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Comparing the Poincaré plots of the Tokamap and the underlying Hamiltonian system reveals large differ-
ences. This stems from the particular choice of evaluation of the singular perturbations present in the systemsa
series ofd functionsd. A symmetric evaluation approach is proposed and shown to yield results that almost
perfectly match the Hamiltonian system.
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I. INTRODUCTION

Detailed transport studies in plasmas require the solution
of the time evolution of many different initial positions of
test particles in the phase space of the systems to be inves-
tigated f1g. To reduce the amount of numerical work, one
would like to replace the time consuming integration of the
time-continuous system with a fast discrete mappingf2g.
Classic examples of this approach are the Chirikov-Taylor
mapf3g salso known as the standard mapd and the Tokamap
f4g proposed by Balescuet al.

These mappings are derived from kicked systems, such as
the kicked rotator. This basically means that the system con-
sists of an integrable part and a nonintegrable perturbation.
The perturbation is only present at fixed singular points in
time and zero for all other times. Thus the system remains
integrable for all times except those when the perturbation is
present. The assumption is, of course, that the physical and
nonsingular perturbation of the true Hamiltonian system can
be well approximated by the action of a “collapsed” pertur-
bation in the form of ad function.

The solution for these singular points is usually found by
approaching the point from either later or earlier timesst±«d
and calculating the limit for«→0. It is clear that the exact
values of the system variables at these singular points are
mathematically not well defined. In a strict mathematical
sense, there are only left-handed and right-handed limiting
values, which are of course different. However, choosing one
of the two limiting values does not necessarily yield the cor-
rect resultf5g compared to a full integration of the underly-
ing Hamiltonian system. This can be seen by comparing the
results from a map with the numerical calculation of the
given system with an approximatived function. This will be
shown in this paper for the example of the Tokamap after
reviewing its derivation.

A symmetric procedure to evaluate the system at these
singular points is then presented and the near perfect agree-
ment with the result of the numerical calculation is demon-
strated. Thed functions in the mapping are approximated
with steep Gaussian functions for the numerical integration

and a symplectic integrator is used to assure a high level of
accuracy even for chaotic regions of the phase space.

II. THE TOKAMAP HAMILTONIAN

For the derivation of the Tokamap we start from the
Hamiltonian

H =Ec

dc8 Wsc8d −
K

s2pd2

Ac

1 + Ac
coss2pudfstd, s1d

which describes the motion of magnetic field lines in a To-
kamak. It is quite often used as a simple approximation for
the real magnetic field found in the experiments. It describes
a system with a given winding numberWscd sintegrable
partd and a perturbationsnonlinear and nonintegrabled that
will vanish for c=0. This specific form of the perturbation
was introduced by Balescuet al. f4g to avoid the unphysical
case withc,0, which occurs in the standard map.

Thus we obtain the equations of motion for the field lines

ċ = −
]H

]u
= −

K

2p

Ac

1 + Ac
sins2pudfstd,

u̇ =
]H

]c
= Wscd −

K

s2pd2

A

s1 + Acd2coss2pudfstd, s2d

and choose the winding number

Wscd =
1

1 + dc
with d = 3 s3d

to be a realistic approximation for the magnetic field con-
figuration in the TEXTOR-94 experimentf6g. Other choices
are of course possible to model different experimental set-
ups.

III. DERIVATION OF THE TOKAMAP

Since the generic case with a smooth and distributed func-
tion fstd cannot be integrated analytically, we have to choose
this function as a sum ofd functions for the derivation of the
Tokamap
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fstd = o
k=−`

`

dsk − td s4d

and as a sum of steep Gaussian functions for the numerical
integration as will be shown later. By using the left-handed
limiting value of thed functions we obtain a mapping for our
Hamiltonian system

cn+1 = cn −
K

2p

Acn

1 + Acn
sins2pund,

un+1 = un + Wscn+1d −
K

s2pd2

A

s1 + Acnd2coss2pund, s5d

which is almost identical to the Tokamap proposed by
Balescuet al. f4g,

cn+1 = cn −
K

2p

Acn+1

1 + Acn+1
sins2pund, s6d

un+1 = un + Wscn+1d −
K

s2pd2

A

s1 + Acn+1d2coss2pund,

with the notable exception of the index ofc in the perturba-
tion terms on the right-hand side of the equations. While we
obtainedn in our analytical integration of the system, the
Tokamap containsn+1. The reason is that Balescuet al.
derived the Tokamap from the canonical transformation

Fscn+1,und = cn+1un + F0scn+1d + KdFscn+1,und s7d

with

F0scd =Ec

dc8Wsc8d s8d

and

dFscn+1,und = −
1

s2pd2

Acn+1

1 + Acn+1
coss2pund s9d

as the generating function instead of integrating the equa-
tions of motion. The advantage of their method is that the
resulting mapping is guaranteed to be symplectic. However,
it must be noted that Eq.s1d is—strictly speaking—only the
Hamiltonian for the Tokamap for a vanishing perturbation

term f4g. Nevertheless, as the perturbation is assumed to be
small compared to the integrable part of the Hamiltonian
system, it is commonly assumed that the mapping derived
through a canonical transformation still closely corresponds
to the original Hamiltonian system in question.

The Poincaré plots of this mapping are shown for a per-
turbation strength ofK=6 both in Hamiltonian coordinates
sphase spaced in Fig. 1 and in real toroidal geometry in Fig.
2 for a plasma with a circular cross section as is the case for
TEXTOR-94 f6g.

One can clearly see the typical structure of such a system
with some still intact Kolmogorov-Arnol’d-MosersKAM d
tori and chaotic regions in between. For transport studies it is
extremely important that the chaotic regions are at the cor-
rect positions in the phase space and that the correct KAM
tori are still intact, when compared to the underlying Hamil-
tonian system. The usability of a mapping entirely depends
on its ability to reproduce these features correctly.

IV. FULL NUMERICAL INTEGRATION OF THE
TOKAMAP HAMILTONIAN

To assess the quality of the mapping, we compare the
results from the Tokamap with the results from a full numeri-
cal integration of the Hamiltonianf2g with a symplectic in-
tegratorf7,8g. The sum over thed functions is approximated
by an integration over a sum of steep Gaussian functions

fst,ad = o
k=−`

`
a

Îp
exph− a2st − kd2j s10d

and the results in Figs. 3 and 4 do show very disappointing
differences. Not only are the positions of the islands and
KAM tori wrong, but even worse, there are far more broken
KAM tori in the Tokamap than in the numerical integration.

V. SYMMETRIC MAP

Further investigation reveals quickly that the differences
are caused by the way thed functions are evaluated. In par-
ticular the restriction to use only the left- or right-handed

FIG. 1. Poincaré plot of the Tokamap forA=1 andK=6 as a
phase space portrait.

FIG. 2. Poincaré plot of the Tokamap forA=1 andK=6 as a
polar plane for a plasma with a circular cross section.
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limiting value destroys the symmetry of the solution seen
from the results of the integration.

However, this symmetry can be restored if thed functions
are evaluated as shown in Fig. 5. We interpret thed function
as the limiting case of a nonsingular perturbation, which is
symmetrically present around the location of thed functions.
It is thus the limiting case of our numerical integration in the
limit a→`.

In a physical sense we apply half of thed function before
the actual time step and half of it afterward. It is important to
stress that this particular choice is mathematically as arbi-
trary as any other value between the left- and right-handed
limiting values. However, looking at the system from a
physical point of view and interpreting thed function as a
“collapsed” perturbation makes this a very plausible choice.

Starting from Eq.s1d with

fscd = −
K

s2pd2

Ac

1 + Ac
s11d

and

gsud = coss2pud s12d

leads to the equations of motion for the system

ċ = −
]H

]u
= − fscd

]gsud
]u

o
k=−`

`

dst − kd,

u̇ =
]H

]c
= Wscd +

] fscd
]c

gsud o
k=−`

`

dst − kd, s13d

and we can now evaluate this for the three steps fromtn to tn
+

to tn+1
− and finally totn+1.
The first step fromtn to tn

+ includes half of thed function
at tn,

cn
+ = cn −

1

2
fscnd

]gsund
]u

,

un
+ = un +

1

2

] fscnd
]c

gsund, s14d

and then we continue through the integrable part of the sys-
tem from tn

+ to tn+1
− ,

cn+1
− = cn

+, un+1
− = un

+ + Wscn
+d, s15d

and finally include the first half of thed function attn+1 from
tn+1
− to tn+1,

cn+1 = cn+1
− −

1

2
fscn+1d

]gsun+1d
]u

,

un+1 = un+1
− +

1

2

] fscn+1d
]c

gsun+1d. s16d

Eliminating the intermediate stagestn
+ andtn+1

− leads to the
final form of the symmetric Tokamap:

FIG. 5. Notation used for the construction of the symmetric
Tokamap.

FIG. 6. Poincaré plot of the symmetric Tokamap forA=1 and
K=6 as a phase space portrait.

FIG. 3. Poincaré plot for a symplectic integration withA=1,
K=6, Dt=10−3, anda=200 as a phase space portrait.

FIG. 4. Poincaré plot for a symplectic integration withA=1,
K=6, Dt=10−3, and a=200 as a polar plane for a plasma with a
circular cross section.
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cn+1 = cn −
1

2
fscnd

]gsund
]u

−
1

2
fscn+1d

]gsun+1d
]u

,

un+1 = un + WScn −
1

2
fscnd

]gsund
]u

D +
1

2

] fscnd
]c

gsund

+
1

2

] fscn+1d
]c

gsun+1d. s17d

The resulting map is implicit and must be iterated for
evaluation. The results are shown in Figs. 6 and 7. They
show a very good agreement with Figs. 3 and 4, which jus-
tifies the physical interpretation of thed functions over a
more stringent mathematical choice. Instead of using a
simple physical interpretation of the perturbation term, it is
also possible to use a more formal approach based on ca-
nonical transformsf9g. However, that approach is far more
complex and not as simple and elegant as this one.

VI. CONCLUSIONS

The comparison of the Tokamap with the numerical inte-
gration of the true Hamiltonian system shows significant dif-
ferences and leads to the proposal of a symmetric Tokamap
based on a different evaluation of thed functions. The more

physically motivated approach is in very good agreement
with the numerical integration, while the more “mathemati-
cal correct” derivation of the Tokamap yields a quite differ-
ent picture. This important result must be taken into account,
when constructing a map for a given Hamiltonian system to
reduce computational time in transport studies.
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FIG. 7. Poincaré plot of the symmetric Tokamap forA=1 and
K=6 as a polar plane for a plasma with a circular cross section.
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