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Abstract

The Vapnik-Chervonenkis (VC) dimension is a combinatorial meansure of a certain class
of machine learning problems, which may be used to obtain upper and lower bounds on the
number of training examples needed to learn to prescribed levels of accuracy. Most of the
known bounds apply to the Probably Approximately Correct (PAC) framework, which is
the framework within which we work in this paper.

For a learning problem with some known VC dimension, much is known about the
order of growth of the sample-size requirement of the problem, as a function of the PAC
parameters. The exact value of sample-size requirement is however less well-known, and
depends heavily on the particular learning algorithm being used. This is a major obstacle
to the practical application of the VC dimension. Hence it is important to know exactly how
the sample-size requirement depends on VC dimension, and with that in mind, we describe a
general algorithm for learning problems having VC dimension 1. Its sample-size requirement
is minimal (as a function of the PAC parameters), and turns out to be the same for all non-
trivial learning problems having VC dimension 1. While the method used cannot be naively
generalised to higher VC dimension, it suggests that optimal algorithm-dependent bounds

may improve substantially on current upper bounds.



1 Introduction

The Vapnik-Chervonenkis (VC) dimension is a measure of a machine learning problem which
gives bounds on its sample-size requirements. In the context of machine learning, the VC di-
mension was first applied by Blumer et al. [2] in the Probably Approximately Correct (PAC)
learning framework. Subsequently it has been applied to the strongly related prediction frame-
work in [7], and to a Bayesian framework in [6]. Both of the latter frameworks have given rise to
algorithm-dependent bounds on sample-size that are very close to optimal. For the prediction
framework, a result in [7] allows bounds obtained for that framework to be translated into PAC
bounds. However the translation of the prediction bounds into PAC bounds is ineflicient. It
does however still give the best-known bounds on the order of growth of sample size as a func-
tion of the PAC parameters, although it does not quite match the lower bound of Ehrenfeucht
et al. [3]. But the constant (ignored by an order-of-growth bound) is poor. It can be shown
to imply more than 36 times the sample-size requirement of our algorithm, when applied to

concept classes having VC dimension 1.

Other upper bounds on sample-size in the PAC framework [2, 10] are algorithm-independent,
and hence cannot be expected to be better than [7], which is algorithm-dependent. An algorithm-
independent bound is one that holds for any algorithm that finds a consistent concept. (The
bound of [10] is currently the best known algorithm-independent bound on sample-size re-
quirement in terms of VC dimension, in the PAC setting.) An algorithm-dependent bound
is one that holds for some particular algorithm, whose hypothesis need not be a member of
the concept class being learned. The gap between algorithm-dependent bounds and algorithm-
independent bounds is real; an example in [7] shows that the sample-size requirement may grow
as O(etloge!), while their algorithm-dependent bound grows as ©(e™!), as a function of the

error bound e. In section 3 we exhibit a version of that example.

Practitioners such as Holden and Niranjan [8] have found that all the known upper bounds
on sample size requirement (also known as sample complexity) are too pessimistic, that is they
overestimate the true sample complexity. This problem of overestimation is discussed in detail
by Goldberg [4]. In this paper we show that for concept classes having VC dimension 1, in the
PAC framework (described below), the sample complexity is log,_, §, which is the number of
examples needed to sample a fixed e-probable subset of the domain, with probability 1—6. (This
holds for all but “trivial” concept classes which have sample complexity of just one example.)

We discuss the significance of the result after the basic definitions below.
Basic Definitions and Terminology

We give a brief description of the PAC learning framework and the terminology we will use.

Further detail can be found in textbooks such as [1]. Examples are members of a set X called the
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domain, and they are drawn at random from X by a fixed but unknown probability distribution
P. Each example is given a binary label, ie. 0 or 1, and the labelling is assumed (in the basic
PAC framework) to be performed by a deterministic function from X to {0,1}. So the function
can be treated as a set C' € X, the set of members of X labelled by 1. This set is called the
target concept, and belongs to a known concept class C € 2%. C is known to the learner. So
members of C are subsets of X and are called concepts; usually not all subsets of X are valid

concepts, or the set X would have to be sampled almost exhaustively before much was known

about C.

A learning algorithm returns a hypothesis H C X, which is intended to be good approxima-
tion to C'. The error of H is the probability that a random example (drawn using P) is labelled
differently by H and C'. The PAC learning framework specifies two parameters, ¢ and ¢, which
specify respectively an upper bound on the error of H, and an upper bound on the probability
of failing to attain that error bound. We say that Hl is e-good if it has error < ¢. We want to
know how many labelled examples we need to see (as a function of € and ¢) in order to learn

any target concept from C, regardless of the probability distribution P.

The Vapnik-Chervonenkis (VC) dimension is a measure of the sample complexity of a con-
cept class. It is defined as follows. The VC dimension of C is the size of the largest possible
subset S C X having the property that for any binary labelling of the members of 5, there
exists a concept in C which labels the members of S accordingly. Such a set 5 is said to be

shattered by C.
Significance of the Result

The limitation of the applicability of the algorithm to concept classes with VC dimension 1 is
quite restricted. What makes the result interesting is that it shows that for all concept classes
with VC dimension 1, an optimal algorithm (with the usual assumption of no restriction on the
unknown input distribution P) has the same sample complexity, namely log,_. 6. This holds
despite the (perhaps surprising) structural diversity of such concept classes. The only exception
is “trivial” concept classes, where the sample complexity is 1, regardless of § and €. So the result
suggests that VC dimension may be quite an accurate measure of sample complexity, and that

good algorithm-dependent bounds may exist for higher values of VC dimension.

The structural diversity of concept classes with VC dimension 1 is elucidated in the next
section, since the operation of the algorithm is conditioned on the “structural form” of whatever
concept class is being learned. It is this feature which makes the approach apparently hard to
extend to higher VC dimension, since it will be apparent that a complete characterisation of

the kind we give for VC dimension 1 is infeasible for higher VC dimension.



2 Main Result

Let C be a concept class having VC dimension 1, with input domain X. We will start by
assuming that X (and hence C) is finite, then we will extend the result to the infinite case. The
general approach is to give a structural taxonomy for concept classes of VC dimension 1. We
believe that this approach is infeasible for higher VC dimension, due to the considerable increase
in structural diversity of concept classes having VC dimension 2 (or higher). The algorithm we

exhibit is then defined separately for the different structure classes.

First of all, if X contains any members ¢ which are labelled in the same way by all members
of C (ie. for all €y, Cy € C we have a € C iff a € C3) then clearly those elements should
be given the appropriate label by the algorithm. We may set aside these elements and focus
attention on the others. Let X’ € X denote the set of all elements whose labels are independent

of the choice of target concept from C.

We now observe that any pair of elements a,b € X may be labelled in up to 3 ways by
members of C. (If they were labelled in all 4 ways, they would be shattered, contradicting our
assumption that C has VC dimension 1.) We first consider the case that they may be labelled
in only 2 distinct ways by members of C. In this case, if the labellings differ on just one member
of the pair (for example (a,b) being labelled (0,0) or (0, 1)), then the other member of the pair
is in X'. For neither a nor b to be in X", their labels may be {(0,0), (1,1)} or {(0,1),(1,0)}. In
this case we note that the label of a determines the label of b (and vice versa). The members
of X \ X’ may be divided into equivalence classes of members of X whose labels are mutually

determined.
Trivial Concept Classes

A trivial concept class is defined to be one for which the labels of all members of X are mutually
determined, so that there is only one of the above equivalence classes. Clearly only one training
example is needed to learn the target concept perfectly (with ¢ = 6 = 0). X’ = ) for trivial

concept classes, and there are just 2 concepts.
Non-trivial Concept Classes

From now on we consider non-trivial concept classes, which have the property that there must
exist a,b € X and two concepts in C which assign the same label to a and different labels to
b. We show first that log,__ 6 is a lower bound on sample complexity. Suppose that the input
distribution P assigns probability 1 — ¢ to a and € to b. A learning algorithm must choose some
label for b in the event that the training sample consists of repeated observations of the label
of a. The target concept which assigns the opposite label to b will require a training set of size

log,_, 6, which is the sample size required to sample b with probability 1 —é (and thus correctly



label b).

We now show by construction of an appropriate algorithm that log,__ ¢ is an (algorithm-
dependent) upper bound. The algorithm treats equivalence classes of elements of X whose
labels are mutually determined, by labelling them in a consistent manner. We now choose a
representative of each class, so that our domain has the property that every pair of elements has
exactly 3 distinct labellings induced by the concepts. Any training example may be interpreted
as a labelling of its class representative. From now on we will assume that any pair of elements

has exactly 3 distinct labellings.
Some definitions:

For a,b € X we say that b follows a (denoted b > a) if for all C € C,b € C = a € C. That
means that the labellings for (a,b) do not include (0,1). > defines a partial order in X. If it
is not the case that @ > b or b > a then we say that ¢ and b are incomparable under »>. If a
and b are incomparable under > we say that a and b compete for membership if their labellings

do not include (1,1), and they compete for non-membership if their labellings do not include

(0,0).
Some Useful facts:

Fact 1: If b > a and & > a with b and b’ incomparable, then b and & compete for membership.
This is because when a is labelled 0, both b and & must be labelled 0. So they do not compete
for non-membership, hence they must compete for membership (or they would be shattered).
Similarly, if b > @ and b > o’ with ¢ and &’ incomparable, then ¢ and o' compete for non-

membership.

Fact 2: > cannot contain a loop, that is we cannot have distinct a,b0,0’,c € X with ¢ > b > a
and ¢ > b > a with b and ¥ incomparable. Since b > @ and ' > a, they must compete for
membership (from fact 1). But their relationship with ¢ implies that they also compete for
non-membership, impossible under the assumption that any pair of elements have 3 distinct

labellings.

Fact 3: If a competes with b for membership and with ¢ for non-membership, then b > ¢. This
inplies that if a,b,¢ € X are all mutually incomparable then either each pair of them competes
for membership, or each pair of them competes for non-membership. Hence by extension, any
set of at least 3 members of X that are mutually incomparable must either all compete for

membership, or all compete for non-membership.

The > Graph:

Given a concept class with VC dimension 1, we construct a directed graph on the representatives

of equivalence classes of X \ X’ (the equivalence relation being the label determining equivalence
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described above) as follows. We draw an edge from element b to element a if b > a and there
is no ¢ with b > ¢ > a. Since there are no directed cycles (indeed by fact 2 no cycles of any
sort) it is convenient to assume that all edges are directed downwards, so that b appears above

a. So, whenever b > a there will be a path descending from b to a.

Terminology: A monotonic path is a path in a component of the > graph that contains no
incomparable elements. Connected components are trees, and usually they are rooted either
at the top (with all paths directed from the root) or at the bottom (with all paths directed
towards the root). We additionally define a bi-tree to be two trees with roots at the top and
the bottom, which are joined at the root. We use the term “bi-tree” to refer to what could be
called a “bi-forest”, namely two sets F; and F5 of trees, with members of F) rooted at the base
and the top respectively, and a directed clique of edges descending from the roots of F; to the
roots of F,. The reason why this is essentially equivalent to a bi-tree is that the members of
F, and F5 could be connected via a common dummy root, which is sampled with probability

0. The set of concepts consistent with the structure is the same.

The top half of a bi-tree A denotes the set of all its vertices which compete for membership
with some other vertex in A. The bottom half of A denotes the set of all vertices which compete
for non-membership with some other member of A. The trunk of A refers to the (possibly

empty) path connecting the top half with the bottom half.

Fact 4: Suppose that the > graph for X contains a bi-tree. Then any concept in C contains
either the bottom half of A minus a monotonic path descending from the trunk, or else the
bottom half of A plus a monotonic path ascending from the trunk. Since incomparable elements
of the top half compete for membership, a concept cannot contain anything more general than
a monotonic path ascending from the trunk, and similarly since incomparable elements of the
bottom half compete for non-membership, nothing more general than a monotonic path may

be deleted fron the bottom half of A.

Fact 4 associates any concept in C with a unique element of a bi-tree in the »>-graph, namely
the one which defines the end of the path described above. (That may be the dummy element
if the path is empty, and the concept contains just the bottom half elements.) We call this the

threshold element for the bi-tree and concept.

A Taxonomy of Concept Classes with VC Dimension 1:

We construct the algorithm with reference to a case analysis on the > graph, based primarily

on the number of connected components that it has.

Case 1: The > graph has more than 2 connected components.

Let A, B, C' be 3 connected components, having members a, b, ¢ respectively. a, b, ¢ are mutually
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incomparable, so by fact 3 either they all compete for membership, or else they all compete for

non-membership. Assume the former (by symmetry the latter is equivalent).

For any element d € X, assume without loss of generality that d is not in component A
or B. So d, a and b compete for membership, and by the extension of fact 3, d competes for
membership with any element of X which is incomparable with d. So, all incomparable elements
compete for membership. So in this case a concept cannot contain elements from more than

one connected component.

Now, for 3 elements a,a’,b all in the same component with b > a and b > o', by fact 1 a
and a' compete for non-membership. However this possibility has just been ruled out in the
case under consideration. So the structure of each connected component is a tree (from fact 2)
rooted at the base (under our convention of directing all edges down). This means that each
member of C is a path within one of the connected components, with one end at the root of

that connected component, which ascends monotonically to some node in the component.

In this case, out algorithm chooses as its hypothesis the smallest path corresponding to a
function in the class that contains all members of X with label 1. This will be the empty set if
no samples are labelled 1 (a set which might not belong to C). An e-good hypothesis is found
provided that the e-probable top section of the path is sampled, which gives the claimed sample

complexity.
Case 2: The > graph has 2 connected components.

Let A and B be the components. Fither both components are monotonic paths, or there are
2 incomparable inputs in component A. Assume they compete for membership (the treatment
is similar if they compete for non-membership). Then from fact 3 any incomparable inputs in
component B compete for membership. Assume that there do in fact exist incomparable inputs
in component B. Then any incomparable inputs in component A compete for membership.
Then both components must be trees with roots at the base. If instead B has no incomparable
inputs (it is a path) then A may be a bi-tree, defined above. But A may not be more general
than this, ie. it may not contain vertices a, b, ¢ where b and ¢ compete for membership while a
and b compete for non-membership. In this situation ¢ > a (the first observation in fact 1). But
now let d be a member of B. Then a,b,d compete for non-membership while b, ¢, d compete for
membership (using fact 3 both times). So b and d compete for both, a contradiction. We thus

have:

Case 2a: As for case 1, but with only 2 connected components. The >-graph is two trees
with roots at the bottom (or else with both roots at the top, if elements compete for non-

membership). The algorithm works as before.

Case 2b: A is a bi-tree, B is a path. Members of the top half of A compete for membership
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with members of B (by fact 3), so that if a concept contains a top-half element of A, it must
contain no element of B. Similarly, if a concept does not contain some element of the bottom
half of A then it must contain all elements of B. When the threshold element of A is in the
trunk of A, the concept may contain some but not all of B. For two elements @, b in the trunk
of A, with b > a, the set of all concepts associated with threshold b contain fewer elements of
B than the concept associated with threshold a. Hence we can define an order on all concepts
with thesholds in the trunk of B, in which concept C'; precedes concept (5 provided that either

it contains fewer elements of B, or more elements of A.

Our algorithm works by choosing the first consistent hypothesis in the above ordering when
applicable, else it chooses a minimum path in the top half of A, or minimal path deletion in
the bottom half of A. We see that whetever the threshold elements in A and B, the condition
for successful learning will be that some e-probable set of elements is sampled with probability

1—46.
Case 3: The > graph has 1 connected component.

Case 3a: Suppose first that there does not exist any @ € X which competes for membership
with some b € X and competes for non-membership with some ¢ € X. In this case the graph

is a bi-tree, and the concept class is as described in fact 4.

The algorithm chooses a hypothesis that is as close as possible to the set consisting of the

bottom half, a special case of case 2b (where there is an additional path).

Case 3b: Now suppose that there exists a as above. Let B be the subset of X that compete
with a for membership, let ' be the subset of X that compete with a for non-membership,
and let A be everything else (including a). A is a bi-tree with a in the trunk. Everything in B
follows everything in €', so B union (' is also a bi-tree. There must be some edges between A

and B U C, since there is only one connected component.

Let A1 be the followers of a in A, A2 be those followed by a in A. (So Al and A2 contain the
top half and bottom half of A respectively. There are no edges between Al and B, since a and
B compete for membership, and an edge between Al and B would give ¢ and a member of B a
common follower f, and any concept containing f would contain both a and that element of B,
a contradiction. Likewise there cannot be an edge between A2 and (. Hence all incomparable
members of A1 and B compete for membership, and all incomparable members of A2 and C

compete for non-membership.

Without specifying the edge between these bi-trees (there must be only one such edge since
by fact 2 another edge would create a cycle), this shows that the concept class must be a
subset of all sets of the following form: Construct a concept by starting with A2 U €' and add

a path upwards from C' (into B) and delete a path downwards from a. It is not possible to
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delete a path downwards from a member of B since a is now a non-member and competes for
non-membership with everything in B. Alternatively it is possible to add a path up from «
and delete a path down from B. Not all of these concepts are allowed since they shatter pairs
of elements of X from eg. B and A2. In general most members of A1 and B are followers of
most members of A2 and €, but there may exist pairs { P, P»} of ascending/descending paths
for which pairs {p;,p.} of elements with p, € P, and p, € P, either compete for membership
and non-membership. These paths may then be extended simultaneously, and there is a unique
way of doing this so that one input is added at a time, which gives rise to an ordering on these

pairs of paths.

As for case 3a, the algorithm chooses a hypothesis which is as close as possible to A2 U C'.
As before, if the target concept is anything other that A2UC', then there is an e-probable subset
of X that must be sampled in order to guarantee that the hypothesis should be e-good.

Extension to Infinite Concept Classes:

Suppose now that X is infinite. If C (having VC dimension 1) is finite then C divides X into
finitely many (in fact |C|+ 1) equivalence classes of elements which always receive the same label
from elements of C. Suppose that C is infinite. For input distribution P, let d be the metric on
concepts which measures the expected absolute difference in label value on a point drawn at
random under P. For a positive real number (, a {-cover of a metric space is defined to be a set
of points in the metric space with the property that every point in the metric space is within
distance ( of some point in the (-cover. Pollard [9] provides a finite bound for the smallest
possible (-cover of a concept class under the above metric in terms of the VC dimension and
(. The size is independent of P, although obviously the (-cover itself may depend on P. For

our purposes, the finiteness of the {-cover is sufficient.

Let H be a (-cover for C. Thus there is a member H € H that is within { of the target
concept C' € C. As {( — 0 the probability that a random example is labelled differently by H
and " approaches 0. Using H as the concept class, we can ensure that with probability 1 — ¢’
there will be a consistent hypothesis (for the sample) in H, by choosing sufficiently small ¢,
and ¢’ may be made arbitrarily small. This finite H thus gives us a PAC algorithm with error
€ + ¢ and uncertainty é + 6’. Since ¢ and ¢’ may be arbitrarily small, the sample complexity

can approximate the sample complexity for the finite case.

3 Further Observations and Conclusions

Obviously the main open problem we raise is the question of whether similar bounds exist

for higher VC dimension. In particular, is it the case that “nearly all” concept classes of VC
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dimension d > 1 have the same sample-size requirements for PAC learning? That would show
that the VC dimension is really the right measure of complexity of concept classes, in the
distribution-independent PAC setting. A result of that nature would have to be a result about
optimal algorithm-dependent bounds, since we can exhibit a concept classes of VC dimension 1
for which an algorithm which is forced to find a consistent concept must have sample complexity
which grows as O(e 'loge™!). The concept class, a variant of an example in [7], is the set of

'. For a target concept C' = {z} for some z € X,

all single-element subsets of a set X of size e~
let P assign probability 0 to x and probability 1/(¢”* — 1) to every other element. Then if a
consistent concept must be returned as the hypothesis, it can be seen that the error is likely
to be 1/(e™! — 1) unless every class 0 example is sampled, which requires a sample size which
grows as € *loge=!. Our optimal algorithm would make the hypothesis be the empty set, until

a class 1 example was sampled.

So it would be interesting to know whether for VC dimension d > 1, there is a greater
diversity of sample complexities for different concept classes of VC dimension d. The simplest
concept class with VC dimension d is just the set of all subsets of a d-element domain. (For
d = 1, this is a trivial concept class.) Such a concept class may always be augmented by the
addition of an extra element whose label is the same for all concepts. The resulting concept
class still has VC dimension d, but has higher sample complexity since P may now assign most
probability to the new “uninformative” element of the domain. Could algorithm-dependent
sample complexity for a concept class with VC dimension d depend only on whether or not
there exist d shattered elements, together with an extra element whose label is the same for
the shattering set of concepts? For d = 3, that property is held by circles in the plane, but
not halfspaces in the plane. The class of circles in the plane is more general (since circles can
approximate halfspaces), but it would be nice to know how much higher the sample complexity

actually is.

An alternative and perhaps more appropriate route to getting good sample-size bounds may
be to restrict the structure of concept classes under consideration. This suggestion is motivated
by the kinds of concepts classes of VC dimension 1 that exist, not all of which are realistic,
in the sense of corresponding to what might come up in practice. The kind of concept classes
which cause problems, such as the one described in the first paragraph of this section, seem to
involve large numbers of mutually exclusive elements. However, natural geometrical concept

classes do not have that feature.
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