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Abstract

This work introduces a new variational Bayes data assimilation method for the stochastic estimation of precipitation dynamics
using radar observations for short term probabilistic forecasting (nowcasting). A previously developed spatial rainfall model based
on the decomposition of the observed precipitation field using a basis function expansion captures the precipitation intensity
from radar images as a set of ‘rain cells’. The prior distributions for the basis function parameters are carefully chosen to have
a conjugate structure for the precipitation field model to allow a novel variational Bayes method to be applied to estimate the
posterior distributions in closed form, based on solving anoptimisation problem, in a spirit similar to 3D VAR analysis, but
seeking approximations to the posterior distribution rather than simply the most probable state. A hierarchical Kalman filter is
used to estimate the advection field based on the assimilatedprecipitation fields at two times. The model is applied to tracking
precipitation dynamics in a realistic setting, using UK MetOffice radar data from both a summer convective event and a winter
frontal event. The performance of the model is assessed bothtraditionally and using probabilistic measures of fit basedon ROC
curves. The model is shown to provide very good assimilationcharacteristics, and promising forecast skill. Improvements to the
forecasting scheme are discussed.

1. Introduction

Short term forecasts of precipitation fields are of crit-
ical importance to hydrologists who rely on them to pre-
vent floods [40] or manage sewage systems in real time
[56]. Because such applications are usually restricted to
specific areas (typically an urbanized zone or the small
scale catchment of a river) and deal with events which
develop over short periods of time, the forecasting com-
munity has to provide hydrologists with precipitation
forecasts at high spatial and temporal resolutions, typi-
cally referred to asnowcasts. According to [21], precip-
itation run-off models could require, in theory, forecasts
down to 0.5 km spatial and 1 min temporal resolutions.

Traditional numerical weather prediction (NWP)
models replicate the physics of the atmosphere, by
solving a system of governing differential equations
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together with physics based parameterisations and
extrapolating into the future. This requires heavy com-
putational power, and considerable computing time.
With the advent of ever faster computers, NWP mod-
els are starting the be run at resolutions down to 1-4
km[15; 30]. However, two main issues arise when
applying NWP models to nowcasting: the existence
of a spin up phase during which the incomplete rep-
resentation of initial conditions affects the model’s
performance, and the fact that at the scales of interest,
our understanding of convective processes is still very
limited. Recent research projects aimed at increasing
that understanding[6] will hopefuly lead to a better
formulation of NWP models at small scales.

Because of the reasons mentionned above, it is well
acknowledged that NWP models are not particularly
suited to the nowcasting problem[20; 21; 33].There-
fore alternative approaches have been developed. Con-
strained to run fast and at high resolution, nowcasting
systems cannot rely on physics the way NWP mod-
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els do. The physical equations driving the process of
interest have to be approximated in some way. There
are many different ways to model precipitation, rang-
ing from image processing based techniques to purely
stochastic approaches. A short review of some models
found in the literature is given in Section 2.

An immediate consequence of the approximations
applied in nowcasting models is their limited forecast
skill. For instance, in advection based nowcasting sys-
tems such as the one presented in this work, the as-
sumption that the rainfall evolution is dominated by mo-
tion is only valid up to a certain time, beyond which
the growth and decay of cells become a non negligible
source of change. The speed at which forecast skill is
lost depends on the nature of the rainfall, with reason-
able skill being retained for a few minutes for fast de-
veloping convective storms up to a few hours for slowly
evolving fronts.

In order to ensure the nowcasting model remains co-
herent with the evolution of the true precipitation field,
observations of the precipitation field are used to recal-
ibrate the model (i.e. adjust its parameters) in real time.
The process of incorporating observed information into
the model is often calleddata assimilation.

With the advent of weather radar, frequent measure-
ments (one observation every 5 to 15 minutes) with
high spatial resolution (1 to 5 km) have become avail-
able to the forecasting community [8]. Such advantages
quickly made radar data the favourite source of infor-
mation for nowcasting models, greatly influencing the
range of techniques developed. Although there are other
sources of precipitation measurement available (rain-
gauges, airborne sensors, satellites), this paper only dis-
cusses the problem of radar-based precipitation now-
casting, however the framework could easily incorpo-
rate other observations in the future.

In the following sections, we introduce a radar-based
precipitation model which provides a fully probabilis-
tic framework for precipitation nowcasting, with em-
phasis on data assimilation. The discussion is organ-
ised as follows. Section 2 gives a brief review ofrecent
advancesin precipitation nowcasting, while Section 3
outlines the concepts of probabilistic data assimilation.
Section 4 then describes the model and its implementa-
tion. Results are presented and analysed in Sections 6,
7 and discussed in Section 8.

2. Precipitation nowcasting systems

There have been two main trends in the develop-
ment of nowcasting methods. On the one hand,extrap-

olation methods predict the evolution of the observed
rainfall field using object tracking and advection-based
techniques, while on the other hand, storm generating
methods focus on the birth, growth and dissipation of
storms. The latter category can be divided further into
point process models andmultifractal models. Both ex-
trapolation and storm generating methods involve, in
one way or another, the following components: a spa-
tial representation of the precipitation field, a spatial-
temporal model for its evolution and a means to incor-
porate observation data into the model.We present an
outline review of such existing methods. The reader is
referred to [59; 7; 45] for more extensive reviews.

2.1. Extrapolation methods

Radar-based extrapolation methods rely on the as-
sumption that, at the time scales considered, the evolu-
tion of the precipitation field is governed by motion pri-
marily. The UK NIMROD nowcasting system [20; 21]
identifies clusters of rainy pixels on radar scans and
propagates them forward in time using advection es-
timates obtained either by cross-correlation techniques
(at short lead times) or NWP wind field forecasts (at
longer lead times), with a smoother merging function
used to switch between these.Other systems such as
the American TITAN [14] and the model of [38]also
rely on object tracking methods. The precipitation field
is decomposed into a set of elliptic storms, which are
then matched from one image to the following. The op-
timal trajectory of each storm is determined by min-
imising the total mismatch error. Both systems provide
support for the merging and splitting of storms.TI-
TAN also estimates the growth and decay of storms
using linear trends. Another correlation-based method,
the TREC/COTREC systems [47; 32], partitions radar
scans into smaller regions and matches these regions
across subsequent scans using a maximum correlation
criterion. Motion vectors are then estimated from the
regions’ displacement.

The NCAR Auto-Nowcast system[41] is a complex
nowcasting system incorporating a variety of datasets
including: radar, lightning and satellite data, wind pro-
files and NWP model outputs. The Auto-Nowcast sys-
tem makes use of several algorithms to process these
datasets into “predictor fields” (e.g. fields of reflectiv-
ity, storm growth/decay, accumulated precipitation. . . ).
Amongst the algorithms involved, the TREC method
is applied to wind field retrieval from radar data and
the TITAN algorithm is used to detect storms and es-
timate trends in their evolution. A boundary detection
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algorithm, coupled with a cloud detection system, al-
lows for convergence lines, where storms are expected
to occur, to be identified. A physically-based model us-
ing fuzzy logic algorithms merges the various predictor
fields into a dimensionless likelihood field which is then
post-processed to obtain a final prediction estimate.

Bringing further the concept of identifying physical
components of the precipitation field, the GANDOLF
[46; 21] model considers individual precipitation cells
with a conceptual life cycle. The precipitation objects
grow and decay according to the life cycle model of
[26], while being advected by wind fields estimated
from an NWP model. NIMROD, TITAN, GANDOLF
and other operational nowcasting systems are discussed
more in detail in the context of the Sydney 2000 fore-
casting project in [45].

2.2. Point process models

Point process models put the emphasis on estimat-
ing the internal dynamics of precipitation fields using
statistical representations based on point process mod-
els. The models of [48; 11; 50] follow the formalism
of [31] in which the occurrence (in space and/or time)
of precipitating objects (cells or storms) is governed by
Poisson point processes. Storms are defined as areas of
constant random precipitation, life-time[48] and veloc-
ity [11; 50]. The contributions of overlapping cells are
added in both space and time. Estimation of the model’s
parameters is achieved by fitting to existing records of
precipitation using a method of moments.

Two types of Poisson process for the generation of
cells can be found in the literature: the Neyman-Scott
process and the Bartlett-Lewis process. In the Neyman-
Scott process, storms origins are generated from a Pois-
son process. Each storm is given a random number
of corresponding precipitation cells, with their origin
(in time) distant from the storm’s by a delay drawn
from an exponential distribution. Examples using the
Neyman-Scott process and derived approaches include
[10; 16; 43]. In the Bartlett-Lewis process, storms also
originate from a Poisson process in pspace, but a sec-
ond Poisson process dictates, for each storm, the time
at which cells are initiated. This cell-generating pro-
cess is terminated after a sample duration drawn from
an exponential distribution. [44; 29; 51] are few of the
many applications of the Bartlett-Lewis process to rain-
fall modelling. A comparative review of some of these
models can be found in [57].

We note here that these models are usually not de-
veloped with forecasting or nowcasting in mind rather

being developed providing a valid statistical description
of precipitation fields, which might be used for uncondi-
tional simulation purposes. In this work we are more in-
terested in conditioning the modelled precipitation field
on observations, that is data assimilation.

2.3. Multifractal models

In the 1980s, empirical studies have shown that rain-
fall fields exhibit statistical invariance with respect to
the scale at which they are observed [34; 25] and, as
such, could be modelled using random cascade models.
In such models, the field at a given scale (i.e. spatial
or temporal resolution) can be decomposed into a field
at lower scale (higher resolution) by splitting unit re-
gions into equal subregions. The intensity of the field at
these subregions is determined through a random scal-
ing which conserves the overall statistical characteris-
tics of the field. Various options for the distribution of
the scaling generators are given in [52].

The cascade methodology is naturally expressed us-
ing multifractal theory[52; 35] and presents several ad-
vantages over object tracking methods: it models the
rainfall field at different scales, allows seamless incor-
poration of data at various resolutions (fine for radar,
coarser for NWP estimates) and in the universal multi-
fractal framework described in [52], only require a very
small number of parameters to characterise their statis-
tics. Dynamics in these models can be modelled by in-
cluding time (along with space) in the cascade [13; 4]
or using advection based propagation as systems like
S-PROG[49] and STEPS[5].

However, a study by [55] underlines the limitations of
multifractal models and shows, using several datasets,
that assuming the scaling factors to be independent of
the scale leads to unrealistic simulation results. The au-
thors conclude that “rainfall does not behave like a mul-
tifractal process” and that multifractal models in which
the scaling generators are identically distributed are “in-
adequate”, and suggest directions for a new generation
of multifractal models. We note that the data assimi-
lation method we develop and apply in this paper is
equally applicable to cascade like models, where the
precipitation field and advection could be computed at
each level in the cascade using our variational Bayesian
methods.

2.4. Other methods

Other techniques have been applied to the prob-
lem of precipitation forecasting. [60] apply to pre-
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cipitation nowcasting the probabilistic framework of
integro-differential equations developed by [58]. In
this framework, a redistribution kernel specifies how
each pixel’s intensity evolves in time as a linear com-
bination of the previous pixels’ intensities. Parameter
estimation is performed using Markov Chain Monte
Carlo, after projection onto the spectral domain (using
Fourier decomposition), and dimension reduction (only
the principal components are considered). The use of
Monte Carlo methods implies a significant computa-
tional requirements making the method less suited to
nowcasting. [24] tried to model the evolution of the
precipitation field using a back-propagation neural net-
work trained on real data, but showed that this method
had little advantage over the more traditional advection
schemes. [23] and [28] applied traditional variational
techniques to estimate the parameters of a cloud model
and the parameters in the Z-R relationship respectively,
i.e. techniques which seek for the optimal “trajectory”
(in a least squares formulation) of the parameters over
a given time window covering several observations.
A variational approach is also found in [17] to com-
pute wind field estimates from sequential radar scans,
which are then used to propagate the rainfall field us-
ing a semi-Lagrangian scheme (precipitation regions
are advected along the estimated wind stream). Simple
probabilistic forecasts at a given location can then be
generated by considering the spatial structure of the
neighbouring predicted field, as described in [18].

2.5. Single point versus probabilistic estimates

Nowcastingmodels provide forecasts which fall in
either of the two following categories:single point fore-
casts, in which a single “best” estimate is issuedand
probabilistic forecasts, which provide a mean predic-
tion and a measure of the prediction’s uncertainty.

The motivation forprobabilisticmodels arises from
the fact that neither the data (radar) nor the models pro-
vide an exact representation of the true processes they
represent. Both observation and modelling are subject
to errors or approximations from many sources, as dis-
cussed in Section 3. It is thus important to be able not
only to predict the evolution of precipitation events, but
also to quantify how uncertain aboutour predictionwe
are.

The model described in this paper follows the
stochastic approach, and extends the work of [9] with
a novel data assimilation method that makes the im-
plementation more stable and scalable, andadds a
new birth and death processes for precipitation cells.

The method is tested on two large scaleprecipitation
scenarios from convective and frontal rainfall events.
Before introducing the model, we review the basic
concepts of probabilistic data assimilation.

3. Data assimilation

Data assimilation denotes a set of methods used
to track the state of some physical system using two
sources of information: a numerical model for the phys-
ical process and observations of the true process. The
observations are assumed to be available in discrete
time, and are denotedyt. Thus, between each observa-
tion time, the initial step evolves the state from timek to
time k +1 using the numerical model (prediction step),
thus giving aforecast state. In a sequential (filtering)
data assimilation method, the best possible estimate of
the state atk + 1 is obtained using the forecast state
and the newly available observations (assimilation or
update step), thus giving anupdated state (also called
the analysis state). When necessary, the forecast and
analysis will be denoted using superscripts ‘f’ and ‘a’
respectively:x f , xa.

3.1. Evolution of the state

In a generic framework,making the often used and
relatively weak assumption that the numerical model is
Markovian in character, the evolution of the state is
given by:

xt+1 = mt(xt)+ ηt. (1)

mt is the non-linear evolution operator andηt is a noise
term accounting for the divergence of the model from
the true process. Such divergence can be due to:
– an incomplete or inaccurate physical representation

of reality;
– an incomplete, simplified formulation of the physical

equations;
– localisation issues;
– numerical errors: approximations, linearisation, dis-

cretisation. . .
The noise term is commonly referred to asmodel error.
We assume that model error is additive and Gaussian
with mean zero and diagonal covarianceQt (unbiased
model):ηt ∼N (0,Qt) although arguably a state depen-
dent, or multiplicative noise term might be more realis-
tic, and would have little affect on the data assimilation
method presented.
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3.2. Mapping to observation space

In most practical problems, the state of the system
cannot be observed directly. Instead, some other more
tractable, physical quantity that relates to it is measured.
Themeasurement (or observation) operator maps from
state space to observation space as follows:

yt = ht(xt)+ εt. (2)

ht is the measurement operator, andεt a noise term ac-
counting for the imperfections inherent in the observa-
tion process. This noise is commonly referred to asob-
servation error. The most common error sources usu-
ally associated with radar data are [1; 22]:
– Blocking and clutter: the radar beam can be ob-

structed by hills or mountains (blocking) or detect
ground objects (buildings, trees...) or flying objects
(insect clouds, birds) which will be identified as
precipitation

– Attenuation: the beam’s intensity is weakened beyond
stormy areas as these absorb much of the beam’s
energy.

– Overshooting: Due to the angle between the beam and
the ground, measurements at a large distance from
the radar sometimes capture precipitation aloft which
does not reach the ground (evaporation) and some-
times fail to capture precipitation from low clouds
(overshooting).

– Anomalous propagation: in some particular situ-
ations, the radar beam can refracted towards the
ground by a layer of air, resulting in precipitation
being (wrongly) detected. This is most common at
early hours, when a layer of warm air lies above a
layer of cooler air.

– Bright band: snow melting into rain in the atmosphere
has higher reflectivity than rain and can be misinter-
preted as heavy rain.

– Incorrect conversion model from observed reflectivity
(z) to rain intensity (y). Nimrod uses the Marshall-
Palmer relationshipz = 200y1.6 [19].
The NIMROD radar data undergoes intensive pro-

cessing prior to being released, in order to correct for
noise, clutter, occultation, anomalous propagation, at-
tenuation, range, bright band and orographic enhance-
ment [54]. It is worth pointing out that, although the
resulting products are more accurate than the raw data,
they are not error-free (e.g. overshooting errors are not
corrected).

Similarly to model error, we assume observation error
to be Gaussian, uncorrelated in time, with mean zero and
diagonal covarianceRt: εt ∼ N (0,Rt). This is a very
simplified error model, as radar errors are known to be

non Gaussian and spatially correlated. The choice here
is motivated by the computation of the KL divergence
(Section 5.2) which for a Gaussian likelihood can be
computed exactly. Other, more realistic noise models
will be investigated in future developments.

Note thatmt andht are assumed non-linear a priori.

3.3. Probabilistic formulation

The presence of errors in both the evolution and the
assimilation steps leads naturally to a probabilistic for-
mulation of the problem, where the interest focuses not
only on the statex, but on its probability density func-
tion (pdf) given the observations seen to that time (the
filtering distribution): p(xt|Yt) = p(xt|yt,yt−1, ...,y1).

The evolution of the state’s pdf is achieved by incor-
porating the uncertainty due to the model’s imperfec-
tion:

p(xt|Yt−1) =
Z

p(xt|xt−1) p(xt−1|Yt−1) dxt−1. (3)

where p(xt|xt−1) is determined using (1). This step is
the evolution step.

Given a new observation vectoryt, the probability
density function ofx is updated using Bayes’ rule:

p(xt|Yt) =
p(yt|xt) p(xt|Yt−1)

p(yt|Yt−1)
. (4)

where p(yt|xt) is the observation’slikelihood (measur-
ing how likely the observation is given the model state).
This step is often referred to as theassimilation (or up-
date) step, and the updated distribution as theposterior
distribution.

p(xt|Yt−1) is obtained from (3) and is typically called
theprior. We assume that the initial prior in the absence
of observation, p(x0|z0) = p(x0), is known, but vague.
The normalising constant p(yt|Yt−1) is called the evi-
dence, or marginal likelihood, and is defined as:

p(yt|Yt−1) =
Z

p(yt|xt) p(xt|Yt−1) dxt. (5)

Unfortunately, in most problems, the evidence cannot
be computed and one has to revert to approximation.
A common approximation consists in finding the value
of xt which maximises the posterior distribution (this
is known as the maximum a posteriori – or MAP – es-
timation), and can be related to the traditional 3D and
4D variational data assimilation methods. An alterna-
tive is to approximate the posterior using sampling, in
(Markov Chain) Monte Carlo approaches.
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4. The Basis Function (BF) model

4.1. Spatial representation

We consider the following operatorh to map the 2-
dimensional spatial domainΩ to the precipitation in-
tensity space. In our case,Ω is a grid with resolution
5×5 km, and total dimensions of a few hundred km.
We denoteM the number of pixels inΩ andx the input
vector made of all pixels, so thats = (s1, ...,s j, ...,sM).

For a given observationy, each pixels j has the
associated observed precipitation intensityy j, hence
y = (y1, ...,y j, ...,yM).

Fig. 1. Rain cell

The precipitation
field is modelled by a
set of K 2-dimensional
Gaussian-like basis
functions (cells) with
parameter vectorxk =
(ck,wk,rk), where ck is
the kth cell’s centre,wk

its width andrk its cen-
tral intensity (Figure 1).
A cell in this context is
a Gaussian-shaped pre-
cipitation volume with
precipitation rate decreasing from the centre. Such vol-
umes are added up in order to reproduce the observed
precipitation landscape. Thus, cells are expected to
overlap. Note that this differs from the traditional defi-
nition of a rain cell as an area of constant precipitation
rate.

The modelled precipitation intensity at pixels j for
cell k is:

h(s j,xk) = rk exp

(

‖ ck −x j ‖
2

2wk

)

(6)

The total precipitation intensity at a given pixel is the
sum of the intensities from all cells:

h(s j,x) =
K

∑
k=1

h(s j,xk), (7)

wherex = (x1, ...,xK) is the parameter vector for all
cells.

We similarly define the precipitation field over the
space domainΩ for a given cell:

h(s,xk) = (h(s1,xk), ...,h(sM,xk)), (8)

and the total precipitation field over the image:

h(s,x) =
K

∑
k=1

h(s,xk). (9)

The basis functions considered are continuous in
space with infinite support, and thus differentiable.
Although this makes gradient computations (and thus
gradient-based optimisation) possible, it is an unrealis-
tic feature for precipitation cells, which are known to
cover a limited spatial area only.

The above model provides a visually satisfying static
approximation to the observed precipitation field (see
Figure 2).

4.2. Dynamics

The precipitation field is propagated in time and space
according to the advection equation:

∂h
∂t

+ u .∇h ≈ 0, (10)

whereu denotes the velocityor advection vector for the
precipitation field. The equation relates the evolution of
the precipitation in time and space assuming the precip-
itation field is approximately conserved while being ad-
vected. The advection istreated as a spatial field and is
specified at each cell’s location, so thatu = (u1, ...,uK)
with spatial vectoruk denoting the advection at cellk;
thus the advection can vary spatially.

5. Data assimilation in the BF model

In this section, we detail the specific implementation
of the Bayesian formalism from Section 3.3.

The observation’s likelihood is defined to be Nor-
mally distributed:

p(y|x) =
1

(2π)
M
2 |R|

1
2

e−
1
2(y−h(x))TR−1(y−h(x)) (11)

wherey is the observed precipitation field vector (i.e.
radar),h(x) is the model predicted precipitation field
given the model state,x, andR is the covariance matrix
for the observation error.

The computation of the posterior distribution is made
simpler by choosing prior distributions which areconju-
gate for a particular likelihood, i.e. the posterior distri-
bution has the same distribution as the prior (e.g. if the
prior is Gaussian, the posterior will be also be Gaussian
too, although with different parameters). In [9] the pri-
ors were chosen for convenience, however in this work
conjugate priors are used. Given a conjugate prior, the
posterior distribution can be derived analytically up to
its parameters, which can then be evaluated using an
optimisation procedure. Thisvariational Bayesian ap-
proach to the data assimilation problem is novel and

6



Obs

t

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Model

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500
0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

UV

Fig. 2. A radar observation of the precipitation field (left)and the model’s corresponding representation (centre), with K = 200 cells. The
principal cell contours and advection vectors are plotted on the right.

has several benefits, the primary one being that an infer-
ence problem is converted to an optimisation problem.
We stress here that we are seeking a distribution over
the posterior of the parametrised precipitation field and
advection field, which we define to be the state of the
system.

The priors over the precipitation cell parameters have
been chosen as follows. The cell widths have an Inverse-
Gamma distribution:

p(wk) = IGa(αk,βk), (12)

the cell centres follow a Bivariate Normal distribution
conditioned on the widths, up to a scale factorξk (so that
centres and widths together follow a Normal-Gamma
distribution):

p(ck|wk) = N (c̄k,ξkwk), (13)

and the cell intensities are Gamma distributed:

p(rk) = Ga(γk,δk). (14)

This choice of prior is motivated by the following
considerations:
– The priors over the heights and widths should ideally

have strictly positive support,
– The larger the cell, the less confident one is about the

exact position of the centre, hence the conditioning
on the width,

– For the normal likelihood, the Normal-Gamma prior
on the centres and inverse-widths (which is equivalent
to a Normal-Inverse Gamma prior on the centres and
widths) is conjugate.

The distribution over the different groups of pa-
rameters are assumed uncorrelated, so that:

p(x) =
K

∏
k=1

p(ck|wk)p(wk)p(rk) (15)

The conditioning of the centres on the widths seems a
relevant assumption as locating the centre of a small

cell is easier than locating the centre of a wide cell.
Whether other correlations between parameters are
worth capturing is open to discussion. The authors
believe that a cell’s intensity and width are unlikely to
be strongly correlated a priori, and neither the width
nor the intensity should depend (here again, a priori)
on the cell’s location. However, the assumption that
cells are uncorrelated to each other is certainly a sim-
plification, as we do expect cells to be correlated, at
least locally. The motivation for this assumption lies
in the simplifications it brings to the computation in
the assimilation step (below).

The advectionu follows a 2-dimensional Gaussian
process with a Matern correlation function, with fixed
order equating to a twice mean-square differentiable
stochastic process [9].

5.1. Prediction step

The precipitation is evolved forward in time using
the advection equation (10). Assuming discrete time
indexed byt, the evolution ofh for the pixel at location
s is:

h(s,xt+1) = h(s,xt)−ut .∇h(s,xt). (16)

In the BF model, the cells are assumed to have no dy-
namics other than motion. This is an unrealistic feature,
as we know that precipitation cells also undergo modi-
fications due to internal dynamics, resulting in growth
and decay phenomena. This limitation is discussed later,
however we note that in practice it has been difficult
to show strong benefits for including internal cell dy-
namics [46] and that we do allow for additional model
uncertainty due to the omission of specific internal dy-
namics.

Following (1), Gaussian noise is added to the model
parameter distributions to account for the model imper-
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fections. The cell heights and widths are left unchanged
in mean but their covariances increase. The centres are
modified according to the following:

p(ct+1|wt+1) = N (c̄t+1,Σct+1) (17)

whereΣct+1 is the full diagonal covariance matrix for
the centres, i.e.Σct+1(k,k) = ξk,t+1wk,t+1, and

c̄t+1 = c̄t + ∆tut (18)

Σct+1 = Σct +(∆t)2Σut + Qt (19)

Similarly to the widths and heights, the advection
ut is assumed constant during the prediction. This is a
realistic assumption at the time scales considered, where
theevolution of the precipitation field is faster than that
of the advection field.Again, a small amount of system
error is added to reflect the inaccuracies in the model’s
dynamics.

5.2. Assimilation step

The model described thus far is able to model a pre-
cipitation field and propagate it through time in a gener-
ative manner that can be used for simulation purposes.
For it to work in a forecasting context, it needs to be
tied to the underlying real process via real-time ob-
servations. Section 3 described the general concepts of
Bayesian data assimilation, and the need for some nu-
merical method in order to evaluate the posterior distri-
bution of the variable of interest. The initial model de-
veloped by [9] used a maximum a posteriori method to
determine the optimal statex∗, and a Laplace approx-
imation aboutx∗ to estimate the posterior uncertainty
via the covariance matrix.

The maximum a posteriori method consists of find-
ing the valuex∗ of x which maximises the posterior
probability (or, as is usually done in practice, the neg-
ative logarithm of the posterior probability). The priors
on the centres, widths and heights were chosen to be
convenient to compute and the posterior up to a normal-
ising constant was computed analytically; the optimum
was determined using the scaled conjugate gradient op-
timisation method [42].

The Laplace approximation (see for example [36])
uses the fact that at its maximum, the log-posterior can
be expanded using Taylor expansion as follow:

lnp(x) ≈ lnp(x∗)−
1
2

(x−x∗)T H(x−x∗) (20)

whereH is the Hessian of lnp at pointx∗. Then, if we
denoteZ the, typically unknown, normalising constant,
p can be approximated at pointx∗ by the Gaussian dis-
tribution:

q(x) =
1
Z

exp

[

−
1
2

(x−x∗)T H(x−x∗)
]

. (21)

The Laplace assumption is only valid about the maxi-
mum in the posterior, it is important for accurate results
to ensurex∗ is as close as possible to this maximum. As
the number of cells considered increases, reaching the
required accuracy becomes computationally expensive,
and slows down the model considerably. The approx-
imation is also a local one, and is likely to underesti-
mate the posterior variance, especially if the posterior
distribution is multi-modal, although we have not found
strong evidence for multi-modal posteriors in this prob-
lem.

In order to improve the assimilation of radar data, a
new approach is presented here which relies on Varia-
tional Bayesian techniques. Variational Bayes was in-
troduced by [27] in a paper which showed that the true
posterior distribution can be approximated by a Gaus-
sian distribution using a deterministic algorithm. The
method can be applied to other types of distributions,
and involves minimising the Kullback-Leibler (KL) di-
vergence between the true posterior and some simpler,
parametric, approximating distribution, for which pa-
rameters are estimated. The KL divergence, or relative
entropy, between the posterior p and the approximating
distribution q, is defined as follows:

KL (q ‖ p) = −

Z

q(xt|Yt) ln
p(xt|Yt)

q(xt|Yt)
dx (22)

Given the conjugate nature of the priors chosen, the q
distribution has the same structure as the prior. Given
the prior (eq. 15) and the likelihood (eq. 11), the ex-
pression for p(xt|Yt) can be obtained, up to a constant,
by applying Bayes’ rule (Eq. 4), leading to:

KL (q ‖ p) ∝ −
Z

q(xt|Yt) ln
p(yt|xt)p(xt|Yt−1)

q(xt|Yt)
dx

(23)
Expanding this yields:

KL (p ‖ q) ∝−

〈

ln p(yt|xt)

〉

q(xt|Yt)

−

〈

ln
p(xt|Yt−1)

q(xt|Yt)

〉

q(xt|Yt)

(24)

where the cross-entropy of p with respect to q is defined
as:

〈

ln p(x)

〉

q(x)

= −

Z

q(x) ln p(x) dx (25)

The likelihood term arising from the new radar im-
age being assimilated expands, after computation, and
omitting the time index for readability, to:
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−

〈

lnp(y|x)

〉

q(x|Y)

=
1

2σ2

M

∑
j=1





(

N

∑
k=1

Ek, j − y j

)2

−
N

∑
k=1

(

Ek, j
)2

+
N

∑
k=1

Fk, j





(26)

with

Ek, j =
γk

δk(1+ ξk)

(

1+
(c̄k − s j)

T(c̄k − s j)

2βk(1+ ξk)

)−αk

(27)

and

Fk, j =
γk(γk +1)

δ2
k(1+2ξk)

(

1+
(c̄k − s j)

T(c̄k − s j)

βk(1+2ξk)

)−αk

(28)
Further computation leads to the following results for

the prior term:

−

〈

ln
p(x|Y)

q(x|Y)

〉

q(x|Y)

=

N

∑
k=1

[

γk lnδk − γ′k lnδ′k − ln
Γ(γk)

Γ(γ′k)

+ (γk − γ′k) [Ψ(γk)− lnδk]− γk

(

1−
δ′k
δk

)

+ αk lnβk −α′
k lnβ′

k − ln
Γ(αk)

Γ(α′
k)

+ (αk −α′
k) [Ψ(αk)− lnβk]−αk

(

1−
β′

k

βk

)

+ ln
ξ′k
ξk

+
ξk

ξ′k
+

1
2ξ′k

αk

βk
(c̄k − c̄′k)

T(c̄k − c̄′k)
]

−
N
2

(29)

in which the prime is used to distinguish the prior pa-
rameters from the equivalent parameters in the posterior.
The Γ andΨ operators are the standard Gamma func-
tion and its first derivative (Digamma). We omit the
full derivation of these results which requires a series
of non-trivial integrals. These will be made available in
a future report. The main point to note is that the use of
the variational Bayes framework allows us to repose the
estimation of the posterior distribution by a minimisa-
tion of Equation 24. The minimisation is achieved using
a scaled conjugate gradient algorithm [3; 42]. Since the
q distribution is an approximation to the posterior dis-
tribution we are able to take relatively few optimisation
steps and still have reasonable estimates of the poste-
rior uncertainty about the locations of the precipitation
cells in particular, which is crucial in obtaining realistic
estimates of the advection field, and our uncertainty in
this.

5.3. Forecast

The predicted distribution at a given lag L is given
by:

p(xt+L|Yt) =
Z

p(xt+L|xt) p(xt|Yt)dxt. (30)

Since the model is assumed Markov, the predicted dis-
tribution in the integral factorises as the product of all
intermediate predicted estimates, giving:

p(xt+L|Yt) =

Z

..

Z

p(xt+L|xt+L−1) . . .p(xt+1|xt)

p(xt|Yt) dxL−1 . . . dxt.

(31)

Although this formulation allows for the full distribu-
tion of the state to be forecast forward in time according
to Equation (1), it relies heavily on a good specification
of the model error. Because this model error has been
chosen Gaussian, which we know is unrealistic, an alter-
native approach based on Monte Carlo approximation
is preferred. A number of realisations are sampled from
the state’s distribution p(xt|Yt) and propagated to time
t+L using the model. The forecast distribution is then
approximated by the ensemble of forecasts, from which
statistics can be estimated. This method is expected to
better capture the variability introduced by the model
and compensate for the crude error model chosen.

The forecast is obtained by propagating the cells lin-
early given their initial advection estimate. This is a very
simple advection model, and it is expected to give rea-
sonable forecasts at short times only (up to 1h), where
the linear approximation holds. At longer lead times, a
better forecasting scheme would have the cells propa-
gated according to the estimated advection at their pre-
dicted location, rather than at their initial location. This
has not been been implemented in the current work, but
will be the primary focus of upcoming developments.

5.4. Extensions to the model

In order to apply the model to real data, a number of
additional extensions to the model in [9] were required.
It is beyond the scope of this paper to discuss these in
detail, but it is worth mentioning them:
– Support for the deletion of “dead” cells (cells that

have collapsed or moved out of the observable area).
– Support for the detection of new cells (cells that have

appeared as a result of in situ convective development
or that have been advected into the observable area).

– Localisation of each cell’s precipitating area: by de-
sign, the cells have infinite support. It is thus im-
portant to limit their effect to a certain radius from
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the centre. A cut-off of 0.8 mm.h−1 is applied, be-
yond which the effect of the cell is ignored. This also
speeds up the computation considerably.

These extensions make is possible to run the model on
large radar images, over long time periods.

6. Preliminary results

As a sanity check, we first test the ability of the model
to correctly locate a single precipitation cell, on simu-
lated data. The data is generated by propagating a single
precipitation cell with constant, horizontal advection of
6 m.s−1. The cell is 42 km wide and its central inten-
sity is 33 mm.h−1. Observations are taken every 900s
and corrupted with Gaussian white noise with variance
4.0 mm2.h−2. The noise is applied locally, i.e. only to
those pixels where the precipitation rate exceeds some
threshold (0.8 mm.h−1). This is believed to be a real-
istic noise model for simulated radar-like data, since it
is empirically observed that radar is usually well able
to identify geographical regions without precipitation,
with the errors occurring mainly in the regions where
precipitation is detected [39]. Other noise models were
tested (global additive noise and multiplicative noise),
but they did not lead to any significant differences in
the results.

Fig. 3. Single precipitation cell: movement in time – The toprow
shows the predicted precipitation cell (top), the observedprecipita-
tion cell (middle) and the assimilated precipitation cell (bottom) at
3 different times: initial guess (left), assimilation (centre) and end
of forecast (right).

The cell parameters are estimated over 180 time steps
(equating to 45 hours), and then forecast over 12 steps (3
hours). The initial variances over the centres, widths and
heights are set to 10.0, representing weak knowledge

of the initial state at the start of the assimilation. The
propagation error variance (also known as the model
error component) is set to 25 km2.h−1 for the centres,
0.1 mm2.h−1 for the central intensity, 0.1 km2.h−1 for
the cell widths and 1.6 m2.s−2.h−1 for the advection
field. These priors are chosen to be characteristic of the
typical model errors we might expect for real data, and
have been derived by analysis of radar image sequences.

Figure 3 shows the predicted, observed and assimi-
lated cells from the idealised model at 3 different times.
At the end of the assimilation period, the cell is prop-
agated forward in time using the last estimate of the
parameters. There is no noticeable difference between
the cell’s characteristics at the end of the forecast and
the observed cell, which confirms the model managed
to track the “true” cell on this very simple validation
example.

7. Results on real data

In order to test the model on real data, the model is
run against radar observations from a convective pre-
cipitation event in the summer of 2006 and to contrast
on a frontal precipitation event in the winter of 2005.
Both experiments use NIMROD radar data provided by
the UK Met Office, accessed through the British Atmo-
spheric Data Centre [54].

The observations were pre-processed using a Gaus-
sian filter with radius 10 km to improve the estimation
of the model precipitation field. The spatial domain was
restricted to 500×500 km (100×100 pixels) and the
model was run with a limited number of 250 cells, in or-
der to keep computation times sufficiently low (less than
5 minutes per observation processed). Furthermore, the
optimisation of the KL divergence was limited to 200
iterations, which proved sufficient in practice to achieve
a good fit of the posterior distribution while remaining
computationally efficient.

The assimilation was carried out over a sequence
of 672 observations, taken every 15 minutes, which
amounts to a weeks worth of data (168 hours). Figure 5
show the state of the model for the convective event, af-
ter about 67 hours of data (270 observations) have been
assimilated. 4 hourly estimates are shown. This corre-
sponds to a peak in the complexity of the precipitation
field, and thus to a peak in the Root Mean Square Er-
ror (RMSE) with respect to the mean of the posterior
distribution, as shown in Figure 8. Reading from top to
bottom Figure 5 shows: the radar observations of pre-
cipitation, the corresponding estimated precipitation af-
ter assimilation of the observed radar, the cell contours
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Fig. 4. Convective event – This plot shows the evolution of the observed (a) and estimated (b) rainfall over a 4-hour period (from left to
right). The main cells and their associated advection are shown on row (c). ROC curves for a fixed threshold of 1 mm.h-1 are shown on row
(d) for 3 different forecast lead times: 30 min (top curve), 60 min (middle curve) and 180 min (bottom curve). The dashed line correspond
to a non informative forecast (no skill). Row (e) shows the optimisation of the KL divergence over 200 optimisation steps.

Fig. 5. Estimation of convective precipitation (July 2006)
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along with their advection vectors (only the major cells
are displayed for clarity), the ROC curves for a precip-
itation thresholdRmin = 1 mm.h−1 with 3 curves cor-
respond, from the upper one to the lower one, to the
forecasts at t+30 min, t+60 min and t+180 min, and, on
the bottom row, the KL convergence curves for each of
the 4 time steps considered.

The quality of the probabilistic forecasts was assessed
based on [2]. At each 15 minute time step, 100 real-
isations of the stochastic model were generated from
the parameters posterior distribution and then propa-
gated forward in time, to provide an Monte Carlo (or
large ensemble) estimate of the probability distribution
of the precipitation rates over the region at times from
t+15min to t+180 min. Given a precipitation threshold
Rmin, the model is considered to detect rain at a given
location if at leastN forecasts out of the 100 predict rain
exceedingRmin at that location. The same threshold is
applied to the observed rainfall and the Hit Rate (ratio
of correctly detected wet locations) is plotted against
the False Prediction Rate (ratio of incorrectly detected
dry locations). The ROC curve is generated by havingN
vary from 0 to 100. Ideally the all forecasts for a given
N will have 100% hit rates, and zero false alarms, cor-
responding to a line along the top of the plot. A random
forecast should plot along the diagonal line. Thus a per-
fect probabilistic forecast will result in the area between
the curve and the diagonal [0,1] being 0.5, whereas an
area close to zero indicates poor skill (zero being equiv-
alent to a random forecast).The area under the curve is
computed as the sum of the “slices” between any two
sequential pointsak−1 andak on the curve, joined by a
straight line (trapezoidal Riemann sum). The total area
is thus given by:

1
2

N

∑
k=2

[FPR(ak)−FPR(ak−1)]×

[HR(ak)+ HR(ak−1)]

(32)

Figure 5 shows that after seeing 67 hours of data the
model is able to assimilate the radar data to estimate the
precipitation field while also jointly estimate advection
vectors for the precipitation field. It can be noticed that
the appears somewhat ‘spotty’ in some parts. We be-
lieve this relates to the partial optimisation of the KL-
divergence; as can be seen from the bottom line of the
figure, the KL-divergence has not converged full in the
optimisation, much like the 3D VAR cost function is
only partially optimised in classical data assimilation.
This might also be related to the convective nature of
the event, with the birth / death processes of the ‘pre-
cipitation cells’ making it very difficult for the model

to track specific precipitation features, and resulting in
cells being frequently added and removed. The advec-
tion vectors show a clear storm motion from south-west
to north-east, but there are small variations in the advec-
tion over space, which are likely to reflect differential
development and possibly steering of the precipitation
field. The ROC curves (4th line) for the four times show
that at moderate lead times t+30 min and t+60 min the
probabilistic predictions have considerable skill, how-
ever for this convective event at t+180 min the skill is
much reduced, but still considerably better than random.

Figure 7, shows the same information as Figure 5
but for the January 2005 frontal rainfall event, starting
this time after 60 hours of data (240 observations) have
been assimilated. We note that the assimilation method
quickly converges and thus could be shown after only 2
cycles of assimilation and would show similar results.
We again see a good fit the the assimilated precipita-
tion field, but again note a problem with some rather
‘spotty’ behaviour in the assimilated estimate of pre-
cipitation. This problem appears to be most severe in
region with strong dynamic changes to the advected
precipitation field. The advection vectors from this ex-
ample show rather complex structure. Initially this was
felt to be a problem with the model, however it appears
that there is strong apparent differential advection in
this storm, probably related to embedded precipitation
elements within the frontal zone, particularly early in
the time window show here. At the later times the ad-
vection seems more uniform across the domain consid-
ered. In contrast to the convective scenario the the ROC
curves show that forecast skill is retained far longer,
with quite respectable skill shown even at t+180 min
as might be expected in the more strongly dynamically
forced, larger scale processes typical in frontal precip-
itation. Finally we note that for computational reasons
we truncated the optimisation of the KL-divergence at
200 iterations, but it is clear that the system has not
fully converged.

8. Discussion

To further evaluate the performance of the model,
two statistical validation methods have been applied.
The quality of the assimilation was validated using the
traditional Root Mean Square Error (RMSE) while the
forecasting ability was assessed using ROC curve based
verification statistics over the full assimilation window.

The RMSE measures the average distance (over the
spatial domain) between the model’s estimate and the
‘true’observed precipitation field as measured by the
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Fig. 6. Frontal event – This plot shows the evolution of the observed (a) and estimated (b) rainfall over a 4-hour period (from left to right).
The main cells and their associated advection are shown on row (c). ROC curves for a fixed threshold of 1 mm.h-1 are shown on row (d) for
3 different forecast lead times: 30 min (top curve), 60 min (middle curve) and 180 min (bottom curve). The dashed line correspond to a non
informative forecast (no skill). Row (e) shows the optimisation of the KL divergence over 200 optimisation steps.

Fig. 7. Estimation of frontal precipitation (January 2005)
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Fig. 10. Scatter plot of RMSE vs Total observed precipitation (July
2006) – The Root Mean Square Error between the estimated rainfield
and the observation is plotted against the total observed precipitation
for each of the 672 observations in the convective experiment.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

2

4

6

8

10

12

RMSE vs Total observed precipitation
(Frontal event)

Total observed precipitation (mm.h−1)

R
M

S
E

Fig. 11. Same as Figure 10 for the frontal event (January 2005).

radar. Figures 8 and 9 show the evolution of the RMSE
in time over the assimilation period. The assimilation
appears to give better results for the convective event
(Figure 8) than for the frontal event (Figure 9). This is to
be related to the spatial complexity of the precipitation
field, which is greater in the winter event, probably due
to the higher overall rain rates, and the greater part of
the domain covered by precipitation compared to the
summer event. Figures 10 and 11 show scatter plots
of the RMSE against the total observed precipitation

(summed over the spatial domain) for the convective
and frontal cases respectively. This confirms, in both
cases, the correlation between the complexity of the
precipitation field and the quality of the corresponding
estimate.

For both cases the same, limited, number of cells
(250) was used which is probably not overly realistic. In
practice it would be very desirable to be able to estimate
an appropriate complexity for the model, which could
adapt to the complexity of the observations. This was

14



0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

20

Number of cells

R
M

S
E

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

T
im

e 
(s

)

Effect of number of cells on RMSE/initialisation time

Fig. 12. Trade off between number of cells and initialisation speed.
This plot shows the effect of the number of cells used on the
quality of the fit and computation time. The dashed curve (left
y-axis) is the root mean square error between the observation and
the model’s estimated rainfall field. The solid curve (left y-axis) is
the initialisation time in seconds.

Radar

20 40 60 80 100

20

40

60

80

100

100 cells

20 40 60 80 100

20

40

60

80

100

10 cells

20 40 60 80 100

20

40

60

80

100

200 cells

20 40 60 80 100

20

40

60

80

100

50 cells

20 40 60 80 100

20

40

60

80

100

400 cells

20 40 60 80 100

20

40

60

80

100

Fig. 13. Fit to the data with increasing number of cells. Thisplot
shows the model’s realisation as the number of cells increases. The
actual observation is shown in the top left corner.

not implemented in this version of the code but we be-
lieve that it might be possible to incorporate a ‘sparsity’
prior in the model, in a similar manner to the treatment
of the relevance vector machine [53]. The model is this
better able to represent the simple,localised precipita-
tion patterns which make up most of the convective data
compared to the complex, diffuse precipitation patterns
from the winter data. This also explains the consider-
able variations in the RMSE for each event, where quiet,
dry(er) periods alternate with stormy phases.

The fit to the data can be improved by increasing the
number of cells, but this comes at the price of computa-
tional time, which needs to be kept below the time incre-
ments between two observations.Figure 12 shows how
the Root Mean Square Error (dashed line) decreases as
more and more cells are allowed into the model. Com-
putation time (solid line) increases almost linearly with
the number of cells. A limit of 250 cells is sufficient
to discard more than 90% of the misfit while keeping
computation time below 30 seconds. Figure 13 shows
how the fit to the data improves as the number of cells
increases.In this work the complexity was chosen to
keep the computational time to less than 5 minutes per
assimilation cycle on a 1.6GHz single core desktop
PC. It is theoretically possible to parallelise many of the
computations in the algorithm to exploit future multi-
core machines or dedicated parallel architectures if the
method were taken into operational use.

The RMSE results only tell half the story, since this

model is designed to be probabilistic. The most widely
used diagnostic for probabilistic models in precipitation
forecasting is the area under the ROC curve.Figures 14
and 15 show the evolution of the area under the ROC
curve as a function of time. Results are plotted, from top
to bottom, for the 3 precipitation intensity thresholds
(1, 5, and 10 mm.h−1). Each plot shows the evolution
of the area for the 3 forecast lead times (t+30 min, t+60
min and t+180 min).

Note that the absence of rain (or heavy rain) during
some periods can result in erroneous ROC curves. If no
rain is observed, the Hit Rate cannot be computed (di-
vision by zero). This results in missing points on the
curve as can be seen on the bottom plot around t= 130h.
In the case where no rain cell is left in the model (as
a result from a dry observation being assimilated), all
of the model’s realisations will predict a dry forecast,
hence all points will coincide with the bottom left cor-
ner (HR = FAR = 0), resulting in a curve aligned with
the diagonal and an area of exactly 0.5. Several such
cases can be observed in the two lower plots, where the
detection thresholds is higher. These cases should ide-
ally be discarded as they don’t give a correct account
of the model’s prediction skill.

Figure 15 shows similar information to Figure 14 for
the frontal event. It can be observed that the prediction
skill varies more smoothly that in the convective case,
due to the larger scale and slower nature of the pre-
cipitative developments. Two regimes can be identified,
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Fig. 14. Evolution of the area under ROC curve (July 2006)
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Fig. 15. Evolution of the area under ROC curve (January 2005)
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Fig. 16. Evolution of the rainfall field during the frontal event (January 2005, 10h snapshots).

one in which the prediction skill decreases quickly (t=0-
40, t=100-120, t=140-160) and one where the predic-
tion skill is retained much longer, to the point that even
180min forecasts still show some good skill (t=60-90,
t=120-140).

Qualitative analysis has shown that these two regimes
can be related to the nature of the observed rainfall
field. Figure 16 displays the observed rainfall field at
10h intervals. Heavily clustered fields of high precipi-
tation intensity seem to result in good forecasts while
sparse, localised precipitation fronts correspond to poor
forecasts. This could be due to the linear forecasting
scheme, which is likely to perform better when the rain
cells are clustered as this ensures their advection field
is smooth. Another possible explanation is the assump-
tion, in advection-based forecasts, that motion is the
primary factor of change, and that internal development
(growth/decay) can be neglected. It is clear that dissipa-
tion phenomena are less noticeable, in proportion, for
large areas of intense precipitation than for smaller iso-
lated cells.

Figures 17 and 18 summarise the distributions, for the
whole experiment, of the areas under the ROC curve.
As expected, the model skill decreases on average as
the forecast lead time increases, with very little skill in
any of the forecasts after 3 hours. This is due partly to
the simplicity of the precipitation field representation,
and partly to the linear nature of the forecast scheme
applied. Each cell is advected linearly given the advec-
tion at its centre, an assumption which remains rele-
vant only for shorter forecast lead times. A better ad-
vection scheme would involve projecting the advection
field onto a fixed grid and advecting the cells accord-
ing to the advection at their future location rather than
at their initial location. At short time scales, particular
at t+30 min the model has more skill when forecasting

heavy precipitation (>10 mm.h−1) than light precipita-
tion (1 mm.h−1). This is a useful feature, since for most
flood forecasting applications the heavy precipitation is
the most important to predict well. This is a common
feature of many advection models, since the heavier
precipitation tends to be more temporally persistent.

Figure 19 shows the variogram [12; 37] and for the
observed and assimilated rainfall field (top left) at time
t = 70 h into the experiment. Variograms for the corre-
sponding forecasts from times t-30 min (bottom left),
t-60 min (top right) and t-180 min (bottom right) are
shown, along with 4 random sample forecast realisa-
tions. The predicted rainfall field at +30 min provides
a visually satisfying estimate of the observed rainfall
field, with sufficient detail. The +60 min forecast still
captures the overall precipitation structure, although in-
accurately predicts rain in the south-eastern part of the
domain, most certainly due to previous observed pre-
cipitation which has since then dissipated. The +180
min forecast is rather poor, due to the linear advection
scheme which does not maintain, at longer lead times,
the cohesion of the field (as observed from the “spotty”
nature of the forecast). However, the variograms show
that the model is able to retain the overall structure at
short scales (< 100 km), but quickly diverges at larger
scales in that example.

9. Conclusions

This paper presents a new probabilistic data assim-
ilation algorithm which can be applied to nowcasting
using a simple advection based precipitation forecast-
ing model. The algorithm has several desirable features,
in particular the ability to estimate the posterior distri-
bution of the model state using optimisation methods,
which provides control over the computational com-
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Fig. 17. Convective event: ROC areas
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Fig. 18. Frontal event: ROC areas

plexity. While the intial derivation is quite mathemati-
cally demanding, the implementation can be employed
within any optimisation framework, which forms the
basis for most traditional variational assimilation meth-
ods.

The new method is tested on two large events char-
acterised by convective and frontal dominated rainfall.
The results show the model isnumericallyrobust,al-
though further testing is necessary to assess its appli-
cability to operational nowcasting. The ROC curves
show probabilistic skill at all forecast horizons, but it is
clear that skill is lost rapidly, which is typical of such
advection / extrapolation based systems. Future work
should ideally compare the results of the variational
Bayes methods with other approaches. This would be
greatly facilitated by a suit of standard test cases and
diagnostics that could be agreed up by the nowcasting
community to allow model and method comparison.

There are several areas in which the algorithm could
be improved. Parallelisation would allow the algorithm
to be optimised for more cycles resulting in an optimal
KL-divergence based fit, and the number of cells used
in the approximation to the precipitation field could also
be increased. The inclusion of an automatic method to
select the complexity of the model, using methods sim-
ilar to those used in the relevance vector machine [53]
would further improve the robustness and scaleability
of the algorithm. The advection process representation
is also rather crude and could be improved with a better
representation of the advection field based on a fixed
grid and non-linear forecasting methods. It must also be
stated that the model, or propagation, error parameters
have been set with reference to other studies and tuning
on short data sequences and these are almost certainly
not optimised. It would be possible to use the marginal

likelihood approximation, derived from the variational
Bayes analysis to optimise these parameters as part of
the data assimilation method, indeed these could be
made adaptive since it is likely that the model error will
be state dependent in this application.

More speculatively it would be interesting to attempt
to include satellite imagery to track the evolution of the
cloud field to better estimate the advection field where
precipitation has yet to begin, but where clouds are
present. Assimilation of other observation types, includ-
ing doppler lidar and other more direct measurements of
advection would further improve the estimation in the
model. Further work could consider a hybrid approach
that combines the knowledge of the physical system em-
bodied in high resolution numerical models [15] but is
sufficiently simple to be run on the short assimilation cy-
cles required for short range forecasts. Since the model
formulation is probabilistic and the uncertainty repre-
sents the model uncertainty reasonably well, Bayesian
model averaging could be applied to merge smoothly
into a more physics based forecast at longer lead times,
so long as the uncertainty on both were well charac-
terised. It is the belief of the authors that more effort
should be placed on accurately quantifying uncertainty
than is currently the case in many forecasting activities.
This paper provides a new mechanism for attempting
to achieve this in the nowcasting context.

10. Acknowledgements

The authors would like to thank the UK Met Office
for providing radar data free of charge via the British
Atmospheric Data Centre [54], allowing this work to
be carried out on real data. Some parts of this work

19



0 50 100 150 200
0

50

100

150

200

250

300

350

400

Lag (km)

2
γ

Variograms

Observed

Model (assimilated, mean)

Observation

Model

0 50 100 150 200
0

50

100

150

200

250

300

350

400

Lag (km)

2
γ

Variograms

 

 
Sample 1
Sample 2
Sample 3
Sample 4

Sample 1 Sample 2

Sample 3 Sample 4

0 50 100 150 200
0

50

100

150

200

250

300

350

400

Lag (km)

2
γ

Variograms

 

 
Sample 1
Sample 2
Sample 3
Sample 4

Sample 1 Sample 2

Sample 3 Sample 4

0 50 100 150 200
0

50

100

150

200

250

300

350

400

Lag (km)

2
γ

Variograms

 

 

Sample 1
Sample 2
Sample 3
Sample 4

Sample 1 Sample 2

Sample 3 Sample 4
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