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Thesis Summary

This thesis is a study of the generation of topographic mappings — dimension reducing transforma-
tions of data that preserve some element of geometric structure — with feed-forward neural networks.

As an alternative to established methods, a transformational variant of Sammon’s method is pro-
posed, where the projection is effected by a radial basis function neural network. This approach is
related to the statistical field of multidimensional scaling, and from that the concept of a ‘subjective
metric’ is defined, which permits the exploitation of additional prior knowledge concerning the data
in the mapping process. This then enables the generation of more appropriate feature spaces for the
purposes of enhanced visualisation or subsequent classification.

A comparison with established methods for feature extraction is given for data taken from the 1992
Research Assessment Exercise for higher educational institutions in the United Kingdom. This is a
difficult high-dimensional dataset, and illustrates well the benefit of the new topographic technique.

A generalisation of the proposed model is considered for implementation of the classical multidi-
mensional scaling (CMDS) routine. This is related to Oja’s principal subspace neural network, whose
learning rule is shown to descend the error surface of the proposed CMDS model.

Some of the technical issues concerning the design and training of topographic neural networks
are investigated. It is shown that neural network models can be less sensitive to entrapment in the
sub-optimal global minima that badly affect the standard Sammon algorithm, and tend to exhibit
good generalisation as a result of implicit weight decay in the training process. It is further argued
that for ideal structure retention, the network transformation should be perfectly smooth for all inter-
data directions in input space.

Finally, there is a critique of optimisation techniques for topographic mappings, and a new train-
ing algorithm is proposed. A convergence proofis given, and the method is shown to produce lower-
error mappings more rapidly than previous algorithms.

Keywords: Information Processing, Feature Extraction, Sammon Mapping, Multidimensional
Scaling, Research Assessment Exercise
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Chapter 1

Introduction

Where is the knowledge we have lost in information?

T.S. Eliot — The Rock (1934).

Itis often said that we are living in the information age. The technological revolution of the latter half of
the twentieth century has placed previously undreamt-of quantities of information at our fingertips.
The maturity of the digital computer with its continual exponential growth in both power and storage
capacity, allied with the emergence of multi-media and the dramatic recent expansion of global con-
nectivity known rather grandiloquently as the ‘digital information super-highway’, offers unprece-
dented access to vast amounts of data, all over the world, for millions of users.

However, as the ease of access to information increases, so, inevitably, do the accompanying difficul-
ties in its interpretation and understanding. It is very easy to become overwhelmed by the sheer vol-
ume available. One particular on-line information resource is the data collected for the 1992 Research
Assessment Exercise for higher educational institutions in the United Kingdom. Even the small frac-
tion of this large dataset that is studied later in this thesis contains over thirty-two thousand numbers
and there is clearly little to be gained by study of the naked data alone; the knowledge remains locked
away, impenetrably it may sometimes seem, behind the anonymous digits.

The key, therefore, lies in information processing. Whether for the purposes of visualisation, exploratory
analysis or for subsequent computation, it is essential that the information be manipulated into a form
which facilitates its ultimate use. The emphasis has thus shifted from the problem of the acquisition
of information, to that of its exploitation for the purposes of deriving useful knowledge.

The type of information, or data, that will be considered in this thesis is that in numeric form. Data
will, characteristically, be comprised of a set of measurements concerning a corresponding set of ob-
jects. For example, Fisher’s familiar ‘Iris’ dataset contains measurements of sepal length, sepal width,
petal length and petal width for fifty samples of each of three different varieties of iris flower. The
previously mentioned Research Assessment data comprises nearly one-hundred-and-fifty different
variables for over four thousand invidual departments from every university in the United Kingdom
— variables which describe such quantities as the number of staff, the number of Ph.D. students and
the number and value of research grants. This numeric form lends itself naturally to a vector-space
interpretation, such that in the Iris dataset, each set of four sample measurements can be considered a
distinct vector in four-dimensional space. In general, then, for all such datasets with p different fields,
the data may be considered as a collection of similar point vectors in a p-dimensional space.

Given this interpretation, information processing can often be intuitively posited as a dimensionality
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reduction problem. For visualisation, human perception is attuned to two- or three-dimensional im-
ages, and real-world numeric data, which is generally of naturally high dimension, must be processed
into more readable forms without loss of salient detail. In data-modelling applications, the sizable
number of variables implied by high-dimensional data can be seriously disadvantageous. Sensible
pre-processing of the data before the model-building stage can help alleviate these problems.

This thesis concerns one particular approach to extracting knowledge that is concealed within infor-
mation. Itis an investigation into the use of feed-forward neural networks to effect a particular class
of dimension-reducing information-processing strategies — fopographic mappings. Exactly what a to-
pographic mapping is, why a neural network should be used to produce one and what is the relevant
contribution of this thesis, are questions considered during the remainder of this introduction.

1.1 What is a Topographic Mapping?

Topographic mappings are a class of data-processing mechanisms which seek to preserve some no-
tion of the geometric structure of the data within the reduced-dimensional representation. The term
‘geometric structure’ will be used in this thesis in the sense that distance relationships are important,
so that points that lie close together in the data space will appear similarly close together in the map!,
and equally, under certain interpretations, points that are more distant in data space will, after map-
ping, remain likewise separated.

This latter question of interpretation exemplifies that, in practice, there may be alternative emphases
placed on the nature of the structure preservation. One emphasis is that a/l distance relationships
between data points are important, which implies a desire for global isometry between the data space
and the map space. Alternatively, it may only be considered important that neighbourhood relationships
are maintained, such that points that originally lie close together are likewise preserved in the map,
and this is referred to as fopological ordering.

While the word ‘topological’ is often used in certain contexts as a substitute for ‘topographic’, it is
important to make the distinction between the distance-based criteria considered in this thesis and
the notion of fopological invariance in its strictly mathematical sense. Indeed, “spaces which appear
quite different — geometrically for instance — may still be topologically equivalent.” [Gamelin and
Greene 1983]. In this thesis, ‘topographic’ will be considered synonymous with ‘geometric’, in that it
is desired that all distance relationships be preserved in the mapping.

Perhaps the most intuitive, and certainly the most literal, example that may be given of a topographic
map is that of the projection of the naturally spherical surface of the Earth down onto a two dimen-
sional plane. Such a projection is shown in figure 1.1 below.

This simple illustration also serves to demonstrate an important principle — that when data under-
goes a reduction in dimension, some structure is inevitably lost. In practical applications this is an
important point, as for high-dimensional datasets the map will normally be of a much lower dimen-
sion compared to the original data, and this dimensional imbalance tends to accentuate that problem.
In order to represent the topography of the surface ofa three-dimensional globe on a two-dimensional
plane in figure 1.1, it is necessary to introduce some distortion. While much structure is still retained
— consider the interior geography of Europe, for example — at extremes of latitude distances in the
map areconsiderably exaggerated, and even more severely, the left and right longitudinal edges of the
map have been drastically separated. Hence the development of various alternatives to Mercator’s
technique within the field of cartography, such as the Cylindrical Equal Area and Peters’ projections,
with each introducing its own particular class of distortion.

IThroughout this thesis, the word “map” will be used in its intuitive visual sense to refer to the image of the mapping pro-
cess, rather than in its mathematical sense, as a synonym for transformation.
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Figure 1.1: A Mercator’s projection of the spherical Earth down to a two-dimensional map.

Asisevident from the geographical example above, topographic maps can be highly valuable as tools
for visualisation and data analysis. Structure-retaining maps can generally be interpreted quite intu-
itively, and, as will be seen later, often much more so than other reduced-dimension representations.
Many important relationships between the data points can be inferred by viewing the map — no-
tably the detection of clusters, or sets of points closely grouped in the data space and which should be
similarly adjacent in the projection. However, as will be discussed later in this thesis, under certain
conditions, apparent structure exhibited in a map may in fact be artefactual, and not be representa-
tive of the true geometry in data space. The potential for such phenomena should always be borne in
mind when interpreting topographic mappings.

1.2 Why Use a Feed-Forward Neural Network?

There are already some well-established methods for topographic mapping. From the domain of engi-
neering, there is the Sammon mapping, or Nonlinear Mapping, [Sammon 1969] which is closely related to
some of the techniques from the statistical field of multidimensional scaling [Davison 1983]. While still
in popular use, both approaches possess several inherent disadvantages, the most significant being
that when a map has been generated, it effectively acts as a look-up table such that there is no poten-
tial for projecting new, previously unseen, data. Importantly, this implies that there is no facility for
generalisation, a principal feature of neural networks and one which, after a given network has been
trained, enables prospective inferences to be drawn and predictions to be made concerning new data.

There is also an existing neural network architecture designed specifically for topographic mapping,
and that is Kohonen’s ubiquitous self-organising feature map [Kohonen 1995], which exploits implicit
lateral connectivity in the output layer of neurons. This neuro-biologically inspired scheme, how-
ever, also exhibits several disadvantages and this thesis will propose an alternative paradigm which
exploits the standard feed-forward network architectures.

Feed-forward neural networks are now well established as tools for many information-processing
tasks — regression, function approximation, time series prediction, nonlinear dimension-reduction,
clustering and classification are examples of the diverse range of applications. (See [Haykin 1994]
for a comprehensive coverage.) Divorced from their neuro-biological foundation, the major attrac-
tion of neural network models is that certain classes thereof have been shown to be universal function
approximators, such that they are capable of modelling any continuous function over a bounded do-
main, given sufficient network complexity. This property implies that, given appropriate design and
training, neural networks can be employed as semi-parametric models, and thus require fewer prior
assumptions about the underlying relationships in the data.
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It would be attractive, then, to generate topographic mappings using such architectures. That is, the
function that transforms the vectors in the data space to a corresponding set of image vectors in the
map will be effected by a feed-forward neural network. This concept is illustrated in figure 1.2.

RP R‘I
2
é o2
DATA SPACE NEURAL NETWORK MAP SPACE

Figure 1.2: A neural network effecting a topographic transformation.

On initial consideration, the training of such a topographic transformation might appear problematic.
In the majority of neural network applications, for example regression or classification, there are a
set of target vectors, corresponding to the set of input vectors — effectively a set of desired outputs
that the network is trained to reproduce. This scenario is a referred to as a supervised problem. In the
unsupervised topographic case, for each input datum there is no such specific target information, and
alternative training algorithms must be developed, based on structural (distance) constraints.

The specific neural network model introduced in this thesis, for reasons of textual brevity, will be
known as ‘NEUROSCALE’, as it is a neural network ‘scaling’ procedure. NEUROSCALE utilises a ra-
dial basis function neural network (RBF) [Broomhead and Lowe 1988; Lowe 1995] to transform the p-
dimensional input vector to the g-dimensional output vector, where, in general, p > ¢. An RBF com-
prises a single hidden layer of 7 neurons, as exhibited by the network in figure 1.2, which represents a
set of basis functions, each of which has a centre located at some pointin the input space. The number
of such functions is generally chosen to be fewer than the number of data points, and their corre-
sponding centres are initially distributed (and are generally fixed) amongst the data, such that their
distribution approximates that of the data points themselves. The output of each hidden node for a
given input vector is then calculated as some function (e.g. Gaussian) of the distance from the data
point to the centre of the function. In this way the basis functions are radially symmetric. The out-
put of the network is then calculated as a weighted, linear summation of the hidden nodes, which
for supervised problems with sum-of-squares error functions, permits the weights to be trained by
standard linear algebraic methods [Strang 1988]. So mathematically, for a p-dimensional input vector

X = (x1,X2,...,Xp), the g-dimensional output vectory = (y1,y2, ... ,¥,) is given by:
h
vi=Y wit(l|x = D, (1.1)
j=1

where ¢;(-) is the j™ basis function with centre ;> and wy is the weight from that basis function to
output node i. An important result concerning this particular type of network is that it is capable of
universal approximation [Park and Sandberg 1991].

The training algorithm for the RBF constrains vectors in the output space to be located such that they
preserve, as optimally as possible, the distance relationships between their corresponding vectors in
the input space. This is in contrast to Kohonen’s approach, in which the distribution of the output
vectors is approximately representative of the data density. This can be one of the disadvantages of
the latter approach, particularly in applications where global relationships are considered important.

10



1.3 Plan of This Thesis

A further important feature of the NEUROSCALE approach to topographic mapping is the inclusion
of aunique mechanism for incorporating preferential information. This enables additional knowledge
concerning the data (for example class labels or other relevant measurements) to be exploited for the
purposes of enhancing clustering, improving group separation or even to impose some additional
global ordering upon those groups. Such a facility can be considered as adding a supervisory com-
ponent to the otherwise unsupervised feature extraction process, and this interpretation provides an
appropriate basis for comparison with other established information-processing paradigms.

That this supervisory mechanism is of tangible benefit, and that NEUROSCALE in general is an ef-
fective tool for the exploratory analysis of data, will be shown in an application to one particularly
complex dataset. The data in question is taken from the 71992 Research Assessment Exercise for higher
educational institutions in the United Kingdom and is typical of real-world datasets. The data itself
is high-dimensional and polluted by noise, and there is additional information available in terms of a
class label (“research rating”) that is biased by the subjective opinion of an assessment panel. Never-
theless, this extra knowledge will be exploited to generate improved visualisation spaces which can
be used as a basis for subsequent prediction of unclassified data.

The NEUROSCALE approach as detailed in this thesis is an incremental development of recent research
effort directed at exploiting neural networks to perform structure-retaining mappings. The author is
unaware of any significant theoretical investigation into the training and application of such models,
and a considerable portion of this thesis is devoted to such detailed analysis.

1.3 Plan of This Thesis

Chapter 1 is this introduction.

Chapter2 will describe standard approaches to topographic mapping— Kohonen'’s self-organising
feature map, the Sammon mapping and multidimensional scaling— and consider the key distinctions
between the three, along with their respective advantages and disadvantages.

Chapter3 introducesthe NEUROSCALE model and relates it to previous work, giving examples of
its application to various datasets. These illustrate both the topographic property of the neural net-
work transformation and the facility to exploit additional knowledge.

Chapter4 is a detailed study of data taken from the 1992 Research Assessment Exercise. Data from
the subject areas of physics, chemistry and biological sciences is analysed, both by NEUROSCALE and
by other established feature extraction techniques. The emphasis of this chapteris on the visualisation
and exploratory analysis of the high-dimensional data, but there are additional results presented for
classification experiments, including the use of NEUROSCALE as a pre-processor in prediction models.

Chapter 5 describes a generalisation of the NEUROSCALE approach to classical multidimensional
scaling. This is closely related to other neural networks specifically designed for generating principal
component projections, notably Oja’s principal subspace network, and the parallels are analysed.

Chapter 6 is a study of some of the underlying theoretical aspects of training neural networks to
effect topographic mappings. The problem of local minima is considered, and the dynamics of the
relative supervision learning algorithm investigated. Analysis is presented concerning the necessary
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form and smoothness for topographic transformations which is highly relevant to the question of gen-

eralisation.

Chapter7 considersthe optimisation of topographic transformations. Standard techniques are com-
pared, and alternative heuristic strategies also reviewed. An efficient new training algorithm for net-

works linear in their weights is presented, and its properties studied.

Chapter 8 concludes the thesis with a summary of the significant results therein and suggests direc-
tions for future research.

The content of this thesis represents original research. The work within has not previously appeared elsewhere,
with the exception of those research papers produced during the normal course of its preparation. Material from
Chapters 3 and 4 has appeared in [Lowe and Tipping 1995; Lowe and Tipping 1996], while a paper based on

Chapter 5 has been submitted for future publication [Tipping 1996].

1.4 Notation

In general, throughout this thesis, the notation below in table 1.1 will be adopted:

Symbol | Meaning
N The number of data points
P The dimension of input space
q The dimension of the map, or feature, space
h The number of hidden units in a neural network
X; A point vector in the input space
X The matrix of row-vector input points, (x;,Xp,... ,Xy)"
Yi A point vector in the feature space
Y The matrix of row-vector mapped points, (y1,¥2,... ,Y~)"
AT The transpose of matrix (or vector) A
tr[A] The trace of matrix A
|A| The determinant of matrix A
vl The (L,) norm of vector v
uy The k-th eigenvector of some matrix
i The corresponding eigenvalue
®,@, ... | A numbered list of items
0.0, ... | Asequential algorithm

Table 1.1: Notation
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Chapter 2

Established Techniques for
Topographic Mapping

2.1 Introduction

This chapter considers three particular established schemes for the generation of mappings that pre-
serve some notion of topography or geometric structure — the Kohonen Self-Organising Feature Map
(Section 2.2), the Sammon Mapping (2.3) and the statistical field of Multidimensional Scaling (2.5). Each
of these approaches is individually described, comparisons between them are drawn and respective
advantages and disadvantages outlined.

2.2 The Kohonen Self-Organising Feature Map

The archetypal topographic neural network is Kohonen’s self-organising feature map (often simply
referred to as the ‘Kohonen Map’ or abbreviated to ‘SOFM’) [Kohonen 1982; Kohonen 1990; Kohonen
1995]. The motivation for Kohonen’s model is neuro-biological and was developed as an abstraction
of earlier work in the field of ordered neural connections by Willshaw and von der Malsburg [1976].

The SOFM can be viewed as a neural network comprising a set of input neurons and a set of output
neurons, each of which is connected by a weight vector w, in the standard manner, to the input. How-
ever, in contrast to the standard single-layer model — the simple perceptron — there is an inherent
additional structure within the output layer. These neurons may be considered to form a fixed lattice,
usually one- or two-dimensional, with associated lateral connectivity in addition to the connection
to the input layer. In the most common two-dimensional case, the output of the SOFM network is a
‘sheet’ of interconnected neurons in a rectangular or hexagonal configuration. Such an architecture is
illustrated in figure 2.1.

When successfully trained, such a network will exhibit the property that adjacent neurons in this lat-
tice structure respond to similar (nearby) input vectors, or features, and the map is then said to be
topologically ordered. This ordered mode of neural response has been observed on the neocortex in
the brains of higher animals, notably the auditory [Suga and O’Neill 1979], the visual [Blasdel and
Salama 1986] and somatosensory [Kaas et al. 1979] cortices. For example, on the human auditory
cortex, there is a near-logarithmic frequency ordering of responsive cells — this is the so-called fono-
topic map — such that nearby neurons on the cortex respond to sounds of a similar pitch. This, and
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Figure 2.1: A schematic of the architecture of a two-dimensional output layer Kohonen network. For
clarity, only the weight connections from the input to a single neuron are shown.

other mappings within the brain, involve a vast number of similar cortical connections (estimated at
around 10'3), and this almost certainly precludes the possibility that this topological ordering is genet-
ically determined, thus suggesting that these properties evolve during brain development according
to some alternative systematic process. The learning procedure for the Kohonen SOFM is a gener-
alised abstraction of such a potential mechanism, and the model has been successfully applied across
a considerable variety of distinctly non-biological domains. Good examples include speech recog-
nition, image processing, interpretation of EEG traces and robot arm control, and these, and other
applications, are comprehensively reviewed (with references) in [Kohonen 1995]. In addition, there
is a large on-line biography (> 1630 references) available concerning theory and applications of the
self-organising map [Anonymous 1996].

To construct the SOFM, consider a network as outlined above with inputs from some p-dimensional
space connected to a g-dimensional output lattice of K neurons with associated weight vectors w;,
each of which effectively defines a point in the input space. The Kohonen algorithm is thus:

©® Choose the dimension, size and topology of the map according to the prior knowledge of the
problem. Some preprocessing of the data may also be necessary as the map is sensitive to scaling
of the input features.

® At time step ¢ = 0 initialise all the weight vectors w; to random values.

© Present an input pattern x, to the network, drawn according to the input distribution defined
by the probability density function f(x).

O Determine the “winning” neuron, v(x;), whose weight vector w; is closest to the input point x;.
That is
v(X;) = argmin || w; — X ||
i

O Adjust the weight vector of the winning neuron, and those of its neighbours, in a direction to-
wards the input vector. That is

Wi = Wi + n(OA[7, V(X)X — W)),

where 7)(7) is a learning-rate parameter. The function A[7, v(x;)] is the neighbourhood function, and
is described in detail below.
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O Repeat from step O until the map has stabilised.

The key to the topographic nature of the mapping is the neighbourhood function, A(Z, v(x)). This is
some function defined over the output lattice space which is generally non-negative and decreases
with the distance (in the lattice space) between the winning neuron v(x) and any other neuron i. This
implies that the weight vector of the winning neuron receives maximum perturbation, while the cor-
responding vectors of more distant neurons are adjusted to a lesser extent. Popular choices for this
function are the Gaussian, A(r) = exp(—?/20%) — where r is the distance from the winning neuron
to another neuron — and the ‘bubble’, which is simply a constant value over a fixed neighbourhood
width o. The parameter ¢ therefore controls the degree of weight adjustment with distance, a prop-
erty that is sometimes referred to as the “stiffness” of the lattice.

Thus, when an input pattern is presented to the network, the nearest, winning, neuron will be moved
in the direction of that input vector along with its neighbours by an amount that decreases with their
distance (within the /attice) from the winning neuron. In this way, the weights for nearby neurons will
converge to the same region of input space, thus exhibiting the characteristic topological ordering.
The ‘width’ of this neighbourhood function, the parameter o, is -dependent. It is usually set to a
relatively high value (as much as half the lattice width or greater) at initialisation, and decreases with
time. This allows the coarse global structure of the map to be formed in the early stages of training,
while the local structure is fine-tuned later. The learning-rate 7(¢) also varies with time, decreasing
monotonically to some arbitrarily small value when the map is “frozen”.

Three example plots taken during the training of a SOFM are illustrated in Figure 2.2 below. These
show the evolution of the output lattice for input data sampled uniformly at random from within a 2-
dimensional unit square. The weight vectors w; are plotted in the input space, and those correspond-
ing to adjacent nodes in the neuron lattice are shown connected. Note that these connections are not
explicit within the SOFM architecture; it is the action of the neighbourhood function that implicitly
inter-connects all the output layer neurons to some degree.

| wohonentiet || (WM | Kohonentiet | | WM | Kohonentiet | | |

START ) Solid | START | Solid | START ) Solid _|
[

1]

Figure 2.2: A 2-D Kohonen map of data sampled uniformly at random from the unit square. The final
map is after 5,000 time steps.

For a neighbourhood function of zero width, there is no topological ordering in the map and the
algorithm becomes equivalent to a vector quantisation (VQ) scheme (specifically, the LBG algorithm
of Linde, Buzo, and Gray [1980]), where the weights w; are analogous to the codebook vectors of VQ.
It is also, therefore, closely related to the k-means technique for data clustering [MacQueen 1967].

Ideally, it would be convenient if the density of the distribution of the w; in the input space were di-

rectly representative of the input probability density f(x). This, however, is not the case. An exact
result has been derived only for the single-dimensional feature map which reveals that the density of
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the w;, m(w), is in fact given by [Ritter and Schulten 1986; Ritter 1991]:
m(w)  f(x)°,  with 2.1

2 1
5_3_3

[0>+ (o + DT &2

where ¢ is the number of neurons to each side of the winning neuron that are adjusted at each training
step. For o = 0, this is equivalent to VQ, and m(w) o f(x)'/>.

In this case, and in general for higher dimensions, the Kohonen SOFM over-emphasises regions of low
input density at the cost of under-emphasising those of high density. An illustration of this effect may
be seen later in Section 2.4.

One important feature of the SOFM is that it exists only at the algorithmic level. It has been shown
[Erwin, Obermayer, and Schulten 1992] that the above procedural description of the Kohonen Map
cannot be interpreted as minimising a single energy (or error) function. Thisimplies that there is no di-
rect measure of “quality” of a map, although several indirect alternatives have been proposed [Bauer
and Pawelzik 1992; Bezdek and Pal 1995; Goodhill, Finch, and Sejnowski 1995].

There have been several extensions made to the basic SOFM model since its introduction. For appli-
cation to classification problems, there are the Learning Vector Quantisation (LVQ) schemes [Kohonen
1990], where sets of weight vectors are allocated exclusively to a single class and the learning algo-
rithm adjusted such that inter-class decision boundaries are emphasised. There have also been vari-
ants of the map proposed which permit arbitrary and dynamic output layer topology, such as the neu-
ral gas of Martinetz and Schulten [1991] and the growing cell structures of Fritzke [1994]. Such schemes
permit a better match between the network topology and that of the data distribution, but consider-
ably complicate the generation of convenient visualisations, such as that illustrated for the standard
SOFM in Section 2.4. This restriction makes these approaches less suitable for data analysis, and they
will not be considered further in this thesis.
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2.3 The Sammon Mapping

If the definition of a topographic mapping is to be understood as implying a retention of global met-
ric relationships, then the Sammon Mapping [Sammon 1969], sometimes referred to as the Non-Linear
Mapping or NLM, is the most intuitive basis for its definition. In contrast to the Kohonen mapping,
the Sammon mapping may be determined by the optimisation of an error, or ‘STRESS’, measure which
attempts to preserve all inter-point distances under the projection. The Sammon STRESS is defined as

o 4y — d,
b 0o D20 D

i j<i

(2.3)

where d;; is the distance || x; — x;|| between points i and j in the input space ¥, and dj; is the distance
|lyi—y;|| between their images in the map, or feature, space Rf. These distance measures are generally
Euclidean but need not strictly be so.

The [d;.;. - d,-j]2 term is clearly a measure of the deviation between corresponding distances, and the
Sammon STRESS thus represents an optimal, in the least-squares sense, matching of inter-point dis-
tances in the input and map spaces. The first fractional term in the expression is a normalising con-
stant which reduces the sensitivity of the measure to the number of input points and their scaling. The
inclusion of the d; term in the denominator of the sum serves to moderate the domination of errors in
large distances over those in smaller distances, and renders the overall measure dimension-less. The
inclusion of this term is not justified in the original paper, and has the effect of making the mapping
more sensitive to absolute (though not proportional) errors in local distances.

Given this STRESS measure Ej;, it is straightforward to differentiate with respect to the mapped co-
ordinates y; and optimise the map using standard error-minimisation methods. Setting the constant
c=Y, Zj<i d; for simplification gives

OE, =2 (d; —dy)

(yi — yj)- 24

All the points y; in the configuration can thus be simultaneously iteratively adjusted to minimise the
error. It should be noted that each partial derivative requires N cycles of computation and therefore
to calculate the entire set of derivatives will require a double sum over the data. (In fact, N(N —1)/2
loops.) Sammon used a simple gradient-descent technique in his original paper, but less naive meth-
ods may be employed, and a conjugate-gradient routine [Press, Teukolsky, Vetterling, and Flannery
1992] was found to be considerably more effective.

The Sammon mapping originated in the engineering field and was designed as a computational tool
for data structure analysis and for visualisation, and indeed, its use is still popular in many domains
— Domine et al. [1993] provide a good review of applications in the field of chemometrics. Feature
space dimension, g, is thus naturally chosen as either 2 or 3. Because of the metric nature of the map,
clusters of data points tend to be retained under the projection and are manifest in the feature space.
In addition to this /ocal clustering structure, the inter-cluster global relationships are also preserved to
some extent. Sammon emphasised this latter feature in the paper, giving several illustrative examples
where a linear projection onto the first two principal axes (the orthogonal axes that maximise the vari-
ance under projection) confused multiple distinct clusters in contrast to the Sammon mapping which
maintained their separation.

While minimisation of E;; implies preservation of the input geometry, the extent to which the integrity
of the structure of the input space can be retained is dependent both upon the intrinsic dimensionality
of the data, and also upon its topology. In the process of dimension reduction, some information, in
all but the most degenerate cases, will be lost, and furthermore, apparent structure may be elucidated
which is truly artefactual in nature. A minor example of such structure will be seen for spherical data
in the next chapter, and reference to a more controversial case will be made shortly in discussion of

17



Established Techniques for Topographic Mapping

multidimensional scaling. Some investigation of artefactual structure was undertaken by Dzwinel
[1994]. One particular illustration was given for data generated uniformly at random from within a
100-dimensional hypercube, which resulted in a circular configuration when mapped down to two
dimensions. The cause of this particular configuration was actually explained by the author, with
reference to the “curse-of-dimensionality”, but this and other such projections may often appear in-
consistent to the human observer because “our intuitive notions of low dimensions don’t carry over
well to high dimensions” [Friedman 1995].

Despite the simple, intuitive appeal of the Sammon Mapping, there are, however, some significant
disadvantages and limitations to its application.

® The mapping is generated iteratively and has been observed to be particularly prone to sub-
optimal local minima.

@ The computational requirements scale with the square of the number of data points, making its
application intractable for large data sets.

® There is no method to determine the dimensionality of the feature space a priori.

@ The map is generated as a ‘look-up table’ — that is, there is no way to project new data without
re-generating the entire map with the new data points included.

Sammon himself appreciated the restriction posed by item @ above, conceding that with the comput-
ing facilities available at that time, a practical upper limit o200 data points was imposed. To partially
overcome this, he proposed applying some a priori clustering process to extract prototypes, and then
mapping these with the algorithm. This, and other approaches to the computational problem, will be
considered in Chapter 7, with an investigation of problem @, local minima, in Chapter 6. A consid-
erable part of this thesis will be concerned with approaches to the problem posed by item @, and this
will be considered in more detail in the following chapters.

2.4 Comparison of the Kohonen SoFM and the Sammon
Mapping

It has already been stated that, unlike the Sammon mapping, the generation of a Kohonen SOFM can-
not strictly be interpreted as the minimisation of a single energy or cost function [Erwin, Obermayer,
and Schulten 1992]. Aside from this, there is a more fundamental underlying difference between the
two methods. It is the mechanism of the local neighbourhood function in the Kohonen map that af-
fordsthe topographic nature of the scheme. However, there is no explicit retention of global structure,
and indeed, the emphasis of the algorithm is to model the density of the underlying input data dis-
tribution. This contrast between the two techniques may be illustrated by the following simplistic
example.

Both the SOFM and Sammon’s algorithm are applied to the mapping of a synthetic dataset comprising
three clusters in three dimensions. The clusters, C;, C; and Cs, are centred at (0,0,0), (1, —1,0) and
(4,5,0),and contain 50, 100 and 50 points respectively. Each cluster is dispersed uniformly at random
inside a cube centred at each point, with the size of each edge of the cube for (5 being double that
of C; and C,. This distribution of data is illustrated via two orthogonal projections in figure 2.3. A
(12 x 10) Kohonen Map of this data and the corresponding Sammon mapping are shown in figure 2.4.
For comparison, the first two principal components of the data are plotted in figure 2.5.

This particular distribution of data was chosen deliberately to emphasise the differences in the meth-
ods. As illustrated in figure 2.4, the Sammon mapping offers a good representation of the original
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topography. The variation of inter-cluster separation is still clear, and the increased dispersion of
(; is also evident. The Kohonen SOFM has retained the local topology, but because it is a density-
driven approach, fails to capture both the global relationships between the clusters and the local dis-
persion of (3. Underlining this behaviour, the concentration of neurons in the region of class (G,
which contained twice the point density of the other classes, is also evident. The number of nodes
activated for each of the three classes is 23, 40 and 27 respectively, which indicates that the map has
over-represented the lower density clusters. That the cluster (5 is significantly larger than C; and G,
is not evident, and neither is its greater distance from those clusters.

In this simple case, a principal component projection is apparently adequate for retaining the topogra-
phy (although close inspection will reveal better dispersion within the three clusters in the case of the
Sammon Mapping). For real, higher-dimensional, datasets, this linear technique is generally limited
in its application, as will be illustrated in Chapter 4.

An additional phenomenon inherent in the SOFM is the introduction of some topographic distortion
due to the fixed topology of the lattice of output neurons. As asserted by Li, Gasteiger, and Zupan
[1993], “global topology distortions are ... inevitable” in all but the most trivial situations. This effect
is a result of mismatch between the topology of the lattice and that of the input data. This conclusion
is also confirmed by Bezdek and Pal [1995] who claim that “the Sammon method preserves metric re-
lationships much better than [the SOFM].” This assertion is a result of assessing the alternative map-
pings according to a measure of metric topology preservation, derived from Spearman’s rank coefficient.
With respect to this criterion, the Sammon mapping scored higher for all datasets tested.

The distortive aspect may be demonstrated by the example in figures 2.6 and 2.7. This illustrates a
(12x 12)2D-sheet mapping of data points lying on three concentric 3-dimensional spheres, with radii
0,1 and 2 units respectively. Fifty points were distributed at random over each of the spheres and a
small amount of Gaussian random noise was added, making the centre sphere effectively a cluster.
The diagram in figure 2.6 shows the map, with its inevitable discontinuities, and below, in figure 2.7,
is an illustration of the form of the sheet embedded in the input space — the ‘frustration’ in the lattice
is clearly visible in this latter diagram. When such mismatch occurs, it may also induce poor perfor-
mance from a clustering point of view. Such degradation, in comparison with the standard ’k-means’
procedure, has been observed by Balakrishnan, Cooper, Jacob, and Lewis [1994].

Regarding these criticisms it should be noted that Kohonen’s SOFM was developed as an analogue of
observed neuro-biological behaviour, rather than being explicitly motivated by the criterion of faith-
ful preservation of universal topography. In addition, in stark contrast to Sammon’s technique, it has
the attractive feature of good computational behaviour. Itis this tractability for sizable datasets which
makes the Kohonen SOFM a popular topographic mapping tool. However, on the basis of the discus-
sion in this section, for applications in data analysis and visualisation, the Sammon mapping should
be preferred for smaller datasets.
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Comparison of the Kohonen SoFm and the Sammon Mapping
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Figure 2.6: A Kohonen Mapping of data on 3 concentric spheres.

Figure 2.7: The Kohonen lattice embedded in the original space.
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2.5 Multidimensional Scaling

2.5.1 The Underlying Principle
Multidimensional Scaling (MDS) is described by Davison [1983] as

...a set of multivariate statistical methods for estimating the parameters in, and assessing
the fit of, various spatial distance models for proximity data.

This definition is a relatively narrow one, and some authors (e.g. Carroll and Arabie [1980]) accept
a broader view and include other methods for modelling multivariate proximity data (such as factor
analysis or cluster analysis) within the scope of MDS. However, it is the topographic properties of
MDsS that are relevant in this context, so the spatial distance definition is the most appropriate here.

The raw data to which MDS is applied is proximity data. This is generally in the form of a square sym-
metric (N x N) matrix, where each row and column enumerates a set of objects and the elements of
the matrix are measures of the relative proximity of those respective objects. In this context, proximity
may refer to either similarity or dissimilarity of objects. It is then the purpose of MDS techniques to rep-
resent the structure of the proximity matrix in a more simple and perspicuous geometrical model. The
classic example is that, given a matrix of road-distances (which can be considered analogous to dis-
similarities) between cities, the data can be modelled by atwo-dimensional map (e.g. see Krzanowski
and Marriott [1994], pp113). In this instance, the scaling procedure greatly facilitates visualisation of
the data and eliminates the redundancy in the description.

For the case of the road-distances, the geometric interpretation is intuitive and clearly valid. Typically,
however, the proximity data processed by MDS models will have been gathered in a more subjective
manner, often by means of psychological experiment where human subjects are asked to assess the
likeness, or similarity, of each pair of objects, or stimuli. The fundamental assumption underlying the
application of M DS in these contexts is that these empirical observations can be meaningfully fitted to
a set of points in some metric space, where the distance between the points representing each pair of
stimuli corresponds to their perceived dissimilarity. (The measure of ‘dissimilarity’ may be simply de-
rived from that of ‘similarity’, for example, by subtracting from a constant.) This basic principle was
originally proposed by Richardson [1938]. Given this assumption, it is then hoped that such a fitted
configuration will aid visualisation of the data and also provide insight to the processes that gener-
ated it. These techniques have been successfully applied in a variety of fields — the behavioural and
social sciences, psychology, acoustics, olfactory analysis, education and industrial relations are exam-
ples. A comprehensive list of many such applications is given by Davison [1983]. MDS remains a very
popular tool, with a search of citation indices revealing relevant annual publications in the hundreds.
A prominent, recent, and controversial example of the application of MDS techniques is in the study
of connectivity of regions in the visual cortex of the macaque monkey [Young 1992]. This has pro-
voked some significant debate over the validity of the structure inferred from such a model [Goodhill,
Simmen, and Willshaw 1995], as to whether it is artefactual or truly representative of the underlying
relationships in the data.

One particularly good illustration of MDS applied to psychological data concerns a study of colour
vision. In this experiment, performed by Ekman [1954], participants estimated the similarity of all
combinations of pairs of 14 different sample colours presented to them. An MDS technique was used
to convert these similarity measurements into a configuration of points in two dimensions, where they
were found to lie in a spectrally ordered manner on an annular, horseshoe, structure. This ‘bending’
of the colour line is a result of the phenomenon that many subjects (reasonably) perceive similarity
between the two extreme ends of the spectrum — red and violet. The similarity data and the resulting
mapping, which is clearly informative in this case, are given in figures 2.8 and 2.9 respectively.
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Multidimensional Scaling
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Figure 2.8: The proximity matrix for Ekman’s colour data. Each valueis a normalised, averaged, mea-
sure of observed similarity between 14 distinct sample colours.
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Figure 2.9: The resultant map, with wavelength shown for each sample, for Ekman’s colour data.
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2.5.2 Scaling Algorithms

The measured dissimilarity between a pair of objects (7,7), known as a stimulus pair, can be formalised
as the variable ;;, which is an element of the (V x N) dissimilarity matrix A. It is the purpose of MDS
to turn this data into a (N X ¢) configuration matrix Y. In general, and in common with the Sammon
Mapping, the dimension of the feature space ¢ is unknown a priori.

The configuration of points y; : i € {1 ... N} must be determined such that the values §; match some
distance function, d(i,j), defined over all possible pairs of points (y;, y;)- For d(i,j) to be a distance func-
tion, the following four axioms must hold:

d(a, b) >0, 2.5)
d(a,a) =0, (2.6)
d(a,b) =d(b, a), 2.7)
d(a,b) + d(b,c) >d(a,c). (2.8)

In a psychological context (e.g. consider the colour data), these first three axioms, (2.5)-(2.7) appear in-
tuitively reasonable, although there is no apparent support or contradiction for (2.8), known as the tri-
angular inequality axiom. Whilst much experimental work corroborates the distance model for psy-
chological data, the results of some tests appear to violate some of the axioms (e.g. Rothkopf 1957).
However, this is just one aspect of the application of MDS — in other contexts these contradictions are
not manifest.

Usually, the metric employed in the configuration space is the standard Euclidean, although general
Minkowski distances have been used in particular applications.

There are two main branches of MDS models — the metric and the nonmetric methods. In the former,
the dissimilarities should correspond as closely as possible to the inter-point distances in the gener-
ated configuration. In the latter scheme this constraint is relaxed, with psychological justification,
such that the ordering of the dissimilarities should correspond to the ordering of the distances. The
metric techniques, originally developed by Torgerson [1952] as classical M DS, have been superseded
by the more flexible and effective nonmetric models. The following two subsections cover these meth-
ods in more detail.

2.5.3 Classical Multidimensional Scaling (CMDs)

One of the first MDS algorithms was proposed by Torgerson [1952, 1958]. By definition as a metric
method, it assumes the identity relationship between distance in the feature space and corresponding
object dissimilarity:

85 = di. j). (2.9)

As such, it requires somewhat restrictive assumptions, and is seldom used in its original form, al-
though many more developed algorithms build on it. It does, however, have the advantage of an
analytical derivation.

The CMDS procedure is as follows:

O From the dissimilarity matrix A, generate the double-centred inner product matrix B*, given by:
‘ 1
B* = _EHAzH’ (2.10)

with A, the matrix whose elements are the square of those of A. Thatis, Ay = {65} The matrix

H is the centring matrix, given by I — 1/N, where 1 is the square matrix whose elements are all
L.
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@ Factorise B* into:

B* = UAU", 2.11)
=YY" (2.12)

The matrix A is the diagonal matrix of eigenvalues of B*, with U the corresponding matrix of
eigenvectors.

© The matrix Y = UA'/? is the configuration of points in p = N dimensions that satisfies exactly
the dissimilarity measures specified in A. To reduce to ¢ dimensions, select the g columns of U
corresponding to the ¢ largest eigenvalues, giving an (N x ¢) data matrix Y,,.

There are several points to be noted about the CMDS procedure:

e The points Y are centred at the origin, so Zf" y; = 0.

e Calculation of A'/? requires that B* is positive semi-definite. Techniques adopted for dealing
with the problem of negative eigenvalues are typically heuristic. One is to ignore the small,
negative eigenvalues. Another is the frace criterion, where the sum of the discarded negative
eigenvalues should equal the sum of the positive discards, so the sum of the remaining eigen-
values is still equal to the trace of the matrix. A large negative eigenvalue is nevertheless a major
problem. Mardia [1978] proposed “goodness of fit” measures for such non-Euclidean data.

e IfB* is positive semi-definite, then A is a Euclidean distance matrix. That is, the dissimilarities
0; correspond exactly to the Euclidean distances between a set of points embedded in at most
(N — 1) dimensions.

e If B* is positive semi-definite, then the points y; are referenced to their principal axes. (That is,
Y'Y is diagonal). Furthermore, if the elements of A are the inter-point Euclidean distances of a
given set of data points, then the CMDS solution in ¢ dimensions is identical to a projection onto
the first ¢ principal axes of the data. Indeed, CMDS is sometimes known, after Gower [1966], as
principal co-ordinates analysis.

e For a similarity matrix S, where 0 < s; < 1 and s; = 1 (such as that given for the colour data in
figure 2.8), then a corresponding dissimilarity matrix can be formed by ¢; = /(1 — ;). In that
case, A is a Euclidean distance matrix [Gower and Legendre 1986].

2.5.4 Nonmetric Multidimensional Scaling (NMDs)

In Nonmetric, or ordinal, Multidimensional Scaling (NMDS) the requirement that distances in the pro-
jected space optimally fit the dissimilarities is relaxed so that only the ordering of distances is retained.
That is, the two most dissimilar stimuli should also be the two most distant points in the configura-
tion and the second most dissimilar pair of stimuli be the second most distant pair of points etc. It is
therefore not necessary for all corresponding pairs of distances and dissimilarities to be identical. In
fact, the ordinal constraint implies that it is only necessary that the dissimilarities be some arbitrary
monotonically increasing function of the distances.

Thus in contrast to equation (2.9), for nonmetric models the relationship between dissimilarity and
spatial distance becomes

1/2
& =f(dy) =1 [Z(x,-k - x,-k)z] : (2.13)

k

where f is a monotone function such that

Vi7j7 l.l,j/ : dlj < d,'rjr :}f(d,]) <f(d,/Jr) (214)
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Note that the function f need never be known explicitly, although its form may be recovered after the
scaling procedure.

As well as adhering to the first three Euclidean distance axioms, this concept preserves many intuitive
psychological properties and in many cases permits the generation of more useful, lower-dimension,
lower-STRESS mappings. Furthermore, in some experiments, only ordinal data is available, notably
where human subjects are required to rank various stimuli in order of merit or preference.

In contrast to the classical method, these ordinal configurations are generated by minimisation of a
particular cost function, or STRESS measure, and must be generated iteratively via some nonlinear
optimisation procedure. Because of the ordinal constraint, generating a configuration is particularly
computationally expensive due to the additional requirement of a monotonic regression step.

The first nonmetric scheme was proposed by Shepard [1962a, 1962b], in response to experimental evi-
dence thatin certain applications, observed dissimilarities were related to some nonlinear function of
the spatial distances in a putative model (e.g., Shepard 1958). These methods were further and more
formally developed by Kruskal and that work remains the basis of modern implementations. Kruskal
[1964a] formalised the method by defining a measure of goodness-of-fit. The proposed M DS technique
is thus to determine a point configuration Y that optimises this. A practical computer implementation
of the algorithm is described in a companion paper [Kruskal 1964b]. To clarify the NMDS technique,
consider the following description of Kruskal’s procedure.

Given a set of experimentally obtained dissimilarity data ¢; and a configuration of N points in ¢ di-
mensions, the dissimilarities can be ranked according to their magnitude

(5,']_]'1 < (5,':]'2 <. < 6iMjM (215)

where M = N(N — 1)/2. It is then possible to determine a set of disparities &’,-j that are “nearly equal”
to dj, whilst still retaining monotonicity with respect to the corresponding §;. That is:

dij, < di, < ... < dig,, (2.16)

The Zl,-j are said to be monotonically related to the dj;, and the fitting of those values is a monotonic re-
gression of distance upon dissimilarity. The multi-pass procedure for the determining the disparities
is as follows.

Ateach monotonic regression phase, the disparitiesc;’,j areinitialised as the distances dj;, and are listed
such that their corresponding dissimiliarities §; are in ascending order. In the first pass, each pair of
adjacent (list-wise) disparity values is compared and if the two variables are not correctly ordered,
they are combined into a ‘group’ with a common disparity value equal to the arithmetic mean of the
combined values. Subsequent passes are then similar, except previously combined groups may be
compared together as well as with other adjacent groups and/or single disparity values. The pro-
cedure terminates when no further groupings are required and the listed disparities are either equal

(within groups) or in the requisite ascending order.

Kruskal then defined an objective measure based on these disparities:

STRESS = (2.17)

where the denominator again normalises for the number and scaling of the dissimilarities.

The monotonic regression step occurs first, determining the&’,-j, following which those calculated val-
ues are used in a gradient-descent minimisation step of equation (2.17). These alternate steps are then
repeated until alocal minimum of STRESS is attained. Inevitably this procedureis computationally de-
manding and prone to finding sub-optimal local minima. Also, there is again no indication of choice
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of dimensionality ¢, so it is usually necessary to generate several configurations in a number of di-
mensions for comparative purposes.

The modern approach to NMDS is the Alternating Least Squares procedure, ALSCAL, and is available in
the popular SPss software package [Young and Harris 1990]. Since their introduction, the nonmetric
schemes have become the dominant scaling models, with the classical procedure now rarely used.

2.6 Comparison of MDs and the Sammon Mapping

In Sammon’s original paper he briefly mentioned the connection to MDS methods, and this relation-
ship was further clarified by Kruskal [1971].

Sammon’s mapping is effectively a metric, but nonlinear, scaling method. As such, its exact analogue
does not exist in the MDs domain. Whilst all these latter scaling techniques may be applied to dis-
similarities generated directly from a set of points, doing so defeats the primary motivation behind
their development which is to produce such a spatial configuration from non-spatial data. Neverthe-
less, comparison of equations (2.17) and (2.3) indicates that the operation of the Sammon mapping,
ignoring normalisation terms, is identical to a nonmetric scaling procedure without the monotonic
regression step.

Algorithmically, MDS and the Sammon Mapping are effectively identical; it is only the difference in

the source of the input data that differentiates between the two schemes. Conceptually, this is illus-
trated in figure 2.10 below.

SAMMON MAP
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No o Subjective 10 08 20 09 0
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Figure 2.10: A schematic of the operation of the Sammon Mapping and MDS, emphasising the con-
ceptual distinction between the two.
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2.7 Conclusions

This chapter has described the standard methods for topographic feature extraction in both the neural
network and statistical domains. The next chapter will introduce an alternative, feed-forward neural
network approach to topographic mapping, which will be based on Sammon’s projection. The em-
phasis of the particular method proposed is for the purposes of visualisation or exploratory data anal-
ysis, and this has motivated the choice of the latter technique as the basis for its design. As illustrated
in Section 2.4, Sammon’s approach to topographic mapping retains significantly more of the salient
global data structure than the SOFM paradigm.

The key principle from MDS outlined in Section 2.5 — that informative configurations of points can be
generated via topographic constraints from non-spatial data— will be incorporated into the method

to enable the exploitation of additional subjective knowledge.

A generalisation of this neural network model to classical MDS in particular will be examined in Chap-
ter 5, in the context of principal components analysis with neural networks.
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Chapter 3

NEUROSCALE

3.1 Introduction

The distance-preserving criteria for determining topographic mappings such as the Sammon map-
ping, or the majority of the multidimensional scaling models, areintuitively appealing. Simple STRESS
measures of the form Zij(d;. — d,-j)2 explicitly embody the notion of structure-retention with their ten-
dency to retain distance relationships on both local and global scales.

However, one major restrictive property of both the Sammon and MDS methods is that there is no
transformation defined from the input space to the feature space. Configurations are generated by the
direct iterative adjustment of their component vectors, and once determined, act effectively as look-
up tables. There is no mechanism to project one or more new data points without expensively re-
generating the entire configuration from the augmented dataset. In the neural network vernacular,
there is no concept of generalisation for defined mappings.

For example, in a discriminatory application, a Sammon mapping might be constructed for a large
dataset in order to reveal inherent clustering which may correspond to membership of particular
classes. It would then be of benefit to project new data (of unknown class) and so permit inferences
to be drawn concerning class membership from that projection, rather than undergoing the compu-
tationally expensive task of re-mapping the entire dataset with the new points included.

This problem has recently motivated several researchers to develop transformational variants of both
the Sammon mapping and of certain MDS procedures. The transformation may be effected by a neural
network, taking as its input the raw data, and generating the topographic configuration at its output.
Such a model, when trained, can then be used to project novel data in the obvious manner by forward
propagation through the network.

As an extension of this earlier work, this chapter introduces “NEUROSCALE” — an implementation
of the Sammon mapping utilising a Radial Basis Function (RBF) feed-forward neural network. Such a
model is a potentially powerful alternative to the established neural network paradigm, the Kohonen
Self-Organising Feature Map (SOFM), and can be expected to offer several advantages over that latter
approach. These advantages will be discussed in Section 3.2, along with a description of the training
algorithm for the network.

An important feature of NEUROSCALE is its capacity to exploit additional available knowledge about
the data, and to allow this to influence the mapping. This permits the incorporation of supervisory
information in a technique which is strictly unsupervised, and this concept will be considered in depth
in Section 3.3. The basic principles of the technique are then illustrated for some, mainly synthetic,
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datasets in Section 3.4. (An application to the visualisation and exploratory analysis of a difficult,
real-world dataset will be presented in detail in the next chapter.)

This new approach is a development of previous work in the fields of topographic mapping, neural
networks and feature extraction. The key research papers in these areas will be reviewed at the end
of the chapter, and related to the NEUROSCALE technique.

3.2 Training a Neural Network Sammon Mapping

3.2.1 Relative Supervision

Clearly the training algorithm for a neural network implementation of the Sammon mapping is non-
trivial. In a conventional supervised training scenario, there is an explicit ‘target’ for each input data
point to be mapped to; in the case of a topographic transformation, only a measure of relative distance
from all the other data points is available. A standard, supervised training algorithm cannot therefore
be applied in this instance. This has led to the development of what has been termed a relative super-
vision algorithm [Lowe 1993], for the purposes of optimising error measures similar to the Sammon
STRESS. This permits calculation of the weight derivatives required by most optimisation routines.
Recall that the expression for the Sammon STRESS, ignoring normalisation terms, is of the form

N N
E:E:E}@fw@? (3.1
i

The standard Euclidean distance metric will be assumed unless otherwise indicated (this is a sensible
choice as it implies that configurations of points are rotationally invariant with respect to their STRESS
measure), so

dy =|lyi =y I, (3-2)
T 1/2
= [ =¥y =y, 33)
and similarly for d; In the standard Sammon mapping, STRESS is minimised by adjusting the location
of the points y; directly, according to a gradient-descent scheme. However, if each pointy; is defined
as a parameterised nonlinear function of the input, such that y; = f(x;; w) where w is a parameter, or
weight, vector, then the STRESS becomes

N N
E= " (di— |[f(x; W) — f(x; W) |)°. (3.4)
i

This expression may be differentiated with respect to the parameters w (rather than the actual points
themselves in the case of the traditional Sammon mapping) and these parameters adjusted in order
to minimise E. Weight derivatives are then calculated for pairs of input patterns, and the weights may
be updated on-line, pattern-pair by pattern-pair, or may be subsequently updated in a batch fashion,
after the presentation ofall (N—1)N /2 possible combinations. Note that this conceptis entirely general
and not restricted to the neural network domain. The transformation function f(-) may represent any
arbitrary, continuous, differentiable function (even linear) and need not be a neural network model.

The formulation of a topographic mapping model in this manner has several advantages:

® As underlined previously, the existence of the transformation f(-) permits the projection of un-
seen data, and affords the mapping a generalisation property. This is of major benefit as it allows
the network to be used as a tool for future prediction and inference.
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@ The number of free parameters in the mapping may be reduced. For a Sammon mapping of
N points to g dimensions, the number of adjustable parameters is (N X ¢), and is determined
by the abundance of data alone. Effecting the mapping as a parameterised function allows the
number of parameters to be determined according to the complexity of the problem. It would
be intuitively expected that fewer than (N x g) parameters would be required in order to obtain
reasonable performance in terms of generalisation.

® Aside-effect of this parameterreduction is that the nonlinear optimisation procedures employed
to minimise the STRESS measure become more efficient. Some schemes, for example the quasi-
Newton BFGS [Press et al. 1992], require memory storage that scales badly with the number of
parameters.

3.2.2 Calculating Weight Derivatives

For the purposes of most nonlinear optimisation routines, the derivatives of the STRESS measure with
respect to each parameter w; are required. These may be calculated as follows.

Considering equations (3.1), (3.2) and (3.4) and applying the chain rule gives:

N

— . 3.5
awk z’: 8y,- awk’ ( )
AT
OE Of(x;; w)
= 1 3.6
oy, owr -0

The first term is simply that from Sammon’s derivation and may be obtained by direct differentiation
of equation (3.1) above to give

N ds — d,"
= —2_2_( = ’) Vi - ). (3.7)
J#
The derivatives of the second term are also calculable directly and depend on the form of the function
f(-). In the case of a multilayer perceptron, the derivatives are those which are implicitly calculated
using the familiar back-propagation procedure [Rumelhart, Hinton, and Williams 1986]. Alternatively,
for a model linear in the weights, such as a radial basis function network with fixed centres, they may
be directly derived in a straightforward fashion.

An illustrative code fragment of an implementation of this algorithm is given in figure 3.1. Note that
although the algorithm must loop O(N?) times, the (potentially computationally expensive) forward
and back-propagation through the network is only required N times.

Given the values of these derivatives, the network may be trained via any of the popular nonlinear

optimisation algorithms — gradient-descent (with momentum), conjugate-gradient and BFGS are ex-
amples. (See [Bishop 1995, Ch. 7] for a detailed overview of those and other algorithms.)
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// Relative Supervision Algorithm

!/

// For training a Neural Network to effect a Sammon Mapping

// Initialise the weight changes vector to zero as in a standard ‘batch’ algorithm.
//
sumDerivatives = 0;
// Generate the set of output pattern vectors and zero the relative error vector
// for each point
//
for (n=0; n<numberOfPatterns; n++)
{
relativeErrorVector[n] = 0;
networkOutput [n] = networkForwardPropagate (inputPattern[n]) ;

}

for (i=0; i<numberOfPatterns; i++)

{

for (j=i+1; j<numberOfPatterns; j++)

{

d = distance (networkOutput [i], networkOutput[j]) ;
if (d!=0)

// Calculate the relative error for points i and j
// Note that the distance matrix dStar may be calculated in advance

//

tempVector = ((dStar(i,j) - d4) / d) * (networkOutput [i]-networkOutput[j]);
// Update the relative error for both points

//

relativeErrorVector[i] += tempVector;

relativeErrorVector[j] -= tempVector;

}
}
// Forward propagate through the network in order to back-propagate the
// total relative error vectors, which are equivalent to dE/dy
// in standard, supervised, back-propagation
//
networkForwardPropagate (inputPattern[il) ;
sumDerivatives += networkBackPropagate (relativeErrorVector[i]) ;

Figure 3.1: A code fragment to implement the relative supervision algorithm.
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3.3 Exploiting Additional Knowledge

The relative supervision training algorithm as described in the previous section is a purely unsuper-
vised procedure, in that no extra information concerning the data is utilised in the mapping. The net-
work learns a transformation from the input space to the feature space, with the constraints on the
output configuration imposed by the Euclidean distance function over the input vectors. This dis-
tance measure will be referred to as the objective metric, and its corresponding metric space, the objec-
tive space. Networks based on this objective metric have been developed previously [Webb 1992; Jain
and Mao 1992; Tattersall and Limb 1994; Mao and Jain 1995], and will be reviewed later in Section 3.5.

This ‘objective’ nomenclature has been chosen deliberately in order to distinguish the conventional
spatial (Euclidean) interpretation from what will be referred to as the subjective metric and correspond-
ing subjective space. The motivation for this dichotomy, and the important distinction between the sub-
jective and objective spaces, will be developed in the remainder of this section.

3.3.1 Class Knowledge

For a given set of data, accompanying the explicit spatial information — perhaps referred to as the
input data, the sensor data, the measurement variables or the explanatory variables — there is often
additional related information. Probably the most common such form this may take is that of class
labels, where each data point has an associated label of membership of one of a number of distinct
classes.

Now, if one purpose of the topographic mapping is to discriminate between classes or to enhance
relevant clusters, then the information provided by class labels may be usefully incorporated. This
can be achieved through the mechanism of minimising a modified STRESS measure:

N N
E'=3 > @ llyi =y, (3-8)
iJ

which is identical to the simplified Sammon STRESS with the exception that the inter-point distance in
the data space d; is replaced by the variable §;. The variable ¢; can incorporate the class information
if

)

d: if x; and x; are in the same class,
5= (3.9)

d; +k otherwise.

Thus, the inter-point distances for pairs of points in different classes are modified by the addition
of some constant term &, such that their separation should be exaggerated in the resultant map. An
alternative formulation is

0 ifx; and x; are in the same class,
dj = (3.10)

d; otherwise,

which tends to enhance clustering of points belonging to identical classes.

These class-based modifications have been incorporated in mapping schemes by Koontz and Fuku-
naga [1972], Cox and Ferry [1993] and Webb [1995], and will be reviewed further in Section 3.5.

3.3.2 Generalised Knowledge and the Subjective Metric

The use of class labels to enhance clustering as described above is simplistic in that it blindly treats all
classes identically. In many problems there may be further knowledge available regarding class rela-
tionships, and one particularly convenient mechanism for encapsulating this is within a framework
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of what may be termed subjective dissimilarity. This is best explained by reference to one particular
example in the literature [Lowe 1993], once again described in Section 3.5.

In this application, there are 11 distinct classes, representing concentrations of ethanol in water of 0%,
10%, 20%, and so on to 100%. Because these classes are both ordered and ‘linear’, there is an implied
notion of dissimilarity between them, independent of the sensor information associated with each
measurement datum. For example, it is natural to consider that in terms of concentration, the 60%
classis twice as ‘distant’, or dissimilar, from the 80% or 40% classes as it is from the 70% or 50% classes.
Because it is only the relative dissimilarities that are important, such values may be assigned arbitrar-
ily, as long as the relationships previously defined still hold. It would be most intuitive, though, to
assign a dissimilarity of 10 to classes 60% and 70%, and a dissimilarity of 20 to classes 60% and 80%.
These simple examples may be obviously extended to derive a value of subjective dissimilarity for every
class-pair.

This assignment of class dissimilarity means that for every pair of data points (assuming they are all
labelled), in addition to the objective dissimilarity, there is a dual measure of subjective dissimilarity. This
latter measure will be denoted by s;, corresponding to each a’,’;

It should be emphasised that this concept of subjective dissimilarity is not limited to class-labelled
data alone, but is intended to embody alternative knowledge in general, particularly where there are
no convenient discrete class groupings. For the example of the ethanol/ water classes above, rather
than the value of concentration being controllable, it may be a variable and so need to be measured
during the experiment, in which case it will take on a continuous range of values. In such circum-
stances, despite the absence of any discrete class groupings, there still exists a natural measure of
dissimilarity — the absolute difference between two concentration values. Another example might
be in photo-chemistry, where certain measured chemical properties result in a particular colouration
response. In this instance, the subjective dissimilarity between data points might be derived as the
inter-response distance within the RGB colour cube.

The existence of a set of subjective dissimilarities s;;, consistent with the additional knowledge related
to the data, can be naturally interpreted as an alternative metric implicitly defined over the input space
— the previously introduced subjective metric. (Note that for this interpretation to be strictly appro-
priate, the values of 5; should be consistent with the axioms of equations (2.5)-(2.8) given in Section
2.5 in the previous chapter.) It is this metric that is variably incorporated in the NEUROSCALE model
and provides a measure of supervisory input.

3.3.3 NEUROSCALE

The NEUROSCALE technique is effected by a feed-forward radial basis function network which trans-
forms the p-dimensional input space into the g-dimensional feature space (generally, ¢ < p). As this
technique is mainly relevant to the visualisation and exploratory analysis of data, the dimension of the
feature space ¢ will generally be 2 or 3. The network is trained by the relative supervision algorithm,
outlined in Section 3.2, and minimises the STRESS measure:

N N
Ens =" @ llyi = w1, (3.11)
i j<i
where
8y =(1— a)d;- + asj. (3.12)

The parameter ‘a’, where 0 < o < 1, therefore controls the degree to which the subjective metric
influences the output configuration, and can be considered as defining an interpolation between an
unsupervised mapping and a supervised variant.

34



3.3 Exploiting Additional Knowledge

Thus, from the perspective of the neural network, the input data vectors, the transformation mecha-
nism and the form of the topographic constraint remain identical for all values of a. The relative su-
pervision algorithm of 3.1 is constant, the only alteration to the procedureis to adapt the pre-calculated
elements of the input space distance matrix (‘dStar’ in the algorithm of figure 3.1), to take account of
the particular value of a. Adjustment of that parameter may therefore be interpreted as re-defining
the metric over the input space. (Itis trivial to see that if the measures d; and s;; are metrics, then d; is
also.) With a = 0, the network is effecting a parameterised Sammon mapping. With a = 1.0, the out-
put configuration is no longer explicitly determined by the spatial distribution of the input vectors,
butis controlled by the subjective metric alone.

How this latter metric is formulated depends both upon the knowledge of the data, of course, but
also on the intended purpose of the mapping process. It may be considered, therefore, that the sub-
jective, or supervisory, element of NEUROSCALE is an expression of preference on the topology of the
extracted feature space. For example, if clustering is important, then defining intra-class dissimilar-
ities to be zero will emphasise that aspect in the mapping. Alternatively, if a particular inter-class
global structure is preferred, that influence may also be applied. Selecting an intermediate value of
will both retain some of the objective (spatial) topology, and impose some measure of preference onto
the configuration. That there is real merit in such a hybrid feature space will be demonstrated in the
next chapter.

To minimise E,;, various optimisation algorithms were employed, and these are evaluated in Chapter
7. The network weights may be initialised at random, or alternatively, for « = 0, may be set such that
the initial network outputs are the first two principal components of the data. For a # 0, the starting
configuration can be initialised as the CMDS mapping of the data. However, this procedure requires
calculation of the eigenvectors of a (N x N) matrix, so for large N, it can be more efficient to initialise
atrandom.

The operation of NEUROSCALE may then be summarised by the schematic of figure 3.2 below.

SUBJECTIVE SPACE

FEATURE SPACE
OBJECTIVE SPACE

Figure 3.2: A schematic of the operation of NEUROSCALE.

Some of the underlying issues concerning the application of the RBF network — such as the choice
of basis functions, local minima behaviour and the effect of optimisation strategy — are considered
in Chapters 6 and 7. The following section, however, illustrates the application of NEUROSCALE to
some mainly synthetic datasets.
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3.4 Examples of Application

3.41 The ‘Iris’ Data

This is a well-known real dataset, used by Fisher [1936] for the development of his linear discriminant
function. The data comprises 50 examples of each of three varieties of iris, with each example de-
scribed by four physical measurements. This data was used by Jain and Mao [1992], and a similar ex-
periment to that reported in their paper can be repeated here. Figure 3.3 illustrates the 2-dimensional
feature space generated by NEUROSCALE for 75 patterns chosen from the dataset (25 of each class).
Figure 3.4 shows the trained network when applied to the entire 150-pattern dataset, and demon-
strates an apparently good generalisation capability. Note that the RBF utilised for the projection com-
prised 75 basis functions (that is, as many basis functions as patterns), yet, counter-intuitively, there
is no explicit evidence of ‘over-fitting’. Why this is so is considered in Chapter 6.

NeuroScale trained on 75 patterns from the IRIS dataset
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Figure 3.3: The resulting projection when NEUROSCALE is trained on 75 patterns of the Iris dataset.
The STRESS for this configuration is 0.00275.

NeuroScale tested on the entire IRIS dataset
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Figure 3.4: The projection when the trained NEUROSCALE network of the previous figure is tested on
all 150 patterns of the Iris dataset. The STRESS for this configuration is 0.00325.
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3.4.2 Four ‘Linear’ Gaussian Clusters

This is a synthetic data set, comprising four Gaussian clusters in four dimensions, centred in a line at
(x¢,0,0,0), where x, € {1,2,3,4}. The Gaussians have diagonal covariance matrices and the common
variance in all dimensions was 0.5. A NEUROSCALE RBF was trained on a subset of the data — the
three clusters 1,2 and 4 — and the output configuration is shown in figure 3.5. The trained network
was then tested on all four clusters, and the resulting plot given in figure 3.6. This illustrates remark-
ably excellent generalisation to data that is not sampled from the same distribution as the training set.
Again, discussion of this phenomenon may be found in Chapter 6.

NeuroScale trained on 3 linear clusters
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Figure 3.5: The resulting projection when NEUROSCALE is trained on 3 of 4 linear clusters. The
STRESS for this configuration is 0.00515.

NeuroScale tested on 4 linear clusters

Figure 3.6: The projection when the trained NEUROSCALE network of the previous figure is tested on
all 4 clusters. The STRESS for this configuration is 0.00532.
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3.4.3 Data on Adjacent Surfaces

For this example, 50 data points were distributed uniformly at random over each of two adjacent sur-
faces. Each surface was formed by taking a plane of height 5 units and width 2 units, and then curving
it through an angle of 30°. The two surfaces were then placed in the input space such that they were
parallel and offset by 0.5 units. A cross-sectionalillustration of this arrangementis shown in figure3.7.
Figure 3.8 shows the unsupervised (o« =0) mapping. With the loss of a dimension under the projec-
tion, the minimum STRESS solution requires that both planes are confused, and this behaviour would
be likewise exhibited by both principal component and SOFM projections. Figure 3.9, however, gives
the projection for « =0.5 where each plane is considered to represent a separate class of points, with
the subjective dissimilarity between the two classes set to unity. Incorporation of this additional in-
formation now means that the resulting feature space exhibits a good separation between classes and
additionally retains much of the local topology in each plane. This is emphasised by the two overlaid
grids in the plot.
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Figure 3.7: Cross section of the two adjacent Figure 3.8: An RBF topographic projection of
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Figure 3.9: An RBF topographic projection of two adjacent surfaces with ¢« = 0.5. A grid indicating
lines of constant ‘height’ and ‘width’ is superimposed.
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3.4.4 Data on Three Concentric Spheres

To further illustrate the principle of the NEUROSCALE method, consider the problem of 150 data points
in 3-dimensional space, comprising 3 sets of 50 points, each set lying on one of three concentric spheres.
All spheres were centred at the origin with radii 0,1 and 2 units respectively and some Gaussian noise

added, so that the innermost sphere is effectively a cluster. The data points x,=(x;;, x», x;3)" were gen-

erated by the formula

cos#;sing;
X; = (re + v)- Lsin6,-sin<z>,-J , (3.13)
cosQ;

where 7, is the radius (1, € {0,1,2}), v; is a Gaussian random variable with zero mean and variance
0.05, and 6;,¢; are uniform random variables in the ranges [0, 27) and [0, ) respectively. This collection
of points will be referred to as the SPHERES_3 dataset.

All points on each sphere were considered to belong to a single class and two different schemes for
subjective dissimilarities were considered. In the first, each sphere is a distinct class with the subjec-
tive dissimilarities simply characterised by the difference in radii. So, the matrix of subjective dissim-
ilarities between spheres is naturally given by

01 2
C,=1{1 0 1,
2 10
where the columns are ordered from the innermost sphere to the outermost sphere. In the second case
the innermost and outermost spheres are considered to be the same class, so the matrix becomes

01 0
C=(1 0 1
01 0

Values of's;; can therefore be determined for every pair of points, given the knowledge of which spheres
they lie on, by referring to one of the above matrices.

The SPHERES_3 datasetis a problem for which a topographic projection based on a Kohonen network
is unsuitable. The unsupervised Kohonen feature map of this data was shown in figure 2.6 in the
previous chapter, and illustrates the difficulty of projecting the three distinct surfaces within the data.

A NEUROSCALE transformation was trained for both class models and for values of o 0f 0, 0.5, 0.75
and 1.0. The resulting projections are given in figures 3.10 and 3.11, for each subjective dissimilarity
matrix respectively. These results were obtained using a network with 50 Gaussian basis functions.

The plot for a =0 in figure 3.10, displaying the ‘opening out’ of the spheres, is characteristic of such
structure preserving transformations. The inter-sphere distance errors, rather than the intra-sphere
errors, tend to dominate the STRESS, and these distances are optimally retained by the circular con-
figurations observed. The mapping of a single sphere results in a less ‘severe’ transformation, as seen
in [Webb 1995]. Although no subjective class information has been exploited, there is still a natural
separation of the spheres. As « is increased, the spheres are gradually ‘folded’ until at a« =1, the RBF
has optimally mapped all the data points in each sphere approximately to a single point. A similar
phenomenon is evident in figure 3.11, where the middle sphere is extracted and the other two spheres
eventually merged. The combination of both topographic and subjective constraints can be seen in the
a=0.5 plot, as some of the spherical structure is still evident.
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Figure 3.11: Projections of the 3-Spheres data for subjective matrix G,.
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3.6 A Survey of Previous Related Work

The underlying concept of exploiting a neural network model to implement a STRESS-constrained
topographic mapping has been suggested independently by more than one researcher. This previ-
ous work is summarised in the following three subsections, which group the various approaches into
purely topographic mappings, those using binary class dissimilarities and that using a more gener-
alised measure of dissimilarity.

3.5.1 Purely Unsupervised Mappings
Jain and Mao [1992]

The authors originally introduced their modelin 1992, applying both 2 and 3 hidden-layer multilayer
perceptrons to produce the Sammon mapping, deriving the weight derivatives in a direct fashion,
rather than exploiting the derivatives available from standard back-propagation. The output layer
neurons were sigmoidal (thus bounding the maximum inter-point distance in the output configura-
tion), so the input patterns had to be normalised a priori to presentation to the network. They found
the 2-layer network to be the more effective, and gave example projections of the ubiquitous Iris data,
including a plot, similar to figure 3.4, illustrating the generalisation capability of the model.

This work was extended in a subsequent journal paper [Mao and Jain 1995], which comprised a sur-
vey of feature extraction methods using neural networks. As well as the above Sammon technique,
comparison was made with principal components analysis, linear discriminant analysis, the Koho-
nen SOFM and nonlinear discriminant analysis. These methods were all applied to 4 synthetic and 4
real datasets.

The Sammon model was still implemented by an MLP, with sigmoidal outputs, and was trained by
gradient-descent with momentum. A development in this case is that the network is initially trained
to produce a PCA projection “because when all the inter-pattern distances in a data set are maximally
preserved, the variance of the data is also retained to a very high degree.” There is indeed a relation-
ship between variance maximisation and distance preservation, and this is considered in Section 5.2.

One of the key features of this approach is the mechanism to present data to the network. The authors
chose to select pairs of patterns at random, and adjust the network weights ‘on-line’ for each such
pair, rather than accumulating weight changes in a ‘batch’ fashion. The latter method is that exem-
plified by the algorithm of figure 3.1 earlier. While for large datasets this stochastic approach would
appear sensible, it may be seen to be computationally inefficient. To understand why, consider the
learning cycle for N /2 pattern pairs. This requires N forward and backward propagations through
the network, along with N additional STRESS derivative calculations. For the example algorithm of
figure 3.1, a similar number of propagations are required to train the network for N(N — 1) /4 pattern
pairs, although an additional N(N — 2)/2 STRESS derivative calculations are involved. For equiva-
lent numbers of patterns, these latter calculations will be much less computationally expensive than
the additional network propagations, so for datasets of a reasonable size, the presented batch algo-
rithm should offer a much better return on computational investment. This will be illustrated more
quantitatively in a study of training methods as part of Chapter 7.

Webb [1992]

The concept of a neural network transformation within MDS was introduced by the author in 1992.
This approach utilised a two-layer MLP (with linear outputs) incorporated within the standard non-
metric MDS procedure, and therefore also required the monotonic regression stage. Although the ben-
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efits of generalisation to new data were alluded to, no illustration of this capability was given.

Tattersall and Limb [1994]

This again was a two-layer MLP (sigmoid outputs) implementation, deriving the weight adaptation
equations in the same fashion as Jain and Mao [1992], and also on an on-line, pattern-pair by pattern-
pair, basis. The authors name this approach the “hidden target mapping”.

An additional feature within the implementation was the inclusion of a “locality control”. Having
derived equation (3.7), the denominator d; was replaced with the term Adj; 4 (1 — ), where 0 < A < 1.
The motivation for this is that the implicit weighting in the error measure between larger, global, and
smaller, local distances can be controlled. It is noted that “the mapping becomes much more sensitive
to errors in mapping points which are close together rather than far apart” because “if two points are
close together in the map, dj is very small and tends to amplify the value of the error derivative.”

This assertion is, however, erroneous. The factor d; may be divided into the term (y; — y;) to give an
expression

OF .
5, = —2;: (d; — dy) 5, (3.14)

where f;; is a unit vector in the direction (y; — y;). The magnitude of this derivative is determined
solely on the residual distance error, d; —dj, and is independent of the distance between points i and
j in the mapped space.

3.5.2 Simple ‘Binary’ Mapping of Class-Labelled Data

The most common form of prior knowledge associated with data is that of class labels. Each data point
X; is considered to belong to one of a finite number of classes, usually conveniently labelled with an
integer such that the class of point x; is given by w;.

In applications where topographic mappings are to be employed in the projection of class-labelled
data, this information may be exploited in the generation of the projection in order to increment its
utility with respect to some classification or clustering criterion. Variations on this approach have
been adopted by the following.

Koontz and Fukunaga [1972]

This nonlinear feature extraction procedure, motivated in part by MDs ideas, was developed in 1972.
In order to generate mappings with improved class separability in the feature space, the authors op-
timised a combined criterion incorporating both structural and discriminatory elements:

J = Jse + Msp, (3.15)

where Jsg is a separability criterion, and Jsp the usual structure preservation measure. (There is a clear
parallel with the objective and subjective nomenclature utilised in the description ofthe NEUROSCALE
model earlier.) The constant \ determines the relative contributions towards the STRESS of the two
criteria. The structure preservation term is then given by

JSP = Z Z au[d; — dij]27 (316)

i gj<i
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where aj;, a constant for each point pair, is from standard NMDS and is

l/d; 3.17)
G = =———- .
DY Zj<id;j

The separability term is

Jor =YY b(wi, waydy, (3.18)

ij<i
where d(w;,w;) is defined as

0 Wi #wj,

(3.19)
1 Wi = Wj.

(5(0),‘, L’Jj) = {

with w; being the class label associated with data point x;. Hence this term tends to minimise the inter-
class scatter by penalising patterns that are in the same class but map to distant points in the output
configuration.

The algorithm derived for the projection, the distance-difference mapping, was highly heuristic, requir-
ing some expert knowledge and certain assumptions. Nevertheless, it was illustrated how nonlinear
transformations based on spatial criteria could be beneficially adapted to include class information.

Cox and Ferry [1993]

These authors also exploited an identical form of class information used above, but in a standard
NMDS procedure. The elements of the dissimilarity matrix, A = {¢;}, were adjusted according to
the classes of stimuli 7 and j, and in this case,

5 = {75"1 i wi #w, (3.20)

This embodies an alternative philosophy for discrimination to that adopted by Koontz and Fuku-
naga. Here, different classes are intended to be more distant in the configuration, rather than identical
classes to be more close.

In order to produce a transformational variant of this mapping, a simple linear or quadratic model
was fitted to the configuration a posteriori, rather than generating that model implicitly in the scaling
procedure as incorporated by Webb [1992].

Webb [1995]

This paper represented an extension of work in the earlier paper [Webb 1992], described previously.
In contrast to that implementation, the monotonic regression phase was discarded and a radial ba-
sis function network was used to effect the transformation, as suggested by Lowe [1993]. A further
extension of the procedure was to include a mechanism for discrimination, similar to that employed
by Koontz and Fukunaga above. Instead of minimising the standard stress measure, the author em-
ployed one of the form

J= (1 - NJse + Msp, (3:21)
where the two criteria Jgz and Jsp were those as used by Koontz and Fukunaga. The parameter )\ (0 <

A < 1) allows a mixing of the two criteria. The hybrid STRESS measure, J, was then minimised via
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