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Abstract

Effective control of Energy Storage Systems (ESS) is crucial for the secure and profitable operation of
microgrids. In this context, ESSs are essential for enhancing the overall grid resilience, balancing supply, and
mitigating voltage and frequency variations. This paper presents a novel neuroevolutionary method, coupling a
modified version of the Multi-Objective Evolutionary Policy Search (MEPS) algorithm with the Cross-Entropy
method, aimed at optimizing an ESS control problem. The modified MEPS, named Cascade-MEPS, employs
a cascade weights mutation operator to refine policies by focusing on the most recent hidden node, ensuring
localized and non-disruptive adjustments. The resulting algorithm, referred to as cross-entropy Cascade-MEPS
(CE-CMEPS), utilizes the cross-entropy method as a depth initialization strategy, conducting an initial explora-
tion of the weights space to initialize the population prior to Cascade-MEPS execution. Experimental validation
on a newly proposed multi-objective ESS control problem demonstrates the efficacy of CE-CMEPS, showcas-
ing performance improvements and reduced variation compared to standalone MEPS. Our results show that
CE-CMEPS is an effective ESS discharge controller and a sustainable multi-objective reinforcement learning
solution.

Keywords Direct policy search (DPS) - Multi-objective (MO) control - Reinforcement learning - Neural
networks architecture - Neuroevolution - Energy management

1 Introduction

In the past decades, the challenge of meeting energy demand and reducing carbon emissions has drawn attention
from both academia and industry. Consequently, renewable energy sources (RES), such as wind turbines (WT)
and photovoltaic panels (PV), have been playing a major role in the transition to a less-pollutant energy genera-
tion, facing not only technological improvements [1] but also cost reductions [2]. To mitigate intermittency and
non-continuity production of renewable energy generation, RES are often deployed alongside energy storage
systems (ESS) [3, 4] in microgrids (MGs). Microgrids are self-sustaining generation sources that include RES,
various energy storage devices, and possibly fossil fuel generation sources such as diesel or gas generators [5, 6].
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Efficient energy management is one of the most important factors affecting the quality and reliability of MGs
[7]. Among the different RES present in a microgrid, it is worth noting the importance of energy storage manage-
ment in a secure MG operation [8]. An effective ESS control strategy can lead to energy cost reduction and MG
operational stability improvement [9]. The search for optimal ESS control strategies often includes utilizing clas-
sical optimization methods [10], heuristic optimization methods [11], and reinforcement learning methods [12],
to name a few. Classical and heuristic optimization algorithms have long been recognized as suitable methods to
handle ESS control problems. However, these algorithms, as iteration-based solvers, have faced some significant
limitations. First, when dealing with large dimensional problems, a large number of iterations is required for
population updating or iterative searching. Second, the algorithm may need to be restarted at each iteration and/
or when there is a slight change in the problem [13]. On the other hand, reinforcement learning (RL) algorithms,
do not need to be restarted at every iteration and are robust to high-dimensional state spaces as well as slight
changes in the target problem [14].

In this way, the control of battery ESSs using single-objective reinforcement learning has been widely studied
in the last few years. For instance, a model-free algorithm based on a periodic action-value function and deter-
ministic policy gradient is proposed to manage a multi-battery ESS under a residential microgrid [15]. Addition-
ally, in [16], a deep RL solution based on the actor-critic algorithm is presented to address the electricity arbitrage
problem in optimal ESS management of a commercial/residential building. Besides actor-critic-based algorithm,
the Q-Learning algorithm combined with (deep) neural networks for state-action value function has become a
popular RL alternative to energy management problems. In [17], a deep Q-Learning with prioritized replay is
employed to manage the scheduling of an ESS in a residential ESS-integrated PV system. A deep Q-Learning
algorithm is also utilized in [18], in which it controls the amount of energy bought from the public grid to charge
the storage system. Moreover, the authors in [19] employed Q-Learning to search for an optimal ESS charge/
discharge strategy in a microgrid, considering residential and commercial load demands.

To handle problems with a large or infinite state space, roughly all RL algorithms utilize the generalization
abilities of function approximators in estimating value functions [20]. Feedforward neural networks (NNs) are a
particular case of such function approximators that have been successfully employed in combination with rein-
forcement learning methods to overcome the aforementioned limitations [21, 22]. Specifically, neural networks
employing Rectified Linear Units (ReLU) as activation functions have become popular due to their practical
performance [23]. Yet, the performance of these networks depends on their complexity, specifically the careful
selection of the network’s topology and architecture (number of layers, nodes, and connections) as well as the
size of the parameters [24]. A poorly chosen network topology may hinder its ability to perform the intended
task, even with extensive training. Therefore, many studies have aimed to establish a correlation between neural
network complexity and its learning capacity.

In [25], the authors have proven that adapting the NN’s topology to the function being approximated leads to
a smaller upper bound for learning error, compared to fixing the topology and only adjusting the weights, for the
specific case of Sobolev Spaces. Moreover, the authors in [26] have shown that, for a given dense network, there
is a sub-network with fewer nodes and connections that, when trained in isolation, achieves comparable perfor-
mance as the original one. Recently, the importance of constraining the topology of a neural network is reinforced
by tightening the learning capability bound of ReLLU-based NNs in [27]. The VC-dimension [28] of this class of
networks has been proven to have a linear dependency on the number of nodes and connections. Thus, the ulti-
mate performance of a policy parameterized by an ANN depends not only on the weight values but also on the
proper selection of the number of nodes and connections in each NN.

Even though RL algorithms usually target problems in which the feedback signal from the environment is sca-
lar, many real-world control problems are inherently too complex and often involve dealing with multiple objec-
tives [29]. Multi-policy multi-objective reinforcement learning (MORL) algorithms have arisen as a viable option
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for delivering numerous trade-offs among objectives, offering an effective means to identify superior trade-off
solutions [13, 30]. Most of the MORL proposals in the state-of-the-art rely on policy gradient updates [31-34].
However, it is widely known that gradient-based optimization is subject to getting trapped in local minima [35].
Thus, direct policy search (DPS) [36] is emerging as a popular MORL alternative method to alleviate gradient
issues. DPS defines the control policy within a given functional parametrization and explores the policy param-
eters space by searching for the best solution concerning a given set of objectives. Our proposal addresses the
following issues that summarize the major contributions of this article:

e We propose a new multi-objective energy storage control problem for a solar-wind microgrid considering three
objectives: CO2 emissions, operational cost, and a penalty for maintaining the battery at a low state of charge
(SoC);

e A novel modified version of the multi-objective evolutionary policy search (MEPS) that performs local adjust-
ments to policies by constraining weights mutation;

e A combination of the multi-objective Cross-Entropy (CE) method with the modified MEPS algorithm to con-
trol the charge/discharge strategy of an ESS in a microgrid for a working horizon of one week;

e A comparison of the proposed method with standard MEPS, as well as with two MORL algorithms based on
actor-critic and Q-learning, and;

e A thorough statistical analysis of the performances of each algorithm in terms of hypervolume indicator. We
leverage the robust generalization capabilities of RL, the benefits of gradient-free optimization, and the search
efficiency of evolutionary algorithms.

The remainder of this article is organized as follows: Sect. 2 elaborates on the detailed modeling of the studied
battery energy storage system control. Section 3 presents the proposed coupled multi-objective direct policy
search approach. The effectiveness of the method is demonstrated through experiments in Sect. 4. Finally, conclu-
sions are presented in Sect. 5.

2 Problem formulation

This section formally defines the energy storage control problem over a week-long planning horizon. Initially,
the configuration of the ESS-integrated solar wind power microgrid system is outlined, followed by a detailed
presentation of the constraints and the objective functions. Subsequently, the control problem is formulated as
a Markov Decision Process (MDP) [37] and treated from a multi-objective standpoint, considering operational
costs, CO9 emissions, and penalties for surpassing the ESS capacity constraint. In this context, the learning agent
functions as an energy management system (EMS), designed to manage the discharge of energy from the ESS
and the importation of energy from the public grid.

2.1 Microgrid simulation model

The configuration of the simulated microgrid system is based on the frameworks presented in [38, 39]. This sys-
tem comprises 200 photovoltaic panels [40], a wind turbine [41], a 140 kW Lithium-ion battery energy storage
system (ESS), a DC/AC converter, an electrical load, a main grid connection with real-time pricing (RTP), and
an energy management system (EMS). Figure 1 illustrates the system structure. Table 1 details the specifications
of the microgrid (MG) project, which is designed for a 24-year operational lifetime.
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Table 1 Configuration val- DC/AC converter PV WT Battery
ues for the microgrid project  Life time (years) 15 24 24 17.5
Efficiency (%) 96 204 95 90
Rated power (kW) - 0.45 100 -
Capacity (kW) - - - 1000
Cycles (un) - - - 8000
Initial cost (€) - 500.00 1800.00 -
Cost (€/kW) 700.00 - - 1143.00
Operational cost (€/kW) — 18 0.36 —

The electrical load consists of the hourly energy demand over a week in 2019 (measured over 168 h) from a set
of industrial and commercial buildings in a region of Belgium [43]. Additionally, the MG system utilizes hourly
data from 2019 for dynamic energy pricing, wind speed, ambient temperature, and solar radiation from [43]. The
following section presents the objective functions as well as the various constraints present in the problem.

2.2 Operating costs and ESS restrictions

The charge and discharge management of the ESS dictates whether energy is being stored or utilized for
each time step ¢. The SoC, at each time step, is calculated according to [42]:

Soc(t) = { SOCE =1+ e, if charging
SoC(t — 1) — £ if discharging, 0
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in which ¢ = 1.0 and 7. = 0.90 represent the discharging and charging efficiencies, respectively. Prqeq
refers to the nominal capacity of the ESS. The power requested for charging, P.(t), is given by [38, 39]:

Py (t) = min{(SoCinaz — SoC(t — 1)) * Prated, Pen(t)}, @

in which SoC,,, refers to the maximum allowed SoC. The power discharge request, denoted as Py (t), is
regulated by the learning agent and should not exceed the available energy, P,,;(t) = SoC(t — 1) - Prated, as
shown in Eq. (3):

Pc t, Pc t <:Pavt
Paen(t) = { Pj;((t)), otdh}ég"vgfise. o 3)

Furthermore, the operation takes into account both the utilization and degradation expenses of ESS. The cost
of ESS utilization is given by [39, 44]:

_ INVEgss
Lc . P'rated : DOD(t) 7 (4)

Cpss(t)

in which the initial investment of ESS and its available cycle lifespan are denoted by L. and I NVggg,
respectively. Consequently, within this modeling framework, the total operational cost is determined accord-
ing to [44]:

Ciotal(t) = IC + Cp + Cpp + Cpss(t), )

in which the value Clyq(t) denotes the total costs of operating the system per time ¢. The initial cost (IC)
encompasses 20% of the operation and maintenance costs, a 1.4% rate for inflation, a 6% discount rate,
personnel costs, installation expenses, and connection fees. It also includes both non-periodic costs (Cy,)
for the replacement of components such as the ESS [44], and periodic costs (C}) for the maintenance of
solar and wind generation components. Additionally, the constraints on charging and discharging power are
specified as follows:

0 < Py, < PR,
Constraintsggg = { 0 < Pyen < Pp%,
Pep - Paen = 0, (6)

where P7;%* and P}’j* represent the maximum charge and discharge power, respectively. Furthermore, the
minimum state of charge (SoC) is defined as 1 — DoD(t), in which DoD indicates the battery’s depth of dis-
charge. The objective function for cost minimization, as formulated by [38, 39], is subsequently presented
as follows:

Cost(t) = Cropar(t) + PP - Pry, ™
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in which the cost of operation is joined with the cost of purchasing public grid energy Ptbuy at price Pry to
supplement the deficient microgrid power.

2.3 CO, emissions

To provide an estimate of the amount of grams of CO4 emissions per kWh for public grid energy purchased
and generated from renewable sources, an average of between the minimum and maximum greenhouse gas
emission values obtained from [2] are employed as follows:

Solar Photovoltaic emissions (COqpy ) = 44.15 g COseq./kWh;

Wind Power onshore emissions (COgpyr,,, ) = 11.90 g CO2eq./kWh;

Wind Power offshore emissions (COawr,,,) = 17.50 g CO2eq./kWh;

Nuclear emissions (COopnr) = 5.75 g CO2eq./kWh;

Hydro emissions (COspy) = 76.50 g CO2eq./kWh;

Cogeneration (COscog) and Combined cycle emissions (COqc¢) = 156.00 g CO2eq./kWh;

Moreover, concerning energy purchased from the public grid, the COseq./kWh is calculated based on the
hourly dispatchable energy composition in Belgium, as detailed in [45]. Figure 2 shows the hourly dispatch-
able energy composition for the considered operation week. It is worth noting that biomass emissions are
not considered due to difficulties in estimating its CO5 emissions.

Hence, the emissions in CO2eq./kWh [11] for renewable generation and energy purchased from the public
grid are:

Emissionyr(t) = CO2yr,, - PV

®)

Emissionpy (t) = CO2py - PFV

(€))
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Fig. 3 Penalty factor for 4.5
different SoC values. Based :
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Emissionpyy(t) = Z CO2pps - Composition(t) - PP,
RESEGC, (10)

in which PPV and P/¥T denote the amount of energy produced at each time ¢ by photovoltaic panels wind
turbines, respectively. The set of renewable energy sources that compose the public grid energy and their
corresponding percentage at time ¢ are given by GC} and Composition(t), respectively. The objective func-
tion for minimizing CO+ emissions is derived in accordance with the methodology outlined in [11]:

Emission(t) = Emissionwr(t) + Emissionpy (t) + Emissionpyy(t).

(11)
2.4 ESS state of charge penalty

The proposed model incorporates a penalty function associated with utilizing the energy storage system
(ESS) below a 50% state of charge (SoC) threshold, denoted as SoCrgrg4er, Which serves as an emergency
reserve. This penalty discourages excessive depletion of the ESS, thereby reducing reliance on energy
purchases from the public grid during renewable energy outages. By enforcing a minimum SoC level, the
model ensures that sufficient stored energy remains available to maintain microgrid operation when renew-
able generation is unavailable.

Introducing a penalty for SoC levels below 50% is further justified by the operational and technical
limitations inherent in battery energy storage systems. Deep discharging accelerates capacity degradation
and reduces cycle efficiency, particularly in lithium-ion batteries, where it can induce electrode damage
and uneven cell aging. Maintaining a higher minimum SoC also preserves reserve capacity, enabling rapid
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response to grid contingencies and sudden demand spikes. This operational buffer enhances system resil-
ience and supports grid stability, especially in contexts with high penetration of intermittent renewable
sources.

Consequently, penalizing SoC values below 50% promotes a conservative and sustainable operational
strategy, aligning with objectives of long-term battery health preservation and reliable grid support. The
corresponding objective function for minimizing the accumulated SoC penalty is defined in Eq. (12) [13]:

(SOC(t) — SOCtm«get)g -Mm1 + Mo if SOC(t) S Soctarget
SoC(t)—S0Ctarget

PENg,c(t) = .
soc(t) { exrp (— log(ms) - e ) otherwise, (12)

in which m; = 10, my = 2 and m3 = 1.5 are used to control the stringency of M. Figure 3 illustrates the
behavior of the penalty factor PE Ng,¢ for different SoC levels [13].

2.5 Storage control Markov decision process

In this problem, energy storage management involves controlling the discharge of the ESS on an hourly
basis. The learning agent is tasked with determining the percentage of available ESS energy to be utilized
each hour. To address insufficient microgrid power, the system relies on importing from the public grid,
necessitating information on both environmental conditions and the current battery state of charge (SoC)
across various states. Thus, the operational characteristics are formally represented through a MDP [37],
incorporating a state space denoted as S, an action space denoted as A4, and rewards R, which are assessed on an
hourly basis across one week. The state space S is defined by a seven-dimensional vector in R7, encapsulat-
ing state details for each hour ¢ [42]:

P Pyt
si€S= {SoC(t), e, Pr PPV, P Iij’;fd) } ,
t t

(13)
in which P/°? denotes the load demand at ¢ hour, Pr; is the to supply the insufficient microgrid power, P-",
and P/VT denote the amount of energy produced at each time ¢ by photovoltaic panels wind turbines. The
power discharge request, denoted as Py (t), is regulated by the learning agent and should not exceed the

available energy, and Ptb“y is the purchasing of public grid energy. Moreover, at each hour, the agent needs
to select the percentage of the available ESS energy that will be used. Thus, there are 11 possible actions in
action space:

ar € A= {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}. (14)

Upon execution of an action, the dynamics of the energy storage system (ESS) undergo updates in the fol-
lowing manner:

SoC(t) = SoC(t —1) —a; - SoC(t — 1) (15)
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Pdch<t) = Q¢ * Pdch(t>' (16)

Note that the ESS is not discharged if the load demand at time ¢ is already met by the renewable energy
generation. Thus, an action that leads to discharging the battery in this situation is equivalent to performing
no discharge (a; = 0%). Furthermore, when the energy storage system (ESS) maintains a sufficient state of
charge (SoC) to meet the local demand, but the control agent elects to discharge less power than required,
the resulting power deficit is compensated by importing energy from the public grid. The first objective is to
minimize the system operating cost, denoted as Cost(f). The second objective is to minimize CO2 emission,
represented by emission(t). In addition, the term PENg,c(t) denotes the penalty function associated with
the SoC objective. Finally, the multi-objective reward function is a R? vector as follows:

R(st,ar) = [Cost(t), Emission(t), PENgyc(t)] . an

After defining the MDP, reinforcement learning is employed to address the resulting problem. The opera-
tional behavior of the learning agent within the designed control problem can be outlined as: (1) Selecting an
action a;; (2) Executing microgrid operations for one hour; (3) Adjusting the current state s;; (4) Updating
costs; (5) Updating emissions; (6) Updating SoC penalty; (7) Repeating steps (1)—(6).

3 Proposed multi-objective algorithm
3.1 MEPS algorithm

The Multi-objective Evolutionary Policy Search (MEPS), introduced in [38], represents a model-free
approach designed for estimating action-preference values within MORL environments. MEPS is part of
the “actor-only” family of reinforcement learning methods and employs the NEAT (NeuroEvolution of
Augmenting Topologies) framework [46] to evolve artificial neural networks (ANNs) for implementing
deterministic policies. By evolving network policies, MEPS circumvents the need for gradient updates or
the computation of value-function estimations. Moreover, MEPS employs population-based methods to
generate a diversified Pareto-optimal set of policies, thereby classifying it as a multi-policy algorithm [30].

Initially, an initial random population F; (¢t = 0), consisting of s, ANNSs, each equipped with an output
node corresponding to every potential action, is generated. The evaluation of individuals is based on a
vectorial reward function over a fixed horizon H, each individual’s accumulated reward denoted as rg. The
networks in population P, are then sorted via non-dominated sorting and a density measure, using the accu-
mulated reward. The ANNs used in MEPS are constructed to generate preference values p(s, a) for every
possible action @ when provided with an input state s;. Furthermore, to ensure deterministic policy behavior,
the agent selects actions greedily.

MEPS utilizes two types of density measures: (1) crowding distance (CD) [47], and (2) hypervolume con-
tribution (HVC) [48]. The former aims to evenly distribute solution points along the Pareto front, ensuring
uniform coverage, while the latter is designed to distribute solution points to maximize the hypervolume
covered, prioritizing knee points while retaining extremal points.
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Fig. 4 Illustration of the cascade weight mutation operator
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During the evolutionary process, a set of parents U; comprising s, individuals is selected randomly from
the population P; using crowding binary tournament selection [47]. A subsequent offspring population A; is
produced by duplicating individuals from U; and implementing two distinct forms of mutations: structural
and parametric. Structural mutations occur probabilistically and involve (1) connecting two previously
unlinked nodes (pg.), and (2) introducing a new hidden node into the network architecture (p,y,). It is worth
noting that the individuals in MEPS are ReLU-based feedforward ANNs, which inherently do not incorpo-
rate recurrent connections. Parametric mutation comprises adjusting weights and biases of connections by
the addition of noise characterized by a Gaussian distribution A/(0, o) with o as parameter.

The next generation population P;q consists of the survivors chosen from the population R, = P, U A,
with a total size of 2s,. MEPS employs two different approaches for survival selection. The first involves
sorting the population R; via non-dominated sorting into fronts or ranks, and thereafter iteratively selecting
individuals for the next generation based on their front, similar to the NSGA-II approach [47]. If a front
exceeds the available slots in the generation, only the best individuals from lower-density regions are cho-
sen, as determined by the selected density measure. The second approach involves adaptively limiting the
number of survivors that are selected from each of the fronts. In the context of multi-objective optimization,
during the initial generations, less favorable non-dominated individuals might be prioritized over individu-
als from alternative fronts [49].
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Table 2 Parameters Parameter Description
description np Population size
N Density measure function
o(z) Activation function
do(T) Output activation function
P Initial fraction selected from first front
tmax Total generations
tr End generation number of heavy tail survivor selection
@ Heavy tail selection parameter
n; Number of input nodes
nh Number of initial hidden nodes
No Number of output nodes
Pac Add connection mutation probability
Ddc Delete connection mutation probability
Dan Add node mutation probability
Ddn, Delete node mutation probability
o Parametrical mutation standard deviation
HT Indicate the use or not of the heavy tail survivor selection
h Length of the episode to evaluate the agent

Similarly, from a neuroevolutionary point of view, discarded potential solutions may be indicative of
novel topologies that are prematurely extinct. To prevent this problem, MEPS uses a selection method based
on a heavy-tailed Pareto distribution [50] that enables some individuals from higher ranks to survive. In this
selection method, the maximum survivors for each i-th front is determined according to Eq. (18)

_ B (s
ng, = ZzK>1 B+ P
[sp - ratio], i=1, (18)

— [sp - ratio]), i>1

in which ratio and K indicate the fraction selected from the first front and the number of non-dominated fronts,
respectively. The parameter 3 defines the distribution’s tail. To avoid losing promising topologies and converging
to an incomplete Pareto front prematurely, ratio is incrementally increased with the number of generations, as
described by Eq. (19)

) { 1 tr <t <tmas
ratio =

b+t - 2 otherwise, (19)

where 1 lies in the (0, 1) interval and represents the beginning proportion of non-dominated individuals that will
be drawn This proportion is is gradually increased over the course of generations to reduce the exploration of
solutions from higher ranks. Additionally, after a predefined number of generations ¢,, the heavy-tailed selec-
tion mechanism is substituted by the first approach. Importantly, if there are fewer individuals in a front than its
maximum allowed survivors, the remaining slots are cyclically allocated to the next front until all slots are filled.
Furthermore, to retain the best individuals discovered across generations, MEPS updates a memory of size s,
with the next population P .
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3.2 Cross-entropy based cascade MEPS

In this work, we propose both a modified MEPS version and a novel coupled algorithm from the combination of the
Cross-Entropy method and the aforementioned modified MEPS version. First, the proposed modified MEPS version,
dubbed Cascade-MEPS (CMEPS), is inspired by the Cascade-NEAT algorithm presented in [51]. The Cascade-NEAT
algorithm employs a cascade mutation operator that alters both the “Add node” and “Add connection” mutation opera-
tors. This change constrains not only recent nodes to be connected to all previously existing nodes but also weight
mutations to occur only on connections associated with the most recent hidden node. The Cascade-NEAT algorithm
demonstrated superior performance in single-objective RL problems, where the optimal actions for one state often vary
abruptly compared to neighboring states, resulting in high variation and discontinuity in the best solutions. Previous
neuroevolution research suggests that a strategy to address such problems is to implement local and non-disruptive
adjustments to policies [52].

The cascade mutation operator, as adopted in our work, is inspired by the Cascade-NEAT architecture pro-
posed by Kohl and Miikkulainen [51]. The central idea is to restrict weight modifications to the most recently
added node in the network, rather than applying changes across the entire network. This design stems from the
insight that, in highly discontinuous decision spaces, large-scale mutations can disrupt the finely tuned behavior
of existing network components. By allowing only the newest node to be mutated, the network incrementally
refines its decision boundaries in a localized and stable manner. The rationale is to gradually refine new contribu-
tions to the model without inadvertently altering previously established structures that may already be performing
well. Given the significant variation in ESS control due to various factors each hour, we propose a novel version
of MEPS. This version implements a modified cascade mutation operator that constrains the weights mutation
operator to make localized adjustments to each policy, specifically targeting connections associated with the most
recent hidden node, as depicted in Fig. 4.

Cross-entropy method (CE) is an evolutionary algorithm initially proposed by [53] for estimating probabilities
of rare events in complex stochastic networks, and later extended to solve optimization problems. CE is a Monte
Carlo technique for sampling and optimization that can be applied to combinatorial and continuous problems. It

Table 3 Parameter initializa-  Description CE-CMEPS MEPS MPSAC MODQN
tion values used in the ESS- 50
integrated solar wind power  nitial ratio 0.5 - .
microgrid problem t 250 _ _
8 1.0 - -
Pac 0.2 - _
pan 0.2 — —
o 0.5 1.0 -
Learning rate - - 0.001 0.001
Gamma - - 0.99 0.99
Initial epsilon - - - 0.1
Epsilon decay - - - 3.7.107°
Smoothing coefficient 0.5 - - -
Generations 50 +450 500 250 + 250 500
H 168

is distinct from the classical cross-entropy definition in information theory.
Here, a multi-objective CE version based on [54] acts as an initial depth search operator and optimizes the
initial population weights using CE to find a promising basin of attraction to initialize MEPS’ population. In
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(a) The black line delineates the test scenario, whereas the green area illustrates the spectrum of noise
incorporated into the test scenario to generate the training scenarios.
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(b) Detailing of the test scenario.

the first step, CE is initialized with a population of ANNs with random weights encoded as illustrated in Fig. 5.
Subsequently, CMEPS is utilized to evolve the ANN topology starting with weights obtained from the first step
to estimate action-preference values in MORL. The motivation for this proposal is based on the promising results
of both CE as initial depth search shown in [6, 55], and a two-step evolution approach for single-objective policy
search proposed in [56].

The multi-objective CE method for optimization employed in this work can be summarized in Algorithm 1
[54]. Algorithm 2 shows the pseudocode for the proposed approach. All parameters are explained in Table 2. The
time complexity of the Algorithm 2 is divided into two parts: (1) CE complexity and (2) CMEPS complexity.
According to [55], the CE time complexity is of order O(sf,). Since the cascade weights mutation operator does

not change the time complexity of MEPS standard weights mutation operator, the time complexity for CMEPS is
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Table 4 Evaluation of each Mean Std Worst Median Best
algorithm’s performance MEPS 11150 4.372E6 0.466E5 4.234E6 4.380E6 4.426E6
In terms of hypervolume CE-CMEPS 1,50 4.504E6 0.514E5 4.415E6 4.503E6 4.597E6
within the test load demand  \jppg o) 4393E6 0.656E5 4.194E6 4.410E6 4.463E6
scenario CE-CMEPS g1/ 51 4.601E6 0.383E5 4.548E6 4.596E6 4.698E6
MEPS 10,50 4.375E6 0.501E5 4221E6 4.394E6 4.422F6
CE-CMEPS 570,50 4.488E6 0.468E5 4.424E6 4.479E6 4.624E6
The results in bold mean that MEPS 70/51 4.375E6 0.616E5 4.277E6 4.390E6 4.462F6
aftefr the l(liylt)l(l)theswltest Wast q CE-CMEPS 70,51 4.566E6 0.460E5 4.510E6 4.556E6 4.690E6
periormed, the result presente
by CE-CMEPS h1/sl is robust MPSAC 4.012E6 1.223E5 3.759E6 4.012E6 4.278E6
compared to the other methods MODQN 2.619E6 1.438E5 2.401E6 2.614E6 3.062E6

the same as in standard MEPS, O(tyaz - m - 53) for the version that employs crowding distance and O(s;) - m?)
for the counterpart that employs hypervolume contribution.

Algorithm 1 Multi-Objective CE Method for optimization

Input: Initial mean vector y and variance vector 0'(2), sample size N, elite size N,, smoothing coefficient @, maximum number of generations 7', number of
variables d

Output: A, elites

1 Py « sample N individuals from multivariate N (uo, a'%);

2 Evaluate and assign fitness to each individual in Py;

3 te1;

4 whiler < T do

5

6

7

A, « Select the N, individuals from P,_; based on non-dominance sorting and crowding distance [47];
fori — 1toddo
1 = Eojeing XAl
8 @7 Do (6 — 1 /1A:
9 end
10 He = apy + (1 — @13
1 o — ao; + (1 —@)o-1 A, « sample |P,_i| — |A,| individuals from multivariate N (y,, 0',2);
12 Evaluate and assign fitness to each individual in A;
13 P, — AN UA;
14 te—t+1;
15 end
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Algorithm 2 Cross-Entropy based Cascade Multi-Objective Evolutionary Policy Search (CE-CMEPS)

Input: Smoothing coefficient a, s,, ¥, tmax, trs tcEs Bs O5 Pacs Pans Nis No» N, S, HT, H

Output: Memory M

t 0

Evaluate each individual of P; for an episode of length /;
Encode each individual of P, as real-valued vector;

Mo < sample mean of P, real-valued vectors;

0'6 « sample variance of P, real-valued vectors;

d < number of elements in the real-valued vectors;

N «2-5,

9 N — sp;

S T N7 R SR R

Initialize population P, with fully connected ANNSs containing »; input nodes, n;, hidden nodes and n, output nodes;

10 Run Run Algorithm Ifor #cr generations evaluating each individual of P, for an episode of length H;

11t < 1t+1cE;
12 Update population P, with the individuals output from CE;
13 while 7 < 1,,,,, do

14 Run MEPS[38] main loop using the cascade weights mutation, evaluating each individual of P, for an episode of length H;
15 Update memory M following memory update procedure;

16 tet+1;

17 end

4 Experiments and results

This section presents and analyzes the outcomes of CE-CMEPS in the context of the proposed ESS control problem.
The effectiveness of the coupled approach is evaluated against standard MEPS and two standard MORL algorithms:
Multi-Policy Soft Actor-Critic (MPSAC) and Multi-Objective Deep Q Networks (MODQN). MPSAC integrates soft-
actor critic methods with multi-objective CMA-ES [57], while MODQN utilizes the MORL framework for Deep RL
as introduced in [32]. The MODQN architecture comprises two fully connected layers with 64 neurons each, whereas
MPSAC employs ANNs with a single hidden layer containing 64 neurons. Both CE-CMEPS and standard MEPS
began with an ANN population initialized without hidden layers. For all algorithms, ReLU activation functions [58]
were used in the neurons. The input and output layer configurations were the same across all four methods, with 7 and
11 neurons, respectively. The remaining hyperparameters are detailed in Table 3 with CE parameters chosen empiri-

cally and MEPS parameters extracted from [59].
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Regarding computational complexity, CE-CMEPS incurs an additional cost of O(Sf,) due to the integration of

the Cross-Entropy (CE) method, as compared to CMEPS and MEPS. However, in our experimental setup, we
selected parameter values to balance this cost. Specifically, we set s, = 50 and ¢max = 450 for CE-CMEPS, and
tmax = H00 for MEPS, assuming a constant m. Under these conditions, both algorithms yield the same numerical
time complexity of O(m - 1,250, 000). This ensures a fair comparison between methods while keeping computa-
tional effort consistent across experiments.

To assess the capacity of each algorithm in generalizing to unseen scenarios, we used various load scenarios for
training and testing. Figure 6a shows the test scenario as a dashed line, and the orange region represents the extent of
noise included in the process of generating training scenarios. For each algorithm, the ESS started at 100% SoC, and 20
independent runs were performed. The performance of each execution was determined by the average reward obtained
from five randomly sampled load scenarios from the green area. The public grid energy purchasing price is composed
of day and night prices of 0.12€/kWh and 0.20€/kWh, respectively. Day prices apply from 5 a.m. to 8 p.m. and night
prices apply from 8 p.m. to 5 a.m. [43]. After training, each algorithm was tested on the test scenario detailed in Fig. 6b.

The hypervolume indicator (HV) is employed as a measure to assess the quality of the solution set obtained by
each method [60]. The HV measure is chosen because it allows for the comparison of different algorithms using
a single value, without requiring knowledge of the true Pareto front or its approximation. It is obtained using the
accumulated rewards from multiple policies after the predefined number of generations and a reference point.
From a decision-maker standpoint, a high HV value translates into better trade-off solutions. The reference point
used in this work is equal to [37280, 340, 560].

Figure 7 illustrates the hypervolume of policies averaged across 20 runs for each algorithm. Both MPSAC and
MODQN exhibit increasing hypervolume values with each generation during training. However, their perfor-
mances are consistently below those of MEPS and CE-CMEPS, with MODQN displaying the poorest training
performance. Notably, the hypervolume values of CE-CMEPS do not show as much of an increase in the first 50
generations when the CE algorithm is active. However, upon completion of the CE algorithm and the initializa-
tion of weights for CMEPS, it takes less than 50 generations for the CE-CMEPS variants to surpass the hyper-
volume values of standard MEPS variants. This pattern suggests that the CE method can identify a more suitable
basin of attraction for CMEPS to operate within.

Following training, the performance of each algorithm was assessed on an unseen test scenario. Table 4 pro-
vides details on the average HV values obtained in this test scenario. Similar to their training performance, both
MPSAC and MODQN not only exhibited the poorest performance but also demonstrated the highest standard
deviations, with MODQN yielding the lowest HV values. Among the MEPS versions, HO/SO and H1/S0 showed
comparable results, with a slight advantage for CE-CMEPS. CE-CMEPS;(,5; and CE-CMEPSy; /5, versions
achieved the best performances in terms of HV values. Notably, all CE-CMEPS versions improved upon the per-
formance of their standard MEPS counterparts in terms of HV, with H1/S1 and HO/S1 attaining the highest HV
values. Furthermore, apart from CE-CMEPS 50, the other CE-CMEPS versions also exhibited reduced stan-
dard deviations, maintaining consistent performance across multiple executions. Finally, the CE-CMEPSy /5
version not only achieved the highest average HV value but also exhibited the lowest standard deviation.

The mean and standard deviation of hypervolume values may serve as introductory indicators but it might not suf-
ficiently capture the nuances of the obtained results. Hence, a statistical protocol, based on methodologies outlined in
[6, 61], was adopted. The Kruskal-Wallis test [62] was utilized to identify potential differences among the mean objec-
tive function values using 20 runs for each algorithm. Accordingly, a p-value < 0.05 indicates (with a significance
level of 95%) the occurrence of differences among the means. Subsequently, the Wilcoxon signed-rank test [63] using
the Holm-Bonferroni correction [64] was conducted for pairwise analysis to detect differences between the analyzed
samples. The presence of p-values less than 0.05 in the comparisons indicates rejection of the null hypothesis with 95%
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significance in all cases. As corroborated by the statistical test results, not only does CE-CMEPS /5, exhibit superior
performance, but CE-CMEPS also outperforms standard MEPS in the proposed multi-objective ESS control problem.
Subsequently, we analyzed the behavior of the CE-CMEPS;;,5; solution with best ranking after ranking
the combined Pareto set of solutions using the Modified Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) [65] with equal importance for every objective. Figure 8 shows that the proposed method
effectively learned to discharge the ESS at moments when both the public grid electricity price is higher and the
amount of renewable energy in its composition is reduced. This solution leads to a total weekly cost 0o 37161.02€,
313.70kg of COs, and an accumulated SoC penalty of 120.19, whereas the best TOPSIS ranking solution from
MPSAC yields a total weekly cost of 37178.48€, 317.50kg of COs, and an accumulated SoC penalty of 122.00.
Therefore, CE-CMEPS;;,5; offers an efficient solution for transitioning to clean energy that not only reduces
costs and increases battery life but also saves nearly 4 kg of CO4, per week compared to an actor-critic-based
solution. Additionally, in terms of final network size, CE-CMEPS solution was composed of 59 hidden nodes and
204 connections, while MPSAC’s solution consisted in 64 hidden nodes and 1152 connections. Such parameter
reduction makes CE-CMEPS a suitable solution for use as a controller in devices with low computing power.

5 Conclusion

This paper proposed a modified version of MEPS and its coupling with the multi-objective Cross-Entropy (CE)
method. In this coupled approach, CE acted as a depth initialization strategy performing an initial search in the weights
space to initialize the population. The modified version of MEPS, namely Cascade-MEPS (CMEPS), was then ini-
tialized using the obtained set of weights. The CMEPS employed a cascade weights mutation operator that restricts
mutation to the weights associated with the most recent hidden node, to make local and non-disruptive adjustments
to policies. The proposed approach was validated on a newly proposed multi-objective energy storage system (ESS)
control problem. The proposed coupled algorithm, namely CE-CMEPS, not only improved the performance of MEPS
but also reduced the performance variation. Despite the advantages and enhancements offered by CE-CMEPS, the
integration of CE and CMEPS introduces a few additional hyperparameters and adds another layer of complexity to
MEPS. Users are required to specify both the number of generations for each algorithm and the CE smoothing coef-
ficient value. Moreover, the initial population is initialized with the same topology, implying that every weight-encoded
vector in CE exists in the same dimension. It is also worth noting that, although the integration of the Cross-Entropy
(CE) method in CE-CMEPS introduces an additional computational cost, this is not a limiting factor in our application.
Since the energy planning problem considered here spans a one-week horizon and does not require real-time decision-
making, the longer training time is acceptable. Moreover, the testing phase remains computationally efficient, ensuring
the practical applicability of the proposed approach. We suggest future research to explore the utilization of CE for
chromosomes of varying lengths. Overall, CE-CMEPS has demonstrated efficacy as an ESS discharge controller and
represents a promising solution for sustainability and energy conservation. It outperforms traditional deep-learning
MORL methods and yields solutions suitable for integration into embedded control systems.
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