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Abstract

A formalism for modelling the dynamics of Genetic AlgoriteniGAS) using methods from
statistical mechanics, originally due to Priigel-Beniagid Shapiro, is reviewed, generalized
and improved upon. This formalism can be used to predict tkeaged trajectory of macro-
scopic statistics describing the GA's population. Theserosxopics are chosen to average
well between runs, so that fluctuations from mean behaviaaraften be neglected. Where
necessary, non-trivial terms are determined by assumindgnmian entropy with constraints
on known macroscopics. Problems of realistic size are iesgtin compact form and finite
population effects are included, often proving to be of fameéntal importance. The macro-
scopics used here are cumulants of an appropriate quarititynwihe population and the mean
correlation (Hamming distance) within the population.lliding the correlation as an explicit
macroscopic provides a significant improvement over thgiral formulation.

The formalism is applied to a number of simple optimizatisakpems in order to deter-
mine its predictive power and to gain insight into GA dynasnidroblems which are most
amenable to analysis come from the class where allelesnatitiei genotype contribute addi-
tively to the phenotype. This class can be treated with soememlity, including problems
with inhomogeneous contributions from each site, noralirar noisy fithess measures, simple
diploid representations and temporally varying fithesse f@sults can also be applied to a sim-
ple learning problem, generalization in a binary perceptemd a limit is identified for which
the optimal training batch size can be determined for thible@m. The theory is compared to
averaged results from a real GA in each case, showing ertealtgeement if the maximum
entropy principle holds. Some situations where this agpration brakes down are identified.

In order to fully test the formalism, an attempt is made ondtvengNpP-hard problem



of storing random patterns in a binary perceptron. Hereralaionship between the geno-
type and phenotype (training error) is strongly non-linektutation is modelled under the
assumption that perceptron configurations are typical ofgggrons with a given training er-
ror. Unfortunately, this assumption does not provide a gapproximation in general. It is
conjectured that perceptron configurations would have tocdpstrained by other statistics in
order to accurately model mutation for this problem.

Issues arising from this study are discussed in conclusidrsame possible areas of further

research are outlined.
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CHAPTER 1. INTRODUCTION 15

1.1 The genetic algorithm

Genetic algorithms (GAs) are adaptive search techniquieishvean be used to find good solu-
tions for problems with poorly characterized and high-disienal parameter spaces [18, 32].
They have already been successfully applied in a varietyraflpm domains [8] and a re-
view of the literature shows that they are becoming incredgipopular. In the simple GA
considered here, a genotype (or configuration) encodesthosn to a problem and a fitness
function determines the merit of each solution by assigaifitness value to each genotype. A
population of solutions is created at random and evolvesa faumber of discrete generations
under the action of genetic operators, analogous to theepses at work in biological popula-
tions. The most important operators are selection, whergdipulation is improved through
some form of preferential sampling, and crossover (or rdgoation), where genotypes are
mixed, leading to non-local moves in the search space. Muté usually also included, pro-
ducing random incremental changes to genotypes within dpelption. These operators are
iterated sequentially until the GA is stopped, either beeausolution with high enough fithess
has been discovered, or because some threshold humbereshtiens is exceeded (a more
detailed description of the simple GA is provided in chaesection 2.2).

This algorithm differs from traditional search heuristiaghich typically make local moves
around a single solution in order to sample the configurasijmace. For example, simulated
annealing accepts moves from the current configurationigihbeuring configurations accord-
ing to a probabilistic acceptance procedure such as theoptais algorithm [42]. Under this
procedure, moves which increase fithess are always accepibild moves which reduce fit-
ness are accepted with some tunable probability which iscesdi over time as the algorithm
spends more time in configurations of higher fitness. Thisrdalyn can be considered global
if time-scales are sufficiently long for the process to elrake. However, time-scales of this
order are often unachievable in practice and the searctbadtbme localized. In this case the
usefulness of the method is determined by the local streatfithe configuration space. If
there are many local optima which are separated by regiolmvditness, then the algorithm
will often become trapped at local optima which may be famfrany global optimum.

The GA is different in two important respects. Firstly, thé Gamples a population of
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configurations in order to determine the relative merit afred-or example, the probability of
being chosen for the next generation under selection mightdportional to fithess, but would
be normalized by the mean fitness over the whole populatibos,Tmoves between one pop-
ulation and the next under selection are not determined bga sampling procedure (unless
the population becomes localized around one configuratidhg other important difference
between the GA and more traditional search heuristics isghef a crossover operator, which
produces new configurations (offspring) by mixing existixgpfigurations (parents). Crossover
allows non-local moves within the population, becausepoiiigy may have very different con-
figurations from either parent.

It not clear whether the non-local search taking place inGleis an effective way to
overcome the problems encountered by local search methltiaisiigh there is some empirical
evidence for success [8]. It has been proposed that the GA fjadd solutions to a problem
through the recombination of mutually useful features fidifferent population members. In-
deed, this intuition lies behind the most influential th@omegarding GAs, Holland’s Schema
Theorem [32]. The Schema Theorem places emphasis on trergrgél survival of building
blocks which are already beneficial to solutions within tbpydation. However, as will be seen
in section 1.3.1, this theorem does not provide a suffigigmtiverful formalism to explain the
behaviour of GAs in general and can sometimes be misleadtinigct, there is no consensus
on many theoretical and practical issues regarding GAs.ekample, it is not known which
problem domains are appropriate for GAs or how one shouldsshthe search parameters in
order to optimize performance. Answers to these questimmsften sought through empiri-
cism, yet this is an unsatisfactory approach as it lacks émeiglity required of a predictive

theory.

1.2 Thesis goal

In order to better understand the GA and to answer quakétgtiestions, it is desirable to have
a theoretical model. Such a model should be as simple adbpmssithout losing any essential

features of the process under consideration. Of coursehWeatures are essential depends on
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which questions are being asked. In this thesis, a theatdtdomalism for modelling the dy-
namics of the GA using methods from statistical mechanidgjrally due to Prigel-Bennett
and Shapiro [53, 54], is generalized and improved upon. dhadlism is used to solve the
dynamics of the GA for a number of simple optimization profe which are hopefully in-
volved enough to provide some general insight. Problemealfstic size are described in a
compact form and important finite population effects arduided under the formalism. Most
of the work in this thesis centres around the derivation ef@huations of motion describing
the dynamics of the GA, although there is also some analysitese expressions. The aim is
to review and improve upon this new theoretical formalisr tmshow its predictive power on
a number of concrete examples.

Although this work is motivated by the wish to understand@#eas an optimization tech-
nique, it is also hoped that the formalism may be applied lated models from quantitative
population genetics (see, for example, reference [12]) eylappropriate, parallels between
the two fields are considered, although a thorough expasitiche quantitative genetics liter-
ature is not within the scope of this thesis.

Before describing the statistical mechanics formalismréater detail, it is first instructive

to describe some of the most influential theories from tleediure on GAs.

1.3 Genetic algorithm theory

There has only been limited success in developing a coh#ireaty for explaining how GAs
work, although there is a large published literature (seeetample, proceedings of the Inter-
national Conference on Genetic Algorithms). The theoaétoalysis of GAs is a very difficult

task for a number of reasons, some of which are listed below.

e The population resides in a very high dimensional spaceefample, if each genotype
is a binary string of lengtliv and the population is of fixed siz, then the population

has approximatel®”" / P! possible realizations (assumiiy< 2").

e The mapping from genotype to fithess will often be complex rowtlinear.
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e The system is dynamic and has a complex transient behaviberpopulation is there-

fore often far from any sort of equilibrium, or steady state.

e Crossover involves the interaction of population memblersugh mixing, while selec-
tion involves the interaction of population members thtoagmpetition. The population

is therefore strongly interacting and must be consideregivalsole.

e Because the actual population size is usually much smaldar the space of all geno-
types, infinite population approximations are often midieg. Fluctuations lead to sys-

tematic effects in a finite population.

e GAs are used in many problem domains, leading to many diftegges of behaviour.
It is unclear how general any GA theory could be, as many featof the search will be

problem specific (this is also an important issue for othargeheuristics).

Some of the most significant theoretical models of the GA asedbed below.

1.3.1 Schema theorem

The most influential theorem in the GA literature is Hollandchema theorem [32]. In gen-
eral, a schema is a similarity template which specifies saatufes of a genotype. More

specifically, consider a binary genotype (a string of birahgles),
10011001

In this case the relevant schemata are hyperplane pastitiofew examples of schemata which

contain this genotype as an instance are,
xx011001 xkx 1 %0 % x001100x

where thex denotes a ‘don’t care’ symbol. IV is the length of the string, then there &€
possible genotypes and’ possible schemata.
The schema theorem determines a lower bound on the expaateldenm (H,t + 1) of

population members which are instances of schéhat generatiori + 1. In the case where
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the probability of selection (with replacement) is propmrél to fithess one finds,

B{m(H,t+1)} > m(H,1) F(;Z;)” (1 — palH. 1)) (L.1)

where F(H,t) is the mean fitness of genotypes which are instances of scheatagenera-

tion ¢ and F(t) is the mean fitness of genotypes within the population. Here, t) is the
probability thatH will be disrupted by genetic operators such as crossoverutation. The
inequality appears because this expression takes no aafowew instances of schemata being
generated by these operators and this significantly wedkergredictive power of the theory.
The key aspect of the above inequality lies in the interplagnveen the disruption term
and the fitness term. Consider single point crossover, ithvbase a crossover point along
the two parent’'s genotypes is randomly chosen and all tledeallon one side of this point
are swapped between the parents. Clearly, this operatoorie likely to disrupt a schema
whose distance between outermost determined allelesifagfength) is large. Under uniform
crossover and mutation it is the number of determined allelighin the schema (order) that
matters. Holland concludes that instances of schematahvane unlikely to be disrupted by
crossover or mutation and which consistently have aboveageditness within the population
will increase exponentially over time. This observatiothesjustification for the building block

hypothesis, which was stated by Goldberg:

A genetic algorithm seeks near optimal performance thrahghuxtaposition

of short, low-order, high performance schemata, or bujjditocks [18, p 41].

Unfortunately, there are a number difficulties with thisehprretation (see, for example,
references [14, 25]). The fitness of schemata will often ghatynamically during the search
and the observed average fitness of schemata may diffelyghesh their expected fitness in
an unbiased sample. In this case it would be meaninglesgtotiie search as a juxtaposition
of building blocks. This is especially true of problems whiexhibit symmetry breaking in
their dynamics. Another problem with the building block byipesis is that there is a great deal
of fithess variance between instances of the same schema, theuinumber of samples given
to a schema within the population may be too small to provigdewseful information about

its expected fitness within the entire search space. Grettmshows how the building block
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hypothesis can give very misleading predictions regardiafplem difficulty [25].

To exactly describe GA dynamics in terms of schemata wouldeipe difficult in general,
as schemata provide a non-orthogonal and highly redunéantsentation of the population.
Of course, there might be specific examples where a subsehefrsta provide an accurate
characterization. For example, in simple population gesahodels the allele frequency per
site is often used, which corresponds to following the fesguy of all order one schemata
within the population [12]. Yet this representation is aprximation if the number of sites
contributing to the fitness exceeds one, because the akgladncy at each site does not com-
pletely determine the state of the population. Assumingrdmglom assortment of alleles at
each site within the population leads to incorrect resultgeéneral, even when the alleles at

each site contribute equally and independently to the tnes

1.3.2 \Vose-Liepins formalism

An alternative theoretical approach was developed by Vodd &pins, who provide an exact
method with which to describe the GA dynamics [73, 74]. Urttleir formalism, the genetic
operators are described by transition matrices which aatwattor describing the precise state
of the population. Nix and Vose extended this formalism tdude finite population effects by
incorporating a Markov Chain analysis, which was necestadgscribe the stochastic nature
of the dynamics in this case [47].

Because this formalism is exact, it suffers from the highatisionality problem described
at the beginning of section 1.3. It is very difficult to deberproblems of realistic size because
of the complexity of the transition matrices and it seemsttiapredictive scope of the formal-
ism may be limited by its extreme generality. Although sorfierehas been made to reduce
the state space for particular problems by lumping simtiaies together, the resulting models

are still computationally heavy, even for very small proie[66].

1.3.3 Macroscopic models

Another approach is to describe the population by a sma#l seiicroscopic parameters under

the assumption that microscopic details are not of crifitgdortance. This is the basis of the
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theoretical formalism used in this thesis, as introduceth@next section, but a number of
other workers have also used this idea to develop dynamiodefs of the GA. By ignoring
detail at the configuration level, the dimensionality of 8tate space may be reduced to a
manageable number. For example, some results have rebestiyderived for the performance
of the GA on a class of additive problems (related to thoseudsed in chapter 4) [45, 67, 72].
However, these models assume a particular form of distoibuhich is only applicable in
large populations and for very specific problems.

Often, authors do not choose appropriate quantities tcageer In particular, averages
are sometimes taken over a probability distribution ans ighinsensitive to finite population
fluctuations, only giving accurate results in the infinitgpplation limit. For example, Srinivas
and Patnaik produce equations of motion for the momentseofitiiess distribution in terms
of the moments of the initial distribution [68]. These aremamts of the average distribution
and consequently the equations do not describe a finite @il Their treatment of mutation
and crossover was also rather dubious, as a parameter wdschilied the degree of disruption
under each operator was chosen empirically in order to geb#st fit between theory and
experiment. No satisfactory explanation was given for hu& parameter might be selected in
general.

Macroscopic descriptions of population dynamics are atsalun quantitative population
genetics. Here, the importance of finite population effactssmore widely appreciated and the
infinite population limit is usually taken explicitly. Whdimite population effects are quantified
for models with a large number of sites, the results are gdlgemly exact in the limit of very

weak selection [7].

1.4 The statistical mechanics formalism

The formalism used in this thesis was originally introdubgdPriigel-Bennett and Shapiro [53,
54], and provides a theoretical model for GA dynamics usieghmds from statistical mechan-
ics. This formalism falls into the class of macroscopic medkescribed above. The popula-
tion is described by a relatively small set of macroscopiteomparameters and deterministic

expressions are derived for the averaged trajectory of maaioscopic under the action of the
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genetic operators. The macroscopics are chosen so thaatkeeyge well between different
realizations of the dynamics and, where possible, any rigialtterms are averaged out by
maximizing entropy with constraints on known macroscapidge macroscopics might be, for
example, statistics describing the distribution of fithesshe similarity of genotypes within
the population.

This approach allows an accurate description of the dyrafoica number of simple opti-
mization problems, which are hopefully involved enoughrovile some insight into how the
GA searches in more general situations [54, 56, 57, 58]. Thlelgms are of realistic size (in
terms of genotype length) and finite population effects acerporated into the model, often
proving to be an essential ingredient in accurately charaing the dynamics. This formalism
requires problem independent information and is therd&sg general than the Vose-Liepens
formalism, yet by losing this generality it is possible t@a@tely predict the dynamical tra-
jectory of the GA in interesting and non-trivial situationhe expressions describing the
dynamics are compact and simple enough to analyse, leamisgne novel insight into how

each operator works and how to set parameters of the search.

1.5 Thesis outline

In this thesis the statistical mechanics formalism is ed¢ehbeyond the original results due
to Priugel-Bennett and Shapiro [53, 54] in order to encompagreater range of optimization
problems and describe more involved dynamical behaviouosthf this work involves the
derivation of the discrete time equations which are reguicedescribe the dynamics of the
GA for these simple, although sometimes non-trivial, optation problems. These equations
and their derivation also provides insight into the proesss work within the GA and how one
might choose search parameters in order to optimize peaiocen However, this formalism is
still being developed and the first task is to determine wpicilem classes can accurately be
modelled. Where possible, theoretical results are cordpareesults from a real GA in order
to justify the assumptions and approximations requirednigymethod. A short summary of

each chapter is provided below.
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Chapter 2 — The statistical mechanics formalism

The statistical mechanics formalism is introduced, aloriily welevant definitions and
notation. The mapping between genotype and fitness is divide two stages for con-
venience: a mapping from genotype to phenotype and fromgijea to fithess. The
macroscopics which describe the population are cumuldrnite @henotype distribution

and the mean correlation (a measure of genotype similamitjn the population.

Chapter 3 — Selection

The effect of selection on the distribution of phenotypeprizblem independent and is
therefore discussed in isolation. The selection procetudescribed and a result due
to Priigel-Bennett and Shapiro [52, 53] for calculating alants of the population after

Boltzmann selection is generalized to a broader class etteh schemes.

Chapter 4 — Functions of an additive genotype

A class of problems which are particularly amenable to aislgre functions in which
alleles of the genotype contribute additively to the phgpet Results are reproduced
from Priigel-Bennett and Shapiro [54] which describe tliects of crossover and muta-
tion on phenotype cumulants, along with a maximum entropguéation for determin-
ing non-trivial terms. The validity of the maximum entropgsatz is tested and some

limitations are identified.

As well as evolving phenotype cumulants, expressions ®ckiange in mean correlation
under each operator are derived and this provides a sigmtifiogorovement over the
original formulation. The theory is compared to averagedilis for directional selection
(one-max and the random-field paramagnet) and stabilizitgcton (the subset sum
problem), showing excellent predictive power as long asntla@imum entropy ansatz

provides a good approximation.

Chapter 5 — Noise corrupted fithness and a simple learningearob

The selection calculation is generalized to include a sstit fithess measure. The

theory is applied to a simple learning problem, generatinah a perceptron with binary
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weights, where there is in the fitness evaluation due to thie faize of each training
batch. The dynamics is solved for this problem and the thesocpmpared to averaged
results from a real GA, showing excellent predictive powetimit is identified where

the effects of noise can be removed by increasing the papulsize appropriately and

this allows the optimal training batch size to be determined

Chapter 6 — Attempting a strongp-hard problem

The formalism is applied to the problem of storing randomegsat in a perceptron with
binary weights. This problem isp-hard in the strong sense and differs from the other
problems considered in this thesis because of the stroraiylinear relationship be-
tween genotype and phenotype (in this case, the trainirgg)erMutation is modelled
under the assumption that perceptron configurations willérpopulation are typical of
configurations with a given training error. Unfortunatelyis assumption proves to be
false in most cases and the theory does not accurately blesuoritation in general. It
is conjectured that perceptron configurations should bstcained by extra statistics in

order to ensure more representative averaging.

Chapter 7 — Increasing biological realism: diploidy and penally varying fitness

Diploid genotypes have previously been used in GAs for raaiing diversity within
the population under a temporally varying fithess measuréhi$ chapter the statistical
mechanics formalism is generalized to deal with a simpl®disystem. The dynamics
is solved for one-max with zero dominance and with a randamarlgidominance map
(using a limiting form of crossover which completely declagthe alleles at every site).
A very simple temporally varying fithess measure is also iciemed and the dynamics
of a haploid GA are solved for this problem. This work is inqdete and a number of
possible generalizations are discussed, such as diplattyaw adaptive dominance map

and simple models of co-evolution.

Chapter 8 — Conclusion and outlook

In the final chapter, results and conclusions from the piagechapters are reviewed

and some promising areas of further research are considered
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2.1 Introduction

Modelling the dynamics of an evolving population is maddidift by the high dimension
of the space in which the population resides. Although itdsgible to write down an exact
master equation describing the dynamics as a Markov proadtbseach genetic operator in-
cluded as a transition matrix [47, 73], it is difficult to mageogress towards a more compact
description of the dynamics without some form of simplificat A useful ansatz, often used in
statistical mechanics, is to assume microscopic disoriteragnstraints on a small number of
macroscopic quantities. A familiar example of this prireijs the ideal gas, which accurately
models a system of ordén?3 molecules under certain conditions, yet requires the kadgé

of only two macroscopic quantities (for example, the terapee and pressure) in order to
fully determine a macrostate.

In its most general form, the statistical mechanics forsmalinodels the GA as an ensemble
of populations, each described by a small humber of macpised52]. The evolution of
this ensemble provides a probabilistic description forrtieny possible trajectories which a
single realization of the dynamics could take. The macneissowhich have proved most
appropriate in the problems considered here are cumulastsr@e appropriate quantity within
the population and the mean correlation within the popotatiThe order parameters which
describe the ensemble of populations in this case might denttan values and covariances
of these macroscopics over different realizations of theadyics. Of course, for an exact
description of the ensemble it may be that an infinite set déoparameters are required, yet
in practice a truncated set often provides sufficient aasurBhis is a controlled approximation
in principle, as extra order parameters may be introducédpoove accuracy.

Many of the problems considered so far under this formalisenweell described by mean
behaviour alone, so that the covariances of each macrasomgy be neglected. In this case
the dynamics are said to self-average and this is found to lae@urate approximation for the
problems under consideration in this thesis. This is tym€atatistical mechanics approaches,
which often focus on self-averaging quantities, but maybeoa reliable assumption in general
(see, for example, reference [52]), so the results preddmtee will always be justified by

comparison with results from a real GA. Under this self-agarg assumption, the ensemble
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converges onto a point in the space of macroscopics whictrides the mean population

member. The dynamics then describes the deterministectaay of this point over time.

2.2 The simple genetic algorithm

The work in this thesis is restricted to the simple GA. Theyafion will usually be of fixed

size and evolves over a number of discrete and non-overigpenerations. The genotypes
are fixed length binary strings which are randomly generaietthe initial population (this

is a haploid representation — diploids are considered ipteinas). The binary variable at
each site within the genotype is called an allele. This gmtation is convenient for the
problems considered in this thesis, although it is not asasgypropriate. An objective function
determines the fitness associated with each genotype. Esgnagion a number of genetic

operators are applied sequentially, as described below.

Selection

Under selection, the population is improved by some fornrefgrential sampling. This
can be carried out in a number of ways. In this thesis, eachlatipn member is as-
signed some probability of selection and a new populati@elscted from the old with
replacement. The probability of selection will generally $bme non-decreasing func-

tion of the fithess. A number of specific schemes are congldarehapter 3.

Crossover

Under standard crossover, the population is paired offredaan and the genotypes in
each pair are mixed to produce two children. The genotypeseanixed in a number
of ways and which form of crossover is most appropriate dépem the problem under
consideration. If there is no spatial ordering within theggpe then it may be appro-
priate to use uniform crossover, in which case alleles a@pped at each site within
the parents with some fixed probability. If there is spatialening then it may be costly
to disrupt the genotype and single-point crossover mighhbee appropriate, in which

case a crossover site is chosen at random and the stringnsodn one side of this site
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are swapped between the parents. For the problems corbithetiais thesis there is

typically no spatial ordering and uniform crossover is useghost cases.

Mutation

Under mutation, alleles are randomly flipped throughoutpbpeulation with some low
probability. The mutation rate is sometimes reduced (dedgaver time in order to

improve performance, but in this work it will remain fixed.

2.3 Modelling the dynamics: an overview

It is assumed that the dynamics averages sufficiently wethab only mean behaviour of
the macroscopics which describe the population is requieach genetic operator will be
modelled by a set of difference equations describing the&po change in each macroscopic
under that operator. This provides insight into the actiioeeh operator and the full dynamics
can be simulated by iterating the difference equationsdueece. Any terms which cannot be
determined explicitly from known macroscopics may be deteed by invoking a maximum
entropy ansatz.

Finite population effects are found to be of great importéawtien characterizing GA dy-
namics. To model a finite population, it is assumed the thelladipn is a finite sample taken
from an infinite parent population [52]. It is most naturalfédlow macroscopics associated
with the parent distribution from which the finite populatis sampled. Selection is the only
operator which involves significant finite population effecsince the other two operators do
not involve sampling. It is therefore reasonable to spkt dynamics into two phases: a finite

population phase and an infinite population phase.
1. Afinite population is randomly sampled from an infinite plzgtion.

2. Selection acts on the finite population and creates antafopulation. The propor-
tion of each population member represented in the infinifgufation after selection is
equal to its selection probability. Mutation and crossaerthen applied to this infinite

population.
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These steps are iterated until the GA is stopped. This psoisestatistically equivalent to
a standard GA acting on a finite population. Vose and Wrigttb@duce a similar sampling
procedure in reference [75], but they follow an exact micopéc description of the population

rather than a small number of macroscopic statistics.

2.4 Definitions and conventions

2.4.1 Genotype— phenotype— fitness

In the problems considered here the genotype is a stringnairpialleles{ S, Sa--- , Sn'}
whereS; € {—1,1} are Ising spins. Each population member is assigned a phpocalue
which is calculated through some deterministic functiomhef genotype (although the pheno-
type is a single number here, in general it could take a muate meneral form). Population
membera has alleled.S{* } and phenotypé?, . A fitness measuré;, will be some function of

the phenotype (stochastic or deterministic),
Fa = f(Ra) Ra = R({Sza}) (21)

Fitness is not calculated directly from the genotype bexaugs often more convenient to
follow the distribution of phenotypes within the populatid-or example, the phenotype might
be the mean allele within the genotype in a function of uimita{phenotypes of this sort are a
special case of those considered in chapter 4).

The fitness distribution is denoté®( F') and can be obtained from the distribution of phe-

notypes within the populatiop( R) through the transformation,
P(F) = / dRp(R) 5(F — F(R)) (2.2)

whered(z) is the Dirac delta function an# (R) is the function which assigns fithess to each
phenotype. These distributions are usually only used wfamring to an infinite population,

which is often approximated by a continuous distribution.
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2.4.2 Cumulants

Cumulants of the phenotype distribution within the pogalatetermine the shape of the dis-
tribution. These are very natural statistics for descghiistributions which are close to Gaus-
sian, since the higher cumulants are a measure of deviatbamd Gaussian distribution. The
first two cumulants are the mean and variance, while the #mdifourth cumulants are related
to the skewness and kurtosis respectively.

The natural logarithm of a partition functighis the generating function for each cumulant
of a finite population [1],

n

Ky, = lim

P
= YRa
tim 5 log Z Z az:l e (2.3)

where P is population size and,, is thenth cumulant. The first two cumulants of a finite

population are,

1 P
K1 = FZRa = <Ra>a (24)
a=1
P P 2
Ko = %X:I(Ra)Q— <%21Ra>
= (1= 3) (Ba— (RaRshazs) @5)

where the brackets denote population averages,

1 1 L
(Ra)a = P ;Ra (RaRg)azs = m ;%RaRg (2.6)

Although a finite population is being modelled, it is oftenmmoatural to describe the dy-
namics in terms of an infinite population from which the firptgpulation is a random sample.
Let K,, be thenth cumulant of an infinite population. The cumulants of thiénite popula-
tion phenotype distributiop(R) are generated from the logarithm of a characteristic foncti

p(7)*h,

,yn
K, = lim
=0 0y

log p(7) p(v) = / dRp(R) ™" 2.7)

This is usually written with an explicitly imaginary argurnteto ensure convergence of the integral, in which
case it is a Fourier transform.
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The characteristic function is analogous to the finite patomh partition function and will often

be written in terms of a cumulant expansion,

oo

p(7) = exp (Z K,]) (2.8)

n=1

It is well known that the variance of a finite sample is expedte be lower by a factor
of 1 — 1/P than that of the parent distribution from which it is samp{eéde equation (2.5)).
Similar corrections can also be calculated for the highemdants. Expectation values for the
first four cumulants of a finite population sampled from amitdéi population were derived by

Pragel-Bennett and Shapiro [54],

k1 = K (2.9a)
Ky = PyKy (2.9b)
ky = P3Kj (2.9¢)
Ky = PyK4—6Py(Ky)?/P (2.9d)

Here, P, P; and P, give the finite population corrections,

1 3 2 712 6
Po=l-= Po=1l--4+2 p=1-—42__" 2.10
2 p 3 PPz Mt PPz ps (2.10)

2.4.3 Expanding around a Gaussian

Given a finite number of cumulants, it is sometimes necessargnstruct a consistent and ap-
propriate distribution. A convenient approximation is ¥pand around a Gaussian distribution

using a Gram-Charlier expansion [70].

p(R):\/%—KQexp<(R27[(l> 1+Z 'K"/2 (R\/_K_If)] 2.11)

whereH,, (z) are Hermite polynomials and. is the number of cumulants used. The Hermite

polynomials are defined by,
22 d"

dx”

Hy(z) = (—1)"e (e_é) (2.12)

Four cumulants are sufficient for the problems considerghisithesis and the third and fourth
Hermite polynomials arél;(z) = 2® — 3z and Hy(z) = z* — 622 + 3. The Gram-Charlier
function is not a well defined probability distribution s@nit is not necessarily positive, but it

has the correct cumulants and provides a very good apprtigimia many cases.
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2.4.4 Correlation

The correlation is a measure of the microscopic similarftgenotypes and is important be-
cause selection correlates a finite population, sometigashiig to premature convergence to a
poor solution. It is also important when calculating theeeffof crossover, which involves the
interaction of different population members. The simplastrelation measure between two

population membersy andg, is defined as,

N
1
Gos = 3 > 58] (2.13)
=1

Recall thatS; € {—1,1}, so that this quantity is positive when strings are more lainthan
two random strings and is negative otherwise (this is clomaated to the Hamming distance).

The mean correlation within the populatioryisdefined as,

1 p
4 =(daBlazp = m Z Z dap (2.14)
a=1f#a

2.5 Best population member

Although the population will be described by the mean catieh and phenotype cumulants,
the aim is usually to predict the evolution of the best popotamember. The fitness of the

best individual within the population can be formally weittas (assuming it is unique),

1 >0

P
Frest = Z (Fa H O(Fu — FB)) O(r) = { (2.15)

a=1 B+a 0 z<0

where® (z) is the Heaviside function. The expectation value for thiargity can be calculated
if it is assumed that population members are independeattypted from an infinite parent
population with phenotype distributign( R) [54]. Let P(F) be the fitness distribution, which

is related to the phenotype distribution through equatibg)( Then,
P
(Fhest) = / [[(dFP(F)) > (F I eF. - F@)
e a=1 B#a

= P [dFP(F)F FdF’P(F’) - (2.16)
Jarrr ([ arme)

— 00
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Often, the best population member lies at the edges of thegtyyee distribution and may
not be accurately calculated when using a truncated setrofileunts to describe the distribu-
tion. Fluctuations in mean behaviour may also be large, usecthe higher cumulants vary
substantially between different realizations of the dyitamHowever, for the problems con-
sidered in this thesis, reasonable accuracy was achievhadhei above expression.

In writing equation (2.16) it is assumed that population rhers can be considered statisti-
cally independent and can take any value of fithess from areanh. Both these assumptions

may break down under certain circumstances.

¢ If the population becomes highly correlated, then popaoitatinembers are no longer
statistically independent to a good approximation. Indeékdre may be a significant
probability that duplicates exist within the populatiorhi§ reduces the effective size of
the population and will reduce the fitness of the best pojmahember on average. In
some situations it may be possible to estimate the probabiliduplicates appearing in
the population, in order to amend the estimated best fitriBisis. is carried through in

the context of a maximum entropy distribution in chapterettion 4.5.3.

e The discrete nature of the phenotype space may become anpoibr example, if the
population’s variance becomes comparable to the typiciance between phenotypes
in state space. In this case the population can no longerdmzibled by a small number
of macroscopics and it would be necessary to characterigegfimn features of the pop-
ulation. This is probably most important in problems wittglanumbers of degenerate

genotypes, since this increases the granularity of theqgijipa space.

Although the first of these issues can be corrected for imgedircumstances, in general
these considerations go beyond the basic formalism pexbséere. In practice, the assumption
that the population is accurately modelled by selectingjrahdently from a continuous parent
distribution works well until the GA is very close to converge. If mutation is included, then
this assumption is often still accurate for the whole dyr@mincluding the final equilibrium

or steady state.
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3.1 Introduction

The effect of selection on the distribution of phenotypethinithe population is independent of
the genotype to phenotype mapping for a particular problEhis is a consequence of the fit-
ness being a function of the phenotype only. It is therefassible to model selection without
reference to a specific problem. One might also wish to evthlganean correlation within the
population under selection, in which case one does requitgdgm specific information. The
discussion presented in this chapter is restricted to prolshdependent results for selection.

After introducing expressions for a general selection edoce, a number of specific schemes
are considered. The first method discussed is Boltzmannteelewhich is a scaled form of
fitness proportional selection. This is a very natural metbibselection when the fitness dis-
tribution is close to Gaussian, because it preserves theesifaa Gaussian distribution [9, 53].
Boltzmann selection is the scheme used in this thesis arfttisfore considered in greatest
detail. Ranking, truncation and tournament selection see@nsidered here, as they are often
the most popular selection procedures [2, 5, 19]. By inclgdi number of selection schemes,
it is hoped that the generality of the formalism will beconpparent. These methods are often
preferred over the various forms of fitness proportionadc@n because they are rank based
and are therefore insensitive to the particular choice o&$i$ function. This makes them less
susceptible to over-selecting on highly fit individuals, isthmight otherwise lead to rapid
and premature convergence. However, as long as the papulaimains relatively close to
Gaussian this is not a problem for Boltzmann selection.

Many previous studies of selection model the populationa@méinuous and smooth distri-
bution of phenotypes [2, 5, 19]. This is clearly an approsiorain a finite population, where
there are a finite number of discrete phenotypes within thmulation. As described in the
previous chapter, it is more appropriate to consider a fipifeulation as a random sample
from an infinite parent population. The distribution of pbmes within the infinite popula-
tion will be described by a small number of cumulants, whiobvjgles a good approximation
for distributions which are close to Gaussian. The numbe&uaiulants required will depend
on how much the distribution deviates from a Gaussian. Ofssyuvhen the population be-

comes highly correlated the assumption that population loeesnare independently sampled



CHAPTER 3. SELECTION 36

from a continuous parent distribution will break down. Iragtice, it seems that assuming

independence gives accurate results even when the papultets almost fully converged.

3.2 A general selection procedure

There are many selection schemes available for use in GAsé$erence [5] for a recent re-
view). Here, a general procedure is considered which cansbd to describe a number of
specific selection schemes. Each population member isn@skgpme probability of selection
and a new population is selected from the old with replacémarthe case of fithess propor-
tional selection, where each population member is seléataabportion to its fithess, this form
of sampling is known as roulette wheel selection [18]. Easputation member is assigned
a slot in the roulette wheel whose size is proportional topttadbability of selection and new
population members are chosen by spinning the wheel. Lésg fooms of sampling are often
used in order to try and choose as close to the desired ambeatb population member as
possible. Under one such method, known as universal sticlsasnpling, the roulette wheel
described above is divided in#® equal sectors and the population member whose slot lies at
the edge of each sector is chosen for the next generatiols{8h methods are more difficult
to model exactly, because selection events are no longepémdient.
Each population member is assigned a weight, = w(F,, {F1, Fs,... ,Fp}), which

may be a function of the fitness value assigned to itself ahdrqgiopulation members. The

probability of selecting population membeliis p,, and is given by,

We,
p =
[0} Za ’U)a

This probability is exactly the definition of fitness in bigpand should not be confused with

(3.1)

the fitness measuti,, which is an arbitrary function of the phenotype.

Following the discussion given by Prigel-Bennett [52]eston will be split into two
stages. FirstlyP population members are chosen from an infinite populatioaradom. Sec-
ondly, an infinite population is selected from this finite ptgtion with the probability of select-
ing each population member given by equation (3.1). Thibaidity is exactly the proportion

of population membet: represented in the infinite population after selection. &kgected
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properties of a finite population after selection can berddteed by again selecting popula-
tion members at random. The relationship between the fisstdomulants of an infinite and a

finite population are given in equations (2.9a) to (2.9d).

3.2.1 Generating the cumulants after selection

The cumulants of the phenotype distribution within the iidippopulation after selection can

be generated from the logarithm of a partition function,

"
K? = lim
=0 8")/7’

P
log Zs Zs =) wae'ft (3.2)
a=1

In order to calculate the expectation values of the cumsilafier selection, one can average
over the population before selection, which is randomly garhfrom the infinite population

phenotype distributiop(R).

08 22) = [ T](@Ra (o)) g Z (3.3)

Following Prugel-Bennett and Shapiro, one can average tbnelogarithm using Derrida’s

trick of representing the logarithm by an intedrfl0, 53].
o0 —t _ —1t 75
(log Zs) = / dt # (3.4)
0

If w, is a function ofR,, alone (throught},), then the average in equation (3.4) decouples

and the cumulants after selection for> 0 are given by,

s O [T £ E)
Ky =~ lim 87"/0 dt (3.5)
where,

£t = [ARp(R)exp (~tu(R) ") (3.6)

Here,w(R) is the selection weight written as a function of the phenetyjm most cases it is
necessary to compute the integrals in this expression nicaigr although the integral incan

be computed in closed form for binary tournament selectisgussed in section 3.4.3.

170 see this, notice th% = f0°° dte~7* and integrate both sides with respectidas long asZ > 0).
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3.2.2 Expanding around the infinite population result

It is possible to expand the cumulants after selectioh/iR by expanding around the infinite
population result. This was done for Boltzmann selectioreference [54]. Here, the method
is generalized to any selection scheme as long as the hightlatmoments ofv(R) do not
diverge too rapidly (this is usually the case for relativelgak forms of selection). In this
case it is possible to exparfd¢,y), defined in equation (3.6), for smafl(they — 0 limit is

relevant here) and one finds,

2
170 = esp(-tPin) (14 7 () - 03)) 3.7
where,
() = / AR p(R) (w(R) '?)" (3.8)

Completing the integral in equation (3.5), one finds thatdhmulants after selection up to

O(1/P) are given by,

e o (32) ro(k) oo

The leading term here is the infinite population result, \Witorresponds to averaging directly

(an annealed average) over the patrtition function in eqnd8.2).

3.2.3 Mean correlation after selection

It may be necessary to find the mean correlation after seteiee equation (2.14)). The mean
correlation in an infinite population after selection isagivby,
P P
G = Y Pat DY PaPslas
a=1 a=1f#a
= Aqd + gnat (3.10)

This is also the expectation value for the correlation of gefipopulation after selection. The
first term is due to the duplication of population membersméeecting from a finite popula-
tion, since the correlation of duplicates is unity. The setterm is due to the natural change
in correlation as the population increases in fitness. Thergkterm depends on the relation-

ship between genotype and phenotype and is therefore pragecific. The first term is more



CHAPTER 3. SELECTION 39

general and can be averaged over the distribution of phpestyithin the population as in the
calculation for the cumulants after selection.

Using the definition op,, in equation (3.1) one finds,

w2
@) = [TIRap(Ra) Z200

= P/l;[(dRap(Ra))wi/U dttexp(—tza:wa> (3.11)

The integral in provides a useful way to decouple the average for the casewhedepends

only onR,. In this case one finds,

a) = P [ (05”0 (3.12)
0
where,
ft) = /dRp(R)wQ(R)exp(—tw(R)) (3.13a)
o) = / dR p(R) exp (—tw(R)) (3.13b)

As in the cumulant calculation, the integrals in this expi@s often require numerical
enumeration. However, as shown in section 3.2.2 it is ptessibexpand inl/P as long as
fluctuations ofw(R) around mean behaviour are not too large. In this case, G{1¢P) one

finds,

(Aga) ~ ;ﬁz%f%) L0 (%) (3.14)

wherey, (v) is defined in equation (3.8).

3.3 Boltzmann selection

Boltzmann selection will be used in this thesis and this swhis therefore considered in great-
est detail. This is a very natural selection scheme for fitriéstributions which are close to
Gaussian, since it preserves the shape of a Gaussianutistnif©, 53], and it is easy to choose
the selection strength so that selective pressure is ananinder addition or multiplication of

a constant to the fithess. For the simple additive problemsidered in chapter 4 this form of
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selection is also equivalent to the multiplicative langesaoften considered relevant in popu-
lation genetics [11]. All the results presented in this ieecfexcept the correlation result) were
originally derived by Priigel-Bennett and Shapiro in referes [52, 53].

Under Boltzmann selection, the selection weight for eaghufaiion member is,
wa = exp(BF,) (3.15)

whereg is the selection strength and determines the relative pilityaof selecting different
population members. For zefdeach population member is selected with equal probability,
while for very highg only the fittest population member will be selected.

A variety of fitness functions are considered in this thasisluding a quadratic function
of the phenotype in chapter 4 and stochastic functions optiemotype in chapter 5. Specific
expressions describing Boltzmann selection will be derife these problems as they are
introduced. In this chapter the simplest situation is adergd, where fithess equals the value
of the phenotype {, = R,), so that selection acts directly on the phenotype diginbu

Borrowing the population genetics terminology, this wil talled directional selection [7].

3.3.1 Directional selection

Under directional selection, fithess is equal to the phgre@gnd the partition function for
Boltzmann selection simplifies to,

.
Zs =Y expl(6 +7)Ra] (3.16)

a=1

Substituting this partition function into equation (3.6he finds that the cumulants after selec-

tion are given by [53],

A i S (°)
KS = _Bﬂ"/o a2 (3.17)
where,
£(t,8) = / dRp(R) exp (—teﬂR) (3.18)

In general, the integrals in equations (3.17) and (3.18)mwcomputed numerically, using
the Gram-Charlier expansion described in equation (2d pptameterize the phenotype dis-

tribution. For the simulation results presented in thiskvbre inner integral was computed
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by Gauss-Hermite quadrature and the outer integral was e@upy Gauss-Laguerre quadra-

ture [51].

3.3.2 Weak selection expansion

The expansion described in section 3.2.2 is accurate fdicismtly small 5/ K> [53]. For
directional Boltzmann selection,, (), defined in equation (3.8), is very naturally expressed

in terms of phenotype cumulants (see equation (2.8)),
() = [drp(menon

— exp <§; M) (3.19)

Substituting this expression into equation (3.9), PriBmhnett and Shapiro show that the cu-

mulants after selection in this limit are given by [53],

s 0" |\=PKi 1 — (21 - 2)0'K;
= op" L:l i 2P o (E il )] (320
Expanding ing for the first few cumulants gives,
K = Ki+p(1 L) x i A (3.21a)
A A N G- R -
. 1 3 3? 7 6
K5 = (1 — F) Ky + B (1 - F) K3+ [(1 - F) Ky — F(K2)2] (3.21b)
K = (1= k48 |(1-L) k= S(mo2| +- - (3.210)
3 p)? P P '

Notice that the variance and higher cumulants change everefo selection strength, due to
random sampling effects. In an infinite population, Boltmmaelection preserves the shape of
a Gaussian distribution and higher cumulants are neverdatred into the population. These
expressions show that higher cumulants are introducedifitéte population sampled from a
Gaussian, most noticeably the third cumulant becomesinedeading to a skewed population.
This is a consequence of the fact that a finite population passsly populated tails, so that
there is a limit to the progress which can be made by selectione. As the skewness of
the population becomes negative, equation (3.21b) showstliis accelerates the reduction

in variance under further selection, which in turn slows ddive increase in mean fitness.
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The other genetic operators are required to reduce the tdgnif the higher cumulants and
repopulate the tails of the distribution, in order that tle@ydation may make further progress
under selection.

Using an appropriately rescaled selection strefiyth 3'/\/k2/2log P, Priigel-Bennett
and Shapiro show that the reduced variance under selectiond Gaussian distribution has a
shoulder at a point in the region 6f ~ 0.5 [53]%. After this point the variance after selection
drops sharply, indicating rapid convergence of the pomratThey suggest that the selection
strength should be chosen in this region, as this achievagya increase in mean fitness for
a relatively small cost in terms of lost variance. In this kvtite selection strength is scaled
inversely to the population’s standard deviation= (s/,/k> for directional selection and
the finite population factor is not included explicitly, aspulation size is usually taken to be

constant.

3.3.3 Increased correlation due to duplication

The increased correlation due to duplication can be cakl@r directional Boltzmann selec-
tion from equation (3.12). For sma#l one can again use thg P expansion. Substituting the

expression fot), () given in equation (3.19) into equation (3.14) one finds,

1

> (1+ K982 — K38° + O(6%)) (3.22)

Agg ~

This shows explicitly how the negative third cumulant imlnoed by selection increases the
correlation within the population under further selectigrhich results in increased conver-
gence and reduced performance in most cases. For a fuliptéstiof the effects of selection

on the correlation within the population it is also neceggarconsider the natural increase

term in equation (3.10), which will depend on the specifidybem under consideration.

3.3.4 Beyond mean behaviour

While following the mean behaviour of each macroscopic agsqd sufficiently accurate for

modelling the problems discussed in this thesis, a morergeapproach is to also include

2The weak selection approximation seems to break down inghghbourhood of this point.
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fluctuations from mean behaviour. In this way it is possibletodel the GA as an ensemble of
non-interacting populations, each weighted appropsiafighis was carried through by Prigel-
Bennett for an asexual population (no crossover) on a siagiditive problem known as one-
max, which is introduced in chapter 4 [52].

Fluctuations from mean behaviour were introduced by fdlhgacovariances of the cu-
mulants which described each population within the ensembhe order parameters which
described the ensemble were the mean values and covariaheash cumulant. Although
the effect of fluctuations was found to be rather small, theywed to be important in asexual
dynamics where the higher cumulants become important bedtiey are not suppressed by
crossover (as discussed in chapter 4, section 4.4). It sttt is most important to include
fluctuations from mean behaviour when accurate modellirtgetlynamics requires the inclu-
sion of many cumulants. In this thesis the population is Isaalequately described by four

cumulants and fluctuations are assumed to have a neglidibte & this case.

3.4 Other selection schemes

In the following three sections some popular alternativectmn schemes are discussed; trun-
cation selection, ranking selection and tournament gelecirhese schemes are all based on
fitness rank rather than fitness value and are often prefexadfitness proportional selection
schemes because they are less sensitive to the shape iblutistr or particular choice of fit-
ness measure. The phenotype distributions under consaeiathis thesis are typically close
to Gaussian, so this is not an important issue here and Baftarselection is an appropriate
method.

These selection schemes have previously been describednis of their effects on the
moments or cumulants of a continuous Gaussian fitnesshditin, which is effectively an
infinite population approximation [5, 7]. Each method fitsumally into the finite population
selection procedure outlined in section 3.2, showing tmegaity of this approach. In the fol-
lowing sections, generating functions are derived for tmwaants after directional selection.
As in Boltzmann selection, the approximate expansion ddrim section 3.2.2 is required to

obtain a closed form result for truncation and ranking s&dac while an exact closed form
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result is possible for binary tournament selection. The laéme is mainly to demonstrate the

flexibility of the present approach and this study is by no mseaxhaustive or complete.

3.4.1 Truncation selection

Under truncation selection, the population is ranked atingrto fithess and a threshold rank is
chosen above which all population members are equallylilkebe selected and below which
population members are discarded. This form of selecti@absis used by breeders in atrtificial
selection and is well understood in terms of its effect onrtienents of an infinite Gaussian
distribution [7].

Prigel-Bennett and Shapiro consider a simplification wlegery population member above
some threshold fitheds is given equal probability of selection (although they dbeansider
finite population corrections) [54]. This differs from adlshold rank because the fitness at a
particular rank may fluctuate. Under this simplification thenber of individuals which are

discarded may fluctuate around some mean value. The seleatight in this case is simply,

1 >0
we = O(F, — F}) O(zr) = { (3.23)
0 <0

Consider directional selectiot§ = R,,). In this case the cumulants of an infinite popula-
tion after selection are given by equation (3.5) with,
o0
flt,y)=1- /Ft dRp(R) (1 — exp (—teVP")) (3.24)
It is possible to apply the expansion described in sectigr23or typical population sizes,
as long ag; is not too large. The cumulants upd(1/P) after truncation selection are then
given by equation (3.9),

K = lim [logwl(”) 3 (iiliﬂ

where,

Yn(y) = / oodR p(R) ™t (3.25)
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A common choice of truncation threshold is at, or close, rttean of the distribution.

For example, withF; = K; the mean and variance of the distribution after selectiomfa
Gaussian distribution are,

2K.
K} = K+ =2 (3.26a)
™

K = (1 - %) (1 _ %) K, (3.26h)

Notice that the finite population factor in the second cumula equivalent to the effect of
unbiased sampling from a population of s2¢2. This is what one might expect here, because
P/2 is exactly the expected number of population members whtrges§ is greater than the
mean fitness. Selection can then be considered as unbiasg@iirgafrom these population
members. As the threshold increases, the expected numpepolation members beyond the
threshold will decrease and tlig1/P) term will increase until the expansion breaks down.
Unless a very low threshold fitness is used, a truncated @amhakpansion might not de-
scribe the population after this form of selection accuyatince it may be far from Gaussian.
For this reason, truncation selection is probably the lgpgtopriate selection scheme to model
using a cumulant expansion, unless crossover is disruptieeigh to return the population

close to Gaussian each generation.

3.4.2 Ranking selection

Under ranking selection, the population is ordered acogrth fithess and each individual is
weighted according to its rank within the population. Thare a number of variants of this
form of selection and to simplify matters only linear rankiselection is considered here, in
which case the selection weight is simply the rank of an iiddial added to some constant

which determines the strength of selection,
P
wo =Y O(Fy —F) +C (3.27)
B=1

The strongest possible linear ranking scheme thas: 0. IncreasingC' leads to a reduced
selection strength, in terms of the ratio of the weight assito the best and worst population
members respectively. For stronger selection strengmiecessary to use some other form of

ranking, such as exponential ranking [5]. Here, the caseewie= 0 will be considered.
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Unfortunately, the expression for the selection weightjuadion (3.27) is difficult to anal-
yse, as it does not allow the average in equation (3.4) touggeadn a simple way. It would be
much more convenient to consider a function/yf alone. Instead of assigning rank accord-
ing to fitness within the population, a reasonable approtonas to assign rank according to
the fitness distribution of the infinite population from winithe population is a finite sample,
P(F). In this case the selection weight is given by,

Fo
Wq = / dF P(F) (3.28)
—00
This simplification was considered by Priigel-Bennett, whavided the following resut
For directional selectionH, = R, ) the cumulants of an infinite population after selection

are given by equation (3.5) with,

ft,y) = / dR p(R) exp [—t (eﬂR /_ idR’ p(R’)ﬂ (3.29)

As in truncation selection, it is possible to apply the exgdam described in section 3.2.2
for typical population sizes. The cumulants upQ¢l/P) after linear ranking selection are

then given by equation (3.9),

L
where,
i) = [aRp(R) (evR / idR’p(R’))n (3.30)

In general, the expressions for the cumulants after seleetie rather complex and require

numerical enumeration. For the first two cumulants afterctiEln from a Gaussian distribution

Ky 2
K} = Ki+y—(1-= 31
H 1+ w( 3P> (3.31a)

1 0.795199
K5 = (1 - — = 7> Ky (3.31b)
T P

one finds,

Sprivate communication.
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3.4.3 Tournament selection

Under tournament selection, small groups of population besicompete to decide which
will be selected for the new population. This may be usefsilit allows selection to be exe-
cuted in parallel and does not require sorting or normadinadf the population. Typically, a
small number of population members are drawn at random frenpopulation and the fittest
individual among them is selected for the new populationis Fnocess is repeated until a
new population has been selected. Binary tournament g@lewill be considered, although
the method presented here may easily be generalized to krgel tournaments which would
lead to stronger selection. It is also possible to introcumise into the tournament, so that the
winner is assigned a higher probability of selection thanltiser, leading to weaker selection.
Any such generalization can be considered under the proegulasented here.

In order to make the calculation straightforwa2d? independent population members are
present before selection. In practice, this can be achievadjood approximation by doubling
the population size before crossover and this leads to htsligrease in correlation, as de-
scribed in section 3.5. The population is then paired ofaatibom and the individuals in each
pair, or tournament, are assigned indieeanda + P respectively. The selection weights for

population members anda + P are complementary,
Wy = 1-— Wa+P = @(Fa - a+P> (332)
In this case, the partition function for selection is (seeatipn (3.2)),

P
7= (O(Fa — Fayp)e’™ + O(Fayp — Fy)e?etr) (3.33)
a=1

Averaging over P population members in equation (3.4) leads to the famitemnfof generat-
ing function for the cumulants of an infinite population afelection. For directional selection
(F. = R,) this is given by equation (3.5) with,
Ft,y) =2 / dRp(R) (e—te”R / "R p(R')> (3.34)
—o0
Unlike the previous selection calculations, for this forfnselection the cumulants after

selection can be determined exactly, in closed form. In fagte population corrections are the
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same as for flat selection, since each of fhurnament winners has exactly equal probability

of being selected. Therefore, the cumulants after seleetie given by (forn < 4),

an
;= P, (1 gl (1)) 3.35)

whereP, is the finite population correction to theth cumulant of a finite sample ang, () is
the same as for ranking selection, as defined in equatiof)(3-&re,, = 1 and P, is given
in equation (2.10) fon = 2 andn = 3. The fourth cumulant has finite population corrections
analogous to those in equation (2.9d).

In the infinite population limit this selection scheme is ieglent to linear ranking, which
was discussed in the previous section. The first two cunakitér selection from a Gaussian

distribution are,

KS = Kj+4/—2 (3.36a)

G- (-1 D -

Comparing this with equations (3.31a) and (3.31b) it isrclbat there are small differences in
the two selection schemes due to finite population effects.

Since linear ranking and binary tournament selection ddfdy in finite population terms,
it is interesting to ask which scheme is the most effectivae @easure of effectiveness is to
consider how the correlation increases under selectioceshin excessive increase in corre-
lation may lead to premature convergence and reduced peafare [18]. Under tournament
selection, the duplication term defined in equation (3.8@hvays equal té/ P, which is the
duplication contribution to the correlation expected urith selection onP individuals. This
will always be less than the duplication term for linear riagkin a population of sizé, where
fitter population members are always more likely than avetadpe duplicated under selection.
However, this is a misleading comparison as the populaiiis taken to b& P before tour-
nament selection (two population members in each tourngméris then more appropriate
to consider linear ranking where population members arctal from a population of size
2P, which leads to reduced sampling errors. In this case bittamnament selection gives a

slightly higher correlation due to duplication. In praetidt is unlikely that there will be much
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difference between the methods. Tournament selectiorteés diie preferred method because

it does not require sorting of the population and is easy &zabe in parallel.

3.5 Reducing the sampling error

The selection procedure described in section 3.2 usestoulbeel sampling, with population
members selected independently with replacement for thepopulation. This is a rather
noisy form of selection and other less noisy forms are oftefigored in practice. One common
method is stochastic universal sampling which was destabthe beginning of section 3.2 [3].
Under this method, the number of each individual selectedhi® new population is as close
to the desired proportion as possible. This is a difficultrfaf sampling to model exactly in
general, as the selection of each individual is no longendapendent event.

One selection scheme in which the two different forms of damgan be compared is
in tournament selection, in this case binary tournamergctieh. A population of siz& P
is required after selection, which can then undergo mutadiod crossover before being di-
vided into P tournaments for further selection. This ensures high giitibathat duplicates
do not appear within the same tournaments. The procedurehvelbirresponds to stochastic
universal sampling is to select exactly two of each tourrmaménner in the population after
selection. Roulette wheel sampling corresponds to se@g2f® randomly from an infinite pool
containing equal proportions of each tournament winnds stmple to calculate the increase
in correlation under both forms of sampling.

Let ¢ be the mean correlation between different tournament winatter selection. The
correlation in an infinite population of tournament winn&s; + (1 — ¢)/P, as there is a
1/ P probability of two distinct population members being ideat This is also the expected
correlation in a finite random sample of si2& created by roulette wheel sampling. Now
consider a population of si28” which contains exactly two representatives of each touemam
winner, as produced by stochastic universal sampling. kpeated mean correlation in this
population would be + (1 — ¢) /4P for large P, as there is nowa/2P (2P — 1) probability
of two population members being identical. Therefore, theytation correlates four times as

much through random duplication by using roulette wheald@in.
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This result indicates that roulette wheel sampling is dalstaan inefficient form of sam-
pling and correlations may grow much less quickly under iotbens of sampling. Although
one might expect both forms of sampling to act similarly foosg selection, it is certainly
the case that as the selection strength reduces to zeroehaydvery differently. This might
be important when making theoretical predictions for wealedion behaviour, as there is
much greater loss of diversity (genetic drift) under raglevheel sampling than expected un-
der stochastic universal sampling. Analysis of the asytipb®haviour of different sampling
schemes in the limit of weak selection would be very useiutithis is probably a very difficult

task in general.

3.6 Conclusion

A general selection procedure was defined and a generatiregidn was introduced for cal-
culating the change in phenotype cumulants under a classleft®n schemes. This work
generalizes upon the results of Prigel-Bennett and Shaparder to cover a greater range of
selection schemes and to calculate the increased cooretie to the duplication under selec-
tion [52, 53]. In contrast to other approaches, finite papartaeffects are included explicitly
under this formalism, leading to a better characterizadifoselection and a number of interest-
ing observations. In general, numerical enumeration igired to generate the cumulants after
selection, although it was shown how one could expand artlumdhfinite population result
for weak selection, allowing closed form results for Boleam, truncation and linear rank-
ing selection in this limit. For binary tournament selenti@n exact closed form result was
possible in the general case. Further work is required teroéhe the range of applicability
of the weak selection approximation and, if possible, taatizrize selection under different
sampling procedures.

Boltzmann selection was considered in greatest detail aerthis is the selection method
of choice in the rest of this thesis. The directional setectiesults due to Prigel-Bennett and
Shapiro were reviewed, and a calculation for the increaselation due to duplication was
also included [52, 53]. Finite population effects lead tdramease in the magnitude of higher

cumulants under directional selection, resulting in a loisgariance under further selection
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and a faster accumulation of correlations due to duplinatibhese effects cannot be seen in

the limit of an infinite population, emphasizing how impartdt is to accurately characterize

finite population effects.



Chapter 4

Functions of an additive genotype

52
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4.1 Introduction

A class of problems which are particularly amenable to aialgre functions in which alleles
of the genotype contribute additively to the phenotype. sehieinctions include a number of
problems which have been discussed at length within thatitee, yet the statistical mechanics
formalism is the first method which accurately charactsrthe dynamics in general, including
inhomogeneous contributions from each site, finite pofna¢ffects and non-linear fitness
functions, all of which are considered in this chapter. lapters 5 and 7 these methods are
also used to model the dynamics for a simple learning probeutiploid GA and a simple
temporally varying problem.

This work was initiated by Priigel-Bennett and Shapiro, ahplied the statistical mechan-
ics formalism to two closely related problems — the randatdfparamagnet and the spin-glass
chain [54]. Many of the results presented here were injtiddrived in their analysis, although
in order to achieve greater accuracy it has been necesséljow the evolution of an extra
macroscopic, the mean correlation within the populatianictvwas defined in equation (2.14).
Expressions describing the evolution of the mean cormeigtrovide the most significant new
results derived in this chapter and the explicit inclusibths macroscopic increases the accu-
racy and generality of the method.

In the following sections a general form for the phenotypdefined and expressions for
the effects of mutation and crossover on each macroscopimtitoduced. These expressions
are independent of the particular form which the fitness tfanctakes, since mutation and
crossover only affect the phenotype through the genotydalamot act on the fitness directly.
In order to determine terms not explicitly related to knowaamoscopics, a maximum entropy
ansatz due to Priigel-Bennett and Shapiro is used [54].aRsiatz is also required to determine
the increased correlation under selection.

The formalism is applied to a number of fitness functionsjileg to solutions for the dy-
namics under directional selection (one-max and the rariticthparamagnet) and stabilizing
selection (the subset sum problem). In each case the mehanienaf the macroscopics and

best population member are accurately determined, as btigeanaximum entropy ansatz is
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justified. In some cases the ansatz does not hold and thesgsteenatic errors in the theoreti-

cal predictions.

4.2 The phenotype
The phenotype of population membheis defined,
N
Ry = Z J; S8 (4.1)
i=1

Here, theJ; are fixed weights at each site which are chosen from someasbdistribution.
The allele at sité in population membett is an Ising spinSy* € {—1,1}.
The cumulants of the phenotype distribution are defined aptdr 2, section 2.4.2 and for

this phenotype the first two cumulants of an infinite popalatre,

N
Ki = > J{S"a (4.2a)
=1
N 2 N 2
K, = TSt ) ) = (D0 JiSMa
o= ((Zsr) ) - (2 wteme)
N N
= D T (SHD YD Ti(SPSa — (SMalST)a)  (4.2D)
i=1 i=1 j#i

The angled brackets denote population averages as defieggidation (2.6). The expectation
value for the cumulants of a finite population sampled fronméinite population can be found
from equations (2.9a) to (2.9d) for the first four cumulants.

The initial population is randomly generated, with eaclelallchosen uniformly from
{-1,1}. In this case the mean correlation and odd cumulants of suii$trébution are zero,

while the first two even cumulants of an infinite, random pafiah are,

N N
Ki = z; J? Ki=-2 z; J} (4.3)

4.3 Mutation

Under mutation, each allele within the population is flippgth probability p,,. Introducing

an independent binary variable for each allele within theutation provides a natural way of
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describing this operator,

1 with probability 1 — p,
Se L MOSE MY = P yaor (4.4)

13
—1 with probability p,,
So, for example, the first cumulant after mutation is,

N
K" =" Ji(M{S)a (4.5)
=1

Averaging over all mutations gives the expectation valuehe first cumulant after mutation,
N
(KM mut = DY Ji(SM)a = DK (4.6a)
i=1
wherel’ = 1 — 2p,,,. This calculation can be generalized to the higher cumsilant Prigel-

Bennett and Shapiro determine expectation values for tke four cumulants after muta-

tion [54] %,
N
Ky = TKy+(1-T%)) J] (4.6b)
i=1
N
Ky = TIPK3—20(1-T%))  J}(SM)a (4.6¢)
i=1
N
Kp" = T'K;—2(1-40%+31%) " J} (4.6d)

i=1

—8I2(1 - TI?) ZJM-S@ +ZZJ3 ((S7S5)a — (88)alS)a)

i=1 j#i

where these are cumulants of an infinite population. Sitgjltie expected mean correlation

after mutation is,
dm = FQQ (4-7)

A number of terms in the expressions for the third and fouttmalants cannot be ex-
pressed in terms of the cumulants or the correlation witténgopulation, unless the weights
are equal at every site, as is the case for the one-max pratiéch is introduced in section 4.7.
In this case the expressions for every cumulant after nautatn be written in terms of the cu-

mulants before [52]. Otherwise, on-site terms can be caledlby assuming maximum entropy

In a private communication, Nick Barton points out thatd&iiBennett and Shapiro did not include off-site
terms in the fourth cumulant.
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with constraints on the mean phenotype and correlationimilie population, as described in
section 4.5. Unfortunately, the off-site term in the fouctimulant cannot be determined by
this method, as the maximum entropy result does not catefff@ite terms. In the problems
considered here this term does not have any significant inpawever, as the effect of mu-
tation on the higher cumulants is negligible compared tceffects of crossover (described in
the next section). For our purposes, off-site terms can bgkecied to a good approximation.
For asexual dynamics, or very non-disruptive forms of arees such an approximation may

not be justified.

4.4 Crossover

Under crossover, genetic material is exchanged betweeangigm members. This is usually
carried out by pairing off the population at random, with leaair crossed to produce two
children. There are many possible crossover schemes lateadlad which is most appropriate
depends on the problem under consideration, and on how tiepn is encoded within the
genotype [18]. For problems with strong spatial interadibetween alleles it is often impor-
tant to minimize disruption of the genotype. In this cas@lsirpoint crossover might be most
appropriate, where parent genotypes are broken at one guuinthe segments on one side of
this point are swapped.

In the problems under consideration in this chapter theme such spatial order and neigh-
bouring alleles are of no more importance than spatialliadisalleles. There may still be some
cost involved in shuffling alleles, however, so it is oftemeenient to allow more or less dis-
ruption to the parent’'s genotypes. In this case crossoveargisneralized version of uniform

crossover and the alleles of a child produced by parertsds are given by,

1 with probability a
S = X890 4 (1 - xP)8P X = P Y (4.8)
0 with probabilityl — a

whereq is the parameter which determines the relative number efeslitaken from each
parent. Under uniform crossover= 0.5 is a common choice, in which case alleles are taken

from either parent with equal probability.
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The expectation value for each cumulant after crossoverbeacalculated by averaging
over theXfB variables in each cumulant. Priigel-Bennett and Shapow #fat the expectation

values for the first four cumulants after crossover are gbxefb4],

K¢ = K (4.9a)
KS = K+ 2A(KP™ — Ky) (4.9b)
KS = Kj+3A(KP™ — Ks) (4.9¢)
K$ = Kyq+2A(2— A)(KP™ — Ky) (4.9d)

Here, A = a(1 — a) and K"** is the fixed point of thesth cumulant under crossover alone.
This is the state where off-site averages within and betwmgulation members are equal

on average; so, for examp{&{*), (S7)a = (S§*57)s and the second term in equation (4.2b)

disappears.
N
K™ = 3 I - (507 (4.10a)
=1
N
KP® = =23 JP((S%)a — {S9)2) (4.10b)
i=1
N
K™ = =23 T (1= 4(S7)5 +3(57)a) (4.10c)

i=1
These expressions can be calculated by making a maximuwpgrdansatz, as described
in the next section. Crossover relaxes the cumulants ta@athedfixed point defined by equa-
tions (4.10a) to (4.10c), often leading to a much more rapitliction in the magnitude of the
higher cumulants than could be achieved through mutatimmealln fact, for directional selec-
tion, which is discussed in section 4.7, crossover leave§irst two cumulants unchanged to a
reasonable approximation and substantially reduces haheulants introduced by selection.
This leads to much improved progress under further selectihile mutation has a relatively
small effect (for practical mutation rates).
The mean correlation is unchanged by crossover, becalsriglh crossover changes the
alleles within each population member, it conserves thennmeember of alleles at each site

within the population.
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A rather extreme form of crossover is bit-simulated cross§BSC), which is only appro-
priate in problems where there is a very low cost associatédonossover in terms of reduced
fitness [71]. In this case it is practicable to relax the papah straight to the fixed point of
standard crossover. This can be achieved by selectingsallet each site in a child from a
randomly selected population member, so that the popul&ieffectively randomized with a
constraint on the mean magnetization per site (the mede gtz site within the population).
If this form of crossover is used, then one can accuratelgriesthe dynamics of problems
with an additive genotype in terms of only the two macroscepequired to constrain the max-
imum entropy distribution. This form of crossover also a#oa special limit to be developed,
which facilitates a solution to the dynamics for a number afitrivial problems. This limit
is developed in section 4.9 and is applied to diploid systantsa temporally varying fithess

measure in chapter 7.

4.5 Maximum entropy ansatz

In order to calculate terms which are not trivially relateckhown macroscopics, it is neces-
sary to make some assumption about how alleles are digtidlatteach site. Priigel-Bennett
and Shapiro have introduced a maximum entropy ansatz im to@@lculate these terms [54].
They used two constraints, the mean phenotype and coorelatthin the population, although
they did not choose the correlation as an explicit macrdsqoipey estimate it from the vari-
ance). The simple correlation measure defined in equatid4)2s used here, although it is
also possible to use a different correlation measure wiicludles a weight factor within the
sum over sites, as in reference [56]. The simpler choice oklaion measure was found
to characterize the population better in the problems densd here. A comparison of the
theoretical prediction with experimental results is regdiasa posteriorijustification of the

ansatz.

4.5.1 Allele distribution at maximum entropy

To estimate the non-trivial on-site terms in equations q}.64.6d) and (4.10a) to (4.10c),

it is necessary to estimate how alleles are distributed et sdie. This will be achieved by
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calculating the expected mean allele at each site in a pigulat maximum entropy, with
constraints on the mean phenotype and correlation witkgiptpulation.

Definer; to be the mean allele within the population (magnetizatargites,

= (5{)a = % sy (4.11)

The single-site density of stat€q ;) is the proportion of allele combinations compatible with

this magnetization,

1 P
An) = op <P(1 N n)/2> (4.12)

One can define an entro®/(;) which is the logarithm of this quantity. Using Stirling’'s-ap

proximation for largeP one finds,

S(Tz) = log Q(Tz)

P 9 Pr; 1—m7
~ —Elog(l—n)—i- 5 log(l_i_ﬂ) (4.13)

Lagrange multipliers enforce constraints on the mean pgigpaand correlation (these expres-

sions are for large),

2PK; = ZZ S"‘—zPZJTZ (4.14a)
2 PN (2P)? N
ZZEFWB L (4.14b)

A probability distribution for the{r;} configuration can then be defined which decouples

l\DI»—l

at each site,
N
HJPTZ‘ 2
P{r}) = 1_[1 Hexp( 7i) + 2P J;T; + ( 5 ) ) (4.15)
and a Gaussian integral removes the square in the exponent,
d; —n;
i) = ~ + PG(Ti,n; 4.16
pr) = [ S exp -+ PG (4.16)

where,

G(ri,mi) = S(1)/ P + (2J; + xm;)T; (4.17)
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The maximal value of7 with respect tor; gives the maximum entropy distribution fey, in

which case,

7; = tanh(2J; + zn;)

wheren; is drawn from a Gaussian distribution with zero mean andvariaince.

The constraints can be used to obtain values for the Lagnandiliers,

N
K, = Z Ji tanh(zJ; + zn;)
i=1

N
1
¢ = % Z tanh?(zJ; + xn;)
i=1

(4.18)

(4.19a)

(4.19b)

where bars denote averages over the Gaussianmoisbe average ovef; andn; will usually

be computed numerically by Gaussian quadratures [51],rdt#pg on the particular distri-

bution of weights. Once the Lagrange multipliers have besrrchined, the expressions for

mutation and crossover which involve non-trivial on-sgems can be calculated,

N
IR
=1

= N/de(J) J" tanh™(Jz + zn)

/H dJ; p(J, ZJ"tanh (Jiz + xn;)

(4.20)

Although these averages have to be computed numericadligpitld be noticed that the com-

putation does not scale with problem size or population. size

The fixed point of an infinite population under crossover suased to be a maximum en-

tropy distribution, whose cumulants and correlation maydseirally generated from a single-

site partition function (this function will be useful lajer

max  __
K, - Zlﬁo oy IOgZ(fy’O)

—l214mﬁlzm)
q_Nm og €

where,

(4.21a)

(4.21b)

(4.22)
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4.5.2 Testing the ansatz

The maximum entropy ansatz requires some justificatiort,ragay not always provide a good
approximation. Figure 4.1 shows the averaged microscaptdhultion of alleles within the
population for a standard GA under directional selectiomomadditive genotype, for two mu-
tation rates. Snapshots were taken every 25 generatioteddirst 75 generations, with the
mean allele and mean squared allele per site within the ptipnlshown as a function of the
weight at each site. The GA with the lower mutation rate istnagsurately described by the
maximum entropy result, while the GA with a higher mutatiateris eventually only in qual-
itative agreement. This is reflected in the theoretical iptixhs for the dynamical trajectories
which are shown in figures 4.5 and 4.6.

These results can be explained by noting that mutation tideeslistribution away from
maximum entropy. This phenomena is easily pictured by demsig a population which mu-
tates away from an initial population of optimal solutionslutation does not differentiate
between high and low weights, and will flip alleles assodatéth high weights with a much
greater probability than predicted by the maximum entraggult. When selection and mu-
tation are combined, it is assumed that selection will resitlis imbalance by rejecting the
population members whose alleles have been flipped at higyhtge Yet, there is no guar-
antee that selection will completely remove these mutatidrigure 4.1 shows how, for the
higher mutation rate, the maximum entropy ansatz ovemestis the mean allele per site at

the largest weights.

4.5.3 Probability of duplicates

The expression derived in equation (2.16) for estimatirgglibst member of the population
assumes that all population members are chosen indepgnfitent a continuous distribution

of fitness. This approximation breaks down when the poprdiecomes highly correlated and
is certainly inapplicable when duplicates exist within gflggulation. It is possible to calculate
the probability of two population members being duplicatd®n randomly selected from the

maximum entropy distribution described here.
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Figure 4.1: The maximum entropy result is compared to aeatagsults for two GAs under
directional selection on an additive genotype, which diffaly in their respective mutation
rates. Snapshots are taken every 25 generations for th@Sigtnerations. The theoretical
solid curves are for the mean allele per site within the paipoh 7; as a function of/;, while

the dashed curves are for the squared mean allele per’s{tbe bars represent an average
over all sites with the same value or range/gf The histogram results are averaged over 5000
runs of the GA and weights were uniformly distributed in thage[0, 1]. The simulations are
the same as those used for the results presented in figuraadi46 and all other parameter
values are given there. Notice that the histograms in thedaight of the figure cross.
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If 7; is the mean allele at site defined in equation (4.18), then the probability that papul

tion membersy and 3 have identical configurations is,

N
v = [ (0 0= 2

=1

Averaging the logarithm of this quantity over the Gaussiais@ inr; one finds,

N
Pr =exp <Z log[(1 + 77)/2] ) (4.24)
=1

This quantity will only be significant wher? ~ 1, in which case,
Pirﬁ ~ exp(—%(l — q)) (4.25)

whereq = 7'_22 is the mean correlation within the population.
The expected number of duplicate pairs within the populaitogiven by this probability

multiplied by the number of distinct pairs within the poptida,
No. of duplicate pairs~ 1P(P —1)exp(—5(1 —q)) (4.26)

When this quantity i$)(1) then population members can no longer be considered indepéen
In this case a reasonable approximation is achieved by iregitice effective population size
by this amount (as long as there is negligible probabilitghoée or more copies of the same
individual being present). This is an approximation beeaalgenotypes within the population
can no longer be considered a random sample once dupliceea®jacted. The effective

population size is then,
Peg =P[1—4(P-1)exp(—5F(1 - 9q))] (4.27)

As g — 1 it would also be necessary to include higher order coraiat{otherwise’.¢ would
become negative), but this result gives a good approximadtathe point when correlations
first become important, as shown by the experiment desciibigure 4.9.

In general, correlations will be less evenly distributedhivi the population than predicted
by the maximum entropy ansatz and this calculation will ftexa lower bound on the expected
number of duplicates. There may also be functional degepdoa integerJ;, in which case

phenotypes may be equal without having the same configaratio
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4.6 Evolving the mean correlation under selection

As discussed in chapter 3, section 3.2.3, the calculatiothéomean correlation after selection
depends on details of the problem under consideration,iagilves the relationship between
genotype and phenotype. Recall equation (3.10), whichritbescthe expected increase in
correlation under selection,
P P
G = Y Pat DY PaPslas
a=1 a=1[G#a
= Aqq + nat
The first term is due to the duplication required in a finite ydapion and is discussed in sec-
tion 3.2.3. The second term is the natural increase in @imal as the population becomes
fitter.
To simplify the calculation, it is convenient to subtract afset of dummy variables from
the first term and add the same variables to the second term,

P P P
qds = Zp?x(l - Qaa) + Z Zpapﬂ(bzﬁ
a=1

a=1p=1

= Ag+ goo (4.28)
Here, g, IS the expected correlation between distinct genotypel thit¢ same phenotypic
valueR,. These extra variables are introduced so thaandps can be treated independently
in the second term (this term is denoigd as it is the only contribution in the infinite popu-
lation limit). The first term expresses the intuition thatkeauplicate pair created by selection
can be thought of as replacing a pair which would otherwisedoeelated by, .

The relationship between correlations and phenotypesqisiredl to estimate both terms

in equation (4.28). It will be assumed that this relatiopsisi well approximated by a max-
imum entropy distribution, as described in section 4.5, gl assumption will be justified

retrospectively. Consider each contribution to the cati@h in turn.

4.6.1 Maximum entropy result for g

Let p(gas|Ra, Rg) be the conditional probability for the correlation betwewao population

members given their phenotypes. This distribution can eroiéned for a maximum entropy
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distribution (see equation (A.3) in appendix A). The exptoh value forg,, after selection is
simply the correlation averaged over this distribution #meldistribution of phenotypes after

selectionps(R),

Qoo = / anB dR, dRB ps(Ra) ps(Rﬁ) p(QaB ‘Raa Rﬂ)Qaﬂ (4.29)

This integral can be computed for largeby the saddle point method and in this limit the result
only depends on the mean phenotype after selection. Thelatdn is shown in appendix A

and one finds,

7; + tanh(yJ;)
4.30
ool Nz(l—i—rltanh(yJ)) (4.30)
wherey is implicitly related to the mean phenotype after selection
N
7; + tanh(yJ;)
K=Y 4.31
! ; (1 + 7; tanh(yJ;) (4.31)

Here, ; is the mean allele at sitefor a maximum entropy distribution (before selection), as
defined in equation (4.18). The average over the Gaussiae imof; is taken over each site
in both expressions. In general, it is necessary to competetexpressions numerically, first
computingy from equation (4.31) by numerical root finding and then stuistg this value of

y into equation (4.30) in order to determing (y).

It is instructive to expand equation (4.31)«nwhich is appropriate in the weak selection
limit,

K} =K +yK3"™* + KmaLX T KmaLX : (4.32)
Here, K'** are cumulants of the maximum entropy distribution which @deéned in equa-
tion (4.21a). Truncating this expression provides a gogar@pmation fory in the weak
selection limit, avoiding the need for numerical reversiofrequation (4.31). This value af
could then be substituted into equation (4.30) in order terd@ineqg.. (y).

By comparing this expansion to the Boltzmann directionkdan result in equation (3.20),
one finds thay is equal to the selection strengthin the infinite population limit, if the pop-
ulation is at maximum entropy before selection. For wea&alional selection it may well be
reasonable to chooge~ [ when approximating the dynamics, although for the simortesti

presented in this thesis the exact expressions were used.
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4.6.2 Maximum entropy result for Aq

Recall the definition ofA¢g given in equation (4.28),

P
Ag =" pa(l = gaa) (4.33)
a=1

By averaging over each population member (as in chapteic8pee3.2.3) one finds,

Ag=P /0 Oodtt f)gf @) (4.34)

where,

) = /dRp<R> /dqp(qm,R)(l—q>w2<R>exp(—tw<R)) (4.35a)

o) = / dRp(R) exp(—tw(R)) (4.35b)

In general, it would be necessary to calculate these integtanerically, but the correlation
distribution is difficult to deal with as it requires the nureal reversion of a saddle point
equation (see appendix A).

Instead, it is possible to expand it P as shown in section 3.2.3, which is appropriate for

weak Boltzmann selection. To leading order one finds,

— ) 1
Aq= wpﬁ? + 0(ﬁ> (4.36)
where,
b = / dRp(R) w" (R) (4.37a)
b = / dRp(R) / dgp(g|R, R) qu" (R) (4.37b)

Notice thati),, can be expressed in terms of the characteristic functiorth®rconditional
distribution of correlations, which is defined in equati@n2),
tn

e lim % log ( / dRp(R)p(t|R, R)w"(R)> (4.38)

This expression depends on the particular form of seleetieight,w(R).
Consider directional Boltzmann selection, in which cagé&) = exp(GR). In this case,

the expression on the right hand side of equation (4.38) earalzulated for largév by the
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saddle point method. This follows the calculation in apperdclosely, and eventually one

finds,

1 —qxly(k 2 1
Age qp[,?fa(( B)}))p( B) +0(ﬁ) .39)

whereqg,(y) is defined in equation (4.30) andg) is the characteristic function of the phe-
notype distribution, defined in equation (2.7). Hey&) is found by substituting: for K73 in
equation (4.31), wherk is defined,

k= / dRp(R) Re*F (4.40)

4.6.3 Justifying the approximation

In the previous two sections it was shown how the mean caioalafter selection may be
calculated if the population is taken to be at maximum entrogfore selection. This is a
greater assumption than in the crossover and mutationlatitms, where the maximum en-
tropy ansatz was only required to compute on-site termsléntiag the off-site term in the
fourth cumulant after mutation). The relationship betwé#®nphenotypes of two population
members and their correlation can change under crossonkkewn-site averages), and the
distribution of correlations may therefore depend on rrivial off-site contributions. In this
case it is necessary to justify the assumption that the éangorrelation under selection is
well described by the expressions derived here.

It is assumed that the fixed point of crossover is well modetlg the maximum entropy
distribution described in section 4.5 and situations whieieapproximation breaks down are
discussed there. Recall that was calculated for largd and in this limit was found to depend
only on the mean phenotype after selection (see equatiBf)j4.This is an asymptotic result
and one would expect terms in other cumulants to come @ &fN) or less. This shows that
the maximum entropy distribution for correlations (defiireéquation (A.3)) is self-consistent
in the limit of largeNV, as it returns the correct mean correlation given the meangtkpe of
the population in this limit, irrespective of the varianaaéhigher cumulants. It is therefore
at least consistent to assume that higher cumulant effantstherefore off-site terms) are of
secondary importance, although this is not necessarilyree.assumption is that there is no

significant systematic bias in the distribution of corrielas within the population.
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This approximation will break down in certain situationsorexample, when very little
crossover is used or when crossover is not very disruptiveal(s: in equation (4.8)) then it
is unlikely that correlations will redistribute sufficigyntquickly to ensure a smooth distribu-
tion within the population. In this case the very fit indivads within the population might be
closely related and duplication will lead to a much greater@ase in correlation than would
be estimated by assuming evenly distributed correlatibheder these circumstances, the re-
lationship between genotypes within the population woutzbpbly be unpredictable with in-
formation from only a small number of macroscopics. Furtlbgoeriments are required to
determine when the maximum entropy distribution of cotretes will accurately character-
ize the population. The results presented in this chapticarte that these results are at least

accurate when uniform crossover is used over the whole ptpal

4.7 Directional selection

If fitness equals the phenotype then selection is diredtiona
N
Fo = Ro = > JiS] (4.41)
i=1

Figure 4.2 shows the typical averaged dynamics of a GA uridsrfitness measure, where
the population increases in fithess and moves into a stategfgssively lower entropy each
generation. Eventually the population may reach an eqiuilibb state, where the effects of
selection and mutation are balanced. Without mutationptipeilation will eventually converge
on a state where each population member is identical.

There is only one optimum configuration, which is given by #i@te withS;J; > 0 at
each site, and there are no sub-optimal local fithess madirttze weights are chosen from a
distribution then this problem is the random-field paranggwhich was considered under the
statistical mechanics formalism by Priigel-Bennett andp8b [54]. They also considered a
closely related problem, the spin-glass chain, where seamghbour interactions contribute
additively to fitness. These problems are equivalent undgvial gauge transformation, al-
though the dynamics differs due to the existence of an exterénergy in the spin-glass which

leads to a large number of local fitness maxima under singtefp dynamics. They solved



CHAPTER 4. FUNCTIONS OF AN ADDITIVE GENOTYPE 69

60

40 -

o ‘ ‘
~0.2 0.0 0.2 0.4 Ropt

Figure 4.2: Evolution of a GA under directional selectiomermged over 5000 runs. The
phenotype distribution is shown 8120, 40,70 and 120 generations. Weights were selected
from a uniform distribution in the rang®, 1], so that the optimum phenotyge,,: wasN/2

on average. The other parameters were 80, N = 150, p,, = 0.002, 5; = 0.25 and uniform
crossover was used with= 0.5.

the dynamics of the paramagnet under the assumption thestaarer leaves the variance of the
fitness distribution unchanged. This seemed to be a redsoapproximation in some situ-
ations, but is incorrect in general. Here, a more exact ambrés used, in which the mean
correlation within the population is evolved as an explioicroscopic according to the ex-

pressions derived in sections 4.3 and 4.6. Before consmiéne random-field paramagnet it is

instructive to consider the simpler one-max problem, wileeenveights at every site are equal.

4.7.1 One-max

The fitness for the one-max problem is given by equation j4mth J; = 1 at every site,

N
Fo=)_ 8¢ (4.42)
=1

Under Boltzmann selection, the alleles contribute to thectien probability multiplicatively
and biologists call this a multiplicative fitness landscépéhough they use a different nota-
tion) [11],

N
wa = exp(BFa) = [ ] exp(85") (4.43)

=1



CHAPTER 4. FUNCTIONS OF AN ADDITIVE GENOTYPE 70

This problem has been studied extensively in the GA liteeatind a number of results
have recently been obtained which predict the trajectomedn fithess within the population
for a number of selection schemes [45, 67, 72]. These mettadgl®n the population being
sufficiently large so that the distribution of alleles is a@tely modelled by a binomial distri-
bution. This is a maximum entropy distribution with a coastt on mean fitness alone. These
models break down in a finite population, because in this ttespopulation will become more
correlated under selection than predicted by a binomiatiligion. In the infinite population
limit the results presented here reduce to the results ésetkimpler, but less general, models.

In order to simulate the dynamics, expressions for the ahamghe first four cumulants
and mean correlation under each operator were iteratedjireaee (see sections 3.3, 4.3, 4.4
and 4.6). The theory is compared to averaged results froanaatd GA in figure 4.3, for two
different population sizes. The mean and variance of thed&rdistribution and the highest
fitness are shown, averaged over 1000 runs. Error bars weoally smaller than the symbols
and are not shown. These results show good agreement wittheébey, which accurately
describes finite population effects. The skewness and $igrsewe shown in figure 4.4 for one
population size, also agreeing well with the theory (moragas were required to obtain good
averages for the higher cumulants).

Notice that the results in figure 4.3 for the smallest pojpurtesize show small systematic
errors. The theory eventually breaks down for very smallybejions and for strong selection.
This is thought to be mainly because a weak selection appaiion was required to calculate
the duplication contribution to the increased correlatiomer selection (see section 4.6.2),
although there might also be errors due to non-self-avegagffects. The approximation in
determining the correlation after selection was consiflerest important, as theoretical results
for the correlation were first to break down. To minimize thisirce of error, the contribution

to equation (4.33) which does not involve the correlatios walculated numerically.

4.7.2 Random-field paramagnet

The fithess of the random-field paramagnet is given by equfigtl) with weights chosen

from some distribution. Here, the case where weights areeshaniformly from the interval
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Figure 4.3: The theory is compared to averaged results fernaax with population sizes

50(A) and100(0). The mean4;) and variancex,) of the fithess distribution and the highest
fithess are shown, averaged over 1000 runs, with solid lihewisg the theory. The other

parameters werd = 155,p,, = 0.005,5; = 0.3 and uniform crossover was used with
a = 0.5.

[0, 1] is considered, although there is no significant differemcthé dynamics if a Gaussian
distribution is used.

As in the the previous section, the GA dynamics was simulbjeitierating the difference
eqguations describing the effects of each operator on theféius cumulants and the mean
correlation within the population (see sections 3.3, 4.8,ahd 4.6). In section 4.5.2 it was
noted that the maximum entropy ansatz might break down irestases, most notably when
mutation is likely to flip large weights and selection is naoffigiently strong to ensure such
mutations are removed from the population. Figures 4.5 ahda@mpare the theory to averaged
results from a standard GA for weak and moderate mutati@s.r#ts expected, the results for
weak mutation show better agreement and it seems that theliem as it stands is only
accurate in describing the GA with a low mutation rate fos ffioblem. This was not the case
in the one-max problem, where the weights at every site araleq

It is not known whether the addition of extra macroscopicghthprovide a better char-
acterization of the population. Experiments were perfatnoedetermine if the inclusion of
a third constraint on the mean allele within the populatitive (nean magnetization) would

characterize the population better, but the results shawesignificant improvement over the
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Figure 4.4: The skewnesaj and kurtosis [0) are shown for the same parameter values as the
results presented in figure 4.3 for population size 100. €kalts were averaged over 10000
runs. The solid lines give the theoretical result and awsagere taken over cumulants, rather
than the ratios shown.

two constraint model.

4.8 Stabilizing selection

A rather different dynamical behaviour is possible if thaimpim fitness is given by a phe-
notype of intermediate value which lies in a high entropyigegf the phenotype space. A

possible fithess measure in this case might be,

N 2
1 1
Fa = —N(Ra _Ropt)2 = —N (E JiSZQ_ROpt) (444)
i=1

where the factor of /N is chosen to make the fitness typicallf{ N'). Here, R, is the op-
timum possible phenotype. There may be no configuration whiees a phenotype exactly
equal toR,p¢, in which case the closest obtainable phenotype providesptimum fitness.
Notice that the fitness defined here is never greater thanaretin this case it may be more
natural to use energy (negative fitness); however, the §itoesvention is retained for consis-
tency.

Figure 4.7 shows the typical averaged evolution of a GA urnbisr form of selection.

Initially selection is directional, as the population meaoves towards the optimum phenotype.
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Figure 4.5: The theory is compared to averaged results égpdinamagnet with a low mutation
rate. The meand), variance ¢) and the correlation4) are shown averaged over 5000 runs,
with solid lines showing the theory. The weights were chdsem a uniform distribution in
the range€f0, 1] so that the optimum wad//2 on average. The other parameters wBre=

80, N = 120, pm = 0.001, 3, = 0.25 and uniform crossover was used with= 0.5.

After some time the population stabilizes around the optinphenotype and the phenotypic
variance decreases, as the population converges.

As in directional selection, the population may reach armaetween selection and mu-
tation, or in the absence of mutation the population willreually converge onto a state where
all population members are identical. The dynamical behavis significantly different here,
however, because solutions within the population are inrs&eegion of the search space,
while under directional selection the population moves i@ increasingly sparse region of
the search space. Depending on the particular distribatioh over sites, there may be many
local maxima of high fithess, whereas under directionalcsiele the only fithess maximum is
the optimum configuration.

The fitness measure defined in equation (4.44) provides ao@xte algorithm for solv-
ing the subset sum problem. The subset sum problem asks evtettet of numbers, here
the weight vecto{ Jy, Jo, ... , Jxy }, contains a subset which exactly sums to some goal value.
Posed as an optimization problem one wishes to find the suldgeh comes as close to the

goal value as possible. Clearly, the subset sum problemtie appropriately defined in terms
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Figure 4.6: The theory is compared to averaged results égpahamagnet with a moderate mu-
tation rate. The mearn), variance {) and the correlation4) are shown averaged over 5000
runs, with solid lines showing the theory. All the other slaparameters are as in figure 4.5,
except that the mutation rateps, = 0.005.

of alleles taking the values 1 or 0, denoting whether or noe@t is selected for the sub-
set. However, the problem can be cast in terms of Ising spialerua change in variables
X = %(Sf“ + 1). Then the optimum phenotyp®,,; can be chosen so that the goal value for
the subset sum problem %E{Ropt + > 0.

Although the subset sum problem is strictly-hard, it is pseudo-polynomial and for typi-
cal weight distributions can be solved in polynomial timeskgndard methods [17]. The GAis
not expected to outperform polynomial time algorithms drelaim of this study is not a com-
parison of methods on this problem. However, there areaglsiirongnpP-hard problems, such
as bin-packing, to which GAs have been successfully apf#ief It is hoped that a solution
of the dynamics for this problem might provide some insigitb ithese harder problems. This

problem is also of some interest as a model of stabilizingcsiegn in quantitative genetics (see,

for example, reference [7]).

4.8.1 Cumulants after selection

Under this fitness measure, the selection weight for Boltamselection is,

W = €XP (—% (R — Ropt)2> (4.45)



CHAPTER 4. FUNCTIONS OF AN ADDITIVE GENOTYPE 75

60

40

20 -

o
~0.2 0.0 0.2 Ropt

R/N

Figure 4.7: Evolution of a GA under stabilizing selectiongi@ged over 2000 runs. The
phenotype distribution is shown at generatiyr20, 40, and everyl0 generations up t@40.
The weights where selected from a uniform distribution ia tange[0, 1] and the optimum
phenotype wast,,; = N/4. The other parameters wefe = 80, N = 150,pm, = 0,55 =
0.025 and uniform crossover was used with= 0.5.
In general, the cumulants after selection can be deternmnetkrically from equation (3.5)
using Gaussian quadratures.

The weak selection expansion described in section 3.2.@stsuictive, as it shows the
contribution to each cumulant after selection expliciiihe Gram-Charlier expansion in equa-

tion (2.11) can be used to parameterize the distributionhehptypes. For the first three cu-

mulants up to first order iy and toO(1/P) one finds,

K = Ko+ (1o ) (20— 50 - ) + 00 (4.462)

KS = (1 — %) Ky — 203 (1 - %) (KQ — (Ropt — KQ%) + O(/?) (4.46b)

K5 = (1 _ %) K — 65, [(1 _ %) Ky + %(Ropt _ Kl)Kg} +0(8?) (4.46¢)

where; = BK,/N is a scaled selection parameter (this differs from the isgalised for
directional selection).

During the initial, directional dynamics whel; # R, the mean phenotype moves
towards the optimal phenotype, as expected. If the meawriisasing, then the third cumulant
becomes negative as it does in directional selection. H®add to reduced variance under

further selection and a loss of diversity within the popolat This effect is also observed in
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the correlation expression which is presented in the neticse

After a number of generations the mean becomes arbitrdaBedoR,,,; and the magni-
tude of the third cumulant is reduced as the population besomore symmetrical (as long
as mutation is weak). Ignoring higher cumulants, the rafithe variance after and before

selection at this stage is,

K3 1 1
22 - (4.47)
Ky  1+26s  p(1+46,)>

One can keep this ratio fixed by scalifign order to keepss constant and maintain selective

pressure. As in directional selection, this requires anemeed selection strength as the GA

converges.

4.8.2 Mean correlation after selection

The mean correlation after selection can be calculated s&ibded in section 4.6. The only
difference between the present case and the directiorsdtigai calculation presented there is
in the duplication term, defined in equation (4.33). The egpion in equation (4.38) can again
be calculated for larg&V by the saddle point method in a similar calculation to thaspnted

in appendix A. This yields the following expression ftyy,

1 — gooly(k)]) (2 1
Ag = qp[zg(g;“ b, O(ﬁ> (4.48)
where,
0(9) = [arp(R) exp( (R = Repe?) (4.49)

Here, ¢ (y) is defined in equation (4.30) andk) is found by substituting: for K7 in equa-
tion (4.31), wherek is defined,

2
k= /dRp(R) R exp (—Wﬂ(}z - Ropt)2> (4.50)
These expressions can be calculated by parameterizingsthiewtion of phenotypes using the
Gram-Charlier expansion given in equation (2.11).
Expanding ing shows the relevant contributions from each cumulant andowgetond

order one finds (ignoring terms 6f(1/v/N) and less),

Ag~ l—q+w [1 n 2652 (1 n Q(RoptK; K1) _ 2(R0ptI;2K1)K3>:| (4.51)
2
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where, is the scaled selection strength which was defined in sedt®i. This shows that
when the mean phenotype is increasing under selectionetigive third cumulant introduced
by selection results in an increased correlation undehdéurgelection.

Once the mean phenotype within the population stabilizesirat R, then the main
contribution to the increased correlation is through thelidation term, since for largév
the natural increase term defined in section 4.6 dependsaontiie mean phenotype. If the
population size increases exponentially wih however, it might be necessary to go beyond
leading order in the saddle point calculation given in apipeA. This refinement has not been

pursued here because the population sizes under congdesed generally of)(N) or less.

4.8.3 Best population member

One can estimate the best individual within the populatipragsuming population members
are independently sampled from an infinite population, asrilged in chapter 2, section 2.5.
For stabilizing selection the phenotype distributipf?) and fitness distributioP(F') are

related through equation (2.2) which yields the followingprssion,

P(F) = 2\ [ (p(Rop — VVNTF)) + p(Rop + VNTF)) O(-F) (452

where|F'| is the magnitude of the fitness (hefé < 0). Eventually, the phenotype distribution
is centred around®,,; and substituting the above expression into equation (20t@)Gaussian

phenotype distribution one finds,

2P [ dR
N |, VorK,

Other cumulants can also be included by parameterizingtikagiype distribution using the

Frest = erfc” ™' (R) R? exp(—R?/2K>) (4.53)

Gram-Charlier expansion in equation (2.11). In generas ititegral must be computed nu-
merically.

A good approximation can be achieved by using a flat disiobuwith the same height as
the phenotype distribution a,,;. This does not affect the best population member signifi-

cantly, since the population is locally flat in the neighlbmod of the mean phenotype when it
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is close toR,,;. Using four cumulants, the height at the mean whan= R, is,

1 Ky
H=—(1+—2 4.54
V21K, < 8K§> (4.54)

The fitness of the best population member is then,

1
SHP [
2 [MARR? (1 - 2HR)P!
N J;
—7TK2

T NP+ 1)(P+2)(1 + K4/8K2)? (4.55)

Fbest

This will be an upper bound, because there is a larger priityabithin the neighbourhood of
R, for a flat distribution than for a Gaussian, but it should lmeee@xact for largeP.

As discussed in section 4.5.3, the assumption that popualatiembers are independently
sampled from a continuous distribution may break down whermpbpulation becomes highly
correlated. This is remedied by using the smaller effeqiimgulation size expression in equa-
tion (4.27). There is also the possibility that when the paton becomes very narrow, the
fine grain structure of the phenotype space may become iamfiorThis feature of the search

is not described by the macroscopics under consideratitirismwvork.

4.8.4 Simulating the dynamics

The dynamics of the GA was simulated by iterating differeagaations describing the effect
of each operator on the first four cumulants and the meanlatiare within the population (see
sections 4.3, 4.4, 4.8.1 and 4.8.2). The theory is comparaddraged results from a standard
GA under stabilizing selection in figures 4.8 and 4.9, withighis taken uniformly from the
interval [0, 1].

The theory shows good agreement, although there is an wstiteage in the correlation
and a corresponding overestimate in the variance durinfateestages of the dynamics. This
can mostly be attributed to an underestimate in the inccea@eelation under selection, which
may be due to bias in the distribution of correlations, asudised in section 4.6.3.

Notice that the fitness of the best individual eventuallypdtcas shown in figure 4.9, and
this drop is accurately predicted by the theoretical refsath section 4.8.3 with the effective

population size chosen according to equation (4.27). Eh&s¢onsequence of the increased
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Figure 4.8: The theory is compared to averaged results fr@A ander stabilizing selection.
The mean(Q), variance ©) and the correlationZ) are shown averaged over 2000 runs, with
the solid lines showing the theory. The weights where sete@tom a uniform distribution
in the rang€g0, 1] and the optimum phenotype was,; = N/4. The other parameters were
P =180, N = 150, pm = 0, 3; = 0.03 and uniform crossover was used with= 0.5.

correlation within the population, which leads to a largeniver of duplicates and a corre-
sponding reduction in the effective population size. Trerd® becomes ineffective after this
point.

Unfortunately, the validity of the maximum entropy ansatswot ascertained for different
mutation rates, as in the case of the random-field paramalyhgation was not used in these
simulations because it was not thought to be of critical irtgpece when these experiments
were carried out and because this led to interesting betmaviben the correlation was very
high, as described above. The effect of mutation moving tpifation away from maximum
entropy, as described in section 4.5.2, may not be so imponiader stabilizing selection,
because the higher weights are not so critical when the ptipnlis not close to the extreme
of all ones (or all negative ones). However, further experita should be carried out in order

to test this view.
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Figure 4.9: The best population member each generationeisged over the same runs as
in figure 4.8. The solid line gives the theoretical result. tAs population becomes highly

correlated the number of independent population membeyssdieading to a corresponding

drop in fitness of the best individual.

4.9 Bit-simulated crossover limit

It is useful to define a limit which can be used if bit-simuthterossover (BSC) is an appro-
priate crossover operator (see the final paragraph of sedt®) [71]. This is usually only
the case if sites contribute independently to the fithesexXample under directional selection
on an additive genotype. This limit allows a microscopicadgdion of the population after
crossover, which facilitates the solution to the dynamarsnfiore involved problems in chap-
ter 7. It also allows the correlation after selection to biewdated directly from the selection
partition function. A nice feature of these results is thattdo not use the larg¥ limit, which
was required to calculate the increased correlation uralectson in section 4.6. However, to
decouple the average over the distribution of alleles ah sie it is necessary to use a weak

selection approximation.

49.1 Cumulants after selection

Under BSC, the population is brought straight to the fixeahpof standard crossover, which is
assumed to be the maximum entropy distribution describsédtion 4.5. In this case the dis-
tribution of alleles at each site decouples and it is posdibaverage the cumulant generating

function for selection over this distribution. For weak Bohann selection the/ P expansion
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described in chapter 3, section 3.2.2 is appropriate. Fectibnal selection the cumulants

after selection are then given by

Ky~ L [mg(pm»—%(ggfg;)] (4.56)

wherep(3) is now averaged over alleles, rather than the distributfgghenotypes,

N
p(B) = <exp (ﬂ > JiSi) > (4.57)
{Si}

=1

The alleles are distributed according to equation (4.18),

p(S)) = (1271')5(53 1+ (1;Ti>5(5i+1) (4.58)

Completing the average,

= B[ (5

i=1

N X on grmax
= HZi(B, 0) = exp (Z g IZ'" ) (4.59)
i=1 '

n=1

where Z;(, €) is the single-site partition function defined in equatior2®} andK,*** is the
nth cumulant of the maximum entropy phenotype distributighich is assumed to describe the
population after BSC. Thugy(/3) turns out to be the characteristic function for the maximum
entropy phenotype distribution. This gives the same redhidiined by averaging directly over
the phenotype distribution, which is shown in chapter 3tise@.20.

Writing the results in terms of the mean allele at each site,finds that the mean pheno-
type after selection is,

N
7; + tanh(8.J;)
Ki=Y U
! ; ' (1 + 7; tanh(8.J;)

N

_ p(2p) ZJ' ( i +tanh(28;) 7 4 tanh(8J;)
Pp?(B) “\ 1 + 7;tanh(28.J;) 1+ 7; tanh(B.J;)

This expression will be used again in chapter 7.

> (4.60)

i=1

4.9.2 Mean correlation after selection

As well as generating the cumulants after selection, it$s @lossible to generate the mean

correlation after selection. Although this provides a melegant means of calculating the
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correlation than the discussion in section 4.6, it is lesgegad and is only relevant in the BSC
limit considered here.
The mean correlation after selection can be generated mding a new term in the selec-

tion partition function,

1 & 0
4% =52 <1 = lim = log Zq(e)> (4.61)
where,
P
Zg(e) =) wq exp (S5) (4.62)
a=1

Again, for weak directional selection the¢ P expansion in section 3.2.2 is appropriate. The

averaged logarithm of the selection partition functiorhisrt given by,

(o Zy(e)) = tos(p(5.)) - 515 (4252 (4.69
where,
N-1
p(Be) = Zi(B,e) [] 2i(8.0) (4.64)
J#i

Here, Z;(3, ) is the single-site partition function defined in equatior2®d. Differentiating
out one finds,
1 i 7; + tanh(8.J;) 2
=N 1+ tanh(5.J;)

p(26) (1 — 72)(2 — cosh(28J;) — 7isinh(26J;))

+ NPp%(B) ; (cosh(BJ;) + 7 sinh(8J;))? (cosh(28.J;) + 7; sinh(28.J;))

wherep(p) is the characteristic function for the phenotype distidiutat maximum entropy

N

(4.65)

defined in equation (4.59). Notice that Bs— oo the first term becomes equal to the nat-
ural increase contribution to the correlation after séectvhich was previously derived in

equation (4.30)y — S in this limit).

4.9.3 Linkage disequilibrium for one-max

For the one-max problem, whege = 1 at every site, the correlation and variance are related

by a particularly simple relationship after BSC, since sifé terms in equation (4.2b) cancel.

KX — N(1 — q) (4.66)
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This relationship no longer holds after selection. In gilaii¥e genetics the deviation from
this equality is known as the second order linkage disdayuilin, which is denoted [11].
D = (5757 )a — (5MalS])a
i#]
= Ky—N(1—gq) (4.67)

Uniform crossover reduces this quantity by a factorl f 2.4 each generation on average,
where A is a parameter which determines how disruptive crossovéseis section 4.4). In
reference [54], Prigel-Bennett and Shapiro worked uniderassumption that this quantity
remains small, so that the variance remains fixed undera@ressUsing the expressions de-
rived in equations (3.21b) and (4.65) it is possible to exipde linkage disequilibrium after

selection in3. Only finite population terms of ordet” and above remain,

p

Ky — 4K
Dy= -2 (3K§+¥

3 ) +0(B°) (4.68)

2
P
Typically, 3 is O(1/v/N) and the cumulants a@(N), so this term is typicallyO(N/P). If
the population size i© (V) or greater then one might expect this term to be negligibiéafge
N. However, if less disruptive forms of crossover are used thes may not be the case, as

effects will be cumulative. Ofte® is smaller thanV, in which case the assumption that the

linkage disequilibrium is negligible will certainly be uninded.

4.10 Conclusion

Results due to Priigel-Bennett and Shapiro [53, 54] forriteag the effects of mutation and
crossover on the phenotype distribution for a problem witladditive genotype were repro-
duced. A maximum entropy ansatz was required in order toaetkrms not trivially related
to the given macroscopics and certain conditions underwthits ansatz might break down
were described. These results were then combined with navitsdor evolving the correla-
tion as an explicit macroscopic and this provided a morerateunmodel of the dynamics than
the simplification required in the previous formulation.eTiost important new result was the
expression describing the change in the mean correlatidergelection. This was divided into

two contributions — a duplication term represents incre&seorrelation due to the duplication
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of population members required in a finite population, whileatural increase term represents
changes in correlation as the population moves into a neiwrrarf state space. The second
contribution requires information about the mapping befvgenotype and phenotype and this
was provided by the maximum entropy ansatz. Conditions uwtieeh this result might break
down were discussed and it was suggested that further watkioed out to determine limits
of applicability.

Results were presented for directional selection with hggneous weights at each site
(one-max) and inhomogeneous weights at each site (themafidtdl paramagnet). The theory
agreed well with averaged results from a real GA, so longasiiximum entropy ansatz was a
good approximation. Unfortunately, this was not the caséhi® paramagnet with a significant
mutation rate, as mutation was shown to take the populatiay drom maximum entropy.
Stabilizing selection with inhomogeneous weights at edeh(the subset sum problem) was
also considered and again the theory showed good predpmiiver. As the population became
highly correlated, the effective population size was reduoy the existence of duplicates and
the fitness of the best solution eventually stopped inangeaaind began to degrade.

The results in this chapter are encouraging, although tescalso a realization that cau-
tion is required when using a maximum entropy ansatz. Assomgwith noa priori justi-
fication must always be checked for validity. Nevertheldiss,formalism was shown to give
powerful predictions and accurately accounted for finitpypation effects. The inclusion of
an extra macroscopic, the mean correlation within the @djmul, was certainly an essential
ingredient and marks an important departure from the iefipitpulation idealization which is
often used (explicitly or implicitly) in theoretical model

The work presented in this chapter provides the basis fdysing a number of other in-
teresting problems. In chapters 5 and 7 these results wilsbd to model the dynamics for a
simple learning problem, a diploid GA and a problem with temafly varying fithess. Some
work has also been done on two-well potentials, althoughisha difficult problem because the
population may become bi-modal and strongly non-Gaus$§iéh [n this case a cumulant ex-
pansion is not ideal, although the superposition of two Giandistributions (or approximately

Gaussian distributions) sometimes provides a reasonppleximation. In another interesting
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study, Priigel-Bennett used the formalism to model an ad&xA for the one-max problem by
extending the expressions presented in this chapter todeaovariances. The dynamics was
then described by the evolution of a non-interacting engewiipopulations [52]. This refine-
ment was necessary because fluctuations from mean behavmlarge when crossover no
longer suppresses the growth of higher cumulants undectsrie This study showed explic-
itly how the continued inclusion of more macroscopics (sssively higher cumulants) lead to
a steady improvement in theoretical predictions.

Although the power of the statistical mechanics formalisms been demonstrated, there
is still more work required to determine when the resultshis thapter may break down.
For example, if recombination is very non-disruptive oleséibn is strong then it is unlikely
that correlations will be sufficiently well distributed Wih the population for the correlation
expressions to work well. It should also be pointed out thastnof the work in this chapter,
and in the remainder of the thesis, is concerned with deyiemuations of motion for the GA.
No significant effort has yet been made to analyse these &sipres. The aim of this work is
to provide a compact description of the dynamics and onsehté been achieved it is hoped
that analysis of the resulting expressions will lead to gmeanderstanding and, hopefully,
quantitative results for optimizing performance. Thisdafoal is achieved to some extent in
the next chapter, where expressions are derived for thenaptraining batch size in a simple

learning problem, but further analysis is required to gagrergeneral insight.



Chapter 5

Noise corrupted fitness and a simple
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5.1 Introduction

Itis important to understand the effects of noise in the §sr@valuation, as this has implications
for many optimization and machine learning problems [4,443, The fitness measure used in
these problems often involves some uncertainty, or noise tal the limited or corrupted data
available for determining fitness. For example, one comnasagigm from machine learning
involves generalization of a mapping given an incompleteoéraining examples. This can
be achieved through supervised learning, which typicailplves the minimization of some
form of training error, such as the number of misclassifiaihing examples in a batch. The
training batch will typically not contain every example asdherefore susceptible to random
bias, or noise. Of course, there are other sources of errenatiempting to generalize, such
as overfitting to a particular training set or poor perforaenf the chosen learning algorithm.
Here, discussion is limited to the effects of noise in fitr@sduation.

It has previously been argued that GAs perform well in thesgmee of noise compared
to other search methods [13]. Indeed, it has recently beewrsthat a GA can outperform
simple local search methods on a class of additive probletated to one-max when fitness is
corrupted by noise [4]. In another recent study, Miller armldberg determined the effect of
noise on the change in mean fitness under selection for ancon Gaussian fitness distribu-
tion [44]. However, although they chose the population gizerder to remove finite popula-
tion effects, this choice was based on a conservative pgoed@ther than an exact result [20].
A more appropriate method for modelling selection on a fipidpulation was introduced in
chapter 3. The inclusion of finite population effects protebe of crucial importance when
characterizing the subtle effects of noise in the evalnatitcfitness.

In this chapter the statistical mechanics formalism is ke to describe selection on a
general stochastic fithess measure. For the case of ad@itivesian noise and weak Boltz-
mann selection, an increase in population size is shown npladely remove the effects of
noise. Since the other genetic operators do not depend anagbion size, this resizing effec-
tively maps the noisy dynamics onto the zero noise case. lidwy is tested on the one-max
problem corrupted by noise and agrees closely to averagadigdrom a real GA. Under

Boltzmann selection, Gaussian noise only affects finiteufajon terms and this emphasizes
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the importance of accounting for these terms accurately.

As well as introducing a general result for calculating tfieats of noise in fithess evalua-
tion, a simple problem from learning theory is considere@regalization in a perceptron with
binary weights. The perceptron attempts to learn from exesnproduced by a teacher per-
ceptron, also with binary weights. Baughalshow that this problem is similar to the one-max
problem corrupted by noise, so long as an independent badtshioning examples are pre-
sented each time the training error is calculated [4]. Timgkfies the analysis considerably,
as it avoids overfitting to a particular training set, allogithe dynamics to be solved under the
present formalism. A limit is then identified for which thetiopal training batch size can be

determined.

5.2 Selection on a stochastic fithess measure

Let the stochastic relationship between fitness and phpadbg described by a conditional
probability distributionp(F|R). If fitness is a deterministic function of the phenotype then
this distribution is a delta function, while for noise casted fitness the distribution has some
variance. Expectation values for the phenotype cumuldtes selection can be calculated as
described in chapter 3, section 3.2.1, except that the geésanow also taken over fitness,
which may no longer be a deterministic function of the phgpet Equation (3.5) provides the

result (forn > 0),

n oo P
K° = — lim 0 /dtf (:,7) (5.1)
0

wheref (t,y) now includes an average over the conditional fithess digtob,

fty) = / dRAF p(R) p(F|R) exp (—tw(F) %) (5.2)

Here,w(F) is the selection weight which was introduced in chapter &ice 3.2. For Boltz-

mann selection one choose$F) = exp(GF).
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5.2.1 Gaussian noise and Boltzmann selection

Consider the case where fitness is described by a Gausstabulisn centred around the

phenotype,

p(FIR) = —— exp (ﬂ) 5:3)

2 20

2wo
This is equivalent to directional selection on a phenotygreupted by additive Gaussian noise
with mean zero and standard deviation
For Boltzmann selection the integrals in equations (5.4 @n2) must be computed nu-
merically in general, as for the zero noise case. Howevesstitficiently smallgv/Ks + o2
the 1/ P expansion described in chapter 3, section 3.2.2 is appteprin this case, recall that
the cumulants after selection are generated by equatiéh (3.

)

7

e [roesr ) - 55 (

wherey(y, 5) now includes an average over the noise,

Y. B) = /deFp(R)p(F|R)eﬁF+vR

— o(B0)?/2 /dRp(R)e(ﬂJrv)R (5.4)

Using the cumulant expansion in equation (2.8) one findsttieatumulants after selection are

given by,
K* — lim [Z v+ ﬂ _eld?) eXp( (2 -2)(y+ ﬁ)%)] 55

The duplication contribution to the correlation after séitn (see chapter 3, section 3.2.3)

is similarly found to be,

o(00)?

Aqq ~ (1+ K28% — K358° + 0(8Y) (5.6)

The noise increases finite population effects but has nateffe the infinite population
result. For zero noise, equations (5.5) and (5.6) reducguatmns (3.20) and (3.22) as ex-
pected and the qualitative discussion in sections 3.3.3&hd still holds. Selection introduces

higher cumulants into a finite population, which increas@s/ergence under further selection
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and leads to reduced performance in general. The additioroise to the fithess measure
increases the finite population effects and correspongitigd performance will fall off even
more rapidly. For Boltzmann selection and Gaussian noiseighsolely a finite population
effect.

Under other forms of selection or noise there may also besyatic effects on the infinite
population results due to noise [44]. These effects woulthbeh harder to characterize in a
simple way, although the present formalism is still abledousately determine the change in
each cumulant under selection. Boltzmann selection pesvédparticularly transparent model
for understanding the effects of Gaussian noise precisatause there are no effects in the

infinite population limit.

5.2.2 Resizing the population to remove noise

The detrimental effects of Gaussian noise can be removdtkeinveak selection limit by in-

creasing the population size appropriately,
P = Pyexp[(B0)?] (5.7)

whereP, is the population size for zero noise. Hefezan depend on the phenotype cumulants
in an arbitrary way, but must be independent of the noiseceStine other genetic operators do
not involve finite population effects, this choice of pogida size maps the whole dynamics
onto the trajectory of a GA without noise and with populatgize Py. In section 5.4.4 it will

be shown how this population resizing allows the optimathatize to be determined for a
simple learning problem.

In the absence of noise, the selection strength should teenhaversely proportional to
the standard deviation of phenotypes within the populatéee chapter 3, section 3.3.2). The
scaled selection strength is defindd= [;/./k2, wheref; is fixed. If this scaling is used
and the noise i®)(v/N), then the population size defined aboveigPye’) and the GA can
remove noise without an excessive increase in computdtion t

In a more realistic scenario only the measured, noisy fitwessd be known. Choosing the
selection strength inversely proportional to the standasdation of fithess (rather than pheno-

type) leads to the selection strength varying with the ledeloise. In this case the population
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resizing expression in equation (5.7) does not apply, asenwill affect terms other than the
finite population corrections to equation (5.5). Howeee, tesizing expression can be applied
with any fixed schedule for determining the selection stilencaling the selection strength
inversely with the standard deviation of phenotypes is\edent (on average) to choosing the
schedule which is most appropriate for a GA without noise &itld population sizeP,. Of
course, the results derived here do not depend on any partgheme for choosing the selec-

tion strength.

5.3 Noisy one-max

Consider the one-max problem defined in chapter 4, sectibndnder noisy fitness evalu-
ation the expressions for crossover and mutation are ugedarbecause noise only affects
the selection procedure. The expectation values for thautants after selection are shown in
equation (5.1) and it only remains to calculate the coriatatfter selection. This calculation
almost exactly follows the discussion in section 4.6. Thiy difference is in the calculation
of Ag, which is defined in equation (4.33), since the averagesuatans (4.37a) and (4.37b)
now include integrals over the noise distribution. For Géars noise and Boltzmann selection
the integrals are simply Gaussian integrals and one findsalia(1/P), Aq is increased by a
factor ofe(#2)*. Notice that this is the same factor which appears in theefppdipulation terms
for the cumulants after selection, given in equation (5Bgcall that this expression is only
exact for weak selection and low noise. To improve accuragimulations, the term which
does not involve the correlation (see equation (4.35a))beadetermined through numerical

integration, where now there is also an average over noise.

5.3.1 Simulating the dynamics

The dynamics of the GA can be simulated by combining the seferesults derived in the pre-
ceding sections with the crossover and mutation resuligetem chapter 4, sections 4.3 and
4.4. Bit-simulated crossover is used (see the last paragrpection 4.4 in chapter 4), which
allows the dynamics to be described in terms of only two patams, the mean phenotype and

correlation within the population, and therefore avoids tieed to follow higher cumulants.
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The higher cumulants are still required before selectiahthrse are calculated by the maxi-
mum entropy ansatz described in section 4.5. The resulsepred here can be generalized to
describe a GA with uniform crossover using the methods dgesl in chapter 4.

In figure 5.1 the theoretical results are compared to avdreggeilts from a GA for a typical
choice of parameters. Trajectories are shown for the mednvariance of the phenotype
distribution. The zero noise case is compared to noisy omewitho? = 6x5 ando? = 12k,
showing how increased noise leads to reduced performarice.ndise variance was chosen
proportional to the phenotypic variance as this providesnttost natural units for measuring
noise. This may seem a rather artificial choice, although @amyrsituations the noise will
fall off as the mean phenotype increases (for example, shisie for the perceptron problem
considered in the next section). In view of this, a fixed naiggance might be an equally
artificial construction. These considerations are notititat importance here, however, as the

aim is to verify the theoretical model and a more realistination is considered in the next

section.
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Figure 5.1: The theory for noisy one-max is compared to tesweraged over 1000 runs of a
GA. The meank;) and variancex>) are shown, with solid lines giving theoretical predicgon
The result for zero noiseX) is compared to results with additive Gaussian noise ohgtre
0% = 6k (0) ando? = 12k (A). The other parameters wefé = 155, 3; = 0.3, pm =
0.005, P = 100 and bit-simulated crossover was used.

Notice that the noise variance is significantly greater ttenphenotype variance in this

example, which emphasizes how robust the GA is even with lagkls of noise. For very
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high levels of noise the theory breaks down however, prgbabtause a weak selection, low
noise approximation is required to calculate the duplicatontribution to the correlation after
selection. There may well be a better approximation fortenis, although the approximation
used here seems to be accurate for reasonable levels of hoisey also be the case that when
noise levels are high the dynamics do not average well, sivare are large fluctuations from

mean behaviour.

5.4 A simple learning problem

Generalization in a perceptron with binary weights prosidesery simple example of a learn-
ing problem. The perceptron comprises one computatioriglinrhis case a McCulloch-Pitts
neuron [41], which fires if the summed inputs exceeds somaefireed threshold value. The
perceptron is trained on examples produced by a teachezpiern, also with binary weights.
This problem has received some considerable attentiotudimg a thermodynamic study of
the state space in the limit of large problem size which shiasthere is a first order tran-
sition to perfect generalization as the number of trainikgneples is increased [26, 62]. The
threshold number of training examples at which this trémsibccurs iSO (N) and above this
threshold the teacher is the only perceptron compatible aiery training example (although
a learning algorithm may still fail to find this solution). Bev this threshold overfitting is pos-
sible, so that although the perceptron learns the trairgtgt sloes not necessarily generalize
well.

Here, the training error (the number of misclassified trajréxamples) is calculated using
an independent batch of training examples for each evaluafihis avoids dealing with cor-
relations between a particular training set and perceptwithin the population, which would
otherwise make the analysis difficult. The GA will typicatiyquire more tha® (V) training
examples in total and overfitting is not expected to be a prabl

Baumet al have shown that this problem is very similar to the noisy oraex problem
described in section 5.3 [4]. They analyse a GA which usesm & truncation selection and
show that the computation time of the GA scale©437 logZ N) on one-max, if the population

size is chosen to be sufficiently large so that the corredatioe to duplication is negligible.
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They also show that this scaling is not affected when noisk wi~ /N is introduced into

the fitness evaluation. Under the selection method used tiergopulation improves by the
same order each generation as under truncation selectibthiaralgorithm may therefore be
expected to scale in the same way as the GA used by Baainunder similar conditions. The
results described here are more general, however, as theyt dely on a large population size

and the full dynamical trajectories are predicted.

5.4.1 The perceptron

The perceptron has Ising weighis € {—1, 1} (encoded in the genotype) and maps an Ising

training pattern{¢!'} onto a binary output (with zero threshold),

N T
O = sgn (Z Sin) sgn(z) = { ! =0 (5.8)
i=1

-1 z<0

where N is the number of weights and labels patterns. L€T; be weights of the teacher
perceptron and; be weights of the student. The stability of a pattern is a nmeasf how well
it is stored by the perceptron and the stability of patterior the teacher and student aké

andAf respectively,

N N
1 1
A =—=Y T A= — Siclt (5.9)
The training error will be defined as the number of patteressthdent misclassifies,
AN

1 >0
E =Y O(-AlAY) O(z) = - (5.10)

u=1 0 <0

whereAN is the number of training patterns presented. Here, a nesh lsdtraining examples
are presented each time the training error is calculated.trBlining error plays the role of an
inverse fitness in the GA.

Define the phenotyp& to be the overlap between student and teacher. It is podsible

choos€l; = 1 at each site without loss of generality, in which cé&ses defined,

1
R=+ Z S; (5.11)
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This is simply the phenotype of the one-max problem (norzedlito be of order unity).

In order to apply the selection results from section 5.3 itdcessary to find an expression
for the training error in terms of the phenotype. If a statadty independent pattern is pre-
sented to a perceptron, then for lalyethe stabilities of the teacher and student are Gaussian

variables each with zero mean and unit variance, and withramnceR,

1 (—(Af — 2RAAg + A§)>
= ex
iR Y 2(1— R?)

The conditional probability distribution for the trainirgror given the overlap is,

AN
p(E|R) = <5(E = @(-AfAéL)) > (5.13)
p=1 {

A AL}

p(Ata AS)

(5.12)

where §(z) is the Dirac delta function and brackets denote an average siabilities dis-
tributed according to the joint distribution in equation1®). The characteristic function for

this distribution is,

plR) = [dEp(EIR)e”

AN
= <H exp [t®(—A€‘Aé‘)}>
{AY.AL)

pn=1
| AN
= (1 + ;(et —1) cosl(R)> (5.14)

The logarithm of this characteristic function generates dbmulants of the distribution (see
equation (2.7)). The higher cumulants &@\N) and it turns out that the shape of the distri-
bution is not critical so long asis O(1). A Gaussian distribution will be a good approximation

in this case,

_ _ 2
p(E|R) = exp(M> (5.15)

2 202

2no

where the mean and variance are functions of the overlapaeststudent and teacher,

E,(R) = gcosfl(R) (5.16a)

0*(R) = E4(R) (1—E§§f)> (5.16b)

Here, E, (R) is the generalization error, which is the probability of atéssifying a randomly

chosen training example, multiplied by the batch size (sreve chosen proportional ¥
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here). The variance expresses the intuition that thereise mo the error evaluation due to the

finite size of each training batch.

5.4.2 Selection

In the previous section a conditional probability disttiba relating the training error (negative
fitness) to overlap (phenotype) was derived. The cumulaintseooverlap distribution after
selection are found from equation (5.1) and the integralstrba calculated numerically in
general. All the integrals where computed by Gaussian agiachs in the simulation results
presented in section 5.4.5 [51].

For weak selection and larg¥ it is possible to apply thé /P expansion described in
chapter 3, section 3.2.2. Since the variance of overlapsiwibe population iO(1/N) it
is reasonable to expand the mearp@f/|R) around the mean of the population in this limit
(R ~ K,). Itis also assumed that the variancepOF | R) is well approximated by its leading
term and this assumption may break down if the noise gradiecbmes important. Under

these simplifying assumptions one finds,

Eq(R) ~ A7N <cosl(K1) - %) (5.17a)
1
o? ~ % cos 1 (K,) (1 — %cos_l(K1)> (5.17b)

Now the problem has been transformed into directional Selecorrupted by Gaussian
noise, which was described in section 5.2.1. The only sizaniti difference is that here the
standard deviation of the noise is a function of the meanlawdphenotype) within the pop-
ulation. Following the calculation in section 5.2.1 clgsa@ne finds that the cumulants of the

overlap distribution after selection are,

K5 = lim 2 i (v kA)K; T (i (2= + kﬁ)iKz')] (5.18)

7—0 87” — 7! 2P par 7!

where,

P (5.19)

/1 — K12
This is equivalent to selecting on the phenotype directye (squation (5.5)) wheres is the

effective selection strength amd & is the effective standard deviation of the noise.
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The calculation for the correlation after selection almesactly follows the derivation
in chapter 4, section 4.6. As in the case of noisy one-max tie difference is in theAgq
term defined in equation (4.33). Making use of the weak selectarge N approximation
for p(E|R) yields the same result as for noisy one-max (see sectionwstB)the effective

selection strength and standard deviation defined above.

5.4.3 Resizing the population

The noise due to the finite size of each training batch inee#se magnitude of detrimental
finite population terms in selection. In the limit of weakesglon and large problem size
discussed in the previous section, this can be compensattday fincreasing the population
size according to equation (5.7). This expression is vélidd effective selection strengts

is independent of batch size (which determines the noisagtn). For this to be the cage
must be chosen proportional tg, which is the most natural scaling in any case because the

training error is proportional ta. It is then convenient to rewrite equation (5.7),

P=F exp(%) (5.20)
where,
Ao = Mfo)? = (/\ﬁ;QN cos L(K,) (1 — %cosl(K1)> (5.21)

Here, )\, is independent ok because of thg scaling described above. ChoosiRgccording
to this expression removes the effects of noise due to the tiaitch size and in principle maps
the dynamical trajectory onto the infinite training set dyies (wherefl = E,(R)) for a GA
with population sizeP. Typically 5is O(1/+/N) so that the exponent here is of order unity, in
which case this population resizing will not blow up with ieases in problem size (for fixed
A). This is consistent with the result due to Baetral, although they provide a rigorous proof
for the scaling of their algorithm [4].

Both the selection strength and noise variance will change time, and it would there-
fore be necessary to change the population size each generabrder to apply the above

expression. However, this is problematic when the popmradize has to be increased, as this
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leads to an increased correlattorin this case the dynamics will no longer exactly map onto
the infinite training set situation.
Instead of varying the population size, one can fix the pdjmuasize and vary the size of

each training batch. In this case one finds,

Ao

Figure 5.2 shows how choosing the batch size each genemtimording to this expression
leads to the dynamics converging onto the infinite trainetgrajectory of a GA with a smaller
population. The infinite training set result for the largespulation size is also shown, as this
gives some measure of the potential variability of trajgesavailable under different batch
sizing schemes. Any deviation from the weak selectionglafdimit is not apparent here.

In these experiments the effective selection strength waled inversely to the standard
deviation of the overlap distributions(= 5s/k./k2). This is a rather artificial choice, as it re-
quires information about the overlap statistics which wiaudt be known in general. However,
as discussed in section 5.2.2, the population resizinguatezn (5.20) and the corresponding
batch sizing expression in equation (5.22) are valid givenfexed schedule for determining
selection strength. The choice of selection scaling useel iseequivalent (on average) to an
appropriate schedule for the infinite training batch prohléut it should be emphasized that
these results do not rely on any particular scheme for chgastlection strength (as long as

the effective selection strengilp is independent of the batch parametgr

5.4.4 Optimal batch size

In the previous section it was shown how the population smédcbe increased in order to

remove the effects of noise associated with a finite traibisgh. Fitzpatrick and Grefenstette
also identified the existence of such a tradeoff betweenlptipn size and batch size, and they
suggested that there is often an optimal choice of batch(sizeeasurement accuracy) [13].

If the population resizing in equation (5.20) is used, theis ipossible to identify such an

This is a problem for a real GA which produces a finite popatatafter selection. The theoretical model
described in chapter 2, section 2.3 does not have this pmlale the population size is infinite after selection. In a
real GA one might overcome this by creating a large but finieytation after selection, some members of which
could be discarded before the next round of selection.
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Figure 5.2: The mean overlap between teacher and studdminwie population is shown each
generation, averaged over 100 runs of a GA training a binarggptron to generalize from
examples produced by a teacher perceptron. Training béeb were chosen according to
equation (5.22), leading to trajectories converging oht itfinite training set result where
E = E,(R). The solid curve is for the infinite training set result with = 60 and finite
training set results are fd? = 90 (d), 120(¢) and163(A). Inset is the mean choice of batch
parameter X) each generation. The dashed line is the infinite trainingesailt for P = 163,
showing that there is significant potential variability rHjectories under different batch sizing
schemes. The other parameters wire= 279, 5, = 0.25 andp,, = 0.001.

optimal batch size, which minimizes the computational obstaining error evaluations. This
choice of batch size will also minimize the total number afrimg examples presented when
independent batches are used.

It is assumed that computation is mainly due to error evalnaind that other overheads
can be neglected. There afeerror evaluations each generation with computation timme fo
each scaling as. If the population size each generation is chosen by equéii@0), then the

computation timer, is related to batch size by,

Te(A) o A exp(%) (5.23)

The optimal choice of\ is given by the minimum ofr., which is at\, (defined in equa-

tion (5.21)). Choosing this batch size leads to the popratize being constant over the
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whole GA run and for optimal performance one should choose,

P = Pye! ~ 2.73P, (5.24a)

A= A (5.24b)

whereP, is the population size used for the zero noise, infinite ingiset GA with the same
dynamical trajectory. Notice that it is not necessary teedrine P, in order to choose the
size of each batch, sincg, is not a function ofP, (see equation (5.21)). One of the runs in
figure 5.2 is for this choice o’ and ), showing close agreement to the infinite training set
result P = 163 ~ Pgye).

Unfortunately, the optimal batch size is a function of theameverlap within the pop-
ulation, which would not be known in general (although it Icobie estimated from training
error statistics). However, the initial optimal batch sprevides an upper bound, sineé is
a monotonically decreasing function of the mean overlaytir§eXk’; = 0 in equation (5.21)

provides this bound,
Ao < 2(AB)’N (5.25)

Recall thats is proportional tol /A, so that the right hand side of this expression is indepen-
dent of\. The selection strength is typicaliy(1/+/N) and the optimal batch size is therefore
typically O(N). This is a somewhat intuitive result, as it shows how morerehould be ex-
pended in determining fitness (through increasing the tsife) when the resulting decisions
are more critical (through stronger selection).

Statistics describing the overlap distribution changerinrtrivial manner each generation
and their evolution can be determined by simulating the dyos, as described in the next

section.

5.4.5 Simulating the dynamics

The dynamics can be modelled by combining the selectioritsefsam section 5.4.2 with the
expressions for mutation and crossover derived in chaps&ations 4.3 and 4.4. Bit-simulated
crossover was used, as this allows the dynamics to be deddriierms of the mean overlap

and correlation alone, which simplifies the selection nuesesind avoids the need to follow
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higher cumulants. Although the dynamics only require teeation of expressions for these
two macroscopics, the higher cumulants are required beskleetion and these are obtained
from the maximum entropy ansatz described in section 4.®s@&esults can be generalized
to other forms of crossover by the methods developed in ehdpt

Figure 5.3 shows the averaged trajectories of the mean amahwa of the overlap dis-
tribution and figure 5.4 shows the overlap of the best satytior a typical choice of search
parameters. The infinite training batch result, where= E,(R), is compared to results for
two fixed batch sizes, showing how performance degradeseasatch size is reduced. The
theoretical curves agree well, although there is a sighéuedtimate in the maximum overlap
towards the end of each run, possibly for the reasons disdusshapter 2, section 2.5. There
is also a slight systematic error in the curves for the sredatch size. As the batch size is
reduced further the theory breaks down. This is mostly fergame reasons as discussed in
section 5.3.1. The duplication contribution to the inceshsorrelation after selection required
the use of a weak selection, largé approximation and the dynamics may not average well
when fluctuations from mean behaviour increase. It is alssipte that the Gaussian approxi-
mation forp(E|R) breaks down for smal\, in which case it would be necessary to expand the

noise in terms of more cumulants.

5.5 Conclusion

The selection calculation has been extended to descrilmehastic fithess measure. This was
motivated by the observation that there may be noise in thieiation of fithess for a number of
optimization and machine learning problems. A result wagsdd for the expected phenotype
cumulants after selection given a general selection sclardean arbitrary stochastic fithess
measure. For weak Boltzmann selection and additive Gaussige it was possible to write
down the result for each cumulant after selection in closeahf In this limit a simple increase
in population size removes the effects of noise in every damwand in the duplication contri-
bution to the correlation after selection. The theory agneell with averaged results from a
GA for the one-max problem corrupted by Gaussian noise.

To show how this work may be relevant to machine learningreks learning problem
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Figure 5.3: The theory is compared to averaged results fr@A &raining a binary perceptron
to generalize from examples produced by a teacher perceplioe mean«;) and variance
(k2) of the overlap distribution are shown averaged over 1066,nwith the solid lines showing
theoretical predictions. The infinite training set reskl) s compared to results for a finite
training set withA = 0.65 (O) and A = 0.39 (A). The other parameters weré = 155,
Bs = 0.3, pm = 0.005, P = 80 and bit-simulated crossover was used.

was introduced — generalization in a perceptron with binagjghts. The perceptron learns
from examples produced by a teacher with the same archigectio simplify matters, a new
batch of training examples were chosen each time the t@imiror was calculated. In this
case the training error is a random variable distributedirzdathe generalization error. For
large problem size the training error distribution was shadw be well approximated by a
Gaussian distribution, whose effective variance increasethe training batch size is reduced.
The full dynamics was simulated by following the distrilautiof overlaps between the teacher
and perceptrons within the population. The theory agreeskty with averaged results from a
GA for a number of batch sizes. In the limit of weak Boltzmasmetestion and large problem
size it was shown how the population size could be chosengauération in order to remove
the detrimental effects of noise due to the finite size of deaihing batch. This population
resizing was then used to determine the optimal batch side generation, which minimized
computation time as well as the total number of training exasrequired.

It might be instructive to extend this work in a number of dtiens. The binary perceptron

problem required a new batch of training examples for eanr evaluation and it would be
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Figure 5.4: The maximum overlap between teacher and stiglsihdown each generation, aver-
aged over the same runs as the results presented in figuréh& 3olid lines show theoretical
predictions and the symbols are as in figure 5.3.

interesting to consider the case were batches are recyelting to the possibility of over-
fitting. One could also consider a multi-layer perceptranwhich case the phenotype might
be a vector of order parameters describing overlaps betdiéferent nodes within the teacher
and student. This would be especially interesting as the ®Aldvhave to break symmetry
within the space of solutions and this symmetry breakingld/bave to be incorporated by the
theory. It might then be interesting to compare the dynamidhe GA with on-line gradient
descent in networks with continuous weights, for which etbform expressions describing the
dynamics have recently been obtained [59]. There are mdngy situations where the fitness
measure has a stochastic component and it is hoped thatsthiesrdescribed in this chapter

will provide a framework for analysing such problems.
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6.1 Introduction

Although a variety of problems have been considered undeptbsent formalism, these have
so far only come from the rather restricted class whereeallef the genotype contribute ad-
ditively to the phenotype. An interesting question is to hel far the formalism can move
beyond this restriction, in order that it may describe tdudyd problems. In this chapter the
formalism is applied to the problem of storing random binpagterns in a perceptron with
binary weights. This problem isp-hard in the strong sense if the number of patterns is pro-
portional to the number of weights and no algorithm existéctvitan solve it in polynomial
time [50]. It is an appropriate problem to study because tAdfi@ds optimal solutions with
reasonable efficiency, although simulated annealing séeins the most effective algorithm
to date [35, 48, 55]. The perceptron is also naturally endadea binary vector, so there are
no representational difficulties. This is in marked corittaghe travelling salesman problem,
which is one of the most commonly ussé-hard bench marks.

Although no solution is found for the dynamics of the GA in geal, the effect of mutation
can be accurately modelled under certain assumptions. Bseimportant assumption is that
individuals within the population are equally likely to &akny configuration given their par-
ticular training error. That is, the state space is not lbidseards a particular kind of solution.
Of course, the population correlates under selection asdgta potential source of bias, but
because mutation does not involve interactions betwederelift individuals this effect is not
necessarily critical. The assumption of an unbiased ptipalallows the cumulants after mu-
tation to be calculated in the limit of large problem sizengghe replica method to average
over random disorder in the training patterns. For low cepdlee replica symmetric solution
reduces to the much simpler annealed result, which wasqurglyi derived in reference [55] for
the simplest error measure considered here. This limivalidosed form results for mutation.

Unfortunately, the assumption that taking an unbiasedaaeeshould accurately model
mutation in general is shown to be unjustified. History @ffgaday an important role in the
dynamics of mutation, so that the training error alone igfiiient to accurately characterize a
perceptron configuration. This seems to be most importathéosimplest training error, which

is the number of misclassified examples. For a training evtoch also includes information
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about the stability of each unstored example the theory dsvshto characterize the mean
change under mutation more accurately, although not pgerfégiven this evidence, it seems
unlikely that an accurate characterization of mutationossible in general without including

some extra features into the theory.

6.2 Storing random patterns in a binary perceptron

The perceptron was introduced in chapter 5, section 5.4renthe problem of learning patterns
produced by a teacher perceptron was considered. Hereetbeptron attempts to store a set
of random and uncorrelated binary mappings. Recall the itlefirof the perceptron given in

eqguation (5.8). The condition for pattesito be stored is,
N
0" St >0 (6.1)
i=1

where patterns map an Ising vector with componéfite {—1,1} onto a single Ising output
O* € {—1,1}. The role of a training algorithm is to find the weights whielisfy this inequal-
ity for as many patterns as possible. Since the patternsad®omly generated binary vectors,

a trivial gauge transformation can be applied without civamthe nature of the problem,
& =01¢)! (6.2)
Here, ¢! € {—1,1} is also a random Ising spin which satisfies the following dtios,

lim (¢f'); = 0

lim
N—oc N—oo

(6167 = o (6.3)

where brackets denote site averages@fids the Kronecker delta,

1 =v

= a 6.4)
0 pu#v

Often, the patterns are required to have a finite basin adibn, in which case the stability

of each patterm\# is required to exceed some thresh@ld

N
1
A= N5l >T (6.5)
N i=1
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Here, the factor ofl /v/N is chosen to make the stability of order unity in the typicase.
It has been shown that the optimal threshold for learningftisnogreater than the threshold

required at retrieval [34, 48, 55].

6.2.1 Training error

It is necessary to define a training error which plays the oblaegative fitness in the GA.
There is no simpler phenotype available from which the ingjrerror can be derived and it is
therefore necessary to model the distribution of errorsctly. For the generalization problem
introduced in chapter 5, the number of incorrectly classifiatterns was used. Storage is often
a harder problem for the learning algorithm because theattare completely random and
uncorrelated, and therefore contain less structure thasethbroduced by a teacher. To store
O(N) random patterns it seems to be necessary to include sonrenatfon about how far
each pattern is from being stored. One form of training endoich incorporates this feature is
defined by,

AN
E =) w(T —A") where w(z) = z'0(z) (6.6)

p=1
Here, AN is the total number of pattern being stored anig called the capacity Forl = 0
this training error reduces to the number of misclassifidtepas and this will be called the
step error. With = 2 this is the error used in the most successful algorithm te,dslich is a
simulated annealing procedure due to Patel [48]. This wiltalled the summed square error.

The whole set of patterns is presented to the GA each timedhmérty error is calculated.

6.2.2 Storage capacity

Krauth and Mézard have determined the critical capacityhefbinary perceptron in an exten-
sion to Gardner’s seminal work on the perceptron with camtirs weights [15, 16, 37]. They
find that for random patterns a perceptron can store up. A patterns (for largeV), where
A ~ 0.83 is the critical capacity. This result has been confirmed migakly to within a high

degree of accuracy [48]. They employed the replica methdi;wis often used in statistical

The capacity is usually denoted but )\ is used here to avoid any ambiguity.
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mechanics to average over quenched random disorder. Ktrsigtive to consider their work
here, as the calculation is closely related to the mutatideutation described in section 6.3.
In an ingenious formalism, Gardner showed how one couldaaecover the configuration
space of the perceptron in order to calculate the numberatésicompatible with a set of
training examples. The volume of the configuration spacepadiiole with the condition in
eguation (6.5) is given by,
AN
Q= <H G)(A“—T)> (6.7)
el {s:}
where the brackets denote an average over all weight coafigns. The logarithm of this
volume corresponds to the entropy of configurations, whsdiissumed to be a self-averaging
quantity. The patterns are quenched, or fixed, random \@eatwd the average over this ran-
domness can only be taken over a self-averaging quantitys itthe familiar problem in
statistical mechanics of averaging over a logarithm.
To compute the average over the logarithm the replica methaded (see, for example,

reference [43]). This makes use of the following identity,

(log Q) = lim -t

n—0 n

(6.8)

where brackets denote an average over the quenched paftbensiethod assumes validity of
the analytical continuation from positive integer valués ¢through the reals to zero. The right

hand side of equation (6.8) can be calculated for integgy makingn replicas of the system,

(1)

- <H<H@(ZS§‘§§L—T\/N)> > (6.9)
=1\ 58 ey

(")

wherea labels replicas. The inner average is over the weight coriigun for each replica
while the outer average is over the quenched patterns. Toelation can now be completed
by commuting the order of averaging and using the saddlet po@thod in the limit of large
N [40]. Some care must be taken when exchanging the order bfrilte n — 0 andN — oc.
This exchange of limits can be justified in the closely rela®K spin-glass problem and is

thought to also be valid here [28].
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To complete the calculation, some assumption has to be nizmé the relationship be-
tween replicas. The simplest assumption is to assume symbetiveen replicas. In this case
the order parameter describing the correlation betweditasfakes a single value. For contin-
uous weights the correlation approaches one and the entamishes as the capacity increases
to the critical capacity. In this case the replica symmaedrisatz is consistent, although only
up until this point [6, 15]. For Ising weights the entropy isres before the replica symmetric
correlation reaches one and then becomes negative, iimgdiaat unphysical interpretation. In
fact, Krauth and Mézard show that consistent results ataired by one step of symmetry
breaking according to Parisi’s ansatz [37]. The replicarsgtny breaking occurs at the critical
capacity). ~ 0.83 where the replica symmetric entropy vanishes. More inteig®ehaviour
is observed by introducing a temperature and moving intc#m®nical ensemble. This leads
to a physical interpretation of replica symmetry breakimgerms of ergodicity breaking, where
many meta-stable states are formed whose escape timegedwith the problem size.

A dynamical study by Horner shows that simulated annealmgenters meta-stable states
for all capacities of) (), which is compatible with the problem beimgp-hard for all capac-
ities of this order [34]. He concludes that the replica trezit, which is essentially an equi-
librium thermodynamics approach, is not sufficient to cepll of the interesting dynamical
features of the training algorithm. This also provides son@divation for studying the dy-
namics of search by other learning algorithms, such as thelGras been proposed that the
GA may be able to avoid the meta-stable states which trap $ezach procedures, although
simulated annealing has proved to be the more successhtilthlg to date [35, 48, 55].

Replica symmetry is thought to hold for capacities right ugilutthe critical capacity in
this problem. In the following section the mutation cal¢igia will be carried out under the

assumption thak <« A, and the replica symmetric assumption is assumed to be valid.

6.3 Microcanonical mutation calculation

From chapter 2, section 2.3, recall that under the presemiaiism mutation can be carried out

within the infinite population produced by selection. Toccddte the effect of mutation on the
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distribution of training errors within this population,i first necessary to determine a condi-
tional probability for the training error after mutation terms of the error beforey(Ep, |E).

The distribution of errors within an infinite population efimutation is then given by,

p(Em) = / AE p(B)p(En| B) (6.10)

The cumulants after mutation can be obtained from the cteaisiic function of this distribu-
tion. To calculatep(Ey, |E) it is necessary to make some assumption about the micrascopi
configuration of perceptrons within the population. It viié# assumed that configurations are
typical of perceptrons with a given training error, in whicasep(E,|E) can be computed
by an unbiased average over the entire configuration spabis. i essentially maximizing
entropy with a constraint on individual configurations gatlthan the entire population, and
corresponds closely to the microcanonical formulationtaftistical mechanics.

Let A# and A%, be the stability of patterp before and after mutation respectively,

1 N
[/ M
AF = \/_ ZE 1 Szfl (6.11)

1 with probability 1 — pp,

N
1
A= =Y MSiet M = (6.12)
VN = Z —1 with probability p,

Here,M; are random variables which determine the probability of myiatdeing flipped under
mutation. Recall the definition of training error given iruagjon (6.6). If the distribution of
weight configurations is unbiased, then the conditionababdlity p( Er, | E) is given by,
QEn E)

Q(E)

0B =, w(T = AR)) 8(E = 32, u(T = A)) s, (6.13)
- (O =32, wi(T — A))) sy .

whered(z) is the Dirac delta function and the angled brackets denote@mge over all weight

p(Em‘E) =

configurations and mutation variables. It will be assumedl ttte cumulants of this distribution

are self-averaging. The cumulants are generated from ¢fagitbm of a characteristic function
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(see equation (2.7)) which is defined,

p(t|E) = /dEmp(Em|E)etEm
(et 2 u(T—Am) IE — Zu w (T — AM))){Si,Mi}
(0(B =X, wi(T — A")))is,y

— Z ((é ?) (6.14)

wherep(t, E) is the characteristic function of the joint distributiorr the training error before

and after mutation. Taking the logarithm decouples thetifsacso that it is only necessary
to average the logarithm of the numerator (the logarithmhefdenominator is retrieved for
t =0).

6.3.1 Replica symmetric result

Recall the replica trick, which made use of the identity in&tipn (6.8).

"(t, E) —1
log p(t, E) = lim P E) — 1 (6.15)
n—0 n
Writing the power as a product over replicas one finds,
n
(4, B) =[] <etzu“l(TAﬁ‘a) S(E = w(T - A“O‘))> (6.16)
a=1 o

{sg, M}

1

Now the average over quenched patterns can be computed bpgrekeplica symmetric
ansatz, as shown in appendix B. The calculation is for la¥gand relies on the mutation
probability being of order unity in this limit, which is unfiunate as a smaller probability is
often used in practice. It is unclear how well this resultrappnates the effects of weaker
mutation, although any differences are probably manitestéhe higher cumulants.
Eventually one finds (ignoring irrelevant multiplicativersstants),
p"(t, E) = exp(—nvE+ $nN¢q+ ANGo + NGy) (6.17)

Here,G1 andG are defined in equations (B.14) and (B.17) respectively,

G, = n/Du log (2 cosh(u\/a)) - %b (6.18)

T 00
”/ Dn, D, D, log (/ de e!T—e)" 4 / d€t>
—0o0 T

T o) ico
x ( / de, (T=6)' 4 / de,,> / dxdz exp(F)] (6.19)
-0 T —ioo_47r

Go
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where,
F =xe, + ze; + %(1 — q)(a:2 + 22+ 2Uzz) + e/ qU(z 4+ 2) + V/q(1 = T) (20, + 21,)

Here,I' = 1 — 2p,,. The saddle point equations fix the values off andg,

B - w2 <@> (6.20a)
ov \ n

¢ 0 (Go\

Ll (7> _ 0 (6.20b)

q 0 (G1\ _

5+ % (7> =0 (6.20c)

In general, these expressions are rather unwieldy and weqgldre numerical enumeration in
many cases, even to first order)in Rather than continuing with the most general situation, it

is more instructive to consider a much simpler limit.

6.3.2 Low capacity limit

From equations (6.20b) and (6.20c) one can show thatlzscomes smally and ¢ are both
proportional toX. For sufficiently small) it is then reasonable to take= 0 and¢ = 0.

In this case the replica symmetric result reduces to theaedaesult, which was previously
calculated for the step errof & 0) in reference [55]. Although the summed square error
(I = 2) is amore useful choice in practice, the step error provédgismple measure with which
to test the theoretical results. Extensions to other vadfieshould be possible in principle, as
results up till this point have been for genefallhe annealed result corresponds to averaging
p(t, E) directly over patterns, rather than averaging the logamitivhich is expected to be
incorrect in general because unusual pattern configusatidhdominate the average and give
untypical results.

With ¢ and¢ equal to zero, the expression for the characteristic fand§ much simplified,
logp(t, E) = —vE + ANGann (6.21)

whereG,ny, is the annealed equivalent 6% in the replica symmetric expression,

T . 00 T . )
(/ deet(T—et) —1-/ det> </ de,e?(T—<) —I-/ de,,)
—00 T —o0 T

ioco dzd
X / Z z exp(ze, + zer + %(1‘2 + 22 + 2sz))] (6.22)
—iso—4m

Gann = log
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Now only one saddle point equation is required tafias a function ot andE,

E= Nxaa—Gann (6.23)

14

In the next two sections the step error and the summed squareage considered. The
former measure is the simplest and the the first four cumsilahthe population after muta-
tion can be calculated. The latter case is more involved ag the mean error within the

population after mutation is calculated here.

6.3.3 Steperror { = 0)

Forl = 0 the integrals in equation (6.22) are standard integrald@r@ = 0 one finds [55],

4o+ (e~ 1) (%ev o i (V2 FQ))] (6.24)

Gann = log 27 r

The saddle point equation (6.23) fixess a function of and FE.
The cumulants of the error distribution after mutation aereayated from the characteristic

function of the error distribution (see equation (2.7)),

pult) = [ABnp(Bn)
~ [aEpE)pt1B)

- 22

(6.25)

Here, p(t, E) is defined by equations (6.21) and (6.24). To complete thigmal one can
represenp(E) as a Fourier transform,
i 4 n

p(E) = /ioo—- exp (Z —Kn = kE) (6.26)
where K, is thenth cumulant of the training error distribution before migat Substituting
this expression into equation (6.25) allows the integratr & andk to be computed for large
N by the saddle point method, as long as the cumulant$)éné). The calculation can be
completed by expanding the relevant parameteits &s described in reference [55]. This is

appropriate for determining the cumulants after mutatwinich are given by the coefficients
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of the expansion albg p., (t). For the first four cumulants one firfds

K™ = (1-2A)K; +AMN (6.27a)
KI' = (1-2A)%Ky+ A(1 — A)AN (6.27b)
K" = (1-2APK3+A(1—A)(1—2A)(AN —2K;) (6.27c)

K" = (1-2A)'Kq4—A(1—A)[8Ky(1—2A)% = AN(1 — 6A + 6A?)](6.27d)
where,

L ian—! (@> (6.28)

andl’ =1 — 2p,,.

It is interesting to compare these results to the expresdarthe additive problems which
were introduced in chapter 4 (see equations (4.6a) to (4.Gd)e expressions here are very
similar, whereA corresponds closely t@,, in the additive genotype results. There is an exact
correspondence for the first two cumulants if the expresséra rewritten in terms of cumu-
lants from a population of random configurations (the fixethpof mutation). Notice that
A ~ 2,/p,, /7 to first order, for small mutation rates. Typicafly, < 1 and,/p,, > pm, SO
that the effect of mutation is clearly much greater here flaarthe additive problems. If the
benefit of mutation is to increase diversity without too mgoist in terms of lost fitness then
this is a significant penalty, as the reduced correlatiomiwithe population due to mutation
is independent of the particular problem under considamatiowever, the conclusions which
can be derived from these results are severely limited,usecthey do not describe mutation

accurately in general (this will be demonstrated in sedbia@h).

6.3.4 Summed square error{ = 2)

The most successful choice of training error to date is giweaquation (6.6) withh = 2 [48].
Again, the integrals in equation (6.22) are standard imlsgbut the final expression f6#,,,,,

is more complex than for the step error. Foe= 0 one finds,

Gann = log[I(0,0,T) + I(¢,0,—T) + I(0,v,—T') + I(¢,v,T)] (6.29)

2This calculation was automated usiNgthematicaa symbolic programing language [76].
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where,

> te? > ve2 oo dzdz 1/,.2 2
I(t,v,T) = [ dee*t | de, " 1.2 P (zew + zer + 3(2° + 2° + 2T'z2))
0 0 -

= ! T A e Sy wan v gy T
= 2\/1_2y—2t(1—2y(1_r2)) [1 7'rt ( T \/1 2 2t(1 2 (1 F?)))]

The saddle point equation (6.23) fixess a function of and FE.

In principle, the cumulants after mutation can be computethe same methods discussed
in the previous section. Unfortunately, the resulting eemxpansions soon become rather
cumbersome and a nhumber of terms seem to require a numeyigabs. The calculation for
the mean error after mutation is straightforward, howeagthis only requires the solution of
the saddle point equation for= 0.

The expectation value for the error after mutation is givgn b

. d
(Bm) = lim— logp(t, E)

= lim AN%—?”“ (6.30)

Differentiating out one finds,

T2
(Bm) = E ((1 = T%) +T?) (1 ~ Lian! (Q”LFF))
™
J1 -T2
+ﬂ fan—! (Y2210 —Tv1 -T2 oL (6.31)
(14 z) r x2
wherez = /1 — 2v and the saddle point equation fixegss a function of,
AN

E=—— 6.32
72(1 + ) (6.32)

The expression for the mean error after mutation for ldygis simply found by replacindv,,
andE by K" and K respectively.
6.4 How good was the assumption ?

In the preceding sections mutation expressions were dkebyea microcanonical formulation

which involved averaging over all configurations with a giveaining error. Unfortunately,
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the assumption that this form of averaging is appropriaggears to be false in most cases.
Comparing the theoretical predictions for the effect of ationh in a GA to simulation results
shows only qualitative agreement. A simple experimentrilesiows the discrepancy between

theory and simulations.

6.4.1 Mutating away from an unbiased sample

Arandom sample of configurations are created, whose tgenor lies below a pre-determined
threshold. This serves as an unbiased population whoselant®gan be measured. This pop-
ulation then undergoes repeated mutations with a fixed fmooteate. Any theoretical model
of mutation should certainly be able to describe this sibmaaccurately.

Figure 6.1 shows averaged results from this experimenhfostep error. The first two cu-
mulants are shown and solid lines give the theoretical ptiedis according to the expressions
in equations (6.27a) and (6.27b). As expected, the theamyrately describes the behaviour
for the first generation since the population is initiallyarbiased sample. After this, however,
the theory and simulation results diverge. The experimexst iepeated for a range divalues
in order to ensure that there was no significant error duestanallA approximation. Clearly,
the history of the population is important. Configurationighim the population are no longer
typical of configurations with a given training error eveteabnly one generation of mutation.

Figure 6.2 shows the same experiment for the summed squaremegasure and although
the theory gives a better prediction here, there is stillifiicant deviation from the experimen-
tal result. One explanation for the better agreement incilig® is that the summed square error
measure contains information about the stability of umstgratterns. This measure therefore
provides a more constrained characterization of configurat so that the averages in equa-
tion (6.13) are more representative than for the simplgy steor. Unfortunately, only the

change in mean has been determined so far for this trainiog er
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o o 1‘0 2‘0 3‘0 40
Generation
Figure 6.1: A population 01000 randomly generated configurations with step error below
AN/3 undergoes repeated generations of mutation with= 0.01. The mean) and vari-
ance (\) of the step error are shown each generation, averaged@¥samples. Solid curves
show the prediction from the microcanonical theory. Thebfgm size wasV = 341 and the
number of patterns wasN = 40.

10

o 2‘0 4‘0 60

Generation
Figure 6.2: A population ofl000 randomly generated configurations with summed square
error belowA N/3 undergoes repeated generations of mutation with= 0.02. The mean(Q)
summed square error is shown each generation, averaged(dvsamples. The solid curve
shows the prediction from the microcanonical theory. Thabjam size wasv = 341 and the
number of patterns wasN = 40.
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6.4.2 Showing inconsistencies in the mutation results

The experiment in the preceding section showed empiridally the mutation expressions
derived in section 6.3 do not accurately describe the efiEatutation in general. It is also
possible to show analytically that these mutation resuéisSraconsistent. One way that this can
be achieved is by comparing the change under mutation of soateoscopic quantity other
than the training error with the change predicted by the ec@nonical approach.

An appropriate quantity to consider is the mean stabilitgaiterns for a particular percep-

tron,

=
|

(M)

LN
= I ; Si{€ (6.33)

whereA, is the stability of pattern: and the angled brackets denote an average over training

patterns. It is straightforward to calculate the expectddesfor this quantity after mutation,

_ 1 Y
A = \/—le;(MiSi)(ﬁﬁu

= TA (6.34)

where M; are the mutation variables defined in equation (6.12) whiehaaeraged out (as
denoted by the first set of brackets) to give= 1 — 2p,,.

It is also relatively straightforward to calculate the esa¢ion value for the mean stability
given the training error if one assumes an unbiased avenagreconfigurations. Under this
assumption one can define a conditional probability for tleamstability given the training

error,

(0N = xg X, A 6(E =32, wi(T = A")))gsy
(6(E =32, w(T — A")))is)

The cumulants of this distribution can be calculated in gangsing the replica method, as was

p(AE) = (6.35)

the case for the(F,,|E) calculation in section 6.3. The annealed result holds féicgently
low A and for largeN one finds that for the step error with = 0 the expected value of the
mean stability is a simple linear function of the trainingoer

_ 2/, 2E
Ny (1 - W) (6.36)
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As expected, the mean stability increases from an initinlevaf zero as the error is reduced
towards zero.

Under the same assumptions the expected training errarmtitation is given by equa-
tion (6.27a) (except that a single perceptron is under denaiion here, rather than a popula-

tion),
En=(1-2A)E + AAN (6.37)

whereA is defined in equation (6.28).

Equations (6.34), (6.36) and (6.37) are inconsistent. foués.37) shows how the training
error changes by a non-linear functionTofinder mutation, while equations (6.34) and (6.36)
require a linear relationship. Since equation (6.34) ixe&ad equation (6.37) only requires
an unbiased configuration space before mutation, theniequ#t 36) must be incorrect after
mutation from an randomly selected configuration. The agsiomof an unbiased distribution
of configurations after mutation must then be false. As welbaing inconsistent in general,
these expressions remain inconsistent in the most reléwginbf weak mutation where\ ~
2\/Pm /.

Another inconsistency in the mutation results becomesrappdy observing that for a
low mutation rate and larg&v the application of mutation twice should be equivalent to a
single mutation with a doubled mutation probability. Thisbiecause mutating the same bit
twice is vanishingly unlikely in this limit. This is certdinthe case for the mutation results in
chapter 4, section 4.3. For the step error expressions fiosek: 3 the expected training error

after mutation to first order iQ/pn, is,

4./Pm 2./
Em:(1— P >E+ Pm N (6.38)
s s
The expected step error after two mutations to first ordgysg, is then,
8+/Pm 4. /Pm
(E™)™ ~ (1 - —p> B+ 2PN (6.39)
™ s

which is greater than the expected step error after a singtation with probability2p,,.
This is confirmed by the results of figure 6.1, which shows thattheory significantly over-

estimates the mean change in training error within the @tjoul after two rounds of mutation.
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For the summed square error these kinds of inconsisten@expected to be much smaller
(compare figure 6.1 with figure 6.2). Unfortunately, thergemechnical difficulties in calcu-
lating the higher cumulants after mutation for this erroaswe and the analysis has therefore

not been pursued further.

6.5 Conclusion

In this chapter the statistical mechanics formalism wadiegpo the strongvp-hard problem
of storing random binary patterns in a perceptron with hingeights. This provides a stiff
test for any theoretical approach, as the analysis of thoblem is very difficult even in a
thermodynamics framework, where the powerful assumptfothermal equilibrium can be
used. In the limit of small batch size and large problem sizgais possible to characterize
mutation under the assumption that configurations wereayoif configurations with a given
training error — a microcanonical formulation.

Unfortunately, the assumption of an unbiased populationoofigurations was found to
be false in most cases. To verify this finding a simple expeninwas conducted, where an
initially unbiased population with training errors belownse pre-determined threshold was
subjected to successive mutations. The microcanonicdiqgti@n diverged rapidly from aver-
aged simulation results after the first generation for tkee sirror measure, and more slowly
for the summed square error. The latter error measure oaatanformation about the stability
of unstored pattern and it is argued that this may lead to & mwamstrained characterization of
configurations and correspondingly better averaging. Hewelue to technical difficulties the
higher cumulants after mutation were not calculated far theasure and the theory could not
be properly tested. For the simpler step error the muta@eunlts were shown to be completely
inconsistent in at least two ways.

The evidence presented in this chapter suggests that fptbblem the perceptron is
not sufficiently well characterized by training error alaimeallow a general description of
mutation. It may therefore be necessary to include morenmdtion. For example, one could
use statistics describing the distribution of patternibtads associated with each configuration,

as suggested in a previous study [55]. The simplest sudhtatatould be the mean stability of
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training patterns, but other statistics may also be reduiféen it would be necessary to follow
the joint distribution of the training error and these extatistics within the population in
order to model the dynamics of the GA. It is not clear at presdwether this will be achievable
in practice, as it would presumably be technically very diffi. The inclusion of crossover
would provide an added complication because it involvegteeaction of different population
members. There is along way to go before it will be possibbcturately model the dynamics

of even the simplest GA in general for this problem.
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7.1 Introduction

Many natural organisms have both a haploid and a diploidestagheir development, with
the diploid stage often predominating in higher organisbwgting the diploid phase there are
two sets of genes available and therefore twice the negeasayunt of genetic information re-
quired for development. Which alleles are expressed at giteimay depend on their relative
dominance. Although a diploid phase may be required toifatglarguably beneficial biologi-
cal processes, such as DNA repair, sexual recombinatioagsuitment of chromosomes, it is
an open question as to why the diploid phase is so prolongadiinals and is often the only
phase represented by a multicellular organism. A numbeaxd,tfor example some plants
and fungi, can produce both diploid and haploid individuadis some algae only the haploid
phase is represented by a multicellular organism [36]. tifien argued that for diploidy to
have become so common it must present some advantage. Oneoodoelief is that having
two genes present allows deleterious mutant alleles td agisecessives within the popula-
tion, which might then become selectively advantageougiuadhange in the environment
or a return to previous conditions. Since fully recessiVeled are only expressed when there
are two copies at a site, then the probability of a rare hdraifele being expressed is much
lower if it is recessive in a diploid population than wouldthe case in a haploid population.
The existence of diploidy allows greater genetic diversitgxist within the population which
selection can then act on.

A problem in some GA applications is the maintenance of gitsemwithin the population
and this is exacerbated if the fitness function changes ower since genetic diversity is soon
lost under continued selection pressure. A number of schaxist in order to combat such
premature convergence. For static fithess measures twe ofalkt popular methods are island
and niching models. In an island model, the population isi@lbadivided into subpopulations
(islands) each evolving independently save for infrequeigirations which reintroduce diver-
sity (this also allows a parallel implementation) [49]. Nitg methods come in a variety of
forms, but they generally invoke some form of density depandelection, so that individuals
are penalised if they are genetically similar (or sometimiesnotypically similar) to existing

population members [21]. For GAs evolving in a temporallyigg environment one possible
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way to maintain diversity is to use diploidy, or even polygio (for some recent examples,
see references [22, 65, 77]). This is an old idea and referf28] provides a review of early
treatments.

In this chapter the statistical mechanics formalism isrekdel to incorporate diploid geno-
types. This is desirable both because of possible GA apiglitaand also because it brings the
method closer to population genetics, which usually inesidiploid models [12]. A simple
temporally varying fitness measure is also considered. Becaf time constraints the work
is not complete and a number of interesting models have rest beidied; most notably only
haploids are modelled under the temporally varying fithesasuare and an evolving domi-
nance map is not considered. An adaptive dominance map vbeutdost desirable in a GA,
where one would not know priori which map to choose for a non-trivial problem. However,
the dynamics of a number of simple systems are solved andrdrgth and potential of the
formalism are demonstrated. Possible extensions to meodved situations are discussed,
including the evolution of the dominance map and simple giggdost interactions, which are

of interest in natural populations as well as in artificiahgtc search [27, 31, 39].

7.2 Asimple diploid GA

A highly idealized diploid GA is considered, which is onlyryeroughly analogous to any
biological system. A diploid genotype comprises a pair ofay strings, called gamefes
Initially, a random population of diploids are created amel genetic operators are then applied

as follows,

1. A population of2P gametes is selected fro diploids, with each gamete selected
according to the fitness of its associated diploid. Eachodiptan only generate two

types of gamete — there is no assortment or recombinatidrisagtage.

2. The gametes undergo crossover and mutation at randomrmaeviegard for which diploid

the gametes originate from.

LAn abuse of biological terminology — real gametes (eggs errspare created by diploids through assortment
of and recombination between chromosomes from each dipkrieint. The gametes from two parents then fuse to
create zygotes (fertilized eggs) which develop into dighkdults. Gametes are not contained within the diploid and
certainly do not participate in recombination, as in thehhiddealized situation described above.



CHAPTER 7. DIPLOIDY AND TEMPORALLY VARYING FITNESS 125

3. Pairs of gametes fuse at random to prodEiadiploids for the new population.

These steps are iterated over a number of generations in timeislame way as for the familiar
haploid GA. Of course, this procedure differs from the bipdal picture in a number of re-
spects. Most notably, the recombination phase (crosss/egparated from the selection phase
in a rather artificial manner. A more realistic situation Webbe to only allow recombination
between gametes from the same diploid, and then to randarséydametes in order to create
the new diploid population. However, in this chapter cressavill generally be so disruptive
that such a distinction makes little difference. The esakfaature from the point of view of
genetic search is that selection acts on the diploid. Egubidiproduces genetic material for
the next generation in proportion to its selective weighte phenotype of the diploid is some
function of the two constituent gametes and may involve sfama of dominance.

For the purposes of modelling it is convenient to create finiia pool of gametes after
selection, as in the haploid GA. The dynamics can then bevieltl in terms of statistics from
this infinite population. This does not change the naturdefiroblem and the two algorithms
are essentially equivalent. The theoretical algorithny @iffers in the first step above, which

now reads,

1. Aninfinite population of gametes is selected fréhdliploids, with each gamete selected

according to the fitness of its associated diploid.

Steps 2 and 3 are the same as above.

7.2.1 Adiploid phenotype

Recall the definition of the phenotype for the additive hapgenotype, defined in equation 4.1.
Consider the case where = 1 at every site, as in the one-max problem,

N

Ry =) 87

i=1
whereS* € {—1,1} are alleles of the haploid genotype. The diploid genotypeasle up of
two haploid genotypes which will be called gametBs (ill be called the gamete phenotype).

One way to define the diploid phenotype associated with gesnednd S and with dominance
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N
Rapg = 3> [S&+ 87 + hi(1 — S287))] (7.1)

i=1
whereh; is the dominance coefficient which determines the conioburom site: when S*

ande differ. The vector of dominance coefficients is called a dmanice map. This phenotype
has been studied in quantitative genetics for the case vilaésehe same at every site, leading
to a number of exact results for stationary distributionghi@ infinite population limit (see,
for example, reference [30]). In the context of genetic gear is important to be able to
characterize the dynamics for more general dominance naapi,is not known in general
which sites should be dominant. The goal is to eventuallylde & describe a GA with an
adaptive dominance map, although this is beyond the scoihe giresent analysis.

For zero dominance one chooggs= 0 for all 4, in which case the diploid phenotype is the
average of the two gamete phenotypes. This is the only gituathen the diploid phenotype
can be written in terms of its two associated gamete pheastylm general, details about the
configuration of each gamete are required in order to deterrfie diploid phenotype. For
example, ifh; = 1 for all < then the final term in equation (7.1) is the correlation betwe

gametes.

7.2.2 Modelling the dynamics

It is most convenient to follow the dynamics of the distribatof gametes within the popu-
lation. The gamete phenotype is the same as for the addigipioid problems which were
considered in chapter 4. The only difference between thosielgms and the simple diploid
considered here is in the selection phase. Thus, the eigmed®r mutation and crossover
given in sections 4.3 and 4.4 still hold (although the maximmantropy distribution may require
extra constraints). In the following two sections, expi@ss are derived for the dynamics in
the case of directional selection without dominance and wifixed binary dominance map.
The former situation is the most straightforward, as théodtidfitness in this case is simply the
mean phenotype of its two constituent gametes. The latteatgin is more involved and can-
not be addressed under the present formalism without negdd the bit-simulated crossover

(BSC) limit, which was introduced for the haploid case infea 4, section 4.9.
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7.3 Directional selection without dominance

There areP diploids within the population and each is associated withgametes, which are
randomly chosen from the infinite pool of gametes beforectiele Label the gametes in each
associated pair anda + P respectively. Recall that under directional selectionfitmess of
an individual equals the phenotype. From equation (7.1fithess of the diploid with gametes

« anda + P under zero dominance is,
Fa,oHrP = %(Ra + Ra+P> (7.2)

whereR,, is the familiar one-max phenotype. Boltzmann selectiorsidyin which case the

selection weight for both gametes associated with a dipdid

Wq = Wa+P = eXp(%B(Ra + RoHrP)) (73)

The partition function for selection is (from equation (3,2

2P

Z wq exp(YRy)

a=1

.
> [eXp(%ﬁ(Ra + Royp)) (7 + evRa”)} (7.4)

a=1

Zs

The logarithm of this quantity generates the cumulants efitfinite gamete population after
selection. This can be averaged o2& gametes randomly sampled from the gamete popula-
tion before selection in order to calculate the expectatanes for the cumulants, which are

then given by equation (3.5),

where,
f(t’ 'y) = /dRa dR, p(Ra)p(Ra/) exp <_teﬁ(Ra+Ra/)/2(e’YRa + e’YRa/ )) (75)

These integrals must be computed numerically in generalaaghe case for haploid selection.
The correlation calculation given in chapter 4, section24d&n be similarly generalized to the

diploid case.
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7.3.1 Weak selection expansion

For weak selection (small/K>) it is possible to apply thé/P expansion described in sec-

tion 3.2.2. In this case the cumulants after selection arengdy equation (3.9),

s im 872 _L 1[)2(/37’7)
Ky = lim 5 [lOg(d’l(ﬁ = 5p (d]%(ﬂmr))]

where,
n(B.) = / ARy ARy p(Ra) p(Rar) (772 + ¢7Fatie50(RatRe)  (7.6)

Forn = 1 andn = 2 one finds,

¥1(8,7) 20(8/2)p(y + B/2) (7.7a)

Pp2(B,y) = 2p(B)p(2y + B) +20° (7 + B) (7.7b)

wherep(f) is the characteristic function of the gamete distributisee( equation (2.7)). Ex-

panding ing for the first few cumulants one finds,

2
Kf = Kl—i-g(l—%)Kg-f—%(l—%)Kg—i-"' (7.8&)
s _ 1 p 2 32 5 6K32
KS = (1—ﬁ>K2—I-§<1—F>K3+§[(1—;)[(4—?]—|— (7.8b)
3 4 3K2
KS = (1—ﬁ>K3+§[(1—F>K4—T2}+--- (7.8c)

It is instructive to compare these expressions with the Isphagésults for directional Boltz-
mann selection in a haploid GA, which are given in equatidh21@) to (3.21c). Diploid
selection without dominance is almost equivalent to hapdelection with a population of size
2P (which is the number of gametes in the diploid populatiorg amalved selection strength.
The two cases are not exactly equivalent, as there are glitileences in the finite population
terms. However, the discussion for the haploid case givehapter 3, section 3.3.2 still holds.
Selection increases the magnitude of the higher cumularatst notably the third, which slows
down progress under further selection. The other geneticabqrs are required to re-populate
the tails of the gamete distribution and reduce the magaitfdthe higher cumulants. The
effects of mutation and crossover on the gamete distribudi@ described in chapter 4, sec-

tions 4.3 and 4.4. Although a halved selection strength @l significant in a biological
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population, where selection is imposed by the environmiteistnot so important in the context
of artificial genetic search, because the selection stnecay easily be doubled if necessary.
In this case there is no significant difference between aoih@A and a diploid GA without

dominance.

7.3.2 Simulating the dynamics

The selection expressions in section 7.3 were combinedthgtmutation and crossover results
from chapter 4, sections 4.3 and 4.4 in order to simulate yhamics. Bit-simulated crossover
(BSC) was used, as this allows the dynamics to be describtednrs of only the mean gamete
and mean correlation within the population, therefore $iiyipg the selection numerics. The
higher cumulants are still required after crossover ansitlaee determined using the maximum
entropy ansatz described in chapter 4, section 4.5 (fouutants were used here). There is
no reason why these results could not be generalized to fattres of crossover by using the
methods developed in chapter 4. The selection strength eedadsinversely to the standard
deviation of the gamete distributio (= 3/./k2). It may be more appropriate to use the
variance of the diploid fitness distribution to scale thesgbn strength, but the present scaling
allows a meaningful comparison of the haploid and diplo&ltes.

Figure 7.1 shows the mean and variance of the gamete districaveraged over 1000 runs
of a diploid GA without dominance. The diploid fitness is theerage of its two constituent
gametes, so that the expected mean fitness within the dipépdlation is equal to the mean
gamete. These results show very good agreement with thestiwad curves, although there are
very slight systematic errors which may be due to non-sadfaging effects, deviations from
maximum entropy or because the weak selection approximatas required to determine the
correlation after selection. Results from a haploid GA vathalved selection strength and a
doubled population size are shown for comparison and tiectaaies are clearly very similar

to those of the diploid GA. Any differences can be attribuiedubtle finite population effects.
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Figure 7.1: The theory is compared to averaged results frdiplaid GA without dominance
on the one-max problem. The diploid results)(for the mean and variance of the gamete
distribution are averaged over 1000 runs with= 50 and3; = 0.5. The solid lines show the
diploid theory. The haploid resul{§) with P = 100 andj; = 0.25 are shown for comparison.
The other parameters welMe = 155, p,, = 0.002 and bit-simulated crossover was used.

7.4 Directional selection with a fixed binary dominance map

When dominance is non-zero the fitness of a diploid can noelobg written in terms of its
constituent gamete’s phenotypes. For directional seledtie fithess of a diploid is equal to
the phenotype defined in equation (7.1),

N

Fop =5 (S8 + 87 + hi(1 — S88P)] (7.9)

i=1
The case wherk; € {—1, 1} is considered here, so that the dominance map is a binargrvect
To determine this fitness it is necessary to know how alleleslstributed relative to the dom-
inance map. One way to do this is to use the BSC limit, which waeduced in chapter 4,
section 4.9. After BSC the distribution of alleles decospd¢ every site. The selection proce-
dure can be averaged over this distribution in order to deter the expectation values for the
relevant macroscopics after selection. It is first necgsteatdescribe the distribution of alleles

and this can be achieved by making a maximum entropy ansatz.
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7.4.1 Maximum entropy distribution

Recall the maximum entropy calculation for the additive lb@pgenotype, which was intro-
duced in chapter 4, section 4.5. To apply such an ansatz inésdijrst necessary to decide
which macroscopics are most important. The most obviougasagopics to describe the ga-
mete distribution are the mean gamete phenotifpeand the mean overlap between the ga-

metes and the dominance map, which will be dendfed

K, = Z (88, = Zn (7.10a)
i—=1

H = Zm(Sf)a = Z hiTi (7.10b)
i—=1 i=1

wherer; is the mean allele at sitewithin the infinite gamete pool.

It will be necessary to include the correlation measyras the population is finite and
will become correlated under selection. It is also des@ablknow which sites are correlated
and this can be achieved by including a fourth constraintickviwill be denoted@ (these
expressions are for large),

1 1 &,
g = NZ ZTZ (7.10c)

=1 Z:l

2

=

OL —_ ]' .
Q = —ths ﬁ;hnf (7.10d)

For h; € {—1,1} the sum ofq and @ gives the correlation for sites with positive domi-
nance while the difference gives the correlation for sitéh wegative dominance. From equa-
tion (7.9) one finds that the expected mean fitness for a ptpulaf diploids whose gametes

are randomly sampled from the gamete pool can be writterrinstef ) and K,

(Faplazs = K1 + 3 Zh - (7.11)

Notice that() is selected on directly, so that it may be necessary to iectadrelation macro-
scopics for this problem even in the infinite population timi

The sites can be arranged so that 1 for the firstm NV sites andh; = —1 for the remain-
ing sites. The particular ordering of the dominance coeffits is irrelevant, since there are

no spatial interactions. Thus; completely parameterizes a fixed binary dominance map and
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determines the degree of dominance for positive allelesrerage. Rewriting the expressions

for H and@,
mN N
H=>Yrn->m (7.12a)
=1 mN+1
1 mN 1 N
Q = NZT}—W y o oo (7.12b)
=1 mN+1

The four constraints can be enforced by Lagrange multpkerin the haploid case. Notice
thatif m = 0 thenH = K; and(@ = ¢, so that only two constraints are required as in the
haploid case (this is true in generakhif is the same at every site). A similar calculation to that
presented in chapter 4, section 4.5 provides an expressichd mean bond at each site for

the maximum entropy distribution (this result is also vdtidmore general dominance maps),

T; = tanh (z + hiy +nivo? + hiw2> (7.13)

wherew?, 22, y andz are conjugate t@), ¢, H and K respectively, whiley; is a Gaussian
variable with zero mean and unit variance.hlf = 0 at every site, then this reduces to the
haploid expression defined in equation (4.18). After BSCalfeles within the gamete pool

are assumed to be distributed according to,

p(Si) = (1 J; ”’) 5(S; — 1) + (1 - ”) 5(S; +1) (7.14)
The constraints fix the values of each Lagrange multiplier,
K, + H = 2mN tanh (z+y+wm) (7.15a)
K1 — H = 2N(1 — m) tanh (z—y+n¢m> (7.15b)
4+ Q = 2m tanh? (z+y+nm) (7.15¢)
¢ — Q= 2(1 — m) tanh? (z—y+n\/M) (7.15d)

where bars denote averages over the Gaussian noise. Afttlioisgs a four-dimensional root
finding problem, a trivial change in variables decouplesaipgations into two pairs which can
be solved independently. The problem is therefore no maahied than for the haploid case.
In all the cases which were considered here the argumentdiytberbolic tangent remained

real and the roots were unique.
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7.4.2 Mutation

The mutation calculation is a straightforward generaiirabf the calculation in chapter 4,

section 4.3. The expectation values for the two extra maopiss are given by,

H™ = TH (7.16a)

Q" = I’Q (7.16b)

wherel’ = 1—2p.,. These two equations are analogous to the resuli& f@andq respectively.

7.4.3 CalculatingK; and H after selection

The selection calculation follows the haploid discussimsely (see chapter 4, section 4.9). For
a diploid whose fithess measure is given by equation (7.9pdngtion function for selection
is,

P

Z=Y [egzi [504.80FP 4 hi(1-5250+P)] (evzisf‘ D> 5?”)} (7.17)

a=1

For weak selection the cumulants of the gamete phenotypibdison after selection are gen-

erated from the familiat / P expansion (see chapter 3, section 3.2.2),

S~ P,
K =ty o [l (8.9 - 5 (S0 (718
wherey, (3, v) is now averaged over alleles distributed according to énugt.14),
¥u(B,7) = <ﬁ AU N COVE R S?’)"> (719
{sg,887}

Notice that whem; = 0 this expression reduces to the zero dominance expressiequar
tion (7.6), except that here the average is over allelegrafian the gamete distribution. Com-

pleting the average one finds,

N

hi(By) = 2] 6B (7.20a)
'L}l N

ba(By) = 2]] i(28,27,2y) + 2] ] ¢i1(28,2,0) (7.20b)

i=1 i=1
where,

N 2 — 7\ 2 _ 2
$i(B,7,6) = <%> et 4+ (%) e (07 4 (12771)4”“ cosh(d) (7.21)
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When using BSC it is only necessary to evolve the macrossapiguired to describe the
maximum entropy distribution. In this case only the mean gf@phenotype after selection is

required, and from equation (7.18),

K = b 7.22
LT WG 2P (6) < D o )| (7.22)
(Z $:(26,27) 2¢;(6,7)> o3, 1og(6:(26,27) 2 log(6:(6,7)
1 ’ 26a 27) ¢l (Ba 7) =0

wherey’(3,v) and¢’(3,~) denote differentials with respect toand¢; (3,v) = ¢; (3,7, 0).

The average over the Gaussian variable;ifsee equation (7.13)) was taken over summed
terms, as these are expected to self-average. This exprasmnnot be written as a simple
function of cumulants unleds;, = 0 at every site, in which case the result reduces to the zero
dominance case in equation (7.8a).

The mean overlap between gametes and the dominance nibpTibe expectation value
for this quantity after selection is found in a similar cdition to that given above. Recall the
selection partition function defined in equation (7.17). Bplacingy > S by v > h; S in
this expression one can generate the expectation valué fifter selection. This follows the
result for the first cumulant closely and the result is givgrilie final line of equation (7.22)

under the transformatiogy, (3, vy) — hi®;(3,7),

N ’

B,7)

_ L N . ¢;(2/63 27) . 2¢;(/677):| >, log(¢i(26,27))—2log(¢: (6,7))
2P (z; & [¢i(2ﬁ, 2y)  #iB) )¢ (7.23)

v=0
7.4.4 Calculatingg and QQ after selection
As in the haploid case (see chapter 4, section 4.9.2) onentdude an extra term in the

selection partition function in order to generate the datien after selection. In the case

of a diploid whose fitness is given by equation (7.9) the mdpartition function is,

P
Z [egzj S50 HP by (1 S“SO""P)] (eES? Te S‘”P)] (7.24)

a=1
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Using the familiar weak selection approximation leads texgpression for the correlation after

selection,
N
1 .02
g = ﬁ;(l—lg%wlong(eO

~ ii 1 —1im 2 o (5, 0)) — = (L2189 (7.25)

- N& 20 92 | B 2P \92(B,¢) '
where,

n(8.0) = (o B 55 sy ] (et )" (7.26)
{s¢,52"}

The brackets denote averages over alleles distributeddingdo equation (7.14). Completing
the average one finds,

N-1

Pi(Be) = 2¢i(B.ee) [] 4(8,0,0) (7.274)
o
’ N-1
Pa(Be) = 2(4i(28.26.26) + $i(26.2¢,0)) [] ¢;(26,0,0)  (7.27b)
J#Fi

whereg; (53, v, d) is defined in equation (7.21). The expressiongfdras not been differentiated
out here as the resulting expression is rather cumbersothis aot particularly illuminating.
This result is easily generalized in order to calcul@efter selection, by introducing a
factor ofh; into the outermost sum of equation (7.25).
2

. Ly 9 L (B
@ = g on (1m0 g - 55 (305 )]) w2

=1 1

7.4.5 Simulating the dynamics

The dynamics can be modelled for an arbitrary binary dondaanap using the expressions
which were derived in the preceding sections. Figure 7.2paves the theory to averaged
results for a completely random maja (= 0.5 in section 7.4.1), for two different population
sizes. The mean fitness of the diploid population is showraahease, along with results for
each of the relevant macroscopics. The results for the daggmpulation size show excellent
agreement, while there is some disagreement during threstatges with the smaller population

size. This may be because the weak selection approximatgrrequired in order to calculate
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the selection expressions in sections 7.4.3 and 7.4.4 caulse the dynamics average less well

for smaller population sizes.

o 50 100 150 200 250 o 50 100 150 200 250

Generation Generation

Figure 7.2. The theory is compared to averaged results fratiplaid GA with a random
binary dominance map on the one-max problem, for two pojulatizes. The population
sizes wereP = 50 (left) and P = 100 (right). The results for the mean fitne$s)(@nd relevant
macroscopics; (<), ¢ (A), H (V) and@ (+) are shown (in descending order). The results
are averaged over 600 runs Br= 50 and 400 runs fo? = 100. The closest solid lines show
the theory. The other parameters wgte= 0.4, N = 155, p,, = 0.002 and bit-simulated
crossover was used.

It is interesting to note that even in the case where the damei® map is completely ran-
dom, then the mean diploid fitness is higher than the meantggiig). This has been achieved
by driving (Q negative, which leads to an increase in the mean expressedditlefined in
equation (7.11). The mean correlation is also lower hene Wauld be expected for a haploid
population of the same mean fithess. More work is requireceadlyr understand the inter-
play of the relevant macroscopics and it would be most ista#rg to model a diploid under a
temporally varying fithess measure. The next section takedaser to this goal by describ-
ing the dynamics of a haploid GA under such a fithess measumngAvith the work in the
present section, it is hoped that this might provide thesisiaccurately characterizing more

interesting situations.
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7.5 Temporal changes in the fithess measure

The main motivation for using a diploid GA is to maintain disi#y and retain useful infor-
mation under a temporally varying fitness measure. If thbs@eges are periodic or recurrent
then a dominance map may learn information about previatesbf the environment and
this information may prove useful in the future. Such a sdenia beyond the scope of the
formalism presented here as it stands, but it is hoped tha¢ting can be learned from a very
simple example of a temporally varying problem. A haploid Gl be considered here as this
simplifies the analysis, although generalization to a @dipBA with a fixed dominance map
would be straightforward. In section 7.6 some possibleiegfibns of these ideas and those of

the previous section will be considered.

7.5.1 A simple problem

A haploid GA is considered, whose phenotype is given by egugt.1) with each weight
initially set to one. The initial fitness for directional setion is then the same as for the one-

max problem,

N
Fo=)_S¢ (7.29)
i=1

The simplest way to change this fithess measure after soreediny introducing a new weight

vector,

(7.30)

N 1 with probability1 — v
F)=>"JSf J; = { P Y
i=1

—1 with probability v
wherewv determines the probability of introducing a negative weidghv = 0.5 then the new
weights are completely uncorrelated with the old and forlena&alues ofv there is some
correlation between the new and old weights. In generad, ithan Ising paramagnet whose
weights are flipped with probability in one generation. The weights are initially set to one
without any loss of generality.

To simplify matters BSC is used, so that the distribution ldles at each site decouples
and averages can be taken directly over this distributiea ¢hapter 4, section 4.9). To describe

the distribution of alleles after BSC it is necessary to makeaximum entropy ansatz.
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7.5.2 Maximum entropy distribution

Before the weights of the paramagnet are flipped the probéeagiivalent to one-max and
constraints on the mean fitness and correlation within thmuladion will accurately charac-
terize the population, as described in chapter 4, sectionHowever, once new weights are
introduced at each site these two macroscopics are no Isaffarient, because the population
is still correlated with the previous weight vector. It iethfore necessary to follow the overlap
with the original weight vector, which will be denotédl As in the diploid problem it is also
desirable to know which weights are correlated and this eaadhieved by including another
extra macroscopic, which is denotétlin analogy to the similar macroscopic introduced in

section 7.4.1. The two extra constraints required afteraagé in the weight vector are then,

N N
O = D ASMa = m (7.31a)
=1 =1
1 & 1 &
— L/ Qa\2 __ 2
Q = 2 IS = X i (7.31b)

i—=1 i=1

whereT; is the mean allele at site If the mean fitness and correlation are included, then
comparison with equations (7.10a) to (7.10d) shows thatithequivalent to the problem of
maximizing entropy in the diploid GA with a fixed binary doraimce map. The discussion in
section 7.4.1 provides the result (withanalogous td — m) for the distribution of alleles at
maximum entropy.

The mean bond at each site in this case is,

7; = tanh (z + iy + 022 + Jiw2> (7.32)

wherew?, z2, y andz are conjugate t@), ¢, K; and O respectively, while,; is a Gaussian
variable with zero mean and unit variance. The constrairtthé Lagrange multipliers once

the weights have been flipped and after averaging over tivédison of weights one finds,

O+ K; =2N(1 —v) tanh <z+y+n\/m> (7.33a)
0 - Ky = 2Nvtanh (2 = y + nv/s2 — w?) (7.33b)
g+ Q =2(1 — v) tanh? (z+y+n\/m> (7.330)

g — Q = 2v tanh? (z —y+nvVa?— w2> (7.33d)
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where bars denote averages over the Gaussian noise. Augse, d¢quations decouple into two
pairs under a trivial change in variables.

Unfortunately, each time the weight vector is changed thabmar of constraints is in-
creased by a factor of two and the problem becomes progebssivore complex (if all the
relevant constraints are used). The root finding will stél diraightforward, however, as the
eguations always decouple into pairs. Here, only a singéagh of weights is under consider-

ation.

7.5.3 Evolving the macroscopics

In the previous section it was shown that the relevant maogpiss for this problem are equiva-
lent to the macroscopics which described the populatioa ftiploid with a fixed binary domi-
nance map. Before the weights flip the dynamics are exadiiyalgnt to the one-max problem
which was described in chapter 4, section 4.7.1. Once thghtgehave flipped it is necessary
to follow the evolution of four macroscopics, as was the dasd¢he diploid GA. Here, the
dynamics are considered from the point when the weights flipe expected values of the

macroscopics at this point are found by averaging over thewgights (see equation (7.30)),

K = (1-2)K, (7.34a)

Q= (1-2v)q (7.34b)

while ¢ remains fixed and = K; is the overlap with the previous weights at this point.

As this is a haploid GA, expressions describing the effesietéction in the BSC limit are
most closely related to those given in chapter 4, section # expressions foK?] andgs
are exactly equivalent to equations (4.60) and (4.65), ixitet 7; is now defined by equa-
tion (7.32). The expression f@p® is given by equation (4.60) with the factor @f deleted in
the two sums over sites. Similarly, the expression@ris given by equation (4.65) with a
factor of J; introduced into both sums over sites.

The mutation results fo and(@ are analogous to the results fBrand (@ in the diploid

GA, as described in section 7.4.2.
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7.5.4 Simulating the dynamics

Figure 7.3 compares the theory to averaged results from aoGénie realization of the prob-
lem. The two extra macroscopi¢s and @ are only included after generation 70, where the
weights change. At this poinf(; is reduced according to equation (7.34a) &hik chosen
according to equation (7.34b). The result #6y is therefore discontinuous at this point, as
shown in the left hand part of the figure. The overlap with thigioal weight vectorO is

initialized to the value of<; just before the weights are flipped, whilés unchanged.
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Figure 7.3: The theory is compared to averaged results frbiepoid GA for a paramagnet

whose Ising weight vector changes after 70 generations. r@hdts are shown foK; (Od),

O (A), ¢(©) and@ (+). The data points are averaged over 500 runs and solid lir@g sh
the theory. 30 weights were flipped at generation «76=(0.194). The other parameters are
P =200, 5s = 0.2, N = 155, p,, = 0.001 and bit-simulated crossover was used.

The results show very good agreement, although there igla gliscrepancy in the predic-
tions of transient behaviour after the weights have changbis could be due to any combina-
tion of three simplifications — the use of a weak selectiotit)ithe assumption of self-averaging
and the assumption of maximum entropy. The weak selectiprognation should hold here,
as search parameters were chosen in a region which is usugliydescribed by this limit.
Similar small discrepancies in the transients were foumafmnge of selection strengths and
population sizes. Notice that the correlation resultst{gmright hand part of figure 7.3) show
that the averaged results are somewhat ‘flatter’ than th@dtieal predictions, which is what
one might expect if differences are due to non-self-avaqgNevertheless, the theory provides

a very close approximation to the averaged results in a veidge of situations. Errors due to
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lack of self-averaging should become smaller under ineeasproblem size and population

size.

7.6 Conclusion

In this chapter the statistical mechanics formalism wadieghpo a simple diploid GA and a
haploid GA with a temporally varying fithess measure. Thetheompared well to simulation
results in both cases. Although these were highly ideal@edirather simple systems, it may
be possible to use the methods developed here in order toilsiesie more involved and

interesting situations described below.

7.6.1 Adaptive dominance

If the fithess measure is temporally varying, then it may beekieial to let the dominance map
evolve. One simple way to do this is to include a dominance wittpeach gamete and allow
this to evolve in the same way as the rest of the genotype. rtumfately, for binary genotypes
this will lead to situations where two gametes disagree erdttminance at a site, leading to
a possible ambiguity. Although any ambiguity could be resdlby making a random choice,
this does not always give satisfactory performance. Hiolstdolland, and later Goldberg
and Smith, chose a definite bias towards one choice of alket@ses where there was any
ambiguity [22, 32, 33, 65]. This allowed the genotype to hgesented by a triallelic scheme,
where combinations d@fand1 act as ifl is dominant while an extra allele represents &over
which 0 is dominant. Although this form allows no ambiguity, thenegentation is now biased
towards ones; an unfortunate lack of symmetry. Neverthel®mith and Goldberg do find a
definite advantage when using this scheme on a temporalyngaknapsack problem [65]. It
would be possible to introduce a more symmetrical quadi@eheme, although it is not clear
that this would be an improvement.

In order to analyse an adaptive dominance map under therprisenalism, it would
probably be simplest to consider a co-evolving but phylidatiependent population of dom-
inance maps from which dominance values at each site arercl@sandom each time fitness

is evaluated. The population of dominance coefficients didln correspond to a vector of
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probabilities associated with selecting a particular d@nce value at any site. An extra set
of macroscopics describing the population of dominanceswamild be required in order to
characterize such a GA. The generalization to closer palypioximity of dominance coeffi-
cients and expressed alleles (as in the triallelic schenogjdabe difficult, but might produce

similar dynamical behaviour in some cases.

7.6.2 Hosts and parasites

The dynamics of host-parasite interactions are of intdresttificial genetic search [31] as
well as in the more familiar setting of biology [27, 39]. Hiliconsidered a GA for developing
networks which sort sequences of numbers by rank [31]. Theisito develop a sorting
network which orders all possible sequences correctly aed the smallest number of steps.
To fully test a sorting network requires that 2/ examples of a binary sequence of length
are correctly ordered, but this test is very time consumanrdarge N. Using a smaller subset
of training examples proves to be ineffective, as the GA deams how to sort most examples
and they provide no information once learned, leaving thes@k at poor but locally optimal
networks. Hillis found that by co-evolving a population ddihing examples as parasites he
could ensure that sorting networks received a useful seaifihg examples each generation.
The example sequences were selected by their ability totheatorting networks, while the
networks were selected by their ability to correctly order sequences. Adding this flexibility
to the space of training examples allowed the GA to find verydgsolutions to the problem.
Recently, however, some doubt has been cast over the stffofethe test used by Hillis and
more work is required to determine whether host-parasitgactions are really practicable for
artificial genetic search [4].

A simpler co-evolution problem lends itself more readilyaoalysis: that of matching
bit-strings. The parasite bit-string tries to match thethasile the host tries to be different
from (evade) the parasite. This has analogies in biologgre/interactions of this sort have
received some attention [27, 39]. These studies mostlyardrate on small systems or on
analysis via simulations and interesting dynamical pastere shown to emerge even for very

simple systems. An important question in biology is why sgxecombination should be so
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prevalent in higher organisms and there is some evidentpdhasites provide one explanation
for this. Under this view, sexual recombination is requitedjive hosts sufficient flexibility
with which to deal with faster evolving parasites. This isréfore an interesting problem to
study, both because it may shed light on general issues t¢fphoasite dynamics and also
because it may have more specific implications for real biokd systems.

Recall the simple time varying problem considered in sec@icd. In the simplest bit-
matching problem one could treat the field of the paramagn#te parasite, while the para-
magnet would be the host (although the paramagnet fitheshamges sign — the host tries
to be different from the parasite). One could then model tr@ution of the parasite and
host populations, which might interact in a number of waysanyl different situations can
be envisioned, with varying levels of recombination witkiach population and varying rates
of evolution. Unfortunately, the analysis in this chaptequired BSC to decouple alleles at
each site after crossover and the inclusion of more genemnaisf of crossover is a formidable
task. Another difficulty which emerges from the model ddsenli in section 7.5 is the ob-
servation that each time the environment changes, a new sai@roscopics are required to
describe the overlap with the previous environment. Ttagl$eto an explosion in the number
of macroscopics required to model the GA under continuegtatian. Overlaps with all pre-
vious environments may not be required, however, becatset®vould fall off with time and
a truncated set of macroscopics might be sufficient to dessdhie dynamics accurately. Yet
another possible difficulty with the present approach is thgidly fluctuating dynamics may
not be well described under an assumption of self-averadihig would be a significant prob-
lem in host-parasite interactions, where fluctuating arabtib behaviour has been observed in
simulations [27, 39]. However, given the progress madeitdhapter there is some reason to
be optimistic about the prospect of deriving truly nonisimacroscopic dynamical behaviour

from a model defined in terms of microscopics.
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8.1 Thesis summary

A formalism for modelling GA dynamics using methods frontistecal mechanics, originally
developed by Prigel-Bennett and Shapiro [53, 54], has méewed and improved upon in
order to describe the GA in a wider range of applications. @ffect of selection on the dis-
tribution of phenotypes within the population is problerdépendent, and previous results for
this operator were generalized to a larger class of setesttbemes. The averaged dynamical
trajectory of a simple finite population GA was then accuyateodelled for a number of op-
timization problems. Although the problems for which themialism proved most successful
were rather simple or idealized, they were often sufficieintfolved to capture interesting non-
trivial features of the search. An attempt was also made $oriee a stronguP-hard problem
and although the analysis was unsuccessful in this case smight was gained into possible
limitations of the formalism as it stands.

The first class of problems consideredand the class considered in greatest detail, con-
sisted of problems where alleles of the genotype contriadtétively to the phenotype (fithess
was related to the phenotype by some arbitrary function)suRe from Priigel-Bennett and
Shapiro [54] were reproduced, including their calculaiondetermining non-trivial terms in
the expressions describing crossover and mutation by nizrignentropy with constraints on
the mean correlation (genotype similarity) and mean phgotvithin the population. Some
situations under which the maximum entropy ansatz mighakoown were considered. In
particular, it was shown how mutation could take the popatedway from maximum entropy
by flipping alleles at sites associated with large weighthé@random-field paramagnet.

Prugel-Bennett and Shapiro assumed a simple relatiormtigpeen the phenotypic vari-
ance and correlation which does not hold in general [54]réleoto move beyond this simpli-
fication, expressions were derived for evolving the mearetation as an extra macroscopic,
providing a significant improvement over the original fotation. To determine the expected
mean correlation under selection, it was assumed that strbdition of correlations within the
population can be well approximated by the distribution akimum entropy. This is expected
to be a good assumption as long as crossover is reasonahlptdis, but further analysis is

required to determine when this assumption will break down.
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The theoretical results were tested on problems exhibdirgctional selection (one-max
and the random-field paramagnet) and stabilizing seledtls® subset sum problem). The
theory agreed well with averaged results from a real GA, mtely predicting the mean dy-
namical trajectory as long as the maximum entropy ansatdg®d a good approximation. As
mentioned above, moderate levels of mutation resultedeimthximum entropy ansatz break-
ing down for the random-field paramagnet during the lategesteof the evolution, because
alleles associated with high weights were flipped with digant probability.

The subset sum problem is a weakiy-hard problem and has a strongly non-linear fithess
measure. It is characterized by a stabilizing dynamicslogoas to stabilizing selection on
quantitative traits in biological populations, so that thean of the phenotype distribution cen-
tres around the optimum phenotype while the population @was. The dynamical trajectory
was accurately predicted for this problem without mutatibuat further work is required to
determine whether the method fails when mutation is indudewas shown how the fitness
of the best individual eventually degrades as the populdiecomes highly correlated. This
effect was accurately predicted by estimating the proligluif duplicates occurring within the
population.

The second class of problems considerezbnsisted of those whose fithess measure is a
stochastic function of the phenotype (this is hot mutuakglesive from the class of additive
problems described above). This situation is often of @dein machine learning applications,
where training data may be incomplete or noisy. A result wesved for selection on an
arbitrary stochastic fitness measure and the specific caieeofional Boltzmann selection on
a phenotype corrupted by Gaussian noise was considereddtegdetail. In the latter case, an
increase in population size was shown to completely remuyelétrimental effects of noise in
the limit of weak selection.

A simple learning problem, generalization in a perceptrdth Winary weights, was shown
to be closely related to a noisy version of one-max if a frestetp of training examples were
used for each training error evaluation. In this case theenwias due to the uncertainty of
information contained within a finite training batch. Thendynics was solved for this problem,

and in the limit of large problem size and weak selection i sfaown how the population size
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could be chosen each generation to remove the effects @f.Adken this population size was
chosen, an optimal batch size was identified which minimthedcomputation time required
for training error evaluations.

In chapter 6 an attempt was made to model the GA on a stmnrghard problem — storing
random patterns in a binary perceptron. This differs froendther problems considered in this
thesis, because the phenotype (in this case the training &ra strongly non-linear function
of the genotype. The effect of mutation was calculated uadelicrocanonical formulation,
where perceptron configurations were assumed to be typicabrdigurations with a given
training error. The calculation was carried out using thgica method to average over the
random disorder in the training patterns and in the limitrof#l capacity the replica-symmetric
result reduced to the much simpler annealed result. In #sis it was possible to determine the
cumulants of the error distribution after mutation for thepserror measure, and the mean error
after mutation for the summed square error measure. Thehdgimulants were not calculated
in the latter case because of technical difficulties.

Unfortunately, the microcanonical formulation did not ciése mutation well in general
and it was shown that there were at least two significant isistencies in the results. It was
concluded that the training error did not constrain perocgptonfigurations sufficiently and it
would be necessary to include other statistics for a bettaracterization. It was suggested
that the mean stability of training patterns might provideful information, although this was
only conjectured and no attempt was made to model the papulasing extra statistics. Any
analysis of crossover would be expected to introduce evestgr difficulties, as this operator
involves the interaction of different population members.

In chapter 7 the formalism was extended in order to describe a class gflsintiploid
GAs and a haploid GA with a temporally varying fithess measufer these problems the
dynamics was solved for a GA using a limiting form of crosspumt-simulated crossover,
which completely decouples the alleles at each site (ajhdbe dynamics for a diploid GA
without dominance was solved without this restriction)r &dixed binary dominance map the
maximum entropy ansatz was extended to include four canstraeffectively describing the

occupation and correlation at sites with each of the twediffit dominance values.
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The simple temporally varying fithess measure consideredandsing paramagnet, some
of whose weights flip after a number of generations. In thi&dhe maximum entropy calcu-
lation also involved four constraints after the fithess meaghanged. The extra constraints
described the memory of the original weight vector withia gopulation.

The work in this chapter was incomplete and a number of plesgibneralizations were
discussed. For example, it was shown how these results ro@leixtended to described a
diploid GA with an adaptive dominance map. This may be usiéftilis not known a priori
which dominance map to choose, or if the fithess measure ebamgpredictably over time.
Simple co-evolving systems were also considered, as tmes# mterest in natural systems as

well as in artificial genetic search.

8.2 Strengths and weaknesses of the formalism

A statistical mechanics formalism has been shown to adyratredict the dynamical tra-
jectory of the GA for a number of simple, but often non-triviproblems. The expressions
describing the dynamics are compact and do not depend otepratize or population size,
although the assumption that trajectories self-averagjgomibably improve with increases in
both'.

Finite population effects are accurately modelled underfdéinmalism and provide a num-
ber of important insights. For example, Prigel-Bennett Shapiro quantified the effect of
directional selection on the higher cumulant of a finite gapon [53], showing how Boltz-
mann selection introduces skewness into an initially Gaonsgdistribution of phenotypes. In
chapter 5 it was shown how adding Gaussian noise to the fitmigaffects a finite population
GA in some cases and may have no effect in the infinite populditinit. This insight allowed
the optimal batch size to be determined for a simple, yet byaans trivial, learning problem.
It was also recognized that a finite population would coteetaore rapidly under selection
than would be predicted in the infinite population limit, base selection requires the duplica-

tion of population members. It was therefore necessary amiify this duplication effect when

1This may not be the case if other parameters do not scale mjately. For example, in Milller’s ratchet the
mutation rate isD(1/N), whereN is the problem size, and fluctuations still dominate the dyioa of a finite
population agV tends to infinity [52].
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modelling the dynamics.

Following the correlation as an explicit macroscopic albova greater number of problems
to be addressed and gave improved results over the originadufation of the method, in
which the correlation was deduced directly from the phepiotyariance [54]. As well as
giving improved results for directional selection on an itdel genotype (one-max and the
random-field paramagnet) this was an essential ingredierdefscribing stabilizing selection
(the subset sum problem). The solution to the dynamics fergioblem marked significant
progress, as this is an example of a wealyhard problem with a strongly non-linear fithess
function.

The maximum entropy ansatz often provides a powerful meanescribing the distri-
bution of alleles at each site for problems where alleledritarie additively, but inhomoge-
neously, to the phenotype [54]. However, there are sitnatishen this distribution does not
provide a good characterization of the population (at leatt the constraints used here) and
care must be taken when applying an ansatz witk poiori justification. The maximum en-
tropy ansatz also provides a way to describe the distribugfccorrelations at each site and is
therefore even necessary for modelling problems with h@negus weights when finite pop-
ulation effects are important. In chapter 7 the ansatz weshderd to simple diploid problems
and to a temporally varying fithess measure, where four caingt were required to charac-
terize the population. It was noted that for one-max withreabf dominance map there was
a correlation measure in the expressed fitness. In this baseotrelation constraints might
be required even for large populations. The use of a constoai the previous environment
in the simple temporally varying problem shows that the mmaxh entropy result can also be
used to follow history effects. This may be important wherdeling more complex adaptive
behaviour.

Certain limitations of the formalism were exposed in chaiewhere an attempt was
made to characterize the effect of mutation for a stmrdnard problem. Here, the calculation
was carried through under a microcanonical formulationthsd the only constraint on each
population member was its training error (this is also a mmaxn entropy ansatz, but with a

constraint on each individual rather than the whole pomriat However, the training error
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alone proved insufficient to accurately characterize cordiipns and the results did not even
provide a reasonable approximation. Although it was suggehat other constraints might be
included within the phenotype, the resulting calculatiamoaild be technically difficult and the
generalization to crossover is expected to be even hatdeayl also be the case that no small
set of macroscopic constraints exist which accuratelyadtarize perceptron configurations
for this problem, although this conclusion seems overlsipeistic.

Whether limitations of the formalism are purely techni@almore fundamental in nature,
is not yet known. An upper bound on the difficulty of probleroswivhich the dynamics might
be tractable is probably provided by thermodynamic stydidsch use the powerful concept
of thermal equilibrium to analyse the state space for a nami®on-trivial optimization prob-
lems, including the strongP-hard problem considered in chapter 6 [37, 43]. These studie
apply the maximum entropy principle in a far more rigorousteat, by considering a simu-
lated annealing schedule which equilibrates over ergdiie-tcales. In this case the dynamics
is designed to approach a Boltzmann distribution. The thdgmamic formulation does not
described the approach to this distribution, however, &edet may be entropic barriers, or
dynamic freezing transitions, which are intrinsic to themetry of the fitness landscape and
which such a study will not necessarily expose [34, 69]. Ia tase the thermodynamics only
provides existence proofs for solutions and may say nothbmut the dynamics of any search
algorithm.

The formalism described in this thesis can be expected towitkemuch greater technical
difficulties than the thermodynamic approach, as the pdipalas not at thermal equilibrium
and it may be difficult, or impossible, to find a small set of ne@copics which accurately
characterize the population. It is expected that this taskbscome more difficult as the
mapping between genotype and phenotype becomes lessatitkicreasingly non-linear. In
order to overcome the problem of increasing complexity,dyreometimes be possible to make
simplifications to a problem without losing interestingtfgas of the dynamics. For example,
using independent training examples for each error evaluatllowed the dynamics to be
solved for the generalization problem in chapter 5 and alainsimplification has recently

allowed the dynamics of gradient descent to be solved foassobf multi-layer perceptrons
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with continuous weights [59].

Another possible problem for the statistical mechanicenfdism is that much interesting
detail of the dynamics may be lost through averaging. Fomgta, the concept of punctuated
equilibrium is of interest both in biological populationsdain artificial genetic search [23, 46,
74]. Punctuated equilibrium describes a situation wheeepthpulation is relatively stable for
long periods, punctuated by short periods of rapid evahatip change. In this case the mean
dynamic trajectory over different realizations of the @es does not capture important features
of the dynamics and may be very difficult to compute in any caséluctuations will dominate
the process. However, the formalism described in this shegsn be generalized to describe the
evolution of an ensemble of populations, in which case |8tgduations from mean behaviour
can be accurately modelled [52]. Whether this analysis eaoaried out for more involved

problems is not yet known.

8.3 Future work

The formalism described here is still under development fitedictive power of the method
has been demonstrated on a number of simple examples, buidin necessary to focus on
specific issues which are of interest to the GA community,aasjbly the population genetics
community, for which these methods may provide novel irtsighechnical improvements
and generalizations of the formalism would also be of gnetrést. For example, it may be
possible to resolve the difficulties encountered in chapter to solve the dynamics for other
hard problems, by increasing the number of constraintsinvitte phenotype. It would also be
useful to examine the validity of approximations used hargreater detail, such as the weak
selection expansion (chapter 3, section 3.2.2), or thefusenaximum entropy distribution for
correlations (chapter 4, section 4.6.3). Some other pitiistb for future research are outlined

below.

8.3.1 Analysis of the equations of motion

Most of the work in this thesis centres around the derivatind verification of equations of

motion for the GA. These expressions already provide sosighihinto the processes at work
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within the GA. For example, the higher cumulants and cotieiavere shown to be important
in characterizing a finite population GA. The charactei@aif noise in the evaluation of
fitness also required the accurate modelling of finite pamreeffects and this was captured
by the selection equations in a very simple and intuitive.Wgwever, although some intuition
is gained from simply looking at the equations of motion, ftempts have yet been made to
analyse these equations in order to answer specific questBome notable exceptions are in
chapter 5, where the optimal batch size was determined famples learning problem, and
in Shapiro and Prugel-Bennett [64], where escape timedetermined for a simple two-well
potential. In this latter study the escape time from a looargy minima (fithess maxima) was
compared to results for simulated annealing, showing beetare situations when the GA will
escape more rapidly. However, more analysis is requirectterchine how finite population
effects should be included within this analysis. It is hopleak the results described in this

thesis could also provide the tools for many other studies.

8.3.2 Multi-layer perceptrons

In chapter 5 it was shown how the dynamics of a GA training gpinbinary perceptron to
generalize could be solved by describing the training easoa stochastic function of the phe-
notype, in this case the overlap between teacher and stutemuld be interesting to attempt
a generalization to multi-layer perceptrons, which areuiregl to learn less trivial mappings
(see, for example, reference [29]). In this case the pheeoyould not be a single order pa-
rameter, but rather a vector of parameters describing tdap/between nodes of the student
and teacher. It might then be possible to follow the jointribstion of overlaps within the
population. Unlike in the simple perceptron problem, hogrethe search would have to break
symmetry in the space of macroscopics for this problem, usrséhe network has a number
of equivalent permutations. How this symmetry breaking hhigccur within the population
would be of great interest. It might be necessary to invokeres@mble of populations in order
to describe the many symmetrical states. This ensembledioaih become multi-modal under
symmetry breaking events within its constituent poputatio

In order to describe the training error as a simple stoahé&stiction of overlaps between
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nodes of the teacher and student network, it would be nagessaresent a fresh batch of
training examples for each error evaluation. This is an af@te idealization, as it does not
capture a number of interesting features of training undmemealistic scenarios, where there
is a limited amount of data available to learn from. It wouldrhost instructive to incorporate
finite training set effects into the dynamics, but this wosggm a formidable task as the exact
characterization of such effects is difficult even in a stati thermodynamic study, where
the replica method has to be used [61]. Whether an approximekists which captures the
essential features of quenched disorder without resattitige replica method remains an open

question.

8.3.3 Quantitative genetics

Quantitative genetics is concerned with the study of irthbke traits which can differ by degree
and are mostly influenced by gene differences at many loei {se example, reference [12]).
As described in chapter 4, section 4.7.1, the one-max probleder Boltzmann selection is
equivalent to the multiplicative fitness landscape, whitome of the simplest quantitative
genetics models. The dynamics of stabilizing selection @modblems with inhomogeneous
contributions at each site is also of some considerableesitéo workers in this fiefd

Although the problems considered in this thesis are vergecto those often considered
relevant in quantitative genetics, there is a differencengphasis between this work and quan-
titative genetics models, the resolution of which may nastb@ightforward. In chapter 4 it was
pointed out that the correlation calculation given in sat#.6 ignores effects due to off-site
terms, or linkage in the language of population geneticds Was assumed to be a good ap-
proximation as long as recombination was sufficiently giue. Unfortunately, in biological
populations the degree of recombination is not always asdumbe high and linkage effects
might become important. In this case the relevant quessionan the formalism, and in par-
ticular the maximum entropy calculation, include effeatsn off-site terms? The answer to
this question is not yet known although it would seem a diffiptoblem in general, because

the population would have to be constrained with both a#-and on-site averages. It would

2Nick Barton and Ellen Baake are currently translating soféh@se results into the language of population
genetics.
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probably be possible to include constraints on off-siteayes alone, which might be sufficient
in the infinite population limit, but it is unclear how relexehis limit is. It is also unclear how
useful a constraint on second order off-site terms wouldbbeause selection imposes a strong
bias on third and fourth order off-site terms (related tottlgger cumulants) which presumably
would not be predictable from lower order terms.

The simple diploid problems considered in chapter 7 may lagsof some interest in pop-
ulation genetics, but the diploid model outlined there wighlly idealized and the analysis
required an unrealistic and highly disruptive form of cmas. Whether this system is com-
parable to any real biological population is questionabléhough it may serve as a useful
solvable model in a ‘fast recombination’ limit. Possibldensions to an adaptive dominance

map and a simple co-evolution problem were discussed ifDseL6.

8.3.4 Truly hard problems ?

The formalism described here requires that one can deterthanessential features of geno-
types within the population by averaging over a small nunatbaracroscopic statistics. Clearly,
this will not always be possible, as these statistics will @wvays constrain the population
sufficiently well for the average to be representative (eradkieraging procedure may be too
difficult). This was shown in chapter 6 for the problem of sigrrandom patterns in a binary
perceptron, when configurations were only constrained bl thaining error. Hard optimiza-
tion problems such as this are generally characterized mplex and non-linear mappings
from genotype to fithess, so that the fithess provides lesstdinformation about the geno-
type. There might also be strong spatial interactions betvedleles within the genotype which
would also make any analysis very difficult. For the subseat puoblem, and problems with
noise corrupted fitness, it was shown how the existence oéagiipe with a simpler relation-
ship to the genotype can make analysis easier. For very halotepns one might include more
degrees of freedom within the phenotype in order to comstie genotype better, so that av-
eraging the phenotype is more representative. Which degfdecedom to include within the
phenotype will typically not be obvious, although lookiray the order parameters in a ther-

modynamic study might provide some insight. Whether the@ggh described in this thesis
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can be applied to a truly hard problem is an open questiontasgtovides a stiff challenge to

the formalism.



Appendix A

Maximum entropy calculation for the

correlation after selection

The second term in the expression for the correlation aéilrcion given in equation (4.28)
will be calculated by determining the distribution of cdateons at maximum entropy. Rewrit-

ing equation (4.29),

o = /mwdeﬂmmumma&nm%ﬂRmRm%w

.0
= tim 2 og  [aRadRs p(R R o010, ) ) (AD)

wherep(t |R,, Rg) is the characteristic function @f¢.s| R, Rg) (see equation (2.7)),

mmwwzﬁwmw%&ww A2)

A conditional probability for correlations(g,s|Ra, Rg) can be defined if alleles are assumed
to come from the maximum entropy distribution describedeiction 4.5. In this case one has,
p(Qaﬁa R,, Rﬂ)
p(Rou R,B)
_ (aay =y 3 5750) 6 (Ra = X STV 6(Rs = X JiSD)) g
(0(Ra = 2, JiS¢) 8(Rs — X2, 1iSY)
whered(z) is the Dirac delta function and the angled brackets den@mges over configura-

p(Qa,@‘Raa R,@) =

tions of S andS?. The alleles at each site are distributed according to,

1+7

M&)=< )M&~4)+(1;ﬂ>ﬂﬁ+l) (A4)
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Here,; is the mean allele per site at maximum entropy, which is ddfinequation (4.18).
Consider the characteristic function ofq.3|R.. Rg), as this appears in the appropriate

generating function,

p(Nt, R,, Rﬂ)

Nt|Rq, Rg) =
N TON Y

(A.5)

where the factor ofV is included so that is scaled appropriately. The numerator of this ex-

pression is the characteristic function of the joint disttion for correlations and phenotypes,
p(Nt,Ro, Rg) = / dgas(5(qas — :58S)) 6(Ra — S, 1iS8) 6(Rg — ,i87) yelV 1900

= <6(Ra > " 5iSY) 6(Rg =D JiS)exp(td stf)> (A.6)

{5¢,57}

i

The delta functions in this expression can then be writtethbiy Fourier representation,

3(z) = / Y (A7)

ico 271

so that equation (A.6) becomes,

i N

IOOd ad o o

p(Nt, Ra, Rg) = </ 247:;5 exp(—yaRa — ysRs + Y (yaTiSE +ysJiS) + LS Sf))>
e i=1

(A.8)
Each site decouples and the average over sites can be talketedmnating over the allele dis-
tribution defined in equation (A.4). The resulting integrah be computed for larg®¥ by the
saddle point method since the exponent of the integratd 26) [40].

Eventually one finds (ignoring irrelevant multiplicativersstants),
p(Nt, Ra, Rg) = exp[G(t, Ra, Rp)] (A.9)

where,

N
G(t,Ras Rg) = —yaRa — ysRs + » _log [(1 + 7;) e/ e litusi
i=1
+ 2(1 — 72)e~  cosh(yadi — ypJi) + (1 — 7;)%el ¥ lizvsli]

7

The saddle point equations fix andyg as implicit functions ofR,,, Rz andt,

oG _, G _

- _ —— =0 A.10
0Ya ayﬂ ( )
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Definep(Nt), whose logarithm is the generating function f@g (see equation (A.1)),

p(Nt) = /dRadRﬁps(Ra)ps(Rg)p(Nt|Ra,RB)

/dRa dRg ps(Ra) ps(Rp) exp|G(t, Ra, Rg) — G(0, Ra, Rg)]  (A.11)

The overlap distributions are expressed by their Fourgrsfiormed cumulant expansions,

ioco da am .

ps(Ra) = [ o exp ZmKn—aRa (A.12)
ioco db pn

ps(Rg) = / o OXP (Z — K~ bRB> (A.13)

Now p(N't) is an integral over, b, R, and Rg which can again be computed by the saddle

point method. One finds that as— 0 the saddle point equations are satisfied by,

Yo = Yg = ¥ (A.14)

Ry, = Ry = K} (A.15)

These are related through an implicit function §an terms of mean overlap after selection,

N
7; + tanh(yJ;)
K] = E J; A.16

! Pt ! (1 + 7; tanh(yJ;) ( )

Theng, is generated from the logarithm pfNt),

Goo = o lim = log p(N?)

N
1 N + tanh(yJ;) \°
N = \1+7 tanh(y.J;)

(A.17)



Appendix B

Replica calculation for mutation in the

binary perceptron

B.1 Replica calculation for a general training error

To make the calculation simpler, the number of spins flippedcbtation is fixed and is equal
toyN. In generalyy will fluctuate around the mutation probabilipy,, and these fluctuations
should be averaged out. Here, it will be assumed that p,,, is a good approximation. This
is reasonable for larg®' if p,, is of order unity, which is a necessary condition for the $add
point approximation used here in any case. Unfortunatefs @&ten use a mutation probability
of order1/N, in which case this approximation may break down. It has eentdetermined
whether the following method gives a good approximatiorhia tase.

Choose the firsy N sites to be flipped, with no loss of generality.

-1 fori=1,2,... ,yN
M; = (B.1)
1 fori=yN+1,..., N—1,N

One can rewrite equation (6.16), fixing the stabilities vadéita functions,

p"(t, E) = <Hl< [H / dART AR S (ALY — Z M;SPEf) s (A — o Z s;lg;‘)]
a= I 1 1

X (5(E—Zul(7'—A”a)) exp(tZul(T—A‘rﬁa))> > (B.2)
H u {5?} {glu}
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whereqx labels replicas angd labels patterns. The inner average is over all weight cordigu
tions, while the outer average is over the quenched pattéimes delta functions constraining
the stabilities can be given their Fourier representatsae (quation (A.7)), witht, and 24
conjugate to\*® andA%L;" respectively,

[To(atr — J5 Do Mispel)a(are — o > s7el)

JIRe [

e dzadza 1A B 1A e 1 w w a el
= / (=) e | Do (ahare + 2hhde — 2> (ah + 24 M) SPef)
I 7

—100 ) o @
(B.3)
It is now possible to average the right hand side of this esgiom over patterns,
<exp [Z(—fﬁ (st + zngi)ng#)] >
@ L {&i'}
- 11 <exp [—ﬁg;‘ 3t + ngnSS] >
g a {e}
= exp Z log cosh (ﬁ Z(mﬁ + zijQSf“)]
r 2
— exp| ok Z(Z(mﬁ +ngz~)sg> . 0(%)} (B.4)
= exp %Z((xg)g + (2#)? + 2Tzl zt) + Z dop (:pgasg + zhzp + T(zhep + wgzg‘))
L o B>
whereq, is the correlation between replicas dndas the mean mutation variable,
N N
Gas =% .528) T=1-29=%3" M, (B.5)
i=1 i=1

In writing the final line of equation (B.4), terms 6f(1/N) were neglected and the following
approximation was used,
N
LN M;SES) &~ Tgup (B.6)

=1

This is a good approximation as long &sis large andy is of order unity, in which case this

quantity should self-average. A delta function can be useithpose the constraint on each

QQ61

i Nde, N
1= /dq(xﬂ/. Q:fi B exp [gbaﬂ (Naag — 3 5 sf)] (B.7)
—ioco i
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Recall equation (B.2): the delta function containiBigcan be written by its integral rep-
resentation (see equation (A.7)), with conjugate toF for each replica. The product over
decouples and can be written as a power. Using Gardner'siorotahere possible [16] one

eventually finds,

Ndo,s dv,
Pt E) = /H dqag / H( 2¢ﬂ a)exp(G)
—ico mi 2w
B>a B>a
G = —EY va+N ¢astas+ANGo+ NG, (B.8)
o B>a

where) is the capacity. Herd; is equivalent to Gardner’s notation a6{ is also equivalent
to Gardner’s notation in the case whére= 0 (y = 0.5) and the configurations are completely
randomized by mutation. In this cagét, F') reduces to the characteristic function of the
density of states.

exp(NG1) = <exp(z bag Zsasﬁ)>{sa} (B.9)

B>a

/H ( dA®dAT dxadza) [Z (tug(T = AL) + vouy(T — A%) + 2o A®

e}

exp(Go)

+zaAa (xa)Q + %(Za)Q + Fwaza) + Z qap (xawﬁ + 2a?8 + F(wazﬁ + x,@za)) (B.10)
B>

The integral in equation (B.8) can be computed for lakgby the saddle point method [40].

B.2 The replica symmetric solution

For capacities lower than the critical capacity it is assdithat replica symmetry holds, as this
is thought to be true for all temperatures in the thermodyoadreatment [43]. In this case one

can make the following simplifications,

Gdap = q¢ a#p (B.11)
bap = ¢ a#p (B.12)
Vo = UV (B.13)
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The expression fo7; defined in equation (B.9) can now be simplified,

Gy = %log<exp<Z¢ZSf‘Siﬂ)>{}
Si

B>a i
_ 1og<exp(g(§ajsa)2—%¢)>

= log /Du exp [n 10g(2 cosh(u\/gg)) — %gb]

Sa

n20 n/Du log (2 cosh(u\/a)) - %QS (B.14)
where,
du 7%
/Du = me (B.15)

The expression fof can also be simplified. Consider the sum g%er « in the exponent

of equation (B.10),

Z q(xawg + 2028 + T'(z025 + xgza)) = %qF [(Z Ty + ZQ)Q _ Z(xa + ZQ)Q}

B>a el o
1 -D)[(Tra) + () X~ )] ®.16)

The squares over sums can be removed by introducing Gausségnals. This allows the

terms for each replica to decouple and eventually one finds,

i qz dz
12 exp (F(n, A A, z, z))} (B.17)

Go n20 n/DnI D, Dny, log [/dAdAm

—ico™

where,
F(n, Ay A, z,2) = tu(T — Ap) + vuy(T — A) + zA + 2zA,,
+5(1 = q)(2” + 2° 4 2T'22) + 0o /T (7 + 2) + V/q(1 — T)(2n, + 2n.) (B.18)

Recall the definition of;; (7 — A) in equation (6.6). The expression for the step function can

be simplified as follows,

exp(t(T — Ne(T - A)) = (/Tdet el(T—e) 4 /:zlet>(5(et —A) (B.19)

— 00

Substituting this into the above expression @y leads to equation (6.19) in the main text.
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