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ABSTRACT

Furfural, a valuable platform chemical with wide industrial applications, has been
produced for decades. Renewed interest in biorefinery processes has driven efforts
to improve its production and expand industrial applications. However, challenges
in achieving high furfural yield and purity after recovery remain significant
bottlenecks. Coupling the reaction with simultaneous separation has emerged as a
promising approach, with biphasic solvent systems gaining significant research
attention. This review consolidates recent progress in using organic solvents within
biphasic systems for furfural production from both simple sugars and raw biomass,
covering both homogeneous and heterogeneous catalytic systems, as well as batch
and continuous operation modes. Key topics include the formation and mechanisms
underlying biphasic systems, which provide insights for process design, and an
analysis of factors influencing furfural yields, aiding in reaction optimization.
Strategies to enhance process efficiency-such as solvent selection and tuning,
phase ratio adjustment, catalyst stabilization, and integration into continuous-flow
systems-are discussed in detail. The impact of these strategies on catalytic
performance and furfural selectivity is highlighted, along with a techno-economic
analysis showing a promising minimum selling price. Finally, this review addresses
the opportunities, challenges, and limitations associated with advancing furfural
production in biphasic solvent systems.
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1. INTRODUCTION

In the current transition from traditional chemistry to
more sustainable practices, often called “green chemistry”,
the focus is increasingly on producing bio-based products,
recycling waste, promoting a circular economy, and
conserving natural resources. This change is driven by
concerns about dwindling fossil fuel reserves and growing
environmental issues, pushing industries to reduce their
reliance on petroleum-based materials and embrace
renewable alternatives (Kunkes et al, 2008). In this
context, lignocellulosic biomass is seen as a sustainable
raw material due to its renewable nature, abundance, and
wide availability in nature. It is primarily made up of three
components: hemicellulose, cellulose, and lignin (Dodds &
Gross, 2007; Vispute et al, 2010). Hemicellulose, the
second most common polysaccharide in plant cell walls,
makes up about 19-34% of lignocellulosic biomass (Yousuf
et al,, 2020). Its amorphous structure makes it easier to
hydrolyze compared to crystalline cellulose, yielding
mainly C5 monosaccharides like xylose (pentoses). Xylose
has gained significant attention as it can be converted into
various valuable chemicals, including furfural and its
derivatives, which have been highlighted in recent reviews
(Dashtban et al,, 2012; Eseyin & Steele, 2015; Machado et
al, 2016; Delbecq et al,, 2018).

Furfural, also known as furfuraldehyde, is recognized
as one of the top 10 high-value bio-based chemicals (Bozell
& Petersen, 2010). It is in high demand and widely utilized
across various industries, including oil refining for
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lubricants and biofuels, plastics for resins and synthetic
fibers, pharmaceuticals, and agrochemicals for herbicides,
fungicides, and insecticides. Additionally, it serves as a
flavoring agent in the food industry (Bhogeswararao &
Srinivas, 2015). The production of furfural has garnered
significant attention from researchers, leading to a
substantial increase in related publications over the past
decade (Figure 1). However, despite this growing interest,
the number of review articles on furfural production
remains relatively limited, as illustrated in Figure 1.

To date, no synthetic method exists for producing
furfural in the chemical industry. Its production relies
solely on the acid-catalyzed dehydration of C5 sugars
derived from hemicellulose (Yang et al,, 2012a; Namhaed
et al, 2024a). The industrial production of furfural dates
back to 1921 when Quaker Oats developed a process
involving the acid-catalyzed hydrolysis of hemicellulose,
followed by the dehydration of pentosans from
lignocellulosic materials (Brownlee & Miner, 1948). The
yield from commercial furfural production, based on the
pentosan content of the feedstock, was about 40-50% w/w
of the theoretical maximum yield of 72.7% w/w (Kamm et
al,, 2013). The low yield was largely due to unwanted side
reactions, such as condensation between furfural and
xylose or its intermediates, resinification, and furfural
decomposition or fragmentation (Yan et al, 2014). To
improve furfural yield and selectivity, it is crucial to quickly
extract the furfural from the reaction mixture to preventits
degradation through secondary reactions (Yang et al,
2013).

Research article

Number of article
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Year

Figure 1. Publications regarding furfural production over the last ten years in the Scopus database, based on the search
term “furfural production” in the title, abstract, and keywords, and filtered to include only research articles and reviews

Current approaches to furfural production aim to
minimize side reactions in the liquid phase. Four common
extraction methods used in furfural production include
steam stripping, nitrogen (N2) stripping, supercritical
carbon dioxide, and organic solvents in biphasic systems
(Dulie et al., 2021). Research articles detailing furfural
production using each of these extraction methods are

s:H science, engineering
— and health studies

presented in Figure 2. Among these methods, organic
solvent biphasic systems have received the most research
attention and are regarded as highly promising by the
scientific community. Although many studies focus on
furfural production using biphasic solvent systems, review
papers specifically dedicated to this topic are limited, as
summarized in Table 1.
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Figure 2. Number of research articles on furfural production using various extraction methods over the last ten years,
based on data from the Scopus database
Note: The data represents individual searches combining the term “furfural production” with keywords for each method:

“steam stripping”; “Nz-strpping” or “nitrogen stripping”; “supercritical CO2” or “supercritical carbon dioxide”; “biphasic”.
The search was applied to titles, abstracts, and keywords, and the results were filtered by document type to include only

research articles.

The most recent review, published in 2024, titled
“Innovative Biphasic Solvent Systems for Lignocellulosic
Biorefinery”, provides an overview of the latest advances
in biphasic solvent systems for enhancing the production
of liquid fuels and furan-based compounds, including
furfural and 5-HMF, in lignocellulosic biorefineries. While
that review focuses on the use of different organic solvents,
it does not address the effects of operating parameters or
catalyst types on the production of furan-based compounds
in biphasic systems. Our review aims to address this gap by
outlining the key parameters influencing furfural production,
including operating conditions and the production process,
and emphasizing the advantages of biphasic systems
compared to mono-aqueous production systems. It then
evaluates the benefits and limitations of various catalyst
systems within biphasic setups. Additionally, the economic
feasibility of furfural production in biphasic solvent
systems is reviewed. Finally, the paper explores the
challenges associated with scaling up biphasic solvent
systems and identifies future directions for their applications
in large-scale furfural production.

2. METHODOLOGY OF REVIEW

This review was conducted with the objective of synthesizing
current knowledge on furfural production using biphasic
solvent systems and evaluating their comparative
advantages over other extraction methods. To ensure
comprehensive coverage, more than 120 peer-reviewed
publications from 2014 to early 2024 were surveyed using
databases such as Scopus and Web of Science. Search
keywords included “furfural production”, “biphasic solvent
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system”, “steam stripping”, “supercritical CO:”, and
“catalyst for furfural”.

From this initial pool, 70 studies focusing specifically
on biphasic systems were selected for detailed analysis.
An additional 10 studies covering alternative extraction
methods (steam stripping, nitrogen stripping, and
supercritical CO2) were also reviewed for comparative
purposes. Studies were chosen based on relevance, data
completeness, and experimental comparability. Key
evaluation criteria included reaction performance
(conversion, yield, selectivity), catalyst type and
reusability, solvent stability and recovery, process
scalability, and economic metrics (e.g., minimum selling
price, production cost). Comparative analysis was
structured around process conditions (temperature,
residence time, solvent selection), catalytic mechanisms
(homogenous vs. heterogenous), and by-product
formation. Figures 1 and 2 were used to identify
publication trends and dominant extraction strategies,
which informed the formulation of this review’s central
research questions: (i) what are the critical factors
influencing furfural yield and selectivity in biphasic
systems? (ii) how do different catalysts and solvents
impact reaction efficiency and sustainability? (iii) what
are the techno-economic and scalability challenges in
implementing biphasic systems at an industrial scale?

The synthesis of these findings allowed for a
structured comparison across systems. In particular,
biphasic solvent systems were found to consistently offer
higher furfural yields and purities by facilitating in situ
extraction, which reduces side-product formation.
Techno-economic assessments reported in multiple
studies (e.g., Dulie et al.,, 2021; Namhaed et al., 2025)



suggest that biphasic systems
production costs when optimized, primarily due to
improved solvent recyclability and lower degradation
losses. These insights not only confirm the advantages of

can achieve

lower

in biorefinery contexts.

Table 1. Review papers on furfural production involving simultaneous solvent extraction
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biphasic systems but also contribute to the development
of a theoretical framework linking solvent selection,
reaction environment, and furfural production efficiency

Year Title Main focuses References
2012 Production of furfural: overview and - Various processes which have been developed (Dashtban et al., 2012)
challenges for producing furfural from woody biomass,
agricultural residues, and commercially available
sugars.
- Challenges and technical problems associated
with laboratory- and commercial-scale furfural
production processes.
2020 An insight into the valorization of - Insights and understanding of lignocellulosic (Dulie et al., 2021)
hemicellulose fraction of biomass biomass conversion over various catalysts in
into furfural: Catalytic conversion view of the production of furfural.
and product separation - Reaction mechanisms, pretreatment methods to
enhance furfural yield and the various catalysts.
- Furfural isolation mechanisms.
2020 An overview of the biphasic - Solvents employed for the reaction followed by (Esteban et al., 2020)
dehydration of sugars to 5- in situ extraction of these two furans in liquid-
hydroxymethylfurfural and furfural: liquid systems.
A rational selection of solvents using
COSMO-RS and selection guides
2021 A review on solvent systems for - Advantages and limitations of each solvent (Lee & Wu, 2021)
furfural production from system
lignocellulosic biomass
2021 Recent progress in furfural - Preparation technology of furfural by catalytic (Yeetal, 2021)
production from hemicellulose and hydrolysis
its derivatives: Conversion - Reaction mechanism, catalytic system and the
mechanism, catalytic system, solvent  solvent system of furfural synthesis using
selection hemicellulose and its derivatives xylan and
xylose as raw materials.
2022 Furfural production from biomass - Insights and strategies for improving furfural (Yong et al,, 2022)
residues: Current technologies, production using the solid catalysts and
challenges and future prospects simultaneous extraction
2022 Towards efficient and greener - Recent trend towards efficient and greener (Cousin et al,, 2022)
processes for furfural production processes for furfural production from biomass.
from biomass: A review of the recent - Process improvements via pretreatment,
trends improvements in the chemical routes including
innovative catalysts, selection of solvents, and
the use of activation techniques.
2024 Innovative biphasic solvent systems - Recent advances in the development of biphasic ~ (Cai et al,, 2024)

for lignocellulosic biorefinery

solvent systems in lignocellulosic biorefinery for
improving the production of liquid fuels and
furan-based compounds
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3. FURFURAL PRODUCTION AND ITS
DEGRADATION

To date, no synthetic method for producing furfural has
been available in the chemical industry (Yang et al., 2012a;
Cousin et al, 2022). Furfural is typically derived from
lignocellulosic biomass by dehydrating pentosans,
primarily xylan, which is abundant in the hemicellulose of
various agricultural residues. The main production
pathway involves two steps: first, the pentosan sugars in
hemicellulose are hydrolyzed to yield xylose, which is then
dehydrated to produce furfural. In addition to xylose,
arabinose, the second most abundant pentose in biomass,
can also be dehydrated to form furfural. However,
arabinose is less reactive than xylose due to the different
spatial arrangement of its hydroxyl groups (Garrett &
Dvorchik, 1969). The overall reaction is expressed as
follows :

(CsHgO4)n + nH20 — n(CsH1006) — n(CsH402) + 3nH20
Pentosanes n-pentoses furfural

The theoretical yield of furfural is 72.7% w/w from
pentosan and 64% w/w from pentose, calculated on a
weight basis (Zeitsch, 2000).

The first step of furfural production proceeds rapidly
with a high yield (Mansilla et al., 1998). However, the

H

second step is much more complex due to the occurrence
of side reactions. These can be grouped into two main
categories: resinification, where furfural undergoes self-
polymerization, and condensation, where furfural cross-
polymerizes with intermediates from the xylose-to-
furfural conversion. The latter results in the formation of
black, insoluble carbonaceous substances known as
humins. Additionally, fragmentation reactions also occur,
further reducing the yield of furfural (Jing & Lii, 2007)
(Figure 3). The main byproduct of furfural degradation is
formic acid, which is produced through the hydrolysis of
the aldehyde group in furfural (De Jong & Marcotullio,
2010). To minimize these side reactions, furfural must be
continuously extracted from the reaction medium
during production.

To illustrate the efficiency of lignocellulosic biomass
utilization for furfural production on various scales,
including commercial and laboratory setups, a mass
balance for furfural production based on 100 kg of raw
lignocellulosic biomass is depicted in Figure 4. Following
pretreatment, four main components are obtained: solid
cellulose, hemicellulose liquor, solid lignin, and ash, as
described by Haq et al. (2021). The hemicellulose, serving
as the starting material for furfural production, is
decomposed into hexose and pentose sugars, with pentose
comprising the majority (90% w/w) (Borjesson et al,
2019).

31,0
Xylose === [Intermediates] ===+ Furfural —— Fragmentation

(Formic acid)

| 1

Fragmentation Condensation

|

Resinification

Furfural loss reactions

Figure 3. Simplified scheme of the possible reactions in the xylose-to-furfural process

100 kg
(Lignocellulosic biomass)

35kg
Hemicellulose

45 kg
Cellulose

|
3.5kg

Hexose Pen

31.5kg

tose

15 kg
Lignine

Skg
Ash

37%

64% |

20.2 kg furfural
(theory)

11.7 kg furfural
(commerecial)

up to approx.
58%

18.2 kg furfural
(research)

Figure 4. Mass balance of furfural production from lignocellulosic biomass
Note: The mass percentages of various components in lignocellulosic biomass used for the calculations were obtained from
Hagq et al. (2021), while the hexose and pentose content in the hemicellulose fraction was sourced from Bérjesson et al.

(2019).
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Furfural yields from commercial production (Kamm et
al,, 2013) are significantly lower than the theoretical value.
This shortfall is largely attributed to side reactions
during processing, underscoring the importance of
simultaneous extraction techniques to enhance yields.
Despite the lower yields, the furfural obtained from
commercial processes typically exhibits high purity. For
example, the Westpro-modified Chinese Huaxia Furfural
Technology achieves a furfural purity of 98.5% with yields
ranging from 35-50% (Win, 2005). In contrast, research
studies (e.g., Sener etal,, 2018; Zhang et al, 2021) have shown
that yields close to the theoretical value can be attained
by incorporating simultaneous extraction techniques.
However, most research efforts focus solely on the
production stage without progressing to the recovery of
pure furfural. As a result, the purity remains unverified and
cannot be compared to that of commercial production,
despite the higher yields. To ensure consistency and
facilitate comparisons across studies, furfural yields in the
subsequent sections of this review are expressed as molar
percentages, the standard unit in related literature.

4. BIPHASIC SOLVENT SYSTEM FOR
ENHANCED FURFURAL PRODUCTION

Four common extraction methods for recovering furfural
from the reaction medium include steam stripping, N,-
stripping, supercritical CO2 extraction, and the use of
organic solvents in biphasic systems. The advantages and
drawbacks of each method are summarized in Table 2.
Among these processes, the use of organic solvents in
biphasic systems stands out as the most promising, offering
significant benefits over other methods. Specifically, biphasic
systems avoid the formation of azeotropic mixtures,
simplifying the recovery of pure furfural, and enable
continuous extraction of furfural from the aqueous phase,
thereby suppressing side reactions and improving both

yield and selectivity. In addition to their technical
advantages, biphasic systems require lower energy input
compared to steam or Nz-stripping and do not demand the
high pressures associated with supercritical COz setups.
They also allow for easier catalyst separation and solvent
recyclability, making them more compatible with continuous
processing systems and attractive for industrial replication.
Although the use of organic solvents necessitates proper
volatile organic compounds (VOCs) management, their
operational simplicity, scalability, and cost-effectiveness
reinforce their suitability for industrial-scale furfural
production. Moreover, this extraction method is the most
extensively studied approach within the scientific
community, as previously mentioned. Consequently, this
review paper focuses on biphasic solvent systems for
furfural production. The details of the advantages of
biphasic solvent systems are discussed in the following
section.

4.1 Formation and mechanism of a biphasic solvent
system

The use of a biphasic system, consisting of an aqueous phase
and an organic phase, offers a promising approach to
improving furfural production. In this system, once furfural
is formed in the aqueous phase, it is immediately extracted
into the organic phase due to furfural’s higher affinity for the
organic solvent. This continuous extraction process helps
prevent furfural from undergoing degradation reactions,
which typically occur in the aqueous phase where the
catalysts are present (Zhang et al,, 2018). Mechanistically,
vigorous stirring at high speed disperses the reactive
solution into the organic solvent. Each droplet of the
aqueous phase functions as a mini-reactor where furfural is
produced and immediately transferred to the organic phase
(Figure 5). This maintains a low concentration of furfural in
the aqueous phase, reducing the likelihood of side reactions
and ensuring higher selectivity (Rong et al., 2012).

Figure 5. Scheme of biphasic solvent system for furfural production, illustrating the reaction in the aqueous phase (blue)
and the continuous extraction of the furfural product into the organic phase (green).
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4.2 Factors influencing furfural production
Selecting an appropriate solvent system is an effective
strategy in biphasic systems to enhance the selectivity of
furfural, as it directly influences both the thermodynamics
and kinetics of the reaction. Additionally, the reaction
conditions, such as the aqueous phase to organic phase
volume ratio and the stirring velocity, must be optimized
based on the specific characteristics of the solvent system
being used. Proper tuning of these parameters is crucial for
maximizing furfural extraction efficiency, minimizing
degradation, and ensuring high yield and selectivity in
biphasic systems (Luo et al,, 2019; Zhao et al., 2021).

4.2.1 Solvent type

To avoid undesired side reactions, a suitable solvent for
furfural extraction must possess key properties, including
a high partition coefficient for furfural, low mutual
solubility with water, good chemical stability, and
resistance to forming an azeotrope with furfural (Lin etal,,
2015). Various solvents used as organic phases in biphasic
systems for furfural production are outlined in Table 3.

Among various solvents, toluene has been the most
commonly-used extraction solvent in biphasic systems due
to its high partition coefficient for furfural and low
solubility in water (Agirrezabal-Telleria et al., 2012; Rong
etal, 2012; Mittal et al,, 2017).In 2012, Rong et al. (2012)
developed a method to produce furfural from xylose at
atmospheric pressure using sulfuric acid (H2S04) as a
catalyst and NaCl as a promoter. By using toluene as the
organic extraction solvent, they achieved a maximum
furfural yield of 83% in a biphasic system. Qing et al. (2017)
also reported a successful biphasic system with toluene as
the extraction layer, which improved furfural yield from
pre-hydrolyzed corncob liquor and raw corncob using a
S042-/Sn02-MMT solid catalyst. In a pure water phase, the
furfural yield was 43.71% with a xylose conversion of
91.08%. In contrast, the water/toluene biphasic system
improved furfural yield to 48.27%, while solvents like
methyl isobutyl ketone (MIBK) and y-valerolactone (GVL)
showed no significant improvement in furfural yield when
used with the SO42-/Sn02-MMT catalyst system.

Although toluene has a strong affinity for furfural and
low solubility in water, it is highly toxic. Therefore,
environmentally friendly renewable solvents have been
introduced as replacements to align with the principles of
green chemistry and sustainable development. Ethyl
butyrate (EB) was tested as a renewable alternative to
toluene at elevated temperatures. A furfural yield of 75%
was achieved after 3 h at 200°C in an EB/water system.
More recently, Gomez Millan et al. (2021) assessed furfural
production from xylose under auto-catalyzed conditions
using a biphasic system with water-immiscible solvents
such as isophorone, 2-methyltetrahydrofuran (2-MTHF),
and cyclopentyl methyl ether (CPME). Of these, CPME
produced the highest furfural yield at 78% with a 93%
selectivity at a 1:1 organic solvent-to-water ratio. In a
biphasic system using a 1:1 mass ratio of MIBK to aqueous
xylose solution, xylose dehydration to furfural in acidic
media (0.1 M HCI) achieved over 80% yield under optimal
conditions-double the yield of a single-phase aqueous
system. Kinetic studies revealed that introducing an
extracting solvent in a biphasic system did not
fundamentally change the kinetic parameters compared to
a monophasic system. However, it was observed that the
decomposition rate of xylose increased, and higher furfural
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concentrations accumulated in the organic layer
(Weingarten et al,, 2010). To minimize furfural losses in
the aqueous phase—caused by phase equilibrium as the
rate of product formation slows down during the reaction—
a continuous system with a constantly replenished extracting
phase would be necessary. This approach could enhance
furfural yield by efficiently removing the product as it forms.

4.2.2 Ratio of aqueous phase to organic phase
Besides the properties of the organic solvent, the ratio of
the aqueous to organic phases is a key factor that
significantly influences extraction efficiency and, consequently,
furfural selectivity in biphasic systems (Aellig et al,, 2015;
Papaioannou et al,, 2019).

Yang et al. (2013) demonstrated that the volume
percentage of the extracting solvent, o-nitrotoluene,
significantly affected both furfural yield and selectivity. As
the volume of o-nitrotoluene increased from 0% to 80%,
the furfural yield rose from 30% to 70%, and selectivity
improved from 70% to 99%. Similar trends were observed
by Gémez Millan et al. (2019) when isophorone, 2-MTHF,
and CPME were used as extraction agents. Insufficient
volumes of the extracting phase led to saturation, limiting
the transfer of furfural from the aqueous phase, where it
underwent degradation reactions. Wang et al. (2019a)
observed that excessive organic solvents, such as 2-MTHF,
reduced the activity of FePO4 catalytic sites in the aqueous
phase. This led to a decrease in furfural yield from 84% to
65% when the organic-to-aqueous phase volume ratio
increased from 1:1 to 3:1. Conversely, excessive water
lowered the partition coefficient of the reaction system and
promoted furfural rehydration, further reducing the yield
(Qing et al.,, 2017). The partition coefficient of the system
was found to be 10.3 at a 1:4 volume ratio of 2-MTHF to
NaCl-water, significantly lower than the 18.8 observed at a
1:1 ratio. Optimizing the ratio of aqueous to organic phases
is crucial for maximizing furfural extraction efficiency.
Insufficient organic solvent can impede extraction, while
excessive solventincreases production costs and complicates
downstream separation and recovery processes. Achieving
an optimal balance is essential for minimizing both economic
and operational challenges in industrial applications.

4.2.3 Reaction temperature

In industrial monophasic batch and continuous furfural
production processes, an increase in temperature
generally improves the conversion of xylose into furfural.
However, higher temperatures also accelerate competing
side reactions that degrade furfural, resulting in reduced
yields (Gao et al, 2014). Kinetic studies reveal that the
activation energy (Es) for these side reactions is higher
than that for xylose conversion into furfural. For example,
Nambhaed et al. (2024a) found that in a monophasic batch
system catalyzed by formic acid, the E; for the cross-
polymerization side reaction was 200.80 k] /mol, compared
to 156.04 KkJ/mol for xylose conversion. Similarly,
Lamminpad et al. (2012) observed an Eq of 235.0 kJ/mol
for the cross-polymerization side reaction, significantly
higher than the 155.0 k]J/mol for xylose conversion.
These findings highlight that elevated temperatures
disproportionately accelerate side reactions relative to
xylose conversion, emphasizing the importance of
optimizing temperature to balance the rates of production
and degradation, thereby achieving high furfural yield and
selectivity.
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In biphasic solvent systems, similar trends are
observed (Liu et al, 2021; Wang et al, 2022). Beyond
affecting reaction rates, temperature also influences the
extraction performance of the organic phase. Specifically,
the partition coefficient of furfural in the organic phase
increases with temperature (Mannisto et al.,, 2017).
However, even when furfural is extracted into the organic
phase, higher temperatures can still lead to its degradation.
To investigate furfural decomposition in biphasic systems,
Gomez Millan et al. (2019) conducted auto-catalyzed
reactions using CPME and isophorone as extracting
solvents at temperatures of 170, 190,and 210 °C witha 1:1
aqueous-to-organic phase volume ratio. Results showed
that furfural degradation increased with temperature for
both solvents. At 210 °C, the degradation reached 38%
with isophorone and below 12% with CPME after 180 min.
Additionally, it was observed that furfural degradation
increased with reaction time, a topic discussed further in
the next section.

4.2.4 Residence time

Residence time/reaction time is another crucial factor that
significantly influences the dehydration of xylose (Guenic
et al, 2015). Wang et al. (2019a) studied the evolution of
furfural yield in a biphasic water/2-MTHF batch system at
190°C, catalyzed by FePOa. Their findings showed that the
furfural yield peaked at 88.7% after 120 min but gradually
declined to 70% when the residence time was extended to
150 min. They attributed this decline to yield-loss
reactions, which were further promoted by both elevated
temperatures and prolonged reaction times. Similar
observations were reported in a study using ethanol as the
extractive phase. In that case, the furfural yield increased
significantly during the first 20 min but began to decline
when the reaction time was extended to 30 min (Yong et al.,
2016). According to liquid-liquid equilibrium principles,
furfural in the extractive phase can return to the aqueous
phase as degradation of furfural in the aqueous phase
progresses. Consequently, prolonged residence time, if
excessive, leads to a decline in furfural yields (Yang et al,
2013).

In a continuous production system, the liquid hourly
space velocity (LHSV) is a key operating parameter,
typically defined as the volumetric flow rate of the feed
solution divided by the volume of the loaded
heterogeneous catalyst bed or the volume of packing
materials (in the case of homogeneous catalyst) in the
reactor. In a study on furfural production from waste
aqueous hemicellulose solutions catalyzed by H2S04 with
tetrahydrofuran (THF) as the extracting solvent, Xing et al.
(2011) observed that furfural selectivity initially increased
from 76.4% to 87.1% as the LHSV rose from 0.6 h! to 1.7
h-1at 164°C under a pressure of 800 psig controlled by a
back pressure regulator. However, the selectivity declined
to 69.6% when the LHSV increased further to 5.61 hL.
Regarding furfural yield, it increased as the space velocity
decreased, stabilizing at 77.8% when the LHSV was 1.1
h-1. Similarly, Li et al. (2015) investigated furfural
production from xylose in a fixed-bed reactor loaded with
3 mL of a titanium-based catalyst, using a 1-butanol/water
biphasic system. By varying the LHSV from 0.25 h-1 to 2.0
h-1, they found that at LHSV values below 1.0 h-1, xylose
conversion exceeded 90%, and furfural yield exceeded
55%. However, when the LHSV increased from 1.0 h-! to

Silpakorn University

2.0 hl, xylose conversion and furfural yield dropped
significantly to 60% and 30%, respectively.

These results highlight the trade-offs associated with
LHSV. Low LHSV decreases yield and selectivity by
increasing residence time, and thus promoting furfural
conversion into undesired humins. Conversely, excessive
LHSV- shortens the contact time between the pentose and
the catalyst, limiting dehydration into furfural and thereby
lowering yield. This underscores the importance of
optimizing LHSV as a key parameter in continuous
processes to enhance furfural yield and selectivity.

4.2.5 Stirring speed
Stirring speed plays a crucial role in furfural extraction
efficiency in biphasic batch systems by enhancing the mass
transfer rate of furfural from the aqueous phase to the
organic phase (Mansur et al., 2003; Cavalcanti et al., 2008).
Higher stirring speeds promote the formation of smaller
aqueous droplets within the organic phase, increasing the
contact area for furfural extraction. This also enhances the
mass transfer coefficient of furfural from the aqueous
phase to the organic phase. The combined increase in
exchange surface area and mass transfer coefficient
reduces mass transfer resistance, enabling furfural to
transfer more efficiently from the aqueous to the organic
phase. Consequently, this improves extraction efficiency
and leads to higher furfural selectivity (Jiang et al., 2014).
Conversely, low stirring velocity hinders the interaction
between aqueous and organic phases, as larger aqueous
droplets form, reducing the exchange surface area.
Additionally, under these conditions, the rate of furfural
formation exceeds its mass transfer rate to the organic
phase (Jiang et al, 2014). Consequently, some furfural
remains in the aqueous phase, increasing the likelihood of
degradation into undesired humins and ultimately lowering
the furfural yield (Yang et al,, 2013). This phenomenon was
illustrated by Ma et al. (2014), who studied the effect of
stirring speed on extraction efficiency and furfural recovery
in a pentose-to-furfural reaction catalyzed by FeCl3-6H20
in a 2-sec-butylphenol/water biphasic system. The results
showed that furfural yield increased with stirring speed,
reaching a maximum of 81% at 300 rpm. However, further
increases in stirring speed led to a slight decline in yield.
This decline occurred because rapid stirring induced
vigorous fluid rotation, which disrupted the coalescence of
the two phases. As a result, the extraction efficiency
decreased, negatively affecting both furfural yield and
selectivity.

4.3 Comparison of furfural production in biphasic
and monophasic solvents in batch systems

As previously mentioned, using simultaneous extraction
with an organic solvent in a biphasic system can reduce
side-loss reactions and prevent humins formation. Sahu
and Dhepe (2012) reported that biphasic conditions yield
significantly more furfural compared to a monophasic
batch system. For instance, when bagasse was converted
using HUSY (Si/Al = 15) as a catalyst, a comparable furfural
yield of approximately 55% was achieved in a biphasic
system with toluene, MIBK, or p-xylene as extracting
solvents at 170°C over 6 h, compared to just 18% in a
water-only system. Similarly, Campos Molina et al. (2012)
found that a CPME-based biphasic solvent system
produced a 40% furfural yield in the acid-catalyzed
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dehydration of xylose with H2S04, compared to only 28%
in a system without CPME. Zhang et al. (2013) investigated
the conversion of hemicellulose (mainly xylan) from maple
wood, catalyzed by H2SOs in an MIBK-water biphasic
system, and achieved a maximum furfural yield of 58.3% at
170°C for 30 min with an aqueous-to-MIBK mass ratio of 1.
In contrast, a monophasic system under identical
conditions yielded only 9.6%. Using the same organic
solvent (MIBK), Li et al. (2014) reported a 60.6% furfural
yield from xylose in a water/MIBK system with a solid acid
catalyst (S04%2"/TiO2-ZrOz/La3+*), compared to a 46.1%
yield in a pure water system under the same conditions.
These findings underscore that incorporating an organic
solvent in a biphasic system can significantly increase
furfural yields by limiting side reactions.

4.4 Integration of biphasic solvent systems in
continuous furfural production

The use of biphasic solvent systems to enhance furfural
production with various catalysts has been primarily
studied in batch systems. However, there have been a few
investigations on furfural extraction by organic solvents in
continuous production systems, as shown in Table 3. This
section reviews all available studies on furfural production
with simultaneous extraction by organic solvents in
biphasic continuous systems.

In 2010, Lessard et al. (2010) reported a high-yield,
high-selectivity conversion of xylose to furfural using a
protonated mordenite-type zeolite catalyst in a biphasic
solution (aqueous and toluene) plug-flow reactor. In this
study, a protonated zeolite solid catalyst was dispersed in
a xylose solution and thoroughly mixed with the organic
solvent at the reactor inlet. The highest furfural yield
achieved was 98%, with a selectivity of 98%, at 260°C and
55 atm over a reaction time of 3 min, using toluene as the
extracting solvent. However, the authors noted a decline in
catalyst activity; after a second pass, the furfural yield
dropped from 98% to 90%, despite attempts to regenerate
the catalyst through wet oxidation.

In addition to achieving high furfural production with
both homogeneous and heterogeneous catalysts in plug-
flow reactors, these setups require large quantities of
catalyst to be mixed with the xylose solution during
conversion. This can lead to substantial acid waste, making
the process less environmentally friendly and economical.

To address this issue, a fixed-bed reactor offers a promising
solution, as demonstrated in Li et al. (2015). This study
examined the efficiency of xylose conversion to furfural in
a biphasic solution system using a tantalum-based catalyst
in a fixed-bed reactor. The highest furfural yield achieved
was 59% at a xylose conversion rate of 96%, using 1-
butanol as the solvent at 180°C and a LHSV of 1 h™*. After
80 h of continuous operation, the xylose conversion
remained stable (over 95%), while the furfural yield
showed only a slight fluctuation (from 55% to 59%),
indicating excellent stability of the TA-p catalyst in the
continuous reaction system. Furthermore, the furfural
yield obtained in this continuous system was higher than
that achieved in a batch system (45% at 180°C over 3 h),
highlighting the advantages of the continuous process.

In the same year, Aellig et al. (2015) explored the
potential of fixed-bed reactors by combining a biphasic
solvent system with a heterogeneous catalyst for furfural
production from xylose and xylan derived from beech
wood. Using a mixture of GaUSY-2 and Amberlyst-36
catalysts in a dichloroethane-water biphasic system with
an organic-to-aqueous volume ratio of 4:1, the study
achieved maximum furfural yields of 72% from xylose and
69% from xylan at 140°C over a reaction time of 3.4 min.
These findings underscore the promise of integrated
catalyst and reactor design strategies for enhancing
furfural production from raw biomass.

Limited studies have been reported on the application
of micro/milli-scale reactors for furfural production. In the
study of Papaioannou et al. (2019), a milli-reactor
operating under the Taylor flow regime was used for the
production and in situ extraction of furfural, with diluted
H2S04 as the catalyst and toluene as the extraction medium
(Figure 6). Inside the reactor, a stainless-steel mesh jacket
provided the necessary structural integrity between the
aqueous and organic phases. In this setup, the xylose
solution, H2SO4 solution, and organic solvent were fed
separately into the reactor. Due to the enhanced mass
transfer properties of the milli-reactor and its precise
control of residence time, a high furfural selectivity (70%)
at high xylose conversion (80%) was achieved with
extremely short residence times (under 2.5 min) at 170°C,
using a volume ratio of 2:1 for the organic to aqueous
phases.

Thermocouple
v Quench  Filter
Ly 5]
VNl
gt g
BPR
<3 Injection Reactor
system
Pressure
Relief
Valve

Figure 6. Set-up of continuous reactive extraction system for furfural production (Adapted under the CC-BY-NC-ND

license. Copyright 2019 American Chemical Society.)
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5. BIPHASIC SOLVENT SYSTEM FOR
IMPROVED CATALYST REUSABILITY

In addition to improving furfural yield and selectivity by
extracting the produced furfural from the aqueous phase
into the organic phase, the use of a biphasic solvent system
also enhances catalyst reusability, aligning with sustainable
development principles (Magalhdes et al,, 2021). Catalysts
used for furfural production can be broadly classified into
two groups based on their physical properties: homogeneous
and heterogeneous catalysts. This section explores the use
of both catalyst types within biphasic solvent systems,
highlighting their advantages, limitations, and the impact
of biphasic systems on catalyst performance and reusability.

5.1 The use of homogeneous catalyst in biphasic
solvent system

Since homogeneous catalysts remain in the aqueous phase,
this phase, containing the catalyst, can be reused once the
organic phase has been removed. Guenic et al. (2015)
investigated the dehydration of xylose into furfural
catalyzed by FeCls with NaCl as an additive in a water-
CPME biphasic batch system under microwave irradiation.
After each catalytic run, the organic CPME phase was
removed, and fresh xylose and CPME were added to the
recycled aqueous phase containing FeCls and NaCl, without
introducing additional catalyst. The catalytic activity of
FeCls was maintained over four consecutive cycles,
yielding 76-80% furfural. Besides acting as a catalyst,
FeCls, in combination with NaCl, enhanced furfural
separation through the salting-out effect, resulting in
improved furfural yields. This finding aligns with the
results reported by Wang et al. (2019a), who studied
furfural production from bagasse using FePOs4 as a
catalystin a water-2-MTHF biphasic system. The study
demonstrated that at a NaCl concentration of 800 mg/mL,
the furfural yield in the organic phase reached 62.1%,
significantly surpassing the 42.7% yield observed in the
system without NaCl. By investigating intermolecular
weak interactions, Cai et al. (2023) proposed a mechanism
for furfural extraction using organic solvents in a biphasic
system mixed with metal salts. This mechanism suggests
that the addition of metal salts modifies the spatial
distribution of weak intermolecular interactions within the
solvent system. Consequently, the hydration of water
molecules around the solutes is affected, causing changes
in distribution coefficients and ultimately facilitating the
furfural extraction in the biphasic system.

Later, Delbecq et al. (2016) achieved furfural yields of
76% from xylan and 80% from xylose using a mixture of
betaine and formic acid in a CPME-water biphasic batch
system under microwave irradiation. Since the produced
furfural was extracted into the CPME, the aqueous layer
containing the catalyst could be recovered and reused for
at least five cycles without a significant drop in furfural
yield. However, starting from the fifth cycle, the furfural
yield began to decrease, reaching only 75%. This decline
was due to the gradual loss of formic acid into the CPME
phase, as CPME’s water solubility is not zero (11 g/L at
20°C). Indeed, the pH of the aqueous phase shifted from
2.08 to 2.75. However, the aqueous phase remained
sufficiently acidic to continue furfural production. A
similar observation was made by Wang et al. (2015), who
studied the direct conversion of xylose to furfural using
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SnCls as a catalyst in a water-2-MTHF biphasic batch
system. The results showed that furfural yield gradually
decreased with increasing cycle times. This decrease in
catalytic performance was attributed to the loss of SnCls
from the aqueous phase, as a portion of the water
containing SnCls was soluble in the organic phase (4.4%
w/w at 20°C), reducing the amount of SnCls available in the
aqueous phase for subsequent reactions. To counter this
issue, the use of heterogeneous catalysts, which consistently
remain in the aqueous phase, appears to be a more
sustainable solution.

5.2 The use of heterogeneous catalyst in biphasic
solvent system

In 2016, Deng et al. (2016) developed an efficient method
to produce furfural from the pre-hydrolysis liquor of
corncob (CPHL) using a biochar catalyst (sulfonated
carbon-based catalyst, SCC) as a solid acid catalyst in a
water-dichloromethane (DCM) biphasic system. A maximum
furfural yield of 81.14% was achieved using this biochar
catalyst in the CPHL-NaCl/DCM biphasic system at 170°C
for 60 min. The reusability of the biochar catalyst was
tested by regenerating it with 98% H2S04at 150°C for 15 h
in an oxygen-free hydrothermal reactor. After five runs, the
furfural yield dropped by 16%. With regeneration, the total
acidity density slightly decreased over five runs, from 2.97
mmol/g to 2.59 mmol/g. However, the intensity of the
adsorption bands corresponding to the S=0 stretching
modes of -SOz;H in the FTIR spectrum of the fourth
regenerated SCC remained comparable to that of the fresh
catalyst. Similarly, Qing et al. (2017) investigated the
recyclability of a SO42"/SnO2-montmorillonite (MMT) solid
catalyst for furfural production from pre-hydrolyzed
corncob liquor in a biphasic system using toluene as the
extracting solvent. After five runs, the furfural yield
decreased from 81.74% to 69.46%, with the catalyst
washed only with water and ethanol after each cycle.
Elemental and surface area analysis using ICP and BET
methods on five-time used catalysts revealed that the
recycled SCA exhibited a reduced surface area, decreased
pore volume, and a slight reduction in Sn ions bonded to
the solid catalyst. These factors, along with the leaching of
Sn ions, likely contributed to the decline in the catalyst’s
performance.

Mittal et al. (2017) observed a similar trend in furfural
yield when reusing Purolite CT275 for furfural production
from corn stover hydrolysate in an MIBK-water biphasic
system. After each catalytic run, both xylose conversion
and furfural yield gradually declined, with xylose conversion
dropping to 33.4% and furfural yield to 38% by the fourth
dehydration reaction. In comparison, the first run achieved
a xylose conversion of 69.1% and a furfural yield of 71.5%.
The authors attributed this decline to the strong
adsorption of reaction products on the active sites of the
catalyst. Recently, Wang et al. (2022) reported a furfural
yield of 66.1% after five successive runs using a Cr-deAl-Y
catalyst, compared to the maximum yield of 77.5%
achieved with fresh Cr-deAl-Y catalyst at 180°C for 30 min
in an n-butanol/water system. This reduction in yield may
be attributed to a decrease in the catalyst’s average pore
size and specific surface area. However, the surface
structure showed no significant changes when comparing
the catalyst morphologies before and after the reaction,
which could explain the stable catalytic performance.
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These findings suggest that while heterogeneous
catalysts offer advantages such as easier recovery and
reduced mass loss compared to homogeneous catalysts-
factors that can influence xylose conversion-they are still
susceptible to active site deactivation. Furthermore, the
regeneration of heterogeneous catalysts is often necessary
before reuse, which adds complexity to the process. This
regeneration typically requires additional chemicals and
specialized equipment, thereby increasing operational
costs.

6. ECONOMIC ANALYSIS OF FURFURAL
PRODUCTION IN BIPHASIC SOLVENT
SYSTEM

Previous sections have demonstrated that furfural production
with simultaneous extraction using an organic solvent in a
biphasic system is advantageous, particularly in terms of
furfural yield and selectivity. However, scaling this
extraction system to larger, industrial applications
requires further investigation into its economic feasibility.
To address this, several research studies have conducted
techno-economic analyses of furfural production in
biphasic systems. This section reviews these assessments,
focusing on key economic indicators such as capital cost,
operational cost, minimum selling price (MSP), and

payback period. The summarized results are presented in
Table 4.

Xing et al. (2011) conducted an economic analysis of a
novel process for producing furfural, along with co-
products formic acid and acetic acid, from waste aqueous
hemicellulose solutions using a continuous two-zone
biphasic reactor. The analysis revealed that furfural could
be produced at a cost of $366 per metric ton, which is just
25% of its selling price in the U.S. market in 2011. This
estimate assumes a plant capacity of 78 kilotons per year
for furfural, 12 kilotons per year for formic acid, and 44
kilotons per year for acetic acid. The total capital cost was
reported at 49.5 million $ with the annual operational cost
of $24.6 million. Raw materials and utilities were identified
as the major cost drivers, comprising 46% of the total
production cost. Among the raw materials-dry xylose,
NaCl, HCl, and THF-the costs of HCl and THF made up
53.9% of the total raw material expenses. Regarding the
installed equipment and associated utility costs, the THF
column emerged as the most significant contributor to the
fixed capital investment (FCI), accounting for 24.1% of the
FCI. The study also suggested opportunities for cost
reduction. Using a heterogeneous solid acid catalyst
instead of HCl and improving the recovery efficiency of
THF-or replacing it with a cheaper organic solvent without
compromising performance-could significantly lower the
production costs.

Table 4. Techno-economic analyses of furfural production from biomass residues using a biphasic solvent system.

Reference Xingetal,, 2011 Gomez Millan et al,, 2021 Zang et al, 2020

Reference year 2011 2021 2020

Feedstock Mixed Northern Hardwood  Birch hydrolysate liquor Switchgrass
(MNH) chips

Process Furfural production with Furfural production under One-pot biomass fractionation and
the co-products of formic auto-catalyzed conditions furfural
and acetic acids using a using a batch reactor in a production using aqueous ChCl and
continuous two-zone biphasic system (water/2-sec-  MIBK
biphasic reactor butylphenol).

(water/THF).

Product capacity Furfural: 78 kiloton/year Furfural: 5 kiloton/year Ethanol: 136.2 kiloton/year
Formic acid: 12 Furfural: 119.4 kiloton/year
kiloton/year Lignin: 106.0 kiloton/year
Acetic acid: 44 kiloton/year

Total capital cost 49.5 12.8 445.4

(Million $)

Annual operational cost 24.6 6.6 168.6

(Million $)

Unit production cost Furfural: $366/t n.p. n.p.

Minimum attractive rate of n.p. 10 10

return (MARR) (%)

Minimum selling price n.p. Furfural: $1,780/ton Furfural: $625/ton

Payback period n.p.

8.9 years n.p.

n.p.: not provided

aThe minimum furfural selling price is calculated at NPV equal to zero with MARR of 10%. (with a conversion rate of 1$ = 0.91362€

on September 30, 2019)

bReported as the minimum furfural selling price for MARR of 10%, ethanol selling price of $ 2.55/gal, and lignin selling price of $

500/ton.

s:H science, engineering
— and health studies
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Zang et al. (2020) assessed the techno-economic
feasibility of a novel one-pot process for furfural
production with the co-production of lignin and ethanol
from lignocellulosic biomass. This process is based on one-
pot biomass fractionation and furfural production in a
biphasic solvent system consisting of aqueous choline
chloride (ChCl) and MIBK as the organic phase for in situ
furfural extraction. The plant’s annual production
capacities were substantial: 136.2 kilotons for ethanol,
119.4 kilotons for furfural, and 106.0 kilotons for lignin.
The capital investment was significantly higher, at $445.4
million, with an annual operational cost of $168.6 million.
The economic analysis revealed that biomass fractionation
and cellulose conversion required the largest capital
investments, primarily due to the high installation costs
associated with pretreatment and distillation equipment.
In terms of variable operating costs, feedstock accounted
for 40.6% of the total, while other raw material costs in the
biomass fractionation area contributed 37.1%. Interestingly,
the biphasic solvent system, comprising aqueous
ChCl/MIBK, costs approximately $1000 per ton. This
relatively high solvent cost reduces the proportion of
feedstock costs in the total variable operating cost
compared to ethanol production using leading pretreatment
technologies such as dilute acid or AFEX (Davis et al,
2013). In the base case study, MSP was estimated at $625
per ton, indicating that the new system could reduce the
production price by 37.5%. Even with low selling prices for
ethanol and lignin, the proposed co-production system can
still produce furfural at a price comparable to its market
value (approximately $1,000 per ton) (Alonso etal.,, 2017).
The sensitivity analysis revealed that feedstock price has
the greatest impact on the MSP, followed by the cost of
ChCl. This highlights the need for future research to focus
on reducing ChCl consumption through the use of cheaper
solvents, increasing the solid loading during pretreatment,
and improving the ChCl recycling ratio. Additionally,
sensitivity analysis showed that reaction temperature and
solid loading significantly influence the MSP, suggesting
that these parameters should be prioritized in future
process optimizations.

Gomez Millan et al. (2021) conducted a techno-
economic analysis (TEA) for furfural production under
auto-catalyzed conditions wusing xylose and birch
hydrolysate liquor in a batch reactor within a biphasic
system. The analysis estimated the total investment cost
for a plant with a production capacity of 5 kilotons per year
to be $15.46 million (with a conversion rate of 1$ =
0.91362 € on September 30, 2019). The total capital cost
was estimated at $12.8 million, and the annual operational
cost at $6.6 million. Reactor units were identified as the
most expensive component, comprising 46% of the total
direct cost (TDC), followed by heat exchangers and the
distillation column, which contributed 24% and 15% of the
TDC, respectively. The minimum selling price (MSP) of
furfural was calculated assuming a net present value (NPV)
of zero with a discount rate of 10%, resulting in an MSP of
$1.78/kg and a payback period of 8.9 years. The authors
noted that by increasing the selling price to $2.12/kg, the
payback period could be reduced to approximately 5 years.
A sensitivity analysis was also performed to assess the
impact of various economic factors on the MSP. The
analysis revealed that annual operating costs, the discount
rate, and total investment had the greatest influence on the
MSP. For instance, a 20% increase in operating costs and
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fixed capital investment led to increases of 11.1% and 4.2%
in the MSP, respectively. In contrast, variations in the
taxation rate and project lifetime had comparatively
smaller effects on the MSP. While the MSP reported by
Gémez Millan et al. (2021) was comparatively higher
than those of other biphasic solvent systems (Xing et al,,
2011; Zang et al., 2020), the authors noted that it was in
close alignment with prices reported in the literature
and the current market price of petrochemically derived
furfural.

In contrast to many earlier reviews, this work
highlights in greater detail the capital expenditures
including costs for reactors, distillation units, and solvent
recovery systems and the operational expenditures
such as raw materials, energy, and catalyst use. This
distinction is critical for understanding the economic
barriers and optimization opportunities in biphasic
solvent systems.

Numerous strategies to improve the economic
feasibility of industrial-scale furfural production in
biphasic systems have been highlighted in this section.
Utilizing green and cost-effective chemicals, including
organic solvents and catalysts, along with less intensive
production technologies, can reduce the need for
expensive materials and improve economic viability. Co-
producing furfural alongside other valuable chemicals
such as ethanol, lignin, acetic acid, and formic acid can
further maximize the utilization of lignocellulosic
biomass residues and enhance overall profitability.
Moreover, optimizing operating parameters, particularly
reaction temperature, is crucial for improving the
economic performance of furfural production.

7. CHALLENGES AND FUTURE DIRECTION
FOR SCALING UP THE BIPHASIC SOLVENT
SYSTEMS IN FURFURAL PRODUCTION

The biphasic solvent system has emerged as a promising
extraction method to minimize furfural degradation
caused by side reactions in the aqueous reaction medium.
This approach involves promptly extracting the produced
furfural from the aqueous phase into the organic phase,
leveraging the high affinity of organic solvents for furfural.
The application of biphasic solvent systems to enhance
furfural production has been widely investigated, as
highlighted in previous sections. One of the major challenges of
this method is selecting an appropriate extracting
solvent. The solvent must not only be environmentally
friendly to meet the principles of green chemistry, i.e.,
low toxicity, low volatility, and high biodegradability but
also exhibit low hydro-solubility to prevent the loss of
solvent into the aqueous phase. Solvents classified as
VOCs can contribute to air pollution and raise worker
safety concerns during large-scale implementation,
making solvent selection a critical factor in both
environmental sustainability and process economics.
Additionally, solvent recyclability must be considered to
minimize waste generation and reduce life-cycle
emissions associated with continuous operation.

Besides solvent selection, operating parameters such
as reaction time and temperature must also be optimized,
as furfural degradation intensifies with increased
temperature and prolonged reaction time. This was
observed by Gomez Millan et al. (2019), who studied
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furfural decomposition in a biphasic system using
isophorone and CPME as extracting solvents at a 1:1
aqueous-to-organic phase ratio. Additionally, once furfural
is extracted into the organic phase, it should be promptly
removed from the reaction medium and transferred to a
lower-temperature zone. This step is crucial, as furfural
remains susceptible to decomposition even within the
organic phase at elevated temperatures.

The addition of metal salts has been shown to enhance
the extraction of furfural from the aqueous phase into the
organic phase, due to the salting-out effect, as reported in
several studies (Rongetal,, 2012; Guenicetal, 2015; Wang
et al, 2019a). Additionally, metal salts promote the
formation of a biphasic system by increasing the
dissociation of water from the water-miscible solvent,
thereby improving extraction efficiency (Cai et al., 2023).
While this approach yields high furfural recovery, it may
present economic challenges due to the additional
downstream processing required to recover the salt
after production. This issue could potentially be addressed
by developing efficient methods to recycle the salt-
containing aqueous phase, similar to the reuse of
homogeneous catalysts in biphasic systems.

Regarding furfural recovery, relatively few studies
have investigated the process up to the recovery of pure
furfural. Most research focuses on optimizing the
production process to achieve high furfural yields, with
limited attention to its purity. However, for industrial
applicability, achieving high-purity furfural is equally
important, as impurities can compromise product quality
and limit end use markets. The lack of standardized
reporting on furfural purity across studies also hampers
meaningful comparisons and technology transfer from lab
to industry. Thus, future work should emphasize not only
yield improvements but also detailed analysis of furfural
purity, recovery efficiency, and downstream separation
feasibility. Some studies have explored the complete
process, from production to the recovery of pure furfural,
but these have primarily been conducted through
simulations. For example, Nhien et al. (2021) proposed a
hybrid extraction and distillation process. The simulation
results demonstrated that a high furfural purity of 99%
could be achieved while reducing reboiler energy
consumption by 51.7% and 62% compared to the
conventional process, using toluene and butyl chloride as
extracting solvents, respectively. Therefore, further
research is needed to address furfural recovery, focusing
on both yield and purity during the downstream steps.
Such advancements are essential to enable the industrial-
scale production of furfural.

Among various separation techniques, distillation
remains the only method currently used for furfural
separation from the end mixture (Mao et al,, 2021). In the
context of biphasic solvent systems, the boiling point of the
solvent plays a critical role in separation efficiency and
distillability (Bhaumik & Dhepe, 2016; Zuo et al,, 2017).
Low-boiling solvents can help prevent furfural degradation
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during distillation; however, their use often leads to
energy-intensive downstream operations due to the large
solvent volumes that need to be removed. Conversely,
high-boiling organic solvents can reduce energy
consumption in downstream processes, as only a small
amount of furfural needs to be evaporated. Nonetheless,
the thermal instability of furfural at elevated temperatures
makes high-boiling solvents less suitable for maintaining
optimal process efficiency and product quality.

To align the process with sustainable development
principles, solvent recycling is crucial for minimizing
solvent usage and reducing the environmental impact
associated with solvent waste disposal (Romo et al,, 2018).
Currently, distillation is the only method used for
recovering organic solvents, as it is also the sole means of
obtaining pure furfural from the organic phase. For
instance, Liu et al. (2021) demonstrated the recycling of
GVL by separating it from furfural through facile vacuum
distillation after filtration to remove humins. Alternative
separation methods such as membrane separation,
pervaporation, or adsorption have not yet been
investigated for separating furfural and organic solvents.
Developing separation techniques that rely on parameters
other than boiling points could provide significant benefits,
addressing the limitations of solvent selection and offering
additional options for recycling furfural and organic
solvents in biphasic solvent systems.

The batch process is the most extensively studied
method for furfural production in biphasic solvent
systems. However, this approach often results in the
saturation of furfural within the extracting phase, limiting
efficiency. Implementing a continuous feeding system for
the extracting solvent in a continuous process could
significantly enhance extraction efficiency and unlock
greater potential for industrial-scale applications.
Moreover, molecular dynamics (MD) simulations offer
valuable insights at the microscopic level into the
transformation of sugars into furfural and its subsequent
extraction within a biphasic system, paving the way for
more effective production strategies. Additionally, the
integration of machine learning techniques could revolutionize
process design and optimization by maintaining optimal
solvent conditions, enabling more efficient and consistent
extraction, and ultimately improving furfural productivity.

This review highlights the need to shift from yield-
centric studies toward a more holistic evaluation of
furfural  production—one that includes purity
benchmarks, solvent recovery methods, and life-cycle
environmental impacts. These factors are critical for
developing economically viable and environmentally
responsible biphasic systems for industrial furfural
production. A schematic overview of the major technical,
environmental, and economic challenges in biphasic
furfural production, along with recommended mitigation
strategies, is presented in Figure 7 to illustrate the
contributions of this review and guide future research
directions.
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Challenges

O  Use green, low-toxic solvents
Select solvents with low hydro-solubility

Optimize solvent recyclability

Reduce reaction time and temperature
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Use molecular dynamics (MD) simulations for condition optimization

Recycle salt-containing aqueous phase

Develop salt recovery processes similar to catalyst reuse
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Apply MD simulations to support rational process and

solvent design

Figure 7. Challenges and mitigation strategies in biphasic furfural production

8. CONCLUSION

This review provides a comprehensive overview of recent
advances in biomass conversion to furfural using biphasic
solvent systems. Extensive research has explored both
homogeneous and heterogeneous catalysts within these
systems. By minimizing side reactions that reduce furfural
yield and selectivity, biphasic solvent systems not only
improve product quality but also facilitate the reuse of the
aqueous phase containing catalysts, simplifying product
separation. This approach significantly enhances process
economics while aligning with sustainable development
principles. Optimizing operating parameters such as
solvent type and the volume ratio between aqueous and
organic phases is essential for achieving high furfural
yields. Currently, most furfural production in biphasic
systems occurs in batch setups, which often suffer from
low biomass conversion rates and high energy demands.
To address these limitations, continuous reaction
processes with catalyst recycling have been developed,
though they remain primarily at the laboratory scale and
require further investigation. Notably, the purity of furfural

: ‘;; Silpakorn University

produced in such systems has not yet been verified, and
advancements in the recovery and separation of pure
furfural from the reaction medium are still necessary. The
economic analysis indicated that furfural production from
raw biomass in a biphasic system is cost-effective,
primarily due to its lower pretreatment costs compared
to other methods. Additionally, the co-production of furfural
with other valuable products further enhanced the
economic feasibility of the process. Scaling up and refining
catalytic biphasic solvent systems that minimize catalyst
loss and enable effective recycling, as well as developing
effective methods for recovering pure furfural remain key
challenges for future research and industrial application.
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