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Symmetric and asymmetric evaluation of the Tokamap in comparison
with direct symplectic integration
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Comparing the Poincaré plots of the Tokamap and the underlying Hamiltonian system reveals large differ-
ences. This stems from the particular choice of evaluation of the singular perturbations present in théasystem
series of§ functiong. A symmetric evaluation approach is proposed and shown to yield results that almost
perfectly match the Hamiltonian system.
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I. INTRODUCTION and a symplectic integrator is used to assure a high level of

Detailed transport studies in plasmas require the solutiofccuracy even for chaotic regions of the phase space.

of the time evolution of many different initial positions of
test particles in the phase space of the systems to be inves- Il. THE TOKAMAP HAMILTONIAN
tigated[1]. To reduce the amount of numerical work, one
would like to replace the time consuming integration of the
time-continuous system with a fast discrete mappi@gy
Classic examples of this approach are the Chirikov-Taylor v
map[3] (also known as the standard mamd the Tokamap H :f dy’ W(y') -
[4] proposed by Balescet al.

These mappings are derived from kicked systems, such as

the kicked rotator. This basically means that the system coa\’{Vh'Ch describes the motion of magnetic field lines in a To-

For the derivation of the Tokamap we start from the
Hamiltonian

A
(2m?1 +ﬁwcos(27r0)f(t), (1)

sists of an integrable part and a nonintegrable perturbatio amak. It is quite Qﬁen used'as a S|mplg approximation for
The perturbation is only present at fixed singular points in he real magnetic f'(.ald four)d in the experiments. It describes
time and zero for all other times. Thus the system remain§ syste[jn with a glvgn wmlgllng nurrébavr/(z(/) (mteglrahble
integrable for all times except those when the perturbation i?"?‘lr) an hafpertlir agﬁfﬁm” mgfar fan n?n;]ntegrabi a't
present. The assumption is, of course, that the physical and' v_amsd ordzpt;o. I IS spe|C| Ic Torm O.dt he pertt;]r a_ltloln
nonsingular perturbation of the true Hamiltonian system car{/@S introduced by Balescet al. [4] to avoid the unphysica

be well approximated by the action of a “collapsed” pertur-caSe withy <0, V.Vh'Ch oceurs in the Staf‘dafd map. .
bation in the form of a5 function. Thus we obtain the equations of motion for the field lines

The solution for these singular points is usually found by JH K Ap

approaching the point from either later or earlier tinfiiss) {/,: - — =— ———sin(2wd)f(t),

and calculating the limit foe — 0. It is clear that the exact a9 2m1+AY

values of the system variables at these singular points are

mathematically not well defined. In a strict mathematical . 9H Wi K A My 5
_ ight- imiti 6= —= - ——=———co927H) (1),

sense, there are only left-handed and right-handed limiting 0 () 22 (L+Ap? Lmof1), (2

values, which are of course different. However, choosing one
of the two limiting values does not necessarily yield the cor-gng choose the winding number

rect resulf5] compared to a full integration of the underly-

ing Hamiltonian system. This can be seen by comparing the 1 ]

results from a map with the numerical calculation of the W(lﬂ):m with d=3 3
given system with an approximativ&function. This will be

shown in this paper for the example of the Tokamap aftetg pe a realistic approximation for the magnetic field con-

reviewing its derivation. figuration in the TEXTOR-94 experimef$]. Other choices

_ A symmetric procedure to evaluate the system at thesgre of course possible to model different experimental set-
singular points is then presented and the near perfect agregps,

ment with the result of the numerical calculation is demon-
strated. Theé functions in the mapping are approximated

with steep Gaussian functions for the numerical integration Il. DERIVATION OF THE TOKAMAP

Since the generic case with a smooth and distributed func-
tion f(t) cannot be integrated analytically, we have to choose
*Electronic address: m.a.eberhard@aston.ac.uk; URL: http:this function as a sum af functions for the derivation of the
www.aston.ac.ukeberhama/ Tokamap
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FIG. 1. Poincaré plot of the Tokamap f&=1 andK=6 as a
phase space portrait.

fity= >, sk-t) (4)

k=—o0

and as a sum of steep Gaussian functions for the numericé
integration as will be shown later. By using the left-handed
limiting value of theéd functions we obtain a mapping for our

Hamiltonian system

_ KAk
Une1= Un 271 +A¢nsm(2’”0n),
K A
Ons1= O+ W(thnsq) — (277)2 1 +A(ﬂn)2COS(27Tan), (5
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FIG. 2. Poincaré plot of the Tokamap fé&=1 andK=6 as a
polar plane for a plasma with a circular cross section.

rm[4]. Nevertheless, as the perturbation is assumed to be
all compared to the integrable part of the Hamiltonian
system, it is commonly assumed that the mapping derived

through a canonical transformation still closely corresponds
to the original Hamiltonian system in question.

The Poincaré plots of this mapping are shown for a per-

turbation strength oK=6 both in Hamiltonian coordinates

(phase spagen Fig. 1 and in real toroidal geometry in Fig.
2 for a plasma with a circular cross section as is the case for

TEXTOR-94[6].

One can clearly see the typical structure of such a system

which is almost identical to the Tokamap proposed bywith some still intact Kolmogorov-Arnol'd-MosefKAM )

Balescuet al. [4],

_ KA
Yne1= Un 271 +A¢n+1sm(2’n-0n), (6)
K A
Ons1 = On+ W(thniq) — (277)2 1 +Al//n+1)2COS(2Tr6n)'

with the notable exception of the index ¢fin the perturba-

tori and chaotic regions in between. For transport studies it is
extremely important that the chaotic regions are at the cor-
rect positions in the phase space and that the correct KAM
tori are still intact, when compared to the underlying Hamil-
tonian system. The usability of a mapping entirely depends
on its ability to reproduce these features correctly.

IV. FULL NUMERICAL INTEGRATION OF THE
TOKAMAP HAMILTONIAN

tion terms on the right-hand side of the equations. While we

obtainedn in our analytical integration of the system, the

Tokamap containgi+1. The reason is that Balesai al.
derived the Tokamap from the canonical transformation

F(¢ne1,0n) = Yne16n + Fo(¥ner) + KSF (41, 6p) (7
with

v
Fo(y) = f dy"W(y") 8

and

1 A
(277)2 1+ A

5F(¢n+1v an) = COS(27T0n) 9

as the generating function instead of integrating the equa-

To assess the quality of the mapping, we compare the
results from the Tokamap with the results from a full numeri-
cal integration of the Hamiltoniaf2] with a symplectic in-
tegrator{ 7,8]. The sum over thé functions is approximated
by an integration over a sum of steep Gaussian functions

]

f(ta)= S ——exp-alt-K2

k=—cc T

(10

and the results in Figs. 3 and 4 do show very disappointing
differences. Not only are the positions of the islands and
KAM tori wrong, but even worse, there are far more broken
KAM tori in the Tokamap than in the numerical integration.

V. SYMMETRIC MAP

tions of motion. The advantage of their method is that the

resulting mapping is guaranteed to be symplectic. However, Further investigation reveals quickly that the differences
it must be noted that Eq1) is—strictly speaking—only the are caused by the way th®functions are evaluated. In par-
Hamiltonian for the Tokamap for a vanishing perturbationticular the restriction to use only the left- or right-handed

026411-2



SYMMETRIC AND ASYMMETRIC EVALUATION OF THE... PHYSICAL REVIEW E 71, 026411(2005

t; 1:;1+1
1 / 1
t. |
FIG. 5. Notation used for the construction of the symmetric
g Tokamap.
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FIG. 3. Poincaré plot for a symplectic integration wigtx1, ¥=- (T T f(w) 96 zw A=K,
K=6, At=103, anda=200 as a phase space portrait.
oo . - oH af(y)
limiting value destroys the symmetry of the solution seen 0=—=W(yp) + ——g(6) 2 St-k), (13
from the results of the integration. Iy oY k==

However, this symmetry can be res;ored i mmncthns and we can now evaluate this for the three steps frotot;
are evaluated as shown in Fig. 5. We interpretdtianction
to t,; and finally tot,,.

as the limiting case of a nonsingular perturbation, which is The first step front, to t* includes half of thes function

symmetrically present around the location of thiinctions. att n

It is thus the limiting case of our numerical integration in the ™ ™

limit a— ce, &g(&n)
In a physical sense we apply half of thdunction before U= = 7f(¢n)

the actual time step and half of it afterward. It is important to

stress that this particular choice is mathematically as arbi-

trary as any other value between the left- and right-handed O =0+~

limiting values. However, looking at the system from a 2

physical point of view and interpreting th& function as a  and then we continue through the integrable part of the sys-

“collapsed” perturbation makes this a very plausible choicetem fromt’ to t_
Starting from Eq(1) with

éf(ll/n)

9(6,), (14)

n+1’

Yner = Yne Oner = Oh+ W), (15)
f(y)=- K 5 Ay (11) and finally include the first half of thé function att,,, from
(2m) 1 +Ay trer 10 teg,
and 39(6’ - )
’!fn+1 'v[/n+1 f(‘/fn+1) —
g(0) = cog270) (12
[ i - 1ot
leads to the equations of motion for the system Oy = Oy + ; a(; Y 5(6y). (16)

Eliminating the intermediate staggisandt,, , leads to the
final form of the symmetric Tokamap:

0.5F 1.6
1.4
> 0O}
0.5F
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FIG. 4. Poincaré plot for a symplectic integration wigtx1,
K=6, At=10"3, anda=200 as a polar plane for a plasma with a  FIG. 6. Poincaré plot of the symmetric Tokamap for1 and
circular cross section. K=6 as a phase space portrait.
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Jg(6,) 1 J 0n+ - - - . .
¢n+1 f(wn) g( )__f(¢n+1) g( 1) 1Lk : ke, i
_ 1 &gwn)) 19f() 05k l
0n+1—0n+vv(¢n SfW ="+ 5 ” a9(6,)
10 (s - OfF |
LotWna) g 0. 17

2 oy

The resulting map is implicit and must be iterated for
evaluation. The results are shown in Figs. 6 and 7. They
show a very good agreement with Figs. 3 and 4, which jus-
tifies the physical interpretation of thé functions over a ' : . : :
more stringent mathematical choice. Instead of using a 105 0 0.5 ! 15
simple physical interpretation of the perturbation term, it is
also possible to use a more formal approach based on ca- FIG. 7. Poincaré plot of the symmetric Tokamap fo+1 and
nonical transform$9]. However, that approach is far more K=6 as a polar plane for a plasma with a circular cross section.
complex and not as simple and elegant as this one.

V1. CONCLUSIONS physically motiyatepl apprqach is.in very good agreement
with the numerical integration, while the more “mathemati-
The comparison of the Tokamap with the numerical inte-cal correct” derivation of the Tokamap yields a quite differ-
gration of the true Hamiltonian system shows significant dif-ent picture. This important result must be taken into account,
ferences and leads to the proposal of a symmetric Tokamaphen constructing a map for a given Hamiltonian system to
based on a different evaluation of tlidunctions. The more reduce computational time in transport studies.
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