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Abstract�This paper presents a forecasting technique for
forward electricity/gas prices, one day ahead. This technique
combines a Kalman �lter (KF) and a generalised autoregressive
conditional heteroschedasticity (GARCH) model (often used in
�nancial forecasting). The GARCH model is used to compute
next value of a time series. The KF updates parameters of
the GARCH model when the new observation is available. This
technique is applied to real data from the UK energy markets to
evaluate its performance. The results show that the forecasting
accuracy is improved signi�cantly by using this hybrid model.
The methodology can be also applied to forecasting market
clearing prices and electricity/gas loads.

I. INTRODUCTION

ACCURATE electricity/gas price forecasting is very im-
portant for traders in the energy market, especially energy

generators. If an energy generator makes an accurate forecast
of the market price, it can develop a strategy to maximise
its own pro�ts and minimise risk due to price spikes by
appropriate trading in forward contracts. It can also plan its
actions to maximise bene�ts or utilities by reducing/increasing
its generation. Energy suppliers can use short-term price fore-
casts to adjust their bidding strategies to achieve the maximum
bene�t. In addition, understanding the process of forward price
development can help the generators make money on the
forward market.
The relevant literature on energy price forecasting issues

includes a wide range of methods. Many approaches based
on time series models have been used for price forecasting,
such as threshold auto-regressive switching (TAR) models
[1], AR models [2], autoregressive integrated moving average
(ARIMA) models [3], [4], and GARCH [5], [6]. Moreover,
neural networks (NNs) are used widely for electricity price
forecasting in the literature [7]. Due to the complexity of
the environment, the functional relationships we are looking
for might be non-linear. Several researchers have proposed
additional procedures to improve accuracy. Pre-processing
procedures and regularisation methods are used in [7]. Another
approach for improving forecasting performance is multiple
NNs. The use of a committee of NNs for forecasting is
suggested in [8]. Similarly, cascaded neural networks are pro-
posed in [9]. The use of Input/Output Hidden Markov Model
(IOHMM) to combine two NNs which estimate underlying
market states and observed price respectively are suggested in
[10].
However, forecasting energy prices presents a number of

challenges because of the volatility characteristic of prices,
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especially in competitive environments [5]. To overcome this
problem, some researchers have proposed a hybrid form of
forecasting models, which are the combination of Kalman
�lter/Extend Kalman Filter (EKF) and prediction models,
such as Radial Basic Function (RBF), Multilayer perceptrons
(MLP), linear regression (LR), or �nancial models. The fore-
cast models are used to forecast next-day price, and KF/EKF
updated parameters of these models as the new value of
price are observed. Niranjan [11] used EKF algorithm to
recursively reestimate parameters of the Black-Scholes model
from observations (the Black-Scholes model is well-known
�nancial formula for approximate option price). Nabney et al.
[12] showed that an EKF used for online-learning parameters
of RBF model give much better tracking of non-stationary
data than a �xed RBF model. Some researchers proposed a
training method, which used an EKF in order to train MLP
network. The simulation results on predicting exchange rate
[13], positioning a GSM mobile phone in real-time [14],
estimate wind turbine power generation [15], and predicting
New England electricity price [16] show that this method is
good in the speed of learning and the accuracy of mapping.
Parameters of linear models were also estimated using a KF
in [17], [18].
This paper uses the combination of KF and GARCH model.

This model is applied in forecasting forward electricity/gas
price in the UK market. We compare the prediction perfor-
mance of three methods:

� Method 1: a random walk model, which is used as a
benchmark.

� Method 2: �xed GARCH model, i.e. model whose pa-
rameters are �xed after training on a subset of the data
set.

� Method 3: a combination of KF and GARCH model,
where parameters of GARCH model are adapted con-
tinuously on the test set using KF.

Compared with previous work, our paper has the following
contributions. Firstly, we propose a framework for an adaptive
GARCH model and apply it for electricity/gas price forecast-
ing problem. Secondly, besides historical price data, a number
of exogenous variables, for example, electricity/gas demand,
temperature, exchange rate (USD:GBP) etc, are also consid-
ered as candidates for input variables. Some pre-processing
procedures are used to chose the relevant input variables for
each forecasting model.
This paper is organised as follows. Section II provides the

detailed forecasting framework. In Section III, the detail of
the hybrid model is presented. The numerical results on data
from the UK electricity/gas market are given in Section IV.
Section V provides some conclusions.



Fig. 1. The combination model of GARCH and KF. (a) Training phase, (b)
Test phase.

II. FORECASTING FRAMEWORK
The framework of Method 3 for forecasting electricity/gas

prices of forward contracts is shown in Figure 1. A data set is
divided into two subsets: (1) a training set to train the models
and (2) a test set to evaluate these models by calculating their
errors.
� Training phase:
Step 1: Determine the input vectors for GARCH model.

In addition to historical price data, there is a large number
of observable variables which are potential inputs. However,
only some of them are relevant. Using irrelevant variables as
inputs might reduce the performance of the forecasting models.
Therefore, selecting correct inputs for each type of model
is very important. In the this phase, various measures were
used to determine the relevant input variables, including the
correlation matrix (CM), autocorrelation function (ACF), and
partial autocorrelation function (PACF).
Step 2: The training sets are used to estimate parameters of

GARCH models. We can use maximum likelihood to train the
model with an iterative non-linear optimisation algorithm.
� Test phase: Two steps are recursively repeated.
Step 1: When the new observation is available, the Kalman

Filter updates parameters of the GARCH model.
Step 2: Use the GARCH model with the latest estimated

parameters to predict the next-day price.

III. COMBINATION MODEL
A. GARCH
In several forecast model, such as MLP, RBF or LR, the

errors are assumed to be homoscedastic (i.e., the variance of
the residual is assumed to be independent of time). GARCH
[19] can be used to model changes in the variance of the errors
as a function of time. The GARCH(r;m) model is given by:

yt = �0 +
b�xt + "t (1)

"t =
p
ntet , et � D(0; 1) (2)

nt = �0 +
mP
i=1

�i"
2
t�i +

rP
j=1


jnt�j , (3)

with constraints:

�i; 
j > 0;
mP
i=1

�i +
rP
j=1


j < 1, (4)

where xt, yt, and "t represent the input vector, output vector,
and error of the model respectively, nt is variance of error
"t, � = f�0; b�g is parameters vector for the AR process, m
and r are order of ARCH process and AR for the variance nt
respectively.
et is i.i.d, with E(et) = 0 and var(et) = 1. et can be a

Gaussian or Student-T distribution. GARCH is a generalisation
of a linear time series model with homoscedastic disturbances
in which the variance nt of the noise varies with information
about errors and its variance up to time t.
We can train a GARCH model using maximum likelihood.

To deal with the constraints (4), we used penalty function
method to optimise the model.

B. Kalman Model
1) State space models: The Kalman Filter is based on a

state space model; we assume that the observed time series
yt 2 Rp is a function of random variables xt 2 Rk which are
not observed.

yt = Htxt + vt, (5)

where vt 2 Rp is assumed to be Gaussian noise N(0; R), yt is
the output of the model, xt is the hidden state vector. The p�k
matrix Ht is the output matrix. Equation (5) represents the
output function. We assume that the dynamics of the hidden
state space is given by

xt+1 = Ftxt + wt, (6)

where the k � k matrix Ft forms the parameters of the
model and wt is zero-mean Gaussian noise with covariance
Q. Equation (6) represents the state transition function. The
hidden state vector obeys the Markov independence property
(i.e. the current state depends only on the previous state).
x0 is the system initial condition, modelled as a Gaussian

random vector x0 � N(�1; P1). Equation (6) shows that if
p(xt) is Gaussian, then so is p(xt+1):
2) Kalman Filter: The Kalman Filter [20] is a recursive

algorithm used to compute the probability of the current
hidden state space xt given the sequence of observations up to
time t. One iteration of the KF is composed of the following
consecutive steps:
� Prediction:

xt�1t = Ftx
t�1
t�1

P t�1t = FtP
t�1
t�1F

0
t +Q.

� Update

Kt = P t�1t H 0
t

�
HtP

t�1
t H 0

t +Rt
��1

xtt = xt�1t +Kt

�
yt �Htxt�1t

�
P tt = (I �KtHt)P

t�1
t ,



where:

xtt = E[xtjy1; :::yt]
xt�1t = E[xtjy1; :::yt�1]
P tt = E[(xt � xtt)(xt � xtt)0jy1; :::yt]

P t�1t = E[(xt � xt�1t )(xt � xt�1t )0jy1; :::yt�1],

where xt�1t is the a priori state estimate at time step
t given knowledge of the process prior to step t, and
xtt is an a posteriori state estimate at time step t given
measurement yt . The matrices P t�1t and P tt are a priori
estimate error covariance and the a posteriori estimate
error covariance respectively.

In the prediction phase, the a priori state estimate xt�1t

and the a priori estimate error covariance P t�1t are computed
forward from time step t�1 to step t. In the update phase, we
assume that we have measured the process to obtain yt. Firstly,
the Kalman gain Kt is computed. Then the a posteriori state
estimate xtt and the a posteriori estimate error covariance P tt
are calculated. The initial values are x01 = �1 and P 01 = P1.

C. Combination of GARCH and Kalman �lter
In a �xed GARCH model, its parameters are estimated using

the training set only, and the test set is not used to adjust
parameters. This constraint may reduce the forecast accuracy,
especially in predicting non-stationary data. To overcome this,
the KF can be used to update parameters of a GARCH model
by treating the weights as the states of an unforced linear
dynamical system. This can be considered as an estimation
problem where the weight values are unknown and have to
be estimated. A little noise is added to the existing state
estimate. Denote the vector of GARCH parameters which need
to be updated by �, then the evolution equation of GARCH
parameters is given by

�t = �t�1 + !t, !t � N(0; Q).

The other parameters of the Kalman �lter can be derived
from the GARCH model. We consider two solutions of com-
bination of GARCH and Kalman Filter as follows.
1) Solution 1: In this solution, all parameters of GARCH

model are set on training set, with exception of the bias
�0 which is adjusted on-line on the test set. Denote � =
f�0; :::; �m; 
1; :::; 
rg
� On the training set: we use maximum likelihood to
compute GARCH parameters, denoted �(0); �(0).

� On the test set: two steps are recursively repeated.
Step 1: Update parameters of the GARCH model using the

KF. We �xed the value �(t) = �(0) and b�(t) = b�(0), and
used a KF to update value of �0(t). The KF is given by

�0(t) = �0(t� 1) + !(t), !(t) � N(0; Q)
yt = �0(t) +

b�(0)xt + "t "t � N(0; nt)

nt = �0(0) +
mP
i=1

�i(0)"
2
t�i +

rP
j=1


j(0)nt�j .

Parameters 
 = fQ;P1g of the Kalman Filter can be esti-
mated by using maximum log likelihood (using the Kalman

smoother) [21], or just initialised to relatively small values.
Other parameters of KF are given by

�1 = �0(0)

Ft = I (i.e. identity matrix)
Ht = 1

Rt = �0(0) +
mP
i=1

�i(0)"
2
t�i +

rP
j=1


j(0)Rt�j .

Step 2: Predict next-day price

yt = �0(t) +
b�(0)xt.

2) Solution 2: In this solution, all parameters of GARCH
model are set on training set, with exception of � = f�0; b�g
which is adjusted on-line on the test set. Denote � =
f�0; :::; �m; 
1; :::; 
rg
� On the training set: we use maximum likelihood to
compute GARCH parameters, denoted �(0); �(0).

� On the test set: two steps are recursively repeated.
Step 1: Update parameters of the GARCH model using the

KF. We �xed the value �(t) = �(0), and used a KF to update
value of �(t). The KF is given by

�(t) = �(t� 1) + !(t), !(t) � N(0; Q)
�(t) = f�0(t); b�(t)g
yt = �0(t) +

b�(t)xt + "t "t � N(0; nt)

nt = �0(0) +
mP
i=1

�i(0)"
2
t�i +

rP
j=1


j(0)nt�j .

Parameters 
 = fQ;P1g of the Kalman Filter can be
estimated by using maximum log likelihood (using Kalman
smoother) [21], or just initialised to relatively small values.
Other parameters of KF are given by

�1 = �(0)

Ft = I (i.e. identity matrix)
Ht = [1; xt]

Rt = �0(0) +
mP
i=1

�i(0)"
2
t�i +

rP
j=1


j(0)Rt�j .

Step 2: Predict next-day price

yt = �0(t) +
b�(t)xt.

IV. EXPERIMENTAL RESULTS
A. Data
Two datasets are used in this work: (1) daily price of

monthly electricity baseload forward products and (2) daily
price of monthly gas forward products. They are taken from
the UK energy market, provided by E.ON UK plc. The
monthly electricity/gas product is a forward contract for
supplying electricity/gas in a single month in the future. In
the UK energy market, it is possible to trade gas from one
to six month(s) ahead and to trade electricity from one to
four month(s) ahead. There is four/six months of daily price
data (approximately 90/130 data points) for each monthly
electricity/gas product. For example, the July 2006 gas product



Fig. 2. Six sub-datasets (1-6) of the ELECTRICITY price dataset. The thin
lines are the training sets and the bold lines are the test sets.

can be traded from 03 Jan 2006 to 30 Jun 2006. To illustrate
the behaviour of the proposed methods, six sub-datasets for
each datasets are used. Figure 2 and 3 show six sub-dataset
of the electricity dataset (denote sub-datset 1 to 6) and gas
dataset (denote sub-datset 7 to 12) respectively. The test sets
of the �rst three sub-datasets of each dataset correspond to
the beginning, middle and end of a stable monthly product.
The test sets of the last three sub-datasets of each dataset
correspond to the beginning, middle and end of a volatile
monthly product. If a test set of a sub-dataset is the beginning
or middle of a monthly gas product trading period, the training
set are data of another monthly product. For example, in sub-
dataset 8 in the gas price dataset (Figure 3 (b)), the test set is
the middle samples of March 2007 product and the training set
is November 2006 product. The prices for different products
are different even in the same trading day; for example, the
price of a colder month is normally higher than that of a
warmer month. This is the reason why there is gap between
the training sets and test sets of these sub-datasets in Figure
2 and 3.
We have randomly selected the sub-datasets from tables of

price of monthly electricity/gas forward products. The input
of the forecast models include historical price of monthly
products, seasonal products and weekend ahead products (i.e.
contracts for the next Saturday/Sunday.). In this paper, the
GARCH models with m = 1 and r = 1 are used.

B. Model evaluation
The random walk (RW) is used as a benchmark model. This

model is given by:

y(t+ 1) = y(t) + "(t);

where " is a zero-mean noise. The model predicts that the next
value of the time series is the same as the current value.

Fig. 3. Six sub-datasets (7-12) of the GAS price dataset. The thin lines are
the training sets and the bold lines are the test sets.

To evaluate the prediction performance of these models,
three types of prediction errors of the test sets are com-
puted: Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Percent Error (MAPE).

eMSE =

PT
1 (yreal � yforecast)

2PT
1 (yreal � y)

2

eRMSE =

qPT
1 (yreal � yforecast)

2qPT
1 (yreal � y)

2

eMAPE =
1

T

XT

t=1

����yreal(t)� yforecast(t)yreal(t)

����
where yreal is the real gas price, yforecast is the forecast gas
price, y is the mean of yreal, and T is the number of data
points.
We also compute the improvement ratio (IR) of errors of

a method comparing to errors of the RW model. Errors here
may be MSE, RMSE or MAPE. For example, the IR of MSE
of a model M comparing to MSE of the RW is given by:

IRMSE(M)=
eMSE(RW )� eMSE(M)

eMSE(RW )
�100%

C. Results

The IRMSE , MSE, MAPE, and RMSE are computed for
each sub-dataset and for prediction methods. Their averaged
values for the six sub-datasets of electricity and gas dataset of
these methods are shown in Table I and Table II respectively.
For the purpose of comparison, these errors are computed for
four methods, as the follows
� Random walk model, which is used as the bench mark
model.

� Fixed GARCH model, whose parameters are computed
on the training set.



� Adaptive-�0 GARCH model, whose all parameters are
set on training set, with exception of the bias �0 which
is adjusted on-line on the test set.

� Adaptive-� GARCH model, whose all parameters are set
on training set, with exception of � which is adjusted
on-line on the test set.

It can be noticed that the errors of adaptive models are
reduced in comparison with those of the �xed GARCH model.
Therefore, the adaptive models do improve the performance
of the GARCH model in these datasets. This improvement
proves the usefulness of updating parameters using a Kalman
�lter. MSE of adaptive GARCH models are 0.2155 and 0.0945
for electricity price dataset and gas price dataset respectively,
their MSE improves around 15.9% compared to the MSE of
the random walk model. There is not much difference between
the results of adaptive-�0 GARCH and those of adaptive-�
GARCH.

TABLE I
AVERAGE ERRORS FOR THE SIX SUB-DATASETS IN THE ELECTRICITY

DATASET OF THE PREDICTION METHODS.

Model IRMSE (%) MSE MAPE RMSE
RW 0.00 0.25623 0.01767 0.43623
Fixed GARCH 8.09 0.23551 0.01654 0.41007
Adaptive-�0 GARCH 15.89 0.21551 0.01643 0.39828
Adaptive-� GARCH 15.88 0.21554 0.01643 0.39832

TABLE II
AVERAGE ERRORS FOR THE SIX SUB-DATASETS IN THE GAS DATASET OF

THE PREDICTION METHODS.

Model IRMSE (%) MSE MAPE RMSE
RW 0.00 0.11238 0.02168 0.29658
Fixed GARCH 12.41 0.09843 0.01983 0.27508
Adaptive-�0 GARCH 15.90 0.09451 0.01991 0.27053
Adaptive-� GARCH 15.91 0.09450 0.01990 0.27053

Table III, IV, V and VI show the MSE and Improvement
ratio (IR) of these forecast models for sub-datasets. It can be
seen that the adaptive GARCH models reduce the prediction
errors in comparison to �xed GARCH model in case of volatil-
ity data (i.e sub-datasets 4, 5, 6, 10 and 12). For example,
in the results for sub-dataset 5, the MSE of the adaptive-�0
GARCH model and the adaptive-� GARCH model improved
15.76% compared to these in the random walk model while the
improvement ratio for the �x GARCH model is only 3.42%.
However applying the �lter has not much effect on stationary
data (i.e. sub-datasets 1, 2, 3, 7, 8 and 9).
The adaptive models were also applied for gas quarterly

products and achieved comparable but slightly worse results.

V. CONCLUSION

This paper proposes a new forecast technique which is a
combination of GARCH and Kalman �lter models. Testing on
the UK electricity/gas forward price shows that the GARCH
models with online adaptive parameters outperform the normal

TABLE III
MSE OF SIX SUB-DATASETS IN THE ELECTRICITY PRICE DATASET

USING DIFFERENT PREDICTION MODELS.

MSE RW Fixed GARCH Adaptive-�0 Adaptive-�
Sd 1 0.05040 0.04240 0.04206 0.04206
Sd 2 0.09456 0.08856 0.08792 0.08794
Sd 3 0.05300 0.03001 0.02969 0.02970
Sd 4 0.12765 0.12698 0.12550 0.12554
Sd 5 0.92351 0.89189 0.77794 0.77796
Sd 6 0.28827 0.23322 0.22995 0.23003
Average 0.25623 0.23551 0.21551 0.21554
Sd: Sub-dataset
Adaptive-�0: Adaptive-�0 GARCH
Adaptive-�: Adaptive-� GARCH

TABLE IV
IMPROVEMENT RATIO OF MSE OF SIX SUB-DATASETS IN THE

ELECTRICITY PRICE DATASET USING DIFFERENT PREDICTION MODELS.

IRMSE (%) Fixed GARCH Adaptive-�0 Adaptive-�
Sd 1 15.86 16.55 16.54
Sd 2 6.34 7.02 7.00
Sd 3 43.38 43.97 43.95
Sd 4 0.52 1.68 1.65
Sd 5 3.42 15.76 15.76
Sd 6 19.10 20.23 20.20
Average 8.09 15.89 15.88
Sd: Sub-dataset
Adaptive-�0: Adaptive-�0 GARCH
Adaptive-�: Adaptive-� GARCH

GARCH model on volatile data. The framework of this com-
bination model of GARCH can be applied to other prediction
models, such as machine learning or �nancial models.
This paper forecasts daily electricity/gas prices for the

monthly forward product as an example to verify the perfor-
mance of the proposed method. It can be used for forecasting
other types of forward products, market clearing prices, and
electricity/gas demand forecasts.
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TABLE V
MSE OF SIX SUB-DATASETS IN THE GAS PRICE DATASET USING

DIFFERENT PREDICTION MODELS.

MSE RW Fixed GARCH Adaptive-�0 Adaptive-�
Sd 7 0.05584 0.03580 0.03671 0.03671
Sd 8 0.02649 0.01991 0.02000 0.02000
Sd 9 0.03155 0.02973 0.02961 0.02961
Sd 10 0.05374 0.05582 0.04880 0.04880
Sd 11 0.12435 0.10596 0.10706 0.10706
Sd 12 0.38232 0.34338 0.32488 0.32488
Average 0.11238 0.09843 0.09451 0.09450
Sd: Sub-dataset
Adaptive-�0: Adaptive-�0 GARCH
Adaptive-�: Adaptive-� GARCH

TABLE VI
IMPROVEMENT RATIO OF MSE OF SIX SUB-DATASETS IN THE GAS

PRICE DATASET USING DIFFERENT PREDICTION MODELS.

IRMSE (%) Fixed GARCH Adaptive-�0 Adaptive-�
Sd 7 35.88 34.25 34.25
Sd 8 24.85 24.51 24.51
Sd 9 5.77 6.17 6.17
Sd 10 -3.87 9.19 9.19
Sd 11 14.79 13.90 13.90
Sd 12 10.19 15.02 15.02
Average 12.41 15.90 15.91
Sd: Sub-dataset
Adaptive-�0: Adaptive-�0 GARCH
Adaptive-�: Adaptive-� GARCH
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