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Graphical Abstract

Tertiary, Quaternary and higher order states in the Sequence of Bifurcations Approach (SBA) to Turbu-
lence for Laterally Heated Shear Flows within a Rectangular Tube

T. Akinaga®, P. M. J. Trevelyan®, S. C. Generalis’

The tertiary OBV oscillatory states of the laterally heated rectangular tube in the SBA for Pr = 0,Gr = 710. The
suharmonic state is a pulsating flow and it is depicted in a) for its azimuthal velocity and c) vorticity profiles. The
equivalent superharmonic state is not pulsating and is depicted in b) for its azimuthal velocity and d) vorticity profiles.
Here the wavenumbers are (o, = 1.34,0.7) for the subharmonic and (a, 8 = 1.34,1.34) for the superharmonic state
respectively.
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Highlights

Tertiary, Quaternary and higher order states in the Sequence of Bifurcations Approach (SBA) to Turbu-
lence for Laterally Heated Shear Flows within a Rectangular Tube

T. Akinaga®, P. M. J. Trevelyan®, S. C. Generalis®

e Research highlight 1 - Application of the fully deterministic Sequence of Bifurcations Approach
e Research highlight 2 - Vanishing flow through Lateral Section via imposition of a Constant Flux constraint
e Research highlight 3 - The remote ends of the rectangular tube are assumed to be closed/periodic

e Research highlight 4 - The large aspect ratio has potential to a variety of engineering applications
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Tertiary, Quaternary and higher order states in the Sequence of Bifurcations Approach
(SBA) to Turbulence for Laterally Heated Shear Flows within a Rectangular Tube

T. Akinaga®, P. M. J. Trevelyan®, S. C. Generalis®*

% Faculty of Engineering Science, Akita University, 1-1 Tegata-Gakuen Machi, Akita, Akita-Shi 010-8502, Akita, Japan
b Aston Fluids Group, Aston University, , Birmingham, B4 7ET, United Kingdom

Abstract

We consider a vertical rectangular tube of large aspect ratio with side-wall heating in order to mimic realistic experimental
conditions. We therefore impose the condition that across any lateral cross-section of the rectangular tube the fluid flow
vanishes. We find through our numerical analysis that oscillatory modes yield critical conditions and offer therefore
sequential bifurcations that lead to the turbulent regime. Although the linear stability analysis is the same as the case
where the imposed constant flux condition is absent, the corresponding nonlinear regime displays fundamentally different
characteristics to the open narrow channel case. Here we focus on the sequence of bifurcations approach of a fluid enclosed
in a rectangular tube, aligning with engineering applications. We additionally assume the limit of small Prandtl number
and thus the effects caused by temperature perturbations are ignorable. Finally we identify the oscillatory states that lead
to turbulence as the Grashof number increases up to the value 1000. Our fully nonlinear numerical analysis shows that
all bifurcations are supercritical and here we concentrate on the critical axial wavenumber of the linear stability analysis
of the laminar flow and its pairing with a specific azimuthal wavenumber.

Keywords: Incompressible flow, Bifurcation theory, nonlinearity, stability, turbulence, Floquet parameters, Convective
flow
PACS: 76A05, 76Dxx, 7T0K30, 7T0K50

1. Introduction

Laterally heated flows without the imposition of a constant flux condition across any lateral section of the tube have
received attention for many decades [1]-[2] due to the many applications in engineering, such as dwelling construction and
cooling, ventilated double glazing (when combined with pressure flow), nuclear engineering, heat exchangers, aerodynamic
surfaces, to mention a few. The pioneering works of Boyarintsev [1]-[3], Gershuni [4]-[5], Rudakov [6] Vest and Arpaci [7]
and several others were concerned with the stability of natural convection between infinite vertical planes kept at different
fixed temperatures. The case when thermal stratification is present in the vertical direction, was considered by Birikh
et al. [8] and Korpela et al. [9] who determined that the instability was either shear or buoyancy driven, depending on
the value of the Prandtl number Pr. It is interesting to note that the conductive state became unstable to stationary
instabilities for Pr < 12.7 and oscillating thermal instabilities for Pr > 12.7. Their analysis was extended by Bergholz [10]
to cover a larger range of stratification levels and Prandtl numbers revealing either traveling waves or standing waves are
dominant, ie become critical before the steady solutions that appear first for lower stratification. The preferred pattern
was studied independently by Fujimra and Mizushima [11], who accurately calculated the critical Prandtl number to be
Pr, = 12.45425644, and Kropp and Busse [12]. Both studies assumed weak nonlinearity and they studied a wide range
of Prandtl numbers, concluding that for Pr > Pr., the dominant pattern is standing waves. Using weakly nonlinear
analysis both studies further examined the nonlinear interaction spectrum between steady and oscillatory modes near the
cross-over point and analysed the characteristics of the bifurcations at this bicritical point.

Stability in an annular enclosure of infinite length with the condition that the instability of the fluid flow is purely
hydrodynamic (isothermal), and it is therefore applicable to a Boussinesq fluid with a small Prandtl number, for example
the Prandl number for liquid metals, bounded between two infinite walls. This geometric set up was studied through the
sequence of bifurcations approach in Nagata and Busse [13], hereafter referred to as NB. The only control parameter that
governs the flow in this case is the Grashof number Gr as temperature decouples from the equations of motion. In their
analysis NB obtained the bifurcation boundary of the secondary finite amplitude steady two-dimensional transverse roll
vortices, as predicted by Squire’s theorem [14]. NB proceeded to analyse numerically the stability characteristics of the
secondary transverse vortices and they identified the Eckhaus [15] stability boundary and the bifurcation curve of steady
as well as oscillatory three dimensional tertiary flow. During their analysis of the secondary solutions, NB identified
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regions of the parameter space (o, Gr), where « is the wavenumber of the secondary transverse vortices, where nonlinear
solutions could not be found numerically. The non-existence of nonlinear solutions was also encountered in Meyer-Spasche
and Keller [16] and Paap and Riecke [17] in the Taylor vortex flow configuration. It has been analysed and explained
subsequently to be due to the span of the linear stability curve in terms of the primary wavenumber o contributing to the
1 : 2 spatial resonance. For a detailed explanation of this resonance see Fujimura and Mizushima [18] and Mizushima [19].

Ubiquitous flows, such as Couette flow, Plane Poiseuille flow, Taylor-Couette flow, Laterally Heated flow and their
variants, because of their simple geometry and associated experiments, offer the perfect set up for our quest in identifying
the inner mechanisms of turbulence through simulations thus paving the way in our understanding of how the fluid flow
approaches this aperiodic regime as certain control parameters vary. For example, a new class of solutions, that provide a
variant way to approach the turbulent regime previously unknown, were identified in plane Couette flow, which is known
to be linearly stable for any value of the control parameter, the Reynolds number R. This was achieved by connecting
two flows numerically for Pr = 0 . For example, Itano and Generalis [20] obtained a vortical structure in isothermal
plane Couette flow, having the shape of a hairpin vortex, via connecting Rayleigh—Bénard convection and plane Couette
flow [21] through homotopy simulations. More recently the higher order bifurcation (stability) characteristics of the
Taylor-Couette problem were studied numerically in [22] with good agreement established with the experimental results
of [23].

The basic, or laminar, velocity profile of our flow includes an inflection point. Nagata and Busse [13], for the infinite
long channel, found that the primary bifurcation is described by a steady two dimensional transverse vortex flow whereas
the secondary bifurcation is characterised by steady three dimensional subharmonic sinusoidal motions of the transverse
vortex. By identifying stability boundaries of increasing hierarchy in the deterministic sequence of bifurcations approach
(SBA) to turbulence, engineers can predict and control flow instabilities in rotating machinery, chemical reactors, double
glazing, heat storage and release, optimization of rotating equipment, such as turbines, centrifuges, mixers, cooling systems,
electronic devices, and solar collectors, amongst other applications.

The present study explores the transition from laminar flow to turbulence in laterally heated shear flows within a
closed rectangular tube of large aspect ratio, in order to identify the possibility of a new class of solutions by imposing the
additional constraint of a vanishing fluid flux (this is apparent for the purely conductive state of Fig.1) across any lateral
section of the tube. The equivalent case for identifying new classes of solutions for the purely rotating case was studied
in [22]. It is thus identical to [13] at the purely conductive stage. After confirming the result of NB at the secondary
bifurcation level, we show that as Gr is increased above its (second) critical value, a three dimensional periodic motion
sets in as the tertiary flow. Observing that DNS (Direct Numerical Simulation) could capture several unstable periodic
solutions representing a transient state, we find different types of motion coexist as stable or unstable solutions of the
system at high Grashof numbers, i.e. well above the stability boundary of laminar flow. This finding strongly depends on
our choice of the wavenumbers in the axial and azimuthal directions.

The basic equations and the geometric configuration of our problem are formulated and discussed in section 2. After
formulating the problem in section 3 we expose the harmonic expansion that was employed in our analysis and the basic
properties of the small gap approximation of an axially confined duct with an imposed constant flux condition. The
problem here is equivalent to [22] where rotation is substituted by convection. In section 4 we survey the sequence of
bifurcations of the transverse vortices with the critical wavelength and their subsequent bifurcations. The properties of
solutions bifurcating from the two dimensional transverse vortices and from tertiary solutions depend rather strongly
on the basic wavelength of the two dimensional vortices and are all supercritical. Hence in section 4 we describe the
numerical methods applied for their solutions and outline stability routes for the higher order bifurcating states for the
specific wavenumbers (c, 5) of the azimuthal and axial directions that were chosen in identifying the bifurcation points of
the higher order states in the («, 8, Gr) space. Our conclusions are given in section 5.

2. Mathematical formulation of the problem

We consider the incompressible fluid flow in the narrow gap between two vertical plates kept at uniform but different
temperatures. The half gap width d between the two plates will be used as the length scale in the following and d?/v as
the timescale, where v is the kinematic viscosity of the fluid, see Fig.1. We introduce a Cartesian system of coordinates
with the z-coordinate in the direction normal to the vertical walls, the xz-coordinate in the azimuthal direction and the
y-coordinate in the direction of the axis as shown in Fig. 1. The corresponding unit vectors will be denoted by k, 2, j.
The dimensionless Navier-Stokes equations for the velocity u and temperature 6 deviations from the purely conducive
state can then be obtained in the form:

<a+u~V>u—V7r+V2ug(Grz+9), (1)
ot g
V.-u=0, (2)
06 B 1,
a—ﬁ-u-V@-Gru-k—ﬁ—ﬁVG. (3)
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Figure 1: Laterally heated flow configuration. The dimensional gap width between the two finite plates is 2d. The origin of the x, y and z
coordinate reference system is positioned midplane and the side walls are kept at different temperatures. Ty is the reference temperature.

where 7 is the pressure disturbance, Gr is the Grashof number defined by Gr = ygd3AT/v?, Pr = 57 v is the coefficient
K

of thermal expansion, k is the thermal diffusivity, AT is the temperature difference, and g = |g| is the acceleration due
to gravity. The direction of gravity is given by —j. The basic convective flow can be realised by taking a Boussinesq fluid
between the vertical plates maintained at different constant temperatures, Ty + AT and Ty — AT, see Fig.1, where T
is the ambient (reference) temperature. The conductive state is therefore represented by a linear temperature variation
across the fluid layer, and buoyancy balances the viscous force. Since the basic laminar conductive flow profile violates
the Rayleigh criteria [24] for the stability of shear flow profiles in the absence of viscosity, the bifurcation into a state
of periodically arranged transverse vortices is supercritical for Prandtl number Pr = 0 as shown in NB. In this case the
nondimensional laminar flow is given by the solution [4], [5]:

Ve(z)=Grz(1-2%)j, 6=0. 4)

The boundary conditions for the velocity are given by
u= 0 at z=d4l1, (5)

In the present study, the Grashof number Gr plays a critical role in determining the flow’s stability and bifurcation
behaviour. As Gr increases, the flow transitions through various states, including steady two dimensional transverse vortex
flow, oscillatory three dimensional subharmonic sinusoidal motions, and eventually three dimensional aperiodic motions
at higher Gr values. These transitions highlight the importance of G'r in characterising the dynamics and stability of
convective flows. In the limit of vanishing Prandtl number (heavy metals) temperature perturbations become identically
zero and the energy equation decouples from the velocity equations. Further it is convenient to eliminate the equation of
continuity by the introduction of the following general representation of the velocity field:

u=U(t2)i+ (V(tz2)+ Vs(2))j+u, u=V x(Vxko)+V x k. (6)

By using the operators k- V x (VX ), and k- Vx on Eq.(1) we obtain the following two equations for ¢, the poloidal
part, and 1 the toroidal parts of the velocity field of Eq.(6):
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8.976

6.732

> 4.488

2.244

b)

Figure 2: The planar contour projectioxns of the tertiary Oscillatory Subharmonic vortex flow (OBV) of the laterally heated vertical rectangular
tube realised in the configuration of Figure 1. The results of the present analysis with (L, M, N) = (21,10,10) are given for the two values of
the Grashof number in the SBA, for Pr =0: (a) Gr = 515 and (b) Gr = 540 and («, 8) = (1.34,0.7).

a) -1
0.000 1.745 3.491 5.236 6.981

-1
0.00 . 5.03 7.54 10.05

<v2 - gt) V2N = U%V2A2¢ - %%Aw
—%?ggyag¢+vgyvm2¢+k-v X (V x (& -Va)), (7)

(v? - gt) o = U Do = 2 s
+V%A2¢+%—Z%A2¢—kz~Vx (w-Va), (8)

e and the following two equations for the mean flows in the azimuthal and axial directions, respectively:
0? 0 0 02 7]
— = U= —-—A — 9
(az2 8t> oz 2¢(8x82¢+3y ) ©)
0? 0 0 0? 0
— = | V==L =—0— —0 ). (10)
022 Ot 0z Oy0z Ox
o In the arrangement that is explored in the present study (Pr = 0), only egs.(7-10) in conjunction with eq.(4) will be
wo retained. We note that the time dependence of the mean components of egs.(9-10) has been neglected, since we are
1w interested in flow states that exist under steady external conditions. We note here that U,V are the mean flows in the
02 azimuthal (z) and axial (y) directions, respectively. Note that the mean flow V' (for the axial direction), was not considered
03 in [13], in contrast to the present study, where the mean flows in both directions are being considered. We note that the
14 overbar indicates the average over the x— and y—coordinates and the operator Ay is defined by Ay = V2 — (k- V)2, The
s case where the system was under axial rotation and Gr = 0 was studied in [22], while in the present study we concentrate

105 on the case where rotation is absent and Gr # 0. The case where a parabolic transverse seepage was applied with in the
w7 absence of axial rotation Gr # 0 was considered in [25].

s 3. Harmonic expansion

100 In order to implement the deterministic approach of the sequence of bifurcations for higher order states that emanate
uo  from disturbing the laminar flow of eq.(4) we assume periodicity in stream-wise (z) and span-wise (y) directions, whereas
m  the non-slip boundary conditions at the boundaries in the wall coordinate are assumed. The linear stability boundary is
12 given in [13] and is adopted in the present analysis. In order to follow the bifurcating higher order states for the poloidal
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Figure 3: The quaternary Oscillatory Subharmonic Azimuthally Drifting (OSAD) vortex flow and the tertiary state OBV of the laterally heated
vertical rectangular tube of Figure 1. The results of the present analysis with (L, M, N) = (21,10, 10) are given, for Pr = 0. Here for Gr = 593

((a,c) left column) and Gr = 640 ((b,d) right column) the quaternary OSAD and the tertiary OBV states respectively. The states are depicted
by the three planar countour plots (top - as shown) and by the azimuthal u profile, bottom figures. Here (o, 8) = (1.34,0.7).
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(¢) and toroidal (¢) parts in equation (6), we performed a normal mode analysis assuming the following expansions

L
¢ (x,y,2) = > Fu(2)en, (11)
=0
L o~
U (w,y,2) = Y Gel(2)de, (12)
£=0
where:
[m|<M,|n|<N
(Ze _ Z Aomn ei[moz(ocfcact)JrnB(yfcyt)]7 (13)
(m,n)#(0,0)
[m|<M,|n|<N
D DI e (14)
(m,n)#(0,0)

where in the above expressions «, 8 are the wavenumbers in the azimuthal and axial directions respectively, agmn, bemn are
the unknown complex coeflicients to be determined and where we have additionally introduced c, ¢, the constant phase
speeds in the azimuthal an axial directions, in order to also take into account shape preserving traveling wave solutions in
the azimuthal and/or axial directions. The phase speed ¢ can be determined via a geometric method or can be evaluated
independently. In our studies we use a Galerkin-type approach that is capable of following the solution if it moves with a
phase speed c. In this case the phase speed is one of the unknown parameters and can also be determined explicitly by our
numerical method as one of the unknown parameters. Care therefore has to be exercised in positioning the phase speed
within the matrix of the unknown coefficients. In our analysis, however, and with the exception of the two dimensional
solution, we only identified solutions of the form

|m|<M,|n|<N
¢A5e — Z Wormin (1) gllmalz—ca(O)t)+nfy—cy (1)) (15)
(m,n)#(0,0)
|m|<M,|n|<N
@ — Z bermm (1) eilmee—ca (1) +nbly—cy ()] (16)
(m,n)#(0,0)

i.e. solutions where the complex coefficients apmn (t), bomn (t) are time dependent, while simultaneously there exist time
dependent (not constant as in eqs. (13-(14)) c(t) = (cz(t),cy(t)) # 0 indicating solutions that are drifting in either
the axial, or azimuthal or both directions with variable phase speeds. As a measure of nonlinearity we choose the time
dependent poloidal and toroidal norms Zg’ (t), Zg’ (t), respectively, defined by

Eg(t) = almn(t)azmn(t)v élzb(t) = bfmn(t)bzmn(t)v (17)

of the nonlinear solution states that we identified. Here the * indicates the complex conjugate. The following equations

were used for the mean flows in the azimuthal and axial directions

U(z) = Gu(2) cult), (18)
£=0
L
V(2) =Y Gu(z) delt) + p (2 = 1), (19)
£=0

where the parameter y is determined by the condition of vanishing mass flux in the y-direction,

+1
/ V(z)dz=0 (20)

-1

and ¢y(t), d¢(t) are the mean flow coefficients in the azimuthal and axial directions, respectively and Eq. (19), the constant
flux condition of a vanishing flow rate through any lateral cross-section, ensures that the remote ends of the of the
rectangular tube in the axial direction are assumed to be closed and that our numerical model is thus a better reflection
of the real life experimental set-ups. A variant of the above methodology was used to identify the states for the rotating
case, the Taylor-Couette problem, and when convective effects are removed, with good agreement between simulations
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Figure 4: The tertiary OBV and OPV oscillatory states of the laterally heated rectangular tube. The results of the present analysis with
(L,M,N) = (21,10, 10) are given, for Pr = 0, Gr = 710. The state is a pulsating flow and it is depicted at ((a) — left) for its azimuthal velocity
and ((a) - right) vorticity profiles. The equivalent superharmonic state is not pulsating and is depicted in ((b) — left) for its azimuthal velocity
and ((b) - right) vorticity profiles. A total of 4 x 10° time steps were required to produce the figures depicted here. Here (o, 8 = 1.34,0.7) for
the subharmonic OBV and («, 8 = 1.34, 1.34) for the superharmonic OPV states respectively.

[22] and experiment [23] and also for the comparisons between the results of [22] and the numerical analysis of [26], where
eq.(10) was not employed.

The Fy(z) and Ge(z) (¢ =0,1,...,L) of egs.(11-12) are combinations of the 1st kind Chebyshev polynomials (Ty(z)
(=01, ),

(0 1) Toqa(z) = 2(0+2) Tuga(z) + (L4 3) To(2)
Gy (2) = w’ (22)
that are employed in order to satisfy
Fy(z==£1)=0, (23)
dFy
T (z =41) =0, (24)
Go(z==41)=0. (25)
As an example of the poloidal toroidal decomposition above we can write for @ of equation (6)
~ ¢ O\ . ¢ O .
= — —— 17— (A . 2
<8x82+ 6y)z+ <8y82 ('91:)‘7 (B29) K (26)

The integer values L, M, N, the predetermined truncation levels, have to be sufficiently high such that the nonlinear
solutions, measured by ¢5(t), €5 (t) of eqs.(17), do not change significantly if L, M, N are increased, and a change < 1%
is achieved. In our studies a typical set of truncation levels for the reported tertiary, quaternary and quinary states
with L = 17, M = 10, N = 10 were in general sufficient in order to account for the subharmonic instability 2 : 1 [13].
The subharmonic instability is the instability whereby the dominant higher order state has a wavenumber that equals
half the wavenumber of the lower order state in the bifurcation tree of the sequential bifurcations as the Gr number
value increases. For the verification of our results and for the subharmonic instability in particular the truncation levels
with L = 21,M = 12, N = 12 were also selected. This inevitably results in a large number of complex coefficients
omn(t), bemn (t), ce(t) and dg(t) from Egs.(7-10), that need to be determined. We can reduce the number of coefficients to
be calculated by using relationships such as,

ap—mm—n(t) = gy (t); (27)

because of the reality conditions of the coefficients, resulting from ¢ = ¢* and ¥ = *, where ¢*, 9™ refer to the complex
conjugate of ¢, 1), respectively. Additional relations that refer to the symmetries of the higher order nonlinear states that
are sought are also used, see Table 1. This reduces the number of coefficients further and makes the study of the nonlinear
solutions, at relatively high truncation levels, possible with the additional benefit of reduced computation time.
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Figure 5: The planar contour projections of the Oscillatory Subharmonic Quinary axially and azimuthally drifting state (OSAZD) of the laterally
heated rectangular tube top set and its vorticity field profile bottom figure. The results of the present analysis with (L, M, N) = (21,10, 10)
are given, for Pr = 0,Gr = 770. A total of 2 x 10° time steps were required to produce the figures depicted here. Here (a, 8) = (1.34,0.7).
The state bifurcates from the quaternary state with (o, 8) = (1.34,0.7) and has the same wavenumbers.
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7.007
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0.000 L
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-

a) : 1.428 5712 D) X 2.344 3517 4.689
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Figure 6: Planar contour projections of the tertiary subharmonic states OBV at different values of Gr. The results of the present analysis with
(L,M,N) = (21,10, 10) are given, for Pr = 0, Gr = 640(a),740(b) are presented here. For both states (a,3) = (1.34,0.7). The states were
captured via DNS. A higher truncation level with (L, M, N) = (23, 14,14) was also applied to ensure that the states were captured accurately.

Direct Numerical Simulations (DNS) were employed for all the cases since time dependent solutions needed to be
determined and these solutions do not lead to steady states or shape preserving traveling waves. The evolution in time
of the oscillatory states is analysed through second order integration in time of the system of equations for the expansion
coefficients ¢emyn (t) and ¥emy, (t) in the general representation (13-14). The truncation level is determined in the same way
as in the case of steady state solutions or shape preserving traveling waves, see [22]. In order to determine the stability
range of these oscillatory states we introduce perturbations on the leading coefficients and observe their evolution in time.
Any oscillatory state is considered stable for the range of Grashof numbers, for which a converged solution (that remains
unchanged with further time integrations or increased truncation levels) can be identified.

4. SBA - The search for higher order sates

All our efforts are directed towards an improved understanding of turbulent fluid flow and are based on the fully
deterministic sequence of bifurcations approach (SBA). It is therefore the aim of this manuscript to demonstrate that using
Eqs.(7-10) solutions of the isothermal Navier-Stokes equations of motion can help us understand the underlying dynamical
mechanisms operating in turbulent fluid systems and additionally make a stronger connection between theory /simulation
and experiment whenever laboratory results are available. The SBA allows us to follow the spatially and temporally
periodic solutions of the Navier-Stokes equations prior to the exhibition of their chaotic nature allowing us to analyse
the patterns that are formed when turbulence is evident for the particular system under consideration. By analysing the
formation of these turbulent patterns, we can study the transport mechanism that operates under turbulent conditions
at the values of the control parameter, that for the present study is the Grashof number, measuring the strength of the
applied heating. It is through this route that we can identify the fundamental frequencies upon the combination of which
the aperiodic motion is built.

We provide here a brief description of the different numerical schemes that we employed in the present study and
frequently employ in general in our studies for the transition to turbulence through the SBA approach. The Newton-
Raphson method is used for steady, time independent, and travelling-wave type equilibrium states with uniform phase
speed, see egs.(13-14). Substitution of the expansions of egs.(11-14) with the appropriate truncation level L, M, N into the
equations (7-8) leads to to a set of nonlinear algebraic equations for the expansion coefficients, asmn, bemn, ce, de, which
when combined with the Chebyshev-Gauss-Lobatto collocation method yield the solutions for asmmn, bermn, ce, de, co, cy. In
order to investigate the stability characteristics of the steady or periodic solutions (travelling-wave type equilibrium states
that drift with a constant phase speed ¢ = (¢, ¢y)) we use linear stability analysis on the established time independent
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Figure 7: The quaternary OSAD (drifting in the azimuthal direction) subharmonic state and the tertiary Oscillatory Superharmonic axially
drifting (OPV) flow of the laterally heated vertical rectangular tube of Figure 1: (a) the quaternary OSAD and right column (part b) the
tertiary OPV and for Gr = 640. The results of the present analysis with (L, M, N) = (21,10, 10) are given, for Pr = 0. The states are depicted
by their planar countour plots. Here (a, 8) = (1.34,1.34) for OPV and (a, 8) = (1.34,0.7) for OSAD. Both states were captured via DNS.

nonlinear solutions of section 3 . We superimpose three dimensional infinitesimal disturbances on these nonlinear solutions
using Floquet theory and analyse the resulting eigenvalue spectrum. This procedure was followed for the secondary state
only, as this was the only state that could be described with time independent coefficients in our study.

Accordingly if we let the generic infinitesimal disturbances to be of the form

L |m|<M,|n|<N
52 _ ZFZ(Z) Z Tomm ei[(ma+d)(:c—czt)+(n[3+b)(y—cyt)]+at’ (28)
=0 (m,n)#(0,0)
L |m|<M,|n|<N
Y = Z Gol2) Z b € lmotd) (@—cat)+(nb+b)(y—cyt)l+ot (29)
=0 () 2(0,0)

we see that the coefficients are time independent and that the above two parameter (d,b) Floquet ansatz applies for
a general type of three-dimensional disturbances since our solutions are assumed periodic in the azimuthal and axial
dimensions (large aspect ratio of the rectangular tube) and include the cases where nonlinear solutions are of the travelling
wave form (if they are steady (¢ = 0)), since in our calculations we employ a moving frame analysis to capture these states.
Since we assumed that the value of d? 4+ b% # 0 in the stability analysis no disturbances to eqs.(9-10) need to be taken
into account into the stability analysis, thus reducing slightly the computational time required to calculate the eigenvalue
spectrum. Equations (28) and (29) give rise to a linear homogeneous system for the unknowns @gmn, bems Wwith the
growth rate o providing the set of eigenvalues. The eigenvalue matrix, being approximately 30% larger than the matrix
that identifies the steady nonlinear /travelling-wave type equilibrium solution, necessitates the use of high performance
computing power to maintain the same accuracy for the eigenvalue spectrum as for the identified nonlinear solutions.

In the present study however, the nonlinear states, that are realised when the lowest within SBA hierarchically state
is perturbed (the two dimensional state), have time dependent coefficients presented in egs.(15-16), and Floquet analysis
is not appropriate for these higher order states. The time development of the disturbance in this case followed in space
and time by a direct numerical simulation (DNS). This is achieved by performing the time integration on the wall-
normal components, w for the velocity and w, for the vorticity, derived from the full Navier-Stokes equations by using
direct imposition of additional factors (boundary conditions), so that the the poloidal and toroidal parts satisfy the
boundary conditions automatically, see egs.(11-14, 18-19), while the Fourier expansions are employed in the streamwise
and spanwise directions with the Chebyshev polynomial expansion employed in the direction normal to the plates. In
our present study we employed the Newton-Raphson method to identify the only steady nonlinear state, namely the two
dimensional secondary state. All higher order states in the SBA to the turbulent regime were calculated via time step
forwarding through DNS.
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Orders States Symmetry Subharmonic route Superharmonic route
Secondary 2d Vortex Translation in time, reflection ag—,, = arm, VF VF

shift (translation)

in roll axis ¢(y + 27/, z) = ¢(y, z)

Tertiary Oscillatory Af—mn = —Q¢mn, M + n = even, £ = odd/even OBV flow (Oscillatory
(£ = odd/even, cy = 0), (£ = odd, dy # 0) Subharmonic Vortex) flow
Tertiary Oscillatory and Al—mn = —Qimn,m +n = /odd OPV flow (Oscillatory
axially drifting (£ =o0dd,c; #0), (¢ = even,dg # 0) Superharmonic Vortex)
Quaternary Oscillatory and Ap_n = (71)11113,,”1, m + n = even/odd OSAD flow (Oscillatory —
axially drifting (£ =o0dd,cp #0, £ =even,d; # 0) Subharmonic axially
(u-drift) flow)
Quinary Oscillatory Ap—mn = (—1)£aemm m + n = even/odd OSAZD flow (Oscillatory —
Subharmonic axially and
axially and (£ = even, c; #0), (£ = even,dg # 0) azimuthally (u-drift and
azimuthally drifting (¢ = odd, ¢y # 0), (£ = odd, dy # 0) v-drift) flow)

Table 1: Nomenclature for states of flow and their symmetries in the present study. Note that the superharmonic and the subharmonic tertiary
states share the same acronym.
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(R.9,a, 8,1, M, N, At) = (0.000,0.000, 1.340, 0.700, 17, 10, 10,0.00010) X

Figure 8: Comparison between the subharmonic tertiary OBV (a) and the quinary azimuthally and the suharmonic axially drifting state
(OSAZD) of the laterally heated rectangular tube. The results of the present analysis with (L, M, N) = (23,14, 14) are depicted for Pr = 0
and Gr = 710 (left) and Gr = 770 (right). The quinary state bifurcates from the quaternary state of Fig.7 at Gr = 770 and has the same
wavenumbers («, 8) = (1.34,0.7) as the tertiary OBV.

SBA - results for the subharmonic a = 3/2 and superharmonic o = (3 cases

The first case involves tertiary states that bifurcate supercritically from the secondary states of NB . Additionally, we
note that we can write for @ in (6):

uU=1ui+0j+wk=V xip) +V X joo+V x ki), (30)
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Figure 9: Transition to turbulence for the the Quinary oscillatory subharmonic state (left) and the Oscillatory tertiary superharmonic state
(right). Both states are drifting in both axial and azimuthal directions of the laterally heated rectangular tube. The results of the present
analysis are given, for Pr = 0, Gr = 1000 for both cases are presented. A total of 2 x 1010 time steps were required to produce the figures
depicted here. Here (a, 8) = (1.34,0.7) for the subharmonic state on the left and (a, 8) =(1.34,1.34) for the superharmonic state on the right.
The Zg (t) norm (left ordinate) and Zg’ (t) norm (right ordinate) of egs.(17) are depicted here.

where

¢1:@7 ¢2:

09
Oy '

oz (31)

Formulae (30, 31) allow us to present a three-dimensional graphic representation of the velocity field, through contour
plots of the potentials 1, ¢1, ¢o in the planes perpendicular to %, j, or k, which is exploited in the following.

The SBA analysis for this work produced the following results for the subharmonic route. As is known from [13],
the secondary vortex flow (VF) bifurcates at Gr = 497 and is a steady two dimensional vortex. We confirm this finding
and find that the two dimensional axial vortex bifurcates around Gr = 500. In order to study the stability of the two
dimensional axial vortex there are two routes [13] to higher order nonlinear states in the SBA to turbulence, namely the
subharmonic route and the superharmonic route. For the subharmonic route we choose («, 8) = (1.34,0.7) and for the
superharmonic route we choose («, )= (1.34,1.34) for our present study.

The tertiary Oscillatory Subharmonic vortex (OBV) flow with (a,8) = (1.34,0.7) appears at Gr = 515 and the
coefficients observe the conditions m +n =even for as,, and m+mn =odd for by, for £ even or odd. This state is depicted
in Figure 2. The planar contour projections of the tertiary OBV of the laterally heated vertical rectangular tube are given
for the two values of the Grashof number in the SBA, for Pr = 0. For part (a) of the Figure 2 Gr = 515 and for part
(b) Gr = 540. Here (o, ) = (1.34,0.7). The state bifurcates from the secondary transverse vortex with o = 1.345 of
[13]. The truncation levels required for the DNS calculations to capture the oscillatory state are such that the tolerance
criteria are indicated in Figure 2. We see in Figure 2 that as Gr away from the bifurcation point of the tertiary flow the
orientation of the vortices becomes increasingly skewed to maximase mass transport.

Maintaining the same wavenumber values (a, 8) = (1.34,0.7) and increasing the value of Gr we encounter the quater-
nary Oscillatory Subharmonic Azimuthally Drifting (OSAD) vortex flow of the laterally heated vertical rectangular tube in
Figure 3. The results of the present analysis with (L, M, N) = (21,10, 10) are given, for Pr = 0. Here for (a,c), Gr = 593
(left column) and (b, d), Gr = 640 (right column). The states are depicted in Figure 3 by their planar countour plots (top
- (a,b)) and by their vorticity (bottom - (c,d)) countour profile. The OSAD required a total of 3 x 10° forward time steps
at this higher truncation level to produce the figures depicted here. The state bifurcates from the tertiary state OBV of
Figure 2 and has the same wavenumbers (a, ) = (1.34,0.7)). This state cannot be identified by the Newton Raphson
method as it is not a steady localised or a uniformly drifting wave solution. We identified three stable regions of the
quaternary flow: 593 < Gr < 640, 649 < Gr < 660 and 740 < Gr < 770, see Table 2. The subharmonic state returns to
its tertiary status in between these regions and for G > 770 we have the formation of the quinary subharmonic state.

In Figure 4 we depict the tertiary pulsating OPV state of the laterally heated rectangular tube with pulsating nature.
The results of the present analysis with (L, M, N) = (21,10, 10) are given, for Pr = 0, Gr = 710. The state is a pulsating
flow and it is depicted at ((a) — left) for its axial velocity and ((a) - right) vorticity profiles. The equivalent superharmonic
state is depicted in ((b) — left) for its axial velocity and ((b) - right) vorticity profiles. A total of 4 x 10° time steps
were required to produce the figures depicted here. Here (a,3) = (1.34,0.7) for OSAD and (o, ) = (1.34,1.34) for
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Orders States Gr Range Subharmonic route Superharmonic route
Secondary 2d Vortex 500 < Gr < 515 VF (Vortex flow) VF
Tertiary Oscillatory 515 < Gr < 593, 640 < Gr < 649 OSV flow
661 < Gr < 740 (subharmonic)
Tertiary Oscillatory and 543 < Gr < 750 OSV flow
axially drifting (superharmonic)
Quaternary  Oscillatory and 593 < Gr < 640, 649 < Gr < 660 and  OSAD flow (Oscillatory —
axially drifting 740 < Gr < 770 Subharmonic
u-drift flow)
Quinary Oscillatory 770 < Gr < 810 OSAZD flow (Oscillatory —
Subharmonic
axially and u-drift and
azimuthally drifting v-drift flow)

Table 2: Range of Grashof number values for the rectangular tube and for specific choices of the wavenumber values (a, 8) = (1.34,0.7) for the
subharmonic case and (o, 8) = (1.34,1.34) for the superharmonic route.

the superharmonic OPV state. Both states were identified via direct forward marching numerical simulations. A higher
truncation level with (L, M, N) = (23,14, 14) was also used for the verification of this state to ensure that the state was
captured accurately.

In Figure 5 the Oscillatory Quinary axially and azimuthally drifting Subharmonic State (OSAZD) of the laterally
heated rectangular tube. The results of the present analysis with (L, M, N) = (21,10, 10) are given, for Pr = 0,Gr = 770
and (a,8) = (1.34,0.7). The state bifurcates from the quaternary state with (o, 8) = (1.34,0.7) and has the same
wavenumbers. The higher truncation level (L, M, N) = (23,14, 14) was also applied to ensure that the state was captured
accurately. These quinary states were identified with DNS only.

In Figure 6 we compare two tertiary states in the subharmonic SBA to turbulence for the laterally heated rectangular
tube. The results of our analysis with (L, M, N) = (21,10, 10) are given, for Pr = 0, Gr = 640(a), 740(b). For both states
(o, B) = (1.34,0.7). The states were captured via DNS. A higher truncation level with (L, M, N) = (23,14, 14) was also
applied for the identification of the states to ensure that the states were captured accurately. In Figure 6 we see the loss
of the flat surface boundaries between hot and cold regions and the emergence of wavy surfaces. This re-alignment of the
vortices maximizes momentum and mass transfer.

In Figure 7 the quaternary OSAD (drifting in the azimuthal direction) subharmonic state and the tertiary Oscillatory
Superharmonic axially drifting (OPV) flow of the laterally heated vertical rectangular tube of Figure 1 are presented.
The results of the present analysis with (L, M, N) = (21, 10,10) are given, for Pr = 0. Here left column (part (a)) for
the quaternary OSAD and right column (part b) the tertiary OPV and for Gr = 640. The states are depicted by their
corresponding planar countour plots.and (e, §) = (1.34,1.34) for OPV and («, 8) = (1.34,0.7) for OSAD. Both states were
captured via DNS. As is evident from this figure and following our analysis that we present for the superharmonic route in
Table 2 we conclude that the tertiary superharmonic state OPV is a subset of the subharmonic manifold of solutions. The
suprharmonic route offers no further bifurcations and the superharmonic OPV eventually becomes unstable for further
increases of the Grashof number values beyond Gr = 780.

In Figure 8 we offer a comparison between the subharmonic tertiary OBV (a) and the quinary azimuthally and axially
drifting state (OSAZD) of the laterally heated rectangular tube. The results of the present analysis with (L, M, N) =
(23,14, 14) are given, for Pr = 0,Gr = 710 (a) and Pr = 0,Gr = 770 (b). Here (o, 3) = (1.34,0.7) for both states.
The quinary state bifurcates from the quaternary state at Gr = 770. This state cannot be identified by Newton Raphson
method as it is also not a steady localised solution.

5. Concluding remarks

In the present study we employed a variety of proprietary code that is capable of capturing solutions that describe
steady states, drifting waves with a uniform velocity or combinations of these type of solutions. For these types of solutions
fixed points in the Poincaré map are taken to be the ’stable’ periodic states as an initial guess, which are also available
in the DNS and are used to calculate the return map on the Poincaré section, where one of the expansion coeflicients,
Apmmn, bemn, Co, dg, is constant. In order to evaluate the Jacobian matrix numerically the other expansion coefficients are
changed slightly one by one. Their return maps are also created by the DNS and are used to approximate the Jacobian
matrix by a linear finite-difference scheme. Additionally the Newton-Raphson iteration is employed in these cases for
consistency and cross-checking. The existence of the periodic solution is explored even in a region in the parameter space
where it is unstable in order to fully understand its characteristics and its eventual loss of stability.

The amplitude of each nonlinear state that emerges from disturbances imposed on the laminar state grows gradually as
the control parameter increases. The newly bifurcated nonlinear states emerge continuously and are initially stable to three
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dimensional perturbations. Since the system transitions in our analysis smoothly changes from an unstable nonlinear state
to the sequel initially stable nonlinear state as our control parameter Gr crosses a critical value, all bifurcations that we
encountered were supercritical. In the present paper we have investigated the nonlinear development of the perturbations
of the various states in the SBA and in the harmonic case using initially various numerical schemes. It transpired though
that a variant of a direct numerical simulation, as described in section 4, was necessary for the higher order states as a
Newton-Raphson iterative scheme could only capture the two dimensional VF. For all other states we employed the DNS
route.

Our analysis for specific values of (o, ) has shown that there are two main routes for the transition o turbulence
in a rectangular tube. The most transient route is the subharmonic one with the superharmonic case being a subset of
the subharmonic one. A comparison of Figure 2 and Figure 3 shows that the tertiary states are characterised by flat
boundaries between the hot and cold regions, while the quaternary states by wavy boundaries in the (z,y) planes. This
means that the symmetry planes & = constant is lost. In fact, there are two different solutions of the quaternary states. In
addition the downward traveling solution exhibited in Figure 3 with mirror motion corresponding to a solution traveling
upward which can be obtained by changing the sign of x and z in the representation of the solutions via egs.(15-16).
Which of the two solutions is realised in an actual experiment will depend, of course, on the application of the initial
disturbance. The loss of symmetry with respect to the plane z = 0 and the emergence of he wavy boundaries for the
higher order states can be attributed to the boundary conditions, see similar explanation for the Wavy Twist solution in
[22] in relation to the experiments of [23].

In Figure 9 we depict the transition to turbulence for the quinary oscillatory subharmonic state (left) and the oscillatory
tertiary superharmonic state (right). Both states are drifting in both axial and azimuthal directions of the laterally heated
rectangular tube. The results of the present analysis are given, for Pr = 0, Gr = 1000 for both cases are presented in the
Figure. A total of 2 x 10'° time steps were required to produce the figures depicted here. Here o, 8 = 1.34,0.7 for the
subharmonic state on the left and («, 8) = (1.34,1.34) for the superharmonic state on the right. These states cannot be
identified by Newton Raphson method as they are not a steady localised or uniformly moving solutions. The supeharmonic
state retains its quasi-periodicity up tp Gr = 2000. Higher truncation levels were required for the identification of the
sequence of transient states presented in Figure 9.

An interesting and unusual property of the quaternary subharmonic solutions is their return to the oscillatory tertiary
three-dimensional solution at a higher value of the control parameter Gr, i.e. in between the regions mentioned in Table
2. This may not be a physically realistic scenario since we did not examine other bifurcation points on the branch of the
tertiary oscillatory solutions as well as on the branches of the oscillatory drifting solutions, restricting our investigation
to equivalent cases of the Floquet ansatz of eqs.(28-29) to d = «/2,b = 8. We cannot exclude therefore the existence of
simpler or more complicated structures with a different choice of (d, b) values. It appears however that the imposition of
the constant flux condition restricts the bifurcation path of the quaternary OSAD via re-aligning of the symmetries of
the states until Gr becomes sufficiently high. Most of our calculations produced higher order states that have mean flow
components in the axial and/or azimuthal directions.

Finally we note that all bifurcations in our study were supercritical and that the constant flux condition that we
imposed makes the calculations realistic and close to the results of possible future laboratory experiments for direct
comparisons with simulations. The case for Pr # 0 is currently under investigation.
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