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Abstract

A formalism for modelling the dynamics of Genetic Algorithms (GAs) using methods from

statistical mechanics, originally due to Prügel-Bennettand Shapiro, is reviewed, generalized

and improved upon. This formalism can be used to predict the averaged trajectory of macro-

scopic statistics describing the GA’s population. These macroscopics are chosen to average

well between runs, so that fluctuations from mean behaviour can often be neglected. Where

necessary, non-trivial terms are determined by assuming maximum entropy with constraints

on known macroscopics. Problems of realistic size are described in compact form and finite

population effects are included, often proving to be of fundamental importance. The macro-

scopics used here are cumulants of an appropriate quantity within the population and the mean

correlation (Hamming distance) within the population. Including the correlation as an explicit

macroscopic provides a significant improvement over the original formulation.

The formalism is applied to a number of simple optimization problems in order to deter-

mine its predictive power and to gain insight into GA dynamics. Problems which are most

amenable to analysis come from the class where alleles within the genotype contribute addi-

tively to the phenotype. This class can be treated with some generality, including problems

with inhomogeneous contributions from each site, non-linear or noisy fitness measures, simple

diploid representations and temporally varying fitness. The results can also be applied to a sim-

ple learning problem, generalization in a binary perceptron, and a limit is identified for which

the optimal training batch size can be determined for this problem. The theory is compared to

averaged results from a real GA in each case, showing excellent agreement if the maximum

entropy principle holds. Some situations where this approximation brakes down are identified.

In order to fully test the formalism, an attempt is made on thestrongNP-hard problem

9



of storing random patterns in a binary perceptron. Here, therelationship between the geno-

type and phenotype (training error) is strongly non-linear. Mutation is modelled under the

assumption that perceptron configurations are typical of perceptrons with a given training er-

ror. Unfortunately, this assumption does not provide a goodapproximation in general. It is

conjectured that perceptron configurations would have to beconstrained by other statistics in

order to accurately model mutation for this problem.

Issues arising from this study are discussed in conclusion and some possible areas of further

research are outlined.
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CHAPTER 1. INTRODUCTION 15

1.1 The genetic algorithm

Genetic algorithms (GAs) are adaptive search techniques, which can be used to find good solu-

tions for problems with poorly characterized and high-dimensional parameter spaces [18, 32].

They have already been successfully applied in a variety of problem domains [8] and a re-

view of the literature shows that they are becoming increasingly popular. In the simple GA

considered here, a genotype (or configuration) encodes the solution to a problem and a fitness

function determines the merit of each solution by assigninga fitness value to each genotype. A

population of solutions is created at random and evolves fora number of discrete generations

under the action of genetic operators, analogous to the processes at work in biological popula-

tions. The most important operators are selection, where the population is improved through

some form of preferential sampling, and crossover (or recombination), where genotypes are

mixed, leading to non-local moves in the search space. Mutation is usually also included, pro-

ducing random incremental changes to genotypes within the population. These operators are

iterated sequentially until the GA is stopped, either because a solution with high enough fitness

has been discovered, or because some threshold number of generations is exceeded (a more

detailed description of the simple GA is provided in chapter2, section 2.2).

This algorithm differs from traditional search heuristics, which typically make local moves

around a single solution in order to sample the configurationspace. For example, simulated

annealing accepts moves from the current configuration to neighbouring configurations accord-

ing to a probabilistic acceptance procedure such as the Metropolis algorithm [42]. Under this

procedure, moves which increase fitness are always accepted, while moves which reduce fit-

ness are accepted with some tunable probability which is reduced over time as the algorithm

spends more time in configurations of higher fitness. This algorithm can be considered global

if time-scales are sufficiently long for the process to equilibrate. However, time-scales of this

order are often unachievable in practice and the search willbecome localized. In this case the

usefulness of the method is determined by the local structure of the configuration space. If

there are many local optima which are separated by regions oflow fitness, then the algorithm

will often become trapped at local optima which may be far from any global optimum.

The GA is different in two important respects. Firstly, the GA samples a population of
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configurations in order to determine the relative merit of each. For example, the probability of

being chosen for the next generation under selection might be proportional to fitness, but would

be normalized by the mean fitness over the whole population. Thus, moves between one pop-

ulation and the next under selection are not determined by a local sampling procedure (unless

the population becomes localized around one configuration). The other important difference

between the GA and more traditional search heuristics is theuse of a crossover operator, which

produces new configurations (offspring) by mixing existingconfigurations (parents). Crossover

allows non-local moves within the population, because offspring may have very different con-

figurations from either parent.

It not clear whether the non-local search taking place in theGA is an effective way to

overcome the problems encountered by local search methods,although there is some empirical

evidence for success [8]. It has been proposed that the GA finds good solutions to a problem

through the recombination of mutually useful features fromdifferent population members. In-

deed, this intuition lies behind the most influential theorem regarding GAs, Holland’s Schema

Theorem [32]. The Schema Theorem places emphasis on the preferential survival of building

blocks which are already beneficial to solutions within the population. However, as will be seen

in section 1.3.1, this theorem does not provide a sufficiently powerful formalism to explain the

behaviour of GAs in general and can sometimes be misleading.In fact, there is no consensus

on many theoretical and practical issues regarding GAs. Forexample, it is not known which

problem domains are appropriate for GAs or how one should choose the search parameters in

order to optimize performance. Answers to these questions are often sought through empiri-

cism, yet this is an unsatisfactory approach as it lacks the generality required of a predictive

theory.

1.2 Thesis goal

In order to better understand the GA and to answer quantitative questions, it is desirable to have

a theoretical model. Such a model should be as simple as possible, without losing any essential

features of the process under consideration. Of course, which features are essential depends on
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which questions are being asked. In this thesis, a theoretical formalism for modelling the dy-

namics of the GA using methods from statistical mechanics, originally due to Prügel-Bennett

and Shapiro [53, 54], is generalized and improved upon. The formalism is used to solve the

dynamics of the GA for a number of simple optimization problems, which are hopefully in-

volved enough to provide some general insight. Problems of realistic size are described in a

compact form and important finite population effects are included under the formalism. Most

of the work in this thesis centres around the derivation of the equations of motion describing

the dynamics of the GA, although there is also some analysis of these expressions. The aim is

to review and improve upon this new theoretical formalism and to show its predictive power on

a number of concrete examples.

Although this work is motivated by the wish to understand theGA as an optimization tech-

nique, it is also hoped that the formalism may be applied to related models from quantitative

population genetics (see, for example, reference [12]). Where appropriate, parallels between

the two fields are considered, although a thorough exposition of the quantitative genetics liter-

ature is not within the scope of this thesis.

Before describing the statistical mechanics formalism in greater detail, it is first instructive

to describe some of the most influential theories from the literature on GAs.

1.3 Genetic algorithm theory

There has only been limited success in developing a coherenttheory for explaining how GAs

work, although there is a large published literature (see, for example, proceedings of the Inter-

national Conference on Genetic Algorithms). The theoretical analysis of GAs is a very difficult

task for a number of reasons, some of which are listed below.� The population resides in a very high dimensional space. Forexample, if each genotype

is a binary string of lengthN and the population is of fixed sizeP , then the population

has approximately2PN=P ! possible realizations (assumingP � 2N ).� The mapping from genotype to fitness will often be complex andnon-linear.
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fore often far from any sort of equilibrium, or steady state.� Crossover involves the interaction of population members through mixing, while selec-

tion involves the interaction of population members through competition. The population

is therefore strongly interacting and must be considered asa whole.� Because the actual population size is usually much smaller than the space of all geno-

types, infinite population approximations are often misleading. Fluctuations lead to sys-

tematic effects in a finite population.� GAs are used in many problem domains, leading to many different types of behaviour.

It is unclear how general any GA theory could be, as many features of the search will be

problem specific (this is also an important issue for other search heuristics).

Some of the most significant theoretical models of the GA are described below.

1.3.1 Schema theorem

The most influential theorem in the GA literature is Holland’s schema theorem [32]. In gen-

eral, a schema is a similarity template which specifies some features of a genotype. More

specifically, consider a binary genotype (a string of binaryalleles),1 0 0 1 1 0 0 1
In this case the relevant schemata are hyperplane partitions. A few examples of schemata which

contain this genotype as an instance are,� � 0 1 1 0 0 1 � � � 1 � 0 � � � 0 0 1 1 0 0 �
where the� denotes a ‘don’t care’ symbol. IfN is the length of the string, then there are2N
possible genotypes and3N possible schemata.

The schema theorem determines a lower bound on the expected numberm(H; t + 1) of

population members which are instances of schemaH at generationt + 1. In the case where
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the probability of selection (with replacement) is proportional to fitness one finds,Efm(H; t+ 1)g � m(H; t)F (H; t)F (t) (1� pd(H; t)) (1.1)

whereF (H; t) is the mean fitness of genotypes which are instances of schemaH at genera-

tion t andF (t) is the mean fitness of genotypes within the population. Here,pd(H; t) is the

probability thatH will be disrupted by genetic operators such as crossover or mutation. The

inequality appears because this expression takes no account of new instances of schemata being

generated by these operators and this significantly weakensthe predictive power of the theory.

The key aspect of the above inequality lies in the interplay between the disruption term

and the fitness term. Consider single point crossover, in which case a crossover point along

the two parent’s genotypes is randomly chosen and all the alleles on one side of this point

are swapped between the parents. Clearly, this operator is more likely to disrupt a schema

whose distance between outermost determined alleles (defining length) is large. Under uniform

crossover and mutation it is the number of determined alleles within the schema (order) that

matters. Holland concludes that instances of schemata which are unlikely to be disrupted by

crossover or mutation and which consistently have above average fitness within the population

will increase exponentially over time. This observation isthe justification for the building block

hypothesis, which was stated by Goldberg:

A genetic algorithm seeks near optimal performance throughthe juxtaposition

of short, low-order, high performance schemata, or building blocks [18, p 41].

Unfortunately, there are a number difficulties with this interpretation (see, for example,

references [14, 25]). The fitness of schemata will often change dynamically during the search

and the observed average fitness of schemata may differ greatly from their expected fitness in

an unbiased sample. In this case it would be meaningless to view the search as a juxtaposition

of building blocks. This is especially true of problems which exhibit symmetry breaking in

their dynamics. Another problem with the building block hypothesis is that there is a great deal

of fitness variance between instances of the same schema. Thus, the number of samples given

to a schema within the population may be too small to provide any useful information about

its expected fitness within the entire search space. Grefenstette shows how the building block
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hypothesis can give very misleading predictions regardingproblem difficulty [25].

To exactly describe GA dynamics in terms of schemata would bevery difficult in general,

as schemata provide a non-orthogonal and highly redundant representation of the population.

Of course, there might be specific examples where a subset of schemata provide an accurate

characterization. For example, in simple population genetics models the allele frequency per

site is often used, which corresponds to following the frequency of all order one schemata

within the population [12]. Yet this representation is an approximation if the number of sites

contributing to the fitness exceeds one, because the allele frequency at each site does not com-

pletely determine the state of the population. Assuming therandom assortment of alleles at

each site within the population leads to incorrect results in general, even when the alleles at

each site contribute equally and independently to the fitness.

1.3.2 Vose-Liepins formalism

An alternative theoretical approach was developed by Vose and Liepins, who provide an exact

method with which to describe the GA dynamics [73, 74]. Undertheir formalism, the genetic

operators are described by transition matrices which act ona vector describing the precise state

of the population. Nix and Vose extended this formalism to include finite population effects by

incorporating a Markov Chain analysis, which was necessaryto describe the stochastic nature

of the dynamics in this case [47].

Because this formalism is exact, it suffers from the high dimensionality problem described

at the beginning of section 1.3. It is very difficult to describe problems of realistic size because

of the complexity of the transition matrices and it seems that the predictive scope of the formal-

ism may be limited by its extreme generality. Although some effort has been made to reduce

the state space for particular problems by lumping similar states together, the resulting models

are still computationally heavy, even for very small problems [66].

1.3.3 Macroscopic models

Another approach is to describe the population by a small seta macroscopic parameters under

the assumption that microscopic details are not of criticalimportance. This is the basis of the
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theoretical formalism used in this thesis, as introduced inthe next section, but a number of

other workers have also used this idea to develop dynamical models of the GA. By ignoring

detail at the configuration level, the dimensionality of thestate space may be reduced to a

manageable number. For example, some results have recentlybeen derived for the performance

of the GA on a class of additive problems (related to those discussed in chapter 4) [45, 67, 72].

However, these models assume a particular form of distribution which is only applicable in

large populations and for very specific problems.

Often, authors do not choose appropriate quantities to average. In particular, averages

are sometimes taken over a probability distribution and this is insensitive to finite population

fluctuations, only giving accurate results in the infinite population limit. For example, Srinivas

and Patnaik produce equations of motion for the moments of the fitness distribution in terms

of the moments of the initial distribution [68]. These are moments of the average distribution

and consequently the equations do not describe a finite population. Their treatment of mutation

and crossover was also rather dubious, as a parameter which described the degree of disruption

under each operator was chosen empirically in order to get the best fit between theory and

experiment. No satisfactory explanation was given for how this parameter might be selected in

general.

Macroscopic descriptions of population dynamics are also used in quantitative population

genetics. Here, the importance of finite population effectsare more widely appreciated and the

infinite population limit is usually taken explicitly. Whenfinite population effects are quantified

for models with a large number of sites, the results are generally only exact in the limit of very

weak selection [7].

1.4 The statistical mechanics formalism

The formalism used in this thesis was originally introducedby Prügel-Bennett and Shapiro [53,

54], and provides a theoretical model for GA dynamics using methods from statistical mechan-

ics. This formalism falls into the class of macroscopic models described above. The popula-

tion is described by a relatively small set of macroscopic order parameters and deterministic

expressions are derived for the averaged trajectory of eachmacroscopic under the action of the
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genetic operators. The macroscopics are chosen so that theyaverage well between different

realizations of the dynamics and, where possible, any non-trivial terms are averaged out by

maximizing entropy with constraints on known macroscopics. The macroscopics might be, for

example, statistics describing the distribution of fitnessor the similarity of genotypes within

the population.

This approach allows an accurate description of the dynamics for a number of simple opti-

mization problems, which are hopefully involved enough to provide some insight into how the

GA searches in more general situations [54, 56, 57, 58]. The problems are of realistic size (in

terms of genotype length) and finite population effects are incorporated into the model, often

proving to be an essential ingredient in accurately characterizing the dynamics. This formalism

requires problem independent information and is thereforeless general than the Vose-Liepens

formalism, yet by losing this generality it is possible to accurately predict the dynamical tra-

jectory of the GA in interesting and non-trivial situations. The expressions describing the

dynamics are compact and simple enough to analyse, leading to some novel insight into how

each operator works and how to set parameters of the search.

1.5 Thesis outline

In this thesis the statistical mechanics formalism is extended beyond the original results due

to Prügel-Bennett and Shapiro [53, 54] in order to encompass a greater range of optimization

problems and describe more involved dynamical behaviour. Most of this work involves the

derivation of the discrete time equations which are required to describe the dynamics of the

GA for these simple, although sometimes non-trivial, optimization problems. These equations

and their derivation also provides insight into the processes at work within the GA and how one

might choose search parameters in order to optimize performance. However, this formalism is

still being developed and the first task is to determine whichproblem classes can accurately be

modelled. Where possible, theoretical results are compared to results from a real GA in order

to justify the assumptions and approximations required by the method. A short summary of

each chapter is provided below.
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Chapter 2 – The statistical mechanics formalism

The statistical mechanics formalism is introduced, along with relevant definitions and

notation. The mapping between genotype and fitness is divided into two stages for con-

venience: a mapping from genotype to phenotype and from phenotype to fitness. The

macroscopics which describe the population are cumulants of the phenotype distribution

and the mean correlation (a measure of genotype similarity)within the population.

Chapter 3 – Selection

The effect of selection on the distribution of phenotypes isproblem independent and is

therefore discussed in isolation. The selection procedureis described and a result due

to Prügel-Bennett and Shapiro [52, 53] for calculating cumulants of the population after

Boltzmann selection is generalized to a broader class of selection schemes.

Chapter 4 – Functions of an additive genotype

A class of problems which are particularly amenable to analysis are functions in which

alleles of the genotype contribute additively to the phenotype. Results are reproduced

from Prügel-Bennett and Shapiro [54] which describe the effects of crossover and muta-

tion on phenotype cumulants, along with a maximum entropy calculation for determin-

ing non-trivial terms. The validity of the maximum entropy ansatz is tested and some

limitations are identified.

As well as evolving phenotype cumulants, expressions for the change in mean correlation

under each operator are derived and this provides a significant improvement over the

original formulation. The theory is compared to averaged results for directional selection

(one-max and the random-field paramagnet) and stabilizing selection (the subset sum

problem), showing excellent predictive power as long as themaximum entropy ansatz

provides a good approximation.

Chapter 5 – Noise corrupted fitness and a simple learning problem

The selection calculation is generalized to include a stochastic fitness measure. The

theory is applied to a simple learning problem, generalization in a perceptron with binary
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weights, where there is in the fitness evaluation due to the finite size of each training

batch. The dynamics is solved for this problem and the theoryis compared to averaged

results from a real GA, showing excellent predictive power.A limit is identified where

the effects of noise can be removed by increasing the population size appropriately and

this allows the optimal training batch size to be determined.

Chapter 6 – Attempting a strongNP-hard problem

The formalism is applied to the problem of storing random patterns in a perceptron with

binary weights. This problem isNP-hard in the strong sense and differs from the other

problems considered in this thesis because of the strongly non-linear relationship be-

tween genotype and phenotype (in this case, the training error). Mutation is modelled

under the assumption that perceptron configurations withinthe population are typical of

configurations with a given training error. Unfortunately,this assumption proves to be

false in most cases and the theory does not accurately describe mutation in general. It

is conjectured that perceptron configurations should be constrained by extra statistics in

order to ensure more representative averaging.

Chapter 7 – Increasing biological realism: diploidy and temporally varying fitness

Diploid genotypes have previously been used in GAs for maintaining diversity within

the population under a temporally varying fitness measure. In this chapter the statistical

mechanics formalism is generalized to deal with a simple diploid system. The dynamics

is solved for one-max with zero dominance and with a random binary dominance map

(using a limiting form of crossover which completely decouples the alleles at every site).

A very simple temporally varying fitness measure is also considered and the dynamics

of a haploid GA are solved for this problem. This work is incomplete and a number of

possible generalizations are discussed, such as diploidy with an adaptive dominance map

and simple models of co-evolution.

Chapter 8 – Conclusion and outlook

In the final chapter, results and conclusions from the preceding chapters are reviewed

and some promising areas of further research are considered.
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2.1 Introduction

Modelling the dynamics of an evolving population is made difficult by the high dimension

of the space in which the population resides. Although it is possible to write down an exact

master equation describing the dynamics as a Markov process, with each genetic operator in-

cluded as a transition matrix [47, 73], it is difficult to makeprogress towards a more compact

description of the dynamics without some form of simplification. A useful ansatz, often used in

statistical mechanics, is to assume microscopic disorder with constraints on a small number of

macroscopic quantities. A familiar example of this principle is the ideal gas, which accurately

models a system of order1023 molecules under certain conditions, yet requires the knowledge

of only two macroscopic quantities (for example, the temperature and pressure) in order to

fully determine a macrostate.

In its most general form, the statistical mechanics formalism models the GA as an ensemble

of populations, each described by a small number of macroscopics [52]. The evolution of

this ensemble provides a probabilistic description for themany possible trajectories which a

single realization of the dynamics could take. The macroscopics which have proved most

appropriate in the problems considered here are cumulants of some appropriate quantity within

the population and the mean correlation within the population. The order parameters which

describe the ensemble of populations in this case might be the mean values and covariances

of these macroscopics over different realizations of the dynamics. Of course, for an exact

description of the ensemble it may be that an infinite set of order parameters are required, yet

in practice a truncated set often provides sufficient accuracy. This is a controlled approximation

in principle, as extra order parameters may be introduced toimprove accuracy.

Many of the problems considered so far under this formalism are well described by mean

behaviour alone, so that the covariances of each macroscopic may be neglected. In this case

the dynamics are said to self-average and this is found to be an accurate approximation for the

problems under consideration in this thesis. This is typical of statistical mechanics approaches,

which often focus on self-averaging quantities, but may notbe a reliable assumption in general

(see, for example, reference [52]), so the results presented here will always be justified by

comparison with results from a real GA. Under this self-averaging assumption, the ensemble



CHAPTER 2. THE STATISTICAL MECHANICS FORMALISM 27

converges onto a point in the space of macroscopics which describes the mean population

member. The dynamics then describes the deterministic trajectory of this point over time.

2.2 The simple genetic algorithm

The work in this thesis is restricted to the simple GA. The population will usually be of fixed

size and evolves over a number of discrete and non-overlapping generations. The genotypes

are fixed length binary strings which are randomly generatedin the initial population (this

is a haploid representation – diploids are considered in chapter 7). The binary variable at

each site within the genotype is called an allele. This representation is convenient for the

problems considered in this thesis, although it is not always appropriate. An objective function

determines the fitness associated with each genotype. Each generation a number of genetic

operators are applied sequentially, as described below.

Selection

Under selection, the population is improved by some form of preferential sampling. This

can be carried out in a number of ways. In this thesis, each population member is as-

signed some probability of selection and a new population isselected from the old with

replacement. The probability of selection will generally be some non-decreasing func-

tion of the fitness. A number of specific schemes are considered in chapter 3.

Crossover

Under standard crossover, the population is paired off at random and the genotypes in

each pair are mixed to produce two children. The genotypes can be mixed in a number

of ways and which form of crossover is most appropriate depends on the problem under

consideration. If there is no spatial ordering within the genotype then it may be appro-

priate to use uniform crossover, in which case alleles are swapped at each site within

the parents with some fixed probability. If there is spatial ordering then it may be costly

to disrupt the genotype and single-point crossover might bemore appropriate, in which

case a crossover site is chosen at random and the string portions on one side of this site
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are swapped between the parents. For the problems considered in this thesis there is

typically no spatial ordering and uniform crossover is usedin most cases.

Mutation

Under mutation, alleles are randomly flipped throughout thepopulation with some low

probability. The mutation rate is sometimes reduced (annealed) over time in order to

improve performance, but in this work it will remain fixed.

2.3 Modelling the dynamics: an overview

It is assumed that the dynamics averages sufficiently well sothat only mean behaviour of

the macroscopics which describe the population is required. Each genetic operator will be

modelled by a set of difference equations describing the expected change in each macroscopic

under that operator. This provides insight into the action of each operator and the full dynamics

can be simulated by iterating the difference equations in sequence. Any terms which cannot be

determined explicitly from known macroscopics may be determined by invoking a maximum

entropy ansatz.

Finite population effects are found to be of great importance when characterizing GA dy-

namics. To model a finite population, it is assumed the the population is a finite sample taken

from an infinite parent population [52]. It is most natural tofollow macroscopics associated

with the parent distribution from which the finite population is sampled. Selection is the only

operator which involves significant finite population effects, since the other two operators do

not involve sampling. It is therefore reasonable to split the dynamics into two phases: a finite

population phase and an infinite population phase.

1. A finite population is randomly sampled from an infinite population.

2. Selection acts on the finite population and creates an infinite population. The propor-

tion of each population member represented in the infinite population after selection is

equal to its selection probability. Mutation and crossoverare then applied to this infinite

population.
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These steps are iterated until the GA is stopped. This process is statistically equivalent to

a standard GA acting on a finite population. Vose and Wright introduce a similar sampling

procedure in reference [75], but they follow an exact microscopic description of the population

rather than a small number of macroscopic statistics.

2.4 Definitions and conventions

2.4.1 Genotype! phenotype! fitness

In the problems considered here the genotype is a string of binary allelesfS1; S2 � � � ; SNg
whereSi 2 f�1; 1g are Ising spins. Each population member is assigned a phenotypic value

which is calculated through some deterministic function ofthe genotype (although the pheno-

type is a single number here, in general it could take a much more general form). Population

member� has allelesfS�i g and phenotypeR�. A fitness measureF� will be some function of

the phenotype (stochastic or deterministic),F� = F(R�) R� = R(fS�i g) (2.1)

Fitness is not calculated directly from the genotype because it is often more convenient to

follow the distribution of phenotypes within the population. For example, the phenotype might

be the mean allele within the genotype in a function of unitation (phenotypes of this sort are a

special case of those considered in chapter 4).

The fitness distribution is denotedP(F ) and can be obtained from the distribution of phe-

notypes within the populationp(R) through the transformation,P(F ) = Z dRp(R) �(F �F(R)) (2.2)

where�(x) is the Dirac delta function andF(R) is the function which assigns fitness to each

phenotype. These distributions are usually only used when referring to an infinite population,

which is often approximated by a continuous distribution.
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2.4.2 Cumulants

Cumulants of the phenotype distribution within the population determine the shape of the dis-

tribution. These are very natural statistics for describing distributions which are close to Gaus-

sian, since the higher cumulants are a measure of deviation from a Gaussian distribution. The

first two cumulants are the mean and variance, while the thirdand fourth cumulants are related

to the skewness and kurtosis respectively.

The natural logarithm of a partition functionZ is the generating function for each cumulant

of a finite population [1],�n = lim
!0 @n@
n logZ Z = PX�=1 e
R� (2.3)

whereP is population size and�n is thenth cumulant. The first two cumulants of a finite

population are, �1 = 1P PX�=1R� = hR�i� (2.4)�2 = 1P PX�=1(R�)2 �� 1P PX�=1R��2= �1� 1P � �hR2�i� � hR�R�i�6=�� (2.5)

where the brackets denote population averages,hR�i� = 1P PX�=1R� hR�R�i�6=� = 1P (P � 1) PX�=1X� 6=�R�R� (2.6)

Although a finite population is being modelled, it is often more natural to describe the dy-

namics in terms of an infinite population from which the finitepopulation is a random sample.

Let Kn be thenth cumulant of an infinite population. The cumulants of the infinite popula-

tion phenotype distributionp(R) are generated from the logarithm of a characteristic function�(
)1, Kn = lim
!0 
n@
n log �(
) �(
) = Z dRp(R) e
R (2.7)

1This is usually written with an explicitly imaginary argument to ensure convergence of the integral, in which
case it is a Fourier transform.
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The characteristic function is analogous to the finite population partition function and will often

be written in terms of a cumulant expansion,�(
) = exp 1Xn=1 Kn
nn! !
(2.8)

It is well known that the variance of a finite sample is expected to be lower by a factor

of 1 � 1=P than that of the parent distribution from which it is sampled(see equation (2.5)).

Similar corrections can also be calculated for the higher cumulants. Expectation values for the

first four cumulants of a finite population sampled from an infinite population were derived by

Prügel-Bennett and Shapiro [54],�1 = K1 (2.9a)�2 = P2K2 (2.9b)�3 = P3K3 (2.9c)�4 = P4K4 � 6P2(K2)2=P (2.9d)

Here,P2, P3 andP4 give the finite population corrections,P2 = 1� 1P P3 = 1� 3P + 2P 2 P4 = 1� 7P + 12P 2 � 6P 3 (2.10)

2.4.3 Expanding around a Gaussian

Given a finite number of cumulants, it is sometimes necessaryto construct a consistent and ap-

propriate distribution. A convenient approximation is to expand around a Gaussian distribution

using a Gram-Charlier expansion [70].p(R) = 1p2�K2 exp��(R�K1)22K2 �"1 + ncXn=3 Knn!Kn=22 Hn�R�K1pK2 �#
(2.11)

whereHn(x) are Hermite polynomials andnc is the number of cumulants used. The Hermite

polynomials are defined by, Hn(x) = (�1)nex22 dndxn �e�x22 � (2.12)

Four cumulants are sufficient for the problems considered inthis thesis and the third and fourth

Hermite polynomials areH3(x) = x3 � 3x andH4(x) = x4 � 6x2 + 3. The Gram-Charlier

function is not a well defined probability distribution since it is not necessarily positive, but it

has the correct cumulants and provides a very good approximation in many cases.
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2.4.4 Correlation

The correlation is a measure of the microscopic similarity of genotypes and is important be-

cause selection correlates a finite population, sometimes leading to premature convergence to a

poor solution. It is also important when calculating the effect of crossover, which involves the

interaction of different population members. The simplestcorrelation measure between two

population members,� and�, is defined as,q�� = 1N NXi=1 S�i S�i (2.13)

Recall thatSi 2 f�1; 1g, so that this quantity is positive when strings are more similar than

two random strings and is negative otherwise (this is closely related to the Hamming distance).

The mean correlation within the population isq, defined as,q = hq��i�6=� = 1P (P � 1) PX�=1X� 6=� q�� (2.14)

2.5 Best population member

Although the population will be described by the mean correlation and phenotype cumulants,

the aim is usually to predict the evolution of the best population member. The fitness of the

best individual within the population can be formally written as (assuming it is unique),Fbest = PX�=1�F� Y� 6=��(F� � F�)� �(x) = 8<: 1 x � 00 x < 0 (2.15)

where�(x) is the Heaviside function. The expectation value for this quantity can be calculated

if it is assumed that population members are independently sampled from an infinite parent

population with phenotype distributionp(R) [54]. LetP(F ) be the fitness distribution, which

is related to the phenotype distribution through equation (2.2). Then,hFbesti = Z Y� �dF�P(F�)� PX�=1�F� Y� 6=��(F� � F�)�= P Z dF P(F )F �Z F�1dF 0 P(F 0)�P�1 (2.16)
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Often, the best population member lies at the edges of the phenotype distribution and may

not be accurately calculated when using a truncated set of cumulants to describe the distribu-

tion. Fluctuations in mean behaviour may also be large, because the higher cumulants vary

substantially between different realizations of the dynamics. However, for the problems con-

sidered in this thesis, reasonable accuracy was achieved with the above expression.

In writing equation (2.16) it is assumed that population members can be considered statisti-

cally independent and can take any value of fitness from a continuum. Both these assumptions

may break down under certain circumstances.� If the population becomes highly correlated, then population members are no longer

statistically independent to a good approximation. Indeed, there may be a significant

probability that duplicates exist within the population. This reduces the effective size of

the population and will reduce the fitness of the best population member on average. In

some situations it may be possible to estimate the probability of duplicates appearing in

the population, in order to amend the estimated best fitness.This is carried through in

the context of a maximum entropy distribution in chapter 4, section 4.5.3.� The discrete nature of the phenotype space may become important; for example, if the

population’s variance becomes comparable to the typical distance between phenotypes

in state space. In this case the population can no longer be described by a small number

of macroscopics and it would be necessary to characterize fine-grain features of the pop-

ulation. This is probably most important in problems with large numbers of degenerate

genotypes, since this increases the granularity of the phenotype space.

Although the first of these issues can be corrected for in certain circumstances, in general

these considerations go beyond the basic formalism presented here. In practice, the assumption

that the population is accurately modelled by selecting independently from a continuous parent

distribution works well until the GA is very close to convergence. If mutation is included, then

this assumption is often still accurate for the whole dynamics, including the final equilibrium

or steady state.



Chapter 3

Selection

34



CHAPTER 3. SELECTION 35

3.1 Introduction

The effect of selection on the distribution of phenotypes within the population is independent of

the genotype to phenotype mapping for a particular problem.This is a consequence of the fit-

ness being a function of the phenotype only. It is therefore possible to model selection without

reference to a specific problem. One might also wish to evolvethe mean correlation within the

population under selection, in which case one does require problem specific information. The

discussion presented in this chapter is restricted to problem independent results for selection.

After introducing expressions for a general selection procedure, a number of specific schemes

are considered. The first method discussed is Boltzmann selection, which is a scaled form of

fitness proportional selection. This is a very natural method of selection when the fitness dis-

tribution is close to Gaussian, because it preserves the shape of a Gaussian distribution [9, 53].

Boltzmann selection is the scheme used in this thesis and is therefore considered in greatest

detail. Ranking, truncation and tournament selection are also considered here, as they are often

the most popular selection procedures [2, 5, 19]. By including a number of selection schemes,

it is hoped that the generality of the formalism will become apparent. These methods are often

preferred over the various forms of fitness proportional selection because they are rank based

and are therefore insensitive to the particular choice of fitness function. This makes them less

susceptible to over-selecting on highly fit individuals, which might otherwise lead to rapid

and premature convergence. However, as long as the population remains relatively close to

Gaussian this is not a problem for Boltzmann selection.

Many previous studies of selection model the population as acontinuous and smooth distri-

bution of phenotypes [2, 5, 19]. This is clearly an approximation in a finite population, where

there are a finite number of discrete phenotypes within the population. As described in the

previous chapter, it is more appropriate to consider a finitepopulation as a random sample

from an infinite parent population. The distribution of phenotypes within the infinite popula-

tion will be described by a small number of cumulants, which provides a good approximation

for distributions which are close to Gaussian. The number ofcumulants required will depend

on how much the distribution deviates from a Gaussian. Of course, when the population be-

comes highly correlated the assumption that population members are independently sampled



CHAPTER 3. SELECTION 36

from a continuous parent distribution will break down. In practice, it seems that assuming

independence gives accurate results even when the population has almost fully converged.

3.2 A general selection procedure

There are many selection schemes available for use in GAs (see reference [5] for a recent re-

view). Here, a general procedure is considered which can be used to describe a number of

specific selection schemes. Each population member is assigned some probability of selection

and a new population is selected from the old with replacement. In the case of fitness propor-

tional selection, where each population member is selectedin proportion to its fitness, this form

of sampling is known as roulette wheel selection [18]. Each population member is assigned

a slot in the roulette wheel whose size is proportional to theprobability of selection and new

population members are chosen by spinning the wheel. Less noisy forms of sampling are often

used in order to try and choose as close to the desired amount of each population member as

possible. Under one such method, known as universal stochastic sampling, the roulette wheel

described above is divided intoP equal sectors and the population member whose slot lies at

the edge of each sector is chosen for the next generation [3].Such methods are more difficult

to model exactly, because selection events are no longer independent.

Each population member is assigned a weight,w� = w(F�; fF1; F2; : : : ; FP g), which

may be a function of the fitness value assigned to itself and other population members. The

probability of selecting population member� is p� and is given by,p� = w�P� w� (3.1)

This probability is exactly the definition of fitness in biology and should not be confused with

the fitness measureF�, which is an arbitrary function of the phenotype.

Following the discussion given by Prügel-Bennett [52], selection will be split into two

stages. Firstly,P population members are chosen from an infinite population atrandom. Sec-

ondly, an infinite population is selected from this finite population with the probability of select-

ing each population member given by equation (3.1). This probability is exactly the proportion

of population member� represented in the infinite population after selection. Theexpected
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properties of a finite population after selection can be determined by again selectingP popula-

tion members at random. The relationship between the first four cumulants of an infinite and a

finite population are given in equations (2.9a) to (2.9d).

3.2.1 Generating the cumulants after selection

The cumulants of the phenotype distribution within the infinite population after selection can

be generated from the logarithm of a partition function,Ksn = lim
!0 @n@
n logZs Zs = PX�=1w�e
R� (3.2)

In order to calculate the expectation values of the cumulants after selection, one can average

over the population before selection, which is randomly sampled from the infinite population

phenotype distributionp(R).hlogZsi = Z Y� �dR� p(R�)� logZs (3.3)

Following Prügel-Bennett and Shapiro, one can average over the logarithm using Derrida’s

trick of representing the logarithm by an integral1 [10, 53].hlogZsi = Z 10 dt e�t � he�tZsit (3.4)

If w� is a function ofR� alone (throughF�), then the average in equation (3.4) decouples

and the cumulants after selection forn > 0 are given by,Ksn = � lim
!0 @n@
n Z 10 dt fP (t; 
)t (3.5)

where, f(t; 
) = Z dRp(R) exp ��tw(R) e
R� (3.6)

Here,w(R) is the selection weight written as a function of the phenotype. In most cases it is

necessary to compute the integrals in this expression numerically, although the integral int can

be computed in closed form for binary tournament selection,discussed in section 3.4.3.

1To see this, notice that1Z = R10 dt e�Zt and integrate both sides with respect toZ (as long asZ > 0).
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3.2.2 Expanding around the infinite population result

It is possible to expand the cumulants after selection in1=P by expanding around the infinite

population result. This was done for Boltzmann selection inreference [54]. Here, the method

is generalized to any selection scheme as long as the higher central moments ofw(R) do not

diverge too rapidly (this is usually the case for relativelyweak forms of selection). In this

case it is possible to expandf(t; 
), defined in equation (3.6), for small
 (the
 ! 0 limit is

relevant here) and one finds,fP (t; 
) ' exp��tP 1(
)��1 + Pt22 � 2(
)�  21(
)�� (3.7)

where,  n(
) = Z dRp(R) �w(R) e
R�n (3.8)

Completing the integral in equation (3.5), one finds that thecumulants after selection up toO(1=P ) are given by,Ksn = lim
!0 @n@
n �log( 1(
)) � 12P � 2(
) 21(
)�+O� 1P 2�� (3.9)

The leading term here is the infinite population result, which corresponds to averaging directly

(an annealed average) over the partition function in equation (3.2).

3.2.3 Mean correlation after selection

It may be necessary to find the mean correlation after selection (see equation (2.14)). The mean

correlation in an infinite population after selection is given by,qs = PX�=1 p2� + PX�=1X� 6=� p�p�q��= �qd + qnat (3.10)

This is also the expectation value for the correlation of a finite population after selection. The

first term is due to the duplication of population members when selecting from a finite popula-

tion, since the correlation of duplicates is unity. The second term is due to the natural change

in correlation as the population increases in fitness. The second term depends on the relation-

ship between genotype and phenotype and is therefore problem specific. The first term is more
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general and can be averaged over the distribution of phenotypes within the population as in the

calculation for the cumulants after selection.

Using the definition ofp� in equation (3.1) one finds,h�qdi = Z Y� �dR� p(R�)� P� w2�(P�w�)2= P Z Y� �dR� p(R�)�w2� Z 10 dt t exp �tX� w�! (3.11)

The integral int provides a useful way to decouple the average for the case wherew� depends

only onR�. In this case one finds,h�qdi = P Z 10 dt tf(t)gP�1(t) (3.12)

where, f(t) = Z dRp(R)w2(R) exp (�tw(R)) (3.13a)g(t) = Z dRp(R) exp (�tw(R)) (3.13b)

As in the cumulant calculation, the integrals in this expression often require numerical

enumeration. However, as shown in section 3.2.2 it is possible to expand in1=P as long as

fluctuations ofw(R) around mean behaviour are not too large. In this case, up toO(1=P ) one

finds, h�qdi '  2(0)P 21(0) +O� 1P 2� (3.14)

where n(
) is defined in equation (3.8).

3.3 Boltzmann selection

Boltzmann selection will be used in this thesis and this scheme is therefore considered in great-

est detail. This is a very natural selection scheme for fitness distributions which are close to

Gaussian, since it preserves the shape of a Gaussian distribution [9, 53], and it is easy to choose

the selection strength so that selective pressure is invariant under addition or multiplication of

a constant to the fitness. For the simple additive problems considered in chapter 4 this form of
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selection is also equivalent to the multiplicative landscapes often considered relevant in popu-

lation genetics [11]. All the results presented in this section (except the correlation result) were

originally derived by Prügel-Bennett and Shapiro in references [52, 53].

Under Boltzmann selection, the selection weight for each population member is,w� = exp(�F�) (3.15)

where� is the selection strength and determines the relative probability of selecting different

population members. For zero� each population member is selected with equal probability,

while for very high� only the fittest population member will be selected.

A variety of fitness functions are considered in this thesis,including a quadratic function

of the phenotype in chapter 4 and stochastic functions of thephenotype in chapter 5. Specific

expressions describing Boltzmann selection will be derived for these problems as they are

introduced. In this chapter the simplest situation is considered, where fitness equals the value

of the phenotype (F� = R�), so that selection acts directly on the phenotype distribution.

Borrowing the population genetics terminology, this will be called directional selection [7].

3.3.1 Directional selection

Under directional selection, fitness is equal to the phenotype and the partition function for

Boltzmann selection simplifies to,Zs = PX�=1 exp[(� + 
)R�] (3.16)

Substituting this partition function into equation (3.5),one finds that the cumulants after selec-

tion are given by [53], Ksn = � @n@�n Z 10 dt fP (t; �)t (3.17)

where, f(t; �) = Z dRp(R) exp��te�R� (3.18)

In general, the integrals in equations (3.17) and (3.18) canbe computed numerically, using

the Gram-Charlier expansion described in equation (2.11) to parameterize the phenotype dis-

tribution. For the simulation results presented in this work the inner integral was computed
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by Gauss-Hermite quadrature and the outer integral was computed by Gauss-Laguerre quadra-

ture [51].

3.3.2 Weak selection expansion

The expansion described in section 3.2.2 is accurate for sufficiently small�pK2 [53]. For

directional Boltzmann selection n(
), defined in equation (3.8), is very naturally expressed

in terms of phenotype cumulants (see equation (2.8)), n(
) = Z dRp(R) en(�+
)R= exp 1Xi=1 ni(� + 
)iKii! !
(3.19)

Substituting this expression into equation (3.9), Prügel-Bennett and Shapiro show that the cu-

mulants after selection in this limit are given by [53],Ksn = @n@�n " 1Xi=1 �iKii! � 12P exp 1Xi=1 (2i � 2)�iKii! !#
(3.20)

Expanding in� for the first few cumulants gives,Ks1 = K1 + � �1� 1P �K2 + �22 �1� 3P �K3 + � � � (3.21a)Ks2 = �1� 1P �K2 + ��1� 3P �K3 + �22 ��1� 7P �K4 � 6P (K2)2� (3.21b)Ks3 = �1� 3P �K3 + � ��1� 7P �K4 � 6P (K2)2�+ � � � (3.21c)

Notice that the variance and higher cumulants change even for zero selection strength, due to

random sampling effects. In an infinite population, Boltzmann selection preserves the shape of

a Gaussian distribution and higher cumulants are never introduced into the population. These

expressions show that higher cumulants are introduced intoa finite population sampled from a

Gaussian, most noticeably the third cumulant becomes negative leading to a skewed population.

This is a consequence of the fact that a finite population has sparsely populated tails, so that

there is a limit to the progress which can be made by selectionalone. As the skewness of

the population becomes negative, equation (3.21b) shows how this accelerates the reduction

in variance under further selection, which in turn slows down the increase in mean fitness.
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The other genetic operators are required to reduce the magnitude of the higher cumulants and

repopulate the tails of the distribution, in order that the population may make further progress

under selection.

Using an appropriately rescaled selection strength� = �0=p�2=2 log P , Prügel-Bennett

and Shapiro show that the reduced variance under selection from a Gaussian distribution has a

shoulder at a point in the region of�0 � 0:5 [53]2. After this point the variance after selection

drops sharply, indicating rapid convergence of the population. They suggest that the selection

strength should be chosen in this region, as this achieves a large increase in mean fitness for

a relatively small cost in terms of lost variance. In this work the selection strength is scaled

inversely to the population’s standard deviation� = �s=p�2 for directional selection and

the finite population factor is not included explicitly, as population size is usually taken to be

constant.

3.3.3 Increased correlation due to duplication

The increased correlation due to duplication can be calculated for directional Boltzmann selec-

tion from equation (3.12). For small� one can again use the1=P expansion. Substituting the

expression for n(
) given in equation (3.19) into equation (3.14) one finds,�qd ' 1P �1 +K2�2 �K3�3 +O(�4)� (3.22)

This shows explicitly how the negative third cumulant introduced by selection increases the

correlation within the population under further selection, which results in increased conver-

gence and reduced performance in most cases. For a full description of the effects of selection

on the correlation within the population it is also necessary to consider the natural increase

term in equation (3.10), which will depend on the specific problem under consideration.

3.3.4 Beyond mean behaviour

While following the mean behaviour of each macroscopic has proved sufficiently accurate for

modelling the problems discussed in this thesis, a more general approach is to also include

2The weak selection approximation seems to break down in the neighbourhood of this point.



CHAPTER 3. SELECTION 43

fluctuations from mean behaviour. In this way it is possible to model the GA as an ensemble of

non-interacting populations, each weighted appropriately. This was carried through by Prügel-

Bennett for an asexual population (no crossover) on a simpleadditive problem known as one-

max, which is introduced in chapter 4 [52].

Fluctuations from mean behaviour were introduced by following covariances of the cu-

mulants which described each population within the ensemble. The order parameters which

described the ensemble were the mean values and covariancesof each cumulant. Although

the effect of fluctuations was found to be rather small, they proved to be important in asexual

dynamics where the higher cumulants become important because they are not suppressed by

crossover (as discussed in chapter 4, section 4.4). It seemsthat it is most important to include

fluctuations from mean behaviour when accurate modelling ofthe dynamics requires the inclu-

sion of many cumulants. In this thesis the population is usually adequately described by four

cumulants and fluctuations are assumed to have a negligible effect in this case.

3.4 Other selection schemes

In the following three sections some popular alternative selection schemes are discussed; trun-

cation selection, ranking selection and tournament selection. These schemes are all based on

fitness rank rather than fitness value and are often preferredover fitness proportional selection

schemes because they are less sensitive to the shape of distribution or particular choice of fit-

ness measure. The phenotype distributions under consideration in this thesis are typically close

to Gaussian, so this is not an important issue here and Boltzmann selection is an appropriate

method.

These selection schemes have previously been described in terms of their effects on the

moments or cumulants of a continuous Gaussian fitness distribution, which is effectively an

infinite population approximation [5, 7]. Each method fits naturally into the finite population

selection procedure outlined in section 3.2, showing the generality of this approach. In the fol-

lowing sections, generating functions are derived for the cumulants after directional selection.

As in Boltzmann selection, the approximate expansion derived in section 3.2.2 is required to

obtain a closed form result for truncation and ranking selection, while an exact closed form
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result is possible for binary tournament selection. The aimhere is mainly to demonstrate the

flexibility of the present approach and this study is by no means exhaustive or complete.

3.4.1 Truncation selection

Under truncation selection, the population is ranked according to fitness and a threshold rank is

chosen above which all population members are equally likely to be selected and below which

population members are discarded. This form of selection isalso used by breeders in artificial

selection and is well understood in terms of its effect on themoments of an infinite Gaussian

distribution [7].

Prügel-Bennett and Shapiro consider a simplification where every population member above

some threshold fitnessFt is given equal probability of selection (although they do not consider

finite population corrections) [54]. This differs from a threshold rank because the fitness at a

particular rank may fluctuate. Under this simplification thenumber of individuals which are

discarded may fluctuate around some mean value. The selection weight in this case is simply,w� = �(F� � Ft) �(x) = 8<: 1 x � 00 x < 0 (3.23)

Consider directional selection (F� = R�). In this case the cumulants of an infinite popula-

tion after selection are given by equation (3.5) with,f(t; 
) = 1� Z 1Ft dRp(R) �1� exp ��te
R�� (3.24)

It is possible to apply the expansion described in section 3.2.2 for typical population sizes,

as long asFt is not too large. The cumulants up toO(1=P ) after truncation selection are then

given by equation (3.9),Ksn = lim
!0 @n@
n �log( 1(
))� 12P � 2(
) 21(
)��
where,  n(
) = Z 1Ft dRp(R) en
R (3.25)
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A common choice of truncation threshold is at, or close, to the mean of the distribution.

For example, withFt = K1 the mean and variance of the distribution after selection from a

Gaussian distribution are, Ks1 = K1 +r2K2� (3.26a)Ks2 = �1� 2P ��1� 2��K2 (3.26b)

Notice that the finite population factor in the second cumulant is equivalent to the effect of

unbiased sampling from a population of sizeP=2. This is what one might expect here, becauseP=2 is exactly the expected number of population members whose fitness is greater than the

mean fitness. Selection can then be considered as unbiased sampling from these population

members. As the threshold increases, the expected number ofpopulation members beyond the

threshold will decrease and theO(1=P ) term will increase until the expansion breaks down.

Unless a very low threshold fitness is used, a truncated cumulant expansion might not de-

scribe the population after this form of selection accurately, since it may be far from Gaussian.

For this reason, truncation selection is probably the leastappropriate selection scheme to model

using a cumulant expansion, unless crossover is disruptiveenough to return the population

close to Gaussian each generation.

3.4.2 Ranking selection

Under ranking selection, the population is ordered according to fitness and each individual is

weighted according to its rank within the population. Thereare a number of variants of this

form of selection and to simplify matters only linear ranking selection is considered here, in

which case the selection weight is simply the rank of an individual added to some constant

which determines the strength of selection,w� = PX�=1�(F� � F�) + C (3.27)

The strongest possible linear ranking scheme hasC = 0. IncreasingC leads to a reduced

selection strength, in terms of the ratio of the weight assigned to the best and worst population

members respectively. For stronger selection strength it is necessary to use some other form of

ranking, such as exponential ranking [5]. Here, the case whereC = 0 will be considered.
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Unfortunately, the expression for the selection weight in equation (3.27) is difficult to anal-

yse, as it does not allow the average in equation (3.4) to decouple in a simple way. It would be

much more convenient to consider a function ofF� alone. Instead of assigning rank accord-

ing to fitness within the population, a reasonable approximation is to assign rank according to

the fitness distribution of the infinite population from which the population is a finite sample,P(F ). In this case the selection weight is given by,w� ' Z F��1dF P(F ) (3.28)

This simplification was considered by Prügel-Bennett, whoprovided the following result3.

For directional selection (F� = R�) the cumulants of an infinite population after selection

are given by equation (3.5) with,f(t; 
) = Z dRp(R) exp ��t�e
R Z R�1dR0 p(R0)�� (3.29)

As in truncation selection, it is possible to apply the expansion described in section 3.2.2

for typical population sizes. The cumulants up toO(1=P ) after linear ranking selection are

then given by equation (3.9),Ksn = lim
!0 @n@
n �log( 1(
))� 12P � 2(
) 21(
)��
where,  n(
) = Z dRp(R) �e
R Z R�1dR0 p(R0)�n (3.30)

In general, the expressions for the cumulants after selection are rather complex and require

numerical enumeration. For the first two cumulants after selection from a Gaussian distribution

one finds, Ks1 = K1 +rK2� �1� 23P � (3.31a)Ks2 = �1� 1� � 0:795199P �K2 (3.31b)

3private communication.
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3.4.3 Tournament selection

Under tournament selection, small groups of population members compete to decide which

will be selected for the new population. This may be useful, as it allows selection to be exe-

cuted in parallel and does not require sorting or normalization of the population. Typically, a

small number of population members are drawn at random from the population and the fittest

individual among them is selected for the new population. This process is repeated until a

new population has been selected. Binary tournament selection will be considered, although

the method presented here may easily be generalized to larger sized tournaments which would

lead to stronger selection. It is also possible to introducenoise into the tournament, so that the

winner is assigned a higher probability of selection than the loser, leading to weaker selection.

Any such generalization can be considered under the procedure presented here.

In order to make the calculation straightforward,2P independent population members are

present before selection. In practice, this can be achievedto a good approximation by doubling

the population size before crossover and this leads to a slight increase in correlation, as de-

scribed in section 3.5. The population is then paired off at random and the individuals in each

pair, or tournament, are assigned indices� and� + P respectively. The selection weights for

population members� and�+ P are complementary,w� = 1� w�+P = �(F� � F�+P ) (3.32)

In this case, the partition function for selection is (see equation (3.2)),Zs = PX�=1 ��(F� � F�+P )e
R� +�(F�+P � F�)e
R�+P � (3.33)

Averaging over2P population members in equation (3.4) leads to the familiar form of generat-

ing function for the cumulants of an infinite population after selection. For directional selection

(F� = R�) this is given by equation (3.5) with,f(t; 
) = 2Z dRp(R)�e�te
R Z R�1dR0 p(R0)� (3.34)

Unlike the previous selection calculations, for this form of selection the cumulants after

selection can be determined exactly, in closed form. In fact, finite population corrections are the
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same as for flat selection, since each of theP tournament winners has exactly equal probability

of being selected. Therefore, the cumulants after selection are given by (forn < 4),Ksn = Pn� lim
!0 @n@
n log( 1(
))� (3.35)

wherePn is the finite population correction to thenth cumulant of a finite sample and n(
) is

the same as for ranking selection, as defined in equation (3.30). Here,P1 = 1 andPn is given

in equation (2.10) forn = 2 andn = 3. The fourth cumulant has finite population corrections

analogous to those in equation (2.9d).

In the infinite population limit this selection scheme is equivalent to linear ranking, which

was discussed in the previous section. The first two cumulants after selection from a Gaussian

distribution are, Ks1 = K1 +rK2� (3.36a)Ks2 = �1� 1P ��1� 1��K2 (3.36b)

Comparing this with equations (3.31a) and (3.31b) it is clear that there are small differences in

the two selection schemes due to finite population effects.

Since linear ranking and binary tournament selection differ only in finite population terms,

it is interesting to ask which scheme is the most effective. One measure of effectiveness is to

consider how the correlation increases under selection, since an excessive increase in corre-

lation may lead to premature convergence and reduced performance [18]. Under tournament

selection, the duplication term defined in equation (3.10) is always equal to1=P , which is the

duplication contribution to the correlation expected under flat selection onP individuals. This

will always be less than the duplication term for linear ranking in a population of sizeP , where

fitter population members are always more likely than average to be duplicated under selection.

However, this is a misleading comparison as the population size is taken to be2P before tour-

nament selection (two population members in each tournament). It is then more appropriate

to consider linear ranking where population members are selected from a population of size2P , which leads to reduced sampling errors. In this case binarytournament selection gives a

slightly higher correlation due to duplication. In practice, it is unlikely that there will be much
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difference between the methods. Tournament selection is often the preferred method because

it does not require sorting of the population and is easy to execute in parallel.

3.5 Reducing the sampling error

The selection procedure described in section 3.2 uses roulette wheel sampling, with population

members selected independently with replacement for the new population. This is a rather

noisy form of selection and other less noisy forms are often preferred in practice. One common

method is stochastic universal sampling which was described at the beginning of section 3.2 [3].

Under this method, the number of each individual selected for the new population is as close

to the desired proportion as possible. This is a difficult form of sampling to model exactly in

general, as the selection of each individual is no longer an independent event.

One selection scheme in which the two different forms of sampling can be compared is

in tournament selection, in this case binary tournament selection. A population of size2P
is required after selection, which can then undergo mutation and crossover before being di-

vided intoP tournaments for further selection. This ensures high probability that duplicates

do not appear within the same tournaments. The procedure which corresponds to stochastic

universal sampling is to select exactly two of each tournament winner in the population after

selection. Roulette wheel sampling corresponds to selecting2P randomly from an infinite pool

containing equal proportions of each tournament winner. Itis simple to calculate the increase

in correlation under both forms of sampling.

Let q be the mean correlation between different tournament winners after selection. The

correlation in an infinite population of tournament winnersis q + (1 � q)=P , as there is a1=P probability of two distinct population members being identical. This is also the expected

correlation in a finite random sample of size2P created by roulette wheel sampling. Now

consider a population of size2P which contains exactly two representatives of each tournament

winner, as produced by stochastic universal sampling. The expected mean correlation in this

population would beq + (1 � q)=4P for large P, as there is now aP=2P (2P � 1) probability

of two population members being identical. Therefore, the population correlates four times as

much through random duplication by using roulette wheel selection.
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This result indicates that roulette wheel sampling is certainly an inefficient form of sam-

pling and correlations may grow much less quickly under other forms of sampling. Although

one might expect both forms of sampling to act similarly for strong selection, it is certainly

the case that as the selection strength reduces to zero they behave very differently. This might

be important when making theoretical predictions for weak selection behaviour, as there is

much greater loss of diversity (genetic drift) under roulette wheel sampling than expected un-

der stochastic universal sampling. Analysis of the asymptotic behaviour of different sampling

schemes in the limit of weak selection would be very useful, but this is probably a very difficult

task in general.

3.6 Conclusion

A general selection procedure was defined and a generating function was introduced for cal-

culating the change in phenotype cumulants under a class of selection schemes. This work

generalizes upon the results of Prügel-Bennett and Shapiro in order to cover a greater range of

selection schemes and to calculate the increased correlation due to the duplication under selec-

tion [52, 53]. In contrast to other approaches, finite population effects are included explicitly

under this formalism, leading to a better characterizationof selection and a number of interest-

ing observations. In general, numerical enumeration is required to generate the cumulants after

selection, although it was shown how one could expand aroundthe infinite population result

for weak selection, allowing closed form results for Boltzmann, truncation and linear rank-

ing selection in this limit. For binary tournament selection, an exact closed form result was

possible in the general case. Further work is required to determine the range of applicability

of the weak selection approximation and, if possible, to characterize selection under different

sampling procedures.

Boltzmann selection was considered in greatest detail here, as this is the selection method

of choice in the rest of this thesis. The directional selection results due to Prügel-Bennett and

Shapiro were reviewed, and a calculation for the increased correlation due to duplication was

also included [52, 53]. Finite population effects lead to anincrease in the magnitude of higher

cumulants under directional selection, resulting in a lossof variance under further selection
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and a faster accumulation of correlations due to duplication. These effects cannot be seen in

the limit of an infinite population, emphasizing how important it is to accurately characterize

finite population effects.



Chapter 4

Functions of an additive genotype

52
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4.1 Introduction

A class of problems which are particularly amenable to analysis are functions in which alleles

of the genotype contribute additively to the phenotype. These functions include a number of

problems which have been discussed at length within the literature, yet the statistical mechanics

formalism is the first method which accurately characterizes the dynamics in general, including

inhomogeneous contributions from each site, finite population effects and non-linear fitness

functions, all of which are considered in this chapter. In chapters 5 and 7 these methods are

also used to model the dynamics for a simple learning problem, a diploid GA and a simple

temporally varying problem.

This work was initiated by Prügel-Bennett and Shapiro, whoapplied the statistical mechan-

ics formalism to two closely related problems – the random-field paramagnet and the spin-glass

chain [54]. Many of the results presented here were initially derived in their analysis, although

in order to achieve greater accuracy it has been necessary tofollow the evolution of an extra

macroscopic, the mean correlation within the population, which was defined in equation (2.14).

Expressions describing the evolution of the mean correlation provide the most significant new

results derived in this chapter and the explicit inclusion of this macroscopic increases the accu-

racy and generality of the method.

In the following sections a general form for the phenotype isdefined and expressions for

the effects of mutation and crossover on each macroscopic are introduced. These expressions

are independent of the particular form which the fitness function takes, since mutation and

crossover only affect the phenotype through the genotype and do not act on the fitness directly.

In order to determine terms not explicitly related to known macroscopics, a maximum entropy

ansatz due to Prügel-Bennett and Shapiro is used [54]. Thisansatz is also required to determine

the increased correlation under selection.

The formalism is applied to a number of fitness functions, leading to solutions for the dy-

namics under directional selection (one-max and the random-field paramagnet) and stabilizing

selection (the subset sum problem). In each case the mean evolution of the macroscopics and

best population member are accurately determined, as long as the maximum entropy ansatz is
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justified. In some cases the ansatz does not hold and there aresystematic errors in the theoreti-

cal predictions.

4.2 The phenotype

The phenotype of population member� is defined,R� = NXi=1 JiS�i (4.1)

Here, theJi are fixed weights at each site which are chosen from some arbitrary distribution.

The allele at sitei in population member� is an Ising spinS�i 2 f�1; 1g.
The cumulants of the phenotype distribution are defined in chapter 2, section 2.4.2 and for

this phenotype the first two cumulants of an infinite population are,K1 = NXi=1 JihS�i i� (4.2a)K2 = �� NXi=1 JiS�i �2�� �� NXi=1 JihS�i i��2= NXi=1 J2i (1� hS�i i2�) + NXi=1Xj 6=i JiJj(hS�i S�j i� � hS�i i�hS�j i�) (4.2b)

The angled brackets denote population averages as defined inequation (2.6). The expectation

value for the cumulants of a finite population sampled from aninfinite population can be found

from equations (2.9a) to (2.9d) for the first four cumulants.

The initial population is randomly generated, with each allele chosen uniformly fromf�1; 1g. In this case the mean correlation and odd cumulants of such adistribution are zero,

while the first two even cumulants of an infinite, random population are,K i2 = NXi=1 J2i K i4 = �2 NXi=1 J4i (4.3)

4.3 Mutation

Under mutation, each allele within the population is flippedwith probability pm. Introducing

an independent binary variable for each allele within the population provides a natural way of
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describing this operator,S�i !M�i S�i M�i = 8<: 1 with probability1� pm�1 with probabilitypm (4.4)

So, for example, the first cumulant after mutation is,Km1 = NXi=1 JihM�i S�i i� (4.5)

Averaging over all mutations gives the expectation value for the first cumulant after mutation,hKm1 imut = � NXi=1 JihS�i i� = �K1 (4.6a)

where� = 1 � 2pm. This calculation can be generalized to the higher cumulants and Prügel-

Bennett and Shapiro determine expectation values for the first four cumulants after muta-

tion [54] 1,Km2 = �2K2 + (1� �2) NXi=1 J2i (4.6b)Km3 = �3K3 � 2�(1� �2) NXi=1 J3i hS�i i� (4.6c)Km4 = �4K4 � 2(1� 4�2 + 3�4) NXi=1 J4i (4.6d)�8�2(1� �2)" NXi=1 J4i (1� hS�i i2�) + NXi=1Xj 6=i J3i Jj(hS�i S�j i� � hS�i i�hS�j i�)#
where these are cumulants of an infinite population. Similarly, the expected mean correlation

after mutation is,qm = �2q (4.7)

A number of terms in the expressions for the third and fourth cumulants cannot be ex-

pressed in terms of the cumulants or the correlation within the population, unless the weights

are equal at every site, as is the case for the one-max problemwhich is introduced in section 4.7.

In this case the expressions for every cumulant after mutation can be written in terms of the cu-

mulants before [52]. Otherwise, on-site terms can be calculated by assuming maximum entropy

1In a private communication, Nick Barton points out that Prügel-Bennett and Shapiro did not include off-site
terms in the fourth cumulant.
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with constraints on the mean phenotype and correlation within the population, as described in

section 4.5. Unfortunately, the off-site term in the fourthcumulant cannot be determined by

this method, as the maximum entropy result does not cater foroff-site terms. In the problems

considered here this term does not have any significant impact, however, as the effect of mu-

tation on the higher cumulants is negligible compared to theeffects of crossover (described in

the next section). For our purposes, off-site terms can be neglected to a good approximation.

For asexual dynamics, or very non-disruptive forms of crossover, such an approximation may

not be justified.

4.4 Crossover

Under crossover, genetic material is exchanged between population members. This is usually

carried out by pairing off the population at random, with each pair crossed to produce two

children. There are many possible crossover schemes available and which is most appropriate

depends on the problem under consideration, and on how the problem is encoded within the

genotype [18]. For problems with strong spatial interactions between alleles it is often impor-

tant to minimize disruption of the genotype. In this case single-point crossover might be most

appropriate, where parent genotypes are broken at one pointand the segments on one side of

this point are swapped.

In the problems under consideration in this chapter there isno such spatial order and neigh-

bouring alleles are of no more importance than spatially distant alleles. There may still be some

cost involved in shuffling alleles, however, so it is often convenient to allow more or less dis-

ruption to the parent’s genotypes. In this case crossover isa generalized version of uniform

crossover and the alleles of a child produced by parents� and� are given by,Sci = X��i S�i + (1�X��i )S�i X��i = 8<: 1 with probabilitya0 with probability1� a (4.8)

wherea is the parameter which determines the relative number of alleles taken from each

parent. Under uniform crossovera = 0:5 is a common choice, in which case alleles are taken

from either parent with equal probability.
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The expectation value for each cumulant after crossover canbe calculated by averaging

over theX��i variables in each cumulant. Prügel-Bennett and Shapiro show that the expectation

values for the first four cumulants after crossover are givenby [54],Kc1 = K1 (4.9a)Kc2 = K2 + 2A(Kmax2 �K2) (4.9b)Kc3 = K3 + 3A(Kmax3 �K3) (4.9c)Kc4 = K4 + 2A(2�A)(Kmax4 �K4) (4.9d)

Here,A = a(1 � a) andKmaxn is the fixed point of thenth cumulant under crossover alone.

This is the state where off-site averages within and betweenpopulation members are equal

on average; so, for examplehS�i i�hS�j i� = hS�i S�j i� and the second term in equation (4.2b)

disappears. Kmax2 = NXi=1 J2i (1� hS�i i2�) (4.10a)Kmax3 = �2 NXi=1 J3i (hS�i i� � hS�i i3�) (4.10b)Kmax4 = �2 NXi=1 J4i (1� 4hS�i i2� + 3hS�i i4�) (4.10c)

These expressions can be calculated by making a maximum entropy ansatz, as described

in the next section. Crossover relaxes the cumulants towards the fixed point defined by equa-

tions (4.10a) to (4.10c), often leading to a much more rapid reduction in the magnitude of the

higher cumulants than could be achieved through mutation alone. In fact, for directional selec-

tion, which is discussed in section 4.7, crossover leaves the first two cumulants unchanged to a

reasonable approximation and substantially reduces higher cumulants introduced by selection.

This leads to much improved progress under further selection, while mutation has a relatively

small effect (for practical mutation rates).

The mean correlation is unchanged by crossover, because although crossover changes the

alleles within each population member, it conserves the mean number of alleles at each site

within the population.
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A rather extreme form of crossover is bit-simulated crossover (BSC), which is only appro-

priate in problems where there is a very low cost associated with crossover in terms of reduced

fitness [71]. In this case it is practicable to relax the population straight to the fixed point of

standard crossover. This can be achieved by selecting alleles for each site in a child from a

randomly selected population member, so that the population is effectively randomized with a

constraint on the mean magnetization per site (the mean allele per site within the population).

If this form of crossover is used, then one can accurately describe the dynamics of problems

with an additive genotype in terms of only the two macroscopics required to constrain the max-

imum entropy distribution. This form of crossover also allows a special limit to be developed,

which facilitates a solution to the dynamics for a number of non-trivial problems. This limit

is developed in section 4.9 and is applied to diploid systemsand a temporally varying fitness

measure in chapter 7.

4.5 Maximum entropy ansatz

In order to calculate terms which are not trivially related to known macroscopics, it is neces-

sary to make some assumption about how alleles are distributed at each site. Prügel-Bennett

and Shapiro have introduced a maximum entropy ansatz in order to calculate these terms [54].

They used two constraints, the mean phenotype and correlation within the population, although

they did not choose the correlation as an explicit macroscopic (they estimate it from the vari-

ance). The simple correlation measure defined in equation (2.14) is used here, although it is

also possible to use a different correlation measure which includes a weight factor within the

sum over sites, as in reference [56]. The simpler choice of correlation measure was found

to characterize the population better in the problems considered here. A comparison of the

theoretical prediction with experimental results is required asa posteriori justification of the

ansatz.

4.5.1 Allele distribution at maximum entropy

To estimate the non-trivial on-site terms in equations (4.6c), (4.6d) and (4.10a) to (4.10c),

it is necessary to estimate how alleles are distributed at each site. This will be achieved by



CHAPTER 4. FUNCTIONS OF AN ADDITIVE GENOTYPE 59

calculating the expected mean allele at each site in a population at maximum entropy, with

constraints on the mean phenotype and correlation within the population.

Define�i to be the mean allele within the population (magnetization)at sitei,�i = hS�i i� = 1P PX�=1S�i (4.11)

The single-site density of states
(�i) is the proportion of allele combinations compatible with

this magnetization, 
(�i) = 12P � PP (1 + �i)=2� (4.12)

One can define an entropyS(�i) which is the logarithm of this quantity. Using Stirling’s ap-

proximation for largeP one finds,S(�i) = log
(�i)� �P2 log(1� �2i ) + P�i2 log�1� �i1 + �i� (4.13)

Lagrange multipliers enforce constraints on the mean phenotype and correlation (these expres-

sions are for largeP ), zPK1 = z PX�=1 NXi=1 JiS�i = zP NXi=1 Ji�i (4.14a)12 (xP )2q = x22N PX�=1 PX�=1 NXi=1 S�i S�i = (xP )22N NXi=1 �2i (4.14b)

A probability distribution for thef�ig configuration can then be defined which decouples

at each site, P(f�ig) = NYi=1 p(�i) = NYi=1 exp�S(�i) + zPJi�i + (xP�i)22 �
(4.15)

and a Gaussian integral removes the square in the exponent,p(�i) = Z d�ip2� exp���2i2 + PG(�i; �i)� (4.16)

where, G(�i; �i) = S(�i)=P + (zJi + x�i)�i (4.17)
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The maximal value ofG with respect to�i gives the maximum entropy distribution for�i, in

which case, �i = tanh(zJi + x�i) (4.18)

where�i is drawn from a Gaussian distribution with zero mean and unitvariance.

The constraints can be used to obtain values for the Lagrangemultipliers,K1 = NXi=1 Ji tanh(zJi + x�i) (4.19a)q = 1N NXi=1 tanh2(zJi + x�i) (4.19b)

where bars denote averages over the Gaussian noise�i. The average overJi and�i will usually

be computed numerically by Gaussian quadratures [51], depending on the particular distri-

bution of weights. Once the Lagrange multipliers have been determined, the expressions for

mutation and crossover which involve non-trivial on-site terms can be calculated,NXi=1 Jni hS�i im� = Z Yi �dJi p(Ji)� NXi=1 Jni tanhm(Jiz + x�i)= NZ dJ p(J)Jn tanhm(Jz + x�) (4.20)

Although these averages have to be computed numerically, itshould be noticed that the com-

putation does not scale with problem size or population size.

The fixed point of an infinite population under crossover is assumed to be a maximum en-

tropy distribution, whose cumulants and correlation may benaturally generated from a single-

site partition function (this function will be useful later).Kmaxn = NXi=1 lim
!0 @n@
n logZi(
; 0) (4.21a)q = 1N NXi=1 �1� lim�!0 @2@�2 logZi(0; �)� (4.21b)

where, Zi(
; �) = �1 + �i2 � e
Ji+� +�1� �i2 � e�(
Ji+�) (4.22)
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4.5.2 Testing the ansatz

The maximum entropy ansatz requires some justification, as it may not always provide a good

approximation. Figure 4.1 shows the averaged microscopic distribution of alleles within the

population for a standard GA under directional selection onan additive genotype, for two mu-

tation rates. Snapshots were taken every 25 generations forthe first 75 generations, with the

mean allele and mean squared allele per site within the population shown as a function of the

weight at each site. The GA with the lower mutation rate is most accurately described by the

maximum entropy result, while the GA with a higher mutation rate is eventually only in qual-

itative agreement. This is reflected in the theoretical predictions for the dynamical trajectories

which are shown in figures 4.5 and 4.6.

These results can be explained by noting that mutation takesthe distribution away from

maximum entropy. This phenomena is easily pictured by considering a population which mu-

tates away from an initial population of optimal solutions.Mutation does not differentiate

between high and low weights, and will flip alleles associated with high weights with a much

greater probability than predicted by the maximum entropy result. When selection and mu-

tation are combined, it is assumed that selection will redress this imbalance by rejecting the

population members whose alleles have been flipped at high weights. Yet, there is no guar-

antee that selection will completely remove these mutations. Figure 4.1 shows how, for the

higher mutation rate, the maximum entropy ansatz over-estimates the mean allele per site at

the largest weights.

4.5.3 Probability of duplicates

The expression derived in equation (2.16) for estimating the best member of the population

assumes that all population members are chosen independently from a continuous distribution

of fitness. This approximation breaks down when the population becomes highly correlated and

is certainly inapplicable when duplicates exist within thepopulation. It is possible to calculate

the probability of two population members being duplicateswhen randomly selected from the

maximum entropy distribution described here.
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Figure 4.1: The maximum entropy result is compared to averaged results for two GAs under
directional selection on an additive genotype, which differ only in their respective mutation
rates. Snapshots are taken every 25 generations for the first75 generations. The theoretical
solid curves are for the mean allele per site within the population �i as a function ofJi, while
the dashed curves are for the squared mean allele per site�2i (the bars represent an average
over all sites with the same value or range ofJi). The histogram results are averaged over 5000
runs of the GA and weights were uniformly distributed in the range[0; 1]. The simulations are
the same as those used for the results presented in figures 4.5and 4.6 and all other parameter
values are given there. Notice that the histograms in the lower right of the figure cross.
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If �i is the mean allele at sitei, defined in equation (4.18), then the probability that popula-

tion members� and� have identical configurations is,Pr�=� = NYi=1�(1 + �i)24 + (1� �i)24 �
(4.23)

Averaging the logarithm of this quantity over the Gaussian noise in�i one finds,Pr�=� = exp NXi=1 log[(1 + �2i )=2]! (4.24)

This quantity will only be significant when�2i ' 1, in which case,Pr�=� ' exp��N2 (1� q)� (4.25)

whereq = �2i is the mean correlation within the population.

The expected number of duplicate pairs within the population is given by this probability

multiplied by the number of distinct pairs within the population,

No. of duplicate pairs' 12P (P � 1) exp��N2 (1� q)� (4.26)

When this quantity isO(1) then population members can no longer be considered independent.

In this case a reasonable approximation is achieved by reducing the effective population size

by this amount (as long as there is negligible probability ofthree or more copies of the same

individual being present). This is an approximation because phenotypes within the population

can no longer be considered a random sample once duplicates are rejected. The effective

population size is then,Pe� = P �1� 12(P � 1) exp��N2 (1� q)�� (4.27)

As q ! 1 it would also be necessary to include higher order correlations (otherwisePe� would

become negative), but this result gives a good approximation at the point when correlations

first become important, as shown by the experiment describedin figure 4.9.

In general, correlations will be less evenly distributed within the population than predicted

by the maximum entropy ansatz and this calculation will provide a lower bound on the expected

number of duplicates. There may also be functional degeneracy for integerJi, in which case

phenotypes may be equal without having the same configuration.
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4.6 Evolving the mean correlation under selection

As discussed in chapter 3, section 3.2.3, the calculation for the mean correlation after selection

depends on details of the problem under consideration, as itinvolves the relationship between

genotype and phenotype. Recall equation (3.10), which describes the expected increase in

correlation under selection,qs = PX�=1 p2� + PX�=1X� 6=� p�p�q��= �qd + qnat
The first term is due to the duplication required in a finite population and is discussed in sec-

tion 3.2.3. The second term is the natural increase in correlation as the population becomes

fitter.

To simplify the calculation, it is convenient to subtract off a set of dummy variables from

the first term and add the same variables to the second term,qs = PX�=1 p2�(1� q��) + PX�=1 PX�=1 p�p�q��= �q + q1 (4.28)

Here, q�� is the expected correlation between distinct genotypes with the same phenotypic

valueR�. These extra variables are introduced so thatp� andp� can be treated independently

in the second term (this term is denotedq1 as it is the only contribution in the infinite popu-

lation limit). The first term expresses the intuition that each duplicate pair created by selection

can be thought of as replacing a pair which would otherwise becorrelated byq��.

The relationship between correlations and phenotypes is required to estimate both terms

in equation (4.28). It will be assumed that this relationship is well approximated by a max-

imum entropy distribution, as described in section 4.5, andthis assumption will be justified

retrospectively. Consider each contribution to the correlation in turn.

4.6.1 Maximum entropy result for q1
Let p(q��jR�; R�) be the conditional probability for the correlation betweentwo population

members given their phenotypes. This distribution can be determined for a maximum entropy
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distribution (see equation (A.3) in appendix A). The expectation value forq1 after selection is

simply the correlation averaged over this distribution andthe distribution of phenotypes after

selection,ps(R), q1 = Z dq�� dR� dR� ps(R�) ps(R�) p(q�� jR�; R�)q�� (4.29)

This integral can be computed for largeN by the saddle point method and in this limit the result

only depends on the mean phenotype after selection. The calculation is shown in appendix A

and one finds, q1(y) = 1N NXi=1 � �i + tanh(yJi)1 + �i tanh(yJi)�2
(4.30)

wherey is implicitly related to the mean phenotype after selection,Ks1 = NXi=1 Ji� �i + tanh(yJi)1 + �i tanh(yJi)� (4.31)

Here,�i is the mean allele at sitei for a maximum entropy distribution (before selection), as

defined in equation (4.18). The average over the Gaussian noise in�i is taken over each site

in both expressions. In general, it is necessary to compute these expressions numerically, first

computingy from equation (4.31) by numerical root finding and then substituting this value ofy into equation (4.30) in order to determineq1(y).
It is instructive to expand equation (4.31) iny, which is appropriate in the weak selection

limit, Ks1 = K1 + yKmax2 + y22!Kmax3 + y33!Kmax4 + � � � (4.32)

Here,Kmaxn are cumulants of the maximum entropy distribution which aredefined in equa-

tion (4.21a). Truncating this expression provides a good approximation fory in the weak

selection limit, avoiding the need for numerical reversionof equation (4.31). This value ofy
could then be substituted into equation (4.30) in order to determineq1(y).

By comparing this expansion to the Boltzmann directional selection result in equation (3.20),

one finds thaty is equal to the selection strength� in the infinite population limit, if the pop-

ulation is at maximum entropy before selection. For weak directional selection it may well be

reasonable to choosey ' � when approximating the dynamics, although for the simulations

presented in this thesis the exact expressions were used.
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4.6.2 Maximum entropy result for�q
Recall the definition of�q given in equation (4.28),�q = PX�=1 p2�(1 � q��) (4.33)

By averaging over each population member (as in chapter 3, section 3.2.3) one finds,�q = P Z 10 dt t f(t) gP�1(t) (4.34)

where, f(t) = Z dRp(R)Z dq p(qjR;R) (1 � q)w2(R) exp��tw(R)� (4.35a)g(t) = Z dRp(R) exp��tw(R)� (4.35b)

In general, it would be necessary to calculate these integrals numerically, but the correlation

distribution is difficult to deal with as it requires the numerical reversion of a saddle point

equation (see appendix A).

Instead, it is possible to expand in1=P as shown in section 3.2.3, which is appropriate for

weak Boltzmann selection. To leading order one finds,�q =  2 �  ̂2P 21 +O� 1P 2� (4.36)

where,  n = Z dRp(R)wn(R) (4.37a) ̂n = Z dRp(R)Z dq p(qjR;R) q wn(R) (4.37b)

Notice that ̂n can be expressed in terms of the characteristic function forthe conditional

distribution of correlations, which is defined in equation (A.2), ̂n n = limt!0 @@t log�Z dRp(R)�(t jR;R)wn(R)� (4.38)

This expression depends on the particular form of selectionweight,w(R).
Consider directional Boltzmann selection, in which casew(R) = exp(�R). In this case,

the expression on the right hand side of equation (4.38) can be calculated for largeN by the
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saddle point method. This follows the calculation in appendix A closely, and eventually one

finds, �q = (1� q1[y(k)])�(2�)P�2(�) +O� 1P 2� (4.39)

whereq1(y) is defined in equation (4.30) and�(�) is the characteristic function of the phe-

notype distribution, defined in equation (2.7). Here,y(k) is found by substitutingk for Ks1 in

equation (4.31), wherek is defined,k = Z dRp(R)R e2�R (4.40)

4.6.3 Justifying the approximation

In the previous two sections it was shown how the mean correlation after selection may be

calculated if the population is taken to be at maximum entropy before selection. This is a

greater assumption than in the crossover and mutation calculations, where the maximum en-

tropy ansatz was only required to compute on-site terms (neglecting the off-site term in the

fourth cumulant after mutation). The relationship betweenthe phenotypes of two population

members and their correlation can change under crossover (unlike on-site averages), and the

distribution of correlations may therefore depend on non-trivial off-site contributions. In this

case it is necessary to justify the assumption that the change in correlation under selection is

well described by the expressions derived here.

It is assumed that the fixed point of crossover is well modelled by the maximum entropy

distribution described in section 4.5 and situations wherethis approximation breaks down are

discussed there. Recall thatq1 was calculated for largeN and in this limit was found to depend

only on the mean phenotype after selection (see equation (4.30)). This is an asymptotic result

and one would expect terms in other cumulants to come in atO(1=N) or less. This shows that

the maximum entropy distribution for correlations (definedin equation (A.3)) is self-consistent

in the limit of largeN , as it returns the correct mean correlation given the mean phenotype of

the population in this limit, irrespective of the variance and higher cumulants. It is therefore

at least consistent to assume that higher cumulant effects (and therefore off-site terms) are of

secondary importance, although this is not necessarily so.The assumption is that there is no

significant systematic bias in the distribution of correlations within the population.
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This approximation will break down in certain situations. For example, when very little

crossover is used or when crossover is not very disruptive (small a in equation (4.8)) then it

is unlikely that correlations will redistribute sufficiently quickly to ensure a smooth distribu-

tion within the population. In this case the very fit individuals within the population might be

closely related and duplication will lead to a much greater increase in correlation than would

be estimated by assuming evenly distributed correlations.Under these circumstances, the re-

lationship between genotypes within the population would probably be unpredictable with in-

formation from only a small number of macroscopics. Furtherexperiments are required to

determine when the maximum entropy distribution of correlations will accurately character-

ize the population. The results presented in this chapter indicate that these results are at least

accurate when uniform crossover is used over the whole population.

4.7 Directional selection

If fitness equals the phenotype then selection is directional.F� = R� = NXi=1 JiS�i (4.41)

Figure 4.2 shows the typical averaged dynamics of a GA under this fitness measure, where

the population increases in fitness and moves into a state of progressively lower entropy each

generation. Eventually the population may reach an equilibrium state, where the effects of

selection and mutation are balanced. Without mutation, thepopulation will eventually converge

on a state where each population member is identical.

There is only one optimum configuration, which is given by thestate withSiJi � 0 at

each site, and there are no sub-optimal local fitness maxima.If the weights are chosen from a

distribution then this problem is the random-field paramagnet, which was considered under the

statistical mechanics formalism by Prügel-Bennett and Shapiro [54]. They also considered a

closely related problem, the spin-glass chain, where nearest neighbour interactions contribute

additively to fitness. These problems are equivalent under atrivial gauge transformation, al-

though the dynamics differs due to the existence of an interface energy in the spin-glass which

leads to a large number of local fitness maxima under single spin-flip dynamics. They solved
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Figure 4.2: Evolution of a GA under directional selection, averaged over 5000 runs. The
phenotype distribution is shown at0; 20; 40; 70 and120 generations. Weights were selected
from a uniform distribution in the range[0; 1], so that the optimum phenotypeRopt wasN=2
on average. The other parameters wereP = 80; N = 150; pm = 0:002; �s = 0:25 and uniform
crossover was used witha = 0:5.

the dynamics of the paramagnet under the assumption that crossover leaves the variance of the

fitness distribution unchanged. This seemed to be a reasonable approximation in some situ-

ations, but is incorrect in general. Here, a more exact approach is used, in which the mean

correlation within the population is evolved as an explicitmacroscopic according to the ex-

pressions derived in sections 4.3 and 4.6. Before considering the random-field paramagnet it is

instructive to consider the simpler one-max problem, wherethe weights at every site are equal.

4.7.1 One-max

The fitness for the one-max problem is given by equation (4.41) with Ji = 1 at every site,F� = NXi=1 S�i (4.42)

Under Boltzmann selection, the alleles contribute to the selection probability multiplicatively

and biologists call this a multiplicative fitness landscape(although they use a different nota-

tion) [11], w� = exp(�F�) = NYi=1 exp(�S�i ) (4.43)
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This problem has been studied extensively in the GA literature and a number of results

have recently been obtained which predict the trajectory ofmean fitness within the population

for a number of selection schemes [45, 67, 72]. These methodsrely on the population being

sufficiently large so that the distribution of alleles is accurately modelled by a binomial distri-

bution. This is a maximum entropy distribution with a constraint on mean fitness alone. These

models break down in a finite population, because in this casethe population will become more

correlated under selection than predicted by a binomial distribution. In the infinite population

limit the results presented here reduce to the results for these simpler, but less general, models.

In order to simulate the dynamics, expressions for the change in the first four cumulants

and mean correlation under each operator were iterated in sequence (see sections 3.3, 4.3, 4.4

and 4.6). The theory is compared to averaged results from a standard GA in figure 4.3, for two

different population sizes. The mean and variance of the fitness distribution and the highest

fitness are shown, averaged over 1000 runs. Error bars were typically smaller than the symbols

and are not shown. These results show good agreement with thetheory, which accurately

describes finite population effects. The skewness and kurtosis are shown in figure 4.4 for one

population size, also agreeing well with the theory (more samples were required to obtain good

averages for the higher cumulants).

Notice that the results in figure 4.3 for the smallest population size show small systematic

errors. The theory eventually breaks down for very small populations and for strong selection.

This is thought to be mainly because a weak selection approximation was required to calculate

the duplication contribution to the increased correlationunder selection (see section 4.6.2),

although there might also be errors due to non-self-averaging effects. The approximation in

determining the correlation after selection was considered most important, as theoretical results

for the correlation were first to break down. To minimize thissource of error, the contribution

to equation (4.33) which does not involve the correlation was calculated numerically.

4.7.2 Random-field paramagnet

The fitness of the random-field paramagnet is given by equation (4.41) with weights chosen

from some distribution. Here, the case where weights are chosen uniformly from the interval
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Figure 4.3: The theory is compared to averaged results for one-max with population sizes50(4) and100(2). The mean (�1) and variance (�2) of the fitness distribution and the highest
fitness are shown, averaged over 1000 runs, with solid lines showing the theory. The other
parameters wereN = 155; pm = 0:005; �s = 0:3 and uniform crossover was used witha = 0:5.[0; 1] is considered, although there is no significant difference to the dynamics if a Gaussian

distribution is used.

As in the the previous section, the GA dynamics was simulatedby iterating the difference

equations describing the effects of each operator on the first four cumulants and the mean

correlation within the population (see sections 3.3, 4.3, 4.4 and 4.6). In section 4.5.2 it was

noted that the maximum entropy ansatz might break down in some cases, most notably when

mutation is likely to flip large weights and selection is not sufficiently strong to ensure such

mutations are removed from the population. Figures 4.5 and 4.6 compare the theory to averaged

results from a standard GA for weak and moderate mutation rates. As expected, the results for

weak mutation show better agreement and it seems that the formalism as it stands is only

accurate in describing the GA with a low mutation rate for this problem. This was not the case

in the one-max problem, where the weights at every site are equal.

It is not known whether the addition of extra macroscopics might provide a better char-

acterization of the population. Experiments were performed to determine if the inclusion of

a third constraint on the mean allele within the population (the mean magnetization) would

characterize the population better, but the results showedno significant improvement over the
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Figure 4.4: The skewness (4) and kurtosis (2) are shown for the same parameter values as the
results presented in figure 4.3 for population size 100. The results were averaged over 10 000
runs. The solid lines give the theoretical result and averages were taken over cumulants, rather
than the ratios shown.

two constraint model.

4.8 Stabilizing selection

A rather different dynamical behaviour is possible if the optimum fitness is given by a phe-

notype of intermediate value which lies in a high entropy region of the phenotype space. A

possible fitness measure in this case might be,F� = � 1N �R� �Ropt�2 = � 1N  NXi=1 JiS�i �Ropt!2 (4.44)

where the factor of1=N is chosen to make the fitness typicallyO(N). Here,Ropt is the op-

timum possible phenotype. There may be no configuration which gives a phenotype exactly

equal toRopt, in which case the closest obtainable phenotype provides the optimum fitness.

Notice that the fitness defined here is never greater than zeroand in this case it may be more

natural to use energy (negative fitness); however, the fitness convention is retained for consis-

tency.

Figure 4.7 shows the typical averaged evolution of a GA underthis form of selection.

Initially selection is directional, as the population meanmoves towards the optimum phenotype.
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Figure 4.5: The theory is compared to averaged results for the paramagnet with a low mutation
rate. The mean (2), variance (3) and the correlation (4) are shown averaged over 5000 runs,
with solid lines showing the theory. The weights were chosenfrom a uniform distribution in
the range[0; 1] so that the optimum wasN=2 on average. The other parameters wereP =80; N = 120; pm = 0:001; �s = 0:25 and uniform crossover was used witha = 0:5.

After some time the population stabilizes around the optimum phenotype and the phenotypic

variance decreases, as the population converges.

As in directional selection, the population may reach a balance between selection and mu-

tation, or in the absence of mutation the population will eventually converge onto a state where

all population members are identical. The dynamical behaviour is significantly different here,

however, because solutions within the population are in a dense region of the search space,

while under directional selection the population moves into an increasingly sparse region of

the search space. Depending on the particular distributionof Ji over sites, there may be many

local maxima of high fitness, whereas under directional selection the only fitness maximum is

the optimum configuration.

The fitness measure defined in equation (4.44) provides an appropriate algorithm for solv-

ing the subset sum problem. The subset sum problem asks whether a set of numbers, here

the weight vectorfJ1; J2; : : : ; JNg, contains a subset which exactly sums to some goal value.

Posed as an optimization problem one wishes to find the subsetwhich comes as close to the

goal value as possible. Clearly, the subset sum problem is more appropriately defined in terms
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Figure 4.6: The theory is compared to averaged results for the paramagnet with a moderate mu-
tation rate. The mean (2), variance (3) and the correlation (4) are shown averaged over 5000
runs, with solid lines showing the theory. All the other search parameters are as in figure 4.5,
except that the mutation rate ispm = 0:005.

of alleles taking the values 1 or 0, denoting whether or not a weight is selected for the sub-

set. However, the problem can be cast in terms of Ising spins under a change in variablesX�i = 12 (S�i + 1). Then the optimum phenotypeRopt can be chosen so that the goal value for

the subset sum problem is12(Ropt +PJi).
Although the subset sum problem is strictlyNP-hard, it is pseudo-polynomial and for typi-

cal weight distributions can be solved in polynomial time bystandard methods [17]. The GA is

not expected to outperform polynomial time algorithms and the aim of this study is not a com-

parison of methods on this problem. However, there are related strongNP-hard problems, such

as bin-packing, to which GAs have been successfully applied[38]. It is hoped that a solution

of the dynamics for this problem might provide some insight into these harder problems. This

problem is also of some interest as a model of stabilizing selection in quantitative genetics (see,

for example, reference [7]).

4.8.1 Cumulants after selection

Under this fitness measure, the selection weight for Boltzmann selection is,w� = exp�� �N (R� �Ropt)2� (4.45)
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Figure 4.7: Evolution of a GA under stabilizing selection, averaged over 2000 runs. The
phenotype distribution is shown at generation0, 20, 40, and every40 generations up to240.
The weights where selected from a uniform distribution in the range[0; 1] and the optimum
phenotype wasRopt = N=4. The other parameters wereP = 80; N = 150; pm = 0; �s =0:025 and uniform crossover was used witha = 0:5.

In general, the cumulants after selection can be determinednumerically from equation (3.5)

using Gaussian quadratures.

The weak selection expansion described in section 3.2.2 is instructive, as it shows the

contribution to each cumulant after selection explicitly.The Gram-Charlier expansion in equa-

tion (2.11) can be used to parameterize the distribution of phenotypes. For the first three cu-

mulants up to first order in� and toO(1=P ) one finds,Ks1 = K1 + �s�1� 1P ��2(Ropt �K1)� K3K2�+O(�2) (4.46a)Ks2 = �1� 1P �K2 � 2�s�1� 3P ��K2 � (Ropt �K1)K3K2�+O(�2) (4.46b)Ks3 = �1� 3P �K3 � 6�s ��1� 8P �K3 + 2P (Ropt �K1)K2�+O(�2) (4.46c)

where�s = �K2=N is a scaled selection parameter (this differs from the scaling used for

directional selection).

During the initial, directional dynamics whenK1 6= Ropt the mean phenotype moves

towards the optimal phenotype, as expected. If the mean is increasing, then the third cumulant

becomes negative as it does in directional selection. This leads to reduced variance under

further selection and a loss of diversity within the population. This effect is also observed in
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the correlation expression which is presented in the next section.

After a number of generations the mean becomes arbitrarily close toRopt and the magni-

tude of the third cumulant is reduced as the population becomes more symmetrical (as long

as mutation is weak). Ignoring higher cumulants, the ratio of the variance after and before

selection at this stage is, Ks2K2 = 11 + 2�s � 1P (1 + 4�s) 32 (4.47)

One can keep this ratio fixed by scaling� in order to keep�s constant and maintain selective

pressure. As in directional selection, this requires an increased selection strength as the GA

converges.

4.8.2 Mean correlation after selection

The mean correlation after selection can be calculated as described in section 4.6. The only

difference between the present case and the directional selection calculation presented there is

in the duplication term, defined in equation (4.33). The expression in equation (4.38) can again

be calculated for largeN by the saddle point method in a similar calculation to that presented

in appendix A. This yields the following expression for�q,�q = (1� q1[y(k)]) (2�)P 2(�) +O� 1P 2� (4.48)

where,  (�) = Z dRp(R) exp�� �N (R�Ropt)2� (4.49)

Here,q1(y) is defined in equation (4.30) andy(k) is found by substitutingk for Ks1 in equa-

tion (4.31), wherek is defined,k = Z dRp(R)R exp��2�N (R�Ropt)2� (4.50)

These expressions can be calculated by parameterizing the distribution of phenotypes using the

Gram-Charlier expansion given in equation (2.11).

Expanding in� shows the relevant contributions from each cumulant and up to second

order one finds (ignoring terms ofO(1=pN) and less),�q ' 1� q1[y(k)]P �1 + 2�2s �1 + 2(Ropt �K1)2K2 � 2(Ropt �K1)K3K22 ��
(4.51)
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where�s is the scaled selection strength which was defined in section4.8.1. This shows that

when the mean phenotype is increasing under selection, the negative third cumulant introduced

by selection results in an increased correlation under further selection.

Once the mean phenotype within the population stabilizes aroundRopt, then the main

contribution to the increased correlation is through the duplication term, since for largeN
the natural increase term defined in section 4.6 depends onlyon the mean phenotype. If the

population size increases exponentially withN , however, it might be necessary to go beyond

leading order in the saddle point calculation given in appendix A. This refinement has not been

pursued here because the population sizes under consideration are generally ofO(N) or less.

4.8.3 Best population member

One can estimate the best individual within the population by assuming population members

are independently sampled from an infinite population, as described in chapter 2, section 2.5.

For stabilizing selection the phenotype distributionp(R) and fitness distributionP(F ) are

related through equation (2.2) which yields the following expression,P(F ) = 12s NjF j �p(Ropt �pN jF j) + p(Ropt +pN jF j)��(�F ) (4.52)

wherejF j is the magnitude of the fitness (here,F � 0). Eventually, the phenotype distribution

is centred aroundRopt and substituting the above expression into equation (2.16)for a Gaussian

phenotype distribution one finds,Fbest = �2PN Z 10 dRp2�K2 erfcP�1(R)R2 exp(�R2=2K2) (4.53)

Other cumulants can also be included by parameterizing the phenotype distribution using the

Gram-Charlier expansion in equation (2.11). In general, this integral must be computed nu-

merically.

A good approximation can be achieved by using a flat distribution with the same height as

the phenotype distribution atRopt. This does not affect the best population member signifi-

cantly, since the population is locally flat in the neighbourhood of the mean phenotype when it
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is close toRopt. Using four cumulants, the height at the mean whenK1 = Ropt is,H = 1p2�K2 �1 + K48K22 � (4.54)

The fitness of the best population member is then,Fbest ' �2HPN Z 12H0 dRR2 (1� 2HR)P�1= ��K2N(P + 1)(P + 2)(1 +K4=8K22 )2 (4.55)

This will be an upper bound, because there is a larger probability within the neighbourhood ofRopt for a flat distribution than for a Gaussian, but it should become exact for largeP .

As discussed in section 4.5.3, the assumption that population members are independently

sampled from a continuous distribution may break down when the population becomes highly

correlated. This is remedied by using the smaller effectivepopulation size expression in equa-

tion (4.27). There is also the possibility that when the population becomes very narrow, the

fine grain structure of the phenotype space may become important. This feature of the search

is not described by the macroscopics under consideration inthis work.

4.8.4 Simulating the dynamics

The dynamics of the GA was simulated by iterating differenceequations describing the effect

of each operator on the first four cumulants and the mean correlation within the population (see

sections 4.3, 4.4, 4.8.1 and 4.8.2). The theory is compared to averaged results from a standard

GA under stabilizing selection in figures 4.8 and 4.9, with weights taken uniformly from the

interval [0; 1].
The theory shows good agreement, although there is an underestimate in the correlation

and a corresponding overestimate in the variance during thelater stages of the dynamics. This

can mostly be attributed to an underestimate in the increased correlation under selection, which

may be due to bias in the distribution of correlations, as discussed in section 4.6.3.

Notice that the fitness of the best individual eventually drops, as shown in figure 4.9, and

this drop is accurately predicted by the theoretical resultfrom section 4.8.3 with the effective

population size chosen according to equation (4.27). This is a consequence of the increased
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Figure 4.8: The theory is compared to averaged results from aGA under stabilizing selection.
The mean (2), variance (3) and the correlation (4) are shown averaged over 2000 runs, with
the solid lines showing the theory. The weights where selected from a uniform distribution
in the range[0; 1] and the optimum phenotype wasRopt = N=4. The other parameters wereP = 80; N = 150; pm = 0; �s = 0:03 and uniform crossover was used witha = 0:5.

correlation within the population, which leads to a large number of duplicates and a corre-

sponding reduction in the effective population size. The search becomes ineffective after this

point.

Unfortunately, the validity of the maximum entropy ansatz was not ascertained for different

mutation rates, as in the case of the random-field paramagnet. Mutation was not used in these

simulations because it was not thought to be of critical importance when these experiments

were carried out and because this led to interesting behaviour when the correlation was very

high, as described above. The effect of mutation moving the population away from maximum

entropy, as described in section 4.5.2, may not be so important under stabilizing selection,

because the higher weights are not so critical when the population is not close to the extreme

of all ones (or all negative ones). However, further experiments should be carried out in order

to test this view.



CHAPTER 4. FUNCTIONS OF AN ADDITIVE GENOTYPE 80

100 150 200
-4e-05

-2e-05

0e+00

Generation

Fbest

Figure 4.9: The best population member each generation is averaged over the same runs as
in figure 4.8. The solid line gives the theoretical result. Asthe population becomes highly
correlated the number of independent population members drops, leading to a corresponding
drop in fitness of the best individual.

4.9 Bit-simulated crossover limit

It is useful to define a limit which can be used if bit-simulated crossover (BSC) is an appro-

priate crossover operator (see the final paragraph of section 4.4) [71]. This is usually only

the case if sites contribute independently to the fitness, for example under directional selection

on an additive genotype. This limit allows a microscopic description of the population after

crossover, which facilitates the solution to the dynamics for more involved problems in chap-

ter 7. It also allows the correlation after selection to be calculated directly from the selection

partition function. A nice feature of these results is that they do not use the largeN limit, which

was required to calculate the increased correlation under selection in section 4.6. However, to

decouple the average over the distribution of alleles at each site it is necessary to use a weak

selection approximation.

4.9.1 Cumulants after selection

Under BSC, the population is brought straight to the fixed point of standard crossover, which is

assumed to be the maximum entropy distribution described insection 4.5. In this case the dis-

tribution of alleles at each site decouples and it is possible to average the cumulant generating

function for selection over this distribution. For weak Boltzmann selection the1=P expansion
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described in chapter 3, section 3.2.2 is appropriate. For directional selection the cumulants

after selection are then given byKsn ' @n@�n �log(�(�)) � 12P ��(2�)�2(�)�� (4.56)

where�(�) is now averaged over alleles, rather than the distribution of phenotypes,�(�) = *exp � NXi=1 JiSi!+fSig (4.57)

The alleles are distributed according to equation (4.18),p(Si) = �1 + �i2 ��(Si � 1) +�1� �i2 ��(Si + 1) (4.58)

Completing the average,�(�) = NYi=1 ��1 + �i2 � e�Ji +�1� �i2 � e��Ji�= NYi=1Zi(�; 0) = exp 1Xn=1 �nKmaxnn! !
(4.59)

whereZi(�; �) is the single-site partition function defined in equation (4.22) andKmaxn is thenth cumulant of the maximum entropy phenotype distribution,which is assumed to describe the

population after BSC. Thus,�(�) turns out to be the characteristic function for the maximum

entropy phenotype distribution. This gives the same resultobtained by averaging directly over

the phenotype distribution, which is shown in chapter 3, section 3.20.

Writing the results in terms of the mean allele at each site, one finds that the mean pheno-

type after selection is,Ks1 = NXi=1 Ji� �i + tanh(�Ji)1 + �i tanh(�Ji)�� �(2�)P�2(�) NXi=1 Ji� �i + tanh(2�Ji)1 + �i tanh(2�Ji) � �i + tanh(�Ji)1 + �i tanh(�Ji)� (4.60)

This expression will be used again in chapter 7.

4.9.2 Mean correlation after selection

As well as generating the cumulants after selection, it is also possible to generate the mean

correlation after selection. Although this provides a moreelegant means of calculating the
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correlation than the discussion in section 4.6, it is less general and is only relevant in the BSC

limit considered here.

The mean correlation after selection can be generated by including a new term in the selec-

tion partition function, qs = 1N NXi=1 �1� lim�!0 @2@�2 logZq(�)� (4.61)

where, Zq(�) = PX�=1w� exp (�S�i ) (4.62)

Again, for weak directional selection the1=P expansion in section 3.2.2 is appropriate. The

averaged logarithm of the selection partition function is then given by,hlogZq(�)i ' log(�(�; �)) � 12P ��(2�; 2�)�2(�; �) � (4.63)

where, �(�; �) = Zi(�; �)N�1Yj 6=i Zj(�; 0) (4.64)

Here,Zi(�; 
) is the single-site partition function defined in equation (4.22). Differentiating

out one finds,qs = 1N NXi=1 � �i + tanh(�Ji)1 + �i tanh(�Ji)�2+ �(2�)NP�2(�) NXi=1 (1� �2i )(2 � cosh(2�Ji)� �i sinh(2�Ji))(cosh(�Ji) + �i sinh(�Ji))2(cosh(2�Ji) + �i sinh(2�Ji)) (4.65)

where�(�) is the characteristic function for the phenotype distribution at maximum entropy

defined in equation (4.59). Notice that asP ! 1 the first term becomes equal to the nat-

ural increase contribution to the correlation after selection which was previously derived in

equation (4.30) (y ! � in this limit).

4.9.3 Linkage disequilibrium for one-max

For the one-max problem, whereJi = 1 at every site, the correlation and variance are related

by a particularly simple relationship after BSC, since off-site terms in equation (4.2b) cancel.Kmax2 = N(1� q) (4.66)
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This relationship no longer holds after selection. In quantitative genetics the deviation from

this equality is known as the second order linkage disequilibrium, which is denotedD [11].D = Xi6=j hS�i S�j i� � hS�i i�hS�j i�= K2 �N(1� q) (4.67)

Uniform crossover reduces this quantity by a factor of1 � 2A each generation on average,

whereA is a parameter which determines how disruptive crossover is(see section 4.4). In

reference [54], Prügel-Bennett and Shapiro worked under the assumption that this quantity

remains small, so that the variance remains fixed under crossover. Using the expressions de-

rived in equations (3.21b) and (4.65) it is possible to expand the linkage disequilibrium after

selection in�. Only finite population terms of order�2 and above remain,Ds = ��2P �3K22 + K4 � 4K23 �+O(�3) (4.68)

Typically, � is O(1=pN) and the cumulants areO(N), so this term is typicallyO(N=P ). If

the population size isO(N) or greater then one might expect this term to be negligible for largeN . However, if less disruptive forms of crossover are used then this may not be the case, as

effects will be cumulative. OftenP is smaller thanN , in which case the assumption that the

linkage disequilibrium is negligible will certainly be unfounded.

4.10 Conclusion

Results due to Prügel-Bennett and Shapiro [53, 54] for describing the effects of mutation and

crossover on the phenotype distribution for a problem with an additive genotype were repro-

duced. A maximum entropy ansatz was required in order to deduce terms not trivially related

to the given macroscopics and certain conditions under which this ansatz might break down

were described. These results were then combined with new results for evolving the correla-

tion as an explicit macroscopic and this provided a more accurate model of the dynamics than

the simplification required in the previous formulation. The most important new result was the

expression describing the change in the mean correlation under selection. This was divided into

two contributions – a duplication term represents increases in correlation due to the duplication
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of population members required in a finite population, whilea natural increase term represents

changes in correlation as the population moves into a new region of state space. The second

contribution requires information about the mapping between genotype and phenotype and this

was provided by the maximum entropy ansatz. Conditions under which this result might break

down were discussed and it was suggested that further work becarried out to determine limits

of applicability.

Results were presented for directional selection with homogeneous weights at each site

(one-max) and inhomogeneous weights at each site (the random-field paramagnet). The theory

agreed well with averaged results from a real GA, so long as the maximum entropy ansatz was a

good approximation. Unfortunately, this was not the case for the paramagnet with a significant

mutation rate, as mutation was shown to take the population away from maximum entropy.

Stabilizing selection with inhomogeneous weights at each site (the subset sum problem) was

also considered and again the theory showed good predictivepower. As the population became

highly correlated, the effective population size was reduced by the existence of duplicates and

the fitness of the best solution eventually stopped increasing and began to degrade.

The results in this chapter are encouraging, although therewas also a realization that cau-

tion is required when using a maximum entropy ansatz. Assumptions with noa priori justi-

fication must always be checked for validity. Nevertheless,the formalism was shown to give

powerful predictions and accurately accounted for finite population effects. The inclusion of

an extra macroscopic, the mean correlation within the population, was certainly an essential

ingredient and marks an important departure from the infinite population idealization which is

often used (explicitly or implicitly) in theoretical models.

The work presented in this chapter provides the basis for analysing a number of other in-

teresting problems. In chapters 5 and 7 these results will beused to model the dynamics for a

simple learning problem, a diploid GA and a problem with temporally varying fitness. Some

work has also been done on two-well potentials, although this is a difficult problem because the

population may become bi-modal and strongly non-Gaussian [64]. In this case a cumulant ex-

pansion is not ideal, although the superposition of two Gaussian distributions (or approximately

Gaussian distributions) sometimes provides a reasonable approximation. In another interesting
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study, Prügel-Bennett used the formalism to model an asexual GA for the one-max problem by

extending the expressions presented in this chapter to include covariances. The dynamics was

then described by the evolution of a non-interacting ensemble of populations [52]. This refine-

ment was necessary because fluctuations from mean behaviourare large when crossover no

longer suppresses the growth of higher cumulants under selection. This study showed explic-

itly how the continued inclusion of more macroscopics (successively higher cumulants) lead to

a steady improvement in theoretical predictions.

Although the power of the statistical mechanics formalism has been demonstrated, there

is still more work required to determine when the results in this chapter may break down.

For example, if recombination is very non-disruptive or selection is strong then it is unlikely

that correlations will be sufficiently well distributed within the population for the correlation

expressions to work well. It should also be pointed out that most of the work in this chapter,

and in the remainder of the thesis, is concerned with deriving equations of motion for the GA.

No significant effort has yet been made to analyse these expressions. The aim of this work is

to provide a compact description of the dynamics and once this has been achieved it is hoped

that analysis of the resulting expressions will lead to greater understanding and, hopefully,

quantitative results for optimizing performance. This latter goal is achieved to some extent in

the next chapter, where expressions are derived for the optimal training batch size in a simple

learning problem, but further analysis is required to gain more general insight.



Chapter 5

Noise corrupted fitness and a simple

learning problem

86



CHAPTER 5. NOISY FITNESS AND A SIMPLE LEARNING PROBLEM 87

5.1 Introduction

It is important to understand the effects of noise in the fitness evaluation, as this has implications

for many optimization and machine learning problems [4, 13,44]. The fitness measure used in

these problems often involves some uncertainty, or noise, due to the limited or corrupted data

available for determining fitness. For example, one common paradigm from machine learning

involves generalization of a mapping given an incomplete set of training examples. This can

be achieved through supervised learning, which typically involves the minimization of some

form of training error, such as the number of misclassified training examples in a batch. The

training batch will typically not contain every example andis therefore susceptible to random

bias, or noise. Of course, there are other sources of error when attempting to generalize, such

as overfitting to a particular training set or poor performance of the chosen learning algorithm.

Here, discussion is limited to the effects of noise in fitnessevaluation.

It has previously been argued that GAs perform well in the presence of noise compared

to other search methods [13]. Indeed, it has recently been shown that a GA can outperform

simple local search methods on a class of additive problems related to one-max when fitness is

corrupted by noise [4]. In another recent study, Miller and Goldberg determined the effect of

noise on the change in mean fitness under selection for a continuous Gaussian fitness distribu-

tion [44]. However, although they chose the population sizein order to remove finite popula-

tion effects, this choice was based on a conservative predictor rather than an exact result [20].

A more appropriate method for modelling selection on a finitepopulation was introduced in

chapter 3. The inclusion of finite population effects provesto be of crucial importance when

characterizing the subtle effects of noise in the evaluation of fitness.

In this chapter the statistical mechanics formalism is extended to describe selection on a

general stochastic fitness measure. For the case of additiveGaussian noise and weak Boltz-

mann selection, an increase in population size is shown to completely remove the effects of

noise. Since the other genetic operators do not depend on population size, this resizing effec-

tively maps the noisy dynamics onto the zero noise case. The theory is tested on the one-max

problem corrupted by noise and agrees closely to averaged results from a real GA. Under

Boltzmann selection, Gaussian noise only affects finite population terms and this emphasizes
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the importance of accounting for these terms accurately.

As well as introducing a general result for calculating the effects of noise in fitness evalua-

tion, a simple problem from learning theory is considered – generalization in a perceptron with

binary weights. The perceptron attempts to learn from examples produced by a teacher per-

ceptron, also with binary weights. Baumet alshow that this problem is similar to the one-max

problem corrupted by noise, so long as an independent batch of training examples are pre-

sented each time the training error is calculated [4]. This simplifies the analysis considerably,

as it avoids overfitting to a particular training set, allowing the dynamics to be solved under the

present formalism. A limit is then identified for which the optimal training batch size can be

determined.

5.2 Selection on a stochastic fitness measure

Let the stochastic relationship between fitness and phenotype be described by a conditional

probability distributionp(F jR). If fitness is a deterministic function of the phenotype then

this distribution is a delta function, while for noise corrupted fitness the distribution has some

variance. Expectation values for the phenotype cumulants after selection can be calculated as

described in chapter 3, section 3.2.1, except that the average is now also taken over fitness,

which may no longer be a deterministic function of the phenotype. Equation (3.5) provides the

result (forn > 0), Ksn = � lim
!0 @n@
n Z 10 dt fP (t; 
)t (5.1)

wheref(t; 
) now includes an average over the conditional fitness distribution,f(t; 
) = Z dRdF p(R) p(F jR) exp ��tw(F ) e
R� (5.2)

Here,w(F ) is the selection weight which was introduced in chapter 3, section 3.2. For Boltz-

mann selection one choosesw(F ) = exp(�F ).
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5.2.1 Gaussian noise and Boltzmann selection

Consider the case where fitness is described by a Gaussian distribution centred around the

phenotype, p(F jR) = 1p2��2 exp��(F �R)22�2 �
(5.3)

This is equivalent to directional selection on a phenotype corrupted by additive Gaussian noise

with mean zero and standard deviation�.

For Boltzmann selection the integrals in equations (5.1) and (5.2) must be computed nu-

merically in general, as for the zero noise case. However, for sufficiently small�pK2 + �2
the1=P expansion described in chapter 3, section 3.2.2 is appropriate. In this case, recall that

the cumulants after selection are generated by equation (3.9),Ksn = lim
!0 @n@
n �log( (
; �)) � 12P � (2
; 2�) 2(
; �) ��
where (
; �) now includes an average over the noise, (
; �) = Z dR dF p(R) p(F jR) e�F+
R= e(��)2=2 Z dRp(R) e(�+
)R (5.4)

Using the cumulant expansion in equation (2.8) one finds thatthe cumulants after selection are

given by,Ksn = lim
!0 @n@
n " 1Xi=1 (
 + �)iKii! � e(��)22P exp 1Xi=1 (2i � 2)(
 + �)iKii! !#
(5.5)

The duplication contribution to the correlation after selection (see chapter 3, section 3.2.3)

is similarly found to be,�qd ' e(��)2P �1 +K2�2 �K3�2 +O(�4)� (5.6)

The noise increases finite population effects but has no effect on the infinite population

result. For zero noise, equations (5.5) and (5.6) reduce to equations (3.20) and (3.22) as ex-

pected and the qualitative discussion in sections 3.3.2 and3.3.3 still holds. Selection introduces

higher cumulants into a finite population, which increases convergence under further selection
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and leads to reduced performance in general. The addition ofnoise to the fitness measure

increases the finite population effects and correspondingly the performance will fall off even

more rapidly. For Boltzmann selection and Gaussian noise this is solely a finite population

effect.

Under other forms of selection or noise there may also be systematic effects on the infinite

population results due to noise [44]. These effects would bemuch harder to characterize in a

simple way, although the present formalism is still able to accurately determine the change in

each cumulant under selection. Boltzmann selection provides a particularly transparent model

for understanding the effects of Gaussian noise precisely because there are no effects in the

infinite population limit.

5.2.2 Resizing the population to remove noise

The detrimental effects of Gaussian noise can be removed in the weak selection limit by in-

creasing the population size appropriately,P = P0 exp�(��)2� (5.7)

whereP0 is the population size for zero noise. Here,� can depend on the phenotype cumulants

in an arbitrary way, but must be independent of the noise. Since the other genetic operators do

not involve finite population effects, this choice of population size maps the whole dynamics

onto the trajectory of a GA without noise and with populationsizeP0. In section 5.4.4 it will

be shown how this population resizing allows the optimal batch size to be determined for a

simple learning problem.

In the absence of noise, the selection strength should be chosen inversely proportional to

the standard deviation of phenotypes within the population(see chapter 3, section 3.3.2). The

scaled selection strength is defined� = �s=p�2, where�s is fixed. If this scaling is used

and the noise isO(pN), then the population size defined above isO(P0e�s) and the GA can

remove noise without an excessive increase in computation time.

In a more realistic scenario only the measured, noisy fitnesswould be known. Choosing the

selection strength inversely proportional to the standarddeviation of fitness (rather than pheno-

type) leads to the selection strength varying with the levelof noise. In this case the population
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resizing expression in equation (5.7) does not apply, as noise will affect terms other than the

finite population corrections to equation (5.5). However, the resizing expression can be applied

with any fixed schedule for determining the selection strength. Scaling the selection strength

inversely with the standard deviation of phenotypes is equivalent (on average) to choosing the

schedule which is most appropriate for a GA without noise andwith population sizeP0. Of

course, the results derived here do not depend on any particular scheme for choosing the selec-

tion strength.

5.3 Noisy one-max

Consider the one-max problem defined in chapter 4, section 4.7. Under noisy fitness evalu-

ation the expressions for crossover and mutation are unchanged, because noise only affects

the selection procedure. The expectation values for the cumulants after selection are shown in

equation (5.1) and it only remains to calculate the correlation after selection. This calculation

almost exactly follows the discussion in section 4.6. The only difference is in the calculation

of �q, which is defined in equation (4.33), since the averages in equations (4.37a) and (4.37b)

now include integrals over the noise distribution. For Gaussian noise and Boltzmann selection

the integrals are simply Gaussian integrals and one finds that toO(1=P ), �q is increased by a

factor ofe(��)2 . Notice that this is the same factor which appears in the finite population terms

for the cumulants after selection, given in equation (5.5).Recall that this expression is only

exact for weak selection and low noise. To improve accuracy in simulations, the term which

does not involve the correlation (see equation (4.35a)) canbe determined through numerical

integration, where now there is also an average over noise.

5.3.1 Simulating the dynamics

The dynamics of the GA can be simulated by combining the selection results derived in the pre-

ceding sections with the crossover and mutation results derived in chapter 4, sections 4.3 and

4.4. Bit-simulated crossover is used (see the last paragraph of section 4.4 in chapter 4), which

allows the dynamics to be described in terms of only two parameters, the mean phenotype and

correlation within the population, and therefore avoids the need to follow higher cumulants.
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The higher cumulants are still required before selection and these are calculated by the maxi-

mum entropy ansatz described in section 4.5. The results presented here can be generalized to

describe a GA with uniform crossover using the methods developed in chapter 4.

In figure 5.1 the theoretical results are compared to averaged results from a GA for a typical

choice of parameters. Trajectories are shown for the mean and variance of the phenotype

distribution. The zero noise case is compared to noisy one-max with�2 = 6�2 and�2 = 12�2,
showing how increased noise leads to reduced performance. The noise variance was chosen

proportional to the phenotypic variance as this provides the most natural units for measuring

noise. This may seem a rather artificial choice, although in many situations the noise will

fall off as the mean phenotype increases (for example, this is true for the perceptron problem

considered in the next section). In view of this, a fixed noisevariance might be an equally

artificial construction. These considerations are not of critical importance here, however, as the

aim is to verify the theoretical model and a more realistic situation is considered in the next

section.

0 50 100 150
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�1=N�2=N
Figure 5.1: The theory for noisy one-max is compared to results averaged over 1000 runs of a
GA. The mean (�1) and variance (�2) are shown, with solid lines giving theoretical predictions.
The result for zero noise (3) is compared to results with additive Gaussian noise of strength�2 = 6�2 (2) and�2 = 12�2 (4). The other parameters wereN = 155, �s = 0:3, pm =0:005, P = 100 and bit-simulated crossover was used.

Notice that the noise variance is significantly greater thanthe phenotype variance in this

example, which emphasizes how robust the GA is even with highlevels of noise. For very
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high levels of noise the theory breaks down however, probably because a weak selection, low

noise approximation is required to calculate the duplication contribution to the correlation after

selection. There may well be a better approximation for thisterm, although the approximation

used here seems to be accurate for reasonable levels of noise. It may also be the case that when

noise levels are high the dynamics do not average well, sincethere are large fluctuations from

mean behaviour.

5.4 A simple learning problem

Generalization in a perceptron with binary weights provides a very simple example of a learn-

ing problem. The perceptron comprises one computational unit, in this case a McCulloch-Pitts

neuron [41], which fires if the summed inputs exceeds some predefined threshold value. The

perceptron is trained on examples produced by a teacher perceptron, also with binary weights.

This problem has received some considerable attention, including a thermodynamic study of

the state space in the limit of large problem size which showsthat there is a first order tran-

sition to perfect generalization as the number of training examples is increased [26, 62]. The

threshold number of training examples at which this transition occurs isO(N) and above this

threshold the teacher is the only perceptron compatible with every training example (although

a learning algorithm may still fail to find this solution). Below this threshold overfitting is pos-

sible, so that although the perceptron learns the training set it does not necessarily generalize

well.

Here, the training error (the number of misclassified training examples) is calculated using

an independent batch of training examples for each evaluation. This avoids dealing with cor-

relations between a particular training set and perceptrons within the population, which would

otherwise make the analysis difficult. The GA will typicallyrequire more thanO(N) training

examples in total and overfitting is not expected to be a problem.

Baumet al have shown that this problem is very similar to the noisy one-max problem

described in section 5.3 [4]. They analyse a GA which uses a form of truncation selection and

show that the computation time of the GA scales asO(N log22N) on one-max, if the population

size is chosen to be sufficiently large so that the correlation due to duplication is negligible.
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They also show that this scaling is not affected when noise with � ' pN is introduced into

the fitness evaluation. Under the selection method used here, the population improves by the

same order each generation as under truncation selection and this algorithm may therefore be

expected to scale in the same way as the GA used by Baumet al, under similar conditions. The

results described here are more general, however, as they donot rely on a large population size

and the full dynamical trajectories are predicted.

5.4.1 The perceptron

The perceptron has Ising weightsSi 2 f�1; 1g (encoded in the genotype) and maps an Ising

training patternf��i g onto a binary output (with zero threshold),O� = sgn� NXi=1 Si��i � sgn(x) = 8<: 1 x � 0�1 x < 0 (5.8)

whereN is the number of weights and� labels patterns. LetTi be weights of the teacher

perceptron andSi be weights of the student. The stability of a pattern is a measure of how well

it is stored by the perceptron and the stability of pattern� for the teacher and student are��t
and��s respectively, ��t = 1pN NXi=1 Ti��i ��s = 1pN NXi=1 Si��i (5.9)

The training error will be defined as the number of patterns the student misclassifies,E = �NX�=1�(���t ��s ) �(x) = 8<: 1 x � 00 x < 0 (5.10)

where�N is the number of training patterns presented. Here, a new batch of training examples

are presented each time the training error is calculated. The training error plays the role of an

inverse fitness in the GA.

Define the phenotypeR to be the overlap between student and teacher. It is possibleto

chooseTi = 1 at each site without loss of generality, in which caseR is defined,R = 1N NXi=1 Si (5.11)
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This is simply the phenotype of the one-max problem (normalized to be of order unity).

In order to apply the selection results from section 5.2, it is necessary to find an expression

for the training error in terms of the phenotype. If a statistically independent pattern is pre-

sented to a perceptron, then for largeN the stabilities of the teacher and student are Gaussian

variables each with zero mean and unit variance, and with covarianceR,p(�t;�s) = 12�p1�R2 exp��(�2t � 2R�t�s +�2s )2(1�R2) �
(5.12)

The conditional probability distribution for the trainingerror given the overlap is,p(EjR) = *��E � �NX�=1�(���t ��s )�+f��t ;��s g (5.13)

where�(x) is the Dirac delta function and brackets denote an average over stabilities dis-

tributed according to the joint distribution in equation (5.12). The characteristic function for

this distribution is, �(t jR) = Z dE p(EjR) etE= * �NY�=1 exp [t�(���t ��s )]+f��t ;��s g= �1 + 1� (et � 1) cos�1(R)��N (5.14)

The logarithm of this characteristic function generates the cumulants of the distribution (see

equation (2.7)). The higher cumulants areO(�N) and it turns out that the shape of the distri-

bution is not critical so long as� isO(1). A Gaussian distribution will be a good approximation

in this case, p(EjR) = 1p2��2 exp��(E �Eg)22�2 �
(5.15)

where the mean and variance are functions of the overlap between student and teacher,Eg(R) = �N� cos�1(R) (5.16a)�2(R) = Eg(R)�1� Eg(R)�N �
(5.16b)

Here,Eg(R) is the generalization error, which is the probability of misclassifying a randomly

chosen training example, multiplied by the batch size (errors are chosen proportional toN
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here). The variance expresses the intuition that there is noise in the error evaluation due to the

finite size of each training batch.

5.4.2 Selection

In the previous section a conditional probability distribution relating the training error (negative

fitness) to overlap (phenotype) was derived. The cumulants of the overlap distribution after

selection are found from equation (5.1) and the integrals must be calculated numerically in

general. All the integrals where computed by Gaussian quadratures in the simulation results

presented in section 5.4.5 [51].

For weak selection and largeN it is possible to apply the1=P expansion described in

chapter 3, section 3.2.2. Since the variance of overlaps within the population isO(1=N) it

is reasonable to expand the mean ofp(EjR) around the mean of the population in this limit

(R ' K1). It is also assumed that the variance ofp(EjR) is well approximated by its leading

term and this assumption may break down if the noise gradientbecomes important. Under

these simplifying assumptions one finds,Eg(R) ' �N�  cos�1(K1)� (R �K1)p1�K21! (5.17a)�2 ' �N� cos�1(K1)�1� 1� cos�1(K1)� (5.17b)

Now the problem has been transformed into directional selection corrupted by Gaussian

noise, which was described in section 5.2.1. The only significant difference is that here the

standard deviation of the noise is a function of the mean overlap (phenotype) within the pop-

ulation. Following the calculation in section 5.2.1 closely, one finds that the cumulants of the

overlap distribution after selection are,Ksn = lim
!0 @n@
n " 1Xi=1 (
 + k�)iKii! � e(��)22P exp 1Xi=1 (2i � 2)(
 + k�)iKii! !#
(5.18)

where, k = �N�p1�K21 (5.19)

This is equivalent to selecting on the phenotype directly (see equation (5.5)) wherek� is the

effective selection strength and�=k is the effective standard deviation of the noise.
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The calculation for the correlation after selection almostexactly follows the derivation

in chapter 4, section 4.6. As in the case of noisy one-max the only difference is in the�q
term defined in equation (4.33). Making use of the weak selection, largeN approximation

for p(EjR) yields the same result as for noisy one-max (see section 5.3)with the effective

selection strength and standard deviation defined above.

5.4.3 Resizing the population

The noise due to the finite size of each training batch increases the magnitude of detrimental

finite population terms in selection. In the limit of weak selection and large problem size

discussed in the previous section, this can be compensated for by increasing the population

size according to equation (5.7). This expression is valid if the effective selection strengthk�
is independent of batch size (which determines the noise strength). For this to be the case�
must be chosen proportional to1=�, which is the most natural scaling in any case because the

training error is proportional to�. It is then convenient to rewrite equation (5.7),P = P0 exp��o� � (5.20)

where, �o = �(��)2 = (��)2N� cos�1(K1)�1� 1� cos�1(K1)� (5.21)

Here,�o is independent of� because of the� scaling described above. ChoosingP according

to this expression removes the effects of noise due to the finite batch size and in principle maps

the dynamical trajectory onto the infinite training set dynamics (whereE = Eg(R)) for a GA

with population sizeP0. Typically� isO(1=pN) so that the exponent here is of order unity, in

which case this population resizing will not blow up with increases in problem size (for fixed�). This is consistent with the result due to Baumet al, although they provide a rigorous proof

for the scaling of their algorithm [4].

Both the selection strength and noise variance will change over time, and it would there-

fore be necessary to change the population size each generation in order to apply the above

expression. However, this is problematic when the population size has to be increased, as this
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leads to an increased correlation1. In this case the dynamics will no longer exactly map onto

the infinite training set situation.

Instead of varying the population size, one can fix the population size and vary the size of

each training batch. In this case one finds,� = �olog(P=P0) (5.22)

Figure 5.2 shows how choosing the batch size each generationaccording to this expression

leads to the dynamics converging onto the infinite training set trajectory of a GA with a smaller

population. The infinite training set result for the largestpopulation size is also shown, as this

gives some measure of the potential variability of trajectories available under different batch

sizing schemes. Any deviation from the weak selection, largeN limit is not apparent here.

In these experiments the effective selection strength was scaled inversely to the standard

deviation of the overlap distribution (� = �s=kp�2). This is a rather artificial choice, as it re-

quires information about the overlap statistics which would not be known in general. However,

as discussed in section 5.2.2, the population resizing in equation (5.20) and the corresponding

batch sizing expression in equation (5.22) are valid given any fixed schedule for determining

selection strength. The choice of selection scaling used here is equivalent (on average) to an

appropriate schedule for the infinite training batch problem, but it should be emphasized that

these results do not rely on any particular scheme for choosing selection strength (as long as

the effective selection strengthk� is independent of the batch parameter�).

5.4.4 Optimal batch size

In the previous section it was shown how the population size could be increased in order to

remove the effects of noise associated with a finite trainingbatch. Fitzpatrick and Grefenstette

also identified the existence of such a tradeoff between population size and batch size, and they

suggested that there is often an optimal choice of batch size(or measurement accuracy) [13].

If the population resizing in equation (5.20) is used, then it is possible to identify such an

1This is a problem for a real GA which produces a finite population after selection. The theoretical model
described in chapter 2, section 2.3 does not have this problem, as the population size is infinite after selection. In a
real GA one might overcome this by creating a large but finite population after selection, some members of which
could be discarded before the next round of selection.
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Figure 5.2: The mean overlap between teacher and student within the population is shown each
generation, averaged over 100 runs of a GA training a binary perceptron to generalize from
examples produced by a teacher perceptron. Training batch sizes were chosen according to
equation (5.22), leading to trajectories converging onto the infinite training set result whereE = Eg(R). The solid curve is for the infinite training set result withP0 = 60 and finite
training set results are forP = 90 (2), 120(�) and163(4). Inset is the mean choice of batch
parameter (�) each generation. The dashed line is the infinite training set result forP = 163,
showing that there is significant potential variability of trajectories under different batch sizing
schemes. The other parameters wereN = 279, �s = 0:25 andpm = 0:001.

optimal batch size, which minimizes the computational costof training error evaluations. This

choice of batch size will also minimize the total number of training examples presented when

independent batches are used.

It is assumed that computation is mainly due to error evaluation and that other overheads

can be neglected. There areP error evaluations each generation with computation time for

each scaling as�. If the population size each generation is chosen by equation (5.20), then the

computation time�c is related to batch size by,�c(�) / � exp��o� � (5.23)

The optimal choice of� is given by the minimum of�c, which is at�o (defined in equa-

tion (5.21)). Choosing this batch size leads to the population size being constant over the
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whole GA run and for optimal performance one should choose,P = P0 e1 ' 2:73P0 (5.24a)� = �o (5.24b)

whereP0 is the population size used for the zero noise, infinite training set GA with the same

dynamical trajectory. Notice that it is not necessary to determineP0 in order to choose the

size of each batch, since�o is not a function ofP0 (see equation (5.21)). One of the runs in

figure 5.2 is for this choice ofP and�, showing close agreement to the infinite training set

result (P = 163 ' P0e).
Unfortunately, the optimal batch size is a function of the mean overlap within the pop-

ulation, which would not be known in general (although it could be estimated from training

error statistics). However, the initial optimal batch sizeprovides an upper bound, since�2 is

a monotonically decreasing function of the mean overlap. Setting K1 = 0 in equation (5.21)

provides this bound, �o � 14(��)2N (5.25)

Recall that� is proportional to1=�, so that the right hand side of this expression is indepen-

dent of�. The selection strength is typicallyO(1=pN) and the optimal batch size is therefore

typicallyO(N). This is a somewhat intuitive result, as it shows how more effort should be ex-

pended in determining fitness (through increasing the batchsize) when the resulting decisions

are more critical (through stronger selection).

Statistics describing the overlap distribution change in anon-trivial manner each generation

and their evolution can be determined by simulating the dynamics, as described in the next

section.

5.4.5 Simulating the dynamics

The dynamics can be modelled by combining the selection results from section 5.4.2 with the

expressions for mutation and crossover derived in chapter 4, sections 4.3 and 4.4. Bit-simulated

crossover was used, as this allows the dynamics to be described in terms of the mean overlap

and correlation alone, which simplifies the selection numerics and avoids the need to follow
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higher cumulants. Although the dynamics only require the iteration of expressions for these

two macroscopics, the higher cumulants are required beforeselection and these are obtained

from the maximum entropy ansatz described in section 4.5. These results can be generalized

to other forms of crossover by the methods developed in chapter 4.

Figure 5.3 shows the averaged trajectories of the mean and variance of the overlap dis-

tribution and figure 5.4 shows the overlap of the best solution, for a typical choice of search

parameters. The infinite training batch result, whereE = Eg(R), is compared to results for

two fixed batch sizes, showing how performance degrades as the batch size is reduced. The

theoretical curves agree well, although there is a sight under-estimate in the maximum overlap

towards the end of each run, possibly for the reasons discussed in chapter 2, section 2.5. There

is also a slight systematic error in the curves for the smallest batch size. As the batch size is

reduced further the theory breaks down. This is mostly for the same reasons as discussed in

section 5.3.1. The duplication contribution to the increased correlation after selection required

the use of a weak selection, largeN approximation and the dynamics may not average well

when fluctuations from mean behaviour increase. It is also possible that the Gaussian approxi-

mation forp(EjR) breaks down for small�, in which case it would be necessary to expand the

noise in terms of more cumulants.

5.5 Conclusion

The selection calculation has been extended to describe a stochastic fitness measure. This was

motivated by the observation that there may be noise in the evaluation of fitness for a number of

optimization and machine learning problems. A result was derived for the expected phenotype

cumulants after selection given a general selection schemeand an arbitrary stochastic fitness

measure. For weak Boltzmann selection and additive Gaussian noise it was possible to write

down the result for each cumulant after selection in closed form. In this limit a simple increase

in population size removes the effects of noise in every cumulant and in the duplication contri-

bution to the correlation after selection. The theory agreed well with averaged results from a

GA for the one-max problem corrupted by Gaussian noise.

To show how this work may be relevant to machine learning, a simple learning problem
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Figure 5.3: The theory is compared to averaged results from aGA training a binary perceptron
to generalize from examples produced by a teacher perceptron. The mean (�1) and variance
(�2) of the overlap distribution are shown averaged over 1000 runs, with the solid lines showing
theoretical predictions. The infinite training set result (3) is compared to results for a finite
training set with� = 0:65 (2) and� = 0:39 (4). The other parameters wereN = 155,�s = 0:3, pm = 0:005, P = 80 and bit-simulated crossover was used.

was introduced – generalization in a perceptron with binaryweights. The perceptron learns

from examples produced by a teacher with the same architecture. To simplify matters, a new

batch of training examples were chosen each time the training error was calculated. In this

case the training error is a random variable distributed around the generalization error. For

large problem size the training error distribution was shown to be well approximated by a

Gaussian distribution, whose effective variance increases as the training batch size is reduced.

The full dynamics was simulated by following the distribution of overlaps between the teacher

and perceptrons within the population. The theory agreed closely with averaged results from a

GA for a number of batch sizes. In the limit of weak Boltzmann selection and large problem

size it was shown how the population size could be chosen eachgeneration in order to remove

the detrimental effects of noise due to the finite size of eachtraining batch. This population

resizing was then used to determine the optimal batch size each generation, which minimized

computation time as well as the total number of training examples required.

It might be instructive to extend this work in a number of directions. The binary perceptron

problem required a new batch of training examples for each error evaluation and it would be
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Figure 5.4: The maximum overlap between teacher and studentis shown each generation, aver-
aged over the same runs as the results presented in figure 5.3.The solid lines show theoretical
predictions and the symbols are as in figure 5.3.

interesting to consider the case were batches are recycled,leading to the possibility of over-

fitting. One could also consider a multi-layer perceptron, in which case the phenotype might

be a vector of order parameters describing overlaps betweendifferent nodes within the teacher

and student. This would be especially interesting as the GA would have to break symmetry

within the space of solutions and this symmetry breaking would have to be incorporated by the

theory. It might then be interesting to compare the dynamicsof the GA with on-line gradient

descent in networks with continuous weights, for which closed form expressions describing the

dynamics have recently been obtained [59]. There are many other situations where the fitness

measure has a stochastic component and it is hoped that the results described in this chapter

will provide a framework for analysing such problems.
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6.1 Introduction

Although a variety of problems have been considered under the present formalism, these have

so far only come from the rather restricted class where alleles of the genotype contribute ad-

ditively to the phenotype. An interesting question is to askhow far the formalism can move

beyond this restriction, in order that it may describe trulyhard problems. In this chapter the

formalism is applied to the problem of storing random binarypatterns in a perceptron with

binary weights. This problem isNP-hard in the strong sense if the number of patterns is pro-

portional to the number of weights and no algorithm exists which can solve it in polynomial

time [50]. It is an appropriate problem to study because the GA finds optimal solutions with

reasonable efficiency, although simulated annealing seemsto be the most effective algorithm

to date [35, 48, 55]. The perceptron is also naturally encoded as a binary vector, so there are

no representational difficulties. This is in marked contrast to the travelling salesman problem,

which is one of the most commonly usedNP-hard bench marks.

Although no solution is found for the dynamics of the GA in general, the effect of mutation

can be accurately modelled under certain assumptions. The most important assumption is that

individuals within the population are equally likely to take any configuration given their par-

ticular training error. That is, the state space is not biased towards a particular kind of solution.

Of course, the population correlates under selection and this is a potential source of bias, but

because mutation does not involve interactions between different individuals this effect is not

necessarily critical. The assumption of an unbiased population allows the cumulants after mu-

tation to be calculated in the limit of large problem size, using the replica method to average

over random disorder in the training patterns. For low capacity the replica symmetric solution

reduces to the much simpler annealed result, which was previously derived in reference [55] for

the simplest error measure considered here. This limit allows closed form results for mutation.

Unfortunately, the assumption that taking an unbiased average should accurately model

mutation in general is shown to be unjustified. History effects play an important role in the

dynamics of mutation, so that the training error alone is insufficient to accurately characterize a

perceptron configuration. This seems to be most important for the simplest training error, which

is the number of misclassified examples. For a training errorwhich also includes information
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about the stability of each unstored example the theory is shown to characterize the mean

change under mutation more accurately, although not perfectly. Given this evidence, it seems

unlikely that an accurate characterization of mutation is possible in general without including

some extra features into the theory.

6.2 Storing random patterns in a binary perceptron

The perceptron was introduced in chapter 5, section 5.4, where the problem of learning patterns

produced by a teacher perceptron was considered. Here, the perceptron attempts to store a set

of random and uncorrelated binary mappings. Recall the definition of the perceptron given in

equation (5.8). The condition for pattern� to be stored is,O� NXi=1 Si��i � 0 (6.1)

where patterns map an Ising vector with components��i 2 f�1; 1g onto a single Ising outputO� 2 f�1; 1g. The role of a training algorithm is to find the weights which satisfy this inequal-

ity for as many patterns as possible. Since the patterns are randomly generated binary vectors,

a trivial gauge transformation can be applied without changing the nature of the problem,��i = O���i (6.2)

Here,��i 2 f�1; 1g is also a random Ising spin which satisfies the following conditions,limN!1h��i ii = 0 limN!1h��i ��i ii = ��� (6.3)

where brackets denote site averages and��� is the Kronecker delta,��� = 8<: 1 � = �0 � 6= � (6.4)

Often, the patterns are required to have a finite basin of attraction, in which case the stability

of each pattern�� is required to exceed some thresholdT ,�� = 1pN NXi=1 Si��i � T (6.5)
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Here, the factor of1=pN is chosen to make the stability of order unity in the typical case.

It has been shown that the optimal threshold for learning is often greater than the threshold

required at retrieval [34, 48, 55].

6.2.1 Training error

It is necessary to define a training error which plays the roleof negative fitness in the GA.

There is no simpler phenotype available from which the training error can be derived and it is

therefore necessary to model the distribution of errors directly. For the generalization problem

introduced in chapter 5, the number of incorrectly classified patterns was used. Storage is often

a harder problem for the learning algorithm because the patterns are completely random and

uncorrelated, and therefore contain less structure than those produced by a teacher. To storeO(N) random patterns it seems to be necessary to include some information about how far

each pattern is from being stored. One form of training errorwhich incorporates this feature is

defined by, E = �NX�=1 ul(T � ��) where ul(x) = xl�(x) (6.6)

Here,�N is the total number of pattern being stored and� is called the capacity1. For l = 0
this training error reduces to the number of misclassified patterns and this will be called the

step error. Withl = 2 this is the error used in the most successful algorithm to date, which is a

simulated annealing procedure due to Patel [48]. This will be called the summed square error.

The whole set of patterns is presented to the GA each time the training error is calculated.

6.2.2 Storage capacity

Krauth and Mézard have determined the critical capacity ofthe binary perceptron in an exten-

sion to Gardner’s seminal work on the perceptron with continuous weights [15, 16, 37]. They

find that for random patterns a perceptron can store up to�cN patterns (for largeN ), where�c ' 0:83 is the critical capacity. This result has been confirmed numerically to within a high

degree of accuracy [48]. They employed the replica method, which is often used in statistical

1The capacity is usually denoted�, but� is used here to avoid any ambiguity.
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mechanics to average over quenched random disorder. It is instructive to consider their work

here, as the calculation is closely related to the mutation calculation described in section 6.3.

In an ingenious formalism, Gardner showed how one could average over the configuration

space of the perceptron in order to calculate the number of states compatible with a set of

training examples. The volume of the configuration space compatible with the condition in

equation (6.5) is given by, 
 = * �NY�=1�(�� � T )+fSig (6.7)

where the brackets denote an average over all weight configurations. The logarithm of this

volume corresponds to the entropy of configurations, which is assumed to be a self-averaging

quantity. The patterns are quenched, or fixed, random vectors and the average over this ran-

domness can only be taken over a self-averaging quantity. This is the familiar problem in

statistical mechanics of averaging over a logarithm.

To compute the average over the logarithm the replica methodis used (see, for example,

reference [43]). This makes use of the following identity,hlog 
i = limn!0 h
ni � 1n (6.8)

where brackets denote an average over the quenched patterns. The method assumes validity of

the analytical continuation from positive integer values of n through the reals to zero. The right

hand side of equation (6.8) can be calculated for integern by makingn replicas of the system,h
ni = * nY�=1
�+= * nY�=1�Y� �(Xi S�i ��i � T pN)�fS�i g+f��i g (6.9)

where� labels replicas. The inner average is over the weight configuration for each replica

while the outer average is over the quenched patterns. The calculation can now be completed

by commuting the order of averaging and using the saddle point method in the limit of largeN [40]. Some care must be taken when exchanging the order of thelimits n! 0 andN !1.

This exchange of limits can be justified in the closely related SK spin-glass problem and is

thought to also be valid here [28].
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To complete the calculation, some assumption has to be made about the relationship be-

tween replicas. The simplest assumption is to assume symmetry between replicas. In this case

the order parameter describing the correlation between replicas takes a single value. For contin-

uous weights the correlation approaches one and the entropyvanishes as the capacity increases

to the critical capacity. In this case the replica symmetricansatz is consistent, although only

up until this point [6, 15]. For Ising weights the entropy vanishes before the replica symmetric

correlation reaches one and then becomes negative, indicating an unphysical interpretation. In

fact, Krauth and Mézard show that consistent results are obtained by one step of symmetry

breaking according to Parisi’s ansatz [37]. The replica symmetry breaking occurs at the critical

capacity�c ' 0:83 where the replica symmetric entropy vanishes. More interesting behaviour

is observed by introducing a temperature and moving into thecanonical ensemble. This leads

to a physical interpretation of replica symmetry breaking in terms of ergodicity breaking, where

many meta-stable states are formed whose escape times diverge with the problem size.

A dynamical study by Horner shows that simulated annealing encounters meta-stable states

for all capacities ofO(N), which is compatible with the problem beingNP-hard for all capac-

ities of this order [34]. He concludes that the replica treatment, which is essentially an equi-

librium thermodynamics approach, is not sufficient to capture all of the interesting dynamical

features of the training algorithm. This also provides somemotivation for studying the dy-

namics of search by other learning algorithms, such as the GA. It has been proposed that the

GA may be able to avoid the meta-stable states which trap local search procedures, although

simulated annealing has proved to be the more successful algorithm to date [35, 48, 55].

Replica symmetry is thought to hold for capacities right up until the critical capacity in

this problem. In the following section the mutation calculation will be carried out under the

assumption that�� �c and the replica symmetric assumption is assumed to be valid.

6.3 Microcanonical mutation calculation

From chapter 2, section 2.3, recall that under the present formalism mutation can be carried out

within the infinite population produced by selection. To calculate the effect of mutation on the
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distribution of training errors within this population, itis first necessary to determine a condi-

tional probability for the training error after mutation interms of the error before,p(EmjE).
The distribution of errors within an infinite population after mutation is then given by,p(Em) = Z dE p(E)p(EmjE) (6.10)

The cumulants after mutation can be obtained from the characteristic function of this distribu-

tion. To calculatep(EmjE) it is necessary to make some assumption about the microscopic

configuration of perceptrons within the population. It willbe assumed that configurations are

typical of perceptrons with a given training error, in whichcasep(EmjE) can be computed

by an unbiased average over the entire configuration space. This is essentially maximizing

entropy with a constraint on individual configurations rather than the entire population, and

corresponds closely to the microcanonical formulation of statistical mechanics.

Let�� and��m be the stability of pattern� before and after mutation respectively,�� = 1pN NXi=1 Si��i (6.11)��m = 1pN NXi=1 MiSi��i Mi = 8<: 1 with probability1� pm�1 with probabilitypm (6.12)

Here,Mi are random variables which determine the probability of a weight being flipped under

mutation. Recall the definition of training error given in equation (6.6). If the distribution of

weight configurations is unbiased, then the conditional probability p(EmjE) is given by,p(EmjE) = 
(Em; E)
(E)= h�(Em �P� ul(T � ��m)) �(E �P� ul(T � ��))ifSi ;Migh�(E �P� ul(T � ��))ifSig (6.13)

where�(x) is the Dirac delta function and the angled brackets denote anaverage over all weight

configurations and mutation variables. It will be assumed that the cumulants of this distribution

are self-averaging. The cumulants are generated from the logarithm of a characteristic function
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(see equation (2.7)) which is defined,�(t jE) = Z dEm p(EmjE) etEm= hetP� ul(T ���m) �(E �P� ul(T � ��))ifSi ;Migh�(E �P� ul(T � ��))ifSig= �(t; E)�(0; E) (6.14)

where�(t; E) is the characteristic function of the joint distribution for the training error before

and after mutation. Taking the logarithm decouples the fraction so that it is only necessary

to average the logarithm of the numerator (the logarithm of the denominator is retrieved fort = 0).

6.3.1 Replica symmetric result

Recall the replica trick, which made use of the identity in equation (6.8).log �(t; E) = limn!0 �n(t; E) � 1n (6.15)

Writing the power as a product over replicas one finds,�n(t; E) = nY�=1*etP� ul(T ����m ) �(E �X� ul(T � ���))+fS�i ;M�i g (6.16)

Now the average over quenched patterns can be computed by making a replica symmetric

ansatz, as shown in appendix B. The calculation is for largeN and relies on the mutation

probability being of order unity in this limit, which is unfortunate as a smaller probability is

often used in practice. It is unclear how well this result approximates the effects of weaker

mutation, although any differences are probably manifested in the higher cumulants.

Eventually one finds (ignoring irrelevant multiplicative constants),�n(t; E) = exp��n�E + 12nN�q + �NG0 +NG1� (6.17)

Here,G1 andG0 are defined in equations (B.14) and (B.17) respectively,G1 = nZ Du log�2 cosh(up�)�� n�2 (6.18)G0 = nZ D�xD�zD�xz log��Z T�1d�t et(T ��t)l + Z 1T d�t���Z T�1d�� e�(T ���)l + Z 1T d���Z i1�i1dxdz�4�2 exp(F )� (6.19)
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where,F = x�� + z�t + 12(1� q)(x2 + z2 + 2�xz) + �xzpq�(x+ z) +pq(1� �)(x�x + z�z)
Here,� = 1� 2pm. The saddle point equations fix the values of�, q and�,E = N� @@� �G0n � (6.20a)�2 + � @@q �G0n � = 0 (6.20b)q2 + @@� �G1n � = 0 (6.20c)

In general, these expressions are rather unwieldy and wouldrequire numerical enumeration in

many cases, even to first order in�. Rather than continuing with the most general situation, it

is more instructive to consider a much simpler limit.

6.3.2 Low capacity limit

From equations (6.20b) and (6.20c) one can show that as� becomes small,q and� are both

proportional to�. For sufficiently small� it is then reasonable to takeq = 0 and� = 0.

In this case the replica symmetric result reduces to the annealed result, which was previously

calculated for the step error (l = 0) in reference [55]. Although the summed square error

(l = 2) is a more useful choice in practice, the step error providesa simple measure with which

to test the theoretical results. Extensions to other valuesof l should be possible in principle, as

results up till this point have been for generall. The annealed result corresponds to averaging�(t; E) directly over patterns, rather than averaging the logarithm, which is expected to be

incorrect in general because unusual pattern configurations will dominate the average and give

untypical results.

With q and� equal to zero, the expression for the characteristic function is much simplified,log �(t; E) = ��E + �NGann (6.21)

whereGann is the annealed equivalent ofG0 in the replica symmetric expression,Gann = log��Z T�1d�tet(T ��t)l + Z 1T d�t��Z T�1d��e�(T ���)l + Z 1T d���� Z i1�i1dxdz�4�2 exp�x�� + z�t + 12(x2 + z2 + 2�xz)�� (6.22)
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Now only one saddle point equation is required to fix� as a function oft andE,E = N�@G@� ann (6.23)

In the next two sections the step error and the summed square error are considered. The

former measure is the simplest and the the first four cumulants of the population after muta-

tion can be calculated. The latter case is more involved and only the mean error within the

population after mutation is calculated here.

6.3.3 Step error (l = 0)

For l = 0 the integrals in equation (6.22) are standard integrals andfor T = 0 one finds [55],Gann = log "12(1 + e�) + (et � 1) 12e� + (1� e�)2� tan�1�p1� �2� �!#
(6.24)

The saddle point equation (6.23) fixes� as a function oft andE.

The cumulants of the error distribution after mutation are generated from the characteristic

function of the error distribution (see equation (2.7)),�m(t) = Z dEm p(Em) etEm= Z dE p(E) �(t jE)= Z dE p(E) �(t; E)�(0; E) (6.25)

Here, �(t; E) is defined by equations (6.21) and (6.24). To complete this integral one can

representp(E) as a Fourier transform,p(E) = Z i1�i1 dk2�i exp�Xn knn!Kn � kE� (6.26)

whereKn is thenth cumulant of the training error distribution before mutation. Substituting

this expression into equation (6.25) allows the integrals overE andk to be computed for largeN by the saddle point method, as long as the cumulants areO(N). The calculation can be

completed by expanding the relevant parameters int, as described in reference [55]. This is

appropriate for determining the cumulants after mutation,which are given by the coefficients
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of the expansion oflog �m(t). For the first four cumulants one finds2,Km1 = (1� 2�)K1 +��N (6.27a)Km2 = (1� 2�)2K2 +�(1��)�N (6.27b)Km3 = (1� 2�)3K3 +�(1��)(1� 2�)(�N � 2K1) (6.27c)Km4 = (1� 2�)4K4 ��(1��) �8K2(1� 2�)2 � �N(1� 6� + 6�2)�(6.27d)

where, � = 1� tan�1�p1� �2� �
(6.28)

and� = 1� 2pm.

It is interesting to compare these results to the expressions for the additive problems which

were introduced in chapter 4 (see equations (4.6a) to (4.6d)). The expressions here are very

similar, where� corresponds closely topm in the additive genotype results. There is an exact

correspondence for the first two cumulants if the expressions are rewritten in terms of cumu-

lants from a population of random configurations (the fixed point of mutation). Notice that� ' 2ppm=� to first order, for small mutation rates. Typicallypm � 1 and
ppm � pm, so

that the effect of mutation is clearly much greater here thanfor the additive problems. If the

benefit of mutation is to increase diversity without too muchcost in terms of lost fitness then

this is a significant penalty, as the reduced correlation within the population due to mutation

is independent of the particular problem under consideration. However, the conclusions which

can be derived from these results are severely limited, because they do not describe mutation

accurately in general (this will be demonstrated in section6.4).

6.3.4 Summed square error (l = 2)

The most successful choice of training error to date is givenby equation (6.6) withl = 2 [48].

Again, the integrals in equation (6.22) are standard integrals, but the final expression forGann
is more complex than for the step error. ForT = 0 one finds,Gann = log [I(0; 0;�) + I(t; 0;��) + I(0; �;��) + I(t; �;�)] (6.29)

2This calculation was automated usingMathematica, a symbolic programing language [76].
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where,I(t; �;�) = Z 10 d�t et�2t Z 10 d�� e��2� Z i1�i1dxdz�4�2 exp�x�� + z�t + 12(x2 + z2 + 2�xz)�= 12p1� 2� � 2t(1 � 2�(1 � �2)) "1� 1� tan�1�p1� �2� p1� 2� � 2t(1� 2�(1� �2))�#
The saddle point equation (6.23) fixes� as a function oft andE.

In principle, the cumulants after mutation can be computed by the same methods discussed

in the previous section. Unfortunately, the resulting series expansions soon become rather

cumbersome and a number of terms seem to require a numerical solution. The calculation for

the mean error after mutation is straightforward, however,as this only requires the solution of

the saddle point equation fort = 0.

The expectation value for the error after mutation is given by,hEmi = limt!0 ddt log �(t; E)= limt!0�N @G@t ann (6.30)

Differentiating out one finds,hEmi = E �x2(1� �2) + �2� 1� 1� tan�1�xp1� �2� �!+ x�N�(1 + x)  tan�1�p1� �2� �� �p1� �2�1� 1x2�! (6.31)

wherex = p1� 2� and the saddle point equation fixesx as a function ofE,E = �Nx2(1 + x) (6.32)

The expression for the mean error after mutation for largeN is simply found by replacingEm
andE byKm1 andK1 respectively.

6.4 How good was the assumption ?

In the preceding sections mutation expressions were derived by a microcanonical formulation

which involved averaging over all configurations with a given training error. Unfortunately,
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the assumption that this form of averaging is appropriate appears to be false in most cases.

Comparing the theoretical predictions for the effect of mutation in a GA to simulation results

shows only qualitative agreement. A simple experiment clearly shows the discrepancy between

theory and simulations.

6.4.1 Mutating away from an unbiased sample

A random sample of configurations are created, whose training error lies below a pre-determined

threshold. This serves as an unbiased population whose cumulants can be measured. This pop-

ulation then undergoes repeated mutations with a fixed mutation rate. Any theoretical model

of mutation should certainly be able to describe this situation accurately.

Figure 6.1 shows averaged results from this experiment for the step error. The first two cu-

mulants are shown and solid lines give the theoretical predictions according to the expressions

in equations (6.27a) and (6.27b). As expected, the theory accurately describes the behaviour

for the first generation since the population is initially anunbiased sample. After this, however,

the theory and simulation results diverge. The experiment was repeated for a range of� values

in order to ensure that there was no significant error due to the small� approximation. Clearly,

the history of the population is important. Configurations within the population are no longer

typical of configurations with a given training error even after only one generation of mutation.

Figure 6.2 shows the same experiment for the summed square error measure and although

the theory gives a better prediction here, there is still significant deviation from the experimen-

tal result. One explanation for the better agreement in thiscase is that the summed square error

measure contains information about the stability of unstored patterns. This measure therefore

provides a more constrained characterization of configurations, so that the averages in equa-

tion (6.13) are more representative than for the simpler step error. Unfortunately, only the

change in mean has been determined so far for this training error.
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Figure 6.1: A population of1000 randomly generated configurations with step error below�N=3 undergoes repeated generations of mutation withpm = 0:01. The mean (2) and vari-
ance (4) of the step error are shown each generation, averaged over500 samples. Solid curves
show the prediction from the microcanonical theory. The problem size wasN = 341 and the
number of patterns was�N = 40.
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Figure 6.2: A population of1000 randomly generated configurations with summed square
error below�N=3 undergoes repeated generations of mutation withpm = 0:02. The mean (2)
summed square error is shown each generation, averaged over100 samples. The solid curve
shows the prediction from the microcanonical theory. The problem size wasN = 341 and the
number of patterns was�N = 40.
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6.4.2 Showing inconsistencies in the mutation results

The experiment in the preceding section showed empiricallythat the mutation expressions

derived in section 6.3 do not accurately describe the effectof mutation in general. It is also

possible to show analytically that these mutation results are inconsistent. One way that this can

be achieved is by comparing the change under mutation of somemacroscopic quantity other

than the training error with the change predicted by the microcanonical approach.

An appropriate quantity to consider is the mean stability ofpatterns for a particular percep-

tron, � = h��i�= 1pN NXi=1 Sih��i i� (6.33)

where�� is the stability of pattern� and the angled brackets denote an average over training

patterns. It is straightforward to calculate the expected value for this quantity after mutation,�m = 1pN NXi=1hMiSiih��i i�= �� (6.34)

whereMi are the mutation variables defined in equation (6.12) which are averaged out (as

denoted by the first set of brackets) to give� = 1� 2pm.

It is also relatively straightforward to calculate the expectation value for the mean stability

given the training error if one assumes an unbiased average over configurations. Under this

assumption one can define a conditional probability for the mean stability given the training

error, p(�jE) = h�(� � 1�N P� ��) �(E �P� ul(T � ��))ifSigh�(E �P� ul(T � ��))ifSig (6.35)

The cumulants of this distribution can be calculated in general using the replica method, as was

the case for thep(EmjE) calculation in section 6.3. The annealed result holds for sufficiently

low � and for largeN one finds that for the step error withT = 0 the expected value of the

mean stability is a simple linear function of the training error,� =r 2� �1� 2E�N� (6.36)
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As expected, the mean stability increases from an initial value of zero as the error is reduced

towards zero.

Under the same assumptions the expected training error after mutation is given by equa-

tion (6.27a) (except that a single perceptron is under consideration here, rather than a popula-

tion), Em = (1� 2�)E +��N (6.37)

where� is defined in equation (6.28).

Equations (6.34), (6.36) and (6.37) are inconsistent. Equation (6.37) shows how the training

error changes by a non-linear function of� under mutation, while equations (6.34) and (6.36)

require a linear relationship. Since equation (6.34) is exact and equation (6.37) only requires

an unbiased configuration space before mutation, then equation (6.36) must be incorrect after

mutation from an randomly selected configuration. The assumption of an unbiased distribution

of configurations after mutation must then be false. As well as being inconsistent in general,

these expressions remain inconsistent in the most relevantlimit of weak mutation where� '2ppm=�.

Another inconsistency in the mutation results becomes apparent by observing that for a

low mutation rate and largeN the application of mutation twice should be equivalent to a

single mutation with a doubled mutation probability. This is because mutating the same bit

twice is vanishingly unlikely in this limit. This is certainly the case for the mutation results in

chapter 4, section 4.3. For the step error expressions in section 6.3 the expected training error

after mutation to first order in
ppm is,Em ' �1� 4ppm� �E + 2ppm� �N (6.38)

The expected step error after two mutations to first order in
ppm is then,(Em)m ' �1� 8ppm� �E + 4ppm� �N (6.39)

which is greater than the expected step error after a single mutation with probability2pm.

This is confirmed by the results of figure 6.1, which shows thatthe theory significantly over-

estimates the mean change in training error within the population after two rounds of mutation.
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For the summed square error these kinds of inconsistencies are expected to be much smaller

(compare figure 6.1 with figure 6.2). Unfortunately, there were technical difficulties in calcu-

lating the higher cumulants after mutation for this error measure and the analysis has therefore

not been pursued further.

6.5 Conclusion

In this chapter the statistical mechanics formalism was applied to the strongNP-hard problem

of storing random binary patterns in a perceptron with binary weights. This provides a stiff

test for any theoretical approach, as the analysis of this problem is very difficult even in a

thermodynamics framework, where the powerful assumption of thermal equilibrium can be

used. In the limit of small batch size and large problem size it was possible to characterize

mutation under the assumption that configurations were typical of configurations with a given

training error – a microcanonical formulation.

Unfortunately, the assumption of an unbiased population ofconfigurations was found to

be false in most cases. To verify this finding a simple experiment was conducted, where an

initially unbiased population with training errors below some pre-determined threshold was

subjected to successive mutations. The microcanonical prediction diverged rapidly from aver-

aged simulation results after the first generation for the step error measure, and more slowly

for the summed square error. The latter error measure contained information about the stability

of unstored pattern and it is argued that this may lead to a more constrained characterization of

configurations and correspondingly better averaging. However, due to technical difficulties the

higher cumulants after mutation were not calculated for this measure and the theory could not

be properly tested. For the simpler step error the mutation results were shown to be completely

inconsistent in at least two ways.

The evidence presented in this chapter suggests that for this problem the perceptron is

not sufficiently well characterized by training error aloneto allow a general description of

mutation. It may therefore be necessary to include more information. For example, one could

use statistics describing the distribution of pattern stabilities associated with each configuration,

as suggested in a previous study [55]. The simplest such statistic would be the mean stability of
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training patterns, but other statistics may also be required. Then it would be necessary to follow

the joint distribution of the training error and these extrastatistics within the population in

order to model the dynamics of the GA. It is not clear at present whether this will be achievable

in practice, as it would presumably be technically very difficult. The inclusion of crossover

would provide an added complication because it involves theinteraction of different population

members. There is a long way to go before it will be possible toaccurately model the dynamics

of even the simplest GA in general for this problem.
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7.1 Introduction

Many natural organisms have both a haploid and a diploid stage in their development, with

the diploid stage often predominating in higher organisms.During the diploid phase there are

two sets of genes available and therefore twice the necessary amount of genetic information re-

quired for development. Which alleles are expressed at eachsite may depend on their relative

dominance. Although a diploid phase may be required to facilitate arguably beneficial biologi-

cal processes, such as DNA repair, sexual recombination andassortment of chromosomes, it is

an open question as to why the diploid phase is so prolonged inanimals and is often the only

phase represented by a multicellular organism. A number of taxa, for example some plants

and fungi, can produce both diploid and haploid individuals. In some algae only the haploid

phase is represented by a multicellular organism [36]. It isoften argued that for diploidy to

have become so common it must present some advantage. One common belief is that having

two genes present allows deleterious mutant alleles to exist as recessives within the popula-

tion, which might then become selectively advantageous under a change in the environment

or a return to previous conditions. Since fully recessive alleles are only expressed when there

are two copies at a site, then the probability of a rare harmful allele being expressed is much

lower if it is recessive in a diploid population than would bethe case in a haploid population.

The existence of diploidy allows greater genetic diversityto exist within the population which

selection can then act on.

A problem in some GA applications is the maintenance of diversity within the population

and this is exacerbated if the fitness function changes over time, since genetic diversity is soon

lost under continued selection pressure. A number of schemes exist in order to combat such

premature convergence. For static fitness measures two of the most popular methods are island

and niching models. In an island model, the population is spatially divided into subpopulations

(islands) each evolving independently save for infrequentmigrations which reintroduce diver-

sity (this also allows a parallel implementation) [49]. Niching methods come in a variety of

forms, but they generally invoke some form of density dependent selection, so that individuals

are penalised if they are genetically similar (or sometimesphenotypically similar) to existing

population members [21]. For GAs evolving in a temporally varying environment one possible
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way to maintain diversity is to use diploidy, or even polyploidy (for some recent examples,

see references [22, 65, 77]). This is an old idea and reference [22] provides a review of early

treatments.

In this chapter the statistical mechanics formalism is extended to incorporate diploid geno-

types. This is desirable both because of possible GA applications and also because it brings the

method closer to population genetics, which usually involves diploid models [12]. A simple

temporally varying fitness measure is also considered. Because of time constraints the work

is not complete and a number of interesting models have not been studied; most notably only

haploids are modelled under the temporally varying fitness measure and an evolving domi-

nance map is not considered. An adaptive dominance map wouldbe most desirable in a GA,

where one would not knowa priori which map to choose for a non-trivial problem. However,

the dynamics of a number of simple systems are solved and the strength and potential of the

formalism are demonstrated. Possible extensions to more involved situations are discussed,

including the evolution of the dominance map and simple parasite-host interactions, which are

of interest in natural populations as well as in artificial genetic search [27, 31, 39].

7.2 A simple diploid GA

A highly idealized diploid GA is considered, which is only very roughly analogous to any

biological system. A diploid genotype comprises a pair of binary strings, called gametes1.

Initially, a random population of diploids are created and the genetic operators are then applied

as follows,

1. A population of2P gametes is selected fromP diploids, with each gamete selected

according to the fitness of its associated diploid. Each diploid can only generate two

types of gamete – there is no assortment or recombination at this stage.

2. The gametes undergo crossover and mutation at random, with no regard for which diploid

the gametes originate from.

1An abuse of biological terminology – real gametes (eggs or sperm) are created by diploids through assortment
of and recombination between chromosomes from each diploidparent. The gametes from two parents then fuse to
create zygotes (fertilized eggs) which develop into diploid adults. Gametes are not contained within the diploid and
certainly do not participate in recombination, as in the highly idealized situation described above.
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3. Pairs of gametes fuse at random to produceP diploids for the new population.

These steps are iterated over a number of generations in muchthe same way as for the familiar

haploid GA. Of course, this procedure differs from the biological picture in a number of re-

spects. Most notably, the recombination phase (crossover)is separated from the selection phase

in a rather artificial manner. A more realistic situation would be to only allow recombination

between gametes from the same diploid, and then to randomly fuse gametes in order to create

the new diploid population. However, in this chapter crossover will generally be so disruptive

that such a distinction makes little difference. The essential feature from the point of view of

genetic search is that selection acts on the diploid. Each diploid produces genetic material for

the next generation in proportion to its selective weight. The phenotype of the diploid is some

function of the two constituent gametes and may involve someform of dominance.

For the purposes of modelling it is convenient to create an infinite pool of gametes after

selection, as in the haploid GA. The dynamics can then be followed in terms of statistics from

this infinite population. This does not change the nature of the problem and the two algorithms

are essentially equivalent. The theoretical algorithm only differs in the first step above, which

now reads,

1. An infinite population of gametes is selected fromP diploids, with each gamete selected

according to the fitness of its associated diploid.

Steps 2 and 3 are the same as above.

7.2.1 A diploid phenotype

Recall the definition of the phenotype for the additive haploid genotype, defined in equation 4.1.

Consider the case whereJi = 1 at every site, as in the one-max problem,R� = NXi=1 S�i
whereS�i 2 f�1; 1g are alleles of the haploid genotype. The diploid genotype ismade up of

two haploid genotypes which will be called gametes (R� will be called the gamete phenotype).

One way to define the diploid phenotype associated with gametes� and� and with dominance
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is, R�� = 12 NXi=1�S�i + S�i + hi(1� S�i S�i )� (7.1)

wherehi is the dominance coefficient which determines the contribution from sitei whenS�i
andS�i differ. The vector of dominance coefficients is called a dominance map. This phenotype

has been studied in quantitative genetics for the case wherehi is the same at every site, leading

to a number of exact results for stationary distributions inthe infinite population limit (see,

for example, reference [30]). In the context of genetic search it is important to be able to

characterize the dynamics for more general dominance maps,as it is not known in general

which sites should be dominant. The goal is to eventually be able to describe a GA with an

adaptive dominance map, although this is beyond the scope ofthe present analysis.

For zero dominance one chooseshi = 0 for all i, in which case the diploid phenotype is the

average of the two gamete phenotypes. This is the only situation when the diploid phenotype

can be written in terms of its two associated gamete phenotypes. In general, details about the

configuration of each gamete are required in order to determine the diploid phenotype. For

example, ifhi = 1 for all i then the final term in equation (7.1) is the correlation between

gametes.

7.2.2 Modelling the dynamics

It is most convenient to follow the dynamics of the distribution of gametes within the popu-

lation. The gamete phenotype is the same as for the additive haploid problems which were

considered in chapter 4. The only difference between those problems and the simple diploid

considered here is in the selection phase. Thus, the expressions for mutation and crossover

given in sections 4.3 and 4.4 still hold (although the maximum entropy distribution may require

extra constraints). In the following two sections, expressions are derived for the dynamics in

the case of directional selection without dominance and with a fixed binary dominance map.

The former situation is the most straightforward, as the diploid fitness in this case is simply the

mean phenotype of its two constituent gametes. The latter situation is more involved and can-

not be addressed under the present formalism without resorting to the bit-simulated crossover

(BSC) limit, which was introduced for the haploid case in chapter 4, section 4.9.
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7.3 Directional selection without dominance

There areP diploids within the population and each is associated with two gametes, which are

randomly chosen from the infinite pool of gametes before selection. Label the gametes in each

associated pair� and� + P respectively. Recall that under directional selection thefitness of

an individual equals the phenotype. From equation (7.1) thefitness of the diploid with gametes� and�+ P under zero dominance is,F�;�+P = 12 (R� +R�+P ) (7.2)

whereR� is the familiar one-max phenotype. Boltzmann selection is used, in which case the

selection weight for both gametes associated with a diploidis,w� = w�+P = exp�12��R� +R�+P �� (7.3)

The partition function for selection is (from equation (3.2)),Zs = 2PX�=1w� exp(
R�)= PX�=1�exp�12�(R� +R�+P )� �e
R� + e
R�+P �� (7.4)

The logarithm of this quantity generates the cumulants of the infinite gamete population after

selection. This can be averaged over2P gametes randomly sampled from the gamete popula-

tion before selection in order to calculate the expectationvalues for the cumulants, which are

then given by equation (3.5),Ksn = � lim
!0 @n@
n Z 10 dt fP (t; 
)t
where,f(t; 
) = Z dR� dR�0 p(R�) p(R�0) exp��te�(R�+R�0 )=2(e
R� + e
R�0 )� (7.5)

These integrals must be computed numerically in general, aswas the case for haploid selection.

The correlation calculation given in chapter 4, section 4.6.2 can be similarly generalized to the

diploid case.
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7.3.1 Weak selection expansion

For weak selection (small�pK2) it is possible to apply the1=P expansion described in sec-

tion 3.2.2. In this case the cumulants after selection are given by equation (3.9),Ksn = lim
!0 @n@
n �log( 1(�; 
)) � 12P � 2(�; 
) 21(�; 
)��
where,  n(�; 
) = Z dR� dR�0 p(R�) p(R�0) (e
R� + e
R�0 )nen2 �(R�+R�0 ) (7.6)

Forn = 1 andn = 2 one finds, 1(�; 
) = 2�(�=2)�(
 + �=2) (7.7a) 2(�; 
) = 2�(�)�(2
 + �) + 2�2(
 + �) (7.7b)

where�(�) is the characteristic function of the gamete distribution (see equation (2.7)). Ex-

panding in� for the first few cumulants one finds,Ks1 = K1 + �2 �1� 12P �K2 + �28 �1� 3P �K3 + � � � (7.8a)Ks2 = �1� 12P �K2 + �2 �1� 2P �K3 + �28 ��1� 5P �K4 � 6K22P �+ (7.8b)Ks3 = �1� 32P �K3 + �2 ��1� 4P �K4 � 3K22P �+ � � � (7.8c)

It is instructive to compare these expressions with the small � results for directional Boltz-

mann selection in a haploid GA, which are given in equations (3.21a) to (3.21c). Diploid

selection without dominance is almost equivalent to haploid selection with a population of size2P (which is the number of gametes in the diploid population) and a halved selection strength.

The two cases are not exactly equivalent, as there are subtledifferences in the finite population

terms. However, the discussion for the haploid case given inchapter 3, section 3.3.2 still holds.

Selection increases the magnitude of the higher cumulants,most notably the third, which slows

down progress under further selection. The other genetic operators are required to re-populate

the tails of the gamete distribution and reduce the magnitude of the higher cumulants. The

effects of mutation and crossover on the gamete distribution are described in chapter 4, sec-

tions 4.3 and 4.4. Although a halved selection strength would be significant in a biological
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population, where selection is imposed by the environment,it is not so important in the context

of artificial genetic search, because the selection strength can easily be doubled if necessary.

In this case there is no significant difference between a haploid GA and a diploid GA without

dominance.

7.3.2 Simulating the dynamics

The selection expressions in section 7.3 were combined withthe mutation and crossover results

from chapter 4, sections 4.3 and 4.4 in order to simulate the dynamics. Bit-simulated crossover

(BSC) was used, as this allows the dynamics to be described interms of only the mean gamete

and mean correlation within the population, therefore simplifying the selection numerics. The

higher cumulants are still required after crossover and these are determined using the maximum

entropy ansatz described in chapter 4, section 4.5 (four cumulants were used here). There is

no reason why these results could not be generalized to otherforms of crossover by using the

methods developed in chapter 4. The selection strength was scaled inversely to the standard

deviation of the gamete distribution (� = �s=p�2). It may be more appropriate to use the

variance of the diploid fitness distribution to scale the selection strength, but the present scaling

allows a meaningful comparison of the haploid and diploid results.

Figure 7.1 shows the mean and variance of the gamete distribution averaged over 1000 runs

of a diploid GA without dominance. The diploid fitness is the average of its two constituent

gametes, so that the expected mean fitness within the diploidpopulation is equal to the mean

gamete. These results show very good agreement with the theoretical curves, although there are

very slight systematic errors which may be due to non-self-averaging effects, deviations from

maximum entropy or because the weak selection approximation was required to determine the

correlation after selection. Results from a haploid GA witha halved selection strength and a

doubled population size are shown for comparison and the trajectories are clearly very similar

to those of the diploid GA. Any differences can be attributedto subtle finite population effects.
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Figure 7.1: The theory is compared to averaged results from adiploid GA without dominance
on the one-max problem. The diploid results (4) for the mean and variance of the gamete
distribution are averaged over 1000 runs withP = 50 and�s = 0:5. The solid lines show the
diploid theory. The haploid results(2) withP = 100 and�s = 0:25 are shown for comparison.
The other parameters wereN = 155, pm = 0:002 and bit-simulated crossover was used.

7.4 Directional selection with a fixed binary dominance map

When dominance is non-zero the fitness of a diploid can no longer be written in terms of its

constituent gamete’s phenotypes. For directional selection the fitness of a diploid is equal to

the phenotype defined in equation (7.1),F�� = 12 NXi=1�S�i + S�i + hi(1� S�i S�i )� (7.9)

The case wherehi 2 f�1; 1g is considered here, so that the dominance map is a binary vector.

To determine this fitness it is necessary to know how alleles are distributed relative to the dom-

inance map. One way to do this is to use the BSC limit, which wasintroduced in chapter 4,

section 4.9. After BSC the distribution of alleles decouples at every site. The selection proce-

dure can be averaged over this distribution in order to determine the expectation values for the

relevant macroscopics after selection. It is first necessary to describe the distribution of alleles

and this can be achieved by making a maximum entropy ansatz.
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7.4.1 Maximum entropy distribution

Recall the maximum entropy calculation for the additive haploid genotype, which was intro-

duced in chapter 4, section 4.5. To apply such an ansatz here,it is first necessary to decide

which macroscopics are most important. The most obvious macroscopics to describe the ga-

mete distribution are the mean gamete phenotypeK1 and the mean overlap between the ga-

metes and the dominance map, which will be denotedH,K1 = NXi=1hS�i i� = NXi=1 �i (7.10a)H = NXi=1 hihS�i i� = NXi=1 hi�i (7.10b)

where�i is the mean allele at sitei within the infinite gamete pool.

It will be necessary to include the correlation measureq, as the population is finite and

will become correlated under selection. It is also desirable to know which sites are correlated

and this can be achieved by including a fourth constraint, which will be denotedQ (these

expressions are for largeP ),q = 1N NXi=1hS�i i2� = 1N NXi=1 �2i (7.10c)Q = 1N NXi=1 hihS�i i2� = 1N NXi=1 hi�2i (7.10d)

For hi 2 f�1; 1g the sum ofq andQ gives the correlation for sites with positive domi-

nance while the difference gives the correlation for sites with negative dominance. From equa-

tion (7.9) one finds that the expected mean fitness for a population of diploids whose gametes

are randomly sampled from the gamete pool can be written in terms ofQ andK1,hF��i�6=� = K1 + 12�Xi hi �Q� (7.11)

Notice thatQ is selected on directly, so that it may be necessary to include correlation macro-

scopics for this problem even in the infinite population limit.

The sites can be arranged so thathi = 1 for the firstmN sites andhi = �1 for the remain-

ing sites. The particular ordering of the dominance coefficients is irrelevant, since there are

no spatial interactions. Thus,m completely parameterizes a fixed binary dominance map and
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determines the degree of dominance for positive alleles on average. Rewriting the expressions

for H andQ, H = mNXi=1 �i � NXmN+1 �i (7.12a)Q = 1N mNXi=1 �2i � 1N NXmN+1 �2i (7.12b)

The four constraints can be enforced by Lagrange multipliers as in the haploid case. Notice

that if m = 0 thenH = K1 andQ = q, so that only two constraints are required as in the

haploid case (this is true in general ifhi is the same at every site). A similar calculation to that

presented in chapter 4, section 4.5 provides an expression for the mean bond at each site for

the maximum entropy distribution (this result is also validfor more general dominance maps),�i = tanh�z + hiy + �ipx2 + hiw2� (7.13)

wherew2, x2, y andz are conjugate toQ, q, H andK1 respectively, while�i is a Gaussian

variable with zero mean and unit variance. Ifhi = 0 at every site, then this reduces to the

haploid expression defined in equation (4.18). After BSC thealleles within the gamete pool

are assumed to be distributed according to,p(Si) = �1 + �i2 � �(Si � 1) +�1� �i2 � �(Si + 1) (7.14)

The constraints fix the values of each Lagrange multiplier,K1 +H = 2mN tanh�z + y + �px2 + w2� (7.15a)K1 �H = 2N(1�m) tanh�z � y + �px2 � w2� (7.15b)q +Q = 2m tanh2 �z + y + �px2 + w2� (7.15c)q �Q = 2(1�m) tanh2 �z � y + �px2 �w2� (7.15d)

where bars denote averages over the Gaussian noise. Although this is a four-dimensional root

finding problem, a trivial change in variables decouples theequations into two pairs which can

be solved independently. The problem is therefore no more involved than for the haploid case.

In all the cases which were considered here the argument of the hyperbolic tangent remained

real and the roots were unique.
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7.4.2 Mutation

The mutation calculation is a straightforward generalization of the calculation in chapter 4,

section 4.3. The expectation values for the two extra macroscopics are given by,Hm = �H (7.16a)Qm = �2Q (7.16b)

where� = 1�2pm. These two equations are analogous to the results forK1 andq respectively.

7.4.3 CalculatingK1 andH after selection

The selection calculation follows the haploid discussion closely (see chapter 4, section 4.9). For

a diploid whose fitness measure is given by equation (7.9) thepartition function for selection

is, Zs = PX�=1�e�2 Pi�S�i +S�+Pi +hi(1�S�i S�+Pi )� �e
Pi S�i + e
Pi S�+Pi ��
(7.17)

For weak selection the cumulants of the gamete phenotype distribution after selection are gen-

erated from the familiar1=P expansion (see chapter 3, section 3.2.2),Ksn ' lim
!0 @n@
n �log( 1(�; 
)) � 12P � 2(�; 
) 21(�; 
)�� (7.18)

where n(�; 
) is now averaged over alleles distributed according to equation (7.14), n(�; 
) = �en�2 Pi�S�i +S�0i +hi(1�S�i S�0i )� �e
Pi S�i + e
Pi S�0i �n�fS�i ;S�0i g (7.19)

Notice that whenhi = 0 this expression reduces to the zero dominance expression inequa-

tion (7.6), except that here the average is over alleles rather than the gamete distribution. Com-

pleting the average one finds, 1(�; 
) = 2 NYi=1 �i(�; 
; 
) (7.20a) 2(�; 
) = 2 NYi=1 �i(2�; 2
; 2
) + 2 NYi=1�i(2�; 2
; 0) (7.20b)

where,�i(�; 
; �) = �1 + �i2 �2e�+
 +�1� �i2 �2e�(�+
) + (1� �2i )2 e�hi cosh(�) (7.21)
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When using BSC it is only necessary to evolve the macroscopics required to describe the

maximum entropy distribution. In this case only the mean gamete phenotype after selection is

required, and from equation (7.18),Ks1 =  01(�; 
) 1(�; 
) � 12P  2(�; 
) 21(�; 
) � 02(�; 
) 2(�; 
) � 2 01(�; 
) 1(�; 
) �����
=0 (7.22)= NXi=1 �0i(�; 
)�i(�; 
) � 12P  NXi=1 �0i(2�; 2
)�i(2�; 2
) � 2�0i(�; 
)�i(�; 
) ! ePi log(�i(2�;2
))�2 log(�i(�;
))�����
=0
where 0(�; 
) and�0(�; 
) denote differentials with respect to
 and�i(�; 
) = �i(�; 
; 0).
The average over the Gaussian variable in�i (see equation (7.13)) was taken over summed

terms, as these are expected to self-average. This expression cannot be written as a simple

function of cumulants unlesshi = 0 at every site, in which case the result reduces to the zero

dominance case in equation (7.8a).

The mean overlap between gametes and the dominance map isH. The expectation value

for this quantity after selection is found in a similar calculation to that given above. Recall the

selection partition function defined in equation (7.17). Byreplacing
PS�i by 
PhiS�i in

this expression one can generate the expectation value forH after selection. This follows the

result for the first cumulant closely and the result is given by the final line of equation (7.22)

under the transformation�0i(�; 
)! hi�0i(�; 
),Hs = NXi=1 hi�0i(�; 
)�i(�; 
)� 12P  NXi=1 hi��0i(2�; 2
)�i(2�; 2
) � 2�0i(�; 
)�i(�; 
) �! ePi log(�i(2�;2
))�2 log(�i(�;
))�����
=0 (7.23)

7.4.4 Calculatingq andQ after selection

As in the haploid case (see chapter 4, section 4.9.2) one can include an extra term in the

selection partition function in order to generate the correlation after selection. In the case

of a diploid whose fitness is given by equation (7.9) the relevant partition function is,Zq(�) = PX�=1�e�2 Pj�S�j +S�+Pj +hj(1�S�j S�+Pj )� �e�S�i + e�S�+Pi ��
(7.24)
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Using the familiar weak selection approximation leads to anexpression for the correlation after

selection, qs = 1N NXi=1 �1� lim�!0 @2@�2 logZq(�)�' 1N NXi=1 �1� lim�!0 @2@�2 �log( 1(�; �)) � 12P � 2(�; �) 21(�; �)��� (7.25)

where,  n(�; �) = �en�2 Pj�S�j +S�0j +hj(1�S�j S�0j )� �e�S�i + e�S�0i �n�fS�j ;S�0j g (7.26)

The brackets denote averages over alleles distributed according to equation (7.14). Completing

the average one finds, 1(�; �) = 2�i(�; �; �)N�1Yj 6=i �j(�; 0; 0) (7.27a) 2(�; �) = 2 (�i(2�; 2�; 2�) + �i(2�; 2�; 0)) N�1Yj 6=i �j(2�; 0; 0) (7.27b)

where�i(�; 
; �) is defined in equation (7.21). The expression forqs has not been differentiated

out here as the resulting expression is rather cumbersome and is not particularly illuminating.

This result is easily generalized in order to calculateQ after selection, by introducing a

factor ofhi into the outermost sum of equation (7.25).Qs ' 1N NXi=1 hi�1� lim�!0 @2@�2 �log( 1(�; �)) � 12P � 2(�; �) 21(�; �)��� (7.28)

7.4.5 Simulating the dynamics

The dynamics can be modelled for an arbitrary binary dominance map using the expressions

which were derived in the preceding sections. Figure 7.2 compares the theory to averaged

results for a completely random map (m = 0:5 in section 7.4.1), for two different population

sizes. The mean fitness of the diploid population is shown in each case, along with results for

each of the relevant macroscopics. The results for the largest population size show excellent

agreement, while there is some disagreement during the later stages with the smaller population

size. This may be because the weak selection approximation was required in order to calculate
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the selection expressions in sections 7.4.3 and 7.4.4, or because the dynamics average less well

for smaller population sizes.
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Figure 7.2: The theory is compared to averaged results from adiploid GA with a random
binary dominance map on the one-max problem, for two population sizes. The population
sizes wereP = 50 (left) andP = 100 (right). The results for the mean fitness (2) and relevant
macroscopicsK1 (3), q (4), H (O) andQ (+) are shown (in descending order). The results
are averaged over 600 runs forP = 50 and 400 runs forP = 100. The closest solid lines show
the theory. The other parameters were�s = 0:4, N = 155, pm = 0:002 and bit-simulated
crossover was used.

It is interesting to note that even in the case where the dominance map is completely ran-

dom, then the mean diploid fitness is higher than the mean gamete (K1). This has been achieved

by driving Q negative, which leads to an increase in the mean expressed fitness defined in

equation (7.11). The mean correlation is also lower here than would be expected for a haploid

population of the same mean fitness. More work is required to really understand the inter-

play of the relevant macroscopics and it would be most interesting to model a diploid under a

temporally varying fitness measure. The next section takes us closer to this goal by describ-

ing the dynamics of a haploid GA under such a fitness measure. Along with the work in the

present section, it is hoped that this might provide the basis for accurately characterizing more

interesting situations.
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7.5 Temporal changes in the fitness measure

The main motivation for using a diploid GA is to maintain diversity and retain useful infor-

mation under a temporally varying fitness measure. If these changes are periodic or recurrent

then a dominance map may learn information about previous states of the environment and

this information may prove useful in the future. Such a scenario is beyond the scope of the

formalism presented here as it stands, but it is hoped that something can be learned from a very

simple example of a temporally varying problem. A haploid GAwill be considered here as this

simplifies the analysis, although generalization to a diploid GA with a fixed dominance map

would be straightforward. In section 7.6 some possible applications of these ideas and those of

the previous section will be considered.

7.5.1 A simple problem

A haploid GA is considered, whose phenotype is given by equation (4.1) with each weight

initially set to one. The initial fitness for directional selection is then the same as for the one-

max problem, F� = NXi=1 S�i (7.29)

The simplest way to change this fitness measure after some time is by introducing a new weight

vector, F J� = NXi=1 JiS�i Ji = 8<: 1 with probability1� v�1 with probabilityv (7.30)

wherev determines the probability of introducing a negative weight. If v = 0:5 then the new

weights are completely uncorrelated with the old and for smaller values ofv there is some

correlation between the new and old weights. In general, this is an Ising paramagnet whose

weights are flipped with probabilityv in one generation. The weights are initially set to one

without any loss of generality.

To simplify matters BSC is used, so that the distribution of alleles at each site decouples

and averages can be taken directly over this distribution (see chapter 4, section 4.9). To describe

the distribution of alleles after BSC it is necessary to makea maximum entropy ansatz.
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7.5.2 Maximum entropy distribution

Before the weights of the paramagnet are flipped the problem is equivalent to one-max and

constraints on the mean fitness and correlation within the population will accurately charac-

terize the population, as described in chapter 4, section 4.5. However, once new weights are

introduced at each site these two macroscopics are no longersufficient, because the population

is still correlated with the previous weight vector. It is therefore necessary to follow the overlap

with the original weight vector, which will be denotedO. As in the diploid problem it is also

desirable to know which weights are correlated and this can be achieved by including another

extra macroscopic, which is denotedQ in analogy to the similar macroscopic introduced in

section 7.4.1. The two extra constraints required after a change in the weight vector are then,O = NXi=1hS�i i� = NXi=1 �i (7.31a)Q = 1N NXi=1 JihS�i i2� = 1N NXi=1 Ji�2i (7.31b)

where�i is the mean allele at sitei. If the mean fitness and correlation are included, then

comparison with equations (7.10a) to (7.10d) shows that this is equivalent to the problem of

maximizing entropy in the diploid GA with a fixed binary dominance map. The discussion in

section 7.4.1 provides the result (withv analogous to1 �m) for the distribution of alleles at

maximum entropy.

The mean bond at each site in this case is,�i = tanh�z + Jiy + �ipx2 + Jiw2� (7.32)

wherew2, x2, y andz are conjugate toQ, q, K1 andO respectively, while�i is a Gaussian

variable with zero mean and unit variance. The constraints fix the Lagrange multipliers once

the weights have been flipped and after averaging over the distribution of weights one finds,O +K1 = 2N(1� v) tanh�z + y + �px2 + w2� (7.33a)O �K1 = 2Nv tanh�z � y + �px2 � w2� (7.33b)q +Q = 2(1� v) tanh2 �z + y + �px2 + w2� (7.33c)q �Q = 2v tanh2 �z � y + �px2 �w2� (7.33d)
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where bars denote averages over the Gaussian noise. Again, these equations decouple into two

pairs under a trivial change in variables.

Unfortunately, each time the weight vector is changed the number of constraints is in-

creased by a factor of two and the problem becomes progressively more complex (if all the

relevant constraints are used). The root finding will still be straightforward, however, as the

equations always decouple into pairs. Here, only a single change of weights is under consider-

ation.

7.5.3 Evolving the macroscopics

In the previous section it was shown that the relevant macroscopics for this problem are equiva-

lent to the macroscopics which described the population fora diploid with a fixed binary domi-

nance map. Before the weights flip the dynamics are exactly equivalent to the one-max problem

which was described in chapter 4, section 4.7.1. Once the weights have flipped it is necessary

to follow the evolution of four macroscopics, as was the casefor the diploid GA. Here, the

dynamics are considered from the point when the weights flip.The expected values of the

macroscopics at this point are found by averaging over the new weights (see equation (7.30)),KJ1 = (1� 2v)K1 (7.34a)QJ = (1� 2v)q (7.34b)

while q remains fixed andO = K1 is the overlap with the previous weights at this point.

As this is a haploid GA, expressions describing the effect ofselection in the BSC limit are

most closely related to those given in chapter 4, section 4.9. The expressions forKs1 andqs
are exactly equivalent to equations (4.60) and (4.65), except that�i is now defined by equa-

tion (7.32). The expression forOs is given by equation (4.60) with the factor ofJi deleted in

the two sums over sites. Similarly, the expression forQs is given by equation (4.65) with a

factor ofJi introduced into both sums over sites.

The mutation results forO andQ are analogous to the results forH andQ in the diploid

GA, as described in section 7.4.2.
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7.5.4 Simulating the dynamics

Figure 7.3 compares the theory to averaged results from a GA for one realization of the prob-

lem. The two extra macroscopicsO andQ are only included after generation 70, where the

weights change. At this point,K1 is reduced according to equation (7.34a) andQ is chosen

according to equation (7.34b). The result forK1 is therefore discontinuous at this point, as

shown in the left hand part of the figure. The overlap with the original weight vectorO is

initialized to the value ofK1 just before the weights are flipped, whileq is unchanged.
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Figure 7.3: The theory is compared to averaged results from ahaploid GA for a paramagnet
whose Ising weight vector changes after 70 generations. Theresults are shown forK1 (2),O (4), q (3) andQ (+). The data points are averaged over 500 runs and solid lines show
the theory. 30 weights were flipped at generation 70 (v = 0:194). The other parameters areP = 200, �s = 0:2,N = 155, pm = 0:001 and bit-simulated crossover was used.

The results show very good agreement, although there is a slight discrepancy in the predic-

tions of transient behaviour after the weights have changed. This could be due to any combina-

tion of three simplifications – the use of a weak selection limit, the assumption of self-averaging

and the assumption of maximum entropy. The weak selection approximation should hold here,

as search parameters were chosen in a region which is usuallywell described by this limit.

Similar small discrepancies in the transients were found for a range of selection strengths and

population sizes. Notice that the correlation results (in the right hand part of figure 7.3) show

that the averaged results are somewhat ‘flatter’ than the theoretical predictions, which is what

one might expect if differences are due to non-self-averaging. Nevertheless, the theory provides

a very close approximation to the averaged results in a wide range of situations. Errors due to
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lack of self-averaging should become smaller under increases in problem size and population

size.

7.6 Conclusion

In this chapter the statistical mechanics formalism was applied to a simple diploid GA and a

haploid GA with a temporally varying fitness measure. The theory compared well to simulation

results in both cases. Although these were highly idealizedand rather simple systems, it may

be possible to use the methods developed here in order to describe the more involved and

interesting situations described below.

7.6.1 Adaptive dominance

If the fitness measure is temporally varying, then it may be beneficial to let the dominance map

evolve. One simple way to do this is to include a dominance mapwith each gamete and allow

this to evolve in the same way as the rest of the genotype. Unfortunately, for binary genotypes

this will lead to situations where two gametes disagree on the dominance at a site, leading to

a possible ambiguity. Although any ambiguity could be resolved by making a random choice,

this does not always give satisfactory performance. Holstein, Holland, and later Goldberg

and Smith, chose a definite bias towards one choice of allele in cases where there was any

ambiguity [22, 32, 33, 65]. This allowed the genotype to be represented by a triallelic scheme,

where combinations of0 and1 act as if1 is dominant while an extra allele10 represents a1 over

which0 is dominant. Although this form allows no ambiguity, the representation is now biased

towards ones; an unfortunate lack of symmetry. Nevertheless, Smith and Goldberg do find a

definite advantage when using this scheme on a temporally varying knapsack problem [65]. It

would be possible to introduce a more symmetrical quadrallelic scheme, although it is not clear

that this would be an improvement.

In order to analyse an adaptive dominance map under the present formalism, it would

probably be simplest to consider a co-evolving but physically independent population of dom-

inance maps from which dominance values at each site are chosen at random each time fitness

is evaluated. The population of dominance coefficients would then correspond to a vector of
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probabilities associated with selecting a particular dominance value at any site. An extra set

of macroscopics describing the population of dominance maps would be required in order to

characterize such a GA. The generalization to closer physical proximity of dominance coeffi-

cients and expressed alleles (as in the triallelic scheme) would be difficult, but might produce

similar dynamical behaviour in some cases.

7.6.2 Hosts and parasites

The dynamics of host-parasite interactions are of interestin artificial genetic search [31] as

well as in the more familiar setting of biology [27, 39]. Hillis considered a GA for developing

networks which sort sequences of numbers by rank [31]. The aim is to develop a sorting

network which orders all possible sequences correctly and uses the smallest number of steps.

To fully test a sorting network requires that all2N examples of a binary sequence of lengthN
are correctly ordered, but this test is very time consuming for largeN . Using a smaller subset

of training examples proves to be ineffective, as the GA soonlearns how to sort most examples

and they provide no information once learned, leaving the GAstuck at poor but locally optimal

networks. Hillis found that by co-evolving a population of training examples as parasites he

could ensure that sorting networks received a useful set of training examples each generation.

The example sequences were selected by their ability to beatthe sorting networks, while the

networks were selected by their ability to correctly order the sequences. Adding this flexibility

to the space of training examples allowed the GA to find very good solutions to the problem.

Recently, however, some doubt has been cast over the stiffness of the test used by Hillis and

more work is required to determine whether host-parasite interactions are really practicable for

artificial genetic search [4].

A simpler co-evolution problem lends itself more readily toanalysis: that of matching

bit-strings. The parasite bit-string tries to match the host, while the host tries to be different

from (evade) the parasite. This has analogies in biology, where interactions of this sort have

received some attention [27, 39]. These studies mostly concentrate on small systems or on

analysis via simulations and interesting dynamical patterns are shown to emerge even for very

simple systems. An important question in biology is why sexual recombination should be so
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prevalent in higher organisms and there is some evidence that parasites provide one explanation

for this. Under this view, sexual recombination is requiredto give hosts sufficient flexibility

with which to deal with faster evolving parasites. This is therefore an interesting problem to

study, both because it may shed light on general issues of host-parasite dynamics and also

because it may have more specific implications for real biological systems.

Recall the simple time varying problem considered in section 7.5. In the simplest bit-

matching problem one could treat the field of the paramagnet as the parasite, while the para-

magnet would be the host (although the paramagnet fitness nowchanges sign – the host tries

to be different from the parasite). One could then model the evolution of the parasite and

host populations, which might interact in a number of ways. Many different situations can

be envisioned, with varying levels of recombination withineach population and varying rates

of evolution. Unfortunately, the analysis in this chapter required BSC to decouple alleles at

each site after crossover and the inclusion of more general forms of crossover is a formidable

task. Another difficulty which emerges from the model described in section 7.5 is the ob-

servation that each time the environment changes, a new set of macroscopics are required to

describe the overlap with the previous environment. This leads to an explosion in the number

of macroscopics required to model the GA under continued adaptation. Overlaps with all pre-

vious environments may not be required, however, because effects would fall off with time and

a truncated set of macroscopics might be sufficient to describe the dynamics accurately. Yet

another possible difficulty with the present approach is that rapidly fluctuating dynamics may

not be well described under an assumption of self-averaging. This would be a significant prob-

lem in host-parasite interactions, where fluctuating and chaotic behaviour has been observed in

simulations [27, 39]. However, given the progress made in this chapter there is some reason to

be optimistic about the prospect of deriving truly non-trivial macroscopic dynamical behaviour

from a model defined in terms of microscopics.
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8.1 Thesis summary

A formalism for modelling GA dynamics using methods from statistical mechanics, originally

developed by Prügel-Bennett and Shapiro [53, 54], has beenreviewed and improved upon in

order to describe the GA in a wider range of applications. Theeffect of selection on the dis-

tribution of phenotypes within the population is problem independent, and previous results for

this operator were generalized to a larger class of selection schemes. The averaged dynamical

trajectory of a simple finite population GA was then accurately modelled for a number of op-

timization problems. Although the problems for which the formalism proved most successful

were rather simple or idealized, they were often sufficiently involved to capture interesting non-

trivial features of the search. An attempt was also made to describe a strongNP-hard problem

and although the analysis was unsuccessful in this case, some insight was gained into possible

limitations of the formalism as it stands.

The first class of problems considered, and the class considered in greatest detail, con-

sisted of problems where alleles of the genotype contributeadditively to the phenotype (fitness

was related to the phenotype by some arbitrary function). Results from Prügel-Bennett and

Shapiro [54] were reproduced, including their calculationfor determining non-trivial terms in

the expressions describing crossover and mutation by maximizing entropy with constraints on

the mean correlation (genotype similarity) and mean phenotype within the population. Some

situations under which the maximum entropy ansatz might break down were considered. In

particular, it was shown how mutation could take the population away from maximum entropy

by flipping alleles at sites associated with large weights inthe random-field paramagnet.

Prügel-Bennett and Shapiro assumed a simple relationshipbetween the phenotypic vari-

ance and correlation which does not hold in general [54]. In order to move beyond this simpli-

fication, expressions were derived for evolving the mean correlation as an extra macroscopic,

providing a significant improvement over the original formulation. To determine the expected

mean correlation under selection, it was assumed that the distribution of correlations within the

population can be well approximated by the distribution at maximum entropy. This is expected

to be a good assumption as long as crossover is reasonably disruptive, but further analysis is

required to determine when this assumption will break down.
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The theoretical results were tested on problems exhibitingdirectional selection (one-max

and the random-field paramagnet) and stabilizing selection(the subset sum problem). The

theory agreed well with averaged results from a real GA, accurately predicting the mean dy-

namical trajectory as long as the maximum entropy ansatz provided a good approximation. As

mentioned above, moderate levels of mutation resulted in the maximum entropy ansatz break-

ing down for the random-field paramagnet during the later stages of the evolution, because

alleles associated with high weights were flipped with significant probability.

The subset sum problem is a weaklyNP-hard problem and has a strongly non-linear fitness

measure. It is characterized by a stabilizing dynamics, analogous to stabilizing selection on

quantitative traits in biological populations, so that themean of the phenotype distribution cen-

tres around the optimum phenotype while the population converges. The dynamical trajectory

was accurately predicted for this problem without mutation, but further work is required to

determine whether the method fails when mutation is included. It was shown how the fitness

of the best individual eventually degrades as the population becomes highly correlated. This

effect was accurately predicted by estimating the probability of duplicates occurring within the

population.

The second class of problems consideredconsisted of those whose fitness measure is a

stochastic function of the phenotype (this is not mutually exclusive from the class of additive

problems described above). This situation is often of interest in machine learning applications,

where training data may be incomplete or noisy. A result was derived for selection on an

arbitrary stochastic fitness measure and the specific case ofdirectional Boltzmann selection on

a phenotype corrupted by Gaussian noise was considered in greater detail. In the latter case, an

increase in population size was shown to completely remove the detrimental effects of noise in

the limit of weak selection.

A simple learning problem, generalization in a perceptron with binary weights, was shown

to be closely related to a noisy version of one-max if a fresh batch of training examples were

used for each training error evaluation. In this case the noise was due to the uncertainty of

information contained within a finite training batch. The dynamics was solved for this problem,

and in the limit of large problem size and weak selection it was shown how the population size



CHAPTER 8. CONCLUSION AND OUTLOOK 147

could be chosen each generation to remove the effects of noise. When this population size was

chosen, an optimal batch size was identified which minimizedthe computation time required

for training error evaluations.

In chapter 6 an attempt was made to model the GA on a strongNP-hard problem – storing

random patterns in a binary perceptron. This differs from the other problems considered in this

thesis, because the phenotype (in this case the training error) is a strongly non-linear function

of the genotype. The effect of mutation was calculated undera microcanonical formulation,

where perceptron configurations were assumed to be typical of configurations with a given

training error. The calculation was carried out using the replica method to average over the

random disorder in the training patterns and in the limit of small capacity the replica-symmetric

result reduced to the much simpler annealed result. In this case it was possible to determine the

cumulants of the error distribution after mutation for the step error measure, and the mean error

after mutation for the summed square error measure. The higher cumulants were not calculated

in the latter case because of technical difficulties.

Unfortunately, the microcanonical formulation did not describe mutation well in general

and it was shown that there were at least two significant inconsistencies in the results. It was

concluded that the training error did not constrain perceptron configurations sufficiently and it

would be necessary to include other statistics for a better characterization. It was suggested

that the mean stability of training patterns might provide useful information, although this was

only conjectured and no attempt was made to model the population using extra statistics. Any

analysis of crossover would be expected to introduce even greater difficulties, as this operator

involves the interaction of different population members.

In chapter 7 the formalism was extended in order to describe a class of simple diploid

GAs and a haploid GA with a temporally varying fitness measure. For these problems the

dynamics was solved for a GA using a limiting form of crossover, bit-simulated crossover,

which completely decouples the alleles at each site (although the dynamics for a diploid GA

without dominance was solved without this restriction). For a fixed binary dominance map the

maximum entropy ansatz was extended to include four constraints, effectively describing the

occupation and correlation at sites with each of the two different dominance values.
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The simple temporally varying fitness measure considered was an Ising paramagnet, some

of whose weights flip after a number of generations. In this case the maximum entropy calcu-

lation also involved four constraints after the fitness measure changed. The extra constraints

described the memory of the original weight vector within the population.

The work in this chapter was incomplete and a number of possible generalizations were

discussed. For example, it was shown how these results mightbe extended to described a

diploid GA with an adaptive dominance map. This may be usefulif it is not known a priori

which dominance map to choose, or if the fitness measure changes unpredictably over time.

Simple co-evolving systems were also considered, as these are of interest in natural systems as

well as in artificial genetic search.

8.2 Strengths and weaknesses of the formalism

A statistical mechanics formalism has been shown to accurately predict the dynamical tra-

jectory of the GA for a number of simple, but often non-trivial, problems. The expressions

describing the dynamics are compact and do not depend on problem size or population size,

although the assumption that trajectories self-average will probably improve with increases in

both1.

Finite population effects are accurately modelled under the formalism and provide a num-

ber of important insights. For example, Prügel-Bennett and Shapiro quantified the effect of

directional selection on the higher cumulant of a finite population [53], showing how Boltz-

mann selection introduces skewness into an initially Gaussian distribution of phenotypes. In

chapter 5 it was shown how adding Gaussian noise to the fitnessonly affects a finite population

GA in some cases and may have no effect in the infinite population limit. This insight allowed

the optimal batch size to be determined for a simple, yet by nomeans trivial, learning problem.

It was also recognized that a finite population would correlate more rapidly under selection

than would be predicted in the infinite population limit, because selection requires the duplica-

tion of population members. It was therefore necessary to quantify this duplication effect when

1This may not be the case if other parameters do not scale appropriately. For example, in Müller’s ratchet the
mutation rate isO(1=N), whereN is the problem size, and fluctuations still dominate the dynamics of a finite
population asN tends to infinity [52].
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modelling the dynamics.

Following the correlation as an explicit macroscopic allowed a greater number of problems

to be addressed and gave improved results over the original formulation of the method, in

which the correlation was deduced directly from the phenotypic variance [54]. As well as

giving improved results for directional selection on an additive genotype (one-max and the

random-field paramagnet) this was an essential ingredient for describing stabilizing selection

(the subset sum problem). The solution to the dynamics for this problem marked significant

progress, as this is an example of a weaklyNP-hard problem with a strongly non-linear fitness

function.

The maximum entropy ansatz often provides a powerful means of describing the distri-

bution of alleles at each site for problems where alleles contribute additively, but inhomoge-

neously, to the phenotype [54]. However, there are situations when this distribution does not

provide a good characterization of the population (at leastwith the constraints used here) and

care must be taken when applying an ansatz with noa priori justification. The maximum en-

tropy ansatz also provides a way to describe the distribution of correlations at each site and is

therefore even necessary for modelling problems with homogeneous weights when finite pop-

ulation effects are important. In chapter 7 the ansatz was extended to simple diploid problems

and to a temporally varying fitness measure, where four constraints were required to charac-

terize the population. It was noted that for one-max with a binary dominance map there was

a correlation measure in the expressed fitness. In this case the correlation constraints might

be required even for large populations. The use of a constraint on the previous environment

in the simple temporally varying problem shows that the maximum entropy result can also be

used to follow history effects. This may be important when modelling more complex adaptive

behaviour.

Certain limitations of the formalism were exposed in chapter 6, where an attempt was

made to characterize the effect of mutation for a strongNP-hard problem. Here, the calculation

was carried through under a microcanonical formulation, sothat the only constraint on each

population member was its training error (this is also a maximum entropy ansatz, but with a

constraint on each individual rather than the whole population). However, the training error
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alone proved insufficient to accurately characterize configurations and the results did not even

provide a reasonable approximation. Although it was suggested that other constraints might be

included within the phenotype, the resulting calculationswould be technically difficult and the

generalization to crossover is expected to be even harder. It may also be the case that no small

set of macroscopic constraints exist which accurately characterize perceptron configurations

for this problem, although this conclusion seems overly pessimistic.

Whether limitations of the formalism are purely technical,or more fundamental in nature,

is not yet known. An upper bound on the difficulty of problems for which the dynamics might

be tractable is probably provided by thermodynamic studies, which use the powerful concept

of thermal equilibrium to analyse the state space for a number of non-trivial optimization prob-

lems, including the strongNP-hard problem considered in chapter 6 [37, 43]. These studies

apply the maximum entropy principle in a far more rigorous context, by considering a simu-

lated annealing schedule which equilibrates over ergodic time-scales. In this case the dynamics

is designed to approach a Boltzmann distribution. The thermodynamic formulation does not

described the approach to this distribution, however, and there may be entropic barriers, or

dynamic freezing transitions, which are intrinsic to the geometry of the fitness landscape and

which such a study will not necessarily expose [34, 69]. In this case the thermodynamics only

provides existence proofs for solutions and may say nothingabout the dynamics of any search

algorithm.

The formalism described in this thesis can be expected to meet with much greater technical

difficulties than the thermodynamic approach, as the population is not at thermal equilibrium

and it may be difficult, or impossible, to find a small set of macroscopics which accurately

characterize the population. It is expected that this task will become more difficult as the

mapping between genotype and phenotype becomes less directand increasingly non-linear. In

order to overcome the problem of increasing complexity, it may sometimes be possible to make

simplifications to a problem without losing interesting features of the dynamics. For example,

using independent training examples for each error evaluation allowed the dynamics to be

solved for the generalization problem in chapter 5 and a similar simplification has recently

allowed the dynamics of gradient descent to be solved for a class of multi-layer perceptrons
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with continuous weights [59].

Another possible problem for the statistical mechanics formalism is that much interesting

detail of the dynamics may be lost through averaging. For example, the concept of punctuated

equilibrium is of interest both in biological populations and in artificial genetic search [23, 46,

74]. Punctuated equilibrium describes a situation where the population is relatively stable for

long periods, punctuated by short periods of rapid evolutionary change. In this case the mean

dynamic trajectory over different realizations of the process does not capture important features

of the dynamics and may be very difficult to compute in any case, as fluctuations will dominate

the process. However, the formalism described in this thesis can be generalized to describe the

evolution of an ensemble of populations, in which case largefluctuations from mean behaviour

can be accurately modelled [52]. Whether this analysis can be carried out for more involved

problems is not yet known.

8.3 Future work

The formalism described here is still under development. The predictive power of the method

has been demonstrated on a number of simple examples, but it is now necessary to focus on

specific issues which are of interest to the GA community, or possibly the population genetics

community, for which these methods may provide novel insight. Technical improvements

and generalizations of the formalism would also be of great interest. For example, it may be

possible to resolve the difficulties encountered in chapter6, or to solve the dynamics for other

hard problems, by increasing the number of constraints within the phenotype. It would also be

useful to examine the validity of approximations used here in greater detail, such as the weak

selection expansion (chapter 3, section 3.2.2), or the use of a maximum entropy distribution for

correlations (chapter 4, section 4.6.3). Some other possibilities for future research are outlined

below.

8.3.1 Analysis of the equations of motion

Most of the work in this thesis centres around the derivationand verification of equations of

motion for the GA. These expressions already provide some insight into the processes at work
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within the GA. For example, the higher cumulants and correlation were shown to be important

in characterizing a finite population GA. The characterization of noise in the evaluation of

fitness also required the accurate modelling of finite population effects and this was captured

by the selection equations in a very simple and intuitive way. However, although some intuition

is gained from simply looking at the equations of motion, fewattempts have yet been made to

analyse these equations in order to answer specific questions. Some notable exceptions are in

chapter 5, where the optimal batch size was determined for a simple learning problem, and

in Shapiro and Prügel-Bennett [64], where escape times aredetermined for a simple two-well

potential. In this latter study the escape time from a local energy minima (fitness maxima) was

compared to results for simulated annealing, showing that there are situations when the GA will

escape more rapidly. However, more analysis is required to determine how finite population

effects should be included within this analysis. It is hopedthat the results described in this

thesis could also provide the tools for many other studies.

8.3.2 Multi-layer perceptrons

In chapter 5 it was shown how the dynamics of a GA training a simple binary perceptron to

generalize could be solved by describing the training erroras a stochastic function of the phe-

notype, in this case the overlap between teacher and student. It would be interesting to attempt

a generalization to multi-layer perceptrons, which are required to learn less trivial mappings

(see, for example, reference [29]). In this case the phenotype would not be a single order pa-

rameter, but rather a vector of parameters describing the overlap between nodes of the student

and teacher. It might then be possible to follow the joint distribution of overlaps within the

population. Unlike in the simple perceptron problem, however, the search would have to break

symmetry in the space of macroscopics for this problem, because the network has a number

of equivalent permutations. How this symmetry breaking might occur within the population

would be of great interest. It might be necessary to invoke anensemble of populations in order

to describe the many symmetrical states. This ensemble would then become multi-modal under

symmetry breaking events within its constituent populations.

In order to describe the training error as a simple stochastic function of overlaps between
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nodes of the teacher and student network, it would be necessary to present a fresh batch of

training examples for each error evaluation. This is an unfortunate idealization, as it does not

capture a number of interesting features of training under more realistic scenarios, where there

is a limited amount of data available to learn from. It would be most instructive to incorporate

finite training set effects into the dynamics, but this wouldseem a formidable task as the exact

characterization of such effects is difficult even in a static or thermodynamic study, where

the replica method has to be used [61]. Whether an approximation exists which captures the

essential features of quenched disorder without resortingto the replica method remains an open

question.

8.3.3 Quantitative genetics

Quantitative genetics is concerned with the study of inheritable traits which can differ by degree

and are mostly influenced by gene differences at many loci (see, for example, reference [12]).

As described in chapter 4, section 4.7.1, the one-max problem under Boltzmann selection is

equivalent to the multiplicative fitness landscape, which is one of the simplest quantitative

genetics models. The dynamics of stabilizing selection andproblems with inhomogeneous

contributions at each site is also of some considerable interest to workers in this field2.

Although the problems considered in this thesis are very close to those often considered

relevant in quantitative genetics, there is a difference ofemphasis between this work and quan-

titative genetics models, the resolution of which may not bestraightforward. In chapter 4 it was

pointed out that the correlation calculation given in section 4.6 ignores effects due to off-site

terms, or linkage in the language of population genetics. This was assumed to be a good ap-

proximation as long as recombination was sufficiently disruptive. Unfortunately, in biological

populations the degree of recombination is not always assumed to be high and linkage effects

might become important. In this case the relevant question is: can the formalism, and in par-

ticular the maximum entropy calculation, include effects from off-site terms? The answer to

this question is not yet known although it would seem a difficult problem in general, because

the population would have to be constrained with both off-site and on-site averages. It would

2Nick Barton and Ellen Baake are currently translating some of these results into the language of population
genetics.
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probably be possible to include constraints on off-site averages alone, which might be sufficient

in the infinite population limit, but it is unclear how relevant this limit is. It is also unclear how

useful a constraint on second order off-site terms would be,because selection imposes a strong

bias on third and fourth order off-site terms (related to thehigher cumulants) which presumably

would not be predictable from lower order terms.

The simple diploid problems considered in chapter 7 may alsobe of some interest in pop-

ulation genetics, but the diploid model outlined there was highly idealized and the analysis

required an unrealistic and highly disruptive form of crossover. Whether this system is com-

parable to any real biological population is questionable,although it may serve as a useful

solvable model in a ‘fast recombination’ limit. Possible extensions to an adaptive dominance

map and a simple co-evolution problem were discussed in section 7.6.

8.3.4 Truly hard problems ?

The formalism described here requires that one can determine the essential features of geno-

types within the population by averaging over a small numberof macroscopic statistics. Clearly,

this will not always be possible, as these statistics will not always constrain the population

sufficiently well for the average to be representative (or the averaging procedure may be too

difficult). This was shown in chapter 6 for the problem of storing random patterns in a binary

perceptron, when configurations were only constrained by their training error. Hard optimiza-

tion problems such as this are generally characterized by complex and non-linear mappings

from genotype to fitness, so that the fitness provides less direct information about the geno-

type. There might also be strong spatial interactions between alleles within the genotype which

would also make any analysis very difficult. For the subset sum problem, and problems with

noise corrupted fitness, it was shown how the existence of a phenotype with a simpler relation-

ship to the genotype can make analysis easier. For very hard problems one might include more

degrees of freedom within the phenotype in order to constrain the genotype better, so that av-

eraging the phenotype is more representative. Which degrees of freedom to include within the

phenotype will typically not be obvious, although looking for the order parameters in a ther-

modynamic study might provide some insight. Whether the approach described in this thesis
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can be applied to a truly hard problem is an open question and this provides a stiff challenge to

the formalism.



Appendix A

Maximum entropy calculation for the

correlation after selection

The second term in the expression for the correlation after selection given in equation (4.28)

will be calculated by determining the distribution of correlations at maximum entropy. Rewrit-

ing equation (4.29),q1 = Z dq�� dR� dR� ps(R�)ps(R�) p(q��jR�; R�) q��= limt!0 @@t log�Z dR� dR� ps(R�) ps(R�) �(t jR�; R�)� (A.1)

where�(t jR�; R�) is the characteristic function ofp(q��jR�; R�) (see equation (2.7)),�(t jR�; R�) = Z dq�� p(q��jR�; R�)etq�� (A.2)

A conditional probability for correlationsp(q��jR�; R�) can be defined if alleles are assumed

to come from the maximum entropy distribution described in section 4.5. In this case one has,p(q��jR�; R�) = p(q��; R�; R�)p(R�; R�)= h�(q�� � 1N Pi S�i S�i ) �(R� �Pi JiS�i ) �(R� �Pi JiS�i )ih�(R� �Pi JiS�i ) �(R� �Pi JiS�i )i (A.3)

where�(x) is the Dirac delta function and the angled brackets denote averages over configura-

tions ofS�i andS�i . The alleles at each site are distributed according to,p(Si) = �1 + �i2 ��(Si � 1) +�1� �i2 ��(Si + 1) (A.4)
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Here,�i is the mean allele per site at maximum entropy, which is defined in equation (4.18).

Consider the characteristic function ofp(q��jR�; R�), as this appears in the appropriate

generating function, �(Nt jR�; R�) = �(Nt;R�; R�)�(0; R�; R�) (A.5)

where the factor ofN is included so thatt is scaled appropriately. The numerator of this ex-

pression is the characteristic function of the joint distribution for correlations and phenotypes,�(Nt;R�; R�) = Z dq��
�(q�� � 1NPiS�i S�i ) �(R� �PiJiS�i ) �(R� �PiJiS�i )�eNtq��= ���R� �Xi JiS�i � ��R� �Xi JiS�i � exp�tXi S�i S�i ��fS�i ;S�i g (A.6)

The delta functions in this expression can then be written bytheir Fourier representation,�(x) = Z i1�i1 dy2�ie�yx (A.7)

so that equation (A.6) becomes,�(Nt;R�; R�) = �Z i1�i1dy�dy��4�2 exp��y�R� � y�R� + NXi=1(y�JiS�i + y�JiS�i + tS�i S�i )��
(A.8)

Each site decouples and the average over sites can be taken byintegrating over the allele dis-

tribution defined in equation (A.4). The resulting integralcan be computed for largeN by the

saddle point method since the exponent of the integrand isO(N) [40].

Eventually one finds (ignoring irrelevant multiplicative constants),�(Nt;R�; R�) = exp�G(t; R�; R�)� (A.9)

where,G(t; R�; R�) = �y�R� � y�R� + NXi=1 log �(1 + �i)2et+y�Ji+y�Ji+ 2(1� �2i )e�t cosh(y�Ji � y�Ji) + (1� �i)2et�y�Ji�y�Ji�
The saddle point equations fixy� andy� as implicit functions ofR�,R� andt,@G@y� = 0 @G@y� = 0 (A.10)
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Define�(Nt), whose logarithm is the generating function forq1 (see equation (A.1)),�(Nt) = Z dR� dR� ps(R�) ps(R�) �(Nt jR�; R�)= Z dR� dR� ps(R�) ps(R�) exp[G(t; R�; R�)�G(0; R�; R�)] (A.11)

The overlap distributions are expressed by their Fourier transformed cumulant expansions,ps(R�) = Z i1�i1 da2�i exp�X ann!Ksn � aR�� (A.12)ps(R�) = Z i1�i1 db2�i exp�X bnn!Ksn � bR�� (A.13)

Now �(Nt) is an integral overa, b, R� andR� which can again be computed by the saddle

point method. One finds that ast! 0 the saddle point equations are satisfied by,y� = y� = y (A.14)R� = R� = Ks1 (A.15)

These are related through an implicit function fory in terms of mean overlap after selection,Ks1 = NXi=1 Ji� �i + tanh(yJi)1 + �i tanh(yJi)� (A.16)

Thenq1 is generated from the logarithm of�(Nt),q1 = 1N limt!0 @@t log �(Nt)= 1N NXi=1 � �i + tanh(yJi)1 + �i tanh(yJi)�2
(A.17)



Appendix B

Replica calculation for mutation in the

binary perceptron

B.1 Replica calculation for a general training error

To make the calculation simpler, the number of spins flipped by mutation is fixed and is equal

to 
N . In general,
 will fluctuate around the mutation probabilitypm and these fluctuations

should be averaged out. Here, it will be assumed that
 = pm is a good approximation. This

is reasonable for largeN if pm is of order unity, which is a necessary condition for the saddle

point approximation used here in any case. Unfortunately, GAs often use a mutation probability

of order1=N , in which case this approximation may break down. It has not been determined

whether the following method gives a good approximation in this case.

Choose the first
N sites to be flipped, with no loss of generality.Mi = 8<: �1 for i = 1; 2; : : : ; 
N1 for i = 
N + 1; : : : ; N � 1; N (B.1)

One can rewrite equation (6.16), fixing the stabilities withdelta functions,�n(t; E) = * nY�=1��Y� Z d���m d��������m � 1pN Xi MiS�i ��i ������ � 1pN Xi S�i ��i ��� ��E �X� ul(T � ���)� exp�tX� ul(T � ���m )��fS�i g+f��i g (B.2)
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where� labels replicas and� labels patterns. The inner average is over all weight configura-

tions, while the outer average is over the quenched patterns. The delta functions constraining

the stabilities can be given their Fourier representation (see equation (A.7)), withx�� andz��
conjugate to��� and���m respectively,Y�;� �����m � 1pN Xi MiS�i ��i ������ � 1pN Xi S�i ��i �= Z i1�i1Y�;��dx��dz���4� �Y� exp�X� �x����� + z�����m � 1pN Xi (x�� + z��Mi)S�i ��i ��

(B.3)

It is now possible to average the right hand side of this expression over patterns,*exp�X� �� 1pN Xi (x�� + z��Mi)S�i ��i ��+f��i g= Yi *exp�� 1pN ��i X� (x�� + z��Mi)S�i �+f��i g= exp�Xi log cosh� 1pN X� (x�� + z��Mi)S�i ��= exp� 12N Xi �X� (x�� + z��Mi)S�i �2 +O� 1N �� (B.4)= exp�12X� �(x��)2 + (z��)2 + 2�x��z���+X�>� q���x��x�� + z��z�� + �(x��z�� + x��z��)��
whereq�� is the correlation between replicas and� is the mean mutation variable,q�� = 1N NXi=1 S�i S�i � = 1� 2
 = 1N NXi=1 Mi (B.5)

In writing the final line of equation (B.4), terms ofO(1=N) were neglected and the following

approximation was used, 1N NXi=1 MiS�i S�i ' �q�� (B.6)

This is a good approximation as long asN is large and
 is of order unity, in which case this

quantity should self-average. A delta function can be used to impose the constraint on eachq��, 1 = Z dq�� Z i1�i1 Nd���2�i exp�����Nq�� �Xi S�i S�i �� (B.7)
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Recall equation (B.2): the delta function containingE can be written by its integral rep-

resentation (see equation (A.7)), with�� conjugate toE for each replica. The product over�
decouples and can be written as a power. Using Gardner’s notation where possible [16] one

eventually finds,�n(t; E) = Z Y�>��dq��� Z i1�i1 Y�>��Nd���2�i d��2�i� exp(G)G = �EX� �� +NX�>����q�� + �NG0 +NG1 (B.8)

where� is the capacity. Here,G1 is equivalent to Gardner’s notation andG0 is also equivalent

to Gardner’s notation in the case where� = 0 (
 = 0:5) and the configurations are completely

randomized by mutation. In this case�(t; E) reduces to the characteristic function of the

density of states.exp(NG1) = �exp�X�>����Xi S�i S�i ��fS�i g (B.9)exp(G0) = Z Y� �d��d��mdx�dz��4�2 � exp�X� �tul(T � ��m) + ��ul(T � ��) + x���+z���m + 12 (x�)2 + 12 (z�)2 + �x�z��+X�>� q���x�x� + z�z� +�(x�z� + x�z�)�� (B.10)

The integral in equation (B.8) can be computed for largeN by the saddle point method [40].

B.2 The replica symmetric solution

For capacities lower than the critical capacity it is assumed that replica symmetry holds, as this

is thought to be true for all temperatures in the thermodynamic treatment [43]. In this case one

can make the following simplifications,q�� = q � 6= � (B.11)��� = � � 6= � (B.12)�� = � (B.13)
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The expression forG1 defined in equation (B.9) can now be simplified,G1 = 1N log�exp�X�>��Xi S�i S�i ��fS�i g= log�exp��2 �X� S��2 � n�2 ��S�= log Z Du exp�n log�2 cosh(up�)�� n�2 �n!0= nZ Du log�2 cosh(up�)�� n�2 (B.14)

where, Z Du = Z dup2� e�u22 (B.15)

The expression forG0 can also be simplified. Consider the sum over� > � in the exponent

of equation (B.10),X�>� q�x�x� + z�z� + �(x�z� + x�z�)� = 12q�h�X� x� + z��2 �X� (x� + z�)2i+ 12q(1� �)h�X� x��2 + �X� z��2 �X� (x�)2 �X� (z�)2i (B.16)

The squares over sums can be removed by introducing Gaussianintegrals. This allows the

terms for each replica to decouple and eventually one finds,G0 n!0= nZ D�xD�zD�xz log�Z d�d�m Z i1�i1dxdz�4�2 exp�F (�;�;�m; x; z)�� (B.17)

where,F (�;�;�m; x; z) = tul(T � �m) + �ul(T � �) + x�+ z�m+ 12(1� q)(x2 + z2 + 2�xz) + �xzpq�(x+ z) +pq(1� �)(x�x + z�z) (B.18)

Recall the definition oful(T � �) in equation (6.6). The expression for the step function can

be simplified as follows,exp�t(T � �)l�(T � �)� = �Z T�1d�t et(T ��t)l + Z 1T d�t��(�t � �) (B.19)

Substituting this into the above expression forG0 leads to equation (6.19) in the main text.
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