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Graphical Abstract

Tertiary, Quaternary and higher order states in the Sequence of Bifurcations Approach (SBA) to Turbu-
lence for Laterally Heated Shear Flows within a Rectangular Tube

T. Akinagaa, P. M. J. Trevelyanb, S. C. Generalisb

The tertiary OBV oscillatory states of the laterally heated rectangular tube in the SBA for Pr = 0, Gr = 710. The
suharmonic state is a pulsating flow and it is depicted in a) for its azimuthal velocity and c) vorticity profiles. The
equivalent superharmonic state is not pulsating and is depicted in b) for its azimuthal velocity and d) vorticity profiles.
Here the wavenumbers are (α, β = 1.34, 0.7) for the subharmonic and (α, β = 1.34, 1.34) for the superharmonic state
respectively.
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Abstract

We consider a vertical rectangular tube of large aspect ratio with side-wall heating in order to mimic realistic experimental
conditions. We therefore impose the condition that across any lateral cross-section of the rectangular tube the fluid flow
vanishes. We find through our numerical analysis that oscillatory modes yield critical conditions and offer therefore
sequential bifurcations that lead to the turbulent regime. Although the linear stability analysis is the same as the case
where the imposed constant flux condition is absent, the corresponding nonlinear regime displays fundamentally different
characteristics to the open narrow channel case. Here we focus on the sequence of bifurcations approach of a fluid enclosed
in a rectangular tube, aligning with engineering applications. We additionally assume the limit of small Prandtl number
and thus the effects caused by temperature perturbations are ignorable. Finally we identify the oscillatory states that lead
to turbulence as the Grashof number increases up to the value 1000. Our fully nonlinear numerical analysis shows that
all bifurcations are supercritical and here we concentrate on the critical axial wavenumber of the linear stability analysis
of the laminar flow and its pairing with a specific azimuthal wavenumber.

Keywords: Incompressible flow, Bifurcation theory, nonlinearity, stability, turbulence, Floquet parameters, Convective
flow
PACS: 76A05, 76Dxx, 70K30, 70K50

1. Introduction1

Laterally heated flows without the imposition of a constant flux condition across any lateral section of the tube have2

received attention for many decades [1]-[2] due to the many applications in engineering, such as dwelling construction and3

cooling, ventilated double glazing (when combined with pressure flow), nuclear engineering, heat exchangers, aerodynamic4

surfaces, to mention a few. The pioneering works of Boyarintsev [1]-[3], Gershuni [4]-[5], Rudakov [6] Vest and Arpaci [7]5

and several others were concerned with the stability of natural convection between infinite vertical planes kept at different6

fixed temperatures. The case when thermal stratification is present in the vertical direction, was considered by Birikh7

et al. [8] and Korpela et al. [9] who determined that the instability was either shear or buoyancy driven, depending on8

the value of the Prandtl number Pr. It is interesting to note that the conductive state became unstable to stationary9

instabilities for Pr < 12.7 and oscillating thermal instabilities for Pr > 12.7. Their analysis was extended by Bergholz [10]10

to cover a larger range of stratification levels and Prandtl numbers revealing either traveling waves or standing waves are11

dominant, ie become critical before the steady solutions that appear first for lower stratification. The preferred pattern12

was studied independently by Fujimra and Mizushima [11], who accurately calculated the critical Prandtl number to be13

Prc = 12.45425644, and Kropp and Busse [12]. Both studies assumed weak nonlinearity and they studied a wide range14

of Prandtl numbers, concluding that for Pr > Prc, the dominant pattern is standing waves. Using weakly nonlinear15

analysis both studies further examined the nonlinear interaction spectrum between steady and oscillatory modes near the16

cross-over point and analysed the characteristics of the bifurcations at this bicritical point.17

Stability in an annular enclosure of infinite length with the condition that the instability of the fluid flow is purely18

hydrodynamic (isothermal), and it is therefore applicable to a Boussinesq fluid with a small Prandtl number, for example19

the Prandl number for liquid metals, bounded between two infinite walls. This geometric set up was studied through the20

sequence of bifurcations approach in Nagata and Busse [13], hereafter referred to as NB. The only control parameter that21

governs the flow in this case is the Grashof number Gr as temperature decouples from the equations of motion. In their22

analysis NB obtained the bifurcation boundary of the secondary finite amplitude steady two-dimensional transverse roll23

vortices, as predicted by Squire’s theorem [14]. NB proceeded to analyse numerically the stability characteristics of the24

secondary transverse vortices and they identified the Eckhaus [15] stability boundary and the bifurcation curve of steady25

as well as oscillatory three dimensional tertiary flow. During their analysis of the secondary solutions, NB identified26
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regions of the parameter space (α,Gr), where α is the wavenumber of the secondary transverse vortices, where nonlinear27

solutions could not be found numerically. The non-existence of nonlinear solutions was also encountered in Meyer-Spasche28

and Keller [16] and Paap and Riecke [17] in the Taylor vortex flow configuration. It has been analysed and explained29

subsequently to be due to the span of the linear stability curve in terms of the primary wavenumber α contributing to the30

1 : 2 spatial resonance. For a detailed explanation of this resonance see Fujimura and Mizushima [18] and Mizushima [19].31

Ubiquitous flows, such as Couette flow, Plane Poiseuille flow, Taylor-Couette flow, Laterally Heated flow and their32

variants, because of their simple geometry and associated experiments, offer the perfect set up for our quest in identifying33

the inner mechanisms of turbulence through simulations thus paving the way in our understanding of how the fluid flow34

approaches this aperiodic regime as certain control parameters vary. For example, a new class of solutions, that provide a35

variant way to approach the turbulent regime previously unknown, were identified in plane Couette flow, which is known36

to be linearly stable for any value of the control parameter, the Reynolds number R. This was achieved by connecting37

two flows numerically for Pr = 0 . For example, Itano and Generalis [20] obtained a vortical structure in isothermal38

plane Couette flow, having the shape of a hairpin vortex, via connecting Rayleigh—Bénard convection and plane Couette39

flow [21] through homotopy simulations. More recently the higher order bifurcation (stability) characteristics of the40

Taylor-Couette problem were studied numerically in [22] with good agreement established with the experimental results41

of [23].42

The basic, or laminar, velocity profile of our flow includes an inflection point. Nagata and Busse [13], for the infinite43

long channel, found that the primary bifurcation is described by a steady two dimensional transverse vortex flow whereas44

the secondary bifurcation is characterised by steady three dimensional subharmonic sinusoidal motions of the transverse45

vortex. By identifying stability boundaries of increasing hierarchy in the deterministic sequence of bifurcations approach46

(SBA) to turbulence, engineers can predict and control flow instabilities in rotating machinery, chemical reactors, double47

glazing, heat storage and release, optimization of rotating equipment, such as turbines, centrifuges, mixers, cooling systems,48

electronic devices, and solar collectors, amongst other applications.49

The present study explores the transition from laminar flow to turbulence in laterally heated shear flows within a50

closed rectangular tube of large aspect ratio, in order to identify the possibility of a new class of solutions by imposing the51

additional constraint of a vanishing fluid flux (this is apparent for the purely conductive state of Fig.1) across any lateral52

section of the tube. The equivalent case for identifying new classes of solutions for the purely rotating case was studied53

in [22]. It is thus identical to [13] at the purely conductive stage. After confirming the result of NB at the secondary54

bifurcation level, we show that as Gr is increased above its (second) critical value, a three dimensional periodic motion55

sets in as the tertiary flow. Observing that DNS (Direct Numerical Simulation) could capture several unstable periodic56

solutions representing a transient state, we find different types of motion coexist as stable or unstable solutions of the57

system at high Grashof numbers, i.e. well above the stability boundary of laminar flow. This finding strongly depends on58

our choice of the wavenumbers in the axial and azimuthal directions.59

The basic equations and the geometric configuration of our problem are formulated and discussed in section 2. After60

formulating the problem in section 3 we expose the harmonic expansion that was employed in our analysis and the basic61

properties of the small gap approximation of an axially confined duct with an imposed constant flux condition. The62

problem here is equivalent to [22] where rotation is substituted by convection. In section 4 we survey the sequence of63

bifurcations of the transverse vortices with the critical wavelength and their subsequent bifurcations. The properties of64

solutions bifurcating from the two dimensional transverse vortices and from tertiary solutions depend rather strongly65

on the basic wavelength of the two dimensional vortices and are all supercritical. Hence in section 4 we describe the66

numerical methods applied for their solutions and outline stability routes for the higher order bifurcating states for the67

specific wavenumbers (α, β) of the azimuthal and axial directions that were chosen in identifying the bifurcation points of68

the higher order states in the (α, β,Gr) space. Our conclusions are given in section 5.69

2. Mathematical formulation of the problem70

We consider the incompressible fluid flow in the narrow gap between two vertical plates kept at uniform but different71

temperatures. The half gap width d between the two plates will be used as the length scale in the following and d2/ν as72

the timescale, where ν is the kinematic viscosity of the fluid, see Fig.1. We introduce a Cartesian system of coordinates73

with the z-coordinate in the direction normal to the vertical walls, the x-coordinate in the azimuthal direction and the74

y-coordinate in the direction of the axis as shown in Fig. 1. The corresponding unit vectors will be denoted by k, i, j.75

The dimensionless Navier-Stokes equations for the velocity u and temperature θ deviations from the purely conducive76

state can then be obtained in the form:77

(
∂

∂t
+ u · ∇

)
u = −∇π +∇2u− g

g
(Gr z + θ), (1)

∇ · u = 0, (2)
∂θ

∂t
+ u ·∇θ = Gr u · k +

1

Pr
∇2θ. (3)

2
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Figure 1: Laterally heated flow configuration. The dimensional gap width between the two finite plates is 2d. The origin of the x, y and z
coordinate reference system is positioned midplane and the side walls are kept at different temperatures. T0 is the reference temperature.

where π is the pressure disturbance, Gr is the Grashof number defined by Gr = γgd3∆T/ν2, P r =
ν

κ
, γ is the coefficient78

of thermal expansion, κ is the thermal diffusivity, ∆T is the temperature difference, and g = |g| is the acceleration due79

to gravity. The direction of gravity is given by −j. The basic convective flow can be realised by taking a Boussinesq fluid80

between the vertical plates maintained at different constant temperatures, T0 + ∆T and T0 − ∆T , see Fig.1, where T081

is the ambient (reference) temperature. The conductive state is therefore represented by a linear temperature variation82

across the fluid layer, and buoyancy balances the viscous force. Since the basic laminar conductive flow profile violates83

the Rayleigh criteria [24] for the stability of shear flow profiles in the absence of viscosity, the bifurcation into a state84

of periodically arranged transverse vortices is supercritical for Prandtl number Pr = 0 as shown in NB. In this case the85

nondimensional laminar flow is given by the solution [4], [5]:86

VB(z) = Grz
(
1− z2

)
j, θ = 0. (4)

The boundary conditions for the velocity are given by87

u = 0 at z = ±1, (5)

In the present study, the Grashof number Gr plays a critical role in determining the flow’s stability and bifurcation88

behaviour. As Gr increases, the flow transitions through various states, including steady two dimensional transverse vortex89

flow, oscillatory three dimensional subharmonic sinusoidal motions, and eventually three dimensional aperiodic motions90

at higher Gr values. These transitions highlight the importance of Gr in characterising the dynamics and stability of91

convective flows. In the limit of vanishing Prandtl number (heavy metals) temperature perturbations become identically92

zero and the energy equation decouples from the velocity equations. Further it is convenient to eliminate the equation of93

continuity by the introduction of the following general representation of the velocity field:94

u = U(t, z)i+ (V (t, z) + VB(z))j + ũ, ũ = ∇× (∇× kϕ) +∇× kψ. (6)

95

By using the operators k · ∇× (∇× ) , and k · ∇× on Eq.(1) we obtain the following two equations for ϕ, the poloidal96

part, and ψ the toroidal parts of the velocity field of Eq.(6):97

3
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tube realised in the configuration of Figure 1. The results of the present analysis with (L,M,N) = (21, 10, 10) are given for the two values of
the Grashof number in the SBA, for Pr = 0 : (a) Gr = 515 and (b) Gr = 540 and (α, β) = (1.34, 0.7).

(
∇2 − ∂

∂t

)
∇2△2ϕ = U

∂

∂x
∇2△2ϕ− ∂2U

∂z2
∂

∂x
△2ϕ

−∂
2V

∂z2
∂

∂y
△2ϕ+ V

∂

∂y
∇2△2ϕ+ k · ∇ × (∇× (ũ · ∇ũ)) , (7)

(
∇2 − ∂

∂t

)
△2ψ = U

∂

∂x
△2ψ − ∂U

∂z

∂

∂y
△2ϕ

+V
∂

∂y
△2ψ +

∂V

∂z

∂

∂x
△2ϕ− k · ∇ × (ũ · ∇ũ) , (8)

and the following two equations for the mean flows in the azimuthal and axial directions, respectively:98

(
∂2

∂z2
− ∂

∂t

)
U = − ∂

∂z
△2ϕ

(
∂2

∂x∂z
ϕ+

∂

∂y
ψ

)
, (9)

(
∂2

∂z2
− ∂

∂t

)
V = − ∂

∂z
△2ϕ

(
∂2

∂y∂z
ϕ− ∂

∂x
ψ

)
. (10)

In the arrangement that is explored in the present study (Pr = 0), only eqs.(7-10) in conjunction with eq.(4) will be99

retained. We note that the time dependence of the mean components of eqs.(9-10) has been neglected, since we are100

interested in flow states that exist under steady external conditions. We note here that U, V are the mean flows in the101

azimuthal (x) and axial (y) directions, respectively. Note that the mean flow V (for the axial direction), was not considered102

in [13], in contrast to the present study, where the mean flows in both directions are being considered. We note that the103

overbar indicates the average over the x− and y−coordinates and the operator △2 is defined by △2 ≡ ∇2 − (k · ∇)2. The104

case where the system was under axial rotation and Gr = 0 was studied in [22], while in the present study we concentrate105

on the case where rotation is absent and Gr ̸= 0. The case where a parabolic transverse seepage was applied with in the106

absence of axial rotation Gr ̸= 0 was considered in [25].107

3. Harmonic expansion108

In order to implement the deterministic approach of the sequence of bifurcations for higher order states that emanate109

from disturbing the laminar flow of eq.(4) we assume periodicity in stream-wise (x) and span-wise (y) directions, whereas110

the non-slip boundary conditions at the boundaries in the wall coordinate are assumed. The linear stability boundary is111

given in [13] and is adopted in the present analysis. In order to follow the bifurcating higher order states for the poloidal112

4
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Figure 3: The quaternary Oscillatory Subharmonic Azimuthally Drifting (OSAD) vortex flow and the tertiary state OBV of the laterally heated
vertical rectangular tube of Figure 1. The results of the present analysis with (L,M,N) = (21, 10, 10) are given, for Pr = 0. Here for Gr = 593
((a,c) left column) and Gr = 640 ((b,d) right column) the quaternary OSAD and the tertiary OBV states respectively. The states are depicted
by the three planar countour plots (top - as shown) and by the azimuthal u profile, bottom figures. Here (α, β) = (1.34, 0.7).
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(ϕ) and toroidal (ψ) parts in equation (6), we performed a normal mode analysis assuming the following expansions113

ϕ (x, y, z) =
L∑

ℓ=0

Fℓ(z)ϕ̂ℓ, (11)

ψ (x, y, z) =

L∑

ℓ=0

Gℓ(z)ψ̂ℓ, (12)

where:114

ϕ̂ℓ =

|m|≤M,|n|≤N∑

(m,n)̸=(0,0)

aℓmn e
i[mα(x−cxt)+nβ(y−cyt)], (13)

ψ̂ℓ =

|m|≤M,|n|≤N∑

(m,n)̸=(0,0)

bℓmn e
i[mα(x−cxt)+nβ(y−cyt)], (14)

where in the above expressions α, β are the wavenumbers in the azimuthal and axial directions respectively, aℓmn, bℓmn are115

the unknown complex coefficients to be determined and where we have additionally introduced cx, cy, the constant phase116

speeds in the azimuthal an axial directions, in order to also take into account shape preserving traveling wave solutions in117

the azimuthal and/or axial directions. The phase speed c can be determined via a geometric method or can be evaluated118

independently. In our studies we use a Galerkin-type approach that is capable of following the solution if it moves with a119

phase speed c. In this case the phase speed is one of the unknown parameters and can also be determined explicitly by our120

numerical method as one of the unknown parameters. Care therefore has to be exercised in positioning the phase speed121

within the matrix of the unknown coefficients. In our analysis, however, and with the exception of the two dimensional122

solution, we only identified solutions of the form123

ϕ̂ℓ =

|m|≤M,|n|≤N∑

(m,n) ̸=(0,0)

aℓmn(t) e
i[mα(x−cx(t)t)+nβ(y−cy(t)t)], (15)

ψ̂ℓ =

|m|≤M,|n|≤N∑

(m,n)̸=(0,0)

bℓmn(t) e
i[mα(x−cx(t)t)+nβ(y−cy(t)t)], (16)

i.e. solutions where the complex coefficients aℓmn(t), bℓmn(t) are time dependent, while simultaneously there exist time124

dependent (not constant as in eqs. (13-(14)) c(t) = (cx(t), cy(t)) ̸= 0 indicating solutions that are drifting in either125

the axial, or azimuthal or both directions with variable phase speeds. As a measure of nonlinearity we choose the time126

dependent poloidal and toroidal norms ℓϕ2 (t), ℓ
ψ
2 (t), respectively, defined by127

ℓϕ2 (t) =
√
aℓmn(t)a∗ℓmn(t), ℓ

ψ
2 (t) =

√
bℓmn(t)b∗ℓmn(t), (17)

of the nonlinear solution states that we identified. Here the * indicates the complex conjugate. The following equations128

were used for the mean flows in the azimuthal and axial directions129

U (z) =

L∑

ℓ=0

Gℓ(z) cℓ(t), (18)

V (z) =
L∑

ℓ=0

Gℓ(z) dℓ(t) + µ (z2 − 1), (19)

where the parameter µ is determined by the condition of vanishing mass flux in the y-direction,130

∫ +1

−1

V (z) dz = 0 (20)

and cℓ(t), dℓ(t) are the mean flow coefficients in the azimuthal and axial directions, respectively and Eq. (19), the constant131

flux condition of a vanishing flow rate through any lateral cross-section, ensures that the remote ends of the of the132

rectangular tube in the axial direction are assumed to be closed and that our numerical model is thus a better reflection133

of the real life experimental set-ups. A variant of the above methodology was used to identify the states for the rotating134

case, the Taylor-Couette problem, and when convective effects are removed, with good agreement between simulations135
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a)

b)

Figure 4: The tertiary OBV and OPV oscillatory states of the laterally heated rectangular tube. The results of the present analysis with
(L,M,N) = (21, 10, 10) are given, for Pr = 0, Gr = 710. The state is a pulsating flow and it is depicted at ((a) – left) for its azimuthal velocity
and ((a) - right) vorticity profiles. The equivalent superharmonic state is not pulsating and is depicted in ((b) – left) for its azimuthal velocity
and ((b) - right) vorticity profiles. A total of 4× 109 time steps were required to produce the figures depicted here. Here (α, β = 1.34, 0.7) for
the subharmonic OBV and (α, β = 1.34, 1.34) for the superharmonic OPV states respectively.

[22] and experiment [23] and also for the comparisons between the results of [22] and the numerical analysis of [26], where136

eq.(10) was not employed.137

The Fℓ(z) and Gℓ(z) (ℓ = 0, 1, . . . , L) of eqs.(11-12) are combinations of the 1st kind Chebyshev polynomials (Tℓ(z)138

(ℓ = 0, 1, . . .)),139

Fℓ (z) =
(ℓ+ 1)Tℓ+4(z)− 2 (ℓ+ 2)Tℓ+2(z) + (ℓ+ 3)Tℓ(z)

4 (ℓ+ 2)
, (21)

Gℓ (z) =
Tℓ (z)− Tℓ+2 (z)

2
, (22)

that are employed in order to satisfy140

Fℓ (z = ±1) = 0, (23)
dFℓ
dz

(z = ±1) = 0, (24)

Gℓ (z = ±1) = 0. (25)

As an example of the poloidal toroidal decomposition above we can write for ũ of equation (6)141

ũ =

(
∂2ϕ

∂x∂z
+
∂ψ

∂y

)
i+

(
∂2ϕ

∂y∂z
− ∂ψ

∂x

)
j − (△2ϕ)k. (26)

The integer values L,M,N , the predetermined truncation levels, have to be sufficiently high such that the nonlinear142

solutions, measured by ℓϕ2 (t), ℓ
ψ
2 (t) of eqs.(17), do not change significantly if L,M,N are increased, and a change ≤ 1%143

is achieved. In our studies a typical set of truncation levels for the reported tertiary, quaternary and quinary states144

with L = 17,M = 10, N = 10 were in general sufficient in order to account for the subharmonic instability 2 : 1 [13].145

The subharmonic instability is the instability whereby the dominant higher order state has a wavenumber that equals146

half the wavenumber of the lower order state in the bifurcation tree of the sequential bifurcations as the Gr number147

value increases. For the verification of our results and for the subharmonic instability in particular the truncation levels148

with L = 21,M = 12, N = 12 were also selected. This inevitably results in a large number of complex coefficients149

aℓmn(t), bℓmn(t), cℓ(t) and dℓ(t) from Eqs.(7-10), that need to be determined. We can reduce the number of coefficients to150

be calculated by using relationships such as,151

aℓ−m−n(t) = a∗ℓmn(t), (27)

because of the reality conditions of the coefficients, resulting from ϕ = ϕ∗ and ψ = ψ∗, where ϕ∗, ψ∗ refer to the complex152

conjugate of ϕ, ψ, respectively. Additional relations that refer to the symmetries of the higher order nonlinear states that153

are sought are also used, see Table 1. This reduces the number of coefficients further and makes the study of the nonlinear154

solutions, at relatively high truncation levels, possible with the additional benefit of reduced computation time.155
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Figure 5: The planar contour projections of the Oscillatory Subharmonic Quinary axially and azimuthally drifting state (OSAZD) of the laterally
heated rectangular tube top set and its vorticity field profile bottom figure. The results of the present analysis with (L,M,N) = (21, 10, 10)
are given, for Pr = 0, Gr = 770. A total of 2 × 109 time steps were required to produce the figures depicted here. Here (α, β) = (1.34, 0.7).
The state bifurcates from the quaternary state with (α, β) = (1.34, 0.7) and has the same wavenumbers.
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Figure 6: Planar contour projections of the tertiary subharmonic states OBV at different values of Gr. The results of the present analysis with
(L,M,N) = (21, 10, 10) are given, for Pr = 0, Gr = 640(a), 740(b) are presented here. For both states (α, β) = (1.34, 0.7). The states were
captured via DNS. A higher truncation level with (L,M,N) = (23, 14, 14) was also applied to ensure that the states were captured accurately.

Direct Numerical Simulations (DNS) were employed for all the cases since time dependent solutions needed to be156

determined and these solutions do not lead to steady states or shape preserving traveling waves. The evolution in time157

of the oscillatory states is analysed through second order integration in time of the system of equations for the expansion158

coefficients ϕℓmn(t) and ψℓmn(t) in the general representation (13-14). The truncation level is determined in the same way159

as in the case of steady state solutions or shape preserving traveling waves, see [22]. In order to determine the stability160

range of these oscillatory states we introduce perturbations on the leading coefficients and observe their evolution in time.161

Any oscillatory state is considered stable for the range of Grashof numbers, for which a converged solution (that remains162

unchanged with further time integrations or increased truncation levels) can be identified.163

4. SBA - The search for higher order sates164

All our efforts are directed towards an improved understanding of turbulent fluid flow and are based on the fully165

deterministic sequence of bifurcations approach (SBA). It is therefore the aim of this manuscript to demonstrate that using166

Eqs.(7-10) solutions of the isothermal Navier-Stokes equations of motion can help us understand the underlying dynamical167

mechanisms operating in turbulent fluid systems and additionally make a stronger connection between theory/simulation168

and experiment whenever laboratory results are available. The SBA allows us to follow the spatially and temporally169

periodic solutions of the Navier-Stokes equations prior to the exhibition of their chaotic nature allowing us to analyse170

the patterns that are formed when turbulence is evident for the particular system under consideration. By analysing the171

formation of these turbulent patterns, we can study the transport mechanism that operates under turbulent conditions172

at the values of the control parameter, that for the present study is the Grashof number, measuring the strength of the173

applied heating. It is through this route that we can identify the fundamental frequencies upon the combination of which174

the aperiodic motion is built.175

We provide here a brief description of the different numerical schemes that we employed in the present study and176

frequently employ in general in our studies for the transition to turbulence through the SBA approach. The Newton-177

Raphson method is used for steady, time independent, and travelling-wave type equilibrium states with uniform phase178

speed, see eqs.(13-14). Substitution of the expansions of eqs.(11-14) with the appropriate truncation level L,M,N into the179

equations (7-8) leads to to a set of nonlinear algebraic equations for the expansion coefficients, aℓmn, bℓmn, cℓ, dℓ, which180

when combined with the Chebyshev-Gauss-Lobatto collocation method yield the solutions for aℓmn, bℓmn, cℓ, dℓ, cx, cy. In181

order to investigate the stability characteristics of the steady or periodic solutions (travelling-wave type equilibrium states182

that drift with a constant phase speed c = (cx, cy)) we use linear stability analysis on the established time independent183
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Figure 7: The quaternary OSAD (drifting in the azimuthal direction) subharmonic state and the tertiary Oscillatory Superharmonic axially
drifting (OPV) flow of the laterally heated vertical rectangular tube of Figure 1: (a) the quaternary OSAD and right column (part b) the
tertiary OPV and for Gr = 640. The results of the present analysis with (L,M,N) = (21, 10, 10) are given, for Pr = 0. The states are depicted
by their planar countour plots. Here (α, β) = (1.34, 1.34) for OPV and (α, β) = (1.34, 0.7) for OSAD. Both states were captured via DNS.

nonlinear solutions of section 3 . We superimpose three dimensional infinitesimal disturbances on these nonlinear solutions184

using Floquet theory and analyse the resulting eigenvalue spectrum. This procedure was followed for the secondary state185

only, as this was the only state that could be described with time independent coefficients in our study.186

Accordingly if we let the generic infinitesimal disturbances to be of the form187

ϕ̃ℓ =
L∑

ℓ=0

Fℓ(z)

|m|≤M,|n|≤N∑

(m,n)̸=(0,0)

ãℓmn e
i[(mα+d)(x−cxt)+(nβ+b)(y−cyt)]+σt, (28)

ψ̃ℓ =
L∑

ℓ=0

Gℓ(z)

|m|≤M,|n|≤N∑

(m,n)̸=(0,0)

b̃ℓmn e
i[(mα+d)(x−cxt)+(nβ+b)(y−cyt)]+σt, (29)

we see that the coefficients are time independent and that the above two parameter (d, b) Floquet ansatz applies for188

a general type of three-dimensional disturbances since our solutions are assumed periodic in the azimuthal and axial189

dimensions (large aspect ratio of the rectangular tube) and include the cases where nonlinear solutions are of the travelling190

wave form (if they are steady (c = 0)), since in our calculations we employ a moving frame analysis to capture these states.191

Since we assumed that the value of d2 + b2 ̸= 0 in the stability analysis no disturbances to eqs.(9-10) need to be taken192

into account into the stability analysis, thus reducing slightly the computational time required to calculate the eigenvalue193

spectrum. Equations (28) and (29) give rise to a linear homogeneous system for the unknowns ãℓmn, b̃ℓmn with the194

growth rate σ providing the set of eigenvalues. The eigenvalue matrix, being approximately 30% larger than the matrix195

that identifies the steady nonlinear/travelling-wave type equilibrium solution, necessitates the use of high performance196

computing power to maintain the same accuracy for the eigenvalue spectrum as for the identified nonlinear solutions.197

In the present study however, the nonlinear states, that are realised when the lowest within SBA hierarchically state198

is perturbed (the two dimensional state), have time dependent coefficients presented in eqs.(15-16), and Floquet analysis199

is not appropriate for these higher order states. The time development of the disturbance in this case followed in space200

and time by a direct numerical simulation (DNS). This is achieved by performing the time integration on the wall-201

normal components, w for the velocity and ωz for the vorticity, derived from the full Navier-Stokes equations by using202

direct imposition of additional factors (boundary conditions), so that the the poloidal and toroidal parts satisfy the203

boundary conditions automatically, see eqs.(11-14, 18-19), while the Fourier expansions are employed in the streamwise204

and spanwise directions with the Chebyshev polynomial expansion employed in the direction normal to the plates. In205

our present study we employed the Newton-Raphson method to identify the only steady nonlinear state, namely the two206

dimensional secondary state. All higher order states in the SBA to the turbulent regime were calculated via time step207

forwarding through DNS.208
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Orders States Symmetry Subharmonic route Superharmonic route
Secondary 2d Vortex Translation in time, reflection aℓ−m = aℓm, VF VF

shift (translation)
in roll axis ϕ(y + 2π/α, z) = ϕ(y, z)

Tertiary Oscillatory aℓ−mn = −aℓmn,m+ n = even, ℓ = odd/even OBV flow (Oscillatory
(ℓ = odd/even, cℓ = 0), (ℓ = odd, dℓ ̸= 0) Subharmonic Vortex) flow

Tertiary Oscillatory and aℓ−mn = −aℓmn,m+ n = /odd OPV flow (Oscillatory
axially drifting (ℓ = odd, cℓ ̸= 0), (ℓ = even, dℓ ̸= 0) Superharmonic Vortex)

Quaternary Oscillatory and aℓ−mn = (−1)ℓaℓmn,m+ n = even/odd OSAD flow (Oscillatory —
axially drifting (ℓ = odd, cℓ ̸= 0, ℓ = even, dℓ ̸= 0) Subharmonic axially

(u-drift) flow)
Quinary Oscillatory aℓ−mn = (−1)ℓaℓmn,m+ n = even/odd OSAZD flow (Oscillatory —

Subharmonic axially and
axially and (ℓ = even, cℓ ̸= 0), (ℓ = even, dℓ ̸= 0) azimuthally (u-drift and
azimuthally drifting (ℓ = odd, cℓ ̸= 0), (ℓ = odd, dℓ ̸= 0) v-drift) flow)

Table 1: Nomenclature for states of flow and their symmetries in the present study. Note that the superharmonic and the subharmonic tertiary
states share the same acronym.
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Figure 8: Comparison between the subharmonic tertiary OBV (a) and the quinary azimuthally and the suharmonic axially drifting state
(OSAZD) of the laterally heated rectangular tube. The results of the present analysis with (L,M,N) = (23, 14, 14) are depicted for Pr = 0
and Gr = 710 (left) and Gr = 770 (right). The quinary state bifurcates from the quaternary state of Fig.7 at Gr = 770 and has the same
wavenumbers (α, β) = (1.34, 0.7) as the tertiary OBV.

SBA - results for the subharmonic α = β/2 and superharmonic α = β cases209

The first case involves tertiary states that bifurcate supercritically from the secondary states of NB . Additionally, we210

note that we can write for ũ in (6):211

ũ = ũi+ ṽj + w̃k = ∇× iϕ1 +∇× jϕ2 +∇× kψ, (30)
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Figure 9: Transition to turbulence for the the Quinary oscillatory subharmonic state (left) and the Oscillatory tertiary superharmonic state
(right). Both states are drifting in both axial and azimuthal directions of the laterally heated rectangular tube. The results of the present
analysis are given, for Pr = 0, Gr = 1000 for both cases are presented. A total of 2 × 1010 time steps were required to produce the figures
depicted here. Here (α, β) = (1.34, 0.7) for the subharmonic state on the left and (α, β) = (1.34, 1.34) for the superharmonic state on the right.
The ℓϕ2 (t) norm (left ordinate) and ℓψ2 (t) norm (right ordinate) of eqs.(17) are depicted here.

where212

ϕ1 =
∂ϕ

∂y
, ϕ2 = −∂ϕ

∂x
. (31)

Formulae (30, 31) allow us to present a three-dimensional graphic representation of the velocity field, through contour213

plots of the potentials ψ, ϕ1, ϕ2 in the planes perpendicular to i, j, or k, which is exploited in the following.214

The SBA analysis for this work produced the following results for the subharmonic route. As is known from [13],215

the secondary vortex flow (VF) bifurcates at Gr = 497 and is a steady two dimensional vortex. We confirm this finding216

and find that the two dimensional axial vortex bifurcates around Gr = 500. In order to study the stability of the two217

dimensional axial vortex there are two routes [13] to higher order nonlinear states in the SBA to turbulence, namely the218

subharmonic route and the superharmonic route. For the subharmonic route we choose (α, β) = (1.34, 0.7) and for the219

superharmonic route we choose (α, β) = (1.34, 1.34) for our present study.220

The tertiary Oscillatory Subharmonic vortex (OBV) flow with (α, β) = (1.34, 0.7) appears at Gr = 515 and the221

coefficients observe the conditions m+n =even for aℓmn and m+n =odd for bℓmn for ℓ even or odd. This state is depicted222

in Figure 2. The planar contour projections of the tertiary OBV of the laterally heated vertical rectangular tube are given223

for the two values of the Grashof number in the SBA, for Pr = 0. For part (a) of the Figure 2 Gr = 515 and for part224

(b) Gr = 540. Here (α, β) = (1.34, 0.7). The state bifurcates from the secondary transverse vortex with α = 1.345 of225

[13]. The truncation levels required for the DNS calculations to capture the oscillatory state are such that the tolerance226

criteria are indicated in Figure 2. We see in Figure 2 that as Gr away from the bifurcation point of the tertiary flow the227

orientation of the vortices becomes increasingly skewed to maximase mass transport.228

Maintaining the same wavenumber values (α, β) = (1.34, 0.7) and increasing the value of Gr we encounter the quater-229

nary Oscillatory Subharmonic Azimuthally Drifting (OSAD) vortex flow of the laterally heated vertical rectangular tube in230

Figure 3. The results of the present analysis with (L,M,N) = (21, 10, 10) are given, for Pr = 0. Here for (a, c), Gr = 593231

(left column) and (b, d), Gr = 640 (right column). The states are depicted in Figure 3 by their planar countour plots (top232

- (a,b)) and by their vorticity (bottom - (c,d)) countour profile. The OSAD required a total of 3× 109 forward time steps233

at this higher truncation level to produce the figures depicted here. The state bifurcates from the tertiary state OBV of234

Figure 2 and has the same wavenumbers (α, β) = (1.34, 0.7)). This state cannot be identified by the Newton Raphson235

method as it is not a steady localised or a uniformly drifting wave solution. We identified three stable regions of the236

quaternary flow: 593 ≤ Gr < 640, 649 ≤ Gr ≤ 660 and 740 ≤ Gr < 770, see Table 2. The subharmonic state returns to237

its tertiary status in between these regions and for G ≥ 770 we have the formation of the quinary subharmonic state.238

In Figure 4 we depict the tertiary pulsating OPV state of the laterally heated rectangular tube with pulsating nature.239

The results of the present analysis with (L,M,N) = (21, 10, 10) are given, for Pr = 0, Gr = 710. The state is a pulsating240

flow and it is depicted at ((a) – left) for its axial velocity and ((a) - right) vorticity profiles. The equivalent superharmonic241

state is depicted in ((b) – left) for its axial velocity and ((b) - right) vorticity profiles. A total of 4 × 109 time steps242

were required to produce the figures depicted here. Here (α, β) = (1.34, 0.7) for OSAD and (α, β) = (1.34, 1.34) for243
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Orders States Gr Range Subharmonic route Superharmonic route
Secondary 2d Vortex 500 ≤ Gr < 515 VF (Vortex flow) VF
Tertiary Oscillatory 515 ≤ Gr < 593, 640 < Gr < 649 OSV flow

661 ≤ Gr < 740 (subharmonic)

Tertiary Oscillatory and 543 ≤ Gr ≤ 750 OSV flow
axially drifting (superharmonic)

Quaternary Oscillatory and 593 ≤ Gr ≤ 640, 649 ≤ Gr ≤ 660 and OSAD flow (Oscillatory —
axially drifting 740 ≤ Gr < 770 Subharmonic

u-drift flow)
Quinary Oscillatory 770 ≤ Gr < 810 OSAZD flow (Oscillatory —

Subharmonic
axially and u-drift and
azimuthally drifting v-drift flow)

Table 2: Range of Grashof number values for the rectangular tube and for specific choices of the wavenumber values (α, β) = (1.34, 0.7) for the
subharmonic case and (α, β) = (1.34, 1.34) for the superharmonic route.

the superharmonic OPV state. Both states were identified via direct forward marching numerical simulations. A higher244

truncation level with (L,M,N) = (23, 14, 14) was also used for the verification of this state to ensure that the state was245

captured accurately.246

In Figure 5 the Oscillatory Quinary axially and azimuthally drifting Subharmonic State (OSAZD) of the laterally247

heated rectangular tube. The results of the present analysis with (L,M,N) = (21, 10, 10) are given, for Pr = 0, Gr = 770248

and (α, β) = (1.34, 0.7). The state bifurcates from the quaternary state with (α, β) = (1.34, 0.7) and has the same249

wavenumbers. The higher truncation level (L,M,N) = (23, 14, 14) was also applied to ensure that the state was captured250

accurately. These quinary states were identified with DNS only.251

In Figure 6 we compare two tertiary states in the subharmonic SBA to turbulence for the laterally heated rectangular252

tube. The results of our analysis with (L,M,N) = (21, 10, 10) are given, for Pr = 0, Gr = 640(a), 740(b). For both states253

(α, β) = (1.34, 0.7). The states were captured via DNS. A higher truncation level with (L,M,N) = (23, 14, 14) was also254

applied for the identification of the states to ensure that the states were captured accurately. In Figure 6 we see the loss255

of the flat surface boundaries between hot and cold regions and the emergence of wavy surfaces. This re-alignment of the256

vortices maximizes momentum and mass transfer.257

In Figure 7 the quaternary OSAD (drifting in the azimuthal direction) subharmonic state and the tertiary Oscillatory258

Superharmonic axially drifting (OPV) flow of the laterally heated vertical rectangular tube of Figure 1 are presented.259

The results of the present analysis with (L,M,N) = (21, 10, 10) are given, for Pr = 0. Here left column (part (a)) for260

the quaternary OSAD and right column (part b) the tertiary OPV and for Gr = 640. The states are depicted by their261

corresponding planar countour plots and (α, β) = (1.34, 1.34) for OPV and (α, β) = (1.34, 0.7) for OSAD. Both states were262

captured via DNS. As is evident from this figure and following our analysis that we present for the superharmonic route in263

Table 2 we conclude that the tertiary superharmonic state OPV is a subset of the subharmonic manifold of solutions. The264

suprharmonic route offers no further bifurcations and the superharmonic OPV eventually becomes unstable for further265

increases of the Grashof number values beyond Gr = 780.266

In Figure 8 we offer a comparison between the subharmonic tertiary OBV (a) and the quinary azimuthally and axially267

drifting state (OSAZD) of the laterally heated rectangular tube. The results of the present analysis with (L,M,N) =268

(23, 14, 14) are given, for Pr = 0, Gr = 710 (a) and Pr = 0, Gr = 770 (b). Here (α, β) = (1.34, 0.7) for both states.269

The quinary state bifurcates from the quaternary state at Gr = 770. This state cannot be identified by Newton Raphson270

method as it is also not a steady localised solution.271

5. Concluding remarks272

In the present study we employed a variety of proprietary code that is capable of capturing solutions that describe273

steady states, drifting waves with a uniform velocity or combinations of these type of solutions. For these types of solutions274

fixed points in the Poincaré map are taken to be the ’stable’ periodic states as an initial guess, which are also available275

in the DNS and are used to calculate the return map on the Poincaré section, where one of the expansion coefficients,276

aℓmn, bℓmn, cℓ, dℓ, is constant. In order to evaluate the Jacobian matrix numerically the other expansion coefficients are277

changed slightly one by one. Their return maps are also created by the DNS and are used to approximate the Jacobian278

matrix by a linear finite-difference scheme. Additionally the Newton-Raphson iteration is employed in these cases for279

consistency and cross-checking. The existence of the periodic solution is explored even in a region in the parameter space280

where it is unstable in order to fully understand its characteristics and its eventual loss of stability.281

The amplitude of each nonlinear state that emerges from disturbances imposed on the laminar state grows gradually as282

the control parameter increases. The newly bifurcated nonlinear states emerge continuously and are initially stable to three283

13

                  



dimensional perturbations. Since the system transitions in our analysis smoothly changes from an unstable nonlinear state284

to the sequel initially stable nonlinear state as our control parameter Gr crosses a critical value, all bifurcations that we285

encountered were supercritical. In the present paper we have investigated the nonlinear development of the perturbations286

of the various states in the SBA and in the harmonic case using initially various numerical schemes. It transpired though287

that a variant of a direct numerical simulation, as described in section 4, was necessary for the higher order states as a288

Newton-Raphson iterative scheme could only capture the two dimensional VF. For all other states we employed the DNS289

route.290

Our analysis for specific values of (α, β) has shown that there are two main routes for the transition o turbulence291

in a rectangular tube. The most transient route is the subharmonic one with the superharmonic case being a subset of292

the subharmonic one. A comparison of Figure 2 and Figure 3 shows that the tertiary states are characterised by flat293

boundaries between the hot and cold regions, while the quaternary states by wavy boundaries in the (x, y) planes. This294

means that the symmetry planes x = constant is lost. In fact, there are two different solutions of the quaternary states. In295

addition the downward traveling solution exhibited in Figure 3 with mirror motion corresponding to a solution traveling296

upward which can be obtained by changing the sign of x and z in the representation of the solutions via eqs.(15-16).297

Which of the two solutions is realised in an actual experiment will depend, of course, on the application of the initial298

disturbance. The loss of symmetry with respect to the plane z = 0 and the emergence of he wavy boundaries for the299

higher order states can be attributed to the boundary conditions, see similar explanation for the Wavy Twist solution in300

[22] in relation to the experiments of [23].301

In Figure 9 we depict the transition to turbulence for the quinary oscillatory subharmonic state (left) and the oscillatory302

tertiary superharmonic state (right). Both states are drifting in both axial and azimuthal directions of the laterally heated303

rectangular tube. The results of the present analysis are given, for Pr = 0, Gr = 1000 for both cases are presented in the304

Figure. A total of 2 × 1010 time steps were required to produce the figures depicted here. Here α, β = 1.34, 0.7 for the305

subharmonic state on the left and (α, β) = (1.34, 1.34) for the superharmonic state on the right. These states cannot be306

identified by Newton Raphson method as they are not a steady localised or uniformly moving solutions. The supeharmonic307

state retains its quasi-periodicity up tp Gr = 2000. Higher truncation levels were required for the identification of the308

sequence of transient states presented in Figure 9.309

An interesting and unusual property of the quaternary subharmonic solutions is their return to the oscillatory tertiary310

three-dimensional solution at a higher value of the control parameter Gr, i.e. in between the regions mentioned in Table311

2. This may not be a physically realistic scenario since we did not examine other bifurcation points on the branch of the312

tertiary oscillatory solutions as well as on the branches of the oscillatory drifting solutions, restricting our investigation313

to equivalent cases of the Floquet ansatz of eqs.(28-29) to d = α/2, b = β. We cannot exclude therefore the existence of314

simpler or more complicated structures with a different choice of (d, b) values. It appears however that the imposition of315

the constant flux condition restricts the bifurcation path of the quaternary OSAD via re-aligning of the symmetries of316

the states until Gr becomes sufficiently high. Most of our calculations produced higher order states that have mean flow317

components in the axial and/or azimuthal directions.318

Finally we note that all bifurcations in our study were supercritical and that the constant flux condition that we319

imposed makes the calculations realistic and close to the results of possible future laboratory experiments for direct320

comparisons with simulations. The case for Pr ̸= 0 is currently under investigation.321
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