFB, except that the quantity XORed with each plaintext block is
generated independently of both the plaintext and ciphertext. An initialisation
vector (IV) S, is used as a “seed” for a sequence of data block S,. The encryption of a
plaintext block is derives by taking the XOR of the plaintext with the relevant data
block. OFD uses DES as a random number generator, by looping its output back to
its input, and exclusive-OR’ing the output with the plaintext. Encryption and
decryption in OFB are defined as: Ci = B®Si; Si = DES(S,,) and Bi = C®Si; Si =
DES(S,,), respectively. Si 1s the state, which is independent of either plaintext or
the ciphertext. In OFB mode, patterns are also concealed in the ciphertext by the

use of the XOR operation.

226

APPENDIXB OVERVIEW OF CRYPTOGRAPHY

B.3 PUBLIC KEY CRYPTOGRAPHY

The notion of public key cryptography (also refers as asymmetric cryptography) was
introduced by Diffie & Hellman (Diffie & Hellman, 1976). Public key systems, also
called asymmetric systems (Simmons, 1979), differ from secret key systems in that
there is no longer a single secret key shared by a pair of users. In the public key
systems, each user has his owns key material. Furthermore, the key material of
each user is divided into two portions, a private component known as private key and
a public component known as public key. The public key and private key is used for
encryption and decryption respectively and the decryption cannot be derived from
the encryption key. Secret key cryptography permits the public key to be public,
allowing anyone to encrypt with the key, but only the intended recipient (who knows
the private key) can decrypt the message

Assume that A wishes to send a message to B. Let E () denote the encryption
under the public key of user u and D () denote the decryption under the private key
of user u. If A requires to send a message M to B, A would obtain the public key of B
(either by requesting it from B, or from a directory of public keys). A would then
perform the encryption:

E(M)=C

and send the encrypted message C to B. B would be able to recover the message by
performing the decryption with the corresponding private key:

D,(C) =D,E, M) =M

A cryptosystems that employ public key cryptography is known as public key
cryptosystem (PKCS). The development of public key cryptography evolved due to
the limitations of the secret key cryptography. These limitations are:

e Key distribution problem. Key must be transmitted over a completely secure
channel. If the key is revealed, the interceptors can immediately decrypt all

encrypted information.

e N-square problem. The number of keys will increase if large number of parties
required secure communication, this is because the number of keys required is
proportional to the square of the participating parties (for an n-party system,

n(n-1)/2 keys will be exchanged).

e Authentication problem. Symmetric cryptography cannot provide an
environment where a person needs to prove to his partner that he has sent a

message.

227

APPENDIXB OVERVIEW OF CRYPTOGRAPHY

Types of public key cryptosystems are discussed in Appendix E.

B.4 CRYPTOGRAPHIC HASH FUNCTIONS

All cryptographic systems discussed above were based on reversible encryption, that
is, encryption in which it is possible to recover the original message by applying a
decryption transformation. In contrast, a hashing function is an example of
irreversible encryption (ISO, 1989). A hash function H is a keyless transformation
function that, given variable-sized message as input m, produces a fixed-sized
representation of the message (generally smaller) as output, called the hash value A
(i.e., message digest), so that A = H(m). In other words, hash function reduces a
message of arbitrary length to a fixed length value. A cryptographically strong hash
function should have these properties (Rita, 1997):

It should produce a relatively large hash function (base on the current state of
technology, at least 128 bits);

The hash H(m) is relatively easy to compute for any given m;

The hash H(m) is one-way;

The hash H(m) is collision-free.

A collision-free hash function H is one for which it is computationally infeasible to
find any two messages m and m’ such that H(m) = H(m’). In other words, it is not
possible to find two messages that hash to the same digest. A hash function H is
said to be one-way if it hard to invert, which means that given a hash value A, it is
computationally infeasible to find some input m such that H(m) = h.

Many hash functions have been developed to meet the criteria of strong hash
functions given above. Some of the more common and widely known are as follows:

e MD5 (Rivest, 1992). MD5 is a one-way hash function invented by Rivest for RSA
Data Security, Inc. “MD” stands for “Message Digest” and the algorithm produces
4 128-bit hash value for a arbitrary-length input message. MD5 is the result of a
redesign of MD4 with the goal of producing a slightly slower but secure hash
function. MD5 processes the input text in 512-bit blocks. The block is divided
into 16 32-bit sub-blocks. It output is a set of four 32-bit blocks, which
concatenated to form a single 198-bit hash value. The MD5 process of hashing
can be described as follow. First the message is padded so that its length is just
64 bits short of being a multiple of 512. Padding is a process of adding a single 1-

228

|
[

APPENDIX B OVERVIEW OF CRYPTOGRAPHY

bit to the end of the message, followed by as many zeros as are required, ana

finally a 64-bit of the length of the message before padding. MD5 is widely
regarded as secure and is widely used.

e Secure Hash Algorithm (NIST, 1993). SHA (Secure Hash Algorithm) is a one-

way hash function developed by National Institute of Standards and Technology
(NIST) along with the National Security Agency (NSA). It has been specified for
public used with the Digital Signature Standard (DSS). It produces a 160-bit
hash value from an arbitrary-length message that is longer than MD5. Like
MD5, SHA is based on a redesign of MD4 for greater security, however, SHA uses
an additional round, has an expand transformation, and produces a 25% longer
hash value.

B.5 DIGITAL SIGNATURES

A digital signature is a protocol' that produces the same effect as a real signature. It
is a mark that only the senders can makes, but other people can easily recognises as
belonging to the sender. A digital signature is different from a hand-written
signature, in that hand-written signatures are constant, regardless of the document
being signed. A user’s digital signature varies with the data. A digital signature is
used to confirm agreement to a message. The concept of digital signature was first
discussed by Diffie and Hellman in their classic paper “New Direction in
Cryptography” (Diffie & Hellman, 1976). Digital signatures use asymmetric
cryptography and hash function to provide simultaneous proof of origin and data

integrity.
The digital signature must meet these conditions (Pfleeger 1989, Schneier
1996):

o Unforgeable. If person P signs message M with signature S(P,M), it is impossible
for anyone else to produce their pair [M, S(P,M)].

o Authentic. If a person R receives the pair [M, S(P,M)] from P, R can check that
the signature is really from P. Only P could create this signature, and the

signature is firmly attached to M.
e Not alterable. After being transmitted, M cannot be changed by S, by R, or by any
interceptor.

e Not reusable. A previous message presented will be instantly detected by E.

' protocol - an orderly sequence of steps taken by two or more parties to accomplish some task.

229

B

b
i
E

APPENDIX B -OVERVIEW OF CRYPTOGRAPHY.

e Not repudiatable. R doesn’t need P help to verify it signature.

Digital signature algorithm is public-key algorithm with secret information to

sign documents and public information to verify signatures.

The creation of a digital signature involves three steps on the part of the

sender:

The sender creates a message digest of the data to be transferred using a
cryptographicly strong hashing function.

The sender encrypts this message digest with his/her private key, producing the
digital signature.

The digital signature is appended to the data. Both the data and signature are
transferred to the recipient.

Any recipient having access to the claimed sender's public key can verify the

digital signature by performing three steps:

Compute the message digest over the data portion of the received message.
Decrypt the received digital signature using the claimed sender's public key.

Compare the deciphered and calculated message digests. If they are equal, the
signature is accepted as valid; if they are not equal, the signature is rejected as
invalid (either the signature was not made by the claimed sender or the message

has been altered).

The steps in the method of digital signature describes above is the practice of

how digital signatures are generated. RSA Data Security Incorporated has

pu

blished a de facto standard for digital signatures using MD5 and RSA that

prescribes this method of digital signature generation. This digital signature
method is widely adopted.

230

 AppENDIXC DES & IDEA

Appendix C

DATA ENCRYPTION STANDARD
&

INTERNATIONAL DATA ENCRYPTION
ALGORITHM

C.0 INTRODUCTION

This section describes the two main secrets key block ciphers adopted in the
development of the prototype in this research.

C.1 DATA ENCRYPTION STANDARD (DES)

The Data Encryption Standard (DES) resulted from IBM’s submission to the
1974 U.S National Bureau of Standards (NBS) solicitation for encryption
algorithms for protection of computer data. The DES was released in 1977 by the
NBS, for United States Government encryption of non-classified information. It
is the most well-known secret key block cipher, recognised world-wide and it set
the precedent in the mid 1970s as the first commercial-grade modern algorithm
with openly and fully specified implementations details (Menezes, van Oorschot
& Vanstone, 1997). DES is now specified in the U.S Federal Information
Processing Standards Publication 46-2 (FIPS 46-2); the same cipher is defined in
the American National Standard ANSI X3.92-1981 for data encryption and
referred to as the Data Encryption Algorithm (DEA). The idea being to
promulgates a standard DEA for world-wide adoption by commercial and

financial organisations.

231

 ApPENDIXC DES & IDEA

C.1.1 Description of DES

The DES algorithm is a combination of two of the fundamental building block of
encryption: substitution and permutation. DES is a Fiestel cipher® which
processes plaintext blocks of n = 64 bits, producing 64-bit cphertext blocks
(Figure E.1). The input key K for DES is specified as a 64-bit key but the

effective size of key K is k = 56 bits, because every 8th bit (bit 8, 16, 24, ..., 64) is
used for parity bits.

~
~

plaintext P

56 ciphertext C 56
keyK
64 i 64
P —p| DES |—p C C —P»|{ DES! ——-»P

Figure C.1: DES input-output

C.1.2 The encryption and decryption process

The encryption process proceeds in 16 rounds (see Figure E.2). From the input
key K, sixteen 48-bit sub-key Ki (K, K, ..., K ;) are generated, one for each round.
At each round, 8 fixed, 6-to-4 bit substitution mapping (S-boxes) were selected,
collectively denoted S, are used. An input data block to the DES undergoes an
initial permutation, IP, and after an initial permutation, the data block is broken
into two sub-blocks, the left sub-block (L) and the right sub-block (R,), each 32
bits long. In each round of DES which is functionally equivalent (see Figure E.3),
the 32-bit inputs L, and R, from the previous round is taken and producing 32-
bit outputs L, and R, for 1 <7 <16, as follows:

Li = Ri-l
R =L, ®fR,, K), where IR ,K)= P(S(E(R,)®K))

There are actually four separate operations. First the right sub-block of
the data is expanded, mapping R, from 32 bits to 48 bits via a fixed expansion’
permutation, E. Then it is combined with 48 bits of a shifted and permuted key
via an XOR operation. The result of this operation is then sent through 8 S-boxes

producing 32 new bits. The 32 bits are permuted again via a fixed permutation,

P, and combined with the left sub-block. These four operations make up function

* A Fiestel cipher is an iterated cipher mapping a 21-bit plaintext (L, R,), for t-bit blocks L, R, to a

ciphertext (R, L,), through an p-round wh(_are rx1. o
® Expansion - an operation of repeating certain bits.

232

" ArpEnDixC DES& IDEA

f. The result of these operations becomes the new right sub-block; the old right
sub-block becomes a new left sub-blocks. These operations are repeated 16 times,

making 16 rounds of DES.

Plaintext
7n17712... 64 ’n64
Initial
Permutation
64
L, R,

48

W

[\
‘\N

S

L.=R,

R1=L1 @ f(Ro,Kl)

R2=L1 @ f(RlyKZ)

R15=L14 @ f(RM’KlS)

R16=L15@ f(R15’K16)

L16:R 15

Inverse
Permutation

64

Ciphertext

Figure C.2: DES Computation Path

Co4q

233

APPENDIXC DES & IDEA

The round is complete by swapping the two sub-blocks (left and right sub-
block). After the sixteenth round, the right and left sub-block are joined, and

then applied to inverse of initial permutation, IP", to produce the ciphertext and
finishes off the algorithm.

Decryption of the data is achieved using the same DES algorithm and key.
The only changes is that the sub-keys must be used in reverse order, in which K,
is used in the first iteration, K, in the second iteration an so forth until K| is used
in the sixteenth iteration (K, K, ..., K)).

i1 K,

R 1
32¢ 48)
expansion
48
48
l

-

l] | l I l | 8X 6 bits

6 4

[SI] [SQJ IS3} lS4l S.1 |Se substitution

RN
[T T T[T
32/
permutation

32

AR, K = P(S(ER, ,)@K,)

Figure C.3: DES inner function

C.2 INTERNATIONAL DATA ENCRYPTION STANDARD (IDEA)

The International Data Encryption Algorithm (IDEA’) was developed by Xuejia
Lai and James Massey of the Swiss Federal Institute of Technology (Lai &
Massey, 1990). It previous version was called PES (Proposed Encryption
Standard) and later improved In 1991 (Lai & Massey, 1991) after been broken

*IDEA is a registered trade mark

234

E
L

APPENDIXC DES & IDEA

with differential cryptanalysis and called Improved PES (IPES). IPES changed
its name to IDEA in 1992 (Lai, 1992). IDEA is a symmetric-key block cipher.
The IDEA cipher is an improved version of PES and was developed to increase
the security against differential cryptanalysis. It encrypts 64-bit plaintext to 64-
bit ciphertext blocks, using a 128-bit input key K, which is larger than 56-bit
DES key. It based on the new design concept of “mixing operations from different
algebraic groups”. As for other block ciphers, IDEA uses both confusion and
diffusion. The required confusion was achieved by successively using three
“Incompatible” group operations on pairs of 16-bit sub-blocks and the diffusion
was achieved by the multiplication addition structure (see Figure C.4).

C.2.1 Description of IDEA

The block cipher IDEA is an iterated cipher consisting of 8 rounds followed by an
output transformation (see Figure C.4). The 64-bit data block is divided into 16-
bit sub-block X, X,, X,, and X,. These four sub-blocks became the input to the
first round of the algorithm. There are eight rounds total. In each round the four
sub-blocks are XORed, added, and multiplied with one another and with six 16-
bit sub-keys. Specifically, three algebraic groups are being mixed in this round,
they are:

e bit-by-bit exclusive-or (XOR), denoted as &;
e integer addition modulo 2" the operation is denoted as +;

o integer multiplication modulo 2° + 1, this operation could be viewed as
IDEA’s substitution block (S-block), the operation is denoted as

Between rounds, the second and third sub-blocks are swapped. Finally
the four sub-blocks are combined with four sub-keys in an output transformation.

The same algorithm is used for both encryption and decryption.

C.2.2 IDEA Design Priciples

The design goals for IDEA can be grouped into those related to cryptographic
strength and those related to ease of implementation (Stallings, 1999).

Cryptographic Strength
The following characteristics of IDEA relate to its cryptographic strength:

o Block length. The block length should be long enough to deter statistical

235

APPENDIXC DES & IDEA

analysis (that is, to deny the opponent any advantage that some blocks
appear more often than others). The use of block size 64 bits is generally
recognised as sufficiently strong. Furthermore, the use of cipher feedback
mode of operation further strengthens this aspect of the algorithm

e Key length. The key length should be long enough to prevent exhaustive key
searches. With a length of 128 bits, IDEA seems to be secure.

X X X3 X,
Z4(1) Z,1) --FH z3<1)—>Et:) Z,(1) ’%
one N multiplication
round ! R L~ addition
Z5(1) i / transformation
i '/
X .
|
! Zg(1)
RS O [N -
é< & »é
. >é
seven
more v ! v v
rounds ' : : :
Z,(9) Z,(9) Output Termination Z4(9) Z4(9)
Y; Y,

Y, Y,
X; : 16-bit plaintext sub-block
Y, : 16-bit ciphertext sub-block
Z.(r) : 16-bit key sub-block
@: bit-by-bit exclusive-or (XOR) of 16-bit sub-blocks
- addition modulo 2 !® of 16-bit integers

®: multiplication modulo 2 '%+1 of 16-bit integers
with the zero sub-block corresponding to 2 16

Figure C.4: The International Data Encryption Algorithm (IDEA)

¢ Diffusion. Each plaintext bit should influence every ciphertext bit, and each
key bit should influence every ciphertext bit. The spreading out of a single

236

APPENDIX C DES & IDEA

plaintext bit over many ciphertext bits hides the statistical structure of the

plaintext. IDEA is very effective in this regard by using the multiplication
addition (MA) structure (see Figure C.4).

o Confusion. The ciphertext should depend on the plaintext and key in a
complicated and involved way. The objective is to complicate the
determination of how statistics of the ciphertext depend on the statistics of
the plaintext. IDEA achieves this goal by using three different operations, as
mentioned in Section C.2.1. This is contrast to DES, which relies principally

on the XOR operation and small non-linear S-boxes.

Implementation Considerations

IDEA is designed to facilitate both software and hardware implementation

(Stallings, 1999). Lai & Massey (1990) cites the following design principles:
e Design principles for software implementation:

0 Use sub-blocks. Cipher operations should operate on sub-blocks that are
“natural” for software, such as 8, 16, or 32 bits. IDEA uses 16-bit sub-
blocks.

O Use simple operation. Cipher should be easily programmed using
addition, shifting, and so on. The three basic elements of IDEA meet this

requirement.
e Design principles for hardware implementations:

0 Similarity of encryption and decryption. Encryption and decryption
should differ only in the way of using the key so that the same device can
be used for both encryption and decryption. Like DES, IDEA has a

structure that satisfies this requirement.

0 Regular structure. The cipher should have a regular modular structure to

facilitate VLSI implementation. IDEA is constructed from two basic

modular building blocks repeated multiple times.

C.2.3 The encryption and decryption process

In the encryption process, three different group operations on pair of 16-bit sub-

block are used. These three different group operations are:

237

APPENDIX C 'DES & IDEA

¢ bit-by-bit exclusive-OR (XOR) of two 16-bit sub-blocks, denoted as ®.

e addition of integer modulo 2" where the 16-bit sub-blocks is treated as the
usual

e multiplication of integer modulo 2" + 1, this operation could be viewed as
IDEA’s substitution block (S-block)

The 64-bit plaintext block X is partitioned into four 16-bit sub-blocks X,
‘ X, X, and X, ie, X = (X, X, X,,,X,.) (see Figure C.4). These four sub-blocks
became the input to the first round of the algorithm. The four plaintext sub-
blocks are then transformed into four 16-bit ciphertext sub-blocks Y, Y,, Y,, Y,
[i.e., the ciphertext block is Y = (Y, Y,, Y}, Y)] using the 52 key sub-blocks of 16
bits that are formed from the 128-bit secret key.

238

APPENDIXD OTHER SECRET KEY BLOCK CIPHERS

Appendix D

OTHER SECRET KEY BLOCK CIPHERS

D.0 INTRODUCTION

This appendix describes secret key block ciphers found in the literature. Among
the secret key block ciphers discussed are NewDES (Scott, 1985), FEAL (Shimizu
& Miyaguchi, 1988), and SAFER (Massey, 1994).

D.1 NEWDES

NewDES was designed by Robert Scott (Scott, 1985) as a proposal to replace
DES. It operates on a 64-bit block, with a relatively large 120-bit key. NewDES
is simpler than DES with no initial or final permutations. Although newDES
having a much larger key than DES, it was shown that NewDES was less secure
compare to DES (Schneier, 1996).

In the NewDES, the input plaintext block is divided into eight 1-byte sub-
blocks. The cipher consists of 17 round, and each round has eight steps. In each
step, one of the sub-blocks is XORed with key material substituted with another

byte via a function,

and then XORed with another sub-block to become that sub-block.

D.2 FEAL

FEAL (Fast Data Encipherment Algorithm) (Shimizu & Miyaguchi, 1988) is a
DES-like block cipher which operates on 64-bit blocks using 64-bit key. The
design goal of FEAL was to make a stronger round function than DES, needing

fewer rounds, that results a faster cipher.

In FEAL, the encryption process starts with the 64-bit data block is

239

APPENDIXD OTHER SECRET KEYBLOCK CIPHERS

XORed with 64 key bit, and then split into two half, left- and right-half. The left-
half is XORed with the right-half to form a new right-half. The left-half and the
new right-half go through n rounds (4, initially) where in each round the right-
half is combined with 16 bits key and XORed with the left-half to form new right-
half. After n rounds the left-half (original right-half before the round) is again
XORed with the right-half to form a new right-half. The left-half and the new
right-half are concatenated together to form a 64-bit whole. The data block is
XORed with another 64-bits of key material before terminating.

D.3 SAFER

SAFER K-64 (Secure And Fast Encryption Routine with 64-bit key) is an iterated
block cipher’ with 64-bit plaintext and ciphertext blocks (Massey, 1994). The
algorithm has a block and key size of 64 bits.

In SAFER K-64 the plaintext is divided into eight byte-length sub-blocks,
and these sub-blocks go through n rounds using two subkeys: K, , and K, for
each round. Finally, an output transformation is applied to the sub-blocks

Knudsen found a weakness in the key schedule of SAFER K-64: in every
key, there exists at least one (sometimes as many as nine) other key that
encrypts some different plaintext to identical ciphertexts (Knudsen, 1995). This
attack did not affect SAFER’s security when used as an encryption algorithm, but
it greatly reduces its security when used as a one-way hash function. Vaudenay
(1995) showed SAFER K-64 is weakened if the S-box mapping is replaced by a
random permutation. Schneier (1996) recommend years of intense cryptanalysis
of SAFER before using it in any form.

* Tterated block cipher is a block cipher involving the sequential repetition of an internal function called

a round function.

240

APPENDIXE PUBLIC KEY CRYPTOSYSTEM

Appendix E

PuBLIC KEY CRYPTOSYSTEM

E.0 INTRODUCTION

This section describes the RSA public key cryptosystem (Rivest, Shamir &
Adleman, 1978) and the other existing public key cryptosystem found in the
literature namely, Knapsack cryptosystem (Merkle & Hellman, 1978), ElGamal
cryptosystem (ElGamal, 1985), and Rabin cryptosystem (Rabin, 1979).

E.1 RSA CRYPTOSYSTEM

RSA is the most popular public key cipher in use today. It is named after its
inventors: Ron Rivest, Adi Shamir and Leonard Adleman. They obtained the
best-known and most versatile public key cryptosystem (Rivest, Shamir &
Adleman, 1978) and their work was first published in 1978 and it was the first
working public key cryptosystem. It supports both secrecy and authentication,
and hence can provide complete and self-contained support for public key
distribution and signatures (Nechvatal, 1992). Since it is proposed RSA has
withstood extensive cryptanalysis (Schneier, 1996).

E.1.1 Description of the RSA Algorithm

RSA gets it security from the difficulty of factoring large numbers. The public

and private keys are functions of a pair of large (100 to 20C digits or even larger)

prime numbers. To generate the two keys

e choose p and g, two random large prime (e.g., 1024-bit) number and computes
n =pq.

e randomly choose the encryption key, e, such that e and (p-I)(g-1) are
relatively prime, which means they have no prime factors in common.

241

APPENDIXE PUBLIC KEY CRYPTOSYSTEM

e finally use extended Euclidean algorithm to compute the decryption key, d,

such that (ed-1) is evenly divisible by (p-1)(g-1). Mathematically it is written
as

ed =1 (mod((p-1)(g-1)),

or in other words
d =" mod((p-1)(g-1)).

The number ¢ and n are the public key; the number d is the private key.
The public key can be publish freely, because there is no known easy methods of
calculating d, p, or ¢ given only e and n (the public key). The two primes, p and
q, are no longer needed but must remain secret (not to be revealed).

¢ The encryption function is encrypt(t) = (') mod n, where ¢ is the plaintext.

The decryption function is decrypt(c) = (¢) mod n, where c is the ciphertext

E.2 KNAPSACK PuUBLIC KEY CRYPTOSYSTEMS

The first algorithm for generalised public-key encryption was the knapsack
algorithm developed by Ralph Merkle and Martin Hellman (Merkle & Hellman,
1978). The knapsack problem examines a sequence a,, a,, ..., ¢, of integers and a
target sum, 7. The problem is to find a vector of Os and 1s such that the sum of
integers associated with 1s equals 7. That is, given S = [a,, a,, ..., a,],and T, find
a vector V of Os and 1s such that

Ta Ffv.=T

. i i
i

A superincreasing knapsack is a knapsack where the integer of S must
form a superincreasing sequence, that is, one where each integer is greater than
the sum of all preceding integers. Then, every integer a, would be of the form

k-

1
a, >2q;
=1

The solution of a superincreasing knapsack (also called a simple
knapsack) is easy to find. Start with 7. Compare the largest integer in S to it.
If the is larger than 7, it is not in the sum, so let the corresponding position in V
be 0. If the largest integer is less than or equal to 7, that integer is in the sum,

so let the corresponding position in V be 1 and reduce T by the integer. Repeat

for all remaining integers in S.

242

L
i
P
i
P
|

b
|
i

APPENDIXE PUBLIC KEY CRYPTOSYSTEM

E.3 THE ELGAMAL CYPTOSYSTEM

The security of ElGamal (1985) public key scheme is based on calculating
discrete logarithms in a finite field. ElGamal scheme can be used for both digital
signature and encryption.

Encryption. First, prime number, p, and two random number, g and x (g and x
are less than p). Then calculate

y =g modp
The value y, g, and p are the public key and x is the private key.

Encryption. To encrypt a message, M, a random number k, such that % is
relatively prime to p -1 is selected. Then compute

a =g'mod p
b =y*M mod p

The pair a and b, is the ciphertext. To decryption of ¢ and b is obtained by
compute M = b/a*mod p. Since a* = g" mod p,

bla® = y*M/a mod p

g"M/g™ mod p

il

M mod p.

E.4 THE RABIN CYPTOSYSTEM

The Rabin cryptosystem was proposed in 1979 by Rabin (Rabin, 1979). Rabin’s
scheme gets it security from the difficulty of finding square roots modulo a

composite number.

Key generation. First, choose two large random primes p and g, each roughly the
same size. Then compute n = pg. n is the public key and (p,q) is the private key.

Encryption. To encrypt a message m, compute ¢ = m” mod n.

Decryption. To recover a plaintext m from c, using the Chinese remainder
theorem to find the four square roots m,, m,, m,, and m, of ¢ modulo n as follow:

ml - c(p+1)/4 mOdp

m2 — (p _ C(p+1)/4) modp

mS — C(q+1)/4 mod q

243

APPENDIXE PuBLIC KEY CRYPTOSYSTEM

- (g+1)/4
m,=(-c

)mod ¢

Then chose an integer x = g(g” mod p) and an integer y = p(p” mod q).
Then one of the four results produced below is equal to m.

M, = (xm, +ym,) mod n
M, =(xm +ym, modn
M, = (xm, +ym,) mod n
M, =(xm,+ym, mod n

Williams (1980) proposed a modified that has the advantage over Rabin’s
scheme that there is an easy way procedure to identify the intended message
from the four roots of a quadratic polynomial. The Rabin’s and modified Rabin’s
scheme by Williams are vulnerable to chosen ciphertext attack. According to
Schneier (1996), if it is used for digitally signing others messages, an attacker
may request a signature and obtain the secret key.

244

APPENDIXF PBEWITHMDS5ANDDES-CBC

Appendix F

pbeWithMD5andDES-CBC

F.0 INTRODUCTION

This appendix discusses one of the key-encryption algorithm defines by PKCS #5:
Password-Based Encryption Standard known as MD5 with DES-CBC
(pbeWithMD5andDES-CBC) (RSA, 1993). The standard describes a method for
encrypting an octet string with a secret key derived from a password. The result
of the method is an octet string. The pbeWithMD5andDES-CBC algorithms
employ DES secret-key encryption in cipher-block chaining mode, where the
secret key is derived from a password with a MD5 message-digest algorithm.

F.1 GENERAL OVERVIEW

The next section specifies the encryption and the decryption process. Each entity
shall privately select an octet P as its “password”. The password is an arbitrary
octet string, and it need not be a printable "word" in the usual sense. The octet

string may contain zero or more octets.

Each entity shall also select an eight-octet string S as its salt value and a
positive integer ¢ as its iteration count. The ‘salt’ value S and the iteration count
¢ are parameters of the algorithm identifier for the password-based encryption

algorithm.

An entity's password, salt value, and iteration count may be different for

each message the entity encrypts.

The encryption and decryption processes shall both be performed with the
password, salt value, and iteration count as a key for the password-based
encryption algorithm. Both processes transform an octet string to another octet
string. The processes are inverses of one another if they use the same key.

245

APPENDIXF PBEWITHMDS5ANDDES-CBC

F.2 ENCRYPTION PROCESS

The encryption process consists of three steps: DES key generation, encryption-
block formatting, and DES encryption. The input to the encryption process shall
be an octet string M, the message; an octet string P, the password; an octet string
S, the salt value; and an integer ¢, the iteration count. The output from the
encryption process shall be an octet string C, the ciphertext.

F.2.1 DES key generation

A DES key K and an initialising vector IV shall be generated from the password
P, the salt value S, and the iteration count ¢. The key generation process shall
involve the following steps:

1e The octet string P || S (concatenation of P, S) shall be digested with ¢
iterations of the selected message-digest algorithm. "One iteration" of the
message-digest algorithm is just the ordinary message digest; "two iterations"
is the message digest of the message digest and so on.

2e¢ The least significant bit of each of the first eight octets of the result of step 1
shall be changed if necessary to give the octet odd parity, as required by DES.
The resulting eight octets shall become the DES key K.

3e The last eight octets of the result of step 1 shall become the initialising vector
IV.

F.2.2 Encryption-block Formatting

The message M and a padding string PS shall be formatted into an octet string
EB, the encryption block.

EB =MI||PS. (1)

The padding string PS shall consist of 8 - (I M |1° mod 8) octets all is
having value 8 -(| M || mod 8). This makes the length of the encryption block EB
a multiple of eight octets. In other words, the encryption block EB satisfies one

of the following statements:

EB =M|101—ifl | M]| mod 8 =71;
EB =M|10202—if|[M| mod 8 =6;

*I| M1l islength in octets of M.

246

APPENDIXF PBEWITHMDSANDDES-CBC

EB =M1]08 08 08 08 08 08 080 08 — if|| M || mod 8 = 0;

Note. The encryption block can be parsed unambiguously since every encryption
block ends with a padding string and no padding string is a suffix of another.

F.2.3 DES Encryption

The encryption block EB shall be encrypted under DES in cipher-block chaining
mode with key K and initialising vector IV. The result of encryption shall be an
octet string C, the ciphertext.

Note. The length of the ciphertext C is a multiple of eight octets.

F.3 DECRYPTION PROCESS

The decryption process consists of three steps: DES key generation, DES
decryption, and encryption-block parsing. The input to the decryption process
shall be an octet string C, the ciphertext; an octet string P, the password; an octet
string S, the salt value; and an integer ¢, the iteration count. The output from
the decryption process shall an octet string M, the message.

For brevity, the decryption process is described in terms of the encryption

process.

F.3.1 DES Key Generation

A DES key K and an initialising vector IV shall be generated from the password
P, the salt value S, and the iteration count ¢ as described for the encryption

process.

F.3.2 DES Decryption

The ciphertext C shall be decrypted under DES in cipher-block chaining mode
with key K and initialising vector IV. The result of decryption shall be an octet

string EB, the encryption block.

It is an error if the length of the ciphertext C is not a multiple of eight

octets.

247

APPENDIXF PBEWITHMDSANDDES-CBC

F.3.3 Encryption-block Parsing

The encryption block EB shall be parsed into an octet string M, the message, and
an octet string PS, the padding string, according to Equation (1).

It is an error if the encryption block cannot be parsed according to
Equation (1), i.e., if the encryption block does not end with % octets all having
value & for some %k between 1 and 8.

248

APPENDIX G CLASSICAL CIPHERS

Appendix G

CLASSICAL CIPHERS

;.0 INTRODUCTION

There are two basic components of classical cipher techniques: substitution and
transposition.

G.1 SUBSTITUTION CIPHERS

A substitution cipher is one in which character in the plaintext is substituted for
another character in the ciphertext (Schneier, 1996). Examples of substitution
ciphers are the Caesar cipher, mono-alphabetic substitution cipher, and poly-
alphabetic substitution cipher.

G.1.1 The Caesar Cipher

Caesar cipher is the simplest substitution cipher. Caesar cipher replace letters of
a message by others letters in a symmetric fashion. In this cipher each plaintext
character is replaced by the character three to the right modulo 26, “A” is
replaced by “D”, “B” is replaced by “E”, “W” is replaced by “Z”, ..., “X” is replaced
by “A”, “Y” is replaced by “B” and so on in the cyclic form.

If, in the Caesar cipher, the letters A, B, C, ... are given numbers 0, 1,2, ...
the process of encipherment can be expressed as ¢ = p + 3 (modulo 26), where the
addition requires 26 to be substituted if the result exceeds 25.

Crytanalysis of Caesar cipher is effectively a key search; the displacement
is the key and possible values are tested until the right one is found by inspecting

the plaintext produced in each case.

249

*—_————

APPENDIXG CLASSICAL CIPHERS

G.1.2 Mono-alphabetic Substitution Cipher

Mono-alphabetic substitution cipher or simple substitution cipher is one in which
each character of the plaintext is replaced with corresponding character of
ciphertext (Scheier, 1996). Thus the alphabetic displacement is dependent upon
the letter concerned. For mono-alphabetic substitution cipher, for English
language, there are 26! or about 4 x 10* possible alphabets, whereas the Caesar
cipher has only 25 possible alphabets for the English language.

Cryptanalysis of such a mono-alphabetic substitution cipher is achieved
by counting the letter frequency of the plaintext, which will be of the same
frequency as the language of the plaintext, but in shuffled order.

G.1.3 Poly-alphabetic Substitution Cipher

Polyalphabetic substitution is made up of multiple simple substitution cipher.
An example of poly-alphabetic substitution cipher is Vigenére cipher.
Application of Vigenére cipher is facilitated by using tableau, in which all the
possible displaced alphabets are tabulated as shown in Table G.1.

In Vigenére encipherment the key word determines which displaced
alphabet is used to encipher each successive letter of the plaintext. A keyword is
used for selecting the column of the matrix and is repeated as many times as
necessary to encrypt the whole message. The plaintext character at the left-
hand-side of the table specifies the alphabet and the ciphertext character is
determined by the selected column by the character of the key word.

For example using a key “cscw”, the plaintext message “three black mice”
is enciphered as follows:

Plaintext : three black mice
Keyword : CSCWC SCWCS CWCS
Ciphertext : jllsy rrwail qoao

Crytanalysis on a Vigenére cipher can be carried out by choosing a word
which likely to be in the plaintext messages and then carries out modulo 26
subtraction of that word from the ciphertext in possible location, i.e. a scan is
made of the entire ciphertext. If at any position the result of the subtraction
produce a word of natural language or a fragment of such word, then it is likely
that the keyword or part of it has been discovered.

250

APPENDIX G CLASSICAL CIPHERS

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY

N%Ng<cj>—]mpd,®*oozgt_‘mg’_‘EQWHUOUJU>

Table G.1: A Vigenére Tableau

G.2 TRANSPOSITION CIPHERS

Transposition ciphers aim to hide the contents of a message by taking the
individual characters or bits and rearranging their order (Davies & Price, 1989).
Examples of transposition ciphers are simple columnar transposition cipher and

the Nihilist cipher.

G.2.1 Simple Columnar Transposition Cipher

The simple columnar transposition cipher takes successive letter, groups into
block of fixed length and rearranges horizontally, to produce a table. The

251

APPENDIX G CLASSICAL CIPHERS

ciphertext is read off vertically. Encryption is done by writing the ciphertext
vertically of the same fixed length and then reading the plaintext horizontally.

For example, the following plaintext message: ASTON UNIVERSITY
BIRMINGHAM is grouped in blocks of five and arranged as follows:

Plaintext : ASTON UNIVERSITY BIRMINGHAM

cl ¢c2 ¢3 c4 ¢ (¢ column)

S T ON
NI V E
S 1 TY
I R MI
G HAM

Z W =x G

Ciphertext : AURBNSNSIGTIIRHOVITMANEYIM

Furthermore, the group can be rearranged in the sequence of specified
columns. This sequence constitutes the encipherment key. If the order of 41532
is used in the above example, the ciphertext will be as follow:

c4d ¢l ¢5 ¢3 c2 (¢ column)

B
Pt
(9]
w
DN

key

>z 3 <0
Z W ag e
2~ <z
=
O - iz nm

H

Ciphertext : OVTMAAURBNNEYIMTIIRHSNSIG

When a plaintext is not in multiple of the block length, a character such
as “X” is padded at the last block. This cipher could be applied more than one

times with different key in very round.

G.2.2 The Nihilist Cipher

The Nihilist is a combination of columnar and row transposition (Davies & Price,
1994). The plaintext is written in rows under a key word, but the key word is

252

APPENDIX G CLASSICAL CIPHERS

also written vertically at the side of the columns. The same key word can be used
in the case of two transpositions. Ciphertext is read out row by row similar to
columnar transposition, but with the order of row selection determined by the
key word written vertically alongside.

For example, the following plaintext message: ASTON UNIVERSITY
BIRMINGHAM is grouped in blocks of five and rearranged in the order 41532 as
follows:

Plaintext: ASTON UNIVERSITY BIRMINGHAM

Key word L EMON

c4d ¢l ¢5 ¢3 c2 (¢ column)
L 4 OANTS
E 1 V UETI N
M 5 T RY I S
0O 3 MBI R
N 2 A NMH G

Ciphertext : VUEINANMHGMBIRIOANTSTRYIS

253

APPENDIX H SECURITY ATTACKS

Appendix H

SECURITY ATTACKS

H.0 INTRODUCTION

This appendix describes some of the existing security attacks. Among the attacks
are brute-force attack, masquerade attack, dictionary attack, man-in-the-middle-
attack, replay attack, and cryptanalytic attack.

H.1 BRUTE FORCE ATTACK.

A brute force attack is one in which an attacker searches the entire cryptographic
key space until the correct key is found. It is called a brute force because it does not
require any particular knowledge about the key being used, but requires the ability
to try all the possible permutations for a particular length of key, given knowledge
(or assumptions) about the particular cryptographic algorithm employed. This will
result in a trade-off between the required processing power and the time required to
performed the calculations. Any realistic cryptosystem will inevitably require
substantial amounts of both processing power and time in order for a brute force to

be mounted. Some cryptosystems may prevent certain brute force attacks by means
of protocols which prevent repetitive attempts to use a key in a given period of time
e.g. Bank automatic teller machines prevent any more than three attempts to enter
the correct PIN.

H.2 DICTIONARY ATTACK

Dictionary attack is a general threat to all passwords. An attacker who obtains some
sensitive password-derived data, such as a hashed-password, performs a series of

z

254

APPENDIX H SECURITY ATTACKS

computations using every possible guess for the password. Since passwords are
typically small by cryptographic standards, the password can often be determined by
brute-force. Depending on the system, the password, and the skills of the attacker,
such an attack can be completed in days, hours, or perhaps only a few seconds.

The term dictionary attack initially referred to finding passwords in a specific
list, such as an English dictionary.

A password database should always be kept secret to prevent dictionary attack on
the data. Obsolete password methods also permit dictionary attack by someone who
eavesdrops on the network. Strong methods prevent this.

H.3 MAN-IN-THE-MIDDLE ATTACK

The Man-In-The-Middle attack occurs when an adversary acts as a third party in a
two party conversation. Both legitimate parties assume that they are talking
securely with each other; in fact the adversary is intercepting the entire
conversation, decrypting it, re-encrypting it and sending it on to the intended
recipient.

For example, in public-key protected communication: Bob wants to talk to
Alice, but Bob needs Alice's public-key first. Eve intercepts Bob's request for Alice's
public-key and instead sends Bob her public-key. Bob uses Eve's public key to
encrypt his conversation, thinking that it is Alice's. Eve can now intercept all Bob's
messages to Alice, decrypt them, re-encrypt them using Alice's real public-key and
send them on to Alice. An entire conversation can pass like this without anyone
realising what is happening.

To get round this problem a certificate is used to identify a person (or e-mail
address) with a public key. What makes the certificate binding is that it is digitally
signed by a certification authority. A certificate will typically consist of the person's
name and public key, the certification authoritiy name and public key and the
digital signature. The signature is calculated by hashing the data on the certificate
and encrypting the result with the certification authority's private key. The
certificate can then be verified by a third party by encrypting the signature block
with the certification authority's public key (this amounts to decryption) and
comparing the result with the third party's own hash calculation of the certificate.
Note that more than one person can sign a certificate and there is nothing to prevent

someone signing their own certificate.

255

APPENDIXH SECURITY ATTACKS

H.4 MASQUERADE ATTACK

A masquerade attack is one in which an attacker poses as a legitimate entity, in
order to either gain access to the particular data belonging to the user or to gain
access to the system in general.

H.5 REPLAY ATTACK

Replay attack is an attack that comprises the recording and replaying of previously
sent messages. Any constant authentication information, such as a password, a one-
way hash of a password, or electronically transmitted biometric data, can be
recorded and replayed.

H.6 CRYPTANALYTIC ATTACKS

A cryptographic attack is where an attacker attempts to gain knowledge about the
cryptosystem and/or the transmitted data by statistical analyses of the transmitted
data. This may or may not be complemented by a prior knowledge of details of the
particular cryptographic algorithm(s) employed. Such statistical analyses may be
categorised as follows:

o Ciphertext-only attack. In this type of attack, the attacker has knowledge only
of the ciphertext that has been intercepted. There is no knowledge of the
plaintext corresponding to the ciphertext, although there may be some
knowledge about the algorithms employed in the cyptosystem concerned. Any
such attack on a cryptosystem would have to rely purely on a statistical analysis
of whatever ciphertext was recovered, perhaps on the basis of assumptions

regarding the nature of the corresponding plaintext.

e Known-plaintext attack. In this type of attack, the attacker has knowledge
both of the recovered ciphertext and some of all of its corresponding plaintext.
Such knowledge would afford the attacker greater opportunity for statistical
analysis of the cryptographic algorithm(s) employed by the cryptosystem, of the
cryptographic key(s) used, and of any ciphertext to which the corresponding

plaintext is known.

e Chosen-plaintext attack. In this type of attack, the attacker not only has
knowledge both of the ciphertext and its corresponding plaintext, but also is able

256

APPENDIX H SECURITY ATTACKS

to choose what the plaintext shall be. This would afford the attacker the greatest
opportunity for statistical analysis of the cyrptographic algorithm(s) employed by
the cyrptosystem and of the cryptographic key(s) used, and would hence lead to a
possible situation of the attacker being able to recover plaintext from a
subsequent ciphertext-only attack on the same cryptosystem, perhaps not even
using the same cryptographic key(s).

Adative-chosen-plaintext attack. This is a special case of a chosen-plaintext
attack. Not only can the cryptanalyst choose the plaintext that is encrypted, but
he can also modify his choice based on the results of previous encryption. In a
chosen-plaintext attact, a cryptanalyst might just be able to choose one large
block of plaintext to be encrypted; in an adaptive-chosen-plaintext he can choose
a smaller block of plaintext and then choose another based on the results of the
first, and so forth.

Chosen-ciphertext attack. The cryptanalyst can choose different ciphertexts
to be decrypted and has access to the decrypted plaintext.

257

APPENDIXI SECURESIG USER MANUAL

Appendix I

SECURESIG USER MANUAL

1.0 INTRODUCTION

This manual provides information on how to use the Secure-SIG prototype. This
manual is divided into two parts:

1. Server Setup and
2. System Login.

The Server Setup part is the setting up of the Secure-SIG server. The
System Login part is the step-by-step of how user can use the system. This part
is intended for the member of the inspection team. SecureSIG is a UNIX

platform system.

I.1 SERVER SETUP

There are eight (8) servers needed to be setup before the system can be used.
These servers are AccessServer, BriefingServer, CodeLoaderServer,
LoadedCodeServer, RemoteLoadedCodeServer, LogEntryServer, ChatServer,

EmailServer.

All the servers are running using UNIX host at kojak.aston.ac.uk.

Follow the procedures given below to setup all the servers:

1. Open system console (New system console should be opened for each

server).
2. Telnet server host by typing
> telnet kojak

and press RETURN key.

258

APPENDIXI SECURESIG USER MANUAL

The system will ask for username and password. Key in the following
username: maarofma and password: jaisal95.

To run all the servers follow the following steps:

> cd project/classes <ret>

> SSIG Server <ret>

1.2 SYSTEM LOGIN

This section decribes how user (member of the inspection team) can login to the
SecureSIG system.

1.2.1 Start the System

To section describes how to generate user key pair, and then how to access the
system.

Getting the StartUp Frame

To start the SecureSIG system, open a new console, telnet kojak (used the above
username and password in Section 1.1), and type the following command at the
prompt:

> StartSSIG
and press RETURN key.

The system will display a welcome frame. Three options will be given.
These options are SETUP, LOGIN and CANCEL LOGIN.

w4 IMPORTANT *** : It is important to perform the SETUP option before
proceeding with LOGIN option.

o SETUP button is used to generate key pair
e LOGIN button is used to start login to the system, and
e« CANCEL LOGIN button is used to cancel login.

Click the option button to activate the option.

259

ApPENDIX] SECURESIG USER MANUAL

SETUP Option

This option describes how to generate user key pair and data file encryption. If
this option is press, a SETUP frame will be displayed consists of three options,
Key Pair Generation, Data File Encryption, and Exit.

Note: Data File Encryption only for moderator. This option must be perform first
by the moderator before other members of the group can login to the system.

Key Pair Generation
To generate key pair, follow these instructions:

1. Key in username and passphrase key at the username and passphrase field
allocated (all characters, symbols and numbers are allowed for both username
and passphrase). The passphrase key is used as key to save the private key.
A maximum of 60 characters can be used as a passphrase key. A choice of
username and passphrase key in Table 1.1 below can be used. This same
passphrase key or the passphrase key of your choice should be used when
requested in the login process.

role | | username
moderator zaini twinkle twinkle little star
author salwa humpty dumpty set on the wall
inspector doherty ba ba black sheep have you any wool
inspector paul jack and jill went up the hill
inspector zahid incy wincy spider
inspector vasilas three blind mouse

Table I.1: List of username and passphrase key

2. To create the key pair, click
Create
3. To exit from the frame, click

Exit

260

ApPENDIXI SECURESIG USER MANUAL

Data File Encryption
Two files need to be encrypted before proceed using the system. These files are:
e usrPasswd.dat and
e currentUsr.dat
The files can be encrypted by using the following step:
1. Click the following option
Encrypt Data File
2. A StoreDataFile frame will be displayed.

Enter data file to be encrypted, usrPasswd.dat, at the filename field
allocated.

3. To activate the encryption process, click
Encrypt

4. To clear the filename field, click
Reset

Enter the second the data file to be encrypted, currentUsr.dat, by
repeating step 3 and 4.

5. To exit from the frame, click

Exit

Exit

This option is used to exit from this frame.

LOGIN Option

This option describes how to access the system. If this option is press, a system
login frame will be displayed. To access the system, follow these instructions:

1. Enter your username and the password in the space allocated (see Table 1.2

for a valid username and password).

261

APPENDIX] SECURESIG USER MANUAL

zaini alpha
salwa beta
doherty gamma
paul tango
zahid vectra
vasilas epsilon

Table 1.2: List of username and password

2. To activate the login process, click
Submit
3. To clear the field, click
Reset
4. A new frame, request for the passphrase key will be displayed,

5. To proceed, enter the passphrase key to the space allocated.

(Important: The same passphrase key used when the pre-generated key
pair was generated during the SETUP process (in SETUP option) must be
entered.

6. To proceed, click
Submit

The systems will only allowed a user to attempt to access the system for
maximum of three times. Every invalid login will be displayed with a denied
access frame. The third invalid login will result the system to exit automatically.

For a valid login, the system will displayed a frame according to the role of

the valid user (e.g. moderator, author, or inspector).

262

ArPPENDIXI SECURESIG USER MANUAL

Moderator Frame

There are nine (8) buttons on this frame. They are Generate Key Pair button,
File Encryption button, Briefing button, Code Viewer button, Remote
Viewer button, Log Entry button, Chat button and Exit button.

Generate Key Pair

This option is used to regenerate a new key pair to replace the old key pair. To
regenerate the key pair, do the following:

1. Click the following option from the menu
Generate Key Pair

2. The regenerate key pair frame will be displayed. Key in username and
passphrase key at the username and passphrase field allocated.

3. To activate the regeneration of the key pair, click
Submit
4. To cancel regeneration of the key pair, click

Cancel

File Encryption

The moderator must perform file encryption first before other members of the
group can participate in the inspection process.

To activate the file encryption process click the following option from the menu
File Encryption

A new frame with four (4) options will be displayed. These four options are
the Encrypt Briefing File, the Encrypt Program File, the Encrypt Data
File, and the Exit.

Encrypt Briefing File
To encrypt a briefing file:

1. Click the following option from the menu

Briefing File

263

ApPPENDIX] SECURESIG USER MANUAL

2. A new frame will be displayed, request for the file to be encrypted. Type in
the briefing file name, Introduction, at the filename field allocated.

3. To activate the encryption process, click
Encrypt

4. To clear the filename field, click
Reset

Enter the other briefing filename, Briefing-1, Briefing-2, and
Briefing-3 one at a time, by repeating step 3 and 4.

5. To exit from the frame, click

Exit

Encrypt Program File

To encrypt a program file:

1. Click the following option from the menu
Program File

2. A new frame will be displayed, request for the file to be encrypted. Type in
the program file name, Client. java, at the filename field allocated.

3. To activate the encryption process, click
Encrypt

4. To clear the filename field, click
Reset

Enter the other program filename, Server.java, Kunci.java, and
CipherIS.Jjava one at a time, by repeating step 3 and 4.

5. To exit from the frame, click

Exit

264

APPENDIXI SECURESIG USER MANUAL

Briefing

To access the briefing material, follow the following step:

1. Click the following option from the main menu
Briefing

2. A briefing session frame will be displayed.

3. Select the briefing filename by using the filename button on this frame.
Click the filename to confirm selecting the file.
4. To load the file, click

Fetch

5. The document will be displayed. The windows can be left open or closed
down after finishing with the materials.

6. To exit from this frame, click

Exit

Code Viewer
The document viewer can be accessed using the following step:
1. Click the following option from the main menu
Code Viewer
2. A document viewer session frame will be displayed.

3. Select the program file by using the filename button on this frame. Click the
filename to confirm selecting the file.

3. To load the file, click
Fetch

4. The document will be displayed. The windows can be left open or closed
down after finishing with the materials.

5. To exit from this frame, click

Exit

265

APPENDIXI SECURESIG USER MANUAL

Remote Viewer

The remote document viewer can be accessed using the following step:

1. Click the following option from the main menu

Remote Viewer

2. A remote code viewer session frame will be displayed.

3. Select the name of another user from the list of user currently using the
system.

4. To proceed with the process, click the username to fetch the program file
viewed by this user.

5. The document will be displayed. The windows can be left open or closed
down after finishing with the materials.

6. To exit from this frame, click

Exit

Log Entry

All the defects and queries found during the inspection process is stored in the

log file. To add a log entry, follow the following step:

1. Click the following option from the main menu frame

Log Entry

2. The log entry frame will be displayed.

3. Enter the defect information at the allocated field in the frame.

The following information has to be entered.

Username field
Log filename
Program line number

Select the option from the Critically option. There are three (3) options:
Major, Minor, and Warning.

Select the option from the Type option. There are nine (9) options given.
They are Data, Design, Documentation, Language, Logic, Performance,
Test & Branch, Maintainability and Other.

266

APPENDIXI SECURESIG USER MANUAL

o Enter comment at the Comment text area
e Enter suggestion at the Suggestion text area
4. To proceed with the process, click the following button
Submit
5. To clear the entry, click the following button
Clear
6. To exit from this frame, click

Exit

Chat
The chat can be accessed by using the following steps:
1. Click the following option from the main menu frame
Chat
2. A chat frame will be displayed.
3. Enter your name and press Return key.
4. To start the chat session, click
Start Chat

A frame for chatting will be displayed. To start chatting type message at
the field provided at the bottom of the frame and press Return key. To see the
active users in the chat session type ?who and press Return key. To exit from
this chat session frame press the Exit button on the top of the frame.

Author Frame

There are seven (7) buttons on this frame. They are Generate Key Pair button,
Briefing button, Code Viewer button, Remote Viewer button, Log Entry
button, Chat button and Exit button. All these buttons perform the same

actions as in the Moderator Frame.

267

ApPPENDIXI SECURESIG USER MANUAL

Inspector Frame

There are seven (7) buttons on this frame. They are Generate Key Pair button,
Briefing button, Code Viewer button, Remote Viewer button, Log Entry
button, Chat button and Exit button. All these buttons perform the same
actions as in the Moderator Frame.

268

APPENDIXJ SECURESIG EVALUATION GUIDELINE

Appendix J

SECURESIG EVALUATION GUIDELINE

Start Secure Software Inspection Groupware (SecureSIG)

1. Open console

1. Type StartSSIG

Select SETUP from menu

1. Select Generate Key Pair button
a. Enter Username
b. Enter Passphrase Character

C. Click EXIT button

Select LOGIN from menu

1. Enter Username

1i. Enter Password

111, Click Submit

1v. Enter Passphrase Character

v. Click Submit button
Select Generate Key Pair from menu

1. Enter username

il. Enter passphrase character

269

5.

APPENDIXJ SECURESIG EVALUATION GUIDELINE

111, Click Generate button

Select File Encrytion from menu (only moderator has this option)

1. Select Encrypt Briefing File from menu
a. Enter Briefing filename
b. Click Encrypt button
C. Click Reset button
d. Repeat step a to ¢ for other Briefing filname
e. Click Exit button
11. Select Encrypt Program File from menu
a. Enter Program filename
b. Click Encrypt button
C. Click Reset button
d. Repeat step a to ¢ for other Program filname
e. Click Exit button

Select Briefing from menu

1. Select Code inspection process description
1. Select SecureSIG description

111. Select inspection group information

1v. Select overall project description

V. Select current code inspection description

Asynchronous Evaluation

Select Code Viewer from menu

1. Enter Username
11. Select the file to view

1il. Fetch the file

270

APPENDIXJ SECURESIG EVALUATION GUIDELINE

8. Select Log Entry from menu
i Enter Username
1. Enter Filename
111. Create a comment and enter into log
iv. Log another comment
9. Select E-mail from menu
i Send e-mail to yourself
a. Enter your e-mail address
b. Select your key
ii. Select e-mail to your colleague
a. Enter your colleague e-mail address

b. Select his/her key

ii. Open mail box and read messages send previously in step 71

Synchronous Evaluation

10. Select Remote Viewer from menu
1. Select file which is currently viewed by other group member
1. Select other file

11. Select Chat from menu
1. Enter your name
i, Press RETURN key
1ii. Click Start Chat
1v. Chat with your colleague

sk

*#% End of evaluation. Thank you. ***

271

Appendix K

USER DETAILS

Please tick ([]) the following which is/are relevant to you

[] 1Iam an undergraduate [] TIam apostgraduate
[1 Iam staff (Please specify:)
[1 Others (Please specify:)

Gender: [] Male [] Female

Qualification/Course Attended:

Which platforms do you usually work on?

[]UNIX [1PC [] Macintosh [] Others(

How many years in IT/Computer related fields:

[11-2 [13-4 [14-5 [17-

Which area/s do you have experience in:

[] Programming [] Data Security

[] System Analysis [] Computer Security

[] Network Administrator [] Network Security

[] S/W Project Manager [] Cryptography

[] Others (Please specify:)

Have you used any inspection or review method in S/W quality process?
[1Yes []No

If Yes, what type of inspection of review method have you been using so far?

[] Software Review/Inspection [] Format Technical Review
[] Code Inspection [] Software Audit
Others (Please specify:)

272

APPENDIXL PROTOTYPE EVALUATION QUESTIONNAIRE

Appendix L

PROTOTYPE EVALUATION QUESTIONNAIRE

Please answers the following question by circle your choice.

Use the following rating scale for question 1 — 15:

w

1 - Strongly Agree

2 — Agree
3 — Not Sure
4 - Disagree

5 — Strongly Disagree
Do you think that it is require to protect the briefing material by encrypted
all the related briefing material in an asynchronous meeting?
(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)
Do you think that it is important to secure the information flow that is
related to the briefing material in an asynchronous meeting?
(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)
Do you think that the remote viewer that helps you in accessing the file

viewed by other group member needs to secure it files by encrypted all the
related files?

(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)

Do you think that there is a need to secure all the information flow involved
in the remote viewer process?

(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)

Do you think that there is a need to secure all the information flow in the e-

mail facility in SecureSIG?

(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)

273

10.

11.

12.

13.

14.

15.

APPENDIXL PROTOTYPE EVALUATION QUESTIONNAIRE

Do you think that there is a need to protect the log entry files and provide
secure information flow in the log entry process?

(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)

Do you think that the SecureSIG components provided offered a secure
working environment for asynchronous mode of inspection?

(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)
Do you think that it is important to protect the briefing material by
encrypted all the related briefing material in synchronous meeting?
(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)
Do you think there is a need to secure the information flow that is related to
the briefing material in synchronous meeting?
(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)
Do you think that the document viewer that helps you viewing the
document need to secure it files by encrypted all the related files?
(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)
Do you think that there is a need to secure all the information flow involved
in the document viewer process?
(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)

Do you think that there is a need to secure all the information flow in the
group chat facility in SecureSIG?

(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)

Do you think that the SecureSIG components provided offered a secure
working environment for synchronous mode of inspection?

(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)

Overall, do you think that with all the secure components provided the
SecureSIG offered a secure working environment for an asynchronous and

synchronous mode of process?
(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)

Do you think there is a need to provide a secure System Access Control to

SecureSIG?
(Strongly Agree) 1 2 3 4 5 (Strongly Disagree)

274

APPENDIXL PROTOTYPE EVALUATION QUESTIONNAIRE

Use the following rating scale for question 16 — 19:

1 — Not Aware

2 — Slightly Aware
3 — Don’t Know

4 -Aware

5 — Fully Aware

16. During login to the SecureSIG system do you aware the encryption and
decryption process involved in the login process?

(Not Aware) 1 2 3 4 5 (Fully Aware)

17. When using all the components in the SecureSIG do you aware the process of
fetching the public key pair need for the encryption process?

(Not Aware) 1 2 3 4 5 (Fully Aware)

18. Do you aware the encryption processed in the system in each component of
the system that you choose?

(Not Aware) 1 2 3 4 5 (Fully Aware)

19. Do you aware the process of generating and updating of the public key pair
during generate and re-generate key pair process?

(Not Aware) 1 2 3 4 5 (Fully Aware)

Use the following rating scale for question 20:

1 — Highly Accessible

2 — Easily Accessible

3 — Neither Good or Bad
4 —~Not Easily Accessible
5 — Difficult to Access

20. When using the SecureSIG components either the secure briefing, secure
document viewer, and secure remote viewer component or during login

process can you access the encrypted files related to them every time?

(Accessible) 1 2 3 4 5 (Not Accessible)

275

APPENDIX L PROTOTYPE EVALUATION QUESTIONNAIRE

Use the following rating scale for question 21:

1 - Very Transparent

2 — Transparent

3 — Not Sure

4 — Slightly Transparent
5 — Not Transparent

21. Overall, do you think the encryption process in the SecureSIG system is

transparent to you?

(Very Transparent) 1 2 3 4 5 (Not Transparent)

Please write any comment about the system in the space below, if you have any.

276

Appendix M

APPENDIXM RESULT OF THE QUESTIONNAIRE

RESULT OF THE QUESTIONNAIRE

M.0 INTRODUCTION

This appendix consists of the test users details information (Section M.1) and the

result from the prototype evaluation by the test users (Section M.2).

M.1 TEST USERS DETAIL INFORMATION

. USER DETAILS
Post-G X X X
Under-G
Gender M M M
Platform| UNIX UNIX UNIX UNIX UNIX UNIX
Qualification/Course Attended CS CS CS CS CS CS
IT experience| O4 - OS5 >7 > >7 04-05 | 04-05
Information Technology Ex :
Programming X X X X X X
System Analysis X X
Network Admins. X X
S/W Proj. Man. X
Data Security
Computer Security X
Network Sec. X X
Cryptography X X
Used any inspection tool X X
S/W review/inspec.
Code Inspection X X
Format Tech. Rev.
Software Audit X

Table M. 1: Users Detail Information

2717

APPENDIXM RESULT OF THE QUESTIONNAIRE

M.2 PROTOTYPE EVALUATION RESULT

| PROTOTYPE EVALUATIO
~Prototype Suitability
Asynchronous
Ql 2 2 1 2 2 2
Q2 2 2 1 2 2 2
Q3 1 1 1 2 2 2
Q4 1 2 1 2 2 2
Q5] 2 1 2 2 2
Q6 2 2 2 2 2 3
Q7 2 2 1 2 2 2
Synchronous
Q8 2 2 1 2 2 2
Q9 2 2 1 2 2 2
Q10 1 1 1 1 2 2
Q11 1 2 1 2 2 2
Q12 2 2 2 2 3 3
Q13 2 2 1 2 2 3
Q14 2 1 2 2 2 3
Q15 1 1 1 1 1 2
__Prototype Transparency
Ql6 2 2 2 2 2 3
Q17 1 1 1 1 1 1
Q18 1 1 1 1 1 1
Q19 1 1 2 2 2 3
Q20 1 1 1 2 2 2
Q21 1 1 2 2 2 2

Table M.2: Prototype Evaluation Result

278

APPENDIXN PROGRAM LISTING

Appendix N

Program Listing

N.0 INTRODUCTION

This appendix contains java programs of Secure-SIG prototype. Section N.1 list
the program modules and in Section N.2 because of the size of the whole program
are big only some are included and most of the programs are kept in the diskette
accompanied.

N.1 PROGRAM MODULE

In this section all the program modules for SecureSIG prototype are listed.
These includes user authentication module, key pair generation module, file
encryption module, briefing module, code viewer module, remote code viewer
module, log entry module, e-mail module, and other utilities module.

1. User Authentication Module

¢ ValidateUserFrame.java
e AccessServer.java

e AccessServerThread.java
e AccessValSharejava

e AccessValShare.java

e Protection.java

2. Key Pair Generation Module

e StoreUserKeyPair.java

279

File Encryption Module

o fileEncryptFrame.java
e StoreBRIEFINGfile java
e StorePROGRAMfile java

Briefing Module

¢ BriefingFrame java
e BriefingServer java
e BriefingServerThread.java

Code Viewer Module

e CodeLF java

e (CodelLoadedServer.java

e (CodeLoadedSvrThread.java
e LoadedCodeServer.java

e LoadedCodeSvrThread.java

Remote Code Viewer Module

¢ RemoteCLF.java
¢ RemoteCodeServer.java
¢ RemoteCodeSvrThread.java

Chat Module

¢ ChatServer.java
¢ GroupChat.java
¢ SClient.java

e Mservicejava

e Infojava

¢ EnterStringjava
e Notify,java

e TServicejava

o IOException.java

280

APPENDIXN PROGRAM LISTING

APPENDIXN PROGRAM LISTING

8. Log Entry Module

AddLogFrame.java

LogEntryServer.java
LogEntrySvrThread.java

9. E-mail Module

CipherMail.java

Message.java

Composer.java
SMTP.java
POP3.java

10. Other Utilities Module

N.2

StartSSIG.java
StoreDATAfile java
GenerateUserKeyCert.java

PROGRAM LISTING

This section only included some of the Java program listed in Section N.1.

Key Pair Generation Module

storeUserKeyPairjava

2 ettt i
// This program generate and store RSA public key pair.

import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.
java.

java.
.security.*;

java

java.
java.

awt.*;

awt .event.*;
net.*;

io.*;
util.*;
math. *;

math.BigInteger; . .
security.cert.CertificateException;

javax.crypto.*;

iaik.
iaik.
iaik.
iaik.
iaik.
iaik.
iaik.
iaik.
.pkcs.pkcs8.*;

iaik

iaik.

x509.%;

asnl .structures.”*;
asnl.*;
x509.extensions. *;
security.rsa.*;
security.cipher.*;
pkcs.*;
pkcs.pkecsl.*;

utils.KeyAndCertificate;

281

APPENDIX N

import iaik.security.provider.IAIK;

public class storeUserKeyPair extends Frame
implements ActionListener {

protected boolean inAnApplet = true;
protected TextField passField = null;
protected TextField aliasField = null;
protected TextArea contentArea = null;
protected TextField contentLength = null;
protected TextField contentSize = null;
protected TextField userField = null;
protected Choice fileListChoice;
protected Button bFetch, bDelete, bExit;
protected String InputFile, OutputFile;
protected PrivateKeyInfo priv_keyInf = null;
protected RSAPrivateKey privKey = null;
protected RSAPrivateKey privateKEY = null;
protected Label mStatusLabel;

public static int saveFormat = ASN1.PEM;
protected String passphrase;

protected String nameAlias;

protected String alias = "*;

public storeUserKeyPair(String alias) {

nameAlias = alias;
passphrase = "Aston University";

setLayout (new BorderLayout());

//Add small things at the bottom of the window.
int startPos = 0;
int endPos;

Panel p0 = new Panel();

p0.add(bFetch = new Button("GENERATE KEY PAIR")) ;
bFetch.addActionListener (this);

p0.add(new Label (" "))

p0.add (bExit = new Button("CANCEL"));
bExit.addActionListener{(this);

add("North", p0);

Panel pl = new Panel();
pl.add (mStatusLabel = new

Label (" "y
add("south", pl);

addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
i1f (inAnApplet) {
dispose();
} else {
System.exit (0);

// add component into gridbaglayout)
private void addComp {Component c, G;ldBaquyout gpl,
GridBagConstraints gbc, int x, int vy, 1int w, int h) {

gbc.gridx = X;

gbc.gridy = v
gbc.gridwidth = w;
gbc.gridheight = h;
gbl.setConstraints (c, gbc);
add (c):

public void actionPerformed(ActionEvent event) {
String command = event.getActionCommand();

i _getSource() instanceof TextField || command ==
vE fevent.ge “GENERATE KEY PAIR") {

doKeyAndCertificate(nameAlias);
dispose();

}
if (command == "CANCEL") |
dispose ()

)

282

PROGRAM LISTING

APPENDIXN PROGRAM LISTING

// saveKeyAndCert () method

;; Encrypt the private key and save the key and the certificate // chain to a file.

public static void saveKeyAndCert (KeyPair keyPair,

X509Certificate(] chain, String fileName, String passphrase)
throws IOException {

EncryptedPrivateKeyInfo epki = new
EncryptedPrivateKeyInfo((PrivateKeyInfo)keyPair.getPrivate());

try {
epki.encrypt (passphrase, AlgorithmID.pbeWithMDSANADES_CRBC,
null);
} catch {NoSuchAlgorithmException ex) {
throw new RuntimeException("No implementation for
pbeWithMD5SANADES_CBC! ") ;
}

// append the correct extension
fileName = fileName + (saveFormat == ASN1.DER ? ".der" : ".pem");

System.out.println("save private key and certificate chain to file
"+fileName+"...");

new KeyAndCertificate(epki, chain).saveTo(fileName, saveFormat) ;

// generateKeyPair () method:
// Generates a Key pair for the requested public key algorithm.
F e e e e

public KeyPair generateKeyPair (String algorithm, int bits) throws
NoSuchAlgorithmException ({

KeyPairGenerator generator = null;
try {
generator = KeyPairGenerator.getInstance (algorithm, "IAIK");
} catch (NoSuchProviderException ex) {
throw new NoSuchAlgorithmException(ex.toString()):
}
generator.initialize(bits);
KeyPair kp = generator.generateKeyPair();
return kp;

2 i bttt
// verifyCertificateChain() method:)
// Verifies a chain of certificates where the user certificate.

public boolean verifyCertificateChain(X509Certificate(] certs) ({

try |
int anz = certs.length;
verifyCertificate(certs(anz-1], null);
for (int i=anz-1; i>0; i--)}

verifyCertificate{certs(i-1], certs{i});
System.out.println("Verify certificate chain OK!");

} catch (SignatureException ex) {)
System.out.println("Verify certificate chain ERROR!"});
return false;

}

return true;

}

[/ mmmmmmmmmmmmmemmm oSS o oSS S S CS ST TS oSS TSSSToTITTTTmmTooTTmoTTTT
// verifyCertificate() method: o) o

/7 verifies the digital signature of a certificate.
2 e

public void verifyCertificate(X509Certificate gserCert, '
%¥509Certificate caCert) throws SignatureException {

try
if (caCert == null) i
userCert.verify(): // self signed
else

userCert.verify(caCert.getPublicKey());

283

APPENDIXN PROGRAM LISTING

} catch (Exception ex) {
throw new SignatureException(ex.toString());

// createCertificate() method:
// Creates a test certificate according to the X.509 Notation.
] = e — o

_ public X509Certificate createCertificate(Name subject, PublicKey pk, Name
issuer, PrivateKey sk, AlgorithmID algorithm,
int serialNumber) throws CertificateException {

boolean extensions = false;
X509Certificate cert = new X509Certificate():;

try {
cert.setSerialNumber {BigInteger.valueOf (serialNumber)) ;
cert.setSubjectDN(subject) ;
cert.setPublicKey(pk);
cert.setIssuerDN(issuer) ;

GregorianCalendar date = new GregorianCalendar();
date.add(Calendar .DATE, -1);
cert.setValidNotBefore(date.getTime()); // not before yesterday

date.add(Calendar .MONTH, 6);
cert.setValidNotAfter (date.getTime()) ;

if (extensions) { // add some v3 extensions
bytel] id = {1,2,3,23,3,4,3,23,3};
SubjectKeyIdentifier ski = new SubjectKeyIdentifier (id);
cert.addExtension(ski);

BasicConstraints bc = new BasicConstraints(true, 1);
bec.setCritical (true);
cert.addExtension(bc) ;

KeyUsage ku = new KeyUsage(KeyUsage.digitalSignature |
KeyUsage.keyCertSign |
KeyUsage.cRLSign) ;
cert.addExtension(ku) ;
}
cert.sign{algorithm ,sk);

return cert;

} catch (InvalidKeyException ex) {

throw new CertificateException(ex.toString());
} catch (NoSuchAlgorithmException ex) {

throw new CertificateException{ex.toString());

J] mm m e m e S S S S S S SS oo o oo
// doKeyAndCertificate() method:) . ‘

// Creates some test certificate chains and writes them into .PEM // files.
2ttt

public void doKeyAndCertificate(String nameAlias) ({

try)
System.out.println("add Provider IAIK...\n");

Security.addProvider (new IAIK());
boolean create_rsa = true;

// create a test directory

File file = new File("certs");

if (!'file.exists{)
file.mkdir();

// First create the private keys
KeyPair caRSA = null;

KeyPair userKeyl null;

KeyPair userKey2 null;

({1}

try {)
caRSA = generateKeyPalr(”RSA”, 512);

} catch (NoSuchAlgorithmException ex? {)
System.out.println("No implementation for RSA! Can't create

RSA certificates!\n"};
create_rsa = false;

284

APPENDIXN PROGRAM LISTING

—

if (create_rsa) {
userKeyl = generateKeyPair ("RSA", 512);
userKey2 = generateKeyPair ("RSA", 512);

// Now create the certificates

Name issuer = new Name();

issuer.addRDN(ObjectID.country, “AT");

issuer.addRDN (ObjectID.organization ,"TU Graz");

issuer.addRDN (ObjectID.organizationalUnit , "IAIK");

issuer.addRDN(ObjectID.commonName , *IAIK Test Certification
Authority”);

Name userSubject = new Name();
userSubject.addRDN{ObjectID.country, *AT");
userSubject.addRDN (ObjectID.organization ,*"TU Graz"):
userSubject.addRDN (ObjectID.organizationalUnit , "IAIK") ;

// create self signed CA cert

X509Certificate caRSACert = null;

X509Certificate caDSACert = null;
X509Certificate(} chain = new X509Certificate(l]:

if (create_rsa) {
System.out.println("create self signed CA certificate...”);
caRSACert = createCertificate(issuer, caRSA.getPublic(),

issuer, caRSA.getPrivate(),

AlgorithmID.md5SWithRSAEncryption, 1);
chain[0] = caRSACert;
saveKeyAndCert (caRSA, chain,
"project/classes/certs/caRSAcert", passphrase);

}

// create user certificates
chain = new X509Certificate{2];
chain[l] = caRSACert;

if (create_rsa) {

userSubject.addRDN (ObjectID.commonName , "User - RSA/RSA");
System.out.println{“create User certificate [RSA/RSA]...");
chain[0] = createCertificate(userSubject,

userKeyl.getPublic(),issuer, caRSA.getPrivate(),
AlgorithmID.md5WithRSAEncryption, 3);
userSubject.removeRDN (ObjectID.commonName) ;
verifyCertificateChain(chain);

saveKeyAndCert (userKeyl, chain, "project/classes/certs/" +
nameAlias + "RSAcertl", passphrase);

)

if (create_rsa) {

userSubject .addRDN (ObjectID.commonName , "User - RSA/RSA");
System.out.println("create User certificate [RSA/RSA]...");
chain[0] = createCertificate(userSubject,

userKey?2.getPublic{(), issuer, caRSA.getPrivate(),
AlgorithmID.mdSWithRSAEncryption, 3);
userSubject . removeRDN (ObjectID.commonName) ;
verifyCertificateChain(chain);

saveKeyAndCert (userKey?2, chain, "project/classes/certs/" +
nameAlias + "RSAcert2", passphrase);

}

System.out.println("\nKey and Certificates created.”);
} catch (Exception ex) {)
System.out.println("Exceptlon: "+ex) ;
}
}

) // end storUserKeyPair

// This program is an alteration of IAIK CreateCertificates.java
// Copyright (C) 1897 by DI wWolfgang Platzer, IAIK

// email: wplatzer@iaik.tu-graz.ac.at

//
// All rights reserved.

285

APPENDIXN PROGRAM LISTING

File Encryption Module

fileEncryptFrame.java

R Y L

import java.awt.*;
import fjava.awt.event.*;
import java.net.*;
import java.io.*;

import java.util.=*;

public class fileEncryptFrame
extends Frame implements ActionListener {

protected boolean inAnApplet = true;
protected Frame win, briefWin, progWin;

public fileEncryptFrame() {
// --- graphical user interface

Button encBrief = new Button("Encrypt Briefing File");
encBrief.addActionListener (this) ;

Button encProg = new Button{"Encrypt Program File");
encProg.addActionListener (this) ;

Button encData = new Button{"Encrypt Data File");
encData.addActionListener (this);

Button exit = new Button("EXIT"):
exit.addActionListener (this);

win = new Frame();
win.setLayout (null);
win.add{encBrief);
win.add{encProg) ;
win.add (encData) ;
win.add(exit);

// manually layout

encBrief.setBounds (55, 40, 140, 40};
encBrief.validate():

encProg.setBounds (55, 80, 140, 40);
encProg.validate();

encData.setBounds (55, 120, 140, 40);
encData.validate();

exit.setBounds (55, 165, 140, 30);
exit.validate();

win.setLocation{250,170);
win.setTitle("File Encryption”);
win.setSize(250,210);
win.show();

addWindowListener (new Windowadapter() ({
public void windowClosing (WindowEvent e} {
if (inaAnapplet) {
dispose();
} else {
System.exit (0);
}

// Take action

public void actionPerformed(ActionEvent evt) {

286

APPENDIXN PROGRAM LISTING

String command = evt.getActionCommand () ;
// submit request

if (command == "Encrypt Briefing File") {
doEncryptBriefing();
)

if (command == *Encrypt Program File") ({
doEncryptProgram() ;
}

if {command == "EXIT")} {
win.dispose();

// doEncryptBriefing{) method
// calling frame to encrypt Briefing material
[/ mmmmm e e e

public void doEncryptBriefing() {

briefWin = new StoreBRIEFINGfile();
briefWin.setTitle("Briefing File Encryption");
briefWin.setLocation (460, 220);
briefWin.setSize (360, 110);
briefWin.setVisible(true);

J it e
// doEncryptProgram() method
// calling frame to encrypt program code/document

public void doEncryptProgram() {

progWin = new StorePROGRAMfile();
progWin.setTitle({"Program File Encryption");
progWin.setLocation{460, 220);
progWin.setSize (360, 110);
progWin.setVisible (true);

} // end fileEncryptFrame class

StoreBRIEFINGfile.java

/]~ mm e mm e e e m oo — S oSS oo oS oSS oSS oo
// This program encrypt and store the briefing material

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;

import java.util.*;
import java.math.*;
import java.security.*;

import javax.crypto.*;

import javax.crypto.spec.*;

import iaik.security.rsa.*;

import 1aik.x509.*;

import iaik.security.cipher.*;
import iaik.pkcs.*:

import iaik.pkcs.pkesl.*;

import iaik.pkcs.pkcs8.%;

import iaik.asnl.*;

import iaik.asnl.structures.*;
import iaik.security,provide;.IAIK;
import iaik.utils.KeyAndCertificate;

public class StoreBRIEFINGfile extends Frame
implements ActionListener {

protected poolean inAnApplet = true;

287

APPENDIX N PROGRAM LISTING

protected TextField codeField = null;
protected TextArea contentArea = null;
protected TextField contentLength = null;
protected TextField contentSize = null;
protected TextField userField = null;
protected Choice fileListChoice;
protected Button bFetch, bReset, bExit;
protected String FileName;
protected RSAPrivateKey privKey = null;
protected boolean kpNotEXIST = true;
protected boolean notEXIST = true;
protected PublicKey publicKEY = null;
protected KeyPair kp = null;
protected PublicKey getPub = null;
protected Key key = null;
protected KeyAndCertificate KeyCert;
protected byte{] cipherIDEAkey = null;
protected ObjectOutputStream oos = null;
protected IvParameterSpec spec = null;
static bytel} iv = { (byte)Oxfe, (byte)Oxdc, (byte)Oxba, (byte)0x98,
(byte)0x76, {(byte)0x54, (byte)0x32, {(byte)0x10 };

public StoreBRIEFINGfile() ({

// --- security provider
Provider iaik = new iaik.security.provider.IAIK();
Security.addProvider (iaik) ;

// --- graphical user interface
setLayout (new BorderLayout());

Panel p = new Panel();

p.add{"North", new Label("Filename:"));
codeField = new TextField(30);
codeField.addActionListener (this);
p.add{codeField) ;

add("North", p);

Panel p0 = new Panel();

p0.add(new Label (")

p0.add(bFetch = new Button(* ENCRYPT "));
bFetch.addActionListener(this);
p0.add(bReset = new Button(" RESET ")});
bReset .addActionListener (this);
p0.add(bExit = new Button(" EXIT "))};
bExit.addActionListener (this);
add("South”, p0);

addwindowListener (new WindowAdapter{) {
public void windowClosing(WindowEvent e) {
if (inAnApplet) {

dispose();
} else {
System.exit (0);
}
}

)

}
i
// actionPerformed() method: performing the action taken
2 e e it

public void actionPerformed(ActionEvent event) {

String command = event .getActionCommand () ;
if (event.getSource() instanceof TextField || command == "
ENCRYPT *) {
doEncrypt{);
}
if (command == " RESET vy |
doResetField():
}
if (command == " EXIT ") A
storeIDEAkey ()
disposel():

—

288

APPENDIXN PROGRAM LISTING

;; doResetField() method: reset field

public void doResetField() {
codeField.setText ("");

// doEncrypt{) method:
// start create and store key used to encrypt the file

public void doEncrypt{) {

createIDEAkey () ;
storeIDEAkey () ;

// createIDEAkey() method:

// creating key for file encryption (IDEA key)
[] = e o

public void createIDEAkey () {

try {
if (notEXIST) {
try {
KeyGenerator keygen = KeyGenerator.getInstance("IDEA",
"IAIK") ;
key = keygen.generateKey() ;
notEXIST = false;
} catch (Exception ex) {
System.out.println(ex) ;
}
} else {
System.out.println(*Use old IDEA key ...");
notEXIST = false;
}

//Encrypt file
try {
FileName = codeField.getText();

Cipher ¢ = Cipher,getInstance(“IDEA/CBC/PKCSSPadding");
spec = new IvParameterSpec(iv);
c.init (Cipher.ENCRYPT_MODE, key, spec);

FileInputStream fis = new FileInputStream("project/classes/"
+ FileNane) ;
CipherInputStream cis = new CipherInputStream(fis, c);
FileOutputStream fos = new
FileOutputStream("project/classes/files/"
+ FileName) ;

byte[] buffer = new byte[2048];

int r;

while ((r
fos.writ

= cis.read(buffer)) != -1}
e
fis.close()
)
)
)

(puffer, 0, r);

cis.close(

fos.flush(

fos.close(

catch (Exception ex) ({

System.out.println(ex);
}

} catch (Exception e} {
System.out.println(e);

i
;
i
H

e

—t

J) e mmmm e mmmmm— oo oo

public void storeIDEAkey () {
// encrypt IDEA key

try
KeyCert = new

289

APPENDIXN PROGRAM LISTING

KeyAndCertiﬁicate(“project/classes/certs/serverRSAcert.pem");
SysFem.out.prlntln("Encrypting IDEA key");
Cipher RSACipher = Cipher.getInstance("RSA");

X509Certificat§ c = KeyCert.getCertificateChain() [0]};
PublicKey publicKey = c.getPublicKey();

RSACipher.init(Cipher.ENCRYPT_MODE, publicKey) ;

cipherIDEAkey = RSACipher.doFinal (key.getEncoded()) ;
. Systemlout.println("DONE encrypting IDEA key");
} catch (Exception ex) {

System.out.println(ex) ;

}

// create DES file
try {
00s = new ObjectOutputStream(
new FileCutputStream
) ("project/classes/files/briefIDEAkey.enc"}) ;
oos.writeObject (cipherIDEAkey) ;
oos.close();
} catch (Exception ex) {
System.out.println{ex);

}

} // end StoreBRIEFINGfile class

StorePROGRAM(file.java

F R et et he
// This program encrypt and store program code/document
[= e e e o mm— o

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;

import java.util.*;
import java.math.?*;
import java.security.*;

import javax.crypto.*;

import javax.crypto.spec.*;

import iaik.security.rsa.*;

import iaik.x509.*;

import iaik.security.cipher.*;
import iaik.pkcs.*;

import iaik.pkcs.pkcsl.?*;

import iaik.pkcs.pkcs8.*;

import iaik.asnl.*;

import iaik.asnl.structures.*;
import iaik.security.provider.IAIK;
import iaik.utils.KeyAndCertificate;

public class StorePROGRAMfile extends Frame
implements ActionListener ({

protected boolean inAnApplet = true;
protected TextField codeField = null;
protected TextArea contentArea = null;
protected TextField contentLength = null;
protected TextField contentSize = null;
protected TextField userField = null;
protected Choice fileListChoice;
protected Button bFetch, bReset, bExit;
protected String FileName;

protected RSAPrivateKey privKey = null;
protected boolean not EXIST;

protected boolean kpNOtEXIST = true;
protected boolean DESnotEXIST true;
protected PublicKey publicKEY null;
protected KeyPair kp = null;

protected publicKey getPub = null;
protected Key key = null;

protected KeyAndCertificate KeyCert;

rotected IvParametersSpec spec = null;
gtatic pyte(] iv = { (byte)Oxfe, (byte)O0xdc, (byte)Oxba, (byte)0x98,

(byte)0x76, (byte) 0x54, (byte)0x32, (byte)O0x10 };

won

public StorePROGRAMfile () {

290

APPENDIX N

// --- security provider
Provx@er iaik = new iaik.security.provider.IAIK();
Security.addProvider{(iaik) ;

// --- graphical user interface
setLayout (new BorderLayout());

Panel p = new Panel{);

p.add{"North", new Label{"Filename:"));
codeField = new TextField(30);
codeField.addActionListener (this);
p.add(codeField);

add{“North", p);

Panel p0 = new Panel{);

p0.add (new Label (* "))

p0.add(bFetch = new Button(" ENCRYPT "));
bFetch.addActionListener{this);

p0.add (bReset = new Button(" RESET "));
bReset.addActionlistener (this);

p0.add (bExit = new Button{" EXIT "))
bExit.addActionListener (this);
add("South", p0);

addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
if (inAnApplet) {

dispose () ;
} else {
System.exit (0);
}

public void actionPerformed(ActionEvent event) {

String command = event.getActionCommand() ;

if (event.getSource() instanceof TextField || command == "
ENCRYPT ") {

doEncrypt ()

}

if (command == " RESET ") {
doResetField();

}

if (command == " EXIT ") {
storeDESkey () ;

dispose();

J/memm e mmmm oo —oooomo oo
// doResetField{) method: reset field

public void doResetField() |
codeField.setText ("");
}

[/mmmmmmmmmmmm—m—e—— oo oo oSS oS STo oSS oS So oSS oTTToTTTTT
// doEncrypt () method:)

// perform the document encryption and store process
//——mmmmmmmmm—m——————o o - ——soSSTo oSS SSooomomTTommmETET
public void doEncrypt() {

createDESKey () ;
storeDESkey ()

// createDESKey () method:

291

PROGRAM LISTING

APPENDIX N
j; creating key for document encryption (DES key)
public void createDESKey () {
try {
if (DESnotEXIST) ({
try {
KeyGenerator keygen = KeyGenerator.getInstance("DES",
"IAIK") ;

)
)

keygen.init {(new SecureRandom());
key = keygen.generateKey({);
DESnotEXIST = false;

} catch (Exception ex) {
System.out.println{ex);

}

else {

DESnotEXIST = false;

//Encrypt file
try {

—

FileName = codeField.getText():

Cipher ¢ = Cipher.getInstance("DES/CBC/PKCS5Padding") ;
spec = new IvParameterSpec(iv);
c.init (Cipher.ENCRYPT_MODE, key, spec);

FileInputStream fis = new FilelnputStream("project/classes/"

+ FileName) ;
CipherInputStream cis = new CipherInputStream(fis, c);
FileOutputStream fos = new
FileOutputStream("project/classes/files/" + FileName) ;

byte[] buffer = new byte[2048];

int r;

while ((r = cis.read(buffer)) != -1)
fos.write(buffer, 0, r);

fis.close{)

cis.close()

fos.flush()

fos.close();

catch (Exception ex) {

System.out.println(ex);

;
B
B

} catch (Exception e) {
System.out.println(e);

}

) mmm e mm e m
// store DES key

public void storeDESkey() {

// encrypt DES key
byte{] CipherDESKey = null;
ObjectOutputStream 00S;

try {
KeyCert = new

}
}

KeyAndCertificate(“project/classes/certs/serverRSAcert.pem“);

System.out.println("Encrypting DES key"}:
Cipher RSACipher = Cipher.getInstance{"RSA");

X509Certificate ¢ = KeyCert.gethrtificateChain()[0];
PublicKey publicKey = c.getPublicKey () ;

RSACipher.init(Cipher.ENCRYPT_MODE, publicKeX);
CipherDESKey = RSACipher,doFlnalgkey.getEncooed(l);
System.out.println("DONE encrypting DES key"};
catch (Exception ex) {

System.out.println(ex);

// create DES file

cxy |
00s = new ObjectOutputStream(

new FileOutputStream .
(”project/classes/flles/desKEY.enc V)

oos.writeObject(CipherDESKey);
oos.close();
} catch (Exception ex) |

292

PROGRAM LISTING

APPENDIXN PROGRAM LISTING
) System.out.println(ex) ;
}
} // end StorePROGRAMfile class
Code Viewer Module
CodeLF . java
J

// This program create a frame and perform the viewing of
// code/document.

import java.awt.*;

import java.awt.event.*;
import java.net.?*;

import java.io.*;

import java.util.*;

import java.security.*;
import java.security.spec.*;

import javax.crypto.*;

import javax.crypto.spec.*;

import iaik.security.*;

import iaik.security.rsa.*;

import iaik.security.cipher.SecretKey;
import iaik.pkcs.*;

import iaik.x509.*;

import iaik.pkcs.pkcsl.*;

import iaik.pkcs.pkcs8.*;

import iaik.utils.KeyAndCertificate;
import iaik.security.provider.IAIK;

public class CodeLF extends Frame
implements ActionListener, ItemListener ({

protected boolean inAnApplet = true;
protected TextField codeField = null;
protected TextArea contentArea = null;
protected TextField contentLength = null;
protected TextField contentSize = null;
protected TextField userField = null;
protected Choice fileListChoice;

protected String fileBase;

protected int fileNum;

protected DatagramSocket socketl, socket2, socket3;
protected InetAddress address;

protected int portl = 20012;

protected int port2 = 20013;

DatagramPacket packetl, packet2, packet3;
protected byte[] sendBufl = new byte([1024];
protected bytefl] receiveBufl = new byte(1024];
protected bytel] sendBuf3 = new byte[1024];
protected bytel] receiveBuf3 = new byte([1024};
protected byte[] buffer = new byte[1024];
protected bytel(] cipherInfo = new byte[1024];
protected boolean DEBUG = true;

protected Button bFetch, bExit, bDoc;
protected Key key = null;

protected byte[] skey = null;

protected RSAPrivateKey privateKEY = null;
protected DatalnputStream dis = null;
protected FileInputStream fis = null;
protected FileInputStream fileIn = null;
protected CipherInputStream cis = null;
protected Cipher cipher = null;

protected BufferedInputStream buffIn = null;
protected Buf feredInputStream buﬁfCtr = null;
protected RSAPrivateKey client?rlvatexey = null;
protected PublicKey serverPublicKey = null;
protected KeyAndCertificate KeyCert:;

protected EncryptedPrivateKeyInfo epki;
protected String nameAlias = " “;

protected Key desKey = null;

protected Key DESkey = null;

293

APPENDIXN PROGRAM LISTING

protected Key tmpDESkey = null;

protected boolean desKeyNotExist = true;

protected byte[] plainData = null;

protected byte[] dataDigest = null;

protected byte{] dataSignature = null;

protected byte[] serverPublicKeyBytes = null;

protected String Check;

protected Frame wf;

protected IvParameterSpec spec = null;

static bytel] iv = { (byte)Oxfe, (byte)Oxdc, (byte)0xba, {(byte)0x98,
(byte)0x76, (byte)0x54, (byte)0x32, (byte)0x1l0 };

public CodeLF(String alias) {

String host = *kojak.aston.ac.uk";
nameAlias = alias;
try {

address = InetAddress.getByName {(host):

} catch (UnknownHostException e} {
System.out.println ("Couldn't get Internet address: Unknown host!");
return;

)

makeGUI () ;

public void makeGUI() (
// --- graphical user interface
setLayout {new BorderLayout{)};
String fileInfo = getFilelInfol();

//Add small things at the bottom of the window.
int startPos = 0;
int endPos;

Panel p = new Panel();

p.add (*North", new Label ("Filename:"));
codeField = new TextField(15);
codeField.addActionListener (this);
p.add (codeField) ;

p.add("North", new Label("Select File:")):

fileListChoice = new Choice():

fileListChoice.addItemListener (this);

for (int i = 0; i < fileNum; i++) {
endPos = fileInfo.indexOf (";", startPos):
filelListChoice.addItem(fileInfo.substring(startPos, endPos));
startPos = endPos + 1;

)

fileListChoice.select (0);

p.add (fileListChoice);

p.add{(new Label (" "))
p.add(bFetch = new Button(" Fetch ")};
bFetch.addActionListener (this);

p.add (bExit = new Button(" EXIT "));
bExit.addActionListener (this);

add ("North", p):

panel p0 = new Panel(};

p0.add (new Label ("Username: "}) ;
userField = new TextField(15);
userField.addActionListener (this);
p0.add (userField);

p0.add (new Label ("Length:"));
contentLength = new TextField(10);
contentLength.addActionListener (this);
contentLength.setEditable(false);
p0.add (contentLength) ;

add ("South", p0):

//Put a label and a text area in the right column.
Panel pl = new Panel();

Panel centerPanel = new Panel();

pl.setLayout (new BorderLayout (});

contentArea = new TextArea(35, 80) ;

Font fcourier = new Font ("Courier", Font.PLAIN, 13);
contentArea.setFont (fcourier);
contentArea.setEditable(false);

pl.add(contentArea);

294

/7

pl.add("North",

ApPPENDIX N PROGRAM LISTING

new Label (">>>>> INSPECTION DOCUMENT <<<<<", Label.CENTER));

centerPanel.add(pl):
add("Center", centerPanel);

addwindowListener (new WindowAdapter () {
public void windowClosing(WindowEvent e) {
if (inAnApplet) {

dispose () ;
} else {

System.exit (0);

// actionPerformed{) method: Take action

public void actionPerformed(ActionEvent event) {
String command = event.getActionCommand() ;

}

if (event.getSource() instanceof TextField || command == " Fetch ") {

doFetch()

}

if (command ==
dispose();

}

EXIT *) {

public void itemStateChanged(ItemEvent event) {
codeField.setText (fileListChoice.getSelectedItem())

}

/7

// getFileInfo() method: Check for the selected document

7/

public String getFileInfo() {

// open socket
cry {

socketl = new DatagramSocket();

} catch (SocketException e) {
System.out.println ("Couldn't create new DatagramSocket") ;
return "Error";

}

// send request to validate to server

String initiateRequest = "";

sendBufl = initiateRequest.getBytes();

packetl = new DatagramPacket (sendBufl, sendBufl.length , address, portl);

try |
if (DEBUG) {
System.out.println (" in getFileInfo address : " + address) ;
System.out.println ("port : " + portl);

}

socketl.send(packetl);

if (DEBUG) {

System.out.println{"sent packet.");

}

} catch (IOException e) {
Systemlout.println("socket.send failed:");
e.printStackTrace();
return "Socket.send failed";

}

// check file info from server

0o

String received = ;))
packetl = new DatagramPacket(recelveBufl, receiveBufl.length) ;

try {
if (DEBUG) {

System.out.println(“About to call socket.receive().");

socketl.receive(packetl);

if (DEBUG) {

System.out.println("returned from socket.receive().");

} catch (IOException e) {))
System.out.println("socket.recelve failed:");

295

APPENDIXN PROGRAM LISTING

e.printStackTrace();
return "Socket.receive failed";

}
received = new String(packetl.getData()):

if (DEBUG) {

) System.out.println("File info : " + received);

int curPos = received.indexOf (";");

fileNum = Integer.parselnt (received.substring (0, curPos));
curPos = curPos + 1;

String fileNames = received.substring {(curPos);

if (DEBUG) {
System.out.println("fileNum : " + fileNum);
System.out.println("fileNames : " + fileNames);
}

return fileNames;

// doFetch() method : Start fetching the selected document

public void doFetch{) {

try {
byte b[] = new bytel[2048];
String content = "";
int nbytes;

// get DES key

if (desKeyNotExist) {
tmpDESkey = getDESkey();
desKeyNotExist = false;

}

DESkey = tmpDESkey;

if (Check == "xValid") {
doNotValidFramel () ;

} else if {Check == "xVerify") {
doNotVerifyFramel () ;

} else {
try {

cipher = Cipher.getlnstance(“DES/CBC/PKCSSPadding");
spec = new IvParameterSpec(iv) ;
cipher.init (Cipher.DECRYPT_MODE, DESkey, spec);

fis = new FileInputStream("project/classes/files/"
+ codeField.getText ()):
cis = new CipherInputStream(fis, cipher);

} catch (Exception ex) {
System.err.println("Error: fail to get/decrypt file.");

}

String loadedFile = userField.getText () + ";" + codeField.getText();

if (DEBUG) {
System.out.println("username : " + userField.getText{));

}

updateLoadedCodeFile(loadedFile);

// Read and Display content
contentArea.setText ("");

String lineContent;

int line = 0;

int strLength, ptrPos, startPos, endPos;
boolean newLine = true;

// Read file until eof

while ((nbytes = cis.read(b)) != -1) {
content = new String(b, O, nbytes) ;
strLength = content.length() - 1;
ptrPos = 0;
startPos = 0;
endPos = 0;

// Process buffer until empty
while (ptrPos < strLength) {

296

APPENDIXN PROGRAM LISTING

// Check eoln
Qnd?os = content.indexOf ("\n", startPos);
if ((endPos != -1) && (endPos != strLength)) {

lineContent = content.substring (startPos, (endPos + 1));

ptrPos = endPos + 1;

else {
lineContent = content.substring (startPos);
ptrPos = strLength;

}

// Print line number and one line of code
if {(newLine) {
line = line + 1;
contentArea.append (Integer.toString(line) + *
}
else
newLine = true;

contentArea.append (lineContent});
startPos = ptrPos;

}
if (endPos == -1)
newLine = false;

}

int length = line;
contentlLength.setText (Integer.toString (length) + "

}
} catch (IOException e) {
return;

updateLoadedCodeFile () method
update LoadedCodeFile to store the selected document

public void updateLoadedCodeFile (String loadedFile) {

byte[] sendBuf2 = new byte [1024];
byte(}] receiveBuf2 = new byte {1024];

// open socket 2
try {

socket?2 = new DatagramSocket () ;
} catch {SocketException e) {

lines");

System.out.println ("Couldn't create new DatagramSocket") ;

return;

)

/7 send file loaded update to server
String initiateRequest = loadedFile;
sendBuf2 = initiateRequest.getBytes ();

packet2 = new DatagramPacket (sendBuf2, sendBuf2.length, address,
try |
if {DEBUG) {
System.out.println (" in updateLoadedCodeFile address : "

System.out.println ("port2 : " + port2);
}
socket?2.send{packet2);

if (DEBUG) {
System.out.println("sent packet.”};
}

} catch (IOException e) {
System.out.println("socket,send failed:");
e.printStackTrace(};
return;

}

// check status of update from server

packet2 = new DatagramPacket (receiveBuf2, receiveBuf2.length);

try {
if (DEBUG) {
System.out.println("About to call socket.receive()

socket2.receive(packet2);
if (DEBUG) {

M)

gystem.out.println("Returned from socket.receive().");

}
} catch (IOException e) {

297

+ address) ;

APPENDIXN PROGRAM LISTING

System.out.println{"socket.receive failed:");
e.printStackTrace();
return;
}
String received = new String(packet2.getDatal()):
if (DEBUG) {
System.out.println("Update confirm info : " + received);

)

if (received.equals{"NotOK")) {
System.out.println{"Error updating loaded code file.");

[/ = m o m e e e o m o
public Key getDESkey () {
try {
// send request

packet3 = sendPacket3(nameAlias) ;

try {
if (DEBUG) {
System.out.println (" in getFileInfo address : " + address) ;
System.out.println ("port : " + portl);

}
socketl.send(packet3);

if (DEBUG) {
System.out.println("sent packet.");

}

} catch (IOException e) {
System.out.println(“socket.send failed:"};
e.printStackTrace();

}

// receive respond
receivePacket3 () ;

} catch (Exception ex) {
System.out.println(ex);

}

return DESkey;

J == oo

protected DatagramPacket sendPacket3 (String nameAlias) throws Exception {

ByteArrayOutputStream byteO = new ByteArrayOutputStream() ;
DataOutputStream dataO = new DataQutputStream(byteQ) ;

// plain data
plainData = new String(nameAlias) .getBytes(};

// create a session key

KeyGenerator kg = KeyGenerator.getInstance("DES", "IAIK") ;
kg.init {new SecureRandom()) ;

Key sessionKey = kg.generateKey () ;

// encrypt data with session key

cipher = Cipher.getlnstance("DES/CEC/PKCSSPadding");
spec = new IvParameterSpec (iv) ; .
cipher.init(Cipher.ENCRYPT_MODE, sessionKey, spec);

byte[] cipherData = cipher.doFinal (plainData) ;

// encrypted IV using DES session key

cipher = Cipher.getlnstance("DES/ECB/PKCSSPadding");
cipher.init(Cipher.ENCRYPT_MODE, §e551onKey);

bytel] cipherIV = cipher.doFinal (iv);

298

APPENDIXN PROGRAM LISTING

// --- get server public key

KeyCert = new KevAndCertificate("project/classes/certs/serverRSAcert.pem");
X509Certificate ¢ = KeyCert.getCertificateChain() [0];

serverPublicKey = c.getPublicKey();

// encrypt session key with server public key

cipher = Cipher.getInstance("RSA", "IAIK");

cipher.init (Cipher.ENCRYPT_MODE, serverPublicKey);

byte[] cipherSessionKey = cipher.doFinal (sessionKey.getEncoded());

// --- get our/client private key
KeyCert = new KeyAndCertificate("project/classes/certs/"

+ nameAlias + “RSAcert2.pem”};
epki = (EncryptedPrivateKeyInfo)KeyCert.getPrivateKey();
epki.decrypt {"Aston University");
clientPrivateKey = (RSAPrivateKey)epki.getPrivateKeyInfo();

// sign message

Signature s = Signature.getInstance("SHA/RSA", "IAIK"};
s.initSign{clientPrivateKey);

s.update(plainbData) ;

byte[] dataSignature = s.sign{();

// message digest

MessageDigest mDigest = MessageDigest.getInstance("SHA");
mDigest.update (plainData) ;

dataDigest = mDigest.digest{();

// --- Embed all information ---

// send the session IV
dataO.writeInt (cipherIV.length);
dataO.write(cipherIV);

// send the encrypted session key
dataO.writeInt (cipherSessionKey.length);
dataO.write(cipherSessionKey) ;

// send the data signature
data0.writelInt (dataSignature.length);
dataO.write(dataSignature) ;

// send the message digest
dataO.writelInt {(dataDigest.length};
dataO.write({dataDigest);

// send the encrypted data;
dataO.writeInt (cipherData.length);
dataO.write(cipherData) ;

byte{] cipherInfo = byteO.toByteArray();
return new DatagramPacket (cipherInfo, cipherInfo.length, address, portl);

2 B i sl
// receivePacket3 () method fetch packet from the server
2 ittt i
public void receivePacket3 () {

try {

packet3 = new DatagramPacket (receiveBuf3l, receiveBuf3.length) ;

socketl.receive{packet3};

ByteArrayInputStream bytel = new ByteArrayInputStream(
packet3.getData(), 0, 512);

DataInputStream datal = new DataInputStream(bytel) ;

// read encrypted DES key
byte[l cipherDESKey = new byte[datal.readInt()];
datal.read(cipherDESKey) ;

// read signature
byte(] dataSignature = new byte{datal.readInt ()]
datal.read(dataSignature);

// read the message digest data

bytel] orginalDigest = new byte{datal.readInt()];
datal.read(orginalDigest);

// *** Proses Data ***

// --- get our/client private key ---

KeyCert = new KeyindCertificate("project/classes/certs/”
+ nameAlias + "RSAcertl.pem");

299

APPENDIXN PROGRAM LISTING

epk% = (EncryptedPrivateKeyInfo)KeyCert.getPrivateKey();
epkl.decrypt("Aston University");
clientPrivateKey = (RSAPrivateKey)epki.getPrivateKeyInfo();

// decrypt the session key

cipher = Cipher.getInstance("RSA", "IAIK");
cipher.init (Cipher.DECRYPT_MODE, clientPrivateKey);
bytel[] plainDESkey = cipher.doFinal (cipherDESKey) ;
DESkey = new SecretKey(plainDESkey, "RAW");

// verify the signature

Signature s = Signature.getInstance("SHA/RSA", "IAIK");
s.initVerify(serverPublicKey) ;

s.update{plainDESkey) ;

if (s.verify{dataSignature}) {
System.out.println{"Verified........ ")

}

else {
System.out.println("Not Verified........ ")
Check = "xVerify";

)

// check for data integrity

MessageDigest mDigest = MessageDigest.getInstance("SHA");
mDigest.update (plainDESkey) ;
byte{] dataDigest = mDigest.digest();

if (MessageDigest.isEqual{dataDigest, orginalDigest)) {
System.out.println("Data received is valid..."};
}

else {
System.out .println("Data was corrupted..."):;
Check = "xValid";

} catch (Exception ex)
System.err.println{“Error : fail to read packet.");

[/ mm e e — e m e m
// doNotVerifyFramel({) method:

public void doNotVerifyFramel({) ({

wf = new NotVerifyFramel();
wf.setTitle("Secure-SIG");
wf.setSize(300,110);
wf.setLocation(350,100);

wf .setBackground (Color.red);
wf.setVisible(true);

[/ =mmmm e m e m e — e mmmmm
// doNotValidFramel () method:

public void doNotValidFramel({) {

wf = new NotValidFramel () ;
wf.setTitle("Secure-SIG");
wf.setSize (300,110} ;
wf.setLocation(350,100);

wf .setBackground {Color.red);
wf.setVisible(true);

} // end CodeLF class

CodeLoaderServer.java

[] mmmmmmmmmmmm—m——— oo o oSS ST oo T mS S S ST mSm TS
// Main server program for code viewer process

public class CodeLoaderServer { _ . ‘
public static void main(String() args) throws java.io.IOException {
new CodeLoaderServerThread().start();
}

300

APPENDIXN PROGRAM LISTING

CodeLoaderSeverThread java

/] = e e m————m o — -
// This program is a server program to perform the code viewer
// process. This program is called by main server program

// (CodelLoaderServer.java).

[] e e m o — o m oo

import java.io.*;

import java.net.*;

import java.util.*;

import java.math.*;

import java.security.*;
import java.security.spec.*;

import javax.crypto.*;

import javax.crypto.spec.*;

import iaik.security.*;

import iaik.security.rsa.*;

import iaik.security.cipher.*;
import iaik.security.cipher.SecretKey;
import iaik.asnl.structures.*;
import iaik.x509.%*;

import iaik.asnl.*;

import iaik.security.provider.IAIK;
import iaik.pkcs.*;

import iaik.pkcs.pkcs8.*;

import iaik.utils.KeyAndCertificate;

class CodeloaderServerThread extends Thread ({

protected DatagramSocket socket = null;
protected DatagramSocket socketl = null;
protected BufferedReader clfs = null;
protected BufferedReader flLst = null;
protected boolean DEBUG = true;

protected int port = 20012;

protected int maxLine = 5;

protected FileInputStream fis = null;
protected CipherInputStream cis = null;
protected RSAPrivateKey privateKEY = null;
protected Cipher cipher = null;

protected byte[] skey = null;

protected String fileLoc([];

protected char EOLN = ‘\n';

protected char EOF = (char) -1;

protected RSAPrivateKey serverPrivateKey = null;
protected KeyAndCertificate KeyCert;
protected EncryptedPrivateKeyInfo epki;
protected Key key = null;

protected PublicKey clientPublicKey = null;
protected bytel] receivebuf = new byte[1024];
protected byte[] sendbuf = new byte(1024];
protected bytel[] receivebufl = new byte (10247} ;
protected bytel(] sendbufl = new byte(1024];
protected DatagramPacket packet;

protected DatagramPacket packetl;
protected InetAddress address;

protected String alias;

protected byte[] PlainDESKey;

protected Cipher RSACipher;

protected byte{] dataDigest = null;
protected byte[] plainData = null;
protected byte[] dataSignature = null;
protected boolean OK = true;

protected String check = null;

protected byte(] iv = null;

protected IvParameterSpec spec = null;

// open a socket)
public CodeLoaderServerThread() throws IOException {
this ("CodeLoaderServerThread") ;

}

public CodeLoaderServerThread(String name) throws IOException ({
super (name) ;
socket = new DatagramSocket (port);
System.out.println("CodeLoaderServerThread listening on port: "
+ socket.getLocalPort());

301

APPENDIXN PROGRAM LISTING

// run{) : wait for a packet, open a file and send info
public void run{) {
if (socket == null)
return;

while {true) {
try {

String fileInfo = null;

// receive request
this.openInputFile{);
packet = new DatagramPacket (receivebuf, receivebuf.length);
if (DEBUG) ({
System.out.println("Server about to call socket.receive().");
)
socket .receive (packet);
if (DEBUG) {
System.out.println("Server received packet.");
}
address = packet.getAddress():

System.out.println("address : " + address);
port = packet.getPort();
System.out.println("port : " + port);

String received= new String (packet.getData());

// --- get file info
if (flLst == null)

fileInfo = "XNO";
else {

fileInfo = getFileInfo():
}

// send response
sendbuf = fileInfo.getBytes();
packet = new DatagramPacket (sendbuf, sendbuf.length, address, port);
if (DEBUG) {
System.out.println{“Before send packet.");
System.out.println("fileInfo.length : "+ fileInfo.length());
System.out.println{"sbuf.length : "+ sendbuf.length);
System.out.println(“fileInfo : "+ fileInfo);
System.out.println(”"Server send packet.");
}

socket.send (packet) ;

try {
flLst.close();
} catch (IOException e) {
System.out.println("Error closing file : " + e);
}

// recelve request

try {
receivePacketl () ;

// send response
// --- get DES and send to client ---

packetl = sendPacketl();
socket .send (packetl);

} catch (Exception ex) ({
System.err.println{"Error : fail to build packet.");

}

catch (IOException e) {
System,err.println("IOException: "+ oe);
e.printStackTrace();

-~

}

[/ mmmmmmmmmmmmmmm—m—— o — oSS S oSS oSS oSS oSS T ST T mm e
// openInputFile() method open configuration file
//mmmmmmmmmmmmmmm—m—m—m—— oS eSS S oSS oSS oSS oSS oS Ssoooo
private void openInputFile() {

302

APPENDIX N PROGRAM LISTING

try |

flLst = new RBufferedReader (new FileReader ("fileLocList.dat")):
} catch (Exception e) {

System.err.println(“Could not open data file location..");

J A
// getFileInfo() method : get all data
F R i
private String getFileInfo() {

String returnvalue = null;
String readvalue = null;
int fileNum, ctr = 0;
String temp;

try {
readValue = flLst.readLine();
temp = readvValue.substring(0, 1);
fileNum = Integer.parselnt (temp);
returnValue = readValue + ";";

while (ctr < fileNum) {
readValue = flLst.readLine();
returnvValue = returnValue.concat (readvValue);
returnvValue = returnvValue.concat (";");

ctr++;
if {(DEBUG) {
System.out.println("in read readvalue : " + readvalue) ;
System.out.println("file-returnvalue : " + returnvalue) ;
}

} catch (IOException e) {
returnvValue = "IOException occurred in server.";

}

if (DEBUG) {

System.out.println{“returnvalue : " + returnValue) ;
}
return returnvalue;

J T ini el
// receivePacketl() method : receive packet from client
2l i i
public void receivePacketl() {

try |

DatagramPacket packet = new DatagramPacket (receivebufl,
receivebufl.length);
socket.receive{packet) ;
ByteArrayInputStream bytel = new ByteArrayInputStream(
packet.getData(), 0, 256);
DataInputStream datal = new DataInputStream(bytel) ;

// read the encrypted session IV
byte[] cipherIV = new byte[datal.readInt()];
datal.read(cipherlV);

// read encrypted session key
byte(] cipherSessionKey = new byte{datal.readInt{)];
datal.read(cipherSessionKey) ;

// read signature

dataSignature = new byteldatal.readInt()];
datal.read{dataSignature);

// read the message digest data

byte[] orginalDigest = new byteldatal.readInt()];
datal.read(orginalDigest);

// read encrypted data

byte[] cipherData = new pyteldatal.readInt()];
datal.read(cipherData);

;/ *** Process all Data ***

// --- get our/server private key

303

APPENDIX N PROGRAM LISTING

KeyCert = new KeyAndCertificate("certs/serverRSAcert.pem");

epki = (EncryptedPrivateKeyInfo)KeyCert.getPrivateKey();
epki.decrypt ("Aston University");
serverPrivateKey = (RSAPrivateKey)epki.getPrivateKeyInfo();

// decrypt the session key

cipher = Cipher.getInstance("RSA", "IAIK");
cipher.init (Cipher .DECRYPT_MODE, serverPrivateKey);
byte(] plainDESkey = cipher.doFinal (cipherSessionKey) ;
Key desKey = new SecretKey(plainDESkey, "RAW");

Key desKeyl = new SecretKey(plainDESkey, 0, 8, "DES");

// decrypt session IV

cipher = Cipher.getInstance ("DES/ECB/PKCS5Padding") ;
cipher.init (Cipher.DECRYPT_MODE, desKeyl):

iv = cipher.doFinal (cipherIV);

// decrypt the data

cipher = Cipher.getInstance ("DES/CBC/PKCS5Padding”) ;
spec = new IvParameterSpec(iv);
cipher.init (Cipher .DECRYPT_MODE, desKey, spec);
plainData = cipher.doFinal (cipherData);

// --- get client public key ---

alias = new String(plainData);

KeyCert = new KeyAndCertificate("certs/" + alias + "RSAcert2.pem") ;
X509Certificate ¢ = KeyCert.getCertificateChain() [0];

PublicKey clientPublicKey = c.getPublicKey():

// verify the signature

Signature s = Signature.getInstance("SHA/RSA", "IAIK");
s.initVerify(clientPublicKey) ;

s.update(plainbData) ;

if (s.verify(dataSignature))
System.out.println{“Verified........)i

else {
System.out.println("Not Verified........ ")
check = "xVerify";

OK = false;
}

// check for data integrity

System.out.println("try to check for data integrity..."):
MessageDigest mDigest = MessageDigest.getInstance("SHA");
mDigest.update(plainData) ;

byte[] dataDigest = mDigest.digest();

if (MessageDigest.isEqual (dataDigest, orginalDigest))} ({
System.out.println("Data received is valid..."):

}

else {
System.out.println("Data was corrupted...");
check = "xvalid";
OK = false;

}

} catch (Exception ex) {
System.err.println("Error : fail to read packet.");

2 ettt e b
// sendPacketl() method : Encrypt packet to be send

protected DatagramPacket sendPacketl () throws Exception {

ByteArrayOutputStream byteO = new ByteArrayOutputStream() ;
DataOutputStream dataO = new DataOutputStream(byteO) ;

// get DES key
retriveDESkey () ;

// --- get client public key

KeyCert = new KeyAndCertificate("certs/" + alias + "RSAcertl.pem”);
X509Certificate ¢ = KeyCert .getCertificateChain() (0};

PublicKey clientPublicKey = c.getPublicKey () ;

// encrypt session key with client public key

cipher = Cipher.getInstance("RSA", "IAIK") ;
cipher.init(Cipher.ENCRYPT%MODE, clientPublicKey) ;
bytel] cipherDESkey = cipher.doFinal (key.getEncoded ()) ;

// --- get our/server private key

304

APPENDIXN PROGRAM LISTING

KeyCert = new KeyAndCertificate(*certs/serverRSAcert.pem");

epki = (EncryptedPrivateKeyInfo)KeyCert.getPrivateKey();
epki.decrypt ("Aston University");
serverPrivateKey = (RSAPrivateKey)epki.getPrivateKeyInfo();

// sign message

Signature s = Signature.getInstance("SHA/RSA", "IAIK");
s.initSign{serverPrivateKey) ;

s.update (PlainDESKey) ;

byte() desSignature = s.sign();

// message digest

MessageDigest mDigest = MessageDigest.getInstance("SHA");
mDigest.update (PlainDESKey) ;

byte{)] desDigest = mDigest.digest(};

// *** Send all the data ***

// send the encrypted des key
dataO.writeInt (cipherDESkey.length);
data0.write(cipherDESkey) ;

// send the data signature
dataO.writelInt {desSignature.length);
dataO.write{desSignature) ;

// send message digest
datal.writeInt (desDigest.length);
dataO.write(desDigest) ;

byte(] cipherBuff = byteO.toByteArray():
return new DatagramPacket (cipherBuff, cipherBuff.length, address, port);

J] mm e o e e m e — e —— o — o
// retriveDESkey() method : retreive DES key

public void retriveDESkey () {
try {
ObjectInputStream ois = new ObjectInputStream(
new FileInputStream("files/desKEY.enc"));

skey = (byte{])ois.readObject();

// --- get our/server private key

KeyCert = new KeyAndCertificate("certs/serverRSAcert.pem");
epki = (EncryptedPrivateKeyInfo)KeyCert.getPrivateKey();
epki.decrypt ("Aston University");

serverPrivateKey = (RSAPrivateKey)epki.getPrivateKeyInfo():;

// decrypt DES key

RSACipher = Cipher.getInstance("RSA");

RSACipher.init (Cipher.DECRYPT_MODE, serverPrivateKey);
PlainDESKey = RSACipher.doFinal (skey) ;
System.out.println{"Decrypting DES key ... DONE");

// generate key
key = new SecretKey(PlainDESKey, "RAW");

ois.close():
} catch (Exception e} {
System.err.println("Error: fail to get/decrypt DES key.");

}
)

} // end CodelLoaderServerThread class

LoadedCodeServer.java

// Main Server Program for storing information used by remote viewer // process.
class LoadedCodeServer ({
public static void main (String argsl[]) {

new LoadedCodeServerThread().start();
}

305

APPENDIXN PROGRAM LISTING

LoadedCodeSeverThread java

// This program server store information into a file that going to be
// used in remote viewer process. This program server is called by
// LoadedCodeServer. java.

import java.io.*;
import java.net.*;
import java.util.*;

class LoadedCodeServerThread extends Thread {

protected DatagramSocket socket = null;
protected RandomAccessFile lcrf = null;
protected boolean DEBUG = true;
protected int port = 20013;

LoadedCodeServerThread () {

super { "LoadedCodeServer") ;

try {
socket = new DatagramSocket (port);
System.out.println("LoadedCodeServer listening on port: "

+ socket.getLocalPort());

} catch (java.net.SocketException e) {
System.err.println("Could not create datagram socket.");

}

}

public void run{() {
if (socket == null)
return;

while (true) {
try |
bytel[l buf = new bytel[256];
DatagramPacket packet;
InetAddress address;
int port;
String fileInfo = null;

// recelive reqguest
packet = new DatagramPacket (buf, 256);
if (DEBUG) {
System.out.println("Server about to call socket.receive().");
}
socket.receive (packet) ;
if (DEBUG) {
System.out.println("Server received packet.");
}
address = packet.getAddress();
if (DEBUG) {
System.out.println{"address : " + address);
}
port = packet.getPort();
String received = null;
received = new String (packet.getDatal());
if (DEBUG) {
System.out.println("port : " + port);
System.out.println("received : " + received};

}

// store loaded file info
String confirmInfo = writeFileInfo({received) ;

// send response
buf = confirmInfo.getBytes();
packet = new DatagramPacket (buf, buf.length, address, port);

if (DEBUG) {
SySCem,out.println(”buf.length : "+ buf.length};
System.out.println("confirmInfo : "+ confirmInfo);
System.out.println("Server send packet.");

)

socket.send (packet) ;

cry |

lcrf.closel();

} catch (IOException e) {
System.out.println("Exrror closing file : " + e);

)

306

APPENDIXN PROGRAM LISTING

} catch (IOException e) {
System.err.println{"IOException: " + e);
e.printStackTrace();

// writeFileInfo() method: write information to a file

private String writeFileInfo (String receivedInfo)
throws java.io.IOException {

String returnvValue = null;
boolean notFound = true;
boolean removeUser = false;
String readvValue = null;
int pos = 0, pos2 = 0, locPtr =
String fileLoc{] = new String(2
String userName = null;
String fileUrl, inFileLoc = null;
String inUserName = null;
long prevFilePtr = 0, userLocPtr = 0;
char EOF = (char) -1;

0, endIndx = 0;
01:

for (int 3 = 0; J < 20; J++) {
fileLoc{3j} = null;
}

pos = receivedInfo.indexOf (";");
String temp2 = receivedInfo.substring (0, pos);
if (temp2.eguals ("rm")) {
removeUser = true;
pos2 = receivedInfo.indexOf (";", pos + 1);
inUserName = receivedInfo.substring (pos + 1, pos2);
}
else {
inUserName = temp2;
inFileLoc = receivedInfo.substring (pos + 1);

}

String fileName = "loadedCodeInfo.dat";

if (DEBUG) {
System.out.println("filename : " + fileName);
System.out.println("inUserName : " + inUserName);
System.out.println("inFileLoc : " + inFilelLoc);

}

this.openOutputFile (fileName);

if (lcrf == null) {
returnvalue = "NotOK";
return returnValue;

}

/7 check if info is already in file and load all info

int 1 = 0;

char c;

prevFilePtr = lcrf.getFilePointer();

while ((lcrf.getFilePointer() < lcrf.length()) && ({c = lcrf.readChar()) !=
EOF)) {

StringBuffer temp = new StringBuffer();
while (¢ !'= "\n') {

temp.append (c);

¢ = lcrf.readChar();
}

readvValue = temp.toString();

i1f (DEBUG) {

System.out.println ("readValue : " + readvalue) ;
}
pos = readvalue.indexOf (";");
userName = readValue.substring (0, pos);
fileLoc[i] = readvValue;

if (DEBUG) {
System.out.println ("username : *" + userName + Xy
System.out.println ("inusername : *" + inUserName + "*");

((notFound) && (inUserName.equalsIgnoreCase (userName))) {
notFound = false;

locPtr = 1i;
userLocPtr
fileLoc[i]

[
h

prevFilePtr;
receivedInfo;

307

}

/

/

APPENDIX N PROGRAM LISTING

if (DEBUG) {
System.out.println ("in if-notFound : " + notFound);
}
}

endIndx = 1i;
i++;

prevFilePtr = lcrf.getFilePointer();

if (DEBUG) {

System.out.println ("prevFilePtr : " + prevFilePtr);
System.out.println {“userName : " + userName) ;
System.out.println ("i : " + 1i);
System.out.println ("notFound : " + notFound);
}
}
if (notFound) {

userLocPtr = prevFilePtr;

—

if (DEBUG) {

System.out.println ("userLocPtr : " + userLocPtr);
System.out.println ("locPtr : " + locPtr);
System.out.println ("i : " + 1i);

// write file info into random access file

if (notFound) {
if (removeUser)

System.out.println ("Error : File empty, cannot find user.

returnvalue = "NotOK";
}
else {
lcrf.seek{userLocPtr);
if (DEBUG) {
System.out.println (*length : " + lcrf.length());
}
lcrf.writeChars {receivedInfo);
lcrf.writeChar ('\n');
lcrf.writeChar (EOF);
if (DEBUG) {
System.out.println {("length : " + lcrf.length());
}
returnvalue = "OK";
}
}
else {

lcrf.seek {(userLocPtr);
if {(removeUser)

i = locPtr + 1;
else
i = locPtr;
for (; i <= endIndx; i++) {

lcrf.writeChars (fileLoc([i]):
lcrf.writeChar ('\n');
if (DEBUG) {
System.out.println {("i : " + 1});
}
}
lerf.writeChar (EOF) ;
returnvalue = "OK";
}
if (DEBUG) {
System.out.println{“'returnvalue : " + returnvValue) ;

3

i
lcrf.close();
return returnvValue;

// openOutputFile() method: open loaded code file

/

private void openOutputFile (String fileName) {
try {

)

/7
/

lcrf = new RandomAccessFile (fileName, "rw");
} catch (java.io.FileNotFoundException e) {
System.err.println("Could not open data file location..");
) catch (java.io.IOException e) {
System.err.println("IO Exception when opening file info

}

end class LoadedCodeServerThread

308

M)

L)

