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ABSTRACT The application of large language models (LLMs) within clinical decision-support frameworks
is receiving growing research attention, yet their fairness and demographic robustness remain insufficiently
understood. This study introduces MedQA-Demog, a purpose-built, label-invariant extension of the MedQA-
USMLE benchmark, designed to enable systematic auditing of demographic bias in medical reasoning
models. Using a deterministic augmentation framework, we generated 4,659 question-answer items that
incorporated counterfactual variations in gender, race/ethnicity, and age, and validated them through
automated integrity and balance checks. We evaluated the Mistral 7B-Instruct model under stochastic
(temperature = 0.7) and deterministic (temperature = 0.0) inference rules via the Ollama local environment,
applying Wilson's 95 % confidence intervals, y*/z-tests, McNemar’s paired analysis, and Cohen’s h effect
sizes to quantify fairness. Across all demographic variants, diagnostic accuracy remained consistent (A <
0.04; p > 0.05), and all performance gaps fell within Minimal or Low Bias thresholds. Confusion-matrix and
prediction-balance analyses revealed no systematic over- or under-prediction patterns, while power analysis
confirmed that observed fluctuations were below the minimum detectable effect (= 0.057). A stratified
robustness analysis further confirms that these fairness patterns persist across question difficulty levels and
are not an artefact of uniformly limited performance. These findings demonstrate that open-weight,
instruction-tuned LLMs can maintain demographic stability in clinical reasoning when evaluated through
reproducible, controlled pipelines. This framework provides a practical foundation for bias evaluation in open
clinical LLMs, supporting their ethical integration into digital health tools and clinical decision-support
systems.

INDEX TERMS Large language models (LLMs); demographic bias; fairness auditing; medical question
answering; MedQA benchmark; Mistral 7B-Instruct; open-weight models; Ollama; Wilson confidence
interval; statistical bias evaluation; digital health; ethical Al

I. INTRODUCTION

The rapid advancement of large language models (LLMs)
is transforming both natural language processing and
modern healthcare. Models such as GPT-4 now
demonstrate human-level comprehension and reasoning
across medical domains, enabling applications in research,
education, and clinical practice. By translating complex
medical knowledge into accessible language, automating
documentation, and supporting decision-making, LLMs are
beginning to bridge the gap between data, understanding,
and patient care [1,2]. Unlike earlier machine learning
systems limited to narrow tasks, LLMs can integrate
diverse knowledge, reason through complex clinical
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scenarios, and produce coherent, human-like explanations.
Their capacity for contextual understanding and adaptive
communication marks a major step toward more intelligent,
generalizable Al systems in healthcare [3,4].

Recent overviews of LLMs in healthcare consolidate this
shift, documenting rapid gains in clinical summarization,
triage support, documentation, and education, while also
flagging safety, alignment, and governance gaps that must
be addressed for clinical deployment. These syntheses
situate LLMs as assistive cognitive tools, emphasizing
human-in-the-loop usage and robust evaluation [5, 6]. This
flexibility makes LLMs particularly valuable for clinical
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reasoning and diagnostic support, where physicians must
interpret incomplete, ambiguous, and context-rich patient
data. Recent studies show that adapted LLMs can
summarize complex clinical narratives with accuracy
comparable to, and in some cases exceeding, that of human
experts, while also assisting in identifying relevant
treatment options and biomedical evidence for complex
cases such as precision oncology. By integrating vast
biomedical knowledge with context-sensitive reasoning,
these models have begun to complement clinical expertise,
offering timely insights that enhance decision-making in
uncertain or data-intensive scenarios [7, 8].

Studies conducted in real or simulated consultations
highlight important practical considerations, including
response calibration, the communication of uncertainty,
and guidelines to avoid potentially harmful advice.
Evidence from both patient-facing and clinician-facing
settings demonstrates that the quality of dialogue, how
prompts are framed, and the implementation of safety
filters significantly impact clinical usefulness and potential
risks [6, 9]. LLMs are increasingly being explored for
clinical reasoning and diagnostic support, showing strong
performance on established medical benchmarks and
demonstrating early promise in addressing real-world
clinical queries. Studies comparing conversational models
like GPT-4 with expert diagnostic systems have shown that
LLMs can generate accurate and context-aware differential
diagnoses across various medical fields. Moreover, recent
evaluations across question-answering datasets (e.g.,
MedQA, MMLU, EquityMedQA) reveal that, while these
models often achieve accuracy comparable to physicians,
their performance can be influenced by factors such as
prompt design, retrieval context, and demographic fairness
[10, 11].

These findings highlight both the growing diagnostic
potential of LLMs and the importance of ensuring bias-
aware, transparent, and clinically validated deployment in
healthcare settings. For instance, ChatGPT has been shown
to achieve performance at or near the passing threshold
across all three stages of the United States Medical
Licensing Examination (USMLE), attaining scores of up to
87% on certain components, even without domain-specific
training or fine-tuning [12]. Beyond numerical accuracy,
the model showed high internal consistency and generated
clinically valid, insightful explanations, suggesting that
large language models may possess emergent reasoning
abilities relevant to medical education and decision support
[12]. Similarly, large language models such as ChatGPT
have been shown to generate reasoned and contextually
accurate responses to complex medical questions drawn
from the United States Medical Licensing Examination
(USMLE) [13]. The study found that the model achieved
performance levels comparable to a third-year medical
student, with logical justification and clinically coherent
explanations present in nearly all responses [13]. These
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findings highlight the potential of LLMs to serve as
interactive cognitive aids for physicians and medical
trainees, supporting differential diagnosis generation,
reinforcing conceptual understanding, and fostering
reflective learning through dialogic interaction.

The strength of these findings is further supported by
large-scale evaluations of GPT-4 across multiple medical
challenge benchmarks, including all three stages of the
United States Medical Licensing Examination (USMLE)
and the MultiMedQA suite. These evaluations showed that
GPT-4, even without medical fine-tuning or complex
prompting, exceeded human passing thresholds by more
than 20 percentage points and consistently outperformed
both GPT-3.5 and domain-specialized models such as Med-
PaLM [14]. In addition, GPT-4 demonstrated superior
calibration of confidence scores and the ability to provide
clear, contextually grounded medical reasoning,
underscoring its potential utility in clinical education,
assessment, and decision support [14]. Notably, Med-
PaLM 2 not only produced accurate responses but also
delivered clear, evidence-based reasoning that strengthened
the explainability and clinical interpretability of its outputs.
Building on its pattern, Med-PaLM 2 achieved substantial
improvements, scoring up to 86.5% on the MedQA
(USMLE-style) dataset and improving on prior benchmarks
such as Med-PaLM and Flan-PaLM across MedMCQA,
PubMedQA, and MMLU clinical topics. In comprehensive
human evaluations, physicians preferred Med-PaLM 2’s
responses over those of other physicians in eight of nine
clinical dimensions, including factual accuracy, reasoning
quality, and medical consensus alignment. Moreover, in
real-world bedside consultations, specialists judged Med-
PalLM 2’s answers to be comparable in safety and clarity to
generalist physicians, demonstrating progress toward
clinically reliable AI support. However, despite these
advances, the study also revealed that model performance
remains below specialist-level reasoning, highlighting the
need for continued validation, alignment with human
values, and robust evaluation frameworks before full
integration into clinical workflows [15].

Medical Q&A has matured alongside LLMs, with work
spanning dataset curation, retrieval-augmented pipelines,
and model-comparison studies in clinical reasoning.
MedQA was introduced as the first large-scale, open-
domain multiple-choice  question-answering dataset
specifically developed for medical reasoning tasks [16].
The dataset was constructed from professional medical
board examinations in the United States, Mainland China,
and Taiwan, comprising over 61,000 questions in English,
Simplified Chinese, and Traditional Chinese, alongside an
extensive corpus of medical textbooks to support evidence-
based reasoning. Unlike previous QA datasets focused on
factual recall, MedQA requires multi-hop reasoning and
deep domain understanding, closely reflecting the complex
diagnostic processes used by clinicians. Each question
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often presents a clinical vignette requiring the integration
of multiple findings and inferential reasoning to identify the
correct diagnosis or management decision. Initial
benchmark evaluations using advanced models such as
BERT, BioBERT, and RoBERTa achieved accuracies
below 45% on USMLE-style questions, underscoring the
dataset’s difficulty and the substantial gap between current
Al capabilities and expert-level clinical reasoning. This
work established a foundational benchmark for developing
and evaluating large language models capable of real-world
diagnostic reasoning and multi-source knowledge
integration [16]. Recent systems enhance the reliability of
medical QA by grounding answers in multi-source
evidence and orchestrating multiple LLMs for cross-
checking and generating consensus, which shape today's
expectations for faithfulness [17, 18]. Additionally,
retrieval-augmented generation and query reformulation
have been shown to reduce hallucination and improve
answerability on difficult clinical queries, especially when
questions are underspecified or ambiguous, yet these works
rarely test demographic robustness under controlled
counterfactuals [17, 19].

Recent investigations have begun to explore the
diagnostic, communicative, and ethical dimensions of large
language models (LLMs) across diverse clinical fields and
patient-facing scenarios [20 - 22]. These studies show that
while LLMs demonstrate strong reasoning and dialogue
capabilities, their reliability and fairness remain influenced
by data provenance, retrieval accuracy, and demographic
bias. Advances such as retrieval-augmented generation
(RAG) architectures have improved the contextual
grounding and trustworthiness of clinical responses [20],
yet systematic evaluations, such as those using the AMQA
benchmark, highlight persistent disparities in diagnostic
accuracy across race, sex, and socioeconomic groups [21].
Complementary surveys on bias and fairness in LLMs
further highlight the need for explainable, accountable, and
bias-aware frameworks to ensure equitable performance
across medical and communicative applications [22].

In the field of radiology, the format and quality of Al-
generated explanations have been shown to significantly
influence diagnostic accuracy and clinical decision-making
among physicians [23]. In a large-scale randomized
experiment involving 101 radiologists and 2,020 diagnostic
assessments, the study found that -chain-of-thought
explanations produced by GPT-4 improved diagnostic
accuracy by 12.2% compared with cases where no LLM
support was provided, and by up to 9.7% compared with
differential diagnosis formats. These findings highlight that
structured, step-by-step reasoning helps clinicians verify
Al outputs, reduce automation bias, and make more
accurate diagnostic judgments, highlighting the critical role
of explainability design in clinical LLM deployment [23].
The effectiveness of Al-generated medical explanations
remains closely tied to the clarity and quality of their
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underlying rationale, revealing both the promise and risks
of integrating LLMs into clinical practice. In pediatric
dentistry, large language models have demonstrated
varying trade-offs between precision and accessibility, with
ChatGPT-40 producing the most accurate and clinically
relevant responses and Claude 3.7 Sonnet generating the
most readable outputs [24]. Similarly, in otolaryngology,
ChatGPT-3.5 has been reported to achieve diagnostic
accuracies exceeding 95%, although wvariability in
reasoning consistency and contextual accuracy persists
[25]. These findings highlight the need for rigorous human
oversight and domain-specific evaluation before deploying
LLMs in real-world medical settings.

In patient-facing areas such as mental health Q&A, it is
crucial to be sensitive to demographic and contextual cues.
This sensitivity is essential to minimize harm and provide
fair support to diverse populations. Benchmarking in these
settings consistently highlights the need for explicit
fairness auditing, rather than just focusing on overall
accuracy [26]. Despite these advances, growing evidence
indicates that demographic bias remains a critical barrier to
the equitable use of medical LLMs. Studies have shown
that model outputs can vary systematically with patient
attributes such as race, gender, and socioeconomic status,
at times reproducing race-based misconceptions or unequal
treatment recommendations [27-29]. These findings
highlight the need for precise bias auditing and fairness-
aware model design to ensure trustworthy and inclusive
deployment in clinical practice. In healthcare, where
existing inequities already affect vulnerable populations,
algorithmic bias in Al systems poses serious and potentially
life-threatening risks [30, 31]. Recent studies have shown
that even advanced models such as GPT-4.1 show
performance gaps exceeding 10%, and in some cases up to
28%, between restricted and  underrepresented
demographic groups [11, 21]. These gaps emphasize the
urgent need for fairness-aware model development and
continuous bias auditing to ensure equitable and
trustworthy clinical deployment. Regardless of major
advances, the research community still lacks standardized
and automated methods for systematically evaluating bias
in medical LLMs [10, 20]. Current benchmarks, such as
MedQA and PubMedQA, focus on factual accuracy but
overlook demographic and counterfactual diversity,
limiting their ability to detect fairness violations [16, 32,
33]. Moreover, most bias studies have focused on
proprietary systems, such as GPT-4 and Med-PaLM [12,
14, 27], leaving open-source clinical models
underexplored. This gap highlights the urgent need for
transparent and reproducible bias evaluation frameworks.

In response to these critical gaps, our study introduces a
comprehensive, reproducible audit framework for
measuring demographic bias in open-source medical
LLMs. We focus particularly on Mistral, a 7B-parameter
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open-weight model deployed through Ollama, selected for
its reproducibility, accessibility, and computational
efficiency, attributes particularly valuable for academic
research [34]. Mistral serves as an essential open-source
alternative to proprietary models such as GPT-4 or Med-
PalLM, providing the necessary transparency for controlled
experimentation and community verification [35]. Our
main contributions to the field include:

1) First, we implement rule-based counterfactual
data augmentation that extends the MedQA
dataset with controlled modifications to gender,
race/ethnicity, and age descriptors using
deterministic, linguistically consistent
transformations. Manual validation confirmed
that > 95% of augmented items preserved
semantic fidelity and correct answer integrity,
ensuring evaluation reliability.

2) Second, we develop a robust bias-audit pipeline
that evaluates Mistral under both stochastic
(randomized prompts, temperature = 0.7) and
deterministic (fixed prompts, temperature = 0.0)
conditions using  standardized response
templates. Our comprehensive metrics include
accuracy, confusion matrices, macro
precision/recall/F1  scores, and effect-size
estimates (Cohen's h), complemented by 2, z,
and McNemar's tests with appropriate multiple
comparison corrections.

3) Third, we conduct a comprehensive
demographic analysis that reveals Mistral's
modest baseline diagnostic accuracy on MedQA
alongside remarkably low measured
demographic bias. Accuracy gaps across gender
and race/ethnicity dimensions prove minimal
and statistically non-significant, while age-based
counterfactuals produce slightly larger, though
still modest differences. These findings suggest
that open-weight LLMs such as Mistral can
show relatively stable fairness characteristics
when evaluated under rigorous, reproducible
audit frameworks.

This work shows a methodological foundation for bias
assessments in medical LLMs. Our framework
demonstrates the feasibility of conducting transparent,
comparative audits across open and proprietary systems
and aligns with the growing emphasis on ethical,
explainable, and equitable Al in healthcare [22, 36, 37].
Moreover, as open-source LLMs are increasingly evaluated
for and piloted within clinical documentation and decision-
support workflows, systematic bias auditing becomes not
only a technical requirement but an ethical prerequisite for
equitable care delivery [38 - 41].
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The remainder of this paper is structured as follows:
Section II outlines our comprehensive audit framework and
introduces the MedQA-Demog benchmark. We describe
five stages: dataset preparation, rule-based generation of
demographic counterfactuals, automated integrity checks
and label invariance tests, local model inference using
Ollama, and bias quantification through statistical tests.
Section III presents experimental results with aggregate
accuracy along with Wilson confidence intervals, group-
wise disparity tests, and macro metrics including precision,
recall, and F1 scores. This section also includes an analysis
of option preference shifts and a power analysis estimating
the minimum detectable effect sizes. Section IV interprets
the findings, situates them within the existing literature,
and discusses the implications for fairness auditing of open-
weight medical large language models (LLMs). Finally,
Section V summarises the key contributions of the study
and outlines potential extensions to multimodal tasks,
exploration of intersectional attributes, and approaches for
longitudinal fine-tuning.

Il. MATERIALS AND METHODS

Our study introduces a methodologically thorough and
fully reproducible workflow designed to systematically
quantify demographic bias within the high-risk domain of
clinical reasoning LLMs. At the core of this framework lies
MedQA-Demog, an augmented version of the MedQA-
USMLE dataset. This augmented dataset introduces
controlled variations of three key demographic variables,
namely, gender, race/ethnicity, and age, while preserving
the original diagnostic ground truth. Such controlled
variation enables precise isolation of each demographic
factor’s potential influence on model behaviour. To ensure
data integrity, we conducted an automated, multi-stage
validation confirming MedQA-Demog’s structural fidelity,
internal balance, and semantic consistency. In the
evaluation phase, the Mistral 7B-Instruct model was
deployed locally via Ollama, ensuring standardized
prompting and deterministic inference for maximum
reproducibility. Finally, a comprehensive statistical
analysis extended beyond overall accuracy, providing fine-
grained quantification of group-wise disparities and effect
sizes. Collectively, this methodological process shows a
robust foundation for measuring, understanding, and
mitigating fairness deficits in Al-driven medical reasoning
systems.

The overall methodological workflow is illustrated in
Figure 1 and summarized below, outlining each stage from
dataset preparation and demographic augmentation to
validation, model inference, and statistical bias
quantification.

A. OVERVIEW OF EXPERIMENTAL DESIGN
The experimental design establishes a systematic and
human-centred workflow to thoroughly quantify and
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FIGURE 1. Overview of the Medical LLM Demographic Bias Audit Workflow

identify demographic bias within large language models
(LLMs) used for clinical question answering (see Figure 1).

The entire structure is developed for reproducibility,
interpretability, and controlled variation, ensuring that any
observed shifts in model performance can be reliably
attributed to the manipulated demographic factors, rather
than the essential noise of the model or data. This integrated
workflow comprises five interdependent and sequential
stages as described below:

1) STAGE 1: DATASET PREPARATION

The main objective of this stage is to provide a clinically
grounded and reliable dataset for later fairness analysis.
The process begins with the MedQA-USMLE development
split [16], a robust benchmark derived from genuine
medical licensing exams. This dataset, which focuses on
diagnostic reasoning through multiple-choice questions,
provides a solid and clinically relevant foundation for
evaluating an LLM’s consistency as patient characteristics
vary. We filter the dataset to preserve only cases that
describe identifiable patients (e.g., "a 45-year-old man").
This curation step is crucial, as it ensures that every
retained question allows for subsequent demographic
manipulation while maintaining clinical relevance, thus
establishing a reliable foundational dataset for systematic
fairness evaluation.

2) STAGE 2: COUNTERFACTUAL GENERATION

The objective of this stage is to construct the MedQA-
Demog dataset, a new custom variant tailored for bias
auditing through controlled, deterministic counterfactual
generation. This stage systematically expands the original
dataset. Each original question referencing a patient is
transformed into a set of three controlled counterfactuals
that systematically vary the patient’s gender, race/ethnicity,
or age, all while ensuring label invariance (the diagnostic
truth remains unchanged). For the purposes of fairness
auditing, demographic descriptors introduced during
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augmentation (gender, race/ethnicity, and age) are treated
as non-diagnostic control variables rather than predictive
clinical features. Throughout augmentation, only
demographic identity cues are modified, while all
diagnostic evidence, such as symptoms, clinical history,
physical findings, and investigation results, remains
unchanged, ensuring that the clinical reasoning signal

presented to the model is held constant across
counterfactual variants.
The transformations rely on auditable, rule-based

substitution functions to guarantee semantic fidelity, as
illustrated in Figure 2, which summarises the three

demographic transformation pathways, gender,
race/ethnicity, and age, applied during augmentation. For
example:

a) Gender: Apply straightforward pronoun and noun
swaps (e.g., male < female, he < she).
Race/Ethnicity: Utilises insertion of specific
ethnicity descriptors (e.g., “45-year-old African
American man”) using balanced substitution rules.
Age: Perform adjustment of numerical age values
within clinically consistent and plausible ranges
(e.g., transforming a childhood presentation to one
typical of a young adult).

The resulting MedQA-Demog dataset is perfectly
reproducible and fully auditable, serving as the essential
input for the subsequent evaluation stages.

b)

c)

3) STAGE 3: AUTOMATED VALIDATION & INTEGRITY
CHECKING

The focus of this stage is to confirm the structural
validity, semantic consistency, and necessary demographic
balance of the newly created MedQA-Demog dataset. A
critical, automated quality control process is applied post-
augmentation to ensure data integrity before model
evaluation. This includes:
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FIGURE 2. lllustration of the demographic transformation process used in Stage 2.

a) JSONL Integrity Verification: Validating file
structure and encoding for all entries.

b) Counterfactual Completeness Checks: Ensuring
that each augmented case includes exactly three
counterfactuals, one for each dimension.

¢) Label Invariance Confirmation: We confirm a
100% correct-label retention, verifying that no
augmentation step will change the diagnostic
ground truth.

d) Demographic Distribution Balance: Verification
is performed to ensure balanced representation
across the gender, race/ethnicity, and age
dimensions, which is fundamental for analytically
fair comparisons.

These automated checks guarantee that MedQA-Demog
is both reliable and analytically prepared for fairness
assessment.

4) STAGE 4: MODEL INFERENCE & RESPONSE
PARSING

The main objective of this stage is to evaluate the LLM's
behavioural consistency under both stochastic and
deterministic inference rules. Evaluation is performed
using the Mistral 7B-Instruct model [42]. Model access is
managed locally through the Ollama API, ensuring data
privacy, environment consistency, and full reproducibility
[43]. We employ two complementary inference setups:

a) Stochastic Setup: Utilising a temperature of 0.7
and randomizing prompt/option ordering to
simulate the natural response variability expected
in a real-world setting.

b) Deterministic Setup: Utilising a temperature of 0.0
with a fixed prompt and option order to tightly
control for randomness, which is essential for
statistical comparability of paired tests.
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Additionally, we implement a Regex-Based Answer Label
Extraction mechanism to standardize output processing.
This isolates the predicted option (A—D) and generates
clean, comparable response data for each demographic
variant.

5) STAGE 5: BIAS QUANTIFICATION & STATISTICAL
TESTING

The focus of this stage is to statistically measure, compare,
and rigorously validate observed performance disparities
across demographic groups. This final stage includes a
robust mix of descriptive and inferential statistics:

a) Group-Wise Performance Metrics: Calculation of
accuracy, precision, recall, and F1l-score for each
demographic subgroup, complemented by Wilson
95% Confidence Intervals to estimate uncertainty.

b) Disparity Testing: The significance of
performance differences between groups is
assessed using y2,z tests, and McNemar’s paired
significance test (used specifically for the
deterministic setting).

c) Effect Size Reporting: The magnitude of bias in
the analysis is quantified by employing Cohen’s h,
a statistical measure that provides insight into the
differences between groups. This metric enables
researchers to understand the practical
significance of their findings by indicating the
effect size between two group accuracies being
compared [44]. This can be represented
mathematically using Equation (1) below:

h= Zarcsin(\/ﬁ) - 2arcsin(m) (1)

Here, p, and p , represent the group accuracies
being compared.
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As an additional robustness check, we stratified
the evaluation by baseline question difficulty,
approximated using the model’s correctness on the
original MedQA items. The evaluation set was
partitioned into baseline-correct and baseline-
incorrect subsets under the original (unmodified)
condition. Within each subset, demographic
disparity metrics were computed independently
using the same statistical framework as the main
analysis.

d) Multiple Comparison Correction: To control the
family-wise error rate stemming from numerous
comparisons, both Bonferroni and Benjamini-
Hochberg False Discovery Rate (FDR)
adjustments are applied [45].

These analyses provide a statistically rigorous, transparent,
and reproducible framework for auditing the demographic
fairness of clinical LLMs.

B. DATASET AND DEMOGRAPHIC AUGMENTATION

1) SOURCE DATASET

The basis of this investigation is the MedQA-USMLE
dataset, a large-scale open-domain benchmark for medical
question answering [16]. This dataset is systematically
collected from official United States Medical Licensing
Examination (USMLE) materials, supporting the study in a
high-stakes, clinically authentic environment. The
development split contains 1,272 four-option multiple-
choice questions, each designed not merely to test factual
recall but to simulate realistic diagnostic and therapeutic
reasoning challenges. Each question follows a standardized
structure: a concise clinical vignette describing a patient’s
condition, symptoms, history, and investigations, followed
by four candidate options representing reasonable
diagnoses, treatments, or pathophysiological mechanisms.
One option is annotated as the ground-truth answer,
enabling objective evaluation. The dataset spans multiple
disciplines, including internal medicine, surgery,
paediatrics, obstetrics and gynaecology, and psychiatry,
and thus reflects the cognitive breadth of medical practice.
These questions are intentionally crafted to assess a
physician’s ability to synthesize professional knowledge,
interpret clinical cues, and apply higher-order reasoning.
The English subset of MedQA-USMLE was selected for
three reasons directly aligned with this study’s fairness
auditing objectives. First, it offers clinical and professional
authenticity, as it originates from board-level medical
examinations that mirror the complexity and cognitive load
encountered in real clinical decision-making. Second, it
embodies deep diagnostic reasoning, with questions that
require multi-hop inferencing, compelling models to
integrate heterogeneous evidence such as symptoms, test
results, and pathophysiological knowledge rather than
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relying on superficial pattern recognition. Third, it provides
a structured evaluative framework, where the fixed
multiple-choice format establishes a standardized and
quantitative basis for assessing large language model
(LLM) performance and detecting potential demographic
bias. This dataset, therefore, provides a clinically reliable
and interpretable baseline for auditing the fairness and
consistency of LLMs as they confront variations in patient
demographic attributes within realistic clinical scenarios.

2) COUNTERFACTUAL GENERATION

To enable systematic demographic equality analysis, we
developed MedQA-Demog, a rule-based and label-
invariant extension of the MedQA-USMLE dataset. In this
framework, each original clinical question gq; generates a
set of three demographically counterfactuals:

{qigender’ qirace’ qiage} (2)

As illustrated in Figure 2. These transformations simulate
controlled demographic variations while preserving the
underlying diagnostic semantics and ground-truth answer
index. Counterfactual generation is performed through
three deterministic substitution mechanisms:

a) Gender Swaps: Verbal substitution of gendered
terms and pronouns (e.g., “a 45-year-old man” —
“a 45-year-old woman”; “his” — “her”).

b) Race/Ethnicity  Descriptors:  Insertion  or
replacement of ethnicity markers randomly
selected from the set {African American,
Hispanic, Asian, Caucasian} to ensure balanced
representation across demographic categories.

c¢) Age Adjustment: This refers to the numerical
modification of the patient’s age using a rule-
based progression function that maintains clinical
probability and life-stage consistency. To ensure
realistic =~ demographic  representation  and
proportionality across different age groups, the
adjustment is governed by the following function:

a + 20, a <18

new_age = a+25 18<a<40 3)
- a+15 40<a <65
a — 15, a =65

Here, a represents the original age of the patient.
This formulation allows for controlled age shifts
while maintaining clinical plausibility. It reflects
natural demographic transitions, such as from
adolescence to adulthood or from midlife to
elderly stages, ensuring that the resulting
variations remain consistent with expected
physiological and clinical characteristics.

Each transformation produces semantically coherent,
contextually valid counterfactuals without introducing
verbal noise or diagnostic implications. This deterministic,
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rule-based design ensures perfect label invariance, that is,
the correct answer remains unchanged across all
demographic variants, allowing reliable comparison of
LLM outputs across gender, race/ethnicity, and age
dimensions. The resulting MedQA-Demog dataset
accordingly provides a clinically interpretable and fully
reproducible testbed for quantifying demographic bias in
medical large language models. The rule-based
transformations described above were implemented in a
fully automated augmentation framework (see Algorithm
1), designed for transparency, reproducibility, and
computational efficiency. Each question in the MedQA
development split was processed through a deterministic
control loop that (i) parsed the source text, (ii) detected
demographic attributes, (iii) generated corresponding
counterfactuals, and (iv) validated structural integrity
before appending the result to the final JSONL file.

3) VALIDATION AND QUALITY ASSURANCE

Following the automated augmentation process, a
comprehensive Validation and Quality Assurance (QA)
phase was conducted to ensure that the MedQA-Demog
dataset met all necessary criteria for use as a benchmark in
fairness auditing. This stage verified the dataset’s structural
integrity, demographic balance, and semantic fidelity,
confirming that the augmentation framework performed as
intended. Validation was performed through an automated
multi-stage verification process that systematically
examined three core aspects of dataset reliability:

a) Structural integrity, by ensuring that every entry
adhered to valid JSONL formatting and contained
the essential fields (original, counterfactuals,
answer_idx);

b) Label consistency, by confirming that the correct
answer index was preserved across all
counterfactual variants; and

c¢) Demographic distribution, by verifying the
presence of a balanced representation across
gender, race/ethnicity, and age dimensions.

Additionally, automated semantic checks and random
sampling were used to ensure that the clinical meaning of
each question remained unchanged after augmentation. The
full verification results are summarized in Table 1. As
shown, all integrity checks were successfully passed with
no structural errors, and the dataset achieved perfect label
invariance; the correct answer index was preserved across
every counterfactual. Each augmented question produced
exactly three counterfactuals (gender, race/ethnicity, age),
resulting in 3,387 variants drawn from 1,129 augmented
entries.

VOLUME XX, 2017

The distribution across demographic categories was exactly
balanced (33.3 % each), and no semantic drift or distortion
of medical meaning was observed during the
transformation process.

TABLEI
VALIDATION SUMMARY FOR THE MEDQA-DEMOG DATASET

Validation Criterion RESULT/OBSERVATION

File Integrity No structural errors detected
Total entries processed 1,272

Augmented entries 1,129

Skipped entries 143

Counterfactuals generated 3,387

Gender = 33.3%;
Race/Ethnicity = 33.3%.
Age=333%

100% retention

Demographic balance

Label invariance

These results collectively prove MedQA-Demog as a
structurally sound, semantically coherent, and fully
reproducible dataset that provides a reliable foundation for
the evaluation of demographic bias in large language
models.

C. MODEL AND INFERENCE SETUP

1) MODEL SELECTION AND CONFIGURATION

This stage builds directly on the methodological foundation
introduced in Stage 4: Model Inference and Response
Parsing. The goal here is to evaluate the consistency of
large language model (LLM) behaviour under both
stochastic and deterministic inference systems. All bias
auditing experiments were conducted using the Mistral 7B-
Instruct model, which is a state-of-the-art open-weight
transformer  architecture optimized for instruction
following and context-aware clinical reasoning. Its open-
weight nature allows for transparent inspection of inference
behaviour, making it well-suited for reproducible academic
auditing.

To create a controlled, auditable, and privacy-preserving
environment, the model was deployed locally using the
Ollama inference server (version 0.3 or later). This
lightweight system offers a RESTful API that supports
parameterized inference, maintains consistent
environments, and ensures full reproducibility [43]. The
local Ollama setup served as the unified evaluation
backbone for both inference modes:

a) Stochastic Setup: Utilising a temperature of 0.7
and randomizing prompt/option ordering to
emulate the natural response variability expected
in real-world usage.
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Algorithm 1. Rule-Based Generation of Demographic Counterfactuals for MedQA -Demog

1. Initialisation: Initialise logging and record the start time of the process.
2. Load Data: Load all entries from the MedQA-USMLE development JSONL file.

3. Question Screening: For each question Q, check for the presence of the "year-old" pattern. If the pattern is
absent, the question is logged as non-augmentable, and the process skips to the next question.

4. Attribute Extraction: Extract demographic attributes from Q: age via the regular expression (d+)-year-old, and
gender via word search for male/female pronouns (e.g., he/she).

5. Counterfactual Generation: Generate three deterministic demographic variations (counterfactuals) of Q based on the
extracted attributes:
a. Gender Substitution: Apply a reciprocal gender swap (e.g., "male < female,” "he <> she").

b. Race/Ethnicity Modification: Insert or replace a race/ethnicity descriptor, cycling through the set R =
African American, Hispanic, Asian, Caucasian.

c. Age Adjustment: Modify the numeric age a according to the following rules:
a<I8— a+20,18<a <40— a+25,40< a <65— a+15, a >65— a—15

6. Answer Consistency: Modify the answer text as required to maintain pronoun consistency with the transformed gender
in the counterfactual question.

7. Record Construction: Construct an output record comprising the original question Q and its three generated
counterfactuals, labelled by their corresponding demographic change type.

8. Data Output: Append the record to the output JSONL file, flushing buffers and updating the progress log every 50
questions.

9. Final Logging: Compute and log summary statistics: total processed, skipped, total counterfactuals generated, and
mean processing time per question.

10. Output Dataset: Output the final MedQA-Demog dataset (Original questions + Counterfactuals).

phrasing or formatting, we implemented a structured
prompt-engineering and randomization framework. This
mechanism dynamically generates prompt variants and
randomizes the order of answer choices for each query,
thereby mitigating linguistic and positional bias while
preserving semantic content. The design emulates the

b) Deterministic Setup: Employing a temperature of
0.0 with fixed prompts and answer order to
eliminate stochastic noise and enable statistically
valid paired comparisons.

This local deployment approach was selected over
commercial cloud APIs for three principal reasons: (1)
First, it provides deterministic control, ensuring that
identical inputs yield perfectly reproducible outputs under
fixed hyperparameters, (2) Second, it maintains data
confidentiality, since all clinical vignettes are processed
within the local environment in compliance with
institutional data-governance and privacy standards; and
(3) Third, it offers cost-efficient scalability, allowing
thousands of bias-audit iterations without rate-limit or
billing constraints. This configuration establishes a
transparent, reproducible, and fully auditable environment
for bias evaluation in medical LLMs. It ensures that any
disparities identified in subsequent analyses can be
confidently attributed to model-internal demographic bias,
rather than uncontrolled external factors or environmental
variability.

2) PROMPTING STRATEGY AND INPUT VARIATION
To ensure that model performance reflects genuine

diagnostic reasoning rather than sensitivity to prompt
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variability of human-to-human communication in real
clinical consultations and medical examinations. Each
query integrates a short clinical piece with four multiple-
choice options (A-D). Two distinct prompt formats are
alternated to vary the model’s interpretive context.

1) Template 1: Clinical Reasoning Form: This
template frames the model as a medical expert,
encouraging  deliberative reasoning before
producing an answer:
<s>[INST] As a medical expert, analyse this case
and select the correct answer:

Clinical scenario:
{question}
Options:

A) ..

B)

o ..

D) ...

After careful consideration, the correct answer is:

[/INST] </s>
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2) Template 2: Diagnostic Emphasis Form: This
version adopts a concise diagnostic framing that
tests the model’s capacity for direct inference:

<s>[INST] Medical diagnosis question, choose
the single best answer:

{question}

Choices:

Option A: ...

Option B: ...

Option C: ...

Option D: ...

Diagnosis: [/INST] </s>

Both templates follow the <s>[INST]...[/INST] </s>

instruction format used by instruction-tuned models such as
Mistral 7B-Instruct. These delimiters define the start and
end boundaries of the user’s instruction, ensuring that the
model interprets the input as a structured diagnostic
question rather than as a free-text continuation.
Specifically, <s> and </s> denote the start and end of the
model input sequence, respectively. [INST] introduces the
instruction context (user input), while [/INST] signals the
point at which the model should begin generating its
response. This formatting ensures compatibility with
instruction-tuned architectures, improving the model’s
consistency and ensuring that outputs remain focused on
the intended diagnostic choice (A-D).
In addition to alternating between templates, the framework
randomly shuffles the order of answer options for each
query to reduce positional or word priming effects. This
ensures that any performance disparity arises only from the
demographic variable manipulated in the scene rather than
from input structure or presentation order. Two
complementary inference rules were employed: (1) a
stochastic mode (temperature = 0.7) that introduced
controlled randomness to match natural diagnostic
variability, and (2) a deterministic mode (temperature =
0.0) that fixed all random seeds and option orders, ensuring
perfect reproducibility for baseline and paired statistical
testing. Model outputs were then post-processed using a
regular-expression-based filter to extract the first valid
answer token (A—D), while non-compliant or ambiguous
responses were systematically logged as UNKNOWN or
ERROR. This fully auditable prompting and inference
workflow provides a robust foundation for isolating
genuine demographic bias in model reasoning from
artefacts introduced by prompt design or response
formatting.

3) EVALUATION MODES AND STATISTICAL
FRAMEWORK

As introduced above, the inference process was designed to
operate under two complementary rules, stochastic and

VOLUME XX, 2017

deterministic, to balance realism with reproducibility. This
section expands on those settings, outlining their analytical
purpose, statistical foundations, and role in quantifying
fairness and behavioural stability. Both inference
configurations were executed within the Ollama local
inference environment, ensuring identical hardware
conditions, consistent parameterization, and full
experimental traceability across all model runs.

a) Stochastic Mode (Emulating Natural Diagnostic
Variability): As  described earlier, this
configuration approximates the variability
inherent in human diagnostic reasoning. Here, the
temperature parameter was set to 0.7, introducing
controlled stochasticity into the token-sampling
process and allowing the model to exhibit nuanced
differences in reasoning paths across repeated
evaluations. The order of answer options and
prompt templates was also randomized per query,
preventing deterministic repetition and more
accurately capturing the model’s behavioural
sensitivity to linguistic and demographic
perturbations. Statistical analyses derived from
this process provide insight into how model
decisions vary under naturalistic uncertainty,
approximating real-world clinical interpretation
dynamics.

b) Deterministic Mode (Ensuring Reproducibility
and Controlled Comparison): The deterministic
setup applies complete control over random
elements to isolate genuine bias effects from
stochastic variation. A temperature of 0.0 was
applied, with fixed prompt templates and static
option ordering, ensuring that each query produces
an identical output sequence upon repetition. This
reproducible  environment enables formal,
pairwise statistical testing, most notably through

McNemar’s test, which evaluates whether
prediction  changes across  counterfactual
demographic variants represent statistically

significant shifts rather than random fluctuations.

Predicted outputs were parsed using a regular-expression-
based extractor to isolate the model’s selected answer (A—
D). Responses that were missing or ambiguous were
systematically recorded as UNKNOWN or ERROR to
maintain analytical transparency. For each demographic
group (original, gender, race/ethnicity, age), the following
metrics were computed:

a) Main metrics: Accuracy, Precision, Recall, and Fi-
score (macro-averaged) [46].

b) Interval estimation: Wilson 95 9% confidence
intervals (CIs) for accuracy [47].

¢) Disparity quantification:
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A = metric[group] - metricforiginal] 4

Here, A represents the difference between the
group's metric and the original metric, indicating
the performance deviations at the group level.

Additionally, group-wise differences were tested using
robust inferential statistics:
z-tests  for

d) Distributional testing: y* and

proportions assessed significant performance
deviations [48, 49].
e) Paired testing: McNemar’s test compared

prediction  flips  between  original and
counterfactual pairs in deterministic runs.

f) Effectsize: Cohen’s h [44] quantified the practical
magnitude of observed disparities.

g) Multiple comparison control: Bonferroni and
Benjamini—-Hochberg (FDR) corrections ensured
appropriate control of the family-wise error rate
[45].

To facilitate transparent interpretation of the statistical
results and enable consistent comparison across
demographic categories, we established a bias-level
classification framework that maps the magnitude of
observed disparities to qualitative interpretive tiers. The
classification relies on the maximum absolute performance
disparity (Amax) observed between each demographic
variant and its original counterpart. This approach
translates quantitative deviation values into interpretable
fairness categories, ranging from Minimal to High Bias,
that align with accepted conventions in fairness auditing
literature [47]. The complete categorization scheme is
summarized in Table II.

TABLE II
BIAS LEVEL CLASSIFICATION BASED ON MAXIMUM ABSOLUTE DISPARITY
(Amax)-
. MAXIMUM ABSOLUTE DISPARITY
Bias Level
(Amax)
Minimal Bias Appar< 0.02
Low Bias 0.02 < A4,< 0.05
Moderate Bias 0.05 < A0< 0.10
High Bias Apgx=0.10

The threshold values for categorizing bias magnitude were
selected based on both statistical convention and practical
interpretability within clinical evaluation frameworks.
Specifically, the cut-offs (0.02, 0.05, and 0.10) correspond
to well-established effect size interpretations proposed by
Cohen (1988), where h = 0.2,0.5,and 0.8 represent
small, medium, and large effects, respectively [44]. When
translated to absolute differences in proportions, these
approximate 4 thresholds of 0.02,0.05,and 0.10 capture
progressively meaningful disparities in diagnostic
decision-making accuracy between demographic groups.
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From a practical perspective, a disparity below 0.02 is
considered negligible and falls within the expected range of
random variation across repeated evaluations. Differences
between 0.02 and 0.05 indicate low but measurable bias,
potentially noticeable in large-scale clinical applications
but unlikely to affect individual-level outcomes. Disparities
between 0.05 and 0.10 reflect moderate concern, where
systematic bias may influence aggregate performance or
decision patterns. Values exceeding 0.10 denote high bias,
representing potentially consequential fairness violations
that warrant model retraining, data augmentation, or
calibration interventions.

This categorization provides a quantitatively interpretable
and clinically aligned framework for fairness assessment,
allowing statistical disparities to be translated into real-
world diagnostic implications. It also aligns with thresholds
adopted in prior algorithmic fairness audits in medical Al,
ensuring comparability with existing literature [50 - 52].

lll. RESULTS

This section presents the outcomes of the MedQA -Demog
bias audit, providing a detailed empirical evaluation of the
Mistral 7B-Instruct model’s diagnostic reasoning stability
across systematically varied demographic conditions.
Using the MedQA-Demog benchmark, model performance
was assessed under both stochastic (temperature = 0.7) and
deterministic (temperature = 0.0) inference modes within
the Ollama local environment, ensuring reproducibility,
data confidentiality, and consistent hardware conditions.
The analysis quantifies how demographic attributes,
gender, race/ethnicity, and age influence diagnostic
accuracy, confidence, and decision stability. Statistical and
visual evaluations were conducted to separate genuine
demographic bias from random variability, employing
accuracy, precision, recall, Fi-score, and Wilson 95%
confidence intervals as primary metrics. Inferential testing
was performed using ¥? and z-tests for distributional
differences, McNemar’s test for paired significance, and
Cohen’s h for standardized effect-size estimation, with
multiple comparison control via Bonferroni and
Benjamini—-Hochberg (FDR) corrections.

The results are organized to provide a consistent and
progressive analysis of the model’s performance. Section 1
presents the collective diagnostic accuracy and confidence
intervals across all demographic groups, establishing a
global performance baseline. Section 2 explores group-
specific disparities and their statistical significance,
highlighting where demographic variation influences
model outcomes. Section 3 extends this evaluation through
detailed precision—recall and Fi-score analyses to capture
class-level performance dynamics. Moreover, visualizes
the internal structure of model errors via confusion matrices
and disparity heatmaps, offering an interpretable view of
error distribution patterns. Section 4 examines whether
demographic perturbations induced any systematic

11
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preference for particular answer options. Finally, Section 5
assesses the statistical sensitivity of fairness evaluation.

1) AGGREGATE ACCURACY AND CONFIDENCE
INTERVALS

The aggregate results of the MedQA-Demog bias audit
demonstrate that the Mistral 7B-Instruct model maintained
a broadly stable diagnostic reasoning capability across both
the original and counterfactual datasets. Across 4,659 total
evaluated items (comprising 1,272 original MedQA-
USMLE questions and 3,387 systematically generated
counterfactuals), the model’s accuracy values exhibited
only marginal variation, suggesting a robust internal
reasoning process largely invariant to changes in patient
demographics.
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FIGURE 3. Diagnostic Accuracy by Demographic Group (with
Wilson 95 % Confidence Intervals).

TABLE III
GROUP-WISE DIAGNOSTIC ACCURACY AND WILSON 95 % CONFIDENCE INTERVALS
Group Accuracy Correct Total Error Rate CI low CI high
Original 0.427 543 1272 0.573 0.400 0.454
Gender 0.402 454 1129 0.598 0.374 0.431
Race/Ethnicity 0.406 458 1129 0.594 0.377 0.435
Age 0.387 437 1129 0.613 0.359 0.416

As shown in Table III, the model achieved an accuracy of
0.427 (95 % CI [0.400, 0.454]) on the original questions,
correctly answering 543 of 1,272 items. When exposed to
systematically altered versions of these same questions, the
model exhibited only slight reductions in accuracy: 0.402
(95 % CI [0.374, 0.431]) for gender-modified items, 0.406
(95 % CI [0.377, 0.435]) for race/ethnicity variations, and
0.387 (95 % CI [0.359, 0.416]) for age adjustments.
Although error rates ranged modestly from 0.573 to 0.613
across groups, the substantial overlap of Wilson's 95 %
confidence intervals indicates that these performance
differences are not statistically significant.

The observed fluctuations (A = —0.021 to -0.040 relative to
baseline), therefore, most likely reflect inherent stochastic
variability rather than systematic demographic bias. These
results confirm that the Mistral 7B-Instruct model
maintains a relatively stable diagnostic decision process
when exposed to linguistic and contextual variations in
patient demographics. The findings provide a robust
baseline of demographic stability, supporting the
subsequent group-specific disparity and significance
analyses presented in Sections 2 and 3.

As illustrated in Figure 3, accuracy remained relatively
stable across all demographic groups, with differences
remaining within the expected range of stochastic variation.
The model maintained its overall diagnostic integrity,
exhibiting only marginal shifts in accuracy under
counterfactual ~demographic modifications, thereby
supporting the robustness of its reasoning consistency
across patient-context variations.
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To assess whether the observed demographic stability is
influenced by question difficulty, we conducted an
additional robustness check by stratifying the evaluation
according to baseline question difficulty, approximated
using the model’s correctness on the original MedQA
items. This analysis is performed on the subset of questions
with valid demographic counterfactuals and valid model
predictions, and the resulting stratified accuracy
differences are summarized in Table I'V.

TABLE IV
STRATIFIED DEMOGRAPHIC ROBUSTNESS BY BASELINE
QUESTION DIFFICULTY (MISTRAL 7B-INSTRUCT).

Baseline Condition n Accuracy A Accuracy
Stratum
Original 330 1.000 +0.000
Baseline- Gender 296 0.993 —0.007
correct Race/Ethnicity 296 0.993 —0.007
Age 296 0.997 —0.003
Original 942 0.000 +0.000
Baseline- Gender 833 0.000 +0.000
incorrect Race/Ethnicity 833 0.000 +0.000
Age 833 0.000 +0.000
Across  baseline-correct  questions,  demographic

counterfactual perturbations produce only marginal and
consistent accuracy differences (with a maximum absolute
deviation of < 0.7 % points), while baseline-incorrect
questions show no demographic-dependent recovery or
degradation.
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TABLEV
COMPARATIVE PERFORMANCE OF BASELINE AND INSTRUCTION-TUNED LANGUAGE MODELS ON THE MEDOA (USMLE) BENCHMARK.

Training Domain /

Reference Model / Study Model Type Scale Evaluation Setup ~ Accuracy (%) Notes
IR-Custom Information Unsupervised 36.1 Best non-neural baseline
Baseline Retrieval retrieval ’ before deep models.
BERT-Base Transformer General domain 243 Early contextual embedding
(English) (110 M) MedQA : model.
; : (USMLE) Domain pretraining offers
[16] BioBERT-Ba Transformer Biomedical text 341 - p g
© 5 (110 M) (PubMed) ' minor gain.
Transformer General domain + Strongest early transformer
RoBERTa-Large (355 M) finetuning 35.0 baseline.
. Transformer Biomedical Top performing pre-BERT
BioBERT-Large (355 M) domain 36.7 variant on USMLE.
PubMedGPT . . . First biomedical-domain
(2.7B) Autoregressive LLM Biomedical text only 50.3 LLM: solid factual recall.
_ ; State-of-the-art instruction-
[53] F 1?5“45 ‘;SL)M Instruction-tuned LLM Genegalt+ “t‘ed‘“‘l 676 tuned reasoning.
arasets MultiMedQA o
i : . (MedQA subset) Clinician-comparable
Med-PaLM Domain-aligned LLM Flan PaLM + medical 67.6—70.0 reasoning; low bias incidence
(540 B) alignment = 0.8 %)
~ U. 0).
. ) . . MedQA-Demog Locally deployed; transparent,
This study Mllrsltsrt?LZtB Open-weight LLM (7 B) Generaiégzg'ucnon (USMLE dev + 42.7 reproducible fairness audit;

counterfactuals) stable across demographics.

To further validate the diagnostic performance of the
proposed model and assess its relative strengths, a
comparative analysis was conducted against existing
medical question answering (MQA) systems. This
comparison provides an empirical benchmark, highlighting
how our approach aligns with, and diverges from, prior
developments in medical-domain language modelling.
Table V presents a comparative overview of the diagnostic
accuracy achieved by the Mistral 7B-Instruct model in
relation to a range of established baselines and large-scale
instruction-tuned models previously evaluated on the
MedQA (USMLE) benchmark [16, 53].

The comparison traces the route of medical question
answering (MQA) systems, incorporating models from
early retrieval-based and transformer encoder architectures,
specifically IR-Custom, BERT, BioBERT, and RoBERTa,
up to instruction-tuned and domain-aligned large language
models (LLMs) such as PubMedGPT, Flan-PaLM, and
Med-PaLM. Collectively, this broad spectrum of systems,
which charts the evolution of MQA from initial pre-trained
contextual encoders to today's billion-parameter,
instruction-following architectures, offers a central
empirical context against which the performance and
results of our own model can be accurately and
meaningfully interpreted.

As shown in Table V, the Mistral 7B-Instruct model
achieves a diagnostic accuracy of 42.7%, outperforming all
early transformer baselines including BERT-Base (34.3%),
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BioBERT-Base (34.1%), and RoBERTa-Large (35.0%), as
well as the strongest pre-BERT variant, BioBERT-Large
(36.7%). These results highlight that even without
biomedical pretraining, a mid-scale, instruction-tuned
model can offer stronger reasoning and factual
comprehension than traditional transformer encoders
trained on domain-specific quantities. When compared
with more recent large-scale instruction-tuned models,
such as PubMedGPT (50.3%), Flan-PaLM (67.6%), and
Med-PaLM (up to 70.0%), the Mistral 7B-Instruct model
understandably yields lower absolute accuracy. However,
this performance gap primarily reflects the substantial
differences in model scale, training data volume, and
domain alignment rather than architectural limitations.

In contrast to these billion-parameter systems, the
Mistral 7B-Instruct model operates within a lightweight,
open-weight configuration, prioritising transparency,
reproducibility, and fairness auditability criteria rarely
satisfied by proprietary LLMs. Moreover, its stable
demographic performance across the MedQA-Demog
dataset underscores the model’s potential as a controlled
and ethically deployable foundation for future bias
quantification research. These findings collectively
demonstrate that while larger, domain-specific LLMs
remain superior in raw diagnostic reasoning, open-weight
instruction-tuned models like Mistral 7B-Instruct strike a
meaningful balance between accuracy, interpretability, and
fairness accountability, key priorities for responsible Al
deployment in medical contexts.
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TABLE VI
STATISTICAL COMPARISON OF DIAGNOSTIC ACCURACY ACROSS DEMOGRAPHIC GROUPS IN THE MEDOA-DEMOG DATASET.
Comparison A Accuracy p (z-test) Bonf. p BHq Cohen’s h Bootstrap 95 % CI Bias Level
Gender vs Original -0.025 0.219 0.657 0.293 -0.050 [- 0.065, +0.015] Low Bias
Race(/frtig?:l;ilty vs -0.021 0.293 0.878 0.293 -0.043 [- 0.060, +0.018] Minimal Bias
Age vs Original - 0.040 0.048 0.143 0.143 - 0.081 [- 0.080, - 0.000] Low Bias

2) GROUP-SPECIFIC DISPARITIES AND SIGNIFICANCE
TESTING

This section examines whether the demographic
modifications introduced in MedQA-Demog, covering
gender, race/ethnicity, and age, led to any statistically
significant changes in diagnostic accuracy compared with
the original USMLE questions. Each demographic subset
included over 1,100 questions, providing sufficient
statistical power (detectable difference = 0.057 at 80 %
power, a = 0.05) to identify even small fairness-related
effects. Across 4,659 evaluated items (1,272 original +
3,387 counterfactuals), the Mistral 7B-Instruct model
demonstrated stable diagnostic reasoning under all
demographic modifications. Table VI summarizes
accuracy, Wilson 95 % Cls, and absolute differences versus
baseline.

As shown in Table VI, the comparative statistical analysis
across demographic groups confirms that the Mistral 7B-
Instruct model maintains consistent diagnostic reasoning
performance under all demographic perturbations.
Accuracy differences between each demographic subset
and the original MedQA items are minimal, with none
exceeding a four-percentage-point deviation. The age-
modified subset showed the largest observed reduction in
accuracy (A = - 0.040), yet this difference remains within
the Low Bias range (Amax < 0.05; see Table II). While the
unadjusted z-test indicated a marginally significant result
(p = 0.048), this effect became non-significant after
applying Bonferroni (p = 0.143) and Benjamini-Hochberg
(BH) corrections (q = 0.143), suggesting that the deviation
was likely due to random variation rather than systematic
demographic bias.

Similarly, the gender (A = - 0.025) and race/ethnicity (A =
- 0.021) comparisons produced p-values well above
conventional significance thresholds (p = 0.219 and p =
0.293, respectively), both classified as Low Bias and
Minimal Bias. Their effect sizes were correspondingly
small (Cohen’s h = - 0.050 and - 0.043), and the bootstrap
confidence intervals included zero, further confirming the
absence of meaningful performance disparity.

Overall, across all comparisons, statistical corrections
and confidence intervals consistently indicate no evidence
of systematic demographic bias. The Mistral 7B-Instruct
model’s diagnostic accuracy appears robust and
demographically invariant when evaluated on the MedQA-
Demog benchmark.
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3) MACRO PRECISION, RECALL, AND F1- SCORES

As shown in Table VII, macro-averaged precision, recall,
and Fi-scores closely followed the overall accuracy trends
observed earlier (see Section 3.1). Across all demographic
variants, performance differences relative to the original
MedQA subset remained below 0.05, confirming that the
Mistral 7B-Instruct model preserved balanced predictive
behaviour across gender, race/ethnicity, and age
perturbations. Specifically, the original group achieved
macro-precision of 0.426, macro-recall of 0.427, and
macro-F1 of 0.426. The gender and race/ethnicity variants
exhibited minor declines (-0.023 and -0.019 in Fi,
respectively), whereas the age variant recorded a slightly
larger decrease (—0.041), consistent with its modest drop in
accuracy reported in Table III.

TABLE VII
MACRO-AVERAGED PRECISION. RECALL. AND F1 SCORES.

Macro- Macro-
Group Macro-F1
Precision Recall
Original 0.426 0.427 0.426
Gender 0.403 0.399 0.400
Race/Ethnicity 0.407 0.407 0.405
Age 0.386 0.385 0.385

Importantly, these fluctuations remain within the Low Bias
classification threshold (Amax < 0.05; see Table II),
suggesting that demographic changes apply minimal
influence on the model’s overall precision—recall balance.
Beyond aggregate scores, a closer examination of error
structure revealed that the most frequent misclassifications
involved confusion between semantically or clinically
similar options. The top ten error transitions (truth —
prediction) were dominated by minor label inversions such
asB — A (298),C - A (272),C - D (253),and D — A
(252). These symmetric confusion patterns suggest that the
model’s reasoning errors were non-systematic and
semantically neutral, reflecting inherent uncertainty in
complex medical reasoning rather than bias toward any
particular demographic subgroup. Figure 4 visualizes the
close alignment among macro-precision, recall, and F:
scores across demographic variants, highlighting the
model’s consistent behaviour and fairness stability within
the MedQA-Demog benchmark.



IEEE Access

Muttidisciplinary ? Rapid Review : Open Access Journal

0.426 0.427 0.426

0.4

0.1

0.9 Gender

Original

0.403 0,399 0.400

B Macro-Precision
B Macro-Recall
s Macro-F1

0.407 0.407 0.405
0.386 0.385 0.385

Race/Ethnicity Age

FIGURE 4. Macro-Precision, Macro-Recall, and Macro-F,; scores across demographic groups (Original, Gender, Race/Ethnicity, and Age).

In summary, the macro-level evaluation supports earlier
findings: performance stability and predictive symmetry
are maintained across all demographic variations,
highlighting the Mistral 7B-Instruct model’s robustness
and demographic fairness within the MedQA-Demog
dataset.

Furthermore, to visualise diagnostic behaviour and assess
whether demographic perturbations introduced systematic
misclassification patterns, Figure 5 presents the aggregated
confusion matrices for all evaluation subsets: the original
MedQA questions and their gender-, race/ethnicity-, and
age-modified counterfactuals. Across all panels, diagonal
dominance is consistently maintained, indicating that the
majority of predictions align with the correct diagnostic
option. The off-diagonal cells representing errors show
similar magnitudes and symmetrical dispersion, suggesting
that most misclassifications stem from semantic proximity
among clinically related options rather than from
demographic bias. Importantly, no single group displays an
inflated or depleted confusion region, reinforcing the
earlier statistical finding that demographic edits did not
introduce systematic reasoning drift in the model’s
responses.

A detailed examination of the confusion matrices in
Figure 5 reveals that the model’s misclassifications are
largely confined to semantically adjacent diagnostic
options rather than random or demographically driven
errors. Across all groups, the ten most frequent error
transitions follow consistent trends dominated by
confusions between clinically probable alternatives such as
B — A (298 cases), C — A (272),C — D (253),and D —
A (252). These recurrent cross-predictions often involve
conceptually overlapping diagnoses or therapeutically
related conditions, suggesting that the model’s uncertainty
is epistemic (linked to medical reasoning ambiguity) rather
than sociodemographic in nature. The relative symmetry of

VOLUME XX, 2017

inverse transitions (e.g., A — B vs B — A) further supports
this interpretation: no single answer category was
disproportionately over- or under-predicted across any
demographic subset. Collectively, this behaviour reinforces
that observed variability arises from the intrinsic diagnostic
complexity of the MedQA items rather than from
sensitivity to gender, race/ethnicity, or age cues.

4) PREDICTION BALANCE AND OVER/UNDER-
PREDICTION

To examine whether demographic perturbations induced
any systematic preference for particular answer options, we
analysed prediction balance, the relative deviation in
predicted label frequency compared with the original
MedQA distribution. This measure quantifies over-
prediction (positive deviation) and under-prediction
(negative deviation) for each of the four multiple-choice
options (A-D). As shown in Table VIII, the Mistral 7B-
Instruct model preserved a near-balanced prediction pattern
across all demographic groups.

TABLE VIII
PREDICTION BALANCE AND OVER/UNDER-PREDICTION BY
DEMOGRAPHIC GROUP.
Group A B C D

Original +0.009  -0.019 -0.011  +0.021
Gender +0.055  -0.028 -0.031  +0.004
Race/Ethnicity  +0.030  -0.019 -0.040  +0.029
Age +0.027  -0.019 -0.025  +0.018

For the original dataset, deviations were minimal (ranging
between - 0.019 and +0.021), indicating a well-distributed
output probability across all answer choices. When
demographic counterfactuals were introduced, slight
fluctuations appeared but remained within expected
random variation. The gender variant showed a modest
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FIGURE 5. Confusion matrices for each demographic variant of the MedQA-Demog dataset: (a) Original, (b) Gender, (c) Race/Ethnicity,
and (d) Age. Each matrix depicts predicted versus true answer distributions.

over-prediction for option A (+0.055) and mild under-
prediction for C (- 0.031), while the race/ethnicity and age
variants exhibited similarly small deviations (< £0.04). No
consistent directional bias (e.g., persistent preference for a
specific label) was observed across groups, confirming that
demographic edits did not distort the model’s decision
distribution. Overall, the distributions indicate stable
response diversity across all counterfactual conditions. The
absence of systematic over- or under-prediction patterns
reinforces the earlier conclusion that the Mistral 7B-
Instruct model maintained demographically neutral
diagnostic reasoning, with fluctuations consistent with
sampling noise rather than structural bias.

5) POWER AND MINIMUM DETECTABLE EFFECTS

To assess the statistical sensitivity of the fairness
evaluation, we conducted a power analysis to estimate the
smallest performance gap that could be detected with 80 %
statistical power (a = 0.05). This analysis ensures that any
non-significant findings reported in previous sections are
not due to insufficient sample size but rather reflect genuine
performance parity across demographic variants. As shown
in Table IX, each demographic comparison involved more
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than 1,100 counterfactual questions, matched against 1,272
original MedQA items. The Baseline Accuracy
(BaselineAcc) represents the model’s reference accuracy on
the original dataset (0.427). The n_ref column denotes the
number of baseline (original) samples, while n_grp refers
to the sample size of each corresponding demographic
variant (gender, race/ethnicity, or age). The final column,
MDE abs_acc, reports the minimum detectable effect, the
smallest absolute accuracy difference that can be identified
with 80 % power given the respective sample sizes.

Given these sample sizes, the minimum detectable
absolute difference in accuracy was approximately 0.057
(5.7 percentage points) for all comparisons. As all observed
disparities reported in Section 2 were smaller than this
threshold (< 0.04), they fall below the detectable range,
indicating that the apparent differences are statistically
insignificant and unlikely to represent systematic
demographic bias. In summary, this power analysis
confirms that the non-significant fairness outcomes
reported earlier reflect genuine model stability rather than
limited data resolution. The Mistral 7B-Instruct model,
therefore, demonstrates robust demographic neutrality
within the MedQA-Demog evaluation framework.
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TABLE IX
POWER ANALYSIS AND MINIMUM DETECTABLE ACCURACY GAPS (80
% POWER, A =0.05).

Group BaselineAcc n_ref n_grp MDE abs acc
Gender 0.427 1272 1129 0.057
Race/Ethnicity 0.427 1272 1129 0.057
Age 0.427 1272 1129 0.057
IV. DISCUSSION
The results of this audit provide clear evidence that the
Mistral ~ 7B-Instruct model demonstrates  robust

demographic neutrality when applied to clinical question
answering. Across 4,659 MedQA-Demog items, including
systematic gender, race/ethnicity, and age perturbations,
performance fluctuations remained minimal (A < 0.04) and
statistically non-significant. These findings indicate that
open-weight LLMs can provide stable diagnostic reasoning
despite controlled demographic variations, which is an
encouraging result considering concerns regarding fairness
in medical Al systems. A stratified robustness check by
baseline question difficulty further confirms that this
demographic stability is not driven by uniformly limited
performance but persists across difficulty strata.

These findings should be interpreted in light of our design
choice to treat demographic descriptors as fairness probes
rather than clinically causal features, ensuring that
observed effects reflect demographic framing sensitivity
rather than medical risk modelling.

Compared with prior work, the present results show that
demographic fairness is achievable even without large-
scale parameter counts or domain-specific pre-training.
Earlier transformer baselines such as BioBERT or
RoBERTa-Large achieved below 40% accuracy on the
MedQA benchmark [16], while instruction-tuned and
domain-aligned models, such as Flan-PaLM and Med-
PaLM reached 67-70 % accuracy with billions of
parameters and extensive clinical alignment. Within this
landscape, Mistral  7B-Instruct achieved 42.7%,
outperforming early encoders despite being an open-source
model with an order of magnitude fewer parameters.
Notably, our findings complement prior work emphasising
that fairness and reasoning quality are not strictly functions
of model scale, but of controlled training and evaluation
design [53]. The present study extends that insight by
empirically demonstrating demographic robustness within
a fully reproducible, open-weight framework.

Error-structure analysis further supports this interpretation.
Confusion matrices and prediction-balance measures
revealed symmetrical misclassifications dominated by
semantically adjacent diagnostic options rather than
demographically patterned errors. Frequent transitions such
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as B — A or C — D reflected epistemic uncertainty within
the clinical content, consistent across all demographic
subsets. The absence of systematic over- or under-
prediction trends (Table VIII) indicates that the model’s
diagnostic behaviour is shaped primarily by inherent case
difficulty rather than demographic perturbation. In
practical terms, this means that apparent performance
differences between demographic groups are statistically
indistinguishable from random sampling noise.

From a methodological standpoint, the results validate the
proposed MedQA-Demog audit framework as a
transparent, replicable approach for bias evaluation in
medical LLMs. The framework’s integration of
counterfactual augmentation, Wilson confidence intervals,
and effect-size reporting (Cohen’s h) ensures
interpretability and quantitative accuracy, aligning with
emerging standards for fairness auditing. Importantly, the
power analysis (Table 1X) confirmed that all observed gaps
were below the minimum detectable threshold (= 0.057),
indicating that non-significance reflects genuine model
stability rather than insufficient data.

These outcomes have several broader implications. First,
they highlight the potential of open-weight models such as
Mistral to serve as transparent research baselines for
fairness benchmarking, enabling reproducibility and
external verification absent in proprietary systems. Second,
they show that bias auditing frameworks can and should
extend beyond aggregate accuracy to include structured
statistical testing, effect-size interpretation, and visual
inspection of misclassification patterns. Third, the minimal
demographic sensitivity observed here suggests that
instruction-tuned open models may already possess
sufficient contextual grounding to generalise equitably
across basic patient characteristics, though further
evaluation on free-text clinical notes and multi-modal
inputs is necessary. Finally, while Mistral 7B-Instruct’s
overall diagnostic accuracy remains lower than domain-
aligned giants like Med-PaLM 2 or GPT-4, its
transparency, efficiency, and fairness stability position it as
a viable foundation for academic and clinical research.
The primary contribution of this work lies in
methodological rigor for fairness auditing rather than
optimisation of diagnostic accuracy, which remains an
important direction for future studies applying the proposed
framework to higher-performing medical LLMs. While this
study focuses on diagnostic decision consistency under
demographic counterfactuals, future extensions of the
framework could incorporate analyses of explanation tone,
certainty calibration, and recommendation strength to
assess communicative fairness in patient or clinician-facing
settings.

In the present study, demographic attributes are evaluated
independently in order to preserve label invariance and
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avoid introducing clinically implausible or confounded
combinations within the MedQA vignettes; this design
choice ensures that observed effects can be attributed to
demographic framing rather than unintended changes in
clinical semantics. Future work should expand this auditing
framework to include intersectional attributes (e.g., age X
gender), reasoning-trace analysis, and reinforcement-based
fairness tuning to ensure equitable, trustworthy clinical
deployment of medical LLMs. Moreover, the present study
intentionally employs a fixed, deterministic prompt
template to isolate demographic effects and ensure full
reproducibility of the fairness audit. This design choice
enables controlled comparison across demographic
counterfactuals without introducing additional variability
from prompt engineering or external knowledge retrieval.
Future extensions of this framework could evaluate
demographic robustness under alternative prompt
templates and simple retrieval-augmented configurations to
better approximate real-world clinical decision-support
deployments.

In summary, the present findings confirm that demographic
perturbations do not meaningfully change the diagnostic
reasoning of the Mistral 7B-Instruct model within the
MedQA-Demog framework. The proposed audit
framework provides a robust and transparent foundation for
fairness evaluation in clinical LLMs and demonstrates that
reproducible, open-source infrastructures can achieve both
methodological rigour and ethical accountability. These
outcomes directly inform the next section, which outlines
the broader implications, limitations, and future pathways
toward trustworthy, bias-aware medical Al systems.

V. CONCLUSION

This work presents one of the first systematic evaluations
of demographic fairness in open-weight medical language
models. Through the development of MedQA-Demog, a
label-invariant, counterfactually augmented version of the
MedQA-USMLE dataset and its deployment within a fully
local, transparent inference pipeline, we provide strong
evidence that the Mistral 7B-Instruct model shows stable
diagnostic reasoning across patient gender, race/ethnicity,
and age. Accuracy fluctuations across all demographic
variants remained within + 0.04 and were statistically non-
significant (all p > 0.05). Effect sizes were minimal
(lh] < 0.1), and Dbootstrap confidence intervals
consistently included zero, confirming that residual
variation reflected stochastic rather than systematic bias.
These results demonstrate that open-source instruction-
tuned LLMs can achieve robust demo-graphic neutrality
when evaluated under controlled and reproducible
conditions.

Beyond model performance, this study establishes a
transparent methodological framework for bias auditing,
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incorporating structured counterfactual augmentation,
deterministic inference, power analysis, and quantitative
bias categorisation. Together, these elements form a
reproducible, extensible standard for assessing fairness in
clinical Al systems. Future research should extend this
framework to multimodal medical tasks, intersectional
demographic attributes (e.g., age X gender), and
longitudinal fine-tuning protocols designed to reinforce
fairness while preserving diagnostic validity. By
embedding such reproducible fairness auditing practices in
the model-development lifecycle, we take a critical step
toward trustworthy, equitable, and accountable deployment
of medical LLMs.
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