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Abstract
Effective control of Energy Storage Systems (ESS) is crucial for the secure and profitable operation of 
microgrids. In this context, ESSs are essential for enhancing the overall grid resilience, balancing supply, and 
mitigating voltage and frequency variations. This paper presents a novel neuroevolutionary method, coupling a 
modified version of the Multi-Objective Evolutionary Policy Search (MEPS) algorithm with the Cross-Entropy 
method, aimed at optimizing an ESS control problem. The modified MEPS, named Cascade-MEPS, employs 
a cascade weights mutation operator to refine policies by focusing on the most recent hidden node, ensuring 
localized and non-disruptive adjustments. The resulting algorithm, referred to as cross-entropy Cascade-MEPS 
(CE-CMEPS), utilizes the cross-entropy method as a depth initialization strategy, conducting an initial explora-
tion of the weights space to initialize the population prior to Cascade-MEPS execution. Experimental validation 
on a newly proposed multi-objective ESS control problem demonstrates the efficacy of CE-CMEPS, showcas-
ing performance improvements and reduced variation compared to standalone MEPS. Our results show that 
CE-CMEPS is an effective ESS discharge controller and a sustainable multi-objective reinforcement learning 
solution.

Keywords  Direct policy search (DPS) · Multi-objective (MO) control · Reinforcement learning · Neural 
networks architecture · Neuroevolution · Energy management

1  Introduction

In the past decades, the challenge of meeting energy demand and reducing carbon emissions has drawn attention 
from both academia and industry. Consequently, renewable energy sources (RES), such as wind turbines (WT) 
and photovoltaic panels (PV), have been playing a major role in the transition to a less-pollutant energy genera-
tion, facing not only technological improvements [1] but also cost reductions [2]. To mitigate intermittency and 
non-continuity production of renewable energy generation, RES are often deployed alongside energy storage 
systems (ESS) [3, 4] in microgrids (MGs). Microgrids are self-sustaining generation sources that include RES, 
various energy storage devices, and possibly fossil fuel generation sources such as diesel or gas generators [5, 6].
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Efficient energy management is one of the most important factors affecting the quality and reliability of MGs 
[7]. Among the different RES present in a microgrid, it is worth noting the importance of energy storage manage-
ment in a secure MG operation [8]. An effective ESS control strategy can lead to energy cost reduction and MG 
operational stability improvement [9]. The search for optimal ESS control strategies often includes utilizing clas-
sical optimization methods [10], heuristic optimization methods [11], and reinforcement learning methods [12], 
to name a few. Classical and heuristic optimization algorithms have long been recognized as suitable methods to 
handle ESS control problems. However, these algorithms, as iteration-based solvers, have faced some significant 
limitations. First, when dealing with large dimensional problems, a large number of iterations is required for 
population updating or iterative searching. Second, the algorithm may need to be restarted at each iteration and/
or when there is a slight change in the problem [13]. On the other hand, reinforcement learning (RL) algorithms, 
do not need to be restarted at every iteration and are robust to high-dimensional state spaces as well as slight 
changes in the target problem [14].

In this way, the control of battery ESSs using single-objective reinforcement learning has been widely studied 
in the last few years. For instance, a model-free algorithm based on a periodic action-value function and deter-
ministic policy gradient is proposed to manage a multi-battery ESS under a residential microgrid [15]. Addition-
ally, in [16], a deep RL solution based on the actor-critic algorithm is presented to address the electricity arbitrage 
problem in optimal ESS management of a commercial/residential building. Besides actor-critic-based algorithm, 
the Q-Learning algorithm combined with (deep) neural networks for state-action value function has become a 
popular RL alternative to energy management problems. In [17], a deep Q-Learning with prioritized replay is 
employed to manage the scheduling of an ESS in a residential ESS-integrated PV system. A deep Q-Learning 
algorithm is also utilized in [18], in which it controls the amount of energy bought from the public grid to charge 
the storage system. Moreover, the authors in [19] employed Q-Learning to search for an optimal ESS charge/
discharge strategy in a microgrid, considering residential and commercial load demands.

To handle problems with a large or infinite state space, roughly all RL algorithms utilize the generalization 
abilities of function approximators in estimating value functions [20]. Feedforward neural networks (NNs) are a 
particular case of such function approximators that have been successfully employed in combination with rein-
forcement learning methods to overcome the aforementioned limitations [21, 22]. Specifically, neural networks 
employing Rectified Linear Units (ReLU) as activation functions have become popular due to their practical 
performance [23]. Yet, the performance of these networks depends on their complexity, specifically the careful 
selection of the network’s topology and architecture (number of layers, nodes, and connections) as well as the 
size of the parameters [24]. A poorly chosen network topology may hinder its ability to perform the intended 
task, even with extensive training. Therefore, many studies have aimed to establish a correlation between neural 
network complexity and its learning capacity.

In [25], the authors have proven that adapting the NN’s topology to the function being approximated leads to 
a smaller upper bound for learning error, compared to fixing the topology and only adjusting the weights, for the 
specific case of Sobolev Spaces. Moreover, the authors in [26] have shown that, for a given dense network, there 
is a sub-network with fewer nodes and connections that, when trained in isolation, achieves comparable perfor-
mance as the original one. Recently, the importance of constraining the topology of a neural network is reinforced 
by tightening the learning capability bound of ReLU-based NNs in [27]. The VC-dimension [28] of this class of 
networks has been proven to have a linear dependency on the number of nodes and connections. Thus, the ulti-
mate performance of a policy parameterized by an ANN depends not only on the weight values but also on the 
proper selection of the number of nodes and connections in each NN.

Even though RL algorithms usually target problems in which the feedback signal from the environment is sca-
lar, many real-world control problems are inherently too complex and often involve dealing with multiple objec-
tives [29]. Multi-policy multi-objective reinforcement learning (MORL) algorithms have arisen as a viable option 
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for delivering numerous trade-offs among objectives, offering an effective means to identify superior trade-off 
solutions [13, 30]. Most of the MORL proposals in the state-of-the-art rely on policy gradient updates [31–34]. 
However, it is widely known that gradient-based optimization is subject to getting trapped in local minima [35]. 
Thus, direct policy search (DPS) [36] is emerging as a popular MORL alternative method to alleviate gradient 
issues. DPS defines the control policy within a given functional parametrization and explores the policy param-
eters space by searching for the best solution concerning a given set of objectives. Our proposal addresses the 
following issues that summarize the major contributions of this article:

	● We propose a new multi-objective energy storage control problem for a solar-wind microgrid considering three 
objectives: CO2 emissions, operational cost, and a penalty for maintaining the battery at a low state of charge 
(SoC);

	● A novel modified version of the multi-objective evolutionary policy search (MEPS) that performs local adjust-
ments to policies by constraining weights mutation;

	● A combination of the multi-objective Cross-Entropy (CE) method with the modified MEPS algorithm to con-
trol the charge/discharge strategy of an ESS in a microgrid for a working horizon of one week;

	● A comparison of the proposed method with standard MEPS, as well as with two MORL algorithms based on 
actor-critic and Q-learning, and;

	● A thorough statistical analysis of the performances of each algorithm in terms of hypervolume indicator. We 
leverage the robust generalization capabilities of RL, the benefits of gradient-free optimization, and the search 
efficiency of evolutionary algorithms.

The remainder of this article is organized as follows: Sect. 2 elaborates on the detailed modeling of the studied 
battery energy storage system control. Section  3 presents the proposed coupled multi-objective direct policy 
search approach. The effectiveness of the method is demonstrated through experiments in Sect. 4. Finally, conclu-
sions are presented in Sect. 5.

2  Problem formulation

This section formally defines the energy storage control problem over a week-long planning horizon. Initially, 
the configuration of the ESS-integrated solar wind power microgrid system is outlined, followed by a detailed 
presentation of the constraints and the objective functions. Subsequently, the control problem is formulated as 
a Markov Decision Process (MDP) [37] and treated from a multi-objective standpoint, considering operational 
costs, CO2 emissions, and penalties for surpassing the ESS capacity constraint. In this context, the learning agent 
functions as an energy management system (EMS), designed to manage the discharge of energy from the ESS 
and the importation of energy from the public grid.

2.1  Microgrid simulation model

The configuration of the simulated microgrid system is based on the frameworks presented in [38, 39]. This sys-
tem comprises 200 photovoltaic panels [40], a wind turbine [41], a 140 kW Lithium-ion battery energy storage 
system (ESS), a DC/AC converter, an electrical load, a main grid connection with real-time pricing (RTP), and 
an energy management system (EMS). Figure 1 illustrates the system structure. Table 1 details the specifications 
of the microgrid (MG) project, which is designed for a 24-year operational lifetime.
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The electrical load consists of the hourly energy demand over a week in 2019 (measured over 168 h) from a set 
of industrial and commercial buildings in a region of Belgium [43]. Additionally, the MG system utilizes hourly 
data from 2019 for dynamic energy pricing, wind speed, ambient temperature, and solar radiation from [43]. The 
following section presents the objective functions as well as the various constraints present in the problem.

2.2  Operating costs and ESS restrictions

The charge and discharge management of the ESS dictates whether energy is being stored or utilized for 
each time step t. The SoC, at each time step, is calculated according to [42]:

	

SoC(t) =
{

SoC(t − 1) + Pch(t)·ηc

Prated
, if charging

SoC(t − 1) − Pdch(t)
Prated·ηd

, if discharging,� (1)

DC/AC converter PV WT Battery
Life time (years) 15 24 24 17.5
Efficiency (%) 96 20.4 95 90
Rated power (kW) – 0.45 100 –
Capacity (kW) – – – 1000
Cycles (un) – – – 8000
Initial cost (€) - 500.00 1800.00 –
Cost (€/kW) 700.00 – – 1143.00
Operational cost (€/kW) – 18 0.36 –

Table 1  Configuration val-
ues for the microgrid project

 

Fig. 1  Simulated microgrid 
system design. Based on [42]
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in which ηd = 1.0 and ηc = 0.90 represent the discharging and charging efficiencies, respectively. Prated 
refers to the nominal capacity of the ESS. The power requested for charging, Pch(t), is given by [38, 39]:

	
Pch(t) = min{(SoCmax − SoC(t − 1)) · Prated, Pch(t)},

� (2)

in which SoCmax refers to the maximum allowed SoC. The power discharge request, denoted as Pdch(t), is 
regulated by the learning agent and should not exceed the available energy, Pavl(t) = SoC(t − 1) · Prated, as 
shown in Eq. (3):

	

Pdch(t) =
{

Pdch(t), Pdch(t) <= Pavl(t)
Pavl(t), otherwise.� (3)

Furthermore, the operation takes into account both the utilization and degradation expenses of ESS. The cost 
of ESS utilization is given by [39, 44]:

	

CESS(t) = INVESS

Lc · Prated · DoD(t)
,

� (4)

in which the initial investment of ESS and its available cycle lifespan are denoted by Lc and INVESS , 
respectively. Consequently, within this modeling framework, the total operational cost is determined accord-
ing to [44]:

	
Ctotal(t) = IC + Cp + Cnp + CESS(t),

� (5)

in which the value Ctotal(t) denotes the total costs of operating the system per time t. The initial cost (IC) 
encompasses 20% of the operation and maintenance costs, a 1.4% rate for inflation, a 6% discount rate, 
personnel costs, installation expenses, and connection fees. It also includes both non-periodic costs (Cnp) 
for the replacement of components such as the ESS [44], and periodic costs (Cp) for the maintenance of 
solar and wind generation components. Additionally, the constraints on charging and discharging power are 
specified as follows:

	

ConstraintsESS =
{ 0 ≤ Pch ≤ P max

ch ,
0 ≤ Pdch ≤ P max

dch ,
Pch · Pdch = 0,� (6)

where P max
ch  and P max

dch  represent the maximum charge and discharge power, respectively. Furthermore, the 
minimum state of charge (SoC) is defined as 1 − DoD(t), in which DoD indicates the battery’s depth of dis-
charge. The objective function for cost minimization, as formulated by [38, 39], is subsequently presented 
as follows:

	
Cost(t) = Ctotal(t) + P buy

t · Prt,� (7)
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in which the cost of operation is joined with the cost of purchasing public grid energy P buy
t  at price Prt to 

supplement the deficient microgrid power.

2.3  CO2  emissions

To provide an estimate of the amount of grams of CO2 emissions per kWh for public grid energy purchased 
and generated from renewable sources, an average of between the minimum and maximum greenhouse gas 
emission values obtained from [2] are employed as follows:

	● Solar Photovoltaic emissions (CO2P V ) = 44.15 g CO2eq./kWh;
	● Wind Power onshore emissions (CO2W Ton ) = 11.90 g CO2eq./kWh;
	● Wind Power offshore emissions (CO2W Toff ) = 17.50 g CO2eq./kWh;
	● Nuclear emissions (CO2NU ) = 5.75 g CO2eq./kWh;
	● Hydro emissions (CO2HY ) = 76.50 g CO2eq./kWh;
	● Cogeneration (CO2COG) and Combined cycle emissions (CO2CC ) = 156.00 g CO2eq./kWh;

Moreover, concerning energy purchased from the public grid, the CO2eq./kWh is calculated based on the 
hourly dispatchable energy composition in Belgium, as detailed in [45]. Figure 2 shows the hourly dispatch-
able energy composition for the considered operation week. It is worth noting that biomass emissions are 
not considered due to difficulties in estimating its CO2 emissions.

Hence, the emissions in CO2eq./kWh [11] for renewable generation and energy purchased from the public 
grid are:

	
EmissionW T (t) = CO2W Ton · P W T

t� (8)

	
EmissionP V (t) = CO2P V · P P V

t� (9)

Fig. 2  Hourly dispatch-
able energy composition in 
Belgium for a week in 2019. 
Figure built using data avail-
able in [45]
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EmissionBuy(t) =
∑

RES∈GCt

CO2RES · Composition(t) · P Buy
t ,

� (10)

in which P P V
t  and P W T

t  denote the amount of energy produced at each time t by photovoltaic panels wind 
turbines, respectively. The set of renewable energy sources that compose the public grid energy and their 
corresponding percentage at time t are given by GCt and Composition(t), respectively. The objective func-
tion for minimizing CO2 emissions is derived in accordance with the methodology outlined in [11]:

	
Emission(t) = EmissionW T (t) + EmissionP V (t) + EmissionBuy(t).

� (11)

2.4  ESS state of charge penalty

The proposed model incorporates a penalty function associated with utilizing the energy storage system 
(ESS) below a 50% state of charge (SoC) threshold, denoted as SoCT arget, which serves as an emergency 
reserve. This penalty discourages excessive depletion of the ESS, thereby reducing reliance on energy 
purchases from the public grid during renewable energy outages. By enforcing a minimum SoC level, the 
model ensures that sufficient stored energy remains available to maintain microgrid operation when renew-
able generation is unavailable.

Introducing a penalty for SoC levels below 50% is further justified by the operational and technical 
limitations inherent in battery energy storage systems. Deep discharging accelerates capacity degradation 
and reduces cycle efficiency, particularly in lithium-ion batteries, where it can induce electrode damage 
and uneven cell aging. Maintaining a higher minimum SoC also preserves reserve capacity, enabling rapid 

Fig. 3  Penalty factor for 
different SoC values. Based 
on [13]
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response to grid contingencies and sudden demand spikes. This operational buffer enhances system resil-
ience and supports grid stability, especially in contexts with high penetration of intermittent renewable 
sources.

Consequently, penalizing SoC values below 50% promotes a conservative and sustainable operational 
strategy, aligning with objectives of long-term battery health preservation and reliable grid support. The 
corresponding objective function for minimizing the accumulated SoC penalty is defined in Eq. (12) [13]:

	

PENSoC(t) =
{

(SoC(t) − SoCtarget)2 · m1 + m2 if SoC(t) ≤ SoCtarget

exp
(
− log(m3) · SoC(t)−SoCtarget

1−SoCtarget

)
otherwise,� (12)

in which m1 = 10, m2 = 2 and m3 = 1.5 are used to control the stringency of M. Figure 3 illustrates the 
behavior of the penalty factor PENSoC  for different SoC levels [13].

2.5  Storage control Markov decision process

In this problem, energy storage management involves controlling the discharge of the ESS on an hourly 
basis. The learning agent is tasked with determining the percentage of available ESS energy to be utilized 
each hour. To address insufficient microgrid power, the system relies on importing from the public grid, 
necessitating information on both environmental conditions and the current battery state of charge (SoC) 
across various states. Thus, the operational characteristics are formally represented through a MDP [37], 
incorporating a state space denoted as S, an action space denoted as A, and rewards R, which are assessed on an 
hourly basis across one week. The state space S is defined by a seven-dimensional vector in R7, encapsulat-
ing state details for each hour t [42]:

	

st ∈ S =
{

SoC(t), P load
t , P rt, P P V

t , P W T
t ,

P buy
t

P load
t

,
Pdch(t)
P load

t

}
,

� (13)

in which P load
t  denotes the load demand at t hour, Prt is the to supply the insufficient microgrid power,P P V

t , 
and P W T

t  denote the amount of energy produced at each time t by photovoltaic panels wind turbines. The 
power discharge request, denoted as Pdch(t), is regulated by the learning agent and should not exceed the 
available energy, and P buy

t  is the purchasing of public grid energy. Moreover, at each hour, the agent needs 
to select the percentage of the available ESS energy that will be used. Thus, there are 11 possible actions in 
action space:

	
at ∈ A = {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}.

� (14)

Upon execution of an action, the dynamics of the energy storage system (ESS) undergo updates in the fol-
lowing manner:

	
SoC(t) = SoC(t − 1) − at · SoC(t − 1)

� (15)
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Pdch(t) = at · Pdch(t).

� (16)

Note that the ESS is not discharged if the load demand at time t is already met by the renewable energy 
generation. Thus, an action that leads to discharging the battery in this situation is equivalent to performing 
no discharge (at = 0%). Furthermore, when the energy storage system (ESS) maintains a sufficient state of 
charge (SoC) to meet the local demand, but the control agent elects to discharge less power than required, 
the resulting power deficit is compensated by importing energy from the public grid. The first objective is to 
minimize the system operating cost, denoted as Cost(t). The second objective is to minimize CO2 emission, 
represented by emission(t). In addition, the term PENSoC(t) denotes the penalty function associated with 
the SoC objective. Finally, the multi-objective reward function is a R3 vector as follows:

	
R(st, at) = [Cost(t), Emission(t), PENSoC(t)] .

� (17)

After defining the MDP, reinforcement learning is employed to address the resulting problem. The opera-
tional behavior of the learning agent within the designed control problem can be outlined as: (1) Selecting an 
action at; (2) Executing microgrid operations for one hour; (3) Adjusting the current state st; (4) Updating 
costs; (5) Updating emissions; (6) Updating SoC penalty; (7) Repeating steps (1)–(6).

3  Proposed multi-objective algorithm

3.1  MEPS algorithm

The Multi-objective Evolutionary Policy Search (MEPS), introduced in [38], represents a model-free 
approach designed for estimating action-preference values within MORL environments. MEPS is part of 
the “actor-only” family of reinforcement learning methods and employs the NEAT (NeuroEvolution of 
Augmenting Topologies) framework [46] to evolve artificial neural networks (ANNs) for implementing 
deterministic policies. By evolving network policies, MEPS circumvents the need for gradient updates or 
the computation of value-function estimations. Moreover, MEPS employs population-based methods to 
generate a diversified Pareto-optimal set of policies, thereby classifying it as a multi-policy algorithm [30].

Initially, an initial random population Pt (t = 0), consisting of sp ANNs, each equipped with an output 
node corresponding to every potential action, is generated. The evaluation of individuals is based on a 
vectorial reward function over a fixed horizon H, each individual’s accumulated reward denoted as rH . The 
networks in population Pt are then sorted via non-dominated sorting and a density measure, using the accu-
mulated reward. The ANNs used in MEPS are constructed to generate preference values p(s, a) for every 
possible action a when provided with an input state st. Furthermore, to ensure deterministic policy behavior, 
the agent selects actions greedily.

MEPS utilizes two types of density measures: (1) crowding distance (CD) [47], and (2) hypervolume con-
tribution (HVC) [48]. The former aims to evenly distribute solution points along the Pareto front, ensuring 
uniform coverage, while the latter is designed to distribute solution points to maximize the hypervolume 
covered, prioritizing knee points while retaining extremal points.
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During the evolutionary process, a set of parents Ut comprising sp individuals is selected randomly from 
the population Pt using crowding binary tournament selection [47]. A subsequent offspring population Λt is 
produced by duplicating individuals from Ut and implementing two distinct forms of mutations: structural 
and parametric. Structural mutations occur probabilistically and involve (1) connecting two previously 
unlinked nodes (pac), and (2) introducing a new hidden node into the network architecture (pan). It is worth 
noting that the individuals in MEPS are ReLU-based feedforward ANNs, which inherently do not incorpo-
rate recurrent connections. Parametric mutation comprises adjusting weights and biases of connections by 
the addition of noise characterized by a Gaussian distribution N (0, σ) with σ as parameter.

The next generation population Pt+1 consists of the survivors chosen from the population Rt = Pt ∪ Λt 
with a total size of 2sp. MEPS employs two different approaches for survival selection. The first involves 
sorting the population Rt via non-dominated sorting into fronts or ranks, and thereafter iteratively selecting 
individuals for the next generation based on their front, similar to the NSGA-II approach [47]. If a front 
exceeds the available slots in the generation, only the best individuals from lower-density regions are cho-
sen, as determined by the selected density measure. The second approach involves adaptively limiting the 
number of survivors that are selected from each of the fronts. In the context of multi-objective optimization, 
during the initial generations, less favorable non-dominated individuals might be prioritized over individu-
als from alternative fronts [49].

Fig. 5  Illustration of the 
encoding of MEPS individu-
als into real-valued vectors

 

Fig. 4  Illustration of the cascade weight mutation operator 
behavior. The weights of connections that are not associated 
with the most recent hidden node are frozen
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Similarly, from a neuroevolutionary point of view, discarded potential solutions may be indicative of 
novel topologies that are prematurely extinct. To prevent this problem, MEPS uses a selection method based 
on a heavy-tailed Pareto distribution [50] that enables some individuals from higher ranks to survive. In this 
selection method, the maximum survivors for each i-th front is determined according to Eq. (18)

	

nFi =




β/iβ+1∑K

i>1 β/iβ+1
· (sp − ⌈sp · ratio⌉) , i > 1

⌈sp · ratio⌉, i = 1,� (18)

in which ratio and K indicate the fraction selected from the first front and the number of non-dominated fronts, 
respectively. The parameter β defines the distribution’s tail. To avoid losing promising topologies and converging 
to an incomplete Pareto front prematurely, ratio is incrementally increased with the number of generations, as 
described by Eq. (19)

	

ratio =
{ 1, tr < t < tmax

ψ + tr · (1−ψ)
t , otherwise,� (19)

where ψ lies in the (0, 1) interval and represents the beginning proportion of non-dominated individuals that will 
be drawn This proportion is is gradually increased over the course of generations to reduce the exploration of 
solutions from higher ranks. Additionally, after a predefined number of generations tr, the heavy-tailed selec-
tion mechanism is substituted by the first approach. Importantly, if there are fewer individuals in a front than its 
maximum allowed survivors, the remaining slots are cyclically allocated to the next front until all slots are filled. 
Furthermore, to retain the best individuals discovered across generations, MEPS updates a memory of size sp 
with the next population Pt+1.

Parameter Description
np Population size
S Density measure function
ϕ(x) Activation function
ϕo(x) Output activation function
ψ Initial fraction selected from first front
tmax Total generations
tr End generation number of heavy tail survivor selection
α Heavy tail selection parameter
ni Number of input nodes
nh Number of initial hidden nodes
no Number of output nodes
pac Add connection mutation probability
pdc Delete connection mutation probability
pan Add node mutation probability
pdn Delete node mutation probability
σ Parametrical mutation standard deviation
HT Indicate the use or not of the heavy tail survivor selection
h Length of the episode to evaluate the agent

Table 2  Parameters 
description
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3.2  Cross-entropy based cascade MEPS

In this work, we propose both a modified MEPS version and a novel coupled algorithm from the combination of the 
Cross-Entropy method and the aforementioned modified MEPS version. First, the proposed modified MEPS version, 
dubbed Cascade-MEPS (CMEPS), is inspired by the Cascade-NEAT algorithm presented in [51]. The Cascade-NEAT 
algorithm employs a cascade mutation operator that alters both the “Add node” and “Add connection” mutation opera-
tors. This change constrains not only recent nodes to be connected to all previously existing nodes but also weight 
mutations to occur only on connections associated with the most recent hidden node. The Cascade-NEAT algorithm 
demonstrated superior performance in single-objective RL problems, where the optimal actions for one state often vary 
abruptly compared to neighboring states, resulting in high variation and discontinuity in the best solutions. Previous 
neuroevolution research suggests that a strategy to address such problems is to implement local and non-disruptive 
adjustments to policies [52].

The cascade mutation operator, as adopted in our work, is inspired by the Cascade-NEAT architecture pro-
posed by Kohl and Miikkulainen [51]. The central idea is to restrict weight modifications to the most recently 
added node in the network, rather than applying changes across the entire network. This design stems from the 
insight that, in highly discontinuous decision spaces, large-scale mutations can disrupt the finely tuned behavior 
of existing network components. By allowing only the newest node to be mutated, the network incrementally 
refines its decision boundaries in a localized and stable manner. The rationale is to gradually refine new contribu-
tions to the model without inadvertently altering previously established structures that may already be performing 
well. Given the significant variation in ESS control due to various factors each hour, we propose a novel version 
of MEPS. This version implements a modified cascade mutation operator that constrains the weights mutation 
operator to make localized adjustments to each policy, specifically targeting connections associated with the most 
recent hidden node, as depicted in Fig. 4.

Cross-entropy method (CE) is an evolutionary algorithm initially proposed by [53] for estimating probabilities 
of rare events in complex stochastic networks, and later extended to solve optimization problems. CE is a Monte 
Carlo technique for sampling and optimization that can be applied to combinatorial and continuous problems. It 

is distinct from the classical cross-entropy definition in information theory.
Here, a multi-objective CE version based on [54] acts as an initial depth search operator and optimizes the 

initial population weights using CE to find a promising basin of attraction to initialize MEPS’ population. In 

Description CE-CMEPS MEPS MPSAC MODQN
sp 50
Initial ratio 0.5 – –
tr 250 – –
β 1.0 – –
pac 0.2 – –
pan 0.2 – –
σ 0.5 1.0 –
Learning rate – – 0.001 0.001
Gamma – – 0.99 0.99
Initial epsilon – - – 0.1
Epsilon decay – - – 3.7 · 10−5

Smoothing coefficient 0.5 – – –
Generations 50 + 450 500 250 + 250 500
H 168

Table 3  Parameter initializa-
tion values used in the ESS-
integrated solar wind power 
microgrid problem
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the first step, CE is initialized with a population of ANNs with random weights encoded as illustrated in Fig. 5. 
Subsequently, CMEPS is utilized to evolve the ANN topology starting with weights obtained from the first step 
to estimate action-preference values in MORL. The motivation for this proposal is based on the promising results 
of both CE as initial depth search shown in [6, 55], and a two-step evolution approach for single-objective policy 
search proposed in [56].

The multi-objective CE method for optimization employed in this work can be summarized in Algorithm 1 
[54]. Algorithm 2 shows the pseudocode for the proposed approach. All parameters are explained in Table 2. The 
time complexity of the Algorithm 2 is divided into two parts: (1) CE complexity and (2) CMEPS complexity. 
According to [55], the CE time complexity is of order O(s3

p). Since the cascade weights mutation operator does 
not change the time complexity of MEPS standard weights mutation operator, the time complexity for CMEPS is 

Fig. 6  Generation of training 
and testing load scenarios
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the same as in standard MEPS, O(tmax · m · s2
p) for the version that employs crowding distance and O(s3

p · m2) 
for the counterpart that employs hypervolume contribution.

Algorithm 1  Multi-Objective CE Method for optimization

Mean Std Worst Median Best
MEPSH1/S0 4.372E6 0.466E5 4.234E6 4.380E6 4.426E6
CE-CMEPSH1/S0 4.504E6 0.514E5 4.415E6 4.503E6 4.597E6
MEPSH1/S1 4.393E6 0.656E5 4.194E6 4.410E6 4.463E6
CE-CMEPSH1/S1 4.601E6 0.383E5 4.548E6 4.596E6 4.698E6
MEPSH0/S0 4.375E6 0.501E5 4.221E6 4.394E6 4.422E6
CE-CMEPSH0/S0 4.488E6 0.468E5 4.424E6 4.479E6 4.624E6
MEPSH0/S1 4.375E6 0.616E5 4.277E6 4.390E6 4.462E6
CE-CMEPSH0/S1 4.566E6 0.460E5 4.510E6 4.556E6 4.690E6
MPSAC 4.012E6 1.223E5 3.759E6 4.012E6 4.278E6
MODQN 2.619E6 1.438E5 2.401E6 2.614E6 3.062E6

Table 4  Evaluation of each 
algorithm’s performance 
in terms of hypervolume 
within the test load demand 
scenario

The results in bold mean that 
after the hypothesis test was 
performed, the result presented 
by CE-CMEPS h1/s1 is robust 
compared to the other methods

 

Fig. 7  Mean HV values across 
20 runs for each method dur-
ing the training phase
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Algorithm 2  Cross-Entropy based Cascade Multi-Objective Evolutionary Policy Search (CE-CMEPS)

4  Experiments and results

This section presents and analyzes the outcomes of CE-CMEPS in the context of the proposed ESS control problem. 
The effectiveness of the coupled approach is evaluated against standard MEPS and two standard MORL algorithms: 
Multi-Policy Soft Actor-Critic (MPSAC) and Multi-Objective Deep Q Networks (MODQN). MPSAC integrates soft-
actor critic methods with multi-objective CMA-ES [57], while MODQN utilizes the MORL framework for Deep RL 
as introduced in [32]. The MODQN architecture comprises two fully connected layers with 64 neurons each, whereas 
MPSAC employs ANNs with a single hidden layer containing 64 neurons. Both CE-CMEPS and standard MEPS 
began with an ANN population initialized without hidden layers. For all algorithms, ReLU activation functions [58] 
were used in the neurons. The input and output layer configurations were the same across all four methods, with 7 and 
11 neurons, respectively. The remaining hyperparameters are detailed in Table 3 with CE parameters chosen empiri-
cally and MEPS parameters extracted from [59].

Fig. 8  Behavior of the CE-
CMEPSH1/S1 solution with best 
ranking after ranking the combined 
Pareto set of solutions using the 
Modified TOPSIS with equal 
importance for every objective
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Regarding computational complexity, CE-CMEPS incurs an additional cost of O(s3
p) due to the integration of 

the Cross-Entropy (CE) method, as compared to CMEPS and MEPS. However, in our experimental setup, we 
selected parameter values to balance this cost. Specifically, we set sp = 50 and tmax = 450 for CE-CMEPS, and 
tmax = 500 for MEPS, assuming a constant m. Under these conditions, both algorithms yield the same numerical 
time complexity of O(m · 1, 250, 000). This ensures a fair comparison between methods while keeping computa-
tional effort consistent across experiments.

To assess the capacity of each algorithm in generalizing to unseen scenarios, we used various load scenarios for 
training and testing. Figure 6a shows the test scenario as a dashed line, and the orange region represents the extent of 
noise included in the process of generating training scenarios. For each algorithm, the ESS started at 100% SoC, and 20 
independent runs were performed. The performance of each execution was determined by the average reward obtained 
from five randomly sampled load scenarios from the green area. The public grid energy purchasing price is composed 
of day and night prices of 0.12€/kWh and 0.20€/kWh, respectively. Day prices apply from 5 a.m. to 8 p.m. and night 
prices apply from 8 p.m. to 5 a.m. [43]. After training, each algorithm was tested on the test scenario detailed in Fig. 6b.

The hypervolume indicator (HV) is employed as a measure to assess the quality of the solution set obtained by 
each method [60]. The HV measure is chosen because it allows for the comparison of different algorithms using 
a single value, without requiring knowledge of the true Pareto front or its approximation. It is obtained using the 
accumulated rewards from multiple policies after the predefined number of generations and a reference point. 
From a decision-maker standpoint, a high HV value translates into better trade-off solutions. The reference point 
used in this work is equal to [37280, 340, 560].

Figure 7 illustrates the hypervolume of policies averaged across 20 runs for each algorithm. Both MPSAC and 
MODQN exhibit increasing hypervolume values with each generation during training. However, their perfor-
mances are consistently below those of MEPS and CE-CMEPS, with MODQN displaying the poorest training 
performance. Notably, the hypervolume values of CE-CMEPS do not show as much of an increase in the first 50 
generations when the CE algorithm is active. However, upon completion of the CE algorithm and the initializa-
tion of weights for CMEPS, it takes less than 50 generations for the CE-CMEPS variants to surpass the hyper-
volume values of standard MEPS variants. This pattern suggests that the CE method can identify a more suitable 
basin of attraction for CMEPS to operate within.

Following training, the performance of each algorithm was assessed on an unseen test scenario. Table 4 pro-
vides details on the average HV values obtained in this test scenario. Similar to their training performance, both 
MPSAC and MODQN not only exhibited the poorest performance but also demonstrated the highest standard 
deviations, with MODQN yielding the lowest HV values. Among the MEPS versions, H0/S0 and H1/S0 showed 
comparable results, with a slight advantage for CE-CMEPS. CE-CMEPSH0/S1 and CE-CMEPSH1/S1 versions 
achieved the best performances in terms of HV values. Notably, all CE-CMEPS versions improved upon the per-
formance of their standard MEPS counterparts in terms of HV, with H1/S1 and H0/S1 attaining the highest HV 
values. Furthermore, apart from CE-CMEPSH1/S0, the other CE-CMEPS versions also exhibited reduced stan-
dard deviations, maintaining consistent performance across multiple executions. Finally, the CE-CMEPSH1/S1 
version not only achieved the highest average HV value but also exhibited the lowest standard deviation.

The mean and standard deviation of hypervolume values may serve as introductory indicators but it might not suf-
ficiently capture the nuances of the obtained results. Hence, a statistical protocol, based on methodologies outlined in 
[6, 61], was adopted. The Kruskal-Wallis test [62] was utilized to identify potential differences among the mean objec-
tive function values using 20 runs for each algorithm. Accordingly, a p-value < 0.05 indicates (with a significance 
level of 95%) the occurrence of differences among the means. Subsequently, the Wilcoxon signed-rank test [63] using 
the Holm-Bonferroni correction [64] was conducted for pairwise analysis to detect differences between the analyzed 
samples. The presence of p-values less than 0.05 in the comparisons indicates rejection of the null hypothesis with 95% 
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significance in all cases. As corroborated by the statistical test results, not only does CE-CMEPSH1/S1 exhibit superior 
performance, but CE-CMEPS also outperforms standard MEPS in the proposed multi-objective ESS control problem.

Subsequently, we analyzed the behavior of the CE-CMEPSH1/S1 solution with best ranking after ranking 
the combined Pareto set of solutions using the Modified Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) [65] with equal importance for every objective. Figure 8 shows that the proposed method 
effectively learned to discharge the ESS at moments when both the public grid electricity price is higher and the 
amount of renewable energy in its composition is reduced. This solution leads to a total weekly cost of 37161.02€, 
313.70kg of CO2, and an accumulated SoC penalty of 120.19, whereas the best TOPSIS ranking solution from 
MPSAC yields a total weekly cost of 37178.48€, 317.50kg of CO2, and an accumulated SoC penalty of 122.00. 
Therefore, CE-CMEPSH1/S1 offers an efficient solution for transitioning to clean energy that not only reduces 
costs and increases battery life but also saves nearly 4 kg of CO2 per week compared to an actor-critic-based 
solution. Additionally, in terms of final network size, CE-CMEPS solution was composed of 59 hidden nodes and 
204 connections, while MPSAC’s solution consisted in 64 hidden nodes and 1152 connections. Such parameter 
reduction makes CE-CMEPS a suitable solution for use as a controller in devices with low computing power.

5  Conclusion

This paper proposed a modified version of MEPS and its coupling with the multi-objective Cross-Entropy (CE) 
method. In this coupled approach, CE acted as a depth initialization strategy performing an initial search in the weights 
space to initialize the population. The modified version of MEPS, namely Cascade-MEPS (CMEPS), was then ini-
tialized using the obtained set of weights. The CMEPS employed a cascade weights mutation operator that restricts 
mutation to the weights associated with the most recent hidden node, to make local and non-disruptive adjustments 
to policies. The proposed approach was validated on a newly proposed multi-objective energy storage system (ESS) 
control problem. The proposed coupled algorithm, namely CE-CMEPS, not only improved the performance of MEPS 
but also reduced the performance variation. Despite the advantages and enhancements offered by CE-CMEPS, the 
integration of CE and CMEPS introduces a few additional hyperparameters and adds another layer of complexity to 
MEPS. Users are required to specify both the number of generations for each algorithm and the CE smoothing coef-
ficient value. Moreover, the initial population is initialized with the same topology, implying that every weight-encoded 
vector in CE exists in the same dimension. It is also worth noting that, although the integration of the Cross-Entropy 
(CE) method in CE-CMEPS introduces an additional computational cost, this is not a limiting factor in our application. 
Since the energy planning problem considered here spans a one-week horizon and does not require real-time decision-
making, the longer training time is acceptable. Moreover, the testing phase remains computationally efficient, ensuring 
the practical applicability of the proposed approach. We suggest future research to explore the utilization of CE for 
chromosomes of varying lengths. Overall, CE-CMEPS has demonstrated efficacy as an ESS discharge controller and 
represents a promising solution for sustainability and energy conservation. It outperforms traditional deep-learning 
MORL methods and yields solutions suitable for integration into embedded control systems.
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