

1 The longitudinal impact of psychosocial factors on cognition and hearing in younger 2 and older adults during the COVID-19 pandemic.

3 Kate Slade^{4*}, Robert Davies¹, Charlotte R Pennington³, Christopher J Plack^{1,2}, Helen E
4 Nuttall^{1*}

5 ¹Department of Psychology, Faculty of Science and Technology, Lancaster University,
6 Lancaster, UK; ²Manchester Centre for Audiology and Deafness, School of Health Sciences,
7 University of Manchester, Manchester, UK; ³School of Psychology, Aston University,
8 Birmingham, UK; ⁴Lancaster Medical School, Faculty of Health and Medicine, Lancaster
9 University, Lancaster, UK

10 There are no conflicts of interest.

11 *Corresponding authors:

12 k.slade2@lancaster.ac.uk; h.nuttall1@lancaster.ac.uk

13 **Author Contributions:** **Kate Slade:** Conceptualization (Lead), Data curation (Lead),
14 Formal analysis (Lead), Investigation (Lead), Methodology (Lead), Visualization (Lead),
15 Writing – original draft (Lead). **Robert Davies:** Methodology (Supporting), Formal analysis
16 (Supporting), Writing – review & editing (Supporting). **Charlotte R.**
17 **Pennington:** Methodology (Supporting), Writing – review & editing
18 (Supporting). **Christopher J. Plack:** Conceptualization (Equal), Methodology (Supporting),
19 Supervision (Supporting), Writing – review & editing (Supporting). **Helen E.**
20 **Nuttall:** Conceptualization (Equal), Funding acquisition (Lead), Methodology (Equal),
21 Project administration (Lead), Supervision (Lead), Writing – review & editing (Equal).

ABSTRACT

23 **Purpose.** In March 2020, a unique situation unfolded wherein the UK government
24 announced social restriction measures to reduce the spread of the virus that causes COVID-
25 19. Various measures remained in place until April 2021, with older adults, who were
26 considered clinically vulnerable, being placed under stricter restrictions. This study aimed to
27 determine the effect of psychosocial factors, including loneliness, depression, and
28 engagement in various recreational lifestyle activities, on hearing and cognitive function in
29 younger and older adults during the COVID-19 pandemic.

30 **Methods.** 112 older adults aged 60-82 ($M = 70.08, SD = 5.89$), and 121 younger adults
31 aged 18-29 ($M = 20.52, SD = 2.63$) participated online between June 2020 - February 2022.
32 Participants completed questionnaires assessing loneliness, depression, auditory and lifestyle
33 engagement, and hearing ability, as well as behavioural tasks assessing auditory function and
34 global cognition. All measures were completed 12 times at 4-week intervals.

35 **Results.** Linear mixed effects analyses found that, of the variables examined, increased
36 loneliness was significantly associated with poorer auditory function. There were no main
37 effects of time during the pandemic on auditory or cognitive outcomes. However, the
38 interaction between time and age group significantly affected global cognition; in younger
39 adults, global cognition decreased overtime, whereas older adults displayed an unexpected
40 positive change.

41 **Conclusions.** These data show that there are associations between loneliness and
42 auditory function but provide a lack of support for the impact of time experiencing auditory
43 deprivation, or other psychosocial factors, on hearing and cognitive function. Such
44 observations may be underpinned by motivational differences, learning effects, or sample
45 biases. Future research may wish to investigate these factors further, to determine how
46 psychological factors like loneliness affect hearing and cognitive processes across diverse
47 participant groups.

48 **Keywords:** Hearing; Cognition; Socialisation

1. INTRODUCTION

50 As the population ages, health issues grow in prevalence, placing increasing pressure
51 on health care systems. Hearing loss (HL) is one of the most common conditions in older age,
52 affecting over 70% of people aged 70+ in the UK (Royal National Institute for Deaf People
53 (RNID), 2020). Many age-related health conditions are associated with, or have been shown
54 to exacerbate, one another. For example, HL is associated with increased levels of loneliness
55 and depression (Lawrence et al., 2020; Mick et al., 2014; Shukla et al., 2020). It has also been
56 recognised internationally that both social isolation and HL are potentially modifiable risk
57 factors for dementia. In fact, if the risk factors of social isolation and HL are indeed causal
58 for dementia and were removed, then it is hypothesised that dementia cases could be reduced
59 by as much as 4% and 8% respectively (Livingston et al., 2024). However, further high-
60 quality longitudinal data are required to elucidate the true nature of the HL-dementia
61 relationship.

62 Several hypotheses have been proposed to explain the association between age-related
63 HL (ARHL) and dementia (Lindenberger & Baltes, 1994; Powell et al., 2021) A number of
64 these hypotheses suggest that hearing loss has a causal effect on cognitive function. In brief,
65 hearing loss has been suggested to effect cognitive function directly via 1) increasing
66 listening effort depleting cognitive resources (Pichora-Fuller et al., 2016), 2) increasing
67 auditory deprivation, which occurs when the brain is deprived of sound, leading to
68 neuroanatomical changes (e.g. Lin et al., 2014). These direct pathways are suggested to effect
69 global brain function and structure in a way that compromises cognitive functioning
70 (Fitzhugh et al., 2019; Panouillères & Möttönen, 2018).

71 Researchers have also suggested that hearing loss may causally affect cognition via an
72 indirect psychosocial pathway (Shukla et al., 2020). Hearing loss significantly impacts
73 psychosocial factors, including feelings of loneliness, isolation, and depression due to a
74 reduction in the quantity and quality of social interactions (Jayakody et al., 2018). Difficulty
75 listening, particularly in noisy environments, may lead older adults with hearing loss to
76 withdraw from social interactions due to communication challenges, or embarrassment and
77 stigma (David et al., 2018). This social withdrawal may exacerbate auditory deprivation, due
78 to reduced engagement with auditory rich and cognitively stimulating environments. This, in

79 turn, may modulate the association between HL and cognitive decline. Importantly, older
80 people may be particularly vulnerable to loneliness and depression due to the higher
81 prevalence of living alone (Age UK, 2019), and this risk may be further increased by HL
82 (Bott & Saunders, 2021; Maharani et al., 2019). Understanding the effect of psychosocial
83 factors on both HL and cognition in older age is essential to shed light on the factors that
84 might contribute to increased wellbeing and healthy brain ageing.

85 During the height of the COVID-19 pandemic, the UK public experienced social
86 distancing, enforced isolation, and restricted means of communication in various forms, from
87 March 2020 until January 2022. This overwhelming period of unprecedented change enabled
88 researchers to investigate how loneliness and isolation might affect sensory and cognitive
89 function across age ranges. Considering that older adults may be more likely to experience
90 loneliness and isolation as well as hearing loss (Age UK, 2019), compared to younger adults,
91 it is conceivable that older adults may have been disproportionately affected by pandemic-
92 related restrictions. Associations between sensory impairments and psychosocial factors
93 including social participation, social network size, and loneliness have been widely reported
94 (Mick et al., 2018; Ray et al., 2018); and theoretical frameworks have been proposed
95 detailing anchor stages (from listening disengagement to social withdrawal and loneliness) to
96 describe the relation between hearing loss and social isolation (Motala et al., 2024).
97 Importantly, during the height of the pandemic, older adults and other clinically vulnerable
98 populations were provided with stricter social distancing guidance. As such, older adults may
99 have been at greater risk of social withdrawal and reduced social communication, leading to
100 auditory deprivation, particularly in terms of reduced in-person social contact. This could
101 have led to long-term consequences for hearing and cognitive function. Understanding how
102 social factors relate to both cognitive and hearing function is imperative for identifying
103 intervention pathways targeting HL and cognitive decline.

104 Hearing could be affected if environmental auditory deprivation, due to social
105 distancing and isolation, leads to tangible changes in the auditory cortex and associated brain
106 areas used for processing speech in noise. Deprivation of auditory input, due to hearing loss,
107 is associated with atrophy of the brain regions associated with hearing (Slade et al., 2022),
108 which could negatively affect speech perception ability. This atrophy may occur because HL-

109 related damage to the auditory periphery leads to distorted auditory representations, reduces
110 access to verbal and emotional information in speech, and decreases the amount of auditory
111 information sent to the brain, leading to atrophy of auditory and association areas (Griffiths et
112 al., 2020). Similarly, during the height of the pandemic, a deprived auditory environment was
113 created due to social restrictions and poor listening environments (i.e., use of face coverings,
114 online calls, Perspex screens), which could have negatively affected the capacity for speech
115 understanding. Indeed, deprivation of auditory input, due to prolonged wearing of earplugs,
116 has been shown to alter neural responses to speech (Munro & Blount, 2009). Further, social
117 distancing has been shown to negatively impact the quality of communication and connection
118 with others (Wood et al., 2024).

119 Cognition may also be affected in a similar way. Increased social interactions give rise
120 to mentally stimulating situations that benefit cognitive function (Sommerlad et al., 2019).
121 According to the cognitive reserve hypothesis, engaging in social activities are a key aspect
122 of building cognitive reserve that may help to protect against age- and disease- related
123 declines in cognitive function (Oosterhuis et al., 2023; Stern et al., 2020). Similarly, social
124 contact has been internationally recognised as a protective factor against dementia
125 (Livingston et al., 2024), and a recent scoping review indicates that social isolation and
126 loneliness relate to poor cognitive function in older adults (Cardona & Andrés, 2023). A
127 variety of assessments may be employed to measure cognition such as the Mini Mental State
128 Examination (MMSE: Folstein et al., 1975) and the Montréal Cognitive Assessment (MoCA:
129 Hobson, 2015). These standardised assessments are generally employed to test the presence
130 of cognitive impairment. They comprise several domains of cognition including short-term
131 and working memory, executive functioning, processing speed, or reaction time. Importantly,
132 these domains are considered to be sensitive to age-related declines in cognition (Deary et al.,
133 2009; Murman, 2015). Further, studies indicate these cognitive domains may be affected by
134 psychosocial factors. For example, memory recall and executive function abilities have been
135 found to be related to loneliness (Lara et al., 2019; Luchetti et al., 2020; Sin et al., 2021), and
136 processing speed has been found to be related to social isolation (Hajek et al., 2020).

137 During the COVID-19 pandemic, we explored the indirect psychosocial pathway
138 hypothesis, also known as the ‘cascade hypothesis’ (Dawes et al., 2015; Dhanda et al., 2024).

139 According to this hypothesis, social withdrawal, isolation, and possibly resulting loneliness,
140 further exacerbates auditory deprivation, due to reduced engagement with auditory rich and
141 cognitively stimulating environments. This deprivation then negatively affects hearing and/or
142 cognitive function. In a previous study, subjective hearing disability (measured by the Speech
143 and Spatial Qualities of Hearing Scale: (Noble et al., 2013)), exacerbated the impact of social
144 distancing on depression, loneliness, and memory in older adults (Littlejohn et al., 2022). The
145 present study builds on these findings, taking a lifespan approach by comparing younger and
146 older adults, and measuring longitudinal outcomes of auditory function (comprising both
147 subjective hearing ability and speech-in-noise perception) and global cognitive function
148 across a period of 12 months during the pandemic.

149 Consistent with our preregistration protocol, data were collected between June 2020
150 and January 2022. All participants joined the study between June 2020 and February 2021,
151 and data were collected over the subsequent 48-weeks for each participant. For context, the
152 first UK national lockdown, the government ordered mandate to stay at home, was
153 announced in March 2020, a second national lockdown was then announced in November
154 2020, and a third was announced in January 2021. Between these dates, the UK experienced
155 numerous changes to social contact, including various local lockdowns and a tiered system of
156 restrictions. Restrictions to social contact remained in place until the end of 2021, with the
157 last measures of compulsory face mask wearing, and mandatory NHS Covid Passes finally
158 being removed in January 2022 (Institute For Government, 2022).

159 The aim of this preregistered study was to determine the effect of a period of enforced
160 social isolation and restriction on both hearing and cognitive function in younger and older
161 adults. As such, the primary predictors were: 1) loneliness, determined via self-report scales;
162 and 2) time, which ranged from time point 1 to time point 12, with each time point separated
163 by 4 weeks. We also included secondary predictors which we hypothesised to interact with
164 the primary variables, including: 1) age group (older vs. younger); 2) hearing status (ARHL
165 vs. no HL); 3) depression; 4) engagement in auditory activities; and 5) engagement in
166 lifestyle activities. Table 1 outlines the hypotheses.

167 **[Table 1 here]**

168

2. MATERIALS AND METHODS

169 Ethical approval was obtained from Lancaster University's Faculty of Science and
170 Technology Ethics Committee (FST19175).

171 **2.1 Transparency and Openness Statement**

172 The study was preregistered on the Open Science Framework (<https://osf.io/67rwh/>).
173 Any deviations from the protocol are described below.

174 ***2.1.1 Deviations from Pre-Registration***

175 Statistical Inference: In our pre-registered analysis plan, we reported that the statistical
176 inference criteria would be $p < .05$ for determining significant results. However, on
177 reflection, in identifying the need to test multiple hypotheses, we decided to apply a
178 correction factor to this criterion to reduce the likelihood of Type I error. We corrected the p -
179 value for determining statistical significance, over the number of hypotheses tested ($n = 24$),
180 to the more conservative threshold where p -value $< .002$ would be classed as significant.

181 Analysis: As detailed in our pre-registered analysis plan, the start date (i.e., the number
182 of months since the first UK lockdown) was included as a fixed-effect covariate. However,
183 despite indicating a plan to model how this variable interacted with other variables of
184 interest, we chose not to do this to simplify the amount of statistical analysis in the absence of
185 clear hypotheses concerning this parameter.

186 **2.2 Participants**

187 The sample initially consisted of 112 older adults (62 female, 50 male) aged 60-82 (M
188 = 70.08, $SD = 5.89$) both with ($N = 55$) and without ($N = 57$) self-reported hearing loss, and
189 121 younger adults (85 female, 36 male) aged 18-29 ($M = 20.52$, $SD = 2.63$) with self-
190 reported normal hearing. The required sample size was determined by an a-priori power
191 analysis to detect a moderate effect size of Cohen's $f = .25$ at 90% power and alpha at .05,
192 using GLIMMMPSE software (Version 3) for calculating power and sample size for linear
193 mixed models (Kreidler et al., 2013), as detailed in the associated preregistration
194 (<https://osf.io/67rwh/>).

195 The sample was self-selected with participants recruited through advertisements on
196 Lancaster University's Research Participation (SONA) System and Centre for Ageing
197 Research Participant Panel, as well as the University of the Third Age, social media, and
198 local print media. Inclusion criteria required that participants be right-handed, monolingual
199 speakers of English, have normal or corrected to normal vision, and present no history of
200 neurological, language, or speech disorders. Participants completed a cognitive screening
201 questionnaire, the Self-Report version of the Short Form Informant Questionnaire on
202 Cognitive Decline (IQCODE-SR), and participants scoring 3.65 or higher were excluded
203 before participation, as this has been suggested as an appropriate cut-off (Jansen et al., 2008),
204 where scores >3.65 indicate potential cognitive decline. The study was approved by
205 Lancaster University Faculty of Science and Technology Research Ethics Committee
206 (Reference: FST20091).

207 **2.2.1 Participant Attrition**

208 At month 12, the sample consisted of 165 participants, an attrition rate of 29.18%. At
209 this time point, there were 58 younger adults (36 female, $M^{AGE} = 20.90$), and 107 older
210 adults (59 female, $M^{AGE} = 70.11$). Due to attrition, there were missing datapoints across the
211 months, which are detailed in the Supplementary Materials (Table A).

212 **2.3 Materials**

213 **2.3.1 Self-Report Predictor Measures**

214 **a) Hearing Status**

215 Participants were asked to self-report any clinical or perceived hearing loss, using a
216 single item question: "Do you have any hearing disorders or hearing loss?". Response options
217 included "life-long hearing loss", "age-related hearing loss", "other hearing disorder", or "no
218 hearing loss". All younger adults reported no hearing loss, as required for study participation.
219 Only older participants who either had no hearing loss or experienced acquired hearing loss
220 in later life were able to participate, as we were primarily interested in age-related hearing
221 loss rather than lifelong hearing loss or deafness. As such, any older adults who had
222 experienced life-long deafness or hearing loss were ineligible and any who selected the
223 'other' category were asked further questions about their hearing to check for eligibility.

224 These data were used to group older adults into two hearing status groups: age-related
225 hearing loss (herein *ARHL*) or no hearing loss. For older adults, 57 reported no hearing loss
226 ($M^{AGE} = 68.70, SD = 5.58$), and 55 reported having ARHL ($M^{AGE} = 71.51, SD = 5.92$). Of
227 those who reported having ARHL, 31 reported being bilateral hearing aid users, and 5
228 reported being unilateral users.

229 ***b) Loneliness***

230 Loneliness was measured using two questionnaires: the Lubben Social Network Scale
231 (LSNS-6) (Lubben et al., 2006) and the UCLA Loneliness Scale Version 3 (UCLA-LS3)
232 (Russell, 1996). The LSNS-6 is a six-item questionnaire used to assess an individual's
233 perception of social support available to them and frequency of contact with their social
234 networks. An example question is "how many relatives did you see or hear from at least once
235 a month?". Participants responded using a six-point scale containing the following choices:
236 "none", "one", "two", "three or four", "five to eight", or "nine or more". The questionnaire
237 is reported to have good reliability (Cronbach's $\alpha = .83$) in older adult populations (Lubben et
238 al., 2006). The UCLA-LS3 is a 20-item questionnaire used to assess feelings of loneliness
239 and disconnection from others. An example question is "how often do you feel alone?", and
240 "how often did you feel that you lacked companionship?". Participants respond using a four-
241 point rating scale containing the following choices: never, rarely, sometimes, or always. The
242 questionnaire has been shown to have high reliability, in terms of internal consistency
243 (Cronbach's α ranging from .89 to .94) and test-retest reliability ($r = .73$), across age ranges
244 (Russell, 1996). Two questionnaires were employed here to ensure that the index captured
245 both social network size (social loneliness), and feelings of loneliness (emotional loneliness).
246 By assessing both constructs, we ensure that we capture multiple constructs of loneliness that
247 may have been affected during the pandemic. A composite measure of loneliness was created
248 by standardising the total scores within each questionnaire and then calculating the mean of
249 the total scores on each measure, per person, with higher scores indicating greater loneliness.

250 The test-retest reliability for the loneliness composite across the 12 time points of data
251 collection was estimated with intraclass correlation coefficients (ICCs) using the 'psych'
252 package in R (Revelle, 2024). ICCs were conducted on the data after influential outliers were
253 removed for both linear mixed effects models (see details of this procedure in the Results

254 section), in which either global cognition or auditory function was the outcome of interest,
255 because different data points may have been excluded as influential data points across the
256 two models. We report the results of two-way mixed-effects models for absolute agreement,
257 ICC(2,1), and consistency, ICC(3,1). For the data included in the global cognition model and
258 in the auditory function model, the estimated agreement was .90, 95% confidence interval
259 (CI) = [.88, .92], and the estimated consistency was .90, 95% CI = [.88, .92]. The loneliness
260 composite was found to have good internal consistency across the 12 time points of data
261 collection (Koo & Li, 2016).

262 ***c) Depression***

263 Depression was measured using the Beck Depression Inventory (BDI-I) (Beck et al.,
264 1961). The BDI-I is a 21-item questionnaire used to evaluate the severity of depressive
265 symptoms experienced by a participant over the previous week. For each item, the participant
266 selected one of four statements which range in intensity, each scored on a scale from 0 to 3.
267 For example, “I do not feel sad” (0), “I feel sad” (1), “I am sad all the time and I can’t snap
268 out of it” (2), or “I am so sad or unhappy that I can’t stand it” (3). The questionnaire has been
269 shown to have high reliability (Cronbach’s $\alpha < .75$) and validity (Beck et al., 1988; Richter et
270 al., 1998). The measure of depression was created by calculating the total score, with higher
271 scores indicating greater depressive symptoms.

272 We estimated test-retest reliability for the depression scores across the 12 time points of
273 data collection with ICCs in R using ‘psych’ (Revelle, 2024). For the data included in the
274 global cognition model, the estimated agreement was .77, CI = [.73, .80], and the estimated
275 consistency was .77, CI = [.73, .80]. For the data included in the auditory function model, the
276 estimated agreement was .76, CI = [.73, .80], and the estimated consistency was .77, CI =
277 [.73, .80]. The depression measure was found to have good internal consistency (Koo & Li,
278 2016).

279 ***d) Auditory and Lifestyle Engagement***

280 A 10-item self-report questionnaire measured engagement in auditory and lifestyle
281 activities (Slade et al., 2023). Participants estimated how many hours they spent doing certain
282 activities in an average week in the previous month on a scale of 0-50 hours.

283 Auditory engagement was measured using the first seven items, which measured how
284 much time participants estimated they spent doing auditory activities across active (e.g., in-
285 person or online socialising) and passive listening domains (e.g., listening to audiobooks).
286 The questionnaire assessed three factors: items 1-3 assessed in-person communicative
287 auditory engagement; items 4-5 assessed online communicative auditory engagement; and
288 items 6-7 assessed online non-communicative auditory engagement. The questionnaire items
289 were weighted based on the level of auditory engagement they were designed to assess. The
290 score obtained items 1-3 for in-person communication, was multiplied by 0.3. The score from
291 items 4-5 for remote communication, was multiplied by 0.2. The score from items 6-7 for
292 non-communication activities was multiplied by 0.1. The decision to employ these
293 weightings was made a-priori and preregistered and was designed to ensure that activities
294 which involved greater in-person communication were given greater importance in the total
295 score derived for this measure. The measure intended to tap into the auditory and social
296 exposures of the participants in the study during the pandemic, comprising both passive
297 listening and socially active listening. Greater weighting is placed on more active, and thus
298 more cognitively involved, auditory activities. The resulting scores were totalled to provide
299 an auditory engagement score, with higher scores indicating greater auditory engagement.

300 We estimated test-retest reliability for the auditory engagement scores across the 12
301 time points of data collection with ICCs in R using ‘psych’ (Revelle, 2024). For the data
302 included in the global cognition model and in the auditory function model, the estimated
303 agreement was .61, CI = [.56, .65], and the estimated consistency was .61, CI = [.56, .65].
304 The auditory engagement measure was found to have moderate internal consistency (Koo &
305 Li, 2016).

306 Lifestyle engagement was measured using the final three items of the engagement
307 questionnaire, which measured the time participants estimated that they spent engaged in
308 various lifestyle activities such as hobbies or sports. The total score obtained from the
309 summed responses to the three items provided a total lifestyle engagement score with higher
310 scores indicating greater lifestyle engagement, or participation.

311 We estimated test-retest reliability for the lifestyle engagement scores across the 12
312 time points of data collection with ICCs in R using ‘psych’ (Revelle, 2024). For the data

313 included in the global cognition model, the estimated agreement was .66, CI = [.62, .71], and
314 the estimated consistency was .67, CI = [.62, .71]. For the data included in the auditory
315 function model, the estimated agreement was .67, CI = [.62, .71], and the estimated
316 consistency was .67, CI = [.63, .71]. The lifestyle engagement measure was found to have
317 moderate internal consistency (Koo & Li, 2016).

318 **2.3.2 Outcome Measures**

319 **a) Global Cognition**

320 Global cognition was measured using a battery of four cognitive assessments: 1) the
321 forward digit span (e.g., Wechsler Adult Intelligence Scale: WAIS (Wechsler, 1997)); 2) the
322 backwards digit span (e.g., WAIS (Wechsler, 1997)); 3) the Deary-Liewald choice reaction
323 time task (Deary et al., 2011); and 4) the Stroop colour-word test (Scarpina & Tagini, 2017;
324 Stroop, 1935). These measures were employed to assess aspects of cognitive functioning
325 (short-term and working memory, executive functioning, and processing speed) that may not
326 necessarily be relevant to auditory cognitive performance during speech understanding but
327 are typically assessed in standard assessments of cognitive decline; these aspects have shown
328 age-related declines in previous research (Bopp & Verhaeghen, 2005; Folstein et al., 1975;
329 Hobson, 2015). The scores calculated within each task were standardised (z -scored), then
330 totalled to provide a composite score, following the preregistered protocol. Higher scores
331 indicate better global cognitive performance.

332 We estimated test-retest reliability for the composite global cognition measure across
333 the 12 time points of data collection with ICCs in R using ‘psych’ (Revelle, 2024). The
334 estimated agreement was .56, CI = [.51, .61], and the estimated consistency was .56, CI =
335 [.51, .61]. The global cognition measure was found to have moderate internal consistency
336 (Koo & Li, 2016).

337 **1. Forward digit span.** This task was used to assess short-term memory (e.g., Wechsler,
338 1997). Participants were presented with eight sets of number sequences containing two
339 sequences per set, in order of difficulty. The sequence length ranged from two digits in set
340 one to nine digits in set eight. In a trial, participants saw a fixation cross (1sec), followed by
341 each number in the sequence (1sec for each number), and then a response screen, where they

342 were asked to type the number sequence. After the response, participants saw a blank screen
343 for 1sec before the next trial began. The task ended if two sequences in a set were recalled
344 incorrectly. The number of correctly recalled sequences was totalled, with higher scores
345 indicating better short-term memory performance; scores ranged from 0-16.

346 **2. Backward digit span.** This task was used to assess working memory (e.g., Wechsler,
347 1997). Participants were presented with seven sets of number sequences containing two
348 sequences per set, in order of difficulty. The sequence length ranged from two digits in set
349 one to eight digits in set seven. In a trial, participants were presented with a fixation cross (for
350 1sec), followed by each number in the sequence (1sec for each number), and then a response
351 screen, where they were asked to type the number sequence in the reverse order. After the
352 response, participants saw a blank screen for 1sec before the next trial began. The task ended
353 if two sequences in a set were recalled incorrectly. The number of correctly recalled
354 sequences was totalled, with higher scores indicating better working memory performance;
355 scores ranged from 0-14.

356 **3. Deary-Liewald choice reaction time.** This task was used to assess processing speed
357 (Deary et al., 2011). Participants were presented with four on-screen squares in a horizontal
358 line in a randomised order. In a trial, a target 'x' appeared in one of the four squares, and the
359 participant used their number keys to indicate which box the target appeared in, where 1
360 indicated the box furthest left, and 4 indicated the box furthest right. The inter-trial interval
361 varied between 1 and 3 secs, and there were 40 trials in total. The response time for when the
362 target position was identified was recorded to provide a mean reaction time. The mean was
363 reversed (i.e., raw score * -1) prior to calculating the global cognition composite so that
364 better reaction time performance was indicated by higher numbers to be consistent with the
365 other cognitive measures.

366 **4. Stroop colour-word.** This task was used to assess executive function (Cohen et al.,
367 1990; Stroop, 1935). The task consisted of three conditions each containing 48 trials: words
368 only (W), colours only (C), or colour-words (CW), resulting in 144 trials in total, with trials
369 presented in condition blocks. In the words-only condition, participants were presented with a
370 fixation cross (1sec) followed by a word (either RED, GREEN, YELLOW, or BLUE) in
371 white text on a grey background. The participant was instructed to recall the word they saw

372 by pressing one of the 'R,' 'G', 'Y', or 'B' keys. The keys corresponded to colours sharing
373 the same initial: R = red; G = green; Y = yellow; B = blue. In the colours-only condition,
374 participants were presented with the repeated letter X in either red, green, yellow, or blue
375 text. Participants were instructed to recall the colour of the Xs by pressing one of the 'R,'
376 'G,' 'Y,' or 'B' keys. In the colour-words condition, participants were presented with the
377 colour word (either RED, GREEN, YELLOW, or BLUE) printed in incongruent coloured
378 text (e.g., the word BLUE printed in red colour). Participants were instructed to recall the
379 colour of the text, not the word itself, by pressing one of the 'R,' 'G,' 'Y,' or 'B' keys. An
380 interference score was calculated using a method adapted from Golden (1978). First, the
381 number of correct responses out of a possible 48 in each condition was calculated (i.e., W, C,
382 CW) and then the predicted colour-word score (PCW) was calculated, as below:

$$383 \quad PCW = \frac{48}{\left(\frac{((48 \times W) + (48 \times C))}{(W \times C)} \right)}$$

384 The PCW value is then subtracted from participant's score in the incongruent colour-words
385 condition to provide an interference score, with higher scores indicating better ability to
386 inhibit interference: Interference score = CW - PCW

387 ***b) Auditory Function***

388 Auditory function was measured using two assessments: 1) Speech, Spatial and
389 Qualities of Hearing scale short version (SSQ-12, Noble et al., 2013); 2) An online speech-in-
390 noise perception (SPiN) test, based on the Bamford-Kowal-Bench Speech-in-Noise test
391 (BKB-SIN, Etymotic Research). The scores calculated within each task were standardised (z-
392 scored) then totalled to provide a composite score, following the preregistered protocol.
393 Higher scores indicate better auditory function.

394 We estimated test-retest reliability for the composite auditory function scores across the
395 12 time points of data collection with ICCs in R using 'psych' (Revelle, 2024). The estimated
396 agreement was .83, CI = [.80, .86], and the estimated consistency was .83, CI = [.80, .86].
397 The auditory function measure was found to have good internal consistency (Koo & Li,
398 2016).

399 *a) Subjective Hearing Ability*

400 Subjective hearing ability was measured using the SSQ-12 (Noble et al., 2013). This
401 12-item questionnaire assessed subjective hearing ability. Participants responded on a 10-
402 point Likert scale, with 0 indicating very poor hearing ability and 10 indicating perfect
403 hearing ability. The scores were averaged over all items with better hearing ability indicated
404 by higher scores.

405 *b) Speech-in-noise Perception (SPiN)*

406 SPiN was assessed using an online behavioural test (based on the Bamford-Kowal-
407 Bench Speech-in-Noise test: BKB-SIN, Etymotic Research). Before the task, participants
408 were asked to adjust their volume to a level that was audible but comfortable. To do this,
409 sample sentences were presented at the highest overall level that would be presented during
410 the test (fixed at 70 dB HL), and participants could then manually adjust their volume in
411 response to these sentences. Once participants were happy that the volume was at a loud but
412 comfortable level, this volume was fixed for the entire test. The speech-in-noise stimuli
413 consisted of target sentences from the IEEE (or Harvard) corpus spoken by a British-English
414 male, in the presence of four-talker babble. The babble was created from the IEEE sentences,
415 all voiced by a British-English male, in MATLAB (The MathWorks Inc., 2024). The Praat
416 software application (Boersma & Weenink, 2022) was used to combine the speech with
417 different levels of babble noise to create 10 signal-to-noise ratios (SNRs) ranging from -6 dB
418 SNR to +21 dB SNR, in 3 dB steps, with four trials at each SNR. Therefore, the task
419 consisted of 10 blocks, each containing four trials. The trials were ordered from most easy
420 (e.g., +21 dB SNR) to most difficult (e.g., -6 dB SNR) to represent an equivalent process as
421 employed in the clinical standard speech-in-noise assessment (BKB-SIN: Etymotic
422 Research), on which this online task was based. The scripts used to create the stimuli can be
423 accessed from the associated OSF repository (<https://osf.io/67rwh/>).

424 Participants were instructed to wear headphones or earphones during the task. In a trial,
425 participants saw a fixation cross (1sec), then heard a sentence, after which they were asked to
426 type the sentence in a response window. In each sentence, there were five pre-determined
427 target words, each worth a point if correctly recalled. The points awarded in each SNR block

428 were averaged across trials to create a mean score per SNR block. The test scoring method
429 was based on the formula employed in the BKB-SIN (Etymotic Research). This scoring
430 formula is derived from the Tillman-Olsen method (Tillman & Olsen, 1973) and was adapted
431 for this online task to estimate the SNR required for a person to identify 50% of target words
432 correctly (SNR-50). This calculation is based on that used for calculating spondee thresholds
433 in a speech-in-noise task in which the SNR increases in 2 dB steps and two key words need
434 to be identified per trial (BKB-SIN Manual, Etymotic Research). The calculation was
435 adapted to account for the five key words per 3 dB step in this task:

436
$$\text{SNR-50} = 21 + 1.5 + (2 \times Y) - A$$

437 Wherein: 21 refers to the starting SNR level; 1.5 is half the step size; 2 is the number of
438 additional pre-determined target words in each trial above the step size (i.e., 5 key words – 3
439 dB steps = 2); Y is the number of SNR blocks where the participant's mean score was greater
440 than 2; and A is the sum of the participant's mean scores across all SNR blocks. The score
441 was reversed prior to calculating the auditory function score, so that a lower SNR50 would
442 indicate poorer performance.

443 **2.4 Procedure**

444 Each participant was contacted through email, where they were also asked to confirm
445 their eligibility to participate. Data were collected remotely from the participant using online
446 platforms that controlled the presentation of experimental stimuli and collected participants'
447 responses: Qualtrics (Qualtrics, Provo, UT) was used to collect self-report data, and
448 PsychoPy3 (Peirce et al., 2019) in combination with the hosting platform Pavlovia (Bridges
449 et al., 2020) was used to collect behavioural responses. Participants were provided with URL
450 links to the self-report measures, as well as individual links to each of the behavioural tasks.
451 They completed the measures and tasks in the following order: 1) self-report measures; 2)
452 forward digit span; 3) backward digit span; 4) choice reaction time; 5) Stroop colour-word; 5)
453 speech-in-noise test. In the case of a technical issue, participants were asked to move onto the
454 next task while the researcher resolved the potential issue. The participant was informed that
455 they could take breaks between but not during tasks and were asked to complete all
456 questionnaires and tasks on the same day where possible. The date of participation was

457 recorded. After completing all measures, the participant was provided with follow-up dates
458 for completing the measures again. Participants were then contacted after 4 weeks to repeat
459 the questionnaires and tasks.

460 **2.5 Statistical Analysis**

461 Data pre-processing and analyses were conducted in R (R Core Team, 2022). To
462 determine the effect of the predictors on hearing and cognitive outcomes, analyses using
463 linear mixed effects models were conducted in R using ‘lme4’ (Bates et al., 2015) and *p*-
464 values were derived using ‘lmerTest’ (Kuznetsova et al., 2017). To test the hypotheses, two
465 linear mixed effects models were conducted. Linear mixed effects models are appropriate for
466 the analysis of data over time. They are sometimes considered preferable over alternatives,
467 such as cross-lagged panel or latent change score models, due to their ability to handle
468 missing data at random across time points (Ghisletta et al., 2015; McNeish & Matta, 2018);
469 and reliance on fewer unknown assumptions (Lucas, 2023; Rohrer & Murayama, 2023).

470 We report the nominal *p*-values, but we use *p* < .002 as the statistical inference criteria,
471 which reduces likelihood of Type I error by correcting the original alpha level (*p* < .05) over
472 the number of hypotheses tested (*n* = 24).

473 **2.5.1 Linear Mixed Effects Models**

474 Two linear mixed effects models were conducted to investigate the effects of time and
475 loneliness, as well as the interactions between additional variables with time and loneliness,
476 separately on the two key outcome variables: global cognition and overall auditory function.
477 The predictors in each of the two models were: time (from time points 1-12); loneliness (a
478 composite measure from scores on the UCLA-LS3 and the LSNS-6); and the interactions
479 between each additional variable (age, hearing status, depressive symptoms, auditory
480 engagement, and lifestyle engagement) with time and loneliness. The start date (i.e., the
481 number of months since the first UK lockdown) was included as a covariate. The outcomes in
482 each of the models were: 1) global cognition, a composite score calculated from standardised
483 scores on a forward digit span, a backward digit span, a choice reaction time task, and a
484 Stroop task; 2) auditory function, a composite score calculated from standardised scores on a
485 measure of self-reported hearing ability (SSQ-12) and a measure of speech-in-noise

486 perception (SPIN). Following best practice guidelines for linear mixed effects analyses
487 (Jaeger, 2008; Meteyard & Davies, 2020), the categorical predictor variables age group and
488 hearing status were sum coded using the ‘memisc’ R package (Elff, 2024), and all other
489 variables, measured on a continuous scale, were standardised (sample grand mean centered,
490 and divided by sample SD) to ensure they were all on the same scale. Further, both models
491 were random intercepts-only models, incorporating estimation of the variance associated with
492 random between-participants in intercepts. A random slopes model was inappropriate
493 because between-participants variation in the slopes of the effects of by-participants
494 individual differences are not identifiable, given the study design (Barr et al., 2013).

495 ***2.5.1.1 Influential Observations and Model Assumptions***

496 Influential data points were investigated using Cook’s distance to detect any data points
497 with a Cook’s distance greater than 3 times the mean Cook’s distance. For the global
498 cognition model, 109 data points (of 2796 data points; 4.22% of the data) were flagged as
499 influential. For the auditory function model, 145 data points (of 2796; 5.19% of the data)
500 were flagged as influential. We investigated the effect of the removal of influential data
501 points by fitting models without these data. For both the global cognition and auditory
502 function models, removal of these data had no effect on statistical interpretation of the model
503 results. We then removed influential data points for analyses. This is because the models
504 without influential observations are likely to be less biased, as model outcomes are not as
505 bound to specific (influential) sample data points. Across both models, the data met
506 assumptions for linearity, homoscedasticity, and normality of residuals, and there was no
507 multicollinearity among the variables (variance inflation factors ≤ 1.57 for the global
508 cognition model and ≤ 1.54 for the auditory function model).

509 ***2.5.1.2 Model Fitting and Comparison***

510 **[Table 2 here]**

511 To determine best fit and justify the inclusion of random effects and interaction effects
512 across our models, we compared models by obtaining the Akaike Information Criterion (AIC;
513 Akaike, 1998) for various model specifications. The AIC was used as the comparison
514 measure, because the criterion does not rely on the assumption that the true model is among

515 the candidate models, which some researchers argue can never be the case (Burnham &
516 Anderson, 2004). Across all models, the outcome variable (indicated by Y) was either Global
517 Cognition or Auditory Function. For the global cognition models, the lower AIC value
518 indicated that Model 1 was a better fit (see Table 2). Therefore, the data for the full global
519 cognition model are reported here.

520 For the auditory function models, the lower AIC value indicated that Model 1 was a
521 better fit compared to Model 3 and 4 (see Table 2). However, Model 2 offered a lower AIC
522 than the full model. Despite this, a comparison of these two models (Model 2: main effects
523 vs. Model 1: full model) indicated that the likelihood ratio test statistic was not significant (χ^2
524 = 16.487, df = 10, $p = .087$), suggesting that neither model was better able to explain more
525 variance. Therefore, the data for the model driven by our hypotheses, the full auditory
526 function model, are reported here.

527 **3. RESULTS**

528 **3.1 Descriptive Statistics**

529 Tables 3 and 4 provide the means and standard deviations observed in older (OA) and
530 younger adults (YA) for each variable of interest across the two linear mixed effects models.
531 These statistics are represented across time points 3, 6, 9, and 12.

532 **[Table 3 here]**

533 **[Table 4 here]**

534 **3.2 Linear Mixed Effects Models**

535 **3.2.1.3 Model Results**

536 Results for the global cognition model are reported in Table 5. We calculated marginal
537 and conditional R^2 according to the approach set out by Nakagawa et al. (2017: using the
538 ‘performance’ package (Lüdecke et al., 2021)). The fixed effects explained 6.5% of the
539 variance in the data, and 57.4% was explained by both fixed and random effects. Further,
540 semi-partial R^2 statistics were calculated for each fixed predictor using the approach set out
541 by Nakagawa et al. (2013: using the ‘r2glmm’ package (B. Jaeger, 2017)). Of the predictors

542 of interest for the primary and secondary hypotheses, the interaction between age and time
543 explained 1.1% of the variance in the data, loneliness explained 0.1% of the variance, the
544 interaction between loneliness and depression explained 0.2% of the variance, and the
545 interactions between loneliness and age, between loneliness and auditory engagement, and
546 loneliness and lifestyle engagement each explained 0.1% of the variance.

547 **[Table 5 here]**

548 Results for the auditory function model are reported in Table 6. Marginal and
549 conditional R^2 values indicated that the fixed effects explained 30.5% of the variance in the
550 data, and 83.5% was explained by both fixed and random effects. Semi-partial R^2 statistics
551 indicated that, of the predictors of interest for the primary and secondary hypotheses,
552 loneliness explained 1.5% of the variance in the data, the interaction between loneliness and
553 hearing status explained 0.7% of the variance, time explained 0.1% of the variance, and the
554 interaction between loneliness and age explained a further 0.1% of the variance.

555 **[Table 6 here]**

556 ***3.2.1.4 Primary Hypotheses***

557 There was no significant main effect of time [$\beta = -0.009, t(1892.72) = -0.49, p = .624$],
558 nor a main effect of loneliness [$\beta = -0.031, t(949.22) = -0.69, p = .490$] on cognitive function.
559 These data do not support H1a or H1b, which predicted that global cognition would worsen
560 with time and with increased loneliness. There was also no significant main effect of time [β
561 = 0.028, $t(1835.43) = 2.42, p = .016$] on auditory function at the $p < .002$ criterion level,
562 providing no support for H2a, which predicted that auditory function would decrease with
563 time. There was, however, a significant main effect of loneliness [$\beta = -0.135, t(1675.49) = -$
564 4.04, $p < .001$] on auditory function, providing support for H2b, which predicted that
565 auditory function would decrease with increased loneliness.

566 ***3.2.1.5 Secondary Hypotheses***

567 There was a significant interaction effect between time and age group on global
568 cognition [$\beta = 0.133, t(1918.58) = 6.76, p < .001$]. The shape of the interaction is inconsistent
569 with hypothesis H3a, which predicted that any negative change in cognition with time would

570 be greater for older adults. Instead, we find that the negative change in cognition over time
571 only occurs in younger adults, while an unexpected positive change in cognition over time is
572 observed in older adults (see Figure 1).

573 **[Figure 1 here]**

574 Despite the differing association between time and global cognition in different age
575 groups, the effect of the interaction between loneliness and age group on global cognition
576 was not significant [$\beta = 0.036, t(983.90) = 0.78, p = .434$]. These data do not support H3b,
577 which predicted that older adults would show more negative changes in cognition (than
578 younger adults) with increased loneliness. There were also no significant interaction effects
579 between time and hearing status [$\beta = -0.026, t(1869.31) = -1.34, p = .179$] or between
580 loneliness and hearing status [$\beta = 0.016, t(84049) = 0.31, p = .755$] on global cognition;
581 providing no support for hypotheses H3c or H3d, which predicted that older adults with
582 hearing loss would show increased negative changes in cognition with increased time and
583 increased loneliness.

584 Similarly, in the model of auditory function outcomes, we observed no significant
585 interaction effects between time and age [$\beta = 0.011, t(1864.00) = 0.87, p = .387$] or between
586 loneliness and age [$\beta = 0.025, t(1739.28) = 0.76, p = .451$], providing no support for
587 hypotheses H4a or H4b which predicted that older adults would show poorer auditory
588 function with increased time and increased loneliness. There was also no significant
589 interaction effect between time and hearing status [$\beta = -0.005, t(1837.49) = -0.40, p = .687$]
590 on auditory function, providing no support for hypothesis H4c which predicted that older
591 adults with hearing loss would show increased negative changes in auditory function with
592 increased time. Further, using $p < .002$ as the inferential statistical criterion, there was no
593 significant interaction effect between loneliness and hearing status [$\beta = -0.093, t(1630.03) = -$
594 $2.52, p = .012$] on auditory function, providing no support for hypotheses H4b, which
595 predicted that older adults with hearing loss would show increased negative changes in
596 auditory function with increased loneliness.

597 For depressive symptoms, we found no significant interaction effects between
598 depression and time nor between depression and loneliness on cognitive function [$ps > .002$].

599 Similarly, we found no significant interaction effects between depression and time nor
600 between depression and loneliness on auditory function [$ps > .002$]. These data do not
601 support hypotheses H5a – H5d, which predicted that participants with increased depressive
602 symptoms would show increased negative changes in cognitive and auditory function with
603 increased time and increased loneliness.

604 For auditory engagement, we found no significant interaction effects between
605 engagement in auditory activities and time nor between engagement in auditory activities and
606 loneliness on global cognition [$ps > .002$]. Similarly, we found no significant interaction
607 effects between engagement in auditory activities and time nor between engagement in
608 auditory activities and loneliness on auditory function [$ps > .002$]. These data provide no
609 support for hypotheses H6a – H6d, which predicted that participants with lower engagement
610 in auditory activities would show increased negative changes in cognitive and auditory
611 function with increased time and increased loneliness.

612 For lifestyle engagement, we found no significant interaction effects between
613 engagement in lifestyle activities and time nor between lifestyle engagement and loneliness
614 on global cognition [$ps > .002$]. Similarly, we found no significant interaction effects
615 between engagement in lifestyle activities and time nor between lifestyle engagement and
616 loneliness on auditory function [$ps > .002$]. These data do not support hypotheses H7a – H7d,
617 which predicted that participants with lower engagement in lifestyle activities would show
618 increased negative changes in cognitive and auditory function with increased time and
619 increased loneliness.

620 **3.2.1.6 Exploratory Analyses**

621 We also report whether any of the predictor variables or covariates included in the
622 linear mixed effects models showed a significant main effect on either global cognition or
623 auditory function. Despite initially not hypothesising any main effects of these predictors
624 (age group, hearing status, depression, auditory engagement, and lifestyle engagement), they
625 may affect hearing or cognitive outcomes. We also included how many months had passed
626 since the first lockdown when each person participated as a covariate, which we will explore
627 as a main effect.

628 For the linear mixed effects model predicting global cognition, none of these main
629 effects were statistically significant, see Table 5. For the linear mixed effects model
630 predicting auditory function, see Table 6, there was a significant main effect of Hearing
631 Status [$\beta = -0.586$, $t(225.69) = -8.53$, $p < .001$, Cohen's $d = -1.13$], whereby older adults who
632 reported having hearing loss showed significantly poorer auditory function than those who
633 did not report having hearing loss (both older and younger adults).

634 **4. DISCUSSION**

635 **4.1 Primary hypotheses: The effect of time and loneliness on cognitive and auditory**
636 **function.**

637 We observed no significant effect of time nor loneliness on global cognitive function.
638 This finding was unexpected because this research took place during a time of reduced social
639 contact, which was predicted to effect both the time and loneliness variables, and thus
640 cognitive performance. Previous research indicates that maintaining social contact is
641 preventative against dementia through maintaining and strengthening cognitive reserve
642 (Livingston et al., 2024). For example, increased contact with friends is associated with better
643 cognitive outcomes on a global cognitive function measure (Sommerlad et al., 2019). The
644 contradictory findings may be in part due to differences between measurements of social
645 contact employed in previous research, and our measure of self-reported loneliness. The
646 loneliness composite we employed comprised both social and emotional loneliness,
647 considering both perceptions of social networks and emotional support. A previous meta-
648 analysis investigating the associations between loneliness and risk of dementia found that risk
649 of dementia was increased with poor social engagement and poor social networks, but not
650 with increased loneliness (Penninkilampi et al., 2018). Considering this, our use of a
651 composite self-report measure that comprised both these components (social and emotional
652 loneliness) may have diluted our findings, obscuring any trends or contributions of the
653 individual sub-components.

654 Further, it is possible that the timeframe employed in this study time (i.e., our 48-week
655 testing period) was not long enough to capture the effect of social distancing or loneliness on
656 cognitive outcomes. In another study, relationships between loneliness and all cause dementia
657 were observed in a 20-year follow up (Sundström et al., 2020). Additionally, in previous

658 studies, a clinical measure of dementia or Alzheimer's Disease was employed (Livingston et
659 al., 2024; Penninkilampi et al., 2018; Sundström et al., 2020). It is possible that associations
660 between loneliness and cognition only occur in populations with clinically significant
661 memory declines, which were not captured within our research. For example, in a meta-
662 analysis, loneliness was found to be associated with increased risk of Alzheimer's Disease
663 and dementia but was not associated with mild cognitive impairment (Qiao et al., 2022).

664 Interestingly, our findings are in line with a similar previous study conducted during the
665 COVID-19 pandemic. The researchers found no significant associations between loneliness
666 (as measured similarly with both the UCLA-LS3 and the LSNS-6) and behavioural tests of
667 cognitive performance (Nogueira et al., 2022). However, they did observe significant
668 associations between loneliness and self-reported cognitive function, which may indicate that
669 participants perceived more subtle changes in their memory during the pandemic which were
670 not sensitive to behavioural testing. The relationship between psychosocial factors, including
671 feelings of loneliness, and cognition is clearly complex. Previous researchers have suggested
672 that the association may be bidirectional (Yin et al., 2019), or that cognition may affect
673 loneliness outcomes but not the other way around (McHugh Power et al., 2020), or may only
674 occur significantly in specific populations (Zhou et al., 2019).

675 We observed a significant main effect of loneliness on auditory function; increased
676 loneliness was associated with poorer auditory function. Associations between social factors,
677 loneliness and hearing difficulties are commonly reported (Bott & Saunders, 2021; Shukla et
678 al., 2020). Hearing loss is thought to increase perceptions of loneliness through reduced
679 social contact due to the demands of coping in challenging auditory environments. However,
680 the effect of restricted social contact or enforced isolation on hearing outcomes is less well
681 known; the pandemic could have theoretically exacerbated this relationship. The pandemic
682 listening environment may have been incredibly challenging, due to increases in distance, use
683 of face coverings (Tofanelli et al., 2022), and reliance on online communication. These
684 factors may have increased listening difficulty and social withdrawal leading to increased
685 auditory deprivation. Also, poorer auditory quality reduces the emotional information
686 conveyed through the speech to the listener. Indeed, social distancing has been found to

687 impact quality of communication and connection with others (Wood et al., 2024). In line with
688 the “use it or lose it” view, a lack of auditory stimulation may affect auditory functioning.

689 However, we did not observe associations between time and auditory function,
690 indicating that the time course of the pandemic, captured in this study, did not exacerbate
691 hearing difficulties. It is possible that the pandemic created a unique situation in which some
692 individuals felt speech understanding was easier or not vastly affected, which may have
693 affected the self-reported part of our auditory composite measure. In another study,
694 participants with cochlear implants felt less lonely and less isolated at home in a more
695 manageable auditory environment; and they reported better speech understanding with little
696 effort during the pandemic (Dunn et al., 2021).

697 The presence of an effect of loneliness on auditory functioning, but not cognitive
698 functioning is interesting, given that some previous research indicates a relationship between
699 feeling lonely and poorer cognition (Cardona & Andrés, 2023). However, it is possible that if
700 previous research employs cognitive assessments in the auditory modality (as is traditional
701 for standardised cognitive assessments e.g. MoCA and MMSE) then outcomes may be
702 affected by hearing acuity, leading to over estimation of cognitive decline, or poorer
703 cognitive performance due to misheard stimuli or instructions rather than cognitive factors
704 (Füllgrabe, 2020a, 2020b; Goodwin et al., 2021). However, this study employed cognitive
705 assessments in the visual modality only, enabling the isolation of cognitive ability from
706 hearing acuity or speech perception.

707 **4.2 Secondary hypotheses: The interaction effects between time or loneliness and
708 additional variables of age, hearing status, depression, engagement in auditory and
709 lifestyle activities on cognitive or hearing function.**

710 In this study, we observed no significant interaction effects between time nor loneliness
711 and additional variables of age, hearing status, depression, engagement in auditory and
712 lifestyle activities on auditory function. It is notable that while the interaction between
713 hearing status and loneliness was not significant at the $p < .002$ level, it would have reached
714 significance at the $p < .05$ level. The trend indicates that individuals with higher self-reported
715 loneliness showed poorer auditory function. In exploratory correlations, the trend was

716 strongest amongst older participants with hearing loss ($R = -.33$) but still present amongst the
717 remaining sample with self-reported normal hearing ($R = -.16$). However, the effect size for
718 this interaction was very small (Cohen's $d = .12$), and the interaction explained only 0.7% of
719 the variance data.

720 We also found no significant interaction effects between time nor loneliness and
721 additional variables of hearing status, depression, engagement in auditory and lifestyle
722 activities on global cognition. Global cognition was also not affected by any interaction
723 effects between loneliness and age. However, there was a significant interaction between
724 time and age, indicating interesting differences in the effect of time on cognitive performance
725 across the different age groups. The effect size for this interaction effect on global cognition
726 was small-moderate (Cohen's $d = .31$). Whilst older adults showed improved performance
727 over time, younger adult performance worsened. A possible explanation for this is
728 motivational differences in younger and older listeners, which may affect how they engage in
729 cognitive tasks.

730 There is evidence from previous research that age-related differences in motivation
731 effect effort investment in cognitive tasks (Ennis et al., 2013). The authors found that older
732 adults were more influenced by the importance of performing well on cognitive tasks,
733 relative to younger adults. Several reasons may underpin such age-related differences in task
734 motivation, or in motivation to participate in research more generally. In one study, older
735 adults were found to be motivated by the desire to understand more about their health and
736 gain cognitive benefit (Carr et al., 2022); such motivators may arise due to increased
737 concerns about health and memory as we age. Researchers also perceive motivational
738 differences amongst participants; a surveyed group of researchers ($n = 88$) believed older, vs.
739 younger, adults to be more motivated participants who take part to learn about their cognitive
740 health, further science, and out of curiosity, rather than for course credits or monetary
741 compensation favoured by younger adults (Ryan & Campbell, 2021). Of course, such
742 generalisations do not apply across all older and younger adults, with many factors
743 influencing motivation. Indeed, age, employment status, and previous participation have been
744 found to underpin the motivations to take part in research (Carr et al., 2022). Importantly,
745 psychological factors also affect motivation; depressive symptoms are found to negatively

746 impact reward-seeking and motivational behaviour (Franzen & Brinkmann, 2016). This is
747 important as previous research suggests that younger adults consistently reported increased
748 psychological distress and reduced wellbeing during the pandemic, compared to older adults
749 (Best et al., 2023). These age-related differences may explain the differences in cognitive
750 performance as well as increased attrition rate observed in the younger cohort involved in this
751 research study. Compared to the older adult sample, of which only 10 didn't participate at
752 time point 12, 65 younger adults dropped out by time point 12.

753 **4.3 Exploratory analyses: The main effects of age, hearing status, depression,
754 engagement in auditory and lifestyle activities, or months since lockdown on cognitive
755 or auditory function.**

756 Of these variables, there was only a significant main effect of hearing status on the
757 outcome of auditory function, wherein older adults who self-reported having ARHL
758 displayed poorer auditory function than their peers, and younger adults, who did not report
759 having hearing loss. The effect size for this hearing status effect on auditory function was
760 large (Cohen's $d = 1.13$). This indicates that the online measures of auditory function may be
761 sensitive to detecting hearing difficulty.

762 **4.4 Limitations and future directions**

763 Understanding the associations between psychosocial factors such as loneliness and
764 age-related changes in hearing and cognitive function is important for identifying individuals
765 at risk of loneliness and health declines, and to design appropriate interventions. This study
766 investigated the effect of time exposed to the COVID-19 pandemic related social restrictions
767 on cognitive and auditory outcomes.

768 The UK experienced vast changes across the pandemic period, including local
769 lockdowns, tiered restrictions, and incentives like the “Eat Out to Help Out Scheme” (HM
770 Revenue & Customs, 2020), as well as individuals engaging in differing levels of
771 compliance. Additionally, participants will have likely been affected differently depending on
772 whether they were experiencing COVID-19 symptoms, as well as variances in their living,
773 work and study situations across the period. As such, there is variation across the study,
774 which may have affected the linearity of the time variable and the outcomes. Additionally,

775 the study may be limited by reliance on a self-reported measure of social and emotional
776 loneliness. Admitting to feeling lonely can be incredibly stigmatising (Department for
777 Culture Media & Sport, 2023), thus leading to biases in the measure.

778 Further, it is possible that results were biased through the recruitment of a self-selected
779 participant sample consisting of active, and socially engaged older adults, who potentially
780 feel less impacted by pandemic-related restrictions or guidance. Factors such as computer-
781 literacy, social contacts, or socioeconomic position, may play a role in mitigating feelings of
782 loneliness, isolation, or even cognitive decline in our sample (Cotten et al., 2013; Fakoya et
783 al., 2020). The online nature of this research study required that participants had access to
784 email, internet connection, and a level of technical skill and digital literacy. It is probable that
785 the participants were comfortable technology users and relatedly experienced higher levels of
786 online social connection and auditory stimulation. It is important to note that the findings we
787 observed may not generalise to a population of older adults with poorer digital literacy or
788 reduced access to technology; such individuals were likely more significantly affected by
789 pandemic-related restrictions which may have resulted in changes to their hearing or
790 cognitive function, which we were not able to capture in this study. This highlights a
791 potential issue for online research, in that sample recruitment may be biased to include
792 participants who are online regularly, excluding those from different social or economic
793 backgrounds. Importantly, research suggests that socioeconomic position (SEP), and health
794 inequalities, play a critical role in hearing health, with lower SEP significantly related to
795 increased hearing loss (Tsimplida et al., 2019).

796 A further limitation that resulted from the self-selected sample is that most of the
797 participants were female, and thus assigned sex was not balanced across the sample. This
798 factor was also not included in analyses. Evidence suggest that the prevalence of hearing loss
799 is higher in males, and importantly, both engagement with hearing healthcare or assistive
800 devices, and the effects of hearing loss on other health outcomes may vary by sex (Mick et
801 al., 2014; Reavis et al., 2022). To understand both sex and gender differences in hearing and
802 hearing health outcomes, future researchers may wish to account for these factors. In future
803 studies, researchers may also wish to account for SEP and additional biases within the
804 participant sample. Further, research which includes an objective measure of social

805 connection through quantifying social interactions in the real world would provide the next
806 step in understanding the effect of socialisation on hearing and brain health. Additionally,
807 researchers may want to consider the effect of positive social interventions in diverse
808 populations on both cognitive and auditory outcomes to best understand future pathways for
809 intervention for loneliness and associated health conditions in older age.

810 **4.5 Conclusion**

811 This study sought to understand the effect of loneliness and isolation experienced
812 during a global pandemic on sensory and cognitive function across age ranges. During the
813 COVID-19 pandemic, the public experienced social distancing, enforced isolation, and
814 restricted means of communication, creating a changed auditory environment. Previous
815 research suggests that reduced levels of auditory stimulation may affect both cognitive and
816 auditory processing, however, in this sample we did not find consistent significant effects of
817 such psychosocial factors on hearing and cognitive outcomes.

818 Instead, cognitive performance was found to be affected only by interactions between
819 participant's age and time (improving over time in older adults and decreasing over time in
820 younger adults). Auditory function, however, was associated with loneliness; across all time
821 points poorer auditory function was related to increased self-reported loneliness. Auditory
822 function was also affected by participant's hearing status (poorer auditory function was
823 observed in older adults who self-reported having HL, compared to participants without HL).

824 Aside from the association between loneliness and auditory function, these data appear
825 to show a lack of support for our preregistered hypotheses that auditory deprivation and
826 reduced socialisation impact hearing and cognitive function. Nevertheless, the patterns
827 observed in the data may be underpinned by motivational differences, learning effects,
828 sample biases, or a lack of statistical power. Interesting trends indicate an effect of the
829 relationship between loneliness and hearing status on auditory function, wherein, the
830 correlation between increased loneliness and poorer auditory function is greater for older
831 adults with hearing loss. Future research may wish to investigate these effects further, over a
832 greater period, to understand how this relationship manifests. This would provide insight into

833 how social and psychological factors relate to both cognitive and hearing function, to identify
834 intervention pathways targeting HL and cognitive decline.

835 **Data Availability Statement:** All experimental scripts, stimuli, the study
836 preregistration, and research data are openly available on the Open Science Framework
837 (OSF) at <https://osf.io/67rwh/>

838 **Financial disclosures:** This study was funded by the Biotechnology and Biological
839 Sciences Research Council (BB/S008527/1 awarded to Dr Helen Nuttal). Author CJP was
840 supported by the National Institute for Health and Care Research Manchester Biomedical
841 Research Centre (NIHR203308)

842 **5. REFERENCES**

843 Age UK. (2019). *Later Life in the United Kingdom 2019*.

844 https://www.ageuk.org.uk/globalassets/age-uk/documents/reports-and-publications/later_life_uk_factsheet.pdf

846 Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for
847 confirmatory hypothesis testing: Keep it maximal. *Journal of Memory and Language*, 68(3),
848 255–278. <https://doi.org/10.1016/j.jml.2012.11.001>

849 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models
850 using lme4. *Journal of Statistical Software*, 67(1), 1–48. <https://doi.org/10.18637/jss.v067.i01>

851 Beck, A. T., Steer, R. A., & Carbin, M. G. (1988). Psychometric properties of the Beck
852 Depression Inventory: Twenty-five years of evaluation. *Clinical Psychology Review*, 8(1),
853 77–100. [https://doi.org/10.1016/0272-7358\(88\)90050-5](https://doi.org/10.1016/0272-7358(88)90050-5)

854 Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for
855 measuring depression. *Archives of General Psychiatry*, 4(6), 561-571.
856 <https://doi.org/10.1001/archpsyc.1961.01710120031004>

- 857 Best, R., Strough, J., & Bruine de Bruin, W. (2023). Age differences in psychological distress
858 during the COVID-19 pandemic: March 2020 – June 2021. *Frontiers in Psychology*, 14,
859 1101353. <https://doi.org/10.3389/fpsyg.2023.1101353>
- 860 Boersma, P., & Weenink, D. (2022). Praat: doing phonetics by computer [Computer
861 program]. Version 6.2.23, retrieved 23 March 2020 from <http://www.praat.org/>
- 862 Bopp, K. L., & Verhaeghen, P. (2005). Aging and verbal memory span: A meta-analysis. *The
863 Journals of Gerontology Series B: Psychological Sciences and Social Sciences*, 60(5), 223–
864 233. <https://doi.org/10.1093/geronb/60.5.P223>
- 865 Bott, A., & Saunders, G. (2021). A scoping review of studies investigating hearing loss,
866 social isolation and/or loneliness in adults. *International Journal of Audiology*, 60(sup2), 30–
867 46. <https://doi.org/10.1080/14992027.2021.1915506>
- 868 Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The timing mega-study:
869 comparing a range of experiment generators, both lab-based and online. *PeerJ*, 8, e9414.
870 <https://doi.org/10.7717/peerj.9414>
- 871 Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and
872 BIC in model selection. *Sociological Methods and Research*, 33(2), 261–304.
873 <https://doi.org/10.1177/0049124104268644>
- 874 Cardona, M., & Andrés, P. (2023). Are social isolation and loneliness associated with
875 cognitive decline in ageing? *Frontiers in Aging Neuroscience*, 15, 1075563.
876 <https://doi.org/10.3389/fnagi.2023.1075563>
- 877 Carr, D. C., Tian, S., He, Z., Chakraborty, S., Dieciuc, M., Gray, N., Agharazidermani, M.,
878 Lustria, M. L. A., Dilanchian, A., Zhang, S., Charness, N., Terracciano, A., & Boot, W. R.
879 (2022). Motivation to engage in aging research: Are there typologies and predictors? *The
880 Gerontologist*, 62(10), 1466–1476. <https://doi.org/10.1093/geront/gnac035>
- 881 Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes:
882 A parallel distributed processing account of the Stroop effect. *Psychological Review*, 97(3),
883 332–361. <https://doi.org/10.1037/0033-295X.97.3.332>

- 884 Cotten, S. R., Anderson, W. A., & McCullough, B. M. (2013). Impact of internet use on
885 loneliness and contact with others among older adults: Cross-sectional analysis. *Journal of*
886 *Medical Internet Research*, 15(2), e39. <https://doi.org/10.2196/jmir.2306>
- 887 David, D., Zoizner, G., & Werner, P. (2018). Self-stigma and age-related hearing loss: A
888 qualitative study of stigma formation and dimensions. *American Journal of Audiology*, 27(1),
889 126–136. https://doi.org/10.1044/2017_AJA-17-0050
- 890 Dawes, P., Emsley, R., Cruickshanks, K. J., Moore, D. R., Fortnum, H., Edmondson-Jones,
891 M., McCormack, A., & Munro, K. J. (2015). Hearing loss and cognition: The role of hearing
892 aids, social isolation and depression. *PLOS ONE*, 10(3), e0119616.
893 <https://doi.org/10.1371/journal.pone.0119616>
- 894 Deary, I. J., Corley, J., Gow, A. J., Harris, S. E., Houlihan, L. M., Marioni, R. E., Penke, L.,
895 Rafnsson, S. B., & Starr, J. M. (2009). Age-associated cognitive decline. *British Medical*
896 *Bulletin*, 92(1), 135–152. <https://doi.org/10.1093/bmb/ldp033>
- 897 Deary, I. J., Liewald, D., & Nissan, J. (2011). A free, easy-to-use, computer-based simple and
898 four-choice reaction time programme: The Deary-Liewald reaction time task. *Behavior*
899 *Research Methods*, 43(1), 258–268. <https://doi.org/10.3758/s13428-010-0024-1>
- 900 Department for Culture Media & Sport. (2023, June 12). *Loneliness Stigma Rapid Evidence*
901 *Assessment (REA)*. GOV.UK. <https://www.gov.uk/government/publications/research-exploring-the-stigma-associated-with-loneliness/loneliness-stigma-rapid-evidence-assessment-rea>
- 904 Dhanda, N., Hall, A., & Martin, J. (2024). Does social isolation mediate the association
905 between hearing loss and cognition in adults? A systematic review and meta-analysis of
906 longitudinal studies. *Frontiers in Public Health*, 12, 1347794.
907 <https://doi.org/10.3389/fpubh.2024.1347794>
- 908 Dunn, C. C., Stangl, E., Oleson, J., Smith, M., Chipara, O., & Wu, Y.-H. (2021). The
909 influence of forced social isolation on the auditory ecology and psychosocial functions of
910 listeners with cochlear implants during COVID-19 mitigation efforts. *Ear & Hearing*, 42(1),
911 20–28. <https://doi.org/10.1097/AUD.0000000000000991>

- 912 Elff, M. (2024). *memisc: Management of Survey Data and Presentation of Analysis Results*.
913 R package version 0.99.31.8. <https://CRAN.R-project.org/package=memisc>
- 914 Ennis, G. E., Hess, T. M., & Smith, B. T. (2013). The impact of age and motivation on
915 cognitive effort: Implications for cognitive engagement in older adulthood. *Psychology and*
916 *Aging*, 28(2), 495–504. <https://doi.org/10.1037/a0031255>
- 917 Fakoya, O. A., McCorry, N. K., & Donnelly, M. (2020). Loneliness and social isolation
918 interventions for older adults: a scoping review of reviews. *BMC Public Health*, 20, 129.
919 <https://doi.org/10.1186/s12889-020-8251-6>
- 920 Fitzhugh, M. C., Hemesath, A., Schaefer, S. Y., Baxter, L. C., & Rogalsky, C. (2019).
921 Functional connectivity of Heschl's Gyrus associated with age-related hearing loss: A
922 resting-state fMRI study. *Frontiers in Psychology*, 10, 2485.
923 <https://doi.org/10.3389/fpsyg.2019.02485>
- 924 Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical
925 method for grading the cognitive state of patients for the clinician. *Journal of Psychiatric*
926 *Research*, 12(3), 189–198. [https://doi.org/10.1016/0022-3956\(75\)90026-6](https://doi.org/10.1016/0022-3956(75)90026-6)
- 927 Franzen, J., & Brinkmann, K. (2016). Anhedonic symptoms of depression are linked to
928 reduced motivation to obtain a reward. *Motivation and Emotion*, 40(2), 300–308.
929 <https://doi.org/10.1007/s11031-015-9529-3>
- 930 Füllgrabe, C. (2020a). On the possible overestimation of cognitive decline: The impact of
931 age-related hearing loss on cognitive-test performance. *Frontiers in Neuroscience*, 14, 454.
932 <https://doi.org/10.3389/fnins.2020.00454>
- 933 Füllgrabe, C. (2020b). When hearing loss masquerades as cognitive decline. *Journal of*
934 *Neurology, Neurosurgery & Psychiatry*, 91(12), 1248–1248. <https://doi.org/10.1136/jnnp-2020-324707>
- 936 Golden, C. J. (1978). *Stroop Color and Word Test: A manual for clinical and experimental*
937 *uses*. Stoelting Company.

- 938 Goodwin, M. V, Hogervorst, E., & Maidment, D. W. (2021). The impact of presentation
939 modality on cognitive test performance for adults with hearing loss. *Alzheimer's & Dementia*,
940 17(12), e058571. <https://doi.org/10.1002/alz.058571>
- 941 Griffiths, T. D., Lad, M., Kumar, S., Holmes, E., McMurray, B., Maguire, E. A., Billig, A. J.,
942 & Sedley, W. (2020). How can hearing loss cause dementia? *Neuron*, 108(3), 401–412.
943 <https://doi.org/10.1016/j.neuron.2020.08.003>
- 944 Hajek, A., Riedel-Heller, S. G., & König, H. (2020). Perceived social isolation and cognitive
945 functioning. Longitudinal findings based on the German Ageing Survey. *International
946 Journal of Geriatric Psychiatry*, 35(3), 276–281. <https://doi.org/10.1002/gps.5243>
- 947 HM Revenue & Customs. (2020, July 15). *Get a discount with the Eat Out to Help Out
948 Scheme*. GOV.UK. [https://www.gov.uk/guidance/get-a-discount-with-the-eat-out-to-help-
out-scheme#full-publication-update-history](https://www.gov.uk/guidance/get-a-discount-with-the-eat-out-to-help-
949 out-scheme#full-publication-update-history)
- 950 Hobson, J. (2015). The Montreal Cognitive Assessment (MoCA). *Occupational Medicine*,
951 65(9), 764–765. <https://doi.org/10.1093/occmed/kqv078>
- 952 Institute For Government. (2022, December 9). *Timeline of UK government coronavirus
953 lockdowns and restrictions*. Institute for Government.
954 [https://www.instituteforgovernment.org.uk/data-visualisation/timeline-coronavirus-
lockdowns](https://www.instituteforgovernment.org.uk/data-visualisation/timeline-coronavirus-
955 lockdowns)
- 956 Jaeger, B. (2017). *r2glmm: Computes R Squared for Mixed (Multilevel) Models*. R package
957 version 0.1.2. <https://CRAN.R-project.org/package=r2glmm>
- 958 Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not)
959 and towards logit mixed models. *Journal of Memory and Language*, 59(4), 434–446.
960 <https://doi.org/10.1016/j.jml.2007.11.007>
- 961 Jansen, A. P. D., van Hout, H. P. J., Nijpels, G., van Marwijk, H. W. J., Gundy, C., de Vet, H.
962 C. W., & Stalman, W. A. B. (2008). Self-reports on the IQCODE in older adults: A
963 psychometric evaluation. *Journal of Geriatric Psychiatry and Neurology*, 21(2), 83–92.
964 <https://doi.org/10.1177/0891988707311558>

- 965 Jayakody, D. M. P., Almeida, O. P., Speelman, C. P., Bennett, R. J., Moyle, T. C., Yiannos,
966 J. M., & Friedland, P. L. (2018). Association between speech and high-frequency hearing
967 loss and depression, anxiety and stress in older adults. *Maturitas*, 110, 86–91.
968 <https://doi.org/10.1016/j.maturitas.2018.02.002>
- 969 Kleiman, E. (2021). *EMAtools: Data Management Tools for Real-Time*
970 *Monitoring/Ecological Momentary Assessment Data*. R package version 0.1.4.
971 <https://CRAN.R-project.org/package=EMAtools>
- 972 Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation
973 coefficients for reliability research. *Journal of Chiropractic Medicine*, 15(2), 155–163.
974 <https://doi.org/10.1016/j.jcm.2016.02.012>
- 975 Kreidler, S. M., Muller, K. E., Grunwald, G. K., Ringham, B. M., Coker-Dukowitz, Z.,
976 Sakhadeo, U. R., Baron, A. E., & Glueck, D. H. (2013). GLIMMPSE: Online power
977 computation for linear models with and without a baseline covariate. *Journal of Statistical*
978 *Software*, 54(10), 1–26. <https://doi.org/10.18637/jss.v054.i10>
- 979 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in
980 linear mixed effects models. *Journal of Statistical Software*, 82(13).
981 <https://doi.org/10.18637/jss.v082.i13>
- 982 Lara, E., Caballero, F. F., Rico-Uribe, L. A., Olaya, B., Haro, J. M., Ayuso-Mateos, J. L., &
983 Miret, M. (2019). Are loneliness and social isolation associated with cognitive decline?
984 *International Journal of Geriatric Psychiatry*, 34(11), 1613–1622.
985 <https://doi.org/10.1002/GPS.5174>
- 986 Lawrence, B. J., Jayakody, D. M. P., Bennett, R. J., Eikelboom, R. H., Gasson, N., &
987 Friedland, P. L. (2020). Hearing loss and depression in older adults: A systematic review and
988 meta-analysis. *The Gerontologist*, 60(3), 137–154. <https://doi.org/10.1093/geront/gnz009>
- 989 Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., Davatzikos, C., Kraut, M.
990 A., & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes
991 in older adults. *NeuroImage*, 90, 84–92. <https://doi.org/10.1016/j.neuroimage.2013.12.059>

- 992 Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A
993 strong connection. *Psychology and Aging*, 9(3), 339–355. <https://doi.org/10.1037/0882-7974.9.3.339>
- 995 Littlejohn, J., Venneri, A., Marsden, A., & Plack, C. J. (2022). Self-reported hearing
996 difficulties are associated with loneliness, depression and cognitive dysfunction during the
997 COVID-19 pandemic. *International Journal of Audiology*, 61(2), 97–101.
998 <https://doi.org/10.1080/14992027.2021.1894492>
- 999 Livingston, G., Huntley, J., Liu, K. Y., Costafreda, S. G., Selbæk, G., Alladi, S., Ames, D.,
1000 Banerjee, S., Burns, A., Brayne, C., Fox, N. C., Ferri, C. P., Gitlin, L. N., Howard, R., Kales,
1001 H. C., Kivimäki, M., Larson, E. B., Nakasujja, N., Rockwood, K., ... Mukadam, N. (2024).
1002 Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission.
1003 *The Lancet*, 404(10452), 572–628. [https://doi.org/10.1016/S0140-6736\(24\)01296-0](https://doi.org/10.1016/S0140-6736(24)01296-0)
- 1004 Lubben, J., Blozik, E., Gillmann, G., Iliffe, S., von Renteln Kruse, W., Beck, J. C., & Stuck,
1005 A. E. (2006). Performance of an abbreviated version of the Lubben Social Network Scale
1006 among three European community-dwelling older adult populations. *The Gerontologist*,
1007 46(4), 503–513. <https://doi.org/10.1093/geront/46.4.503>
- 1008 Luchetti, M., Terracciano, A., Aschwanden, D., Lee, J. H., Stephan, Y., & Sutin, A. R.
1009 (2020). Loneliness is associated with risk of cognitive impairment in the Survey of Health,
1010 Ageing and Retirement in Europe. *International Journal of Geriatric Psychiatry*, 35(7), 794–
1011 801. <https://doi.org/10.1002/gps.5304>
- 1012 Lüdecke, D. (2024). *sjPlot: Data Visualization for Statistics in Social Science*. R package
1013 version 2.8.16. <https://CRAN.R-project.org/package=sjPlot>
- 1014 Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., & Makowski, D. (2021). performance:
1015 An R package for assessment, comparison and testing of statistical models. *Journal of Open
1016 Source Software*, 6(60), 3139. <https://doi.org/10.21105/joss.03139>
- 1017 Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social
1018 isolation, and cognitive function: Longitudinal analysis using English Longitudinal Study on

- 1019 Ageing. *The American Journal of Geriatric Psychiatry*, 27(12), 1348–1356.
- 1020 <https://doi.org/10.1016/j.jagp.2019.07.010>
- 1021 McHugh Power, J. E., Hannigan, C., Carney, S., Feeney, J., Kenny, R. A., Kee, F., & Lawlor, B. A. (2020). Lonely SARTs: loneliness and sustained attention in the Irish longitudinal study of aging. *Aging, Neuropsychology, and Cognition*, 27(2), 197–206.
- 1024 <https://doi.org/10.1080/13825585.2019.1602705>
- 1025 Meteyard, L., & Davies, R. A. I. (2020). Best practice guidance for linear mixed-effects models in psychological science. *Journal of Memory and Language*, 112, 104092.
- 1027 <https://doi.org/10.1016/j.jml.2020.104092>
- 1028 Mick, P., Kawachi, I., & Lin, F. R. (2014). The association between hearing loss and social isolation in older adults. *Otolaryngology–Head and Neck Surgery*, 150(3), 378–384.
- 1030 <https://doi.org/10.1177/0194599813518021>
- 1031 Mick, P., Parfyonov, M., Wittich, W., Phillips, N., Guthrie, D., & Kathleen Pichora-Fuller, M. (2018). Associations between sensory loss and social networks, participation, support, and loneliness: Analysis of the Canadian Longitudinal Study on Aging. *Canadian Family Physician Medecin de Famille Canadien*, 64(1), e33–e41.
- 1035 <http://www.ncbi.nlm.nih.gov/pubmed/29358266>
- 1036 Motala, A., Johnsrude, I. S., & Herrmann, B. (2024). A Longitudinal Framework to Describe the Relation Between Age-Related Hearing Loss and Social Isolation. *Trends in Hearing*, 28. <https://doi.org/10.1177/23312165241236041>
- 1039 Munro, K. J., & Blount, J. (2009). Adaptive plasticity in brainstem of adult listeners following earplug-induced deprivation. *The Journal of the Acoustical Society of America*, 126(2), 568–571. <https://doi.org/10.1121/1.3161829>
- 1042 Murman, D. (2015). The Impact of Age on Cognition. *Seminars in Hearing*, 36(03), 111–121. <https://doi.org/10.1055/s-0035-1555115>
- 1044 Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models

- 1046 revisited and expanded. *Journal of The Royal Society Interface*, 14(134), 20170213.
1047 <https://doi.org/10.1098/rsif.2017.0213>
- 1048 Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from
1049 generalized linear mixed-effects models. *Methods in Ecology and Evolution*, 4(2), 133–142.
1050 <https://doi.org/10.1111/j.2041-210x.2012.00261.x>
- 1051 Noble, W., Jensen, N. S., Naylor, G., Bhullar, N., & Akeroyd, M. A. (2013). A short form of
1052 the Speech, Spatial and Qualities of Hearing scale suitable for clinical use: The SSQ12.
1053 *International Journal of Audiology*, 52(6), 409–412.
1054 <https://doi.org/10.3109/14992027.2013.781278>
- 1055 Nogueira, J., Gerardo, B., Silva, A. R., Pinto, P., Barbosa, R., Soares, S., Baptista, B.,
1056 Paquete, C., Cabral-Pinto, M., Vilar, M. M., Simões, M. R., & Freitas, S. (2022). Effects of
1057 restraining measures due to COVID-19: Pre- and post-lockdown cognitive status and mental
1058 health. *Current Psychology*, 41(10), 7383–7392. <https://doi.org/10.1007/s12144-021-01747-y>
- 1059 Oosterhuis, E. J., Slade, K., May, P. J. C., & Nuttall, H. E. (2023). Toward an understanding
1060 of healthy cognitive aging: The importance of lifestyle in Cognitive Reserve and the
1061 Scaffolding Theory of Aging and Cognition. *The Journals of Gerontology: Series B*, 78(5),
1062 777–788. <https://doi.org/10.1093/geronb/gbac197>
- 1063 Panouillères, M. T. N., & Möttönen, R. (2018). Decline of auditory-motor speech processing
1064 in older adults with hearing loss. *Neurobiology of Aging*, 72, 89–97.
1065 <https://doi.org/10.1016/j.neurobiolaging.2018.07.013>
- 1066 Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E.,
1067 & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. *Behavior
1068 Research Methods*, 51(1), 195–203. <https://doi.org/10.3758/s13428-018-01193-y>
- 1069 Penninkilampi, R., Casey, A.-N., Singh, M. F., & Brodaty, H. (2018). The association
1070 between social engagement, loneliness, and risk of dementia: A systematic review and meta-
1071 analysis. *Journal of Alzheimer's Disease*, 66(4), 1619–1633. <https://doi.org/10.3233/JAD-180439>

- 1073 Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., Edwards, B., Hornsby, B. W. Y.,
1074 Humes, L. E., Lemke, U., Lunner, T., Matthen, M., Mackersie, C. L., Naylor, G., Phillips, N.
1075 A., Richter, M., Rudner, M., Sommers, M. S., Tremblay, K. L., & Wingfield, A. (2016).
1076 Hearing impairment and cognitive energy: The Framework for Understanding Effortful
1077 Listening (FUEL). *Ear & Hearing*, 37(1), 5–27.
1078 <https://doi.org/10.1097/AUD.0000000000000312>
- 1079 Powell, D. S., Oh, E. S., Lin, F. R., & Deal, J. A. (2021). Hearing impairment and cognition
1080 in an aging world. *Journal of the Association for Research in Otolaryngology*, 22(4), 387–
1081 403. <https://doi.org/10.1007/s10162-021-00799-y>
- 1082 Qiao, L., Wang, G., Tang, Z., Zhou, S., Min, J., Yin, M., & Li, M. (2022). Association
1083 between loneliness and dementia risk: A systematic review and meta-analysis of cohort
1084 studies. *Frontiers in Human Neuroscience*, 16, 899814.
1085 <https://doi.org/10.3389/fnhum.2022.899814>
- 1086 R Core Team. (2022). *R: A language and environment for statistical computing* [Computer
1087 program]. R Foundation for Statistical Computing, Vienna, Austria. [https://www.R-project.org/](https://www.R-
1088 project.org/)
- 1089 Ray, J., Popli, G., & Fell, G. (2018). Association of cognition and age-related hearing
1090 impairment in the English Longitudinal Study of Ageing. *JAMA Otolaryngology—Head &*
- 1091 Neck Surgery, 144(10), 876. <https://doi.org/10.1001/jamaoto.2018.1656>
- 1092 Revelle, W. (2024). *psych: Procedures for Psychological, Psychometric, and Personality
1093 Research*. R package version 2.4.6. <https://CRAN.R-project.org/package=psych>.
- 1094 Richter, P., Werner, J., Heerlein, A., Kraus, A., & Sauer, H. (1998). On the validity of the
1095 Beck Depression Inventory. *Psychopathology*, 31(3), 160–168.
1096 <https://doi.org/10.1159/000066239>
- 1097 Royal National Institute for Deaf People (RNID). (2020). *Hearing Matters*.
1098 <https://rnid.org.uk/wp-content/uploads/2020/05/Hearing-Matters-Report.pdf>

- 1099 Russell, D. W. (1996). UCLA Loneliness Scale (version 3): Reliability, validity, and factor
1100 structure. *Journal of Personality Assessment*, 66(1), 20–40.
- 1101 https://doi.org/10.1207/s15327752jpa6601_2
- 1102 Ryan, A. D., & Campbell, K. L. (2021). The ironic effect of older adults' increased task
1103 motivation: Implications for neurocognitive aging. *Psychonomic Bulletin & Review*, 28(6),
1104 1743–1754. <https://doi.org/10.3758/s13423-021-01963-4>
- 1105 Scarpina, F., & Tagini, S. (2017). The Stroop Color and Word Test. *Frontiers in Psychology*,
1106 8, 557. <https://doi.org/10.3389/fpsyg.2017.00557>
- 1107 Shukla, A., Harper, M., Pedersen, E., Goman, A., Suen, J. J., Price, C., Applebaum, J.,
1108 Hoyer, M., Lin, F. R., & Reed, N. S. (2020). Hearing loss, loneliness, and social isolation: A
1109 systematic review. *Otolaryngology–Head and Neck Surgery*, 162(5), 622–633.
- 1110 <https://doi.org/10.1177/0194599820910377>
- 1111 Sin, E., Shao, R., & Lee, T. M. C. (2021). The executive control correlate of loneliness in
1112 healthy older people. *Aging & Mental Health*, 25(7), 1224–1231.
- 1113 <https://doi.org/10.1080/13607863.2020.1749832>
- 1114 Slade, K., Davies, R., Pennington, C. R., Plack, C. J., & Nuttall, H. E. (2023). The impact of
1115 age and psychosocial factors on cognitive and auditory outcomes during the COVID-19
1116 pandemic. *Journal of Speech, Language, and Hearing Research*, 66(9), 3689–3695.
- 1117 https://doi.org/10.1044/2023_JSLHR-22-00703
- 1118 Slade, K., Reilly, J. H., Jablonska, K., Smith, E., Hayes, L. D., Plack, C. J., & Nuttall, H. E.
1119 (2022). The impact of age-related hearing loss on structural neuroanatomy: A meta-analysis.
1120 *Frontiers in Neurology*, 13. <https://doi.org/10.3389/fneur.2022.950997>
- 1121 Sommerlad, A., Sabia, S., Singh-Manoux, A., Lewis, G., & Livingston, G. (2019).
1122 Association of social contact with dementia and cognition: 28-year follow-up of the
1123 Whitehall II cohort study. *PLOS Medicine*, 16(8), e1002862.
- 1124 <https://doi.org/10.1371/journal.pmed.1002862>

- 1125 Stern, Y., Arenaza-Urquijo, E. M., Bartrés-Faz, D., Belleville, S., Cantillon, M., Chetelat, G.,
1126 Ewers, M., Franzmeier, N., Kempermann, G., Kremen, W. S., Okonkwo, O., Scarmeas, N.,
1127 Soldan, A., Udeh-Momoh, C., Valenzuela, M., Vemuri, P., & Vuoksimaa, E. (2020).
1128 Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain
1129 maintenance. *Alzheimer's & Dementia*, 16(9), 1305–1311.
1130 <https://doi.org/10.1016/j.jalz.2018.07.219>
- 1131 Stroop, J. R. (1935). Studies of interference in serial verbal reactions. *Journal of*
1132 *Experimental Psychology*, 18(6), 643–662. <https://doi.org/10.1037/h0054651>
- 1133 Sundström, A., Adolfsson, A. N., Nordin, M., & Adolfsson, R. (2020). Loneliness increases
1134 the risk of all-cause dementia and Alzheimer's Disease. *The Journals of Gerontology: Series*
1135 *B*, 75(5), 919–926. <https://doi.org/10.1093/geronb/gbz139>
- 1136 The MathWorks Inc. (2024). *MATLAB (R2024a)*. <https://www.mathworks.com>
- 1137 Tillman, T. W., & Olsen, W. O. (1973). Speech audiometry. In J. Jerger (Ed.), *Modern*
1138 *developments in audiology* (2nd ed., pp. 37–74). Academic Press.
- 1139 Tofanelli, M., Capriotti, V., Gatto, A., Boscolo-Rizzo, P., Rizzo, S., & Tirelli, G. (2022).
1140 COVID-19 and deafness: Impact of face masks on speech perception. *Journal of the*
1141 *American Academy of Audiology*, 33(2), 98–104. <https://doi.org/10.1055/s-0041-1736577>
- 1142 Tsimpida, D., Kontopantelis, E., Ashcroft, D., & Panagioti, M. (2019). Socioeconomic and
1143 lifestyle factors associated with hearing loss in older adults: A cross-sectional study of the
1144 English Longitudinal Study of Ageing (ELSA). *BMJ Open*, 9(9), e031030.
1145 <https://doi.org/10.1136/bmjopen-2019-031030>
- 1146 Waters, G. S., & Caplan, D. (2003). The reliability and stability of verbal working memory
1147 measures. *Behavior Research Methods, Instruments, & Computers*, 35(4), 550–564.
1148 <https://doi.org/10.3758/BF03195534>
- 1149 Wechsler, D. (1997). *Wechsler Adult Intelligence Scale (WAIS-3R)*. The Psychological
1150 Corporation.

1151 Wood, C., Guynes, K., Lugo, V., Baker, L., & Snowden, S. (2024). Pandemic impacts on
1152 communication and social well-being: Considerations for individuals who are D/HH.
1153 *Communication Disorders Quarterly*, 45(4), 211–220.
1154 <https://doi.org/10.1177/15257401231181506>

1155 Yin, J., Lassale, C., Steptoe, A., & Cedar, D. (2019). Exploring the bidirectional associations
1156 between loneliness and cognitive functioning over 10 years: the English longitudinal study of
1157 ageing. *International Journal of Epidemiology*, 48(6), 1937–1948.
1158 <https://doi.org/10.1093/ije/dyz085>

1159 Zhou, Z., Mao, F., Zhang, W., Towne, S. D., Wang, P., & Fang, Y. (2019). The association
1160 between loneliness and cognitive impairment among older men and women in China: A
1161 nationwide longitudinal study. *International Journal of Environmental Research and Public
1162 Health*, 16(16), 2877. <https://doi.org/10.3390/ijerph16162877>

1163 **Figure 1.** Marginal effects plot generated using ‘sjPlot’ (Lüdecke, 2024) showing the
1164 predicted values (95% CIs) for Global Cognition across timepoints (from 1-12) in younger
1165 (left-hand plot) and older adults (right-hand plot).

1166 The supplemental file provides a table (Table A) detailing participant attrition rate.