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ABSTRACT The application of large language models (LLMs) within clinical decision-support frameworks 

is receiving growing research attention, yet their fairness and demographic robustness remain insufficiently 

understood. This study introduces MedQA-Demog, a purpose-built, label-invariant extension of the MedQA-

USMLE benchmark, designed to enable systematic auditing of demographic bias in medical reasoning 

models. Using a deterministic augmentation framework, we generated 4,659 question-answer items that 

incorporated counterfactual variations in gender, race/ethnicity, and age, and validated them through 

automated integrity and balance checks. We evaluated the Mistral 7B-Instruct model under stochastic 

(temperature = 0.7) and deterministic (temperature = 0.0) inference rules via the Ollama local environment, 

applying Wilson's 95 % confidence intervals, 𝜒²/𝑧-tests, McNemar’s paired analysis, and Cohen’s h effect 

sizes to quantify fairness. Across all demographic variants, diagnostic accuracy remained consistent (Δ < 

0.04; p > 0.05), and all performance gaps fell within Minimal or Low Bias thresholds. Confusion-matrix and 

prediction-balance analyses revealed no systematic over- or under-prediction patterns, while power analysis 

confirmed that observed fluctuations were below the minimum detectable effect (≈  0.057). A stratified 

robustness analysis further confirms that these fairness patterns persist across question difficulty levels and 

are not an artefact of uniformly limited performance. These findings demonstrate that open-weight, 

instruction-tuned LLMs can maintain demographic stability in clinical reasoning when evaluated through 

reproducible, controlled pipelines. This framework provides a practical foundation for bias evaluation in open 

clinical LLMs, supporting their ethical integration into digital health tools and clinical decision-support 

systems. 

INDEX TERMS Large language models (LLMs); demographic bias; fairness auditing; medical question 

answering; MedQA benchmark; Mistral 7B-Instruct; open-weight models; Ollama; Wilson confidence 

interval; statistical bias evaluation; digital health; ethical AI.

I. INTRODUCTION 

The rapid advancement of large language models (LLMs) 

is transforming both natural language processing and 

modern healthcare. Models such as GPT-4 now 

demonstrate human-level comprehension and reasoning 

across medical domains, enabling applications in research, 

education, and clinical practice. By translating complex 

medical knowledge into accessible language, automating 

documentation, and supporting decision-making, LLMs are 

beginning to bridge the gap between data, understanding, 

and patient care [1,2]. Unlike earlier machine learning 

systems limited to narrow tasks, LLMs can integrate 

diverse knowledge, reason through complex clinical 

scenarios, and produce coherent, human-like explanations. 

Their capacity for contextual understanding and adaptive 

communication marks a major step toward more intelligent, 

generalizable AI systems in healthcare [3,4]. 

   Recent overviews of LLMs in healthcare consolidate this 

shift, documenting rapid gains in clinical summarization, 

triage support, documentation, and education, while also 

flagging safety, alignment, and governance gaps that must 

be addressed for clinical deployment. These syntheses 

situate LLMs as assistive cognitive tools, emphasizing 

human-in-the-loop usage and robust evaluation [5, 6]. This 

flexibility makes LLMs particularly valuable for clinical 
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reasoning and diagnostic support, where physicians must 

interpret incomplete, ambiguous, and context-rich patient 

data. Recent studies show that adapted LLMs can 

summarize complex clinical narratives with accuracy 

comparable to, and in some cases exceeding, that of human 

experts, while also assisting in identifying relevant 

treatment options and biomedical evidence for complex 

cases such as precision oncology. By integrating vast 

biomedical knowledge with context-sensitive reasoning, 

these models have begun to complement clinical expertise, 

offering timely insights that enhance decision-making in 

uncertain or data-intensive scenarios [7, 8]. 

  Studies conducted in real or simulated consultations 

highlight important practical considerations, including 

response calibration, the communication of uncertainty, 

and guidelines to avoid potentially harmful advice. 

Evidence from both patient-facing and clinician-facing 

settings demonstrates that the quality of dialogue, how 

prompts are framed, and the implementation of safety 

filters significantly impact clinical usefulness and potential 

risks [6, 9]. LLMs are increasingly being explored for 

clinical reasoning and diagnostic support, showing strong 

performance on established medical benchmarks and 

demonstrating early promise in addressing real-world 

clinical queries. Studies comparing conversational models 

like GPT-4 with expert diagnostic systems have shown that 

LLMs can generate accurate and context-aware differential 

diagnoses across various medical fields. Moreover, recent 

evaluations across question-answering datasets (e.g., 

MedQA, MMLU, EquityMedQA) reveal that, while these 

models often achieve accuracy comparable to physicians, 

their performance can be influenced by factors such as 

prompt design, retrieval context, and demographic fairness 

[10, 11].  

These findings highlight both the growing diagnostic 

potential of LLMs and the importance of ensuring bias-

aware, transparent, and clinically validated deployment in 

healthcare settings. For instance, ChatGPT has been shown 

to achieve performance at or near the passing threshold 

across all three stages of the United States Medical 

Licensing Examination (USMLE), attaining scores of up to 

87% on certain components, even without domain-specific 

training or fine-tuning [12]. Beyond numerical accuracy, 

the model showed high internal consistency and generated 

clinically valid, insightful explanations, suggesting that 

large language models may possess emergent reasoning 

abilities relevant to medical education and decision support 

[12]. Similarly, large language models such as ChatGPT 

have been shown to generate reasoned and contextually 

accurate responses to complex medical questions drawn 

from the United States Medical Licensing Examination 

(USMLE) [13]. The study found that the model achieved 

performance levels comparable to a third-year medical 

student, with logical justification and clinically coherent 

explanations present in nearly all responses [13]. These 

findings highlight the potential of LLMs to serve as 

interactive cognitive aids for physicians and medical 

trainees, supporting differential diagnosis generation, 

reinforcing conceptual understanding, and fostering 

reflective learning through dialogic interaction. 

The strength of these findings is further supported by 

large-scale evaluations of GPT-4 across multiple medical 

challenge benchmarks, including all three stages of the 

United States Medical Licensing Examination (USMLE) 

and the MultiMedQA suite. These evaluations showed that 

GPT-4, even without medical fine-tuning or complex 

prompting, exceeded human passing thresholds by more 

than 20 percentage points and consistently outperformed 

both GPT-3.5 and domain-specialized models such as Med-

PaLM [14]. In addition, GPT-4 demonstrated superior 

calibration of confidence scores and the ability to provide 

clear, contextually grounded medical reasoning, 

underscoring its potential utility in clinical education, 

assessment, and decision support [14]. Notably, Med-

PaLM 2 not only produced accurate responses but also 

delivered clear, evidence-based reasoning that strengthened 

the explainability and clinical interpretability of its outputs. 

Building on its pattern, Med-PaLM 2 achieved substantial 

improvements, scoring up to 86.5% on the MedQA 

(USMLE-style) dataset and improving on prior benchmarks 

such as Med-PaLM and Flan-PaLM across MedMCQA, 

PubMedQA, and MMLU clinical topics. In comprehensive 

human evaluations, physicians preferred Med-PaLM 2’s 

responses over those of other physicians in eight of nine 

clinical dimensions, including factual accuracy, reasoning 

quality, and medical consensus alignment. Moreover, in 

real-world bedside consultations, specialists judged Med-

PaLM 2’s answers to be comparable in safety and clarity to 

generalist physicians, demonstrating progress toward 

clinically reliable AI support. However, despite these 

advances, the study also revealed that model performance 

remains below specialist-level reasoning, highlighting the 

need for continued validation, alignment with human 

values, and robust evaluation frameworks before full 

integration into clinical workflows [15]. 

Medical Q&A has matured alongside LLMs, with work 

spanning dataset curation, retrieval-augmented pipelines, 

and model-comparison studies in clinical reasoning. 

MedQA was introduced as the first large-scale, open-

domain multiple-choice question-answering dataset 

specifically developed for medical reasoning tasks [16]. 

The dataset was constructed from professional medical 

board examinations in the United States, Mainland China, 

and Taiwan, comprising over 61,000 questions in English, 

Simplified Chinese, and Traditional Chinese, alongside an 

extensive corpus of medical textbooks to support evidence-

based reasoning. Unlike previous QA datasets focused on 

factual recall, MedQA requires multi-hop reasoning and 

deep domain understanding, closely reflecting the complex 

diagnostic processes used by clinicians. Each question 
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often presents a clinical vignette requiring the integration 

of multiple findings and inferential reasoning to identify the 

correct diagnosis or management decision. Initial 

benchmark evaluations using advanced models such as 

BERT, BioBERT, and RoBERTa achieved accuracies 

below 45% on USMLE-style questions, underscoring the 

dataset’s difficulty and the substantial gap between current 

AI capabilities and expert-level clinical reasoning. This 

work established a foundational benchmark for developing 

and evaluating large language models capable of real-world 

diagnostic reasoning and multi-source knowledge 

integration [16]. Recent systems enhance the reliability of 

medical QA by grounding answers in multi-source 

evidence and orchestrating multiple LLMs for cross-

checking and generating consensus, which shape today's 

expectations for faithfulness [17, 18]. Additionally, 

retrieval-augmented generation and query reformulation 

have been shown to reduce hallucination and improve 

answerability on difficult clinical queries, especially when 

questions are underspecified or ambiguous, yet these works 

rarely test demographic robustness under controlled 

counterfactuals [17, 19]. 

Recent investigations have begun to explore the 

diagnostic, communicative, and ethical dimensions of large 

language models (LLMs) across diverse clinical fields and 

patient-facing scenarios [20 - 22]. These studies show that 

while LLMs demonstrate strong reasoning and dialogue 

capabilities, their reliability and fairness remain influenced 

by data provenance, retrieval accuracy, and demographic 

bias. Advances such as retrieval-augmented generation 

(RAG) architectures have improved the contextual 

grounding and trustworthiness of clinical responses [20], 

yet systematic evaluations, such as those using the AMQA 

benchmark, highlight persistent disparities in diagnostic 

accuracy across race, sex, and socioeconomic groups [21]. 

Complementary surveys on bias and fairness in LLMs 

further highlight the need for explainable, accountable, and 

bias-aware frameworks to ensure equitable performance 

across medical and communicative applications [22]. 

In the field of radiology, the format and quality of AI-

generated explanations have been shown to significantly 

influence diagnostic accuracy and clinical decision-making 

among physicians [23]. In a large-scale randomized 

experiment involving 101 radiologists and 2,020 diagnostic 

assessments, the study found that chain-of-thought 

explanations produced by GPT-4 improved diagnostic 

accuracy by 12.2% compared with cases where no LLM 

support was provided, and by up to 9.7% compared with 

differential diagnosis formats. These findings highlight that 

structured, step-by-step reasoning helps clinicians verify 

AI outputs, reduce automation bias, and make more 

accurate diagnostic judgments, highlighting the critical role 

of explainability design in clinical LLM deployment [23]. 

The effectiveness of AI-generated medical explanations 

remains closely tied to the clarity and quality of their 

underlying rationale, revealing both the promise and risks 

of integrating LLMs into clinical practice. In pediatric 

dentistry, large language models have demonstrated 

varying trade-offs between precision and accessibility, with 

ChatGPT-4o producing the most accurate and clinically 

relevant responses and Claude 3.7 Sonnet generating the 

most readable outputs [24]. Similarly, in otolaryngology, 

ChatGPT-3.5 has been reported to achieve diagnostic 

accuracies exceeding 95%, although variability in 

reasoning consistency and contextual accuracy persists 

[25]. These findings highlight the need for rigorous human 

oversight and domain-specific evaluation before deploying 

LLMs in real-world medical settings. 

In patient-facing areas such as mental health Q&A, it is 

crucial to be sensitive to demographic and contextual cues. 

This sensitivity is essential to minimize harm and provide 

fair support to diverse populations. Benchmarking in these 

settings consistently highlights the need for explicit 

fairness auditing, rather than just focusing on overall 

accuracy [26]. Despite these advances, growing evidence 

indicates that demographic bias remains a critical barrier to 

the equitable use of medical LLMs. Studies have shown 

that model outputs can vary systematically with patient 

attributes such as race, gender, and socioeconomic status, 

at times reproducing race-based misconceptions or unequal 

treatment recommendations [27-29]. These findings 

highlight the need for precise bias auditing and fairness-

aware model design to ensure trustworthy and inclusive 

deployment in clinical practice. In healthcare, where 

existing inequities already affect vulnerable populations, 

algorithmic bias in AI systems poses serious and potentially 

life-threatening risks [30, 31]. Recent studies have shown 

that even advanced models such as GPT-4.1 show 

performance gaps exceeding 10%, and in some cases up to 

28%, between restricted and underrepresented 

demographic groups [11, 21]. These gaps emphasize the 

urgent need for fairness-aware model development and 

continuous bias auditing to ensure equitable and 

trustworthy clinical deployment. Regardless of major 

advances, the research community still lacks standardized 

and automated methods for systematically evaluating bias 

in medical LLMs [10, 20]. Current benchmarks, such as 

MedQA and PubMedQA, focus on factual accuracy but 

overlook demographic and counterfactual diversity, 

limiting their ability to detect fairness violations [16, 32, 

33]. Moreover, most bias studies have focused on 

proprietary systems, such as GPT-4 and Med-PaLM [12, 

14, 27], leaving open-source clinical models 

underexplored. This gap highlights the urgent need for 

transparent and reproducible bias evaluation frameworks. 

 

In response to these critical gaps, our study introduces a 

comprehensive, reproducible audit framework for 

measuring demographic bias in open-source medical 

LLMs. We focus particularly on Mistral, a 7B-parameter 
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open-weight model deployed through Ollama, selected for 

its reproducibility, accessibility, and computational 

efficiency, attributes particularly valuable for academic 

research [34]. Mistral serves as an essential open-source 

alternative to proprietary models such as GPT-4 or Med-

PaLM, providing the necessary transparency for controlled 

experimentation and community verification [35]. Our 

main contributions to the field include:  

1) First, we implement rule-based counterfactual 

data augmentation that extends the MedQA 

dataset with controlled modifications to gender, 

race/ethnicity, and age descriptors using 

deterministic, linguistically consistent 

transformations. Manual validation confirmed 

that > 95% of augmented items preserved 

semantic fidelity and correct answer integrity, 

ensuring evaluation reliability. 

2) Second, we develop a robust bias-audit pipeline 

that evaluates Mistral under both stochastic 

(randomized prompts, temperature = 0.7) and 

deterministic (fixed prompts, temperature = 0.0) 

conditions using standardized response 

templates. Our comprehensive metrics include 

accuracy, confusion matrices, macro 

precision/recall/F1 scores, and effect-size 

estimates (Cohen's h), complemented by χ², z, 

and McNemar's tests with appropriate multiple 

comparison corrections. 

3) Third, we conduct a comprehensive 

demographic analysis that reveals Mistral's 

modest baseline diagnostic accuracy on MedQA 

alongside remarkably low measured 

demographic bias. Accuracy gaps across gender 

and race/ethnicity dimensions prove minimal 

and statistically non-significant, while age-based 

counterfactuals produce slightly larger, though 

still modest differences. These findings suggest 

that open-weight LLMs such as Mistral can 

show relatively stable fairness characteristics 

when evaluated under rigorous, reproducible 

audit frameworks. 

 

This work shows a methodological foundation for bias 

assessments in medical LLMs. Our framework 

demonstrates the feasibility of conducting transparent, 

comparative audits across open and proprietary systems 

and aligns with the growing emphasis on ethical, 

explainable, and equitable AI in healthcare [22, 36, 37]. 

Moreover, as open-source LLMs are increasingly evaluated 

for and piloted within clinical documentation and decision-

support workflows, systematic bias auditing becomes not 

only a technical requirement but an ethical prerequisite for 

equitable care delivery [38 - 41]. 

 

The remainder of this paper is structured as follows: 

Section II outlines our comprehensive audit framework and 

introduces the MedQA-Demog benchmark. We describe 

five stages: dataset preparation, rule-based generation of 

demographic counterfactuals, automated integrity checks 

and label invariance tests, local model inference using 

Ollama, and bias quantification through statistical tests. 

Section III presents experimental results with aggregate 

accuracy along with Wilson confidence intervals, group-

wise disparity tests, and macro metrics including precision, 

recall, and F1 scores. This section also includes an analysis 

of option preference shifts and a power analysis estimating 

the minimum detectable effect sizes. Section IV interprets 

the findings, situates them within the existing literature, 

and discusses the implications for fairness auditing of open-

weight medical large language models (LLMs). Finally, 

Section V summarises the key contributions of the study 

and outlines potential extensions to multimodal tasks, 

exploration of intersectional attributes, and approaches for 

longitudinal fine-tuning. 

 
II. MATERIALS AND METHODS 

Our study introduces a methodologically thorough and 

fully reproducible workflow designed to systematically 

quantify demographic bias within the high-risk domain of 

clinical reasoning LLMs. At the core of this framework lies 

MedQA-Demog, an augmented version of the MedQA-

USMLE dataset. This augmented dataset introduces 

controlled variations of three key demographic variables, 

namely, gender, race/ethnicity, and age, while preserving 

the original diagnostic ground truth. Such controlled 

variation enables precise isolation of each demographic 

factor’s potential influence on model behaviour. To ensure 

data integrity, we conducted an automated, multi-stage 

validation confirming MedQA-Demog’s structural fidelity, 

internal balance, and semantic consistency. In the 

evaluation phase, the Mistral 7B-Instruct model was 

deployed locally via Ollama, ensuring standardized 

prompting and deterministic inference for maximum 

reproducibility. Finally, a comprehensive statistical 

analysis extended beyond overall accuracy, providing fine-

grained quantification of group-wise disparities and effect 

sizes. Collectively, this methodological process shows a 

robust foundation for measuring, understanding, and 

mitigating fairness deficits in AI-driven medical reasoning 

systems. 

The overall methodological workflow is illustrated in 

Figure 1 and summarized below, outlining each stage from 

dataset preparation and demographic augmentation to 

validation, model inference, and statistical bias 

quantification. 

A. OVERVIEW OF EXPERIMENTAL DESIGN  

The experimental design establishes a systematic and 

human-centred workflow to thoroughly quantify and 
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identify demographic bias within large language models 

(LLMs) used for clinical question answering (see Figure 1). 

 

The entire structure is developed for reproducibility, 

interpretability, and controlled variation, ensuring that any 

observed shifts in model performance can be reliably 

attributed to the manipulated demographic factors, rather 

than the essential noise of the model or data. This integrated 

workflow comprises five interdependent and sequential 

stages as described below: 

 

1) STAGE 1: DATASET PREPARATION 

The main objective of this stage is to provide a clinically 

grounded and reliable dataset for later fairness analysis. 

The process begins with the MedQA-USMLE development 

split [16], a robust benchmark derived from genuine 

medical licensing exams. This dataset, which focuses on 

diagnostic reasoning through multiple-choice questions, 

provides a solid and clinically relevant foundation for 

evaluating an LLM’s consistency as patient characteristics 

vary. We filter the dataset to preserve only cases that 

describe identifiable patients (e.g., "a 45-year-old man"). 

This curation step is crucial, as it ensures that every 

retained question allows for subsequent demographic 

manipulation while maintaining clinical relevance, thus 

establishing a reliable foundational dataset for systematic 

fairness evaluation. 

2) STAGE 2: COUNTERFACTUAL GENERATION 

The objective of this stage is to construct the MedQA-

Demog dataset, a new custom variant tailored for bias 

auditing through controlled, deterministic counterfactual 

generation. This stage systematically expands the original 

dataset. Each original question referencing a patient is 

transformed into a set of three controlled counterfactuals 

that systematically vary the patient’s gender, race/ethnicity, 

or age, all while ensuring label invariance (the diagnostic 

truth remains unchanged). For the purposes of fairness 

auditing, demographic descriptors introduced during 

augmentation (gender, race/ethnicity, and age) are treated 

as non-diagnostic control variables rather than predictive 

clinical features. Throughout augmentation, only 

demographic identity cues are modified, while all 

diagnostic evidence, such as symptoms, clinical history, 

physical findings, and investigation results, remains 

unchanged, ensuring that the clinical reasoning signal 

presented to the model is held constant across 

counterfactual variants. 

 

The transformations rely on auditable, rule-based 

substitution functions to guarantee semantic fidelity, as 

illustrated in Figure 2, which summarises the three 

demographic transformation pathways, gender, 

race/ethnicity, and age, applied during augmentation. For 

example: 

a) Gender: Apply straightforward pronoun and noun 

swaps (e.g., male ↔ female, he ↔ she). 

b) Race/Ethnicity: Utilises insertion of specific 

ethnicity descriptors (e.g., “45-year-old African 

American man”) using balanced substitution rules. 

c) Age: Perform adjustment of numerical age values 

within clinically consistent and plausible ranges 

(e.g., transforming a childhood presentation to one 

typical of a young adult). 

The resulting MedQA-Demog dataset is perfectly 

reproducible and fully auditable, serving as the essential 

input for the subsequent evaluation stages. 

 

3) STAGE 3: AUTOMATED VALIDATION & INTEGRITY 
CHECKING 

The focus of this stage is to confirm the structural 

validity, semantic consistency, and necessary demographic 

balance of the newly created MedQA-Demog dataset. A 

critical, automated quality control process is applied post-

augmentation to ensure data integrity before model 

evaluation. This includes: 

FIGURE 1. Overview of the Medical LLM Demographic Bias Audit Workflow 
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a) JSONL Integrity Verification: Validating file 

structure and encoding for all entries. 

b) Counterfactual Completeness Checks: Ensuring 

that each augmented case includes exactly three 

counterfactuals, one for each dimension. 

c) Label Invariance Confirmation: We confirm a 

100% correct-label retention, verifying that no 

augmentation step will change the diagnostic 

ground truth. 

d) Demographic Distribution Balance: Verification 

is performed to ensure balanced representation 

across the gender, race/ethnicity, and age 

dimensions, which is fundamental for analytically 

fair comparisons. 

 

These automated checks guarantee that MedQA-Demog 

is both reliable and analytically prepared for fairness 

assessment. 

4) STAGE 4: MODEL INFERENCE & RESPONSE 
PARSING  

The main objective of this stage is to evaluate the LLM's 

behavioural consistency under both stochastic and 

deterministic inference rules. Evaluation is performed 

using the Mistral 7B-Instruct model [42]. Model access is 

managed locally through the Ollama API, ensuring data 

privacy, environment consistency, and full reproducibility 

[43]. We employ two complementary inference setups: 

a) Stochastic Setup: Utilising a temperature of 0.7 

and randomizing prompt/option ordering to 

simulate the natural response variability expected 

in a real-world setting. 

b) Deterministic Setup: Utilising a temperature of 0.0 

with a fixed prompt and option order to tightly 

control for randomness, which is essential for 

statistical comparability of paired tests. 

Additionally, we implement a Regex-Based Answer Label 

Extraction mechanism to standardize output processing. 

This isolates the predicted option (A–D) and generates 

clean, comparable response data for each demographic 

variant. 

 

5) STAGE 5: BIAS QUANTIFICATION & STATISTICAL 
TESTING   

The focus of this stage is to statistically measure, compare, 

and rigorously validate observed performance disparities 

across demographic groups. This final stage includes a 

robust mix of descriptive and inferential statistics: 

 

a) Group-Wise Performance Metrics: Calculation of 

accuracy, precision, recall, and F1-score for each 

demographic subgroup, complemented by Wilson 

95% Confidence Intervals to estimate uncertainty. 

b) Disparity Testing: The significance of 

performance differences between groups is 

assessed using 𝜒2, 𝑧 tests, and McNemar’s paired 

significance test (used specifically for the 

deterministic setting). 

c) Effect Size Reporting: The magnitude of bias in 

the analysis is quantified by employing Cohen’s ℎ, 

a statistical measure that provides insight into the 

differences between groups. This metric enables 

researchers to understand the practical 

significance of their findings by indicating the 

effect size between two group accuracies being 

compared [44]. This can be represented 

mathematically using Equation (1) below: 

                     ℎ = 2𝑎𝑟𝑐𝑠𝑖𝑛(√ 𝑝 1) − 2𝑎𝑟𝑐𝑠𝑖𝑛(√ 𝑝 2) (1) 

Here, 𝑝 1 and 𝑝 2 represent the group accuracies 

being compared.  

FIGURE 2. Illustration of the demographic transformation process used in Stage 2. 
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As an additional robustness check, we stratified 

the evaluation by baseline question difficulty, 

approximated using the model’s correctness on the 

original MedQA items. The evaluation set was 

partitioned into baseline-correct and baseline-

incorrect subsets under the original (unmodified) 

condition. Within each subset, demographic 

disparity metrics were computed independently 

using the same statistical framework as the main 

analysis. 

 

d) Multiple Comparison Correction: To control the 

family-wise error rate stemming from numerous 

comparisons, both Bonferroni and Benjamini-

Hochberg False Discovery Rate (FDR) 

adjustments are applied [45]. 

 

These analyses provide a statistically rigorous, transparent, 

and reproducible framework for auditing the demographic 

fairness of clinical LLMs. 

B. DATASET AND DEMOGRAPHIC AUGMENTATION   

1) SOURCE DATASET 

The basis of this investigation is the MedQA-USMLE 

dataset, a large-scale open-domain benchmark for medical 

question answering [16]. This dataset is systematically 

collected from official United States Medical Licensing 

Examination (USMLE) materials, supporting the study in a 

high-stakes, clinically authentic environment. The 

development split contains 1,272 four-option multiple-

choice questions, each designed not merely to test factual 

recall but to simulate realistic diagnostic and therapeutic 

reasoning challenges. Each question follows a standardized 

structure: a concise clinical vignette describing a patient’s 

condition, symptoms, history, and investigations, followed 

by four candidate options representing reasonable 

diagnoses, treatments, or pathophysiological mechanisms. 

One option is annotated as the ground-truth answer, 

enabling objective evaluation. The dataset spans multiple 

disciplines, including internal medicine, surgery, 

paediatrics, obstetrics and gynaecology, and psychiatry, 

and thus reflects the cognitive breadth of medical practice. 

These questions are intentionally crafted to assess a 

physician’s ability to synthesize professional knowledge, 

interpret clinical cues, and apply higher-order reasoning. 

The English subset of MedQA-USMLE was selected for 

three reasons directly aligned with this study’s fairness 

auditing objectives. First, it offers clinical and professional 

authenticity, as it originates from board-level medical 

examinations that mirror the complexity and cognitive load 

encountered in real clinical decision-making. Second, it 

embodies deep diagnostic reasoning, with questions that 

require multi-hop inferencing, compelling models to 

integrate heterogeneous evidence such as symptoms, test 

results, and pathophysiological knowledge rather than 

relying on superficial pattern recognition. Third, it provides 

a structured evaluative framework, where the fixed 

multiple-choice format establishes a standardized and 

quantitative basis for assessing large language model 

(LLM) performance and detecting potential demographic 

bias. This dataset, therefore, provides a clinically reliable 

and interpretable baseline for auditing the fairness and 

consistency of LLMs as they confront variations in patient 

demographic attributes within realistic clinical scenarios. 

 

2) COUNTERFACTUAL GENERATION 

To enable systematic demographic equality analysis, we 

developed MedQA-Demog, a rule-based and label-

invariant extension of the MedQA-USMLE dataset. In this 

framework, each original clinical question 𝑞𝑖 generates a 

set of three demographically counterfactuals: 

                               {𝑞𝑖
𝑔𝑒𝑛𝑑𝑒𝑟 , 𝑞𝑖

𝑟𝑎𝑐𝑒 , 𝑞𝑖
𝑎𝑔𝑒} (2) 

As illustrated in Figure 2. These transformations simulate 

controlled demographic variations while preserving the 

underlying diagnostic semantics and ground-truth answer 

index. Counterfactual generation is performed through 

three deterministic substitution mechanisms: 

a) Gender Swaps: Verbal substitution of gendered 

terms and pronouns (e.g., “a 45-year-old man” → 

“a 45-year-old woman”; “his” → “her”). 

b) Race/Ethnicity Descriptors: Insertion or 

replacement of ethnicity markers randomly 

selected from the set {African American, 

Hispanic, Asian, Caucasian} to ensure balanced 

representation across demographic categories. 

c) Age Adjustment: This refers to the numerical 

modification of the patient’s age using a rule-

based progression function that maintains clinical 

probability and life-stage consistency. To ensure 

realistic demographic representation and 

proportionality across different age groups, the 

adjustment is governed by the following function: 

                     𝑛𝑒𝑤_𝑎𝑔𝑒 =  {

𝛼 + 20,              𝛼 < 18
𝛼 + 25,    18 ≤ 𝛼 < 40
𝛼 + 15,    40 ≤ 𝛼 < 65 
𝛼 − 15,               𝛼 ≥ 65

 (3) 

Here, 𝛼 represents the original age of the patient. 

This formulation allows for controlled age shifts 

while maintaining clinical plausibility. It reflects 

natural demographic transitions, such as from 

adolescence to adulthood or from midlife to 

elderly stages, ensuring that the resulting 

variations remain consistent with expected 

physiological and clinical characteristics. 

 

Each transformation produces semantically coherent, 

contextually valid counterfactuals without introducing 

verbal noise or diagnostic implications. This deterministic, 
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rule-based design ensures perfect label invariance, that is, 

the correct answer remains unchanged across all 

demographic variants, allowing reliable comparison of 

LLM outputs across gender, race/ethnicity, and age 

dimensions. The resulting MedQA-Demog dataset 

accordingly provides a clinically interpretable and fully 

reproducible testbed for quantifying demographic bias in 

medical large language models. The rule-based 

transformations described above were implemented in a 

fully automated augmentation framework (see Algorithm 

1), designed for transparency, reproducibility, and 

computational efficiency. Each question in the MedQA 

development split was processed through a deterministic 

control loop that (i) parsed the source text, (ii) detected 

demographic attributes, (iii) generated corresponding 

counterfactuals, and (iv) validated structural integrity 

before appending the result to the final JSONL file. 

 

3) VALIDATION AND QUALITY ASSURANCE 

Following the automated augmentation process, a 

comprehensive Validation and Quality Assurance (QA) 

phase was conducted to ensure that the MedQA-Demog 

dataset met all necessary criteria for use as a benchmark in 

fairness auditing. This stage verified the dataset’s structural 

integrity, demographic balance, and semantic fidelity, 

confirming that the augmentation framework performed as 

intended. Validation was performed through an automated 

multi-stage verification process that systematically 

examined three core aspects of dataset reliability: 

 

a) Structural integrity, by ensuring that every entry 

adhered to valid JSONL formatting and contained 

the essential fields (original, counterfactuals, 

answer_idx); 

b) Label consistency, by confirming that the correct 

answer index was preserved across all 

counterfactual variants; and 

c) Demographic distribution, by verifying the 

presence of a balanced representation across 

gender, race/ethnicity, and age dimensions. 

 

Additionally, automated semantic checks and random 

sampling were used to ensure that the clinical meaning of 

each question remained unchanged after augmentation. The 

full verification results are summarized in Table I. As 

shown, all integrity checks were successfully passed with 

no structural errors, and the dataset achieved perfect label 

invariance; the correct answer index was preserved across 

every counterfactual. Each augmented question produced 

exactly three counterfactuals (gender, race/ethnicity, age), 

resulting in 3,387 variants drawn from 1,129 augmented 

entries.  

 

The distribution across demographic categories was exactly 

balanced (33.3 % each), and no semantic drift or distortion 

of medical meaning was observed during the 

transformation process. 
 

TABLE I 

VALIDATION SUMMARY FOR THE MEDQA-DEMOG DATASET 

Validation Criterion RESULT/OBSERVATION 

File Integrity No structural errors detected 

Total entries processed  1,272 

Augmented entries 1,129 

Skipped entries 143 

Counterfactuals generated  3,387 

Demographic balance 

Gender = 33.3%; 

Race/Ethnicity = 33.3%.  

Age = 33.3% 

Label invariance 100% retention 

 

These results collectively prove MedQA-Demog as a 

structurally sound, semantically coherent, and fully 

reproducible dataset that provides a reliable foundation for 

the evaluation of demographic bias in large language 

models. 

C. MODEL AND INFERENCE SETUP   

1) MODEL SELECTION AND CONFIGURATION 

This stage builds directly on the methodological foundation 

introduced in Stage 4: Model Inference and Response 

Parsing. The goal here is to evaluate the consistency of 

large language model (LLM) behaviour under both 

stochastic and deterministic inference systems. All bias 

auditing experiments were conducted using the Mistral 7B-

Instruct model, which is a state-of-the-art open-weight 

transformer architecture optimized for instruction 

following and context-aware clinical reasoning. Its open-

weight nature allows for transparent inspection of inference 

behaviour, making it well-suited for reproducible academic 

auditing. 

 

To create a controlled, auditable, and privacy-preserving 

environment, the model was deployed locally using the 

Ollama inference server (version 0.3 or later). This 

lightweight system offers a RESTful API that supports 

parameterized inference, maintains consistent 

environments, and ensures full reproducibility [43]. The 

local Ollama setup served as the unified evaluation 

backbone for both inference modes: 

a) Stochastic Setup: Utilising a temperature of 0.7 

and randomizing prompt/option ordering to 

emulate the natural response variability expected 

in real-world usage. 
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b) Deterministic Setup: Employing a temperature of 

0.0 with fixed prompts and answer order to 

eliminate stochastic noise and enable statistically 

valid paired comparisons. 

 

    This local deployment approach was selected over 

commercial cloud APIs for three principal reasons: (1) 

First, it provides deterministic control, ensuring that 

identical inputs yield perfectly reproducible outputs under 

fixed hyperparameters, (2) Second, it maintains data 

confidentiality, since all clinical vignettes are processed 

within the local environment in compliance with 

institutional data-governance and privacy standards; and 

(3) Third, it offers cost-efficient scalability, allowing 

thousands of bias-audit iterations without rate-limit or 

billing constraints. This configuration establishes a 

transparent, reproducible, and fully auditable environment 

for bias evaluation in medical LLMs. It ensures that any 

disparities identified in subsequent analyses can be 

confidently attributed to model-internal demographic bias, 

rather than uncontrolled external factors or environmental 

variability. 

 

2) PROMPTING STRATEGY AND INPUT VARIATION  

To ensure that model performance reflects genuine 

diagnostic reasoning rather than sensitivity to prompt 

phrasing or formatting, we implemented a structured 

prompt-engineering and randomization framework. This 

mechanism dynamically generates prompt variants and 

randomizes the order of answer choices for each query, 

thereby mitigating linguistic and positional bias while 

preserving semantic content. The design emulates the 

variability of human-to-human communication in real 

clinical consultations and medical examinations. Each 

query integrates a short clinical piece with four multiple-

choice options (A–D). Two distinct prompt formats are 

alternated to vary the model’s interpretive context. 

 

1) Template 1: Clinical Reasoning Form: This 

template frames the model as a medical expert, 

encouraging deliberative reasoning before 

producing an answer: 

<s>[INST] As a medical expert, analyse this case 

and select the correct answer: 

Clinical scenario:  

{question} 

Options: 

A) ... 

B) ... 

C) ... 

D) ... 

After careful consideration, the correct answer is: 

[/INST] </s> 

Algorithm 1. Rule-Based Generation of Demographic Counterfactuals for MedQA-Demog 

1. Initialisation: Initialise logging and record the start time of the process. 

2. Load Data: Load all entries from the MedQA-USMLE development JSONL file. 

3. Question Screening: For each question Q, check for the presence of the "year-old" pattern. If the pattern is 

absent, the question is logged as non-augmentable, and the process skips to the next question. 

4. Attribute Extraction: Extract demographic attributes from Q: age via the regular expression (𝑑+)-year-old, and 

gender via word search for male/female pronouns (e.g., he/she). 

5. Counterfactual Generation: Generate three deterministic demographic variations (counterfactuals) of Q based on the 

extracted attributes: 

a. Gender Substitution: Apply a reciprocal gender swap (e.g., "male ↔ female," "he ↔ she"). 

b. Race/Ethnicity Modification: Insert or replace a race/ethnicity descriptor, cycling through the set 𝑅 =
𝐴𝑓𝑟𝑖𝑐𝑎𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛, 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐, 𝐴𝑠𝑖𝑎𝑛, 𝐶𝑎𝑢𝑐𝑎𝑠𝑖𝑎𝑛. 

c. Age Adjustment: Modify the numeric age 𝛼 according to the following rules: 

𝛼 <18→ 𝛼+20, 18≤ 𝛼 <40→ 𝛼+25, 40≤ 𝛼 <65→ 𝛼+15,  𝛼 ≥65→ 𝛼−15 

6. Answer Consistency: Modify the answer text as required to maintain pronoun consistency with the transformed gender 

in the counterfactual question. 

7. Record Construction: Construct an output record comprising the original question Q and its three generated 

counterfactuals, labelled by their corresponding demographic change type. 

8. Data Output: Append the record to the output JSONL file, flushing buffers and updating the progress log every 50 

questions. 

9. Final Logging: Compute and log summary statistics: total processed, skipped, total counterfactuals generated, and 

mean processing time per question. 

10. Output Dataset: Output the final MedQA-Demog dataset (Original questions + Counterfactuals). 
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2) Template 2: Diagnostic Emphasis Form: This 

version adopts a concise diagnostic framing that 

tests the model’s capacity for direct inference: 

 

<s>[INST] Medical diagnosis question, choose 

the single best answer: 

{question} 

Choices: 

Option A: ... 

Option B: ... 

Option C: ... 

Option D: ... 

Diagnosis: [/INST] </s> 

 

     Both templates follow the <s>[INST]...[/INST] </s> 

instruction format used by instruction-tuned models such as 

Mistral 7B-Instruct. These delimiters define the start and 

end boundaries of the user’s instruction, ensuring that the 

model interprets the input as a structured diagnostic 

question rather than as a free-text continuation. 

Specifically, <s> and </s> denote the start and end of the 

model input sequence, respectively. [INST] introduces the 

instruction context (user input), while [/INST] signals the 

point at which the model should begin generating its 

response. This formatting ensures compatibility with 

instruction-tuned architectures, improving the model’s 

consistency and ensuring that outputs remain focused on 

the intended diagnostic choice (A-D). 

In addition to alternating between templates, the framework 

randomly shuffles the order of answer options for each 

query to reduce positional or word priming effects. This 

ensures that any performance disparity arises only from the 

demographic variable manipulated in the scene rather than 

from input structure or presentation order. Two 

complementary inference rules were employed: (1) a 

stochastic mode (temperature = 0.7) that introduced 

controlled randomness to match natural diagnostic 

variability, and (2) a deterministic mode (temperature = 

0.0) that fixed all random seeds and option orders, ensuring 

perfect reproducibility for baseline and paired statistical 

testing. Model outputs were then post-processed using a 

regular-expression-based filter to extract the first valid 

answer token (A–D), while non-compliant or ambiguous 

responses were systematically logged as UNKNOWN or 

ERROR. This fully auditable prompting and inference 

workflow provides a robust foundation for isolating 

genuine demographic bias in model reasoning from 

artefacts introduced by prompt design or response 

formatting. 

 

3) EVALUATION MODES AND STATISTICAL 
FRAMEWORK   

As introduced above, the inference process was designed to 

operate under two complementary rules, stochastic and 

deterministic, to balance realism with reproducibility. This 

section expands on those settings, outlining their analytical 

purpose, statistical foundations, and role in quantifying 

fairness and behavioural stability. Both inference 

configurations were executed within the Ollama local 

inference environment, ensuring identical hardware 

conditions, consistent parameterization, and full 

experimental traceability across all model runs.  

 

a) Stochastic Mode (Emulating Natural Diagnostic 

Variability): As described earlier, this 

configuration approximates the variability 

inherent in human diagnostic reasoning. Here, the 

temperature parameter was set to 0.7, introducing 

controlled stochasticity into the token-sampling 

process and allowing the model to exhibit nuanced 

differences in reasoning paths across repeated 

evaluations. The order of answer options and 

prompt templates was also randomized per query, 

preventing deterministic repetition and more 

accurately capturing the model’s behavioural 

sensitivity to linguistic and demographic 

perturbations. Statistical analyses derived from 

this process provide insight into how model 

decisions vary under naturalistic uncertainty, 

approximating real-world clinical interpretation 

dynamics. 

b) Deterministic Mode (Ensuring Reproducibility 

and Controlled Comparison): The deterministic 

setup applies complete control over random 

elements to isolate genuine bias effects from 

stochastic variation. A temperature of 0.0 was 

applied, with fixed prompt templates and static 

option ordering, ensuring that each query produces 

an identical output sequence upon repetition. This 

reproducible environment enables formal, 

pairwise statistical testing, most notably through 

McNemar’s test, which evaluates whether 

prediction changes across counterfactual 

demographic variants represent statistically 

significant shifts rather than random fluctuations. 

 

Predicted outputs were parsed using a regular-expression-

based extractor to isolate the model’s selected answer (A–

D). Responses that were missing or ambiguous were 

systematically recorded as UNKNOWN or ERROR to 

maintain analytical transparency. For each demographic 

group (original, gender, race/ethnicity, age), the following 

metrics were computed: 

 

a) Main metrics: Accuracy, Precision, Recall, and F₁-

score (macro-averaged) [46]. 

b) Interval estimation: Wilson 95 % confidence 

intervals (CIs) for accuracy [47]. 

c) Disparity quantification:  
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                        Δ = metric[group] - metric[original]     (4) 

Here, Δ represents the difference between the 

group's metric and the original metric, indicating 

the performance deviations at the group level. 

 

Additionally, group-wise differences were tested using 

robust inferential statistics: 

 

d) Distributional testing: χ² and z-tests for 

proportions assessed significant performance 

deviations [48, 49]. 

e) Paired testing: McNemar’s test compared 

prediction flips between original and 

counterfactual pairs in deterministic runs. 

f) Effect size: Cohen’s h [44] quantified the practical 

magnitude of observed disparities. 

g) Multiple comparison control: Bonferroni and 

Benjamini–Hochberg (FDR) corrections ensured 

appropriate control of the family-wise error rate 

[45]. 

 

To facilitate transparent interpretation of the statistical 

results and enable consistent comparison across 

demographic categories, we established a bias-level 

classification framework that maps the magnitude of 

observed disparities to qualitative interpretive tiers. The 

classification relies on the maximum absolute performance 

disparity (Δₘₐₓ) observed between each demographic 

variant and its original counterpart. This approach 

translates quantitative deviation values into interpretable 

fairness categories, ranging from Minimal to High Bias, 

that align with accepted conventions in fairness auditing 

literature [47]. The complete categorization scheme is 

summarized in Table II. 

 
TABLE II 

BIAS LEVEL CLASSIFICATION BASED ON MAXIMUM ABSOLUTE DISPARITY 

(Δₘₐₓ). 

Bias Level 
MAXIMUM ABSOLUTE DISPARITY 

(Δₘₐₓ) 

Minimal Bias ∆𝑚𝑎𝑥< 0.02 

Low Bias 0.02 ≤ ∆𝑚𝑎𝑥< 0.05 

Moderate Bias 0.05 ≤ ∆𝑚𝑎𝑥< 0.10 

High Bias ∆𝑚𝑎𝑥≥ 0.10 

 

The threshold values for categorizing bias magnitude were 

selected based on both statistical convention and practical 

interpretability within clinical evaluation frameworks. 

Specifically, the cut-offs (0.02, 0.05, 𝑎𝑛𝑑 0.10) correspond 

to well-established effect size interpretations proposed by 

Cohen (1988), where ℎ =  0.2, 0.5, 𝑎𝑛𝑑 0.8 represent 

small, medium, and large effects, respectively [44]. When 

translated to absolute differences in proportions, these 

approximate 𝛥 thresholds of 0.02, 0.05, 𝑎𝑛𝑑 0.10 capture 

progressively meaningful disparities in diagnostic 

decision-making accuracy between demographic groups. 

From a practical perspective, a disparity below 0.02 is 

considered negligible and falls within the expected range of 

random variation across repeated evaluations. Differences 

between 0.02 and 0.05 indicate low but measurable bias, 

potentially noticeable in large-scale clinical applications 

but unlikely to affect individual-level outcomes. Disparities 

between 0.05 and 0.10 reflect moderate concern, where 

systematic bias may influence aggregate performance or 

decision patterns. Values exceeding 0.10 denote high bias, 

representing potentially consequential fairness violations 

that warrant model retraining, data augmentation, or 

calibration interventions. 

This categorization provides a quantitatively interpretable 

and clinically aligned framework for fairness assessment, 

allowing statistical disparities to be translated into real-

world diagnostic implications. It also aligns with thresholds 

adopted in prior algorithmic fairness audits in medical AI, 

ensuring comparability with existing literature [50 - 52]. 

 
III. RESULTS 

This section presents the outcomes of the MedQA-Demog 

bias audit, providing a detailed empirical evaluation of the 

Mistral 7B-Instruct model’s diagnostic reasoning stability 

across systematically varied demographic conditions. 

Using the MedQA-Demog benchmark, model performance 

was assessed under both stochastic (temperature = 0.7) and 

deterministic (temperature = 0.0) inference modes within 

the Ollama local environment, ensuring reproducibility, 

data confidentiality, and consistent hardware conditions. 

The analysis quantifies how demographic attributes, 

gender, race/ethnicity, and age influence diagnostic 

accuracy, confidence, and decision stability. Statistical and 

visual evaluations were conducted to separate genuine 

demographic bias from random variability, employing 

accuracy, precision, recall, F₁-score, and Wilson 95% 

confidence intervals as primary metrics. Inferential testing 

was performed using χ² and z-tests for distributional 

differences, McNemar’s test for paired significance, and 

Cohen’s h for standardized effect-size estimation, with 

multiple comparison control via Bonferroni and 

Benjamini–Hochberg (FDR) corrections. 

The results are organized to provide a consistent and 

progressive analysis of the model’s performance. Section 1 

presents the collective diagnostic accuracy and confidence 

intervals across all demographic groups, establishing a 

global performance baseline. Section 2 explores group-

specific disparities and their statistical significance, 

highlighting where demographic variation influences 

model outcomes. Section 3 extends this evaluation through 

detailed precision–recall and F₁-score analyses to capture 

class-level performance dynamics. Moreover, visualizes 

the internal structure of model errors via confusion matrices 

and disparity heatmaps, offering an interpretable view of 

error distribution patterns. Section 4 examines whether 

demographic perturbations induced any systematic 
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preference for particular answer options. Finally, Section 5 

assesses the statistical sensitivity of fairness evaluation. 

 

1) AGGREGATE ACCURACY AND CONFIDENCE 
INTERVALS  

The aggregate results of the MedQA-Demog bias audit 

demonstrate that the Mistral 7B-Instruct model maintained 

a broadly stable diagnostic reasoning capability across both 

the original and counterfactual datasets. Across 4,659 total 

evaluated items (comprising 1,272 original MedQA-

USMLE questions and 3,387 systematically generated 

counterfactuals), the model’s accuracy values exhibited 

only marginal variation, suggesting a robust internal 

reasoning process largely invariant to changes in patient 

demographics. 

 

As shown in Table III, the model achieved an accuracy of 

0.427 (95 % CI [0.400, 0.454]) on the original questions, 

correctly answering 543 of 1,272 items. When exposed to 

systematically altered versions of these same questions, the 

model exhibited only slight reductions in accuracy: 0.402 

(95 % CI [0.374, 0.431]) for gender-modified items, 0.406 

(95 % CI [0.377, 0.435]) for race/ethnicity variations, and 

0.387 (95 % CI [0.359, 0.416]) for age adjustments. 

Although error rates ranged modestly from 0.573 to 0.613 

across groups, the substantial overlap of Wilson's 95 % 

confidence intervals indicates that these performance 

differences are not statistically significant.  

  

The observed fluctuations (Δ ≈ –0.021 to -0.040 relative to 

baseline), therefore, most likely reflect inherent stochastic 

variability rather than systematic demographic bias. These 

results confirm that the Mistral 7B-Instruct model 

maintains a relatively stable diagnostic decision process 

when exposed to linguistic and contextual variations in 

patient demographics. The findings provide a robust 

baseline of demographic stability, supporting the 

subsequent group-specific disparity and significance 

analyses presented in Sections 2 and 3. 

 

As illustrated in Figure 3, accuracy remained relatively 

stable across all demographic groups, with differences 

remaining within the expected range of stochastic variation. 

The model maintained its overall diagnostic integrity, 

exhibiting only marginal shifts in accuracy under 

counterfactual demographic modifications, thereby 

supporting the robustness of its reasoning consistency 

across patient-context variations. 

 

To assess whether the observed demographic stability is 

influenced by question difficulty, we conducted an 

additional robustness check by stratifying the evaluation 

according to baseline question difficulty, approximated 

using the model’s correctness on the original MedQA 

items. This analysis is performed on the subset of questions 

with valid demographic counterfactuals and valid model 

predictions, and the resulting stratified accuracy 

differences are summarized in Table IV. 

Baseline 

Stratum 

Condition n Accuracy Δ Accuracy 

 

Baseline-

correct 

Original 330 1.000 +0.000 

Gender 296 0.993 −0.007 

Race/Ethnicity 296 0.993 −0.007 

Age 296 0.997 −0.003 

 

Baseline-

incorrect 

Original 942 0.000 +0.000 

Gender 833 0.000 +0.000 

Race/Ethnicity 833 0.000 +0.000 

Age 833 0.000 +0.000 

 

Across baseline-correct questions, demographic 

counterfactual perturbations produce only marginal and 

consistent accuracy differences (with a maximum absolute 

deviation of ≤ 0.7 % points), while baseline-incorrect 

questions show no demographic-dependent recovery or 

degradation. 

 

Group Accuracy Correct Total Error Rate CI_low CI_high 

Original 0.427 543 1272 0.573 0.400 0.454 
Gender 0.402 454 1129 0.598 0.374 0.431 

Race/Ethnicity 0.406 458 1129 0.594 0.377 0.435 

Age 0.387 437 1129 0.613 0.359 0.416 

TABLE III 

GROUP-WISE DIAGNOSTIC ACCURACY AND WILSON 95 % CONFIDENCE INTERVALS 

 

FIGURE 3. Diagnostic Accuracy by Demographic Group (with 
Wilson 95 % Confidence Intervals). 

TABLE IV 

STRATIFIED DEMOGRAPHIC ROBUSTNESS BY BASELINE 

QUESTION DIFFICULTY (MISTRAL 7B-INSTRUCT). 
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To further validate the diagnostic performance of the 

proposed model and assess its relative strengths, a 

comparative analysis was conducted against existing 

medical question answering (MQA) systems. This 

comparison provides an empirical benchmark, highlighting 

how our approach aligns with, and diverges from, prior 

developments in medical-domain language modelling. 

Table V presents a comparative overview of the diagnostic 

accuracy achieved by the Mistral 7B-Instruct model in 

relation to a range of established baselines and large-scale 

instruction-tuned models previously evaluated on the 

MedQA (USMLE) benchmark [16, 53].  

 

The comparison traces the route of medical question 

answering (MQA) systems, incorporating models from 

early retrieval-based and transformer encoder architectures, 

specifically IR-Custom, BERT, BioBERT, and RoBERTa, 

up to instruction-tuned and domain-aligned large language 

models (LLMs) such as PubMedGPT, Flan-PaLM, and 

Med-PaLM. Collectively, this broad spectrum of systems, 

which charts the evolution of MQA from initial pre-trained 

contextual encoders to today's billion-parameter, 

instruction-following architectures, offers a central 

empirical context against which the performance and 

results of our own model can be accurately and 

meaningfully interpreted. 

 

As shown in Table V, the Mistral 7B-Instruct model 

achieves a diagnostic accuracy of 42.7%, outperforming all 

early transformer baselines including BERT-Base (34.3%),  

BioBERT-Base (34.1%), and RoBERTa-Large (35.0%), as 

well as the strongest pre-BERT variant, BioBERT-Large 

(36.7%). These results highlight that even without 

biomedical pretraining, a mid-scale, instruction-tuned 

model can offer stronger reasoning and factual 

comprehension than traditional transformer encoders 

trained on domain-specific quantities. When compared 

with more recent large-scale instruction-tuned models, 

such as PubMedGPT (50.3%), Flan-PaLM (67.6%), and 

Med-PaLM (up to 70.0%), the Mistral 7B-Instruct model 

understandably yields lower absolute accuracy. However, 

this performance gap primarily reflects the substantial 

differences in model scale, training data volume, and 

domain alignment rather than architectural limitations. 

   

    In contrast to these billion-parameter systems, the 

Mistral 7B-Instruct model operates within a lightweight, 

open-weight configuration, prioritising transparency, 

reproducibility, and fairness auditability criteria rarely 

satisfied by proprietary LLMs. Moreover, its stable 

demographic performance across the MedQA-Demog 

dataset underscores the model’s potential as a controlled 

and ethically deployable foundation for future bias 

quantification research. These findings collectively 

demonstrate that while larger, domain-specific LLMs 

remain superior in raw diagnostic reasoning, open-weight 

instruction-tuned models like Mistral 7B-Instruct strike a 

meaningful balance between accuracy, interpretability, and 

fairness accountability, key priorities for responsible AI 

deployment in medical contexts. 

 

Reference Model / Study Model Type 
Training Domain / 

Scale 
Evaluation Setup Accuracy (%) Notes 

 
IR-Custom  

Baseline 

Information 

Retrieval 

Unsupervised 

retrieval 
 

 

 
MedQA 

(USMLE) 

 

 

 

 

 

 

36.1 
Best non-neural baseline 

before deep models. 

 
BERT-Base 

 (English) 

Transformer 

(110 M) 
General domain 34.3 

Early contextual embedding 

model. 

[16] BioBERT-Base 
Transformer 

(110 M) 
Biomedical text 

(PubMed) 
34.1 

Domain pretraining offers 

minor gain. 

 RoBERTa-Large 
Transformer 

(355 M) 

General domain + 

finetuning 
35.0 

Strongest early transformer 

baseline. 

 BioBERT-Large 
Transformer 

(355 M) 

Biomedical  

domain 
36.7 

Top performing pre-BERT 

variant on USMLE. 

 
PubMedGPT  

(2.7 B) 
Autoregressive LLM Biomedical text only 50.3 

First biomedical-domain 
LLM; solid factual recall. 

[53] 
Flan-PaLM  

(540 B) 
Instruction-tuned LLM 

General + medical 

datasets 
MultiMedQA 

(MedQA subset) 

67.6 
State-of-the-art instruction-

tuned reasoning. 

 
Med-PaLM  

(540 B) 
Domain-aligned LLM 

Flan-PaLM + medical 
alignment 

67.6 – 70.0 

Clinician-comparable 

reasoning; low bias incidence 

(≈ 0.8 %). 

This study 
Mistral 7B- 

Instruct 
Open-weight LLM (7 B) 

General instruction-

tuned 

MedQA-Demog 
(USMLE dev + 

counterfactuals) 

42.7 
Locally deployed; transparent, 
reproducible fairness audit; 

stable across demographics. 

TABLE V 

COMPARATIVE PERFORMANCE OF BASELINE AND INSTRUCTION-TUNED LANGUAGE MODELS ON THE MEDQA (USMLE) BENCHMARK. 
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2) GROUP-SPECIFIC DISPARITIES AND SIGNIFICANCE 
TESTING   

This section examines whether the demographic 

modifications introduced in MedQA-Demog, covering 

gender, race/ethnicity, and age, led to any statistically 

significant changes in diagnostic accuracy compared with 

the original USMLE questions. Each demographic subset 

included over 1,100 questions, providing sufficient 

statistical power (detectable difference ≈ 0.057 at 80 % 

power, α = 0.05) to identify even small fairness-related 

effects. Across 4,659 evaluated items (1,272 original + 

3,387 counterfactuals), the Mistral 7B-Instruct model 

demonstrated stable diagnostic reasoning under all 

demographic modifications. Table VI summarizes 

accuracy, Wilson 95 % CIs, and absolute differences versus 

baseline.  

As shown in Table VI, the comparative statistical analysis 

across demographic groups confirms that the Mistral 7B-

Instruct model maintains consistent diagnostic reasoning 

performance under all demographic perturbations. 

Accuracy differences between each demographic subset 

and the original MedQA items are minimal, with none 

exceeding a four-percentage-point deviation. The age-

modified subset showed the largest observed reduction in 

accuracy (Δ = - 0.040), yet this difference remains within 

the Low Bias range (Δₘₐₓ < 0.05; see Table II). While the 

unadjusted z-test indicated a marginally significant result 

(p = 0.048), this effect became non-significant after 

applying Bonferroni (p = 0.143) and Benjamini-Hochberg 

(BH) corrections (q = 0.143), suggesting that the deviation 

was likely due to random variation rather than systematic 

demographic bias.  

 

Similarly, the gender (Δ = - 0.025) and race/ethnicity (Δ = 

- 0.021) comparisons produced p-values well above 

conventional significance thresholds (p = 0.219 and p = 

0.293, respectively), both classified as Low Bias and 

Minimal Bias. Their effect sizes were correspondingly 

small (Cohen’s h = - 0.050 and - 0.043), and the bootstrap 

confidence intervals included zero, further confirming the 

absence of meaningful performance disparity.  

    Overall, across all comparisons, statistical corrections 

and confidence intervals consistently indicate no evidence 

of systematic demographic bias. The Mistral 7B-Instruct 

model’s diagnostic accuracy appears robust and 

demographically invariant when evaluated on the MedQA-

Demog benchmark. 

 

3) MACRO PRECISION, RECALL, AND F1- SCORES   

As shown in Table VII, macro-averaged precision, recall, 

and F₁-scores closely followed the overall accuracy trends 

observed earlier (see Section 3.1). Across all demographic 

variants, performance differences relative to the original 

MedQA subset remained below 0.05, confirming that the 

Mistral 7B-Instruct model preserved balanced predictive 

behaviour across gender, race/ethnicity, and age 

perturbations. Specifically, the original group achieved 

macro-precision of 0.426, macro-recall of 0.427, and 

macro-F1 of 0.426. The gender and race/ethnicity variants 

exhibited minor declines (-0.023 and -0.019 in F₁, 

respectively), whereas the age variant recorded a slightly 

larger decrease (–0.041), consistent with its modest drop in 

accuracy reported in Table III. 

 

Importantly, these fluctuations remain within the Low Bias 

classification threshold (Δₘₐₓ < 0.05; see Table II), 

suggesting that demographic changes apply minimal 

influence on the model’s overall precision–recall balance. 

Beyond aggregate scores, a closer examination of error 

structure revealed that the most frequent misclassifications 

involved confusion between semantically or clinically 

similar options. The top ten error transitions (truth → 

prediction) were dominated by minor label inversions such 

as B → A (298), C → A (272), C → D (253), and D → A 

(252). These symmetric confusion patterns suggest that the 

model’s reasoning errors were non-systematic and 

semantically neutral, reflecting inherent uncertainty in 

complex medical reasoning rather than bias toward any 

particular demographic subgroup. Figure 4 visualizes the 

close alignment among macro-precision, recall, and F₁ 

scores across demographic variants, highlighting the 

model’s consistent behaviour and fairness stability within 

the MedQA-Demog benchmark. 

 

 

Group 
Macro-

Precision 

Macro-

Recall 
Macro-F1 

Original 0.426 0.427 0.426 

Gender 0.403 0.399 0.400 

Race/Ethnicity 0.407 0.407 0.405 

Age 0.386 0.385 0.385 

Comparison Δ Accuracy p (z-test) Bonf. p BH q Cohen’s h Bootstrap 95 % CI Bias Level 

Gender vs Original - 0.025 0.219 0.657 0.293 - 0.050 [- 0.065, +0.015] Low Bias 

Race/Ethnicity vs 
Original 

- 0.021 0.293 0.878 0.293 - 0.043 [- 0.060, +0.018] Minimal Bias 

Age vs Original - 0.040 0.048 0.143 0.143 - 0.081 [- 0.080, - 0.000] Low Bias 

TABLE VI 

STATISTICAL COMPARISON OF DIAGNOSTIC ACCURACY ACROSS DEMOGRAPHIC GROUPS IN THE MEDQA-DEMOG DATASET. 

 

TABLE VII 

MACRO-AVERAGED PRECISION, RECALL, AND F1 SCORES. 
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In summary, the macro-level evaluation supports earlier 

findings: performance stability and predictive symmetry 

are maintained across all demographic variations, 

highlighting the Mistral 7B-Instruct model’s robustness 

and demographic fairness within the MedQA-Demog 

dataset.  

 

Furthermore, to visualise diagnostic behaviour and assess 

whether demographic perturbations introduced systematic 

misclassification patterns, Figure 5 presents the aggregated 

confusion matrices for all evaluation subsets: the original 

MedQA questions and their gender-, race/ethnicity-, and 

age-modified counterfactuals. Across all panels, diagonal 

dominance is consistently maintained, indicating that the 

majority of predictions align with the correct diagnostic 

option. The off-diagonal cells representing errors show 

similar magnitudes and symmetrical dispersion, suggesting 

that most misclassifications stem from semantic proximity 

among clinically related options rather than from 

demographic bias. Importantly, no single group displays an 

inflated or depleted confusion region, reinforcing the 

earlier statistical finding that demographic edits did not 

introduce systematic reasoning drift in the model’s 

responses.  

     A detailed examination of the confusion matrices in 

Figure 5 reveals that the model’s misclassifications are 

largely confined to semantically adjacent diagnostic 

options rather than random or demographically driven 

errors. Across all groups, the ten most frequent error 

transitions follow consistent trends dominated by 

confusions between clinically probable alternatives such as 

B → A (298 cases), C → A (272), C → D (253), and D → 

A (252). These recurrent cross-predictions often involve 

conceptually overlapping diagnoses or therapeutically 

related conditions, suggesting that the model’s uncertainty 

is epistemic (linked to medical reasoning ambiguity) rather 

than sociodemographic in nature. The relative symmetry of  

inverse transitions (e.g., A → B vs B → A) further supports 

this interpretation: no single answer category was 

disproportionately over- or under-predicted across any 

demographic subset. Collectively, this behaviour reinforces 

that observed variability arises from the intrinsic diagnostic 

complexity of the MedQA items rather than from 

sensitivity to gender, race/ethnicity, or age cues. 

 

4) PREDICTION BALANCE AND OVER/UNDER-
PREDICTION  

To examine whether demographic perturbations induced 

any systematic preference for particular answer options, we 

analysed prediction balance, the relative deviation in 

predicted label frequency compared with the original 

MedQA distribution. This measure quantifies over-

prediction (positive deviation) and under-prediction 

(negative deviation) for each of the four multiple-choice 

options (A–D). As shown in Table VIII, the Mistral 7B-

Instruct model preserved a near-balanced prediction pattern 

across all demographic groups.  

 

For the original dataset, deviations were minimal (ranging 

between - 0.019 and +0.021), indicating a well-distributed 

output probability across all answer choices. When 

demographic counterfactuals were introduced, slight 

fluctuations appeared but remained within expected 

random variation. The gender variant showed a modest 

Group A B C D 

Original +0.009 -0.019 -0.011 +0.021 

Gender +0.055 -0.028 -0.031 +0.004 

Race/Ethnicity +0.030 -0.019 -0.040 +0.029 

Age +0.027 -0.019 -0.025 +0.018 

FIGURE 4. Macro-Precision, Macro-Recall, and Macro-F₁ scores across demographic groups (Original, Gender, Race/Ethnicity, and Age). 

TABLE VIII 

PREDICTION BALANCE AND OVER/UNDER-PREDICTION BY 

DEMOGRAPHIC GROUP. 

. 
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over-prediction for option A (+0.055) and mild under-

prediction for C (- 0.031), while the race/ethnicity and age 

variants exhibited similarly small deviations (< ±0.04). No 

consistent directional bias (e.g., persistent preference for a 

specific label) was observed across groups, confirming that 

demographic edits did not distort the model’s decision 

distribution. Overall, the distributions indicate stable 

response diversity across all counterfactual conditions. The 

absence of systematic over- or under-prediction patterns 

reinforces the earlier conclusion that the Mistral 7B-

Instruct model maintained demographically neutral 

diagnostic reasoning, with fluctuations consistent with 

sampling noise rather than structural bias. 

 

5) POWER AND MINIMUM DETECTABLE EFFECTS 

To assess the statistical sensitivity of the fairness 

evaluation, we conducted a power analysis to estimate the 

smallest performance gap that could be detected with 80 % 

statistical power (α = 0.05). This analysis ensures that any 

non-significant findings reported in previous sections are 

not due to insufficient sample size but rather reflect genuine 

performance parity across demographic variants. As shown 

in Table IX, each demographic comparison involved more 

than 1,100 counterfactual questions, matched against 1,272 

original MedQA items. The Baseline Accuracy 

(BaselineAcc) represents the model’s reference accuracy on 

the original dataset (0.427). The 𝑛_𝑟𝑒𝑓 column denotes the 

number of baseline (original) samples, while n_grp refers 

to the sample size of each corresponding demographic 

variant (gender, race/ethnicity, or age). The final column, 

MDE_abs_acc, reports the minimum detectable effect, the 

smallest absolute accuracy difference that can be identified 

with 80 % power given the respective sample sizes. 

     Given these sample sizes, the minimum detectable 

absolute difference in accuracy was approximately 0.057 

(5.7 percentage points) for all comparisons. As all observed 

disparities reported in Section 2 were smaller than this 

threshold (≤ 0.04), they fall below the detectable range, 

indicating that the apparent differences are statistically 

insignificant and unlikely to represent systematic 

demographic bias. In summary, this power analysis 

confirms that the non-significant fairness outcomes 

reported earlier reflect genuine model stability rather than 

limited data resolution. The Mistral 7B-Instruct model, 

therefore, demonstrates robust demographic neutrality 

within the MedQA-Demog evaluation framework. 

(a) (b) 

(c) (d) 

FIGURE 5. Confusion matrices for each demographic variant of the MedQA-Demog dataset: (a) Original, (b) Gender, (c) Race/Ethnicity, 
and (d) Age. Each matrix depicts predicted versus true answer distributions. 
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IV. DISCUSSION  

The results of this audit provide clear evidence that the 

Mistral 7B-Instruct model demonstrates robust 

demographic neutrality when applied to clinical question 

answering. Across 4,659 MedQA-Demog items, including 

systematic gender, race/ethnicity, and age perturbations, 

performance fluctuations remained minimal (Δ ≤ 0.04) and 

statistically non-significant. These findings indicate that 

open-weight LLMs can provide stable diagnostic reasoning 

despite controlled demographic variations, which is an 

encouraging result considering concerns regarding fairness 

in medical AI systems. A stratified robustness check by 

baseline question difficulty further confirms that this 

demographic stability is not driven by uniformly limited 

performance but persists across difficulty strata. 

These findings should be interpreted in light of our design 

choice to treat demographic descriptors as fairness probes 

rather than clinically causal features, ensuring that 

observed effects reflect demographic framing sensitivity 

rather than medical risk modelling. 

 

    Compared with prior work, the present results show that 

demographic fairness is achievable even without large-

scale parameter counts or domain-specific pre-training. 

Earlier transformer baselines such as BioBERT or 

RoBERTa-Large achieved below 40% accuracy on the 

MedQA benchmark [16], while instruction-tuned and 

domain-aligned models, such as Flan-PaLM and Med-

PaLM reached 67-70 % accuracy with billions of 

parameters and extensive clinical alignment. Within this 

landscape, Mistral 7B-Instruct achieved 42.7%, 

outperforming early encoders despite being an open-source 

model with an order of magnitude fewer parameters. 

Notably, our findings complement prior work emphasising 

that fairness and reasoning quality are not strictly functions 

of model scale, but of controlled training and evaluation 

design [53]. The present study extends that insight by 

empirically demonstrating demographic robustness within 

a fully reproducible, open-weight framework. 

 

Error-structure analysis further supports this interpretation. 

Confusion matrices and prediction-balance measures 

revealed symmetrical misclassifications dominated by 

semantically adjacent diagnostic options rather than 

demographically patterned errors. Frequent transitions such 

as B → A or C → D reflected epistemic uncertainty within 

the clinical content, consistent across all demographic 

subsets. The absence of systematic over- or under-

prediction trends (Table VIII) indicates that the model’s 

diagnostic behaviour is shaped primarily by inherent case 

difficulty rather than demographic perturbation. In 

practical terms, this means that apparent performance 

differences between demographic groups are statistically 

indistinguishable from random sampling noise. 

 

From a methodological standpoint, the results validate the 

proposed MedQA-Demog audit framework as a 

transparent, replicable approach for bias evaluation in 

medical LLMs. The framework’s integration of 

counterfactual augmentation, Wilson confidence intervals, 

and effect-size reporting (Cohen’s h) ensures 

interpretability and quantitative accuracy, aligning with 

emerging standards for fairness auditing. Importantly, the 

power analysis (Table IX) confirmed that all observed gaps 

were below the minimum detectable threshold (≈ 0.057), 

indicating that non-significance reflects genuine model 

stability rather than insufficient data. 

 

These outcomes have several broader implications. First, 

they highlight the potential of open-weight models such as 

Mistral to serve as transparent research baselines for 

fairness benchmarking, enabling reproducibility and 

external verification absent in proprietary systems. Second, 

they show that bias auditing frameworks can and should 

extend beyond aggregate accuracy to include structured 

statistical testing, effect-size interpretation, and visual 

inspection of misclassification patterns. Third, the minimal 

demographic sensitivity observed here suggests that 

instruction-tuned open models may already possess 

sufficient contextual grounding to generalise equitably 

across basic patient characteristics, though further 

evaluation on free-text clinical notes and multi-modal 

inputs is necessary. Finally, while Mistral 7B-Instruct’s 

overall diagnostic accuracy remains lower than domain-

aligned giants like Med-PaLM 2 or GPT-4, its 

transparency, efficiency, and fairness stability position it as 

a viable foundation for academic and clinical research.  

The primary contribution of this work lies in 

methodological rigor for fairness auditing rather than 

optimisation of diagnostic accuracy, which remains an 

important direction for future studies applying the proposed 

framework to higher-performing medical LLMs. While this 

study focuses on diagnostic decision consistency under 

demographic counterfactuals, future extensions of the 

framework could incorporate analyses of explanation tone, 

certainty calibration, and recommendation strength to 

assess communicative fairness in patient or clinician-facing 

settings.  

 In the present study, demographic attributes are evaluated 

independently in order to preserve label invariance and 

Group BaselineAcc n_ref n_grp MDE_abs_acc 

Gender 0.427 1272 1129 0.057 

Race/Ethnicity 0.427 1272 1129 0.057 

Age 0.427 1272 1129 0.057 

TABLE IX 

POWER ANALYSIS AND MINIMUM DETECTABLE ACCURACY GAPS (80 

% POWER, Α = 0.05). 
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avoid introducing clinically implausible or confounded 

combinations within the MedQA vignettes; this design 

choice ensures that observed effects can be attributed to 

demographic framing rather than unintended changes in 

clinical semantics. Future work should expand this auditing 

framework to include intersectional attributes (e.g., age × 

gender), reasoning-trace analysis, and reinforcement-based 

fairness tuning to ensure equitable, trustworthy clinical 

deployment of medical LLMs. Moreover, the present study 

intentionally employs a fixed, deterministic prompt 

template to isolate demographic effects and ensure full 

reproducibility of the fairness audit. This design choice 

enables controlled comparison across demographic 

counterfactuals without introducing additional variability 

from prompt engineering or external knowledge retrieval. 

Future extensions of this framework could evaluate 

demographic robustness under alternative prompt 

templates and simple retrieval-augmented configurations to 

better approximate real-world clinical decision-support 

deployments. 

 

In summary, the present findings confirm that demographic 

perturbations do not meaningfully change the diagnostic 

reasoning of the Mistral 7B-Instruct model within the 

MedQA-Demog framework. The proposed audit 

framework provides a robust and transparent foundation for 

fairness evaluation in clinical LLMs and demonstrates that 

reproducible, open-source infrastructures can achieve both 

methodological rigour and ethical accountability. These 

outcomes directly inform the next section, which outlines 

the broader implications, limitations, and future pathways 

toward trustworthy, bias-aware medical AI systems. 

 
V. CONCLUSION  

This work presents one of the first systematic evaluations 

of demographic fairness in open-weight medical language 

models. Through the development of MedQA-Demog, a 

label-invariant, counterfactually augmented version of the 

MedQA-USMLE dataset and its deployment within a fully 

local, transparent inference pipeline, we provide strong 

evidence that the Mistral 7B-Instruct model shows stable 

diagnostic reasoning across patient gender, race/ethnicity, 

and age. Accuracy fluctuations across all demographic 

variants remained within ± 0.04 and were statistically non-

significant (all 𝑝 >  0.05). Effect sizes were minimal 

(|ℎ|  <  0.1), and bootstrap confidence intervals 

consistently included zero, confirming that residual 

variation reflected stochastic rather than systematic bias. 

These results demonstrate that open-source instruction-

tuned LLMs can achieve robust demo-graphic neutrality 

when evaluated under controlled and reproducible 

conditions. 

 

Beyond model performance, this study establishes a 

transparent methodological framework for bias auditing, 

incorporating structured counterfactual augmentation, 

deterministic inference, power analysis, and quantitative 

bias categorisation. Together, these elements form a 

reproducible, extensible standard for assessing fairness in 

clinical AI systems. Future research should extend this 

framework to multimodal medical tasks, intersectional 

demographic attributes (e.g., age × gender), and 

longitudinal fine-tuning protocols designed to reinforce 

fairness while preserving diagnostic validity. By 

embedding such reproducible fairness auditing practices in 

the model-development lifecycle, we take a critical step 

toward trustworthy, equitable, and accountable deployment 

of medical LLMs. 
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