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This thesis investigates the physical behaviour of solitons in wavelength division
multiplexed (WDM) systems with dispersion management in a wide range of dispersion
regimes. Background material is presented to show how solitons propagate in optical
fibres and key problems associated with real systems are outlined. Problems due to
collision induced frequency shifts are calculated using numerical simulation and these
" results compared with analytical techniques where possible. A :

Different two-step dispersion regimes, as well as the special cases of uniform and
exponentially profiled systems, are identified and investigated. In shallow profiles,
the constituent second-order dispersions in the system are always close to the aver-
age soliton value. It is shown that collision-induced frequency shifts in WDM soliton
transmission systems are reduced with increasing dispersion management. New reso-
nances in the collision dynamics are illustrated, due to the relative motion induced by
the dispersion map. Consideration of third-order dispersion is shown to modify the
effects of collision-induced timing jitter and third-order compensation investigated. In
all cases pseudo-phase-matched four-wave mixing was found to be insignificant com-
pared to collision induced irequency shift in causing deterioration of data. It is also
demonstrated that all these effects are additive with that-of Gordon-Haus jitter.
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Chapter 1

Introduction

1.1 Background

Described, variously, as the Information Age, Storytelling Age and the Space Age, we
are living in a time characterised by continuous technological révolution. Telecommu-
nications in particular has grown exponentially [1] in its total data content without
any sign of slowing, indicating a seemingly endless demand for bandwidth.

As each new communication medium has developed,v frém written word to Internet,
it has been exploited to the full. For examplé, thére has been rapid progress from
the ticker-tape and telephone being the com'municati()’n system for information-hungry
newspaper offices covering the assassination of JFK in 1963 to small-medium sized
businesses communicating to their suppliers and customers over ISDN lines carrying
multi-media information today.

This introduction, no matter what is chosen as an example of ‘communications to-
day’, will be out-dated within months. Suffice to say, any feasible method of exploiting
more of the existing telecommunications network will be seized upon rapidly. It is the

purpose of this thesis to investigate one aspect of exploiting further the bandwidth of




fibre optic communication links (Wa,velengﬂvifdin_ Solitonéj' and the
improvements that Jmay: \b(\éj@ffordéd bydlspelslonmanagemen

Comparisoﬁs_ wili be made with optical v’timefv di
method of increasing the data-rate. Altematji’\ééﬂ

sion, such as filtering and phase or amplitude/quﬁlzgtjq are ined, and their

applicability to WDM assessed.

1.1.1 Optical Communications

The world is already covered by a net of optical fibres (for example, Fig l.zl)\.g\AH
continents have a telecommunications network carrying their telephone calls;. alb.ng
\\ﬁ_h computer data (email, vid'eo conféfencin@ etc.) a;lld the bulk éf this is o_pti.cal‘
in Europe, the U.S.A. and Japan. The oceans are crossed by several point—tg—p_oint
lirﬂ\:s, also compfised of optical fibres. At present, the mé,quity‘of thése‘ﬁbre links
and networks use standard fibre with a dispersion of 17ps/(nm.km) which is too high
for soliton propagation over any significant distance. Proposals have been made to
partially exploit the opposite signs of non-linearity and dispersipn by qsing return-to-
zero (RZ) pulses,v but no systems of this’na,ture have béen deployed'as yet. Only the
most recent trans—Aﬂantic links (TQ’XT—lQ and TAT-13) and a small number of land-
networks use dispersion-shifted fibre. The pulses on all but some highly experimental
Japanese networks are in NRZ format. Because of dispersion and loss, the signals
are regenerated (converted from optical to electrical and back to optical) as often as
every 30km in most land networks, but typically every 60km in the UK. TAT-12 and
TAT-13 are the first trans-Atlantic links to use passive amplification and no undersea
regenerators.

There are several disadvantages in this situation. As data rates increase, the cost

10




Flgure 1.1 r—Atlantlc (Lb)‘[;ti‘calbhnks Source: I , 19 -
of the high-speed electronics required increases rapidly. It is also very difficult. to
make theée regenerators flexible in their datéq‘ate and wavelength handling capabili-
ties. Many of these bulky electronics packages are also buried under the ocean floor;
difficult to access if there is a fault and subject to high pressures, low temperatures,
the possibility of attack from sea-life and damage from ocean-bed fishing trawlers. As
a result, a high level of robustness and reliability is specified for these systems - usually
the guaranteed lifetime is 25 years. Land-based networks also require expensive regen-
erating equipment, although this is usually easier to access and (in Europe at least)
not subject to such environmental extremes.

Solitons offer the advantage of long-distance stability by balancing dispersion with
non-linearity whilst EDFAs allow them to be re-amplified at regular intervals, rather
than completely re-generated. If a non-return to zero (NRZ) system is to be made non-

regenerative then non-linearities have to be minimised by keeping the average power

11




low (without the signal-noise ratio becoming too larg

1.1.2 Solitons

Put simply, the term ‘soliton’ covers wave pheno’frhéﬁ;\(i}gl{ei‘é;disperéion is balanced
by non-linearity in the propagation material. The first observation of a ‘soliton wave’
was made by John Scott Russell on the Edinburgh-Glasgow canal in 1834 [2].. What
Russell saw was a travelling water wave, formed by the motion of a canal barge; which
then propagated along the canal ‘without change of form or diminution of speed’ for
a couple of miles. Although Scott Russell made a good attempt at modelling this

phenomenon, it was not until after his death that Korteweg and de Vries [3] derived

the equation for the propagation of a wave on the surface of a shallow canal (hence -
the abbreviation KdV). In such circumstances, a wave can exist which balances the

dispersion caused by gravity and the non-linear potential of the water raised above its

normal level. Subsequently, similar phenomena have been predicted and observed in
‘bores’ on rivers (such as the Severn Bore), large ocean waves and optical behaviour

in semi-conductors. The name ‘soliton’ was given to such pulses which pass through

each other almost unperturbed by Zabusky and Kruskal in 1965 [4] because of their
particle-like behaviour.

The solitons which are the subject of this thesis, however, are those which can
exist in single-mode optical fibre with anomalous dispersion. These were predicted
by Hasegawa and Tappert in 1973 [5] as a solution of the equation governing the
propagation of light in such fibres which has the form of the Non-Linear Schrédinger
Equation (NLSE). Here, solitons exist as a balance between the anomalous chromatic
dispersion which causes the loss of data in Non-Return to Zero (NRZ) format and

Self-Phase Modulation (SPM) which is the non-linear interaction of the pulse with

12

- Cow




980/1480 nm

—{laser. diode |

980/1480 nm

laser diode

S . i |
30m of erbium-doped fibre P
isolator WDM WDM isolator

Figure 1.2: Schematic of a double-pumped erbioumf,dope'dfﬁb‘re afnplihér;-
itself.

Soliton behaviour in fibre was demonstrated experimentally in 1980 by Mollenauer
et al [6]. Since the invention of the erbium-doped fibre amplifier (EDFA) [7, 8] progress
has been extremely rapid in making high data-rate, long-distance optical communica-
tions possible using solitons. The EDFA non-regeneratively boosts a signal’s energy.
The ‘average soliton model’ v[9, 10}, which proves that it is possible to have soliton
béhaviour in fibres which are 11§t iossless, and the suppression anoise-iﬁdu_ced timing

jitter [11] have continued to push back the limits of soliton communications.

1.1.3 Erbium-Doped Fibre Amplifiers

The principle behind an optical amplifier (Fig. 1.2) is that light within the s.ponta—
neous emission bandwidth of a gain medium will coheréntly increase in pdw’er as,it'is
transmitted through the inverted medium.- 11_1 other words, 1t 13 a laser without the
feedback.

Handily for optical communications, E7° ions can be added to optical fibre during
manufacture. This fibre can then be used as the gain medium in an amplifier and can
also be spliced directly into a fibre-optic communication system. The main drawback
when using EDFAs is spontaneous noise - an inevitable side-effect in an optical ampli-
fier, due to the quantum mechanical probability of ions in the excited state relaxing to

the ground state without the stimulation of signal photons. The level of this problem

13




1s addressed in section 2.5:2:

The Er3* ions can then be pumped at 0.98um or 1.48um using asemlconductm
laser diode (or diodes, as in figure 1.2) to create gain at 1.55um. Altho.ugh‘the diiode(é)‘
requires electrical current and temperature control (although no temperature control
is required in sub-sea systems where the water acts as a coolant), the electronics does
not handle the data and is much cheaper and more straightforward in comparison with
data-regeneration at > 1Gbit/s. The pump light can either (or both) be fed into the
Er®t-doped fibre in the same direction as the signal being amplified (co-pumping) or
in the opposite direction (reverse or counter-pumping) [12].

The other optical components requvired are a wavelength multiplexer(s) for mixing
the pump an‘y.d sigﬁali, an isolator(s) to.reducAe.feedl‘)ack ipto the a.mp}iﬁer:(which. can
lead to lasing) and/or to 1‘enﬁove 1‘esici11al pump light from reverse pumping, and usually,
an optical filter to remove residual pump light froni-cb—pumping and generally imprdQe

the output signal.

1.1.4 Wavelength Division Multiplexing.

A simple way of increasing the total data rate in én optical link is by fl*a1151nitting more
than one wavelength down the same fibre. Without modification (by, for example,
adding different dopants to extend and flatten it) the 3dB bandwidth of an EDFA is
about 20nm (see figure 1.3). It must be noted that it is the concatenated bandwidth
which is more significant however. Unless the gain characteristic is very flat, the total
gain characteristic becomes very narrow, very fast. This is not a problem in single-
channel operation, but will lead to a large differential gain between WDM channels.
Gain flattening has allowed the transmission of as many as 50 x 10Gbit/s channels over

single-mode fibre up to 1600km [13]. Closer channel spacing and extended bandwidth

14




power out, dBm

-40.0 : 1 N
1.51 1.53 1.55 1.57

wavelength, um
Figure 1.3: Typical emission spectrum of an erbium-doped fibre amplifier.
EDFAs could extend the total capacity well beyond 17bit/s.

The ‘currently agreed channel spacing for WDM in international telecéms is 100G H 2
or multiples thereof [14]. - Cl(.)ser.cha,nnel spac‘ingsraré certain to be agreed as the
demand for total usable bandwidth increases. This is termed dense WDM‘ (DWDM)
to distinguish it from multiplexing signals from the two fibre ‘windows” of 1.3um and
1.5um. There is a limit to how closely channels can be spaced, however. If channels are
very close together and the average dispersion is low, pulses in different channels will
have a small difference in their group velocities. Then it will take a long time for pulses
in the faster channel to overtake slower ones and if they overlaﬁ for too long, cross-
phase modulation between the pulses can destroy them. Also, there is an absolute limit
set by having to spectrally resolve the signals. For example, for 20ps FWHM pulses,
the spectral width will be approximately 17.5G'H z and this will be the limit of spectral
resolution.

The channels simulated in this thesis are separated by 200G Hz in order to re-
solve their spectra in detail after filtering. This is twice the currently agreed standard

mentioned above. Organisations using WDM are quite likely to use multiples of the




standard in early configurations, making the cdﬁéﬁramts-@n filtering and wavelength

allocation less strict. Problems due to collision-induced frequency shifts are likely to

increase rapidly as channel spacings decrease. Collision-induced frequency shifts are
very small compared to channel separation and are therefore not easy to detect, re-
quiring the accurate calculation of the centre of mass of the spectrum of a pulse. The
centre of mass of the spectrum, or mean frequency is given by

ffocow[u(w)l2dw o
122 |u(w)|2dw (1.1)

Pulses need to be adequately separated to allow integration across less than half that

value make a close enough approximation to the integral from —oo to co. This. was

not true when a spacing of 100G Hz (the ITU standard) was used, so double this valﬁé
was chosen.

The alternative method of combining data is by interleaving them temporally at
the same wavelength (Optical Time Division Multiplexing - OTDM). In this scheme,
incoming channels have to be synchronised and the total channel data-rate becomes
a multiple of the incoming data-streams, squeezing the neighbouring pulses closer to-

gether and increasing the lik'elillodtl that they interact with each other.

WDM, however, allows a huge total data-rate by passively multiplexing several

relatively low-data rate channels. Star couplers (similar in behaviour to a prism),
stretched-pair couplers or fibre-grating filters can all be used to passively combine or
separate different wavelengths. As this thesis will show, this is not without its problems
but these can be overcome without costly electronic control, by careful choice of system

parameters.
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Figure 1.4: Loss characteristics of standard fibre.
1.1.5 Dispersion Management

The most common single-mode optical ﬁbré is called ‘staﬁdard fibre’. Its prevalence
is partly bgcause it 1s t_hé simplest and cheapest to ma-nufacture. It has two low-loss
‘windows” at A = 1.3um and A = 1.55um (Fig. 1.4). The second of these has the lowest
loss and coincides conveniently with the gain window of the EDFA. It is also possible to
manufacture semi-conductor laser sources at this wavelength from aluminium gallium
arsenide (InGaAsP) which operate at room temperature, are long lived and simple to
stabilise.

Unfortuna,tely, the dispersion at this wavelenth is ~ 17ps/(nm.km) (figure 1.5)
which would require a 20ps pulse to have 1.07J of energy to fulfil the soliton criteria
described in the next chapter. This is an almost impossible energy to obtain by use
of an EDFA and certainly an impractical energy level for optical communications, not
only because of the power requirements, but also because pulse behaviour would be
highly non-linear and self-destructive. NRZ communications also degrade as dispersion

increases. In this case, the bit pattern is ‘smeared out’ at a rate determined by the
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Figure 1.5: Dispersion characteristics of standard mono-mode fibre.

bandwidth of the signél (at least as great as the dﬁ#a rate) and the dispersion.

Alternatively, dispersion-shifted fibre can be employed. By manufacturing the fibre
with differqnt core dopants and modified refractive-index cross-section, the waveguide
dispersion hecomes important and the net dispersion is changed. This happens at the
expense of a small increase in loss, i.e. loss is 0.2dB/km in dispersion shifted fibre
and 0.17dB/km in standard fibre. Dispersion shifted fibre is manufactured for use in
NRZ systems with a slightly negative dispersion dnd is periodically compensated using
standard fibre. Pulses transmitted at the exact zero dispersif)n suffer more severely
from higher-order dispersion effects.

A second solution is to use mostly standard fibre and periodically (approximately
every 30 — 100km) splice in a short section of highly normal (D negative) fibre, or a
highly dispersive fibre grating, to bring the average down to an acceptable value for
soliton transmission [15] (or similarly to extend the transmission distance of NRZ).

This is one form of dispersion management. Dispersion management is essentially

where the values of dispersion are mixed to achieve the desired average value. Step-

18




wise dispersion maps, mimicking the exponential lossoenergy between amplifiers
[16, 17, 18, 19}, have successfully been used in soliton transnﬁssion to increase the
transmission distance. In uniform dispersion fibre, the soliton criteria are only met
once between amplifiers. At all other points dispersive radiation is lost and/or the
pulse changes shape towards one which does match the criteria. Approximating to
the exponential profile reduces the level of these perturbations. Meanwhile, much
attention has also been focussed on a wide variety of other dispersion configurations,
e.g. [20, 21, 22, 23] and their various benefits and draw-backs, some of which are
described more fully in the next chapter.

This thesis will look at a wide-range of dispersion profiles com'prising of fibres with

two values of dispersion and their effects on WDM soliton systems.

1.2  Aims and Overview of th-is Thesis

The aim of this thesis is to examine the effects which occur when the techniques of
dispersion management and WDM are combined in soliton transmission. In particu-
lar, the very important phenomenon of collision-induced frequency shifts is examined.
Regimes where these effects are critical in §ystem design and'v‘vhere the use of dispersion
management is beneficial are sought out.

First of all, the theory underpinning soliton dynamics is outlined. Chapter 2 then
goes on to address the problems of using solitons for communications in the real world
where there is loss of pulse energy with propagation. Various soliton control methods
are described and their strengths and weaknesses analysed. Many are found to be
incompatible with WDM or very difficult to implement. Dispersion management as a

method of soliton control is compared to other methods and its adaptability to WDM
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explained. It is shown that the limitations in ‘soliton communication systems can be
incorporated in a single diagram showing which designs are feasible. The increase in

the range of feasible parameters due to dispersion management is then calculated.

In Chapter 3, an analytic expression for the frequency shift caused by the collision

of two solitons of different wavelengths is explained. Previously deduced limitations
to WDM soliton systems are then explained for uniform and stepped dispersions. The
problem of Four-Wave Mixing (FWM) in soliton systems is highlighted. The conditions
under which large amounts of FWM products will be generated are shown and shown

to be relatively unimportant in the simulations within this thesis.

In Chapter 4, the theory of collision-induced frequency shift outlined in Chapter 3

is exploited outside the range of dispersion maps previously examined without loss. In

doing so, the effects of dispersion are isolated. The results are examined to find a phys-
ical explanation for the ﬁhenomena observed. Numerical simulations are performed n
order to ascertain the limits of accuracy of the theory used and those limitations are
explained in terms of the soliton dynaﬁlics.

The addition of loss is considered in Chapter 5, bringing the theory and simulations
closer to reality. Potentially optimal design criteria a,ré fhen identified. Further numer-
ical simulations, solving the Non-Linear Schrédinger Equation (NLSE), are performed
of pseudo-random data-streams with a variety of channel configurations, dispersion
map depths, pulse parameters and fibre characteristics in order to find system de-
sign restrictions and recommendations. The problem of Gordon-Haus timing jitter

is investigated in order to confirm that it does not exacerbate the problems due to

collision-induced jitter.

The added complication of third-order dispersion is considered in Chapter 6. Three

approaches to WDM propagation in the presence of third-order dispersion are evaluated

20



by simulation. The practicality and relative merits of ea,éh'éxré outlined.
Finally, some overall conclusions are drawn as to the physics of the phenomena

observed and the practical lessons which can be learnt. Some suggestions for further

work are also outlined.




Chapter 2

Theory of Soliton Dynamics

2.1 Outline

In this chapter, the basis of soliton theory is presented along with some of the problems
encouﬁtered in trying to ﬁsé them in an optic,;al communications system. A comparison
is then made between proposed solutions to these problems. one of which is dispersion-
management.

This chapter is structﬁréd as follows. Firstly, éome fundaméntal properties of light
in optical fibre are outlined and their effects when dominant are described. Secondly?
the equation governing the propagation of light in an optical fibre is described and one
stable solution, the temporal (first-order, bright) soliton, is presented. The theory is
then extended to cover propagation in a fibre with loss and it is shown that there is
still a periodically stable solution. called the ‘average soliton’.

The limitations of single-channel data transmission are identified then displayed in
a single design diagram. The merits of most of the soliton control methods suggested,

so far, are compared and their effect on the design diagram are shown.




2.2  Properties of Optical Fibre

Put simply, optical fibres are ‘light tubes’ - glass drawn out into thin strands, with a
refractive index profile which traps light by total internal reflection. The fibre referred
to in this thesis is single-mode at 1550nm; the second optical window in glass. Strictly
speaking, single mode fibre carries two differently polarised modes, the problems arising
from which will be discussed later. Other properties to be outlined are loss, chromatic

dispersion and non-linear effects.

2.2.1 Loss

Loss 1s an unavoidable problem in fibre-optic communications, although madern fibre
can have losses lower than 0.2dB/km. dB/km are the preferred units in communication

system design and are defined by,

, __Eloa(_’f;{)
A C AN

where L is the distance a signal, initially of power P which has been reduced to Pr.

h
o
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Loss can be compensate‘d far by the EDFA, described in the last chapter. Figure 2.1
shows how a sech-shaped pL‘1lse (the shape of the~ideal soliton) fn’opagates in a fibre
with no characteristics other than loss. It can be seen that there is no distortion of the
pulse shape but the amplitude decreases exponentially.

One of the first assumptions made in deriving the Non-Linear Schrodinger equation
(NLSE) in the next section is the assumption that propagation can be assumed to be
described by the evolution of a slowly varying envelope. Loss, in particular is found to

be a function of the imaginary part of YW (w), itself part of the frequency-dependent
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Figure 2.1: The effect of loss on a sech-shaped pulse in otherwise ideal fibre. Pulses
shown after 0km, 25km and 50km in o = 0.2dB/km.

dielectric constant, by

a(w) = —Im[{"(w) (

o
1S
~—

where w 1s the frequency, n is the refractive index and cis the speed of light in vacuum.
In this equation, « is also the attenuation constant preferred by theoreticians, defined
by

Pf = Pyexp(—al), (2.3)

using the same notation as above.

2.2.2 Chromatic Dispersion

Another effect to have an important role in the NLSE is dispersion. Dispersion is an
effect of the wavelength dependence of the propagation constant or wavenumber, £,
which in turn is derived from the propagation equation of light.

Starting from Maxwell’s equations, assuming the separability of linear and, the

much smaller. non-linear polarisation, and also low loss, we can obtain a general equa-
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tion for the electric field of light propagating in a material such as glass,
. NS
VE + n*(w)—=E =0, (2.4)

which, given conditions of cylindrical symmetry and reduction to independent variables,

solves for E. to give,

E.(r,w) = A(w)F(p)exp(ime) exp(ifz), (2.5)

where A is the normalisation constant, and F'(p)exp(im¢) is the field profile (which

can then be re-expressed as F(z,v)).

The wavenumber can be shown to be linked to the field profile by

*r - OF

~+- cgtw k2.—~_-’~2 = 0, 2.
4 O g - 7P =0, 2.6)

and correspondingly to the normalisation constant by

0A s "
2?5oa—~+(52"53)f1 =0

{[Blw)+ AB—BJA = 0, | (2.7)

where /E(W) = B(w) + AB. Af is related to the modal distribution, I, and a small

perturbation to the refractive index, An, given by

E

ATL:TLQ
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(ko = w/c), which is where non-linearity and loss will be brought into the NLSE later.




Dispersion terms are then derived from the wavenumber, 3(w) and its dependence

on frequency by Taylor expansion,

Bw) = Bo+ (w—wo)bs + i( —wp)* B2 + ... (2.9)

...1

where

i dnﬁ C
[ = DI
Fn (dwn>w:w0 . (210)

Substituting equation 2.9 into equation 2.7 we can solve after taking the inverse Fourier

transform, to get

; /1 04 .
=l 132 az’ +iABA. (2.11)

The similarity betw(‘e.n this and the NLSE is quite obvious - looking ahead to equation
Many disperion terms terms can be included in the further derivation but unless
the pulses transmitted are shorter than lps long or the value of 3, is 1legligil)1¢, it
1$ vpossible to ignore any terms after it. In physical terms, dispersion is responsible
for pulse broadening with propagation, as different wavelengths, with different group
velocities walk away from each other.
Removing 3; (group velocity dispersion) and AJ (non-linearity and loss) from equa-

tion 2.11 we get

JA 1 9*A _
- = 3hn (2.12)
which is easily solvable in frequency space to give,
U(z,w) = U(0,w)exp (%i32w22> duw, (2.13)
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Figure 2.2: The effect of dispersion on a sech-shaped pulse in otherwise ideal fibre.
Pulses shown after 0km, 25km and 50km in D = 17.0ps/(nm.km).

U(0,«) being the Fourier transform at = = 0.

A simple picture of the effect of dispersion is shown in figure 2.2. In this simulation,
the fibre is ideal exc.ept for a value of dispersion of D,——‘- 17.0ps/(nm.km), such as
is found in standard fibre. As in the loss-only case, the amplitude decreases with
distance but this timg it 1s because different wave]eﬁgths are travel'ling at different
group velocities, hence the term group velocity dispersion. The spectrum and total
energy of the pulse 1s un-changed.

The pulse width, as can be predic“‘ced from applyying equation 2.13, increases follow— ‘

ng,

2 1/2

:fj? .
tl — Zo 1 + ( ‘1.7.‘) . (Zl[l—)
Lo

Short pulses therefore broaden more quickly than long ones in the same dispersion.

(SN}
=1




2.2.3 Non-Linearities

The problems which arise due to non-linear effects will be discussed in a later section.
This section will attempt to outline their existence and show how they too can be
included in the NLSE.

The refractive index of glass is intensity dependent and can be expressed as

n=mn, +nyl, (2.15)
where,
3
= —x® 2.16
" Sn'\ ( )

A non-linearity constant can be defined as

Ny y
V= (2.

C-'4efj

QW]
—
-1
S

where A,/ is the effective area - a measure of the cross-sectional field distribution,

given by,

(i fﬁo‘lp(% y)l'“’dmdy)2

Acrs = 2.18
ST T F (e, y) [dady (2.18)
which simplifies to 4./, = 7w’ for a gaussian beam profile, where w is approximately

the core radius of the fibre.

Typically, ny in silica fibre is approximately 2.6 x 107'%cm? /W, wg is 10571 and
Aess is approximately 50um? for a wavelength of 1.5um in dispersion-shifted, single-
mode fibre.

This can be substituted into the expression for Af in equation 2.11 along with
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equation 2.8 to give,

JA 0A i A «
S ——

- + 515 + Eﬁz TA= i‘/|-'4f2—4- _ (2'19)_

gtz 2
Removing the GVD, 3, and loss terms from equation 2.11, gives us

A)
o
<O
A

which is readily solvable in the time domain to give

o
S
—
N—

Alz,t) = A(0,t) exp(iv]A(0,¢)]?). | (2.

That is, there is a phase shift but no change in pulse shape.

This is self-phase modulation (SPM), which is an ‘.intensity-depend‘ent phase-shift
of the pulse’s spectrum. The other main effect this term has is cross-phase modulation
(XPM), where one pulse’s intensity acts to distort that of another, depending on their
local intensities.

Figures 2.3 and 2.4 show how SPM causes an evolution in a pulse’s spectrum and
chirp. The temporz;l pulse envelope is undistorted. With further propagation, more
and more, smaller and smaller peaks in the spectrum will appear, in extreme cases
leading to supercontinuum generation.

Other non-linear effects, not covered by the effects of v, include polarisation mode-
dispersion, Raman and Brilliuon scattering, which are discussed in more depth later.
Polarisation mode dispersion, along with other effects due to birefringence, can be

modelled by expressing the situation as two coupled NLS equations. The others have

to be added in any simulation as a perturbation and cannot be included as other terms
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are. There are two other terms which can be added to the list of those which can be

included in the NLSE and they are for self-steepening effects and self-frequency shift.

2.3 The Non-Linear Schrodinger Equation

While working at Bell Labs in New Jersey, USA, in 1973, Akira Hasegawa and Frederick
Tappert derived the equation for the evolution of an optical pulse envelope In an
optical fibre with anomalous dispersion [5]. The equation is of the form of a non-

linear Schrodinger equation, -

z%i - %ﬁz% - éﬁs%%% + %A +4]|APA=0 i(z:z-z)
where A(z,T) is a complex amplitude function describing the E-field envelope of a
pulse. The equation can be obtained 'fi‘om.2;19 by including Ss, the third order dis-
persion in ps®/km, and changing to time coordinates T, relative to the pulse and
normalised to the pulse width (7' = (¢ = ¢z/n)/7). o is the loss of the fibre in km™'
and ~, the nonlinearity coefficient, given in equation 2.17.

Hasegawa and Tappert also gave one solution to this equation in the same paper

. . . R [CRIS DN . [N TR Wi o .
(assuming that loss and third-order dispersion are negligible), the bright” pulse, or

envelope soliton’. This can be derived by first normalising equation 2.22 50 1t hecomes,

; 02
0z 2 ot?

where
1

L (Eﬁ) A
| B2l
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and t = —

where Lp = T2/|3,| is the dispersion length and Tg is the initial pulse width.

The simplest solution to this equation is,

u(z',t) = sech(t)e™'/?

and is known as the first-order soliton. The pulse phase increases linearly with z and

pulse properties are obviously periodic with 2. The soliton period is defined as the

normalised distance, 7/2. That is,

where T

is the pulse width (FWHM) in real units. The soliton period is 1/8th of a

complete phase rotation in eq'n 2.26

At this point, it is useful to introduce the dispersion term, D, given by,

27c

D =—=5hn (2.28)

and measured in ps/(nm.km) which is used most frequently in designing optical systems

because it is easy to calculate accumulated dispersion with propagation.

Figure 2.5 shows the temporal shape of a first-order soliton with 20ps FWHM in

fibre with dispersion D = 0.5ps/(nm.km].

The most important relationship between these parameters s,

B 2[,82!(:.461'1' 1‘76’

S
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Figure 2.5: Temporal envelope of a first-order soliton in fibre with dispersion D =

0.5ps/(nm.km) and FWHM 7 = 20ps.
the energy relationship for a first-order soliton with half-width 7, the energy contained

in the soliton £, and the fibre characteristics given. This simplifies to [24]

(2.30)

for typical optical communications fibre, single-mode at A = 1.5um. That 1s, the
effective area, A.;; = 50um?. D is the dispersion inn ps/(nm.km), 7 is the pulse width
(FWHM) in ps, and F; is the pulse energy. in pJ.

The limitations to the accuracy of this equation-are set by the thresholds above
which other effects become significant. Realistic levels of loss cannot be ignored for
propagation over more than a few tens of metres. This is discussed in the following

section.




2.4 Soliton Dynamics with Loss

The non-linear Schrédinger equation above assumes that loss (attenuation) in the fibre
is negligible compared to the other effects.” It has proved impossible to manufacture
optical fibre with loss much less than 0.2d B/km. The advent of the erbium-doped fibre
amplifier [7, 8] (EDFA) made it possible to periodically compensate for this loss in the
A = 1.5um window. Several studies showed that a soliton’s properties would survive
periodic amplification and loss, both in theory and practice, as follows.

In 1980, Mollenauer et al, at Bell Labs, obtained experimental verification (6] of
the soliton phenomenon, followed by transmission of solitons, first over "lOk‘m [25] and
later 4000km [26] using Raman gain to compensate for loss.

Hé‘segawa and Kodama [27. 28] further developed the soliton theory, showing that,
in principle, it was both possible for solitons to survive periodic amplification and loss,
although the initial proof used the addition of a CW wave of the same phase and
wavelength as the soliton rather than an atmplin'ﬁer model. From this, they claimed that
data transmission was possible with soliton data-streams.

As experimental achievements, in terms of distance and data rate, progressed, so
did the theoretical understanding of soliton dynamics. Notably, soliton theory has been
expanded to include investigations of the interactions between neighbouring solitons
in a pulse train [29, 30, 31, 32] and collision dynamics between solitons of different
wavelengths [33]. The latter of these would later be expanded to give the analytic
theory used in much of this thesis.

Although soliton transmission with periodic amplification and loss had been proven
to be possible in principle (also examined in [33]), it was not until 1990/91 that an

exact solution was derived by Mollenauer et al [34], and independently by Hasegawa
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Figure 2.6: Average soliton evolution over periodic amplification system.

and Kodama (9] (the ‘guiding-center’ soliton) and Blow and Doran [10] (the ‘average’
soliton) which could vbe used to predict the ﬁecessary iput power an&pul;e width for
stable soliton transmission in a periodkzﬂly amplified system.

In the average soliton model, the average pulse energy in"any‘ﬁbr'e link between
amplifiers is equal to the soliton energy given by equation 2.30. This holds as long as
the amplifier spacing is significantly less than the soliton period, and the dispersion in
the link is uniform. Figure 2.6 shows how pulse eneigy evolves in a chain of lumped
amplifiers. The pulse only fulfils the soliton condition at one point between each
amplifier, being boosted in power at each amplifier and then decaying exponentially as
1t travels down the fibre.

In parallel with this, experimental advances were bringing the possibility of long-
distance communication at high data rates without optical regenerators closer and
closer. The combination of sources at A = 1.5um and the highly efficient erbium
doped fibre amplifier [7, 8}, however, finally allowed transmission results from soliton
experiments to rival those achieved using NRZ pulses (non-return to zero, where the

optical pulses are not discrete). Both systems have achieved trans-oceanic transmission




distances for single-channels of up to and over 10Gb/s, e.g. [35, 36, 37] and more

recently the total data rate has been pushed to over 100Gb/s by the use of WDM

38, 39].

2.5 Soliton Transmission Limitations

In the following sections, the limits to soliton transmission in terms of data-rate, ampli-
fier spacing and total distance are highlighted. Where possible, expressions are given

for the maximum distance over which data can be transmitted due to each limitation.

2.5.1 Amplifier Spacing

Having 1‘eplaced regenerators with amplifiers, thése amplifiers become a significant
source of cost in insteﬂling a point—.point link. As the amplifier spacing Is increased,
the number of amplifiers required for a point-point link is reduced. Therefore, the
greater the spacing between amplifiers. the lower the cost. The fundamental limitation
on amplifier spacing is.the variation of phase, i.e. the soliton period. This is referred
to as the average soliton limit. Effects due to phase variation of the so.liton'become
evident if the dmpliﬁer spacing -1s n.ot less than 10 times smaller than the soliton
period [40], although the effects are not large enough to degrade data transmitted
over transoceanic distances. As the phase of the amplifier-spacing approaches that
of the soliton frequency side-bands are formed [41], draining energy from the signal
wavelength. An example of this is given in figure 2.7 where the amplifier spacing is
exactly equal to the soliton period.

A guide to use in avoiding problems arising from these effects is that the soliton
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Figure 2.7: Evolution of the spectrum of a 10ps soliton transmitted in fibre of dispersion
0.938ps/(nm.km) with amplifiers every 42.3km which is also the soliton period.

period must be at least 5 times the amplifier spacing. That is,

’ 0.322 [ 772 '
I itnid 2.31
5 (2|/32|> . (2:31)

Where 7 is the pulse w.idth (FWHM) in ps and 3, is the dispersion in ps*/km. Hence,

for example, for a 20ps soliton in an average dispersion of 0.5ps/(nm.km) at A =
1.55um, the maximum amplifier spacing would be 63.5km. From this example, it can
be seen that soliton-amplifier phase interaction is not a problem with these parameters.
However, as the single-channel data-rate goes up, the pulse width will necessarily have
to reduce.

Figure 2.8 shows the limits on amplifier spacing and pulse width due to sideband

. . . [ N _ . & .
formation over a range of dispersions for a 10Gbit/s single-channel transmission over
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Figure 2.8: Limitations on amplifier spacing and pulse width due to the average soliton
limit. Data rate is 10Gbit/s and total propagation distance, L = 6000km. The arrows
show which side of each line operation is permissible.

6000km.

2.5.2 Signal-Noise Ratio

In common with NRZ systems, soliton communication systems which use EDFAs suffer

from spontaneously emitted noise. This builds up (if not removed by fltering, or

similar) until there is enough of 1t to swamp the data - or at least to cause unacceptable

€rrors.

From the amplifier equations in [12] the noise per unit bandwidth at each amplifier

is n,,( G — 1)hw, where G is the power gain and 7, is the spontaneous emission factor

. . . .~ ‘o .. . VA T ers. ar eiver
(ns, = 1 for an ideal amplifier). The total noise, Pagise: after N amphiiers, at a receivel

with bandwidth B.is NV Bhvngp(G — L).

(o
[o79)




If the number of ‘ones’ and ‘zeros’ in the bit-stream are approximately equal then

the average power is RE,, /2, where R is the bit-rate and,

P 1.17D [ GinG o
sol = - a1 (2.32)

is the soliton energy just after every amplifier (when A = L.55um, combining equation

2.29 with the average soliton factor). Hence the SNR is given by

SNR =

Fo 117D [ GinG 1 ,
= (2.33)

G—1) NBHung,(G~1)

noise T

or, in other words, the maximum pulse width for transmission over distance L, with

amplifier spacing L,, is given by

'G/:nG‘ ) ' L,

Tsyp = 1.17D R S .
SNR 1 ((G—l)'2 LBHvn SN Rpoy

2.5.3 Gordon-Haus Jitter

Ami)liﬁers also bring the main system limitation, ﬁrsj; identified by Gordon and Haus_in ‘
1986 [11]. Stochastic noise from each amplifier adds a random change to each soliton’s"
average frequency. Each soliton then has a slightly different group velocity and may
walk out of its allocated time window and subsequently lead to errors at the receiving
end.

For idealised amplifiers and “average soliton’ conditions, Marcuse [42] derives the
distance limit set by Gordon-Haus jitter alone to be,

Tti;[/{effi’a@ (‘) 35)
3 ary L w eSS TR 2.3
Lmar S 0'13{‘-7151)77,-21)]1((1’ — 1)
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where, 7 is the pulse width (FWHM), 2¢,, is the expected arrival time window of the
soliton (i.e. the bit period), A.;; is the effective area of the fibre, L, is the amplifier
spacing, ny is the non-linear coefficient of the fibre (in units of em?/W) [43], h is
Planck’s constant, &' is the gain and n;, is the spontaneous emission factor of the

amplifiers. () is the ‘average soliton factor’, given by,

0= oL,
© 1 —exp(—al,)’
which takes account of the variation in amplitude between amplifiers.

Note that the L., increases as the cube 1‘Qot of pulse width (r/2), t2/% and D=1/,
Hence, to optimise this parameter, we would 1il{é as wide a pulse, as low a data rate
per channel and as small a dispersion as possible.

Figure 2.9 illustrates the practical limits set by Gordon-Haus jitter on IOGbit/.é
single-channel data transmission over 6000km for a range of dispersions. The sharp
up-turn for very small amplifier spacings is due to the excess gain required of each
amplifier to overcome losses due to splices and isolators, etc.. In this case, the excess
gain‘ has been estimated to be 0.1dB.

Several factors can be used to decrease the Gordon-Haus effect such as ﬁltéring
(of fixed or sliding central frequency), phase and amplitude modulation, partial re-
generation, alternating amplitude modulation and dispersion management. These are

discussed in section 2.6.

2.5.4 Soliton-Soliton Interaction

The high pulse width/low data rate relationship is also limited by the requirement that

we avold neighbouring soliton-soliton interaction [29, 30]. An attractive force between
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Figure 2.9: Limitations to amplifier spacing and pulse width due to Gordon-Haus
jitter after 6000km at 10Gbit/s per channel. Other parameters are, A = 1.55um,
A = 50um, a = 0.2dB/km and ny = 2.6 X 1072°m?/W. The arrows show which
side of each line operation is permissible.
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neighbouring solitons of the same phase in a pulse train can be deduced by regarding
them, more correctly, as two parts of a second-order soliton, half-way through its phase
evolution. Solitons in anti-phase repel one another and solitons in quadrature neither
attract nor repel. An approximate rule is that 7 < 2/5t,, (¢, is half the bit-period, as
defined in [42]). A more accurate design rule is to make the total system length less

than half the collision distance due to soliton attraction. Hence,

( T >2 s , (1.76 5 37
176) 25, P 237) (2.37)

where R is the data-rate (from [44]).

mar =

T~
VAN
Lo o=

rfhis attractive force only exists for solitons of the same amplitude and phase 30,
32, 31] because it is only the identica,l portions of the two solitons which are in a bound
state. Hence, by varying either of these factors between neighbouring SOlitbns, it is
possible to increase the maximum transmission distance [45]. Slow amplitude (half-
data rate) modulation schemes reduce the amount of interaction and have been shown
to be effective experimentally [46, 47] but this may be impractical in terms of system
design as the initial modulation may be lost after repeated re-amplification. In all the
simulations in this thesis, pulses in the same channel are assumed to be at the same

phase and initial amplitude.

2.5.5 Non-Linear Effects

Optical Kerr Effect

Self-phase modulation (SPM), is only one of the possible non-linear effects which can
be experienced by optical pulses. It is a manifestation of the optical Kerr effect, due to

the interaction between the light and electrons in bound states of the silicate lattice.
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Generally speaking, the interaction leads to a change in the refractive index, n, given
by equation 2.15, and hence dependent on Y the third order susceptibility of the
material [48]. Other, and usually detrimental, effects due to the optical Kerr effect

include cross-phase modulation (XPM) and four-wave mixing (FWM).

Brillouin Scattering

Two other \?) effects are; Raman scattering (see below) and Brillouin scattering, which
is an acoustic interaction with the lattice. Brillouin scattering effects signals with very
narrow spectra (e.g. a few tens of MHz) and is therefore not a serious problem in
soliton transmission. Also, the scattered light propagates in the opposite direction to
the data signal, so uni-directional data propagation is not effected and the 1‘1oiée can
be removed by the use of isolators, which are usually included in the design of EDFAs

anvway.

Raman scattering and Self-Frequency Shift

Raman scattering is due to photons interacting with the infrared optical vibrations
of the lattice. The photons are absorbed, a quantised lattice vibration (phonon) at
an infrared frequency and a photén of frequency giveﬁ by the difference between the
original photon and phonon is emitted. It is also possible, but much less likely that a
photon and phonon combine to make an up-shifted phonon. Hence, when scattering
occurs, side-bands grow - one at lower {requency, much more intense than the one at
higher frequency.

The scattering process can also be stimulated by a pump signal at the side-band

frequency so that the interaction occurs more quickly. Because of this, Raman scatter-

ing is also strongly cumulative and can lead to a sequence of scattered sub-sidebands.
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The peak resonance in glass is about 90nm at 1.55um, putting it outside the total
bandwidth being exploited in this thesis, across the EDFA window. However, Raman
scattering can occur between channels of any wavelength separation, so WDM systems
can incur penalties due to cross-talk between channels. The numerical results in this
thesis do not consider Raman effects, however, as it was intended to isolate the effect
of collision-induced frequency shift.

If Raman scattering was to be included then the time delayed nonlinear response
of the material has to be taken into consideration in deriving the NLSE. The response
has a component due to the Raman gain coefficient which in turn depends on the
vibrational fréquencies of the glass. ‘Being a property of the material, made up of
overlapping bands, these frequenciés have to be obtta;ined by experiment.

When solitons are shorter than a picosecond FWHM, their spectrum becomes wide
enough for pumping of the wavelengths in the wings of th.é speéfrum. When tlﬂs occurs,
there is a continuous downshift of the average {requency called the soliton self-frequency
shift (SSE'S). The rate of SSFS is given by,

dwy  —47RP,

dz 157t | (2.38)

where 75 is the Raman pulse-width, below which self-frequency shift becomes signifi-
cant and wg is the central frequency of the soliton. I'rom experimental results, 7r & 1ps,

hence SSES is not significant for any of the pulses studied in this thesis.

Non-Linear Polarisation Dispersion

An assumption made in deriving the NLSE used in this thesis is that the optical field

is scalar. There are. in fact, two orthogonal polarisation axes and energy in each axis




interacts with the other by XPM. In a perfect (circular, untwisted) fibre, this leads
to a rotation of the polarisation with propagation and no detrimental effects. Real
telecoms fibre is randomly birefringent, however, and the two polarisations therefore
have different group velocities and randomly varying polarisation rotation rates. The
different group velocities lead to polarisation mode dispersion, which, like chromatic
dispersion, smears the pulses out with propagation distance. For linear (NRZ) pulses,
this effect can be of the order of picoseconds per km.

As early as 1982 it was shown that polarisation rotation’s intensity dependence
could be used to discriminate between optical pulses and noise [49]. In 1987, Menyuk
[50] showed that because solitons in both polarisation modes of fibre with constant
birefringence could be expyéssed by coupled'versions of the NLS, PMD is suppr‘éssgd
if the predicted walk-off over a soliton period is less than the input pulse width. This
effect is cailed ébliton trapping and. analogous toA the balance of .chromat‘ic ciisbersion
and SPM which maintains the soliton’s shape over large distances, the PMD is balanced

by XPM between the polarisations.

Numerical simulations have subsequently shown that solitons are resistant to PMD

’ . . 1 :
in randomly birefringent fibre [51] when the fibre polarisation parameter Af3/h? (where
Ap 1s the birefrinAgence and h is the rate at which light is coupled between the fast and

slow axes), obeys

A3

hi

<0.3D3 (2.39)

where D is the chromatic dispersion. Recently, it has also been shown that dispersion
management and power-enhancement do not significantly change soliton’s resistance

to PMD [52).
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2.6 Soliton Control

Several methods have been employed to combat the effects listed above, extending
the transmission distance and increasing the single-channel data rate. These include
filtering (static and sliding frequency), phase modulation, amplitude modulation, non-
linear gain, phase conjugation, pulse shepherding and dispersion management [53, 54,
55, 56, 57, 40, 58, 59, 60, 61]. Some of these are more difficult to implement in a WDM

system than others.

2.6.1 Filtering

Filtering is beneficial to soliton transmission for two reasons. Firstly, background -

noise, iuclucﬂng amplified spontaneous emission (ASE) from thé amplifiers required
to compensate for fibre loss, is reduced, improving the signal-noise ratio. Secondly,
Gordon-Haus jitter is suppressed.

Soliton self-shaping re-centres the soliton spectrum around the centye frequency of
the filter used. The walk-off from the soliton’s timing window is therefore 1'eclL1F:<3(tl

(53, 54, 55, 56]. The reduction in walk-off is at the cost of increased amplifier gain and

hence amplifier noise. Hence, the filter cannot be narrow enough to eliminate timing

jitter completely. However, the build-up of rms timing jitter is now proportional to
212 prather than /% as it was in the unfiltered case.

The system can be improved further by using filters with a centre frequency which
slides in value along a chain of amplifiers [37, 37]. ASE, behaving linearly, is completely
filtered out after ~ 5 amplifier spans whereas solitons, behaving non-linearly, follow
the centre frequencies of the filters and timing jitter is further eliminated. Again some

o . . - in filtering, but now more
excess gain is required to compensated for signal power lost in filtering,
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gain and narrower filters can be used without penalty and timing jitter is suppressed

completely. Sequences of filters, down-sliding in frequency act more efficiently than
up-sliding sequences because of higher-order effects of the narrow filters used [57].
It has also been shown that both static and sliding-frequency fil

ters suppress inter-

action between neighbouring solitons in a pulse train (see [62] for a summary of the
effects).

The use of filters fixes the signal wavelength used. Comb-type filters are easy to
manufacture and can be used to extend the technique to WDM systems. In single
or multiple-wavelength systems, sliding-frequency sequences of filters can be used in

lumped ampliﬁcat'ion links.

2.6.2 Phase and Amplitude Modulation

It has also been shown that the phase-modulation of a soliton data-stream, with the
maximum positive chirp coinciding with each soliton can reduce both soliton-soliton
interaction and Gordon-Haus jitter [40] and that even just one phase modulator at the
half-way point of an optical link can reduce timing variance due to Gordon-Haus jitter
by a factor of five [63]. Some dispersive radiation is also produced which can be filtered
out with quite broad-band filters.

Phase modulation needs to be applied to each channel of a WDM system sepa-
rately, requiring de-multiplexing and re-multiplexing of the data. Also, the data-rate
and timing have to be extracted in order to synchronise the modulation with the data
in each channel. That is, phase—modulatedjitter reduction would require clock recovery

and phase modulators and for each channel. Compared to filtering, such equipment

would be expensive, cumbersome and difficult to maintain. An alternative has been

suggested, that the transmission length be designed such that all channels are synchro-
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nised at the phase modulator [64], but this design limit

ation, which would also fluctuate
with temperature, is not attractive in designing a robust, ‘plug-together’ network.

Another system for improving soliton timing is amplitude modulation synchronised
so that the minima in loss due to the modulator coincide with the expected arrival
times of the solitons [58]. As with static-frequency filtering, the rate of growth of
timing jitter becomes proportional to z'/2 but with the addition of filtering, the jitter
cannot grow beyond a fixed value [55].

Again, a WDM system would require de-multiplexing and re-multiplexing every

time the signal was to be modulated; this time, at regular intervals during transmission,

making 1t even less practical than phase modulation.

2.6.3 Nonlinear Effects

It is possible to directly exploit the non-linear properties of s-é)litons by either using
an amplifier along with a non-linear absorber such as a non-linear optical loop-mirror
(NOLM) [65, 66] or saturable absorber [59, 67, 68], or polarisation rotation along with
polarisation dependent loss [69].

A non-linear absorber acts as a filter to back-ground noise but allows large-energy
pulses to propagate. As such, a switching power has to be decided on. above which
loss is low. NOLMs [66], for example, have a power dependent switching characteristic
such as in figure 2.10 with an optimum input power. Hence, this method of pulse
stabilisation is only effective in single-channel systems as co-incident pulses will suffer
Single channel bifurcation of central

a lower transmission ratio than a single pulse.

frequencies has also been observed in some simulations of soliton transmission with

NOLM:s used as saturable absorbers [66] which would lead to large timing errors at the

receiver,
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Figure 2.10: Transmission characteristic of a NOLM with coupling ratio 0.2. Switching
power would be tailored to that the peak power of a first-order soliton.

Saturable absorbers such as multiple-quantum-well (MQW) devices can also be used
as low-level noise filters [67]. Amplifier spacing can then be increased whilst soliton-
soliton interaction and Gordon-Haus jitter are reduced because mtensity fluctuations
due to ASE are smoothed out. MQW saturable absorbers have a strong wavelength
dependence however, e_\'cluding them from usé im WDM s:yst'ems.

Between any two amplifiers in a concatenated chain, solitons will undergo a certain
amount of non-linear polarisation-rotation whilst the ASE from the previous amplifiers
will not (behaving linearly) [69]. Polarisation-dependent filters at the end of each
segment, aligned to match the solitons will then filter out any ASE. This requires
polarisation control at each amplifier to ensure that all data survives. Different WDM
channels, however, would undergo different amounts of polarisation rotation and only

one channel would survive the polarisation-dependent absorber.

2.6.4 Phase Conjugation

It is possible to use the same fibre to perform dispersion compensation ‘on itself” by

optical phase conjugation of the signal at the half-way point in any optical link [60].

This can be achieved by the stimulation of four-wave-mixing (FWM) using a pump
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chirp. This has been achieved for NRZ signals by using FWM in dispersion shifted

fibre [70. 71] and in a semiconductor laser amplifier [72].

The technique has been shown to be applicable to single-channel soliton systems
(60]. It has the benefit of being passive and not requiring clock-recovery circuitry. The
method used Is stimulation of four-wave mixing (FWM) by injection of a pump signal.
Such a method would be directly applicable to WDAM. with one pump signal creating
a phase conjugate of each wavelength channel.

Phase-conjugation by the use of parametric amplification has also been shown to be
a possible method of pushing single-channel soliton propagation to data rates greater
than 100Gb/s as it compensates for Raman scattering [73, 74]. The scheme proposed

also required dispersion tailored fibre.

2.6.5 Soliton Shepherding: Use of XPM

Some schemes have been proposed which exploit the action of crosé-phase modulation
(XPM) to re-time or ‘shepherd’ data-carrying solitons. This, in turn, reduces the build-
up of Gordon-Haus jitter. A clock-stream of pulses can be co-propagated with the data
but at an orthogonal polarisation [75] which modulates the phase of the signal pulses
in much the same way that soliton self-trapping reduces polarisation mode dispersion
(PMD). This shifts the signal pulses” central frequency, pushing them back to their
original time-slot. In practical terms. the output of the laser being used as a pulse
source could be split in two. One pulse stream could be modulated with data then

multi-plexed with the un-modulated clock stream at 90° to the data. At the receiver,

the clock stream could be removed with a polarising filter. I'he authors who proposed

. . e - N ‘Q‘ ¢ g ;
this method did not mention the problem of polarisation mode dispersion. In randomly
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birefringent fibres, conventional solitons need to have roughly half their energy in each
polarisation state for soliton trapping. Random birefringence may actually destroy the
soliton-soliton interaction which keeps the clock pulses in place and data may be lost.

Alternately, the clock-stream pulses can be at a slightly different wavelength from
the signal and co-propagated over short lengths of fibre at intervals along the trans-
mission fibre [61], with the same effect. This has been achieved experimentally by
modulating a dfb laser at the rate of data circulating in a loop. The data rate was
recovered electronically. The clock stream was multiplexed into a short segment of the
loop, over which there was no significant walk-off between the data and the shepherding

pulses.

A more Cdmplex rﬁethoﬂ of im'prov;mg_the signal 1s dliéoptical signal regeneration
(76, 77). The data is used to mode-lock a fibre ring-laser whose output pulses are thén
at the data rate but with minimal timing jitter. This reco?eréd cloél{ pulse stream 1s
then modulated with the data stream using a NOLM. The output pulses are then at
the wavelength of the fibre ring-laser.

Soliton shepherding'and all-optical éignal regeneration can only be.implemented in
WDM if the channels are separated in order to perform the correcting process. A co-
pl‘Opa,gating clock-stream system should be compatible with WDM but may be difficult

to implement (each channel requiring its own, synchronised support channel).

2.6.6 Dispersion Management

Dispersion management is defined as tailoring the average dispersion to that required
by using a combination of local dispersions. For example, standard fibre, as is installed
in most of the world’s optical networks, can be compensated with a short portion

of highly normal dispersion fibre [15] giving a net dispersion small enough to make
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Figure 2.11: Four possible dispersion maps. Dispersions have been normalised to the
average value and distances are given in amplifier spacings. (a) matches the dispersion
to the exponential decrease in soliton energy between amplifiers, (b) approximates to
the exponential decrease in energy in a 3-step profile, (c) shows, in the same units, how
large local dispersions can be used to form a low average dispersion and. (d) shows an
arbitrary dispersion map where the amplifiers are not located at points where there is
also a change n local dispersion. '

soliton propagation viable. In WDM it is also desirable to compensate for third-order
dispersion, flattening the second-order.

Four possible dispersion management schemes for a link comprisiﬁg of fibre and
concatenated amplifiers are illustrated in figure 2.11. As will be seen in later
chapters. there are benefits to these, and other, dispersion management schemes when
used in WDM systems.

NRZ systems have used dispersion compensation for some time in an attempt to
have zero net dispersion and to reduce four-wave mixing. Any finite dispersion degrades
NRZ pulses with propagation. The bit-pattern is smeared out by a factor determined

by the dispersion, the bandwidth (which has a minimum value of the single-channel
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data-rate) and the distance propagated.

Dispersion management in single channel soliton systems have several possible ben-

efits. It may be difficult and/or expensive to accurately manufacture fibre with dis-
persion low enough for soliton conditions to be met with reasonable power levels (i.e.
achievable with diode-pumped EDFAs and not high enough to cause Raman scatter-
ing).

Average soliton dynamics are limited by the amount they deviate from the soliton
condition, i.e. the energy equation 2.29. The main problem observed is dispersive
radiation which can lead to the destruction of the soliton [40]. If the fibre is manufac-
tured with an e'kponentially tapered dispeisio_n proﬁlg, such that the energy equ@tion
is satisfied at aﬂ times, then there is no dispersive 1‘é(liatiqll [78, 10]. Howeve.r, such
fibre is very difficult to manufacture, has to be tailored to each amplifier-span in an

ohl N

optical link, is uni-directional and all samples manufactured so far have been hig

wavelength sensitive.

A step-profile approximation of the exponential profile has also been found to in-
crease the feasible amplifier spacing in a single-channel soliton system [17].

Exponentially tapered fibre, step approximations to it and the range of dispersion
maps considered in this thesis may be considered ‘weak’ or ‘moderate’ dispersion man-
agement. Deep dispersion profiles may be defined as ones which are associated with
significant energy enhancement factors. as described in the next section. Deep disper-
sion profiles, such as dispersion-compensated standard fibre, also reduce Gordon-Haus

jitter [79].




2.6.7 Energy Enhancement

Perhaps the main advantage of dispersion management is the power-enhancement fac-
tor identified by Smith et al [80]. In the idealised, lossless case, Smith showed that
the stable soliton energy. Ey, grows with the depth of the dispersion map used and
inversely with the square of the pulse width. A non-analytic explanation for this is
that more energy is required to fulfil the soliton criteria as the pulses evolve with prop-
agation. That is, in strong local dispersion, the pulses become chirped very rapidly
and appear to ‘breathe’. Hence, the self-phase modulation which balances the effects
of dispersion is weaker over a significant part of the cycle.

.If the mapv uses alternate segments of ﬁbr@ of leﬂgthS [ aﬁd [y and dispersions {5"1

and [, with average value f,,, then,

Eso = E 1+o.7<(ﬁ1“ﬁa“)ll_’(ﬁ2"ﬁ“”)lg) . (2.40)
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where 7 is the FWHM pulse width. The strong relationship with 7 sets a realistic imit
to the use of the equation even in the lossless case. Where the amount of breathing
and/or energy enhancement becomes large, the equation no longer holds. That is,
when the predicted enhanced energy is about ten times that of the unenhanced energy,
a deviation from the prediction would be expected.

In fact, as dispersion depth increases, the periodically stable pulse shape also
changes from sech, through gaussian to more complex pulse-shapes [21]. In the presence
of loss, it has also been observed that there can be a modification of the enhancement
factor [S1]. A reduction in enhancement factor is most noticeable when the periodic-
ity of the dispersion and the periodicity of amplification are the same and when the

1 I ints where there i ‘hange in the dispersion - a situation
amplifiers are sited at points where there is a chang P
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which is easily avoidable in designing a real transmission system. The reduction of
enhancement factor is taken into consideration in later chapters.

The main benefits of the enhancement factor are due to the possibility of using
very low average dispersions without incurring an unacceptable signal-to-noise (SNR)

penalty and reducing Gordon-Haus jitter as discussed in the next section.

2.7 Design Diagrams

It is possible to combine the design limitations listed above in a single diagram which
displays the usable range of parameters. This concept was first proposed b& Doran [82]
and expénded oﬁ by Wright et al [44,.83].

Figure 2.12 shows the window (e\e) in which it would be feasible to construct a
6000km, 10Gbit/s transmission system with lumped amplification. In this example,
it can be seen that the main limits to increased amplifier spacing are the acceptable
signal-to-noise ratio (SNR) limit and the Gordon-Haus jitter limit.

One benefit of dispersion management is the power-enhancement factor identified
by Smith [80] which opens out the eye formed by the SNR and Gordon-Haus jitter lines.
Figure 2.13 shows th the usable range of parameters varies with dept‘h of dispersion
map. Parameters which would correspond to an enhancement factor of greater than 11
have been dis-allowed, which causes the discontinuity in the Gordon-Haus lines. The
limitation was imposed to avoid unrealistic peak powers and pulse widths (as explained
in the last section). That is, the enhancement factor proposed by Smith at al becomes
less relevant as profiles get beyond this order of magnitude. The combination of the
equations for Gordon-Haus jitter and enhancement factor, if unchecked, give solutions

for pulses of zero width due to the 74 term in equation 2.40.It can be seen that a set
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Figure 2.12: Design diagram for 6000km transmission of a single 10Gbit /s channel of
solitons. Other parameters are, A = 1.55um, [ = 0.5ps/(nm.km), a = 0.2([5//3771,
A.;; = 50pm, and excess gain due to amplifier components and splices = 0.1d5. The

arrows show which side of each line operation 1s permissible.
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[Migure 2.13: Design diagram for 6000km transmission of a single 10Gbit /s channel of
solitons. A range of two-step dispersion maps have been included to show their effect by
the predicted enhancement factor. Dispersion depth is given by Dyy = Dy — Dy, where

Dy 5 are the component dispersions of the map. Other parameters are, A = 1.55um,
Daye = 0.5ps/(nm.km), o = 0.2dB/km, A.;; = 50pm, and excess gain due to amplifier
components and splices = 0.1dB. G-H = Gordon-Haus limit, SNR = signal-to-noise

ratio.

of parameters have been opened up for much l@rg@r amplifier spacings and the average
soliton limit has become the main limiting factor across much of the range of amplifier
spacings.

The window of usable design parameters has opened out significantly, however,
particularly making it possible to use larger amplifier spacings and subsequently saving
on component costs. The rest of this thesis is concerned with detrimental effects caused
he shown that dispersion management can also be

by wavelength multiplexing. It will |

beneficial in reducing these effects.



Chapter 3

Analytic Theory of Solitons in

WDM Collisions

3.1 Introduction

Various developments of the analytic theory have advanced knowledge of the behaviour
of optical soliton transmission systems since the discovery of optical solitons in 1973.
The need to utilise WDM to increase the total data capacity of such systems has also
increased as it has become apparent that data rates approaching the limits of single-
channel soliton transmission will scon be required in telecommunications.

Several effects, not observed in single-channel systems, all due to the non-linearity
of soliton propagation, have to be taken into consideration. Included in these are
pseudo-phase-matched four-wave-mixing, collision-induced residual frequency shift and
collision-induced frequency shifts at the detector.

In a collision between solitons of different wavelength, the solitons are perturbed
by each other, shifting in central frequency, accelerating towards each other in the

first half of the collision and away from each other in the second half. In the lossless
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case, these perturbations are symmetric over a complete collision and there is no net
frequency shift (an elastic collision). However, with loss and re-amplification, collisions
are asymmetric, the solitons receive a change in their average frequency [84] and four-
wave mixing products are produced [85]. The group velocities of solitons in a data
stream are randomised by their frequency shifts with respect to each other and pulses
walk away from their expected temporal positions.

The core of this thesis is concerned with minimising these frequency shifts by using

dispersion management.

3.2  Non-Collision-Induced Effects of the WDM of

Solitons

3.2.1 Inifial Conditions

The itial pulse positions in the WDM channels make a ver: large difference to the
maximum transmission distance (84, 44]. If two channels have their pulses superim-
posed when launched, all coincident pu]ses will receive a strong frequency shift due to
the partial collision that they undervgo initially: For this reason, all simulations used in
this thesis have the initial pulses as well separated as possible depending on the data
rate.

Another initial condition which has been shown to be very important in stabilising
the transmission of solitons in dispersion management is the chirp of the soliton [80,
81, 86). Before transmission through the periodic dispersion, the pulses have to be
‘matched’ to the stable cvcle of pulse fluctuations. That is, as well as injecting a pulse

of the correct (sech) shape and energy (set by the enhancement factor and exponential
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loss cycle), they must also be of the correct chirp and phase. At one point in the
cycle, the pulse is transform limited. In the lossless case, matching can be achieved by
passing the pulses through a half-segment of the second fibre in the sequence, l.e. at
this point in the cycle, the pulses are transform limited. With the introduction of loss,
particularly when the periodicity of the dispersion map Is the same as the amplifier
spacing, the amount of fibre needed to achieve this gets smaller. That 1s, the point in
the dispersion map where the pulses are transform limited shifts to later in the cycle.

The amount of shift has not been quantified and is found by iteration.

3.2.2 Third-Order Dispersion

The effect of thirdA order dispersion (the variation in dispersion wifh wavelength) is
much more significant in WDM soliton systems than in single channel systems. In
particular, 1t is preferable to have a small value of average dispersion in order to min-
imise Gordon-Haus and collision-induced timing jitter. [t is possible to tailor a system
with a very small dispersion (sav 0.1ps/(nm.km)) at one wavelength by combining
standard and disﬁersion-shi‘fted fibre. With a typical value for third-order dispersion
(0.07ps/nm/(nm.km)) a second WDM channel, with wavelength 1nm longer than the
first will see disﬁersion of 0.17ps/(nm.km). This problem is addressed in Chaptér 6.

where data propagation is simulated.

3.2.3 Four-Wave Mixing

Non-linear effects due to the third-order susceptibility (x'*)) can cause energy to be
lost from the data. either to back-ground noise or cross-talk. Third-order harmonic
generation is not detrimental to data propagation at the pulse powers studied in this

. -~ ever e predicted to be significant in some systems with
thesis. Four-wave mixing, however, 1s predicied to be sig ¢ Y
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pulse powers of the order of those used here. FWM can be either transient or residual.
That is, side-bands can be produced during a collision between solitons or can build up
during a collision and energy can be permanently lost to the new frequencies produced.

Four-wave mixing (FWM) is a parametric process through which co-propagating
electromagnetic waves of two different frequencies w; and w, interact to produce waves

at w3 and wy, where the frequencies involved must obey [48]

3

W3 + wy = wp + ws. (3.1)
The phase-matching condition,
= (naws + Nywy — Ny — Nows)/c = 0,' -~ (3.3)

where k; is the phase per unit length and n; is the refractive index at frequency w;, and
¢is the speed of light, also has to be satisfied for efficient frequency conversion. IMigure
3.1 shows the build-up of permanent FWM products after a single two-soliton collision.
This diagram shows the evolution of'the pulses spectra with distance travelled along
the y-axis. The collision occurs after 400km. In this instance, the FWM products have
~ 50d B less peak power than the signal solitons.

When four-wave mixing (FWM) occurs. side-bands are produced during collisions
between solitons of different wavelengths. After experimental evidence [57] was found of
four wave mixing products possibly being a significant problem in soliton transmission,
Mamyshev and Mollenauer [87] highlighted the pseudo-phase-matching between soliton

period and amplifier spacing as being responsible for the worst possible F'WM product
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Frequancy, THZ

Figure 3.1: Four-wave mixing during the collision of two solitons, 1.6nm apart in
fibre with loss, o = 0.2dB/km and dispersion, Dy, = 0.5ps/(nm.km), pulse width
7 = 20ps, amplifier spacing, Lqomp, = 50km. Log of power is plotted against optical
frequency as the two pulses propagate. They begin to collide after 400km and have
fully separated by 700km. In these conditions it can be seen that FWM products are
-~ 50dB below signal level. ‘

growth, 1.e.,

2an

La,mp = "ﬂ:; (3/1)

where n'is an integer, and Ak is the phiase mis-match between FWM products, defined
in equation 3.2. In this instance, the phase-matching condition is met whenever solitons
in different channels collide and FWM products accumulate. Ablowitz et al [85] also
provided an analytic model which agrees with the occurance and m»agnitl‘lde of growth
of FWM products seen in numerical simulations and predicts the undesirable resonances
observed in [87].

As with collision-induced frequency shifts, F'WM products can also be minimised
by using or approximating to an exponential taper of dispersion between amplifiers
[87] which reduces the perturbative effects due to loss, making collisions physically
equivalent to the lossless case. FWM products are always produced during collisions,

however these are transient in the lossless case or when the fibre dispersion tapers with
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loss. Levels of FWM were periodically inspected in the simulations used in this thesis.
In all the cases where dispersion management is successful in reducing collision-induced
frequency shifts, no significant amounts of FWM products were observed.

In [84], where the adiabatic theory of collision-induced frequency shift was first
derived, four-wave-mixing products were identified but ignored as negligible. The re-
sults of this thesis would indicate that this was a valid assumption over the range of

parameters studied.

3.3 Collision-Induced Frequency Shift

In 1986, Mollenauer, Gordon é,nd [slam produced a comprehensive investiga,tion of
soliton propagation in systems with periodically émnpensated loss, including an inves-
tigation of the limits of WDM [33]. Their analytic work was also extensively backed .
up by numerical simulations and drew some general conclusions about usable WDM
channel separations.

Mollenauer et al extended their analysis in 1991 [84] to give an expression for the
residual frequency shift after the collision of two solitons of different wavelengths.

They returned to the non-linear Schrédinger equation in the form,

[}
~—

0w (=) A(z) P*u D .
—i (5; _ /2 u,> =— "2t [u] u (3.1

where the loss coefficient, v averages to zero and the dispersion parameter, A = D/D

averages to one over a distance much less than the soliton period.
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This can be transformed into

1
5 = 3 + gl |7, (3.6)

where g(z') = G(2)/A(2), v' = u/VG, d=' = Adz and ' = 0 when z = 0. G/(z) is the
variation in gain (or loss) dependent on distance and is periodic.

Taking the solution to eq’n 3.6 to have soliton form,

u' = sech(t 4+ Qz') exp(—iQ2' +1id), (3.7) K

where do/dz' = g—(1 +Q?)/2. As Mollenauer et al pointed out, thié 1s only an approx-
imate solution which is accurate where the loss coefficient and dispersion parameter
vary over a short scale compared»to the soliton period.r o

Adding two such solutions for solitons whose frequencies do no not overlap (i.e.
pulses from two different WDM channels), v +v" we can re-substitute into eq’n 3.6

(and ignore the cross-products associated with FWM) to get,

v 10%

s =SS ol P 2P, (3.

Il

and.,

dv' 10% ol 2 N, .
I 27 4 v, 3.9
5 =5 Tl + 0 (3.9)

l

We are interested on the effect on one soliton’s mean frequency, {w), by interaction

with the other soliton. The mean frequency of a pulse is defined as,

O . (3.10)
dt

<(,J> = I/V”llm/
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Also, the mean temporal position is defined as,

(1) = W /i|u’|'2dt, (3.11)

where the pulse energy is,
W= / ' 2. (3.12)

Differentiating with respect to =’ gives,

dw

dz'

(3.13)

and

= »-((,u), (31/1)
Using eq'n 3.8 then gives,

diw) 2g O[]
dz! W at

[v'|dt. (3.15)

Substituting eq’n 3.7, and it’s equivalent for v" with mean frequency —§2 into eq’n
3.15 to get,

9 ‘ 2 ! 2 ! R )
(j;“ — g/ dt (g—tsech'(f + Q= )) sech™( — Q1) (3.16)
dz’

which applies to both solitons. When the frequency shifts are much smaller than

the frequency separation of the solitons, their effect on the integral can be taken as

negligible, hence,

@ = %/dt sech’(1 + Qz')sech’(t — 02'). (3.17)
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Figure 3.2: Irequency shift during the collision of two solitons, 1.6nm apart in fibre
with o = 0 and (a) - solid line - D = 0.5ps/(nm.km) and (b) - dashed line - a
stepped dispersion profile, equal step-lengths, L,, = 100km and dispersions D; =
0.75ps/(nm.km) and Dy = 0.25ps/(nm.km). In (b) D = D, across —50km < z <
50km. The distance, = = 0 at the collision centre in both cases.

At this point, we can get a simple picture of what this looks like in the lossless case

with uniform dispersion. In this case, ¢ =1, = = z and eq’n 3.17 reduces to,

0 = lQ dt - sech®(t + Qz)sech’(l — Qz) (3.1

2 [20z cosh(20z) — sinh(20z)) o
Y (sinh(20z))? ' (3'19) :

(%]
J—
o
S

o)

This predicts the mean frequency of each soliton as they collide. Figure 3.2 plots the

shift in the mean frequency of one soliton (the other undergoes the opposite sign of
shift - hence the minus sign is dropped beyond this point) during the collision of two
solitons. 1.Gnm apart in lossless fibre with dispersion D = 0.5ps/(nm.km) and in a
stepped profile where the average dispersion Dyye = 0.5ps/(nm.km).

The frequency shift does not necessarily return to zero after a collision in lossy
and/or non-uniform dispersion fibre (e.g. in the second plot of central frequency in

. R . . oo & - b L . 7 "
figure 3.2). To calculate the net frequency shift, we can integrate eq’n 3.17 over z’ to
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/dt sech® (¢ + Q2')sech?(t — Qz'). (3.20)

This can then be reduced by doing a spatial resolution of g because g is periodic in 2.

That 1s,

g(:'):/dk (k) explik="). (3.21)

After substitution into eq’n 3.20, we get,

32 peo glk) ot
50 = Im>s / (AL 3.99
m 0 ‘ k sinh’z’ (3.22)

where,

7k
T ) (3.23)

In a periodic variation of dispersion and gain, g(z') reduces to a sum over spatial
harmonics of the fundamental period (i.e. L, = Ly 10 all the cases considered in

this thesis, where Ly, is the periodicity of the dispersion map), with wave numbers

2an .
¢ ==, (3.24)
pert
and eq'n 3.22 becomes
161, & n’z?
(SQ = i Im{g 3 25
w3 Z (Jn)smhz(ru) (3.25)
n=1
where
-2
T = (3.26)
?-QL;)ert
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and gy is the average of g(=') exp(~i2mnz'/L,.,). That is,

;- 1 /LPWG 2anz'\ .
n — o Js Eexp - Lpe’,t dz (327)

[f6f =0.5612(/7) is the channel spacing in real units then (using ¢, for g, from

now on to reduce clutter) eq’n 3.25 can be expressed as,

5 03yt
5(—;) 7:: Z Im(g,)

ot sinh? (m,)'

and

2

~

T .
T = = 2.7995

O Lpert Jpcft

(3.29)

The collision length, L, = 0.6298z5/(74f), begins and ends where the solitons ov erlap
at their half power points
In real units the periodic power variation,

aL])Lrt

——— = Afe™™? 3.30
(1 —_ e*"Oprerz)( ( )

and A(z) is the periodic dispersion variation, both normalised to unity. A? is the

e soliton factor and as above. =’ is the inhomogeneous distance along the fibre

averag

span,

y:/aumi (3.31)

These equations can be plotted in a variety of ways which illustrate the effect that
. the most revealing are those of frequency shift against collision

they describe. Possibly

centre and maximum residual frequency shift against collision distance.
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Figure 3.3: Irequency shift against collision centre for two solitons, 1.6nm apart in
fibre with a = 0.2dB/km and D,, = 0.5ps/(nm.km). (a) Uniform dispersion and (b)
Dy — Dy = 1.0ps/(nm.km).

3.4 Two-Step Profiles

As in figure 3.2, the collision centre is taken as the point wh_ere _the two solitons are
completely overlapping. In uniform dispersion, lossless fibre. the position of the collision
centre is immaterial. However, as soon as any variation 1n pulse energy or dispersion is
introduced, the collision becomes asymmetric and there is a net frequency shift. With
loss present, the asymmetry becomes most noticedble when the collision occurs across
an amplifier or midway between two amplifiers in a concatenated chain. In figure 3.3
(a) is the residual frequency shift for a range of collision centres between two amplifiers
in a concatenated chain, each 30km apart. Line (b) shows the residual frequency shift
for the same chain of amplifiers but with a dispersion map of the same periodicity, made
up of alternate 25km steps of fibre, Dy = 1.5ps/(nm.km) and D, = 0.5ps/(nm.km).
Collision centre is measured as the distance from the last amplifier.

This shows how some dispersion maps can improve the residual frequency shift due

to soliton collisions. Which dispersion maps are best at reducing residual frequency
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shift will be addressed in the following chapters. In the course of researching this topic,
a large number of combinations of parameters have been tried and several phenomena
observed. With this experience, a few features of figure 3.3 can be explained. The
phase of the variation in frequency shift in the uniform case does not match that of
the amplifier spacing. This is because the most asymmetric collisions are not centred
on the amplifiers but occur just before them. That is, the most asymmetric energy
exchange is achieved when some of the re-separation occurs before amplification. Ob-
viously, for there to be significant asymmetry, a collision has to still be under-way
during amplification, so the amount of off-set between collision-centre associated with
maximum frequency shift and amplifier position also depends on the length over which
collisions occur. Discontinuities in the variation in fréquency shift coincide with the
discontinuities in the dispersion map, making the curve a composite of two sinusoids
like the one in the L.miform casé.

In practical terms, the relationship between the maximum value of residual fre-
quency shift.and collision distance, L. shows which frequency separations are viable in
a WDM system. Figure 3.4 shows that in (a) the uniform dispersion case and (b) where
Ly/L, = 1./2 the maximum 1‘esidua1vf1‘equency shift is large for values of L./ Lpert < 2.

From data similar to that in figure 3.4, Mollenauer et al pointed out thath when
Le/L,.r: > 2 the residual frequency shift was negligible and concluded that there was

a ‘safe’ region of operation for WDM where,

2
Le T oo (3.32)
L‘pert DAAchrt
or, in other words,
AAmQx Dchri ( )
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Figure 3.4: Maximum frequency shift against collision length for two solitons, 1.6nm
apart in fibre with a = 0.2dB/km and Dg, = 0.5ps/(nm.km). (a) Uniform dispersion,

(b) Dy — Dy = 1.0ps/(nm.km) and L,/L, = 1/2, and (¢) Dy — Dy = 0.57ps/(nm.km)
and Ly/L, = 17.08km. ' ' _ '

This sets an upper limit to the bandwidth used by a WDM system - for 7 = 20ps,
D = O.Sps/.(nm.km) and Lyert = 50km, AXa, = 0.8nm. One might also conclude _‘
that there is a similar region for L./Lpes < 0.05, but this is only allows a narrow
set of possible parameters. Lowering the average dispersion or increasing the pulse
width would allow a lal‘gér wavelength ‘window’. However, this is Stillv a fraction of
the bandwidth of the erbium-doped fibre amplifier (EDFA). The third line, (c) was
for values of Dy, Dy and L;/L, which Forysiak et al [19] showed led to much lower
maximum [requency shifts and pushed hack the limits on channel separation. How this
prescription was arrived at 1s described below.

A lower limit to separation of channels was predicted [84] to be given by the re-

quirement that pulses not overlap initially. That is,

(3.34)
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where NV is the number of channels, 7" is the bit period per channel and 7 is the pulse
width (FWHM). Hence, for a 10Gb/s data-rate per channel with 20ps pulses, this
would limit us to a maximum of 5 channels.

Wai et al demonstrated, in 1996, that it would be collisions at the detector causing
frequency shifts which would restrict the minimum channel spacing to four spectral
widths (assuming that pulses from every channel arrive at the same time) and that
the flatness of gain would restrict the usable bandwidth [88]. In the case of filtered
transmission, Golovchenko et al found that the minimum spacing was limited by the
free spectral range of the Fabry-Perot filters used [39].

More detailed analysis of the effects of dispersion compensation [18, 19] ‘showed that
the residual frequency shift predigted by [84] could be minimised furthei‘ using stepped
profiles which approximated to the exponential decrease in soliton energy between
amplifiers.

Chi and Lin [16] attempted to approximate to the exponential decay in soliton
power with propagation with a sequence of fibres of eqﬁal length. They succeeded in
increasing the stability of the solitons propagating in the link, although their work did
not consider pulse stability over a sequepée of such links. Forysiak et al [17] proposed
that the length of component fibres in a step-wise exponential approximation be chosen
by minimising the perturbations which occur between amplifiers. This was achieved by
minimising the integral of the difference between the step-profile and the exponential
profile. Hasegawa, [Numar and Kodama [18] chose their step-lengths by maling the
steps equal in soliton units, with the intention of minimising collision-induced frequency
shift. The Forysiak prescription is the best of the three described here in terms of
reducing dispersive radiation from a single soliton and residual frequency shift due

to collisions between solitons of different wavelengths (as proven experimentally by
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Cardinal et al [90]). An even better prescription for approximating to the exponential

profile exists however, as described below.

The dispersions of the steps in such a stepped approximation are then given by,

_f\‘) L
A, = L—:L——I/L exp(—az)dz, (3.35)
where
| L.
A? = X pert , (3.36)

[1 — exp(—alent)]
the average soliton factor, L,, is the distance from the last amplifier to the end of the
7ﬁth step, and « 1s the fibre loss.

Combining and minimising eq'n 3.35 and eq’n 3.28 (as developed in [84]) for stepwise

dispersion profiles with M sections, such that the fibre dispersion averages to unity [19]

gives,
La A
/;x(,:)(-z,: =3 Al = Lnt) = L (3.37)
0 m=1 .
The components, g,. are then given by,
nd M e~(Cme_1+int,/)n;_1) . e—(allm‘f‘inﬁbm) »
_ 2 ange 338
Gn = Ae mX::l ( al, +12rnA,, ( )
where.
5 Lm
b = - / A(z)dz, (3.39)
b Lu
0
and,
m f )
be = _—/A(z) : (3.40)
“o

where =, is the position of the collision centre with respect to the amplifiers.

Bv minimisine the components, g in €4'n 3.38, Forysiak et al [19] found a two-step
o o -
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Figure 3.5: Maximum residual frequency shift versus the length of the first fibre step,
L1, in a two-step profile for L = 50km, a = 0.2dB/km and AX = 1.6nm. Also marked
are three previously recommended 2-step dispersion schemes, (a) steps of equal length

[16], (b) steps of equal size in soliton units [18] and (c) minimised difference between

exponential and stepped profile [17]. After [19].

dispersion profile (fig. 3.5) which gave less maximum residual frequency shift than the
three-step approximation with equal .Steps in soliton units. In doing so, it was shown
that a two-step profile could reduce collision-induced frequency shifts to a magnitude
comparabie with a tapered exponential profile.

In the following chapters, this analysis will be expanded to find new minima in

residual frequency shifts. It will then be shown how these minima effect timing jitter

of pseudo-randorn data after transmission.



Chapter 4

Two-Step Profiles - Lossless

Analysis of WDM Collisions

4.1 Introduction

It must be remembered that the purpose of any soliton control method is to reduce
one or more effects until they are significantly less important than other detrimental
effects, or to achieve a given performance level (in terms of bit-error rate, for example).
It has been noted [19] that a two-step dispersion profile which mimics the exponential
decay of energy between amplifiers recuces collision-induced frequency shift enough
that the losses due to splicing more fibre-steps into each link become significant. Any
further improvement should therefore be made with a two-step profile.

The expression for collision induced frequency shift derived by Mollenauer et al
[84] is not easily analysed, even though it does ignore the effects of four-wave mixing
(FWM). In this chapter, in order to get an impression of the effects of dispersion alone
and to simplify matters we look at the lossless case. Although it is impossible to manu-

facture lossless fibre, the conclusions obtained from this analysis are directly applicable
=1C3 2}

-]
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to lossy communication links within the same constraints as the average soliton model
where the amplifier spacing is not the same as the periodicity of the dispersion map.
Where the amplifier spacing and dispersion map periodicity are identical, the analysis
can also be easily adapted. It will then be possible to identify the features of the
collision dynamics which are due to the dispersion map and those which are due to
loss.

It is then possible to check the limits of the validity of the theory by comparing
the results of numerical solutions of the the NLSE. Other problems arise as we move

to deeper dispersion maps and a workable approach is decided upon.

4.2 Analytic Theory

Setting the loss, o = 0, the expression for the frequency shift in the two-step case

becomes.
of Lpert o=~ nz! _
5(==) =0.227d—— > Im(¢p) ———= 4.1
( 2 ) o ZoT ; 9 )smhz(m:) (4:1)

as before (in eq’n 3.28), but now the components, g, are then given by,

—in(2n/La)A1Ly p=in(2n/La)A1 L,
. 2 {inde) ) o 49
gn = Ne { i2mn A, 27nA, (4.2)
/ Jin(2m)La) L1 A
= AZelinod) (A1 = Bg)erCrltal ™ (4.3)
- 127001\
Ay — A ng L o
= —A—?———isin <—-ﬂ> exp (1n (. — d1/2)) . (4.4)
anA1\, 2
where,
o f 3
4, = —-/A(:)dy, (4.5)
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Figure 4.1: Residual frequency shift as a function of collision centre. (z) Ay = 5. (12)

Ay = 3. Other variables; o = 0, D, = 0.5ps/nm/km, L,/ L, = 0.5.

and,

and Ay 5 are .the local normalised dispersions in the two parts of the profile.

This has a few obvious»and casily separated features. The two oscillatory terms are
independent of one another. The first, .. controls the periodicity of [requency shift
with collision centre as in figure 4.1. As the dispersion map deepens the number of
cvcles in each amplifier spacing increases. Later, it will be shown how this correlates
to the number of collisions in any two-soliton interaction.

The second, ¢; produces zeroes in sin(nd ;) at values of -

-]
~—

AILI/];U, =m, (1

where m is an integer, and subsequently there are potential zeroes in residual frequency

shift for these values. This can be seen for any value of L,/L, by plotting maximum

residual frequency shift against A, as in figure 4.2. When Ar=0(Ar=2)and Ay =2

(A, = 0), one might expect gn to tend to infinity because of the presence of A, and

o Zand
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Figure 4.2: Maximum residual frequency shift as a function of first step normalised
dispersion. Variables; o =0, Dy, = 0.5ps/nm/km, L,/L, = 1/2.

A, in the denominator of eq’n 4.4. However, the equation tends to a finite value,

continuous with the rest of the function, as these values are approached. In uniform
dispersion, where A, = 1, there is zero frequency shift because of the A, — A, term

in g.. Physically, this is because the collision in the lossless, uniform dispersion case

is always perfectly symmetric in terms of the energy involved in the interaction before
and aiter the collision centre.
Note that a figure such as 4.1 plotted for Ay = - -+,—6.0,-4.0,-2.0,1.0,4.0,6.0, - --

will simply be a line of zero across all possible collision centres, as these values have

zero maximum frequency shift.

In order to generalise to any value of L1/L,, we can plot maximum frequency shift
against the normalised accumulated dispersion in the first segment of fibre, as in figure
4.3 for a range of values of Ly/L,. Closeto Ly/L, =0and 1, the values of individual
dispersions are very large and, in order to maintain confidence in the values estimated
by solving the analytic equation (eq'n 4.1), a large number of components of the sum
have to be calculated wit

h great precision. Hence, for speed and accuracy, only the

values of 0.05 < Ly/L, < 0.95 have been plotted.

Note the line of zero frequency shift associated with uniform dispersion, running
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Figure 4.3: Maximum residual frequency shift as a function of normalised first step
accumulated dispersion, AL, /L, and normalised length of the first step, L,/L,. Vari-
ables; a = 0, D,, = 0.5ps/nm/km.

between the largest ridges, from where L;/L, = 0 and accumulated dispersion = 0 to
where [,/L, = 1 and accumulated dispersion = 1.

Another normalised unit to measure dispersion map depth is
Ay = (A= 1)L1/ L (4.8)

which has the added benefit of being proportional to the square-root of the energy

enhancement factor in [80] for constant pulse width, 7. This is the normalised ezcess

first-step dispersion. The zero values of residual frequency shift then occur when,

Ly (4.9)

Ai=m——.

Lq

lot of this (figure 4.4) and that for AN Ly/L, are

The differences between a surface p

small and A, can also be used to predict minima in residual frequency shift. Another
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Figure 4.4: Maximum residual frequency shift as a function of accumulated normalised
excess first step accumulated dispersion, A; and normalised length of the first step,
L./L.. Variables; o = 0, D,, = 0.5ps/nm/km. The spikes are spurious results near
where A} 5 = 0 and the summation requires more and more accurate terms.

benefit in using A, is that a uniform map (i.e. one where there is only one value of

dispersion) corresponds to A; = 0 for all values of Ly/L,.

4.3 Testing the Limits of the Adiabatic Theory by

Numerical Simulation

4.3.1 Methods

In order to test the limits of the adiabatic theory, we can run a series of numerical

simulations of two-soliton collisions. The numerical solution of the NLS equation used

is described in Appendix A.

A typical collision is shown in figure 4.5. In order that the results of the simulation

are consistent and unambiguous, several criteria have to be upheld. The pulses must
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Figure 4.5: Collision between solitons of different centre frequencies. Variables; a =0,
D = 0.5ps/nm/km, 7 = 20ps, frequency separation Af = 0.2T'Hz.

be well separated temporally, both at the start of their propagation and at the end.
Otherwise; only a partial collision may be observed, giving an incorrect (and usually
overly large) value for the residual frequency shift. The solitons must also be spectrally

resolvable, so that the frequency shift can be measured accurately.

The frequency separation chosen for simulations in this thesis is 0.27°H=. This is
twice the minimum industrial standard [14], hence a practical value. Figure 4.6 shows
the spectra of the two solitons shown colliding in figure 4.5. The pulses are 20ps FWHM

wide and have a bandwidth of 17.5GH z.
One of the assumptions in formulating the analytic theory [84] is that the pulses are
not significantly distorted during propagation. In uniform dispersion, with low loss or

16 loss at all. this is not an unreasonable assumption. However, as the dispersion map

gets deeper, the pulses evolve more dramatically over each dispersion period [80, 91].
gets deeper, t se

Figure 4.7 shows how a soliton in a lossless dispersion map of depth A; = 5 evolves

over one period of the dispersion map. In alternate signs of dispersion the pulse is

chirped one way or the other and the pulse ‘breathes’.

The theory is also formulated assuming that the pulses are solitons obeying the
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soliton energy relationship (eq’n 2.29). As shown by Smith et al [80], the soliton

energy relationship is modified by the depth of a dispersion map. The relationship

then becomes,

tr

2

T

| DiaLo\?
= E, {1+0.~28< =~ )} (4.11)

T2

Ysol = EO 1 + 0.7 ((51 _ ’Bau)zl — (’32 — i3au)12) } (410)

where Dy, is the difference between the dispersions of the component fibres in ps/{nm.km).

The relationship between D and 3 is given by equation 2.28 and the wavelength is as-

sumed to be 1.55um. It will be shown that this expression only holds closely in the ‘
lossless case and over a limited r.ange of dispersion deptllé. In the range of values
studied in this section, this equation ié su‘fﬁciently accurate however.
If eq’n 4.1‘0 is not used, the soliton is not periodically stable, and the residual
frequency shift measured will vary with collision centre relative to propagation distance

as well as relative to dispersion map period.

4.3.2 Lossless Results

The maximum residual frequency shift 1s plotted in figure 4.8 for Li/L, =1/2 for a

ranee of values of A; from —20 to 20 and compared with numerical simulations of the
g : )

expected worst case (maximum residual shift). Initial conditions (i.e. pulse separation)

for the worst possible frequency shift were calculated from simple geometry such that

the collision centre occured at an amplifier. As can be seen, the numerical simulations
where the enhancement factor has not been incorporated do not agree as well as those

where the factor is included for |A;] > 1.5, This is due to their pulses not having

r enough power for solitons to be maintained. The pulses are therefore broadened when
f S
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Figure 4.8: Maximum residual frequency shift as a function of accumulated normalised
first step dispersion. Variables: @ = 0, Dyy = 0.5ps/nm/km, Li/L. = 1/2. The solid
line is calculated using the adiabatic theory, the circles are the numerical simulations
of un-enhanced solitons and the squares are the numerics of enhanced solitons.

thev interact and the frequency shifts are smaller. The longer Lheu propagation before

the collision, the lower the residual frequency shift, i.e. these numerical values are for

~ collisions occuring after one particular propagation distance but for non-uniform maps,

the shifts will always be less than those predicted by the adiabatic theory. This 1s the
phenomenon exploited in [92] but the scheme proposed is complicated and pulses with
sub-soliton powers are best avoided in practice as the SNR will be degraded at the
receiver.

The numerical simulations where the enhancement factor is incorporated also stray
from the analytic values after |4} > 1.5. This time, however, the values of maximum
han those predicted by the analytic theory 1n the

residual frequency shift are greater t

range 1.5 < [A;] < 5.0 and less than the analytic predictions for [A;]| > 5.0.
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4.3.3 Interpretation of Results

The analytic theory has been formulated assuming th

at the pulses are not significantly

distorted as they propagate but as the dispersion map used gets deeper, the enhance-

ment factor,

a= B (4.12)

increases, as does the amount of breathing which can be quantified by the factor b,

given by

DL \?
=i (2L
e (2L 113

The factors a and b are very useful expressions, derived in [91] by assuming a

gaussian form of solution for the NLS in dispersion managed systems,

Q=,1) = al(2) f1L/b(=)] explid(z) + in(=)0?) (4.14)

(their notatidn). After inserting this iuto the Lagrangian form of the NLS, it is possible
to derive the form and relationship between a and b. As can be seen, a is the amplitude

of the gaussian and b the width.
The frequency shift is proportional to a? but the variable z in eq’'n 3.22 and eq’n
3.23 increases proportionally with b. The quadratic increase of a dominates for small

values of A, but the linear increase of b in the simplified relationship,

b e _
()Q = azL'peri S. ( l) (41':))

inh*(bz)

becomes dominant for larger A, - leading to an exponential decrease in maximum

residual frequency shift.




The origin of the oscillations and their periodicity can be understood by considering

the details of the soliton collisions in periodic dispersion maps. For example, figure 4.9
shows the residual frequency shift calculated as a function of collision centre (analytic)
and initial pulse separation (numerical) for the parameters of figure 4.8 and A; = 2.0
(A1 = 5,4y = =3). Good agreement is seen between the two figures with the numerical
simulations accurately reflecting the analytic prediction, but with only one cycle in the
corresponding period because each point in figure 4.9(b) corresponds to five degenerate
points in figure 4.9(a), as identified by the crosses, for one particular initial separation
of 526ps. Note that each degenerate point is of the same phase when the collision
occurs in anomalous fibre, and opposite phase when it occurs in nonnal fibre.

The physical meaning of these degenerate collision centres is ‘cla,riﬁed in figure 4.10
which plots the zig-zag motion of one soliton in the time frame of the other, for the
case discussed above. Each‘pulse centre crossing seen in figure 4.1‘0 at 571km, 582km,
612km, 643km, and 652km corresponds to one of the five marked, degenerate points
marked 1n figure 4.9(a).

Figure 4.11 shows the relative motion of the solitons at the next maximum of figure
4.8, for A, = 3.0, and the same initial pulse separation. The geometry of the overall
collision is very similar, to the one above, but with two additional pulse crossings, due
to the increased amplitude of the zig-zags.

In general, as | A; | increases, the amplitude of the zig-zags increases, as does the total
number of crossings (for symmetric maps 1t is approximately 2|A;}). Consequently, the
orne Taster, more evenly distributed throughout the gain/loss

component crossings bec

cycle. and their sum effect is closer to zero. Thus, each of the oscillations in figures
o ]

4.4 and 4.8 corresponds to an increased number of fast crossings (determined by the

large local dispersions) within cach slower overall interaction (determined by the low
IS Cl b
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from the adiabatic theory, dots found by numerical simulation.

average dispersion).

. . . . . . i1 fre ~ 7 Ve . ~ g - ‘-‘()'
Further clarification is achieved by plotting the frequency shift of one soliton during

: : : e 412 T -t effect r complete collision 1s seen to
a single interaction as in fig 4.12. The net effect of any p

be close to zero but partial collisions cause relatively large frequency shifts. It is

also possible to see how the adiabatic theory strays from agreement with numerical

simulation, as explained in section 4.3.2.
At this value of A,, the interactions are stronger than predicted by the adiabatic

theory, due to the enhanced power of the solitons. However, the residual frequency shift
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is not considerably greater in the numerical simulations as the differences between the
positive and negative shifts almost cancel out.

Note that there is also a residual temporal shift given by integrating across the
frequency shift. Experience has shown that this is always very small compared to the

temporal shifts that build up afterwards but is also reduced by the deeper dispersion

maps.

4.4 Conclusions

The adiabatic theory developed in chapter 3 has been shown to accurately predict the
collision-induced frequency shift due to two-soliton collisions over a range of disper-
sion map depths. The limitations of the theory have been explained - primarily that
predictions will be inéreasingly over-estimated with increasing dispersion map depth.
The adiabatic theory can be used to give a good idea of the collision-induced shifts for
.4, < 7, for the parameters studied (Daye = 0.5ps/(nm.km) and 7 = 20ps).

Both the theory and numerical simulations show that there are dispersion maps for
which there is no 1‘esidbua1 frequency shift due to soliton collisions. As the dispersion
maps get deeper, interactions between solitons of different wavelengths are composed
of more and more small collisions. At the minima, the component collisions cause
residual frequency shifts which are opposite in sign but equal in magnitude in either

half of the interaction, leaving a net residual frequency shift of zero.
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Chapter 5

Analysis and Numerical
Investigation of Soliton Collisions

with Loss

5.1 Introduction

The previous chapter addressed the limitations of~the adiabatic theory when loss is
disregarded. This allowed us to _determine what effects were due to the dispersion
profile alone.

However, lossless fibre is not achievable. It will be shown that the effect of loss is
only significant over a small range of values of possible dispersion maps. Again, the

adiabatic theory will be shown to be accurate over a significant range of depths of

profile (up to map depths of |A1] = 5).
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Figure 5.1: Residual frequency shifts agahlst Ay, the accumulated normalised dis-
persion of the first step of the dispersion profile and Li/L, for @« = 0.2dB/km,
D,, = 0.5ps/nm/km.

5.2 The Effect of Loss on the Adiabatic Theory

Figure 5.1 is figure 4.4 re-drawn incorporating loss, with amplifiers located once every
dispersion-map period (Lamp = Lyert). 1t can be seen that the realistic value of o used
(0.2dB/km) has little effect on the overall surface plot and the incidence of minima.
The minima can now be picked out in a contour plot such as figure 5».2. One easily
noticeable effect is that the line of minima which corresponded to uniform dispersion

‘n the lossless case has shifted to closely follow the exponential rule of equation 3.35

recommended in [90, 93, 19]. This rule is the curved line running from top to bottom

through the figure. This and all the other ‘valleys’ of minima are no longer zero at any

point and no longer follow a straight line.

Three of these minima were highlighted by [94]; one closely corresponding to the

exponential taper and the next two profiles where anomalous dispersion is compensated

by approximately the same length of normal dispersion. In figure 5.2 it is also possible
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Figure 5.2: Maximum residual frequency shifts against A, = (A, — 1)L,/ Ly, the

dispersion depth and L,/ L, for a = 0.2dB/km, Doy = 0.5ps/nm[km.

to see that these are only part of a family of minima with both A_l positive and negative.
From figure 5.3 and table 5.1 it can be seen that nofrnal di.spersio‘l‘l fibre followed
by anomalous dispersion between amplifiers (i.e., where Ay is less than Ay) can be as
effective in reducing collision—indﬁced frequency shifts as when A, is positive.
Figure 5.4 compares the maximum residual frequency shifts for a series of loss

characteristics in the fibre. The addition of realistic loss (0.2dB/km) makes very

| Description | A | Li/L. | Ly (km) | Maximum Residual Shift (MHz) |

~ exponential rule 0.2643 ]| 0.342 | 17.078 7.73
2nd + ve 1.5321 || 0.444 | 22.214 0.92
3rd + ve 2575 | 0.412 |20.62 0.39
4th + ve 3.592 11 0.399 |19.95 0.22
Sth + ve 4601 | 0.392 |19.59 0.16
lst — ve 11.274 |/ 0.291 | 14.56 0.87
2nd — ve 2311 || 0.322 | 16.09 0.36
3rd — ve 3.327 |1 0.335 | 16.74 0.19
4th — ve 4336 || 0.342 | 17.09 0.12

Table 5.1: Positions and values of minima in maximum residual frequency shift for

a=0.2dB/km, Ds = 0.5ps/nm/km.
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Figure 5.3: Maximum residual frequency shifts against A, the normalised accumulated

dispersion for Ly/L, = 1/2, a = 0.2dB/km, Dq, = 0.5ps/nm/km.

little difference above A; = 2.5, dispersion becgming the dominant inﬁuence.. When
o = 0.6dB/km, perhaps the highest value of loss one might expect to ﬁvnd in single-
mode fibre, there is very little variation from the ‘inverse law’ envelope and there is
a very large penalty for slightly negative A;. ‘That is, there is a general trend for
maximum residual frequency shift to reduce as the inverse of A; and as «a increases,

deviation from this rule becomes less and less noticeable.
The universal nature of the constant, A; can be seen in figure 5.5. Increasing the

amplifier spacing increases the maximum residual frequency shift but does not change

the incidence of minima with Aj.

. . ~ . - - JA - o ] - s -
As observed by other researchers [95], loss can lead to a change in the amount

of power enhancement needed for stable propagation. When the periodicity of the

amplification and loss is the same as the periodicity of the dispersion map, and the

amplifiers are located at the transition from one type of fibre to another, as they

are here, the power enhancement always decreases. No rule has been formulated for
re, t

94




Maximum Residual Frequency Shift, MHz

Max. Residual Frequency Shift, MHz

|

1600.0
1400.0
1200.0
1000.0
800.0
600.0
400.0
200.0

W
O
o
o
o

2500.0

Figure 5.5: Maximu
dispersion for Li/La
values of Lpers.

T

............ 0=0.2dB/km
--=~ a=0.4dB/km
—— - a=0.6dB/km

T

E\ enlargement

N7\

Figure 5.4: Maximum residual frequency shifts against A;, the normalised accumulated
dispersion for L;/L, = 1/2 and D,y = 0.5ps/nm/km for a range of values of a.

m residual frequency sh

=1/2, a = 0.2dB/km and Duy

— L __=50km

pert

part

-=-= L, =70km

— —- L =B0km

ifts against A;, the normalised accumulated
= 0.5ps/nm/km for a range of




1.6

lossless
—~—~ lossy

Energy enhancement factor

Figure 5.6: Enhancement factor against dispersion map depth for L, = 1/2 and o =

0.2dB/km.

predicting the amount of enhancement needed when loss is present but in general the
amount of enhancement decreases with the total amount of loss between amplifiers, i.e.
as the amplifier spacing or rate of loss in the fibres increases.

The power levels used in these simulations were arrived at by trying a range of input
powers and iterating towards the most stable value for a single soliton in the deepest
dispersion map used (A, = 5.0). The form of equation 4.10 remains valid and was used
with a reduced value for the enhancement proportionality constant. It was found that
for these simulations, with loss o = 0.2dB/km and amplifier spacing L, = 50km, the

proportionality constant was reduced in equation 4.11 from 0.28 to 0.10 leading to the

enhancement factor dependency illustrated in figure 5.6

The good agreement between numerical simulation and adiabatic theory in figure

5.3 can be explained by this adjustment in the enhancement factor. In the lossless

case (figure 4.8), between |A;| = 1.5 and |A;| = 5.0, the numerically simulated results

are greater than the analytic predictions. In the lossy case, however, the enhancement
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factor is reduced and so i1s the amount of collision-induced frequency shift, bringing 1t

closer to the adiabatic prediction.

5.3 WDM Data Propagation in Two-Step Disper-

sion Profiles

5.3.1 Introduction - the Problems

In light of the discrepancies between numerical simulations and the adiabatic theory, it
might be asked whether the adiabatic analysis tells us anything of any interest in design
of a practical WDM system. In addition, what about the effects of multiple collisions in
real data propagation? Single collisions never occur in isolation - a random number of
complete and incomplete collisions are going to occur over any transmission distance.

Complicating the picture further are the effects of third-order (and higher-order)
dispersion, Gordon-Haus jitter and pseudo-phase-matched four-wave mixing. These
will be addressed in the following chapters and shown to be either compensatable or
insignificant in real systems.

Some analysis has been made of three soliton collisions [96, 97]. This is complex
enough without trying to generalise to the sum effect of the hundreds of collisions and

partial collisions in multi-channel propagation which we are interested in.

—

Figure 5.7 shows three examples of sequences of solitons in one data channel. The

4 . . . ¢ , I . N le s —
first, a. is a series of ‘ones’, or clock pulses’ for reference. Secondly, b. is a pseudo

random data-stream. No attempt is made to restrict the number of consecutive ones

or zeros. Lastly, c. is an example of a coding system which ensures that there are no

consecutive zeros. In this instance, this is simply the sequence in b. interleaved with a
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Figure 5.7: Exampl.es of possible bit-streams; a., clock pulses, b., pseudo-random data
and c., no consecutive zeros.

clock-stream.

Analytic Method of Estimating Timing Jitter Levels

It is possible to make an estimate of the amount of collision-induced timing jitter in
a dispersion managed system by amalgamating the theory used previously with the
analysis of data-dependent timing jitter made by Jenkins et al [98].

The variance in timing shift ((At?),) for the pth channel is given by summing over

the effects on that channel caused by collisions with each of the other N channels, 1.e.,

(AF), ~ i (ly(%)g(ﬁ%ﬁﬁ (5.1)

g=1,g#p

where T is the bit period, Ay, is the wavelength separation between channels p and q,

L is the system length, ZP¢ is the distance travelled between collisions,

(D,, is the average dispersion between channel p and channel g}, and (AN, is the

variance in wavelength between channels p and g.

An estimate of (AA?),, can be made by calculating the maximum residual fre-
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quency shift by the methods described earlier and assuming that the variation of A\

is sinusoidal with collision centre. Hence,

A V2 - (AAfnqa:c)Q -
(AX),, = —5 (5.3)
This method can be used to indicate possible optima in terms of dispersion depth
and channel allocation but the number of assumptions and approximations made mean
that its accuracy is limited, particularly in deeper dispersion maps where the adiabatic
theory has been shown to give over-estimates of collision-induced frequency shift and

interaction distances become significant compared to propagation distance. In all in-

stances, numerical simulations should be used to confirm predictions made.

Numerical Method of Calculating Accumulated Timing Jitter or Q-factor

The number of consecutive zeroes (p) in a the data-stream directly influences the
amount of collision induced frequency shift [98], with the possibility for large shifts
growing with p. All the data simulations in this thesis were performed using a pseudo-
random bit sequence as the worst possible scenario. The NLS code uses a temporal
window which ‘wraps round’ with periodic boundary conditions. This means that if a
pulse ‘walks off” out of the temporal window allocated, it will reappear at the opposite
end of the window. As such, if the window is filled with a pseudo-random bit-stream
comprising 16 bits, this will propagate as an infinitely repeated 16 — b1t sequence. Each
simulation in this thesis is comprised of at least six runs with different pseudo-random,
One other consequence of this is that the maximum

16 — bit sequences in each channel.

meaningful number of consecutive zeroes 1s 15.

The decision to use six runs of 16 — bits per channel was made in order to have
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approximately 100 ‘ones’ and ‘zeros’ in each evaluation of Q or timing jitter. It was
found, by iteration, that a reliable value for Q or timing jitter could be obtained with
more than approximately 60 ‘ones’ and ‘zeros’. 16 — bit sequences were chosen to give
a balance between the need for a reasonable number of permutations of consecutive
‘ones’ and ‘zeros’, the size of the window needed and the time taken to perform the
simulations.

In addition, in the presence of third-order dispersion, either the pulse width or the
pulse amplitude must be modified to stay in agreement with equation 2.29. Simulations
were performed by either keeping the energy level in each channel the same and varying
the pulse widths or keeping the pulse width constant and varying the pulse energies. If
the average dispersion characteristics of a transmission system are as shown in figure
5.8 then the soliton energy conditions (eg’n 2.29) for A, and A, can be set equal to one
another giving the pulse width or the equation can be re-arranged in terms of pulse
width to give,

0

_ :?,lﬁglAeffC 1.76

NaWo E,’

(5.4)

and solved to give the required energy in each channel for a given pulse width, 7o.

If the soliton conditions have been calculated for Ay, with dispersion D; and pulse

width 7, then the pulse width at Ay is given by,

D’)Tl
Ty = ——. 5.5
=2 (55

Figure 5.9 shows a typical eve-diagram composed of 96 ones (solitons) and zeros

after propagation. The parameters used to calculate Q-factor and timing jitter are

marked. The detector parameters chosen were an optical filter bandwidth of 20GHz,

to separate the channels and an clectrical bandwidth of 10GHz, to reflect the response
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Figure 5.8: Typical average dispersion characteristics showing the different (second-
order) dispersions for two wavelengths.

of a typical photo-diode. These values were used in all calculations in this thesis.

Q-factor is calculated as,

a1+ op

, (5.6)

= Ho
where o, and ;o are the variances and mean values of the power levels of the ‘ones’
and ‘zeroes’ respectively at the middle of the pulses’ expected time window. This
effectively gives a measure of eye-closure.

In principle, timing jitter is calculating by taking the variance of the points sampled
on one side of the pulse within the power window, P, at the power level, P,., where
P, is infinitesimally small and P, is the level of the centre of the eye. In this thesis
P, was chosen to give enough points for a reasonable variance (about 50) and P, was
chosen as either the half-maximum or the steepest part of the slope (almost the same
when there is no amplitude noise).

Both numerical methods mimic the method used by a sampling oscilloscope in the

laboratory in calculating Qs and jitters.
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Figure 5.9: Typical numerically simulated eye-diagram. This was for 10Gbit/s, two-
channel propagation after 1000km.

Also, note that values of Q and jitter do not decline smoothly with propagation.
Since all the channels in these simulations have the same data-rate, if a single soliton
collision occurs at a point of detection then it is very likely that a significant number of
other collisions will also occur there. Where there are collisions, the solitons involved
will be temporally displaced from their expected arrival times and the () values and
jitter will suffer.

Another problem in showing how data degrades with propagation is the validity of
the measure used. Figure 5.10 shows how, as often happens at high data-rates, the
detector cannot distinguish between neighbouring pulses (due to the response time of
the photo-diode and the pulses moving out of their allocated time-slots) whilst the
amplitude at the time-window centre is not significantly changed. The result of this
is that a Q measurement still gives an ‘acceptable’ value although the data content is

lost.
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Figure 5.10: Typical numerically simulated eye-diagram after data has been lost. This
was for 10Gbit /s, two-channel propagation after 4000km.

Also, this definition of Q (or ‘amplitude Q’) assumes a gaussian distribution of
amplitude noise. Collision induced frequency shift leads, primarily, to timing jitter
and does not effect the amplitude of the pulses.

For these reasons, jitter measurements are used most often as a measure of the

quality of the signal received.

5.3.2 Two and Four-Channel Propagation With No Third-
Order Dispersion

In order to isolate the effects of third-order dispersion and inter-channel interaction
from pulse interaction within a single channel, 10Gbit /s pseudo-random data was trans-
mitted over 4000km and the increase in jitter measured. Over values of A; from 0.0

(uniform) to 10.0 and z beyond 4000km with an average dispersion of 0.5ps/nm/km,
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the data was not found to degrade significantly. Timing jitter remained below Ips.
This range of values of A; was chosen because, beyond |A;| = 10.0, stable pulses would
have required a more gaussian profile and more attention to matching the ‘breathing’
cycle of the dispersion map.

Hence, any significant degradation in Q value or jitter can be attributed to the
effects of soliton collisions and, later, to complications al.'ising from third-order disper-
sion.

In each of the following simulations, the pulses are initially interleaved in order to
minimise residual frequency shifts due to partial collisions. In the two channel cases,
this means that pulses are spaced 50ps apart. In the four channel cases, they are
25ps apart. Again, each simulation uses a ‘half-step’ of fibre at the beginning of of

propagation.

Simulation of Two-Channel Propagation

The simplest case of WDM data transmission is that of two channels. At any one time,
assuming the pulses have not been badly perturbed already, only two solitons can be
n a col]ision at one time (although, in deeper maps, more than two solitons can be
involved in an interaction at any time).

Figure 5.11 shows how jitter levels rise with distance propagated across a range of
dispersion maps of —=5.0 < A, < 5.0. The jitter limit for data in a 10Gbi/s channel
is 8.2ps (from [42]). In uniform fibre, this limit is reached before 3000km. Where the
maximum residual frequency shift is highest (A, slightly negative), the limit is reached
within 2000km.

Comparison with the single-collision plot of maximum residual frequency shift (fig-

ure 5.3) shows a good correlation between residual frequency shift and the accumulation

104




T

15.0

o——o 500km

e——a 1000km
o——o 2000km |+
A——a 3000km
+—v 4000km

12.5

10.0

7.5

Jltter, ps

5.0

o v = 0 &
& R B e A

-5.0 : 3.0 5.0

Figure 5.11: Evolution of timing jitter for two 10Gbit/s WDM channels over a range of
values for A,. The three dashed lines are the analytic predictions for 500k, 2000km
and 4000km.

of jitter. In interpreting this data, the number of solitons interacting at any time, the
timing and frequency shifts during an interaction as well as the maximum residual
frequency shift have to be taken into consideration.

For —1.5 < A; < 1.5, timing jitter increases dramatically with distance. This cor-
responds to both large timing shifts during interactions and large residual frequency
shifts. Also, with L.y > 5km, locally, the chances of data detection taking place while
a collision is underway are quite high. Hence, the timing jitter for uniform and shal-
low dispersion maps rises very quickly - disproportionately compared to the expected
residual frequency shift. Also of note is how poor the quality of data propagated in the
nearest to ‘exponential rule’ profile (first positive minimum) is compared to the deeper

profiles. This would suggest that, although better than the uniform case, this sort of

profile is not highly profitable for improving WDM transmission-in comparison with
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Figure 5.12: Collision mechanism for A; = 1.5 and 2.5 and two 10Gbit/s per channels.

deeper profiles.

Three excellent minima can be observed at A, = —2.5,—1.5, and 1.5. These may
offer the optimum design parameters, particularly A; = 1.5. These maps correspond
to collision mechanisms where there are only a few collisions in any interaction, much
reduced residual frequency shifts from the smaller values of A, and also smaller tem-
poral shifts during interactions. Perhaps most significantly, at 10Gbit /s, solitons will
only interact with one soliton of the other channel at a time within —2.0 < A; < 2.0.
In deeper dispersion maps, a more complex interaction will take place, involving 4, 6.
etc. solitons. The collision mechanism for A; = 1.5,2.5 is shown in figure 5.12.

The component collisions in deeper dispersions cause much smaller shifts in the
temporal position of the pulses. The result is that jitter rises very slowly in the deep-
est maps. as the frequency shifts translate into Gordon-Haus-like timing shifts. As
the maps get deeper, there is also a slight ‘smearing out’ of the oscillations in jitter
accumulation. This effect is due to the low residual frequency shift effect, compared to

the (also small) effects of partial collisions. This means that design of the dispersion
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map becomes less critical - that is, they do not have to be tailored to exactly match a
minimum in figure 5.3.

At anv detection point interactions will be incomplete and some solitons may be
over-lapping solitons in different channels (partial collisions). which means that there
will be some random temporal shifts in soliton position. This leads to small fluctuations
in the accumulation of jitter. It is possible to minimise the number of partial collisions
at the detector by making the length of the system such that the pulses return to
being interleaved at the detector, as they were at transmission (the reverse is exploited
in [99]) but this is a tight constraint on system design and depends on propagation

distances in each channel remaining fixed.

Simulation of Four-Channel Propagation

With four channels being transmitted simultaneously, there are not only more collisions
happening to each soliton but there is also the chance of more complicated three- and
four-soliton collisions. In most regimes, we would expect the interaction of neighbouring
frequencies to be strongest since these will have the longest collision and interaction
lengths. Hence, the central frequencies (with two nearest neighbours) are expected to
be worse effected than those at extreme frequencies (with only one neighbour).
Figure 5.13 shows the jitter levels after 2000km of propagation across a range
of —5.0 < A, < 5.0. Data in some of the shallowest maps has already been lost.
Comparison with the analytic prediction helps to explain why the points at A; = 0.5
are more greatly scattered than the others. This corresponds to a steep change in the
expected shift so partial collisions will have more effect than in the other cases. The
expected split between outer’ (1 and 4) and ‘inner’ (2 and 3) channels is not observed.

However, the effect of residual frequency shift is still seen reflected in the accumulated

107




]

15.0

e——o channel 1
o0 channel 2
& -~ channel 3 B
¥ — ¥ channel 4

12.5

10.0

rms jitter, ps

Figure 5.13: Timing jitter for four 10Gbit/s WDM channels over a range of values for
A, after 2000km of propagation. Dot-dashed lines are the analytic prediction.

jitter. Figure 5.14 shows how jitter accumulates with propagation across the same
range of values of A;. This time, only the channel with the worst value for jitter at
any distance is presented to clarify the diagram (most often, this is one of the central
channels, 2 or 3). As with two-channel propagation, the greatest effect is observed for
shallow profiles.

The phenomenon of ‘smearing out’ is less noticeable after 2000km with four-channel
propagation. The poor quality of data propagated in the approximately ‘exponential
rule’ profile is observed again. now even worse than the uniform case. The sharp
minimum at A; = 1.5 is no longer observed. With four channels, the effect of partial
collisions becomes noticeable at lower values of A; because it is more likely that a
collision will be occuring when a measurement is made and multiple collisions are also
possible. The channel separation between the outermost channels is now three times

the neighbouring channel separation, so solitons in the outer channels will interact with
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Figure 5.14: Evolution of timing jitter for four 10Gbit/s WDM channels over a range
of values for A;.

more than one soliton at a time in the other outer channel once —0.66 > A, > 0.66.

Hence, it is not possible to distinguish different regions of interaction mechanism.

Conclusions

Dispersion management has been shown to be beneficial in the propagation of data in a
WDM system. Dispersion maps of depth, A; > 1.5, where minima have been predicted
in residual frequency shift have been predicted have been seen to be the most beneficial
(better than any uniform or shallow profiles). Detailed deep map design has been seen
to be fairly unimportant in data propagation for two-channel propagation, but more
critical in four-channel propagation.

Four-channel bropagation showed the same pattern of data degradation with dis-
persion profile as two channels but the degradation was much faster and varied faster

with map profile. Since practical systems are most likely to have more than two chan-
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nels if WDM is to be used, and because four-channel propagation has been shown to

be most design-sensitive, the rest of the simulations in this thesis have been performed

with four channels.
The rapid increase of residual-induced timing jitter with the number of channels
would be expected to continue as more and more channels are added. This means that

for projected systems of 16 or 32 channels, this will be a severe problem.

5.4 The Addition of Gordon-Haus Jitter

The effects of collision-induced frequency shift and the frequency-shift due to stochastic

noise [11, 42] are very similar, both leading to solitons walking out of their expected

: time slots. The effects are independent and should have no effect on one another,
‘ however it is anticipated that the two effects will add quadratically.

To check this, the four-channel pseudo-random data propagation with no third-

order dispersion was repeated with stochastic noise in the amplifiers (figure 5.15). An

idealised value for noise figure of 1.0 was used.

The effect of collision-induced frequency shift can be seen to be much stronger
than that of Gordon-Haus jitter for a single channel with this average dispersion
(0.5ps/(nm.km)) and dispersion map depth. The accumulated jitter for a single chan-
nel is also shown in figure 5.15, both as predicted using the formulae developed by
Gordon and Haus [11] and developed by Marcuse [42] and as indicated by data simu-
lation. With third-order dispersion or a lower average dispersion, the difference would
be more significant. The two effects do not exacerbate one another.

It is worth noting that in an NRZ system of this length, using conventional fibre,

polarisation mode dispersion (PMD) would have built up to ~ 30ps and hence would

110




rms jitter, ps

10.0

8.0

6.0

4.0

— O © Channel 1, no G-H

G © Channel 1, with G-H T

&——=a Channe! 2, with G-H
e——— Channel 3, with G-H
a—= Channel 4, with G-H

B a Channel 2, no G-H
oo Channel 3, no G-H
By A Channel 4, no G-H
¥ — ¥ Single channel, with G-H
v - —v Predicted Gordon-Haus

2000
Z, km

3000

4000

Figure 5.15: Evolution of timing jitter in four 10Gbit/s WDM channels with (solid
lines) and without (dotted lines) simulated amplified spontaneous emission (ASE),
leading to Gordon-Haus jitter. A, = 5.0 for channel 1 in both cases, channel spac-
ing 200G H=. Dot-dashed lines are the analytic predictions for outer and inner chan-
nels with no Gordon-Haus jitter. Inverted triangles are predicted and data-simulated
Gordon-Haus jitter for a single channel.

111




Gordon-Haus

- Collision-induced, 4-channels
Collision-induced, 2-channels n
A\

\

timing jitter, ps

\
\
\
|
|
|
|
|
|
i
|
i
|
|
!
!
|
|
i
|
1
!

-5.0 -2.5 0.0 2.5
A

1

Figure 5.16: Estimates of the collision-induced timing jitter after 4000km of propa-
gation for the worst effected channel in a two or four-channel 10Gbit/s WDM system
(dashed and dotted lines) without stochastic noise in the amplifiers and in a single

channel with simulated amplified spontaneous emission (ASE), leading to Gordon-Haus
jitter. Channel spacing 200G H =, Dqgye = 0.5ps/(nm.km).

be much more significant than either of these phenomena. However, soliton-trapping
is still expected to occur in these dispersion-managed cases [52], although limited by
the strength of the random birefringence as mentioned in chapter 2.
A comparison of the variation in jitter due to the two effects is made in figure 5.16.
It can be seen that at an average dispersion of 0.5ps/(nm.km), that collision-induced
jitter is the dominant effect over the entire range of dispersion maps studied in this
thesis for four channels and is only significant over a small range of dispersions for two
channels.
Dispersion management has already been shown to improve the amount of Gordon-
Haus jitter [79] in a soliton system because the enhancement factor increases the SNR.
Within this range of dispersion values, the suppression of Gordon-Haus jitter is not

significant. however. As described in [98] design recommendations can be made based
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on limitations set by Gordon-Haus jitter, signal-to-noise ratio and residual frequency
shift. As illustrated in figure 2.13, the design window is opened out by the energy
enhancement which accompanies deepening dispersion. A low average dispersion 1s
hence desirable from every point of view. Jenkins et al [98] also concluded that several

low-data-rate WDM channels are better than a few high-data-rate channels.
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Chapter 6

Third-Order Dispersion

6.1 Introduction

As described earlier, typical optical fibre does not have the same value of dispersion
across the erbium-doped fibre amplifier window. Dispersion-flattened fibre has been
manufactured (e.g. [100], with a third-order dispersion of —0.0007ps/(nm?.km) over
15nm) and shown to be useful in propagating WDM solitons. However, like all special
fibres, this is rather difficult and expensive to manufacture and have relatively high
loss. In these simulations, it has been assumed that third-order dispersion will have a
fairly typical value of 0.07ps/(nm?.km).

Collision-induced jitter increases with propagation distance at a rate proportional to
second-order dispersion. Hence. it is desirable to use as low a value of average dispersion
as possible without the soliton energy being so low as to be infeasible in terms of SNR.
When allocating WDM channels in the presence of third order dispersion, however, only
one channel can be at the optimally small dispersion and all the other channels must
be at larger values of dispersion. These channels should all suffer greater degradation

in jitter with propagation.
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Figure 6.1: Third-order dispersion compensation dispersion profiles. Ay = 1.550pum is
the wavelength of channel one.

Three approaches will be taken to this problem in this thesis which are illustrated
in figure 6.1. First, the soliton energy will be scaled with average dispersion. Using this
method, the longest wavelengths will be anticipaped to propagate intact for the least dis-
tance. Second, the pulse width will be scaled with average dispersion. Frequency shifts
should then be reduced for the wider pulses, although pulse interaction within individ-
ual channels will increase with dispersion as the amount neighbouring pulses overlap
increases. Lastly, negative-slope dispersion fibre will be used to compensate for positive
third-order dispersion in the other fibre used, leaving no net slope. Negative-slope dis-
persion fibre has already been manufactured and marketed [101]. Two compensating
fibres will be tried to give average dispersion values of 0.5ps/(nm.km) (compensation

#1) and 0.1ps/(nm.km) (compensation #2).

6.2 Scaled Amplitude Propagation

As described in the last chapter, the amplitude of pulses are scaled with second-order
dispersion. so that the soliton energy equation (2.30) 1s still obeyed. With a positive
value of third-order dispersion, pulse energies will be higher the longer the wavelength.

It is anticipated that the longer wavelengths will suffer larger frequency shifts due to
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Figure 6.2: Dispersion characteristics of component fibres with the same third-order
value.

the larger energies involved in any interaction. Also, timing jitter will grow faster
because of the larger average dispersion.

Since the third-order dispersion is the same in both fibres, the depth of dispersion
profile will be the same for all channels - only the average second-order dispersion
will vary as shown in figure 6.2. The average value of dispersion then determines
how quickly frequency-shifted pulses walk out of their expected time slots, so those
with highest average dispersion should suffer the greatest degradation in timing jitter.
Another problem in making this scheme realisable is that most commercial EDFAs
attempt to have flat gain across the window when differential gain would be required.

Figure 6.3 shows how jitter increases with propagation distance for three dispersion
regimes; uniform, two steps approximated to exponential decrease and A; = 5.0. In
both the exponential approximation and the deepest profile, only channel 1 is at the
exact value of A, intended, the others depend on the relationship between D, (which
increases with wavelength) and Dy; (which is fixed). Table 6.1 shows the parameters
for each channel in more detail. Although A, = 5.0 is not one of the values associated

with a minimum in residual frequency shift, all four channels in this regime remain
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persion profiles. Amplitude scaled with third-order dispersion.

IiChannel I Apm I Dgyye (ps/nm.km) ” A, - exponential profile l A; - deep proﬁlej

1 1.550
2 1.548
3 1.547
4 1.545

0.500
0.388
0.276
0.164

0.264
0.340
0.478
0.805

Table 6.1: Parameters for each channel used in simulations with amplitude scaled with

dispersion.

intact over 4000km whereas none of the channels in uniform dispersion and only one

in the exponential approximation would be error-free after this distance.

In the uniform case, the channel with longest wavelength (channel 1) degrades

quickest, as expected. However, the relationship between the wavelength and rate of

increase of jitter in the other channels is not quite so clear. After 4000km, channel 3

has a higher jitter level than channel 2. This may be due to random fluctuations as a

result of partial collisions.

This explains why, although the average dispersion decreases with decreasing wave-
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length. the jitter characteristics do not improve across the exponential cases. Instead,
all the channels behave in much the same way, one factor (average dispersion) improv-
ing behaviour while another makes things worse (residual frequency shift).

In the deeper case, although the exact value of A; was not expected to be too
critical. the best channel is channel 4 where the residual frequency shift and average
dispersion are most optimal. Channels 2 and 3 have higher jitter levels than channels
1 and 4, because they undergo more inter-channel interaction, where frequency shifts

are higher.

6.3 Scaled Pulse-Width Propagation

The soliton energy equation 2.30 can also be adhered to by changing the pulse width
as dispersion increases and keeping the energy of the pulses fixed. Since the amount of
frequency shift is dependent on the energy involved in the interaction, this should not
be significantly increased for any of the wavelengths. However, the higher second-order
dispersions should still lead to more walk-off at longer wavelengths.

Figure 6.4 shows how jitter evolves with distance for the same channels as in section
6.2 but with scaled pulse-widths and only the uniform and A, = 5.0 profiles.

Again. when 4, = 5.0, all channels propagate better than in the uniform case. In
general, however, behaviour is worse than in the amplitude-scaled cases. Channel 1
was expected to behave in much the same way in both regimes, having the same energy
and pulse width, but is also worse. This 1s because the pulses in the other channels
have the same energy as those in channel 1 and, as explained in chapter 4, section
4.3.2. the amount of residual frequency shift is directly related to the pulse energy

whilst the relationship with pulse width is more complex (similar to the relationship
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Figure 6.4: Evolution of timing jitter of four 10Gbit/s WDM channels for uniform and
A, = 5.0 dispersion profiles. Pulse width scaled with third-order dispersion.

with pulse-breathing). Scaling the widths to create Jower pulse energies would make
the situation better but would be limited by soliton-soliton interaction as the wider

pulses overlap with more of their neighbours.

6.4 Third-Order Fibre Dispersion Compensation

In order to return to the same average dispersion at all wavelengths, one of the fibres
used can be chosen to have a negative value of third-order dispersion. Now the different
channels propagate in different depths of profile but with the same average dispersion.
Again. this means that different channels will have different values of A, and that the
‘uniform’ case will only be uniform at one wavelength. Table 6.2 shows the variation
in A, for the parameters used in these simulations.

Figure 6.5 shows the dispersion vs wavelength characteristics of the four fibres
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{ Channel | Aum | Ay - ‘uniform’ profile | Ay - deep profile J

1 1.550 | 0.0 5.00
2 1.548 | -0.11 4.89
3 1.547 | -0.22 4.78
4 1.545 | -0.34 4.66

Table 6.2: Parameters for each channel used in simulations with third-order dispersion
compensation.
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Figure 6.5: First third-order dispersion compensation scheme {Dyye = 0.5ps/(nm.km))

for uniform and A, = 5.0 dispersion profiles. Ay = 1.550pm is the wavelength of channel

one.

modelled. The same wavelengths have been used as in previous simulations. Since
the maps have L,/L, = 1/2, the negative third-order dispersion used is of the same
magnitude but opposite sign.

The results of these simulations are shown in figure 6.6. Again a dramatic im-
provement in timing jitter is seen between the ‘uniform’ case and the deep dispersion
case. In the ‘uniform’ case, channel 4 suffers the most rapid degradation because 1t
has the most negative value of A;. All channels in the ‘uniform’ case have reached
unacceptable jitter levels by 1500km. All but one of the deep profile cases is error free

after 4000km however.
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Figure 6.6: Evolution of timing jitter of four 10Gbit/s WDM channels for third-order
compensated ‘uniform’ and A; = 5.0 dispersion profiles.

These results are obviously much worse than the uncompensated results. This 1s
to be expected as the dispersions, and hence soliton powers, are higher in most of the
channels.

The jitter in the deep profile case in figure 6.6 is worse for all channels than it was
for the deep profile case in figure 6.3. This is partly because the average dispersion in
all channels is 0.5ps/(nm.km), causing a faster walk-off in channels 2 — 4. However,
the dominant effect is that of the strength of interaction due to the energy of the pulses
involved. All the pulses in these simulations have the same energy as those in channel
1 (the largest) in»the uncompensated case.

Repeating these simulations with third-order compensated to set the average at
0.1ps/(nm.km), it can be seen that the timing jitter is dramatically reduced, below

that of any other regime. Figure 6.7 shows how jitter evolves with distance for the four
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Figure 6.7: Evolution of timing jitter of four 10Gbit/s WDM channels for third-order
compensated to Dgye = 0.1 and D,.. = 0.5 in dispersion profile, A; = 5.0.

channels compensated to Daye = 0.1ps/(nm.km) and Dy = 0.5ps/(nm.km).

With Dype = 0.1ps/(nm.km), the increased effect of collision-induced shifts on the
middle channels is more noticeable than in previous cases. These channels have two
channels at frequencies close to their own and one further away, whereas the outer
channels have only one close frequency channel, one further away and another even
further away. The theory developed in Chapter 3 showed a rapid decrease in residual

frequency shift with increasing channel separation.

6.5 Conclusions

At first glance, it appears that data propagated better in the presence of third-order

dispersion than in zero third-order dispersion. Figure 6.8 shows how the worst jitter fig-
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Figure 6.8: Evolution of timing jitter of the worst of four 10Gbit/s WDM channels

‘0 different third-order dispersion regimes and with different compensation methods.
A, = 5.0 for channel 1 in each case. Analytic estimates also given.

ure in flat dispersion, amplitude-scaled, width scaled and two third-order compensated
regimes evolves with distance.

The dominant variable in these simulations is the energy of the pulses and, more
importantly, the energy of pulses in the other channels. This explains why the channels
with the same wavelength and propagating in the same depth of dispersion map do
not have the same rate of evolution of jitter when the other channels vary in average
dispersion or dispersion depth.

It is most significant to note that the least amount of jitter builds up when third-
order dispersion compensation is used to achieve a very low average dispersion across

the bandwidth exploited. This is the real strength of such compensation - being able to
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achieve low dispersion, with all its benefits of reduced Gordon-Haus jitter, enhancement
factor and reduced collision-induced jitter, for all channels transmitted.
Over small bandwidths, such as those in these simulations, third-order dispersion
1 does not create a huge difference in dispersion between the outer channels or a large
single-channel value of dispersion which would make soliton propagation infeasible due
to large pulse energies or collision induced jitter. With 16, 32 or 64 channels, which
will be utilised in future WDM systems and require large bandwidths, typical fibre will
have a large variation of dispersion and large (> 1ps/(nm.km)) single-channel values
of dispersion. In these systems. third-order compensation will be absolutely necessary
to bring pulse energies back to feasible levels and to avoid catastrophic amounts of
collision induced jitter.

The main benefit of third-order compensation over any bandwidth, however, is the
ability to tailor the single-channel dispersion in all channels to as small a value as
possible, reducing Gordon-Haus and collision-induced jitter.

The analytic estimate for propagation in a dispersion map comprised of fibre with
no third-order dispersion, very accurately reflects the build-up of jitter found by data
simulation. As the average dispersion decreases, the accuracy of the estimate de-
creases until, at Daye = 0.1ps/(nm.km), the initial data-simulation jitter figure, due
to the accuracy of the measurement technique used, 1s larger than the amount of jitter

accumulated in the analvtic estimate after 4000km.
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Chapter 7

Conclusions

The magnitude and effect of residual frequency shift due to inter-channel collisions
in soliton WDM systems have been mapped over a large range of possible values.
Adiabatic theory [84], formulated to model dispersion profiles in close approximation
to the ideal exponential decrease with loss, has been shown to be valid in realistic
systerns with dispersion profiles up to a depth of A, = 5.0.

Two general trends have been observed. Residual frequency shift is reduced approx-
imately inversely with depth of profile. Numerical simulations show that this fall-off
is even more rapid than predicted by the adiabatic theory. This is because of the
pulse-breathing in deeper dispersion maps which reduces the amount of interaction.
Second, there are periodic minima in residual frequency shift with increasing depth
of dispersion map. These are due to resonances between the periodicity of the map
and the collision mechanism. That is, the minima occur when the length of a soliton
interaction (from the first overlap to the last) coincides with an integer number of map
periods.

Simulation of WDM soliton data propagation showed a strong relationship between

residual frequency shift and the degradation of timing jitter. The reduction in timing
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jitter with increasing depth of dispersion is much faster than the reduction of residual
frequency shift, however. In the shallowest profiles, large frequency shitts occur, early
in the propagation of the data, letting jitter build up over the rest of the propaga-
tion distance, whereas in the deeper profiles complete interactions take longer and are
comprised of several small frequency shifts (or ‘kicks’) and jitter accumulates more
slowly. That is, the propagation distance between the first overlap of two pulses and
the last (interaction distance) increases with dispersion depth. A system designed
with a depth of A, = 5.0 will have significantly better jitter characteristics than one
designed with uniform or approximately exponential profile. This means that either
longer transmission distances or amplifier spacing can be achieved.

An important consideration after loss and dispersion, is third-order dispersion. Sim-
ulation of WDM soliton systems with third-order dispersion and methods showed the
strong importance of reducing the energy of the pulses being propagated in reducing
the amount they interacted. There is a limit to how much the pulse energy can be
reduced set by the acceptable signal-to-noise ratio (SNR), as the pulse energy scales
with average dispersion. In order to isolate the effects of residual frequency shifts,
most of the simulations were performed with no spontaneous emission from thé ampli-
fiers. Addition of stochastic noise was shown not to exacerbate residual frequency shift
induced jitter and to be quite insignificant in comparison with most cases considered.

In general, deep dispersion maps with an average dispersion less than 0.5ps/(nm.km)
were found to be beneficial in WDM soliton propagation. Third-order compensation
was found to only be beneficial in reducing the average dispersion value across the
window used. Over large bandwidths, third-order dispersion compensation is essential
in keeping the average dispersion levels down.

Further work looking at deeper maps, simulating more asymmetric maps and maps
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with periodicity which is not the same as that of the loss of the system would be
the natural next step. It is not yet certain whether the adiabatic theory used here
would still be valid for such systems. Others are already working on analysis of soliton
behaviour in much deeper maps than have been considered here [102, 103] and it
is hoped that a coherent theory across all regimes may be found, although it may be
quite complex. It was thought that there would be a limit to how deep dispersion maps
could be made before propagation became unstable but very deep maps (equivalent to
Ay > 10.0) have already been shown to have periodically stable [104] soliton solutions.
Other limitations will have to be looked for in terms of data-rate, pulse-size, bandwidth
and number of channels.

It is certain, with the current growth in demand for bandwidth, that WDM will
become a common feature of optical networks. Current commercial equipment, using
NRZ pulses, has reached a total data capacity of 100Gbit/s [105] whilst laboratory
experiments with RZ pulses have achieved over 500Gbit/s over 1600km [13]. Total
commercial data capacities of several Tbit/s now seem feasible over local area networks
and trans-oceanic links, with all-optical regeneration of WDM channels, could reach
the order of a Thit/s. The results of this thesis show that solitons with dispersion

management are a viable method of achieving this expansion.
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Appendix A

Numerical Simulation Method

The numerical method used in this thesis and in the majority of research into optical
communication systems is the split-step Fourier method, in turn using a fast-Fourier-
transform (FFT) algorithm. Other methods have been proposed which are either slower
[106] or are as yet viewed as being difficult to implement over the full set of possible
systems we may wish to model [107].

The split-step method is so-called because the NLSE is split into two parts with

A~

one differential operator, D, accounting for the linear terms and another differential

~

operator, N, accounting for fibre nonlinearities and pulse propagation. That is, in

normalised units,

7 . .
_Ifdf_‘ = [D(u) + N(u)]u, (A1)
where,
R 1 0%
N o= Jul? (A.3)
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Figure A.l: Split-step Fourler method.

where I' = at3/2|0:|.

A full derivation of the split-step method from this point is given by Agrawal [48)
but the essence of the method is as follows. The NLSE in equation A.1l is solved
approximately by solving separately for each operator over any segment of fibre of

length, A, by,

| =

- z+h R .
D) exp (/ N(z')dz’) exp (7741)) u(z,1). (A.4)

The fibre is split up into a number of segments small enough to keep the rounding

u(z + h,t) = exp (

Q]

errors within the desired limits. as illustrated in figure A.1. The optical field is propa-
gated the distance h/2 with dispersion only. The integral is performed using an FFT
algorithm. Then the field is multipli¢d by a nonlinear term representing the effect of
the nonlinearities over distance #. The field is then propagated over h/2 again. These
three processes are repeated until the entire fibre length has been covered.

In utilising the split-step method, a decision has to be made on which step-size to
use as well as the spectral and temporal resolution used.

It is possible to repeat simulations with a range of step-sizes until a maximum step-
size below which results are consistent, and preserve the conserved quantities which are

expected (e.g. pulse energy in the lossless case). Alternatively, guidelines (e.g. [108])
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can be built into anv simulation program in order to set the step-size, but 1t is always
wise to check the validity of the answers given. Such step-size calculations often include
a measurement of the bandwidth of pulse energies. In a single-channel system, this gives
a good indication of how non-linear the pulses are likely to be. Without consideration
of individual channel bandwidths, this will always give overly small step-sizes in WDM
simulations which unnecessarily slow the computation down. Conversely, one particular
problem with over-long step-size in simulating WDM systems is the production of
spurious FWM products which, in turn, produces cross-talk and degradation of the
signal [109]. Sidebands are also formed in single-channel propagation of solitons, phase
matched to the step-length if that step-length is too long [40].

Spectral and temporal resolution are best chosen to be able to see expected phe-
nomena such as side-band formation and the FFT requires the same number of points
across both the frequency and time windows.

Accuracy 1s also limited by how comprehensive the version of the NLSE incorpo-
rated and, again, no version of the NLSE has unlimited applicability. Further limi-
tations include the resolution of ‘fine detail’ in pulse shape, spectrum and temporal
evolution, which are limited to &~ 3 — 4 time or frequency divisions or temporal step-
sizes respectively. Raman and Brilloun scattering also have to be added to the model
as a perturbation and have to be either included at all times (possibly slowing pro-
cessing times unnecessarily) or whenever their effects are anticipated to be significant.
For example, soliton self-frequency shift would be expected to occur in pulses of < Ips
FWHM but will not be predicted by numerical solution of the NLSE unless Raman
terms are included.

Modelling the effects of other system components such as ampliﬁers, filters, wave-

length multiplexers, etc. can be done simply. For example, a noiseless amplifier can be
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modelled by multiplying the vector of energies across the time window by the square
root of the desired gain.

The core of the code used in the numerical simulations in this thesis was developed
at BT Laboratories, Martlesham Heath, Ipswich. The code has been developed, im-
proved and re-structured by many at BT and Aston University. The code is written in
Sun FORTRAN (an enhanced version of FORTRAN-77) and run on Sun IPC, SPARC
and ULTRA stations.

A typical two-soliton collision simulation could be completed on a Sun SPARCIO
in approximately 10 minutes. In order that pulses could be reasonably well separated
before and after the collision, a temporal window 1600ps wide was used most of the
time. At all times the number of points across the field was kept to the maximum
allowed by the program structure (4096), although this was probably quite a lot more
than needed to avoid spurious results. The program estimates the step size required
to avoid spurious side-band formation, etc. [109] by calculating a linear and non-linear
variable. The algorithm used to decide the step size calculates a measure of both how
linear and non-linear the situation is. Non-linearity Is measured in terms of the non-
linearity coefficient of the fibre (in rad/(W.km)), the total intensity of the light and
how concentrated it is (how tall and narrow the pulses are). The linearity is measured
from the energy in the fibre and the loss of the fibre.

The maximum and minimum step sizes can also be set manually in the input file.
Before performing the simulations reported in this thesis, a series of trial simulations
were run. The minimum step size was given a series of values and the residual frequency
shift for each was calculated. As the minimum step size decreased, the value for the
residual frequency shift varied asymptotically towards a single value. Hence, in order

to avoid spurious results, when the step-size algorithm would consider the level of
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linearity and non-linearity to be insignificant, the maximum step-size was always set
to 600m. The program typically drove the step-size down to less than 100m when four
channels were being propagated n deep dispersion maps. Periodically, checks were
run by setting the minimum step-size to different values. By doing so, FWM could be
monitored to look for spurious side-bands.

Frequency shifts were calculated by integrating across as much of the spectrum of
the pulse, after filtering. as possible. This was partly because the shifts being measured
were smaller than the frequency resolution of the numerical model, of the order of 1Ghz,
(and any reasonably fast model) and partly because the frequency shifts were in the
average central frequency and not the peak frequency.

It was also found that, for approximately transform limited pulses, with a FWHM
of 20ps, a frequency separation of 200G H = was needed to get an accurate estimate of
the frequency shifts. This separation was needed because the frequency shift is found
by integrating across the entire spectrum of the pulse to find the ‘centre of mass’.
200G H = of spectrum was required for the required accuracy. This is twice the current

minimum industrial standard, and hence practical value.
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