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Abstract

Neural network learning rules can be viewed as statistical estimators. They should
be studied in Bayesian framework even if they are not Bayesian estimators. General-
isation should be measured by the divergence between the true distribution and the
estimated distribution. Information divergences are invariant measurements of the
divergence between two distributions.

The posterior average information divergence is used to measure the generalisation
ability of a network. The optimal estimators for multinomial distributions with
Dirichlet priors are studied in detail. This confirms that the definition is compatible
with intuition. The results also show that many commonly used methods can be put
under this unified framework, by assume special priors and special divergences.
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1 Introduction

Most NN learning rules can be considered as estimating an unknown probability distri-
bution based on finite data taken from that distribution. Fundamental to any of such
methods is a notion of optimal estimation: given two estimations obtained by two different
methods from the same data, on what ground shall we evaluate their relative merits?

Let us discuss this in more details. A neural network can be viewed as a parameterised
statistical model [Whi89], where the parameters, ie. weights w, are to be estimated from
training data z € Z. Fach weight vector w will decide a unique member ¢ from the family
Q of probability distributions over Z representable under a given network architecture. A
learning rule 7 is therefore an adaptive method of point estimation of probability distribu-
tions from finite data.

In statistical terms, a neural network corresponds to a statistical manifold Q. The weight
vector w € W correspond to coordinates on Q. A learning rule 7: Z — Q corresponds to
an estimator. A trained model ¢ € @ is an estimate.

Obviously, there are in general infinitely many different parameters values w which could
have given rise to the same set of training data z. It is well established that Bayesian



methods can be used to derive posterior distributions of parameters, Pr(w]|z), given a prior
on the parameters Pr(w) and the likelihood function of the data, Pr(z|w). The fundamental
problem to be addressed here is to decide a unique set of parameters w which represents
optimal generalisation in a certain sense. From now on we shall talk about the estimate ¢
instead of the weight w.

We stipulate that generalisation should be measured by the performance of the estimator
on independent data drawn from identical distribution, averaged over the prior distribution
of training problems.

It is obvious that generalisation should be tested on independent data, otherwise to repeat
what is in the training data might be a good strategy to get good score. It is not widely
recognised, but is as important, that it should be tested on data drawn from identical
distribution. Otherwise a biased (in a broad sense) estimator might get a better score on
average. Furthermore, the very idea of a learning rule requires that the performance should
be measured on average over all the possible problems this rule is to be applied to.

The next question to be settled is the meaning of “good performance”. It should in some
way measure the “divergence” between the true but unknown distribution p and the model
distribution ¢. This is well studied in information geometry (See [Ama85, Ama87] and
references given therein). It is known that there is a family of “information divergences”
which measures the difference between any two probability distributions. These diver-
gences are unique in many important properties they enjoy, including invariance under
reparameterisation and one-one transformations in the sample space. This gives a family
of generalisation measures for neural network training problem or any statistical estimation
problem where a point estimation is required from finite data.

In other words, we shall consider Bayesian decision theory with the information divergences
as loss functions.

In this report, the first of three installments, we shall concentrate on finite sample spaces.
Explicit formulas of the optimal estimates will be derived for multinomial distribution
with Dirichlet priors; they have close relations with well established statistical estimators.
They are sufficient statistics. The technical reason will be apparent when the space of all
positive measures, not just that of probability measures, is considered [ZR95b]. The case
for continuous distributions will be studied in [ZR95a].

Since the model space representable by a certain neural network class usually does not
contain the intended probability distribution, there is a further problem of approximating
the “optimal estimations” defined by any of the criteria considered here. The problem
of “approximation” will be discussed elsewhere [ZR95b]. In other words, in this note
we generally assume that the space of probability distributions contains all the possible
probability distributions of the “world”.

In §2, we derive the results for binomial distributions with Beta prior. This serves as an
illustration of what our more general results will look like, and motivates the more involved
mathematical derivations for the more general results.



In §3, some important results of Bayesian methods and information geometry are collected
and recasted in a form convenient for our requirements. The generalisation measure based
thereon is defined and its optimal estimate is derived in a general form.

The family of multinomial distributions with its natural conjugate prior, Dirichlet distri-
bution, is analysed in §4.

Discussions and conclusions are in §5.

2 Example: The Binomial Distribution with Beta Prior

2.1 The statistical model

Consider an imaginary “coin-flipping machine”, which has a lever on a scale labelled [0, 1].
For each position p € P = [0,1] of the lever, the machine will toss coins in a sequence
z = [z : k = 1,2,...] with identical independent distribution Pr{z; =1} = p, where
zi, € Z ={0,1} is the result of the kth toss and “head/tail” is represented by “1/0”.

Denote Z%N(m) := {Z e ZN 2N = m}, where we use |A| to denote the number of ele-
ments in a finite set A. Then |ZN(m)| = C(m,n). Denote m := |z| = 3, z;, n := N — m.
The mathematical description of the above setup is a Bernoulli experiment with parameter
p € P, data 2V € ZV, and likelihood function

Pr(zNp) = p™(1 = p)".
The output count m is a sufficient statistics (when N is known) with binomial distribution

Pr(ml|p) = C(m,n)p™(1 —p)".

The learning task we shall consider is the following: Given a finite sample 2V = [zy,. .., zx]
generated from an unknown p, compute ¢ = 7(z) € Q = [0, 1] which is a “good estimation”
of p in some sense. The following terms will be used throughout this document.

NezZN oo 2V is the “training data”, or “sample”. It is a random variable. Z is the
sample space.

N . the “data size”.

peEP . p is the “state of world”, the “true parameter”. It is the (unknown)
distribution of z. P is the “world” or “world model”. It is the set of all

the possible world states p.

gEQ .. q is the “estimate”, or the “trained model”. It is a distribution intended
to be a good approximation of p in some sense. Q is the “model”, the
set of all the estimates ¢. It is usually a subset of P.



7: ZN — Q ... 7 is the “learning method”, or “training method”, or “estimator”. It
maps samples to estimates. The intention is that ¢ = 7(z") will be a

good approximate of p, which will be better as N tends to infinity.

2.2 Bayesian methods

It is obvious that there are infinitely many p which could have possibly produced zV,
whatever NV is. To make a probabilistic statement about p, one must assume a prior
Pr(p) which describes the distribution of the position of the lever before one sees any
data. We shall not go into the argument as why prior is necessary for the evaluation of
learning rules [Zhu95], but it is worth pointing out that many methods which appear to
have assumed no prior in fact fit in this framework by assuming a particular prior. This
includes the maximum likelihood method.

For a given prior Pr(p), the Bayesian formula for posterior Pr(p|z) is
(21)  Pr(z") = /Pr(p) Pr(zNlp),  Pr(ple") = Pr("|p) Pr(p)/ Pr(z").
P

It is important to note that the posterior is a distribution of the unknown worlds, not
an estimate. Statistical problems in general, and neural network training problems in
particular, require a specific estimate ¢ of the unknown world p. Obviously, there are
infinitely many possible choices, so the question “which is the optimal” remains to be
answered.

This question cannot be dismissed by insisting on giving Pr(p|z"¥) as the final answer, since
in that case we are faced with the new problem of representing Pr(p|z") explicitly, a task
immensely more difficult than representing ¢ directly. If, on the other hand, we were to
represent Pr(p|zY) approximately by some parameterised model, we are faced with the
same types of question, albeit on a much more complicated level.

2.3 Beta distribution prior

Although Bayes formula will give a posterior for any prior, even when the prior is not a
proper distribution, there are certain families of distributions which have nice mathematical
and computational properties as priors for a given family of distributions. They are such
that the posterior is also a member of the family. Among them the natural conjugate priors
[RS68, DeGG70, BT73, Ber85] are such that the prior can be conveniently as representing
previous empirical knowledge. It is to be noted that not all knowledge is necessarily
empirical knowledge. However, it is usually beneficial to examine the consequence of a
statistical method on the natural conjugate prior first.

The natural conjugate prior of binomial distribution is the Beta distribution

P —p)!
B(a,b)

(2.2) Pr(p) =



The likelihood function is
(2.3) Pr(zN[p) = p" (1 —p)".  Pr(m|p) = C(m,n)p"(1 - p)".

The data distribution is

(2.4) Pr(ZN): B(a+ m,b+n) Pr(m) = C(m,n)B(a+m,b+n)
) B(a, b) ‘ B(av b) ‘
The posterior is
a+m—1 o b+n—1
(2.5) Pr(pl=) = Pr(plm) = £ L= P)

B(a+ m,b+n)

It is quite obvious that [a, b] is sufficient statistics for the prior, [m,n] is sufficient statistics
for the likelihood, and [a + m, b+ n] is sufficient statistics for the posterior.

In the rest of this document we shall suppress explicit notations for the sample size N.
This means that the notation z denote a sample of size N, instead of size 1, for example.

2.4 Information divergence

What is one going to do with a Bayes posterior Pr(p|z), which is a distribution of dis-
tributions? This question is usually not systematically studied in the majority of Bayes
methods, except in decision theories where an externally imposed loss function is assumed.
As we shall see later, most Bayes methods can be regarded as using a “representative distri-
bution” ¢ as the final answer. Several examples from recent neural networks literature will
illustrate this point. The evidence method of D. MacKay [Mac92] uses an approximation.
D. Wolpert [Wol93] takes the maximum posterior distribution. R. Neal [Nea93] uses Monte
Carlo simulations which is equivalent of sampling from posterior marginal distribution.

Now we come to the second important theme of this paper: to find an invariant measure
of “divergence” D(p,q) between the two distributions p and ¢, and demanding ¢ to be
closest to p averaged over the posterior Pr(p|z). In this section we shall only consider
the most commonly used “divergences”, the Kullback-Leibler divergence (also called cross
entropy). In later sections we shall consider all the invariant divergences, in the sense that
it is invariant under parameterisation of both p and z.

The Kullback divergence between two distributions p, ¢ € [0, 1] is
. p lL—p
(2.6) K(p.q) =plog§+ (1 —p)log T

[t is one instance of the family of a-divergences in information geometry [Che72, Ama85].
For technical reasons we find it more convenient to use 6 = (1 — «)/2, following [Hou82,



Kas84]. Denoting p; = p,pz = 1 — p, the é-divergence is defined Vé € [0, 1] :

(2.7) Ds(p,q) := ﬁ (1 — Z:pqu1 5) , V6 € (0,1).
(2.8) Do(p, q) := lim Ds(p, q) = K(q, p).
(2.9) Di(p, q) = lim Ds(p, q) = K(p. q).

It is obvious that the é-divergence is independent of the way the distribution is parame-
terised. It is often more convenient to use other parameterisations in computations, such
as log(p/(1 — p)), for example. The invariance of the divergence means that the distri-
bution which minimises the expected divergence from the true distribution conditional on
the observations is independent of the parameterisation. However, there is a family of pa-
rameterisations which are quite convenient in subsequent developments. These are called
o-coordinates and are defined by

(2.10) (p) :=p°/s, °(p) = log p.
The 1-coordinate is called mixture coordinate, while the 0-coordinate called the exponential
coordinate [Ama85].

Given a sample z and prior Pr(p), the 6-(optimal) estimate is defined as the distribution ¢
such that Ds(p,¢) is minimal on average over the posterior distribution Pr(p|z).

2.5 Optimal D, estimator for binomial distribution

We first consider the binomial case, with 6 = 1.

The learned model ¢ := 7(z) is dependent upon the data. Suppose the world p is known,
we want to find an optimal learning method to minimise the expected divergence

(2.11) Ei(7|p ZPI’ z|p)Di(p, 7(2)).

There is obviously a unique solution to this problem, 7(z) = p, with the absolute minimum
FE1(7|p) = 0. The fact that the solution ¢ = 7(z) is independent of the data z is not
surprising, since we have assumed that p is known. This kind of learning rule is of no use
since it is only good when it happens to hit upon the true state of the world, and it that
happens there is nothing to be “learned”.

Now in reality p is unknown with a distribution Pr(p). Therefore we seek to minimise the
expected divergence for the whole learning rule,

(212 Ey(7) = [ Pr(p) Ea( o).

Such a 7 is called the 1-(optimal) estimator. Using the Bayes theorem this can be rewritten
as

(2.13) ZPr VB (q]2)



where

(2.14) Bu(glz) = [ Prpl)Di(p.0).

This shows that to minimise the prior expected divergence of the learning rule, £q(7), it is
equivalent to minimise the posterior expected divergence of the estimate, F1(¢|z), for each
possible sample z, Pr(z) > 0. Such a ¢ is called the 1-(optimal) estimate based on data z.
These (expected) divergences are differentiable with respect to ¢,

L=p p_ q—p

(2.16) Dlale) = [ Priple) = = =

where (p)_ is the expectation of p conditional on z, defined by

(217) (). = [ Pr(ole.

Therefore the 1-estimate is given by ¢ = (p),. This also completely specifies the 1-optimal
estimator up to a set of data with zero probability. As said earlier, ¢ is in fact a distribution,
instead of simply a real number. In more details, let 2’ be any test data, then the 1-estimate
¢ is defined as a distribution

(2.18) Pr(z|¢q) = /Pr(p|z) Pr(Z'|p) = Pr('|z).

P
The right hand side is exactly the posterior marginal distribution, which is widely used in
many Bayes methods, such as the Monte Carlo method [Nea93].

It is interesting to observe the relation between the 1-optimal estimate and the 1-coordinates:
Let ¢ = 7(2) be the estimate given by the learning rule 7. Then ¢ is 1-optimal estimate if
and only if [*(¢) is the posterior expectation of I'(p) conditional on z. We shall see that a
variant of this statement is true in general for any 6 and any distribution family.

The formula for computing ¢ is very simple for the Beta distribution prior Pr(p) ~ p*~!(1—
p)’~L. Denoting C :=a + b, it is easy to show that

a+m
2.19 = .
(2.19) ). =
If one considers the prior as representing a “previous set of data” of size C' with a 1’s and b
0’s, then the optimal estimate is simply the arithmetic mean of the “total data set”. Since ¢
is a sufficient statistic conditional on the “ancillary” C'+ N, the learning rule 7 : z — 7(2)
is adaptive in the sense that

N m
2.20 =g+ 2 )
( ) =1 C+ N ( q)




2.6 Optimal Dy estimator for binomial distribution

Now let us consider another important case, 6 = 0. The 0-divergence between two distri-
butions p, ¢ € [0, 1] is

(2.21) Do(p,q) = K(q,p) = (1 — q)log 1 —4

+ qlog 1
p

Similar to the case of 6 =1, we have the following corresponding definitions.

(2.22) Eo(7|p) := > Pr(z|p)Do(p, 7(2)).
(2.23) Eo(glz) = | Pr(pl2) Do(p.a).
(2.24) () = [ Pr(p) Eo(lp) = 3 Pr(=) Eolglz).

The concepts of 0-(optimal) estimates and estimators are similarly defined. The gradients
can also be similarly derived, as

q l—gq
2.25 9,D =log+ —1 =1 —1
(2.25) Dol(p. q) og ) —logg— =log g —log 7,

(2.26) 8qEO(q|z):/Pr(p|z) (log1 1 —loglp )zlog 1 —<log L > .
P —q —P l—gq L=p/,

Therefore the 0-estimate ¢ is given by

q P
2.2 — = | )
(2.27) g exp<og1_p>z

Let ['/¢ denote the inverse of the mapping [*. The above is equivalent to

(2.28) g~ 1"°(I(p)) .

z

The corresponding result for 6 = 1 can also be expressed in the same form

(2.29) g~ (1 (p)) .

This can be generalised to any ¢ in the following sections.

For the Beta distribution prior Pr(p) ~ p®~1(1 — p)*~!, we have

a+m—1 b+n—1
p p (1—p) p
2. 1 :/ 1 =V — (b
(2.30) <Og1—p>z » Bla+m,b+n) Ogl—p (a+m) (b+n),

where W is the digamma function. See Appendix A for definition and properties. It
is known (See, eg., [Fer67, p. 180], which cites [JF45].) that for sufficiently large m,

9



expW(m) ~ m — 1/2. Therefore ¢ = 7(z) ~ (a« + m — 1/2)/(C + N — 1), which is

asymptotically equivalent to the 1-optimal estimate.

This also leads to an adaptive method. Let 6 = log(¢/(1 — ¢)). Suppose that sufficient
statistic a, b is kept. Then the method is described by

2.31 =1 = ay =a+1, = b, =04+1/ay,
. by =b, 0, =0 .
(232) ZZO — ay = a, b+:b—|—1, 0+:0—1/b+

3 Generalisation Measure for Discrete Distributions

Instead of continuing with more special examples, we now turn to the task of defining gen-
eralisation measure for all discrete distributions, and find out the formula for corresponding
optimal estimators.

Note that discrete distributions are characterised by the fact that they are dominated by a
measure with a countable support. In other words, sum can be used in place of integration.

3.1 Kullback-Leibler distance and information divergence

Let Z be a finite sample space and |Z| = n. Then it can be identified with N,,. The space
P of distributions on Z can be identified with the standard (n — 1)-simplex

(3.1) AP = {p: Y pi=1,pi > 0} C R™

Definition 3.1 (Information divergence) Let p,q € A"™'. The Kullback-Leibler diver-
gence

(3.2) sz log —Z

Let 6 € (0,1). The é-divergence is defined by

(3.3) Ds(p,q) := 5(11 ) (1 prQ3‘5),
(3.4) Do(p, q) :=lim Ds(p, q) = K(qp),
(3.5) Di(p, q) :=lim Ds(p, q) = K(p, q)-

It is easy to verify that that

(3.6) Diya(p.g —22 (VP = V&)

The family of o-divergences was discovered several times in both information theory and
statistics. It is essentially the same as various information measures, including “Renyi’s

10



information” and “Chernoff distance”. In practice, 6 € {0,1/3,1/2,2/3,1} have distinct
statistical interpretations [Hou82, Kas84]. Among many other names, Dy and Dy are
called the cross entropy (Kullback-Leibler divergence) and the reversed cross entropy, re-
spectively. Dy, is the Hellinger distance. See [ADT75, p.208] and [Ama85, Ama87] for more
backgrounds and references.

It is proved by [Che72] that in the case of finite sample space, the é-connections are the
only family of invariant connections. It was conjectured in [Ama85] that this is also true
for general sample space. The 6-divergence are intrinsically related to the é-connections,
both through the é-affine coordinates, the Generalised Pythagorean Theorem, and through
the Eguchi relations [Egu83]. The relation between é-divergence and the Ly /s space shed
some light on the duality between § and (1 — ¢). This will be discussed elsewhere [ZR95b]

3.2 Generalisation measure for estimators and estimates

Let Z be a sample space. Consider the information manifold P, the space of probability
distributions. Suppose the world is represented by an unknown distribution p € P, with a
prior Pr(p). Suppose in an experiment a sample z is observed, with likelihood Pr(z|p). The
posterior distribution Pr(p|z) can be obtained from the Bayes rule. A learning method is a
mapping 7 : z — ¢ = 7(z), which maps each observed set of data z to a unique distribution
qgeP.

Definition 3.2 (Generalisation error)
(3.7) Es(7lp) = Y Pr(z|p)Ds(p. 7(2)).  Bs(r):= /pPr(p)Eg(Tlp)-

(3.8) Es(glz) = /p Pr(p|2) Ds(p. q).

Note that both ¢ and p are distributions in a common family, while 7 itself is a mapping
from a set of data to this family of distributions.

Corollary 3.1 The performance of an estimator is the expected performance of estimates
it gives.

(3.9) Es(r) = ZPI’(Z)Eg(T(Z)|Z).

These functionals measure the expected divergence of the learned distribution from the
true distribution for a given estimator, which is invariant under reparameterisation.

Suppose it is known exactly that the world distribution is p, then using an estimator 7
would result in an average é-divergence of Fs(7|p). So the optimal estimator is 7(z) = p,
independent of z. In general the true distribution p is unknown. Suppose we have a prior
Pr(p) of possible worlds p. Then on average the generalisation error is Es(7).

11



Definition 3.3 (Optimal estimator) An estimator 7 is called an é-optimal estimator if it
is the solution of the following optimisation problem

3.10 Min F .
( ) T(Z)IEHP 6(7—)

Definition 3.4 (Optimal estimate) A probability distribution p is called an é-optimal es-

timator from data z if it is the solution of the following optimisation problem

A1 Min F .
(311 Mip 7(g]2)

It is often argued that an optimal estimator should not be defined as one that gives the best
average performance on all the possible data, but one that gives the the best performance
on each data that actually occur [Lor90]. The relation between Fs(7) and Es(p|z) shows
that these two criteria are in fact equivalent.

Theorem 3.2 An estimator is 6-optimal if and only if for any data, except a set of
probability zero, the result of the estimator is a é-optimal estimate.

In other words, to minimise prior expected divergence is equivalent to minimise the poste-
rior expected divergence for all possible sample. This means to find the optimal estimator
we only need to find the estimate for each possible sample.

3.3 Optimal estimators and estimates

Suppose we have sample z and want to find out the é-optimal estimate ¢, which can be
regarded as a vector in R™ if we consider A" as the standard simplex embedded in R™.
Therefore the problem of finding the optimal ¢ is a constrained minimisation problem, and
can be solved by the Lagrange multiplier method. Define

(3.12) F = Es(qlz) — A (Z ¢ — 1) :

Intuitively, the data z is the one which actually observed, while z’ is an arbitrary data
whose probability the estimator must predict.

From equation (3.3), it can be derived that

aDé(p7Q) 1 Pz ’
1 9Lstpa) _ 1 (P
(3.13) o 16

OEs(q|z) ODs(p.q)  1{(pY)
oA p btAViek DA Vet
an/ ‘/p I’(p|Z) an/ 5 qg/

Therefore, the 6-estimate ¢ is given by

(3.14)

or  1(r)).

dgr 6 o

Zl

—A=0 =~ () .

z

12



The proportionality constant is the partition function. Translating back to distributions,
¢ is the é-estimate, which is itself a distributions, if and only if

(3.15) Pr(=g)’ ~ [ Pr(pl2) Pr(=p)"
For 6 =1, this reduces to the posterior marginal distribution,
(3.16) Pr(2'lq) = Pr(2'|2).

For 6 = 0, the result can be arrived at by taking limit,

(3.17) log Pr(='lg) = (log Pr(='|p)), —

where (' is the logarithm of the partition function, which depends on z but is independent
of 2.
Denote by ['/? the inverse mapping of [°. The above is summarised in the following theorem.

Theorem 3.3 (6-optimal estimate of discrete distributions) For discrete distribu-
tions, given observed data z, the d-optimal estimate is given by

(3.18) ¢ =5(2) ~ 1" ((P(p)) )

The right hand side is called §-average over the posterior Pr(p|z). ! This means that the
0-optimal estimate can be obtained in three steps: use the é-representation of p, average
over the posterior, and renormalise.

4 Optimal Estimators for Multinomial Distribution

In this section we shall derive explicit formula for the é-optimal estimators for the multi-
nomial distribution.

4.1 Multinomial distribution with Dirichlet prior

Consider a multinomial distribution with n possible outcomes. Denote the total number
of experiments as N. Let zF be the ith component of the result of kth experiment. In each
experiment exactly one event occurs, || = 1. This means z € ZV, where Z := N"(1).

The number of event ¢ occurs in N experimentsis denoted m; := |z;|. Som :=[mq,...,m,]| €

NY (M), and N = |m| = |z| = %, |z] = 2k [2¥]. We have, Vz € (N*(1))Y, m € N*(N).

The natural conjugate prior for the multinomial distribution is the Dirichlet distribution,
which generalises the Beta distribution on the unit interval to the standard simplex in

L Also called weighted Holder 6-means [HLP52]. This usage is essentially the same as [AD75].
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any finite dimensional space [DeG70, Ber85, Car77]. Most of relevant properties are sum-
marised in Appendix B.

Then the likelihood function is

(4.1) Pr(zlp) = p™ = [Ip".  Pr(mlp) = C(m)p™.

The Dirichlet prior is Ya € R’

(12) Pilp) = 5 = Disl)
The joint distribution of data and parameter is
potm=l potm=l
(4.3) Pr(z,p) = Bla) p"D(pla),  Pr(m.p) = C(m) Bla)
The prior marginal distribution of data is
(1.4) Pr(s) = 25 P = ) HE
The posterior is
atm—1

(4.5) Pr(plz) = Pr(plm) = ﬁ = D(pla +m).
The posterior marginal data distribution is

Bla+m+m'
(4.6) Pr(+/|2) = (B(Z . ;) )

Since m is a sufficient statistic for z, it is only necessary to derive formulas for m instead
of z. It is easy to see that these formulas reduce to corresponding ones for binomial
distribution when n = 2.

Corollary 4.1 The data distribution is multivariate hypergeometric distribution(?)

C(m,a—1)

(4.7) Pr(m) = Ol o= 1)

14



4.2 6-Optimal estimator for multinomial distribution

See Appendix B for the notations used in this section. It is straight forward to derive, from
the general formula for é6-optimal estimator and the posterior of multinomial distribution
that

Theorem 4.2 Let 6 € (0,1]. The é-optimal estimate ¢ = 75(z) for multinomial distribu-
tion M(m|p) with Dirichlet prior B(p|a), data z with statistic m; := |z, is given by

it my)s

4.8 iéwaa—l—m:(aiwai—l—mi .
(4.9 (0"~ Lot m) = (FEE )
In particular, for 6 =1,

(4.9) qgr = Bla+m+ 6)/B(m+a) = (mg + ag)/|m + a.

This can be intuitively interpreted as the arithmetic mean of the “combined data set”
composed of the observed data with sufficient statistics m and a set of “previous data”
with sufficient statistics a.

For the case of 6 = 0, we have the following theorem.

Theorem 4.3 The 0-optimal estimate ¢ = 10(m) for multinomial distribution M(m|p)
with Dirichlet prior B(pla) is given by

(4.10) logqi—l—C:L?(a—l—m) = U(a; + m;) — Y(|a + m|),

where U is the logarithmic derivative of 7 function (also called the digamma function), and
C is a constant. Equivalently,

(4.11) qi ~ exp V(a; + m;).

These formulas specifies the é-estimate for multinomial distributions with Dirichlet priors.
They also specifies the é-estimators uniquely up to a set of data with zero probability.

5 Conclusions and Discussions

We have combined the Bayesian decision theory with information geometry to provide
a theory for the evaluation of statistical estimators, defining a measure of generalisation
which enables selection from the Bayes posterior a unique representation which is optimal
in the sense of information geometry. It is shown that the é-optimal estimates are char-
acterised by the fact that their é-coordinates proportional to posterior expectation of the
0-coordinates of the true distributions.

It is coherent in the sense that the optimal estimator is characterised by the fact that it
gives the optimal estimates for almost all the the data. It is invariant under transformations
both in the sample space and in the parameter space.

15



We have argued that the result of statistical estimator should be a point estimate. Although
the 6-optimal estimates are points in the posterior, no information is lost when they are
used as representatives of the posterior, since each of them is a sufficient statistic. The 1-
optimal estimate is the posterior marginal distribution, which is the distribution effectively
used in the Monte Carlo simulate methods [Nea93].

The Dirichlet prior Pr(plal) is a-uniform distribution over A"~! ie. uniform distribution
over a-coordinates, and can be regarded as non-informative priors. The 1l-estimate with
0-uniform prior coincide with the maximum likelihood estimator, which act as a represen-
tative “data point” in Amari’s theory of information geometry for exponential families.

As far as we are aware, this is the first attempt to combine the Bayesian framework and
information geometry. Detailed formula for multinomial distributions provide first hand,
intuitively accessible knowledge about the consequences of this theory. A more general
approach is pursued in [ZR95b].

The major contribution of these explorations is to show that it is possible to define gen-
eralisation in a way which is both coherent and invariant, thereby overcoming a major
obstacle to Bayesian methods of inference. This therefore act as a reference point for the
comparison of all the learning methods.

A Properties of Gamma and Beta Functions

Most of the materials here are standard. The main purpose of this appendix is to fix
notations.

The Gamma function is defined as
(A.1) 7(a) = /OO et = /1(— log u)*~'du.
0 0
The Beta function is defined as
1
(A.2) Bla,b)i= [ (1= p)dp.

It has the well known Gamma representation

(A.3) Bla,b) = %

The Psi function, also called the digamma function, is logarithmic derivative of Gamma
function, defined as

(A4) U(a):=Pr(log?(a)) =07 (a)/?(a).

16



It has the following interesting representations

(A.5) \I/(w)ﬂ:i(l%_xik)
(A.6) \I/(x)—\I’(y)ZZ< ik x—ll—k)

-1 u
_/ du,  Ya,y€ R,
— U

(A.8) W(0) = :l:oo, \11(1) — 4, 4~ 0577215,

(A.9) expW(a)~a—1/2, Yo > 1.

Notation. The Pochhammer symbol (a), and the Appell symbol (a, b) are defined as
(A.10) (a)y := (a,b):=7(a+b)/7(b).

We do not use the Appell symbol. In particular,
(A.11) (a) = a, (), =ala+1)---(a+n—1), (1), =nl

Notation. We use the following notation for binomial coefficients

(A.12) Clm,n):=C", = (” + m)

m—+n m
_ 1 _(m+4 1
_(n—l—m—l—l)B(m—l—l,n—l—l)_ (1),
Notation. The Beta distribution with parameter a, b is given by the pdf

P —p)!
B(a,b)

(A.13) D(pla,b) ==

[ts maximum is located at p = (b —1)/(a + b — 2). Its é-moment is

B(a+46,b) (a)s
A4 / D(pla,b)p’ = 9) .
Theorem A.1 Leta,beR,.
(A.15)

L(a,b):= 0, log B(a,b) = /01 dpD(pla,b)logp = V(a) — ¥(a + b).
(A.16)

T(a,b) := /01 ApD(pla, b)log - ﬁp — W(a) — W(b).

17



Proof:  From the integral representation of Beta function we obtain the integral repre-
sentation of L(a,b), and from the Gamma representation of the Beta function we obtain
the Psi representation of L(a,b). This proves the identity for L(a,b). The identity for
T(a,b) is obtained by noticing that T'(a,b) = L(a,b) — L(b, a). 0

B Multivariate Beta Function and Dirichlet Distribution

Many of the results presented here are standard [DeG70, Car77], but we shall present them
in a set of concise notation.

B.1 Multinomial coefficients

Notation. Let a,be R%, pe A" m e N
(B.1) p" =] p¥, m! =] m,
(B.2) (a)s := [J(a)n, 7(a) = H 7 (a;).

Definition B.1 The multinomial coeflicients are defined Vm, k € N":

(B.3) C(m):= M C(m,k):= HC(mZ,kZ)

m!

Notation. Let n, M € N. Then

(B.4) N'"(M):={meN": |m|=M};
(B.5) Ny :={meN: m <M},
(B.6) Yo=Ny x-oxNy={meN': m <M};

Lemma B.1 |[N*(N)|=C(n—1,N).

Theorem B.2 (Multinomial expansion) Letx € R", N € N. Then

(B.7) (Zx)N: S Cm)a™

meN?(N)

B.2 Multivariate Beta Function

Definition B.2 The multivariate Beta function is defined Va € R%:

(B.8) Bla)i= [ dop,
An—1
where dp :=dpy -+ - dpn—1, with p, =1 — (p1 + -+ + pn_1)-

18



Definition B.3 (Dirichlet distribution) Let a € R%. Then ¥p € A"

(B.9) Dipla) :=

Theorem B.3 (Symmetry) The multivariate Beta function is symmetric with regard
to its arqguments.

Theorem B.4 (Recursive formula) Let: € N,. Denote I := N, \ ¢. Then Va € RY:

(B.10) B(a) = B(ay)B(a;, |ag]).

Proof:  Denote ¢ := pr/|pr| € A"72, b:=a; € R}™". By definition of the Beta function
and multivariate Beta function, we have

B —/ -1
(a)= [, p"dp

_/ de az_l/ dq qb—l
1— pl)An—2

_/ dps (1 = pi)PI- 1/M_2 dg ¢
= Bla;, [b]) B(b).

In the above, the multiple integration is substituted by iterated integration. O

Theorem B.5 (Gamma representation)

(B.11) Bla) = 9

it follows the recursive formula that

7(b) 7(an)?7([0]) _ ?(a)
2(1o) 7 (lal) ?(Jal)

Proof: Denoting b = ay

n—1?

Bla) = B(b)B(ax, [b]) =

Corollary B.6 Let 1 :=[1,...,1]7 € R". Then

(B.12) B(1) = /A dp= ——
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B.3 Normalised multivariate Beta function

The Beta function is normalised in a certain sense since the measure of the unit interval
is unity. This is not so for the multivariate Beta functions when n > 2. It is sometimes
convenient to use a normalised version of Beta function, defined as B'(a) := B(a)/B(1).

Theorem B.7 The following holds VYa € R}, m € N*:

(B.13)
Bla+ 1)(Ja] +1),-1C(a) = 1. B'(m+1)C(m)C(Jm|,n—1)=1.

For n = 2 the these reduce to Bla+ 1) = B'(a+ 1) =1/(Ja| + 1)C(a).

Theorem B.8 The following holds:

(B.14) Z( CmBln+1) - (?(1—”) Z;( )C(m)B’(m—l—l):l.

Proof:  Two proofs are available. (1) As a corollary of the above thereon and |[N"(N)| =
C(n —1,N). 2) Use multinomial expansion theorem on the definition of B(m + 1). 0

B.4 Partial increments of order ¢

Theorem B.9 Let a,b e RY. Then

(B.15) Ly(a) := /A dp D(pla)p’ = _

Notation. Denote by 1; € R" the ¢th unit vector.
Corollary B.10 Let: € N,, a € R}. Let 6 € (0,1]. Then

(B.16) L3(a) = /A ~dp D(pla)p! = B(% ij _ ((|C:|))Z .

Theorem B.11 The following is true Vi € N,, a € RY}

(B.17) L2a)i= [ dpDipla)log pi = W(a) = W(la)) = = 3 +.

Proof:  Consider d;log B(a). It equals the integral representation of L?(a) following
the definition of B(a), while equals the Psi function representation following the Gamma
representation of B(a). m
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