
echT PressScience

Doi:10.32604/ee.2025.073955

ARTICLE

A Hybrid Artificial Intelligence Model for Accurate Prediction of Gas Emissions
in Power Plant Turbines

Samar Taha Yousif1,2, Firas Basim Ismail1,3,*, Ammar Al-Bazi4, Alaa Abdulhady Jaber5 and
Sivadass Thiruchelvam1

1Smart Power Generation Unit, Institute of Power Engineering (IPE), Universiti Tenaga Nasional (UNITEN), Kajang, 43000,
Malaysia
2College of Engineering, University of Information Technology and Communications, Baghdad, 10066, Iraq
3Faculty of Engineering, Sohar University, P.O. Box 44, Sohar, PCI 311, Oman
4Operations and Information Management Department, Aston Business School, Birmingham, B4 7ET, UK
5Mechanical Engineering Department, University of Technology-Iraq, Baghdad, 10001, Iraq
*Corresponding Author: Firas Basim Ismail. Email: firas@uniten.edu.my
Received: 29 September 2025; Accepted: 21 November 2025

ABSTRACT: Thermal power plants are the main contributors to greenhouse gas emissions. The prediction of the
emission supports the decision makers and environmental sustainability. The objective of this study is to enhance
the accuracy of emission prediction models, supporting more effective real-time monitoring and enabling informed
operational decisions that align with environmental compliance efforts. This paper presents a data-driven approach for
the accurate prediction of gas emissions, specifically nitrogen oxides (NOx) and carbon monoxide (CO), in natural gas
power plants using an optimized hybrid machine learning framework. The proposed model integrates a Feedforward
Neural Network (FFNN) trained using Particle Swarm Optimization to capture the nonlinear emission dynamics under
varying gas turbine operating conditions. To further enhance predictive performance, the K-Nearest Neighbor (K-NN)
algorithm serves as a post-processing method to enhance IPSO-FFNN predictions through adjustment and refinement,
improving overall prediction accuracy, while Neighbor Component Analysis is used to identify and rank the most
influential operational variables. The study makes a significant contribution through the combination of NCA feature
selection with PSO global optimization, FFNN nonlinear modelling, and K-NN error correction into one unified
system, which delivers precise emission predictions. The model was developed and tested using a real-world dataset
collected from gas-fired turbine operations, with validated results demonstrating robust accuracy, achieving Root Mean
Square Error values of 0.355 for CO and 0.368 for NOx. When benchmarked against conventional models such as
standard FFNN, Support Vector Regression, and Long Short-Term Memory networks, the hybrid model achieved
substantial improvements, up to 97.8% in Mean Squared Error, 95% in Mean Absolute Error (MAE), and 85.19% in
RMSE for CO; and 97.16% in MSE, 93.4% in MAE, and 83.15% in RMSE for NOx. These results underscore the model’s
potential for improving emission prediction, thereby supporting enhanced operational efficiency and adherence to
environmental standards.
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1 Introduction
The rising concern over declining air quality and environmental degradation has spurred extensive

global research efforts. Air pollution stands as one of the most critical environmental threats, with well-
established associations to adverse human health outcomes, including respiratory illnesses, cardiovascular
conditions, and premature mortality [1]. In urban and industrial zones, the energy sector emerges as a
leading contributor to atmospheric pollutants, particularly nitrogen oxides (NOx) and carbon monoxide
(CO), emitted predominantly during electricity generation [2].

Natural gas power plants (GPPs), which heavily depend on fossil fuel combustion, are substantial
sources of these harmful emissions. While gas turbines within GPPs are vital for delivering high-efficiency
electricity, their operation entails complex combustion dynamics that yield variable emissions influenced by
factors such as inlet air temperature, combustion pressure, and fuel characteristics. In countries such as Iraq,
where power generation facilities often operate near residential areas, these emissions pose serious risks to
environmental quality and public health [3]. As a result, enhancing emission prediction accuracy is crucial
to support regulatory compliance and operational safety.

The current traditional emission prediction models for gas turbines fail to deliver accurate results when
operating under changing conditions because they lack established methods for feature selection, leading
to poor performance in real-world applications. This situation highlights an urgent need for intelligent,
data-driven systems that can adapt to various operational environments to model complex nonlinear
emission patterns.

Numerous studies have explored the use of artificial intelligence (AI) and machine learning (ML) for
emission estimation. Predictive Emissions Monitoring Systems (PEMS) emerge as cost-effective alternatives
to traditional Continuous Emissions Monitoring Systems (CEMS), which are often expensive and require
complex calibration. Among AI tools, Artificial Neural Networks (ANNs) have proven effective due to
their ability to model nonlinear combustion dynamics in real-time. For instance, [4] developed ANN-based
emission estimators for U.S. power plants, demonstrating their reliability with operational data [5] further
enhanced NOx prediction accuracy by combining ANNs with optimization algorithms.

To overcome the limitations of traditional ANN training (e.g., slow convergence and local minima),
hybrid models integrating Feedforward Neural Networks (FFNNs) with optimization algorithms such as
Particle Swarm Optimization (PSO) have been widely adopted. For example, [6] compared standalone
ANN and hybrid PSO-ANN models and found the latter more accurate and robust in emission prediction.
Similarly, [7] reported improved convergence and accuracy when applying PSO to NOx emission models.
These studies underscore the potential of hybrid ANN-based frameworks to improve emission forecasting
in complex operational environments.

The proposed IPSO-FFNN implements a new K-NN guided initialization method, which sets it apart
from typical PSO-ANN systems. The IPSO-FFNN system uses K-Nearest Neighbors to predict weight
and bias values at startup, which results in faster convergence and better solution quality compared to
standard PSO-ANN. The method decreases the chances of particles getting stuck in local minima while using
mathematical methods to determine the starting point which makes the training process more reliable.

Despite these advances, emission monitoring in gas turbine systems still presents significant challenges.
These include highly variable operating conditions, intricate combustion mechanisms, and the demand for
responsive prediction models. Traditional monitoring tools often fail to capture rapid emission changes,
particularly in infrastructure-limited regions such as Iraq [8]. Furthermore, emissions from gas turbines can
fluctuate by up to 20% due to load variability, adding complexity to prediction models [9]. These challenges
highlight the need for intelligent, adaptive systems tailored to real-world conditions.
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Conventional regression-based prediction methods have generally underperformed in such settings.
They struggle to generalize across changing loads and ambient conditions like high temperatures and
humidity [10]. Moreover, many fail to include feature selection or advanced optimization, reducing their
applicability in operational environments.

To address these gaps, this study presents a robust data-driven hybrid machine learning framework
that integrates a PSO-optimized FFNN with K-NN for refining predictions and NCA for feature selection,
thereby enhancing the accuracy and adaptability of NOx and CO emission predictions under varying turbine
operating conditions. The proposed hybrid framework achieves its goals through the combination of its
individual components. The NCA method selects essential turbine parameters that decrease input size and
remove unnecessary features that could harm model accuracy. The PSO algorithm performs global weight
optimization for FFNN to solve the common problems of slow training and getting stuck in local minima
points. The K-NN algorithm performs residual smoothing by predicting errors from neighboring points to
enhance output precision and prevent overfitting when operating under changing conditions. The system
achieves adaptive learning and fast convergence, as well as improved robustness for emission prediction,
through its combined elements. This combination enables the model to adaptively focus on the variables that
most significantly influence emissions under real-world operating conditions.

The model received its training data from the Al-Quds power plant, but its ability to predict turbine
behavior under different specifications, fuel types, and climate conditions remains untested.

This hybrid methodology offers a practical, scalable solution that improves predictive accuracy and
supports better real-time emission management. The model contributes to the field by addressing a key
research gap: the need for robust, adaptive, and interpretable prediction tools capable of operating effectively
under dynamic and resource-constrained conditions.

2 Neural Networks in Predictive Emission Monitoring
Neural networks (NNs) have garnered significant interest in predictive emission monitoring for gas

turbines due to their ability to learn complex, nonlinear relationships from operational data [11] highlighted
that both deep and feedforward architectures of neural networks effectively model dynamic emission
behaviors across varying operational conditions. Among these, Feedforward Neural Networks (FFNNs),
a subset of Artificial Neural Networks (ANNs), are particularly popular due to their adaptability and
generalization capabilities [12] illustrated this flexibility in a maritime context by developing an ANN model
that predicted NOx and CO emissions based on engine load and shaft speed. The model achieved an R2

value of 0.977, emphasizing the reliability of neural networks in fluctuating environments. Building on
such promising results, researchers have increasingly explored hybridizing ANN models with optimization
algorithms to further improve predictive performance. Ref. [6] conducted a comparative study, showing
that hybrid models integrating metaheuristic techniques like Particle Swarm Optimization (PSO) and
Genetic Algorithms (GA) consistently outperformed standalone ANN models. These hybrids demonstrated
improved convergence rates and reduced generalization errors. Similarly, Ref. [13] validated the superiority
of FFNNs over traditional regression methods in predicting NOx emissions, with lower mean absolute
errors observed.

However, several limitations persist. Many models fail to accommodate real-time operational variability,
resulting in potential overfitting and diminished generalization performance. Additionally, hybrid models
such as PSO-ANN and GA-ANN, while accurate, are computationally demanding and sensitive to parameter
tuning factors that constrain scalability and real-time applicability. These challenges underscore the need for
more efficient, adaptive approaches to neural network optimization in emission monitoring.
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2.1 Particle Swarm Optimization for Neural Networks
Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart in 1995, is a nature-inspired

algorithm that mimics the social behavior of bird flocks and fish schools. Each particle represents a candidate
solution (e.g., a set of neural network weights) and iteratively updates its position by considering both its best-
known position and the swarm’s global best. This process enables efficient exploration of high-dimensional
search spaces, making PSO well-suited for neural network training.

Tuttle [7] demonstrated that PSO significantly accelerates convergence during neural network training
for NOx emissions prediction, surpassing traditional gradient-based approaches. Ref. [14] applied PSO to
deep learning architectures for CO2 emission prediction and achieved reductions in overfitting. Similarly,
Ref. [15] developed a multi-objective PSO framework that successfully balanced prediction accuracy with
computational efficiency in emission control tasks.

Recent innovations further demonstrate PSO’s versatility. Ref. [16] enhanced a backpropagation NN for
shale gas prediction using PSO and grey relational analysis for feature selection, achieving superior accuracy
compared to conventional methods. Ref. [17] proposed a PSO-based method for structuring reservoir
computing models, which showed promising results in time-series prediction.

Despite these strengths, standard PSO faces limitations, including premature convergence and suscepti-
bility to local minima. Additionally, computational demands remain a concern for real-time and large-scale
applications. These drawbacks have spurred further research into enhanced and hybridized PSO variants.

2.2 Advances in Swarm Intelligence for Neural Network Optimization
To overcome the limitations of standard PSO, hybrid and alternative swarm intelligence algorithms have

been explored, offering enhanced exploration and convergence capabilities.
Hybrid PSO models combine PSO with other optimization or learning strategies to improve per-

formance. For instance, Ref. [18] developed a DPSO-PSO-FFNN framework by integrating discrete and
standard PSO with the Levenberg-Marquardt algorithm. This hybrid approach significantly improved
training efficiency and predictive accuracy. Ref. [19] introduced PSOCoG, which integrates a center-of-
gravity mechanism to better balance global and local search phases. Ref. [20] utilized a modified PSO with
time-varying acceleration coefficients to adaptively shift from exploration to exploitation. Similarly, Ref. [21]
proposed a hybrid PSO model incorporating cellular automata (HPSO-CA), which mitigated premature
convergence and preserved swarm diversity during emission prediction tasks.

Beyond PSO, various swarm-based techniques have been explored for emission prediction. Algorithms
like Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), and Firefly algorithms provide different
mechanisms for navigating complex search spaces. Ref. [22] demonstrated that applying these algorithms to
neural network training led to improved prediction accuracy in emission tasks.

The Dragonfly Algorithm (DA), which models dragonfly swarming behavior, has been hybridized with
ABC to create HAD (Hybrid ABC-DA). Ref. [23] showed this hybrid provided improved balance between
exploration and exploitation. Ref. [24] proposed the Harris Hawks Optimization (HHO) algorithm, inspired
by hawk hunting strategies, which performed well in large-scale optimization contexts.

2.3 Comparative Performance Analysis
A comparative analysis of swarm intelligence algorithms highlights their diverse performance in

training neural networks. As shown in Table 1, standard PSO remains the most widely used algorithm due to
its simplicity and proven performance. However, hybrid PSO variants have demonstrated superior results,
especially in tasks involving complex and non-convex search spaces.
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Table 1: Training feedforward neural networks using the particle swarm optimization algorithm

Cite Proposed model Computational
cost Performance Applicability

[18]

Discrete particle
swarm

optimization
(DPSO)

Iteration = 100

MAE =
2.53E−04–6.00E−03

RMSE=
1.59E−02–7.78E−02

MAPE = 7.57

Suitable for
optimizing ANNs in
complex, nonlinear

problems

[19]

Enhanced PSO
algorithm with

the center of
gravity

(PSOCoG)

Iteration = 100

MAE =
0.224702–1.19491E−05

MAPE
=0.0023%–0.001719%

Applicable for
time-series prediction

tasks

[20] Modified PSO
(MPSO) Iteration = 200

MAE = 0.0435–0.0116
RMSE= 0.0616–0.0164

R2 = 0.9248–0.9885

Suited for
optimization tasks

requiring both global
and local optimization

methods

[21]

Hybrid PSO and
Cellular

Automata (CA)
strategy

Iteration = 30 MSE= 0.0096–0.2002
MAE= 0.0574–0.3249

Suitable for
optimization

problems in neural
networks

[25] Standard PSO
algorithm Iteration = 500 AUC =0.89,

F-Measure = 0.66

Applicable for
structure learning in
Bayesian networks

[26] Standard PSO
algorithm Iteration = 200 MSE = 0.005

Suitable for
time-series forecasting

and economic
prediction tasks

[27]

Hybrid PSO and
gene expression
programming
(PSO-GEP)

Iteration = 150 RMSE = 2.67
R2 = 0.87

Effective for
controlling

multi-agent systems
and optimizing

formation tasks in
dynamic

environments

[28]

Hybrid PSO and
BA with

Acceleration
Coefficients

(MHPSO-BAAC)

Iteration = 1000
Time (s) = 105.1361

MAPE = 1.12%
MAE = 0.0112

RMSE = 0.0577

Effective for solving
eco-friendly and

economic dispatch
problems

(Continued)
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Table 1 (continued)

Cite Proposed model Computational
cost Performance Applicability

[29] Standard PSO
algorithm — RMSE = 0.515–1.264

Applicable for
optimizing software

testing processes

[30]

Combining PSO,
neighbor search,

and
Mantegna-Lévy
flight (LPSONS)

Time = 226.888
MSE = 0.0299

Accuracy = 97.56%
F-measure =0.6532

Suitable for complex
classification tasks

[31] Standard PSO
algorithm Iteration = 50 Accuracy = 98.0%

Suitable for
developing efficient
intrusion detection

systems

[32] Standard PSO
algorithm Iteration = 1000

RMSE = 68.87
NSE = 0.90

R2 = 0.9

Applicable for
modeling complex

rainfall-runoff
relationships

[33]

PSO-enhanced
deep model for

crop yield
prediction

Iteration = 600 RMSE = 0.057 Agriculture yield
forecasting

[34]

Hybrid deep
learning and PSO

for predictive
maintenance

Iteration = 1000 RMSE = 0.021
R2 = 0.987

Power plants
maintenance

[35]

Federated PSO
for smart grid

energy
management

Iteration = 500 Accuracy = 96.7% Smart grid
applications

Furthermore, performance metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2) are
commonly used to assess the performance of an optimized neural network.

2.4 Benchmarking Studies on Gas Power Plant Emissions
Benchmarking is an essential process for evaluating and improving the performance of predictive

models in gas power plants. The use of real-world datasets, as seen in studies [36–39], is crucial for ensuring
that the models are both accurate and generalizable. Table 2 provides a summary of various benchmarking
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studies focused on gas power plant emissions, demonstrating the diverse methodologies and contributions
made by different researchers.

Table 2: Summary of benchmarking studies on gas power plant emissions

Authors

Field
ofstudy

gas
pow

erplant
em

issions

C
ollecting

real
dataset

D
ata

preparation
fram

ew
ork

N
N

for
predication

H
ybrid

N
N

for
predication

H
ybrid

(N
N
+

IPSO
)for

predication

1H
L

M
orethan

1H
L

Input
optim

ization

N
N

topology
optim

ization

Perform
ance

IndicatorM
SE,

M
A

E,RM
SE,

M
A

PE,and
R

2

Specialized
code

[26]
√ √ √ √ √ √ √ √

[27]
√ √ √ √ √ √ √

[28]
√ √ √ √ √

[40]
√ √ √ √ √ √

[41]
√ √ √ √ √

[42]
√ √ √ √

[43]
√ √

[44]
√ √ √ √ √ √

Current
study

√ √ √ √ √ √ √ √ √

A key observation from these studies is the increasing use of hybrid neural networks, which com-
bine standard NNs with optimization algorithms to improve predictive performance by achieving better
performance indicators such as reduced MSE, MAE, RMSE, MAPE, and R2.

3 Comparative Analysis of Emission Prediction Models
To better illustrate the advantages of the proposed IPSO-FFNN model, Table 3 summarizes the key

differences between existing emission prediction techniques and our approach.

Table 3: Performance comparison of emission prediction models

Model Strengths Limitations

Traditional ANN Easy implementation, adaptive
learning

Prone to local minima,
slower convergence

SVR regression
method

Improved accuracy and
efficiency

No standard kernel function
selection

RNN/LSTM Handles sequential data,
captures dependencies

Requires large datasets, high
training cost

GA-Optimized
FFNN Strong exploration capabilities Risk of overfitting, slow

convergence

Standard
PSO-FFNN

Faster convergence, fewer
hyperparameters

Prone to premature
convergence, limited

exploration

(Continued)
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Table 3 (continued)

Model Strengths Limitations

Proposed
IPSO-FFNN

Improved accuracy, balance of
exploration/exploitation

Addresses overfitting, faster
convergence, and minimum

computational cost

To address these limitations, the IPSO-FFNN model introduces an enhanced optimization mechanism,
combining PSO’s exploration strengths with adaptive learning, achieving higher accuracy in NOx and CO
emission predictions.

4 Methodology
The subsequent subsections provide an in-depth exploration of the techniques utilized, beginning with

the Levenberg–Marquardt training algorithm, which is pivotal in optimizing the performance of the FFNN.
In this study, the network architecture consists of a single hidden layer, with 30 neurons, and the sigmoid
activation function used to map inputs to outputs. The structure is designed to minimize computational
complexity while achieving accurate gas emission predictions. Additionally, a diagram of the network
architecture is provided in Fig. 1, which illustrates the arrangement of input, hidden, and output layers.

Figure 1: The FFNN structure diagram

4.1 Levenberg–Marquardt Training Algorithm
The Levenberg–Marquardt (LM) algorithm is a robust optimization technique employed to fine-tune

the weights and biases of FFNNs by minimizing the loss function. This process enhances the model’s
predictive accuracy and offers several distinctive benefits over traditional optimization methods, making it
particularly favorable in the field of computer vision.

4.2 Activation Functions
This study focuses exclusively on the sigmoid activation function, denoted by σ(x), defined by the Eq. (1):

σ(x) = 1
(1 + e−x) (1)
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The sigmoid function is chosen for its output range, which is limited to (0, 1). This range aligns seamlessly
with the values obtained through min-max normalization, which spans from 0 to 1. Therefore, the use of
the sigmoid function is deemed appropriate due to its capacity to produce outputs within the desired range,
facilitating compatibility with the normalization process.

4.3 Number of Hidden Layers and Neurons
Previous studies in gas emission prediction often utilize two or three hidden layers. However, adding

more layers can significantly increase computational costs and processing times due to additional delays
during both training and testing. To optimize efficiency, this study focused on a single hidden-layer FFNN.
Preliminary experiments were conducted with varying neuron counts, and a configuration of thirty neurons
was selected. This setup balanced model complexity with computational efficiency, achieving optimal
performance with minimal overfitting for the dataset.

4.4 Dataset Division
Dataset division is a crucial step in model training, with several common proportions used for splitting

data into training, validation, and testing sets. Table 4 summarizes typical ratios reported by [45].

Table 4: Common dataset division ratios for training, validation, and testing

Training (%) Validation (%) Testing (%)
50 40 10
60 20 20
70 15 5
80 10 10
90 5 5

Selecting appropriate proportions is often guided by existing literature and past experiences. Thus, the
ratios for dividing the training, validation, and testing sets were optimized based on predicted metrics,
including MSE, RMSE, and MAE.

The dataset used for this study was collected from a real-world natural gas power plant. The data span
a period of five years (2015–2019), with a total sample size of 39,672 records, and include gas emission
measurements (CO and NOx), along with operational parameters such as turbine temperature and pressure.
The data was recorded at hourly intervals using sensors. A statistical summary of the dataset is provided
in Table 5.

Table 5: Statistical summary of key dataset features

Year Number of hours Mean value Standard
deviation

2015 7933 280.358 375.936
2016 7945 280.322 375.720
2017 7906 281.011 374.584
2018 7968 280.537 374.270
2019 7920 280.647 374.102
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Before being fed into the neural network models, the dataset underwent several preprocessing steps,
including:

• Data Cleaning: The analysis used linear interpolation to replace missing data, which accounted for 2.3%
of all records and removed outliers through statistical z-score thresholds at ∣z∣ > 3.

• Normalization: Min-max scaling was applied to standardize the range of features to [0, 1], ensuring
uniform contribution to the model.

• Feature Selection using NCA: Neighborhood Component Analysis was employed for feature selection to
optimize the feature space and improve classification accuracy. NCA learns a distance metric that assigns
weights to features based on their importance. This technique effectively retains critical information
while reducing noise in the dataset.

The NCA identified Compressor Discharge Pressure, Turbine Inlet Differential Pressure, Compressor
Inlet Pressure, Ambient Air Temperature, and Turbine Exhaust Temperature as the top operational variables
that affect CO and NOx emissions.

The selection of the optimal training/validation/test ratio for each model was empirically validated. For
the standard FFNN model, the best results (lowest MSE, RMSE, and MAE) were obtained with a 50%, 40%,
and 10% split. For the Improved PSO-FFNN model, a 60%, 20%, and 20% split yielded optimal performance.
These outcomes are consistent with prior benchmarking work [25].

The dataset comprises real field data collected from an operational natural gas power facility located in
Iraq. Emission metrics, including CO and NOx concentrations, were obtained through Continuous Emission
Monitoring Systems (CEMS), while operating parameters such as turbine inlet temperature, pressure,
electrical load, and ambient humidity were recorded using SCADA-based industrial sensors. Data collection
was conducted over a five-year period, with each record verified by plant engineers to ensure reliability.
This real-time dataset reflects the true operating conditions of Iraqi power generation units and serves as a
foundation for robust machine learning model training and validation.

4.5 Freezing the Feedforward Neural Network Model
Weights were fixed after 22 epochs based on empirical convergence patterns to stabilize model output.

This eliminated further training and ensured reproducibility.

4.6 Improved Particle Swarm Optimization-Feedforward Neural Network Model
To enhance the model’s performance, new configurations (refer to Table 6) were applied, and the PSO

algorithm was utilized to optimize the weight coefficients, accelerating convergence and improving the
model’s learning efficiency. The optimized weights are subsequently integrated into the FFNN model, where
the weights are updated in each training cycle to minimize the cost function. This iterative process continues
until the global optimum is reached, ensuring the highest possible prediction accuracy.

Table 6: Configurations of the IPSO-FFNN model

Parameter Value
Number of hidden layers Single (1)

Target training performance (MSE) 1 × e−201

Training model Levenberg–Marquardt algorithm
(LM)

Minimum gradient 1 × e−101

(Continued)
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Table 6 (continued)

Parameter Value
Maximum failures 100

Epoch 22
Training time goal (seconds) 30

PSO search space upper bound +1.09
PSO search space lower bound −1.09

The PSO algorithm optimizes the weight coefficients by adjusting the particle velocity and position to
minimize the MSE of the predicted emissions. The velocity of the i-th particle at time t is updated according
to Eq. (2):

vi(t + 1) =W × vi(t) + c1 × R1 × (pbest
i − xi (t)) + c2 × R2 × gbest − xi (t)) (2)

where:

• vi(t + 1) is velocity of particle i at time t + 1
• W is inertia weight
• c1 , c2 are acceleration constants
• R1, R2 are random values between [0, 1]
• xi (t) is the current position (weight) of particle i
• pbest

i represents the personal best position of particle i
• gbest represents global best position

The position of each particle is then updated as in Eq. (3):

xi (t + 1) = xi (t) + vi(t + 1) (3)

The fitness function used to evaluate the solution quality is the MSE of the predictions, given by Eq.(4):

MSE = 1
N

N
∑
i=1
(Ti − Tˆ

i)2 (4)

where:

• Ti represents true emission values
• Tˆ

i represents predicted values from the FFNN model
• N represents the total number of test samples

PSO begins by generating a set of weights (particles) and searches for weights that minimize the fitness
function by adjusting parameters like inertia weight and velocity [46]. The PSO parameters, such as swarm
size, inertia weight, and acceleration constants, were optimized based on preliminary tuning experiments
to ensure faster convergence and improved accuracy. These parameters are adjusted to strike a balance
between exploration (searching across the solution space) and exploitation (refining the search around the
best solutions), leading to a more efficient search for optimal weights.

An innovative IPSO-FFNN algorithm is provided in Algorithm 1, addressing the interaction between
PSO optimization, FFNN training, and performance evaluation phases. This algorithm aids in understanding
how improved PSO enhances FFNN by iteratively optimizing weight configurations. The PSO optimization
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process ensures that the FFNN’s performance is maximized by fine-tuning the weights at each training cycle,
ultimately resulting in more accurate emission predictions.

Algorithm 1: Innovative IPSO-FFNN algorithm.
// ------STAGE 1: Swarm Initialisation --------
Step 1.1: Set Initial Parameters

numParticles ← N
maxIterations ← T
w← Inertia_Weight
c1, c2← Acceleration_Coefficients

Step 1.2: Initialise Particle Population
For each particle i ∈ [1, N]:

xi ← KNNinitialise(TrainingData) // initial weights
vi ← Randominitial_Velocity
pi ← xi
Evaluate Fitness: Fitness[i]←MSE(xi, TrainingData)

Step 1.3: Initialise Global Best
g← argmin(Fitness[i])

// -------- STAGE 2: PSO Optimisation Loop --------
Repeat while iteration <maxIterations:
Step 2.1: Update Particle Velocities

For each particle i ∈ [1, N]:
r1, r2← Random(0, 1)
vi ← w * vi + c1 * r1 * (pi − xi) + c2 * r2 * (g − xi)

Step 2.2: Update Particle Positions
xi ← xi + vi

Step 2.3: Re-evaluate Fitness
Fitness[i]←MSE(xi, TrainingData)

Step 2.4: Update Personal and Global Bests
If Fitness[i] <MSE(pi):

pi ← xi
If MSE(pi) <MSE(g):

g← pi
// -------- STAGE 3: FFNN Model Construction --------
Step 3.1: Configure FFNN Architecture

FFNN← CreateNetwork(InputSize, HiddenLayers, OutputSize)
Step 3.2: Inject Optimised Weights

FFNN.Weights ← g
Step 3.3: Train FFNN Using Training Data

Train FFNN on TrainingData using injected weights
// -------- STAGE 4: Output Results --------
Output:

- Final FFNN model
- Optimal weight vector g
- Final MSE score
- Optional training metrics (loss curve, accuracy, etc.)
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The above algorithm presents a framework for the training of feedforward neural networks (FFNNs)
through the application of Particle Swarm Optimization (PSO). The procedure commences with the
definition of swarm parameters, followed by the initialization of a population of particles, each representing
a candidate solution comprising a vector of FFNN weights. The KNN algorithm is used for particle position
initialization, where it places particles near areas likely to lead to optimal solutions in the search space. The
method begins the search with weights that reflect successful local patterns in the data, resulting in quicker
search efficiency. The fitness of each particle is evaluated using the mean squared error (MSE) between
the network’s predicted outputs and the actual target values. During each iteration, particle velocities and
positions are updated using the standard PSO update rules, which incorporate both personal and global
best positions. The global best solution obtained at the end of the iterative process is then embedded into
the FFNN structure, serving as the initial weight configuration. The network is subsequently trained on the
dataset, benefiting from the PSO-derived optimization. This hybrid approach leverages the global search
capabilities of PSO and the learning power of neural networks, while the KNN-informed initialization
promotes improved exploration efficiency and solution quality.

4.7 Improved Particle Swarm Optimization-Feedforward Neural Network Model
The seed generation process in the IPSO-FFNN model involves initializing weights to accelerate

convergence. A random seed is generated, denoted as SeedRG Eq. (5), based on the optimum weights from
the standard FFNN and adjusted by random values. This approach provides a foundation for optimizing
particle positions in the swarm, leveraging well-performing weight configurations as starting points.

SeedRG = [l ength(optimum weight), [optimum weight o f FFNN] + PRG(R1, R2, [1, 1])] (5)

4.8 Specifications of IPSO Parameters
The IPSO algorithm’s parameters are carefully selected to control the swarm’s behavior and convergence

rate. The selection of these parameters combined literature recommendations with preliminary experiments
and sensitivity analysis to achieve optimal convergence and solution quality. Key parameters are illustrated
in Table 7:

Table 7: Specifications of IPSO parameters

Parameter Value Range Selection rationale

Swarm size (S) 100 [10–1000+]

The selection process aimed to achieve both
exploration and computational efficiency

through testing different values of 50, 100, and
200 until 100 produced the optimal results

Acceleration
constants (c1) 2 [0–4] Adjusted through testing to achieve proper

particle movement toward their best positions

Acceleration
constants (c2) 2 [0–4] Adjusted through direct particles toward the

global best solution without exceeding it

Inertia weight (W) 1 [0–1]
Starting with 1 as its initial value, before using a

damping factor to achieve stable swarm
movement

(Continued)
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Table 7 (continued)

Parameter Value Range Selection rationale

Number of
iterations 100 [100–1000+]

The number of iterations was selected through
empirical testing, where additional iterations

beyond 100 did not produce significant
improvements in error measurement results

Damping factor 0.5 [0.1–0.9] Controlling the speed of inertia decreases to
achieve better stability during convergence

4.9 RNN/LSTM Model
The RNN/LSTM model in this study is designed for nonlinear prediction, tailored to capture time-based

patterns in gas emission data where traditional linear models are inadequate. This LSTM setup includes
two hidden layers, chosen after evaluating various configurations for optimal accuracy and processing
time. Preprocessing steps involve normalizing inputs and applying Principal Component Analysis (PCA)
to reduce features to nine dimensions, making the data manageable while retaining critical information.
Model training employs the Adam optimizer with an MSE loss function over 30 epochs. The trained model
is then assessed for accuracy, MSE, MAE, RMSE, MAPE, and R2, confirming its capability to handle time
dependencies for accurate emission prediction.

5 Model Validation
The IPSO-FFNN model validation process involved a thorough evaluation using an independent

validation dataset, which was set apart during the first dataset partitioning stage. The model’s ability to
generalize was evaluated through standard statistical metrics, including (i.e., MSE, RMSE, MAE, MAPE, and
R2), which were applied to both CO and NOx emission predictions. The model’s performance was validated
through output comparison with standard FFNN and RNN/LSTM models before moving on to SVR and
K-NN models in an expanded analysis using the same emission dataset.

6 Model Comparison
Once the proposed solution is sufficiently developed, it undergoes a comparative evaluation against

two baseline models: the standard FFNN and the RNN/LSTM. The standard FFNN provides a foundational
benchmark for accuracy and efficiency, while the RNN/LSTM model offers insights into the effectiveness of
recurrent architectures for emission prediction. The performance metrics for standard FFNN in predicting
CO and NOx emissions are derived from Eq. (6):

E = T − TR (6)

where T represents true labels and TR denotes predicted labels. Non-zero values in the error vector indicate
errors in predictions, while zero values signify correct predictions. Eq. (7) calculates MSE, MAE, and RMSE:

MSE =
K
∑
n=1

E [K]2

K
(7)

MAE =
K
∑
n=1

∣E [K] ∣
K
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RMSE =
√
∑i

n=1 e(n)2

i

7 Results and Discussion
This section presents the findings from applying the IPSO-FFNN model for predicting CO and NOx

emissions in a natural gas power plant. The model’s performance was analyzed, and its improvement due to
PSO optimization was thoroughly discussed. The error analysis is followed by a comparative evaluation with
other machine learning models. The results are presented through tables and figures.

7.1 Model Performance
The IPSO-FFNN model demonstrated a significant improvement in predicting CO and NOx emis-

sions compared to the standard FFNN. The model was assessed based on several metrics, as mentioned
earlier. Table 8 summarizes the performance metrics results for CO and NOx predictions.

Table 8: Performance of IPSO-FFNN vs. standard FFNN in CO and NOx prediction

Model Emission
type MSE MAE RMSE MAPE

(%) R2

FFNN CO 5.756 2.182 2.399 18.252 0.704
NOx 4.779 2.061 2.186 19.834 0.747

IPSO-FFNN CO 0.126 0.109 0.355 5.203 0.104
NOx 0.135 0.134 0.368 4.788 0.161

RNN/LSTM CO 0.434 0.659 0.537 17.832 0.852
NOx 0.838 0.757 0.915 29.537 0.557

The IPSO-FFNN achieved an MSE of 0.126 for CO emissions and 0.135 for NOx, demonstrating superior
accuracy in predicting emission levels. The significant reduction in RMSE, from 2.399 to 0.355 for CO
and from 2.186 to 0.368 for NOx, underscores the model’s improved precision over the standard FFNN. It
should be noted that the model depends on both the quantity and precision of sensor data, which serves as
input features for its operation. The IPSO-FFNN model will experience decreased predictive accuracy when
sensors experience drift or failure or when only a few measurement parameters are available. The reliability
of emission predictions depends on maintaining continuous high-quality sensor measurements.

RMSE, as a metric that penalizes larger errors more heavily, highlights the IPSO-FFNN’s ability
to minimize variance in predictions effectively. Furthermore, compared to benchmarks in the literature,
these RMSE values are notably lower than those achieved by traditional models, as reported in studies
like [41,42,47,48], where RMSE values for CO and NOx emissions typically ranged from 0.284 to 8.921. This
comparison highlights the efficiency of the IPSO-FFNN model in emission prediction tasks. As Algorithm 1
illustrates, the predicted values closely align with the actual emission data across the test set, further
validating the model’s precision and reliability. In contrast, the RNN/LSTM model, while performing well,
achieved higher MSE and RMSE values of 0.434 and 0.537 for CO, and 0.838 and 0.915 for NOx, respectively.
These results indicate that the LSTM model struggled with capturing the finer patterns in the emission data
when compared to IPSO-FFNN. The LSTM model, being more complex, is often better suited for capturing
temporal dependencies in sequential data, but the emission dataset used in this study was recorded at hourly
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intervals, resulting in weak long-term temporal connections at this measurement scale, leading to relatively
higher prediction errors. Nevertheless, the LSTM model’s results still demonstrate a significant improvement
over traditional FFNN models, as reflected in the lower RMSE and MSE values for both CO and NOx
emissions compared to standard FFNN results.

Moreover, the five-year dataset used in this study adds significant practical value to these results. The
model demonstrates operational stability through its ability to handle real-world operational noise and
load fluctuations, and ambient condition variations that occur in demanding industrial settings. The model
demonstrates superior generalization ability because it operates with actual power plant data instead of
simulated information.

In Fig. 2, the alignment between the actual and predicted CO and NOx emissions demonstrates the
accuracy of the IPSO-FFNN model. The solid blue lines represent the actual emissions, while the red dashed
lines indicate the model’s predictions. The model captures the periodic fluctuations of both CO and NOx
emissions, reflecting its effectiveness in learning the underlying patterns in the data. The minimal difference
between the actual and predicted curves demonstrates the model’s high accuracy in capturing emission
variations, supported by the low MSE, MAE, and RMSE values detailed in Table 5.

Figure 2: Actual vs. predicted (a) CO and (b) NOx emissions using IPSO-FFNN
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7.2 Impact of PSO on FFNN Performance
PSO played a pivotal role in enhancing the standard FFNN’s prediction accuracy. By optimizing the

network weights, PSO ensured faster convergence and minimized the risk of overfitting. Fig. 3 shows the loss
(MSE) reduction during the training process, comparing IPSO-FFNN with standard FFNN.

Figure 3: MSE loss reduction for (a) CO and (b) NOx: IPSO-FFNN vs. standard FFNN

The above figures demonstrate the trends in MSE loss reduction for IPSO-FFNN and standard FFNN
models. The IPSO-FFNN shows a sharper decline in MSE during the initial epochs, indicating faster
convergence due to the effective weight optimization achieved by the PSO algorithm. By the end of the
training, the IPSO-FFNN achieves consistently lower MSE values, reflecting its superior accuracy and
robustness in modeling emission dynamics. This improvement can be attributed to PSO’s global search
capability, which optimally adjusts the network weights, avoids suboptimal solutions, and mitigates the risk
of getting trapped in local minima (challenges commonly faced by standard backpropagation). Additionally,
the IPSO-FFNN stabilizes at a lower final loss, underscoring its enhanced generalization capability.

7.3 Error Analysis
Error analysis reveals how well the IPSO-FFNN performs across different parts of the data, including

handling outlier values. Table 9 shows the percentage reduction in errors (MSE, MAE, RMSE, MAPE,
and R2) when using the IPSO-FFNN compared to a standard FFNN for both CO and NOx predictions.
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Table 9: Percentage reduction in error metrics by IPSO-FFNN compared to standard FFNN

Emission
type

Reduction
in MSE (%)

Reduction
in MAE (%)

Reduction in
RMSE (%)

Reduction in
MAPE (%)

Reduction
in R2 (%)

CO 97.80 95.00 85.19 71.49 97.58
NOx 97.16 93.47 83.15 75.86 97.04

These reductions underline the IPSO-FFNN’s effectiveness in minimizing prediction errors. The error
analysis further indicated that IPSO-FFNN outperforms other models due to its ability to explore a diverse
search space and escape local minima, resulting in improved generalization. The concentration of errors
around zero, seen in Fig. 4, underscores the model’s reliability.

Figure 4: Error distribution for (a) CO and (b) NOx predictions using IPSO-FFNN
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The error distribution shows that most errors are concentrated around zero, indicating minimal
deviation from actual values, with only a few slight underestimations observed for both CO and NOx. This
narrow error distribution highlights the model’s reliability in predictions.

7.4 Comparative Evaluation of the Developed Model
To comprehensively validate the performance of the IPSO-FFNN model, a comparative analysis was

conducted against other models, including the Standard FFNN, Support Vector Regression (SVR), K-Nearest
Neighbors (K-NN), and Long Short-Term Memory (LSTM) networks, using the same Exhaust Emission
Dataset [37]. This evaluation was based on RMSE for predicting CO and NOx emissions, as detailed
in Table 10. Additionally, a bar chart was generated in Fig. 5 to visually represent the RMSE performance
across different models, highlighting the IPSO-FFNN model’s superior accuracy.

Table 10: Comparative performance of IPSO-FFNN vs. other models (RMSE)

Model CO prediction (RMSE) NOx prediction (RMSE)
Standard FFNN 2.399 2.186

IPSO-FFNN 0.355 0.368
SVR 0.875 4.202

K-NN 1.499 1.521
LSTM 0.537 0.757

Figure 5: RMSE comparison of IPSO-FFNN with other models

The bar chart demonstrates that IPSO-FFNN produces the lowest RMSE values for both CO and NOx
predictions, which proves its superior accuracy compared to other models.

The hybrid structure of IPSO-FFNN produces better results than other models. The PSO component
performs global weight optimization to stop the model from getting stuck in local minimum points, which
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standard FFNN and SVR models experience during highly nonlinear operations. The K-NN guided initial-
ization method uses statistical methods to establish weight values, which leads to better model convergence
and produces more stable predictions when turbine loads and environmental conditions change.

The IPSO-FFNN model generates more accurate NOx predictions than LSTM because the emission data
points were recorded at one-hour intervals, which reduces the ability of LSTM to detect long-term patterns.
After all, it weakens its capacity to identify complex nonlinear relationships between operational variables.
The IPSO-FFNN model directly analyzes nonlinear relationships to generate better emission predictions.

8 Conclusions
This study successfully developed and implemented an intelligent monitoring system for predicting CO

and NOx emissions in natural gas power plants using a hybrid model of improved PSO combined with FFNN.
The use of real operational data demonstrated the model’s practicality in real-world conditions, highlighting
significant improvements in prediction accuracy. Key improvements included reduced prediction errors,
enhanced model stability, and faster convergence. This approach introduces distinct contributions by inte-
grating PSO’s global optimization capability with FFNN’s nonlinear learning potential, effectively addressing
challenges such as local minima and suboptimal convergence. The study achieves its main methodological
strength through the complete combination of NCA feature selection with PSO global optimization and
FFNN nonlinear learning and K-NN residual error correction into a unified predictive system. The model
achieves three key benefits through this integration because it learns complex emission patterns while
optimizing its learning process and reducing prediction mistakes when operating conditions change.

The IPSO-FFNN model’s real-time applicability allows continuous monitoring and early detection of
abnormal emissions, enhancing environmental safety by minimizing pollutant leaks and ensuring com-
pliance with stringent environmental standards. Beyond the energy sector, industries such as chemical
processing, petrochemical refining, and waste management could adopt this model for emission control and
operational efficiency, where real-time monitoring is critical.

However, certain limitations remain, including reliance on publicly available datasets and the con-
straints of the FFNN architecture. Future research should focus on model expansion to predict sulfur
oxides (SOx) and particulate matter alongside its current pollutant prediction capabilities. Furthermore,
future research should focus on direct hardware integration with turbine controllers and field-programmable
gate arrays (FPGAs) to reduce response time and boost real-time performance. Additionally, advanced
optimization methods such as Differential Evolution and Bayesian Optimization should be investigated
to enhance both the speed and stability of convergence. The financial benefits of deploying the proposed
intelligent monitoring system can be evaluated through economic frameworks that include the ‘Option Value’
concept when dealing with unpredictable environmental and market scenarios [49].

Moving forward, it is recommended that the IPSO-FFNN model be integrated into the monitoring sys-
tems of gas-fired power plants for real-time emission tracking and predictive maintenance. This integration
would allow operators to make timely adjustments, minimize environmental impact, and optimize turbine
operations. The conclusion establishes practical deployment as its focus while directing future research to
expand models and study their economic viability.
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39. Bakay MS, Ağbulut Ü. Electricity production-based forecasting of greenhouse gas emissions in Turkey with deep
learning, support vector machine and artificial neural network algorithms. J Clean Prod. 2020;125324. doi:10.1016/
j.jclepro.2020.125324.

40. Yuan Z, Meng L, Gu X, Bai Y, Cui H, Jiang C. Prediction of NOx emissions for coal-fired power plants with stacked-
generalization ensemble method. Fuel. 2020;282:119748. doi:10.1016/j.fuel.2020.119748.

41. Freida O, Victor B, Indati S, Fernando Y. Effect of activation function in modeling the nexus between carbon tax,
CO2 emissions, and gas-fired power plant parameters. Energy Convers Manage X. 2021;12(12):100111. doi:10.1016/j.
ecmx.2021.100111.

42. Dirik M. Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model
optimized by GA. Fuel. 2022;321(12):124037. doi:10.1016/j.fuel.2022.124037.

43. Ahmadi MH, Jashnani H, Chau KW, Kumar R, Rosen MA. Carbon dioxide emissions prediction of five
Middle Eastern countries using artificial neural networks. Energy Sources Part A Recover Util Environ Eff.
2019;45(3):9513–25. doi:10.1080/15567036.2019.1679914.

44. Wood DA. Long-term atmospheric pollutant emissions from a combined cycle gas turbine: trend monitoring and
prediction applying machine learning. Fuel. 2023;343(1):127722. doi:10.1016/j.fuel.2023.127722.

45. Moliere M, Jaubert JN, Privat R, Schuhler T. Stationary gas turbines: an exergetic approach to part load operation.
Oil Gas Sci Technol. 2020;75(3):1–11. doi:10.2516/ogst/2020001.

46. Shami TM, El-saleh AA. Particle swarm optimization: a comprehensive survey. IEEE Access. 2022;10:10031–61.
doi:10.1109/ACCESS.2022.3144567.

47. Nino-Adan I, Portillo E, Landa-Torres I, Manjarres D. Normalization influence on ANN-based models perfor-
mance: a new proposal for features’ contribution analysis. IEEE Access. 2021;9:125462–77. doi:10.1109/ACCESS.
2021.3110647.

48. Awasthi P, Das A, Sen R, Suresh AT. On the benefits of maximum likelihood estimation for regression and
forecasting. arXiv:2106.10370. 2021. doi:10.48550/arXiv.2106.10370.

49. Borozan S, Giannelos S, Aunedi M, Strbac G. Option value of EV smart charging concepts in transmission expan-
sion planning under uncertainty. In: 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON);
2022 Jun 14–16; Palermo, Italy. p. 63–8. doi:10.1109/MELECON53508.2022.9842982.

https://doi.org/10.1016/j.eswa.2025.127287
https://doi.org/10.1016/j.esr.2025.101704
https://doi.org/10.46354/i3m.2023.sesde.009
https://doi.org/10.3906/elk-1807-87
https://doi.org/10.1016/j.jclepro.2020.122310
https://doi.org/10.1016/j.jclepro.2020.125324
https://doi.org/10.1016/j.jclepro.2020.125324
https://doi.org/10.1016/j.fuel.2020.119748
https://doi.org/10.1016/j.ecmx.2021.100111
https://doi.org/10.1016/j.ecmx.2021.100111
https://doi.org/10.1016/j.fuel.2022.124037
https://doi.org/10.1080/15567036.2019.1679914
https://doi.org/10.1016/j.fuel.2023.127722
https://doi.org/10.2516/ogst/2020001
https://doi.org/10.1109/ACCESS.2022.3144567
https://doi.org/10.1109/ACCESS.2021.3110647
https://doi.org/10.1109/ACCESS.2021.3110647
https://doi.org/10.48550/arXiv.2106.10370
https://doi.org/10.1109/MELECON53508.2022.9842982

	A Hybrid Artificial Intelligence Model for Accurate Prediction of Gas Emissions in Power Plant Turbines
	1 Introduction
	2 Neural Networks in Predictive Emission Monitoring
	3 Comparative Analysis of Emission Prediction Models
	4 Methodology
	5 Model Validation
	6 Model Comparison
	7 Results and Discussion
	8 Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


