

Journal Pre-proof

Regenerative Therapeutics for Chronic Obstructive Pulmonary Disease

Luke van der Koog, Henry Showell, Dyan Nugraha, Mareike Lehmann, Thomas M. Conlon, Ali Önder Yildirim, Rocío Fuentes-Matéos, Hoeke Baarsma, John-Poul Ng-Blichfeldt, Barbro N. Melgert, Antonella F.M. Dost, Janette K. Burgess, Stacy Yam, Irene H. Heijink, Sidrah Ahmed, Margherita Paschini, Eva Jansen, Wouter J. Hinrichs, Jill R. Johnson, Xinhui Wu, Anika Nagelkerke, Henderik W. Frijlink, Carla F. Kim, Reinoud Gosens

PII: S0031-6997(26)00012-8

DOI: <https://doi.org/10.1016/j.pharmr.2026.100124>

Reference: PHARMR 100124

To appear in: *Pharmacological Reviews*

Received Date: 21 November 2025

Accepted Date: 29 January 2026

Please cite this article as: van der Koog L, Showell H, Nugraha D, Lehmann M, Conlon TM, Yildirim AÖ, Fuentes-Matéos R, Baarsma H, Ng-Blichfeldt JP, Melgert BN, Dost AFM, Burgess JK, Yam S, Heijink IH, Ahmed S, Paschini M, Jansen E, Hinrichs WJ, Johnson JR, Wu X, Nagelkerke A, Frijlink HW, Kim CF, Gosens R, Regenerative Therapeutics for Chronic Obstructive Pulmonary Disease, *Pharmacological Reviews* (2026), doi: <https://doi.org/10.1016/j.pharmr.2026.100124>.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2026 The Author(s). Published by Elsevier Inc. on behalf of American Society for Pharmacology and Experimental Therapeutics.

1 Regenerative Therapeutics for Chronic Obstructive

2 Pulmonary Disease

3
4
5 Luke van der Koog^{1,2,3,4}, Henry Showell^{1,4}, Dyan Nugraha^{1,4,5}, Mareike Lehmann^{6,7,8}, Thomas M
6 Conlon⁸, Ali Önder Yildirim^{8,9}, Rocío Fuentes-Matéos^{1,4}, Hoeke Baarsma^{1,4}, John-Poul Ng-Blichfeldt¹⁰,
7 Barbro N. Melgert^{1,4}, Antonella F.M. Dost¹¹, Janette K. Burgess^{12,4}, Stacy Yam^{12,4}, Irene H Heijink^{12,4},
8 Sidrah Ahmed^{13,14}, Margherita Paschini^{13,14}, Eva Jansen², Wouter J. Hinrichs², Jill R. Johnson¹⁵, Xinhui
9 Wu¹⁶, Anika Nagelkerke¹⁷, Henderik W. Frijlink^{2,3}, Carla F Kim^{13, 14}, Reinoud Gosens^{1,4*}

10
11
12 ¹ Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of
13 Groningen, Groningen, the Netherlands;

14 ² Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of
15 Pharmacy, University of Groningen, Groningen, The Netherlands;

16 ³ MimeCure B.V., Eelde, the Netherlands;

17 ⁴ Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University
18 Medical Center Groningen, the Netherlands.

19 ⁵ Department of Pharmacy, Faculty of Health, Sari Mulia University, Banjarmasin, Indonesia

20 ⁶ Institute for Lung Research, Philipps-University Marburg, Member of the German Center for Lung
21 Research (DZL), Marburg, Germany.

22 ⁷ Institute for Lung Health (ILH), German Center for Lung Research (DZL), Giessen, Germany;

23 ⁸ Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center
24 (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany;

25 ⁹ Institute of Experimental Pneumology, Ludwig-Maximilians University (LMU), Munich, Germany;

26 ¹⁰ Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus,
27 Cambridge, United Kingdom;

28 ¹¹ Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical
29 Centre Utrecht, Utrecht, Netherlands;

30 ¹² University of Groningen, University Medical Center Groningen, Department of Pathology and
31 Medical Biology, Groningen, The Netherlands;

32 ¹³ Stem Cell and Regenerative Biology Program, Department of Pediatrics, Divisions of
33 Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA;

34 ¹⁴ Department of Genetics, Harvard Medical School, Boston, MA, USA

35 ¹⁵ School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United
36 Kingdom;

37 ¹⁶ Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada;

38 ¹⁷ Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of
39 Groningen, Groningen, The Netherlands.

40

41 * Corresponding author

42 Reinoud Gosens, PhD

43 Department of Molecular Pharmacology,

44 University of Groningen,

45 Antonius Deusinglaan 1,

46 9713 AV Groningen,

47 The Netherlands

48 +31503638177

49 r.gosens@rug.nl

50

51 **Manuscript page numbers: 146**

52 **Abstract: 216 words**

53 **Figures: 8**

54 **Tables: 1**

55 **References: 691**

Journal Pre-proof

56 **List of Abbreviations**

57	A1AT:	α_1 -antitrypsin
58	AATD:	α_1 -antitrypsin deficiency
59	AD-MSCs:	Adipose derived MSC
60	AGE:	Advanced glycation end product
61	ALK:	Activin receptor-like kinase
62	all-trans-RA:	All-trans-retinoic acid
63	AMs:	Alveolar macrophages
64	APC:	Adenomatous Polyposis Coli
65	AT:	Alveolar Type
66	ATMP:	Advanced therapy medicinal product
67	BALF:	Bronchoalveolar lavage fluid
68	BASC:	Bronchioalveolar stem cell
69	BMMC:	Bone marrow mononuclear cell
70	BM-MSC:	Bone marrow-derived mesenchymal stromal cell
71	BMP:	Bone morphogenetic protein
72	cAMP:	Cyclic adenosine monophosphate
73	CK1 α :	Casein kinase 1 alpha
74	COPD:	Chronic Obstructive Pulmonary Disease
75	CRABP2:	Cellular retinoic acid binding protein 2
76	CRP:	C-reactive protein
77	CS:	Cigarette smoke
78	CT:	Computed tomography
79	CYP:	Cytoplasmic Cytochrome P450
80	DAMP:	Damage-associated molecular pattern
81	DKK1:	Dickkopf-1
82	DLCO:	Diffusing capacity for carbon monoxide

83	DPI:	Dry powder inhaler
84	DPP-I:	Dipeptidyl peptidase I
85	DVL:	Dishevelled
86	D+Q:	Dasatinib and quercetin
87	EC:	Endothelial cell
88	ECM:	Extracellular matrix
89	EMA:	European Medicines Agency
90	EP:	E prostanoid
91	Epac:	Exchange protein directly activated by cAMP
92	EPC:	Endothelial progenitor cell
93	EV:	Extracellular vesicle
94	FDA:	U.S. Food and Drug Administration
95	FGF:	Fibroblast growth factor
96	FGFR:	Fibroblast growth factor receptor
97	FZD:	Frizzled receptor
98	GLS-1:	Glutaminase-1
99	GPCR:	G protein-coupled receptor
100	GR:	Glucocorticoid receptor
101	GRE:	Glucocorticosteroid responsive element
102	GSK-3 β :	Glycogen synthase kinase-3 β
103	HAPLN1:	Hyaluronan and proteoglycan link protein 1
104	HDAC:	Histone deacetylase
105	HGF:	hepatocyte growth factor
106	ICS:	Inhaled corticosteroids
107	IFN- γ :	Type II interferon
108	IL:	Interleukin
109	IMs:	Interstitial macrophages
110	iBALT:	Inducible bronchus-associated lymphoid tissue

111	iPSCs:	Induced pluripotent stem cells	
112	IPF:	Idiopathic pulmonary fibrosis	
113	KGF:	Keratinocyte growth factor	
114	LABA:	Long-acting β 2-adrenoceptor agonist	
115	LAMA:	Long-acting muscarinic antagonists	
116	LEF:	Lymphoid enhancer factor	
117	LGR:	Leucine-rich repeat containing GPCR	
118	LiCl:	Lithium chloride	
119	LMSC:	Lung resident MSC	
120	LNP:	Lipid nanoparticle	
121	LRAT:	Lecithin:retinol acetyltransferase	
122	LRP:	Lipoprotein-related receptor	
123	LT β R:	Lymphotoxin- β receptor	
124	LTi:	Lymphoid tissue inducer	
125	MCID:	Minimal clinically important difference	
126	MMP:	Matrix metalloproteinases	
127	mRNA:	Messenger ribonucleic acid	
128	MSC:	Mesenchymal stem/stromal cell	
129	NCOR:	Nuclear receptor corepressor	
130	NCOA:	Nuclear coactivator	
131	NE:	Neutrophil elastase	
132	NIK:	NF- κ B-inducing kinase	
133	NPY:	Neuropeptide	Y
134	OGN:	Osteoglycin	
135	PDE4:	Phosphodiesterase-4	
136	PIGF:	Placental growth factor	
137	PKA:	Protein kinase A	
138	PM2.5:	Particulate matter	

139	PP2A:	Protein phosphatase 2A
140	PPAR γ :	Peroxisome proliferator-activated receptor gamma
141	PPRE:	Peroxisome proliferator response element
142	PR1P:	Prominin-1-derived peptide
143	PRP:	Platelet-rich plasma
144	RA:	Retinoic acid
145	RAGE:	Receptor for advanced glycation end product
146	RALDH:	Retinaldehyde dehydrogenase
147	RAR:	Retinoic acid receptors
148	ROCK:	Rho-associated coiled-coil kinase
149	ROS:	Reactive oxygen species
150	RSPO:	R-spondin
151	RTK:	Receptor tyrosine kinase
152	RXR:	Retinoid X receptor
153	SA- β -gal:	Senescence-associated β -galactosidase
154	SABA:	Short-acting β 2-adrenoceptor agonist
155	SASP:	Senescence-associated secretory phenotype
156	SFTPC:	Surfactant protein C
157	siRNA:	Small interfering ribonucleic acid
158	SIRT:	Sirtuin
159	SLPI:	Secretory leukocyte protease inhibitor
160	sFRP:	Secreted frizzled-related protein
161	sm- α -actin:	Smooth muscle α -actin
162	STRA6:	Surface receptor stimulated by retinoic acid 6
163	TGF- β :	Transforming growth factor beta
164	TCF:	T-cell factor
165	TIMP:	Tissue inhibitors of metalloproteinase
166	TNF α :	Tumor necrosis factor alpha

167 VEGF: Vascular endothelial growth factor

168 VEGFR: Vascular endothelial growth factor receptor

169 **Table of Contents**

170

171 Abstract

172 Significance Statement

173 1. INTRODUCTION

174 1.1 Chronic obstructive pulmonary disease

175 1.2 Alveolar epithelial repair

176 1.3 The alveolar progenitor niche

177 1.3.1 Pro-inflammatory cytokines

178 1.3.2 Macrophages

179 1.3.3 The microvascular endothelium

180 1.3.4 Mesenchymal cells

181 1.3.5 The extracellular matrix

182 1.4 Summary and outlook

183 2. REGENERATIVE THERAPEUTICS FOR COPD

184 2.1 Small molecules that directly activate regeneration

185 2.1.1 cAMP-based drugs

186 2.1.1.1 β -adrenoceptor agonists

187 2.1.1.2 Phosphodiesterase inhibitors

188 2.1.1.3 Prostanoids

189 2.1.1.4 Adenosine

190 2.1.2 Glucocorticosteroids

191 2.1.3 Mucolytic agents

192 2.1.4 PPAR γ ligands

193 2.1.5 Retinoids

194 2.1.5.1 RA signaling control of lung cellular function

195 2.1.5.2 RA in lung development, adult tissue maintenance and chronic lung disease

196 2.1.5.3 Pharmacological treatment with RA

- 197 2.1.5.4 Synthetic retinoids
- 198 2.1.6 WNT pathway modifiers
- 199 2.1.6.1 Glycogen synthase kinase-3 inhibitors
- 200 2.1.6.2 Alternative mechanisms of β -catenin activation
- 201 2.1.6.3 WNT ligand and frizzled receptor modulators
- 202 2.1.6.4 CK1 α inhibitors
- 203 2.1.6.5 Dishevelled activators/stabilizers
- 204 2.1.6.6 sFRPs
- 205 2.1.6.7 R-spondin proteins and RSPO agonists
- 206 2.2 Small molecules that interfere with COPD-specific regenerative defects
- 207 2.2.1 Senotherapeutics
- 208 2.2.1.1 Senolytics
- 209 2.2.1.2 Senomorphics
- 210 2.2.2 ROCK inhibitors
- 211 2.2.3 Protease inhibitors
- 212 2.2.3.1 A1AT augmentation therapy
- 213 2.2.3.2 MMP inhibitors
- 214 2.2.3.3 Cathepsin inhibitors (incl. DPP1 inhibitors)
- 215 2.2.3.4 Neutrophil elastase inhibitors
- 216 2.2.4 Lymphotoxin-signaling inhibitors
- 217 2.2.5 Cytokine receptors and cytokine-targeted antibodies
- 218 2.2.6 Other anti-inflammatory strategies
- 219 2.2.6.1 Angiotensin pathway signaling
- 220 2.2.6.2 α 7 Nicotinic receptor signaling
- 221 2.2.6.3 Neuropeptide Y signaling
- 222 2.2.6.4 RAGE signaling
- 223 2.3 Cell therapies
- 224 2.3.1 Mesenchymal stromal cell-based therapy

- 225 2.3.2 Organoid and iPSC induced epithelial cell therapy
- 226 2.3.2.1 Transplant of iPSC-derived lung cells
- 227 2.3.2.2 Transplant of lung primary cells and their derivatives
- 228 2.3.2.3 Autologous transplantation in human: P63⁺ lung progenitor cell transplantation
- 229 2.3.2.4 Challenges and future directions
- 230 2.3.3 Endothelial cell therapy in COPD
- 231 2.3.3.1. Therapeutic potential of endothelial progenitor cells therapy in COPD
- 232 2.3.4 Platelet-rich plasma therapy for COPD
- 233 2.4 Extracellular Vesicles
- 234 2.5 Cell-derived therapeutic proteins
- 235 2.5.1 Fibroblast growth factors
- 236 2.5.1.1 FGF2
- 237 2.5.1.2 FGF7/KGF
- 238 2.5.1.3 FGF10
- 239 2.5.2 Hepatocyte growth factor
- 240 2.5.3 Bone morphogenetic proteins
- 241 2.5.4 Vascular Endothelial Growth Factor
- 242 2.5.5 Osteoglycin and its active fragments
- 243 2.5.6 Other extracellular matrix-based strategies
- 244 3. CLINICAL OUTCOMES AND FEASIBILITY
- 245 3.1 Clinical Endpoints
- 246 3.2 Disease heterogeneity
- 247 3.3 The exacerbation period as a key window of opportunity for lung repair
- 248 3.4 Route of administration and formulation
- 249 4. CONCLUSIONS
- 250 References

251 **Abstract**

252 Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide,
253 characterized by an accelerated loss of lung function. A key problem underlying COPD is increased
254 tissue destruction in combination with defective lung tissue repair. As current therapies do not modify
255 the progression of the disease, new therapies aimed at restoring lung tissue repair in COPD need to be
256 developed.

257

258 In an attempt to address this major unmet need, there has been a surge in both preclinical and clinical
259 studies, aiming to identify key mechanisms underpinning defective lung repair and the ability to inhibit
260 or even reverse this defect. This includes small molecules such as retinoids, as well as advanced therapy
261 medicinal products such as cell therapies or therapies with cell-derived products such as extracellular
262 vesicles, or secreted proteins. The results of these endeavors have been variable with failures as well as
263 successful proof-of-concepts.

264

265 In this review, we provide an overview of the current state of the field, including modes of action of the
266 therapeutics that are or have been considered for lung regeneration, including a discussion on the
267 reasons for failure where relevant. In addition, we discuss hurdles in the clinical development of
268 regenerative therapeutics for COPD including clinical outcomes, route of administration and
269 formulation as these are pivotal considerations moving forward.

270

271 **Significance statement:**

272 Chronic obstructive pulmonary disease is characterized by progressive alveolar destruction and
273 defective epithelial regeneration. Targetable mechanisms, including cellular senescence, altered
274 mesenchymal-epithelial signaling, and chronic inflammation, impair progenitor function and niche
275 integrity. Therapeutic strategies that restore epithelial repair, including small molecules, biologics, and
276 cell-based approaches, represent a promising path toward disease modification and long-term lung
277 function restoration.

278

279 **Keywords: lung repair, small molecules, cell therapy, biologics exacerbation, translational**
 280 **medicine**

281

282 **1. INTRODUCTION**

283 **1.1 Chronic obstructive pulmonary disease**

284 Chronic obstructive pulmonary disease (COPD) is a major global health challenge, affecting over 300
 285 million people and is ranked as the fourth leading cause of death worldwide, according to the World
 286 Health Organization ^{1, 2}. The disease is characterized by a progressive and largely irreversible loss of
 287 lung function and airflow limitation, leading to symptoms such as chronic cough, dyspnea, excessive
 288 mucus production, and, in some cases, wheezing and chest tightness ³⁻⁵. These symptoms significantly
 289 impact the daily functioning and quality of life of patients with COPD. COPD primarily affects
 290 individuals over 60 years old and is mainly caused by chronic exposure to airborne toxic substances,
 291 including tobacco smoke, air pollution, and occupational exposures to dust or wood particles ^{3, 4, 6-8}.
 292 Additional risk factors include lung infections, abnormal lung development, and genetic predisposition.
 293 Globally, the burden of COPD is expected to rise further due to continued population aging and
 294 increasing exposure to risk factors such as air pollution and smoking in low- and middle-income
 295 countries ^{1, 9}.

296

297 COPD is a heterogeneous disease with two primary pathological components: chronic bronchitis and
 298 emphysema. Chronic bronchitis is characterized by persistent airway inflammation, mucus
 299 hypersecretion, small airway wall fibrosis, and epithelial remodeling ^{3-5, 10}. Emphysema involves the
 300 destruction of alveolar structures, reducing the surface area available for gas exchange and leading to
 301 progressive respiratory impairment ³⁻⁵. In addition to these changes, small airway disease (SAD) has
 302 emerged as a key driver of early COPD and a major contributor to airflow limitation. SAD involves
 303 inflammation, fibrosis, and luminal narrowing of terminal bronchioles (<2 mm in diameter), leading to
 304 obstruction well before emphysema becomes radiographically apparent ^{11, 12, 13}. By contrast, emphysema
 305 typically develops later and predominates in advanced stages, when alveolar destruction and impaired

306 gas transfer become more pronounced ^{12, 13}. Chronic exposure to harmful substances induces persistent
307 inflammation and oxidative stress, driving tissue destruction and abnormal tissue repair. These
308 processes contribute to small airway obstruction, alveolar wall damage, and ultimately to progressive
309 lung function decline ^{3, 4, 6-8}. It is important to emphasize that lung function decline in COPD is
310 multifactorial, and the result of both inflammation, bacterial and viral infections, small airways disease,
311 emphysema development, and mucus obstruction. A critical and relatively recent insight into COPD
312 progression is that lung function decline does not occur in a steady, linear manner but rather in episodic
313 phases, partially due to exacerbations ¹⁴. Many patients with COPD experience these exacerbations,
314 which are defined as an acute worsening of COPD symptoms beyond normal day-to-day variation that
315 requires additional treatments ^{15, 16}. Recurrent bacterial and viral infections account for approximately
316 50% of the total accelerated lung function loss throughout the life of a patient with COPD ¹⁶⁻¹⁸.
317 Furthermore, mucus plugging appears to play a crucial role as longitudinal analysis of chest CTs of
318 patients with COPD indicated that those patients without notable mucus plugs on chest CT or those
319 with resolvable mucus plugs have similar rates of lung function decline, whereas patients with persistent
320 presence of mucus plugs have substantially accelerated decline of lung function ¹⁹. This implicates that
321 targeting these pathological processes in COPD has the potential to slow down disease progression.

322

323 At a population level, the only proven interventions to slow lung function decline in patients with COPD
324 are tobacco control measures and reductions in air pollution ^{20, 21}. For individual patients,
325 pharmacological treatment primarily focuses on symptom relief, exacerbation prevention, and quality-
326 of-life improvement, rather than modifying the underlying disease. Current pharmacological options
327 include bronchodilators, inhaled corticosteroids, phosphodiesterase-4 (PDE4) inhibitors, systemic
328 corticosteroids, biologics, and antibiotics ²¹⁻²³. Bronchodilators are the cornerstone of COPD
329 management, with short-acting and long-acting beta-agonists or muscarinic antagonists used to relieve
330 airway constriction and improve lung function. Long-acting bronchodilators are preferred for most
331 patients due to their superior efficacy in symptom control and exacerbation reduction ^{14, 21}. Inhaled
332 corticosteroids are added for selected patients, particularly those with elevated eosinophil counts, to

333 further reduce exacerbation risks. During acute exacerbations, systemic corticosteroids and antibiotics
 334 are commonly used to manage airway inflammation and secondary infections ^{14, 21}. In addition to
 335 pharmacological therapy, several non-pharmacological interventions play a crucial role in COPD
 336 management ^{24, 25}. Pulmonary rehabilitation, which includes exercise training, nutritional guidance, and
 337 patient education, has been shown to improve physical function and quality of life ²⁵. Long-term oxygen
 338 therapy is indicated for patients with chronic hypoxemia, while non-invasive ventilation can be
 339 beneficial for individuals with respiratory failure ²⁵. In advanced COPD, surgical interventions such as
 340 lung volume reduction surgery, endobronchial valves and coils, or lung transplantation may be
 341 considered, but these invasive treatments are only suitable for a highly select group of patients ²⁵⁻³⁰.

342

343 Despite the availability of both pharmacological and non-pharmacological treatments, no currently
 344 approved intervention can reverse established COPD or fundamentally slow disease progression ³¹⁻³³.
 345 The underlying challenge lies in the chronic imbalance between tissue injury and insufficient repair,
 346 particularly in the alveolar compartment. This imbalance stems from dysregulated interactions between
 347 inflammation, progenitor cell dysfunction, and aberrant tissue remodeling. As a result, the long-term
 348 prognosis for patients with COPD remains poor. Alternatively, a pharmacological strategy that
 349 reactivates endogenous lung repair mechanisms could offer a scalable and non-invasive solution to
 350 modifying disease progression. Such a therapy could modify the disease trajectory and improve long-
 351 term outcomes for patients with COPD ^{32, 33}. Given the increasing burden of COPD and the limitations
 352 of current treatment approaches, the development of regenerative pharmacological therapies represents
 353 a crucial research priority ^{33, 34}.

354

355 To advance development of a pharmacological strategy with the capacity to reactivate endogenous lung
 356 repair mechanisms it is first necessary to understand the central elements that have key roles in this
 357 process in health and disease. In the next section a summary of current knowledge is provided.

358

359 **1.2 Alveolar epithelial repair**

360 The long-standing belief that the adult human lung lacks regenerative capacity is challenged by
361 emerging evidence, including case reports, showing lung regrowth following surgical resection^{35, 36}.
362 While the lung exhibits a low level of structural turnover during homeostasis, it possesses significant
363 repair capacity after injury³⁷. Although the cellular mechanisms of adult lung regeneration remain
364 incompletely understood, studies in animal models and human lung tissue have identified multiple stem
365 and progenitor cell populations capable of responding to injury and facilitating repair³⁷⁻³⁹. *In vivo*
366 lineage-tracing studies have demonstrated that mature lung epithelial cells act as regionally restricted
367 progenitors, maintaining and repairing tissue following mild injury in animal models⁴⁰. In the proximal
368 airways, basal cells within the pseudostratified epithelium act as multipotent progenitors that self-renew
369 and give rise to both secretory and ciliated epithelial cells⁴¹⁻⁴⁴. In the terminal bronchioles, respiratory
370 airway secretory cells function as progenitors for alveolar type (AT)2 cells, which are essential for
371 maintaining and regenerating the alveolar niche^{45, 46}. In addition, bronchioalveolar stem cells are crucial
372 for bronchioalveolar epithelial repair and are suggested to contribute to the regeneration of both
373 proximal and alveolar epithelial cell types after injury^{46, 47}. Within the alveoli, AT2 cells play a central
374 role in repair, serving as progenitors capable of self-renewal and differentiation into AT1 cells, which
375 are critical for gas exchange^{48, 49}. Following lung injury, apoptosis of AT1 cells triggers the activation
376 and proliferation of AT2 cells, which then differentiate into new AT1 cells to restore alveolar integrity
377^{48, 49}. Functional epithelial regeneration requires both the proliferation of progenitor cells to replace lost
378 cells and their differentiation into mature cell types, including surfactant-producing AT2 cells and
379 barrier-forming AT1 cells. Recent studies have identified distinct AT2 subpopulations with specialized
380 roles in regeneration. One such subpopulation, Axin2⁺ alveolar epithelial progenitors, is quiescent
381 during homeostasis but proliferates rapidly following injury^{48, 50}. Another population is the distal lung
382 progenitor (integrin α6/β4⁺, surfactant protein C⁻), which replenish the AT2 cell pool after lung injury
383 in mice⁵¹. Additionally, a quiescent, immature AT2 subpopulation marked by PD-L1 expands after
384 pneumonectomy in mice and has also been identified in humans⁵². Moreover, emerging data indicate
385 that Club cells, secretory cells in the bronchiolar airways, act as facultative progenitor cells during
386 alveolar repair. In murine models and in vitro 3-D culture systems, club cells (Scgb1a1⁺) have been
387 shown to proliferate and differentiate into AT2- and AT1-like cells, forming alveolar-like structures⁵³.

388 Furthermore, lineage-tracing studies identified a subpopulation of H2-K1^{high} club-derived progenitors
389 that mobilize after bleomycin injury and contribute directly to alveolar cell lineages⁵⁴. More recently,
390 airway secretory-cell derived p63⁺ progenitors (within the club/secretory cell compartment) were shown
391 to enter distal alveolar regions and aid repair in severe lung injury⁵⁵. These findings suggest that under
392 significant injury, club cells may act as a facultative alveolar progenitor pool, potentially compensating
393 when classical alveolar progenitors are compromised. Together, these findings reveal an unexpectedly
394 dynamic and plastic epithelial progenitor population within the distal lung, capable of coordinating
395 repair after injury.

396

397 In COPD, disruption in the natural processes of alveolar epithelial repair, particularly in emphysema,
398 results in an imbalance between tissue injury and the reduced capacity of alveolar progenitor cells to
399 support repair^{56, 57}. It is believed that repetitive injury in COPD leads to the depletion of the stem and
400 progenitor cell pool, thereby limiting the regenerative capacity of the remaining epithelial progenitor
401 cells⁵⁶. While progenitor cell populations may survive in the lungs of patients with COPD, they may
402 develop abnormalities that compromise their function. For instance, telomere shortening has been
403 observed in both smokers with and without COPD, in addition to increased AT2 cell senescence in
404 individuals with emphysema⁵⁸⁻⁶⁰. Furthermore, the cellular composition of the alveolar compartment
405 is altered in emphysema, with an increased proportion of AT2 cells and a reduction in AT1 cells,
406 suggesting that many AT2 cells fail to undergo proper differentiation. On one hand this shift includes a
407 numerical decline in functional epithelial cells, whilst on the other hand there is an accumulation of
408 aberrant or arrested AT2 cells, which further impair regeneration⁶¹⁻⁶³. This suggests that chronic insults
409 may push progenitor cells toward senescence or exhaustion, undermining their ability to support repair.
410 Furthermore, critical signaling pathways that govern epithelial progenitor activity are dysregulated in
411 COPD. For example, Wnt signaling, a key pathway regulating AT2 cell behavior, is reduced in AT2
412 cells derived from patients with COPD, indicating impaired regenerative signaling^{64, 65}. These
413 alterations may further limit progenitor cell function and contribute to the progressive failure of alveolar
414 repair observed in the disease.

415 Although much of the current research focuses on alveolar repair, it is increasingly recognized that
 416 regeneration of the small airways is equally important for restoring lung function. Early COPD is
 417 dominated by SAD, characterized by airway wall fibrosis, luminal narrowing, and loss of terminal
 418 bronchioles ^{11, 12}. Regeneration in this compartment will require both resolution of peribronchiolar
 419 fibrosis and re-epithelialization of the distal conducting airways, processes that remain poorly
 420 understood but represent critical targets for future repair-focused therapies ⁶⁶.

421 In summary, the alveolar epithelium contains several progenitor populations with significant reparative
 422 potential, but in COPD, these progenitors are impeded by cumulative damage, cellular senescence, and
 423 disrupted signaling. Understanding and reversing these dysfunctions is essential to restoring alveolar
 424 structure and function in affected individuals.

425

426 **1.2 The alveolar progenitor niche**

427 Alveolar epithelial progenitor cells do not function in isolation but reside within a specialized
 428 microenvironment, the alveolar progenitor niche, that orchestrates their behavior. This niche supports
 429 progenitor cell survival, regulates their proliferation and differentiation, and integrates repair signals
 430 following injury ^{38, 67, 68}. It is composed of various stromal cells and immune cells, microvascular
 431 endothelial cells (ECs), and the extracellular matrix (ECM), which together regulate progenitor cell
 432 behavior through complex cellular and molecular interactions ^{67, 68}. In healthy lungs, the niche provides
 433 the structural and biochemical cues necessary for epithelial regeneration and homeostasis. In COPD,
 434 however, these niche interactions are disrupted, impairing repair capacity and contributing to
 435 progressive alveolar damage ^{57, 69, 70}. Dissecting the composition and function of this regenerative
 436 microenvironment, both in health and disease, offers critical insight for developing targeted therapies
 437 (Figure 1). The following subsections explore the major components of the alveolar niche, including
 438 proinflammatory signals, macrophages, ECs, mesenchymal cells, and the ECM, and examine how each
 439 contributes to or hinders epithelial regeneration in COPD.

440

441 **1.3.1 Pro-inflammatory cytokines**

442 COPD is characterized by persistent, sterile inflammation, with an increased presence of immune cells
 443 and elevated levels of pro-inflammatory cytokines, including interleukin (IL)-1, IL-6, IL-8, IL-17,
 444 tumor necrosis factor alpha (TNF α), and type II interferon (IFN- γ)⁷¹⁻⁷⁷. In addition, patients with COPD
 445 are more susceptible to infections, which can trigger inflammatory spikes that frequently lead to disease
 446 exacerbations^{15, 78}. While these cytokines are well known for their roles in modulating immune cell
 447 activity and sustaining inflammation, their direct effects on lung regeneration remain poorly understood.
 448 Elucidating how pro-inflammatory cytokines interfere with alveolar repair is critical for developing
 449 therapies that can effectively restore damaged alveolar tissue.

450

451 Several cytokines elevated in COPD, including IL-1 β ⁷⁹, IL-6^{67, 80}, and TNF α ⁷⁹ are typically viewed as
 452 inflammatory drivers, but emerging evidence suggests that their effects on epithelial regeneration are
 453 complex and context-dependent. In short-term assays such as organoid cultures, these cytokines
 454 promoted alveolar cell proliferation and survival^{67, 79}. Moreover, transient IFN- γ exposure has been
 455 found to be necessary for effective epithelial repair following acute infection⁸¹. Additionally, a recent
 456 study that modeled the complex inflammatory environment of a COPD exacerbation using a cytokine
 457 cocktail found increased epithelial proliferation under these conditions⁸².

458

459 In contrast, these same cytokines can also disrupt epithelial repair processes. TNF α has been linked to
 460 alveolar dysfunction and impaired epithelial barrier integrity⁸³. IFN- γ , while beneficial in low doses,
 461 has been associated with emphysema development in overexpression models and can induce apoptosis
 462 in alveolar epithelial cells in both human and murine models⁸⁴⁻⁸⁷. Chronic IL-1 β exposure has been
 463 shown to reprogram fibroblasts towards a pro-inflammatory state, diminishing their capacity to support
 464 epithelial growth in co-culture organoid models⁸⁸. Additionally, IL-1 β can drive AT2 cells to a
 465 transitional state between AT2 and AT1 identities, preventing full differentiation when exposure is
 466 prolonged⁸⁹. Notably, the previously mentioned cytokine exacerbation cocktail that enhanced
 467 proliferation also altered progenitor cell differentiation trajectories⁸².

468

469 Together, these findings underscore that the impact of COPD-associated cytokines on lung regeneration
 470 is complex and highly context-dependent. The same cytokine may exert either supportive or detrimental
 471 effects depending on its concentration, duration of exposure, and the affected cell type. This duality
 472 may help explain why COPD lungs often display disordered epithelial differentiation and accumulation
 473 of aberrant cell types^{45, 90}. Consequently, therapies aimed solely at stimulating epithelial proliferation
 474 are unlikely to achieve functional repair fully. Instead, coordinated therapeutic strategies must aim to
 475 restore the critical balance between progenitor cell proliferation and differentiation within an
 476 appropriate alveolar niche.

477

478 **1.3.2 Macrophages**

479 While various immune cells are present in the alveolar progenitor niche, lung macrophages occupy a
 480 central and dual role, being capable of both driving emphysema or promoting epithelial repair
 481 depending on their activation state. Historically, activated macrophages were described as polarized
 482 toward either pro-inflammatory (M1) or reparative (M2) phenotypes. However, several studies have
 483 demonstrated that alveolar macrophages from COPD patients exhibit a mixed or aberrant activation
 484 profile, with features of both M1- and M2-like phenotypes rather than a simple polarization toward one
 485 subtype^{70, 91-96}. This complex activation state is often described as dysfunctional or reprogrammed, with
 486 impaired phagocytic and efferocytic capacity, altered protease–antiprotease balance, and ineffective
 487 inflammatory resolution⁹⁷. Consequently, the use of strict M1/M2 terminology is now discouraged in
 488 human studies, as macrophage activation represents a continuum rather than two discrete phenotypes
 489⁹⁸.

490 Lung macrophages are broadly categorized into alveolar and interstitial macrophages based on their
 491 anatomical location^{99, 100}, with each population differing in origin, mode of replenishment, and
 492 contribution to inflammation and repair processes. Alveolar macrophages are derived from fetal liver
 493 progenitors and are long-lived, self-renewing cells that maintain surfactant balance and homeostasis in
 494 the lung under steady-state conditions^{101, 102}. Upon injury, they are often depleted and can be replaced
 495 through local proliferation or by recruited alveolar macrophages originating from circulating monocytes

496 ¹⁰³. These monocyte-derived alveolar macrophages are highly plastic and can adopt either pro-
 497 inflammatory or reparative phenotypes ¹⁰⁴. While fetal-derived alveolar macrophages are linked to
 498 homeostatic and anti-inflammatory functions, monocyte-derived alveolar macrophages are thought to
 499 contribute most to COPD pathology and emphysema development ^{105, 106}. Interstitial macrophages,
 500 initially derived from yolk sac progenitors, are largely replaced postnatally by bone marrow-derived
 501 cells maintained by circulating monocytes ¹⁰⁷⁻¹⁰⁹. Located within the lung parenchyma or bronchial
 502 niches, interstitial macrophages contribute to immune regulation through antigen presentation and
 503 constitutively produce chemokines and immunosuppressive cytokines¹¹⁰. Interstitial macrophages have
 504 been reported to be quantitatively and phenotypically altered in COPD and engage in immune-
 505 regulatory crosstalk with epithelial cells ¹¹¹. Human and experimental data indicate that interstitial
 506 macrophages may protect against emphysema, positioning interstitial macrophages as modulators of
 507 chronic inflammation and tissue remodeling rather than passive bystanders ¹¹², a perspective echoed by
 508 recent reviews calling for compartment-specific analysis of macrophage function in COPD ¹¹³.

509

510 Although both alveolar macrophages and interstitial macrophages contribute to COPD pathology, most
 511 studies have focused on alveolar macrophages without distinguishing their developmental origin.
 512 alveolar macrophages were found to contribute to alveolar destruction through the release of proteolytic
 513 enzymes and oxidative mediators¹¹⁴⁻¹¹⁶. Although neutrophils also participate in this process, the
 514 number of alveolar macrophages correlates more strongly with emphysema severity¹¹⁷. Moreover,
 515 animal studies demonstrated that emphysema development critically depends on macrophages and
 516 macrophage-derived matrix metalloproteinase 12 (MMP12), but not on neutrophils ¹¹⁸⁻¹²⁰.

517 More recent studies highlight that alveolar macrophages are also key regulators of lung repair after
 518 injury ^{121, 122}, a property that could be therapeutically exploited. A critical aspect of their function in the
 519 alveolar niche is crosstalk with alveolar epithelial progenitor cells ¹²³. As mentioned before, macrophage
 520 function and phenotype are undeniably altered in COPD ^{124, 125}, but how this impacts repair is less
 521 understood. Aging and chronic exposure to noxious stimuli like cigarette smoke can induce macrophage
 522 senescence, skewing their phenotype toward a pro-inflammatory state ¹²⁶⁻¹²⁸. In COPD, macrophages

523 also exhibit impaired phagocytic and efferocytic function, leading to accumulation of apoptotic cells
 524 and persistent inflammation ¹²⁹. This failure to clear debris not only delays resolution of injury but also
 525 alters epithelial-macrophage signaling, ultimately disrupting the fate and proliferation of alveolar type
 526 2 progenitor cells. For instance, alveolar macrophage peroxisomes support AT2 self-renewal via lipid
 527 and mitochondrial regulation, and peroxisomal dysfunction through excessive inflammation was shown
 528 to result in progenitor cell dysfunction ¹²². Alveolar macrophages also secrete factors like placenta-
 529 expressed transcript 1, which directly stimulate epithelial proliferation and barrier restoration ¹²¹. The
 530 importance of macrophage-epithelial interactions in lung regeneration was also highlighted by
 531 Rochford and colleagues, who showed that enhancing cyclic adenosine monophosphate (cAMP)
 532 signaling in pro-inflammatory monocyte-derived alveolar macrophages via PDE4b inhibition restored
 533 reparative capacity and resolved lung injury in mice ¹³⁰. These findings suggest that therapeutic
 534 strategies aimed at reprogramming macrophages, such as through modulation of cAMP-PDE4b
 535 signaling or enhancement of peroxisomal function, could be used to restore proper epithelial-
 536 macrophages interactions and support alveolar repair in COPD.

537

538 **1.3.3 The microvascular endothelium**

539 The alveolar capillary network is a vital component of the progenitor niche, supporting epithelial
 540 homeostasis and repair through both structural support and paracrine mechanisms. Alveoli are lined by
 541 a thin layer of pulmonary microvascular ECs, which form capillary networks tightly associated with the
 542 alveolar epithelium ¹³¹. These ECs are separated from the epithelium by a basement membrane, a
 543 specialized ECM layer that maintains the structural integrity of the blood-air barrier and enables
 544 efficient gas exchange ¹³¹. While ECs are often considered passive conduits for oxygen and nutrient
 545 delivery, they also function as dynamic regulators of lung homeostasis and epithelial regeneration ¹³¹⁻
 546 ¹³³.

547

548 Endothelial cells contribute to lung repair by interacting with alveolar epithelial progenitor cells to
 549 regulate their proliferation, self-renewal, and differentiation ¹³¹⁻¹³⁶. For instance, co-culturing primary

550 human AT2 cells with pulmonary ECs significantly enhanced alveolar organoid formation,
 551 demonstrating the role of endothelial-derived regenerative cues in epithelial repair ¹³⁷. Additionally,
 552 studies have shown that intravenous administration of pulmonary ECs (CD45-VE-cadherin⁺CD31⁺)
 553 stimulated epithelial proliferation and differentiation and reversed elastase-induced emphysema in mice
 554 ¹³⁸. A crucial mechanism through which ECs support lung repair is the secretion of angiocrine factors,
 555 which are signaling molecules that regulate epithelial progenitor activity ¹³¹⁻¹³³. For example, in
 556 pneumonectomy models, ECs produced regenerative signals that drove epithelial progenitor expansion.
 557 One of these angiocrine factors, bone morphogenetic protein (BMP)4, and BMP6 have been identified
 558 as a key regulator of alveolar progenitor cell activity ^{135, 139}. Additionally, endothelial-derived
 559 hepatocyte growth factor (HGF) played a role in epithelial cell differentiation during lung development
 560 and repair, further reinforcing the importance of endothelial–epithelial cross-talk ¹⁴⁰.

561

562 In COPD, alveolar ECs become dysfunctional, which contributes to impaired epithelial repair and
 563 disease progression. Indeed, microvascular EC loss has been observed before alveolar destruction in
 564 patients with emphysema, suggesting that vascular dysfunction may be an early driver of disease rather
 565 than a secondary consequence ^{137, 141}. Furthermore, exposure of human pulmonary ECs to CS reduced
 566 their ability to support alveolar organoid formation, indicating impaired regenerative signaling ¹³⁷. This
 567 endothelial dysfunction likely deprives the progenitor niche of key angiocrine signals, compounding
 568 epithelial injury.

569 Endothelial injury contributes to COPD and emphysema, yet the roles of distinct endothelial cell (EC)
 570 populations remain unclear. Single-cell RNA sequencing has revealed significant EC heterogeneity in
 571 the lung, including macrovascular (maECs), microvascular (miECs), Car4-high ECs, and Atf3⁺
 572 capillary ECs ^{134, 142}. Following H1N1-induced injury, both Car4-high and other ECs proliferate, while
 573 Atf3⁺ ECs expand, supporting alveolar repair through genes regulating angiogenesis, migration, and
 574 development; endothelial-specific loss of Atf3 impairs regeneration, causing alveolar endothelial loss
 575 and emphysema-like changes. Car4 ECs form close contacts with AT1 cells across a thin, pericyte-free
 576 basement membrane and are lost after epithelial Vegfa deletion, leading to alveolar enlargement despite

577 normal myofibroblasts ¹⁴³. In COPD patients, endothelial progenitor cells (EPCs, CD34⁺KDR⁺) are
 578 reduced and inversely correlated with emphysema, whereas circulating endothelial cells (CECs) remain
 579 largely unchanged but track with microvascular dysfunction ¹⁴⁴. These findings highlight EC
 580 heterogeneity and indicate that impaired repair, rather than uniform loss, drives emphysema-related
 581 vascular pathology.

582

583 While the role of ECs in lung regeneration is increasingly recognized, it remains incompletely
 584 understood. Further research is needed to explore whether endothelial-targeted therapies could enhance
 585 lung regeneration in COPD. Beyond restoring endothelial function, therapeutic strategies that harness
 586 angiocrine signaling pathways may offer novel opportunities to stimulate epithelial repair and improve
 587 clinical outcomes.

588

589 **1.3.4 Mesenchymal cells**

590 Among the various components of the alveolar progenitor niche, lung-resident mesenchymal cells form
 591 a critical supportive element, particularly in regulating and fine-tuning epithelial development and
 592 repair ¹⁴⁵. These cells, including various types of fibroblasts and lung mesenchymal stromal cells, are
 593 important for the production and maintenance of ECM that orchestrates tissue repair upon injury ¹⁴⁶.
 594 They also secrete growth factors, inflammatory mediators, and extracellular vesicles (EVs), thereby
 595 providing paracrine cues to the surrounding endothelium and epithelium ^{145, 147-149}. Stromal fibroblasts
 596 are activated upon the release of transforming growth factor beta (TGF- β) from injured epithelial cells
 597 and differentiate into ECM-producing myofibroblasts that proliferate and deposit ECM proteins ¹⁴⁸.
 598 Meanwhile, fibroblasts also initiate paracrine signaling with AT2 cells and ECs through gaps in the
 599 basement membrane ^{150, 151}. The multidirectional interactions among fibroblasts, AT2 cells, and the
 600 endothelium guide immune cells from capillaries into interstitial space, and eventually across the
 601 alveolar epithelium to arrive in the alveolar airspace ¹⁵²⁻¹⁵⁴. In the small airways, similar fibroblast-
 602 driven fibrotic remodeling underlies airway wall thickening and luminal loss. Preclinical and
 603 pathological studies show that small-airway narrowing and loss precede emphysematous changes and

604 correlate strongly with lung-function decline ^{11, 155}. Targeting myofibroblast activation, TGF- β
 605 signaling, or aberrant extracellular-matrix cross-linking can partially reverse peribronchiolar fibrosis
 606 and reopen obstructed airways ¹⁵⁶. Understanding how to re-establish a reparative rather than fibrotic
 607 fibroblast phenotype may be key to restoring small-airway patency in early COPD.

608

609 Fibroblasts derived from lung tissue from patients with COPD exhibit reduced proliferative capacity,
 610 diminished responsiveness to injury signals, increased senescence, and a pro-fibrotic phenotype ^{146, 147,}
 611 ¹⁵⁷⁻¹⁶². Evidence suggests that extensive exposure to CS may permanently alter the fibroblast
 612 responsiveness in COPD, where MSCs and fibroblasts exhibit functional deficiencies such as a
 613 reduction in growth factors (FGF2; VEGF; HGF) secretion ^{147, 163-166}. In some instances, COPD
 614 fibroblasts release more transforming growth factor beta 1 (TGF- β 1) but exhibit dysregulation of the
 615 TGF- β /Smad pathway and blunted transcriptional/ECM responses, leading to an impaired ability to
 616 produce ECM components ^{161, 167}. In addition to reduced secretion of key growth factors, COPD
 617 fibroblasts display an aberrant response to TGF- β stimulation, characterized by diminished
 618 proteoglycan production, impaired ability to support epithelial organoid formation in vitro, and a shift
 619 towards senescence or pro-inflammatory fibroblast phenotypes in response to matrix degradation ¹⁶⁷⁻
 620 ¹⁶⁹. Consequently, the reduced growth factor secretion and altered growth factor signaling result in a
 621 dysregulated repair program characterized by excessive ECM deposition, impaired epithelial
 622 regeneration, and the development of emphysematous lesions ^{145, 158}.

623 Senescence markers, such as laminin-B1, cyclin dependent kinase 1A (p21), cyclin dependent kinase
 624 2A (p16), and SA- β -gal are elevated in fibroblasts from patients with COPD and this is associated with
 625 resistance to apoptosis and increased secretion of growth factors and pro-inflammatory cytokines. The
 626 latter are part of the senescence-associated secretory phenotype that amplifies inflammation and tissue
 627 remodeling ^{158, 159}. Cross-talk between fibroblasts and epithelial cells is important for maintaining
 628 homeostasis in lung tissue ¹⁷⁰. In COPD, dysfunctional fibroblasts may propel epithelial-to-
 629 mesenchymal differentiation, with subsequent migration through a fragmented reticular basement
 630 membrane ¹⁷¹. This leads to a loss of epithelial–mesenchymal contact and impaired leukocyte clearance,

631 contributing to leukocyte accumulation in the interstitial space and further disrupting alveolar repair¹⁵².
 632 Together, these findings highlight mesenchymal dysfunction as a central contributor to impaired
 633 progenitor activity and regenerative failure in COPD.

634

635 **1.3.5. The extracellular matrix**

636 In addition to cellular components, the ECM forms an integral part of the alveolar progenitor niche. The
 637 ECM is a network of proteins and other supporting molecules that provide structural and biochemical
 638 support to the surrounding cells, which dictates the tissue integrity and lung function^{172, 173}. A crucial
 639 role of ECM is providing a scaffold that supports the lung architecture. Beyond its structural
 640 architecture, the ECM also serves as a dynamic growth factor reservoir and signaling interface that
 641 modulates immune cell migration, activation, and retention within lung tissue^{174, 175}. Altered matrix
 642 degradation and composition in COPD ECM expose cryptic fragments and modify chemokine
 643 gradients, thereby dysregulating leukocyte trafficking and contributing to the perpetuation of chronic
 644 inflammation^{176, 177}. This is primarily attributed to ECM proteins such as collagens, elastin, and
 645 proteoglycans (decorin, perlecan, biglycan, and verican), which together provide tensile strength,
 646 elasticity, and facilitate fiber assembly and signaling, respectively^{173, 178-181}. The alveolar structural and
 647 functional integrity relies on appropriate arrangement of these ECM proteins¹⁸¹⁻¹⁸³. In COPD, extensive
 648 ECM remodeling contributes to small airway fibrosis and narrowing. While this review focuses on
 649 alveolar repair, resolving aberrant ECM deposition and restoring elastic recoil in the small airways will
 650 be equally important for functional regeneration of the distal lung^{180, 184}. In emphysema, alveolar
 651 destruction results from progressive damage to the ECM network in the lung parenchyma¹⁸⁵. The loss
 652 of collagen type I and elastin correlate with a reduction of tissue stiffness, which makes the structure
 653 more susceptible to external forces applied during normal expiration that result in alveolar
 654 overexpansion, wall rupture, less oxygen exchange and collapse^{178, 185, 186}.

655

656 Numerous ECM alterations are observed in lung tissue from patients with COPD, including increased
 657 ECM degradation, especially elastin and collagen I, along with dysregulated ECM turnover and

658 abnormal remodeling^{71, 187}. There are variable reports of ECM changes in COPD, possibly reflecting
 659 different tissue sampling and staining protocols. A recent study described altered signatures of ECM
 660 expression profiles in COPD parenchyma, including lumican and collagen type 6 α 1, with these changes
 661 correlating with disease severity¹⁸⁴. In parallel, decreased elastin levels in COPD ECM may result from
 662 CS-linked elastase/anti-elastase imbalance. This imbalance leads to the formation of dysfunctional
 663 elastic fibers which greatly reduce elasticity of the lung tissue¹⁸⁸. Moreover, decreased decorin levels
 664 in the parenchyma disrupt the regulation of collagen fibrillogenesis and inhibit cellular responses to
 665 inflammatory cytokines^{146, 167, 189, 190}. Elevated levels of versican in the parenchyma may further inhibit
 666 the assembly of elastic fibers and contribute to impaired matrix organization¹⁴⁷. In contrast, Annoni et
 667 al reported a proportional reduction in elastin and versican in the distal parenchyma of patients with
 668 COPD¹⁷⁸, highlighting the heterogeneity of ECM alterations across disease stages and lung regions.
 669 Taken together, these findings highlight that ECM remodeling in COPD not only reflects structural
 670 disintegration but also contributes to progenitor cell dysfunction and impaired alveolar repair.

671

672 **1.4 Summary and outlook**

673 In summary, COPD is characterized by progressive alveolar destruction and impaired tissue repair.
 674 Although the alveolar epithelium contains progenitor populations with regenerative capacity, this
 675 potential is disrupted in COPD due to chronic inflammation, cellular senescence, and dysfunctional
 676 niche signaling. The alveolar progenitor niche, which includes immune cells, ECs, fibroblasts, and the
 677 ECM, plays a central role in coordinating epithelial repair (Figure 1). In COPD, alterations across all
 678 these components converge to create a non-permissive (i.e. inhibitory) environment for regeneration. A
 679 better understanding of these interactions will enable the development of regenerative therapies aimed
 680 at restoring alveolar structure and improving long-term outcomes for patients with COPD. Given the
 681 multifactorial nature of repair failure in COPD, a wide range of therapeutic strategies are currently being
 682 explored. These include small molecules that directly stimulate epithelial regeneration, compounds that
 683 inhibit processes contributing to regenerative dysfunction, cell-based therapies, and emerging
 684 approaches involving EVs or cell-derived proteins. The following sections will discuss these

685 pharmacological and biological strategies in detail, highlighting their mechanisms of action,
686 regenerative potential, and current stage of development.

687

688 **2. REGENERATIVE THERAPEUTICS FOR COPD**

689 **2.1 Small molecules that directly activate regeneration**

690 **2.1.1 cAMP-based drugs**

691 Cyclic adenosine monophosphate (cAMP) is a key intracellular second messenger involved in various
692 physiological processes, including lung homeostasis, inflammation, and metabolic regulation. Given its
693 anti-inflammatory, bronchodilatory, and potential pro-regenerative properties, pharmacological
694 strategies aimed at increasing intracellular cAMP levels have emerged as promising therapeutic avenues
695 for COPD. In this context, PDE4 inhibitors and other cAMP-modulating compounds have been
696 extensively investigated in both preclinical and clinical settings ¹⁹¹.

697 cAMP can be activated by a wide range of extracellular and intracellular stimuli, triggering downstream
698 signaling effectors such as protein kinase A (PKA) and exchange protein directly activated by cAMP
699 (Epac). Through the activation of these key effectors, cAMP exerts regulatory effects on inflammation
700 and energy metabolism ¹⁹¹ (Figure 2).

701

702 *2.1.1.1 β -adrenoceptor agonists*

703 β 2-adrenoceptors are highly expressed in the alveolar walls, endothelium, pulmonary arteries, tracheal
704 smooth muscle, and bronchial epithelium, where they contribute to airway tone and fluid clearance ¹⁹².
705 Activation of the β 2-adrenoceptor stimulates adenylyl cyclase via G proteins, thereby increasing
706 intracellular cAMP levels ¹⁹¹. Consequently, β 2-adrenoceptor agonists have become essential
707 components of pharmacological therapy for asthma and COPD ¹⁹². These agents induce bronchodilation
708 via cAMP-mediated activation of PKA ¹⁹³, while also promoting mucociliary clearance and attenuating
709 inflammation ¹⁹⁴.

710 Short-acting β 2-adrenoceptor agonists (SABAs), such as salbutamol, pirbuterol, and terbutaline,
711 provide rapid symptom relief, while long-acting β 2-adrenoceptor agonists (LABAs), including
712 formoterol, salmeterol ¹⁹², indacaterol ¹⁹⁵, olodaterol ¹⁹⁶, and vilanterol ¹⁹⁷, offer sustained
713 bronchodilation, although formoterol is now also used as a reliever medication based on its fast-acting
714 properties. LABAs are commonly used in combination with long-acting anticholinergics based on the
715 observation that dual bronchodilation is more effective than single bronchodilation and more effective
716 than the combination of LABAs with inhaled corticosteroids ^{198, 199}. Beyond their bronchodilatory
717 effects, LABAs have been shown to reduce airway smooth muscle proliferation, enhance ciliary
718 function, and decrease the release of inflammatory mediators and neutrophil activation ²⁰⁰.

719 Regarding regenerative potential, β 2-adrenoceptor agonists have demonstrated beneficial effects on
720 epithelial repair in models of acute respiratory distress syndrome ²⁰¹ and bovine bronchial epithelial cell
721 wound healing ²⁰². The potential role of β 2-adrenoceptor agonists on inflammation and epithelial repair
722 in acute respiratory distress syndrome is reviewed in detail in ²⁰³. However, recent findings suggest that
723 β 2-adrenoceptor agonists may impair airway epithelial regeneration via cAMP-independent
724 mechanisms, specifically through enhanced activity of protein phosphatase 2A (PP2A) ²⁰⁴. Indeed,
725 Epithelial β 1 Integrins play a role in alveolar homeostasis and restitution through the regulation of
726 alveolar epithelial cell inflammation ²⁰⁵. Similar inhibitory effects have been observed on wound healing
727 in keratinocytes ^{206, 207} and corneal epithelial cells ²⁰⁸. These findings raise concerns regarding the long-
728 term impact of β 2-adrenoceptor agonists on epithelial repair in chronic respiratory diseases, where
729 delayed wound healing could increase susceptibility to infections and disease progression. With respect
730 to mucus plugging, which is known to accelerate lung function decline ¹⁹, β 2-adrenoceptor agonists
731 may have beneficial effects as they increase ciliary beat frequency, enhancing mucociliary transport ²⁰⁹,
732 ²¹⁰. However, this is less effective if mucus is very thick or infection/inflammation dominates and
733 consequently the impact of LABAs on lung function decline may be present, but is not overwhelming
734 ²¹¹.

735 *2.1.1.2 Phosphodiesterase inhibitors*

736 Intracellular cAMP levels are tightly regulated by PDE activity. Under physiological conditions, cAMP
737 suppresses pro-inflammatory responses. However, in COPD, increased PDE activity leads to excessive
738 hydrolysis of cAMP into its inactive form, 5'AMP, resulting in diminished cAMP signaling and
739 exacerbated inflammation ¹⁹¹.

740 There are 11 known PDE families in mammals, comprising over 50 isoforms, some of which exhibit
741 tissue-specific expression patterns. Among them, PDE3, PDE4, and PDE7 are particularly enriched in
742 the lungs ^{212, 213}. PDE4, the predominant isoform responsible for cAMP degradation in pulmonary
743 tissues, has garnered significant interest as a therapeutic target in COPD due to its upregulation,
744 particularly in macrophages from patients with COPD ²¹⁴.

745 PDE4 inhibitors prevent cAMP breakdown, thereby enhancing its signaling effects. Roflumilast, a
746 selective PDE4 inhibitor approved for use in COPD, has demonstrated efficacy in reducing moderate
747 and severe exacerbations by 12% and 16%, respectively ^{215, 216}. However, its widespread clinical use
748 has been limited by systemic side effects such as nausea, diarrhea, weight loss, and abdominal
749 discomfort ²¹⁷.

750 Ensifentri is a novel dual PDE3/PDE4 inhibitor with the PDE3 inhibition responsible for
751 bronchodilation being the most potent activity, that was recently approved for the treatment of COPD.
752 It enhances lung function, quality of life and reduces the rate of exacerbations in patients with COPD,
753 which is relevant to COPD progression ²¹⁸. The impact of ensifentri on lung regeneration is not clear,
754 but it does inhibit injury of human microvascular endothelial cells and alveolar epithelial cells in
755 response to methicillin-resistant *S. aureus* *in vitro* ²¹⁹. It will be of interest to explore the impact of
756 ensifentri on lung regeneration further, because of its dual action, which broadens its mode of action,
757 affecting both structural cells such as fibroblasts and epithelial cells as well as inflammatory cells ²²⁰.

758 Apremilast, another oral PDE4 inhibitor approved for inflammatory conditions like psoriasis and
759 psoriatic arthritis, also holds potential for COPD management, especially in patients prone to recurrent
760 lung infections due to its anti-infective and anti-inflammatory properties. Efforts to formulate
761 apremilast for inhaled administration via aerosolized nebulization are currently underway ²²¹. In a rat

762 model, apremilast has shown the capacity to reduce lung inflammation and promote airway repair upon
 763 LPS stimulus ²²².

764 Tanimilast (CHF6001) is a next-generation inhaled PDE4 inhibitor developed to enhance therapeutic
 765 efficacy within the lungs while reducing systemic exposure and associated side effects ²²³. Unlike
 766 selective inhibitors, Tanimilast targets all four PDE4 isoforms (A–D) without isoform preference. It has
 767 shown broad anti-inflammatory activity across various human immune and structural cell types,
 768 including neutrophils, eosinophils, macrophages, dendritic cells, lymphocytes, and bronchial epithelial
 769 cells. These effects have also been demonstrated in human lung explants ²²⁴ and precision-cut lung slices
 770 ²²⁵. By elevating intracellular cAMP levels, Tanimilast suppresses the production and release of a wide
 771 array of inflammatory mediators, while also reducing chemotactic responses and reactive oxygen
 772 species (ROS) production ^{223, 226}. In preclinical models of acute and sub-chronic pulmonary
 773 inflammation, Tanimilast has been effective in reducing neutrophil recruitment and overall
 774 inflammatory burden ²²⁷⁻²²⁹. It is currently under evaluation in two Phase III clinical trials
 775 (NCT04636801 and NCT04636814) as an add-on therapy to inhaled corticosteroids (ICS), LABAs, and
 776 long-acting muscarinic antagonists (LAMAs) in COPD and chronic bronchitis patients who continue to
 777 experience symptoms despite triple therapy.

778

779 *2.1.1.3 Prostanoids*

780 Prostanoids are a family of lipid mediators derived from the arachidonic acid cascade, including PGD₂,
 781 PGE₂, PGF_{2 α} , PGI₂, and thromboxane A₂. Among these, PGE₂ and PGI₂ have garnered particular
 782 interest in chronic respiratory diseases such as asthma, COPD, and idiopathic pulmonary fibrosis (IPF)
 783 ²³⁰. PGE₂ is ubiquitously produced by various lung cell types, with epithelial cells and macrophages
 784 being its principal sources ^{230, 231}, whereas PGI₂ is predominantly produced by ECs ²³⁰.

785 Prostanoids exert both autocrine and paracrine effects through binding to G protein-coupled receptors
 786 (GPCRs). PGE₂ interacts with four distinct E prostanoid (EP) receptors (EP1–EP4), while PGI₂ signals
 787 via the IP receptor. The downstream signaling outcome depends on the specific receptor subtype
 788 engaged. EP1 activates phospholipase C, leading to protein kinase C activation and an increase in

789 cytosolic calcium, while EP3 inhibits adenylyl cyclase, thereby reducing cAMP levels. In contrast, EP2,
 790 EP4, and IP receptors stimulate adenylyl cyclase and increase intracellular cAMP. As such, the net
 791 effect of PGE₂ signaling is determined by the expression pattern of its receptors on the target cell ²³⁰.
 792 The role of PGE₂ and PGI₂ signaling in lung repair in COPD remains controversial. Elevated PGE₂
 793 levels and increased expression of EP2/EP4 receptors and PGI₂ have been detected in fibroblasts ^{161, 232}
 794 and airway secretions ^{233, 234} from patients with COPD. This has led to the hypothesis that enhanced
 795 prostanoid signaling may contribute to defective repair mechanisms and emphysema progression.
 796 However, several preclinical studies challenge this notion. Administration of a PGI₂ analogue conferred
 797 significant protection against CS extract-induced emphysema in rats ²³⁵, while treatment with stable
 798 analogs of PGE₂ (16,16-dimethyl prostaglandin) and iloprost (a PGI₂ analog) promoted epithelial
 799 regeneration and alveolar differentiation in lung organoid models exposed to CS extract ²³⁶.
 800 Furthermore, selective EP2 and EP4 receptor agonists have shown potential in inhibiting fibroblast-to-
 801 myofibroblast differentiation following TGF- β stimulation ²³⁷, and even in reversing it ²³⁸, suggesting a
 802 role in mitigating fibrosis and preventing mesenchymal exhaustion.

803

804 *2.1.1.4 Adenosine*

805 Adenosine is a purinergic signaling molecule that accumulates extracellularly in response to tissue
 806 stress or injury. Elevated levels of adenosine have been reported in both healthy smokers and patients
 807 with COPD, showing a negative correlation with FEV₁% and increasing as disease severity progresses
 808 ²³⁹. These changes include the up-regulation of CD73, which converts 5'-AMP into adenosine, and a
 809 down-regulation of adenosine deaminase activity leading to reduced breakdown ²⁴⁰. Adenosine
 810 signaling can elicit pro-inflammatory or anti-inflammatory responses, as well as tissue-destructive or
 811 regenerative effects, depending on the receptor subtype and cellular context, which complicates its
 812 therapeutic targeting.

813 Adenosine exerts its effects via four GPCR subtypes: A₁, A_{2A}, A_{2B}, and A₃ receptors. While A₁ and A₃
 814 receptors inhibit adenylyl cyclase and reduce intracellular cAMP levels, A_{2A} and A_{2B} receptors activate
 815 adenylyl cyclase, leading to increased cAMP production ²⁴¹. Interestingly, the therapeutic strategies

816 differ by receptor: antagonists of A₁, A_{2B}, and A₃ receptors, and agonists of A_{2A} receptors, have shown
 817 potential benefit in the treatment of asthma and COPD ²⁴¹. Specifically, A_{2A} receptor agonism has
 818 demonstrated anti-inflammatory effects across various animal models of airway disease ²⁴²⁻²⁴⁴. In
 819 humans, A_{2A} receptors are expressed in bronchial and alveolar epithelial cells, as well as in smooth
 820 muscle and ECs ²⁴⁵. Despite encouraging preclinical data, clinical transition has been proven
 821 challenging. For example, the selective A_{2A} agonist UK432,097 was discontinued after failing to
 822 demonstrate efficacy in a Phase II trial in COPD (NCT00430300).

823 Conversely, A_{2B} is the adenosine receptor with the lowest affinity but is highly inducible under
 824 inflammatory conditions. Its activation has been associated with airway inflammation and tissue
 825 remodeling ^{246, 247}, playing a key role in fibrosis development ²⁴⁸. Inhibiting A_{2B} with the selective
 826 antagonist CVT-6883 has been shown to reduce these effects in murine models ²⁴⁹; moreover, blocking
 827 A_{2B} attenuated pulmonary hypertension in a murine model of emphysema and vascular remodeling
 828 ²⁵⁰. While adenosine signaling is closely linked to COPD pathogenesis and disease progression, the
 829 complex interplay between receptor subtype distribution, affinity, and downstream effects presents
 830 significant challenges in translating this knowledge into effective, targeted therapies.

831 In summary, cAMP-elevating agents hold significant promise for improving lung regeneration in COPD
 832 through their anti-inflammatory, bronchodilatory, and potentially pro-reparative effects. Collectively,
 833 these findings highlight the therapeutic potential and current limitations of cAMP-based interventions,
 834 emphasizing the need for more targeted and cell-specific approaches to enhance lung regeneration in
 835 COPD, especially in patients with advanced epithelial injury (Figure 2).

836

837 **2.1.2 Glucocorticosteroids**

838 Glucocorticosteroids represent one of the most common classes of drugs prescribed for chronic
 839 inflammatory respiratory illnesses, although the perspective on their clinical use in COPD has changed
 840 over the past decades. Initially one of the mainstay drugs for COPD management, it is now increasingly
 841 clear that corticosteroids do not sufficiently counteract inflammation in all patients with COPD, whereas
 842 they do increase the risk for side effects such as pneumonia ²⁵¹⁻²⁵³. Meta-analyses indicate that dual

843 bronchodilation with a long-acting anticholinergic and a long-acting β_2 -adrenoceptor agonist is superior
844 in terms of FEV₁ outcomes and prevention of exacerbations in comparison with the combination of a
845 corticosteroid and a long-acting β_2 -adrenoceptor agonist ¹⁹⁸. On the other hand, the risk of
846 hospitalization due to pneumonia increases with dose and duration of corticosteroid treatment in
847 patients with COPD ²⁵¹⁻²⁵³. A notable exception are patients with eosinophilic inflammation in whom
848 post-bronchodilator FEV₁ improves with corticosteroid use and more so than in patients without
849 eosinophilic inflammation, but this is not typical of emphysema ²⁵⁴. Accordingly, corticosteroid use is
850 no longer the recommended initial treatment for stable COPD patients, and is only considered for COPD
851 patients with a high exacerbation risk if blood eosinophil numbers exceed 300/ μ l ²⁵⁵.

852 Corticosteroids are mostly used as inhaled corticosteroids, though systemic treatment with
853 corticosteroids is also used in some patients, preferably for shorter time windows during acute
854 exacerbation management to avoid side effects ²⁵⁵. Clinically used inhaled corticosteroids include
855 budesonide, fluticasone, ciclesonide and beclomethasone, whereas beclomethasone, dexamethasone,
856 prednisone, prednisolone, methylprednisolone, hydrocortisone, and triamcinolone may all be used as
857 systemic treatments for the management of COPD exacerbations ²⁵⁶. The mode of action of
858 glucocorticosteroids involves binding to the glucocorticoid receptor (GR), which in its inactive state is
859 cytosolic and bound to heat shock protein 90. Dimerization of ligand-bound GR and nuclear
860 translocation allows for the binding to glucocorticosteroid responsive elements (GREs) within the
861 genome, resulting in the activation of anti-inflammatory genes such as lipocortin-1 and the repression
862 of pro-inflammatory genes such as genes encoding for cytokines and cyclo-oxygenase-2. In addition,
863 monomeric ligand-bound GR can bind to transcriptional regulators involved in pro-inflammatory gene
864 expression such as AP-1 and NF- κ B ²⁵⁷. Moreover, non-genomic effects of glucocorticosteroids have
865 been reported, including smooth muscle relaxation and immunosuppression, which are possibly
866 dependent on a membrane bound GR ^{258, 259}.

867 Glucocorticosteroids do not appear to have major beneficial direct effects on epithelial regeneration. In
868 an elastase rabbit model of emphysema, intratracheal instillation of porcine pancreatic elastase induced
869 changes in lung function and in airspace size, but these changes were not counteracted by

870 dexamethasone²⁶⁰. Similarly, in a mouse model of CS-exposure, treatment with budesonide failed to
 871 improve the regenerative capacity of AT2 cells²³⁶. In fact, *in vitro* exposure to budesonide even reduced
 872 the formation of alveolar epithelial organoids²³⁶. Studies using human airway epithelial cells report
 873 similar findings and show that the corticosteroid dexamethasone increases apoptosis and slows down
 874 wound closure²⁶¹. Possibly, this effect is related to the activation of differentiation programs by
 875 corticosteroids, limiting the progenitor capacity of epithelial cells, particularly when corticosteroids are
 876 applied prior to the injury^{261, 262}. Glucocorticosteroids also reduce the expression of HGF in fibroblast
 877 cultures, providing an additional explanation for the negative effects on progenitor function²⁶³.

878 Despite these limited direct effects on progenitor cell function, glucocorticosteroids may contribute
 879 beneficially by inhibiting the inflamed lung microenvironment. Although indirect, and of limited effect
 880 size, beneficial effects of glucocorticosteroids on the progression of lung function decline, and on the
 881 progression of emphysema development assessed by computed tomography (CT) imaging, have been
 882 reported²⁶⁴⁻²⁶⁶. In addition, in at least a proportion of patients with COPD characterized by eosinophilia,
 883 glucocorticosteroids help to reduce the risk of exacerbations, disease events known to contribute to
 884 accelerated lung function decline^{267, 268}. These indirect beneficial effects may be explained by changes
 885 in eosinophilic airway inflammation, by changes in matrix composition in the airways, or by changes
 886 in airway epithelium gene expression associated with cell cycle and oxidative phosphorylation^{269, 270}.

887 Moreover, corticosteroids inhibit mucus production by airway epithelial cells²⁷¹ which may have both
 888 direct and indirect effects on lung function decline. In summary, beneficial effects of
 889 glucocorticosteroids on disease progression may exist in at least a subgroup of patients with COPD,
 890 characterized by eosinophilic inflammation. These effects are unlikely to be the result of any direct
 891 beneficial effects of glucocorticosteroids on alveolar or airway repair, but instead related to suppression
 892 of inflammation in susceptible individuals. These findings highlight the unmet need for regenerative
 893 therapeutics in COPD, particularly for individuals with emphysema.

894

895 **2.1.3 Mucolytic agents**

896 Mucus plugging appears to play a crucial role in COPD as those patients without notable mucus plugs
 897 or those with resolvable mucus plugs have similar rates of lung function decline, whereas patients with
 898 persistent presence of mucus plugs have substantially accelerated decline of lung function ¹⁹. Not only
 899 the presence but also the composition of mucus is altered in COPD. The presence of MUC5B is higher
 900 in COPD and so is the expression of the insoluble MUC2. Moreover, goblet cell metaplasia and an
 901 increased ratio of mucus cells to serous cells in the submucosal glands contributes to COPD ²⁷².
 902 Accordingly, mucolytic drugs are used in the treatment of COPD, which include N-acetylcysteine,
 903 carbocysteine, erdosteine, l-methylcysteine and fudosteine, all of which break up the cysteine bridges
 904 present in mucin proteins leading to less viscous mucus, and bromhexine, which targets glycosylation
 905 of mucin proteins, leading to less viscous mucus as well. Moreover, ambroxol is sometime used, which
 906 is an expectorant drug that drives fluid secretion²⁷³. The available clinical data indicate that mucolytics
 907 significantly reduce the rates of exacerbation, shortened the duration of antibiotic use and exacerbations,
 908 prolonged the time to first exacerbation, and had a tendency to reduce the occurrence of two or more
 909 exacerbations in patients with stable COPD compared to placebo ²⁷³. Mucolytics did not improve lung
 910 function, mortality and quality of life. There is no direct evidence that mucolytics can be regenerative,
 911 but indirect effects driven by the beneficial effects on exacerbation management may lead to reductions
 912 in lung tissue injury.

913

914 **2.1.4 PPAR γ ligands**

915 Peroxisome proliferator-activated receptor gamma (PPAR γ) is, like the glucocorticosteroid receptor, a
 916 nuclear receptor that plays a critical role in regulating diverse cellular responses including glucose
 917 metabolism, lipid homeostasis, and adipocyte differentiation ²⁷⁴. Unlike the glucocorticosteroid
 918 receptor, which resides in the cytoplasm when inactive and requires ligand-induced nuclear
 919 translocation, PPAR γ is constitutively located in the nucleus and is activated through ligand-induced
 920 conformational changes. PPAR γ is activated by endogenous ligands such as fatty acids and eicosanoids
 921 (such as 15-deoxy- Δ 12,14-prostaglandin J2 (15d-PGJ2)) as well as synthetic ligands like
 922 thiazolidinediones ²⁷⁴. Upon ligand binding, PPAR γ undergoes a conformational change that facilitates

923 its heterodimerization with the retinoid X receptor (RXR). This PPAR γ -RXR complex then binds to
924 specific DNA sequences known as peroxisome proliferator response elements (PPREs) located in the
925 promoter regions of target genes ²⁷⁵. The activation of PPAR γ leads to the recruitment of coactivators
926 such as PGC-1 α and the displacement of corepressors, ultimately resulting in the transcriptional
927 regulation of genes ²⁷⁵.

928 15d-PGJ2 exerts anti-inflammatory effects by suppressing pro-inflammatory cytokines in part via
929 PPAR γ signaling and by inhibiting NF- κ B signaling ²⁷⁶. In addition, 15d-PGJ2 activates Nrf2 signaling
930 to balance oxidant defense mechanisms ²⁷⁷. Thiazolidinediones including rosiglitazone and pioglitazone
931 represent selective and more stable PPAR γ ligands, used for the management of type 2 diabetes, as they
932 restore insulin sensitivity in peripheral organs such as the liver and fat tissues ²⁵⁶. But PPAR γ receptors
933 are far from specific to fat and liver tissues, and are also widely expressed in structural and circulating
934 cells present in the lung. Retrospective analysis of pioglitazone use in patients with COPD and type 2
935 diabetes hints to potential protective effects on COPD, but these would need to be confirmed in
936 prospective studies ²⁷⁸. Similar protective effects of thiazolidinedione use in patients with COPD has
937 been associated with reductions in exacerbation risk ²⁷⁹.

938 Nonetheless, *in vitro* and *in vivo* evidence does support a beneficial role for thiazolidinediones in COPD.
939 PPAR γ ligands reduce the production of pro-inflammatory cytokines in alveolar macrophages obtained
940 from patients with COPD, and enhanced gene expression associated with the alternative activation
941 pathway ²⁸⁰. PPAR γ ligands also enhance efferocytosis and inhibit NF- κ B signaling ²⁸¹. In line with a
942 protective, anti-inflammatory function, the expression of PPAR γ and of PGC-1 α progressively
943 decreases in the lungs of patients with moderate and severe COPD ²⁸². The expression of 15d-PGJ2 is
944 also reduced in COPD, whereas that of the oxidative stress indicators HO-1 and NOX4 is increased ²⁸³.
945 Furthermore, PPAR γ supports the expression of GPx3, which protects against oxidative stress in COPD
946 ²⁸⁴. Accordingly, treatment with thiazolidinediones has beneficial effects on the development of airway
947 remodeling and emphysema development in mice and rats exposed to CS ^{285, 286}. These effects may in
948 part be indirect, by reducing lung damage, as PPAR γ ligands have anti-inflammatory effects on
949 macrophages and restore the protease/antiprotease balance ²⁸⁵⁻²⁸⁸. On the other hand, the experimental

950 PPAR γ ligand LJ-529, which also acts as an adenosine A₃ receptor agonist, prevented emphysema
 951 development in a mouse model of elastase induced lung injury, suggestive of direct beneficial effects
 952 on epithelial repair as well²⁸⁹. A recent publication supports this contention and shows that rosiglitazone
 953 promotes lung organoid growth of both control and IPF-derived epithelial cells, whereas the PPAR γ
 954 inverse agonist GW9662 reduces lung organoid growth²⁹⁰. The relevance of this effect for COPD
 955 remains to be established, but does warrant further investigation in view of the large number of patients
 956 with COPD who also have type 2 diabetes, in whom leveraging such a dual beneficial role for
 957 pioglitazone would be an attractive therapeutic strategy.

958

959 **2.1.5 Retinoids**

960 Retinoic acid (RA) signaling has potential to modulate population health at scale in part because active
 961 ligands are derived from dietary vitamin A, obtained from meat and plants as retinyl esters and
 962 carotenoids. Ingested retinoids are distributed to target tissues either postprandially in chylomicrons, or
 963 via hydrolysis into retinol and transport in blood while bound to retinol-binding protein, entering cells
 964 via the cell-surface receptor stimulated by retinoic acid 6 (STRA6)²⁹¹. Intracellular retinol is
 965 metabolized into retinaldehyde by retinol dehydrogenases, then into transcriptionally active all-trans-
 966 RA (ATRA) by retinaldehyde dehydrogenases (RALDH1, 2, and 3)²⁹². Alternatively, intracellular
 967 retinol can be esterified by lecithin:retinol acetyltransferase (LRAT) to be stored as lipid droplets,
 968 creating a reservoir for future RA synthesis²⁹². Retinoids are unusual among vitamins for being stored
 969 at high levels within tissues to provide a buffer against periods of dietary vitamin A deficiency; these
 970 stores can be mobilized locally to respond to tissue damage, including in the lung²⁹³. Inappropriate RA
 971 signalling is limited in part through tight regulation of local RA concentration by CRABP1, which
 972 transports RA to cytoplasmic cytochrome P450 26 enzymes (CYP26A1, B1, and C1) for degradation
 973²⁹⁴.

974 Intracellular RA undergoes nuclear import by cellular retinoic acid binding protein 2 (CRABP2),
 975 whereupon RA interacts with cognate receptors of the nuclear receptor family, retinoic acid receptors
 976 (RAR- α - β , and - γ) to drive transcription²⁹². RARs reside at RA response elements in regulatory regions

977 of target genes as heterodimers with RXR- α , - β , and - γ . Unliganded RAR:RXR heterodimers repress
 978 transcription through interactions with nuclear receptor corepressors (NCOR1 and NCOR2), which
 979 together with histone deacetylases (HDAC) and Polycomb proteins mediate chromatin compaction and
 980 gene silencing ²⁹². ATRA binding causes displacement of co-repressors by nuclear coactivators
 981 (NCOA1, 2, and 3), which recruit histone acetyltransferases and Trithorax proteins (MLL family) to
 982 mediate chromatin relaxation and activation of a diverse set of genes ²⁹².

983 *2.1.5.1 RA signaling control of lung cellular function*

984 *In vitro* and *in vivo* studies have revealed that RA can exert powerful and cell-type specific effects on
 985 the major cell types of the distal lung. Cultured interstitial fibroblasts isolated from human or rat lungs
 986 increased synthesis of elastin, a key component of alveolar septa, in response to ATRA treatment ²⁹⁴,
 987 ²⁹⁵. RA has long been known to promote differentiation of tracheal airway epithelial cells in air-liquid
 988 interface cultures ²⁹⁶. A recent study found using organoids derived from adult distal lung tissue that
 989 ATRA promoted differentiation of distal lung epithelial progenitors including alveolar progenitors,
 990 whereas RA pathway inhibition blocked differentiation and promoted epithelial expansion ²⁹⁷. The
 991 arrested differentiation in expanded epithelial organoids following RA inhibition was partially rescued
 992 by subsequent treatment with ATRA combined with HDAC inhibitors, suggesting agents that modulate
 993 chromatin accessibility at RA target genes could synergize with RA to improve regenerative outcomes
 994 in the lung ²⁹⁷. Another study found that RA signaling, potentially through RAR- α , promoted
 995 angiogenesis in isolated human lung microvascular ECs ²⁹⁸. Induction of angiogenesis is sufficient to
 996 induce regeneration in lung disease models ²⁹⁹; together, this suggests that RA-driven angiogenesis
 997 could offer a potential strategy to induce lung regeneration. Accordingly, during lung development in
 998 mice, administration of vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors which block
 999 angiogenesis caused alveolarization defects that were rescued with exogenous ATRA³⁰⁰.

1000 The lung is rich in retinoid esters, which were long thought to be stored in lipid-laden interstitial
 1001 fibroblasts ³⁰¹. A recent study found that many additional lung cell types including the microvascular
 1002 endothelium and AT 2 cells possess retinoid-containing lipid droplets ²⁹³. Importantly, using a model
 1003 of LPS-induced acute lung injury, this study found that mobilization of local retinoid stores is an

1004 immediate response to tissue damage that is critical for successful resolution and survival²⁹³. It would
 1005 be of interest to further investigate signals that trigger retinoid store mobilization following lung tissue
 1006 damage.

1007 *2.1.5.2 RA in lung development, adult tissue maintenance and chronic lung disease*

1008 A key role for RA in lung development was revealed by mouse studies where targeted mutations in
 1009 genes encoding RAR- α , - β or - γ caused impaired lung development including alveolarization defects
 1010³⁰²⁻³⁰⁴. In humans, vitamin A deficiency led to reduced lung function in offspring that was alleviated by
 1011 maternal vitamin A supplementation³⁰⁵. Moreover, genetic studies in humans have identified
 1012 associations between variants in numerous RA pathway genes and adult lung function including RARA,
 1013 RARB and NCOR2³⁰⁶⁻³⁰⁸, which could reflect the role of RA signaling in lung development, but could
 1014 also reflect a requirement for RA signaling in maintaining adult lung tissue integrity. A recent human
 1015 study found that carotenoid intake and serum carotenoid levels in adults positively correlated with lung
 1016 function, suggesting a protective role for RA signaling in adult lung maintenance³⁰⁸. Accordingly, low
 1017 serum carotenoids were associated with increased risk of COPD³⁰⁹. It has long been recognized that
 1018 vitamin A deficiency in adult rats can lead to parenchymal defects including emphysematous changes
 1019³¹⁰. Thus, dysregulated RA signaling may be causal in the development of chronic lung disease. In
 1020 support of this, emphysematous lung tissue showed increased expression of CYP26A1, which could
 1021 increase local RA catabolism²⁹⁸. In addition, fibroblasts isolated from emphysematous lung had
 1022 reduced levels of cellular retinoic acid binding protein 2 and failed to upregulate elastin in response to
 1023 ATRA treatment²⁹⁴. Importantly, these changes may need to be overcome for the diseased lung to
 1024 respond to exogenous RA.

1025 *2.1.5.3 Pharmacological treatment with RA*

1026 Among the first to explore regenerative pharmacology in the lung were studies from the 1990s and
 1027 2000s in which RA was administered in preclinical rodent models of chronic lung disease. ATRA
 1028 administered in a rat model of elastase-induced emphysema induced lung regeneration, increasing
 1029 alveolar numbers and restoring tissue architecture³¹¹. Subsequent studies in adult rodent models of
 1030 emphysema supported these findings^{312, 313}. Other studies failed to find an effect^{314, 315}, perhaps due to

1031 differing sensitivities of different animal strains to retinoids^{316, 317}. Nonetheless, this initial excitement
 1032 led rapidly to human clinical trials for RA in chronic lung disease. Two studies investigated orally
 1033 administered ATRA for patients with advanced emphysema, but failed to find an effect on CT, lung
 1034 function, or quality of life scores^{318, 319}. The reasons for the failures remain unclear but could be
 1035 attributed to the advanced disease stage of the participants, where severe structural damage, depletion
 1036 of progenitor cells, or a hostile local tissue microenvironment may have provided a barrier to therapeutic
 1037 efficacy³³. Moreover, it is unclear whether orally administered ATRA can reach the alveolar niche in
 1038 sufficient quantities to drive repair.

1039 It is possible that genes activated by RA during lung development are silenced in the ageing lung, and
 1040 exogenous ATRA alone might be unable to overcome this. Further studies to characterize epigenetic
 1041 changes in the ageing lung, and investigations into combining ATRA with approaches that modulate
 1042 chromatin accessibility, may be warranted²⁹⁷. Encouragingly, a recent study showed that while lung
 1043 regeneration following partial pneumonectomy was strongly impaired in aged mice, lung cells of aged
 1044 mice remained responsive to exogenously administered ATRA, which indirectly activated PDGFR α
 1045 signaling within resident PDGFR α + alveolar fibroblasts, thereby augmenting alveolar regeneration³²⁰.

1046 *2.1.5.4 Synthetic retinoids*

1047 Although ATRA has been in use therapeutically since the 1980s, known issues are off-target side effects
 1048 and instability in solution²⁹². Novel, synthetic retinoid derivatives that are stable and modulate discrete
 1049 points in the RA pathway thus hold appeal for regenerative pharmacology. For example, the synthetic
 1050 RAR- γ -selective agonist Palovarotene is primarily degraded by CYP3A4 enzymes and thus likely
 1051 unaffected by increased CYP26A1 found in emphysematous lung²⁹⁸. Palovarotene was investigated in
 1052 a parallel-group, placebo-controlled trial in patients with emphysema due to alpha 1-antitrypsin
 1053 deficiency. Palovarotene appeared to cause small improvements in lung density and lung function
 1054 relative to placebo, which although it failed to reach statistical significance, may indicate biological
 1055 activity³²¹. Other synthetic retinoids have been developed that specifically modulate the activity of
 1056 RARs, CRABP1 and 2, LRAT, and CYP26 enzymes³²²⁻³²⁴. Proof-of-concept studies in lung cells *in*

1057 *vitro* could probe the efficacy of such compounds to help shed light on their potential to promote
 1058 regeneration in chronic lung disease.

1059

1060 **2.1.6 WNT pathway modifiers**

1061 WNTs are a family of secreted glycoproteins that act as ligands for receptors and play crucial roles in
 1062 cell-to-cell communication, especially during development, tissue regeneration, and stem cell
 1063 maintenance. WNTs (19 distinct members in humans) bind and activate cell surface receptors called
 1064 Frizzled receptors (FZD₁ through FZD₁₀) ³²⁵. The binding of individual WNT ligands to specific
 1065 Frizzled receptors, in conjunction with co-receptors, can elicit the activation of distinct signal
 1066 transduction pathways. The WNT signaling pathways are mainly categorized as being β -catenin-
 1067 dependent (classically referred to as canonical WNT signaling) or β -catenin-independent (i.e. non-
 1068 canonical WNT signaling) ³²⁵. In the absence of an extracellular WNT signal, cytosolic β -catenin is
 1069 targeted for degradation by the so-called β -catenin destruction complex. Glycogen synthase kinase-3 β
 1070 (GSK-3 β) plays a central role in the β -catenin destruction complex, serving as the main kinase that
 1071 phosphorylates β -catenin, thereby targeting it for ubiquitination and proteasomal degradation. The
 1072 destruction complex also includes several core components: AXIN, a scaffold protein and the rate-
 1073 limiting factor of the complex; Adenomatous Polyposis Coli (APC), a tumor suppressor protein; and
 1074 Casein kinase 1 alpha (CK1 α), which initiates β -catenin phosphorylation, priming it for further
 1075 phosphorylation by GSK-3 β . Specific WNTs (e.g. WNT-3A) bind to specific FZD receptors and the
 1076 co-receptors low-density lipoprotein-related receptors 5 and 6 (LRP5/6), resulting in inactivation of the
 1077 destruction complex. Consequently, β -catenin degradation is reduced, it accumulates in the cytosol and
 1078 subsequently translocates to the nucleus ³²⁶. Nuclear β -catenin associates with T-cell factor/lymphoid
 1079 enhancer factor (TCF/LEF) transcription factors to regulate gene expression (Figure 3).

1080 WNT signaling plays a crucial role in the development and maintenance of lung progenitor cells,
 1081 particularly AT2 cells. It is essential for the proliferation and self-renewal capacity of AT2 cells, which
 1082 are key for alveolar homeostasis and regeneration following lung injury ³²⁷. AXIN2 functions as a
 1083 negative feedback regulator, mediating β -catenin degradation and promoting commitment of AT2 cells

1084 to differentiation towards AT1 cells^{327, 328}. Importantly, AXIN2 expression peaks within WNT-active
 1085 progenitor niches, establishing spatial gradients that define zones of self-renewal versus differentiation
 1086³²⁷. AT2 cells adjacent to WNT-secreting fibroblasts (e.g., WNT-3A and WNT-5A) maintain progenitor
 1087 features, while AT2 cell positioned distally tend to differentiate into mature AT1 cells^{50, 67, 329}.
 1088 Disruption of WNT signalling gradients in COPD may lead to depletion or senescence of AT2
 1089 progenitor cells, thereby impairing their ability to self-renew and progress towards an AT1-like fate³³⁰.
 1090 Restoring balanced WNT signalling is beneficial for lung tissue regeneration and, consequently, may
 1091 offer therapeutic potential for the treatment of COPD {Kneidinger, 2011 #94}. However, excessive or
 1092 prolonged β -catenin activation disrupts normal alveolar epithelial maturation dynamics in vitro³²⁹ and
 1093 the consequences of such overactivation on alveolar epithelial cell lineage progression in vivo remains
 1094 incompletely defined.

1095

1096 *2.1.6.1 Glycogen synthase kinase-3 inhibitors*

1097 GSK-3 β is the primary kinase responsible for the phosphorylation of the WNT effector protein β -
 1098 catenin. Upon phosphorylation, β -catenin is ubiquitinated and targeted for proteasomal degradation³²⁵.
 1099 In COPD, β -Catenin expression is downregulated, particularly in the alveolar epithelium³³⁰.
 1100 Pharmacological inhibition of GSK-3 β leads to stabilization of β -catenin and activation of β -catenin-
 1101 mediated gene transcription in various lung cells, with beneficial effects observed in multiple preclinical
 1102 models of COPD. For example, lithium chloride (LiCl), an FDA approved drug used for the treatment
 1103 of bipolar disorder, activates β -catenin signaling and has been shown to reduce elastase-induced
 1104 emphysema in mice³³⁰. This therapeutic effect was recapitulated in three-dimensional (3D) *ex vivo* lung
 1105 tissue cultures derived from patients with COPD³³⁰. Similarly, the structurally unrelated GSK-3 β
 1106 inhibitor CHIR/CT99021, also known as Laduviglusib, activated β -catenin signaling in lung tissue
 1107 cultures of patients with COPD. Therapeutic application of CHIR/CT99021 also reduced CS-induced
 1108 emphysema in mice³³¹. Notably, pharmacological activation of β -catenin signaling by CHIR/CT99021
 1109 can partially restore the impaired function of distal lung progenitor cells, including AT2 cells, in
 1110 experimental emphysema models³³². In addition, SB216763, another GSK-3 β inhibitor, has

1111 demonstrated protective effects in a guinea pig model of lipopolysaccharide-induced pulmonary
1112 inflammation. In this model, which mimics aspects of COPD, treatment with SB216763 improved both
1113 lung pathology and skeletal atrophy ^{333, 334}. In addition to β -catenin activation, GSK-3 β inhibitors also
1114 suppress NF- κ B signaling, a key driver of COPD-related inflammation ³³⁵. This might also be relevant
1115 for COPD pathogenesis as particulate matter (PM2.5) and CS-induced inflammatory responses *in vitro*
1116 were suppressed by SB216763 via suppression of NF- κ B signaling ^{336, 337}. Together, these findings
1117 support the therapeutic potential of GSK-3 β inhibitors in COPD. GSK -3 β is required for proper
1118 proliferation and maturation of lung epithelial progenitors both, and the timing of its inhibition appears
1119 essential for achieving regenerative benefit ^{338, 339}. In a murine model of inflammatory lung injury,
1120 transient GSK-3 β inhibition alleviates LPS-induced damage and promotes epithelial repair ³³⁸. GSK-3
1121 inhibition produced distinct effects on alveolar epithelial cell proliferation and differentiation depending
1122 on whether GSK-3 was blocked during the acute inflammatory phase or during the post-acute
1123 inflammatory phase following LPS-induced injury ³³⁸. However, prolonged or sustained GSK-3 β
1124 inhibition can impair the terminal differentiation of lung progenitors *in vitro* ³³⁹. Collectively, these
1125 findings indicate that both dosage and timing of GSK-3 inhibition are critical to harness regenerative
1126 benefit. Alongside the aforementioned GSK-3 inhibitors, there are many more small molecules that
1127 inhibit GSK-3 β and their therapeutic potential is being investigated for various disease conditions, but
1128 without any available data for COPD ³⁴⁰.

1129

1130 2.1.6.2 Alternative mechanisms of β -catenin activation

1131 In addition to classical GSK-3 β inhibition, several drugs have been identified that activate β -catenin
1132 signaling through alternative mechanisms. For instance, the FDA approved anti-inflammatory drug
1133 amlexanox and the pain reliever phenazopyridine hydrochloride both promote organoid formation in a
1134 β -catenin-dependent manner. Importantly, amlexanox has shown therapeutic efficacy *in vivo* by
1135 significantly reducing elastase-induced emphysema in a mouse model of COPD ³⁴¹. However, the
1136 activation of β -catenin by these drugs is most likely not related to direct inhibition of GSK-3 β .

1137 In addition to specific WNTs that activate β -catenin-dependent signaling, other WNTs can activate
 1138 alternative (non-canonical) signaling pathways. In this context, WNT-5A is of particular interest, as its
 1139 effect on β -catenin signaling depends on the receptor environment at the cell membrane. In the presence
 1140 of the FZD₄ receptor, WNT-5A activates β -catenin-dependent signaling. FZD₄ is involved in β -catenin–
 1141 driven alveolar lung repair and is significantly downregulated in human and experimental COPD ³⁴². In
 1142 contrast, WNT-5A expression itself is upregulated in COPD and is associated with reduced β -catenin
 1143 activity in alveolar epithelial cells ³⁴³. Therapeutic targeting of this pathway has yielded promising
 1144 results. Inhibition of WNT-5A using either a neutralizing antibody or BOX5, a WNT-5A-derived, N-
 1145 terminally butyloxycarbonyl-(Boc) protected hexa-peptide, attenuated lung tissue destruction,
 1146 improved lung function, and restored expression of β -catenin-driven target genes and alveolar epithelial
 1147 cell markers. These effects have been demonstrated in both elastase- and CS-induced models of COPD
 1148 ³⁴³. Collectively, these findings suggest that restoring FZD4 expression or inhibiting WNT-5A may
 1149 provide therapeutic benefit in emphysema by reactivating β -catenin signaling. In addition, WNT-5A
 1150 has profibrotic actions by enhancing fibroblast-to-myofibroblast differentiation and activation of the
 1151 profibrotic growth factor latent TGF- β ^{342, 344}. While GSK-3 inhibition primarily enhances canonical
 1152 WNT/ β -catenin signalling and WNT-5A predominantly engages non-canonical pathways, crosstalk
 1153 exists whereby canonical WNT activation can mitigate certain profibrotic effects of WNT-5A
 1154 signalling, and vice versa.

1155

1156 *2.1.6.3 WNT ligand and Frizzled receptor modulators:*

1157 Direct activation of canonical WNT signaling using ligand mimetics is emerging as a promising
 1158 regenerative strategy in chronic lung diseases. One such approach involves the antibody R2M3-26,
 1159 which has been engineered to simultaneously engage multiple Frizzled receptors (FZD₁, FZD₂, FZD₅,
 1160 FZD₇, FZD₈) along with the LRP6 co-receptor. This multivalent targeting functionally mimics natural
 1161 WNT ligands and activates β -catenin signaling across diverse target cells. A recent study demonstrated
 1162 that R2M3-26 significantly enhanced alveolar organoid expansion *in vitro* using both mouse and
 1163 human-derived AT2 cells ³⁴⁵. *In vivo*, R2M3-26 treatment in mice with bleomycin-induced pulmonary

1164 fibrosis reduced inflammation and collagen deposition, improved lung mechanics (increased lung
 1165 compliance and decreased elastance), and upregulated Axin2 in epithelial, mesenchymal, and
 1166 endothelial compartments, indicating widespread WNT pathway activation and tissue repair³⁴⁵.

1167 Building on this strategy, receptor-specific agonists targeting individual FZD subtypes have also shown
 1168 efficacy in modulating epithelial regeneration. FZD₅- and FZD₆-specific agonist antibodies were
 1169 recently shown to potently activate canonical WNT/β-catenin signaling in AT2 cells, enhancing their
 1170 stem cell activity³⁴⁶. In this study, FZD₅ was identified as essential for AT2 self-renewal and epithelial
 1171 regeneration following injury. Interestingly, FZD₆, which is traditionally associated with non-canonical
 1172 signaling, was also found to activate β-catenin-dependent transcription in AT2 cells. Systemic
 1173 administration of FZD₅- or FZD₆-specific agonists *in vivo* promoted AT2 proliferation and improved
 1174 survival in bleomycin-treated mice³⁴⁶. In a murine emphysema model, systemic delivery of WNT-3A
 1175 loaded extracellular vesicles enhanced AT2 cell proliferation, reduced alveolar space enlargement, and
 1176 improved lung function⁶⁵. Notably, this approach also led to activation of regenerative gene programs
 1177 across epithelial, mesenchymal, and endothelial compartments. Taken together, these findings support
 1178 the feasibility of ligand-based WNT activation as a regenerative strategy in COPD. This approach
 1179 carries important context-dependent considerations. GSK-3 inhibition may act synergistically with
 1180 FZD-targeted agonists to enhance β-catenin activation and thereby promote epithelial regeneration. A
 1181 key caveat is that GSK-3 intersects with multiple WNT pathways: depending on the cellular context,
 1182 GSK-3 (inhibition) can also modulate non-canonical WNT5A-driven signalling, which has been linked
 1183 to pro-survival and profibrotic responses in fibroblasts³⁴⁷. Consequently, combining GSK-3 inhibition
 1184 with FZD receptor agonism carries the potential for both pro-regenerative and profibrotic outcomes,
 1185 depending on pathway bias and cellular context³⁴⁸.

1186

1187 **2.1.6.4 CK1α inhibitors**

1188 CK1α is a regulatory kinase involved in the phosphorylation of several components within the β-catenin
 1189 destruction complex. Inhibition of CK1α can stabilize β-catenin and thereby enhance WNT signaling.
 1190 While specific studies in COPD models are limited, the modulation of CK1α presents a potential

1191 strategy for restoring epithelial regeneration in chronic lung diseases. One example is SJ7095, a recently
 1192 developed molecular glue degrader of CK1 α . This compound induces a specific interaction between an
 1193 E3 ubiquitin ligase and the target protein, leading to its targeted degradation ³⁴⁹. Whereas SJ7095 has
 1194 shown promise in modulating WNT signaling through CK1 α degradation, it remains to be tested in
 1195 COPD models. Another compound, MU1742, has also been identified as a CK1 α inhibitor with
 1196 potential WNT-activating properties ³⁵⁰. Despite their promise, targeting CK1 α carries important
 1197 considerations. Similar to GSK-3 β , CK1 α is involved in a diverse array of cellular processes, including
 1198 circadian rhythm regulation, DNA repair, and apoptosis ³⁵¹. Additionally, CK1 α also contributes to NF-
 1199 κ B activation. Its inhibition may therefore suppress inflammatory pathways, potentially dampening
 1200 immune responses and impairing host defense mechanisms. This is an important consideration given
 1201 the heightened susceptibility to infections in patients with COPD ³⁵². Taken together, while CK1 α
 1202 inhibitors represent a mechanistically compelling route to restore WNT activity and promote epithelial
 1203 regeneration, their pleiotropic effects warrant careful evaluation in the context of COPD.

1204

1205 *2.1.6.5 Dishevelled (DVL) activators/stabilizers*

1206 Dishevelled proteins (DVL1, 2, and 3) are central scaffolds in the WNT signaling cascade. They
 1207 transmit signals from FZD receptors to downstream effectors, including β -catenin, and participated in
 1208 both β -catenin-dependent and -independent pathways through their DIX, PDZ, and DEP domains ³²⁵.
 1209 Within the canonical WNT pathway, DVL contributes to β -catenin stabilization by inhibiting the β -
 1210 catenin destruction complex, thereby enabling transcription of WNT target genes.

1211 Pharmacological activation or stabilization of DVL has been proposed as a strategy to reinforce
 1212 canonical WNT signaling and promote alveolar epithelial repair. One known negative regulator of DVL
 1213 is CXXC5, which binds to the PDZ domain of DVL and attenuates β -catenin signaling ³⁵³. Small
 1214 molecule inhibitors such as KY-02061 and KY-02327 block this interaction. By preventing the binding
 1215 of CXXC5 to DVL, these compounds relieve negative feedback inhibition and enhance WNT pathway
 1216 activation ³⁵⁴. These findings suggest that stabilizing DVL activity through targeted disruption of

1217 inhibitory protein interactions may represent a promising therapeutic approach to promote epithelial
 1218 regeneration in chronic lung diseases such as COPD.

1219

1220 *2.1.6.6 sFRPs*

1221 Secreted frizzled-related proteins (sFRPs) are extracellular antagonists of WNT signaling that function
 1222 by binding and sequestering WNT ligands, thereby preventing their interaction with FZD receptors³²⁵.
 1223 Among the sFRP family members, sFRP1 and sFRP2 have been implicated in the pathogenesis of
 1224 COPD by contributing to impaired epithelial repair. sFRP1 is elevated in emphysematous lung tissue
 1225 and correlates with increased expression of matrix metalloproteinases (MMP) MMP-1 and MMP-9,
 1226 implicating a role in ECM degradation and alveolar destruction³⁵⁵. Similarly, sFRP2 expression is
 1227 increased in the small airway epithelium of smokers and patients with COPD. This protein suppresses
 1228 β-catenin signaling and may thereby hinder epithelial regeneration by interfering with canonical WNT
 1229 pathway activity³⁵⁶. Given this inhibitory role, neutralising sFRPs has been explored as a strategy to
 1230 restore WNT signalling. Antibody-mediated blockade of SFRP1 has been shown to relieve extracellular
 1231 WNT inhibition: in stressed epithelial and fibroblast systems, anti-SFRP1 antibodies attenuated SFRP1-
 1232 dependent senescence and restored downstream β-catenin signalling³⁵⁷. Furthermore, small-molecule
 1233 approaches have also been developed to target sFRPs. Bodine et al. identified sFRP-1 inhibitors (e.g.,
 1234 WAY-316606) through high-throughput screening, demonstrating that direct pharmacological
 1235 inhibition of sFRP-1 selectively increases β-catenin activity in functional reporter assays³⁵⁸. Although
 1236 this data originates from skeletal biology, they provide proof-of-concept that pharmacologically
 1237 releasing extracellular WNT brakes is feasible. In addition, intracellular DVL activators (e.g., KY-
 1238 02061, KY-02327) can bypass extracellular ligand sequestration entirely by relieving CXXC5-mediated
 1239 inhibition of DVL, restoring downstream signalling even under conditions of elevated sFRP expression.

1240

1241 *2.1.6.7 R-spondin proteins and RSPO agonists*

1242 R-spondins (RSPO1 to RSPO4) are secreted glycoproteins that enhance β-catenin dependent WNT
 1243 signaling. They function by binding to leucine-rich repeat containing GPCRs (LGR4/5/6) and inhibiting

1244 the E3 ubiquitin ligases ZNRF3 and RNF43. This interaction prevents internalization and degradation
 1245 of WNT receptors, thereby stabilizing Frizzled and LRP5/6 on the cell surface and amplifying WNT
 1246 signal transduction ³⁵⁹. In the lung, RSPO2 is involved in epithelial patterning and branching
 1247 morphogenesis during development, suggesting a potential role in progenitor cell regulation ³⁶⁰. In a
 1248 murine model of bleomycin-induced lung injury, RSPO2 administration enhanced WNT target gene
 1249 expression and accelerated epithelial repair, further supporting its regenerative potential ³⁶¹. Despite
 1250 these promising findings, the clinical application of recombinant RSPO proteins is limited due to issues
 1251 with protein stability and delivery. To address these limitations, recent research has focused on
 1252 developing small molecule agonists that mimic RSPO activity by targeting LGR4/5/6 receptors.
 1253 Unfortunately, the development of small-molecule LGR4 agonists as RSPO mimetics has thus far not
 1254 replicated RSPO's effect on β-catenin dependent WNT signaling. In one study, a β-arrestin-biased
 1255 LGR4 agonist (referred to as compound 1) failed to enhance TCF and β-catenin reporter activity and
 1256 instead slightly antagonized RSPO1-mediated signaling ³⁶². These findings suggest that current LGR4-
 1257 targeting small molecules act via β-catenin-independent pathways, limiting their applicability for
 1258 regenerative strategies aiming to restore alveolar β-catenin activity in COPD.

1259

1260 **2.2 Small molecules that interfere with COPD-specific regenerative defects**

1261 **2.2.1 Senotherapeutics**

1262 The incidence of COPD increases with age and is closely linked to the hallmarks of aging ^{6, 363}. Although
 1263 genetic alterations in aging pathways are not well established in COPD, hallmarks of aging likely
 1264 emerge from disease progression or environmental exposures such as CS ³⁶⁴. Individuals with early-life
 1265 lung impairment are particularly susceptible to accelerated aging ^{363, 365, 366}. Patients with COPD
 1266 consistently show elevated markers of aging, with cellular senescence being among the most prominent.
 1267 Senescence is a stress-induced, irreversible cell-cycle arrest state associated with senescence-associated
 1268 secretory phenotype (SASP) secretion, which drives chronic inflammation and induces senescence in
 1269 neighboring cells ^{367, 368}. Senescent cells have been identified within several lung compartments,
 1270 including AT2 cells ^{60, 369}, airway epithelium ³⁷⁰, endothelium ^{371, 372}, smooth muscle cells ^{372, 373}, and

1271 fibroblasts^{162, 188}. Their SASP, in part mediated by EVs, promotes paracrine inflammation, tissue
1272 remodeling, and immune dysregulation in COPD.

1273 CS-induced oxidative stress accelerates senescence via telomere shortening, DNA and mitochondrial
1274 damage, and activation of the ATM-p53-p21 and p16-Rb pathways³⁷⁴. Accumulated senescent cells
1275 impair lung repair and sustain inflammation. Targeting senescence (senotherapy) is a promising
1276 therapeutic avenue in age-related diseases, including COPD^{367, 375}, with two main strategies under
1277 investigation: elimination of senescent cells (senolytics) or functional reprogramming (senomorphics).

1278

1279 2.2.1.1 *Senolytics*

1280 Senolytics are compounds that target and eliminate senescent cells by disrupting their resistance to
1281 apoptosis. These cells rely on anti-apoptotic pathways to survive; senolytics reactivate programmed cell
1282 death specifically in these cells, enabling their clearance by the immune system. The idea of removing
1283 senescent cells to promote healthy aging originated from studies using the INK-ATTAC mouse model,
1284 where genetic ablation of p16(INK4a)-positive cells led to increased lifespan and reduced cancer
1285 incidence³⁷⁶. This foundational work inspired the development of drug screening platforms to identify
1286 senescence-targeting therapies. First-generation senolytics primarily targeted survival pathways, while
1287 newer agents focus on senescence-specific surface markers and phenotypes to enhance selectivity
1288 (Figure 4). The concept of depleting senescent cells is a promising concept since this would not require
1289 constant medication of the patient but a hit and run approach where the drugs can be administered
1290 intermittently.

1291 The combination of dasatinib and quercetin (D+Q) remains one of the most extensively studied
1292 senolytic regiments³⁷⁷. Dasatinib, a tyrosine kinase inhibitor with selectivity for Abl and Src, and
1293 quercetin, a polyphenol, selectively eliminate senescent cells *in vitro*. D+Q are under clinical
1294 investigation for aging-related diseases, including IPF, with promising feasibility and safety data^{378, 379}.

1295 Although no clinical data yet exist for senolytics in COPD, preclinical evidence is accumulating.
1296 Quercetin alone reduced inflammation and disease progression in elastase/LP-induced emphysema
1297 models, though its senolytic effect was not assessed³⁸⁰. Recent preclinical studies show that D+Q

1298 reduces CS-induced senescence, inflammatory cell infiltration, and cytokine levels in COPD mouse
1299 models³⁸¹. Similarly, D+Q reduced senescence and inflammation in air-liquid interface cultures from
1300 patients with COPD³⁸¹. A randomized trial confirmed quercetin safety in patients with COPD, though
1301 without assessing cellular senescence markers³⁸².

1302 A prominent target of senolytic strategies is the anti-apoptotic BCL-2 family, which is often upregulated
1303 in senescent cells (Figure 4). Compounds such as navitoclax (ABT-263), venetoclax (ABT-199), and
1304 ABT-737 mimic BH3 proteins by binding and inhibiting pro-survival proteins like BCL-2, BCL-XL,
1305 and BCL-w. These agents show differential efficacy across senescent fibroblasts, partially restoring
1306 ECM regulation *in vitro*³⁸³. Navitoclax also effectively eliminated senescent AT2 cells from patients
1307 with COPD³⁸⁴. Cardiac glycosides, including ouabain and digoxin, have been identified as effective
1308 senolytics, acting in part through induction of the pro-apoptotic BCL-2 family member NOXA and by
1309 disrupting the intracellular sodium–potassium gradient^{385, 386}. While their senolytic efficacy has been
1310 demonstrated in animal models of fibrosis, no data are currently available regarding their use in models
1311 of COPD. Newer, potentially safer BCL-2 inhibitors such as UBX1325 have demonstrated senolytic
1312 activity, leading to improved retinal function and macular thickness in diabetic macular edema³⁸⁷.

1313 Additionally, PROTAC-based approaches that target BCL-XL for degradation via E3 ligases show
1314 promise in reducing senescence and inflammation while promoting proliferation in COPD small airway
1315 epithelial cells³⁸⁸. Natural compounds like fisetin, a flavonoid with anti-inflammatory properties³⁸⁹,
1316 have also shown preliminary senolytic effects in COPD epithelial cells³⁹⁰.

1317 Of note, tight regulation of pro- and anti-apoptotic signaling determines cell fate during tissue
1318 remodeling and repair³⁹¹. Apoptosis of epithelial cells has been described as a pathogenic mechanism
1319 in COPD^{392, 393}, whereas upregulation of anti-apoptotic pathways can exert protective effects on
1320 epithelial cells. This underscores that first-generation senolytics targeting pro-apoptotic pathways must
1321 be applied with caution to preserve a finely tuned apoptotic balance that supports tissue regeneration.

1322 To enhance specificity, second-generation senolytics exploit unique features of senescent cells. One
1323 strategy targets increased lysosomal content and senescence-associated β -galactosidase (SA- β -gal)
1324 activity using galacto-oligosaccharide-coated nanoparticles or β -gal-activated prodrugs^{394, 395}. Another

1325 approach leverages iron dysregulation, a hallmark of senescent cells, which contributes to fibrosis and
 1326 inflammation ³⁹⁶. Iron-activated prodrugs like TRX-CBI selectively eliminate iron-overloaded
 1327 senescent cells ³⁹⁷, a relevant strategy given the elevated iron levels in COPD and senescent airway cells
 1328 ^{375, 398}. FOXO4, a longevity-associated transcription factor, binds p53 in senescent cells to block
 1329 apoptosis. Disrupting this interaction with FOXO4-DRI induces senescent cell death and reduced
 1330 fibrosis in an experimental fibrosis model ³⁹⁹. In CS-induced senescent lung fibroblasts, DNA
 1331 nanoparticles targeting Foxo4 displayed senolytic activity ⁴⁰⁰.

1332 Senescent cells also show mitochondrial dysfunction and increased glutaminolysis. Elevated
 1333 glutaminase-1 (GLS-1) breaks down glutamine into glutamate and ammonium, supporting survival.

1334 Inhibiting GLS-1 with BPTES induces senolysis and improves age-related organ function in mice ⁴⁰¹.
 1335 Preliminary data suggests that it displays senolytic activity on senescent airway epithelial cells ⁴⁰².

1336 Alternative strategies to reduce senescent cells and their impact on chronic diseases include enhancing
 1337 immune clearance or reactivating aging immune responses (Figure 4). CAR T cell therapies, initially
 1338 developed for cancer, have been adapted to target senescent cells using surface markers such as uPAR
 1339 and NKG2D ligands, showing efficacy in preclinical models—though uPAR is unsuitable for the lung
 1340 due to its broad expression on non-senescent cell types including immune cells, endothelial and
 1341 epithelial cells ^{403, 404}. In COPD and obesity, senescent T cells contribute to chronic inflammation, and
 1342 targeted elimination, by vaccination against CD153⁺ T cells, has improved tissue function in models
 1343 ⁴⁰⁵, suggesting immune modulation may offer therapeutic potential in chronic lung diseases.

1344

1345 Notably, senescent cells play essential roles in normal embryonic development, tumor suppression, and
 1346 wound healing ⁴⁰⁶. In the adult murine lung, senescent fibroblasts have been shown to be required for
 1347 epithelial regeneration ⁴⁰⁷. Conversely, indiscriminate targeting of senescent cells may have adverse
 1348 effects on wound healing and tissue homeostasis, emphasizing the need for strategies that specifically
 1349 eliminate pathologically senescent cells while preserving their physiological functions.

1350

1351 2.2.1.2 *Senomorphics*

1352 Senomorphics, which modulate senescence-associated pathways without directly eliminating senescent
 1353 cells, represent a promising therapeutic strategy by attenuating chronic inflammation and tissue
 1354 remodeling driven by the SASP. Key agents include mTOR inhibitors, Sirtuin activators, and
 1355 JAK/STAT inhibitors. mTOR signaling regulates metabolism, proliferation, and senescence and is
 1356 implicated in longevity. Its pharmacological inhibition has extended lifespan in model organisms⁴⁰⁸. In
 1357 emphysema models, rapamycin reduced senescence markers³⁷¹. Metformin, a widely used antidiabetic
 1358 drug, activates AMPK and inhibits mTOR signaling, thereby reducing oxidative stress and SASP-driven
 1359 inflammation in airway epithelial cells and ECs^{409, 410}, and protected mice from CS-induced injury in
 1360 lung, kidney, and muscle⁴⁰⁹. Retrospective cohort analyses suggest clinical benefits of metformin in
 1361 COPD^{409, 411, 412}. JAK/STAT inhibition prevented senescence in emphysema models³⁷², with inhaled
 1362 delivery improving tolerability and reducing SASP⁴¹³.

1363 Sirtuins (SIRT1, SIRT3, SIRT6), NAD⁺-dependent deacetylases, regulate inflammation, senescence,
 1364 and mitochondrial function, playing critical roles in chronic lung disease progression⁴¹⁴⁻⁴¹⁶. Resveratrol,
 1365 a sirtuin activator with lifespan-extending effects⁴¹⁷, has poor pharmacokinetic profile, prompting the
 1366 development of more potent analogues as well as synthetic SIRT activators to reduce CS-induced lung
 1367 inflammation. NAD⁺ supplementation, e.g., via nicotinamide riboside, increased NAD⁺ levels and
 1368 reduced lung inflammation and senescence markers in patients with COPD in a recent clinical trial⁴¹⁸.

1369 Modulating the SASP by targeting EVs, which are key SASP carriers, offers another novel therapeutic
 1370 approach. Beyond targeting senescence, additional aging-related mechanisms in chronic lung disease
 1371 include mitochondrial ROS inhibition (e.g., MitoQ, SkQ1), autophagy/mitophagy activation, and
 1372 epigenetic modulation⁴¹⁹⁻⁴²¹. Modifying the gut-lung microbiome or using epigenetic clocks as
 1373 biomarkers further expands options for non-invasive monitoring and intervention. Collectively,
 1374 targeting the hallmarks of aging may not only slow COPD progression but also promote lung
 1375 regeneration following injury.

1376

1377 **2.2.2 ROCK inhibitors**

1378 Rho-associated coiled-coil kinase (ROCK) has a role in interfering with fibroblast function and
 1379 differentiation towards myofibroblasts. Lung fibroblasts are required for alveolar epithelial regeneration
 1380 by secreting growth factors, by producing ECM, and providing mechanical support. Cytokines such as
 1381 TGF- β promote a myofibroblast phenotype, which is less able to support lung organoid formation ⁴²²,
 1382 ⁴²³. Although TGF- β is primarily associated with lung fibrosis, its levels are increased in COPD lung
 1383 tissue as well ⁴²⁴. The main mechanisms via which TGF- β pre-treatment of fibroblasts restricts the
 1384 support function of mesenchymal cells includes modulation of Wnt pathway signaling as well as actin
 1385 cytoskeletal remodeling. Thus, TGF- β -induced impairment of lung organoid formation can be
 1386 mimicked by pre-treating lung fibroblasts with jasplakinolide, which enhances actin cytoskeletal
 1387 stiffening ⁴²⁵.

1388 Actin cytoskeletal remodeling depends on the conversion of globular actin to filamentous actin, which
 1389 promotes the formation of stress fiber-like bundles of smooth muscle α -actin (sm- α -actin). This process
 1390 also enhances sm- α -actin gene transcription by releasing G-actin-bound transcriptional regulators, such
 1391 as MRTF-A, which translocate to the nucleus upon actin polymerization to activate target gene
 1392 expression ⁴²⁶. TGF- β and other actin factors that promote actin remodeling such as WNT-5A and
 1393 WNT-11 utilize signaling via ROCK to enhance actin remodeling and subsequent MRTF-A dependent
 1394 sm- α -actin expression ^{427, 428}. Accordingly, ROCK inhibitors are potential antagonists of actin
 1395 cytoskeletal remodeling and its downstream effects. The most widely studied ROCK inhibitor is Y-
 1396 27632, but other ROCK inhibitors are available, of which fasudil is even registered for clinical use in
 1397 cerebral vasospasm ⁴²⁹.

1398 Similar beneficial effects can be achieved for epithelial cell growth. In fact, ROCK inhibitors such as
 1399 Y-27632 are often provided during lung organoid cultures to enhance progenitor cell activation. For
 1400 example, ROCK inhibition using Y-27632 enhanced alveolar epithelial cell growth, Wnt pathway
 1401 activation and expression of alveolar epithelial markers such as surfactant protein C (SFTPC) ⁴³⁰. ROCK
 1402 inhibitors are also able to reduce the negative effects of TGF- β on lung organoid formation, both if
 1403 ROCK1/2 are simultaneously inhibited using compound A31 or when ROCK2 is inhibited selectively
 1404 using compound A11 ⁴²⁵. However, and in contrast to organoid number, the differentiation of lung

1405 organoids towards SFPTC⁺ alveolar epithelial cells was repressed by TGF- β and not reversed by ROCK
 1406 inhibition ⁴²⁵. The potential of ROCK inhibitors in reversing elastase-induced emphysema has not yet
 1407 been reported, although CS-induced inflammation and vascular permeability have been shown to be
 1408 ROCK-dependent ⁴³¹. In addition, because of the effects of ROCK inhibition on myofibroblast
 1409 differentiation, indirect effects on MMP production may be envisaged. In conclusion, although ROCK
 1410 inhibitors show therapeutic promise, current data are insufficient to draw firm conclusions about their
 1411 role in lung regeneration in COPD.

1412

1413 **2.2.3 Protease inhibitors**

1414 Lung emphysema is characterized by alveolar destruction, in part caused by an imbalance between
 1415 proteases and anti-proteases in the lung ⁴³². This dysregulation leads to excessive proteolytic activity,
 1416 resulting in ECM degradation and lung tissue damage. Extracellular proteases, particularly neutrophil
 1417 elastase (NE), MMPs, and cathepsins, are enzymes responsible for the degradation of matrix
 1418 components such as elastin and collagens ⁴³². As such, proteases play a physiological role in tissue
 1419 remodeling, immune defense, and inflammatory responses. To prevent undesirable destruction of lung
 1420 tissue, their activity must be tightly regulated by endogenous anti-proteases, including α_1 -antitrypsin
 1421 (A1AT), secretory leukocyte protease inhibitor (SLPI), and tissue inhibitors of metalloproteinases
 1422 (TIMPs), which neutralize proteolytic enzymes and maintain lung structural integrity ^{432, 433}.

1423 In COPD and emphysema, the protease/anti-protease imbalance favoring proteolytic activity results in
 1424 excessive degradation of alveolar walls, leading to loss of elastic recoil, and emphysema development.
 1425 This may be caused by exposure to toxic chemicals, particles and gases such as CS, which trigger
 1426 neutrophilic and macrophage-driven inflammation, leading to the release of NE and MMPs, which if
 1427 persistent, contributes to lung tissue damage ⁴³⁴. Moreover, oxidative stress generated by ROS
 1428 inactivates anti-proteases such as A1AT, shifting the imbalance further. Genetic polymorphisms in the
 1429 α_1 -antitrypsin gene, leading to α_1 -antitrypsin deficiency (AATD) is a well-established genetic cause of
 1430 COPD leading to early-onset emphysema ⁴³⁵.

1431 Targeting the protease-anti-protease imbalance for COPD and emphysema is an older concept, but with
 1432 the exception of A1AT augmentation therapy for AATD patients, these approaches have not yet reached
 1433 the clinic. Partly, this may be explained by the complexity of the protease / anti-protease network,
 1434 rendering inhibition of individual proteases insufficient for clinical efficacy. Nonetheless,
 1435 understanding this dynamic interplay between proteases and anti-proteases remains critical for
 1436 developing novel interventions to halt or slow disease progression.

1437

1438 *2.2.3.1 A1AT augmentation therapy*

1439 AATD is a genetically driven form of emphysema characterized by reduced serum levels (below 80
 1440 mg/dl) of functional A1AT, a serine protease inhibitor primarily responsible for protecting lung tissue
 1441 from NE-mediated degradation ⁴³⁶. The link between AATD and pulmonary emphysema led to the
 1442 development of A1AT replacement as a potential therapeutic strategy. Initial efforts to develop
 1443 augmentation therapy were reported in 1981, when Gadek and colleagues found that weekly A1AT
 1444 supplementation was able to restore A1AT levels to normal in affected individuals ⁴³⁷. Further
 1445 developments led to the first FDA-approved plasma-derived intravenous A1AT therapy, Prolastin,
 1446 which became available in 1987. Since then, additional formulations (e.g., Aralast, Zemaira, and
 1447 Glassia) have been introduced, to restore circulating levels in deficient individuals ⁴³⁸. A1AT
 1448 augmentation therapy has demonstrated effects in reducing the progression of emphysema, by slowing
 1449 the decline in lung density measured by CT imaging ⁴³⁹⁻⁴⁴¹. Current guidelines recommend
 1450 augmentation therapy for individuals with severe AATD (PiZZ or PiSZ genotypes) and clinically
 1451 significant emphysema ⁴⁴².

1452 Ongoing research is aimed at novel therapeutic strategies, including AAT replacement therapy using
 1453 other administration routes and sources and gene therapy ⁴⁴³. PEGylated AAT is under development as
 1454 an inhaled formulation, which is not feasible using regular AAT because of the rapid clearance. INBRX-
 1455 101 is a recombinant human AAT-Fc fusion protein that was found to be well-tolerated in AATD
 1456 patients in a phase I trial, which increased the plasma AAT levels as well as AAT levels in epithelial
 1457 lining fluid ⁴⁴⁴. BEAM-302 is a lipid nanoparticle formulation containing base editing reagents designed

1458 to correct the PiZ allele, which is now in phase 1/2 trials (NCT06389877). Clinical trials demonstrated
 1459 safety with gene transfer of the *SERPINA1* gene that encodes for A1AT, though yet with limited efficacy
 1460 ⁴⁴⁵. Since then, several attempts have been made to package the gene in adenoviral transduction systems
 1461 for replacement expression of the functional gene, with variable success ⁴⁴³. Yet, the established safety
 1462 of this approach is encouraging and suggest that adenoviral delivery holds promise for further
 1463 optimization of effective gene therapy approaches.

1464

1465 *2.2.3.2 MMP inhibitors*

1466 MMPs are secreted proteolytic enzymes that are mainly provided by inflammatory cells such as
 1467 macrophages, neutrophils, and T cells. These enzymes degrade ECM proteins such as collagens and
 1468 elastin ⁴⁴⁶. In particular MMP-1, MMP-12, and MMP-28 have been demonstrated to contribute to
 1469 emphysema development in mice ^{119, 447, 448}, whereas MMP-1, MMP-2, MMP-3, MMP-7, MMP-8,
 1470 MMP-9, MMP-10, MMP-12, and MMP-28 all have increased expression in COPD ^{447, 449-451}.

1471 Pharmacological intervention with dual inhibitors for MMP-9 and MMP-12 has been attempted, which
 1472 led to successful inhibition of airway remodeling and emphysema development in CS-exposed guinea
 1473 pigs using the inhibitor AZ11557272 ⁴⁵². The orally active dual MMP-9/MMP-12 inhibitor AZD1236
 1474 was evaluated in clinical trials in COPD, although not with emphysema progression or related outcomes
 1475 as primary endpoints. The results showed no effects on inflammatory biomarkers such as differential
 1476 cell counts and TNF- α levels in sputum, or in desmosine excretion in urine as a proxy for elastin
 1477 breakdown ⁴⁵³. Another interesting strategy to inhibit MMP activity is to target the delivery of
 1478 pentagalloyl glucose to the lung using inhaled nanoparticles loaded with this drug. This resulted in
 1479 suppression of MMP-12 activity and the preservation of elastin integrity in the lungs of elastase treated
 1480 mice ⁴⁵⁴. Collectively, although MMP inhibition appears effective in animal models, its clinical
 1481 relevance remains to be established.

1482

1483 *2.2.3.3 Cathepsin inhibitors (incl. DPP-1 inhibitors)*

1484 Cathepsins are lysosomal proteases that have been implicated in the pathogenesis of COPD through
 1485 their role in ECM degradation, inflammation, and tissue remodeling. Their activity is inhibited by
 1486 cystatins, and the ratio of cathepsin to cystatin expression was found increased in plasma of patients
 1487 with COPD and was found to correlate to the degree of emphysema ⁴⁵⁵. Cathepsin E expression is
 1488 increased in COPD and its overexpression results in the activation of cell death and emphysema
 1489 development in mice ⁴⁵⁶. Cathepsin C is also known as dipeptidyl peptidase I (DPP-I), and contributes
 1490 to lung tissue damage as well. Inhibitors of DPP-1 are under development mainly for bronchiectasis ⁴⁵⁷
 1491 but may be interesting to pursue as a therapeutic strategy for COPD too, given the protective effects of
 1492 DPP-1 inhibition in animal models of COPD ⁴⁵⁸. This is not only because of the direct effects on tissue
 1493 damage, but also because DPP-1 inhibitors reduce neutrophilic inflammation ⁴⁵⁹ which prevents
 1494 extracellular matrix remodeling and potentially supports regeneration downstream. Indeed, the DPP-1
 1495 inhibitor brensocatib inhibits the activity not only of DPP-1 itself but of neutrophil elastase, proteinase
 1496 3 and cathepsin G as well, probably contributing to its broad mode of action ⁴⁶⁰.

1497

1498 **2.2.3.4 Neutrophil elastase inhibitors**

1499 Given the central role of neutrophil elastase in elastolysis, neutrophil elastase inhibitors have long been
 1500 considered for the inhibition of emphysema development. The inhibitor FR901277 prevents elastase
 1501 induced emphysema development in rodents ⁴⁶¹. Furthermore, ONO-5046, another neutrophil elastase
 1502 inhibitor, was shown to prevent CS-induced lung injury in mice ⁴⁶². Neutrophil elastase inhibitors are
 1503 in clinical development for bronchiectasis. For example, the inhibitor BAY 85-8501 was found safe and
 1504 showed target engagement in bronchiectasis patients ⁴⁶³. Alvelestat (MPH966), an orally active
 1505 neutrophil elastase inhibitor, is currently being evaluated for bronchiolitis obliterans syndrome
 1506 [NCT02669251]. Whether neutrophil elastase inhibitors are suitable for long-term treatment and
 1507 inhibition of emphysema progression is unclear at this moment.

1508

1509 **2.2.4 Lymphotoxin-signaling inhibitors**

1510 The progression and severity of COPD are associated with increasing infiltration of the airways by both
 1511 innate, predominantly neutrophils and macrophages, and adaptive immune cells (B and T lymphocytes).
 1512 These form inducible bronchus-associated lymphoid tissue (iBALT), composed of B cells surrounded
 1513 primarily by T cells ⁴⁶⁴⁻⁴⁶⁶. The number of iBALT structures increases in the lung with disease severity
 1514 ^{464, 467-469}, and it was recently shown that they contribute to the pathogenesis of CS-induced COPD ^{331,}
 1515 ^{470, 471}. Furthermore, unbiased transcriptomics data obtained from the lungs of patients with COPD
 1516 revealed activated adaptive immune cell signatures strongly associated with the development of
 1517 emphysema ⁴⁷²⁻⁴⁷⁴, which is accompanied by a significant correlation between emphysema severity and
 1518 lymphoid organ formation ^{469, 474}.

1519 Crucial to our understanding of COPD pathogenesis and subsequent treatment is to elucidate the
 1520 molecular mechanisms underlying how iBALT contributes to both tissue injury (emphysema) and the
 1521 dysregulated repair and regenerative pathways observed in COPD. Many of the pathways responsible
 1522 for the development and maintenance of iBALTs in general, mirror those responsible for lymphoid
 1523 organogenesis during ontogeny ^{475, 476}. Crucial is the interaction between the lymphotoxin- β receptor
 1524 (LT β R) on stromal organizer cells and membrane bound lymphotoxin, heterotrimeric complexes of the
 1525 TNF superfamily members LT α and LT β (LT α 1 β 2 or LT α 2 β 1) ⁴⁷⁷, expressed on the surface of CD45⁺-
 1526 CD3⁻CD4⁺-ROR γ t⁺ lymphoid tissue inducer (LTi) cells ⁴⁷⁸⁻⁴⁸⁰. In lymphoid tissue formation during
 1527 chronic inflammation, lymphocytes are capable of fulfilling the role of LTi cells ⁴⁸¹⁻⁴⁸⁴. Lymphotoxin
 1528 signaling triggers expression of downstream chemokines like CCL19, CCL21 and CXCL13 and cellular
 1529 adhesion molecules such as VCAM1 and ICAM1, which attract and retain more hematopoietic cells ⁴⁷⁹.
 1530 LT β R signaling activates the non-canonical NF- κ B pathway via NF- κ B-inducing kinase (NIK), which
 1531 phosphorylates and activates IKK α homodimers. Activated IKK α then phosphorylates the NF- κ B
 1532 precursor protein p100, leading to its partial proteasomal processing into p52. The resulting p52/RelB
 1533 heterodimer translocates to the nucleus, where it drives transcription of target genes ^{485, 486}. Indeed, mice
 1534 with a mutation in NIK (aly/aly mice), which lack non-canonical NF- κ B signaling, have no lymph nodes
 1535 and present disorganized thymic and splenic architecture with impaired T cell mediated immunity ⁴⁸⁷⁻
 1536 ⁴⁸⁹, a phenotype also observed in mice deficient in lymphotoxin ⁴⁷⁶. Furthermore, blocking lymphotoxin

1537 signaling using a LT β R-Ig fusion protein⁴⁹⁰, impairs the development and maintenance of conventional
 1538 lymphoid tissue^{491, 492}. Indeed, LT β R-Ig treatment, used to block LT signaling both prophylactically
 1539 and therapeutically in the presence of CS, significantly reduced iBALT formation and resulted in more
 1540 dispersed immune cell localization³³¹. Crucially, quantitative morphological analyses of lung tissue
 1541 damage for airspace enlargement and alveolar surface density revealed that CS-induced emphysema
 1542 was prevented by prophylactic LT β R-Ig treatment. Therapeutic treatment starting from four months, a
 1543 time point at which airspace damage was already fully established in mice, led to full restoration of lung
 1544 tissue, even in the continued presence of CS exposure³³¹.

1545 Interestingly, LT β R-induced stabilization of NIK is crucial for TNF α -mediated cell death⁴⁹³. NIK is
 1546 required for the activation of caspase-8 by promoting the assembly of the RIP1/FADD/caspase-8 death
 1547 complex⁴⁹³. Consistent with this, increased AT2 cell death was observed in the lungs of both patients
 1548 with COPD and mice chronically exposed to CS. *In vitro*, LT β R-signaling enhanced TNF induced AT2
 1549 cell death³³¹. Single cell RNA-Sequencing clearly revealed that CS strongly induced a positive
 1550 regulation of NIK-dependent signaling in AT2 cells, which was significantly reduced upon LT β R-Ig
 1551 treatment. In line, high levels of *Ltbr* mRNA expression on AT2 cells were found indicating that NIK
 1552 dependent signaling in AT2 cells can be triggered by LT β R-activation. This demonstrates the novel
 1553 concept that therapeutic inhibition of LT β R-signaling restores lung architecture from smoking induced-
 1554 emphysema by re-initiated endogenous Wnt/ β -catenin-driven alveolar regeneration. Mechanistically,
 1555 LT β R activation in progenitor AT2 cells suppresses Wnt/ β -catenin signaling via the non-canonical NF-
 1556 κ B pathway, mediated by the NF- κ B-inducing kinase NIK³³¹. In primary AT2 cells and stable human
 1557 and mouse cell lines treated with LT β R agonists, there was a clear downregulation of key WNT/ β -
 1558 catenin target genes *Axin2*, *Tcf4*, *Nkd1*, and *Lgr5*. Indeed, both *AXIN2* and *TCF4* expression were also
 1559 suppressed in *ex vivo* human precision-cut lung slices stimulated with an LT β R agonist. Moreover, non-
 1560 canonical NF- κ B signaling induced by the alternative LT β R ligand TNFSF14 reduced β -catenin levels
 1561 in a murine AT2 cell line³³¹. Crucially, inhibition of GSK-3 β ligand-independent β -catenin
 1562 transcriptional reporter activity was prevented by LT β R activation, implying intracellular signal

1563 modification downstream of the β -catenin destruction complex. Indeed, proteasome inhibition with
 1564 bortezomib prevented LT β R driven β -catenin degradation³³¹.

1565 Although direct LT-signaling inhibitors are lacking, small molecules targeting its downstream non-
 1566 canonical NF- κ B signaling pathway have been in development for a number of years⁴⁹⁴⁻⁴⁹⁶. Indeed,
 1567 murine AT2 cells treated with the NIK inhibitor CMP137 prevented LT β R-signal induced degradation
 1568 of β -catenin³³¹, suggesting NIK inhibition may be an alternative option for inducing lung regeneration
 1569 in COPD. These series of experiments elegantly demonstrate that inhibition of LT β R-signaling in
 1570 alveolar progenitors can both prevent epithelial cell death and activate WNT-induced regeneration
 1571 promoted by β -catenin signaling.

1572 **2.2.5 Cytokine receptors and cytokine-targeted antibodies**

1573 A defining feature of the COPD lung microenvironment is the presence of persistent inflammation
 1574 characterized by the presence of neutrophils, macrophages and lymphocytes, often present in iBALT
 1575 structures as summarized in the previous section. These cells, and structural cells express several
 1576 chemokines and cytokines to which the alveolar epithelial cell and its niche is continuously exposed⁴⁹⁷.
 1577 Exacerbations offer periods of enhanced exposure to these inflammatory stimuli. A key question from
 1578 both a medical biology and pharmacology perspective is what the effect is of this inflammatory
 1579 microenvironment on lung tissue repair. As summarized in section 1.3.1, pro-inflammatory cytokines
 1580 can have both detrimental effects and beneficial effects, dependent on the type of cytokine, and the
 1581 duration of the exposure. It seems that acute inflammatory stimuli have beneficial effects on lung tissue
 1582 repair, whereas chronic or persistent exposures have the reverse effect and counteract adequate lung
 1583 tissue repair (Figure 5).

1584 These findings suggest that targeting specific cytokines or their receptors would be beneficial for lung
 1585 tissue repair, particularly when directed at the background of persistent inflammation. Indeed, persistent
 1586 exposure to IL-1 β was associated with elevated expression of a range of CXC chemokines including
 1587 CXCL1, CXCL5, and CXCL8. In this setting, inhibition of the common receptor CXCR2 using the
 1588 drug reparixin effectively reversed the detrimental effects of IL-1 β exposure on lung organoid growth
 1589 in the exposure model where mesenchymal cells were pre-exposed to IL-1 β before inclusion in the lung

1590 organoid assay⁸⁸. Thus, IL-1 β can both enhance alveolar epithelial cell proliferation and differentiation
1591 via the NF- κ B pathway and, when dysregulated, impair mesenchymal support for epithelial growth.

1592 Consistent with a detrimental role in emphysema development, mice deficient in IL1R1 or MyD88
1593 develop reduced emphysema severity and ECM remodeling in response to elastase administration⁴⁹⁸.
1594 Critically, inflammation in response to elastase was also reduced in these animals, suggesting that
1595 inflammatory responses, in addition to direct elastase effects, partially contribute to disease pathology.
1596 Likewise, mice deficient in IL-6 have reduced inflammatory cell counts in bronchoalveolar lavage fluid
1597 (BALF), and attenuated emphysema development in response to elastase exposure⁴⁹⁹. The apparent
1598 contradiction with the previously mentioned protective roles for IL1R1 and IL-6 in lung repair^{67, 79} is
1599 most likely explained by the difference in the model as these previously mentioned studies used
1600 influenza infection to model lung injury, which apparently produces different, even opposite, outcomes
1601 in comparison to the elastase model of emphysema.

1602 Further support for targeted inhibition of pro-inflammatory cytokines comes from studies that used
1603 either genetically modified mice or function blocking antibodies against IL-17A. Mice deficient in IL-
1604 17A develop reduced levels of emphysema in response to elastase and have attenuated inflammation
1605 and cytokine levels in BALF. Levels of IL-17A were elevated already immediately (1 day) after elastase
1606 exposure in wild-type mice and remained elevated compared to nonexposed wild-type mice, suggesting
1607 that IL-17A may have contributed to the immediate development of inflammation in the elastase model
1608⁵⁰⁰. On the other hand, in a disease model in which weekly low-dose elastase exposure for one month
1609 was followed up with LPS exposure and/or RSV infection, an antibody targeting IL-17 was protective
1610 against inflammation and emphysema development even when administered after the elastase
1611 exposures. This suggests that IL-17 contributes to the perpetuation of either lung damage or a reduced
1612 tissue repair response after elastase exposure⁵⁰¹. This contention is further supported by the observation
1613 that antibodies targeting IL-23 or genetic ablation of IL-23 reduce the expression of Th17 cells and
1614 attenuate the development of emphysema in response to elastase in mice⁵⁰². Whilst this does not
1615 indicate a direct role for IL-17 in tissue regeneration, there may be an indirect role because of inhibition
1616 of inflammation and subsequent epithelial injury.

1617 Finally, the possibility of targeting type 2 inflammation is a strategy worth mentioning in the context
 1618 of the recent developments on the protective effects of the IL-4R antibody dupilumab in patients with
 1619 COPD ⁵⁰³. In this context, the observation that IL-4 plays a role in the development of inflammation
 1620 and emphysema in response to elastase is of interest ⁵⁰⁴. Thus, interstitial macrophages produce MMP-
 1621 12 in mice exposed to elastase and do so in an IL-4 dependent manner with basophils being the major
 1622 source of IL-4 in the model. Mice deficient in IL-4 or mice with basophil-specific IL-4 deficiency fail
 1623 to develop emphysema and have reduced expression of MMP-12 in response to elastase ⁵⁰³.
 1624 Furthermore, the cysteinyl leukotriene receptor antagonist montelukast attenuates emphysema
 1625 development in response to elastase in mice, and inhibits the ovalbumin-aggravated response in a model
 1626 of combined allergen and elastase exposure ⁵⁰⁵. These findings raise the possibility that type 2
 1627 inflammation has an impact on emphysema development as well and that pharmacologically targeting
 1628 this response may be beneficial.

1629

1630 2.2.6 Other anti-inflammatory strategies

1631 2.2.6.1 Angiotensin pathway signaling

1632 Angiotensin signaling is a complex biological pathway best known for the role of angiotensin II which
 1633 contributes to hypertension mediated by the AT₁ receptor, and for which AT₁ receptor blockers such as
 1634 losartan and ACE inhibitors such as captopril are used clinically ⁵⁰⁶. However, in addition to its role in
 1635 the cardiovascular system, angiotensin contributes to pulmonary physiology and pathophysiology as
 1636 well, both by signaling via the AT₁ receptor and the AT₂ receptor. The AT₂ receptor, in contrast to AT₁,
 1637 generally exerts protective effects. Moreover, angiotensin II can be converted by ACE2 into
 1638 angiotensin(1-7), which not only binds to the AT₂ receptor but to the Mas receptor as well ⁵⁰⁶.
 1639 Intriguingly, compound 21, a selective peptide agonist for the AT₂ receptor, inhibits inflammation, p39
 1640 MAPK pathway activation, lung function changes, and emphysema development in response to CS in
 1641 mice ⁵⁰⁷. Moreover, an orally active formulation of angiotensin(1-7) was able to prevent emphysema
 1642 development in response to elastase in mice, which was associated with repressed inflammation ⁵⁰⁸.

1643

1644 2.2.6.2 α 7 Nicotinic receptor signaling

1645 In contrast to the muscarinic receptor pathways, which are predominantly pro-inflammatory⁵⁰⁹, α 7
 1646 nicotinic receptor signaling has well-established anti-inflammatory effects⁵¹⁰. α 7 Nicotinic receptors
 1647 are widely expressed on neurons and neuroendocrine cells, as well as on inflammatory cells such as
 1648 macrophages⁵¹¹. The selective α 7 nicotinic receptor agonist PNU-282987 strongly inhibited the
 1649 development of emphysema in response to elastase in mice, both as a preventive strategy and as a
 1650 therapeutic strategy. This was associated with an equally strong inhibition of inflammation in response
 1651 to elastase⁵¹². PNU-282987 had similar protective effects on type 2 inflammation in animal models of
 1652 allergen exposure⁵¹³.

1653

1654 2.2.6.3 Neuropeptide Y signaling

1655 Neuropeptide Y (NPY) is a neuropeptide expressed by sympathetic neurons as well as by inflammatory
 1656 cells and by epithelial cells, in particular neuroendocrine cells. Although there is limited literature
 1657 available on NPY, reduced expression of the neuropeptide has been reported in the airways of patients
 1658 with COPD⁵¹⁴. In addition, an interaction between the presence of NPY and emphysema development
 1659 was reported in NPY-/- mice. Although NPY-/- mice have no emphysematous abnormalities
 1660 themselves, the absence of NPY aggravates the inflammatory response and emphysema development
 1661 in response to elastase exposure⁵¹⁵. It remains unknown whether NPY agonists could serve as
 1662 therapeutic agents for emphysema.

1663

1664 2.2.6.4 RAGE signaling

1665 Receptor for advanced glycation end products (RAGE) is highly expressed on AT1 cells and
 1666 inflammatory cells, and its ligands (advanced glycation end products, AGEs) are increasingly expressed
 1667 in patients with COPD⁵¹⁶. AGEs are considered damage associated molecular patterns (DAMPs) with
 1668 roles in linking tissue injury to inflammatory responses. In addition, they have negative effects on lung
 1669 tissue repair as the antimicrobial protein LL-37 and HMGB1, both of which are endogenous RAGE

1670 ligands, reduce lung organoid forming capacity⁵¹⁷. In addition, they promote neutrophilic inflammation
1671 and emphysema development⁵¹⁷. Accordingly, inhibition of RAGE signaling using the drug FPS-ZM1
1672 prevented emphysema development, both in response to elastase and in response to LL-37 or HMGB1;
1673 it also reduced inflammatory cell infiltration, and suppresses DAMP-related signaling^{517, 518}.

1674

1675 **2.3 Cell therapies**

1676 **2.3.1 Mesenchymal stromal cell-based therapy**

1677 The most widely described stem cell population used for cell-based strategies in regenerative medicine
1678 is the mesenchymal stem/stromal cell (MSC). MSCs are multipotent stem cells that can be derived from
1679 various tissues, including bone marrow, adipose tissue, umbilical cord, and the lung^{519, 520}. Due to the
1680 scarcity and limited numbers of adult human MSCs, human-induced pluripotent stem cells (iPSCs) are
1681 now increasingly used as a source of MSCs. iPSCs are derived by reprogramming of somatic cells from
1682 various tissues such as skin biopsies or urine samples, and can then be differentiated into iPSC-MSCs.
1683 Lung resident MSCs (LMSCs) are mesenchymal progenitors that replenish stromal cell populations,
1684 including lipofibroblasts, myofibroblasts and smooth muscle cells. They reside within the
1685 microenvironment of alveolar epithelial cells and ECs and support site-specific proliferative and
1686 differentiation responses, secreting trophic factors such as fibroblast growth factor (FGF)10, which is
1687 critical for embryonic lung development as well as adult lung homeostasis⁵²¹. In mice, a subpopulation
1688 of FGF10-expressing cells has been reported to represent resident MSCs that are able to self-renew⁵²²,
1689⁵²³. MSCs as well as (lipo)fibroblasts are an important source of FGF10. Of note, MSCs and fibroblasts
1690 are difficult to distinguish on the basis of their secretory, surface molecule or gene expression profiles
1691 *in vitro*. Yet the regenerative potential of MSCs may be related to the higher proliferative capacity and
1692 lower susceptibility to undergo senescence upon expansion compared to fibroblasts⁵²⁴. As described
1693 above, increasing numbers of studies show that communication between mesenchymal cells and the
1694 alveolar epithelium is crucial for alveologenesis, normal lung homeostatic maintenance and alveolar
1695 epithelial repair upon lung injury. A wide variety of growth factors secreted by MSCs have been
1696 implicated in mesenchymal-epithelial crosstalk during alveolar epithelial developmental and repair

1697 processes, including FGF10 and other FGFs, keratinocyte growth factor (KGF), WNT ligands, BMPs,
1698 and HGF. In addition, MSCs can secrete micro-RNAs and anti-inflammatory factors into the damaged
1699 micro-environment, suppressing allograft rejection and protecting against inflammation-induced injury.
1700 Rather than by their direct engraftment, MSCs are thought to exert their therapeutic effects mainly
1701 through their paracrine function. In addition to growth factors and (anti-)inflammatory mediators, their
1702 secretome consists of other soluble proteins and extracellular vesicles (EVs), including exosomes. In
1703 preclinical models of ALI and ARDS, administration of MSC's secretome has been shown to improve
1704 survival, restore lung architecture, decrease fibrin deposition, and attenuate inflammation⁵²⁵. The cell-
1705 free nature of secretome-based therapy offers advantages over live cell transplantation, including
1706 reduced risk of tumorigenicity and immune rejection⁵²⁶. BM-MSC-derived EVs were shown to be safe
1707 in a clinical trial on the treatment ARDS in patients with COVID-19⁵²⁷, yet secretome-based therapy
1708 offers new challenges such as limited duration of effects. Moreover, clinical translation is limited
1709 because of the heterogeneity in secretome composition, optimal dosing, delivery methods, and large-
1710 scale manufacturing challenges. EV treatment in COPD will be further discussed in section 2.4
1711 Besides their paracrine effects, MSCs derived from adult tissues and iPSC-derived MSCs have been
1712 shown capable of mitochondrial transfer, reducing lung tissue damage upon smoking and oxidative
1713 stress and protecting against mitochondrial dysfunction in animal models⁵²⁸⁻⁵³⁰. Accordingly, various
1714 animal studies have shown that MSCs are beneficial in lung disease, with the ability to ameliorate
1715 emphysematous lesions when administered either prophylactically or therapeutically⁵³¹.
1716 MSCs from adult tissues have been extensively and successfully used in clinical trials aiming at
1717 dampening immune reactions and enhancing tissue regeneration, such as for the treatment of Graft-
1718 versus-Host Disease⁵³², Crohn's disease⁵³³, cardiac ischemia, and following solid organ transplantation
1719⁵³⁴. However, the clinical application of MSCs in lung disease is still in its infancy and evidence for
1720 beneficial clinical effects of transplanted MSCs on lung function is limited. In the first clinical trial in
1721 COPD, bone marrow-derived MSCs (BM-MSCs) were delivered intravenously. The treatment was
1722 well-tolerated and resulted in a significant, early reduction in systemic C-reactive protein (CRP) levels,
1723 but without effect on lung function⁵³⁵. In a post-hoc analysis, the treatment significantly improved lung

1724 function in those patients with high CRP levels, indicating clinical benefit through anti-inflammatory
1725 effects ⁵³⁶. In another clinical trial in severe emphysema patients undergoing lung volume reduction,
1726 treatment with BM-MSCs confirmed that treatment was safe. Moreover, this study reported increased
1727 CD31 expression, suggesting responsiveness of microvascular ECs, yet again without a beneficial effect
1728 on lung function ⁵³⁷.

1729 Because of the complex architecture of the lung and the extensive alveolar destruction in emphysema,
1730 the challenge of achieving lung tissue repair is considerable, and important questions on the optimal
1731 route, dosage, frequency of treatment and source of MSCs remain to be answered. Various animal
1732 studies have compared the use of MSCs from different sources. In an elastase-based mouse model,
1733 comparison of LMSCs to BM-MSCs showed higher retention of LMSCs in the lungs, which was
1734 accompanied by higher ICAM-1, integrin- α 2, and PDGFR α expression, and may thus relate to higher
1735 ability of MSCs to adhere to ECs and migrate into the lung tissue ⁵³⁸. LMSCs and BM-MSCs showed
1736 similar growth factor receptor and inflammatory mediator expression profiles, and both cell types
1737 reduced elastase-induced lung damage. In another study comparing the effects of intravenous and
1738 intratracheal installation of adipose derived MSCs (AD-MSCs), BM-MSCs, and LMSCs in a mouse
1739 model, cells from all sources reduced elastase-induced mean linear intercept, neutrophil infiltration and
1740 alveolar epithelial and EC damage, and increased elastic fiber content, independent of administration
1741 route. However, only BM-MSCs displayed beneficial systemic effects, while AD-MSCs and LMSCs
1742 showed a more significant reduction in the fractional area of alveolar collapse than BM-MSCs ⁵³⁹. This
1743 may be linked to the immunomodulatory/anti-inflammatory profile of BM-MSCs ⁵⁴⁰, which translated
1744 into reduced systemic cytokines ⁵⁴¹ and protection not only of the lung but also in extrapulmonary
1745 tissues in models of acute lung injury upon their administration in a pre-clinical model ⁵⁴². In contrast,
1746 the more localized effects of AD-MSCs and LMSCs may be attributed to their tissue-specific gene
1747 expression profiles. LMSCs, in particular, express higher levels of growth factors such as FGF10 and
1748 HGF ¹⁶⁴.

1749 For their application in the clinic, one of the hurdles that needs to be taken, irrespective of the cell source
1750 and route of delivery, is the short retention time of MSCs in the lung. Even though intravenously

1751 administered MSCs initially become trapped in pulmonary capillaries, they are cleared within a few
 1752 days ⁵⁴³. While retention was initially higher in mice with elastase-induced emphysema ⁵⁴³, a hostile
 1753 lung microenvironment in COPD, with high levels of oxidative stress, inflammation and loss of ECM
 1754 may significantly impact on the attachment and survival of MSCs ⁵⁴⁴. Furthermore, administered MSCs
 1755 may be cleared rapidly by phagocytosing immune cells. This needs to be taken into account when
 1756 considering the most appropriate dosing frequency and route of administration. A potential solution is
 1757 the use of a delivery scaffold, such as microgel encapsulation to protect the cells and improve their
 1758 retention time ⁵⁴⁵. Insight into factors in the MSC secretome that are crucial for alveolar repair will
 1759 further guide the design of such a delivery scaffold and/or pre-conditioning strategies of the cells. When
 1760 the strategy is aimed at the use of autologous MSCs, it is important to consider abnormalities in gene
 1761 expression profiles and pathways of MSCs derived from patients with COPD. COPD-derived LMSCs
 1762 express lower levels of HGF and FGF10 ⁵⁴⁶. Strikingly, even more differences in gene expression were
 1763 observed between BM-MSCs and AD-MSCs from patients with COPD and controls ¹⁶⁴. One of the
 1764 pathways that may be dysregulated in MSCs from COPD patients is the Hedgehog (Hh)-Glioma-
 1765 associated oncogene 1 (GLI1) axis, which is regulated by COPD susceptibility gene *HHIP* ⁵⁴⁷, encoding
 1766 Hh interacting protein. GLI1 was found higher expressed in fibroblasts, which share mesenchymal stem
 1767 cell features with MSCs, from smokers and COPD patients (PMID: 25815884). In animal models, loss
 1768 of *HHIP* expression resulted in activation of Hh signaling in fibroblasts, promoting emphysematous
 1769 manifestations ⁵⁴⁸ and potentiating the release of IL-7 by Gli⁺ fibroblasts ⁵⁴⁹. Moreover, Gli1⁺ MSCs
 1770 were shown to contribute to abnormal alveolar differentiation upon injury ⁵⁵⁰. Animal models provide
 1771 evidence that the *HHIP*/Hh axis is a reachable target and pharmacological modulation of Hh pathways
 1772 may thus represent an opportunity to enhance lung tissue repair ⁵⁵¹.

1773 Besides the dysregulation of regenerative pathways in COPD, another limitation of autologous MSC is
 1774 *in vitro* expansion of MSCs, which can lead to the induction of replicative senescence, and the induction
 1775 of senescence is accompanied by lower levels of FGF10 ⁵²⁴. Of note, when compared to fibroblasts from
 1776 lung tissue of the same donors, MSCs showed lower sensitivity towards both stress-induced and
 1777 replicative senescence, indicating that MSCs are less likely to senesce upon *in vitro* expansion ⁵²⁴.

1778 Additionally, the use of iPSC-derived MSCs may overcome this issue, but this comes with the risk of
1779 tumorigenesis. Here, microencapsulation to prevent proliferation may be an option to explore for future
1780 strategies. Together, with continued insight into the action of (iPSC-induced) MSCs and how to
1781 overcome their limitations, the application of these cells holds significant promise in regenerative
1782 medicine in the lung.

1783

1784 **2.3.2 Organoid and iPSC induced epithelial cell therapy**

1785 In COPD the epithelial barrier is compromised due to disrupted tight and adherens junctions, leading to
1786 increased permeability and susceptibility to pathogens. In the upper airways, the local stem cells, called
1787 basal cells, exhibit dysregulated differentiation, contributing to ciliary dysfunction and mucus
1788 overproduction. Similarly in the distal lung, the alveolar progenitor cells (AT2) show impaired
1789 differentiation into AT1 cells, compromising gas exchange⁵⁵². Aggravating risk factors like cigarette
1790 smoke and other pollutants are thought to impair regeneration by increasing oxidative stress, leading to
1791 senescence, sustained tissue damage and remodeling^{553, 554}. However other mechanisms for failed
1792 regeneration likely also contribute and our understanding remains limited. Recent advances in
1793 regenerative medicine, particularly involving iPSCs, lung organoids, and adult stem cell transplantation,
1794 are opening new avenues for both disease modeling and therapeutic intervention. These innovative
1795 approaches aim at providing the damaged tissue with an alternative source of progenitor cells required
1796 for lung repair and integrity.

1797 *2.3.2.1 Transplantation of iPSC-derived lung cells*

1798 Several recent studies have demonstrated that when iPSC-derived basal cells are transplanted into
1799 injured airways of immunocompromised mice, they can engraft, self-renew, and contribute to the long-
1800 term regeneration of functional airway epithelium⁵⁵⁵⁻⁵⁵⁷. In addition to basal cells, other lung-resident
1801 epithelial stem and progenitor populations have been derived from iPSCs and tested in preclinical
1802 models. For example, lung tip progenitor cells, characterized by expression of transcription factors such
1803 as SOX9 and ID2, have been generated and successfully engrafted into the distal lung of mice following
1804 naphthalene-induced injury, supporting localized repair⁵⁵⁸. Similarly, studies have reported the

1805 generation and engraftment of AT2 from patient-specific iPSCs, which are critical for surfactant
1806 production and alveolar homeostasis. These iPSC-derived AT2s have been shown to survive and
1807 integrate into the alveolar niche *in vivo*, contributing to alveolar regeneration after injury^{559, 560}. These
1808 findings suggest that multiple kinds of lung progenitors could be employed to repair or replace damaged
1809 epithelial tissues in COPD patients, especially in scenarios where chronic inflammation and repeated
1810 injury disrupt epithelial integrity and repair capacity.

1811 *2.3.2.2 Transplant of lung primary cells and their derivatives.*

1812 Whereas iPSC-derived cell therapies offer a customizable and patient-specific approach, concerns about
1813 immune system avoidance, tumorigenic potential, and genomic instability remain significant barriers
1814 to clinical translation. As an alternative, transplantation of endogenous airway and alveolar progenitor
1815 cells is emerging as a promising and potentially safer strategy for long-term lung regeneration.

1816 Basal cells have demonstrated stable engraftment and long-term regenerative capacity in preclinical
1817 models. In a key study⁵⁵⁶, human basal cells were expanded in *ex vivo* culture and transplanted into the
1818 airways of immunocompromised mice, where they engrafted successfully, maintained basal cell
1819 identity, and differentiated into multiple airway epithelial lineages over time. Similar studies
1820 demonstrated efficient expansion of human airway basal cells and their successful engraftment into
1821 bleomycin, elastase, and LPS mouse lung injury models⁵⁶¹⁻⁵⁶³. These findings suggest that isolated and
1822 expanded adult basal cells could support durable epithelial repair after transplantation.

1823 Beyond the proximal airways, efforts have also focused on regenerating distal lung structures,
1824 particularly the alveoli. Lung epithelial organoids derived from adult alveolar progenitor cells—
1825 primarily AT2 cells—have shown significant regenerative potential in preclinical models. Organoid-
1826 derived AT2 cells have been transplanted into bleomycin injured immunocompromised mouse lungs.
1827 These cells were engrafted in the alveolar regions and contributed to epithelial repair. Importantly,
1828 recipient mice showed decreased fibrosis and immune infiltration compared to control mice, indicating
1829 the therapeutic potential of alveolar stem cell delivery^{564, 565}. A similar study showed AT2 organoid
1830 transplant in flu-injured mice aids in oxygen saturation recovery and lung repair⁵⁵², and another

1831 demonstrated whole lung cell transplantation can aid in the resolution of a pulmonary fibrosis
1832 bleomycin mouse model⁵⁶⁶.

1833 Together, these studies support the growing consensus that transplant of airway and alveolar progenitor
1834 cells represent a promising approach to restore the lungs regenerative capacity in chronic lung diseases
1835 impacting epithelial cells such as COPD.

1836 *2.3.2.3 Autologous transplantation in human: P63⁺ lung progenitor cell transplantation*

1837 A step toward clinical translation was recently reported with the first-in-human trial investigating the
1838 autologous transplantation of P63⁺ airway basal progenitor cells in COPD patients^{567, 568}. These cells
1839 were isolated via bronchoscopic brushing and expanded ex vivo in a pharmaceutical grade culture
1840 system before patient transplantation via bronchoscopy. Patients who received transplanted cells
1841 showed improved diffusing capacity for carbon monoxide (DLCO), six-minute walk distance (6MWD),
1842 and patient-reported respiratory symptoms, whereas control patients had continued lung function
1843 decline. This on-going clinical trial underscores the potential of patient cell transplantation for
1844 therapeutic benefit and epithelial regeneration in COPD patients, although consideration must be taken
1845 for possible genomic instability in transplanted cells from ex vivo culture.

1846 *2.3.2.4 Challenges and future directions*

1847 Despite these promising developments, several challenges remain. Efficient differentiation of iPSCs
1848 into functional lung epithelial subtypes, the time required to derive iPSCs from each patient, and long-
1849 term engraftment stability are critical barriers to overcome. Perhaps one of the most significant
1850 challenges of iPSC-derived cells are their lack of maturation compared to cells from adult tissues;
1851 further development of culturing platforms may aide this deficiency in the future.

1852 It is notable that the human lung is significantly larger than murine lungs which have been used for the
1853 proof-of-principle transplantation and engraftment studies; a major question that remains is what is the
1854 number of cells required for engraftment to have a therapeutic benefit for COPD patients? The number
1855 of cells needed may be proportional to the size difference, however it is possible that engraftment of a
1856 portion of the lungs will be sufficient, and overall likely is highly dependent on the severity of their
1857 disease. To mimic lung injury and to promote engraftment, all developed methods to date require

1858 preconditioning of the recipient lung with damaging agents, akin to the ablation of the bone marrow
 1859 that precedes transplantation of hematopoietic stem cells. However, it is not clear how to utilize these
 1860 treatments in patients with lung disease. Furthermore, as we learn more about the lung
 1861 microenvironment in repair and disease, new transplant approaches need to consider the role of
 1862 endothelial and mesenchymal cells as both co-transplant adjuvant as well as in engraftment efficiency.
 1863 Finally, immune barriers must be addressed in clinical settings to prevent rejection and allow for enough
 1864 cell engraftment to effectively restore lung function.

1865 iPSC and organoid technologies are rapidly advancing from experimental models to potential clinical
 1866 interventions for COPD. As demonstrated by recent studies, regenerative epithelial cell therapies have
 1867 the potential to restore epithelial integrity and regenerative capacity in COPD patients. Continued
 1868 interdisciplinary research and carefully designed clinical trials will be essential to investigate
 1869 therapeutic potential of these novel approaches.

1870

1871 **2.3.3 Endothelial cell therapy in COPD**

1872 Recent investigations have uncovered the functional role of ECs in lung regeneration, suggesting
 1873 targeting pulmonary ECs is an effective intervention to restore functional gas exchange in respiratory
 1874 disease. Currently, corneal EC therapy is widely conducted in clinical trials ⁵⁶⁹⁻⁵⁷¹, but limited
 1875 information is available for respiratory diseases. Intravenous infusion of autologous endothelial
 1876 progenitor cells (EPCs) is feasible and safe and may be beneficial to patients with idiopathic pulmonary
 1877 arterial hypertension ⁵⁷². The delivery of EPCs overexpressing endothelial nitric oxide synthase is also
 1878 tolerated hemodynamically in patients with pulmonary arterial hypertension ⁵⁷³ with a trend toward
 1879 improvement in total pulmonary resistance during a short delivery period, although one severe adverse
 1880 event occurred after discharge.

1881

1882 *2.3.3.1 Therapeutic potential of endothelial progenitor cells therapy in COPD*

1883 COPD is significantly associated with endothelial dysfunction contributing to both airway remodeling
 1884 and alveolar destruction ⁵⁷⁴⁻⁵⁷⁶. Pulmonary ECs lining along the arteries, veins and capillaries mediate

1885 the interactions between blood and lung tissue, which is vital for angiogenesis, regulation of blood flow,
 1886 vascular permeability, wound healing, and inflammation^{577, 578}. The primary function of the respiratory
 1887 system is gas exchange where the functional compartment responsible for it is the alveolus that is
 1888 comprised of multiple epithelial, endothelial, and mesenchymal cell subtypes.

1889 Though there is currently no EC therapy trial conducted in patients with COPD, EC therapy has been
 1890 beneficial in animal models of elastase-induced and CS-induced COPD^{138, 579, 580}. Specifically, co-
 1891 transplantation of tissue-resident AMs and EPCs improves the efficacy of EPCs therapy in hyperoxia-
 1892 injured lungs⁵⁸⁰. To identify the regenerative potential of EC therapy in emphysema, GFP-labeled
 1893 E4ORF1-transduced lung ECs were intravenously delivered at days 7 and 14 after elastase treatment.
 1894 This intervention significantly reduced parenchymal destruction and decreased mean cord length¹³⁸.
 1895 Delivery of human induced pluripotent stem cell-derived distal ECs together with pneumocytes in an
 1896 elastase-induced rat emphysema model via intratracheal injection led to about 15% engraftment in the
 1897 host alveoli and these cells integrated to form vascularized alveoli together with host cells⁵⁷⁹. In animal
 1898 models of COPD induced by cigarette smoke exposure, systemic administration of EPCs has been
 1899 shown to alleviate multi-organ senescence and modulate disease-associated pathways, including the
 1900 USP7/p300 axis, where USP7 stabilizes the coactivator p300 involved in gene regulation and cell
 1901 differentiation. However, these interventions have not reversed established tissue morphological
 1902 changes⁵⁸¹. Taken together, these studies indicate that EPCs possess significant value for restoration of
 1903 alveolar destruction associated with chronic lung diseases in different animal models, and their
 1904 regenerative potential can be achieved both via intravenous and intratracheal delivery.

1905

1906 **2.3.4 Platelet-rich plasma therapy for COPD**

1907 Platelet-rich plasma (PRP) therapy has been postulated as a potential adjunct therapy for COPD, with
 1908 the notion that it could slow the progression of the disease and improve patient quality of life. PRP is
 1909 an autologous product, derived from the patient's own blood; a number of methods have been developed
 1910 to extract the desired components from whole blood in a short period of time (~15 min) for
 1911 administration back to the patient⁵⁸². Previous studies have demonstrated that positive therapeutic

1912 outcomes following musculoskeletal injury can be achieved with doses around 3.5 billion platelets per
 1913 administration, with cumulative doses reaching up to 10-12 billion platelets in multiple dosing strategies
 1914 ⁵⁸³. PRP contains an array of biological factors that have the potential to modulate inflammation and
 1915 remodeling processes in disease tissues.

1916 PRP has the capability to modulate chronic disease pathology via a number of mechanisms. PRP has
 1917 been found to reduce tissue inflammation, a primary characteristic of the COPD lung. In the context of
 1918 musculoskeletal injuries, PRP administration was able to reduce the levels of pro-inflammatory
 1919 cytokines (IL-17A, IL-1 β , TNF- α , IL-6, and IFN- γ), increase the expression of angiogenic factors
 1920 (HGF, VEGF, PDGF, IGF-1, and TGF- β), and improve joint structure assessed by magnetic resonance
 1921 imaging ⁵⁸⁴. In the context of lung disease, PRP has been shown to reduce IL-1 β levels in COVID-19
 1922 patients ⁵⁸⁵.

1923 The administration of PRP to damaged tissue may also have regenerative potential. Both nebulized and
 1924 non-nebulized PRP promoted fibroblast proliferation *in vitro* compared to controls ⁵⁸⁶. In the lung, PRP
 1925 has been found to increase lung vascularity and alveolar regeneration in mice following right lung
 1926 pneumonectomy ⁵⁸⁷. Mechanistically, this was found to occur through a WNT-dependent pathway
 1927 involving LRP5 phosphorylation and activation of the Tie2 receptor in ECs. PRP treatment resulted in
 1928 accelerated EC sprouting *in vitro* and improved lung tissue regeneration in mice following unilateral
 1929 pneumonectomy. Platelet-derived factors, in particular CXCL12 (SDF-1), have also been shown to
 1930 prime the pulmonary capillary vascular niche and promote alveolar regeneration. Following left lobe
 1931 pneumonectomy in mice, platelet-derived CXCL12 stimulation of the CXCR4/7-Akt pathway in
 1932 pulmonary capillary endothelial cells induced metalloproteinase MMP14 expression and caused the
 1933 release of HB-EGF, thereby stimulating the proliferation of alveolar epithelial cells driving neo-
 1934 alveolarization ⁵⁸⁸.

1935

1936 Recently, a clinical case series described the use of submucosal injections of autologous PRP in three
 1937 patients with tracheobronchial fistulae; this treatment was successful in all patients with no treatment-
 1938 related complications, suggesting the potential of PRP to promote localized tissue repair ⁵⁸⁹. In COPD

1939 patients, a number of small cohort studies have been performed to assess the ability of PRP to improve
 1940 lung function and quality of life. While some of these studies have reported an increase in FEV₁ and
 1941 symptom scores, due to the lack of data on patient COPD severity and comorbidities, as well as
 1942 incomplete reporting of lung function data⁵⁹⁰, it remains to be seen if PRP is a viable adjunct treatment
 1943 strategy for COPD. Large scale double blinded and controlled studies are eagerly anticipated to explore
 1944 this further.

1945 Currently, it is thought that much of the regenerative effect of PRP therapy for tissue repair is mediated
 1946 by extracellular vesicles (EVs) released from activated platelets⁵⁹¹. While the mechanistic basis for the
 1947 regenerative potential of PRP-ECs is an area of continuing investigation, recent studies focusing on the
 1948 cargo of platelet-derived EVs have revealed that target cell pyroptosis could be inhibited via EV-
 1949 delivered long non-coding RNAs and microRNAs interfering with the SIRT1 axis⁵⁹². The advantages
 1950 of EV-based treatments, including lower immunogenicity, improved tissue penetration, and the ability
 1951 to deliver bioactive molecules directly to target cells certainly make EV-based therapies attractive for
 1952 tissue regeneration, but this enthusiasm must be tempered by the current lack of standardization
 1953 regarding the cell type of EV origin and EV dosing strategies.

1954

1955 **2.4 Extracellular vesicles**

1956 As mentioned previously, MSCs have emerged as a promising option for regenerative therapies,
 1957 particularly in the treatment of respiratory diseases such as COPD^{521, 593, 594}. MSCs have shown great
 1958 potential in preclinical studies, where they have demonstrated the ability to reduce inflammation,
 1959 modulate immune responses, promote angiogenesis, and support tissue repair through their paracrine
 1960 effects^{521, 593, 594}. However, despite these promising preclinical results, clinical trials with MSCs have
 1961 often yielded disappointing outcomes. One of the challenges has been the rapid clearance of MSCs by
 1962 the body's immune system, particularly by macrophages, which limits their effectiveness in the targeted
 1963 lung tissue. Additionally, the complexity and high costs associated with MSC-based therapies,
 1964 including the need for careful formulation, delivery, and sometimes surgical procedures, have further
 1965 complicated their clinical application⁵⁹³⁻⁵⁹⁵. An alternative approach is to induce or enhance lung repair

1966 using biologically active factors from the secretome of mesenchymal cells, which could be applied at
1967 an early stage of the disease and on a larger scale ⁵⁹⁴. MSCs and other cell types within the alveolar
1968 niche release EVs, which locally influence neighboring cells. Initially, EVs were thought to function
1969 primarily as a mechanism for cellular waste disposal ⁵⁹⁶. However, subsequent research has revealed
1970 their critical roles in intercellular communication and regulation of various biological processes,
1971 offering promising applications for disease diagnosis and treatment.

1972

1973 EVs are heterogeneous, cell-secreted particles enclosed by a phospholipid bilayer membrane ⁵⁹⁷. The
1974 two most studied EV subtypes, large vesicles (microvesicles) and small vesicles (exosomes), are
1975 classified based on their size and biogenesis. Microvesicles, which range from 0.1 to 1–2 micrometers
1976 in diameter, bud directly from the plasma membrane. In contrast, exosomes, typically 30–150
1977 nanometers in diameter, originate from endosomal multivesicular bodies and are released when these
1978 structures fuse with the plasma membrane ⁵⁹⁸. Due to their overlapping size, density, and protein
1979 markers, isolating pure vesicle populations remains challenging. In line with the Minimal Information
1980 for Studies of Extracellular Vesicles guidelines, the term EVs will be used generically in this review to
1981 describe all lipid-bilayer-delimited particles naturally released from cells that lack replication ability
1982 ⁵⁹⁹. EVs carry various bioactive molecules, including proteins, lipids, and genetic material (mRNA and
1983 microRNA). Once released, they interact with target cells via ligand-receptor interactions or are
1984 internalized through phagocytosis, endocytosis, or direct membrane fusion ⁶⁰⁰. The activation of specific
1985 membrane receptors on target cells triggers signaling cascades that modulate biological processes,
1986 influencing cell behavior and tissue homeostasis.

1987

1988 EVs have recently attracted significant attention as potential regenerative agents, with an increasing
1989 body of research exploring their therapeutic role in tissue repair and regeneration. In this context, EVs
1990 from a variety of cellular sources have been investigated as potential treatments for COPD, further
1991 underscoring their relevance in regenerative pharmacology. Among these, MSCs have been the most
1992 widely studied source, with EVs derived from bone marrow, umbilical cord, and adipose tissue being

1993 evaluated in several preclinical models, such as mouse models of emphysema (see Table 1)^{541, 601-604}.
 1994 While bone marrow- and umbilical cord-derived MSC EVs have demonstrated anti-inflammatory
 1995 effects and protection against emphysema progression, adipose-derived MSC EVs failed to improve
 1996 lung function, highlighting the variability in MSC-derived EV efficacy depending on their cellular
 1997 origin^{541, 601-604}. Beyond MSCs, other cell types have also shown promise as EV sources. For instance,
 1998 we demonstrated that alveolar lung fibroblast-derived EVs (MRC5) improved lung function and
 1999 reduced elastase-induced lung injury, suggesting that resident lung cells may play an important role in
 2000 alveolar repair¹⁴⁹. Positioned in situ near alveolar progenitor cells, these fibroblasts may facilitate
 2001 localized EV signaling, directly supporting progenitor cell survival and regeneration¹⁴⁹. Similarly,
 2002 platelet-derived EVs have shown protective effects in a CS-induced COPD model, while genetically
 2003 modified HEK293T cell-derived EVs (WNT-3A-transfected) enhanced alveolar repair and lung
 2004 function recovery in an elastase-induced emphysema model^{65, 605}. These findings suggest that EVs
 2005 derived from non-MSC sources may provide alternative strategies for lung regeneration, particularly if
 2006 their cargo can be engineered or optimized for targeted therapeutic effects.

2007

2008 In addition to the wide range of cellular sources under investigation, the dosing strategies employed in
 2009 EV-based therapies for COPD vary substantially across studies (see Table 1). Reported doses range
 2010 from approximately 0.5×10^8 - 5.0×10^{10} EVs per dose, with differences not only in the absolute quantity
 2011 but also in the number of administrations used. Most preclinical studies investigated a single EV dose
 2012 without assessing dose-response relationships, thereby limiting our understanding of the optimal
 2013 therapeutic window. Furthermore, it is important to acknowledge that reported EV doses are typically
 2014 quantified based on total particle number, which is an indirect measurement and potentially confounded
 2015 by non-EV contaminants⁵⁹⁸. This lack of a biologically meaningful and standardized quantification
 2016 method complicates dose comparison across studies and presents a significant challenge for therapeutic
 2017 standardization. Several studies report EV yields relative to the number of cultured donor cells rather
 2018 than an absolute EV quantity, which introduces significant variability due to differences in culture
 2019 conditions and isolation protocols. Compounding this issue is the use of diverse isolation methods

2020 across studies, which can affect the purity and biological composition of the final EV preparations⁶⁰⁶.
2021 Most notably, differential ultracentrifugation remains the most widely applied method, yet it is known
2022 to co-isolate soluble proteins and other non-EV components unless followed by additional purification
2023 steps^{607, 608}. These impurities may contribute to biological effects that are erroneously attributed to EVs
2024 themselves. Indeed, recent evidence suggests that non-EV components of conditioned media can
2025 account for a substantial portion of the observed regenerative activity⁶⁰⁸. Collectively, these challenges
2026 underscore the urgent need for standardized EV quantification, purification, and reporting practices to
2027 improve reproducibility and facilitate meaningful comparisons across studies⁵⁹⁹.

2028

2029 The route of administration is a critical factor in the therapeutic application of EVs for COPD. Most
2030 preclinical studies have used either intratracheal or intravenous delivery of EVs (Table 1). In many
2031 cases, both administration routes yielded therapeutic effects. However, direct comparisons have
2032 highlighted differences in efficacy. For instance, Huang and colleagues demonstrated that while
2033 intratracheal administration of EVs significantly reduced lung injury, the same EVs administered
2034 intravenously failed to show efficacy⁶⁰³. These findings suggest that local pulmonary delivery may be
2035 more effective than systemic approaches for targeting lung tissue. Despite the promising results of
2036 intratracheal administration in rodents, this method is not feasible in clinical practice. An alternative
2037 strategy is nebulization, which allows non-invasive aerosolized delivery of EVs directly to the lung.
2038 Several studies have demonstrated the feasibility and therapeutic benefit of nebulized EVs. In a recent
2039 study, nebulized EVs improved lung function and reduced inflammation, whereas intravenous
2040 administration had no observable effect⁵⁴¹. Similarly, nebulized EV were found to reduce lung injury
2041 and enhance lung function in other models of lung damage^{605, 609}.

2042

2043 While nebulization enables the delivery of relatively high doses of active pharmaceutical ingredients
2044 directly to the lungs, it is also associated with several limitations. These include limited delivery
2045 efficiency, considerable inter-patient variability, prolonged administration times, and challenges in
2046 achieving consistent dosing^{610, 611}. Furthermore, many biopharmaceuticals, including EVs, exhibit

2047 instability in aqueous solution or suspension, which complicates long-term storage and distribution
2048 without appropriate formulation strategies^{610, 611}. Dry powder inhalers (DPI) represent a promising
2049 alternative for pulmonary delivery of EVs, as dry powder formulations can significantly enhance the
2050 storage stability of sensitive biologics⁶¹⁰⁻⁶¹². Two principal strategies have been explored for
2051 formulating EVs as dry powders: freeze drying and spray drying. Freeze drying is a well-established
2052 technique used to preserve biological products by removing water through sublimation⁶¹³⁻⁶¹⁵. Several
2053 studies have demonstrated that EVs retain their physical properties and biological activity after freeze
2054 drying⁶¹⁶⁻⁶¹⁹. Moreover, distribution studies in murine and non-human primate models have shown that
2055 inhaled, freeze-dried EVs carrying GFP mRNA successfully localize to both bronchioles and
2056 parenchyma, resulting in functional protein expression within lung cells⁶²⁰. These findings indicate that
2057 EVs can reach their cellular targets and deliver biologically active cargo via the inhaled route. Spray
2058 drying offers an alternative, single-step method for producing respirable dry powders^{610, 614, 615}. This
2059 process typically yields spherical and homogeneously sized particles with favorable aerodynamic flow
2060 properties⁶¹¹. Although research in this area is still limited, our work shows that lung fibroblast-derived
2061 EVs can be successfully spray-dried using excipients such as inulin and leucine, as stabilizer and
2062 dispersibility enhancer, respectively⁶¹⁶. The resulting powder retained their structural integrity and
2063 biological activity for at least 12 weeks and exhibited properties suitable for deep lung deposition using
2064 a DPI⁶¹⁶. While these findings are currently based on *in vitro* data, they provide a promising foundation
2065 for future *in vivo* studies aimed at confirming the therapeutic efficacy of spray-dried EV formulations
2066 delivered via inhalation.

2067

2068 Although preclinical studies offer compelling evidence for the regenerative potential of EVs in COPD,
2069 their clinical translation is still in its infancy. To date, only a limited number of clinical studies have
2070 explored the therapeutic use of EVs in respiratory disease, and in the context of COPD, only one
2071 published study has been identified. In this study, patients received weekly inhalations of Exo-d-
2072 MAPPS, a formulation containing MSC-derived EVs supplemented with high concentrations of
2073 immunomodulatory factors⁶²¹. Thirty patients with COPD were treated once per week for three weeks

2074 with 0.5 mL of Exo-d-MAPPS via inhalation⁶²¹. All treated patients exhibited improvements in
 2075 pulmonary function and quality of life, as evidenced by increases in FEV₁, peak expiratory flow, six-
 2076 minute walking distance, and reductions in Clinical COPD Questionnaire scores⁶²¹. While it remains
 2077 unclear which components of the formulation drove these effects, the treatment was well tolerated,
 2078 demonstrating the feasibility and safety of inhaled EV-based therapies in a clinical COPD population.
 2079 This study offers a valuable first benchmark for future trials, particularly regarding the use of inhalation
 2080 as a delivery method.

2081

2082 However, several translational challenges must still be addressed. Scalable, GMP-compliant EV
 2083 production systems are needed to ensure consistent yield and purity, yet current manufacturing practices
 2084 often result in variable product composition and potential contamination⁶²¹⁻⁶²⁴. Most efforts still rely
 2085 on multilayered cell factories, though advances such as hollow-fiber bioreactors, microcarrier-based
 2086 stirred tanks, and 3D spheroid cultures show promise for clinical upscaling^{622, 625-627}. Beyond
 2087 production, EV therapies demand rigorous quality control, including batch-to-batch consistency,
 2088 validated potency assays, and comprehensive molecular characterization^{625, 628}. Finally, dedicated
 2089 regulatory frameworks for EV-based products have not yet been established, requiring concerted efforts
 2090 from regulatory agencies, scientific societies, and industry stakeholders to guide safe and effective
 2091 clinical implementation⁵⁹⁸.

2092

2093 **2.5 Cell-derived therapeutic proteins**

2094 In view of the well-established roles of the alveolar niche in guiding epithelial repair and regeneration,
 2095 major research efforts have been directed at identifying the secreted factors derived from lung
 2096 fibroblasts, endothelial cells and immune cells in an attempt to utilize these as drugs or as leads for drug
 2097 development. This section will summarize the niche-derived proteins with potential therapeutic value
 2098 (Figure 6).

2099 **2.5.1 Fibroblast growth factors**

2100 FGFs represent a large family of growth factors mainly expressed by MSCs, that signal to FGF
 2101 receptors, for which four different receptor tyrosine kinase subtypes (FGFR1-4) exist. The ligand-
 2102 receptor interactions between most FGFs (e.g., FGF10) and FGFR involve FGF binding to heparan
 2103 sulphate, which maintains FGFs localized to the tissue of origin, ensuring a paracrine function ⁶²⁹. On
 2104 the other hand, endocrine FGFs that circulate in the bloodstream such as FGF23, require binding to α -
 2105 Klotho to activate FGFR signaling ⁶³⁰. The degree of heparan sulphate binding of paracrine FGFs is a
 2106 key determinant of their biological action radius. For example, FGF10, which binds to heparan sulphate
 2107 with higher affinity than FGF7 does, has a more restricted action radius than FGF7, which is key to the
 2108 differential roles of FGF10 and FGF7 in epithelial gland budding (FGF10) versus branching (FGF7)
 2109 during development ⁶³¹. Downstream of the FGF-FGFR interaction is the tyrosine kinase-dependent
 2110 activation of proliferation and survival pathways such as PI3K, p42/p44 MAPK, and FAK ⁶²⁹.

2111 In lung fibroblasts, the main FGFs expressed are FGF2, FGF7, and FGF10 and these FGF family
 2112 members are also the best studied in the context of lung tissue repair and regeneration ^{82, 632}. On the
 2113 other hand, FGFR1 and FGFR2 are the main receptors expressed, for which FGFR1 is mainly expressed
 2114 by lung fibroblasts and FGFR2 mainly by epithelial cells ^{82, 632}, underscoring the role of FGF/FGFR
 2115 signaling in both autocrine fibroblast functions and in mesenchymal to epithelial cell signaling in the
 2116 lung. The expression of FGF7 is upregulated in lung fibroblasts exposed to a cocktail of cytokines
 2117 relevant to the COPD exacerbation ⁸², whereas TGF- β reduces the expression of FGF7 and FGF10,
 2118 whilst increasing the expression of FGF2 ⁴²². The expression of FGF1, FGF2, and FGFR1 is increased
 2119 in the airways of patients with COPD ⁶³³, whereas the expression of FGF7 and FGF10 by lung
 2120 fibroblasts is decreased in COPD ⁶³⁴. In addition, an interaction with SNPs in the FGF7 gene region and
 2121 COPD susceptibility has been reported ⁶³⁵, although it is difficult to disentangle whether this is due to
 2122 a direct role for FGF7 in COPD development or in lung development, predisposing to COPD later in
 2123 life.

2124 The biological roles of FGF7 (also known as KGF) and FGF10 in lung regeneration have been
 2125 consistently reported to be supportive. Recombinant FGF7 and FGF10 promote survival and
 2126 proliferation of epithelial cells in culture ^{422, 636, 637}. FGF7 appears to be a stronger stimulus than FGF10

2127 in this respect ⁴²²; in fact, FGF7 signaling is required for alveolar epithelial cell organoids formation in
 2128 fibroblast-free culture conditions ⁶³⁸. *In vivo*, FGF10 signaling is consistently reported to be required
 2129 for both airway and alveolar epithelial repair. Thus, in the airways, FGF10 is expressed by bronchial
 2130 smooth muscle and its conditional deletion impairs the epithelial repair response to naphthalene injury
 2131 ⁶³⁹. In the alveolar region, lipofibroblasts express FGF10 in abundance ⁵²³ and deletion or reduction in
 2132 FGF10 expression is associated with hypomorphic lungs and impaired alveolar epithelial growth and
 2133 differentiation during development ⁶⁴⁰. FGF7 plays key roles in lung development as well, particularly
 2134 in branching morphogenesis ⁶⁴¹ and in alveolar epithelial cell survival and differentiation ⁶⁴²⁻⁶⁴⁴.
 2135 Interestingly, and in addition to direct effects on epithelial repair, FGF signaling has also been reported
 2136 to control elastin turnover by lung fibroblasts. Deficiency in FGFR3 and FGFR4 leads to aberrant lung
 2137 development, characterized by enlarged airspaces and defective regulation of genes involved in
 2138 elastogenesis. Isolated lung fibroblasts obtained from these mice did produce elastin, indicating that
 2139 FGF signaling controls alveolar development and elastogenesis in utero by supporting mesenchymal-
 2140 epithelial interactions that govern these responses ⁶⁴⁵. Because of these critical roles in both epithelial
 2141 regeneration and matrix homeostasis, FGFs have been extensively studied as potential therapeutic
 2142 agents for COPD.

2143

2144 2.5.1.1 FGF2

2145 In spite of the subtle differences in FGF spatial regulation during homeostatic lung development and
 2146 maintenance of lung tissue, exogenous administration of recombinant FGF proteins or modified
 2147 versions hereof, tend to have quite similar and consistently protective effects in animal models. FGF2
 2148 deficiency fails to resolve the inflammation and epithelial repair response following either bleomycin
 2149 or naphthalene injury ⁶⁴⁶. Furthermore, recombinant FGF2 protein, administered via intraperitoneal
 2150 injection, reduced the inflammatory response and alveolar capillary leak in response to LPS exposure
 2151 ⁶⁴⁷. Most relevant to the topic of this review, however, modified versions of FGF2, being either collagen-
 2152 binding FGF2 or protein transduction domains conjugated FGF2, improved both airspace enlargement
 2153 and inflammatory outcomes in mouse models of elastase-induced emphysema ^{648, 649}. Recombinant

2154 FGF2 also improves inflammatory outcomes in an animal model of CS exposure ¹⁶⁶, and appears to be
2155 safe as an inhaled drug, although short-term (during a period of two weeks) administration in patients
2156 with stable COPD did not improve lung function or Borg scale outcomes ¹⁶⁶. It will be of interest to
2157 evaluate the efficacy of this treatment in the context of COPD exacerbations as will be discussed in the
2158 section on clinical outcomes below.

2159

2160 2.5.1.2 FGF7/KGF

2161 Recombinant FGF7 (KGF) is one of the most extensively studied of these three FGF proteins, and is
2162 protective *in vivo* as well. KGF pre-treatment improves lung repair outcomes in a mouse model of
2163 idiopathic pneumonia syndrome following bone marrow transplantation ⁶⁵⁰. KGF administration *in vivo*
2164 in rats also enhances the subsequent growth and repair response of AT2 cells *in vitro* indicating a direct
2165 relationship with epithelial cell activation ⁶⁵¹. Similar protective effects were observed in a mouse model
2166 of oleic acid induced acute lung injury ⁶⁵². When applied as a MSC-therapy approach that overexpresses
2167 KGF, the treatment protected against LPS-induced acute lung injury as well ⁶⁵³. Relevant to COPD,
2168 KGF administration in a preventive therapeutic regimen, attenuated the inflammatory response, and
2169 protected from elastase-induced emphysema development in a mouse model, but not when administered
2170 in a therapeutic regimen ⁶⁵⁴. This is at odds with a study that reported therapeutic effects of recombinant
2171 KGF in a mouse model of elastase exposure, in which effects on AT2 cell proliferation and the
2172 activation of p42/p44 MAPK signaling were also reported ⁶⁵⁵. The main differences between these two
2173 studies is the mode of administration, which was subcutaneous ⁶⁵⁴ and via oropharyngeal instillation ⁶⁵⁵.
2174 On a speculative note, this may have impacted on the local bio-availability of KGF in the lung, hence
2175 explaining the better outcomes in ⁶⁵⁵. Interestingly, recombinant KGF is available as a clinically
2176 approved formulation (Palifermin) for chemotherapy-induced oral mucositis and has been clinically
2177 evaluated for safety and preliminary efficacy outcomes in human volunteers exposed to inhaled LPS.
2178 The results of this trial indicate that the preparation is safe, and that early beneficial effects on surfactant
2179 protein D and IL-Ra were observed ⁶⁵⁶. Moreover, BALF of volunteers treated with KGF, promoted
2180 alveolar epithelial repair and fibroblast proliferation *in vitro* ⁶⁵⁶. Whilst these studies are promising, the

2181 clinical trial mentioned is over 10 years old already indicating no immediate additional follow-up was
 2182 pursued. Clinicaltrials.gov does mention a trial in asthma, but without publication of results.

2183

2184 **2.5.1.3 FGF10**

2185 Similar protective effects are reported for recombinant FGF10. Intratracheal application of FGF10
 2186 inhibits oxidative stress and ferroptosis in response to particulate matter in mouse lungs ⁶⁵⁷. This is
 2187 associated with Gpx4 and Nrf2 pathway activation. A related study also reported protective effects on
 2188 pyroptosis ⁶⁵⁸. In line with these findings, recombinant HGF protects against emphysema development
 2189 in response to either CS or elastase in mice ⁶⁵⁹. Interestingly, in that study protective effects on
 2190 pulmonary vascular changes of FGF10 were also observed, which is of interest in the context of altered
 2191 EC function in emphysema. Further to this point, FGF10 restores the defective endothelial glycocalyx
 2192 and prevents EC apoptosis in a mouse model of CS-induced COPD ⁶⁶⁰.

2193

2194 **2.5.2 Hepatocyte growth factor**

2195 HGF is a secreted protein in the human lung that is among the best studied factors driving epithelial
 2196 repair, both from a biological and from a pharmacological point of view. HGF signals via the receptor
 2197 tyrosine kinase c-MET and plays critical roles in epithelial homeostasis and in lung cancer development.
 2198 In that respect, any potential therapeutics targeting the HGF/c-MET pathway will have to balance the
 2199 benefit of tissue repair with the risk of promoting lung cancer, in which HGF/c-MET inhibition is a
 2200 desirable outcome ⁶⁶¹. FGF10 is mainly expressed by lung fibroblasts and myofibroblasts as well as
 2201 pericytes and pulmonary neuroendocrine cells ⁶⁶². Its expression is also higher in LMSCs than in
 2202 adipocyte or bone-marrow derived stromal cells ¹⁶⁴. Its receptor c-MET on the other hand is abundantly
 2203 expressed in most epithelial cell types and in the endothelium ⁶⁶², in line with a role in lung
 2204 mesenchymal to epithelial communication. Downstream of the c-MET receptor are the typical RTK-
 2205 induced signaling pathways such as PI3K signaling, p42/p44 MAPK signaling, and FAK signaling ⁶⁶³.

2206 Consistent with a link between lung injury and repair, the expression of HGF increases in otherwise
2207 healthy patients with community acquired pneumonia, however this increase is not observed in patients
2208 with acute exacerbations of COPD ⁶⁶⁴. Furthermore, COPD patient-derived LMSCs have reduced
2209 expression of HGF mRNA ¹⁶⁴, and lung fibroblasts obtained from emphysema patients have reduced
2210 capacity for HGF production ¹⁶⁵. Furthermore, cytokines relevant to COPD pathology such as TGF- β
2211 reduce HGF expression in lung fibroblasts, contributing to the negative effects of TGF- β on epithelial
2212 repair ⁴²². Intriguingly, whereas one study reports reduced expression of HGF in the epithelial lining
2213 fluid of patients with COPD ⁶⁶⁵, other studies report no change or increased expression of HGF in BALF
2214 or in plasma ^{666, 667}. Thus, whereas the reduced capacity for mesenchymal HGF production in COPD is
2215 consistently reported, this is not necessarily reflected in other pulmonary compartments or in the
2216 systemic compartment. It will be of interest to investigate this apparent contradiction in further detail
2217 and to involve severity of COPD and the presence of emphysema versus airway disease in the analysis
2218 to understand this relationship more.

2219 Consistent with a major role for HGF in emphysema development, genetic deletion of the c-Met
2220 receptor in mice is sufficient to induce airspace enlargement in mice ⁶⁶⁸. HGF based therapeutics have
2221 been evaluated both for emphysema and for other respiratory conditions in need for lung tissue repair
2222 such as acute lung injury and lung fibrosis. The first published report on the potential use of HGF in
2223 emphysema dates from 20 years ago already and used *in vivo* gene transfection of HGF in rat lungs as
2224 a proof-of-concept approach. In this study, an HVJ packaged plasmid encoding for HGF was
2225 administered intravenously as a single dose, which provided sustained increases in HGF gene
2226 expression for one week in the rat lung tissues. This was accompanied by improvements in airspace
2227 enlargement associated with reduced apoptosis and improved proliferation of alveolar cells after
2228 elastase exposure ⁶⁶⁹. Interestingly, the treatment also restored pulmonary microvascular changes and
2229 functional changes on lung function ⁶⁶⁹. Similar beneficial effects of HGF were demonstrated for
2230 intranasal administration of recombinant HGF protein, which was effective even after one week of
2231 treatment duration already in an elastase model of emphysema in mice, without additional benefit from
2232 prolonged treatment for up to four weeks of duration ⁶⁷⁰. Cell therapy with human MSCs is also HGF

2233 dependent since both MSC therapy and treatment with conditioned media from these cells improved
 2234 elastase induced emphysema, whereas MSCs deficient in HGF were nearly ineffective ⁶⁷¹. *In vitro*
 2235 studies confirm that these effects are achieved by acting on alveolar epithelial cells, since HGF depletion
 2236 inhibited the beneficial effects of bone marrow derived stem cells on the growth and differentiation of
 2237 AT2 cells ⁶⁷², whereas direct administration of recombinant HGF boosts growth of alveolar epithelial
 2238 cells grown in lung organoids ⁴²². Antisense oligonucleotides against HGF also interfere with the growth
 2239 and differentiation of fetal rat lung explants ⁶⁷³. On the other hand, alveolar organoids can form in the
 2240 absence of HGF ⁶³⁸, indicating that its presence is supportive, but not strictly required.

2241

2242 **2.5.3 Bone morphogenetic proteins**

2243 BMPs are members of the TGF- β superfamily, and were initially discovered for their role in bone and
 2244 cartilage formation ⁶⁷⁴⁻⁶⁷⁶. Besides their classical functions, BMPs have since emerged as pleiotropic
 2245 factors involved in iron homeostasis, immune modulation, angiogenesis, stem cell regulation, and tissue
 2246 repair. BMP ligands bind to type I receptors (activin receptor-like kinase 2 (ALK2 (ActR-I)), ALK3
 2247 (BMPR-IA), and ALK6 (BMPR-IB), as well as type II receptors (activin receptor type IIA (ActR-IIA),
 2248 ActR-IIB, and BMPR-II. This binding promotes phosphorylation of SMAD1/5/8 proteins. These
 2249 combine with cytoplasmic SMAD4 as an active transcriptional complex and translocate to the nucleus,
 2250 resulting in the activation of gene transcription ⁶⁷⁴.

2251 The best studied BMP ligands in the context of alveolar regeneration are BMP2, BMP4, and BMP6,
 2252 which have the highest expression in whole lung tissue ¹³⁹. The BMP signaling pathway plays a crucial
 2253 role in AT2 cell growth and differentiation, though in ligand and context specific manners. For example,
 2254 recombinant BMP4 appears to reduce alveolar epithelial organoid growth, whereas antagonists of BMP
 2255 signaling such as follistatin and noggin promote AT2 self-renewal ⁶⁷⁷. In sharp contrast, cocultures of
 2256 bronchioalveolar stem cells (BASCs) with endothelial cells require BMP4 for alveolar lineage
 2257 specification, indicating the context-dependent effect of BMPs ¹³⁵. In line with this contention, BMP6
 2258 promotes alveolar epithelial cell growth ¹³⁹, whereas BMP2 promotes AT2 cell differentiation into AT1

2259 cells⁶⁷⁸. Moreover, *Bmpr1a* ablation disrupted club cell regeneration in mice⁶⁷⁹. However, recombinant
 2260 BMP6 was unable to restore elastase induced lung injury in precision cut lung slices¹³⁹.
 2261 BMP-Smad1/5/8 signaling is important for maintaining lung homeostasis and lung function.
 2262 Interestingly, Smad1/5/8 signaling is downregulated in emphysema and mice that express the BMP
 2263 antagonist Noggin selectively in AT2 cells develop emphysema spontaneously⁶⁸⁰. In COPD, BMP6
 2264 expression is decreased in the lungs, an effect that is also observed in smokers and in mice exposed to
 2265 CS⁶⁸¹. An association between BMP6 and lung function has been described in mice as well, leading to
 2266 reduced total lung capacity and increased dynamic elasticity and tissue damping in *Bmp6*-/- mice⁶⁸¹.
 2267 This is further supported by genome-wide association studies reporting associations between variants
 2268 in the *BMP6* gene and forced vital capacity⁶⁸². Moreover, *BMP6* mRNA levels are downregulated
 2269 during acute exacerbations compared to stable COPD⁶⁸³. Similarly, BMP6 was upregulated in COPD
 2270 rats treated with high-intensity electroacupuncture, which correlated with increased lung function and
 2271 reduced inflammation⁶⁸⁴.
 2272 Mechanistically, *Bmp6*-deficient mice showed iron accumulation in multiple organs and loss of iron
 2273 regulatory feedback mechanisms⁶⁸⁵. Iron overload may further harm the surrounding tissues by
 2274 promoting oxidative stress and cell death. Indeed, BMP6 is pro-angiogenic in both *in vitro* and *in vivo*
 2275^{686, 687}. This angiogenic activity is important to COPD, as emphysema is associated with microvascular
 2276 dysfunction and remodeling resulting from a reduction in capillary length and density¹³⁶. BMP6 works
 2277 in both canonical and non-canonical pathways (SMAD-dependent and independent). Specifically, it
 2278 triggers cell migration via p38-HSP27 signaling axis in tip cells, while inducing the activation of
 2279 SMAD1/5 signaling in stalk cells⁶⁸⁶. Consequently, increased migration in tip cells and proliferation in
 2280 stalk cells occurs, leading to enhanced angiogenesis. BMP6 appears to be preferentially expressed by
 2281 pulmonary microvascular ECs, but with functional effects on alveolar epithelial organoid growth as
 2282 well, which is mechanistically explained by reduced oxidative stress signaling and enhanced WNT
 2283 signaling¹³⁹. These findings highlight BMPs as a key regulator of alveolar and vascular repair, which
 2284 is impaired in COPD. Given its dual role in epithelial regeneration and angiogenesis, further research
 2285 into BMP-based therapies is warranted.

2286

2287 **2.5.4 Vascular Endothelial Growth Factor**

2288 Vascular endothelial growth factor (VEGF) is a key regulator with important pro-angiogenic activity.
 2289 Its role as a family of signaling proteins for vascular development and angiogenesis is well established
 2290 [⁶⁸⁸]. The VEGF family of growth factors consists of several subtypes, being VEGF-A, -B, -C, and -D,
 2291 as well as placental growth factor (PIGF). VEGF-A (often called "VEGF") primarily functions as the
 2292 main mediator of new blood vessel formation, while VEGF-C and -D are key regulators of lymphatic
 2293 vessel formation. VEGF-B and PIGF, along with VEGF receptor-1 (VEGFR-1), have more restricted
 2294 roles, with a less clear contribution to angiogenesis ⁶⁸⁹.

2295 VEGFs specifically interact with one or more type V receptor tyrosine kinases (RTKs), VEGFR-1, -2,
 2296 and -3 and with distinct co-receptors such as neuropilins and heparan sulfate proteoglycans ⁶⁹⁰.
 2297 VEGFR1 plays a regulatory role by negatively modulating VEGFR2 activity and promoting the
 2298 migration of monocytic cells. VEGFR2 serves as the driver of angiogenesis, orchestrating the
 2299 differentiation of blood vascular EPCs, EC migration, proliferation, and survival. It also regulates
 2300 sprouting angiogenesis, flow sensing, and vascular permeability ⁶⁹¹. In contrast, VEGFR3 is
 2301 predominantly involved in lymphangiogenesis, supporting the migration of lymphatic EPCs, lymphatic
 2302 vessel expansion, and, to a lesser extent, contributing to blood vascular sprouting angiogenesis ⁶⁹¹.

2303 Decreased VEGF levels have been reported in sputum from patients with emphysema compared to
 2304 healthy individuals ⁶⁹². In emphysema, reduced VEGF may contribute to or result from alveolar
 2305 capillary loss and tissue destruction, while in chronic bronchitis, elevated VEGF may reflect ongoing
 2306 angiogenesis, vascular remodeling in inflamed small airways ^{693, 694}. This indicates VEGF can be both
 2307 beneficial and harmful. It may act as a protective feature to prevent emphysema while potentially
 2308 detrimental by exacerbating inflammation in bronchial disease. Additionally, VEGF is emerging as a
 2309 biomarker that might help to differentiate COPD phenotypes and possibly indicate underlying
 2310 emphysema development ⁶⁹⁵⁻⁶⁹⁷.

2311 VEGF signaling may intersect with multiple pathogenic processes in COPD. Inhibition VEGF receptor
 2312 signaling disrupts maintenance of alveolar structure, promotes oxidative stress and cell apoptosis,

2313 thereby contributing to pathogenesis of emphysema⁶⁹⁸. Conversely, VEGF agonism supports cell
 2314 survival by preventing increased oxidative stress, apoptosis, and modulates inflammation by affecting
 2315 immune cell trafficking and survival^{693, 699}. Both *in silico* and *in vivo* modeling showed that prominin-
 2316 1-derived peptide (PR1P), a novel short peptide that increases VEGF binding to ECs, prevents
 2317 proteolytic degradation by enzymes such as elastase and plasmin, and reduced lung injury in 4- and 21-
 2318 day elastase induced murine emphysema models^{699, 700}. Unlike direct treatment with VEGF protein
 2319 which could have off-target effects, stabilizing VEGF via PR1P may be considered safer. PR1P is
 2320 currently in the preclinical stage, but still represents a promising therapeutic avenue for emphysema
 2321 treatment. Since no such treatment is currently available to clinically address COPD, recent studies
 2322 provide a hopeful foundation suggesting that further investigation of the VEGF pathway as a therapeutic
 2323 target may benefit patients in the future.

2324

2325 **2.5.5 Osteoglycin and its active fragments**

2326 Osteoglycin (OGN), also known as mimecan, has recently emerged as a promising candidate in
 2327 regenerative pharmacology for COPD. Initially referred to as osteoinductive factor due to its role in
 2328 bone formation, OGN was later found to be ubiquitously expressed. It is an endogenous small leucine-
 2329 rich proteoglycan involved in various biological processes, including tissue development, ECM
 2330 organization, and fibrosis regulation⁷⁰¹. The mature protein (~37 kDa) comprises seven tandem leucine-
 2331 rich repeats and a C-terminal tail, and contains multiple glycosylation sites^{701, 702}. Our recent
 2332 proteomics-guided drug discovery approach identified OGN as a key factor secreted by lung fibroblasts
 2333 that promotes alveolar epithelial repair⁷⁰³. This aligns with the growing recognition of the pivotal role
 2334 lung fibroblasts play in orchestrating epithelial regeneration within the alveolar niche.

2335

2336 Using murine and COPD patient-derived lung epithelial organoids, OGN was shown to significantly
 2337 increase the colony-forming efficiency of alveolar epithelial progenitors without affecting organoid
 2338 size, suggesting a specific effect on progenitor cell activation rather than a broad proliferative response
 2339⁷⁰³. Notably, OGN enhanced alveolar (SFTPC⁺) organoid differentiation even under injurious

2340 conditions such as CS extract exposure, indicating its potential to support epithelial maturation under
2341 COPD-relevant stressors ⁷⁰³. Interestingly, a smaller C-terminal fragment (~15 kDa), comprising
2342 leucine-rich repeats 4 through 7 (MC002), was equally effective in supporting organoid formation and
2343 differentiation. Both OGN and MC002 also reduced elastase-induced lung injury in murine precision-
2344 cut lung slices, and high doses of MC002 significantly improved lung function parameters in an
2345 elastase-induced lung injury mouse model ⁷⁰³.

2346 Although initially identified for its role in bone formation, subsequent studies revealed that OGN is
2347 widely expressed across tissues, including the lung ^{701, 702}. In non-disease human lung samples, OGN
2348 expression was positively correlated with age ⁷⁰⁴. In contrast, OGN expression appears dysregulated in
2349 the lungs of individuals with COPD. Lin and colleagues reported reduced OGN mRNA expression in
2350 lung biopsies of patients with severe COPD ⁷⁰⁵. Similarly, immunostaining for OGN on human lung
2351 tissue has shown proportionally lower expression in current smokers compared to non-smokers, with
2352 ex-smokers displaying intermediate levels, suggesting that CS may exert a lasting suppressive effect on
2353 OGN expression. A trend toward lower OGN levels has also been observed in lung tissue from patients
2354 with severe early-onset COPD ⁷⁰³. These findings suggest that age-related upregulation of OGN in the
2355 lung may be disrupted by smoking, potentially contributing to impaired alveolar repair capacity. Given
2356 that reduced OGN levels are also present in otherwise healthy smokers, this dysregulation could
2357 represent an early molecular event that predisposes individuals to COPD, possibly requiring additional
2358 environmental or genetic insults to drive disease progression.

2359 While OGN expression appears to correlate with disease severity and smoking history, the mechanism
2360 of action of OGN and its active fragment is not fully understood yet. Transcriptomic analyses of OGN-
2361 treated lung epithelial cells revealed upregulation of protective epithelial pathways, including those
2362 involved in oxidative stress detoxification and iron homeostasis, processes increasingly implicated in
2363 COPD pathogenesis ⁷⁰³. Although these pathway-level changes provide initial mechanistic insight, the
2364 specific binding partners or downstream signaling cascades mediating OGN's regenerative effects are
2365 currently unknown. However, emerging evidence suggests that OGN may modulate several key tissue
2366 repair pathways. For instance, studies in pulmonary fibrosis models demonstrated that OGN

2367 downregulation by microRNA-140 was associated with activation of the Wnt/β-catenin signaling
 2368 pathway⁷⁰⁶. OGN has also been shown to modulate TGF-β signaling, a central pathway in alveolar
 2369 remodeling. In cardiac fibrosis, OGN suppressed fibroblast proliferation and migration through
 2370 inhibition of LPAR3/MMP2/EGFR signaling, reducing ECM deposition⁷⁰⁷. In cancer, OGN
 2371 overexpression inhibited epithelial-to-mesenchymal transition and reduced cell proliferation via
 2372 downregulation of the PI3K/Akt/mTOR pathway⁷⁰⁸. Beyond the lung, OGN also appears to play a role
 2373 in systemic metabolic regulation, as knockout models revealed increased bone formation and altered
 2374 insulin sensitivity⁷⁰⁹.

2375 Taken together, these findings highlight OGN as a promising therapeutic candidate for COPD with
 2376 demonstrated regenerative potential. However, further studies are required to elucidate its precise
 2377 molecular binding partners and mechanisms of action, as well as to guide future clinical development.

2378

2379 **2.5.6 Other extracellular matrix-based strategies**

2380 In addition to OGN, several other matrix proteins or fragments hereof have been proposed as therapeutic
 2381 options in preclinical models of emphysema. The protein Hyaluronan and proteoglycan link protein 1
 2382 (HAPLN1) was shown to increase expression of sirtuins and reduce markers of cellular senescence in
 2383 AT2 cells. Recombinant HAPLN1 protein also reduced emphysema development in an elastase-induced
 2384 mouse model of emphysema⁷¹⁰.

2385 Similar protective effects were reported for keratan sulfate. In this study, a disaccharide repeating unit
 2386 of keratan sulfate was shown to reduce emphysema development in response to elastase in the mouse,
 2387 and to attenuate inflammation in both the elastase model and in an exacerbation model in which CS
 2388 exposure is combined with LPS⁷¹¹.

2389

2390 **3. CLINICAL OUTCOMES AND FEASIBILITY**

2391 In recent years, significant progress has been made in discovering therapeutic strategies aimed at tissue
 2392 repair and regeneration in COPD. Numerous preclinical studies have demonstrated promising
 2393 regenerative effects in experimental models, sparking optimism about the potential of these therapies

2394 to modify disease progression. However, despite scientific progress, none of these candidates have
2395 successfully advanced to clinical approval. The translation of regenerative therapies from bench to
2396 bedside remains challenging due to the complexity of COPD and the difficulty of demonstrating disease
2397 modification in clinical trials. Here, we will discuss the clinical endpoints typically used to evaluate
2398 therapeutic efficacy in COPD trials, the feasibility of applying these endpoints to regenerative
2399 interventions, and how emerging biomarkers and alternative trial designs may help to overcome current
2400 translational barriers.

2401 Safety issues may form a significant barrier to clinical introduction. COPD patients suffer from many
2402 comorbidities, among which lung cancer is most prominent in patients with a history of smoking,
2403 showing a two- to six-times higher risk compared to the general population⁷¹². This should be kept in
2404 mind when evaluating the safety of regenerative therapies, since they intrinsically may further increase
2405 this risk. Cell based therapies (MSC- or iPSC-based) carry a tumorigenic risk, therefore, these therapies
2406 should be evaluated already in early development stages on their tumorigenicity⁷¹³. On the other hand,
2407 stem cell-based therapies used in COPD were proven to be relatively safe so far^{714, 715}. However long-
2408 term data are scarce.

2409 Similar to cell-based therapies also EVs or exosomes may contain growth factors that may favor tumor
2410 progression. From this perspective, regenerative therapies that consist of only a single therapeutic
2411 compound should be preferred since the safety of such a single entity is much easier to establish than
2412 of the complex mixtures that occur in cells or cell derived EVs or other mixtures.

2413

2414 **3.1 Clinical Endpoints**

2415 While preclinical research into regenerative therapies for COPD has shown promising results,
2416 translating these findings into effective clinical treatments remains a major hurdle. According to the
2417 European Medicines Agency (EMA), demonstrating disease modification or slowing of disease
2418 progression requires long-term clinical trials that convincingly show a change in the trajectory of lung
2419 function decline^{716, 717}. This is typically assessed through periodic measurements of FEV₁, the volume
2420 of air a person can forcibly exhale in the first second⁷¹⁸. In clinical trials, the trough or pre-

2421 bronchodilator FEV₁ is the most commonly used parameter ⁷¹⁹. A minimal clinically important
2422 difference (MCID) of 100 milliliters is generally accepted to represent a meaningful improvement ²⁵⁸,
2423 ⁷¹⁸⁻⁷²⁰. However, FEV₁ alone is now considered insufficient to fully capture the therapeutic benefit of
2424 an intervention ⁷¹⁹. When FEV₁ is used as a primary endpoint, regulatory guidelines require it to be
2425 supported by a co-primary endpoint that reflects symptoms and patient-reported outcomes ^{716, 719}.
2426 Among the most frequently used additional clinical endpoints is the Transition Dyspnea Index, which
2427 evaluates changes in the severity of dyspnea across three domains: functional impairment, magnitude
2428 of task, and magnitude of effort. Each is scored from minus three to plus three, resulting in a total score
2429 ranging from minus nine to plus nine ^{721, 722}. A change of at least one point is considered clinically
2430 meaningful ^{717-719, 721, 722}. Another widely accepted endpoint is the St. George's Respiratory
2431 Questionnaire, a self-administered instrument that assesses health status across symptoms, activity
2432 limitations, and psychosocial impacts ⁷¹⁹. Total scores range from zero to one hundred, with a four-
2433 point change considered the MCID ^{717-719, 721, 722}. Additional outcomes commonly used in COPD trials
2434 include exacerbation frequency, exercise capacity (e.g., six-minute walk distance), rescue medication
2435 use, and imaging-based endpoints such as quantitative computed tomography to assess emphysema
2436 progression or airway remodeling. ^{716, 719}. Recent updates in regulatory and academic consensus now
2437 emphasize integrated and multidimensional endpoints, including composite measures such as clinically
2438 important deterioration (CID) or clinically important improvement (CII), to better capture the
2439 complexity of COPD and the potential for disease modification ⁷²². Moreover, the use of biomarkers,
2440 functional respiratory imaging, and digital monitoring tools is gaining importance in evaluating
2441 treatment response, particularly for precision-medicine approaches and regenerative interventions
2442 aiming to restore lung structure and function ⁷²².

2443

2444 To detect changes in disease trajectory, particularly in the context of regenerative therapies aimed at
2445 modifying disease progression, clinical trials require large patient cohorts and extended follow-up
2446 periods of at least three to five years ^{723, 724}. This duration is necessary to generate statistically and
2447 clinically meaningful data, particularly when assessing the slope of FEV₁ decline over time between

2448 treatment groups. However, the long timelines, substantial costs, and logistical complexity of such trials
2449 present a significant barrier to the clinical translation of regenerative approaches in COPD. These
2450 challenges highlight the urgent need for alternative trial designs or early biomarkers that can serve as
2451 surrogates for long-term disease progression, thereby facilitating the development of disease-modifying
2452 therapies in this space.

2453 To date, fibrinogen remains the only prognostic biomarker formally recognized by both the U.S. Food
2454 and Drug Administration (FDA) and the EMA for use in COPD drug development ⁷²⁵. As a blood
2455 clotting factor and acute-phase reactant, fibrinogen plays a key role in the body's response to
2456 inflammation. In the context of COPD, the lung epithelium has been shown to produce fibrinogen in
2457 response to inflammatory stimuli. Elevated plasma fibrinogen levels (>3.5 g/L) have been associated
2458 with an increased risk of acute exacerbations and higher overall mortality among patients with COPD
2459 ⁷²⁶⁻⁷³⁰. As such, fibrinogen serves as an important biomarker for disease prognosis and identifying high-
2460 risk patient populations in clinical trials. In addition to fibrinogen, promising analytical techniques such
2461 as proteomics, metabolomics, single-cell and single-nucleus RNA sequencing, mass cytometry, and
2462 advanced imaging are increasingly being used to identify novel biomarkers in COPD ⁷³¹⁻⁷³⁴. For
2463 instance, soluble RAGE is under consideration for COPD to help identify subjects at risk for
2464 emphysema progression ^{725, 735}. Another proposed biomarkers is the peptide mid-range
2465 proadrenomedullin as a predictor for mortality in COPD ^{730, 736, 737}. Additionally, elevated levels of
2466 serum surfactant protein D, a multimeric glycoprotein involved in pulmonary innate immunity,
2467 correlated with progressive lung function decline and worsening of the health status of severe patients
2468 with COPD ⁷³⁸⁻⁷⁴¹. Many types of COPD biomarkers have been identified, including blood protein
2469 biomarkers, cellular markers, and protease enzymes, which have been collected from diverse biological
2470 sources such as peripheral blood, sputum, bronchoalveolar lavage fluid, exhaled air, and genetic
2471 material ^{742, 743}. Moreover, an emerging area of interest is the use of composite biomarker panels, which
2472 combine multiple markers to better predict disease severity, progression, and mortality ⁷⁴⁴⁻⁷⁴⁶. These
2473 multi-analyte approaches may ultimately improve patient stratification and the development of
2474 personalized treatment strategies in COPD ⁷⁴⁷. Taken together, integrating biomarkers with traditional

2475 clinical measures could significantly enhance the monitoring of COPD progression during clinical
 2476 trials, potentially reducing trial duration and enabling the rapid identification and discontinuation of
 2477 ineffective compounds (“fast fail” strategies).

2478 **3.2 Disease heterogeneity**

2479 In addition to clinical readouts, the lack of progress in COPD drug development may largely be
 2480 attributed to the heterogeneity of the disease. The traditional phenotypic distinctions of ‘pink puffers’
 2481 and ‘blue bloaters’ offer a simplistic view of the heterogeneous conditions encompassed by COPD.
 2482 Studies have identified several phenotypic subpopulations within COPD, including eosinophilic,
 2483 emphysema, and respiratory failure phenotypes⁷⁴⁸. Furthermore, COPD exacerbations are categorized
 2484 as eosinophil-driven, bacteria-driven, or frequent exacerbators⁷⁴⁸. Patients with COPD can also be
 2485 classified according to significant risk factors, including genetics, early-life events, infections, smoking
 2486 and environmental tobacco smoke, and environmental exposure^{363, 749}. Understanding the various
 2487 trajectories and taxonomy of COPD, along with recent advances in COPD pathophysiology, has
 2488 expanded its definition from a single disease to a syndrome with diverse manifestations and underlying
 2489 mechanisms^{3, 363, 745, 749}. To improve clinical trial outcomes, it is essential to address this complexity by
 2490 designing trials that reflect the complexity of COPD. Advances in high-throughput methods offer new
 2491 opportunities for personalizing treatments and drug discovery. By leveraging these methods, clinical
 2492 trials can be designed to better match the diverse manifestations of COPD. For example, patient biopsies
 2493 could be subjected to transcriptomic, proteomic, or metabolic profiling to identify specific molecular
 2494 phenotypes^{750, 751}. Single-cell sequencing of lung biopsies can reveal progenitor cell populations that
 2495 regenerative therapies may target^{33, 752}. Alternatively, creating lung organoids from patient-derived cells
 2496 can serve as a platform for high-throughput compound screening, facilitating the discovery of
 2497 personalized therapeutics³².

2498 An emerging framework to address COPD heterogeneity is the treatable traits approach, which focuses
 2499 on identifying and targeting specific, measurable characteristics that contribute to an individual
 2500 patient’s disease burden, regardless of traditional diagnostic labels^{753, 754}. These traits may include
 2501 airway inflammation type (eosinophilic vs. neutrophilic), bacterial colonization, exacerbation

2502 susceptibility, comorbidities, or impaired tissue repair capacity ^{753, 754}. By focusing on what
2503 mechanistically goes wrong in each patient, rather than the broad disease category, this approach
2504 enables more personalized interventions. However, applying a treatable traits framework to repair or
2505 regeneration therapy remains challenging, as the loss of lung function in COPD results from
2506 multifactorial processes, such as chronic inflammation, infection, protease imbalance, and cellular
2507 senescence. Nevertheless, defining traits related to regenerative potential, such as progenitor cell
2508 exhaustion or matrix remodeling capacity, could help identify subgroups most likely to benefit from
2509 regenerative or reparative interventions in future clinical trials ⁷⁵⁵. This approach will ensure that clinical
2510 trials are tailored to these well-defined patient cohorts, improving the likelihood of translating
2511 preclinical successes into clinical practice. By adopting these strategies and embracing a broader, more
2512 nuanced understanding of COPD, clinical trials can more effectively address the complexity of the
2513 disease and enhance therapeutic outcomes ^{749, 756}.

2514 **3.3 The exacerbation period as a key window of opportunity.**

2515 While patient heterogeneity is a major barrier to therapeutic success in COPD, another challenge lies in
2516 trial design, specifically the long timelines required to demonstrate clinical efficacy. An alternative
2517 approach may lie in reconsidering the timing of therapeutic intervention. Instead of focusing solely on
2518 long-term decline, the exacerbation period may represent a critical and underutilized window of
2519 opportunity for the prevention of excessive lung function decline. These exacerbations are a hallmark
2520 of COPD, particularly in patients with more advanced disease and many of which are triggered by viral
2521 and/or bacterial infections ^{757, 758}. Prior history of exacerbations, older age, the presence of
2522 comorbidities, COPD severity and the presence of eosinophilic inflammation are the most significant
2523 predictors for the occurrence of exacerbations, underscoring their multifactorial nature ⁷⁵⁹. Clinically,
2524 an exacerbation is defined as a worsening of the patient's baseline dyspnea, cough, and/or sputum that
2525 is acute in onset and necessitates a change in regular medication ¹⁴. Beyond their immediate impact on
2526 symptoms and quality of life, exacerbations are increasingly recognized as key drivers of disease
2527 progression. It is a relatively new understanding that progressive lung function decline in COPD is not
2528 linear, but rather episodic in nature as a result of incomplete recovery from loss of function during an

2529 exacerbation (Figure 7). In fact, exacerbations are estimated to account for the majority of the
2530 accelerated lung function loss throughout the life of a patient with COPD ⁷⁶⁰. Therefore, treatments
2531 aimed at reducing exacerbation risk may have an important preventive effect in the management of lung
2532 function decline.

2533 In the context of regenerative pharmacology, the exacerbation period offers an additional and
2534 compelling therapeutic opportunity. In the healthy lung, bacterial and viral infections trigger robust
2535 activation of alveolar epithelial progenitors to facilitate repair after injury ^{761, 762}. While this repair
2536 response is also observed in COPD, it is often incomplete, leading to a net decline in lung function
2537 following each exacerbation ⁷⁶⁰ (Figure 7). Thus, the exacerbation period is characterized by both
2538 heightened disease burden during the exacerbation phase and the concurrent activation of endogenous
2539 repair pathways in the period following an exacerbation. This makes the exacerbation window itself an
2540 opportunity for therapeutic intervention, particularly for therapies that antagonize the detrimental
2541 effects of the inflammatory microenvironment on lung repair, whilst the recovery phase following an
2542 exacerbation may be suitable for therapeutics that directly promote repair. Targeting the relatively well-
2543 defined time window of (the aftermath of) an exacerbation offers several advantages. Lung function
2544 recovery post-exacerbation can be assessed over a matter of weeks, rather than years, and within a
2545 relatively controlled clinical setting using the patient as their own control. This could substantially
2546 reduce the duration and complexity of clinical trials for regenerative therapies. Moreover, this
2547 temporally confined setting may allow for the use of therapeutics that are unsuitable for long-term
2548 maintenance, thereby reducing cumulative risk exposure. Taken together, the exacerbation period may
2549 represent a biologically and clinically optimal window to evaluate and deliver regenerative
2550 interventions aimed at restoring lung function in COPD.

2551

2552 **3.4 Route of administration and formulation**

2553 Drugs and advanced therapy medicinal products (ATMPs) under development for regenerative lung
2554 therapies in COPD do not differ from any other medicinal product in the sense that their route of
2555 administration and formulation are mainly determined by the combination of their physicochemical

2556 properties, their structure, their site of action and their intended therapeutic objectives. The formulation
2557 scientist must evaluate and balance these four interrelated technical and biopharmaceutical factors, each
2558 presenting specific opportunities and constraints, when making decisions during the design and
2559 development of the dosage form. What may make the formulation and administration of products for
2560 lung regeneration special is that so far, the described therapies, cover the full range of possible drug
2561 substance options varying from small organic molecules, therapeutic proteins, nanosized vesicle like
2562 structures to advanced cell therapies as summarized in the sections above^{32, 749}. In addition, inhalation
2563 of the medicine offers a unique option for targeted drug administration to the lungs, which may
2564 substantially increase the therapeutic effect that can be obtained with certain therapies through increased
2565 exposure of the lungs to the drug^{763, 764}. However, at the same time this route of administration is not
2566 suitable for all medicines, since mucosal and epithelial barriers may prevent the drug from reaching the
2567 target, especially when this target is not at the luminal side of the epithelium.

2568 Oral administration is most convenient for the patient, however, its application for administering drugs
2569 for lung regeneration is limited to those drugs that have sufficient oral bioavailability. The oral route is
2570 especially suitable for drugs that show the tendency to accumulate in the lungs to concentrations
2571 surpassing blood levels, irrespective of the route of administration. The anti-tuberculosis drug
2572 bedaquiline is an example of such a drug⁷⁶⁵.

2573 In contrast to oral administration the inhalation route, applying liquid or solid aerosols, offers a more
2574 targeted approach for therapies acting locally in the lungs. This route of administration enables high
2575 drug concentrations at the site of action while avoiding hepatic first-pass metabolism. As such
2576 inhalation is an attractive option for a wide range of drug substances, from small molecules to large
2577 biopharmaceuticals. Basically, an inhaled drug has to overcome two barriers before it may exert any
2578 therapeutic activity. First, penetration and deposition of the aerosol into the airways is required. This,
2579 physical barrier can be overcome by generating aerosols with a size range between 1 and 5 µm. Larger
2580 particles will not sufficiently penetrate the airways, whereas particles in the nanometer range will not
2581 show deposition and merely be exhaled again. Secondly, the drug must reach its site of action which
2582 may often require the passage of the epithelial barrier of the airways or alveoli. The airway and alveolar

2583 epithelium are highly permeable to orally inhaled small molecules, which allows these molecules to
2584 reach also targets beyond the luminal side of the lung epithelium. Over the past decade a several
2585 excellent reviews and books have been published on the development and use of inhalation systems and
2586 the formulations used for small molecules and will therefore not be further discussed here^{766, 767}.

2587 Many of the drugs and ATMPs currently under investigation for regenerative therapies in COPD are
2588 biopharmaceuticals⁷⁴⁹. In addition, sparked by the development of inhaled insulin⁷⁶⁶, there is today a
2589 plethora of information on the formulation and administration of peptide- and protein-based drugs. In
2590 general, the protein's instability is a major issue in formulating them. Approaches to tackle their
2591 instability includes the application of stabilizing excipients such as, buffers, (poly)saccharides, polyols,
2592 surfactants and specific salts and drying of the formulation by lyophilization or spray-drying⁷⁶⁸⁻⁷⁷⁰.

2593 Next to the formulation, the inhalation device is relevant to the success of the therapy. Since, dried
2594 formulations, produced through lyophilization or spray-drying are more stable than liquid formulation,
2595 dry powder inhalers may be more suitable for the administration of proteins than the liquid-based
2596 nebulizers. Furthermore, ultrasonic nebulizers may affect the structural integrity of the protein^{771, 772}.

2597 Proteins were among the first biopharmaceuticals explored for the treatment of COPD. Whether the
2598 pulmonary route is suitable for a protein is determined by the protein's molecular weight (size) and the
2599 location of the target. The molecular mass of proteins that exert their action in the lumen of the airway
2600 or alveoli, is not relevant. However, for proteins with a site of action beyond the epithelial lining of the
2601 lungs, the molecular weight is important. Proteins with a molecular mass over 1.0 to 1.3 kDa do not
2602 pass the airway epithelium, whereas the proteins with a molecular mass over 22 kDa are not absorbed
2603 via the alveolar lining. Higher molecular weight proteins may therefore be unable to reach their site of
2604 action after inhalation^{771, 773}.

2605 Currently, the field of biopharmaceutics has developed beyond peptides and proteins, and today also
2606 includes nucleic acid-based therapies (mRNA, siRNA and antisense oligonucleotides) and extracellular
2607 vesicles (EVs), like the proteins, these therapies may also be suitable for pulmonary administration.
2608 Nucleic acid-based therapies are often formulated into lipid nanoparticles (LNPs). These particles
2609 protect the genetic material from enzymatic breakdown and enhance the cellular uptake by endocytosis

2610 or pinocytosis. LNPs consist of ionizable cationic lipids, pegylated lipids, phospholipids and
2611 cholesterol, and microfluidic technologies have been used to encapsulate the oligonucleotide (e.g.
2612 mRNA) in these particles⁷⁷⁴. There is evidence that after inhalation, LNPs can transfect lung cells⁷⁷⁵,
2613⁷⁷⁶. Recently, it was demonstrated that pulmonary endothelial-targeted LNPs were capable to deliver
2614 mRNA to enhance vascular repair⁷⁷⁷. It is important to realize that LNPs are too large to pass the airway
2615 epithelium. Instead, they are internalized by cells located in the superficial layer of the airway
2616 epithelium, where the cargo delivered by the LNPs can subsequently exert its therapeutic effect. As an
2617 alternative to inhalation, intravenous administration of self-assembling, one-component ionizable Janus
2618 dendrimer-based LNPs has been proposed for lung-targeted gene delivery, demonstrating effective
2619 mRNA delivery and potential for lung regeneration⁷⁷⁸.

2620 As summarized in 2.4, EVs have recently emerged as a potential therapeutic for regenerative treatments
2621^{594, 598, 749}. EVs are characterized by their poor stability, which makes them unsuitable as regular
2622 therapeutics, certainly when they are dispersed in a liquid where they require storage at -80°C.
2623 However, recently it has been found that EVs incorporated in an inulin matrix in the glassy state by
2624 freeze drying, stabilized the fragile vesicle structure even at temperatures up to 20°C for 12 weeks at
2625 43 %RH, while maintaining the biophysical properties and regenerative capacity. A similar spray dried
2626 powder formulation which next to the inulin also contained 4 % leucine was suitable for inhalation via
2627 a dry powder inhaler⁶¹⁶. Recently, various techniques to produce powders for inhalation containing
2628 different biopharmaceuticals, including EVs were reviewed⁷⁷⁹.

2629 Finally, bone marrow mononuclear cells (BMMCs) such as mesenchymal BM-MSCs or iPSCs are used
2630 for regenerative therapies^{32, 714, 749}. Since autologous stem cell therapies are fully personalized therapies,
2631 the sourcing, isolation growing and formulation of the cells can only be done in the hospital or in highly
2632 specialized nearby the hospital. Cells are usually kept in culture media such as Dulbecco's Modified
2633 Eagle Medium (DMEM). For storage the cells can be frozen in liquid nitrogen when the DMEM is
2634 supplemented with 10% dimethyl sulfoxide. For infusion the cells are generally formulated in saline or
2635 phosphate buffered saline which may be supplemented with human serum albumin. Cells are unsuitable
2636 for administration via the inhalation route. Having sizes significantly over 5 µm (15-20 µm) implies

2637 that upon inhalation lung deposition would not reach beyond the first two bifurcations and most of the
2638 cells would end up in the throat. When the size of the cells would be reduced to less than 5 to 7 the
2639 cellular structure would be destroyed, and the cells would lose their functionality.

2640

2641 **4. CONCLUSIONS**

2642 The field of regenerative medicine in COPD is advancing rapidly, propelled by new insights into
2643 epithelial progenitor biology, inflammatory signaling, and the molecular pathways that govern alveolar
2644 repair. This review has highlighted how COPD represents not merely a disease of progressive tissue
2645 destruction, but a failure of endogenous repair systems, a concept that reshapes both our understanding
2646 of pathogenesis and our therapeutic ambitions.

2647

2648 The alveolar epithelial niche is shaped by a dynamic interplay between epithelial cells, immune cells,
2649 fibroblasts, ECs, and the ECM. Key signaling pathways such as WNT/β-catenin, FGF, BMP, and HGF
2650 have emerged as central regulators of epithelial proliferation, differentiation, and survival. However,
2651 these pathways are frequently disrupted in COPD through inflammatory cytokines, cellular senescence,
2652 oxidative stress, and altered mesenchymal-epithelial crosstalk. Strategies that restore balance in these
2653 signaling networks, whether through direct activation, suppression of antagonistic signals, or
2654 modulation of the niche environment, have shown encouraging results in preclinical models.

2655

2656 At the same time, this review has underscored the multifaceted challenges that remain. COPD is a
2657 disease with heterogenous endotypes and stages, and regenerative approaches must contend not only
2658 with damaged epithelium but also with persistent inflammation, matrix remodeling, vascular
2659 dysfunction, and cellular senescence. As such, future therapies are unlikely to succeed through single-
2660 target strategies. Instead, multimodal interventions, combining regenerative, anti-inflammatory, and
2661 senolytic components, may be needed to overcome the entrenched pathological milieu.

2662

2663 The preclinical advances summarized here provide a robust foundation, but translation to patients will
2664 require rigorous clinical validation, optimized delivery systems (e.g., inhaled biologics, vesicle-
2665 mediated delivery), and improved patient stratification tools. Biomarkers that predict regenerative
2666 potential or senescence burden could enhance trial design and treatment outcomes. Moreover, the
2667 timing of intervention, early versus late-stage disease, will likely determine therapeutic success. In this
2668 context, exacerbations may offer a clinically actionable window of opportunity: a transient phase of
2669 epithelial injury and heightened niche activity that could be leveraged to support regeneration.
2670 Designing clinical trials around these episodes may therefore improve both biological efficacy and
2671 measurable outcomes.

2672

2673 In conclusion, the field stands at a pivotal moment. A growing arsenal of regenerative candidates,
2674 ranging from small molecules and cell therapies to EV-loaded ligands and cell-derived proteins, is
2675 entering a phase of translational readiness. The next decade may witness a paradigm shift in COPD
2676 care: from symptom management and damage control, to interventions that restore lung architecture
2677 and function.

2678

2679 **Acknowledgements**

2680 Some of the Figures created with BioRender.com. This work was supported in part by research grants
2681 from Boehringer Ingelheim (RG, BNM), Lung Foundation Netherlands (10.1.23.021) and is part of the
2682 project RecovAir with file number P21-14 of the research programme Perspectief 2021-2022 2022
2683 TTW which is (partly) financed by the Dutch Research Council (NWO) under the grant
2684 2022/TTW/01358852 (IH, RG). A Ph.D. scholarship from the Molecular Life and Health Program of
2685 the University of Groningen supported LvdK. LvdK and HWF are employees and stock owners of
2686 MimeCure. DN was supported by an Indonesian Education Scholarship (BPI)Scholarship from The
2687 Agency for the Assessment and Application of Technology (BPPT) Indonesia and the Indonesia
2688 Endowment Fund for Education Agency (LPDP). BNM reports financial support was provided by the
2689 Northern CARA Foundation and Netherlands Organisation for Health Research and Development
2690 (ZonMW). ML acknowledges support from the German Center for Lung Research (DZL), the Deutsche

2691 Forschungsgemeinschaft (DFG, German Research Foundation) – 512453064 and the von Behring
2692 Röntgen Foundation (71_0011). AÖY was supported by the German Center for Lung Research (DZL).
2693 Jill R. Johnson has received grant support from the UK Medical Research Council, the UK
2694 Biotechnology and Biological Sciences Research Council, and Lung Foundation Netherlands. RG,
2695 AFMD and CFK are members of the LONGFONDS Accelerate Project BREATH. CFK received
2696 support from the Cystic Fibrosis Foundation Awards KIM19P0 and KIM21G0, R35HL150876,
2697 P01HL158505, Gilda and Alfred Slifka, Gail and Adam Slifka, the Cystic Fibrosis/Multiple Sclerosis
2698 Fund Foundation Inc., and the Harvard Stem Cell Institute. CFK reports financial support was further
2699 provided by the National Heart Lung Blood Institute R35HL150876. CFK is a founder of Cellforma.
2700 TMC, AOY, ML, IH, CFK, RG are members of the COPD-iNET consortium (www.copd-inet.com)⁷⁸⁰.
2701 The work represented in this paper was part of discussions leading up to and held at the ERS Research
2702 Seminar: Regenerating the lung – a multidisciplinary approach to combat COPD (Prague, CZ,
2703 November 2025). AFMD has received funding from the European Respiratory Society (ERS) and the
2704 European Union's H2020 research and innovation programme under the Marie Skłodowska-Curie grant
2705 agreement No 847462. The authors are solely responsible for its content; it does not represent the
2706 opinion of ERS and the European Commission and ERS and the EU Commission are not responsible
2707 for any use that might be made of data appearing therein.

2708

2709 **Declaration of generative AI and AI-assisted technologies in the writing process**

2710 During the preparation of this work the author(s) used ChatGPT in order to remove English language
2711 and grammar mistakes. After using this tool/service, the author(s) reviewed and edited the content as
2712 needed and take(s) full responsibility for the content of the publication.

2713 **References**

- 2714 1. Boers E, Barrett M, Su JG, Benjafield AV, Sinha S, Kaye L, et al. Global Burden of Chronic
2715 Obstructive Pulmonary Disease Through 2050. *JAMA Netw Open*. 2023;6(12):e2346598.
- 2716 2. WHO. 2025 [Available from: [https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-\(copd\)](https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd))].
- 2717 3. Celli B, Fabbri L, Criner G, Martinez FJ, Mannino D, Vogelmeier C, et al. Definition and
2718 Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. *Am J Respir Crit Care
2719 Med*. 2022;206(11):1317–25.
- 2720 4. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. *Annu Rev
2721 Pathol*. 2009;4:435–59.
- 2722 5. Rivas M, Gupta G, Costanzo L, Ahmed H, Wyman AE, Geraghty P. Senescence: Pathogenic
2723 Driver in Chronic Obstructive Pulmonary Disease. *Medicina (Kaunas)*. 2022;58(6).
- 2724 6. MacNee W. Is Chronic Obstructive Pulmonary Disease an Accelerated Aging Disease? *Ann
2725 Am Thorac Soc*. 2016;13 Suppl 5:S429–S37.
- 2726 7. Barnes PJ. Mediators of chronic obstructive pulmonary disease. *Pharmacol Rev*.
2004;56(4):515–48.
- 2727 8. Agusti A, Hogg JC. Update on the Pathogenesis of Chronic Obstructive Pulmonary Disease. *N
2728 Engl J Med*. 2019;381(13):1248–56.
- 2729 9. Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting
2730 life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death:
2731 reference and alternative scenarios for 2016-40 for 195 countries and territories. *Lancet*.
2732 2018;392(10159):2052–90.
- 2733 10. Kim V, Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. *Am J Respir
2734 Crit Care Med*. 2013;187(3):228–37.
- 2735 11. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, et al. Small-
2736 airway obstruction and emphysema in chronic obstructive pulmonary disease. *N Engl J Med*.
2737 2011;365(17):1567–75.
- 2738 12. Higham A, Quinn AM, Cancado JED, Singh D. The pathology of small airways disease in
2739 COPD: historical aspects and future directions. *Respir Res*. 2019;20(1):49.
- 2740 13. Hogg JC, McDonough JE, Suzuki M. Small airway obstruction in COPD: new insights based
2741 on micro-CT imaging and MRI imaging. *Chest*. 2013;143(5):1436–43.
- 2742 14. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global
2743 Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017
2744 Report: GOLD Executive Summary. *Eur Respir J*. 2017;49(3).
- 2745 15. Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention.
2746 *Lancet*. 2007;370(9589):786–96.
- 2747 16. Hillas G, Perlikos F, Tzanakis N. Acute exacerbation of COPD: is it the "stroke of the lungs"?
2748 *Int J Chron Obstruct Pulmon Dis*. 2016;11:1579–86.
- 2749 17. Viniol C, Vogelmeier CF. Exacerbations of COPD. *Eur Respir Rev*. 2018;27(147).
- 2750 18. Seemungal TA, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA. Time course and
2751 recovery of exacerbations in patients with chronic obstructive pulmonary disease. *Am J Respir Crit
2752 Care Med*. 2000;161(5):1608–13.
- 2753 19. Mettler SK, Nardelli P, Campo MI, San Jose Estepar R, Manapragada PP, Abozeed M, et al.
2754 Longitudinal Changes in Airway Mucus Plugs and FEV(1) in COPD. *N Engl J Med*.
2755 2025;392(19):1973–5.
- 2756 20. Hahn EJ, Rayens MK, Adkins S, Simpson N, Frazier S, Mannino DM. Fewer hospitalizations
2757 for chronic obstructive pulmonary disease in communities with smoke-free public policies. *Am J Public
2758 Health*. 2014;104(6):1059–65.
- 2759 21. Patel N. An update on COPD prevention, diagnosis, and management: The 2024 GOLD Report.
2760 *Nurse Pract*. 2024;49(6):29–36.
- 2761 22. Duffy SP, Criner GJ. Chronic Obstructive Pulmonary Disease: Evaluation and Management.
2762 *Med Clin North Am*. 2019;103(3):453–61.

- 2765 23. Bhatt SP, Rabe KF, Hanania NA, Vogelmeier CF, Bafadhel M, Christenson SA, et al.
 2766 Dupilumab for chronic obstructive pulmonary disease with type 2 inflammation: a pooled analysis of
 2767 two phase 3, randomised, double-blind, placebo-controlled trials. *Lancet Respir Med.* 2025;13(3):234–
 2768 43.
- 2769 24. Abraham S, Symons G. Non-pharmacological management of chronic obstructive pulmonary
 2770 disease. *S Afr Med J.* 2015;105(9):789.
- 2771 25. Mulhall P, Criner G. Non-pharmacological treatments for COPD. *Respirology.*
 2772 2016;21(5):791–809.
- 2773 26. Patel N, DeCamp M, Criner GJ. Lung transplantation and lung volume reduction surgery versus
 2774 transplantation in chronic obstructive pulmonary disease. *Proc Am Thorac Soc.* 2008;5(4):447–53.
- 2775 27. van Agteren JE, Carson KV, Tiong LU, Smith BJ. Lung volume reduction surgery for diffuse
 2776 emphysema. *Cochrane Database Syst Rev.* 2016;10(10):CD001001.
- 2777 28. Sakaguchi T, Slebos DJ. Single-Use Flexible Bronchoscope in Facilitating Endobronchial
 2778 Valve Treatment in Severe Emphysema. *Int J Chron Obstruct Pulmon Dis.* 2025;20:313–7.
- 2779 29. Sakaguchi T, Hartman JE, Slebos DJ. An update on endobronchial valve therapy for severe
 2780 emphysema: real world data and special indications. *Expert Rev Respir Med.* 2024;18(12):1003–11.
- 2781 30. Yamamoto S, Horita N, Imai R, Niitsu T. Surgical and Bronchoscopic Lung Volume Reduction
 2782 for Severe Emphysema: A Systematic Review and Network Meta-analysis. *Lung.* 2025;203(1):22.
- 2783 31. Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, et al. Progress in the mechanism and
 2784 targeted drug therapy for COPD. *Signal Transduct Target Ther.* 2020;5(1):248.
- 2785 32. Khedoe P, Wu X, Gosens R, Hiemstra PS. Repairing damaged lungs using regenerative therapy.
 2786 *Curr Opin Pharmacol.* 2021;59:85–94.
- 2787 33. Ng-Blichfeldt JP, Gosens R, Dean C, Griffiths M, Hind M. Regenerative pharmacology for
 2788 COPD: breathing new life into old lungs. *Thorax.* 2019;74(9):890–7.
- 2789 34. Brouwer KM, Hoogenkamp HR, Daamen WF, van Kuppevelt TH. Regenerative medicine for
 2790 the respiratory system: distant future or tomorrow's treatment? *Am J Respir Crit Care Med.*
 2791 2013;187(5):468–75.
- 2792 35. Butler JP, Loring SH, Patz S, Tsuda A, Yablonskiy DA, Mentzer SJ. Evidence for adult lung
 2793 growth in humans. *N Engl J Med.* 2012;367(3):244–7.
- 2794 36. Laros CD, Westermann CJ. Dilatation, compensatory growth, or both after pneumonectomy
 2795 during childhood and adolescence. A thirty-year follow-up study. *J Thorac Cardiovasc Surg.*
 2796 1987;93(4):570–6.
- 2797 37. Basil MC, Katzen J, Engler AE, Guo M, Herriges MJ, Kathiriya JJ, et al. The Cellular and
 2798 Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. *Cell Stem Cell.*
 2799 2020;26(4):482–502.
- 2800 38. Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, et al. Repair and
 2801 regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell
 2802 function. *Cell Stem Cell.* 2014;15(2):123–38.
- 2803 39. Rock J, Konigshoff M. Endogenous lung regeneration: potential and limitations. *Am J Respir
 2804 Crit Care Med.* 2012;186(12):1213–9.
- 2805 40. Martins LR, Sieverling L, Michelhans M, Schiller C, Erkut C, Grunewald TGP, et al. Single-
 2806 cell division tracing and transcriptomics reveal cell types and differentiation paths in the regenerating
 2807 lung. *Nat Commun.* 2024;15(1):2246.
- 2808 41. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, et al. Basal cells as stem cells of
 2809 the mouse trachea and human airway epithelium. *Proc Natl Acad Sci U S A.* 2009;106(31):12771–5.
- 2810 42. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. In vivo differentiation potential of
 2811 tracheal basal cells: evidence for multipotent and unipotent subpopulations. *Am J Physiol Lung Cell
 2812 Mol Physiol.* 2004;286(4):L643–9.
- 2813 43. Plasschaert LW, Zilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, et al. A single-cell
 2814 atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. *Nature.*
 2815 2018;560(7718):377–81.
- 2816 44. Wu M, Zhang X, Lin Y, Zeng Y. Roles of airway basal stem cells in lung homeostasis and
 2817 regenerative medicine. *Respir Res.* 2022;23(1):122.

- 2818 45. Basil MC, Cardenas-Diaz FL, Kathiriya JJ, Morley MP, Carl J, Brumwell AN, et al. Human
 2819 distal airways contain a multipotent secretory cell that can regenerate alveoli. *Nature*.
 2820 2022;604(7904):120–6.
- 2821 46. Liu Q, Liu K, Cui G, Huang X, Yao S, Guo W, et al. Lung regeneration by multipotent stem
 2822 cells residing at the bronchioalveolar-duct junction. *Nat Genet*. 2019;51(4):728–38.
- 2823 47. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of
 2824 bronchioalveolar stem cells in normal lung and lung cancer. *Cell*. 2005;121(6):823–35.
- 2825 48. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, et al. Type 2
 2826 alveolar cells are stem cells in adult lung. *J Clin Invest*. 2013;123(7):3025–36.
- 2827 49. Yang J, Hernandez BJ, Martinez Alanis D, Narvaez del Pilar O, Vila-Ellis L, Akiyama H, et al.
 2828 The development and plasticity of alveolar type 1 cells. *Development*. 2016;143(1):54–65.
- 2829 50. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling
 2830 niches maintain stemness of alveolar type 2 cells. *Science*. 2018;359(6380):1118–23.
- 2831 51. Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, et al. Integrin alpha6beta4
 2832 identifies an adult distal lung epithelial population with regenerative potential in mice. *J Clin Invest*.
 2833 2011;121(7):2855–62.
- 2834 52. Ahmadvand N, Khosravi F, Lingampally A, Wasnick R, Vazquez-Armendariz AI, Carraro G,
 2835 et al. Identification of a novel subset of alveolar type 2 cells enriched in PD-L1 and expanded following
 2836 pneumonectomy. *Eur Respir J*. 2021;58(5).
- 2837 53. Zheng D, Soh BS, Yin L, Hu G, Chen Q, Choi H, et al. Differentiation of Club Cells to Alveolar
 2838 Epithelial Cells In Vitro. *Sci Rep*. 2017;7:41661.
- 2839 54. Kathiriya JJ, Brumwell AN, Jackson JR, Tang X, Chapman HA. Distinct Airway Epithelial
 2840 Stem Cells Hide among Club Cells but Mobilize to Promote Alveolar Regeneration. *Cell Stem Cell*.
 2841 2020;26(3):346–58 e4.
- 2842 55. Lv Z, Liu Z, Liu K, Lin X, Pu W, Li Y, et al. Alveolar regeneration by airway secretory-cell-
 2843 derived p63(+) progenitors. *Cell Stem Cell*. 2024;31(11):1685–700 e6.
- 2844 56. Brandsma CA, de Vries M, Costa R, Woldhuis RR, Konigshoff M, Timens W. Lung ageing
 2845 and COPD: is there a role for ageing in abnormal tissue repair? *Eur Respir Rev*. 2017;26(146).
- 2846 57. Melo-Narvaez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of
 2847 the diseased niche and ageing. *Eur Respir Rev*. 2020;29(157).
- 2848 58. Birch J, Barnes PJ, Passos JF. Mitochondria, telomeres and cell senescence: Implications for
 2849 lung ageing and disease. *Pharmacol Ther*. 2018;183:34–49.
- 2850 59. Cordoba-Lanus E, Cazorla-Rivero S, Espinoza-Jimenez A, de-Torres JP, Pajares MJ, Aguirre-
 2851 Jaime A, et al. Telomere shortening and accelerated aging in COPD: findings from the BODE cohort.
 2852 *Respir Res*. 2017;18(1):59.
- 2853 60. Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema.
 2854 *Am J Respir Crit Care Med*. 2006;174(8):886–93.
- 2855 61. Yu H, Lin Y, Zhong Y, Guo X, Lin Y, Yang S, et al. Impaired AT2 to AT1 cell transition in
 2856 PM2.5-induced mouse model of chronic obstructive pulmonary disease. *Respir Res*. 2022;23(1):70.
- 2857 62. Liberti DC, Kremp MM, Liberti WA, 3rd, Penkala IJ, Li S, Zhou S, et al. Alveolar epithelial
 2858 cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury.
 2859 *Cell Rep*. 2021;35(6):109092.
- 2860 63. Abdelwahab EMM, Rapp J, Feller D, Csongei V, Pal S, Bartis D, et al. Wnt signaling regulates
 2861 trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. *Respir
 2862 Res*. 2019;20(1):204.
- 2863 64. Lin CR, Bahmed K, Kosmider B. Impaired Alveolar Re-Epithelialization in Pulmonary
 2864 Emphysema. *Cells*. 2022;11(13).
- 2865 65. Gao L, Sun Y, Zhang X, Ma D, Xie A, Wang E, et al. Wnt3a-Loaded Extracellular Vesicles
 2866 Promote Alveolar Epithelial Regeneration after Lung Injury. *Adv Sci (Weinh)*. 2023;10(18):e2206606.
- 2867 66. Zhou R, Wang H, Zhang Y, Mai J, Yang L. Small airway disease as a key factor in COPD: new
 2868 perspectives and insights. *Front Med (Lausanne)*. 2025;12:1648612.
- 2869 67. Zep JA, Zacharias WJ, Frank DB, Cavanaugh CA, Zhou S, Morley MP, et al. Distinct
 2870 Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung.
 2871 *Cell*. 2017;170(6):1134–48 e10.

- 2872 68. Liao D, Li H. Dissecting the Niche for Alveolar Type II Cells With Alveolar Organoids. *Front*
2873 *Cell Dev Biol.* 2020;8:419.
- 2874 69. Wagner DE, Bonenfant NR, Parsons CS, Sokocevic D, Brooks EM, Borg ZD, et al.
2875 Comparative decellularization and recellularization of normal versus emphysematous human lungs.
2876 *Biomaterials.* 2014;35(10):3281–97.
- 2877 70. Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, et al.
2878 Characterization of the COPD alveolar niche using single-cell RNA sequencing. *Nat Commun.*
2879 2022;13(1):494.
- 2880 71. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease.
2881 *J Allergy Clin Immunol.* 2016;138(1):16–27.
- 2882 72. Bhowmik A, Seemungal TA, Sapsford RJ, Wedzicha JA. Relation of sputum inflammatory
2883 markers to symptoms and lung function changes in COPD exacerbations. *Thorax.* 2000;55(2):114–20.
- 2884 73. Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor
2885 necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or
2886 asthma. *Am J Respir Crit Care Med.* 1996;153(2):530–4.
- 2887 74. Sapey E, Ahmad A, Bayley D, Newbold P, Snell N, Rugman P, et al. Imbalances between
2888 interleukin-1 and tumor necrosis factor agonists and antagonists in stable COPD. *J Clin Immunol.*
2889 2009;29(4):508–16.
- 2890 75. Grumelli S, Corry DB, Song LZ, Song L, Green L, Huh J, et al. An immune basis for lung
2891 parenchymal destruction in chronic obstructive pulmonary disease and emphysema. *PLoS Med.*
2892 2004;1(1):e8.
- 2893 76. Eickmeier O, Huebner M, Herrmann E, Zissler U, Rosewich M, Baer PC, et al. Sputum
2894 biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and
2895 association between pulmonary function. *Cytokine.* 2010;50(2):152–7.
- 2896 77. Zhang L, Cheng Z, Liu W, Wu K. Expression of interleukin (IL)-10, IL-17A and IL-22 in serum
2897 and sputum of stable chronic obstructive pulmonary disease patients. *COPD.* 2013;10(4):459–65.
- 2898 78. Sapey E, Stockley RA. COPD exacerbations . 2: aetiology. *Thorax.* 2006;61(3):250–8.
- 2899 79. Katsura H, Kobayashi Y, Tata PR, Hogan BLM. IL-1 and TNFalpha Contribute to the
2900 Inflammatory Niche to Enhance Alveolar Regeneration. *Stem Cell Reports.* 2019;12(4):657–66.
- 2901 80. Kida H, Yoshida M, Hoshino S, Inoue K, Yano Y, Yanagita M, et al. Protective effect of IL-6
2902 on alveolar epithelial cell death induced by hydrogen peroxide. *Am J Physiol Lung Cell Mol Physiol.*
2903 2005;288(2):L342–9.
- 2904 81. Zhang X, Ali M, Pantuck MA, Yang X, Lin CR, Bahmed K, et al. CD8 T cell response and its
2905 released cytokine IFN-gamma are necessary for lung alveolar epithelial repair during bacterial
2906 pneumonia. *Front Immunol.* 2023;14:1268078.
- 2907 82. Kortekaas RK, Geillinger-Kastle KE, Fuentes-Mateos R, van Orsoy R, Al-Alyan N, Burgess
2908 JK, et al. The disruptive effects of COPD exacerbation-associated factors on epithelial repair responses.
2909 *Front Immunol.* 2024;15:1346491.
- 2910 83. Patel BV, Wilson MR, O'Dea KP, Takata M. TNF-induced death signaling triggers alveolar
2911 epithelial dysfunction in acute lung injury. *J Immunol.* 2013;190(8):4274–82.
- 2912 84. Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ, Chapman HA, Jr., et al. Interferon gamma
2913 induction of pulmonary emphysema in the adult murine lung. *J Exp Med.* 2000;192(11):1587–600.
- 2914 85. Ma B, Kang MJ, Lee CG, Chapoval S, Liu W, Chen Q, et al. Role of CCR5 in IFN-gamma-
2915 induced and cigarette smoke-induced emphysema. *J Clin Invest.* 2005;115(12):3460–72.
- 2916 86. Katsura H, Sontake V, Tata A, Kobayashi Y, Edwards CE, Heaton BE, et al. Human Lung Stem
2917 Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and
2918 Pneumocyte Dysfunction. *Cell Stem Cell.* 2020;27(6):890–904 e8.
- 2919 87. Dost AFM, Balážová K, Casellas CP, van Rooijen LM, Epskamp W, van Son GJF, et al. A
2920 human organoid model of alveolar regeneration reveals distinct epithelial responses to interferon-
2921 gamma. *bioRxiv.* 2025:2025.01.30.635624.
- 2922 88. Ciminieri C, Woest ME, Reynaert NL, Heijink IH, Wardenaar R, Spierings DCJ, et al. IL-1beta
2923 Induces a Proinflammatory Fibroblast Microenvironment that Impairs Lung Progenitors' Function. *Am*
2924 *J Respir Cell Mol Biol.* 2023;68(4):444–55.

- 2925 89. Choi J, Park JE, Tsagkogeorga G, Yanagita M, Koo BK, Han N, et al. Inflammatory Signals
 2926 Induce AT2 Cell-Derived Damage-Associated Transient Progenitors that Mediate Alveolar
 2927 Regeneration. *Cell Stem Cell*. 2020;27(3):366–82 e7.
- 2928 90. Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, Kobayashi Y, Macadlo L, Okuda K,
 2929 et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. *Nature*.
 2930 2022;604(7904):111–9.
- 2931 91. Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O'Connor TP, et al. Smoking-
 2932 dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic
 2933 obstructive pulmonary disease. *J Immunol*. 2009;183(4):2867–83.
- 2934 92. Takiguchi H, Yang CX, Yang CWT, Sahin B, Whalen BA, Milne S, et al. Macrophages with
 2935 reduced expressions of classical M1 and M2 surface markers in human bronchoalveolar lavage fluid
 2936 exhibit pro-inflammatory gene signatures. *Sci Rep*. 2021;11(1):8282.
- 2937 93. Eapen MS, Hansbro PM, McAlinden K, Kim RY, Ward C, Hackett TL, et al. Abnormal M1/M2
 2938 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive
 2939 pulmonary disease (COPD). *Sci Rep*. 2017;7(1):13392.
- 2940 94. Bazzan E, Turato G, Tine M, Radu CM, Balestro E, Rigobello C, et al. Dual polarization of
 2941 human alveolar macrophages progressively increases with smoking and COPD severity. *Respir Res*.
 2942 2017;18(1):40.
- 2943 95. Kunz LI, Lapperre TS, Snoeck-Stroband JB, Budulac SE, Timens W, van Wijngaarden S, et al.
 2944 Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in
 2945 COPD. *Respir Res*. 2011;12(1):34.
- 2946 96. Hu Y, Shao X, Xing L, Li X, Nonis GM, Koelwyn GJ, et al. Single-Cell Sequencing of Lung
 2947 Macrophages and Monocytes Reveals Novel Therapeutic Targets in COPD. *Cells*. 2023;12(24).
- 2948 97. Donnelly LE, Barnes PJ. Defective phagocytosis in airways disease. *Chest*. 2012;141(4):1055–
 2949 62.
- 2950 98. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation
 2951 and polarization: nomenclature and experimental guidelines. *Immunity*. 2014;41(1):14–20.
- 2952 99. Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease.
 2953 *Immunity*. 2022;55(9):1564–80.
- 2954 100. Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to
 2955 humans. *Immunology*. 2020;160(2):126–38.
- 2956 101. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins
 2957 and dynamics of monocytes and tissue macrophages under homeostasis. *Immunity*. 2013;38(1):79–91.
- 2958 102. Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, et al. Alveolar macrophages
 2959 develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-
 2960 CSF. *J Exp Med*. 2013;210(10):1977–92.
- 2961 103. van de Laar L, Saelens W, De Prijck S, Martens L, Scott CL, Van Isterdael G, et al. Yolk Sac
 2962 Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into
 2963 Functional Tissue-Resident Macrophages. *Immunity*. 2016;44(4):755–68.
- 2964 104. Mould KJ, Barthel L, Mohning MP, Thomas SM, McCubbrey AL, Danhorn T, et al. Cell Origin
 2965 Dictates Programming of Resident versus Recruited Macrophages during Acute Lung Injury. *Am J
 2966 Respir Cell Mol Biol*. 2017;57(3):294–306.
- 2967 105. Wohlnhaas CT, Bassler K, Watson CK, Shen Y, Leparc GG, Tilp C, et al. Monocyte-derived
 2968 alveolar macrophages are key drivers of smoke-induced lung inflammation and tissue remodeling.
 2969 *Front Immunol*. 2024;15:1325090.
- 2970 106. Cornwell WD, Kim V, Fan X, Vega ME, Ramsey FV, Criner GJ, et al. Activation and
 2971 polarization of circulating monocytes in severe chronic obstructive pulmonary disease. *BMC Pulm Med*.
 2972 2018;18(1):101.
- 2973 107. Gibbings SL, Thomas SM, Atif SM, McCubbrey AL, Desch AN, Danhorn T, et al. Three
 2974 Unique Interstitial Macrophages in the Murine Lung at Steady State. *Am J Respir Cell Mol Biol*.
 2975 2017;57(1):66–76.
- 2976 108. Tan SY, Krasnow MA. Developmental origin of lung macrophage diversity. *Development*.
 2977 2016;143(8):1318–27.
- 2978 109. Chakarov S, Lim HY, Tan L, Lim SY, See P, Lum J, et al. Two distinct interstitial macrophage
 2979 populations coexist across tissues in specific subtissular niches. *Science*. 2019;363(6432).

- 2980 110. Schyns J, Bai Q, Ruscitti C, Radermecker C, De Schepper S, Chakarov S, et al. Non-classical
2981 tissue monocytes and two functionally distinct populations of interstitial macrophages populate the
2982 mouse lung. *Nat Commun.* 2019;10(1):3964.
- 2983 111. Dewhurst JA, Lea S, Hardaker E, Dungwa JV, Ravi AK, Singh D. Characterisation of lung
2984 macrophage subpopulations in COPD patients and controls. *Sci Rep.* 2017;7(1):7143.
- 2985 112. Mitsune A, Yamada M, Fujino N, Numakura T, Ichikawa T, Suzuki A, et al. Upregulation of
2986 leukocyte immunoglobulin-like receptor B4 on interstitial macrophages in COPD; their possible
2987 protective role against emphysema formation. *Respir Res.* 2021;22(1):232.
- 2988 113. Kapellos TS, Bassler K, Aschenbrenner AC, Fujii W, Schultze JL. Dysregulated Functions of
2989 Lung Macrophage Populations in COPD. *J Immunol Res.* 2018;2018:2349045.
- 2990 114. Demedts IK, Bracke KR, Van Pottelberge G, Testelmans D, Verleden GM, Vermassen FE, et
2991 al. Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic
2992 obstructive pulmonary disease. *Am J Respir Crit Care Med.* 2007;175(10):998–1005.
- 2993 115. Decramer M, Janssens W, Miravitles M. Chronic obstructive pulmonary disease. *Lancet.*
2994 2012;379(9823):1341–51.
- 2995 116. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive
2996 pulmonary disease. *Lancet.* 2011;378(9795):1015–26.
- 2997 117. Finkelstein R, Fraser RS, Ghezzo H, Cosio MG. Alveolar inflammation and its relation to
2998 emphysema in smokers. *Am J Respir Crit Care Med.* 1995;152(5 Pt 1):1666–72.
- 2999 118. Ofulue AF, Ko M. Effects of depletion of neutrophils or macrophages on development of
3000 cigarette smoke-induced emphysema. *Am J Physiol.* 1999;277(1):L97–105.
- 3001 119. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. Requirement for macrophage elastase
3002 for cigarette smoke-induced emphysema in mice. *Science.* 1997;277(5334):2002–4.
- 3003 120. Le Quement C, Guenon I, Gillon JY, Valenca S, Cayron-Elizondo V, Lagente V, et al. The
3004 selective MMP-12 inhibitor, AS111793 reduces airway inflammation in mice exposed to cigarette
3005 smoke. *Br J Pharmacol.* 2008;154(6):1206–15.
- 3006 121. Pervizaj-Oruqaj L, Ferrero MR, Matt U, Herold S. The guardians of pulmonary harmony:
3007 alveolar macrophages orchestrating the symphony of lung inflammation and tissue homeostasis. *Eur
3008 Respir Rev.* 2024;33(172).
- 3009 122. Wei X, Qian W, Narasimhan H, Chan T, Liu X, Arish M, et al. Macrophage peroxisomes guide
3010 alveolar regeneration and limit SARS-CoV-2 tissue sequelae. *Science.* 2025;387(6738):eadq2509.
- 3011 123. van Riet S, van Schadewijk A, de Vos S, Vandeghinste N, Rottier RJ, Stolk J, et al. Modulation
3012 of Airway Epithelial Innate Immunity and Wound Repair by M(GM-CSF) and M(M-CSF)
3013 Macrophages. *J Innate Immun.* 2020;12(5):410–21.
- 3014 124. Boorsma CE, Draijer C, Melgert BN. Macrophage heterogeneity in respiratory diseases.
3015 *Mediators Inflamm.* 2013;2013:769214.
- 3016 125. Byrne AJ, Mathie SA, Gregory LG, Lloyd CM. Pulmonary macrophages: key players in the
3017 innate defence of the airways. *Thorax.* 2015;70(12):1189–96.
- 3018 126. Boe DM, Hulsebus HJ, Najarro KM, Mullen JE, Kim H, Tan AC, et al. Advanced age is
3019 associated with changes in alveolar macrophages and their responses to the stress of traumatic injury. *J
3020 Leukoc Biol.* 2022;112(6):1371–86.
- 3021 127. Rymut N, Heinz J, Sadhu S, Hosseini Z, Riley CO, Marinello M, et al. Resolvin D1 promotes
3022 efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. *FASEB J.* 2020;34(1):597–
3023 609.
- 3024 128. Shaykhiev R, Crystal RG. Innate immunity and chronic obstructive pulmonary disease: a mini-
3025 review. *Gerontology.* 2013;59(6):481–9.
- 3026 129. Taylor AE, Finney-Hayward TK, Quint JK, Thomas CM, Tudhope SJ, Wedzicha JA, et al.
3027 Defective macrophage phagocytosis of bacteria in COPD. *Eur Respir J.* 2010;35(5):1039–47.
- 3028 130. Rochford I, Joshi JC, Rayees S, Anwar M, Akhter MZ, Yalagala L, et al. Evidence for
3029 reprogramming of monocytes into reparative alveolar macrophages in vivo by targeting PDE4b. *Am J
3030 Physiol Lung Cell Mol Physiol.* 2021;321(4):L686–L702.
- 3031 131. Mammoto A, Mammoto T. Vascular Niche in Lung Alveolar Development, Homeostasis, and
3032 Regeneration. *Front Bioeng Biotechnol.* 2019;7:318.
- 3033 132. Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, et al. Endothelial-derived
3034 angiocrine signals induce and sustain regenerative lung alveolarization. *Cell.* 2011;147(3):539–53.

- 3035 133. Leiby KL, Yuan Y, Ng R, Raredon MSB, Adams TS, Baevova P, et al. Rational engineering
3036 of lung alveolar epithelium. *NPJ Regen Med.* 2023;8(1):22.
- 3037 134. Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu A, et al. Defining the role of
3038 pulmonary endothelial cell heterogeneity in the response to acute lung injury. *Elife.* 2020;9.
- 3039 135. Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, et al. Lung stem cell
3040 differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. *Cell.*
3041 2014;156(3):440–55.
- 3042 136. Ackermann M, Werlein C, Plucinski E, Leypold S, Kuhnel MP, Verleden SE, et al. The role of
3043 vasculature and angiogenesis in respiratory diseases. *Angiogenesis.* 2024;27(3):293–310.
- 3044 137. Ravi A, Jia L, Wu X, van der Meer AD, Gosens R, Stolk J, et al. Loss of Pulmonary Endothelial
3045 Cells in Emphysema Impairs Support of Human Alveolar Epithelial Cell Growth. *Am J Respir Cell Mol*
3046 *Biol.* 2024;70(2):149–52.
- 3047 138. Hisata S, Racanelli AC, Kermani P, Schreiner R, Houghton S, Palikuqi B, et al. Reversal of
3048 emphysema by restoration of pulmonary endothelial cells. *J Exp Med.* 2021;218(8).
- 3049 139. van der Koog L, Wu X, Nugraha DF, Ravi A, Wolters JC, Verhamme FM, et al. Pulmonary
3050 Microvascular Endothelial Cells Support Alveolar Epithelial Growth via Bone Morphogenetic Protein
3051 6 Secretion. *Am J Respir Cell Mol Biol.* 2025.
- 3052 140. Yamamoto H, Yun EJ, Gerber HP, Ferrara N, Whitsett JA, Vu TH. Epithelial-vascular cross
3053 talk mediated by VEGF-A and HGF signaling directs primary septae formation during distal lung
3054 morphogenesis. *Dev Biol.* 2007;308(1):44–53.
- 3055 141. Peinado VI, Barbera JA, Ramirez J, Gomez FP, Roca J, Jover L, et al. Endothelial dysfunction
3056 in pulmonary arteries of patients with mild COPD. *Am J Physiol.* 1998;274(6):L908–13.
- 3057 142. Niethamer TK, Levin LI, Morley MP, Babu A, Zhou S, Morrissey EE. Atf3 defines a population
3058 of pulmonary endothelial cells essential for lung regeneration. *Elife.* 2023;12.
- 3059 143. Vila Ellis L, Cain MP, Hutchison V, Flodby P, Crandall ED, Borok Z, et al. Epithelial Vegfa
3060 Specifies a Distinct Endothelial Population in the Mouse Lung. *Dev Cell.* 2020;52(5):617–30 e6.
- 3061 144. Doyle MF, Tracy RP, Parikh MA, Hoffman EA, Shimbo D, Austin JH, et al. Endothelial
3062 progenitor cells in chronic obstructive pulmonary disease and emphysema. *PLoS One.*
3063 2017;12(3):e0173446.
- 3064 145. Ushakumary MG, Riccetti M, Perl AT. Resident interstitial lung fibroblasts and their role in
3065 alveolar stem cell niche development, homeostasis, injury, and regeneration. *Stem Cells Transl Med.*
3066 2021;10(7):1021–32.
- 3067 146. Osei ET, Noordhoek JA, Hackett TL, Spanjer AI, Postma DS, Timens W, et al. Interleukin-
3068 1alpha drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD. *Eur*
3069 *Respir J.* 2016;48(2):359–69.
- 3070 147. Hallgren O, Nihlberg K, Dahlback M, Bjermer L, Eriksson LT, Erjefalt JS, et al. Altered
3071 fibroblast proteoglycan production in COPD. *Respir Res.* 2010;11(1):55.
- 3072 148. Larsson-Callerfelt AK, Hallgren O, Andersson-Sjoland A, Thiman L, Bjorklund J, Kron J, et
3073 al. Defective alterations in the collagen network to prostacyclin in COPD lung fibroblasts. *Respir Res.*
3074 2013;14(1):21.
- 3075 149. van der Koog L, Boerrigter MJ, Gorter IC, Gosens R, Nagelkerke A. Lung fibroblast-derived
3076 extracellular vesicles and soluble factors alleviate elastase-induced lung injury. *Eur J Pharmacol.*
3077 2024;974:176612.
- 3078 150. Mason RJ. Biology of alveolar type II cells. *Respirology.* 2006;11 Suppl:S12–5.
- 3079 151. Worrell JC, MacLeod MKL. Stromal-immune cell crosstalk fundamentally alters the lung
3080 microenvironment following tissue insult. *Immunology.* 2021;163(3):239–49.
- 3081 152. Behzad AR, McDonough JE, Seyednejad N, Hogg JC, Walker DC. The disruption of the
3082 epithelial mesenchymal trophic unit in COPD. *COPD.* 2009;6(6):421–31.
- 3083 153. Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. *Mol Med.*
3084 2011;17(3-4):293–307.
- 3085 154. Weibel ER. On the tricks alveolar epithelial cells play to make a good lung. *Am J Respir Crit*
3086 *Care Med.* 2015;191(5):504–13.
- 3087 155. Bhatt SP, Soler X, Wang X, Murray S, Anzueto AR, Beaty TH, et al. Association between
3088 Functional Small Airway Disease and FEV1 Decline in Chronic Obstructive Pulmonary Disease. *Am J*
3089 *Respir Crit Care Med.* 2016;194(2):178–84.

- 3090 156. Lin YC, Sung YK, Jiang X, Peters-Golden M, Nicolls MR. Simultaneously Targeting
 3091 Myofibroblast Contractility and Extracellular Matrix Cross-Linking as a Therapeutic Concept in
 3092 Airway Fibrosis. *Am J Transplant.* 2017;17(5):1229–41.
- 3093 157. Barnes PJ. Small airway fibrosis in COPD. *Int J Biochem Cell Biol.* 2019;116:105598.
- 3094 158. Bekker NJ, van Pijkeren A, Wolters JC, Sanchez Brotons A, Guryev V, Woldhuis RR, et al. A
 3095 proteomics approach to identify COPD-related changes in lung fibroblasts. *Am J Physiol Lung Cell Mol
 3096 Physiol.* 2023;324(4):L521–L35.
- 3097 159. Melo-Narvaez MC, Bramey N, See F, Heinzelmann K, Ballester B, Steinchen C, et al. Stimuli-
 3098 Specific Senescence of Primary Human Lung Fibroblasts Modulates Alveolar Stem Cell Function.
 3099 *Cells.* 2024;13(13).
- 3100 160. Pouwels SD, Heijink IH, ten Hacken NH, Vandenebelle P, Krysko DV, Nawijn MC, et al.
 3101 DAMPs activating innate and adaptive immune responses in COPD. *Mucosal Immunol.* 2014;7(2):215–
 3102 26.
- 3103 161. Togo S, Holz O, Liu X, Sugiura H, Kamio K, Wang X, et al. Lung fibroblast repair functions
 3104 in patients with chronic obstructive pulmonary disease are altered by multiple mechanisms. *Am J Respir
 3105 Crit Care Med.* 2008;178(3):248–60.
- 3106 162. Wrench CL, Baker JR, Monkley S, Fenwick PS, Murray L, Donnelly LE, et al. Small airway
 3107 fibroblasts from patients with chronic obstructive pulmonary disease exhibit cellular senescence. *Am J
 3108 Physiol Lung Cell Mol Physiol.* 2024;326(3):L266–L79.
- 3109 163. Krimmer DI, Burgess JK, Wooi TK, Black JL, Oliver BG. Matrix proteins from smoke-exposed
 3110 fibroblasts are pro-proliferative. *Am J Respir Cell Mol Biol.* 2012;46(1):34–9.
- 3111 164. Kruk D, Yeung ACY, Faiz A, Ten Hacken NHT, Timens W, van Kuppevelt TH, et al. Gene
 3112 expression profiles in mesenchymal stromal cells from bone marrow, adipose tissue and lung tissue of
 3113 COPD patients and controls. *Respir Res.* 2023;24(1):22.
- 3114 165. Plantier L, Marchand-Adam S, Marchal-Somme J, Leseche G, Fournier M, Dehoux M, et al.
 3115 Defect of hepatocyte growth factor production by fibroblasts in human pulmonary emphysema. *Am J
 3116 Physiol Lung Cell Mol Physiol.* 2005;288(4):L641–7.
- 3117 166. Kim YS, Hong G, Kim DH, Kim YM, Kim YK, Oh YM, et al. The role of FGF-2 in smoke-
 3118 induced emphysema and the therapeutic potential of recombinant FGF-2 in patients with COPD. *Exp
 3119 Mol Med.* 2018;50(11):1–10.
- 3120 167. Zandvoort A, Postma DS, Jonker MR, Noordhoek JA, Vos JT, Timens W. Smad gene
 3121 expression in pulmonary fibroblasts: indications for defective ECM repair in COPD. *Respir Res.*
 3122 2008;9(1):83.
- 3123 168. Elowsson Rendin L, Lofdahl A, Kadefors M, Soderlund Z, Tykesson E, Rolandsson Enes S, et
 3124 al. Harnessing the ECM Microenvironment to Ameliorate Mesenchymal Stromal Cell-Based Therapy
 3125 in Chronic Lung Diseases. *Front Pharmacol.* 2021;12:645558.
- 3126 169. Hussell T, Lui S, Jagger C, Morgan D, Brand O. The consequence of matrix dysfunction on
 3127 lung immunity and the microbiome in COPD. *Eur Respir Rev.* 2018;27(148).
- 3128 170. Sirianni FE, Chu FS, Walker DC. Human alveolar wall fibroblasts directly link epithelial type
 3129 2 cells to capillary endothelium. *Am J Respir Crit Care Med.* 2003;168(12):1532–7.
- 3130 171. Sohal SS, Reid D, Soltani A, Ward C, Weston S, Muller HK, et al. Reticular basement
 3131 membrane fragmentation and potential epithelial mesenchymal transition is exaggerated in the airways
 3132 of smokers with chronic obstructive pulmonary disease. *Respirology.* 2010;15(6):930–8.
- 3133 172. Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix
 3134 - the under-recognized element in lung disease? *J Pathol.* 2016;240(4):397–409.
- 3135 173. Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, et al. Extracellular
 3136 matrix in lung development, homeostasis and disease. *Matrix Biol.* 2018;73:77–104.
- 3137 174. Wight TN, Frevert CW, Debley JS, Reeves SR, Parks WC, Ziegler SF. Interplay of extracellular
 3138 matrix and leukocytes in lung inflammation. *Cell Immunol.* 2017;312:1–14.
- 3139 175. Korpos E, Wu C, Song J, Hallmann R, Sorokin L. Role of the extracellular matrix in
 3140 lymphocyte migration. *Cell Tissue Res.* 2010;339(1):47–57.
- 3141 176. Joglekar MM, Nizamoglu M, Fan Y, Nemanic SSP, Weckmann M, Pouwels SD, et al. Highway
 3142 to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic
 3143 lung diseases. *Front Pharmacol.* 2022;13:995051.

- 3144 177. Gray AL, Pun N, Ridley AJL, Dyer DP. Role of extracellular matrix proteoglycans in immune
3145 cell recruitment. *Int J Exp Pathol.* 2022;103(2):34–43.
- 3146 178. Annoni R, Lancas T, Yukimatsu Tanigawa R, de Medeiros Matsushita M, de Morais Fernezlian
3147 S, Bruno A, et al. Extracellular matrix composition in COPD. *Eur Respir J.* 2012;40(6):1362–73.
- 3148 179. Karakioulaki M, Papakonstantinou E, Stolz D. Extracellular matrix remodelling in COPD. *Eur
3149 Respir Rev.* 2020;29(158).
- 3150 180. Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, et al. Therapeutic targets in
3151 lung tissue remodelling and fibrosis. *Pharmacol Ther.* 2021;225:107839.
- 3152 181. Pelosi P, Rocco PR, Negrini D, Passi A. The extracellular matrix of the lung and its role in
3153 edema formation. *An Acad Bras Cienc.* 2007;79(2):285–97.
- 3154 182. Cantor J. The Role of the Extracellular Matrix in the Pathogenesis and Treatment of Pulmonary
3155 Emphysema. *Int J Mol Sci.* 2024;25(19).
- 3156 183. Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant
3157 and tissue components. *Histochem Cell Biol.* 2018;150(6):661–76.
- 3158 184. Joglekar MM, Bekker NJ, Koloko Ngassie ML, Vonk JM, Borghuis T, Reinders-Luinge M, et
3159 al. The lung extracellular matrix protein landscape in severe early-onset and moderate chronic
3160 obstructive pulmonary disease. *Am J Physiol Lung Cell Mol Physiol.* 2024;327(3):L304–L18.
- 3161 185. Burgess JK, Harmsen MC. Chronic lung diseases: entangled in extracellular matrix. *Eur Respir
3162 Rev.* 2022;31(163).
- 3163 186. Suki B, Bates JH. Lung tissue mechanics as an emergent phenomenon. *J Appl Physiol* (1985).
3164 2011;110(4):1111–8.
- 3165 187. Ito JT, Lourenco JD, Righetti RF, Tiberio I, Prado CM, Lopes F. Extracellular Matrix
3166 Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental
3167 Studies? *Cells.* 2019;8(4).
- 3168 188. Woldhuis RR, Heijink IH, van den Berge M, Timens W, Oliver BGG, de Vries M, et al. COPD-
3169 derived fibroblasts secrete higher levels of senescence-associated secretory phenotype proteins. *Thorax.*
3170 2021;76(5):508–11.
- 3171 189. Noordhoek JA, Postma DS, Chong LL, Menkema L, Kauffman HF, Timens W, et al. Different
3172 modulation of decorin production by lung fibroblasts from patients with mild and severe emphysema.
3173 *COPD.* 2005;2(1):17–25.
- 3174 190. van Diemen CC, Postma DS, Vonk JM, Bruinenberg M, Nolte IM, Boezen HM. Decorin and
3175 TGF-beta1 polymorphisms and development of COPD in a general population. *Respir Res.*
3176 2006;7(1):89.
- 3177 191. Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, et al. Cyclic
3178 nucleotide phosphodiesterases as drug targets. *Pharmacol Rev.* 2025;77(3):100042.
- 3179 192. Yang A, Yu G, Wu Y, Wang H. Role of beta2-adrenergic receptors in chronic obstructive
3180 pulmonary disease. *Life Sci.* 2021;265:118864.
- 3181 193. Billington CK, Ojo OO, Penn RB, Ito S. cAMP regulation of airway smooth muscle function.
3182 *Pulm Pharmacol Ther.* 2013;26(1):112–20.
- 3183 194. Schmidt M, Cattani-Cavalieri I, Nunez FJ, Ostrom RS. Phosphodiesterase isoforms and cAMP
3184 compartments in the development of new therapies for obstructive pulmonary diseases. *Curr Opin
3185 Pharmacol.* 2020;51:34–42.
- 3186 195. Metaxas EI, Balis E. The safety of indacaterol for the treatment of COPD. *Expert Opin Drug
3187 Saf.* 2018;17(6):637–42.
- 3188 196. Blair HA. Tiotropium/Olodaterol: A Review in COPD. *Drugs.* 2019;79(9):997–1008.
- 3189 197. Vestbo J, Leather D, Diar Bakerly N, New J, Gibson JM, McCorkindale S, et al. Effectiveness
3190 of Fluticasone Furoate-Vilanterol for COPD in Clinical Practice. *N Engl J Med.* 2016;375(13):1253–
3191 60.
- 3192 198. Horita N, Goto A, Shibata Y, Ota E, Nakashima K, Nagai K, et al. Long-acting muscarinic
3193 antagonist (LAMA) plus long-acting beta-agonist (LABA) versus LABA plus inhaled corticosteroid
3194 (ICS) for stable chronic obstructive pulmonary disease (COPD). *Cochrane Database Syst Rev.*
3195 2017;2(2):CD012066.
- 3196 199. Oba Y, Pathak M, Maduke T, Fakhouri EW, Dias S. Dual combination therapy versus long-
3197 acting bronchodilators alone for chronic obstructive pulmonary disease (COPD): a systematic review
3198 and network meta-analysis. *Cochrane Database Syst Rev.* 2025;4(4):CD015997.

- 3199 200. Barnes PJ. Biochemical basis of asthma therapy. *J Biol Chem.* 2011;286(38):32899–905.
- 3200 201. Perkins GD, Gao F, Thickett DR. In vivo and in vitro effects of salbutamol on alveolar epithelial
- 3201 repair in acute lung injury. *Thorax.* 2008;63(3):215–20.
- 3202 202. Spurzem JR, Gupta J, Veys T, Kneifl KR, Rennard SI, Wyatt TA. Activation of protein kinase
- 3203 A accelerates bovine bronchial epithelial cell migration. *Am J Physiol Lung Cell Mol Physiol.*
- 3204 2002;282(5):L1108–16.
- 3205 203. Sriram K, Insel MB, Insel PA. Inhaled beta2 Adrenergic Agonists and Other cAMP-Elevating
- 3206 Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? *Pharmacol Rev.*
- 3207 2021;73(4):488–526.
- 3208 204. Peitzman ER, Zaidman NA, Maniak PJ, O'Grady SM. Agonist binding to beta-adrenergic
- 3209 receptors on human airway epithelial cells inhibits migration and wound repair. *Am J Physiol Cell*
- 3210 *Physiol.* 2015;309(12):C847–55.
- 3211 205. Plosa EJ, Benjamin JT, Sucre JM, Gulleman PM, Gleaves LA, Han W, et al. beta1 Integrin
- 3212 regulates adult lung alveolar epithelial cell inflammation. *JCI Insight.* 2020;5(2).
- 3213 206. Steenhuis P, Huntley RE, Gurenko Z, Yin L, Dale BA, Fazel N, et al. Adrenergic signaling in
- 3214 human oral keratinocytes and wound repair. *J Dent Res.* 2011;90(2):186–92.
- 3215 207. Pullar CE, Manabat-Hidalgo CG, Bolaji RS, Isseroff RR. beta-Adrenergic receptor modulation
- 3216 of wound repair. *Pharmacol Res.* 2008;58(2):158–64.
- 3217 208. Ghogawala SY, Mannis MJ, Pullar CE, Rosenblatt MI, Isseroff RR. Beta2-adrenergic receptor
- 3218 signaling mediates corneal epithelial wound repair. *Invest Ophthalmol Vis Sci.* 2008;49(5):1857–63.
- 3219 209. Bennett WD. Effect of beta-adrenergic agonists on mucociliary clearance. *J Allergy Clin*
- 3220 *Immunol.* 2002;110(6 Suppl):S291–7.
- 3221 210. Meyer T, Reitmeir P, Brand P, Herpich C, Sommerer K, Schulze A, et al. Effects of formoterol
- 3222 and tiotropium bromide on mucus clearance in patients with COPD. *Respir Med.* 2011;105(6):900–6.
- 3223 211. Celli BR, Thomas NE, Anderson JA, Ferguson GT, Jenkins CR, Jones PW, et al. Effect of
- 3224 pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease: results
- 3225 from the TORCH study. *Am J Respir Crit Care Med.* 2008;178(4):332–8.
- 3226 212. Fan Chung K. Phosphodiesterase inhibitors in airways disease. *Eur J Pharmacol.* 2006;533(1–
- 3227 3):110–7.
- 3228 213. Jones NA, Leport M, Holand T, Vos T, Morgan M, Fink M, et al. Phosphodiesterase (PDE) 7
- 3229 in inflammatory cells from patients with asthma and COPD. *Pulm Pharmacol Ther.* 2007;20(1):60–8.
- 3230 214. Nourian YH, Salimian J, Ahmadi A, Salehi Z, Karimi M, Emamvirdizadeh A, et al. cAMP-
- 3231 PDE signaling in COPD: Review of cellular, molecular and clinical features. *Biochem Biophys Rep.*
- 3232 2023;34:101438.
- 3233 215. Martinez FJ, Rabe KF, Calverley PMA, Fabbri LM, Sethi S, Pizzichini E, et al. Determinants
- 3234 of Response to Roflumilast in Severe Chronic Obstructive Pulmonary Disease. Pooled Analysis of Two
- 3235 Randomized Trials. *Am J Respir Crit Care Med.* 2018;198(10):1268–78.
- 3236 216. Wedzicha JA, Calverley PM, Rabe KF. Roflumilast: a review of its use in the treatment of
- 3237 COPD. *Int J Chron Obstruct Pulmon Dis.* 2016;11:81–90.
- 3238 217. Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ, et al.
- 3239 Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials.
- 3240 *Lancet.* 2009;374(9691):685–94.
- 3241 218. Anzueto A, Barjaktarevic IZ, Siler TM, Rheault T, Bengtsson T, Rickard K, et al. Ensifentri, a
- 3242 Novel Phosphodiesterase 3 and 4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary
- 3243 Disease: Randomized, Double-Blind, Placebo-controlled, Multicenter Phase III Trials (the ENHANCE
- 3244 Trials). *Am J Respir Crit Care Med.* 2023;208(4):406–16.
- 3245 219. Al Matni MY, Meliton L, Dudek SM, Letsiou E. Dual Inhibition of Phosphodiesterase 3 and 4
- 3246 Enzymes by Ensifentri Protects against MRSA-Induced Lung Endothelial and Epithelial
- 3247 Dysfunction. *Cells.* 2024;13(21).
- 3248 220. Hubert S, Kok-Carriere A, De Ceuninck F. Ensifentri (Ohtuvayre) for chronic obstructive
- 3249 pulmonary disease. *Trends Pharmacol Sci.* 2024;45(10):941–2.
- 3250 221. Zarogoulidis P, Kosmidis C, Kougkas N, Lallas A, Petridis D, Hohenforst-Schmidt W, et al.
- 3251 Modification of Apremilast from Pills to Aerosol a Future Concept. *Int J Environ Res Public Health.*
- 3252 2021;18(21).

- 3253 222. Al-Harbi NO, Imam F, Al-Harbi MM, Qamar W, Aljerian K, Khalid Anwer M, et al. Effect of
 3254 Apremilast on LPS-induced immunomodulation and inflammation via activation of Nrf2/HO-1
 3255 pathways in rat lungs. *Saudi Pharm J.* 2023;31(7):1327–38.
- 3256 223. Facchinetti F, Civelli M, Singh D, Papi A, Emirova A, Govoni M. Tanimilast, A Novel Inhaled
 3257 Pde4 Inhibitor for the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. *Front
 3258 Pharmacol.* 2021;12:740803.
- 3259 224. Lea S, Metryka A, Li J, Higham A, Bridgewood C, Villette G, et al. The modulatory effects of
 3260 the PDE4 inhibitors CHF6001 and roflumilast in alveolar macrophages and lung tissue from COPD
 3261 patients. *Cytokine.* 2019;123:154739.
- 3262 225. Kistemaker LEM, Oenema TA, Baarsma HA, Bos IST, Schmidt M, Facchinetti F, et al. The
 3263 PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.
 3264 *Am J Physiol Lung Cell Mol Physiol.* 2017;313(3):L507–L15.
- 3265 226. Nguyen HO, Salvi V, Tiberio L, Facchinetti F, Govoni M, Villette G, et al. The PDE4 inhibitor
 3266 tanimilast shows distinct immunomodulatory properties associated with a type 2 endotype and CD141
 3267 upregulation. *J Transl Med.* 2022;20(1):203.
- 3268 227. Moretto N, Caruso P, Bosco R, Marchini G, Pastore F, Armani E, et al. CHF6001 I: a novel
 3269 highly potent and selective phosphodiesterase 4 inhibitor with robust anti-inflammatory activity and
 3270 suitable for topical pulmonary administration. *J Pharmacol Exp Ther.* 2015;352(3):559–67.
- 3271 228. Stellari FF, Sala A, Ruscitti F, Buccellati C, Allen A, Rise P, et al. CHF6001 Inhibits NF-
 3272 kappaB Activation and Neutrophilic Recruitment in LPS-Induced Lung Inflammation in Mice. *Front
 3273 Pharmacol.* 2019;10:1337.
- 3274 229. Villette G, Carnini C, Battipaglia L, Preynat L, Bolzoni PT, Bassani F, et al. CHF6001 II: a
 3275 novel phosphodiesterase 4 inhibitor, suitable for topical pulmonary administration--in vivo preclinical
 3276 pharmacology profile defines a potent anti-inflammatory compound with a wide therapeutic window. *J
 3277 Pharmacol Exp Ther.* 2015;352(3):568–78.
- 3278 230. Zaslona Z, Peters-Golden M. Prostanoids in Asthma and COPD: Actions, Dysregulation, and
 3279 Therapeutic Opportunities. *Chest.* 2015;148(5):1300–6.
- 3280 231. Huang SK, Peters-Golden M. Eicosanoid lipid mediators in fibrotic lung diseases: ready for
 3281 prime time? *Chest.* 2008;133(6):1442–50.
- 3282 232. Dagouassat M, Gagliolo JM, Chruscil S, Bourin MC, Duprez C, Caramelle P, et al. The
 3283 cyclooxygenase-2-prostaglandin E2 pathway maintains senescence of chronic obstructive pulmonary
 3284 disease fibroblasts. *Am J Respir Crit Care Med.* 2013;187(7):703–14.
- 3285 233. Chen Y, Chen P, Hanaoka M, Droma Y, Kubo K. Enhanced levels of prostaglandin E2 and
 3286 matrix metalloproteinase-2 correlate with the severity of airflow limitation in stable COPD.
 3287 *Respirology.* 2008;13(7):1014–21.
- 3288 234. Montuschi P, Kharitonov SA, Ciabattoni G, Barnes PJ. Exhaled leukotrienes and
 3289 prostaglandins in COPD. *Thorax.* 2003;58(7):585–8.
- 3290 235. Chen Y, Hanaoka M, Chen P, Droma Y, Voelkel NF, Kubo K. Protective effect of beraprost
 3291 sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced
 3292 emphysema. *Am J Physiol Lung Cell Mol Physiol.* 2009;296(4):L648–56.
- 3293 236. Wu X, Bos IST, Conlon TM, Ansari M, Verschut V, van der Koog L, et al. A transcriptomics-
 3294 guided drug target discovery strategy identifies receptor ligands for lung regeneration. *Sci Adv.*
 3295 2022;8(12):eabj9949.
- 3296 237. Sieber P, Schafer A, Lieberherr R, Le Goff F, Stritt M, Welford RWD, et al. Novel high-
 3297 throughput myofibroblast assays identify agonists with therapeutic potential in pulmonary fibrosis that
 3298 act via EP2 and EP4 receptors. *PLoS One.* 2018;13(11):e0207872.
- 3299 238. Fortier SM, Penke LR, King D, Pham TX, Ligresti G, Peters-Golden M. Myofibroblast
 3300 dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions. *JCI Insight.* 2021;6(6).
- 3301 239. Singh Patidar B, Meena A, Kumar M, Menon B, Rohil V, Kumar Bansal S. Adenosine
 3302 Metabolism in COPD: A Study on Adenosine Levels, 5'-Nucleotidase, Adenosine Deaminase and Its
 3303 Isoenzymes Activity in Serum, Lymphocytes and Erythrocytes. *COPD.* 2018;15(6):559–71.
- 3304 240. Zhou Y, Murthy JN, Zeng D, Belardinelli L, Blackburn MR. Alterations in adenosine
 3305 metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic
 3306 pulmonary fibrosis. *PLoS One.* 2010;5(2):e9224.

- 3307 241. Polosa R, Blackburn MR. Adenosine receptors as targets for therapeutic intervention in asthma
 3308 and chronic obstructive pulmonary disease. *Trends Pharmacol Sci.* 2009;30(10):528–35.
- 3309 242. Fozard JR, Ellis KM, Villela Dantas MF, Tigani B, Mazzoni L. Effects of CGS 21680, a
 3310 selective adenosine A2A receptor agonist, on allergic airways inflammation in the rat. *Eur J Pharmacol.*
 3311 2002;438(3):183–8.
- 3312 243. Nadeem A, Fan M, Ansari HR, Ledent C, Jamal Mustafa S. Enhanced airway reactivity and
 3313 inflammation in A2A adenosine receptor-deficient allergic mice. *Am J Physiol Lung Cell Mol Physiol.*
 3314 2007;292(6):L1335–44.
- 3315 244. Mohsenin A, Mi T, Xia Y, Kellems RE, Chen JF, Blackburn MR. Genetic removal of the A2A
 3316 adenosine receptor enhances pulmonary inflammation, mucin production, and angiogenesis in
 3317 adenosine deaminase-deficient mice. *Am J Physiol Lung Cell Mol Physiol.* 2007;293(3):L753–61.
- 3318 245. Varani K, Caramori G, Vincenzi F, Adcock I, Casolari P, Leung E, et al. Alteration of adenosine
 3319 receptors in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.*
 3320 2006;173(4):398–406.
- 3321 246. Sun CX, Zhong H, Mohsenin A, Morschl E, Chunn JL, Molina JG, et al. Role of A2B adenosine
 3322 receptor signaling in adenosine-dependent pulmonary inflammation and injury. *J Clin Invest.*
 3323 2006;116(8):2173–82.
- 3324 247. Roman J, Rivera HN, Roser-Page S, Sitaraman SV, Ritzenthaler JD. Adenosine induces
 3325 fibronectin expression in lung epithelial cells: implications for airway remodeling. *Am J Physiol Lung
 3326 Cell Mol Physiol.* 2006;290(2):L317–25.
- 3327 248. Selman M, Carrillo G, Estrada A, Mejia M, Becerril C, Cisneros J, et al. Accelerated variant of
 3328 idiopathic pulmonary fibrosis: clinical behavior and gene expression pattern. *PLoS One.*
 3329 2007;2(5):e482.
- 3330 249. Mustafa SJ, Nadeem A, Fan M, Zhong H, Belardinelli L, Zeng D. Effect of a specific and
 3331 selective A(2B) adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway
 3332 responsiveness and cellular influx in a mouse model of asthma. *J Pharmacol Exp Ther.*
 3333 2007;320(3):1246–51.
- 3334 250. Karmouty-Quintana H, Weng T, Garcia-Morales LJ, Chen NY, Pedroza M, Zhong H, et al.
 3335 Adenosine A2B receptor and hyaluronan modulate pulmonary hypertension associated with chronic
 3336 obstructive pulmonary disease. *Am J Respir Cell Mol Biol.* 2013;49(6):1038–47.
- 3337 251. Crim C, Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, et al. Pneumonia risk
 3338 in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. *Eur
 3339 Respir J.* 2009;34(3):641–7.
- 3340 252. Yawn BP, Li Y, Tian H, Zhang J, Arcona S, Kahler KH. Inhaled corticosteroid use in patients
 3341 with chronic obstructive pulmonary disease and the risk of pneumonia: a retrospective claims data
 3342 analysis. *Int J Chron Obstruct Pulmon Dis.* 2013;8:295–304.
- 3343 253. Suissa S, Patenaude V, Lapi F, Ernst P. Inhaled corticosteroids in COPD and the risk of serious
 3344 pneumonia. *Thorax.* 2013;68(11):1029–36.
- 3345 254. Leigh R, Pizzichini MM, Morris MM, Maltais F, Hargreave FE, Pizzichini E. Stable COPD:
 3346 predicting benefit from high-dose inhaled corticosteroid treatment. *Eur Respir J.* 2006;27(5):964–71.
- 3347 255. Agusti A, Celli BR, Criner GJ, Halpin D, Anzueto A, Barnes P, et al. Global Initiative for
 3348 Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. *Eur Respir J.* 2023;61(4).
- 3349 256. Multiple. Farmacotherapeutisch kompas [Available from:
 3350 www.farmacotherapeutischkompas.nl/].
- 3351 257. Barnes PJ. Glucocorticosteroids: current and future directions. *Br J Pharmacol.*
 3352 2011;163(1):29–43.
- 3353 258. Cazzola M, Calzetta L, Rogliani P, Puxeddu E, Facciolo F, Matera MG. Interaction between
 3354 corticosteroids and muscarinic antagonists in human airways. *Pulm Pharmacol Ther.* 2016;36:1–9.
- 3355 259. Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of
 3356 glucocorticoid receptor function-a model system for genome regulation and physiology. *FEBS J.*
 3357 2022;289(19):5718–43.
- 3358 260. Nishi Y, Boswell V, Ansari T, Piprawala F, Satchi S, Page CP. Elastase-induced changes in
 3359 lung function: relationship to morphometry and effect of drugs. *Pulm Pharmacol Ther.* 2003;16(4):221–9.

- 3361 261. Dorscheid DR, Patchell BJ, Estrada O, Marroquin B, Tse R, White SR. Effects of
 3362 corticosteroid-induced apoptosis on airway epithelial wound closure in vitro. *Am J Physiol Lung Cell
 3363 Mol Physiol.* 2006;291(4):L794–801.
- 3364 262. Matsumoto D, Toba H, Kenzaki K, Sakiyama S, Sakamoto S, Takashima M, et al. Lung
 3365 regeneration with rat fetal lung implantation and promotion of alveolar stem cell differentiation by
 3366 corticosteroids. *Regen Ther.* 2023;24:426–33.
- 3367 263. Matsumoto K, Tajima H, Okazaki H, Nakamura T. Negative regulation of hepatocyte growth
 3368 factor gene expression in human lung fibroblasts and leukemic cells by transforming growth factor-beta
 3369 1 and glucocorticoids. *J Biol Chem.* 1992;267(35):24917–20.
- 3370 264. Singh D, Litewka D, Paramo R, Rendon A, Sayiner A, Tanni SE, et al. DElaying Disease
 3371 Progression In COPD with Early Initiation of Dual Bronchodilator or Triple Inhaled PharmacoTherapy
 3372 (DEPICT): A Predictive Modelling Approach. *Adv Ther.* 2023;40(10):4282–97.
- 3373 265. Shaker SB, Dirksen A, Ulrik CS, Hestad M, Stavngaard T, Laursen LC, et al. The effect of
 3374 inhaled corticosteroids on the development of emphysema in smokers assessed by annual computed
 3375 tomography. *COPD.* 2009;6(2):104–11.
- 3376 266. Kunz LIZ, Postma DS, Klooster K, Lapperre TS, Vonk JM, Sont JK, et al. Relapse in FEV1
 3377 Decline After Steroid Withdrawal in COPD. *Chest.* 2015;148(2):389–96.
- 3378 267. Yun JH, Lamb A, Chase R, Singh D, Parker MM, Saferali A, et al. Blood eosinophil count
 3379 thresholds and exacerbations in patients with chronic obstructive pulmonary disease. *J Allergy Clin
 3380 Immunol.* 2018;141(6):2037–47 e10.
- 3381 268. Saito Z, Yoshida M, Kojima A, Tamura K, Hasegawa T, Kuwano K. Benefits and Risks of
 3382 Inhaled Corticosteroid Treatment in Patients with Chronic Obstructive Pulmonary Disease Classified
 3383 by Blood Eosinophil Counts. *Lung.* 2020;198(6):925–31.
- 3384 269. Kunz LI, Strebus J, Budulac SE, Lapperre TS, Sterk PJ, Postma DS, et al. Inhaled steroids
 3385 modulate extracellular matrix composition in bronchial biopsies of COPD patients: a randomized,
 3386 controlled trial. *PLoS One.* 2013;8(5):e63430.
- 3387 270. van den Berge M, Steiling K, Timens W, Hiemstra PS, Sterk PJ, Heijink IH, et al. Airway gene
 3388 expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways
 3389 associated with disease activity. *Thorax.* 2014;69(1):14–23.
- 3390 271. Wang Y, Ninaber DK, van Schadewijk A, Hiemstra PS. Tiotropium and Fluticasone Inhibit
 3391 Rhinovirus-Induced Mucin Production via Multiple Mechanisms in Differentiated Airway Epithelial
 3392 Cells. *Front Cell Infect Microbiol.* 2020;10:278.
- 3393 272. Rogers DF. Airway mucus hypersecretion in asthma: an undervalued pathology? *Curr Opin
 3394 Pharmacol.* 2004;4(3):241–50.
- 3395 273. Ohnishi H, Tanimoto T, Inaba R, Eitoku M. Efficacy and safety of mucolytics in patients with
 3396 stable chronic obstructive pulmonary disease: A systematic review and meta-analysis. *Respir Investig.*
 3397 2024;62(6):1168–75.
- 3398 274. Ward JE, Tan X. Peroxisome proliferator activated receptor ligands as regulators of airway
 3399 inflammation and remodelling in chronic lung disease. *PPAR Res.* 2007;2007:14983.
- 3400 275. Berger J, Moller DE. The mechanisms of action of PPARs. *Annu Rev Med.* 2002;53:409–35.
- 3401 276. Scher JU, Pillinger MH. 15d-PGJ2: the anti-inflammatory prostaglandin? *Clin Immunol.*
 3402 2005;114(2):100–9.
- 3403 277. Uhlig S. Who tidies up the lung? Listen to Cox-2 and Nrf2. *Am J Respir Crit Care Med.*
 3404 2005;171(11):1198–9.
- 3405 278. Tseng CH. Pioglitazone and Risk of Chronic Obstructive Pulmonary Disease in Patients with
 3406 Type 2 Diabetes Mellitus: A Retrospective Cohort Study. *Int J Chron Obstruct Pulmon Dis.*
 3407 2022;17:285–95.
- 3408 279. Rinne ST, Liu CF, Feemster LC, Collins BF, Bryson CL, O'Riordan TG, et al. Thiazolidinediones are associated with a reduced risk of COPD exacerbations. *Int J Chron Obstruct
 3409 Pulmon Dis.* 2015;10:1591–7.
- 3410 280. Lea S, Plumb J, Metcalfe H, Spicer D, Woodman P, Fox JC, et al. The effect of peroxisome
 3411 proliferator-activated receptor-gamma ligands on in vitro and in vivo models of COPD. *Eur Respir J.*
 3412 2014;43(2):409–20.

- 3414 281. Lee IT, Yang CC, Yang CM. Harnessing peroxisome proliferator-activated receptor gamma
 3415 agonists to induce Heme Oxygenase-1: a promising approach for pulmonary inflammatory disorders.
 3416 *Cell Commun Signal.* 2024;22(1):125.
- 3417 282. Li J, Dai A, Hu R, Zhu L, Tan S. Positive correlation between PPARgamma/PGC-1alpha and
 3418 gamma-GCS in lungs of rats and patients with chronic obstructive pulmonary disease. *Acta Biochim
 3419 Biophys Sin (Shanghai).* 2010;42(9):603–14.
- 3420 283. Ma SX, Xie GF, Fang P, Tang MM, Deng YP, Lu YJ, et al. Low 15d-PGJ2 status is associated
 3421 with oxidative stress in chronic obstructive pulmonary disease patients. *Inflamm Res.* 2023;72(2):171–
 3422 80.
- 3423 284. Reddy AT, Lakshmi SP, Banno A, Reddy RC. Role of GPx3 in PPARgamma-induced
 3424 protection against COPD-associated oxidative stress. *Free Radic Biol Med.* 2018;126:350–7.
- 3425 285. He S, Tian R, Zhang X, Yao Q, Chen Q, Liu B, et al. PPARgamma inhibits small airway
 3426 remodeling through mediating the polarization homeostasis of alveolar macrophages in COPD. *Clin
 3427 Immunol.* 2023;250:109293.
- 3428 286. Hou G, Yin Y, Han D, Wang QY, Kang J. Rosiglitazone attenuates the metalloprotease/anti-
 3429 metalloprotease imbalance in emphysema induced by cigarette smoke: involvement of extracellular
 3430 signal-regulated kinase and NFkappaB signaling. *Int J Chron Obstruct Pulmon Dis.* 2015;10:715–24.
- 3431 287. Zhou XM, Hou G, Gu DX, Wang QY, Zhao L. Peroxisome proliferator-activated receptor-
 3432 gamma in induced sputum is correlated with MMP-9/TIMP-1 imbalance and formation of emphysema
 3433 in COPD patients. *J Thorac Dis.* 2017;9(10):3703–10.
- 3434 288. Solleti SK, Simon DM, Srisuma S, Arikan MC, Bhattacharya S, Rangasamy T, et al. Airway
 3435 epithelial cell PPARgamma modulates cigarette smoke-induced chemokine expression and emphysema
 3436 susceptibility in mice. *Am J Physiol Lung Cell Mol Physiol.* 2015;309(3):L293–304.
- 3437 289. Boo HJ, Park SJ, Noh M, Min HY, Jeong LS, Lee HY. LJ-529, a partial peroxisome
 3438 proliferator-activated receptor gamma (PPARgamma) agonist and adenosine A(3) receptor agonist,
 3439 ameliorates elastase-induced pulmonary emphysema in mice. *Arch Pharm Res.* 2020;43(5):540–52.
- 3440 290. Liang J, Huang G, Liu X, Zhang X, Rabata A, Liu N, et al. Lipid Deficiency Contributes to
 3441 Impaired Alveolar Progenitor Cell Function in Aging and Idiopathic Pulmonary Fibrosis. *Am J Respir
 3442 Cell Mol Biol.* 2024;71(2):242–53.
- 3443 291. Li Y, Wongsiriroj N, Blaner WS. The multifaceted nature of retinoid transport and metabolism.
 3444 *Hepatobiliary Surg Nutr.* 2014;3(3):126–39.
- 3445 292. Cunningham TJ, Duester G. Mechanisms of retinoic acid signalling and its roles in organ and
 3446 limb development. *Nat Rev Mol Cell Biol.* 2015;16(2):110–23.
- 3447 293. Shmarakov IO, Gusarova GA, Islam MN, Marhuenda-Munoz M, Bhattacharya J, Blaner WS.
 3448 Retinoids stored locally in the lung are required to attenuate the severity of acute lung injury in male
 3449 mice. *Nat Commun.* 2023;14(1):851.
- 3450 294. Plantier L, Rochette-Egly C, Goven D, Boutten A, Bonay M, Leseche G, et al. Dysregulation
 3451 of elastin expression by fibroblasts in pulmonary emphysema: role of cellular retinoic acid binding
 3452 protein 2. *Thorax.* 2008;63(11):1012–7.
- 3453 295. Liu B, Harvey CS, McGowan SE. Retinoic acid increases elastin in neonatal rat lung fibroblast
 3454 cultures. *Am J Physiol.* 1993;265(5 Pt 1):L430–7.
- 3455 296. Kaartinen L, Nettesheim P, Adler KB, Randell SH. Rat tracheal epithelial cell differentiation
 3456 in vitro. *In Vitro Cell Dev Biol Anim.* 1993;29A(6):481–92.
- 3457 297. Ng-Blichfeldt JP, Schrik A, Kortekaas RK, Noordhoek JA, Heijink IH, Hiemstra PS, et al.
 3458 Retinoic acid signaling balances adult distal lung epithelial progenitor cell growth and differentiation.
 3459 *EBioMedicine.* 2018;36:461–74.
- 3460 298. Ng-Blichfeldt JP, Alcada J, Montero MA, Dean CH, Griesenbach U, Griffiths MJ, et al.
 3461 Deficient retinoid-driven angiogenesis may contribute to failure of adult human lung regeneration in
 3462 emphysema. *Thorax.* 2017;72(6):510–21.
- 3463 299. Kunig AM, Balasubramaniam V, Markham NE, Morgan D, Montgomery G, Grover TR, et al.
 3464 Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal
 3465 rats. *Am J Physiol Lung Cell Mol Physiol.* 2005;289(4):L529–35.
- 3466 300. Cho SJ, George CL, Snyder JM, Acarregui MJ. Retinoic acid and erythropoietin maintain
 3467 alveolar development in mice treated with an angiogenesis inhibitor. *Am J Respir Cell Mol Biol.*
 3468 2005;33(6):622–8.

- 3469 301. McGowan SE. The lipofibroblast: more than a lipid-storage depot. *Am J Physiol Lung Cell Mol Physiol.* 2019;316(5):L869–L71.
- 3470 302. Massaro GD, Massaro D, Chambon P. Retinoic acid receptor-alpha regulates pulmonary alveolus formation in mice after, but not during, perinatal period. *Am J Physiol Lung Cell Mol Physiol.* 2003;284(2):L431–3.
- 3471 303. Massaro GD, Massaro D, Chan WY, Clerch LB, Ghyselinck N, Chambon P, et al. Retinoic acid receptor-beta: an endogenous inhibitor of the perinatal formation of pulmonary alveoli. *Physiol Genomics.* 2000;4(1):51–7.
- 3472 304. McGowan S, Jackson SK, Jenkins-Moore M, Dai HH, Chambon P, Snyder JM. Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. *Am J Respir Cell Mol Biol.* 2000;23(2):162–7.
- 3473 305. Checkley W, West KP, Jr., Wise RA, Baldwin MR, Wu L, LeClerq SC, et al. Maternal vitamin A supplementation and lung function in offspring. *N Engl J Med.* 2010;362(19):1784–94.
- 3474 306. Portas L, Pereira M, Shaheen SO, Wyss AB, London SJ, Burney PGJ, et al. Lung Development Genes and Adult Lung Function. *Am J Respir Crit Care Med.* 2020;202(6):853–65.
- 3475 307. Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. *Nat Genet.* 2011;43(11):1082–90.
- 3476 308. Mongey R, van der Plaat DA, Shaheen SO, Portas L, Potts J, Hind MD, et al. Effect of vitamin A on adult lung function: a triangulation of evidence approach. *Thorax.* 2025;80(4):236–44.
- 3477 309. Zheng L, Yu X, Xia Z, Guo Y, Dai Y. The Associations Between Serum Vitamins and Carotenoids with Chronic Obstructive Pulmonary Disease: Results from the NHANES. *Int J Chron Obstruct Pulmon Dis.* 2023;18:2985–97.
- 3478 310. Baybutt RC, Hu L, Molteni A. Vitamin A deficiency injures lung and liver parenchyma and impairs function of rat type II pneumocytes. *J Nutr.* 2000;130(5):1159–65.
- 3479 311. Massaro GD, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. *Nat Med.* 1997;3(6):675–7.
- 3480 312. Hind M, Maden M. Retinoic acid induces alveolar regeneration in the adult mouse lung. *Eur Respir J.* 2004;23(1):20–7.
- 3481 313. Tepper J, Pfeiffer J, Aldrich M, Tumas D, Kern J, Hoffman E, et al. Can retinoic acid ameliorate the physiologic and morphologic effects of elastase instillation in the rat? *Chest.* 2000;117(5 Suppl 1):242S–4S.
- 3482 314. Fujita M, Ye Q, Ouchi H, Nakashima N, Hamada N, Hagimoto N, et al. Retinoic acid fails to reverse emphysema in adult mouse models. *Thorax.* 2004;59(3):224–30.
- 3483 315. Lucey EC, Goldstein RH, Breuer R, Rexer BN, Ong DE, Snider GL. Retinoic acid does not affect alveolar septation in adult FVB mice with elastase-induced emphysema. *Respiration.* 2003;70(2):200–5.
- 3484 316. Maden M. Retinoids have differing efficacies on alveolar regeneration in a dexamethasone-treated mouse. *Am J Respir Cell Mol Biol.* 2006;35(2):260–7.
- 3485 317. Stinchcombe SV, Maden M. Retinoic acid induced alveolar regeneration: critical differences in strain sensitivity. *Am J Respir Cell Mol Biol.* 2008;38(2):185–91.
- 3486 318. Mao JT, Goldin JG, Dermand J, Ibrahim G, Brown MS, Emerick A, et al. A pilot study of all-trans-retinoic acid for the treatment of human emphysema. *Am J Respir Crit Care Med.* 2002;165(5):718–23.
- 3487 319. Roth MD, Connell JE, D'Armiento JM, Foronjy RF, Friedman PJ, Goldin JG, et al. Feasibility of retinoids for the treatment of emphysema study. *Chest.* 2006;130(5):1334–45.
- 3488 320. Gokey JJ, Snowball J, Green J, Waltamath M, Spinney JJ, Black KE, et al. Pretreatment of aged mice with retinoic acid supports alveolar regeneration via upregulation of reciprocal PDGFA signalling. *Thorax.* 2021;76(5):456–67.
- 3489 321. Stolk J, Stockley RA, Stoel BC, Cooper BG, Piitulainen E, Seersholm N, et al. Randomised controlled trial for emphysema with a selective agonist of the gamma-type retinoic acid receptor. *Eur Respir J.* 2012;40(2):306–12.
- 3490 322. Chisholm DR, Tomlinson CWE, Zhou GL, Holden C, Affleck V, Lamb R, et al. Fluorescent Retinoic Acid Analogues as Probes for Biochemical and Intracellular Characterization of Retinoid Signaling Pathways. *ACS Chem Biol.* 2019;14(3):369–77.

- 3524 323. Chisholm DR, Whiting A. Design of synthetic retinoids. *Methods Enzymol.* 2020;637:453–91.
- 3525 324. Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The
3526 Role of the CYP26 Enzymes. *J Dev Biol.* 2020;8(1).
- 3527 325. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. *Cell.* 2012;149(6):1192–205.
- 3528 326. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and
3529 diseases. *Dev Cell.* 2009;17(1):9–26.
- 3530 327. Frank DB, Peng T, Zepp JA, Snitow M, Vincent TL, Penkala IJ, et al. Emergence of a Wave of
3531 Wnt Signaling that Regulates Lung Alveogenesis by Controlling Epithelial Self-Renewal and
3532 Differentiation. *Cell Rep.* 2016;17(9):2312–25.
- 3533 328. Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, et al. Negative feedback loop
3534 of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. *Mol Cell Biol.*
3535 2002;22(4):1184–93.
- 3536 329. Lehmann M, Hu Q, Hu Y, Hafner K, Costa R, van den Berg A, et al. Chronic WNT/beta-catenin
3537 signaling induces cellular senescence in lung epithelial cells. *Cell Signal.* 2020;70:109588.
- 3538 330. Kneidinger N, Yildirim AO, Callegari J, Takenaka S, Stein MM, Dumitrascu R, et al.
3539 Activation of the WNT/beta-catenin pathway attenuates experimental emphysema. *Am J Respir Crit
3540 Care Med.* 2011;183(6):723–33.
- 3541 331. Conlon TM, John-Schuster G, Heide D, Pfister D, Lehmann M, Hu Y, et al. Inhibition of
3542 LTbetaR signalling activates WNT-induced regeneration in lung. *Nature.* 2020;588(7836):151–6.
- 3543 332. Hu Y, Ng-Blichfeldt JP, Ota C, Ciminieri C, Ren W, Hiemstra PS, et al. Wnt/beta-catenin
3544 signaling is critical for regenerative potential of distal lung epithelial progenitor cells in homeostasis
3545 and emphysema. *Stem Cells.* 2020;38(11):1467–78.
- 3546 333. Verhees KJ, Pansters NA, Baarsma HA, Remels AH, Haegens A, de Theije CC, et al.
3547 Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation:
3548 II. Effects on skeletal muscle atrophy. *Respir Res.* 2013;14(1):117.
- 3549 334. Baarsma HA, Bos S, Meurs H, Visser KH, Smit M, Schols AM, et al. Pharmacological
3550 inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: I. Effects on lung
3551 remodeling and pathology. *Respir Res.* 2013;14(1):113.
- 3552 335. Bao Z, Lim S, Liao W, Lin Y, Thiemermann C, Leung BP, et al. Glycogen synthase kinase-
3553 3beta inhibition attenuates asthma in mice. *Am J Respir Crit Care Med.* 2007;176(5):431–8.
- 3554 336. Baarsma HA, Spanjer AI, Haitsma G, Engelbertink LH, Meurs H, Jonker MR, et al. Activation
3555 of WNT/beta-catenin signaling in pulmonary fibroblasts by TGF-beta(1) is increased in chronic
3556 obstructive pulmonary disease. *PLoS One.* 2011;6(9):e25450.
- 3557 337. Zou W, Ye D, Liu S, Hu J, Zhu T, He F, et al. GSK-3beta Inhibitors Attenuate the PM2.5-
3558 Induced Inflammatory Response in Bronchial Epithelial Cells. *Int J Chron Obstruct Pulmon Dis.*
3559 2021;16:2845–56.
- 3560 338. Fernandes R, Barbosa-Matos C, Borges-Pereira C, Carvalho A, Costa S. Glycogen Synthase
3561 Kinase-3 Inhibition by CHIR99021 Promotes Alveolar Epithelial Cell Proliferation and Lung
3562 Regeneration in the Lipopolysaccharide-Induced Acute Lung Injury Mouse Model. *Int J Mol Sci.*
3563 2024;25(2).
- 3564 339. de Carvalho A, Strikoudis A, Liu HY, Chen YW, Dantas TJ, Vallee RB, et al. Glycogen
3565 synthase kinase 3 induces multilineage maturation of human pluripotent stem cell-derived lung
3566 progenitors in 3D culture. *Development.* 2019;146(2).
- 3567 340. Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical
3568 and Clinical Focus on CNS-A Decade Onward. *Front Mol Neurosci.* 2021;14:792364.
- 3569 341. Costa R, Wagner DE, Doryab A, De Santis MM, Schorpp K, Rothenaigner I, et al. A drug
3570 screen with approved compounds identifies amlexanox as a novel Wnt/beta-catenin activator inducing
3571 lung epithelial organoid formation. *Br J Pharmacol.* 2021;178(19):4026–41.
- 3572 342. Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease. *Cell Mol Life
3573 Sci.* 2016;73(3):567–87.
- 3574 343. Baarsma HA, Skronska-Wasek W, Mutze K, Ciolek F, Wagner DE, John-Schuster G, et al.
3575 Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. *J Exp Med.*
3576 2017;214(1):143–63.

- 3577 344. Trinh-Minh T, Chen CW, Tran Manh C, Li YN, Zhu H, Zhou X, et al. Noncanonical WNT5A
 3578 controls the activation of latent TGF-beta to drive fibroblast activation and tissue fibrosis. *J Clin Invest.*
 3579 2024;134(10).
- 3580 345. Patel M, Post Y, Hill N, Sura A, Ye J, Fisher T, et al. A WNT mimetic with broad spectrum
 3581 FZD-specificity decreases fibrosis and improves function in a pulmonary damage model. *Respir Res.*
 3582 2024;25(1):153.
- 3583 346. Nabhan AN, Webster JD, Adams JJ, Blazer L, Everett C, Eidenschenk C, et al. Targeted
 3584 alveolar regeneration with Frizzled-specific agonists. *Cell.* 2023;186(14):2995–3012 e15.
- 3585 347. Torii K, Nishizawa K, Kawasaki A, Yamashita Y, Katada M, Ito M, et al. Anti-apoptotic action
 3586 of Wnt5a in dermal fibroblasts is mediated by the PKA signaling pathways. *Cell Signal.*
 3587 2008;20(7):1256–66.
- 3588 348. Ho C, Lee PH, Hsu YC, Wang FS, Huang YT, Lin CL. Sustained Wnt/beta-catenin signaling
 3589 rescues high glucose induction of transforming growth factor-beta1-mediated renal fibrosis. *Am J Med*
 3590 *Sci.* 2012;344(5):374–82.
- 3591 349. Nishiguchi G, Caine EA, McGowan K, Shi Z, Aggarwal A, Mayasundari A, et al. Structure-
 3592 Activity Relationship of Potent, Selective, and Orally Bioavailable Molecular Glue Degraders of
 3593 CK1alpha. *ACS Med Chem Lett.* 2024;15(10):1692–8.
- 3594 350. Nemec V, Khirsariya P, Janovska P, Moyano PM, Maier L, Prochazkova P, et al. Discovery of
 3595 Potent and Exquisitely Selective Inhibitors of Kinase CK1 with Tunable Isoform Selectivity. *Angew*
 3596 *Chem Int Ed Engl.* 2023;62(11):e202217532.
- 3597 351. Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1alpha: biological mechanisms and theranostic
 3598 potential. *Cell Commun Signal.* 2018;16(1):23.
- 3599 352. Bidere N, Ngo VN, Lee J, Collins C, Zheng L, Wan F, et al. Casein kinase 1alpha governs
 3600 antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. *Nature.*
 3601 2009;458(7234):92–6.
- 3602 353. Kim HY, Yoon JY, Yun JH, Cho KW, Lee SH, Rhee YM, et al. CXXC5 is a negative-feedback
 3603 regulator of the Wnt/beta-catenin pathway involved in osteoblast differentiation. *Cell Death Differ.*
 3604 2015;22(6):912–20.
- 3605 354. Kim HY, Choi S, Yoon JH, Lim HJ, Lee H, Choi J, et al. Small molecule inhibitors of the
 3606 Dishevelled-CXXC5 interaction are new drug candidates for bone anabolic osteoporosis therapy.
 3607 *EMBO Mol Med.* 2016;8(4):375–87.
- 3608 355. Foronjy R, Imai K, Shiomi T, Mercer B, Sklepiewicz P, Thankachen J, et al. The divergent
 3609 roles of secreted frizzled related protein-1 (SFRP1) in lung morphogenesis and emphysema. *Am J*
 3610 *Pathol.* 2010;177(2):598–607.
- 3611 356. Wang R, Ahmed J, Wang G, Hassan I, Strulovici-Barel Y, Hackett NR, et al. Down-regulation
 3612 of the canonical Wnt beta-catenin pathway in the airway epithelium of healthy smokers and smokers
 3613 with COPD. *PLoS One.* 2011;6(4):e14793.
- 3614 357. Elzi DJ, Song M, Hakala K, Weintraub ST, Shioi Y. Wnt antagonist SFRP1 functions as a
 3615 secreted mediator of senescence. *Mol Cell Biol.* 2012;32(21):4388–99.
- 3616 358. Bodine PV, Stauffer B, Ponce-de-Leon H, Bhat RA, Magine A, Seestaller-Wehr LM, et al. A
 3617 small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone
 3618 formation. *Bone.* 2009;44(6):1063–8.
- 3619 359. de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H, et al. Lgr5 homologues associate
 3620 with Wnt receptors and mediate R-spondin signalling. *Nature.* 2011;476(7360):293–7.
- 3621 360. Bell SM, Schreiner CM, Wert SE, Mucenski ML, Scott WJ, Whitsett JA. R-spondin 2 is
 3622 required for normal laryngeal-tracheal, lung and limb morphogenesis. *Development.*
 3623 2008;135(6):1049–58.
- 3624 361. Raslan AA, Oh YJ, Jin YR, Yoon JK. R-Spondin2, a Positive Canonical WNT Signaling
 3625 Regulator, Controls the Expansion and Differentiation of Distal Lung Epithelial Stem/Progenitor Cells
 3626 in Mice. *Int J Mol Sci.* 2022;23(6).
- 3627 362. Qiu D, Xu K, Chung N, Robbins J, Luo R, Lawrence M, et al. Identification and validation of
 3628 G protein-coupled receptors modulating flow-dependent signaling pathways in vascular endothelial
 3629 cells. *Front Mol Biosci.* 2023;10:1198079.

- 3630 363. Stolz D, Mkorombido T, Schumann DM, Agusti A, Ash SY, Bafadhel M, et al. Towards the
 3631 elimination of chronic obstructive pulmonary disease: a Lancet Commission. *Lancet*.
 3632 2022;400(10356):921–72.
- 3633 364. Bowdish DME. The Aging Lung: Is Lung Health Good Health for Older Adults? *Chest*.
 3634 2019;155(2):391–400.
- 3635 365. Kirkeleit J, Riise T, Wielscher M, Accordini S, Carsin AE, Dratva J, et al. Early life exposures
 3636 contributing to accelerated lung function decline in adulthood - a follow-up study of 11,000 adults from
 3637 the general population. *EClinicalMedicine*. 2023;66:102339.
- 3638 366. Hopkinson NS, Bush A, Allinson JP, Faner R, Zar HJ, Agusti A. Early Life Exposures and the
 3639 Development of Chronic Obstructive Pulmonary Disease across the Life Course. *Am J Respir Crit Care
 3640 Med*. 2024;210(5):572–80.
- 3641 367. Kroemer G, Maier AB, Cuervo AM, Gladyshev VN, Ferrucci L, Gorbunova V, et al. From
 3642 geroscience to precision geromedicine: Understanding and managing aging. *Cell*. 2025;188(8):2043–
 3643 62.
- 3644 368. Meiners S, Eickelberg O, Konigshoff M. Hallmarks of the ageing lung. *Eur Respir J*.
 3645 2015;45(3):807–27.
- 3646 369. Cottage CT, Peterson N, Kearley J, Berlin A, Xiong X, Huntley A, et al. Targeting p16-induced
 3647 senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice.
 3648 *Commun Biol*. 2019;2:307.
- 3649 370. Baker JR, Vuppusetty C, Colley T, Hassibi S, Fenwick PS, Donnelly LE, et al. MicroRNA-570
 3650 is a novel regulator of cellular senescence and inflamming. *FASEB J*. 2019;33(2):1605–16.
- 3651 371. Houssaini A, Breau M, Kebe K, Abid S, Marcos E, Lipskaia L, et al. mTOR pathway activation
 3652 drives lung cell senescence and emphysema. *JCI Insight*. 2018;3(3).
- 3653 372. Beaulieu D, Attwe A, Breau M, Lipskaia L, Marcos E, Born E, et al. Phospholipase A2 receptor
 3654 1 promotes lung cell senescence and emphysema in obstructive lung disease. *Eur Respir J*. 2021;58(2).
- 3655 373. Noureddine H, Gary-Bobo G, Alifano M, Marcos E, Saker M, Vienney N, et al. Pulmonary
 3656 artery smooth muscle cell senescence is a pathogenic mechanism for pulmonary hypertension in chronic
 3657 lung disease. *Circ Res*. 2011;109(5):543–53.
- 3658 374. Barnes PJ, Baker J, Donnelly LE. Cellular Senescence as a Mechanism and Target in Chronic
 3659 Lung Diseases. *Am J Respir Crit Care Med*. 2019;200(5):556–64.
- 3660 375. Baker JR, Donnelly LE, Barnes PJ. Senotherapy: A New Horizon for COPD Therapy. *Chest*.
 3661 2020;158(2):562–70.
- 3662 376. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance
 3663 of p16Ink4a-positive senescent cells delays ageing-associated disorders. *Nature*. 2011;479(7372):232–
 3664 6.
- 3665 377. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles' heel
 3666 of senescent cells: from transcriptome to senolytic drugs. *Aging Cell*. 2015;14(4):644–58.
- 3667 378. Nambiar A, Kellogg D, 3rd, Justice J, Goros M, Gelfond J, Pascual R, et al. Senolytics dasatinib
 3668 and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center,
 3669 randomized, placebo-controlled pilot trial on feasibility and tolerability. *EBioMedicine*.
 3670 2023;90:104481.
- 3671 379. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, et al. Senolytics
 3672 in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. *EBioMedicine*.
 3673 2019;40:554–63.
- 3674 380. Ganesan S, Faris AN, Comstock AT, Chatteraj SS, Chatteraj A, Burgess JR, et al. Quercetin
 3675 prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP
 3676 expression. *Respir Res*. 2010;11(1):131.
- 3677 381. Baker JR, Daly L, Hassibi S, Kimura G, Nishimoto Y, Kizawa Y, et al. Senolytic therapy
 3678 reduces inflammation in epithelial cells from COPD patients and in smoke-exposure mice. *Front Med
 3679 (Lausanne)*. 2025;12:1451056.
- 3680 382. Han MK, Barreto TA, Martinez FJ, Comstock AT, Sajjan US. Randomised clinical trial to
 3681 determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary
 3682 disease. *BMJ Open Respir Res*. 2020;7(1).

- 3683 383. Woldhuis RR, Van Den Berge M, Kooistra W, Timens W, Brandsma C-A. Targeting lung
 3684 fibroblast senescence to restore ECM regulation in COPD. *European Respiratory Journal*.62(suppl
 3685 67):PA2372.
- 3686 384. Guo Y, Fenwick P, Viola P, Al-Sahaf M, J. Barnes P, E. Donnelly L. Navitoclax inhibits
 3687 senescence in human alveolar type 2 cells from COPD patients. *European Respiratory Journal*.64(suppl
 3688 68):PA897.
- 3689 385. Guerrero A, Herranz N, Sun B, Wagner V, Gallage S, Guiho R, et al. Cardiac glycosides are
 3690 broad-spectrum senolytics. *Nat Metab*. 2019;1(11):1074–88.
- 3691 386. Triana-Martinez F, Picallos-Rabina P, Da Silva-Alvarez S, Pietrocola F, Llanos S, Rodilla V,
 3692 et al. Identification and characterization of Cardiac Glycosides as senolytic compounds. *Nat Commun*.
 3693 2019;10(1):4731.
- 3694 387. Crespo-Garcia S, Fournier F, Diaz-Marin R, Klier S, Ragusa D, Masaki L, et al. Therapeutic
 3695 targeting of cellular senescence in diabetic macular edema: preclinical and phase 1 trial results. *Nat
 3696 Med*. 2024;30(2):443–54.
- 3697 388. Devulder J, Fenwick P, Al Sahaf M, Viola P, Razdan N, Lemaire R, et al. Effect of the novel
 3698 senolytic drug, BCL-xL PROTAC, on small airway epithelial cells in COPD. *European Respiratory
 3699 Journal*.64(suppl 68):PA4429.
- 3700 389. Lee S, Ro H, In HJ, Choi JH, Kim MO, Lee J, et al. Fisetin inhibits TNF-alpha/NF-kappaB-
 3701 induced IL-8 expression by targeting PKCdelta in human airway epithelial cells. *Cytokine*.
 3702 2018;108:247–54.
- 3703 390. Devulder J, Fenwick P, Al Sahaf M, Viola P, Donnelly L, Barnes P. Effect of the putative
 3704 senotherapy, Fisetin on small airway epithelial cells in COPD. *European Respiratory Journal*.64(suppl
 3705 68):PA4423.
- 3706 391. Guerin DJ, Kha CX, Tseng KA. From Cell Death to Regeneration: Rebuilding After Injury.
 3707 *Front Cell Dev Biol*. 2021;9:655048.
- 3708 392. Hu Y, Hu Q, Ansari M, Riemondy K, Pineda R, Sembrat J, et al. Airway-derived emphysema-
 3709 specific alveolar type II cells exhibit impaired regenerative potential in COPD. *Eur Respir J*.
 3710 2024;64(6).
- 3711 393. Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. Role of apoptosis in the
 3712 pathogenesis of COPD and pulmonary emphysema. *Respir Res*. 2006;7(1):53.
- 3713 394. Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, et al. Elimination of senescent cells by beta-
 3714 galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice.
 3715 *Cell Res*. 2020;30(7):574–89.
- 3716 395. Guerrero A, Guiho R, Herranz N, Uren A, Withers DJ, Martinez-Barbera JP, et al. Galactose-
 3717 modified duocarmycin prodrugs as senolytics. *Aging Cell*. 2020;19(4):e13133.
- 3718 396. Maus M, Lopez-Polo V, Mateo L, Lafarga M, Aguilera M, De Lama E, et al. Iron accumulation
 3719 drives fibrosis, senescence and the senescence-associated secretory phenotype. *Nat Metab*.
 3720 2023;5(12):2111–30.
- 3721 397. Admasu TD, Kim K, Rae M, Avelar R, Gonciarz RL, Rebbaa A, et al. Selective ablation of
 3722 primary and paracrine senescent cells by targeting iron dyshomeostasis. *Cell Rep*. 2023;42(2):112058.
- 3723 398. Cloonan SM, Glass K, Laucho-Contreras ME, Bhashyam AR, Cervo M, Pabon MA, et al.
 3724 Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice.
 3725 *Nat Med*. 2016;22(2):163–74.
- 3726 399. Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derkx KWJ, Bourgeois BRM, et al. Targeted
 3727 Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.
 3728 *Cell*. 2017;169(1):132–47 e16.
- 3729 400. Han Y, Wu Y, He B, Wu D, Hua J, Qian H, et al. DNA nanoparticles targeting FOXO4
 3730 selectively eliminate cigarette smoke-induced senescent lung fibroblasts. *Nanoscale Adv*.
 3731 2023;5(21):5965–73.
- 3732 401. Victorelli S, Salmonowicz H, Chapman J, Martini H, Vizioli MG, Riley JS, et al. Apoptotic
 3733 stress causes mtDNA release during senescence and drives the SASP. *Nature*. 2023;622(7983):627–36.
- 3734 402. Hassibi S, Baker J, Daly L, Yamamoto Y, Kyle R, Ito K. P207 Senolytic effects of
 3735 Telaglenastat, a glutaminase inhibitor, on senescent airway epithelial cells. *Thorax*. 2023;78(Suppl
 3736 4):A235–A6.

- 3737 403. Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, et al. Senolytic CAR T cells
 3738 reverse senescence-associated pathologies. *Nature*. 2020;583(7814):127–32.
- 3739 404. Yang D, Sun B, Li S, Wei W, Liu X, Cui X, et al. NKG2D-CAR T cells eliminate senescent
 3740 cells in aged mice and nonhuman primates. *Sci Transl Med*. 2023;15(709):eadd1951.
- 3741 405. Yoshida S, Nakagami H, Hayashi H, Ikeda Y, Sun J, Tenma A, et al. The CD153 vaccine is a
 3742 senotherapeutic option for preventing the accumulation of senescent T cells in mice. *Nat Commun*.
 3743 2020;11(1):2482.
- 3744 406. McHugh D, Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues. *J
 3745 Cell Biol*. 2018;217(1):65–77.
- 3746 407. Reyes NS, Krasilnikov M, Allen NC, Lee JY, Hyams B, Zhou M, et al. Sentinel p16(INK4a+)
 3747 cells in the basement membrane form a reparative niche in the lung. *Science*. 2022;378(6616):192–201.
- 3748 408. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An
 3749 expanding universe. *Cell*. 2023;186(2):243–78.
- 3750 409. Polverino F, Wu TD, Rojas-Quintero J, Wang X, Mayo J, Tomchane M, et al. Metformin:
 3751 Experimental and Clinical Evidence for a Potential Role in Emphysema Treatment. *Am J Respir Crit
 3752 Care Med*. 2021;204(6):651–66.
- 3753 410. Park CS, Bang BR, Kwon HS, Moon KA, Kim TB, Lee KY, et al. Metformin reduces airway
 3754 inflammation and remodeling via activation of AMP-activated protein kinase. *Biochem Pharmacol*.
 3755 2012;84(12):1660–70.
- 3756 411. Kahnert K, Andreas S, Kellerer C, Lutter JI, Lucke T, Yildirim O, et al. Reduced decline of
 3757 lung diffusing capacity in COPD patients with diabetes and metformin treatment. *Sci Rep*.
 3758 2022;12(1):1435.
- 3759 412. Ray A, Paik JM, Wexler DJ, Sreedhara SK, Bykov K, Feldman WB, et al. Glucose-Lowering
 3760 Medications and Risk of Chronic Obstructive Pulmonary Disease Exacerbations in Patients With Type
 3761 2 Diabetes. *JAMA Intern Med*. 2025;185(4):399–410.
- 3762 413. Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, et al. JAK inhibition
 3763 alleviates the cellular senescence-associated secretory phenotype and frailty in old age. *Proc Natl Acad
 3764 Sci U S A*. 2015;112(46):E6301–10.
- 3765 414. Cheresh P, Kim SJ, Jablonski R, Watanabe S, Lu Z, Chi M, et al. SIRT3 Overexpression
 3766 Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte
 3767 Recruitment. *Int J Mol Sci*. 2021;22(13).
- 3768 415. Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, et al. SIRT1 protects
 3769 against emphysema via FOXO3-mediated reduction of premature senescence in mice. *J Clin Invest*.
 3770 2012;122(6):2032–45.
- 3771 416. Baker JR, Vuppusetty C, Colley T, Papaioannou AI, Fenwick P, Donnelly L, et al. Oxidative
 3772 stress dependent microRNA-34a activation via PI3Kalpha reduces the expression of sirtuin-1 and
 3773 sirtuin-6 in epithelial cells. *Sci Rep*. 2016;6:35871.
- 3774 417. Pyo IS, Yun S, Yoon YE, Choi JW, Lee SJ. Mechanisms of Aging and the Preventive Effects
 3775 of Resveratrol on Age-Related Diseases. *Molecules*. 2020;25(20).
- 3776 418. Norheim KL, Ben Ezra M, Heckenbach I, Andreasson LM, Eriksen LL, Dyhre-Petersen N, et
 3777 al. Effect of nicotinamide riboside on airway inflammation in COPD: a randomized, placebo-controlled
 3778 trial. *Nat Aging*. 2024;4(12):1772–81.
- 3779 419. Zinovkin RA, Zamyatnin AA. Mitochondria-Targeted Drugs. *Curr Mol Pharmacol*.
 3780 2019;12(3):202–14.
- 3781 420. Bodas M, Vij N. Augmenting autophagy for prognosis based intervention of COPD-
 3782 pathophysiology. *Respir Res*. 2017;18(1):83.
- 3783 421. Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, et al. Oxidative
 3784 stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling
 3785 in patients with chronic obstructive pulmonary disease. *J Allergy Clin Immunol*. 2015;136(3):769–80.
- 3786 422. Ng-Blichfeldt JP, de Jong T, Kortekaas RK, Wu X, Lindner M, Guryev V, et al. TGF-beta
 3787 activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation.
 3788 *Am J Physiol Lung Cell Mol Physiol*. 2019;317(1):L14–L28.
- 3789 423. McQualter JL, McCarty RC, Van der Velden J, O'Donoghue RJ, Asselin-Labat ML, Bozinovski
 3790 S, et al. TGF-beta signaling in stromal cells acts upstream of FGF-10 to regulate epithelial stem cell
 3791 growth in the adult lung. *Stem Cell Res*. 2013;11(3):1222–33.

- 3792 424. Takizawa H, Tanaka M, Takami K, Ohtoshi T, Ito K, Satoh M, et al. Increased expression of
 3793 transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with
 3794 chronic obstructive pulmonary disease (COPD). *Am J Respir Crit Care Med.* 2001;163(6):1476–83.
- 3795 425. Wu X, Verschut V, Woest ME, Ng-Blichfeldt JP, Matias A, Villette G, et al. Rho-Kinase 1/2
 3796 Inhibition Prevents Transforming Growth Factor-beta-Induced Effects on Pulmonary Remodeling and
 3797 Repair. *Front Pharmacol.* 2020;11:609509.
- 3798 426. Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, et al. Potentiation of serum
 3799 response factor activity by a family of myocardin-related transcription factors. *Proc Natl Acad Sci U S*
 3800 *A.* 2002;99(23):14855–60.
- 3801 427. Koopmans T, Kumawat K, Halayko AJ, Gosens R. Regulation of actin dynamics by WNT-5A:
 3802 implications for human airway smooth muscle contraction. *Sci Rep.* 2016;6:30676.
- 3803 428. Kumawat K, Koopmans T, Menzen MH, Prins A, Smit M, Halayko AJ, et al. Cooperative
 3804 signaling by TGF-beta1 and WNT-11 drives sm-alpha-actin expression in smooth muscle via Rho
 3805 kinase-actin-MRTF-A signaling. *Am J Physiol Lung Cell Mol Physiol.* 2016;311(3):L529–37.
- 3806 429. Schaafsma D, Gosens R, Zaagsma J, Halayko AJ, Meurs H. Rho kinase inhibitors: a novel
 3807 therapeutical intervention in asthma? *Eur J Pharmacol.* 2008;585(2-3):398–406.
- 3808 430. Mitsuboshi S, Homma J, Sekine H, Takagi R, Shimizu T, Kanzaki M. A novel alveolar
 3809 epithelial cell sheet fabricated under feeder-free conditions for potential use in pulmonary regenerative
 3810 therapy. *Regen Ther.* 2022;19:113–21.
- 3811 431. Schweitzer KS, Hatoum H, Brown MB, Gupta M, Justice MJ, Beteck B, et al. Mechanisms of
 3812 lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides.
 3813 *Am J Physiol Lung Cell Mol Physiol.* 2011;301(6):L836–46.
- 3814 432. McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and
 3815 Mucosal Immunity in Chronic Lung Disease. *Int J Mol Sci.* 2021;22(9).
- 3816 433. Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease
 3817 imbalance in emphysema. *Int J Tuberc Lung Dis.* 2008;12(4):361–7.
- 3818 434. Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. *Clin Sci (Lond).*
 3819 2017;131(13):1541–58.
- 3820 435. Turner AM, Ficker JH, Vianello A, Clarenbach CF, Janciauskiene S, Chorostowska-Wynimko
 3821 J, et al. Advancing the understanding and treatment of lung pathologies associated with alpha 1
 3822 antitrypsin deficiency. *Ther Adv Respir Dis.* 2025;19:17534666251318841.
- 3823 436. Hubbard RC, Crystal RG. Alpha-1-antitrypsin augmentation therapy for alpha-1-antitrypsin
 3824 deficiency. *Am J Med.* 1988;84(6A):52–62.
- 3825 437. Gadek JE, Klein HG, Holland PV, Crystal RG. Replacement therapy of alpha 1-antitrypsin
 3826 deficiency. Reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects.
 3827 *J Clin Invest.* 1981;68(5):1158–65.
- 3828 438. Bianchera A, Alomari E, Bruno S. Augmentation Therapy with Alpha-1 Antitrypsin: Present
 3829 and Future of Production, Formulation, and Delivery. *Curr Med Chem.* 2022;29(3):385–410.
- 3830 439. Dirksen A, Dijkman JH, Madsen F, Stoel B, Hutchison DC, Ulrik CS, et al. A randomized
 3831 clinical trial of alpha(1)-antitrypsin augmentation therapy. *Am J Respir Crit Care Med.* 1999;160(5 Pt
 3832 1):1468–72.
- 3833 440. Dirksen A, Piitulainen E, Parr DG, Deng C, Wencker M, Shaker SB, et al. Exploring the role
 3834 of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency. *Eur*
 3835 *Respir J.* 2009;33(6):1345–53.
- 3836 441. Chapman KR, Burdon JG, Piitulainen E, Sandhaus RA, Seersholm N, Stocks JM, et al.
 3837 Intravenous augmentation treatment and lung density in severe alpha1 antitrypsin deficiency (RAPID):
 3838 a randomised, double-blind, placebo-controlled trial. *Lancet.* 2015;386(9991):360–8.
- 3839 442. Miravitles M, Dirksen A, Ferrarotti I, Koblizek V, Lange P, Mahadeva R, et al. European
 3840 Respiratory Society statement: diagnosis and treatment of pulmonary disease in alpha(1)-antitrypsin
 3841 deficiency. *Eur Respir J.* 2017;50(5).
- 3842 443. Pires Ferreira D, Gruntman AM, Flotte TR. Gene therapy for alpha-1 antitrypsin deficiency: an
 3843 update. *Expert Opin Biol Ther.* 2023;23(3):283–91.
- 3844 444. Brantly ML, Kuhn BT, Farah HW, Mahadeva R, Cole A, Chang CL, et al. Recombinant Alpha-
 3845 1 Antitrypsin-Fc Fusion Protein INBRX-101 in Adults With Alpha-1 Antitrypsin Deficiency: A Phase
 3846 1 Study. *Chronic Obstr Pulm Dis.* 2024;11(3):282–92.

- 3847 445. Brigham KL, Lane KB, Meyrick B, Stecenko AA, Strack S, Cannon DR, et al. Transfection of
 3848 nasal mucosa with a normal alpha1-antitrypsin gene in alpha1-antitrypsin-deficient subjects:
 3849 comparison with protein therapy. *Hum Gene Ther.* 2000;11(7):1023–32.
- 3850 446. Yadav AK, Gu W, Zhang T, Xu X, Yu L. Current Perspectives on Biological Therapy for
 3851 COPD. *COPD.* 2023;20(1):197–209.
- 3852 447. Manicone AM, Gharib SA, Gong KQ, Eddy WE, Long ME, Frevert CW, et al. Matrix
 3853 Metalloproteinase-28 Is a Key Contributor to Emphysema Pathogenesis. *Am J Pathol.*
 3854 2017;187(6):1288–300.
- 3855 448. D'Armiento J, Dalal SS, Okada Y, Berg RA, Chada K. Collagenase expression in the lungs of
 3856 transgenic mice causes pulmonary emphysema. *Cell.* 1992;71(6):955–61.
- 3857 449. Gosselink JV, Hayashi S, Elliott WM, Xing L, Chan B, Yang L, et al. Differential expression
 3858 of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease. *Am J Respir Crit
 3859 Care Med.* 2010;181(12):1329–35.
- 3860 450. Navratilova Z, Zatloukal J, Kriegova E, Kolek V, Petrek M. Simultaneous up-regulation of
 3861 matrix metalloproteinases 1, 2, 3, 7, 8, 9 and tissue inhibitors of metalloproteinases 1, 4 in serum of
 3862 patients with chronic obstructive pulmonary disease. *Respirology.* 2012;17(6):1006–12.
- 3863 451. Molet S, Belleguic C, Lena H, Germain N, Bertrand CP, Shapiro SD, et al. Increase in
 3864 macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease.
 3865 *Inflamm Res.* 2005;54(1):31–6.
- 3866 452. Churg A, Wang R, Wang X, Onnervik PO, Thim K, Wright JL. Effect of an MMP-9/MMP-12
 3867 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. *Thorax.*
 3868 2007;62(8):706–13.
- 3869 453. Dahl R, Titlestad I, Lindqvist A, Wielders P, Wray H, Wang M, et al. Effects of an oral MMP-
 3870 9 and -12 inhibitor, AZD1236, on biomarkers in moderate/severe COPD: a randomised controlled trial.
 3871 *Pulm Pharmacol Ther.* 2012;25(2):169–77.
- 3872 454. Parasaram V, Wang X, Krisanarungson P, Vyavahare N. Targeted delivery of pentagalloyl
 3873 glucose inhibits matrix metalloproteinase activity and preserves elastin in emphysematous lungs. *Respir
 3874 Res.* 2021;22(1):249.
- 3875 455. Nakajima T, Nakamura H, Owen CA, Yoshida S, Tsuduki K, Chubachi S, et al. Plasma
 3876 Cathepsin S and Cathepsin S/Cystatin C Ratios Are Potential Biomarkers for COPD. *Dis Markers.*
 3877 2016;2016:4093870.
- 3878 456. Zhang X, Shan P, Homer R, Zhang Y, Petrache I, Mannam P, et al. Cathepsin E promotes
 3879 pulmonary emphysema via mitochondrial fission. *Am J Pathol.* 2014;184(10):2730–41.
- 3880 457. Chalmers JD, Shtenberg M, Mall MA, O'Donnell AE, Watz H, Gupta A, et al. Cathepsin C
 3881 (dipeptidyl peptidase 1) inhibition in adults with bronchiectasis: AIRLEAF, a phase II randomised,
 3882 double-blind, placebo-controlled, dose-finding study. *Eur Respir J.* 2025;65(1).
- 3883 458. Chen X, Yan Y, Zhang Z, Zhang F, Liu M, Du L, et al. Discovery and In Vivo Anti-
 3884 inflammatory Activity Evaluation of a Novel Non-peptidyl Non-covalent Cathepsin C Inhibitor. *J Med
 3885 Chem.* 2021;64(16):11857–85.
- 3886 459. McDonald PP, Leifer FG, Basso J, Lasala D, Li D, Chen KJ, et al. Brensocatib (an oral,
 3887 reversible inhibitor of dipeptidyl peptidase-1) attenuates disease progression in two animal models of
 3888 rheumatoid arthritis. *Front Immunol.* 2023;14:1231047.
- 3889 460. Cipolla D, Zhang J, Korkmaz B, Chalmers JD, Basso J, Lasala D, et al. Dipeptidyl peptidase-1
 3890 inhibition with brensocatib reduces the activity of all major neutrophil serine proteases in patients with
 3891 bronchiectasis: results from the WILLOW trial. *Respir Res.* 2023;24(1):133.
- 3892 461. Fujie K, Shingu Y, Yamazaki A, Hatanaka H, Okamoto M, Okuhara M. Inhibition of elastase-
 3893 induced acute inflammation and pulmonary emphysema in hamsters by a novel neutrophil elastase
 3894 inhibitor FR901277. *Inflamm Res.* 1999;48(3):160–7.
- 3895 462. Feng L, Liu X, Zhu W, Guo F, Wu Y, Wang R, et al. Inhibition of human neutrophil elastase
 3896 by pentacyclic triterpenes. *PLoS One.* 2013;8(12):e82794.
- 3897 463. Watz H, Nagelschmitz J, Kirsten A, Pedersen F, van der Mey D, Schwers S, et al. Safety and
 3898 efficacy of the human neutrophil elastase inhibitor BAY 85-8501 for the treatment of non-cystic fibrosis
 3899 bronchiectasis: A randomized controlled trial. *Pulm Pharmacol Ther.* 2019;56:86–93.
- 3900 464. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-
 3901 airway obstruction in chronic obstructive pulmonary disease. *N Engl J Med.* 2004;350(26):2645–53.

- 3902 465. Bracke KR, Verhamme FM, Seys LJ, Bantsimba-Malanda C, Cunoosamy DM, Herbst R, et al.
 3903 Role of CXCL13 in cigarette smoke-induced lymphoid follicle formation and chronic obstructive
 3904 pulmonary disease. *Am J Respir Crit Care Med.* 2013;188(3):343–55.
- 3905 466. Seys LJ, Verhamme FM, Schinwald A, Hammad H, Cunoosamy DM, Bantsimba-Malanda C,
 3906 et al. Role of B Cell-Activating Factor in Chronic Obstructive Pulmonary Disease. *Am J Respir Crit*
 3907 *Care Med.* 2015;192(6):706–18.
- 3908 467. van der Strate BW, Postma DS, Brandsma CA, Melgert BN, Luinge MA, Geerlings M, et al.
 3909 Cigarette smoke-induced emphysema: A role for the B cell? *Am J Respir Crit Care Med.*
 3910 2006;173(7):751–8.
- 3911 468. Polverino F, Cosio BG, Pons J, Laucho-Contreras M, Tejera P, Iglesias A, et al. B Cell-
 3912 Activating Factor. An Orchestrator of Lymphoid Follicles in Severe Chronic Obstructive Pulmonary
 3913 Disease. *Am J Respir Crit Care Med.* 2015;192(6):695–705.
- 3914 469. Sullivan JL, Bageval B, Glass C, Sholl L, Kraft M, Martinez FD, et al. B Cell-Adaptive
 3915 Immune Profile in Emphysema-Predominant Chronic Obstructive Pulmonary Disease. *Am J Respir Crit*
 3916 *Care Med.* 2019;200(11):1434–9.
- 3917 470. John-Schuster G, Hager K, Conlon TM, Irmler M, Beckers J, Eickelberg O, et al. Cigarette
 3918 smoke-induced iBALT mediates macrophage activation in a B cell-dependent manner in COPD. *Am J*
 3919 *Physiol Lung Cell Mol Physiol.* 2014;307(9):L692–706.
- 3920 471. Jia J, Conlon TM, Sarker RS, Tasdemir D, Smirnova NF, Srivastava B, et al. Cholesterol
 3921 metabolism promotes B-cell positioning during immune pathogenesis of chronic obstructive pulmonary
 3922 disease. *EMBO Mol Med.* 2018;10(5).
- 3923 472. Faner R, Cruz T, Casserras T, Lopez-Giraldo A, Noell G, Coca I, et al. Network Analysis of
 3924 Lung Transcriptomics Reveals a Distinct B-Cell Signature in Emphysema. *Am J Respir Crit Care Med.*
 3925 2016;193(11):1242–53.
- 3926 473. Suzuki M, Sze MA, Campbell JD, Brothers JF, 2nd, Lenburg ME, McDonough JE, et al. The
 3927 cellular and molecular determinants of emphysematous destruction in COPD. *Sci Rep.* 2017;7(1):9562.
- 3928 474. Rojas-Quintero J, Ochsner SA, Lee HS, Cong C, Waich Cohen A, Colborg AS, et al. Skewed
 3929 adaptive immune responses are involved in alpha-1 antitrypsin deficiency emphysema. *Eur Respir J.*
 3930 2025;65(1).
- 3931 475. Kratz A, Campos-Neto A, Hanson MS, Ruddle NH. Chronic inflammation caused by
 3932 lymphotoxin is lymphoid neogenesis. *J Exp Med.* 1996;183(4):1461–72.
- 3933 476. Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ development: from ontogeny
 3934 to neogenesis. *Nat Immunol.* 2006;7(4):344–53.
- 3935 477. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating
 3936 mammalian biology. *Cell.* 2001;104(4):487–501.
- 3937 478. Mebius RE. Organogenesis of lymphoid tissues. *Nat Rev Immunol.* 2003;3(4):292–303.
- 3938 479. van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. *Nat Rev*
 3939 *Immunol.* 2010;10(9):664–74.
- 3940 480. Hartl D, Tirouvanziam R, Laval J, Greene CM, Habil D, Sharma L, et al. Innate Immunity of
 3941 the Lung: From Basic Mechanisms to Translational Medicine. *J Innate Immun.* 2018;10(5-6):487–501.
- 3942 481. Cupedo T, Jansen W, Kraal G, Mebius RE. Induction of secondary and tertiary lymphoid
 3943 structures in the skin. *Immunity.* 2004;21(5):655–67.
- 3944 482. Lochner M, Ohnmacht C, Presley L, Bruhns P, Si-Tahar M, Sawa S, et al. Microbiota-induced
 3945 tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells.
 3946 *J Exp Med.* 2011;208(1):125–34.
- 3947 483. Wolf MJ, Seleznik GM, Zeller N, Heikenwalder M. The unexpected role of lymphotoxin beta
 3948 receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer
 3949 development. *Oncogene.* 2010;29(36):5006–18.
- 3950 484. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures
 3951 function as microniches for tumor progenitor cells in hepatocellular carcinoma. *Nat Immunol.*
 3952 2015;16(12):1235–44.
- 3953 485. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-
 3954 kappaB2 p100. *Mol Cell.* 2001;7(2):401–9.

- 3955 486. Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, et al. The lymphotoxin-beta
3956 receptor induces different patterns of gene expression via two NF-kappaB pathways. *Immunity*.
3957 2002;17(4):525–35.
- 3958 487. Miyawaki S, Nakamura Y, Suzuka H, Koba M, Yasumizu R, Ikehara S, et al. A new mutation,
3959 aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. *Eur J
3960 Immunol*. 1994;24(2):429–34.
- 3961 488. Koike R, Nishimura T, Yasumizu R, Tanaka H, Hataba Y, Hataba Y, et al. The splenic marginal
3962 zone is absent in alymphoplastic aly mutant mice. *Eur J Immunol*. 1996;26(3):669–75.
- 3963 489. Karrer U, Althage A, Odermatt B, Roberts CW, Korsmeyer SJ, Miyawaki S, et al. On the key
3964 role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly)
3965 and spleenless (Hox11(-/-)) mutant mice. *J Exp Med*. 1997;185(12):2157–70.
- 3966 490. Fava RA, Notidis E, Hunt J, Szanya V, Ratcliffe N, Ngam-Ek A, et al. A role for the
3967 lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. *J Immunol*.
3968 2003;171(1):115–26.
- 3969 491. Rennert PD, Browning JL, Mebias R, Mackay F, Hochman PS. Surface lymphotoxin alpha/beta
3970 complex is required for the development of peripheral lymphoid organs. *J Exp Med*. 1996;184(5):1999–
3971 2006.
- 3972 492. Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, et al. Lymphotoxin-beta
3973 receptor signaling is required for the homeostatic control of HEV differentiation and function.
3974 *Immunity*. 2005;23(5):539–50.
- 3975 493. Boutaffala L, Bertrand MJ, Remouchamps C, Seleznik G, Reisinger F, Janas M, et al. NIK
3976 promotes tissue destruction independently of the alternative NF-kappaB pathway through
3977 TNFR1/RIP1-induced apoptosis. *Cell Death Differ*. 2015;22(12):2020–33.
- 3978 494. de Leon-Boenig G, Bowman KK, Feng JA, Crawford T, Everett C, Franke Y, et al. The crystal
3979 structure of the catalytic domain of the NF-kappaB inducing kinase reveals a narrow but flexible active
3980 site. *Structure*. 2012;20(10):1704–14.
- 3981 495. Ramadass V, Vaiyapuri T, Tergaonkar V. Small Molecule NF-kappaB Pathway Inhibitors in
3982 Clinic. *Int J Mol Sci*. 2020;21(14).
- 3983 496. Riley C, Ammar U, Alsfouk A, Anthony NG, Baiget J, Berretta G, et al. Design and Synthesis
3984 of Novel Aminoindazole-pyrrolo[2,3-b]pyridine Inhibitors of IKKalpha That Selectively Perturb
3985 Cellular Non-Canonical NF-kappaB Signalling. *Molecules*. 2024;29(15).
- 3986 497. Chung KF. Inflammatory mediators in chronic obstructive pulmonary disease. *Curr Drug
3987 Targets Inflamm Allergy*. 2005;4(6):619–25.
- 3988 498. Couillin I, Vasseur V, Charron S, Gasse P, Tavernier M, Guillet J, et al. IL-1R1/MyD88
3989 signaling is critical for elastase-induced lung inflammation and emphysema. *J Immunol*.
3990 2009;183(12):8195–202.
- 3991 499. Tasaka S, Inoue K, Miyamoto K, Nakano Y, Kamata H, Shinoda H, et al. Role of interleukin-
3992 6 in elastase-induced lung inflammatory changes in mice. *Exp Lung Res*. 2010;36(6):362–72.
- 3993 500. Kurimoto E, Miyahara N, Kanehiro A, Waseda K, Taniguchi A, Ikeda G, et al. IL-17A is
3994 essential to the development of elastase-induced pulmonary inflammation and emphysema in mice.
3995 *Respir Res*. 2013;14(1):5.
- 3996 501. Mebratu YA, Tesfaigzi Y. IL-17 Plays a Role in Respiratory Syncytial Virus-induced Lung
3997 Inflammation and Emphysema in Elastase and LPS-injured Mice. *Am J Respir Cell Mol Biol*.
3998 2018;58(6):717–26.
- 3999 502. Fujii U, Miyahara N, Taniguchi A, Waseda K, Morichika D, Kurimoto E, et al. IL-23 Is
4000 Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema. *Am J
4001 Respir Cell Mol Biol*. 2016;55(5):697–707.
- 4002 503. Bhatt SP, Rabe KF, Hanania NA, Vogelmeier CF, Bafadhel M, Christenson SA, et al.
4003 Dupilumab for COPD with Blood Eosinophil Evidence of Type 2 Inflammation. *N Engl J Med*.
4004 2024;390(24):2274–83.
- 4005 504. Shibata S, Miyake K, Tateishi T, Yoshikawa S, Yamanishi Y, Miyazaki Y, et al. Basophils
4006 trigger emphysema development in a murine model of COPD through IL-4-mediated generation of
4007 MMP-12-producing macrophages. *Proc Natl Acad Sci U S A*. 2018;115(51):13057–62.

- 4008 505. Ikeda G, Miyahara N, Koga H, Fuchimoto Y, Waseda K, Kurimoto E, et al. Effect of a cysteinyl
 4009 leukotriene receptor antagonist on experimental emphysema and asthma combined with emphysema.
 4010 *Am J Respir Cell Mol Biol.* 2014;50(1):18–29.
- 4011 506. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II
 4012 Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. *Physiol Rev.*
 4013 2018;98(3):1627–738.
- 4014 507. Mei D, Tan WSD, Liao W, Heng CKM, Wong WSF. Activation of angiotensin II type-2
 4015 receptor protects against cigarette smoke-induced COPD. *Pharmacol Res.* 2020;161:105223.
- 4016 508. Bastos AC, Magalhaes GS, Gregorio JF, Matos NA, Motta-Santos D, Bezerra FS, et al. Oral
 4017 formulation angiotensin-(1-7) therapy attenuates pulmonary and systemic damage in mice with
 4018 emphysema induced by elastase. *Immunobiology.* 2020;225(2):151893.
- 4019 509. Kistemaker LE, Gosens R. Acetylcholine beyond bronchoconstriction: roles in inflammation
 4020 and remodeling. *Trends Pharmacol Sci.* 2015;36(3):164–71.
- 4021 510. Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, et al. Nicotinic
 4022 receptors in airway disease. *Am J Physiol Lung Cell Mol Physiol.* 2024;326(2):L149–L63.
- 4023 511. Hollenhorst MI, Krasteva-Christ G. Nicotinic Acetylcholine Receptors in the Respiratory Tract.
 4024 *Molecules.* 2021;26(20).
- 4025 512. Banzato R, Pinheiro-Menegasso NM, Novelli F, Olivo CR, Taguchi L, de Oliveira Santos S, et
 4026 al. Alpha-7 Nicotinic Receptor Agonist Protects Mice Against Pulmonary Emphysema Induced by
 4027 Elastase. *Inflammation.* 2024;47(3):958–74.
- 4028 513. Pinheiro NM, Miranda C, Santana FR, Bittencourt-Mernak M, Arantes-Costa FM, Olivo C, et
 4029 al. Effects of VACHT reduction and alpha7nAChR stimulation by PNU-282987 in lung inflammation
 4030 in a model of chronic allergic airway inflammation. *Eur J Pharmacol.* 2020;882:173239.
- 4031 514. Varella A, Montagnani S, Calabrese C, Parrella R, Pelaia G, Biscione GL, et al. Neuropeptide
 4032 expression in the airways of COPD patients and smokers with normal lung function. *J Biol Regul
 4033 Homeost Agents.* 2010;24(4):425–32.
- 4034 515. Taniguchi A, Oda N, Morichika D, Senoo S, Itano J, Fujii U, et al. Protective effects of
 4035 neuropeptide Y against elastase-induced pulmonary emphysema. *Am J Physiol Lung Cell Mol Physiol.*
 4036 2022;322(4):L539–L49.
- 4037 516. Hoonhorst SJ, Lo Tam Loi AT, Pouwels SD, Faiz A, Telenga ED, van den Berge M, et al.
 4038 Advanced glycation endproducts and their receptor in different body compartments in COPD. *Respir
 4039 Res.* 2016;17:46.
- 4040 517. Pouwels SD, Hesse L, Wu X, Allam V, van Oldeniel D, Bhiekharie LJ, et al. LL-37 and
 4041 HMGB1 induce alveolar damage and reduce lung tissue regeneration via RAGE. *Am J Physiol Lung
 4042 Cell Mol Physiol.* 2021;321(4):L641–L52.
- 4043 518. Lee H, Park JR, Kim WJ, Sundar IK, Rahman I, Park SM, et al. Blockade of RAGE ameliorates
 4044 elastase-induced emphysema development and progression via RAGE-DAMP signaling. *FASEB J.*
 4045 2017;31(5):2076–89.
- 4046 519. Sinclair KA, Yerkovich ST, Chen T, McQualter JL, Hopkins PM, Wells CA, et al. Mesenchymal
 4047 Stromal Cells are Readily Recoverable from Lung Tissue, but not the Alveolar Space, in
 4048 Healthy Humans. *Stem Cells.* 2016;34(10):2548–58.
- 4049 520. Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, et al. Evidence for tissue-resident
 4050 mesenchymal stem cells in human adult lung from studies of transplanted allografts. *J Clin Invest.*
 4051 2007;117(4):989–96.
- 4052 521. Yuan D, Bao Y, El-Hashash A. Mesenchymal stromal cell-based therapy in lung diseases; from
 4053 research to clinic. *Am J Stem Cells.* 2024;13(2):37–58.
- 4054 522. Yuan T, Volckaert T, Chanda D, Thannickal VJ, De Langhe SP. Fgf10 Signaling in Lung
 4055 Development, Homeostasis, Disease, and Repair After Injury. *Front Genet.* 2018;9:418.
- 4056 523. El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, et al. Fgf10-positive
 4057 cells represent a progenitor cell population during lung development and postnatally. *Development.*
 4058 2014;141(2):296–306.
- 4059 524. Wisman M, Kruk D, Kooistra W, Heijink IH, Woldhuis RR. Lower levels of senescence in
 4060 human lung mesenchymal stromal cells compared to lung fibroblasts; implications for tissue
 4061 regeneration in COPD. *Am J Physiol Lung Cell Mol Physiol.* 2025.

- 4062 525. Kaspi H, Semo J, Abramov N, Dekel C, Lindborg S, Kern R, et al. MSC-NTF (NurOwn(R))
 4063 exosomes: a novel therapeutic modality in the mouse LPS-induced ARDS model. *Stem Cell Res Ther.*
 4064 2021;12(1):72.
- 4065 526. Abreu SC, Lopes-Pacheco M, Weiss DJ, Rocco PRM. Mesenchymal Stromal Cell-Derived
 4066 Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. *Front Cell Dev Biol.*
 4067 2021;9:600711.
- 4068 527. Lightner AL, Sengupta V, Qian S, Ransom JT, Suzuki S, Park DJ, et al. Bone Marrow
 4069 Mesenchymal Stem Cell-Derived Extracellular Vesicle Infusion for the Treatment of Respiratory
 4070 Failure From COVID-19: A Randomized, Placebo-Controlled Dosing Clinical Trial. *Chest.*
 4071 2023;164(6):1444–53.
- 4072 528. Michaeloudes C, Li X, Mak JCW, Bhavsar PK. Study of Mesenchymal Stem Cell-Mediated
 4073 Mitochondrial Transfer in In Vitro Models of Oxidant-Mediated Airway Epithelial and Smooth Muscle
 4074 Cell Injury. *Methods Mol Biol.* 2021;2269:93–105.
- 4075 529. Li X, Michaeloudes C, Zhang Y, Wiegman CH, Adcock IM, Lian Q, et al. Mesenchymal stem
 4076 cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. *J Allergy Clin
 4077 Immunol.* 2018;141(5):1634–45 e5.
- 4078 530. Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, et al. Mitochondrial transfer of induced
 4079 pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette
 4080 smoke-induced damage. *Am J Respir Cell Mol Biol.* 2014;51(3):455–65.
- 4081 531. Kruk D, Heijink IH, Slebos DJ, Timens W, Ten Hacken NH. Mesenchymal Stromal Cells to
 4082 Regenerate Emphysema: On the Horizon? *Respiration.* 2018;96(2):148–58.
- 4083 532. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells
 4084 for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. *Lancet.*
 4085 2008;371(9624):1579–86.
- 4086 533. Panes J, Garcia-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC, et al.
 4087 Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in
 4088 Crohn's disease: a phase 3 randomised, double-blind controlled trial. *Lancet.* 2016;388(10051):1281–
 4089 90.
- 4090 534. Casiraghi F, Perico N, Remuzzi G. Mesenchymal stromal cells for tolerance induction in organ
 4091 transplantation. *Hum Immunol.* 2018;79(5):304–13.
- 4092 535. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled,
 4093 randomized trial of mesenchymal stem cells in COPD. *Chest.* 2013;143(6):1590–8.
- 4094 536. Weiss DJ, Segal K, Casaburi R, Hayes J, Tashkin D. Effect of mesenchymal stromal cell
 4095 infusions on lung function in COPD patients with high CRP levels. *Respir Res.* 2021;22(1):142.
- 4096 537. Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, et al. A phase I study for
 4097 intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema.
 4098 *QJM.* 2016;109(5):331–6.
- 4099 538. Hoffman AM, Paxson JA, Mazan MR, Davis AM, Tyagi S, Murthy S, et al. Lung-derived
 4100 mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of
 4101 elastase-injured lung. *Stem Cells Dev.* 2011;20(10):1779–92.
- 4102 539. Antunes MA, Abreu SC, Cruz FF, Teixeira AC, Lopes-Pacheco M, Bandeira E, et al. Effects
 4103 of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. *Respir
 4104 Res.* 2014;15(1):118.
- 4105 540. Kitoko JZ, de Castro LL, Nascimento AP, Abreu SC, Cruz FF, Arantes AC, et al. Therapeutic
 4106 administration of bone marrow-derived mesenchymal stromal cells reduces airway inflammation
 4107 without up-regulating Tregs in experimental asthma. *Clin Exp Allergy.* 2018;48(2):205–16.
- 4108 541. Wang M, Hao Y, He W, Jia H, Zhong Z, Xia S. Nebulized mesenchymal stem cell-derived
 4109 exosomes attenuate airway inflammation in a rat model of chronic obstructive pulmonary disease. *Cell
 4110 Immunol.* 2025;409-410:104933.
- 4111 542. Souza MC, Silva JD, Padua TA, Torres ND, Antunes MA, Xisto DG, et al. Mesenchymal
 4112 stromal cell therapy attenuated lung and kidney injury but not brain damage in experimental cerebral
 4113 malaria. *Stem Cell Res Ther.* 2015;6(1):102.
- 4114 543. Kim YS, Kim JY, Shin DM, Huh JW, Lee SW, Oh YM. Tracking intravenous adipose-derived
 4115 mesenchymal stem cells in a model of elastase-induced emphysema. *Tuberc Respir Dis (Seoul).*
 4116 2014;77(3):116–23.

- 4117 544. Silva LHA, Antunes MA, Dos Santos CC, Weiss DJ, Cruz FF, Rocco PRM. Strategies to
 4118 improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. *Stem Cell Res*
 4119 *Ther*. 2018;9(1):45.
- 4120 545. Cober ND, Rowe K, Deng Y, Benavente-Babace A, Courtman DW, Godin M, et al. Targeting
 4121 extracellular vesicle delivery to the lungs by microgel encapsulation. *J Extracell Biol*. 2023;2(6):e94.
- 4122 546. Kruk D, Wisman M, Bruin HG, Lodewijk ME, Hof DJ, Borghuis T, et al. Abnormalities in
 4123 reparative function of lung-derived mesenchymal stromal cells in emphysema. *Am J Physiol Lung Cell*
 4124 *Mol Physiol*. 2021;320(5):L832–L44.
- 4125 547. van der Plaat DA, de Jong K, Lahousse L, Faiz A, Vonk JM, van Diemen CC, et al. Genome-
 4126 wide association study on the FEV(1)/FVC ratio in never-smokers identifies HHIP and FAM13A. *J*
 4127 *Allergy Clin Immunol*. 2017;139(2):533–40.
- 4128 548. Wang C, de Mochel NSR, Christenson SA, Cassandras M, Moon R, Brumwell AN, et al. Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype. *J Clin*
 4129 *Invest*. 2018;128(10):4343–58.
- 4130 549. Wang C, Hyams B, Allen NC, Cautivo K, Monahan K, Zhou M, et al. Dysregulated lung stroma
 4131 drives emphysema exacerbation by potentiating resident lymphocytes to suppress an epithelial stem cell
 4132 reservoir. *Immunity*. 2023;56(3):576–91 e10.
- 4133 550. Cassandras M, Wang C, Kathiriya J, Tsukui T, Matatia P, Matthay M, et al. Gli1(+)
 4134 mesenchymal stromal cells form a pathological niche to promote airway progenitor metaplasia in the
 4135 fibrotic lung. *Nat Cell Biol*. 2020;22(11):1295–306.
- 4136 551. Lahmar Z, Ahmed E, Fort A, Vachier I, Bourdin A, Bergougnoux A. Hedgehog pathway and
 4137 its inhibitors in chronic obstructive pulmonary disease (COPD). *Pharmacol Ther*. 2022;240:108295.
- 4138 552. Weiner AI, Jackson SR, Zhao G, Quansah KK, Farshchian JN, Neupauer KM, et al. Mesenchyme-free expansion and transplantation of adult alveolar progenitor cells: steps toward cell-
 4139 based regenerative therapies. *NPJ Regen Med*. 2019;4:17.
- 4140 553. Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. Mechanisms of airway epithelial
 4141 injury and abnormal repair in asthma and COPD. *Front Immunol*. 2023;14:1201658.
- 4142 554. Ghosh M, Miller YE, Nakachi I, Kwon JB, Baron AE, Brantley AE, et al. Exhaustion of Airway
 4143 Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease. *Am J Respir*
 4144 *Crit Care Med*. 2018;197(7):885–96.
- 4145 555. Hayashi Y, Ohnishi H, Kitano M, Kishimoto Y, Takezawa T, Okuyama H, et al. Comparative
 4146 Study of Immunodeficient Rat Strains in Engraftment of Human-Induced Pluripotent Stem Cell-
 4147 Derived Airway Epithelia. *Tissue Eng Part A*. 2024;30(3-4):144–53.
- 4148 556. Ma L, Thapa BR, Le Suer JA, Tilston-Lunel A, Herriges MJ, Berical A, et al. Airway stem cell
 4149 reconstitution by the transplantation of primary or pluripotent stem cell-derived basal cells. *Cell Stem*
 4150 *Cell*. 2023;30(9):1199–216 e7.
- 4151 557. Ma L, Thapa BR, Le Suer JA, Tilston-Lunel A, Herriges MJ, Wang F, et al. Life-long functional
 4152 regeneration of in vivo airway epithelium by the engraftment of airway basal stem cells. *Nat Protoc*.
 4153 2025;20(3):810–42.
- 4154 558. Miller AJ, Hill DR, Nagy MS, Aoki Y, Dye BR, Chin AM, et al. In Vitro Induction and In Vivo
 4155 Engraftment of Lung Bud Tip Progenitor Cells Derived from Human Pluripotent Stem Cells. *Stem Cell*
 4156 *Reports*. 2018;10(1):101–19.
- 4157 559. Herriges MJ, Yampolskaya M, Thapa BR, Lindstrom-Vautrin J, Wang F, Huang J, et al.
 4158 Durable alveolar engraftment of PSC-derived lung epithelial cells into immunocompetent mice. *Cell*
 4159 *Stem Cell*. 2023;30(9):1217–34 e7.
- 4160 560. Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, et al. Differentiation of
 4161 Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. *Cell Stem Cell*.
 4162 2017;21(4):472–88 e10.
- 4163 561. Ma Q, Ma Y, Dai X, Ren T, Fu Y, Liu W, et al. Regeneration of functional alveoli by adult
 4164 human SOX9(+) airway basal cell transplantation. *Protein Cell*. 2018;9(3):267–82.
- 4165 562. Shi Y, Dong M, Zhou Y, Li W, Gao Y, Han L, et al. Distal airway stem cells ameliorate
 4166 bleomycin-induced pulmonary fibrosis in mice. *Stem Cell Res Ther*. 2019;10(1):161.
- 4167 563. Wang X, Zhao Y, Li D, Feng Y, Xie Y, Zhou Y, et al. Intrapulmonary distal airway stem cell
 4168 transplantation repairs lung injury in chronic obstructive pulmonary disease. *Cell Prolif*.
 4169 2021;54(6):e13046.

- 4172 564. Louie SM, Moye AL, Wong IG, Lu E, Shehaj A, Garcia-de-Alba C, et al. Progenitor potential
4173 of lung epithelial organoid cells in a transplantation model. *Cell Rep.* 2022;39(2):110662.
- 4174 565. Ararat E, Louie SM, Lu E, Paschini M, Raiser DM, Kim CF. Comparison of Transplantation
4175 of Lung Organoid Cell Types: One Size Does Not Fit All. *Am J Respir Cell Mol Biol.* 2022;66(3):340–
4176 3.
- 4177 566. Milman Krentsis I, Zheng Y, Rosen C, Shin SY, Blagdon C, Shoshan E, et al. Lung cell
4178 transplantation for pulmonary fibrosis. *Sci Adv.* 2024;10(34):eadk2524.
- 4179 567. Wang Y, Meng Z, Liu M, Zhou Y, Chen D, Zhao Y, et al. Autologous transplantation of P63(+)
4180 lung progenitor cells for chronic obstructive pulmonary disease therapy. *Sci Transl Med.*
4181 2024;16(734):eadi3360.
- 4182 568. Zhang S, Zhou M, Shao C, Zhao Y, Liu M, Ni L, et al. Autologous P63+ lung progenitor cell
4183 transplantation in idiopathic pulmonary fibrosis: a phase 1 clinical trial. *Elife.* 2025;13.
- 4184 569. Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of Cultured
4185 Cells with a ROCK Inhibitor for Bullous Keratopathy. *N Engl J Med.* 2018;378(11):995–1003.
- 4186 570. Tsai MC, Kureshi A, Daniels JT. Tissue engineered corneal endothelium transplantation in an
4187 ex vivo human cornea organ culture model. *Sci Rep.* 2025;15(1):12571.
- 4188 571. Shen L, Sun P, Zhang C, Yang L, Du L, Wu X. Therapy of corneal endothelial dysfunction
4189 with corneal endothelial cell-like cells derived from skin-derived precursors. *Sci Rep.* 2017;7(1):13400.
- 4190 572. Wang XX, Zhang FR, Shang YP, Zhu JH, Xie XD, Tao QM, et al. Transplantation of
4191 autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial
4192 hypertension: a pilot randomized controlled trial. *J Am Coll Cardiol.* 2007;49(14):1566–71.
- 4193 573. Granton J, Langleben D, Kutryk MB, Camack N, Galipeau J, Courtman DW, et al. Endothelial
4194 NO-Synthase Gene-Enhanced Progenitor Cell Therapy for Pulmonary Arterial Hypertension: The
4195 PHACeT Trial. *Circ Res.* 2015;117(7):645–54.
- 4196 574. Theodorakopoulou MP, Alexandrou ME, Bakaloudi DR, Pitsiou G, Stanopoulos I, Kontakiotis
4197 T, et al. Endothelial dysfunction in COPD: a systematic review and meta-analysis of studies using
4198 different functional assessment methods. *ERJ Open Res.* 2021;7(2).
- 4199 575. Liu S, Yang A, Yu Y, Xu B, Yu G, Wang H. Exercise Prescription Training in Chronic
4200 Obstructive Pulmonary Disease: Benefits and Mechanisms. *Int J Chron Obstruct Pulmon Dis.*
4201 2025;20:1071–82.
- 4202 576. Li YX, Wang HB, Li J, Jin JB, Hu JB, Yang CL. Targeting pulmonary vascular endothelial
4203 cells for the treatment of respiratory diseases. *Front Pharmacol.* 2022;13:983816.
- 4204 577. Krump-Konvalinkova V, Bittinger F, Unger RE, Peters K, Lehr HA, Kirkpatrick CJ.
4205 Generation of human pulmonary microvascular endothelial cell lines. *Lab Invest.* 2001;81(12):1717–
4206 27.
- 4207 578. Huertas A, Guignabert C, Barbera JA, Bartsch P, Bhattacharya J, Bhattacharya S, et al.
4208 Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases: Highlights from basic
4209 research to therapy. *Eur Respir J.* 2018;51(4).
- 4210 579. Altalhi W, Wu T, Wojtkiewicz GR, Jeffs S, Miki K, Ott HC. Intratracheally injected human-
4211 induced pluripotent stem cell-derived pneumocytes and endothelial cells engraft in the distal lung and
4212 ameliorate emphysema in a rat model. *J Thorac Cardiovasc Surg.* 2023;166(1):e23–e37.
- 4213 580. Mohammed AN, Kohram F, Lan YW, Li E, Kolesnichenko OA, Kalin TV, et al.
4214 Transplantation of alveolar macrophages improves the efficacy of endothelial progenitor cell therapy
4215 in mouse model of bronchopulmonary dysplasia. *Am J Physiol Lung Cell Mol Physiol.*
4216 2024;327(1):L114–L25.
- 4217 581. Wang W, Peng H, Zeng M, Liu J, Liang G, He Z. Endothelial progenitor cells systemic
4218 administration alleviates multi-organ senescence by down-regulating USP7/p300 pathway in chronic
4219 obstructive pulmonary disease. *J Transl Med.* 2023;21(1):881.
- 4220 582. Dhurat R, Sukesh M. Principles and Methods of Preparation of Platelet-Rich Plasma: A Review
4221 and Author's Perspective. *J Cutan Aesthet Surg.* 2014;7(4):189–97.
- 4222 583. Corsini A, Perticarini L, Palermi S, Bettinsoli P, Marchini A. Re-Evaluating Platelet-Rich
4223 Plasma Dosing Strategies in Sports Medicine: The Role of the "10 Billion Platelet Dose" in Optimizing
4224 Therapeutic Outcomes-A Narrative Review. *J Clin Med.* 2025;14(8).

- 4225 584. Huang G, Hua S, Yang T, Ma J, Yu W, Chen X. Platelet-rich plasma shows beneficial effects
4226 for patients with knee osteoarthritis by suppressing inflammatory factors. *Exp Ther Med.*
4227 2018;15(3):3096–102.
- 4228 585. Karina K, Christoffel LM, Novariani R, Rosadi I, Rosliana I, Rosidah S, et al. The Effect of
4229 Intravenous Autologous Activated Platelet-Rich Plasma Therapy on "Profibrotic Cytokine" IL-1beta
4230 Levels in Severe and Critical COVID-19 Patients: A Preliminary Study. *Scientifica (Cairo).*
4231 2021;2021:9427978.
- 4232 586. Beitia M, Delgado D, Sanchez P, Vallejo de la Cueva A, Cugat JR, Sanchez M. Platelet Lysate
4233 Nebulization Protocol for the Treatment of COVID-19 and Its Sequels: Proof of Concept and Scientific
4234 Rationale. *Int J Mol Sci.* 2021;22(4).
- 4235 587. Mammoto T, Chen Z, Jiang A, Jiang E, Ingber DE, Mammoto A. Acceleration of Lung
4236 Regeneration by Platelet-Rich Plasma Extract through the Low-Density Lipoprotein Receptor-Related
4237 Protein 5-Tie2 Pathway. *Am J Respir Cell Mol Biol.* 2016;54(1):103–13.
- 4238 588. Rafii S, Cao Z, Lis R, Siempos, II, Chavez D, Shido K, et al. Platelet-derived SDF-1 primes the
4239 pulmonary capillary vascular niche to drive lung alveolar regeneration. *Nat Cell Biol.* 2015;17(2):123–
4240 36.
- 4241 589. Wu M, Lin H, Shi L, Huang L, Zhuang Y, Zeng Y. Bronchoscopic Treatment of
4242 Tracheobronchial Fistula With Autologous Platelet-Rich Plasma. *Ann Thorac Surg.* 2021;111(2):e129–
4243 e31.
- 4244 590. Rubio MM. Platelet Rich Plasma- Platelet Concentrate Therapy in COPD: An Observational
4245 Cohort Study. *J Regen Med Biol Res.* 2021;2(2):1–10.
- 4246 591. Anitua E, Troya M, Falcon-Perez JM, Lopez-Sarrio S, Gonzalez E, Alkhraisat MH. Advances
4247 in Platelet Rich Plasma-Derived Extracellular Vesicles for Regenerative Medicine: A Systematic-
4248 Narrative Review. *Int J Mol Sci.* 2023;24(17).
- 4249 592. Tao X, Xue F, Xu J, Wang W. Platelet-rich plasma-derived extracellular vesicles inhibit NF-
4250 kappaB/NLRP3 pathway-mediated pyroptosis in intervertebral disc degeneration via the
4251 MALAT1/microRNA-217/SIRT1 axis. *Cell Signal.* 2024;117:111106.
- 4252 593. Abbaszadeh H, Ghorbani F, Abbaspour-Aghdam S, Kamrani A, Valizadeh H, Nadiri M, et al.
4253 Chronic obstructive pulmonary disease and asthma: mesenchymal stem cells and their extracellular
4254 vesicles as potential therapeutic tools. *Stem Cell Res Ther.* 2022;13(1):262.
- 4255 594. Bari E, Ferrarotti I, Torre ML, Corsico AG, Perteghella S. Mesenchymal stem/stromal cell
4256 secretome for lung regeneration: The long way through "pharmaceuticalization" for the best
4257 formulation. *J Control Release.* 2019;309:11–24.
- 4258 595. Antunes MA, Lapa ESJR, Rocco PR. Mesenchymal stromal cell therapy in COPD: from bench
4259 to bedside. *Int J Chron Obstruct Pulmon Dis.* 2017;12:3017–27.
- 4260 596. M HR, Bayraktar E, G KH, Abd-Ellah MF, Amero P, Chavez-Reyes A, et al. Exosomes: From
4261 Garbage Bins to Promising Therapeutic Targets. *Int J Mol Sci.* 2017;18(3).
- 4262 597. Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular
4263 vesicles: novel frontiers in regenerative medicine. *Stem Cell Res Ther.* 2018;9(1):63.
- 4264 598. Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM, et al.
4265 Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. *Adv
4266 Drug Deliv Rev.* 2021;175:113775.
- 4267 599. Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal
4268 information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. *J
4269 Extracell Vesicles.* 2024;13(2):e12404.
- 4270 600. Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms,
4271 Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. *Adv Healthc
4272 Mater.* 2023;12(25):e2300319.
- 4273 601. Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, et al. Human umbilical
4274 cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat
4275 model of chronic obstructive pulmonary disease (COPD). *Stem Cell Res Ther.* 2021;12(1):54.
- 4276 602. Antunes MA, Braga CL, Oliveira TB, Kitoko JZ, Castro LL, Xisto DG, et al. Mesenchymal
4277 Stromal Cells From Emphysematous Donors and Their Extracellular Vesicles Are Unable to Reverse
4278 Cardiorespiratory Dysfunction in Experimental Severe Emphysema. *Front Cell Dev Biol.*
4279 2021;9:661385.

- 4280 603. Jin T, Liu X, Li G, Sun S, Xie L. Intravenous injection of BMSCs modulate tsRNA expression
4281 and ameliorate lung remodeling in COPD mice. *Stem Cell Res Ther.* 2024;15(1):450.
- 4282 604. Kim YS, Kim JY, Cho R, Shin DM, Lee SW, Oh YM. Adipose stem cell-derived nanovesicles
4283 inhibit emphysema primarily via an FGF2-dependent pathway. *Exp Mol Med.* 2017;49(1):e284.
- 4284 605. Xuan W, Wang S, Alarcon-Calderon A, Bagwell MS, Para R, Wang F, et al. Nebulized platelet-
4285 derived extracellular vesicles attenuate chronic cigarette smoke-induced murine emphysema. *Transl
4286 Res.* 2024;269:76–93.
- 4287 606. Stam J, Bartel S, Bischoff R, Wolters JC. Isolation of extracellular vesicles with combined
4288 enrichment methods. *J Chromatogr B Analyt Technol Biomed Life Sci.* 2021;1169:122604.
- 4289 607. Webber J, Clayton A. How pure are your vesicles? *J Extracell Vesicles.* 2013;2.
- 4290 608. Whittaker TE, Nagelkerke A, Nele V, Kauscher U, Stevens MM. Experimental artefacts can
4291 lead to misattribution of bioactivity from soluble mesenchymal stem cell paracrine factors to
4292 extracellular vesicles. *J Extracell Vesicles.* 2020;9(1):1807674.
- 4293 609. Gonzalez H, McCarthy S, Masterson C, Byrnes D, Sallent I, Horan E, et al. Nebulised
4294 mesenchymal stem cell derived extracellular vesicles ameliorate *E. coli* induced pneumonia in a rodent
4295 model. *Stem Cell Res Ther.* 2023;14(1):151.
- 4296 610. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. *Int
4297 J Pharm.* 2010;392(1-2):1–19.
- 4298 611. Sibum I, Hagedoorn P, de Boer AH, Frijlink HW, Grasmeijer F. Challenges for pulmonary
4299 delivery of high powder doses. *Int J Pharm.* 2018;548(1):325–36.
- 4300 612. Lechanteur A, Evrard B. Influence of Composition and Spray-Drying Process Parameters on
4301 Carrier-Free DPI Properties and Behaviors in the Lung: A review. *Pharmaceutics.* 2020;12(1).
- 4302 613. Vehring R. Pharmaceutical particle engineering via spray drying. *Pharm Res.* 2008;25(5):999–
4303 1022.
- 4304 614. Sharma A, Khamar D, Cullen S, Hayden A, Hughes H. Innovative Drying Technologies for
4305 Biopharmaceuticals. *Int J Pharm.* 2021;609:121115.
- 4306 615. Pisano R, Arsiccio A, Capozzi LC, Trout BL. Achieving continuous manufacturing in
4307 lyophilization: Technologies and approaches. *Eur J Pharm Biopharm.* 2019;142:265–79.
- 4308 616. Jansen EM, van der Koog L, Elferink RAB, Rafie K, Nagelkerke A, Gossens R, et al. Stabilized
4309 Extracellular Vesicle Formulations for Inhalable Dry Powder Development. *Small.* 2025:e2411096.
- 4310 617. Kang WY, Shin EK, Kim EH, Kang MH, Bang CY, Bang OY, et al. Lyoprotectant Constituents
4311 Suited for Lyophilization and Reconstitution of Stem-Cell-Derived Extracellular Vesicles. *Biomater
4312 Res.* 2024;28:0005.
- 4313 618. Charoenviriyakul C, Takahashi Y, Nishikawa M, Takakura Y. Preservation of exosomes at
4314 room temperature using lyophilization. *Int J Pharm.* 2018;553(1-2):1–7.
- 4315 619. Frank J, Richter M, de Rossi C, Lehr CM, Fuhrmann K, Fuhrmann G. Extracellular vesicles
4316 protect glucuronidase model enzymes during freeze-drying. *Sci Rep.* 2018;8(1):12377.
- 4317 620. Popowski KD, Moatti A, Scull G, Silkstone D, Lutz H, Lopez de Juan Abad B, et al. Inhalable
4318 dry powder mRNA vaccines based on extracellular vesicles. *Matter.* 2022;5(9):2960–74.
- 4319 621. Harrell CR, Miloradovic D, Sadikot R, Fellabaum C, Markovic BS, Miloradovic D, et al.
4320 Molecular and Cellular Mechanisms Responsible for Beneficial Effects of Mesenchymal Stem Cell-
4321 Derived Product "Exo-d-MAPPS" in Attenuation of Chronic Airway Inflammation. *Anal Cell Pathol
4322 (Amst).* 2020;2020:3153891.
- 4323 622. Syromiatnikova V, Prokopeva A, Gomzikova M. Methods of the Large-Scale Production of
4324 Extracellular Vesicles. *Int J Mol Sci.* 2022;23(18).
- 4325 623. Shekari F, Alibhai FJ, Baharvand H, Borger V, Bruno S, Davies O, et al. Cell culture-derived
4326 extracellular vesicles: Considerations for reporting cell culturing parameters. *J Extracell Biol.*
4327 2023;2(10):e115.
- 4328 624. Grangier A, Branchu J, Volatron J, Piffoux M, Gazeau F, Wilhelm C, et al. Technological
4329 advances towards extracellular vesicles mass production. *Adv Drug Deliv Rev.* 2021;176:113843.
- 4330 625. Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, et al. Generation and
4331 testing of clinical-grade exosomes for pancreatic cancer. *JCI Insight.* 2018;3(8).
- 4332 626. Watson DC, Yung BC, Bergamaschi C, Chowdhury B, Bear J, Stellas D, et al. Scalable, cGMP-
4333 compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-
4334 15/lactadherin complexes. *J Extracell Vesicles.* 2018;7(1):1442088.

- 4335 627. Ng CY, Kee LT, Al-Masawa ME, Lee QH, Subramaniam T, Kok D, et al. Scalable Production
 4336 of Extracellular Vesicles and Its Therapeutic Values: A Review. *Int J Mol Sci.* 2022;23(14).
- 4337 628. Lasser C, Jang SC, Lotvall J. Subpopulations of extracellular vesicles and their therapeutic
 4338 potential. *Mol Aspects Med.* 2018;60:1–14.
- 4339 629. Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of
 4340 structural biology. *Nat Rev Mol Cell Biol.* 2013;14(3):166–80.
- 4341 630. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of
 4342 fibroblast growth factor-23 signaling by klotho. *J Biol Chem.* 2006;281(10):6120–3.
- 4343 631. Makarenkova HP, Hoffman MP, Beenken A, Eliseenkova AV, Meech R, Tsau C, et al.
 4344 Differential interactions of FGFs with heparan sulfate control gradient formation and branching
 4345 morphogenesis. *Sci Signal.* 2009;2(88):ra55.
- 4346 632. Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, et al. Single-cell RNA-seq
 4347 reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. *Sci Adv.*
 4348 2020;6(28):eaba1983.
- 4349 633. Kranenburg AR, Willems-Widyastuti A, Mooi WJ, Saxena PR, Sterk PJ, de Boer WI, et al.
 4350 Chronic obstructive pulmonary disease is associated with enhanced bronchial expression of FGF-1,
 4351 FGF-2, and FGFR-1. *J Pathol.* 2005;206(1):28–38.
- 4352 634. Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S, Neumark N, et al. Single-cell
 4353 connectomic analysis of adult mammalian lungs. *Sci Adv.* 2019;5(12):eaaw3851.
- 4354 635. Brehm JM, Hagiwara K, Tesfaigzi Y, Bruse S, Mariani TJ, Bhattacharya S, et al. Identification
 4355 of FGF7 as a novel susceptibility locus for chronic obstructive pulmonary disease. *Thorax.*
 4356 2011;66(12):1085–90.
- 4357 636. Upadhyay D, Correa-Meyer E, Sznajder JI, Kamp DW. FGF-10 prevents mechanical stretch-
 4358 induced alveolar epithelial cell DNA damage via MAPK activation. *Am J Physiol Lung Cell Mol*
 4359 *Physiol.* 2003;284(2):L350–9.
- 4360 637. Waters CM, Savla U. Keratinocyte growth factor accelerates wound closure in airway
 4361 epithelium during cyclic mechanical strain. *J Cell Physiol.* 1999;181(3):424–32.
- 4362 638. Shiraishi K, Shichino S, Ueha S, Nakajima T, Hashimoto S, Yamazaki S, et al. Mesenchymal-
 4363 Epithelial Interactome Analysis Reveals Essential Factors Required for Fibroblast-Free Alveolosphere
 4364 Formation. *iScience.* 2019;11:318–33.
- 4365 639. Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, et al. Parabronchial smooth
 4366 muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. *J Clin Invest.*
 4367 2011;121(11):4409–19.
- 4368 640. Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, et al. Fgf10 dosage
 4369 is critical for the amplification of epithelial cell progenitors and for the formation of multiple
 4370 mesenchymal lineages during lung development. *Dev Biol.* 2007;307(2):237–47.
- 4371 641. Cardoso WV, Itoh A, Nogawa H, Mason I, Brody JS. FGF-1 and FGF-7 induce distinct patterns
 4372 of growth and differentiation in embryonic lung epithelium. *Dev Dyn.* 1997;208(3):398–405.
- 4373 642. Xu X, McCormick-Shannon K, Voelker DR, Mason RJ. KGF increases SP-A and SP-D mRNA
 4374 levels and secretion in cultured rat alveolar type II cells. *Am J Respir Cell Mol Biol.* 1998;18(2):168–
 4375 78.
- 4376 643. Chelly N, Mouhieddine-Gueddiche OB, Barlier-Mur AM, Chailley-Heu B, Bourbon JR.
 4377 Keratinocyte growth factor enhances maturation of fetal rat lung type II cells. *Am J Respir Cell Mol*
 4378 *Biol.* 1999;20(3):423–32.
- 4379 644. Ray P, Devaux Y, Stoltz DB, Yarlagadda M, Watkins SC, Lu Y, et al. Inducible expression of
 4380 keratinocyte growth factor (KGF) in mice inhibits lung epithelial cell death induced by hyperoxia. *Proc*
 4381 *Natl Acad Sci U S A.* 2003;100(10):6098–103.
- 4382 645. Srisuma S, Bhattacharya S, Simon DM, Solleti SK, Tyagi S, Starcher B, et al. Fibroblast growth
 4383 factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis. *Am J*
 4384 *Respir Crit Care Med.* 2010;181(8):838–50.
- 4385 646. Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM. Fibroblast growth factor 2 is required
 4386 for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. *Am J Respir Cell Mol*
 4387 *Biol.* 2015;52(1):116–28.
- 4388 647. Pan X, Xu S, Zhou Z, Wang F, Mao L, Li H, et al. Fibroblast growth factor-2 alleviates the
 4389 capillary leakage and inflammation in sepsis. *Mol Med.* 2020;26(1):108.

- 4390 648. Jang S, Lee H, Park J, Cha SR, Lee J, Park Y, et al. PTD-FGF2 Attenuates Elastase Induced
4391 Emphysema in Mice and Alveolar Epithelial Cell Injury. *COPD*. 2023;20(1):109–18.
- 4392 649. Wang X, Hou X, Zhao Y, Zhao R, Dai J, Dai H, et al. The early and late intervention effects of
4393 collagen-binding FGF2 on elastase-induced lung injury. *Biomed Pharmacother*. 2023;158:114147.
- 4394 650. Panoskaltsis-Mortari A, Ingbar DH, Jung P, Haddad IY, Bitterman PB, Wangensteen OD, et
4395 al. KGF pretreatment decreases B7 and granzyme B expression and hastens repair in lungs of mice after
4396 allogeneic BMT. *Am J Physiol Lung Cell Mol Physiol*. 2000;278(5):L988–99.
- 4397 651. Atabai K, Ishigaki M, Geiser T, Ueki I, Matthay MA, Ware LB. Keratinocyte growth factor
4398 can enhance alveolar epithelial repair by nonmitogenic mechanisms. *Am J Physiol Lung Cell Mol
4399 Physiol*. 2002;283(1):L163–9.
- 4400 652. Ulrich K, Stern M, Goddard ME, Williams J, Zhu J, Dewar A, et al. Keratinocyte growth factor
4401 therapy in murine oleic acid-induced acute lung injury. *Am J Physiol Lung Cell Mol Physiol*.
4402 2005;288(6):L1179–92.
- 4403 653. Chen J, Li C, Gao X, Li C, Liang Z, Yu L, et al. Keratinocyte growth factor gene delivery via
4404 mesenchymal stem cells protects against lipopolysaccharide-induced acute lung injury in mice. *PLoS
4405 One*. 2013;8(12):e83303.
- 4406 654. Plantier L, Marchand-Adam S, Antico Arciuch VG, Boyer L, De Coster C, Marchal J, et al.
4407 Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice. *Am J
4408 Physiol Lung Cell Mol Physiol*. 2007;293(5):L1230–9.
- 4409 655. Muyal JP, Kotnala S, Bhardwaj H, Tyagi A. Effect of recombinant human keratinocyte growth
4410 factor in inducing Ras-Raf-Erk pathway-mediated cell proliferation in emphysematous mice lung. *Inhal
4411 Toxicol*. 2014;26(13):761–71.
- 4412 656. Shyamsundar M, McAuley DF, Ingram RJ, Gibson DS, O'Kane D, McKeown ST, et al.
4413 Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury.
4414 *Am J Respir Crit Care Med*. 2014;189(12):1520–9.
- 4415 657. Qian Y, Shi Q, Zhou W, He B, Xu H, Liu B, et al. FGF10 protects against particulate matter-
4416 induced lung injury by inhibiting ferroptosis via Nrf2-dependent signaling. *Int Immunopharmacol*.
4417 2024;134:112165.
- 4418 658. Liu L, Shi Q, Wang K, Qian Y, Zhou L, Bellusci S, et al. Fibroblast growth factor 10 protects
4419 against particulate matter-induced lung injury by inhibiting oxidative stress-mediated pyroptosis via the
4420 PI3K/Akt/Nrf2 signaling pathway. *Int Immunopharmacol*. 2022;113(Pt A):109398.
- 4421 659. Hadzic S, Wu CY, Gredic M, Pak O, Loku E, Kraut S, et al. Fibroblast growth factor 10 reverses
4422 cigarette smoke- and elastase-induced emphysema and pulmonary hypertension in mice. *Eur Respir J*.
4423 2023;62(5).
- 4424 660. Jiang T, Hu W, Zhang S, Ren C, Lin S, Zhou Z, et al. Fibroblast growth factor 10 attenuates
4425 chronic obstructive pulmonary disease by protecting against glycocalyx impairment and endothelial
4426 apoptosis. *Respir Res*. 2022;23(1):269.
- 4427 661. Miranda O, Farooqui M, Siegfried JM. Status of Agents Targeting the HGF/c-Met Axis in Lung
4428 Cancer. *Cancers (Basel)*. 2018;10(9).
- 4429 662. Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI, Calvi CL, et al. Single-cell RNA
4430 sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary
4431 fibrosis. *Sci Adv*. 2020;6(28):eaba1972.
- 4432 663. Lee D, Sung ES, Ahn JH, An S, Huh J, You WK. Development of antibody-based c-Met
4433 inhibitors for targeted cancer therapy. *Immunotargets Ther*. 2015;4:35–44.
- 4434 664. Jung AL, Han M, Griss K, Bertrams W, Nell C, Greulich T, et al. Novel protein biomarkers for
4435 pneumonia and acute exacerbations in COPD: a pilot study. *Front Med (Lausanne)*. 2023;10:1180746.
- 4436 665. Kanazawa H, Tochino Y, Asai K, Hirata K. Simultaneous assessment of hepatocyte growth
4437 factor and vascular endothelial growth factor in epithelial lining fluid from patients with COPD. *Chest*.
4438 2014;146(5):1159–65.
- 4439 666. Sauleda J, Noguera A, Blanquer D, Pons J, Lopez M, Villena C, et al. Pulmonary and systemic
4440 hepatocyte and keratinocyte growth factors in patients with chronic obstructive pulmonary disease. *Int
4441 J Chron Obstruct Pulmon Dis*. 2008;3(4):719–25.
- 4442 667. Acevedo N, Escamilla-Gil JM, Espinoza H, Regino R, Ramirez J, Florez de Arco L, et al.
4443 Chronic Obstructive Pulmonary Disease Patients Have Increased Levels of Plasma Inflammatory
4444 Mediators Reported Upregulated in Severe COVID-19. *Front Immunol*. 2021;12:678661.

- 4445 668. Calvi C, Podowski M, Lopez-Mercado A, Metzger S, Misono K, Malinina A, et al. Hepatocyte
 4446 growth factor, a determinant of airspace homeostasis in the murine lung. *PLoS Genet.*
 4447 2013;9(2):e1003228.
- 4448 669. Shigemura N, Sawa Y, Mizuno S, Ono M, Ohta M, Nakamura T, et al. Amelioration of
 4449 pulmonary emphysema by in vivo gene transfection with hepatocyte growth factor in rats. *Circulation.*
 4450 2005;111(11):1407–14.
- 4451 670. Hegab AE, Kubo H, Yamaya M, Asada M, He M, Fujino N, et al. Intranasal HGF
 4452 administration ameliorates the physiologic and morphologic changes in lung emphysema. *Mol Ther.*
 4453 2008;16(8):1417–26.
- 4454 671. Knelly H, Mahon BP, English K. Human mesenchymal stromal cells exert HGF dependent
 4455 cytoprotective effects in a human relevant pre-clinical model of COPD. *Sci Rep.* 2016;6:38207.
- 4456 672. Nita I, Hostettler K, Tamo L, Medova M, Bombaci G, Zhong J, et al. Hepatocyte growth factor
 4457 secreted by bone marrow stem cell reduce ER stress and improves repair in alveolar epithelial II cells.
 4458 *Sci Rep.* 2017;7:41901.
- 4459 673. Itakura A, Kurauchi O, Morikawa S, Okamura M, Furugori K, Mizutani S. Involvement of
 4460 hepatocyte growth factor in formation of bronchoalveolar structures in embryonic rat lung in primary
 4461 culture. *Biochem Biophys Res Commun.* 1997;241(1):98–103.
- 4462 674. Kalal AA, Mohapatra S. A Comprehensive Review Exploring the Role of Bone Morphogenetic
 4463 Proteins [BMP]: Biological Mechanisms. *Curr Issues Mol Biol.* 2025;47(3).
- 4464 675. Wu DH, Hatzopoulos AK. Bone morphogenetic protein signaling in inflammation. *Exp Biol
 4465 Med (Maywood).* 2019;244(2):147–56.
- 4466 676. Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in
 4467 Inflammation in Heart Diseases. *Cells.* 2020;9(2).
- 4468 677. Chung MI, Bujnis M, Barkauskas CE, Kobayashi Y, Hogan BLM. Correction: Niche-mediated
 4469 BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. *Development.*
 4470 2024;151(15).
- 4471 678. Yanagihara T, Zhou Q, Tsubouchi K, Revill S, Ayoub A, Gholiof M, et al. Intrinsic BMP
 4472 inhibitor Gremlin regulates alveolar epithelial type II cell proliferation and differentiation. *Biochem
 4473 Biophys Res Commun.* 2023;656:53–62.
- 4474 679. Shafiquzzaman M, Biswas S, Li P, Mishina Y, Li B, Liu H. The noncanonical BMP signaling
 4475 pathway plays an important role in club cell regeneration. *Stem Cells.* 2020;38(3):437–50.
- 4476 680. Zheng X, Chen X, Hu X, Chen L, Mi N, Zhong Q, et al. Downregulated BMP-Smad1/5/8
 4477 signaling causes emphysema via dysfunction of alveolar type II epithelial cells. *J Pathol.*
 4478 2024;262(3):320–33.
- 4479 681. Verhamme FM, De Smet EG, Van Hooste W, Delanghe J, Verleden SE, Joos GF, et al. Bone
 4480 morphogenetic protein 6 (BMP-6) modulates lung function, pulmonary iron levels and cigarette smoke-
 4481 induced inflammation. *Mucosal Immunol.* 2019;12(2):340–51.
- 4482 682. Loth DW, Soler Artigas M, Gharib SA, Wain LV, Franceschini N, Koch B, et al. Genome-wide
 4483 association analysis identifies six new loci associated with forced vital capacity. *Nat Genet.*
 4484 2014;46(7):669–77.
- 4485 683. Barta I, Paska C, Antus B. Sputum Cytokine Profiling in COPD: Comparison Between Stable
 4486 Disease and Exacerbation. *Int J Chron Obstruct Pulmon Dis.* 2022;17:1897–908.
- 4487 684. Liu L, Tang Z, Zeng Q, Qi W, Zhou Z, Chen D, et al. Transcriptomic Insights into Different
 4488 Stimulation Intensity of Electroacupuncture in Treating COPD in Rat Models. *J Inflamm Res.*
 4489 2024;17:2873–87.
- 4490 685. Andriopoulos B, Jr., Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, et al. BMP6 is a key
 4491 endogenous regulator of hepcidin expression and iron metabolism. *Nat Genet.* 2009;41(4):482–7.
- 4492 686. Benn A, Hiepen C, Osterland M, Schutte C, Zwijnen A, Knaus P. Role of bone morphogenetic
 4493 proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance
 4494 stalk vs. tip cell competence. *FASEB J.* 2017;31(11):4720–33.
- 4495 687. Langenfeld EM, Langenfeld J. Bone morphogenetic protein-2 stimulates angiogenesis in
 4496 developing tumors. *Mol Cancer Res.* 2004;2(3):141–9.
- 4497 688. Melincovici CS, Bosca AB, Susman S, Marginean M, Mihu C, Istrate M, et al. Vascular
 4498 endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. *Rom J Morphol
 4499 Embryol.* 2018;59(2):455–67.

- 4500 689. Poto R, Loffredo S, Palestra F, Marone G, Patella V, Varricchi G. Angiogenesis,
 4501 Lymphangiogenesis, and Inflammation in Chronic Obstructive Pulmonary Disease (COPD): Few
 4502 Certainties and Many Outstanding Questions. *Cells*. 2022;11(10).
- 4503 690. Zhao W, McCallum SA, Xiao Z, Zhang F, Linhardt RJ. Binding affinities of vascular
 4504 endothelial growth factor (VEGF) for heparin-derived oligosaccharides. *Biosci Rep*. 2012;32(1):71–81.
- 4505 691. Claesson-Welsh L. VEGF receptor signal transduction - A brief update. *Vascul Pharmacol*.
 4506 2016;86:14–7.
- 4507 692. Kanazawa H, Hirata K, Yoshikawa J. Imbalance between vascular endothelial growth factor
 4508 and endostatin in emphysema. *Eur Respir J*. 2003;22(4):609–12.
- 4509 693. Tuder RM, Yun JH. Vascular endothelial growth factor of the lung: friend or foe. *Curr Opin*
 4510 *Pharmacol*. 2008;8(3):255–60.
- 4511 694. Wang L, Xu Z, Chen B, He W, Hu J, Zhang L, et al. The Role of Vascular Endothelial Growth
 4512 Factor in Small-airway Remodelling in a Rat Model of Chronic Obstructive Pulmonary Disease. *Sci*
 4513 *Rep*. 2017;7:41202.
- 4514 695. Nguyen Hai C, Bui Duc T, Nguyen Minh T, Trinh Duc L, Tran Quyet T. Quantitative chest
 4515 computed tomography in chronic obstructive pulmonary disease: assessing the role of emphysema
 4516 severity and its correlation with clinical characteristics, lung function, and plasma levels of VEGF and
 4517 IL-1beta. *Ther Adv Respir Dis*. 2025;19:17534666251332469.
- 4518 696. Chis AF, Rajnoveanu RM, Man MA, Todea DA, Chis BA, Stancu B, et al. Increased Vascular
 4519 Endothelial Growth Factor Serum Level and the Role of +936C/T Gene Polymorphism in Chronic
 4520 Obstructive Pulmonary Disease. *Medicina (Kaunas)*. 2021;57(12).
- 4521 697. Pinto-Plata V, Toso J, Lee K, Park D, Bilello J, Mullerova H, et al. Profiling serum biomarkers
 4522 in patients with COPD: associations with clinical parameters. *Thorax*. 2007;62(7):595–601.
- 4523 698. Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, et al.
 4524 Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. *J Clin Invest*.
 4525 2000;106(11):1311–9.
- 4526 699. Adini A, Ko VH, Puder M, Louie SM, Kim CF, Baron J, et al. PR1P, a VEGF-stabilizing
 4527 peptide, reduces injury and inflammation in acute lung injury and ulcerative colitis animal models.
 4528 *Front Immunol*. 2023;14:1168676.
- 4529 700. Adini A, Wu H, Dao DT, Ko VH, Yu LJ, Pan A, et al. PR1P Stabilizes VEGF and Upregulates
 4530 Its Signaling to Reduce Elastase-induced Murine Emphysema. *Am J Respir Cell Mol Biol*.
 4531 2020;63(4):452–63.
- 4532 701. Deckx S, Heymans S, Papageorgiou AP. The diverse functions of osteoglycin: a deceitful
 4533 dwarf, or a master regulator of disease? *FASEB J*. 2016;30(8):2651–61.
- 4534 702. Nulali J, Zhan M, Zhang K, Tu P, Liu Y, Song H. Osteoglycin: An ECM Factor Regulating
 4535 Fibrosis and Tumorigenesis. *Biomolecules*. 2022;12(11).
- 4536 703. van der Koog L, Woest ME, Gorter IC, Verschut V, Elferink RAB, Zuidhof AB, et al.
 4537 Fibroblast-derived osteoglycin promotes epithelial cell repair. *NPJ Regen Med*. 2025;10(1):16.
- 4538 704. Koloko Ngassie ML, De Vries M, Borghuis T, Timens W, Sin DD, Nickle D, et al. Age-
 4539 associated differences in the human lung extracellular matrix. *Am J Physiol Lung Cell Mol Physiol*.
 4540 2023;324(6):L799–L814.
- 4541 705. Lin YZ, Zhong XN, Chen X, Liang Y, Zhang H, Zhu DL. Roundabout signaling pathway
 4542 involved in the pathogenesis of COPD by integrative bioinformatics analysis. *Int J Chron Obstruct*
 4543 *Pulmon Dis*. 2019;14:2145–62.
- 4544 706. Shi S, Li H. Overexpressed microRNA-140 inhibits pulmonary fibrosis in interstitial lung
 4545 disease via the Wnt signaling pathway by downregulating osteoglycin. *Am J Physiol Cell Physiol*.
 4546 2020;319(5):C895–C905.
- 4547 707. Zuo C, Li X, Huang J, Chen D, Ji K, Yang Y, et al. Osteoglycin attenuates cardiac fibrosis by
 4548 suppressing cardiac myofibroblast proliferation and migration through antagonizing lysophosphatidic
 4549 acid 3/matrix metalloproteinase 2/epidermal growth factor receptor signalling. *Cardiovasc Res*.
 4550 2018;114(5):703–12.
- 4551 708. Xu T, Zhang R, Dong M, Zhang Z, Li H, Zhan C, et al. Osteoglycin (OGN) Inhibits Cell
 4552 Proliferation and Invasiveness in Breast Cancer via PI3K/Akt/mTOR Signaling Pathway. *Onco Targets*
 4553 *Ther*. 2019;12:10639–50.

- 4554 709. Lee NJ, Ali N, Zhang L, Qi Y, Clarke I, Enriquez RF, et al. Osteoglycin, a novel coordinator
 4555 of bone and glucose homeostasis. *Mol Metab.* 2018;13:30–44.
- 4556 710. Piao Y, Yun SY, Fu Z, Jang JM, Back MJ, Kim HH, et al. Recombinant Human HAPLN1
 4557 Mitigates Pulmonary Emphysema by Increasing TGF-beta Receptor I and Sirtuins Levels in Human
 4558 Alveolar Epithelial Cells. *Mol Cells.* 2023;46(9):558–72.
- 4559 711. Gao C, Fujinawa R, Yoshida T, Ueno M, Ota F, Kizuka Y, et al. A keratan sulfate disaccharide
 4560 prevents inflammation and the progression of emphysema in murine models. *Am J Physiol Lung Cell
 4561 Mol Physiol.* 2017;312(2):L268–L76.
- 4562 712. Obeng-Nyarkoh PI, Valentin-Figueroa ME, Cadham CJ, Cobb NK, Han MK, Levy DT, et al.
 4563 Lung Cancer Risk in US Adults with COPD: A Systematic Review and Meta-Analysis. *Int J Chron
 4564 Obstruct Pulmon Dis.* 2025;20:3399–421.
- 4565 713. Dou D, Lu J, Dou J, Huo Y, Gong X, Zhang X, et al. Global regulatory considerations and
 4566 practices for tumorigenicity evaluation of cell-based therapy. *Regul Toxicol Pharmacol.*
 4567 2025;156:105769.
- 4568 714. Lai S, Guo Z. Stem cell therapies for chronic obstructive pulmonary disease: mesenchymal
 4569 stem cells as a promising treatment option. *Stem Cell Res Ther.* 2024;15(1):312.
- 4570 715. Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, et al. Stem cell-based
 4571 therapy for human diseases. *Signal Transduct Target Ther.* 2022;7(1):272.
- 4572 716. RespiratoryDraftingGroup. Guideline on clinical investigation of medicinal products in the
 4573 treatment of chronic obstructive pulmonary disease (COPD) 2012 [Available from:
 4574 <https://www.tga.gov.au/sites/default/files/2024-06/guideline-clinical-investigation-medicinal-products-treatment-chronic-obstructive-pulmonary-disease-copd-ema.pdf>].
- 4575 717. Jones PW, Beeh KM, Chapman KR, Decramer M, Mahler DA, Wedzicha JA. Minimal
 4576 clinically important differences in pharmacological trials. *Am J Respir Crit Care Med.*
 4577 2014;189(3):250–5.
- 4578 718. Donohue JF. Minimal clinically important differences in COPD lung function. *COPD.*
 4579 2005;2(1):111–24.
- 4580 719. Dankers M, Nelissen-Vrancken M, Surminski SMK, Lambooij AC, Schermer TR, van Dijk L.
 4581 Healthcare Professionals' Preferred Efficacy Endpoints and Minimal Clinically Important Differences
 4582 in the Assessment of New Medicines for Chronic Obstructive Pulmonary Disease. *Front Pharmacol.*
 4583 2019;10:1519.
- 4584 720. Make B. How can we assess outcomes of clinical trials: the MCID approach. *COPD.*
 4585 2007;4(3):191–4.
- 4586 721. Cazzola M, MacNee W, Martinez FJ, Rabe KF, Franciosi LG, Barnes PJ, et al. Outcomes for
 4587 COPD pharmacological trials: from lung function to biomarkers. *Eur Respir J.* 2008;31(2):416–69.
- 4588 722. Cazzola M, Rogliani P, Barnes PJ, Blasi F, Celli B, Hanania NA, et al. An Update on Outcomes
 4589 for COPD Pharmacological Trials: A COPD Investigators Report - Reassessment of the 2008 American
 4590 Thoracic Society/European Respiratory Society Statement on Outcomes for COPD Pharmacological
 4591 Trials. *Am J Respir Crit Care Med.* 2023;208(4):374–94.
- 4592 723. Tashkin DP, Celli B, Senn S, Burkhardt D, Kesten S, Menjoge S, et al. A 4-year trial of
 4593 tiotropium in chronic obstructive pulmonary disease. *N Engl J Med.* 2008;359(15):1543–54.
- 4594 724. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, et al. Salmeterol and
 4595 fluticasone propionate and survival in chronic obstructive pulmonary disease. *N Engl J Med.*
 4596 2007;356(8):775–89.
- 4597 725. Miller BE, Tal-Singer R, Rennard SI, Furtwangler A, Leidy N, Lowings M, et al. Plasma
 4598 Fibrinogen Qualification as a Drug Development Tool in Chronic Obstructive Pulmonary Disease.
 4599 Perspective of the Chronic Obstructive Pulmonary Disease Biomarker Qualification Consortium. *Am J
 4600 Respir Crit Care Med.* 2016;193(6):607–13.
- 4601 726. Groenewegen KH, Postma DS, Hop WC, Wielders PL, Schlosser NJ, Wouters EF, et al.
 4602 Increased systemic inflammation is a risk factor for COPD exacerbations. *Chest.* 2008;133(2):350–7.
- 4603 727. Hurst JR, Vestbo J, Anzueto A, Locantore N, Mullerova H, Tal-Singer R, et al. Susceptibility
 4604 to exacerbation in chronic obstructive pulmonary disease. *N Engl J Med.* 2010;363(12):1128–38.
- 4605 728. Fibrinogen Studies C, Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, et al.
 4606 Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an
 4607 individual participant meta-analysis. *JAMA.* 2005;294(14):1799–809.
- 4608

- 4609 729. Mannino DM, Valvi D, Mullerova H, Tal-Singer R. Fibrinogen, COPD and mortality in a
4610 nationally representative U.S. cohort. *COPD*. 2012;9(4):359–66.
- 4611 730. Zuur-Telgen MC, Citgez E, Zuur AT, VanderValk P, van der Palen J, Kerstjens HAM, et al.
4612 Predicting Mortality in COPD with Validated and Sensitive Biomarkers; Fibrinogen and Mid-Range-
4613 Proadrenomedullin (MR-proADM). *COPD*. 2021;18(6):643–9.
- 4614 731. Hou Y, Yao H, Lin JM. Recent advancements in single-cell metabolic analysis for
4615 pharmacological research. *J Pharm Anal*. 2023;13(10):1102–16.
- 4616 732. Lee S, Vu HM, Lee JH, Lim H, Kim MS. Advances in Mass Spectrometry-Based Single Cell
4617 Analysis. *Biology (Basel)*. 2023;12(3).
- 4618 733. Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, et al. Applications of multi-omics analysis in
4619 human diseases. *MedComm (2020)*. 2023;4(4):e315.
- 4620 734. Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, et al.
4621 Applications of single-cell RNA sequencing in drug discovery and development. *Nat Rev Drug Discov*.
4622 2023;22(6):496–520.
- 4623 735. Yonchuk JG, Silverman EK, Bowler RP, Agusti A, Lomas DA, Miller BE, et al. Circulating
4624 soluble receptor for advanced glycation end products (sRAGE) as a biomarker of emphysema and the
4625 RAGE axis in the lung. *Am J Respir Crit Care Med*. 2015;192(7):785–92.
- 4626 736. Kakishita M, Nishikimi T, Okano Y, Satoh T, Kyotani S, Nagaya N, et al. Increased plasma
4627 levels of adrenomedullin in patients with pulmonary hypertension. *Clin Sci (Lond)*. 1999;96(1):33–9.
- 4628 737. Stolz D, Christ-Crain M, Morgenthaler NG, Miedinger D, Leuppi J, Muller C, et al. Plasma
4629 pro-adrenomedullin but not plasma pro-endothelin predicts survival in exacerbations of COPD. *Chest*.
4630 2008;134(2):263–72.
- 4631 738. Zien Alaabden A, Mohammad Y, Fahoum S. The role of serum surfactant protein D as a
4632 biomarker of exacerbation of chronic obstructive pulmonary disease. *Qatar Med J*. 2015;2015(2):18.
- 4633 739. Sin DD, Leung R, Gan WQ, Man SP. Circulating surfactant protein D as a potential lung-
4634 specific biomarker of health outcomes in COPD: a pilot study. *BMC Pulm Med*. 2007;7:13.
- 4635 740. Bowler RP. Surfactant protein D as a biomarker for chronic obstructive pulmonary disease.
4636 *COPD*. 2012;9(6):651–3.
- 4637 741. Moreno D, Garcia A, Lema D, De Sanctis JB. Surfactant protein D in chronic obstructive
4638 pulmonary disease (COPD). *Recent Pat Endocr Metab Immune Drug Discov*. 2014;8(1):42–7.
- 4639 742. Pantazopoulos I, Magounaki K, Kotsiou O, Rouka E, Perlikos F, Kakavas S, et al. Incorporating
4640 Biomarkers in COPD Management: The Research Keeps Going. *J Pers Med*. 2022;12(3).
- 4641 743. Mannino DM. Biomarkers for chronic obstructive pulmonary disease diagnosis and
4642 progression: insights, disappointments and promise. *Curr Opin Pulm Med*. 2019;25(2):144–9.
- 4643 744. Zemans RL, Jacobson S, Keene J, Kechris K, Miller BE, Tal-Singer R, et al. Multiple
4644 biomarkers predict disease severity, progression and mortality in COPD. *Respir Res*. 2017;18(1):117.
- 4645 745. Celli BR, Anderson JA, Brook R, Calverley P, Cowans NJ, Crim C, et al. Serum biomarkers
4646 and outcomes in patients with moderate COPD: a substudy of the randomised SUMMIT trial. *BMJ
4647 Open Respir Res*. 2019;6(1):e000431.
- 4648 746. Hlapcic I, Belamaric D, Bosnar M, Kifer D, Vukic Dugac A, Rumora L. Combination of
4649 Systemic Inflammatory Biomarkers in Assessment of Chronic Obstructive Pulmonary Disease:
4650 Diagnostic Performance and Identification of Networks and Clusters. *Diagnostics (Basel)*. 2020;10(12).
- 4651 747. Vanfleteren L, Weidner J, Franssen FME, Gaffron S, Reynaert NL, Wouters EFM, et al.
4652 Biomarker-based clustering of patients with chronic obstructive pulmonary disease. *ERJ Open Res*.
4653 2023;9(1).
- 4654 748. Yousuf A, McAuley H, Elneima O, Brightling CE. The different phenotypes of COPD. *Br Med
4655 Bull*. 2021;137(1):82–97.
- 4656 749. Guarnier LP, Moro LG, Livero F, de Faria CA, Azevedo MF, Roma BP, et al. Regenerative
4657 and translational medicine in COPD: hype and hope. *Eur Respir Rev*. 2023;32(169).
- 4658 750. Zhang Z, Wang J, Li Y, Liu F, Chen L, He S, et al. Proteomics and metabolomics profiling
4659 reveal panels of circulating diagnostic biomarkers and molecular subtypes in stable COPD. *Respir Res*.
4660 2023;24(1):73.
- 4661 751. Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary
4662 diseases. *Respir Res*. 2017;18(1):149.

- 4663 752. Sikkema L, Ramirez-Suastegui C, Strobl DC, Gillett TE, Zappia L, Madisoon E, et al. An
4664 integrated cell atlas of the lung in health and disease. *Nat Med.* 2023;29(6):1563–77.
- 4665 753. Cardoso J, Ferreira AJ, Guimaraes M, Oliveira AS, Simao P, Sucena M. Treatable Traits in
4666 COPD - A Proposed Approach. *Int J Chron Obstruct Pulmon Dis.* 2021;16:3167–82.
- 4667 754. Cazzola M, Rogliani P, Blasi F. Can Treatable Traits Be the Approach to Addressing the
4668 Complexity and Heterogeneity of COPD? *Int J Chron Obstruct Pulmon Dis.* 2023;18:1959–64.
- 4669 755. Devulder JV. Unveiling mechanisms of lung aging in COPD: A promising target for
4670 therapeutics development. *Chin Med J Pulm Crit Care Med.* 2024;2(3):133–41.
- 4671 756. Roche N, Chanze P. Bronchodilator combinations for COPD: real hopes or a new Pandora's
4672 box? *Eur Respir J.* 2013;42(6):1441–5.
- 4673 757. Wu X, Chen D, Gu X, Su X, Song Y, Shi Y. Prevalence and risk of viral infection in patients
4674 with acute exacerbation of chronic obstructive pulmonary disease: a meta-analysis. *Mol Biol Rep.*
4675 2014;41(7):4743–51.
- 4676 758. Jafarinejad H, Moghooei M, Mostafaei S, Salimian J, Azimzadeh Jamalkandi S, Ahmadi A.
4677 Worldwide prevalence of viral infection in AECOPD patients: A meta-analysis. *Microb Pathog.*
4678 2017;113:190–6.
- 4679 759. Hurst JR, Han MK, Singh B, Sharma S, Kaur G, de Nigris E, et al. Prognostic risk factors for
4680 moderate-to-severe exacerbations in patients with chronic obstructive pulmonary disease: a systematic
4681 literature review. *Respir Res.* 2022;23(1):213.
- 4682 760. Dransfield MT, Kunisaki KM, Strand MJ, Anzueto A, Bhatt SP, Bowler RP, et al. Acute
4683 Exacerbations and Lung Function Loss in Smokers with and without Chronic Obstructive Pulmonary
4684 Disease. *Am J Respir Crit Care Med.* 2017;195(3):324–30.
- 4685 761. Ray S, Chiba N, Yao C, Guan X, McConnell AM, Brockway B, et al. Rare SOX2(+) Airway
4686 Progenitor Cells Generate KRT5(+) Cells that Repopulate Damaged Alveolar Parenchyma following
4687 Influenza Virus Infection. *Stem Cell Reports.* 2016;7(5):817–25.
- 4688 762. Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B, et al. Lineage-
4689 negative progenitors mobilize to regenerate lung epithelium after major injury. *Nature.*
4690 2015;517(7536):621–5.
- 4691 763. Sadiq MW, Holz O, Ellinghusen BD, Faulenbach C, Muller M, Badorrek P, et al. Lung
4692 pharmacokinetics of inhaled and systemic drugs: A clinical evaluation. *Br J Pharmacol.*
4693 2021;178(22):4440–51.
- 4694 764. Zijlstra GS, Wolting J, Prop J, Petersen AH, Hinrichs WL, Uges DR, et al. Efficacy of a new
4695 pulmonary cyclosporine a powder formulation for prevention of transplant rejection in rats. *J Heart*
4696 *Lung Transplant.* 2009;28(5):486–92.
- 4697 765. Irwin SM, Prideaux B, Lyon ER, Zimmerman MD, Brooks EJ, Schrupp CA, et al. Bedaquiline
4698 and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in
4699 *Mycobacterium tuberculosis* Infected C3HeB/FeJ Mice. *ACS Infect Dis.* 2016;2(4):251–67.
- 4700 766. Anderson S, Atkins P, Backman P, Cipolla D, Clark A, Daviskas E, et al. Inhaled Medicines:
4701 Past, Present, and Future. *Pharmacol Rev.* 2022;74(1):48–118.
- 4702 767. Forbes B, Backman P, Cabal A, Clark A, Ehrhardt C, Hastedt JE, et al. iBCS: 4. Application
4703 of the Inhalation Biopharmaceutics Classification System to the Development of Orally Inhaled Drug
4704 Products. *Mol Pharm.* 2025;22(4):1740–51.
- 4705 768. Thakral S, Sonje J, Munjal B, Suryanarayanan R. Stabilizers and their interaction with
4706 formulation components in frozen and freeze-dried protein formulations. *Adv Drug Deliv Rev.*
4707 2021;173:1–19.
- 4708 769. Tonnis WF, Mensink MA, de Jager A, van der Voort Maarschalk K, Frijlink HW, Hinrichs
4709 WL. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins.
4710 *Mol Pharm.* 2015;12(3):684–94.
- 4711 770. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. How sugars protect
4712 proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress
4713 conditions. *Eur J Pharm Biopharm.* 2017;114:288–95.
- 4714 771. Matthews AA, Ee PLR, Ge R. Developing inhaled protein therapeutics for lung diseases. *Mol*
4715 *Biomed.* 2020;1(1):11.

- 4716 772. Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, et al.
 4717 Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. *Eur J*
 4718 *Pharm Biopharm.* 2024;204:114530.
- 4719 773. Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery.
 4720 *Proc Am Thorac Soc.* 2004;1(4):338–44.
- 4721 774. Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery
 4722 of nucleic acids. *Adv Drug Deliv Rev.* 2024;215:115461.
- 4723 775. Jansen EM, Frijlink HW, Hinrichs WL, Ruigrok MJ. Are inhaled mRNA vaccines safe and
 4724 effective? A review of preclinical studies. *Expert Opin Drug Deliv.* 2022;19(11):1471–85.
- 4725 776. Costabile G, Conte G, Brusco S, Savadi P, Miro A, Quaglia F, et al. State-of-the-Art Review
 4726 on Inhalable Lipid and Polymer Nanocarriers: Design and Development Perspectives. *Pharmaceutics.*
 4727 2024;16(3).
- 4728 777. Zhao G, Xue L, Weiner AI, Gong N, Adams-Tzivelekis S, Wong J, et al. TGF-betaR2
 4729 signaling coordinates pulmonary vascular repair after viral injury in mice and human tissue. *Sci Transl*
 4730 *Med.* 2024;16(732):eadg6229.
- 4731 778. Meshanni JA, Stevenson ER, Zhang D, Sun R, Ona NA, Reagan EK, et al. Targeted delivery
 4732 of TGF-beta mRNA to murine lung parenchyma using one-component ionizable amphiphilic Janus
 4733 Dendrimers. *Nat Commun.* 2025;16(1):1806.
- 4734 779. Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-
 4735 Based Pulmonary Drug Delivery. *Int J Pharm.* 2024;659:124248.
- 4736 780. Yildirim AO, Conlon TM, Adcock IM, Gosens R, Lehmann M, Kapellos TS, et al. COPD-
 4737 iNET: a call to the lung community for action to combat the global epidemic of COPD. *Eur Respir J.*
 4738 2024;64(3).
- 4739

4740

4741 **Figure legends**

4742

4743 **Figure 1.** The healthy and disrupted alveolar niche in COPD. Alveolar epithelial progenitor cells do
 4744 not function in isolation but reside within a specialized microenvironment, the alveolar progenitor
 4745 niche, that orchestrates their behavior. This niche supports progenitor cell survival, regulates their
 4746 proliferation and differentiation, and integrates repair signals following injury. In COPD, however,
 4747 these niche interactions are disrupted, impairing repair capacity and contributing to progressive alveolar
 4748 damage. Created in BioRender. Van der koog, L. (2025) <https://BioRender.com/cslgb1t>.

4749

4750 **Figure 2. Activation of cAMP signaling by GPCRs** including EP₂, EP₄ and IP prostanoid, A_{2A}, A_{2B}
 4751 adenosine and β_2 adrenoceptors. Downstream effects have been linked to regeneration.

4752

4753 **Figure 3: Canonical Wnt/ β -catenin signaling: mechanisms of activation, degradation and**
 4754 **pharmacological modulation.** In the absence of Wnt ligand (left), cytosolic β -catenin is sequentially
 4755 phosphorylated by casein kinase 1 alpha (CK1 α) and glycogen synthase kinase-3 β (GSK3 β) within the
 4756 β -catenin destruction complex, which also includes AXIN and adenomatous polyposis coli (APC).
 4757 Phosphorylated β -catenin is recognized by the E3 ubiquitin ligase adaptor β -transducin repeat-
 4758 containing protein (β -TrCP), leading to polyubiquitination and proteasomal degradation.

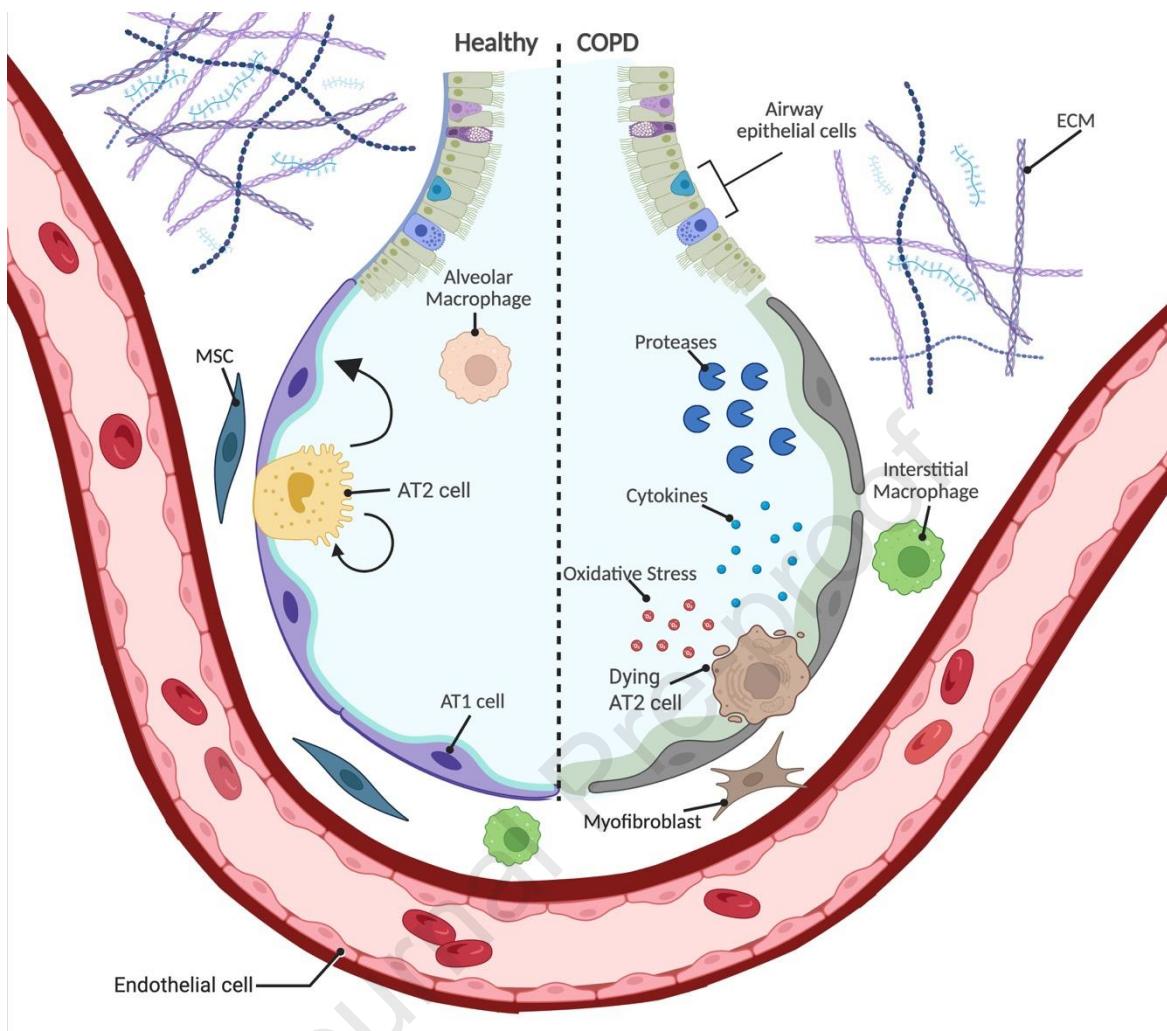
4759 Upon Wnt ligand engagement (right), the co-receptors Frizzled (FZD) and LRP5/6 cluster at the
 4760 membrane, promoting CK1 α -dependent phosphorylation and activation of DVL. This results in AXIN
 4761 recruitment to the membrane, disassembly of the destruction complex, and stabilization of
 4762 unphosphorylated β -catenin. Stabilized β -catenin accumulates in the cytosol, translocates into the
 4763 nucleus, and interacts with T cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors to
 4764 activate Wnt target genes.

4765

4766 **Figure 4. Mode of action of senotherapeutics.** Cellular senescence is characterized by changes in
 4767 mTOR signaling, NF- κ B signaling, cGAS/STING signaling, mitochondrial dysfunction and oxidative
 4768 stress. Commonly used senotherapeutics target one or more of these pathways to balance cellular
 4769 signaling (senomorphics) or to eliminate senescent cells (senolytics).

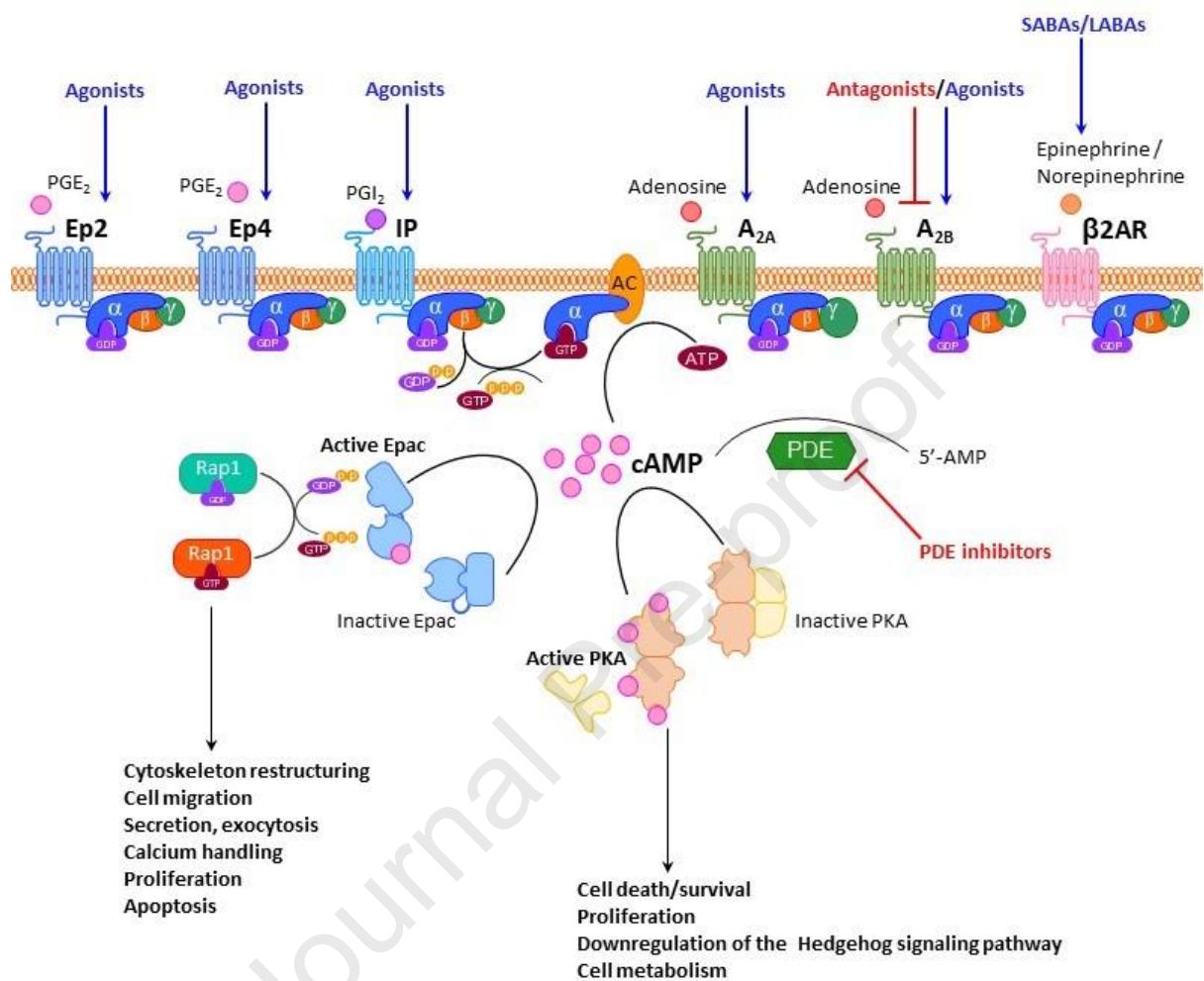
4770

4771 **Figure 5. Interplay of persistent inflammation with defective repair.** In otherwise healthy subjects
 4772 without COPD (left panel), bacterial or viral infections will trigger NLRP3 inflammasome-dependent
 4773 inflammation and a drop in lung function; this is followed by a resolution phase during which epithelial
 4774 injury is repaired by signals such as WNT, or IL-1 β . In COPD, there is a background of persistent
 4775 inflammation that interferes with repair signals and/or negatively imprints on epithelial progenitors,
 4776 leading to incomplete repair.


4777

4778 **Figure 6. Mining the niche for regenerative therapeutics.** The alveolar niche has well-established
 4779 roles in guiding epithelial repair and regeneration, and many secreted factors derived from lung
 4780 fibroblasts, endothelial cells and immune cells have been identified. Some of these have been utilized
 4781 as drugs or as leads for drug development. Created in BioRender. Van der koog, L. (2025)
 4782 <https://BioRender.com/o0uhysv>.

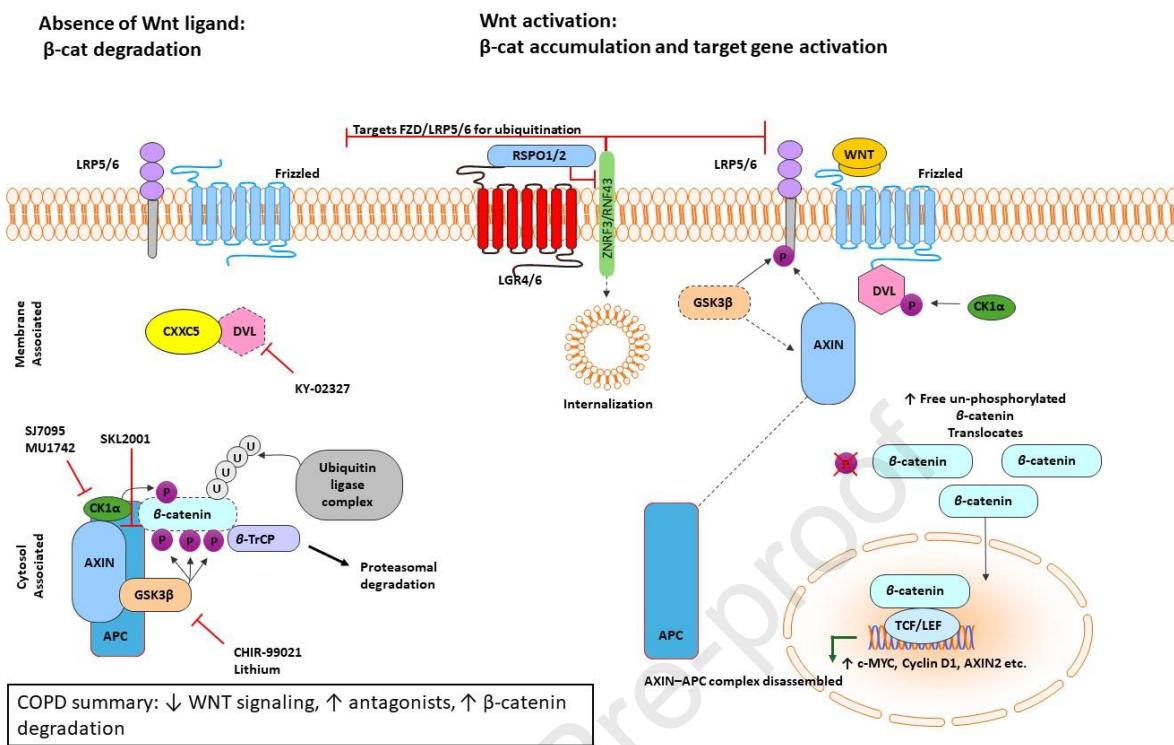
4783

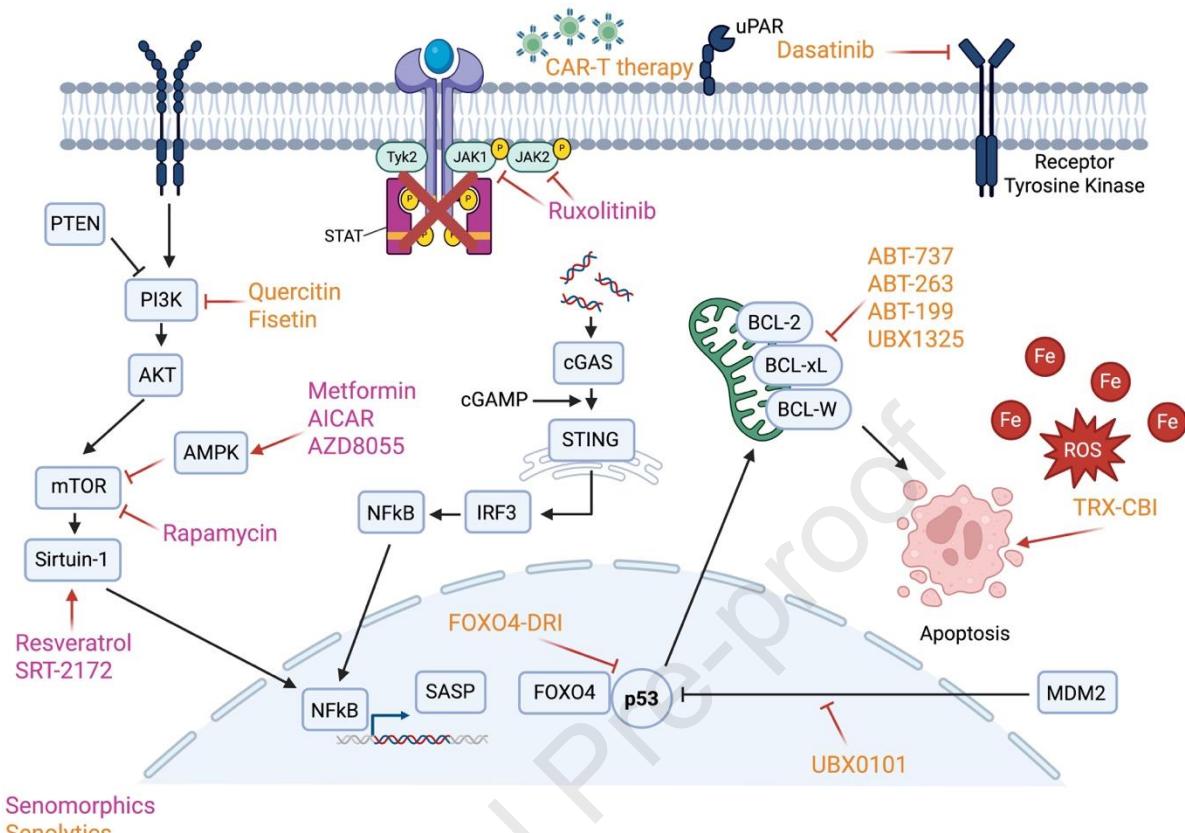

4784 **Figure 7. Progressive lung function loss in patients with COPD throughout life.** A: Exposure to
 4785 smoke, air pollution and toxins can cause lung injury, which – if not adequately repaired – contribute
 4786 to loss of lung function, which is progressive and results in systemic comorbidities, and eventually
 4787 respiratory failure and death. B: Revised view on lung function loss in COPD. At present, lung function
 4788 loss in COPD is no longer viewed as a gradual decline as depicted in panel A, but as an intermittent
 4789 process driven by episodes of disease worsening (exacerbations). These episodes are often associated
 4790 with bacterial and viral infections and represent opportunities for targeted pharmacological treatment.

4791

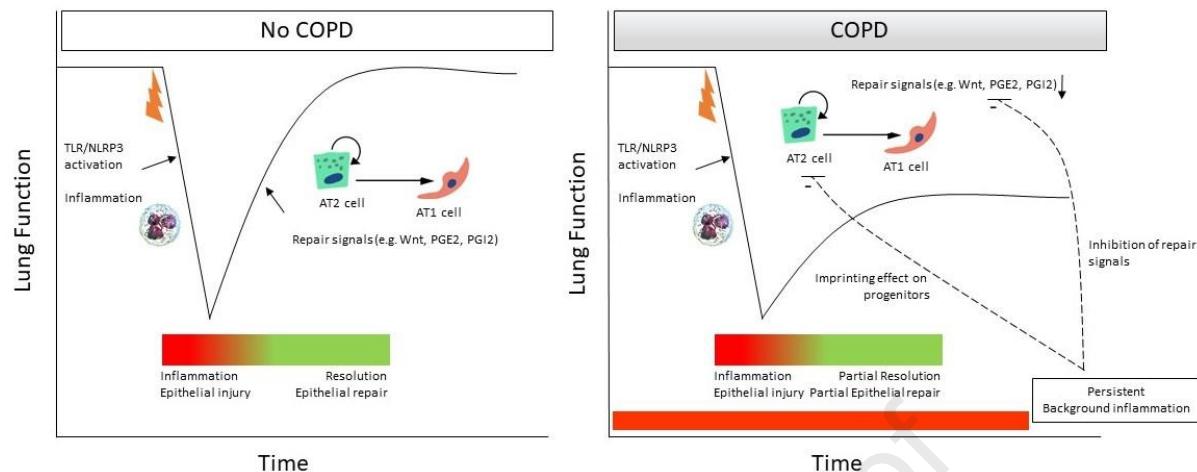
4792 **Figure 1**

4793

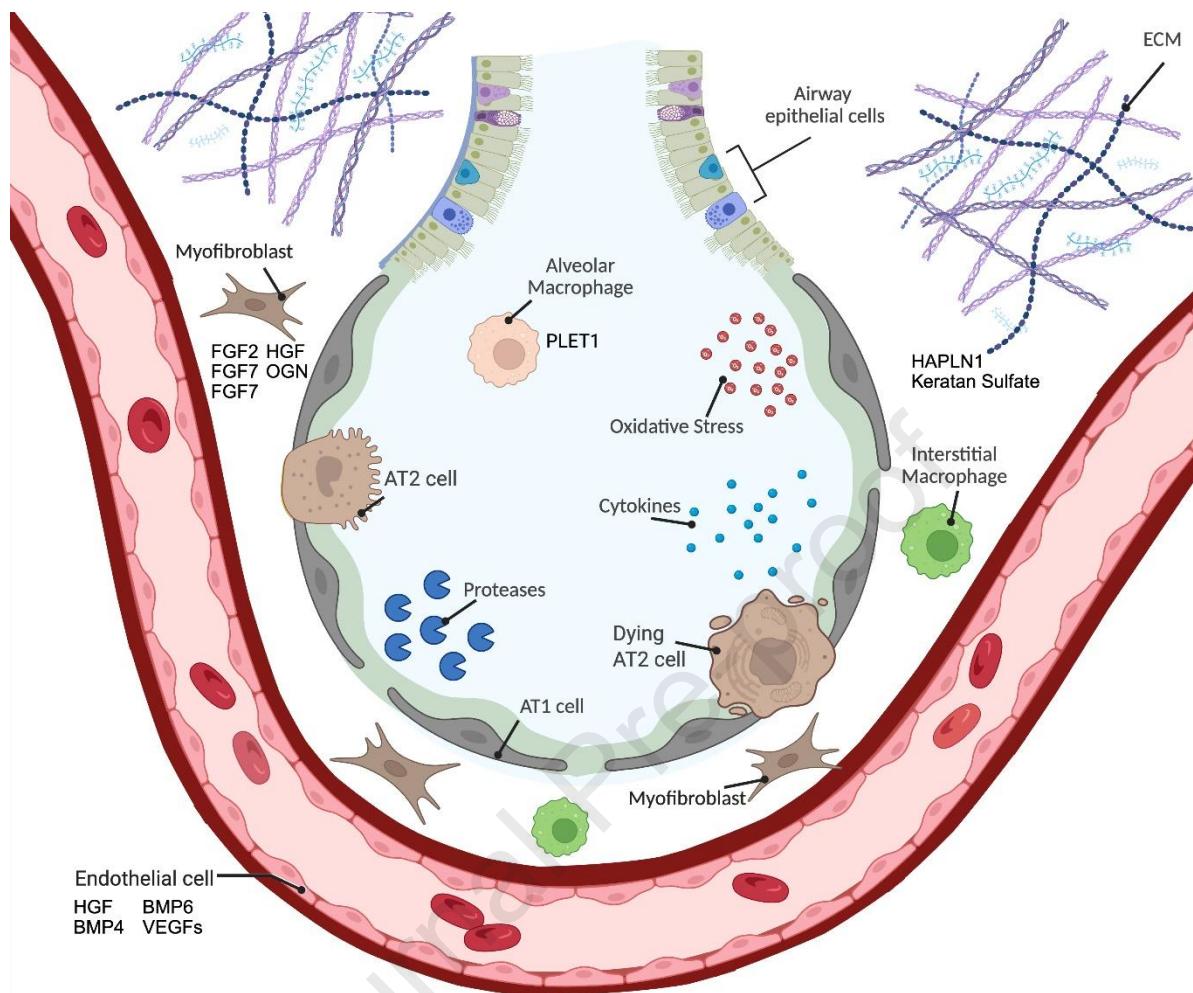

4794 Figure 2


4795

4796

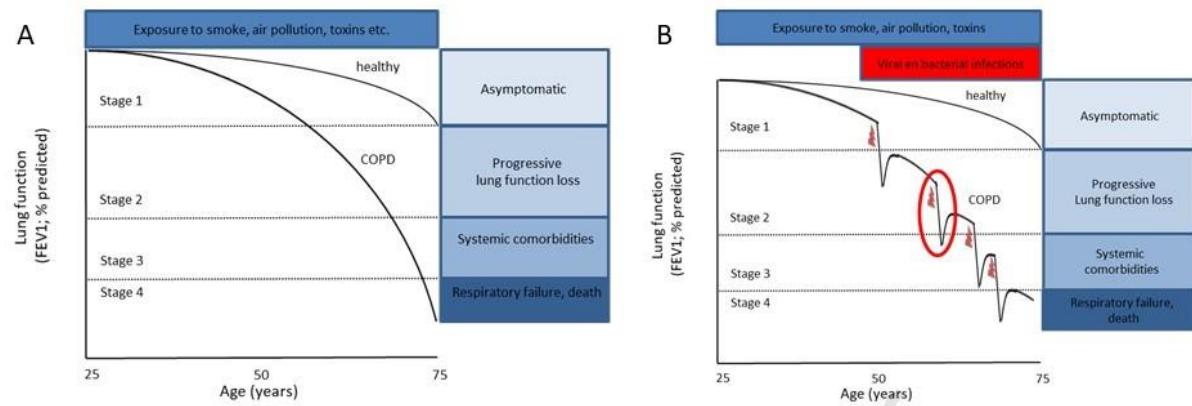

4797 Figure 3

4798


4799 **Figure 4**

4800

4801 **Figure 5**


4802

4803

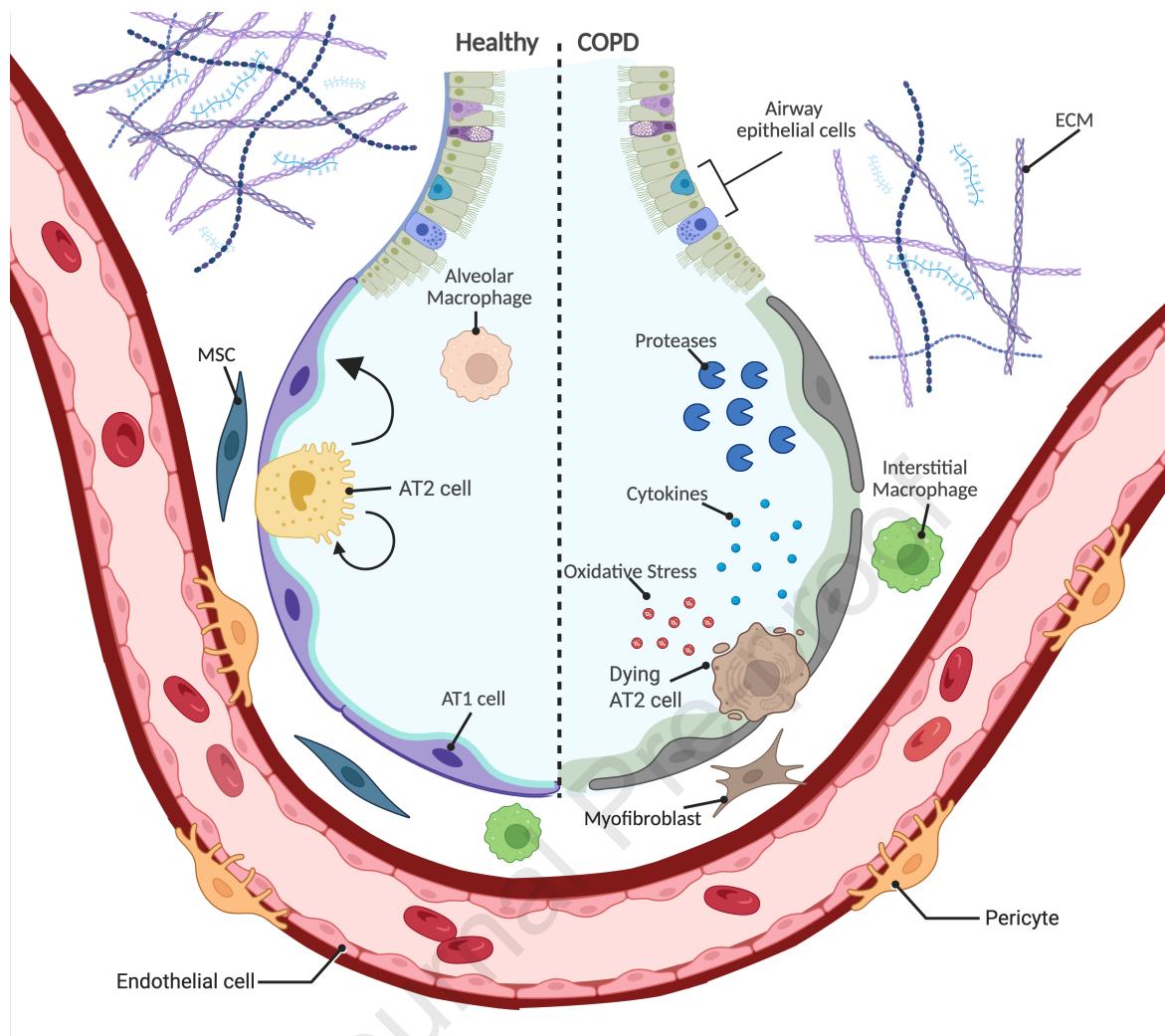
4804 **Figure 6**

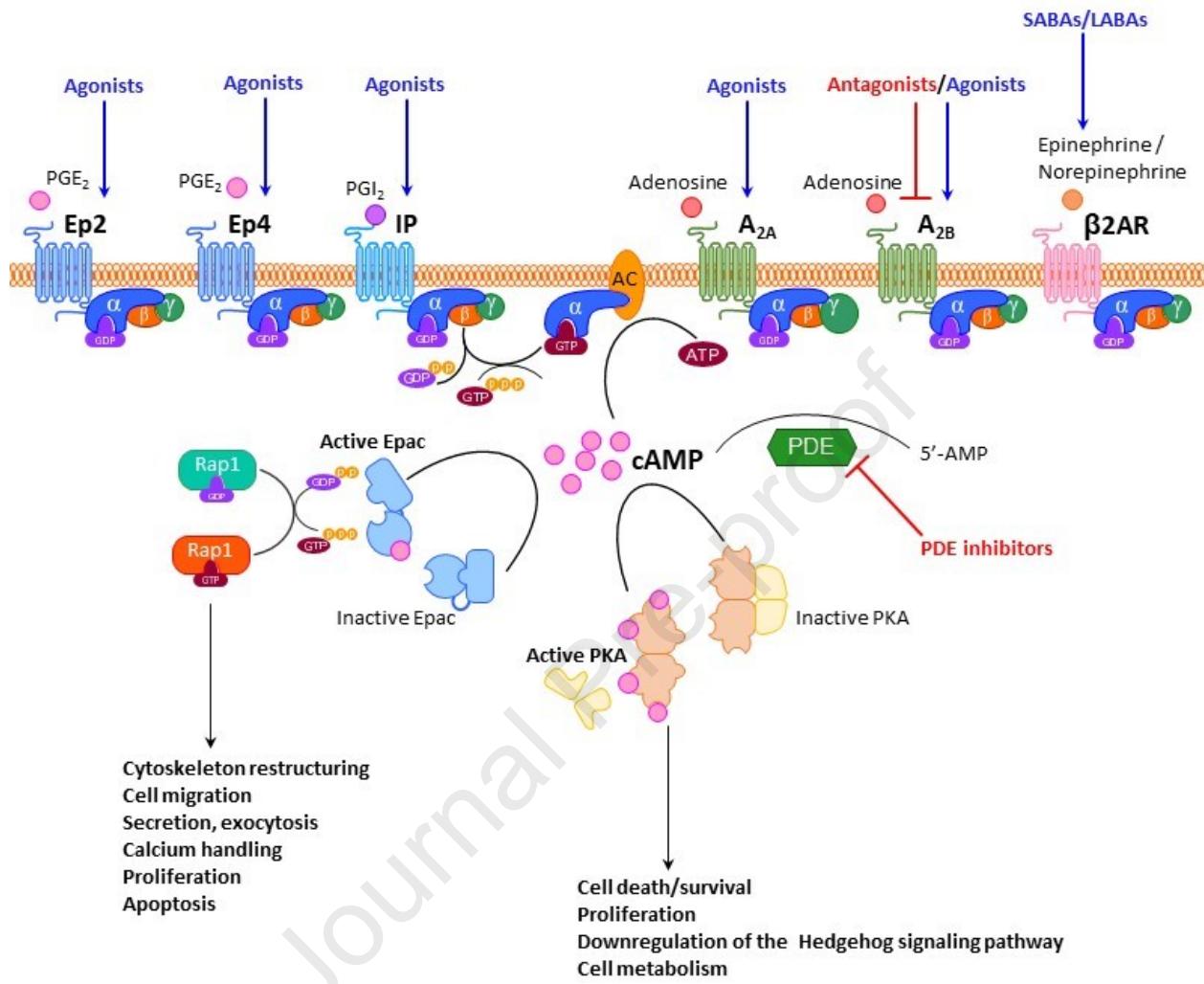
4805

4806

4807 **Figure 7**

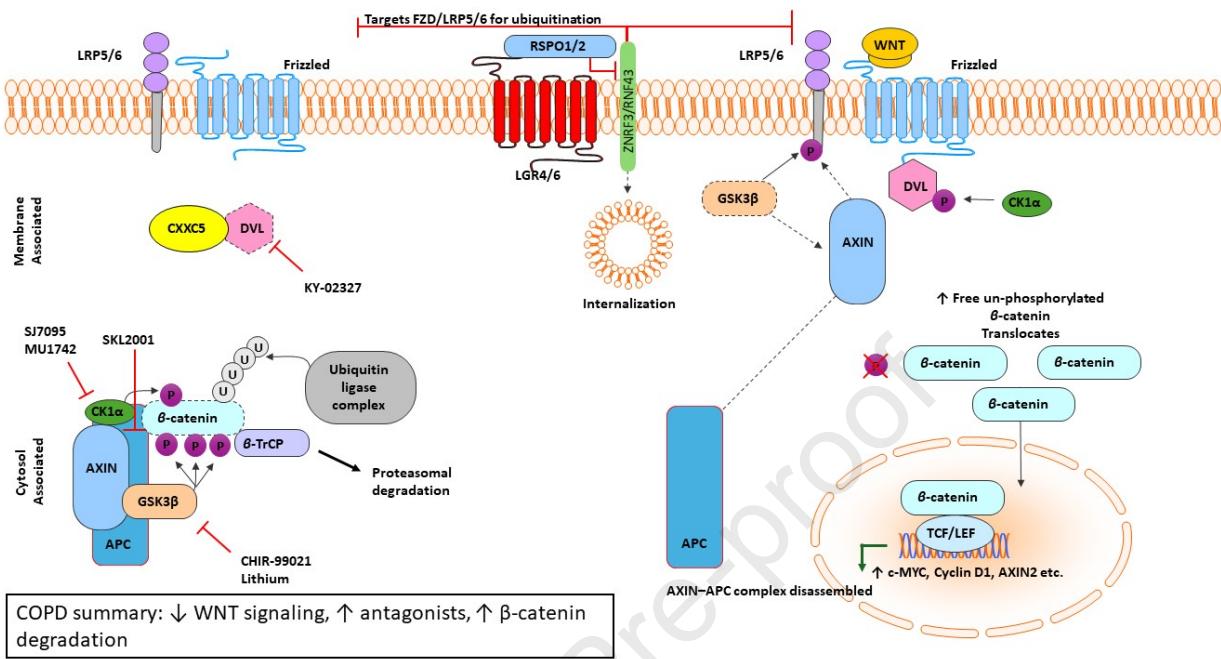
4808

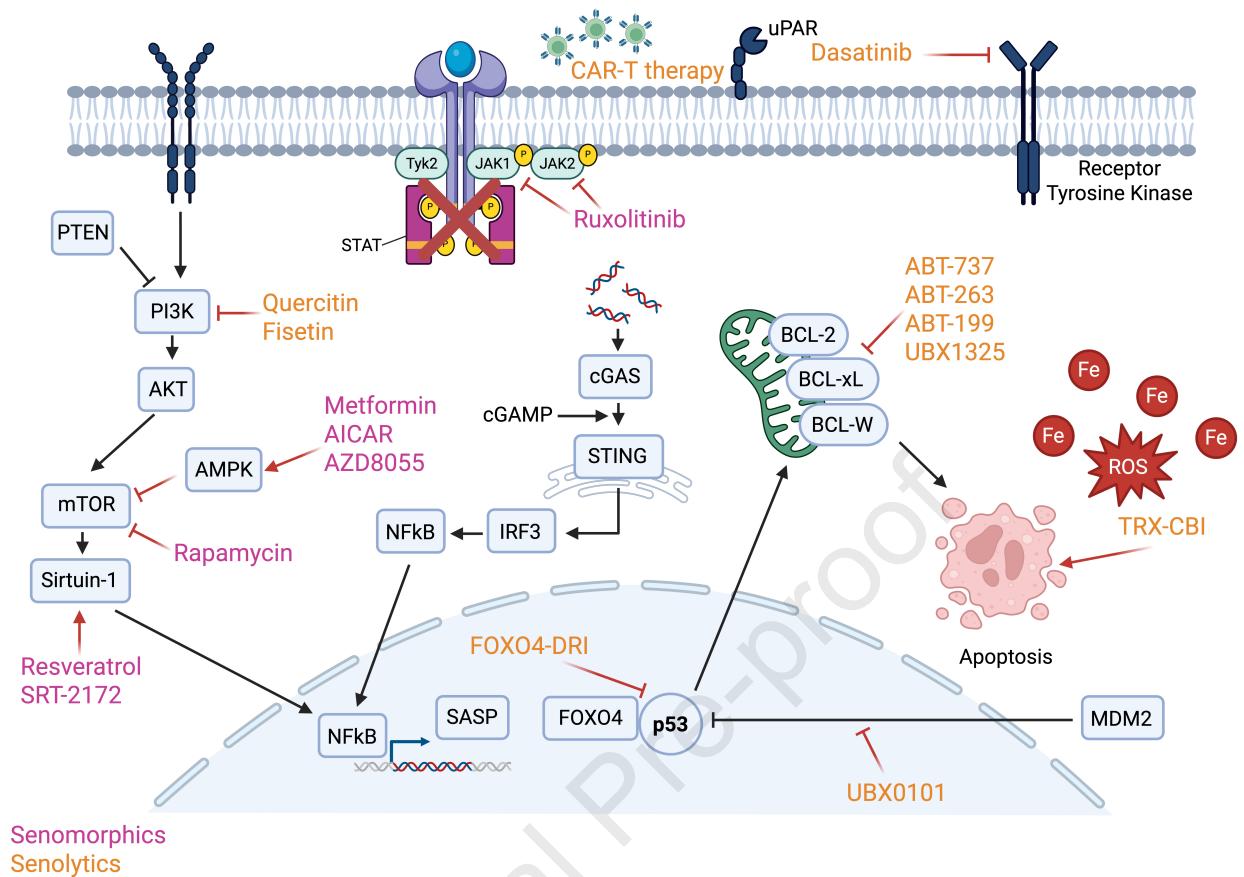

4809 **Table 1: EVs as mediators of tissue repair and regeneration in COPD**

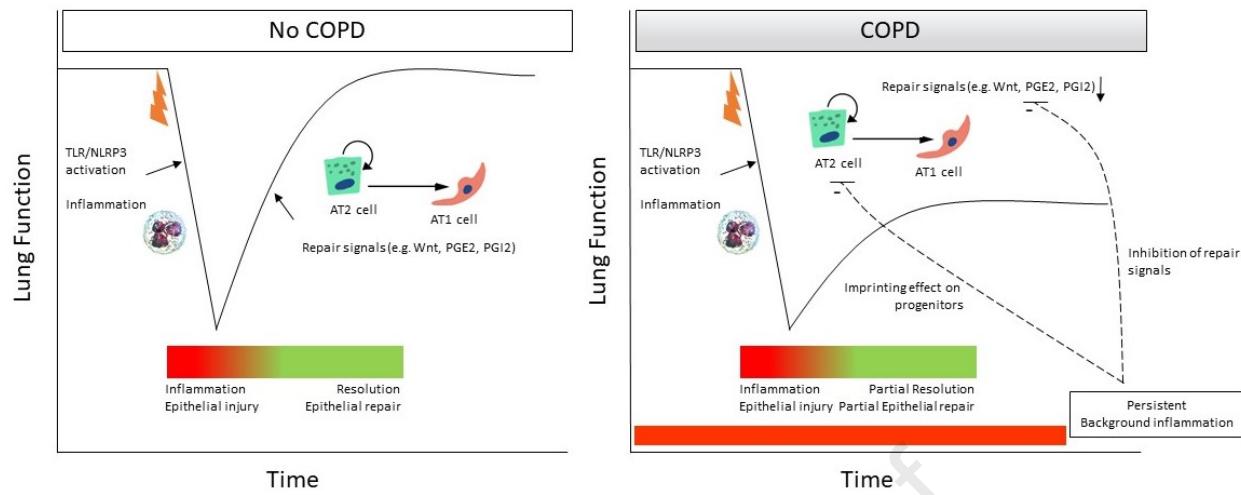

EV source	Isolation method	Concentration / Dose / Time frame	Preclinical COPD model employed	Route of administration	Effects observed	Mechanism of action	Reference
Human lung fibroblasts (MRC5)	Ultrafiltration and SEC	1.5x10 ⁹ and 4.5x10 ⁹ EVs, 5 doses, 8 days	Elastase-induced lung injury in mice	Intratracheal	Improved lung function and reduced lung injury	Not mentioned	¹⁴⁹
Human umbilical cord MSCs	Ultracentrifugation	EVs isolated from 2.5x10 ⁶ cells, once	12-week CS model in rats	Intratracheal	Reduced inflammation and decreased emphysema	Modulation of the NF-κB pathway	⁶⁰¹
Transfected (WNT-3A) HEK293T cells	Ultracentrifugation	2x10 ⁹ EVs, 4 doses, 14 days	Elastase-induced lung injury in mice	Intravenous	Improved lung function and reduced lung injury	WNT-3A signaling	⁶⁵

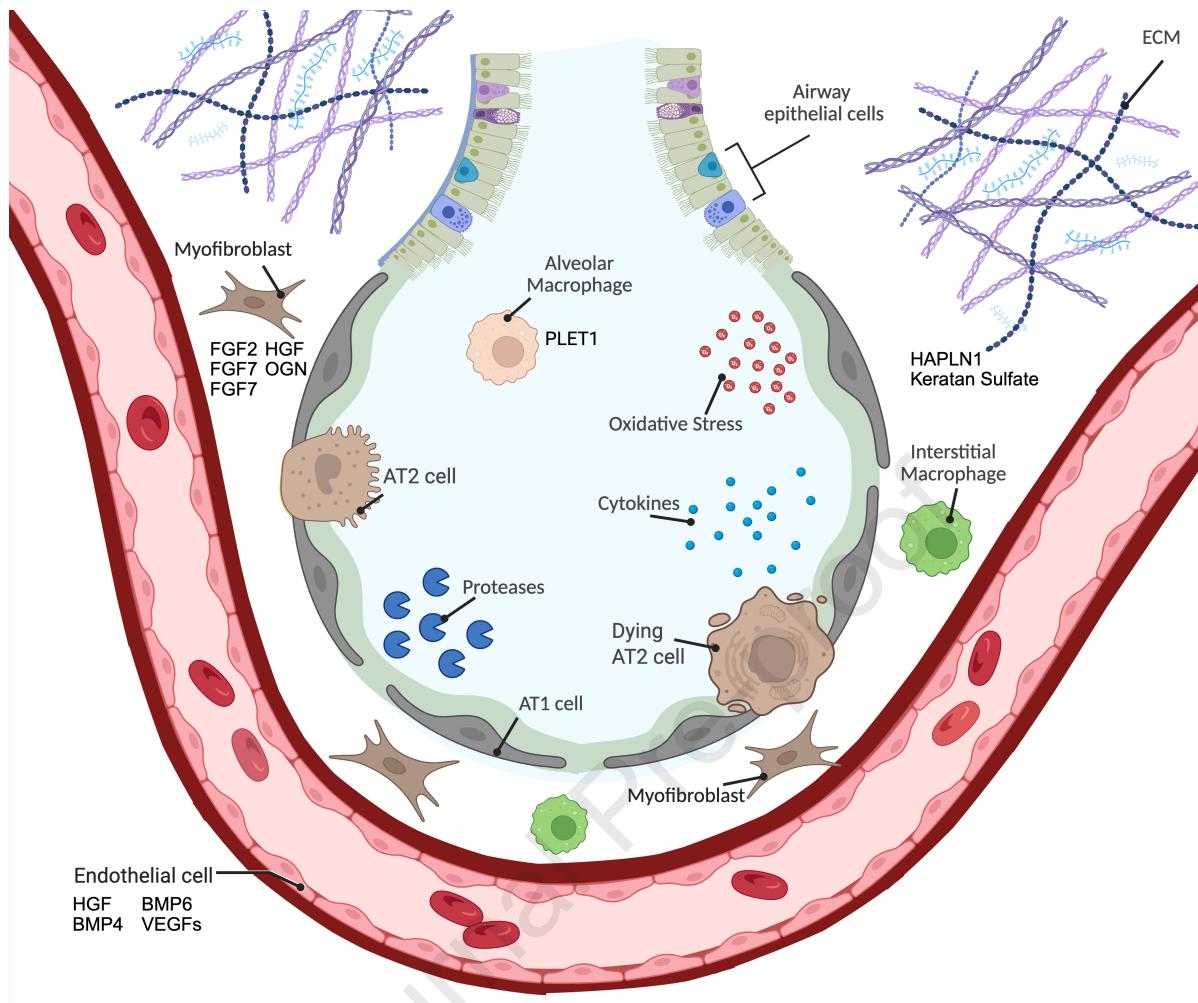
Healthy and emphysematous MSCs	Ultracentrifugation	EVs isolated from 1x10 ⁶ cells, once	Elastase-induced lung injury in mice	Intravenous	Healthy EVs reduced lung injury and inflammation	Reduction of pro-inflammatory cytokines (IL-1 β , TGF- β , and IL-10)	⁶⁰²
Human adipose-derived stem cells	Ultracentrifugation	Dose unclear (based on protein concentration), once, 14 days	Elastase-induced lung injury in mice	Intratracheal	No improvement on lung injury	FGF2 signaling	⁶⁰⁴
Human platelets	Not mentioned	2.5x10 ¹⁰ and 5.0x10 ¹⁰ EVs/mL, 12 doses	16-week CS model in mice	Nebulized	Improved lung function and reduced lung injury	Reduced NF- κ B activation and apoptosis	⁶⁰⁵
Human bone marrow-derived MSCs	Ultracentrifugation	EVs isolated from 4x10 ⁶ cells, once	16-week CS model in mice	Intratracheal and intravenous	Intratracheal administration reduced lung injury, intravenous not	Not mentioned	⁶⁰³

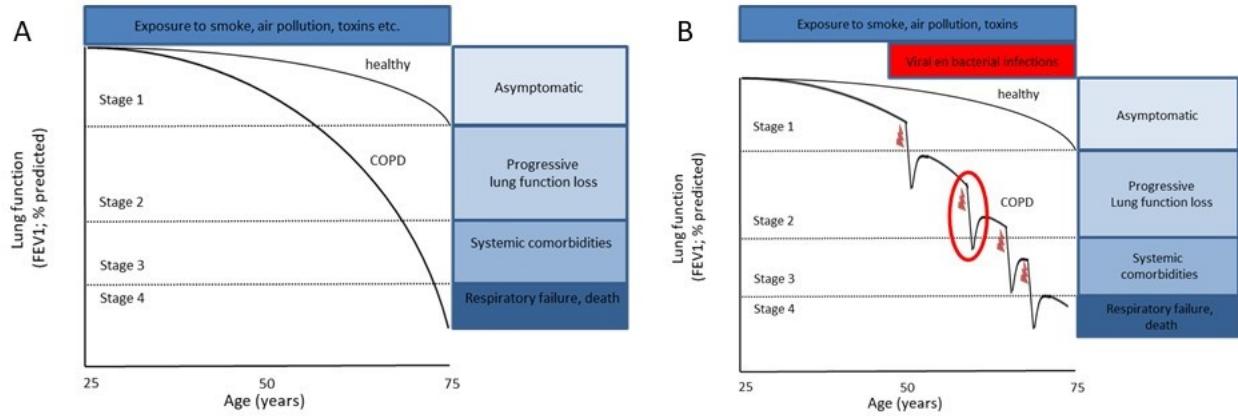
Human bone marrow-derived MSCs	Size exclusion chromatography and affinity chromatography	0.5x10 ⁸ , 1.0x10 ⁸ or 1.5x10 ⁸ EVs/kg, 5 doses	4-week CS model + intratracheal LPS in rats	Nebulized and intravenous	Improved lung function, reduced inflammation. Most pronounced with lowest dose, no effect intravenous	lung	Suppression of the WNT/β-catenin signaling pathway	⁵⁴¹
--------------------------------	---	--	---	---------------------------	---	------	--	----------------


4810






Absence of Wnt ligand:
 β -cat degradation


Wnt activation:
 β -cat accumulation and target gene activation

