
The Exact Sample Complexity of PAC-learning Problems withUnit VC DimensionPaul W. GoldbergNeural Computing Research GroupDept. of Computer Science and Applied MathematicsAston UniversityBirmingham B4 7ETU.K.pwgoldb@cs.sandia.govDecember 1996AbstractThe Vapnik-Chervonenkis (VC) dimension is a combinatorial meansure of a certain classof machine learning problems, which may be used to obtain upper and lower bounds on thenumber of training examples needed to learn to prescribed levels of accuracy. Most of theknown bounds apply to the Probably Approximately Correct (PAC) framework, which isthe framework within which we work in this paper.For a learning problem with some known VC dimension, much is known about theorder of growth of the sample-size requirement of the problem, as a function of the PACparameters. The exact value of sample-size requirement is however less well-known, anddepends heavily on the particular learning algorithm being used. This is a major obstacleto the practical application of the VC dimension. Hence it is important to know exactly howthe sample-size requirement depends on VC dimension, and with that in mind, we describe ageneral algorithm for learning problems having VC dimension 1. Its sample-size requirementis minimal (as a function of the PAC parameters), and turns out to be the same for all non-trivial learning problems having VC dimension 1. While the method used cannot be naivelygeneralised to higher VC dimension, it suggests that optimal algorithm-dependent boundsmay improve substantially on current upper bounds.
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- 2 -1 IntroductionThe Vapnik-Chervonenkis (VC) dimension is a measure of a machine learning problem whichgives bounds on its sample-size requirements. In the context of machine learning, the VC di-mension was �rst applied by Blumer et al. [2] in the Probably Approximately Correct (PAC)learning framework. Subsequently it has been applied to the strongly related prediction frame-work in [7], and to a Bayesian framework in [6]. Both of the latter frameworks have given rise toalgorithm-dependent bounds on sample-size that are very close to optimal. For the predictionframework, a result in [7] allows bounds obtained for that framework to be translated into PACbounds. However the translation of the prediction bounds into PAC bounds is ine�cient. Itdoes however still give the best-known bounds on the order of growth of sample size as a func-tion of the PAC parameters, although it does not quite match the lower bound of Ehrenfeuchtet al. [3]. But the constant (ignored by an order-of-growth bound) is poor. It can be shownto imply more than 36 times the sample-size requirement of our algorithm, when applied toconcept classes having VC dimension 1.Other upper bounds on sample-size in the PAC framework [2, 10] are algorithm-independent,and hence cannot be expected to be better than [7], which is algorithm-dependent. An algorithm-independent bound is one that holds for any algorithm that �nds a consistent concept. (Thebound of [10] is currently the best known algorithm-independent bound on sample-size re-quirement in terms of VC dimension, in the PAC setting.) An algorithm-dependent boundis one that holds for some particular algorithm, whose hypothesis need not be a member ofthe concept class being learned. The gap between algorithm-dependent bounds and algorithm-independent bounds is real; an example in [7] shows that the sample-size requirement may growas �(��1 log ��1), while their algorithm-dependent bound grows as �(��1), as a function of theerror bound �. In section 3 we exhibit a version of that example.Practitioners such as Holden and Niranjan [8] have found that all the known upper boundson sample size requirement (also known as sample complexity) are too pessimistic, that is theyoverestimate the true sample complexity. This problem of overestimation is discussed in detailby Goldberg [4]. In this paper we show that for concept classes having VC dimension 1, in thePAC framework (described below), the sample complexity is log1�� �, which is the number ofexamples needed to sample a �xed �-probable subset of the domain, with probability 1��. (Thisholds for all but \trivial" concept classes which have sample complexity of just one example.)We discuss the signi�cance of the result after the basic de�nitions below.Basic De�nitions and TerminologyWe give a brief description of the PAC learning framework and the terminology we will use.Further detail can be found in textbooks such as [1]. Examples are members of a setX called the



- 3 -domain, and they are drawn at random fromX by a �xed but unknown probability distributionP . Each example is given a binary label, ie. 0 or 1, and the labelling is assumed (in the basicPAC framework) to be performed by a deterministic function from X to f0; 1g. So the functioncan be treated as a set C 2 X , the set of members of X labelled by 1. This set is called thetarget concept, and belongs to a known concept class C 2 2X . C is known to the learner. Somembers of C are subsets of X and are called concepts; usually not all subsets of X are validconcepts, or the set X would have to be sampled almost exhaustively before much was knownabout C.A learning algorithm returns a hypothesis H � X , which is intended to be good approxima-tion to C. The error of H is the probability that a random example (drawn using P ) is labelleddi�erently by H and C. The PAC learning framework speci�es two parameters, � and �, whichspecify respectively an upper bound on the error of H , and an upper bound on the probabilityof failing to attain that error bound. We say that H is �-good if it has error � �. We want toknow how many labelled examples we need to see (as a function of � and �) in order to learnany target concept from C, regardless of the probability distribution P .The Vapnik-Chervonenkis (VC) dimension is a measure of the sample complexity of a con-cept class. It is de�ned as follows. The VC dimension of C is the size of the largest possiblesubset S � X having the property that for any binary labelling of the members of S, thereexists a concept in C which labels the members of S accordingly. Such a set S is said to beshattered by C.Signi�cance of the ResultThe limitation of the applicability of the algorithm to concept classes with VC dimension 1 isquite restricted. What makes the result interesting is that it shows that for all concept classeswith VC dimension 1, an optimal algorithm (with the usual assumption of no restriction on theunknown input distribution P ) has the same sample complexity, namely log1�� �. This holdsdespite the (perhaps surprising) structural diversity of such concept classes. The only exceptionis \trivial" concept classes, where the sample complexity is 1, regardless of � and �. So the resultsuggests that VC dimension may be quite an accurate measure of sample complexity, and thatgood algorithm-dependent bounds may exist for higher values of VC dimension.The structural diversity of concept classes with VC dimension 1 is elucidated in the nextsection, since the operation of the algorithm is conditioned on the \structural form" of whateverconcept class is being learned. It is this feature which makes the approach apparently hard toextend to higher VC dimension, since it will be apparent that a complete characterisation ofthe kind we give for VC dimension 1 is infeasible for higher VC dimension.



- 4 -2 Main ResultLet C be a concept class having VC dimension 1, with input domain X . We will start byassuming that X (and hence C) is �nite, then we will extend the result to the in�nite case. Thegeneral approach is to give a structural taxonomy for concept classes of VC dimension 1. Webelieve that this approach is infeasible for higher VC dimension, due to the considerable increasein structural diversity of concept classes having VC dimension 2 (or higher). The algorithm weexhibit is then de�ned separately for the di�erent structure classes.First of all, if X contains any members a which are labelled in the same way by all membersof C (ie. for all C1, C2 2 C we have a 2 C1 i� a 2 C2) then clearly those elements shouldbe given the appropriate label by the algorithm. We may set aside these elements and focusattention on the others. Let X 0 2 X denote the set of all elements whose labels are independentof the choice of target concept from C.We now observe that any pair of elements a; b 2 X may be labelled in up to 3 ways bymembers of C. (If they were labelled in all 4 ways, they would be shattered, contradicting ourassumption that C has VC dimension 1.) We �rst consider the case that they may be labelledin only 2 distinct ways by members of C. In this case, if the labellings di�er on just one memberof the pair (for example ha; bi being labelled h0; 0i or h0; 1i), then the other member of the pairis in X 0. For neither a nor b to be in X 0, their labels may be fh0; 0i; h1; 1ig or fh0; 1i; h1; 0ig. Inthis case we note that the label of a determines the label of b (and vice versa). The membersof X nX 0 may be divided into equivalence classes of members of X whose labels are mutuallydetermined.Trivial Concept ClassesA trivial concept class is de�ned to be one for which the labels of all members ofX are mutuallydetermined, so that there is only one of the above equivalence classes. Clearly only one trainingexample is needed to learn the target concept perfectly (with � = � = 0). X 0 = ; for trivialconcept classes, and there are just 2 concepts.Non-trivial Concept ClassesFrom now on we consider non-trivial concept classes, which have the property that there mustexist a; b 2 X and two concepts in C which assign the same label to a and di�erent labels tob. We show �rst that log1�� � is a lower bound on sample complexity. Suppose that the inputdistribution P assigns probability 1� � to a and � to b. A learning algorithm must choose somelabel for b in the event that the training sample consists of repeated observations of the labelof a. The target concept which assigns the opposite label to b will require a training set of sizelog1�� �, which is the sample size required to sample b with probability 1�� (and thus correctly



- 5 -label b).We now show by construction of an appropriate algorithm that log1�� � is an (algorithm-dependent) upper bound. The algorithm treats equivalence classes of elements of X whoselabels are mutually determined, by labelling them in a consistent manner. We now choose arepresentative of each class, so that our domain has the property that every pair of elements hasexactly 3 distinct labellings induced by the concepts. Any training example may be interpretedas a labelling of its class representative. From now on we will assume that any pair of elementshas exactly 3 distinct labellings.Some de�nitions:For a; b 2 X we say that b follows a (denoted b � a) if for all C 2 C, b 2 C ) a 2 C. Thatmeans that the labellings for ha; bi do not include h0; 1i. � de�nes a partial order in X . If itis not the case that a � b or b � a then we say that a and b are incomparable under �. If aand b are incomparable under � we say that a and b compete for membership if their labellingsdo not include h1; 1i, and they compete for non-membership if their labellings do not includeh0; 0i.Some Useful facts:Fact 1: If b � a and b0 � a with b and b0 incomparable, then b and b0 compete for membership.This is because when a is labelled 0, both b and b0 must be labelled 0. So they do not competefor non-membership, hence they must compete for membership (or they would be shattered).Similarly, if b � a and b � a0 with a and a0 incomparable, then a and a0 compete for non-membership.Fact 2: � cannot contain a loop, that is we cannot have distinct a; b; b0; c 2 X with c � b � aand c � b0 � a with b and b0 incomparable. Since b � a and b0 � a, they must compete formembership (from fact 1). But their relationship with c implies that they also compete fornon-membership, impossible under the assumption that any pair of elements have 3 distinctlabellings.Fact 3: If a competes with b for membership and with c for non-membership, then b � c. Thisinplies that if a; b; c 2 X are all mutually incomparable then either each pair of them competesfor membership, or each pair of them competes for non-membership. Hence by extension, anyset of at least 3 members of X that are mutually incomparable must either all compete formembership, or all compete for non-membership.The � Graph:Given a concept class with VC dimension 1, we construct a directed graph on the representativesof equivalence classes ofX nX 0 (the equivalence relation being the label determining equivalence



- 6 -described above) as follows. We draw an edge from element b to element a if b � a and thereis no c with b � c � a. Since there are no directed cycles (indeed by fact 2 no cycles of anysort) it is convenient to assume that all edges are directed downwards, so that b appears abovea. So, whenever b � a there will be a path descending from b to a.Terminology: A monotonic path is a path in a component of the � graph that contains noincomparable elements. Connected components are trees, and usually they are rooted eitherat the top (with all paths directed from the root) or at the bottom (with all paths directedtowards the root). We additionally de�ne a bi-tree to be two trees with roots at the top andthe bottom, which are joined at the root. We use the term \bi-tree" to refer to what could becalled a \bi-forest", namely two sets F1 and F2 of trees, with members of F1 rooted at the baseand the top respectively, and a directed clique of edges descending from the roots of F1 to theroots of F2. The reason why this is essentially equivalent to a bi-tree is that the members ofF1 and F2 could be connected via a common dummy root, which is sampled with probability0. The set of concepts consistent with the structure is the same.The top half of a bi-tree A denotes the set of all its vertices which compete for membershipwith some other vertex in A. The bottom half of A denotes the set of all vertices which competefor non-membership with some other member of A. The trunk of A refers to the (possiblyempty) path connecting the top half with the bottom half.Fact 4: Suppose that the � graph for X contains a bi-tree. Then any concept in C containseither the bottom half of A minus a monotonic path descending from the trunk, or else thebottom half of A plus a monotonic path ascending from the trunk. Since incomparable elementsof the top half compete for membership, a concept cannot contain anything more general thana monotonic path ascending from the trunk, and similarly since incomparable elements of thebottom half compete for non-membership, nothing more general than a monotonic path maybe deleted fron the bottom half of A.Fact 4 associates any concept in C with a unique element of a bi-tree in the �-graph, namelythe one which de�nes the end of the path described above. (That may be the dummy elementif the path is empty, and the concept contains just the bottom half elements.) We call this thethreshold element for the bi-tree and concept.A Taxonomy of Concept Classes with VC Dimension 1:We construct the algorithm with reference to a case analysis on the � graph, based primarilyon the number of connected components that it has.Case 1: The � graph has more than 2 connected components.Let A;B;C be 3 connected components, having members a; b; c respectively. a; b; c are mutually



- 7 -incomparable, so by fact 3 either they all compete for membership, or else they all compete fornon-membership. Assume the former (by symmetry the latter is equivalent).For any element d 2 X , assume without loss of generality that d is not in component Aor B. So d, a and b compete for membership, and by the extension of fact 3, d competes formembership with any element ofX which is incomparable with d. So, all incomparable elementscompete for membership. So in this case a concept cannot contain elements from more thanone connected component.Now, for 3 elements a; a0; b all in the same component with b � a and b � a0, by fact 1 aand a0 compete for non-membership. However this possibility has just been ruled out in thecase under consideration. So the structure of each connected component is a tree (from fact 2)rooted at the base (under our convention of directing all edges down). This means that eachmember of C is a path within one of the connected components, with one end at the root ofthat connected component, which ascends monotonically to some node in the component.In this case, out algorithm chooses as its hypothesis the smallest path corresponding to afunction in the class that contains all members of X with label 1. This will be the empty set ifno samples are labelled 1 (a set which might not belong to C). An �-good hypothesis is foundprovided that the �-probable top section of the path is sampled, which gives the claimed samplecomplexity.Case 2: The � graph has 2 connected components.Let A and B be the components. Either both components are monotonic paths, or there are2 incomparable inputs in component A. Assume they compete for membership (the treatmentis similar if they compete for non-membership). Then from fact 3 any incomparable inputs incomponent B compete for membership. Assume that there do in fact exist incomparable inputsin component B. Then any incomparable inputs in component A compete for membership.Then both components must be trees with roots at the base. If instead B has no incomparableinputs (it is a path) then A may be a bi-tree, de�ned above. But A may not be more generalthan this, ie. it may not contain vertices a; b; c where b and c compete for membership while aand b compete for non-membership. In this situation c � a (the �rst observation in fact 1). Butnow let d be a member of B. Then a; b; d compete for non-membership while b; c; d compete formembership (using fact 3 both times). So b and d compete for both, a contradiction. We thushave:Case 2a: As for case 1, but with only 2 connected components. The �-graph is two treeswith roots at the bottom (or else with both roots at the top, if elements compete for non-membership). The algorithm works as before.Case 2b: A is a bi-tree, B is a path. Members of the top half of A compete for membership



- 8 -with members of B (by fact 3), so that if a concept contains a top-half element of A, it mustcontain no element of B. Similarly, if a concept does not contain some element of the bottomhalf of A then it must contain all elements of B. When the threshold element of A is in thetrunk of A, the concept may contain some but not all of B. For two elements a; b in the trunkof A, with b � a, the set of all concepts associated with threshold b contain fewer elements ofB than the concept associated with threshold a. Hence we can de�ne an order on all conceptswith thesholds in the trunk of B, in which concept C1 precedes concept C2 provided that eitherit contains fewer elements of B, or more elements of A.Our algorithm works by choosing the �rst consistent hypothesis in the above ordering whenapplicable, else it chooses a minimum path in the top half of A, or minimal path deletion inthe bottom half of A. We see that whetever the threshold elements in A and B, the conditionfor successful learning will be that some �-probable set of elements is sampled with probability1� �.Case 3: The � graph has 1 connected component.Case 3a: Suppose �rst that there does not exist any a 2 X which competes for membershipwith some b 2 X and competes for non-membership with some c 2 X . In this case the graphis a bi-tree, and the concept class is as described in fact 4.The algorithm chooses a hypothesis that is as close as possible to the set consisting of thebottom half, a special case of case 2b (where there is an additional path).Case 3b: Now suppose that there exists a as above. Let B be the subset of X that competewith a for membership, let C be the subset of X that compete with a for non-membership,and let A be everything else (including a). A is a bi-tree with a in the trunk. Everything in Bfollows everything in C, so B union C is also a bi-tree. There must be some edges between Aand B [ C, since there is only one connected component.Let A1 be the followers of a in A, A2 be those followed by a in A. (So A1 and A2 contain thetop half and bottom half of A respectively. There are no edges between A1 and B, since a andB compete for membership, and an edge between A1 and B would give a and a member of B acommon follower f , and any concept containing f would contain both a and that element of B,a contradiction. Likewise there cannot be an edge between A2 and C. Hence all incomparablemembers of A1 and B compete for membership, and all incomparable members of A2 and Ccompete for non-membership.Without specifying the edge between these bi-trees (there must be only one such edge sinceby fact 2 another edge would create a cycle), this shows that the concept class must be asubset of all sets of the following form: Construct a concept by starting with A2 [ C and adda path upwards from C (into B) and delete a path downwards from a. It is not possible to



- 9 -delete a path downwards from a member of B since a is now a non-member and competes fornon-membership with everything in B. Alternatively it is possible to add a path up from aand delete a path down from B. Not all of these concepts are allowed since they shatter pairsof elements of X from eg. B and A2. In general most members of A1 and B are followers ofmost members of A2 and C, but there may exist pairs fP1; P2g of ascending/descending pathsfor which pairs fp1; p2g of elements with p1 2 P1 and p2 2 P2 either compete for membershipand non-membership. These paths may then be extended simultaneously, and there is a uniqueway of doing this so that one input is added at a time, which gives rise to an ordering on thesepairs of paths.As for case 3a, the algorithm chooses a hypothesis which is as close as possible to A2 [ C.As before, if the target concept is anything other that A2[C, then there is an �-probable subsetof X that must be sampled in order to guarantee that the hypothesis should be �-good.Extension to In�nite Concept Classes:Suppose now that X is in�nite. If C (having VC dimension 1) is �nite then C divides X into�nitely many (in fact jCj+1) equivalence classes of elements which always receive the same labelfrom elements of C. Suppose that C is in�nite. For input distribution P , let d be the metric onconcepts which measures the expected absolute di�erence in label value on a point drawn atrandom under P . For a positive real number �, a �-cover of a metric space is de�ned to be a setof points in the metric space with the property that every point in the metric space is withindistance � of some point in the �-cover. Pollard [9] provides a �nite bound for the smallestpossible �-cover of a concept class under the above metric in terms of the VC dimension and�. The size is independent of P , although obviously the �-cover itself may depend on P . Forour purposes, the �niteness of the �-cover is su�cient.Let H be a �-cover for C. Thus there is a member H 2 H that is within � of the targetconcept C 2 C. As � ! 0 the probability that a random example is labelled di�erently by Hand C approaches 0. Using H as the concept class, we can ensure that with probability 1� �0there will be a consistent hypothesis (for the sample) in H , by choosing su�ciently small �,and �0 may be made arbitrarily small. This �nite H thus gives us a PAC algorithm with error� + � and uncertainty � + �0. Since � and �0 may be arbitrarily small, the sample complexitycan approximate the sample complexity for the �nite case.3 Further Observations and ConclusionsObviously the main open problem we raise is the question of whether similar bounds existfor higher VC dimension. In particular, is it the case that \nearly all" concept classes of VC



- 10 -dimension d > 1 have the same sample-size requirements for PAC learning? That would showthat the VC dimension is really the right measure of complexity of concept classes, in thedistribution-independent PAC setting. A result of that nature would have to be a result aboutoptimal algorithm-dependent bounds, since we can exhibit a concept classes of VC dimension 1for which an algorithm which is forced to �nd a consistent concept must have sample complexitywhich grows as �(��1 log ��1). The concept class, a variant of an example in [7], is the set ofall single-element subsets of a set X of size ��1. For a target concept C = fxg for some x 2 X ,let P assign probability 0 to x and probability 1=(��1 � 1) to every other element. Then if aconsistent concept must be returned as the hypothesis, it can be seen that the error is likelyto be 1=(��1 � 1) unless every class 0 example is sampled, which requires a sample size whichgrows as ��1 log ��1. Our optimal algorithm would make the hypothesis be the empty set, untila class 1 example was sampled.So it would be interesting to know whether for VC dimension d > 1, there is a greaterdiversity of sample complexities for di�erent concept classes of VC dimension d. The simplestconcept class with VC dimension d is just the set of all subsets of a d-element domain. (Ford = 1, this is a trivial concept class.) Such a concept class may always be augmented by theaddition of an extra element whose label is the same for all concepts. The resulting conceptclass still has VC dimension d, but has higher sample complexity since P may now assign mostprobability to the new \uninformative" element of the domain. Could algorithm-dependentsample complexity for a concept class with VC dimension d depend only on whether or notthere exist d shattered elements, together with an extra element whose label is the same forthe shattering set of concepts? For d = 3, that property is held by circles in the plane, butnot halfspaces in the plane. The class of circles in the plane is more general (since circles canapproximate halfspaces), but it would be nice to know how much higher the sample complexityactually is.An alternative and perhaps more appropriate route to getting good sample-size bounds maybe to restrict the structure of concept classes under consideration. This suggestion is motivatedby the kinds of concepts classes of VC dimension 1 that exist, not all of which are realistic,in the sense of corresponding to what might come up in practice. The kind of concept classeswhich cause problems, such as the one described in the �rst paragraph of this section, seem toinvolve large numbers of mutually exclusive elements. However, natural geometrical conceptclasses do not have that feature.
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