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The linear stability of nanofluid boundary-layer flow over a flat plate is investigated
using a two-phase formulation that incorporates the Brinkman (1952 J. Chem. Phys.,
vol. 20, pp. 571–581) model for viscosity along with Brownian motion (BM) and
thermophoresis (TP), building upon the earlier work of Buongiorno (2006 J. Heat
Transfer, vol. 128, pp. 240–250). Solutions to the steady boundary-layer equations reveal a
thin nanoparticle concentration layer near the plate surface, with a characteristic thickness
of O(Re−1/2Sc−1/3), for a Reynolds number Re and Schmidt number Sc. When BM and
TP are neglected, the governing equations reduce to the standard Blasius formulation
for a single-phase fluid, and the nanoparticle concentration layer disappears, resulting in
a uniform concentration across the boundary layer. Neutral stability curves and critical
conditions for the onset of the Tollmien–Schlichting (TS) wave are computed for a range
of nanoparticle materials and volume concentrations. Results indicate that while the
effects of BM and TP are negligible, the impact of nanoparticle density is significant.
Denser nanoparticles, such as silver and copper, destabilise the TS wave, whereas lighter
nanoparticles, like aluminium and silicon, establish a small stabilising effect. Additionally,
the viscosity model plays a crucial role, with alternative formulations leading to different
stability behaviour. Finally, a high Reynolds number asymptotic analysis is undertaken for
the lower branch of the neutral stability curve.

Key words: boundary layers, boundary layer stability, instability

© The Author(s), 2026. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1028 A45-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
6.

11
12

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0003-4324-530X
https://orcid.org/0000-0001-8204-8419
mailto:christian.thomas@mq.edu.au
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/jfm.2026.11122


C. Thomas, S.O. Stephen, J.S.B. Gajjar and P.T. Griffiths

1. Introduction
This paper is concerned with the influence of nanofluids on the linear stability of
disturbances in the boundary-layer flow over a flat plate. Nanofluids are fluids containing
nanoscale particles ranging from 1 to 100 nm, dispersed in a base fluid like water. These
nanoparticles, composed of metal-based or carbon-based materials, enhance the thermal
properties of the base fluid.

Since the seminal work of Choi (1995), nanofluids have received considerable interest,
with a rapid growth in annual publications (Taylor et al. 2013). Numerous studies have
investigated the thermal benefits of nanofluids, including comprehensive reviews by
Das, Choi & Patel (2006), Wang & Mujumdar (2008a,b), Kakaç & Pramuanjaroenkij
(2009), Mahbubul, Saidur & Amalina (2012) and Mishra et al. (2014). These thermal
improvements have led to a wide range of heat transfer applications, including cooling
systems for automotive engines (Sidik, Yazid & Mamat 2015), electronics (Bahiraei &
Heshmatian 2018), nuclear systems (Buongiorno & Hu 2009), solar thermal systems
(Khullar et al. 2012), biomedical processes (Sheikhpour et al. 2020) and industrial
applications (Wong & Leon 2010).

Despite the ongoing interest in nanofluids for their thermal benefits, relatively few
investigations have examined the impact of nanofluids on the hydrodynamic stability of
flows. This study aims to address this knowledge gap by investigating the capabilities of
nanofluids in controlling laminar–turbulent transition processes.

1.1. Modelling nanofluid flows
A key aspect of modelling nanofluid flows is how suspended nanoparticles modify the
fluid’s effective viscosity. For dilute suspensions of rigid, spherical particles, Einstein
(1906) showed that the dynamic viscosity increases linearly with the nanoparticle volume
concentration φ. He defined the effective dynamic viscosity as

μ∗ =μ∗
bf(1 + 2.5φ), (1.1)

where μ∗
bf is the dynamic viscosity of the base fluid. Since Einstein’s work, many viscosity

models have been proposed to account for additional factors, including particle shape,
size distribution and particle–particle interactions. Batchelor (1977) extended Einstein’s
formula to include the effects of Brownian motion (BM) (that is, the random movement
of nanoparticles in a base fluid), while Brinkman (1952) proposed a semiempirical
correlation valid for nanoparticle volume concentrations up to approximately 4 %.
(The formulae for the Batchelor and Brinkman models are given in the subsequent
section.) Comprehensive reviews of nanofluid viscosity models, including experimental
and theoretical developments, are provided by Wang & Mujumdar (2008a) and Mishra
et al. (2014).

Another key aspect of nanofluid modelling is the treatment of the fluid either as a single-
phase or a two-phase flow. Single-phase models treat the nanofluid as a homogeneous
mixture with effective properties, while two-phase models account for interactions
between the base fluid and nanoparticles. The latter approach can capture additional
effects such as particle migration, BM and thermophoresis (TP) (that is, the movement
of nanoparticles in a base fluid due to a temperature gradient). Moreover, two-phase flow
models include a continuity equation for the nanoparticle volume concentration.

The steady boundary-layer flow over a flat plate has been investigated by Buongiorno
(2006), Avramenko, Blinov & Shevchuk (2011) and MacDevette, Myers & Wetton (2014).
These studies employed the Brinkman (1952) model to describe the nanofluid viscosity
and incorporated BM and TP into the governing equations. To simplify the analysis,
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Buongiorno (2006) assumed the flow to be incompressible, even though modelling
the nanofluid as a two-component mixture implies a non-constant density. Despite this
apparent inconsistency, Buongiorno (2006) showed that the effects of BM and TP are
negligible in nanofluids and attributed the observed heat transfer benefits to the improved
thermophysical properties of the nanoparticles.

While acknowledging that BM and TP effects are weak, Avramenko et al. (2011) derived
boundary-layer equations similar to those of Blasius (1908). However, despite accounting
for compressibility effects in the base flow, the study implemented several simplifying
assumptions. Notably, the incompressible flow condition was applied to the nanoparticle
continuity equation (see equations (1)–(4) of Avramenko et al. (2011)). Additionally,
the coefficients for BM and TP, defined below in (2.7), were treated as constants, even
though they depend on temperature and nanoparticle volume concentration, respectively.
Yet despite these simplifications, Avramenko et al. (2011) demonstrated that a thin
concentration layer forms near the plate surface. This concentration layer modifies the
velocity and temperature fields in the near-wall region, which may, in turn, influence
instabilities within the boundary layer.

Both Buongiorno (2006) and Avramenko et al. (2011) confirmed that heat transfer,
measured by the Nusselt number Nu, is enhanced as the nanoparticle volume
concentration φ increases. In contrast, MacDevette et al. (2014), who also confirmed that
BM and TP are negligible, observed a reduced heat transfer coefficient as φ increases.
They attributed the discrepancy with earlier studies to differences in the definition of the
heat transfer coefficient.

The study of nanofluids in boundary-layer flows has been extended to include flows
past vertical plates (Kuznetsov & Nield 2010), planar wall jets (Turkyilmazoglu 2016),
stretching sheets (Reddy et al. 2025) and the flow due to a rotating-disk (Bachok, Ishak &
Pop 2011; Turkyilmazoglu 2014; Mehmood & Usman 2018), with these studies reporting
enhanced heat transfer due to the introduction of nanoparticles.

Using triple-deck theory, Wasaif (2023) modelled a nanofluid boundary-layer flow past
a hump, on an otherwise flat plate. The study demonstrated that a nanofluid can suppress
the region of flow separation along the rear side of the bump. More recently, Gandhi,
Nepomnyashchy & Oron (2025) examined thermosolutal instabilities in a nanofluid layer
with a deformable surface, showing how the Soret effect and thermal properties influence
instability characteristics.

1.2. Linear stability studies
The linear stability of the incompressible Blasius boundary layer has been extensively
studied, beginning with the seminal investigations of Tollmien (1933) and Schlichting
(1933), which led to the Orr–Sommerfeld equation. These studies employed the parallel
flow approximation, where the flow is assumed to be unidirectional and depends only on
the wall-normal coordinate. The theoretical predictions for the Tollmien–Schlichting (TS)
wave were subsequently confirmed experimentally by Schubauer & Skramstad (1947).
Further theoretical and experimental insights into the stability of TS waves were reported
by Jordinson (1970), Barry & Ross (1970), Ross et al. (1970) and Gaster (1974), amongst
many others.

Using triple-deck theory, Smith (1979) undertook an asymptotic, high Reynolds number
Re analysis to describe the structure of the lower branch of the neutral stability curve in
the Blasius boundary layer (Lin 1955). The triple-deck framework consists of three layers:
an upper deck, representing the inviscid outer flow and spans a thickness of O(Re−3/8); a
main deck, corresponding to the boundary layer, with thickness O(Re−4/8); and a lower
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deck, a thin viscous sublayer of thickness O(Re−5/8), where viscous–inviscid interactions
are dominant. (A formal definition for the Reynolds number Re is given below in (2.15a))
A subsequent study by Bodonyi & Smith (1981) employed a multideck approach to derive
the corresponding structure of the upper branch of the neutral stability curve. Later, Smith
(1989) extended the asymptotic analysis of the lower branch to compressible boundary-
layer flows.

Building on earlier studies, Bertolotti, Herbert & Spalart (1992) employed parabolised
stability equations to investigate both the linear and nonlinear development of TS waves in
the Blasius boundary layer. Healey (1995) compared the asymptotic scalings of the lower
and upper branches with solutions from the Orr–Sommerfeld equation and experimental
observations. More recently, both asymptotic and numerical approaches have been utilised
to model the effects of non-Newtonian viscosity (Griffiths, Gallacher & Stephen 2016)
and temperature-dependent viscosity (Miller et al. 2018) on the stability of the Blasius
boundary layer.

To the authors’ knowledge, there are only two previous studies concerning the
linear stability of nanofluid boundary-layer flows. The first, by Turkyilmazoglu (2020),
considered the application of nanofluids to several configurations, including the Kelvin–
Helmholtz instability, Rayleigh–Bénard convection, instabilities in rotating disk flows and
instabilities in the boundary-layer flow over a flat plate. Turkyilmazoglu modelled the
latter flow as a single-phase flow, with quantities scaled on nanofluid properties, i.e.
the combined characteristics of the base fluid and nanoparticles. This approach led to
a Reynolds number based on nanofluid characteristics and a base flow described by the
Blasius equation. The findings suggest that the Reynolds number of the nanofluid can
be predicted using the Reynolds number of the base fluid. Moreover, results indicate
that denser nanoparticle materials, like silver (Ag), stabilise the flow, while less dense
nanoparticle materials, such as alumina (Al2O3), destabilise the flow at sufficiently larger
volume concentrations φ. However, the rationale for scaling quantities on nanofluid
characteristics is unclear, as the resulting Reynolds number changes as the nanoparticle
volume concentration φ increases, making it difficult to compare solutions. In the
following study, the nanofluid flow is modelled as a two-phase flow that includes diffusion
effects due to BM and TP, with the Reynolds number based on the base fluid properties to
facilitate comparisons across different nanoparticle materials and variable φ.

A second study, by Laouer et al. (2024), examined the linear stability of a nanofluid
flow past stationary and moving wedges. Similar to Turkyilmazoglu (2020), Laouer et al.
(2024) employed a single-phase flow approach, using the base flow formulation of Yacob,
Ishak & Pop (2011) and a linear stability analysis that simplifies to the standard Orr–
Sommerfeld equation for a regular fluid. Laouer et al. (2024) showed that, for a nanofluid
flow over a stationary wedge due to a favourable pressure gradient, increasing the volume
concentration φ leads to a destabilising effect. Additionally, Laouer and coworkers suggest
that heavier nanoparticle materials, such as copper (Cu), have a stabilising effect, while
lighter materials, like titanium oxide (TiO2) and Al2O3, destabilise the flow. However, this
latter finding appears to contradict the results presented in figure 8 of their paper, which
shows that Cu nanoparticles shift neutral stability curves to the left and smaller Reynolds
numbers, while TiO2 and Al2O3 nanoparticles shift neutral stability curves to the right
and higher Reynolds numbers.

1.3. Outline of paper
The following study investigates the linear stability of nanofluid flow over a flat plate
using a two-phase flow model that accounts for BM and TP. This model addresses
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the inconsistencies in previous single-phase studies and provides a physically consistent
method for analysing stability trends. Both numerical and asymptotic analyses are
undertaken to compute neutral stability curves and examine the lower branch behaviour
at high Reynolds numbers. The most amplified TS disturbances appear near the lower
branch of the neutral curve, and this, combined with the need to validate our numerical
solutions, motivates the analysis of the lower rather than the upper branch.

The remainder of this paper is outlined as follows. The governing equations are
introduced in the next section, followed by the steady, two-dimensional boundary-
layer equations and its solutions in § 3. Linear stability results for three-dimensional
disturbances, including neutral stability curves and critical conditions, are presented in
§ 4. An asymptotic analysis of the lower branch is provided in § 5. Conclusions are given
in § 6.

2. Governing equations

2.1. Model
Consider the flow of a nanofluid over a semi-infinite flat plate with free stream velocity
U∗∞. (Here, an asterisk denotes dimensional quantities.) The model is given in Cartesian
coordinates x∗ = (x∗, y∗, z∗), where x∗ measures the distance along the surface of the
flat plate, y∗ denotes the direction normal to the plate and z∗ the spanwise direction.
Consequently, the governing system of equations comprise the continuity, momentum and
energy equations for fluid motion (Ruban & Gajjar 2014), along with a continuity equation
for the nanoparticles (Buongiorno 2006; Avramenko et al. 2011; MacDevette et al. 2014),

∂ρ∗

∂t∗
+ ∇∗ · (ρ∗u∗)= 0, (2.1a)

ρ∗
(
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

)
= −∇∗ p∗ + ∇∗ ·

(
μ∗
(

∇∗u∗ + (∇∗u∗)T − 2
3
∇∗ · u∗I

))
,

(2.1b)

ρ∗
(
∂ (c∗T ∗)
∂t∗

+ (u∗ · ∇∗)
(
c∗T ∗))= ∇∗ · (k∗∇∗T ∗)

+ (ρ∗c∗)np

(
D∗

B∇∗φ + D∗
T

∇∗T ∗

T ∗

)
· ∇∗T ∗,

(2.1c)
∂φ

∂t∗
+ ∇∗ · (φu∗)= ∇∗ ·

(
D∗

B∇∗φ + D∗
T

∇∗T ∗

T ∗

)
, (2.1d)

for a velocity u∗ = (u∗, v∗, w∗), pressure p∗, temperature T ∗ and dimensionless
nanoparticle volume concentration φ. Here, I is the identity matrix.

The density of the nanofluid ρ∗ is defined using the law of mixtures as

ρ∗ = (1 − φ)ρ∗
bf + φρ∗

np, (2.2)

where subscripts bf and np represent quantities associated with the base fluid and
nanoparticles, respectively. In addition,

ρ∗c∗ = (1 − φ)(ρ∗c∗)bf + φ(ρ∗c∗)np, (2.3)
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where c∗ denotes the specific heat capacity of the nanofluid, while the thermal
conductivity of the nanofluid k∗ is given by the Maxwell (1881) model:

k∗ =
⎛⎝k∗

np + 2k∗
bf + 2φ

(
k∗

np − k∗
bf

)
k∗

np + 2k∗
bf − φ

(
k∗

np − k∗
bf

)
⎞⎠ k∗

bf. (2.4)

Alternative models for k∗ may be considered as discussed in Wang & Mujumdar (2008a).
The dynamic viscosity of the nanofluid μ∗, used throughout the subsequent study, is

given by the Brinkman (1952) model,

μ∗ = μ∗
bf

(1 − φ)2.5
, (2.5)

for a base fluid dynamic viscosityμ∗
bf. The Brinkman relation is known to under predict the

dynamic viscosity for φ > 0.01 (MacDevette et al. 2014). However, for theoretical purposes
and to demonstrate trends, here we consider nanoparticle volume concentrations φ up
to 10 % of the fluid volume. Similar to the thermal conductivity k∗, alternative models
may be considered for the dynamic viscosity μ∗, as listed in Wang & Mujumdar (2008a)
and Mishra et al. (2014), which encompass properties such as the size and distribution of
nanoparticles. For instance, Batchelor (1977) modelled the dynamic viscosity as

μ∗ =μ∗
bf

(
1 + 2.5φ + 6.2φ2

)
, (2.6a)

whereas Pak & Cho (1998) and Maiga et al. (2004) obtained the correlations

μ∗ =μ∗
bf

(
1 + 39.11φ + 533.9φ2

)
and μ∗ =μ∗

bf

(
1 + 7.3φ + 123φ2

)
, (2.6b,c)

for nanofluids inside circular pipes and tubes, respectively.
The latter two terms of (2.1c) and the two terms on the right-hand side of (2.1d) model

the respective effects of BM and TP, with coefficients

D∗
B = k∗

B T ∗

3πμ∗
bfd

∗
np

≡ C∗
B T ∗ and D∗

T = βTμ
∗
bfφ

ρ∗
bf

≡ C∗
Tφ. (2.7a,b)

Here, k∗
B denotes the Boltzmann constant, d∗

np the diameter of the nanoparticles and the
proportionality constant

βT = 0.26
k∗

bf

2k∗
bf + k∗

np
, (2.8)

as given in McNab & Meisen (1973), Buongiorno (2006) and MacDevette et al. (2014).
The nanofluid flow is subject to the no-slip condition and the fixed temperature condition

on the plate surface

u∗ = 0 and T ∗ = T ∗
w on y∗ = 0, (2.9a,b)

where T ∗
w denotes the constant wall temperature. (Here, a subscript w references wall

conditions.) In addition,

D∗
B
∂φ

∂y∗ + D∗
T

T ∗
∂T ∗

∂y∗ = 0 on y∗ = 0, (2.9c)

following Avramenko et al. (2011), which imposes that the total flux of nanoparticles at
the plate surface is zero. Finally, in the far-field, the flow is subject to the free stream
conditions
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Nanoparticles

Plate

U∗∞

δ∗
y∗

x∗ u∗ = v∗ = 0,  T∗  = T∗
w

u∗ = U∗∞,  T ∗ = T ∗∞, φ = φ∞

Figure 1. Diagram of a nanofluid flow, composed of a base fluid (bf) and nanoparticles (np) over a flat plate.
Here, δ∗ represents the boundary-layer thickness.

u∗ → U∗∞, v∗ → 0, w∗ → 0,
p∗ → p∗∞, T ∗ → T ∗∞, φ→ φ∞ as y∗ → ∞, (2.10a–f )

where p∗∞, T ∗∞ and φ∞ denote the free stream pressure, the free stream temperature and
the dimensionless free stream nanoparticle volume concentration, respectively. Figure 1
shows a schematic diagram of the nanofluid flow over a flat plate.

2.2. Non-dimensionalisation
The governing system of equations (2.1) are non-dimensionalised by setting

x∗ = L∗x, u∗ = U∗∞u, t∗ = L∗t/U∗∞,
p∗ = p∗∞ + ρ∗

bfU
∗2∞ p, T ∗ = T ∗∞T, ρ∗ = ρ∗

bfρ,

μ∗ =μ∗
bfμ, c∗ = c∗

bfc, k∗ = k∗
bfk, (2.11a–i)

for a characteristic length scale L∗. Consequently, (2.1) becomes

∂ρ

∂t
+ ∇ · (ρu)= 0, (2.12a)

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇ p + 1
Re

∇ ·
(
μ

(
∇u + (∇u)T − 2

3
∇ · uI

))
, (2.12b)

ρ

(
∂ (cT )

∂t
+ (u · ∇) (cT )

)
= 1

RePr
∇ · (k∇T )+ 1

RePrLe

(
T ∇φ + φ∇T

NBTT

)
· ∇T,

(2.12c)
∂φ

∂t
+ ∇ · (φu)= 1

ReSc
∇ ·

(
T ∇φ + φ∇T

NBTT

)
, (2.12d)

where

ρ = 1 + (ρ̂ − 1)φ for ρ̂ = ρ∗
np

ρ∗
bf
, (2.13a)

ρc = 1 + (ρ̂ĉ − 1)φ for ρ̂ĉ = (ρ∗c∗)np

(ρ∗c∗)bf
, (2.13b)

k =
(

k̂ + 2 + 2(k̂ − 1)φ

k̂ + 2 − (k̂ − 1)φ

)
for k̂ = k∗

np

k∗
bf
. (2.13c)
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2.0
(a)

(b)

1.5

1.0

1.5

k

c

ρ

1.0

0.5

0 0.02 0.04 0.06

Brinkman (1952)

Batchelor (1977)

Maiga et al. (2004)

Pak & Cho (1998)μ

0.08 0.10

0 0.02 0.04 0.06 0.08 0.10

φ∞

φ∞

Figure 2. (a) Non-dimensional dynamic viscosity μ as a function of φ∞, for the Brinkman (1952), Batchelor
(1977), Pak & Cho (1998) and Maiga et al. (2004) models. (b) Non-dimensional density ρ, specific heat
capacity c and thermal conductivity k as a function of φ∞, for Cu nanoparticles in water. Refer to table 1
for fluid and nanoparticle properties.

Moreover, in the case of the Brinkman (1952) viscosity model, given by (2.5), the non-
dimensional dynamic viscosity is given as

μ= 1
(1 − φ)2.5

. (2.14)

Similar representations for μ are given for the Batchelor (1977), Pak & Cho (1998) and
Maiga et al. (2004) models.

Figure 2 compares the four models of the non-dimensional dynamic viscosity μ along
with the non-dimensional density ρ, thermal conductivity k and specific heat capacity c
for Cu nanoparticles in water (see table 1 for thermophysical properties). These quantities
are plotted as functions of the free stream nanoparticle volume concentration φ∞. As φ∞
increases, the Brinkman and Batchelor viscosity models show a similar rate of increase,
while the Pak–Cho and Maiga viscosity models exhibit a more rapid increase. In addition,
ρ also increases with φ∞. Furthermore, k increases, improving the flows heat transfer
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ρ∗ (kg m− 3) μ∗ (kg (ms)−1) k∗ (W (mK)−1) c∗ (J (kgK)−1) ρ̂ k̂ ĉ βT Le Sc NBT

Water 1000 0.001 0.61 4180 – – – – – – –
Ag 10 500 — 430 235 10.50 704.9 0.0562 0.00037 11 250 45 509 0.0597
Cu 8933 — 400 385 8.93 655.7 0.0921 0.00040 8072 45 509 0.0556
Copper oxide (CuO) 6320 — 77 532 6.32 126.2 0.1273 0.00203 8257 45 509 0.0108
Al2O3 3950 — 35 800 3.95 57.4 0.1914 0.00438 8785 45 509 0.0050
TiO2 4250 — 8.95 686 4.25 14.7 0.1641 0.01559 9522 45 509 0.0014
Al 2710 — 235 904 2.71 385.2 0.2163 0.00067 11 332 45 509 0.0327
Si 2330 — 150 710 2.33 245.9 0.1699 0.00105 16 781 45 509 0.0210

Table 1. Thermophysical properties of water and various materials used for nanoparticles, as given in Buongiorno (2006), Wang & Mujumdar (2008a), Bachok et al.
(2011), MacDevette et al. (2014), Turkyilmazoglu (2014, 2020) and at https://periodictable.com/Elements. Here, free stream temperature T ∗∞ = 300 K, nanoparticle diameter
d∗

np = 20 nm and Prandtl number Pr = 6.85. The ratios ρ̂, k̂ and ĉ are based on water as the base fluid.
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capability, while c exhibits a reduction, causing temperature changes within the flow to
occur more rapidly.

The dimensionless Reynolds, Prandtl, Lewis and Schmidt numbers are defined as

Re = U∗∞L∗ρ∗
bf

μ∗
bf

, Pr = μ∗
bfc

∗
bf

k∗
bf
, (2.15a,b)

Le = k∗
bf

(ρ∗c∗)npC∗
B T ∗∞

, Sc = μ∗
bf

ρ∗
bfC

∗
B T ∗∞

, (2.15c,d)

while the ratio of BM to TP is given as

NBT = C∗
B T ∗∞
C∗

T
. (2.16)

Finally, the boundary conditions (2.9) on the plate surface are recast as

u = 0 and T = Tw

(
≡ T ∗

w

T ∗∞

)
on y = 0, (2.17a,b)

and

T
∂φ

∂y
+ φ

NBTT

∂T

∂y
= 0 on y = 0, (2.17c)

while the boundary conditions (2.10) in the free stream are given as

u → 1, v→ 0, w→ 0,
p → 0, T → 1, φ→ φ∞ as y → ∞. (2.18a–f )

Table 1 presents the thermophysical properties of various materials used for
nanoparticles. The non-dimensional ratios ρ̂, k̂ and ĉ are based on water as the base
fluid, where the Prandtl number Pr = 6.85, while the Lewis number Le, the Schmidt
number Sc and the ratio NBT are given for the free stream temperature T ∗∞ = 300 K and the
nanoparticle diameter d∗

np = 20 nm. Both Le and Sc are of the order 104 for all materials
listed in table 1.

3. Steady boundary-layer flow

3.1. Boundary-layer equations
Following the derivation of Ruban (2017), the steady, two-dimensional boundary-
layer equations are obtained by assuming a zero pressure gradient, setting w= 0, and
considering solutions that are independent of the z-direction and time t . On introducing
the Prandtl boundary-layer transformation

y = Re−1/2Y, (3.1)

with

u(x, y)= UB(x, Y ), v(x, y)= Re−1/2VB(x, Y ),
T (x, y)= TB(x, Y ), φ(x, y)= φB(x, Y ),
μ(x, y)=μB(x, Y ), ρ(x, y)= ρB(x, Y ),
c(x, y)= cB(x, Y ), k(x, y)= kB(x, Y ), (3.2a–h)
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and letting Re → ∞, the non-dimensional governing equations (2.12) become

∂(ρBUB)

∂x
+ ∂(ρB VB)

∂Y
= 0, (3.3a)

ρB

(
UB
∂UB

∂x
+ VB

∂UB

∂Y

)
= ∂

∂Y

(
μB

∂UB

∂Y

)
, (3.3b)

ρB

(
UB
∂(cB TB)

∂x
+ VB

∂(cB TB)

∂Y

)
= 1

Pr
∂

∂Y

(
kB
∂TB

∂Y

)
+ 1

Pr Le

(
TB
∂φB

∂Y

∂TB

∂Y
+ φB

NBTTB

(
∂TB

∂Y

)2
)
,

(3.3c)
∂(φBUB)

∂x
+ ∂(φB VB)

∂Y
= 1

Sc
∂

∂Y

(
TB
∂φB

∂Y
+ φB

NBTTB

∂TB

∂Y

)
. (3.3d)

A self-similar solution is then sought using the similarity variable η= Y/
√

x , coupled
with the Dorodnitsyn–Howarth transformation

ξ =
∫ η

0
ρ(ὴ) dὴ, (3.4)

with

UB(x, Y )= f ′(ξ), VB(x, Y )= 1
2
√

x

(
η f ′ − f

ρ

)
,

TB(x, Y )= θ(ξ), φB(x, Y )= ϕ(ξ),

μB(x, Y )=μ(ξ), ρB(x, Y )= ρ(ξ),

cB(x, Y )= c(ξ), kB(x, Y )= k(ξ). (3.5a–h)

(For notational simplicity, μ, ρ, c and k are reused to denote their similarity profiles.)
Consequently, the following boundary-layer equations are derived:

2
(
ρμ f ′′)′ + f f ′′ = 0, (3.6a)

2
(
ρkθ ′)′ + Pr f (cθ)′ + 2ρθ ′

Le

(
θϕ′ + ϕθ ′

NBTθ

)
= 0, (3.6b)

2ρ2

Sc

(
ρ

(
θϕ′ + ϕθ ′

NBTθ

))′
+ f ϕ′ = 0, (3.6c)

subject to the boundary conditions

f = f ′ = 0, θ = Tw on ξ = 0, (3.6d-f )

θϕ′ + ϕθ ′

NBTθ
= 0 on ξ = 0 (3.6g)

and

f ′ → 1, θ → 1, ϕ→ φ∞ as ξ → ∞, (3.6h–j)

where a prime denotes differentiation with respect to ξ .

3.2. Boundary-layer simplifications
In the limits Le → ∞ and Sc → ∞, (3.6c) simplifies to ϕ′ = 0, implying ϕ = φ∞
everywhere. Consequently, μ, ρ, c and k are constants, and the boundary-layer equations
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(3.6a) and (3.6b) reduces to

2ρμ f ′′′ + f f ′′ = 0 and 2ρμθ ′′ + P̂r f θ ′ = 0, (3.7a,b)

where P̂r =μcPr/k.
A further simplification of the boundary-layer equations is obtained by introducing

p = ρ p̂, T = 1 + (Tw − 1)T̂ , R̂e = ρ

μ
Re = U∗∞L∗ρ∗

μ∗ , (3.8a–c)

into the governing (2.12) and following the procedure outlined in § 3.1 with R̂e → ∞, to
give

2 f ′′′ + f f ′′ = 0 and 2θ̂ ′′ + P̂r f θ̂ ′ = 0, (3.9a,b)

subject to the boundary conditions

f = f ′ = 0, θ̂ = 1 on ξ = 0, (3.9c–e)

and

f ′ → 1, θ̂ → 0, as ξ → ∞. (3.9f ,g)

Here, the similarity solution θ̂ (ξ)= T̂ (x, y), with ρ∗ and μ∗ representing the nanofluid
density (2.2) and viscosity (2.5), respectively. The rescaling in (3.8) absorbs the density
and viscosity, removing them from the governing equations. Consequently, the equations
simplify to the standard Blasius formulation with a modified Prandtl number P̂r and
Reynolds number R̂e based on the nanofluid quantities, allowing the nanofluid flow
to be modelled as a single-phase fluid. Thus, in this simplified formulation, the flow
characteristics are identical to those obtained for the standard Blasius flow, irrespective
of the nanofluid quantities. Hence, in the absence of BM and TP, the Reynolds number of
the nanofluid flow Re is given in terms of R̂e as Re =μR̂e/ρ. A detailed description of the
Navier–Stokes equations in the absence of BM and TP, leading to the derivation of (3.9),
is given in Appendix A.

3.3. Boundary-layer solutions
On the left-hand side of figure 3, the steady streamwise velocity UB = f ′(ξ), temperature
TB = θ(ξ) and nanoparticle volume concentration φB = ϕ(ξ) are plotted for five values of
φ∞ and the wall temperature Tw = 2. Similar profiles are obtained for other values of Tw.
The solid, dashed and chain lines represent solutions of the full boundary-layer equations
(3.6) for Cu nanoparticles in water (see table 1 for thermophysical properties). A thin con-
centration layer develops in the φB profile, consistent with the observations of Avramenko
et al. (2011), which alters the near-wall behaviour of the velocity and temperature profiles.
This behaviour is most clearly illustrated on the right-hand side of figure 3, which plots
the profiles U ′

B = f ′′(ξ), T ′
B = θ ′(ξ) and φ′

B = ϕ′(ξ). These profiles reveal that, in contrast
to the standard Blasius flow, U ′

B does not approach a constant as ξ → 0.
When BM and TP are neglected (i.e. Sc → ∞ and Le → ∞), the concentration layer

disappears with φB = φ∞ everywhere (see the vertical dotted lines in figure 3e). In this
limit, the standard Blasius flow structure is recovered, with U ′

B approaching a constant
near the wall, as indicated by the dotted lines in figure 3(b).

Table 2 compares the base flow properties on the plate surface for varying φ∞ and
Tw = 2. The differences between the results obtained with and without BM and TP are
negligible for φ∞ < 10−3, but grow, due to the impact of the concentration layer, at larger
φ∞.
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Figure 3. Steady base flow profiles for variable φ∞ and Tw = 2, for Cu nanoparticles in water. (a) Streamwise
velocity UB = f ′(ξ), (b) U ′

B = f ′′(ξ), (c) temperature TB = θ(ξ), (d) T ′
B = θ ′(ξ), (e) nanoparticle volume

concentration φB = ϕ(ξ) and ( f ) φ′
B = ϕ′(ξ). Dotted lines depict the equivalent solutions in the instance

Le → ∞ and Sc → ∞.

Since the base flow profiles in figure 3 are plotted against the density-weighted similarity
variable ξ , a physically meaningful measure of the boundary-layer thickness is provided
by the displacement thickness. The dimensional displacement thickness δ∗1 = x∗δ1/Re1/2

x

and momentum thickness δ∗2 = x∗δ2/Re1/2
x , for

δ1 =
∫ ∞

0

1
ρ(ξ)

− f ′(ξ)
ρ∞

dξ and δ2 =
∫ ∞

0

f ′(ξ)
ρ∞

(
1 − f ′(ξ)

)
dξ, (3.10a,b)
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φ∞ U ′
B(0)= f ′′(0) T ′

B(0)= θ ′(0) φB(0)= ϕ(0)

0 0.332057(0.332057) −0.641309(−0.641309) 0.000000(0.000000)
10−6 0.332057 (0.332056) −0.641307 (−0.641304) 0.000001 (0.000001)
10−5 0.332049 (0.332040) −0.641276 (−0.641257) 0.000007 (0.000010)
10−4 0.331979 (0.331884) −0.640981 (−0.640790) 0.000073 (0.000100)
10−3 0.331273 (0.330335) −0.638043 (−0.636146) 0.000726 (0.001000)
10−2 0.324446 (0.315631) −0.610189 (−0.592849) 0.007229 (0.010000)
10−1 0.271857 (0.217365) −0.426271 (−0.339946) 0.070052 (0.100000)

Table 2. Base flow properties on ξ = 0 for variable φ∞ and Tw = 2, where a prime denotes differentiation with
respect to the similarity variable ξ . Solutions based on Cu nanoparticles in water, while the results in brackets
correspond to the solutions obtained in the absence of BM and TP.

are shown in figure 4, along with the shape factor H = δ∗1/δ∗2 . Here, Rex = U∗∞x∗ρ∗
bf/μ

∗
bf

and ρ∞ = ρ∗∞/ρ∗
bf denotes the dimensionless free stream density. Results are plotted for

all seven nanoparticle materials listed in table 1. For all but two of these materials, both
δ1 and δ2 decrease as φ∞ increases. The most significant reductions occur for Ag and
Cu nanoparticles, which have the highest densities (and the largest non-dimensional ρ̂
values). In contrast, silicon (Si) and aluminium (Al) nanoparticles, which have the lowest
densities (and the smallest values of ρ̂), show an increase in δ1 and δ2 as φ∞ increases.
(Solutions corresponding to the case without BM and TP are nearly identical to those
shown in figure 4.)

The thermal displacement thickness δ∗T = x∗δT /Re1/2
x and concentration displacement

thickness δ∗φ = x∗δφ/Re1/2
x , for

δT =
∫ ∞

0

1
ρ(ξ)

− θ(ξ)− Tw
ρ∞(1 − Tw)

dξ and δφ =
∫ ∞

0

1
ρ(ξ)

− ϕ(ξ)

ρ∞φ∞
dξ, (3.11a,b)

are plotted in figure 5 as a function of φ∞. In contrast to the displacement thickness δ1, the
thermal displacement thickness δT increases with increasing φ∞ for all seven nanoparticle
materials. The most pronounced increases are observed for the less dense materials, Al
and Si. On the other hand, the concentration displacement thickness δφ (plotted on a
semilogarithmic scale along the horizontal axis) exhibits only minor variations across the
range of φ∞ shown. However, noticeable differences arise between the materials. Notably,
TiO2 and Al2O3 exhibit larger values of δφ than the other materials. This can be attributed
to their respective NBT values being an order of magnitude smaller than those of the
other materials (see table 1). Thus, TP effects are more dominant than BM effects for
these particular materials. Moreover, as φ∞ approaches zero, δφ tends towards a positive
constant, indicating that ϕ approaches a limiting solution. This behaviour will be examined
in further detail in § 3.4.

Despite the thickening of the thermal boundary-layer, the local Nusselt number,
defined as

Nu = Re1/2
x ρwkwθ ′(0)

1 − Tw
, (3.12)

increases with increasing φ∞, as shown in figure 6. Thus, all of the nanoparticles improve
the heat transfer capabilities of the fluid. The most pronounced increases in Nu are
observed for denser materials with higher thermal conductivities and smaller specific heat
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Figure 4. (a) Displacement thickness δ1, (b) momentum thickness δ2 and (c) shape factor H as functions of
the free stream nanoparticle volume concentration φ∞, for different nanoparticle materials.

capacities, such as Ag and Cu nanoparticles. Consequently, these materials have greater
thermodynamic benefits.

3.4. Asymptotic behaviour in the limit φ∞ → 0
The behaviour of the steady base flow is now examined in the limit as the free stream
nanoparticle volume concentration φ∞ approaches zero. Similarity variables f , θ and ϕ
are expanded in powers of φ∞, as

f (ξ)= f0(ξ)+ φ∞ f1(ξ)+ O(φ2∞), (3.13a)

θ(ξ)= θ0(ξ)+ φ∞θ1(ξ)+ O(φ2∞), (3.13b)

ϕ(ξ)= φ∞ϕ1(ξ)+ O(φ2∞), (3.13c)
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Figure 5. (a) Thermal displacement thickness δT and (b) concentration displacement thickness δφ as
functions of the free stream nanoparticle volume concentration φ∞, for different nanoparticle materials.
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Figure 6. Scaled local Nusselt number NuRe−1/2
x as a function of the free stream nanoparticle volume

concentration φ∞, for different nanoparticle materials.

while the physical quantities μ, ρ, c and k are of the form

(μ, ρ, c, k)(ξ)= 1 + φ∞(μ1, ρ1, c1, k1)(ξ)+ O(φ2∞). (3.13d)

Substituting (3.13) into (3.6a) and (3.6b) and retaining the leading-order terms yields
the Blasius boundary-layer equations for the velocity and temperature

2 f ′′′
0 + f0 f ′′

0 = 0 and 2θ ′′
0 + Pr f0θ

′
0 = 0, (3.14a,b)

subject to the boundary conditions
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f0 = f ′
0 = 0, θ0 = Tw on ξ = 0, (3.14c-e)

f ′
0 → 1, θ0 → 1 as ξ → ∞. (3.14f,g)

Moreover, substituting (3.13) into (3.6c) and equating terms of order φ∞ gives the
following second-order differential equation for ϕ1:

θ0ϕ
′′
1 +

(
θ ′

0 + θ ′
0

NBTθ0
+ Sc f0

2

)
ϕ′

1 + 1
NBT

(
θ ′′

0
θ0

−
(
θ ′

0
θ0

)2
)
ϕ1 = 0, (3.15a)

subject to the boundary conditions

θ0ϕ
′
1 + ϕ1θ

′
0

NBTθ0
= 0 on ξ = 0, (3.15b)

ϕ1 → 1 as ξ → ∞. (3.15c)

Substituting the solution of (3.14) into (3.15) establishes the limiting boundary-value
problem for ϕ1, with solutions presented in figure 7(a) for all seven nanoparticle materials
given in table 1. These solutions illustrate the influence of the BM to TP ratio NBT on the
behaviour of the concentration layer. As NBT decreases, the concentration layer becomes
thicker. Notably, the solution corresponding to TiO2, represented by the green solid line,
exhibits an overshoot near the wall, where ϕ1 > 1 before approaching the free stream value
for larger ξ (beyond the range shown in figure 7a). Conversely, as NBT increases and
BM dominates diffusion effects, the nanoparticle volume concentration ϕ1 → 1 for all
ξ , indicating a uniform concentration profile across the boundary layer.

Figures 7(b) and 7(c) compare the limiting solution ϕ1 and numerical solutions φB/φ∞
for φ∞ ∈ [10−4, 10−1], for Cu and TiO2 nanoparticles, respectively. In both cases, the
numerical solution converges to the limiting profile ϕ1 as φ∞ → 0. Indeed, significant
deviations only emerge for φ∞ = 10−1.

3.5. The concentration layer
The base flow profiles in figures 3 and 7 reveal a thin concentration layer within the
boundary layer, similar to the particle concentration layer reported by Pelekasis & Acrivos
(1995) for the flow of a well-mixed particle suspension past a flat plate. As Sc → ∞, the
concentration layer narrows. Since UB ∼ Y as Y → 0, the following transformations are
introduced to balance the diffusion and convection terms in (3.3d):

Y = Sc−1/3Ȳ , UB = Sc−1/3ŪB, VB = Sc−2/3V̄B, (3.16a–c)

which gives the rescaled concentration equation

∂(φBŪB)

∂x
+ ∂(φB V̄B)

∂Ȳ
= ∂

∂Ȳ

(
TB
∂φB

∂Ȳ
+ φB

NBTTB

∂TB

∂Ȳ

)
. (3.17)

Thus, the concentration layer has a characteristic thickness of O(Re−1/2Sc−1/3).
Substituting (3.16) into (3.3a)–(3.3c), with Le → ∞ and

φB = φ∞ + ψ(x, Ȳ )

Sc1/3 , (3.18)

gives to leading order,

∂ŪB

∂x
+ ∂ V̄B

∂Ȳ
= 0,

∂2ŪB

∂Ȳ 2
= 0,

∂2TB

∂Ȳ 2
= 0. (3.19a–c)
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Figure 7. (a) Scaled profile of the nanoparticle volume concentration ϕ1 in the limit φ∞ → 0, for different
nanoparticle materials. (b,c) Comparisons between the limiting solution ϕ1 and numerical solutions φB/φ∞
for φ∞ = 10−4, φ∞ = 10−2,and φ∞ = 10−1, for Cu and TiO2 nanoparticles.

The leading-order term in the concentration equation (3.17) is also given by (3.19a). Thus,

ŪB = λ̂Ȳ

x1/2 , V̄B = λ̂Ȳ 2

4x3/2 , TB = Tw + σ̂ Ȳ

Sc1/3x1/2
, (3.20a–c)

for λ̂= ρw f ′′(0) and σ̂ = ρwθ
′(0).

The next order term in the concentration equation (3.17) is given as

ŪB
∂ψ

∂x
+ V̄B

∂ψ

∂Ȳ
= Tw

∂2ψ

∂Ȳ 2
, (3.21a)

1028 A45-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
6.

11
12

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2026.11122


Journal of Fluid Mechanics

with boundary conditions

∂ψ

∂Ȳ
+ φ∞σ̂

NBTT 2
wx1/2 = 0 on Ȳ = 0 (3.21b)

and

ψ → 0 as Ȳ → ∞. (3.21c)

Introducing the similarity transformation

ψ(x, Ȳ )= φ∞σ̂Ψ (η̄)
NBTλ̂1/3T 5/3

w

, (3.22a)

for

η̄=
(
λ̂

Tw

)1/3
Ȳ

x1/2 , (3.22b)

gives the similarity equation

d2Ψ

dη̄2 + η̄2

4
dΨ
dη̄

= 0, (3.23a)

with boundary conditions

dΨ
dη̄

= −1 on η̄= 0 (3.23b)

and

Ψ → 0 as η̄→ ∞. (3.23c)

The solution for Ψ is given in terms of the upper incomplete Gamma function Γ ,

Ψ (η̄)=
(

2
3

)2/3

Γ

(
1
3
,
η̄3

12

)
, (3.24)

and is plotted in figure 8(a). At the wall, Ψ (0)≈ 2.0444. Hence, to a first approximation,
the nanoparticle volume concentration is given by

φB = φ∞

(
1 + σ̂Ψ (η̄)

NBTλ̂1/3T 5/3
w Sc1/3

)
. (3.25)

Figures 8(b) and 8(c) compare the exact nanoparticle volume concentration profiles
φB , obtained by solving (3.6), with the approximate solution given by (3.25), for
Cu nanoparticles and Tw = 2. Results are plotted for φ∞ = 10−3 and φ∞ = 10−2. In
both cases, the approximate solution is qualitatively similar to the exact solution, with
only minor differences near the wall, corresponding to a maximum relative error of
approximately 3 %. Such small differences are to be expected since NBTSc1/3 ∼ O(1)
for the parameter settings used in figures 8(b) and 8(c). For materials with smaller NBT
values, such as Al2O3 and TiO2, the approximation is less accurate, and higher-order
terms are required to improve the solution. However, by increasing both Sc and NBT, as
is modelled in figures 8(d) and 8(e), the agreement between the exact and approximate
solutions improves significantly, with the maximum relative error reduced to 0.001 %.
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0

Figure 8. (a) Similarity solution Ψ for the nanoparticle volume concentration, as given by (3.24). (b–e)
Nanoparticle volume concentration profiles φB given by the exact solution to (3.6) (solid blue lines) and the
approximate solution (3.25) (dashed red), for Cu nanoparticles.

4. Linear stability analysis

4.1. Linearised stability equations
The linear stability equations are derived by decomposing the total velocity, pressure,
temperature and nanoparticle volume concentration fields as

u = UB + εũ, v = Re−1/2VB + εṽ, w= εw̃,

p = ε p̃, T = TB + εT̃ , φ = φB + εφ̃, (4.1a–f )

for perturbations q̃ = (ũ, p̃, T̃ , φ̃), with ũ = (ũ, ṽ, w̃) and ε� 1. Similarly,

ρ = ρB + ερ̃, ρc = (ρc)B + ερ̃c̃, c = cB + εc̃,

μ=μB + εμ̃, k = kB + εk̃. (4.2a–e)

Here, base flow quantities QB = (UB, VB, TB, φB) depend on x and y, while perturbations
q̃ are functions of x and t . Substituting (4.1) and (4.2) into (2.12), and linearising in ε,
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gives the following linear stability equations:

ρB∇ · ũ + ∂ρ̃

∂t
+ UB

∂ρ̃

∂x
+ ρB,y ṽ= g1(VB, QB,x ), (4.3a)

ρB

(
∂ ũ

∂t
+ UB

∂ ũ

∂x
+ UB,y ṽ

)
= −∂ p̃

∂x
+ 1

Re

(
μB

(
∇2ũ + 1

3
∂

∂x
∇ · ũ

)
+μB,y

(
∂ṽ

∂x
+ ∂ ũ

∂y

)
+ UB,yyμ̃+ UB,y

∂μ̃

∂y

)
+ g2(VB, QB,x ), (4.3b)

ρB

(
∂ṽ

∂t
+ UB

∂ṽ

∂x

)
= −∂ p̃

∂y
+ 1

Re

(
μB

(
∇2ṽ + 1

3
∂

∂y
∇ · ũ

)
+ 2μB,y

3

(
2
∂ṽ

∂y
−
(
∂ ũ

∂x
+ ∂w̃

∂z

))
+ UB,y

∂μ̃

∂x

)
+ g3(VB, QB,x ),

(4.3c)

ρB

(
∂w̃

∂t
+ UB

∂w̃

∂x

)
= −∂ p̃

∂z
+ 1

Re

(
μB

(
∇2w̃+ 1

3
∂

∂z
∇ · ũ

)
+μB,y

(
∂ṽ

∂z
+ ∂w̃

∂y

))
+ g4(VB, QB,x ), (4.3d)

ρB TB

(
∂ c̃

∂t
+ UB

∂ c̃

∂x
+ cB,y ṽ

)
+ (ρc)B

(
∂ T̃

∂t
+ UB

∂ T̃

∂x
+ TB,y ṽ

)

= 1
RePr

(
∂

∂y

(
kB
∂ T̃

∂y
+ TB,y k̃

)
+ kB∇̂2T̃

)

+ 1
RePrLe

(
TB,yA+B ∂ T̃

∂y

)
+ g5(VB, QB,x ), (4.3e)

φB∇ · ũ + ∂φ̃

∂t
+ UB

∂φ̃

∂x
+ φB,y ṽ= 1

ReSc

(
∂A
∂y

+ TB∇̂2φ̃ + φB

NBTTB
∇̂2T̃

)
+ g6(VB, QB,x ), (4.3f )

where functions g� depend on the wall-normal velocity VB and x-derivatives of the base
flow QB , and

A= TB
∂φ̃

∂y
+ φB,y T̃ + 1

NBTTB

(
φB
∂ T̃

∂y
+ TB,yφ̃ − φB TB,y

TB
T̃

)
, (4.4)

B = φB,yTB + φB TB,y

NBTTB
(4.5)

and

∇̂2 = ∂2

∂x2 + ∂2

∂z2 . (4.6)

(The exact form of the functions g� are given in Appendix B.) The corresponding boundary
conditions are given as

ũ = ṽ= w̃= T̃ =A= 0 on y = 0, (4.7a–e)
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and

ũ → 0, ṽ→ 0, w̃→ 0, p̃ → 0, T̃ → 0, φ̃→ 0 as y → ∞. (4.7f –k)

The length scale L∗ used in the subsequent linear stability analysis is based on the
displacement thickness δ∗1 , to give the Reynolds number

R = U∗∞δ∗1ρ∗
bf

μ∗
bf

, (4.8)

which ensures consistency with earlier investigations (Mack 1984; Schmid & Henningson
2001). This gives the following relationships: R = δ1Re1/2

x and R = δ1(x Re)1/2.
Consequently, Re in the system of equations (4.3) is replaced with R.

Additionally, the parallel flow approximation is imposed, where the flow is assumed
to be in the x-direction and depends only on the wall-normal y-direction, i.e. g� = 0.
Subsequently, perturbations q̃ are decomposed into the normal mode form

q̃(x, t)= q̆(y) exp (i(αx + βz −ωt))+ c.c., (4.9)

(and similarly for quantities ρ̃, μ̃, etc.) for a streamwise wavenumber α ∈R, spanwise
wavenumber β ∈R, and frequency ω ∈C. Here, c.c. denotes the complex conjugate.
Consequently, (4.3) become

ρB (i (αŭ + βw̆)+ Dv̆)+ i (αUB −ω) ρ̆ + ρB,y v̆ = 0, (4.10a)

ρB
(
i (αUB −ω) ŭ + UB,y v̆

)= −iα p̆ + 1
R

(
μB

( (
D2 −

(
α2 + β2

))
ŭ

+ iα
3
(i (αŭ + βw̆)+ Dv̆)

)
+μB,y (iαv̆+ Dŭ)+ (

UB,yy + UB,yD
)
μ̆

)
,

(4.10b)

iρB (αUB −ω) v̆= −D p̆ + 1
R

(
μB

( (
D2 −

(
α2 + β2

))
v̆+ D

3
(i (αŭ + βw̆)+ Dv̆)

)
+ 2μB,y

3
(2Dv̆ − i (αŭ + βw̆))+ iαUB,yμ̆

)
, (4.10c)

iρB (αUB −ω) w̆= −iβ p̆ + 1
R

(
μB

( (
D2 −

(
α2 + β2

))
w̆

+ iβ
3
(i (αŭ + βw̆)+ Dv̆)

)
+μB,y (iβv̆+ Dw̆)

)
, (4.10d)

ρB TB
(
i (αUB −ω) c̆ + cB,y v̆

)+ (ρc)B

(
i (αUB −ω) T̆ + TB,y v̆

)
= 1

RPr

(
D
(

kBDT̆ + TB,y k̆
)

−
(
α2 + β2

)
kB T̆

)
+ 1

RPrLe

(
TB,yA+BDT̆

)
,

(4.10e)

φB (i (αŭ + βw̆)+ Dv̆)+ i (αUB −ω) φ̆ + φB,y v̆

= 1
RSc

(
DA−

(
α2 + β2

) (
TB φ̆ + φB

NBTTB
T̆

))
, (4.10f )

where D = d/dy. The exact form of the perturbed quantities, including ρ̆, μ̆, etc., are given
in Appendix B.

1028 A45-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
6.

11
12

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2026.11122


Journal of Fluid Mechanics

N l ω (φ∞ = 10−4) ω (φ∞ = 10−2) ω (φ∞ = 10−1)

32 2 0.11931 − i0.00035 0.11987 − i0.00019 0.11141 + i0.00308
64 2 0.11928 − i0.00029 0.11844 + i0.00008 0.11384 + i0.00151
96 2 0.11929 − i0.00028 0.11845 + i0.00009 0.11382 + i0.00153
128 2 0.11929 − i0.00028 0.11845 + i0.00009 0.11382 + i0.00153
32 3 0.11926 − i0.00036 0.12153 − i0.00029 0.11162 + i0.00313
64 3 0.11928 − i0.00029 0.11845 + i0.00008 0.11384 + i0.00151
96 3 0.11929 − i0.00028 0.11845 + i0.00009 0.11383 + i0.00152
128 3 0.11929 − i0.00028 0.11845 + i0.00009 0.11383 + i0.00151
32 4 0.11925 − i0.00033 0.11823 + i0.00088 0.11229 − i0.00199
64 4 0.11928 − i0.00029 0.11844 + i0.00008 0.11382 + i0.00153
96 4 0.11929 − i0.00028 0.11844 + i0.00008 0.11383 + i0.00152
128 4 0.11929 − i0.00028 0.11845 + i0.00009 0.11383 + i0.00152

Table 3. Frequencies ω=ωr + iωi for variable N and l, for R = 500, α = 0.3, β = 0, Tw = 2 and φ∞ = 10−4,
φ∞ = 10−2 , φ∞ = 10−1. Here, ωi > 0 corresponds to linearly unstable behaviour.

4.2. Numerical methods
A temporal linear stability analysis was conducted using the Chebyshev collocation
method developed by Trefethen (2000). Derivatives in the y-direction were approximated
using Chebyshev matrices, with N Chebyshev mesh points mapped from the semi-infinite
physical domain y ∈ [0,∞) onto the computational interval ζ ∈ [1,−1] via the coordinate
transformation

y = l(1 − ζ )

1 + ζ
, (4.11)

where l is a stretching parameter.
The linear stability equations (4.10) were transformed into the following eigenvalue

problem:

Aq̆T =ωBq̆T , (4.12)

where A and B are 6N × 6N matrices. The frequencies ω and the corresponding linear
perturbations q̆ were then computed using the eig command in MATLAB.

Table 3 presents the frequency ω corresponding to the TS wave for varying values of
N and l, for Cu nanoparticles and free stream nanoparticle volume concentrations φ∞ ∈
[10−4, 10−1]. In each case, the Reynolds number R = 500, the streamwise wavenumber
α= 0.3, the spanwise wavenumber β = 0 and the wall temperature Tw = 2. The results
are identical to four decimal places for all l considered when N � 64, indicating that the
thin concentration layer is well-resolved and the frequencies ω have converged. Therefore,
for the remainder of this investigation, N = 96 Chebyshev mesh points were used with the
mapping parameter l = 2.

4.3. Numerical results
In the following linear stability analysis, unless stated otherwise, the nanofluid is
composed of Cu nanoparticles dispersed in a base fluid of water. In addition, the wall
temperature Tw = 2. (The case Tw = 2 was selected as a representative case. However,
as shown in Appendix C, variations in wall temperature have negligible influence on the
results.)
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Figure 9. Eigenspectrum in the (ωr , ωi )-plane for R = 500, α = 0.3, β = 0, Tw = 2, and (a,b) φ∞ = 10−4,
(c,d) φ∞ = 10−3 and (e, f ) φ∞ = 10−2. Black asterisk markers represent solutions of the Blasius flow, while
blue circles and red crosses represent solutions of the nanofluid flow without (BM/TP off) and with (BM/TP
on) BM and TP.

4.3.1. Eigenspectrum
Figure 9 presents a representative eigenspectrum in the complex ω-plane for the parameter
settings R = 500, α = 0.3 and β = 0, and three values of φ∞. For the standard Blasius flow
without nanoparticles, these conditions are linearly stable. The left-hand plots display the
eigenspectrum on a large scale, while the right-hand plots provide a zoomed-in view. The
blue circular markers correspond to solutions where BM and TP are ignored, whereas
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the red crosses indicate the corresponding solutions when these effects are included. The
black star markers represent the eigenspectrum for the Blasius flow without nanoparticles,
where the nanoparticle volume concentration equations have been removed from the
analysis.

Consistent with previous studies (Mack 1976; Grosch & Salwen 1978; Salwen & Grosch
1981; Schmid & Henningson 2001), the eigenspectrum consists of multiple branches.
A discrete set of modes are located on the A-branch (Mack 1976) in the upper left-
hand corner of figure 9(a,c,e). This branch contains the TS wave, which is highlighted
in the right-hand plots and discussed further below. Additionally, the eigenspectrum
features three continuous branches, each associated with different governing equations.
(The eigenspectrum shown is a discrete representation of the continuous spectrum, with
the resolution governed by the number of Chebyshev mesh points N .) The first two
branches, approximately aligned with the vertical axis, are associated with the momentum
and energy equations, respectively. As the number of Chebyshev mesh points N increases,
these two branches shift to the right towards the vertical line ωr → α, although their
qualitative behaviour is unchanged. The third continuous branch, associated with the
nanoparticle volume concentration equation, runs parallel to the real ω-line but with a
negative imaginary part. Like the other two continuous branches, this branch also shifts to
the right as N increases, but at a significantly slower rate due to the size of the Schmidt
number Sc. Notably, when BM and TP are neglected, this branch is located along the real
ω-line (i.e. ωi = 0), as expected, since equation (4.10f ) simplifies to

(αUB −ω) φ̆ = 0 (4.13)

in this case.
The zoomed-in plots on the right-hand side of figure 9 focus on the behaviour of the

frequency ω of the TS wave as the free stream nanoparticle volume concentration φ∞
increases. For φ∞ = 10−4, the value of ω closely matches that of the Blasius flow without
nanoparticles, with linearly stable conditions, as the imaginary part of ω is negative.
However, as φ∞ increases, a noticeable shift occurs. At φ∞ = 10−3, the frequency ω
shifts slightly to the left and upward in the ω-plane, remaining linearly stable but less
stable than the standard Blasius flow. With a further increase to φ∞ = 10−2, ω moves
into the upper half-plane, where a positive imaginary part indicates linearly unstable
behaviour. Thus, for the given flow conditions, the nanofluid destabilises the TS wave.
Furthermore, the differences in ω obtained with and without the effects of BM and TP are
minimal, with only slight variations in the real component and no discernible changes in
the imaginary component. (In addition to the frequency ω of the TS wave, eigenspectra
from the branch arising from the nanoparticle volume concentration equation are also
shown in figure 9(b,d), further illustrating how this branch aligns with the real ω-axis.)

Figure 10 further illustrates the variation of the frequency ω of the TS wave as the free
stream nanoparticle volume concentration φ∞ increases, for the same conditions as given
in figure 9. The plots show the evolution of both the real and imaginary components of ω
with increasing φ∞, supporting the trend observed in figure 9. As more nanoparticles are
added to the base fluid, the TS wave becomes increasingly destabilised, with the imaginary
part of ω shifting from negative to positive values near φ∞ = 0.008, signalling the onset
of linear instability. Additionally, solutions demonstrate that the effects of BM and TP are
negligible, since the differences between cases without (solid blue lines) and with (dashed
red) these effects are minimal, with only slight variations in the real part of ω and no
significant impact on the imaginary part.
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Figure 10. Frequency ω=ωr + iωi as a function of φ∞ for R = 500, α = 0.3, β = 0 and Tw = 2. (a) Real part
and (b) imaginary part. The solid blue and dashed red lines represent solutions of the nanofluid flow without
(BM/TP off) and with (BM/TP on) BM and TP. The horizontal chain lines indicate the corresponding solutions
for the Blasius flow without nanoparticles.

4.3.2. Three-dimensional instabilities
Although Squire’s theorem cannot be applied directly to the full linear stability
equations (4.10), it is applicable to the simplified linear stability equations that neglect
BM and TP. Since these diffusion effects have a minimal impact on both the base flow
and the linear stability calculations, we conclude that Squire’s theorem is approximately
valid for the full equations. Consequently, it is sufficient to limit the stability analysis to
two-dimensional instabilities.

This conclusion is supported by the results shown in figure 11, which plots the temporal
growth rate ωi as a function of the streamwise wavenumber α, for the Reynolds number
R = 600, spanwise wavenumbers β ∈ [0, 0.1] and nanoparticle volume concentrations
φ∞ ∈ [10−4, 10−2]. The results indicate that ωi decreases as β increases, confirming
that two-dimensional instabilities are more unstable than three-dimensional instabilities.
Therefore, based on this and further observations, the remainder of this study focuses on
two-dimensional disturbances by setting β = 0.

4.3.3. Conditions for neutral stability
The neutral conditions (ω, R) for linear instability were computed using streamwise
wavenumber increments of �α= 10−4. To accurately trace the frequency ω associated
with the TS wave within the complex ω-plane, small Reynolds number steps �R = 0.01
were used. This ensured that the TS frequency was correctly identified, minimising
interference with the eigenspectra found on the branch due to the nanoparticle volume
concentration equation. The critical Reynolds number for the Blasius flow, in the absence
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Figure 11. Temporal growth rate ωi as a function of the streamwise wavenumber α for R = 600, Tw = 2,
β ∈ [0, 0.1] and (a) φ∞ = 10−4, (b) φ∞ = 10−3 and (c) φ∞ = 10−2.

of nanoparticles, was obtained as Rc ≈ 519.4 for a streamwise wavenumber αc ≈ 0.304,
frequency ωc ≈ 0.121 and phase speed sc =ωc/αc ≈ 0.397, in agreement with previous
studies (Schmid & Henningson 2001).

Neutral stability curves were obtained for free stream nanoparticle volume
concentrations φ∞ ∈ [0, 4 × 10−2], with solutions for the Cu nanoparticles shown in
figure 12(a). The destabilisation of the TS wave is further demonstrated, with neutral
stability curves shifting horizontally to the left and smaller Reynolds numbers as φ∞
increases. Notably, there is no discernible vertical variation in the neutral stability curves.
Thus, while the critical Reynolds number Rc shrinks, the corresponding frequency ωc, the
streamwise wavenumber αc and the phase velocity sc, remain relatively constant for the
range of φ∞ considered.

A second set of neutral stability curves is shown in figure 12(b), but for nanoparticles
made of Al. Like the Cu nanoparticles, there is no vertical variation as φ∞ increases.
However, a small stabilising effect is observed, with neutral curves shifting to the right
and marginally larger Reynolds numbers R. Therefore, the type of material used for the
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Figure 12. Neutral stability curves in the (R, ω)-plane for variable φ∞, β = 0, Tw = 2 and (a) Cu
nanoparticles and (b) Al nanoparticles.

nanoparticles plays a significant role in determining whether the TS wave is stabilised or
destabilised.

Figure 13 presents further evidence of the stabilising benefits of Al nanoparticles
compared with the destabilising effects of Cu nanoparticles. The circular (Cu) and
diamond (Al) markers indicate the critical Reynolds numbers Rc obtained from the full
linear stability equations (4.10), with a noticeable reduction in Rc for Cu nanoparticles
and a small increase for Al nanoparticles. Additionally, the critical Reynolds number
Rc for these two types of nanoparticles is plotted when BM and TP are neglected, as
represented by the solid blue and dashed red curves. In this case, the critical Reynolds
number Rc =μR̂c/ρ, where R̂c ≈ 519.4 is the critical Reynolds number for the Blasius
flow without nanoparticles. Thus, using the definition for density ρ and the Brinkman
dynamic viscosity μ, given by (2.13a) and (2.14), respectively, the critical Reynolds for
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φ∞ Copper (Cu) Rc Aluminium (Al) Rc

0 519.4 519.4
10−6 519.4 (519.4) 519.4 (519.4)
10−5 519.3 (519.3) 519.5 (519.5)
10−4 519.2 (519.2) 519.5 (519.5)
10−3 516.7 (516.7) 520.1 (519.9)
10−2 493.7 (493.6) 523.9 (523.8)
2 × 10−2 471.9 (471.6) 528.6 (528.3)
4 × 10−2 437.5 (436.7) 539.2 (538.5)

Table 4. Critical Reynolds numbers Rc for Cu and Al nanoparticles in a base fluid of water, while the results
in brackets correspond to the solutions obtained in the absence of BM and TP.

550

500

450

Rc

400
10−6 10−5

BM/TP off (Cu)

BM/TP on (Cu)

BM/TP off (Al)

BM/TP on (Al)

10−4 10−3 10−2 10−1

φ∞

Figure 13. Critical Reynolds number Rc as a function of φ∞, for Cu nanoparticles (solid blue line and circular
markers) and Al nanoparticles (dashed red line and diamond markers) in a base fluid of water without (BM/TP
off) and with (BM/TP on) BM and TP.

the nanofluid flow is approximated as

Rc = 519.4
(1 − φ∞)2.5(1 + (ρ̂ − 1)φ∞)

. (4.14)

Unsurprisingly, the results with and without BM and TP are nearly identical. Thus, the
impact of these diffusion effects on the linear stability of the nanofluid flow are negligible.
Table 4 lists critical Reynolds numbers Rc at select φ∞ values for both Cu and Al
nanoparticles.

Consequently, the critical Reynolds number Rc is governed by the dynamic viscosity
μ and the density ρ of the nanofluid, which are in turn influenced by the free stream
nanofluid volume concentration φ∞ and the ratio of densities ρ̂. Figure 14 illustrates Rc as
approximated by equation (4.14). In the first plot, figure 14(a), Rc is plotted as a function of
φ∞ and demonstrates the influence of both φ∞ and the material used for the nanoparticles.
Denser materials with larger ρ̂ ratios, like Ag and Cu, have a destabilising effect, while
lighter materials, like Si and Al, stabilise the flow. On the other hand, Al2O3 exhibits a
marginally destabilising effect at small φ∞, with a stabilising benefit realised for large φ∞
(for φ∞ � 0.09).

Figure 14(b) further demonstrates the impact of nanofluids on the onset of linear
instability, with Rc plotted in the (φ∞, ρ̂)-plane. The solid red contour corresponds to
Rc = 519.4 (i.e. the onset of linear instability in the standard Blasius flow), with solutions
illustrating the negative impact of most nanoparticle materials, except Si and Al, on the
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Figure 14. Plots of the critical Reynolds number Rc for the seven nanoparticle materials tabulated in table 1 in
a base fluid of water, with the dynamic viscosity μ based on the Brinkman (1952) model (2.14). (a) Here Rc as
a function of φ∞. (b) Contours of Rc in the (φ∞, ρ̂)-plane, where the solid red contour represents the contour
level Rc = 519.4, matched to the critical conditions for the Blasius flow without nanoparticles.

hydrodynamic stability of the flow. More specifically, for a base fluid of water, only
nanoparticles with a density ratio ρ̂ � 3.5 are stabilising.

5. Asymptotic analysis
To describe the lower-branch structure of the neutral stability curve, we follow the
approach of Smith (1979) and assume a large Reynolds number Re. Consequently, linear
disturbances on the lower branch are governed by a triple deck structure with a main
deck of thickness O(Re−1/2), an upper deck of thickness O(Re−3/8) and a lower deck
of thickness O(Re−5/8), with streamwise length O(Re−3/8) and frequency O(Re−1/4).
A diagram of the triple deck structure is shown in figure 15 for ε= Re−1/8. In addition,

x = 1 + ε3 X and t = ε2 t̂, (5.1a,b)
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UB = 1

UB
y∗

x∗
O (ε5)

O (ε4)

O (ε3)

O (ε3)

1

2

3

Figure 15. Diagram of the triple deck structure of the lower-branch of the neutral stability curve for
ε= Re−1/8. Regions 1, 2 and 3 correspond to the upper, main and lower decks, respectively.

while linear disturbances are taken to be proportional to

E = exp
(
i
(
Θ(X)−ωt̂

))
, (5.2a)

for

dθ
dX

= α1(x)+ εα2(x)+ · · · and ω=ω1 + εω2 + · · ·. (5.2b,c)

5.1. The main deck
Here y = ε4 y2, for y2 = O(1), where perturbations q̃ = (ũ, ṽ, p̃, T̃ , φ̃) are expanded as

ũ = (u2 + O(ε)) E, ṽ =
(
εv2 + O

(
ε2)) E,

p̃ =
(
εp2 + O

(
ε2)) E, T̃ = (T2 + O(ε)) E,

φ̃ = (φ2 + O(ε)) E, (5.3a–e)

where u2 = u2(x, y2), etc. Similar expansions are given for the perturbed quantities μ̃, ρ̃,
c̃ and k̃. In addition, the nanoparticle volume concentration φB ∼ φ∞.

Substituting (5.3) into the linear stability equations (4.3) and collecting the leading-
order terms, gives the solution

u2 = A(x)UB,y2, v2 = −iα1 A(x)UB and p2 = p2(x), (5.4a–c)

where p2(x) and A(x) are unknown, slowly varying, amplitude functions, representing
pressure and negative displacement perturbations, respectively. Similarly,

T2 = A(x)TB,y2 and φ2 = 0. (5.4d,e)

5.2. The upper deck
Here y = ε3 y1, for y1 = O(1). To match with the main deck, perturbations are
expanded as
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ũ =
(
εu1 + O

(
ε2)) E, ṽ=

(
εv1 + O

(
ε2)) E,

p̃ =
(
εp1 + O

(
ε2)) E, T̃ =

(
εT1 + O

(
ε2)) E,

φ̃ =
(
εφ1 + O

(
ε2)) E, (5.5a–e)

where u1 = u1(x, y1), etc. Similar expansions are again given for the perturbed quantities
μ̃, ρ̃, c̃ and k̃. In addition, the base flow is effectively given by the uniform free stream
conditions

UB ≈ 1, VB ≈ 0, TB ≈ 1,
φB ≈ φ∞, cB ≈ c∞, ρB ≈ ρ∞. (5.6a–f )

Substituting (5.5) and (5.6) into the linear stability equations (4.3), gives(
∂2

∂y1
− α2

1

)
p1 = 0, (5.7)

with the bounded solution as y1 → ∞ given by

p1 = P1(x)e−α1 y1, (5.8a)

where P1(x) is an unknown function of x and α1 > 0. Moreover,

u1 = − P1(x)e−α1 y1

ρ∞
, v1 = − iP1(x)e−α1 y1

ρ∞
, T1 = 0 and φ1 = 0. (5.8b–e)

Continuity of pressure requires

P1(x)= p2(x) as y1 → 0. (5.9)

Similarly, continuity of the wall-normal velocity ṽ between the main deck solution (5.4b)
and the upper deck solution (5.8c) yields the condition

α1 A(x)= p2(x)

ρ∞
. (5.10)

5.3. The lower deck
Recall that the concentration layer has a characteristic thickness of O(Re−1/2Sc−1/3). By
setting Sc−1/3 ∼ Re−1/8, the lower deck coincides with the concentration layer.

To match with the main deck, in the lower deck y = ε5 y3, for y3 = O(1). Perturbations
in the lower deck are then expanded as

ũ = (u3 + O(ε)) E, ṽ =
(
ε2v3 + O

(
ε3)) E,

p̃ =
(
εp3 + O

(
ε2)) E, T̃ = (T3 + O(ε)) E,

φ̃ = (φ3 + O(ε)) E, (5.11a–e)

where u3 = u3(x, y3), etc. As before, similar expansions are introduced for the perturbed
quantities μ̃, ρ̃, c̃ and k̃.

In the main deck, the base velocity behaves as UB ∼ λy2 as y2 → 0, where λ=
UB,y2 |y2=0(≡ ρw f ′′(0)/x1/2), and consequently from (5.4a) and (5.4b)

u2 → λA(x) and v2 → −iα1λA(x)y2 as y2 → 0. (5.12a,b)

1028 A45-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
6.

11
12

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2026.11122


Journal of Fluid Mechanics

Therefore, within the lower deck, the base flow is given by

UB = ελy3 + O
(
ε2), VB = − 1

2
ε2λx y2

3 + O
(
ε3),

TB = Tw + εσ y3 + O
(
ε2), φB = φ∞ + εψ(x, y3)+ O

(
ε2), (5.13a–d)

where σ = TB,y2 |y2=0(≡ ρwθ
′(0)/x1/2).

Substituting (5.11) and (5.13) into the linear stability equations (4.3) gives

p3 = p2(x), (5.14)

to match with the pressure in the main deck, and

u3 = B(x)
∫ χ

χ0

Ai(χ̀) dχ̀ , (5.15a)

p2 = −ω1ρ∞
α1

B(x)Ai′(χ0)

χ0
, (5.15b)

where B is an unknown, amplitude function, Ai is the Airy function and

χ =
(

iα1λρ∞
μ∞

)1/3 (
y3 − ω1

α1λ

)
, (5.16)

for χ0 = χ |y3=0.
Matching the streamwise velocity ũ between the main deck solution (5.12a) and the

lower deck solution (5.15a), gives

B(x)
∫ ∞

χ0

Ai(χ) dχ = λA(x). (5.17)

Eliminating A, B and p2 from (5.10), (5.15b) and (5.17) yields the leading-order
eigenrelation

Ai′(χ0)∫∞
χ0

Ai(χ) dχ
=
(

iα1λρ∞
μ∞

)1/3
α1

λ2 , (5.18a,b)

which, following the parameter scaling

α1 = λ5/4
(
μ∞
ρ∞

)1/4

α and ω1 = λ3/2
(
μ∞
ρ∞

)1/2

ω, (5.19a)

becomes
Ai′(χ0)∫∞

χ0
Ai(χ) dχ

= i1/3α4/3 for χ0 = −i1/3
ω

α2/3 . (5.20a,b)

For neutral stability, α1, α2, etc. must be real, requiring χ0 = −2.298i1/3 and

Ai′(χ0)∫∞
χ0

Ai(χ) dχ
= 1.001i1/3. (5.21)

Consequently, the neutral values of α1 and ω1 are given as

α1 = 1.001λ̂5/4
(
μ∞
ρ∞

)1/4

x−5/8, (5.22a)

ω1 = 2.299λ̂3/2
(
μ∞
ρ∞

)1/2

x−3/4, (5.22b)

1028 A45-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
6.

11
12

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2026.11122


C. Thomas, S.O. Stephen, J.S.B. Gajjar and P.T. Griffiths

0 0.02 0.04

φ∞
0.06 0.08 0.10

0.80

0.85

0.90

0.95

�
ω

N
1.00

1.05

1.10

Ag

Cu
CuO

Al2O3

TiO2

Al

Si

Blasius

Figure 16. Gradient �ωN = 0.994[μ∞/ρ∞]1/2 of the lower branch (5.23) as a function of φ∞ for different
nanoparticle materials.

where λ̂= ρw f ′′(0). This gives the leading-order approximation for the frequency of the
lower branch in terms of the Reynolds number Re:

ωN ∼ 2.299[δ1λ̂]3/2
(
μ∞
ρ∞

)1/2

Re−1/2. (5.23)

Notably, in the limit Sc → ∞, δ1λ̂≈ 0.572 across all nanoparticle materials and φ∞. Thus,
2.299[δ1λ̂]3/2 ≈ 0.994.

Figure 16 depicts the gradient of the frequency ωN , defined as �ωN =
0.994[μ∞/ρ∞]1/2, as a function of φ∞ for all seven nanoparticle materials listed in
table 1. A gradient �ωN < 0.994 indicates a destabilising effect, while �ωN > 0.994
corresponds to stabilising behaviour. The solutions are qualitatively similar to and
consistent with the linear stability results shown in figure 14(a): less dense materials are
stabilising and denser materials are destabilising.

6. Conclusions
A linear stability study has been conducted on the nanofluid boundary-layer flow
over a flat plate, extending the earlier work of Buongiorno (2006), Avramenko et al.
(2011), MacDevette et al. (2014) and Turkyilmazoglu (2020). The model employs a two-
phase flow formulation that incorporates the effects of BM and TP, with all quantities
scaled on the base fluid characteristics, providing a physically consistent approach for
investigating stability trends. Although the influence of BM and TP is relatively weak,
a thin concentration layer with a characteristic thickness of O(Re−1/2Sc−1/3) develops
within the boundary layer, which modifies the near-wall velocity and temperature fields.
The concentration layer disappears when BM and TP are ignored, with the nanoparticle
volume concentration φ uniform throughout the boundary layer.

In terms of thermodynamic performance, all seven materials modelled herein establish
an increasing Nusselt number Nu, with greater benefits obtained for denser materials like
Ag and Cu.
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Despite the emergence of a thin concentration layer, numerical and asymptotic stability
calculations show that BM and TP have a negligible impact on the onset of the TS wave. In
fact, linear stability characteristics and the onset of TS waves can be accurately predicted
using solutions to the standard Blasius flow, which effectively models the nanofluid flow
as a single-phase fluid. The Reynolds number for the nanofluid is given as

Re = μR̂e
ρ
, (6.1)

for the Blasius flow Reynolds number R̂e. Consequently, the stability of the nanofluid
boundary-layer flow is governed by the density ρ and viscosity μ of the nanofluid. In
particular, the density ratio ρ̂ = ρ∗

np/ρ
∗
bf is critical to determining whether the nanofluid is

stabilising or destabilising. Denser nanoparticle materials, such as Ag and Cu, significantly
destabilise the TS wave. In contrast, a small stabilising effect is achieved by lighter
materials, like Al and Si. This observation differs from the one-phase flow study
conducted by Turkyilmazoglu (2020), which predicted the opposite outcome. However,
in Turkyilmazoglu’s investigation, physical quantities were scaled on the characteristics of
the nanofluid rather than the base fluid, leading to a Reynolds number that varied with the
type of nanoparticle material and volume concentration.

The results presented above are based on a nanofluid with water as the base fluid.
Replacing water with a less dense fluid, like ethanol, would increase the density ratio ρ̂
for all materials. While this change would enhance the thermal benefits of the nanofluid, it
would lead to a further destabilisation of the TS wave, even for those nanofluids composed
of lighter materials like Al and Si.

Another key factor influencing nanofluid stability is the choice of viscosity model. The
above study adopted the Brinkman (1952) model (2.5) to represent the nanofluids dynamic
viscosity, ensuring consistency with earlier investigations. However, alternative models
can produce very different results. For instance, the correlations due to Pak & Cho (1998)
and Maiga et al. (2004) in pipe and tube flows (see (2.6b)) predict larger increases in
viscosity as the nanoparticle volume concentration φ increases. Assuming these models
can be applied to the boundary-layer flow on a flat plate, the corresponding stability calcu-
lations based on (6.1) indicate a strong stabilising effect for all nanoparticle materials, in
contrast to the destabilising trends observed for the Brinkman model. Since the Reynolds
number and resulting stability characteristics depend on the viscosity model, accurately
determining μ is crucial. The variety of models summarised in Wang & Mujumdar
(2008a) and Mishra et al. (2014), including those that include nanoparticle aggregation,
size and shape effects, and temperature-dependent viscosity, highlights the need for further
experimental measurements of nanofluid viscosity in boundary-layer flows to enable the
selection of the correct model and ensure physically accurate stability predictions.

In addition to a base fluid of water, nanoparticles were assumed to have a diameter
of dnp = 20 nm with a free stream temperature T∞ = 300 K. Varying the nanoparticle
diameter over the range dnp = 1 nm to dnp = 100 nm yields Schmidt numbers Sc ranging
from approximately O(103) to O(105). Even at the lower end of this range, Sc is
sufficiently large that BM and TP effects remain negligible. Furthermore, applying the
analysis to an ethanol-based fluid establishes comparable Sc values, whereas an oil-based
fluid results in even larger values due to its higher viscosity. While increasing T∞ can
reduce Sc to O(102) for T∞ = 1000 K, such high temperatures are generally unrealistic for
practical nanofluid applications.

Future investigations into nanofluid boundary-layer flows could include non-parallel and
nonlinear stability effects by using parabolised stability equations, following the approach
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of Bertolotti et al. (1992). Additionally, the analysis may be applied to other geometries,
including rotating disk boundary layers and wall jets, as considered by Turkyilmazoglu
(2020). However, based on the observations above, we anticipate that the stability trends
would remain similar: heavier nanoparticles are expected to be destabilising, lighter
nanoparticles stabilising, with the flows well-approximated by the standard Blasius flow
without nanoparticles.
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Appendix A. On ignoring BM and TP
When the effects of BM and TP are ignored, the continuity equation for the nanoparticles,
given by (2.1d), reduces to the form

∂φ

∂t∗
+ φ∇∗ · u∗ + ∇∗φ · u∗ = 0. (A1)

In addition, the continuity (2.1a) can be rewritten in the form

∂ρ∗

∂t∗
+ ρ∗∇∗ · u∗ + ∇∗ρ∗ · u∗ = 0, (A2)

which on using the definition for density (2.2) becomes(
ρ∗

np − ρ∗
bf

) ( ∂φ
∂t∗

+ ∇∗φ · u∗
)

+ ρ∗∇∗ · u∗ = 0. (A3)

Subsequently, combining (A1) and (A3) gives((
ρ∗

bf − ρ∗
np

)
φ + ρ∗)∇∗ · u∗ = 0, (A4)

which implies the flow is incompressible,

∇∗ · u∗ = 0, (A5)

and the continuity equation for the nanoparticles (A1) reduces to

∂φ

∂t∗
+ ∇∗φ · u∗ = 0. (A6)

Consequently, the Prandtl scaling in § 3.1 gives

φ′ = 0 with φ→ φ∞ as y → ∞. (A7)

Thus, φ = φ∞ for all y, i.e. φ is a constant. Hence, base flow quantities, including the
viscosity μ, density ρ, specific heat capacity c and thermal conductivity k are constant.

On coupling the scalings (2.11) with the following substitutions:

p = ρ p̂, T = 1 + (Tw − 1)T̂ , R̂e = ρ

μ
Re, P̂r = μc

k
Pr, (A8)

transforms the non-dimensional governing equations (2.12) into the form

∇ · u = 0, (A9a)
∂u
∂t

+ (u · ∇)u = −∇ p̂ + 1
R̂e

∇2u, (A9b)
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∂ T̂

∂t
+ (u · ∇)T̂ = 1

R̂eP̂r
∇2T̂ , (A9c)

for boundary conditions

u = 0 and T̂ = 1 on y = 0, (A10a,b)

and

u → 1, v→ 0, w→ 0,

p̂ → 0, T̂ → 0, φ→ φ∞ as y → ∞. (A11a–f )

Subsequently, applying the Prandtl transformation for R̂e → ∞ establishes the Blasius
boundary-layer equations (3.9), with an equivalent set of linear stability equations for the
Reynolds number R̂e. Thus, when BM and TP are neglected, the linear stability of the
nanofluid flow reduces to the Blasius flow, with the nanofluid Reynolds number given as
Re =μR̂e/ρ.

Appendix B. Base flow and perturbation quantities

B.1. Terms in (4.3)
The functions g� in the linear stability equations (4.3) are given as

g1(VB, QB,x )= −
(
ρB,x ũ + UB,x ρ̃ + Re−1/2 ∂

∂y
(VB ρ̃)

)
, (B1a)

g2(VB, QB,x )=
1

Re

(
μB,x

(
4
3
∂ ũ

∂x
− 2

3

(
∂ṽ

∂y
+ ∂w̃

∂z

))
+ ∂

∂x

((
4
3

UB,x − 2
3

Re−1/2VB,y

)
μ̃

)
+ Re−1/2 ∂

∂y

(
VB,x μ̃

) )
− (UB,x (ρBũ + UB ρ̃)− Re−1/2VB

(
ρB
∂ ũ

∂y
+ UB,y ρ̃

)
, (B1b)

g3(VB, QB,x )=
1

Re

(
μB,x

(
∂ṽ

∂x
+ ∂ ũ

∂y

)
+ ∂

∂y

((
4
3

Re−1/2VB,y − 2
3

UB,x

)
μ̃

)
+ Re−1/2 ∂

∂x

(
VB,x μ̃

) )− Re−1/2
(

VB,x (ρBũ + UB ρ̃)

+ VB

(
ρB
∂ṽ

∂y
− Re−1/2VB,y ρ̃

)
+ ρB VB,y ṽ

)
, (B1c)

g4(VB, QB,x )=
1

Re

(
μB,x

(
∂w̃

∂x
+ ∂ ũ

∂z

)
− 2

3
∂

∂z

((
UB,x + Re−1/2VB,y

)
μ̃
))

− Re−1/2ρB VB
∂w̃

∂y
, (B1d)

g5(VB, QB,x )=
1

RePr

(
kB,x

∂ T̃

∂x
+ TB,x

∂ k̃

∂x
+ TB,xx k̃

)
+ 1

RePrLe

(
TB,xφB,x T̃

+TB

(
TB,x

∂φ̃

∂x
+ φB,x

∂ T̃

∂x

)
+ 1

NBTTB

(
2φB TB,x

∂ T̃

∂x
+ T 2

B,x

(
φ̃ − φB T̃

TB

)))
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−
(
ρB TBcB,x ũ + UBcB,x

(
TB ρ̃ + ρB T̃

)
+ (ρc)B TB,x ũ + UB TB,x ρ̃c̃

)
− Re−1/2VB

(
ρB TB

∂ c̃

∂y
+ cB,y

(
TB ρ̃ + ρB T̃

)
+ (ρc)B

∂ T̃

∂y
+ TB,y ρ̃c̃

)
, (B1e)

g6(VB, QB,x )=
1

ReSc

(
TB,x

∂φ̃

∂x
+ φB,xx T̃ + φB,x

∂ T̃

∂x

)

+ 1
ReScNBT

((
φB,x

TB
− φB TB,x

T 2
B

)
∂ T̃

∂x
− TB,xx

(
φ̃

TB
− φB T̃

T 2
B

)

+ TB,x

(
1
TB

∂φ̃

∂x
− TB,x

T 2
B

φ̃ − φB

T 2
B

∂ T̃

∂x
+
(

2φB TB,x

T 3
B

− φB,x

T 2
B

)
T̃

))

− φB,x ũ − UB,x φ̃ − Re−1/2

(
VB
∂φ̃

∂y
+ VB,y φ̃

)
. (B1f )

B.2. Terms in (4.10)
The base flow quantities in the system of equations (4.10) are given as

ρB = 1 + (ρ̂ − 1)φB, ρB,y = (ρ̂ − 1)φB,y,

(ρc)B = 1 + (ρ̂ĉ − 1)φB,

cB = (ρc)B

ρB
, cB,y = ρ̂(ĉ − 1)φB,y

ρ2
B

,

μB = 1
(1 − φB)2.5

, μB,y = 2.5μBφB,y

1 − φB
,

kB = k̂ + 2 + 2(k̂ − 1)φB

k̂ + 2 − (k̂ − 1)φB
, kB,y =KφB,y, (B2a–i)

and the perturbation quantities are given as

ρ̆ = (ρ̂ − 1)φ̆,

(ρ̆c̆)= (ρ̂ĉ − 1)φ̆, c̆ = ρ̂(ĉ − 1)φ̆
ρ2

B

,

μ̆= 2.5μB φ̆

1 − φB
, Dμ̆= 2.5μB

1 − φB

(
D + 3.5φB,y

1 − φB

)
φ̆,

k̆ =Kφ̆, Dk̆ =K
(

D + 2(k̂ − 1)φB,y

k̂ + 2 − (k̂ − 1)φB

)
φ̆, (B3a–g)

where

K = 3(k̂ − 1)(k̂ + 2)

(k̂ + 2 − (k̂ − 1)φB)2
. (B4)

Appendix C. Effect of wall temperature
The linear stability analysis in § 4 was presented for the case Tw = 2. Figure 17 shows the
real and imaginary parts of the TS wave frequency ω as a function of Tw for R = 500,
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×10−4

−1
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(a)

(b)

Figure 17. Frequency ω=ωr + iωi as a function of the wall temperature Tw for R = 500, α = 0.3, β = 0 and
φ∞ ∈ [10−8, 10−2]. (a) Real part and (b) imaginary part.

α= 0.3, β = 0 and variable φ∞. The solutions exhibit negligible variations across the
range of Tw considered, which is to be expected, since when BM and TP effects are ignored
(both of which have been shown to be negligible), the analysis reduces via the substitution
(3.8) to the standard Blasius flow, in which the wall temperature is removed from the
formulation.
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