



---

## Entrepreneurship Education for Climate Action: The Role of Universities in Developing NetZero Startups

|                  |                                                                                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal:         | <i>International Journal of Sustainability in Higher Education</i>                                                                                        |
| Manuscript ID    | IJSHE-04-2025-0296                                                                                                                                        |
| Manuscript Type: | Research Paper                                                                                                                                            |
| Keywords:        | Sustainability in Higher Education, Entrepreneurship Education, Climate Action, NetZero Entrepreneurship, University-Based Innovation, sustainable future |
|                  |                                                                                                                                                           |

SCHOLARONE™  
Manuscripts

## 1

## 2

## 3      Entrepreneurship Education for Climate Action:

## 4      The Role of Universities in Developing NetZero Startups

## 5

## 6

### 7      Abstract

### 8

9      **Purpose** – As climate imperatives escalate, HEIs are expected to mobilise entrepreneurship education  
10     for SDG delivery. This study examines how entrepreneurship education shapes graduates' creation of  
11     NetZero-oriented ventures and explains the institutional conditions that enable or inhibit this pathway.

12     **Design/methodology/approach** – Using an interpretivist qualitative design, study conducted 32 semi-  
13     structured interviews with graduates (undergraduate n=14; postgraduate n=18) from four UK  
14     universities (graduation 2020–2023) engaged in NetZero ventures. Data were analysed using the  
15     Gioia method; demographic identifiers were used to contextualise quotations.

16     **Findings** – Five cross-institutional challenges constrain the translation of sustainability awareness  
17     into entrepreneurial action: (1) limited embedding of NetZero content in core curricula; (2)  
18     inconsistent sustainability terminology; (3) insufficient implementation guidance and venture-building  
19     support; (4) over-reliance on classroom-based instruction relative to experiential learning; and (5)  
20     fragmented, weakly coordinated support across units. Study explains how these patterns arise from  
21     curriculum design choices, capability gaps in NetZero pedagogy, and siloed governance that dissipate  
22     resources.

23     **Research limitations/implications** – The qualitative, UK-based sample limits generalisability; future  
24     research should test these mechanisms in other contexts using mixed methods and multi-stakeholder  
25     data.

26     **Practical implications** – Recommendations include embedding NetZero across entrepreneurship  
27     teaching, establishing shared terminology, providing tailored implementation support  
28     (incubation/mentoring), extending experiential learning, and coordinating cross-unit ecosystems  
29     aligned with policy partners.

30     **Social implications** – Stronger university ecosystems can accelerate graduate-led NetZero innovation,  
31     advancing SDG 4 and SDG 13.

32     **Originality/value** – The study offers one of the first empirically grounded accounts linking  
33     entrepreneurship education to NetZero venture creation, integrating institutional and graduate  
34     perspectives.

### 35      Keywords

### 36

37     NetZero Entrepreneurship, Sustainability in Higher Education, Entrepreneurship, Education, Climate  
38     Action, University-Based Innovation, sustainable future

## 1. Introduction

5 The increasing urgency of climate change has prompted global commitments to decarbonisation, with  
6 many nations aiming for NetZero emissions by 2050 (HM Government, 2021). As emphasised by the  
7

8 IPCC (2022), the “brief and rapidly closing window of opportunity” to secure a liveable planet  
9 necessitates immediate, coordinated action across all sectors of society. Businesses, which contribute  
10

11 significantly to global greenhouse gas emissions, are central to this transformation (ONS, 2022).

12 While many existing firms are transitioning to more sustainable practices, it is equally critical to  
13 support the formation of new businesses that are founded on NetZero principles from inception.

14 Universities are crucial drivers of economic development and social change (Guerrero et al., 2016),  
15 especially as global problems reshape socioeconomic landscapes and demand sustainable returns from

16 universities (GraddyReed, Lanahan and D'Agostino, 2021). The appetite for finding ways through  
17 which entrepreneurship education in universities can play a role in addressing societal challenges  
18 around climate change has never been stronger. Addressing the challenge of climate change, the

19 present study aims to explore how universities may gain ground in the race for climate action by  
20 assisting in developing new businesses built with climate action in mind. Higher education institutions

21 (HEIs) are increasingly recognised as catalysts for sustainable development through their roles in  
22 teaching, research, and societal engagement (Cross and Congreve, 2020). Entrepreneurship education

23 within universities plays a pivotal role in this ecosystem by shaping the attitudes, intentions, and  
24 capacities of students to become agents of change. Recent scholarship underscores the potential of

25 entrepreneurial ecosystems fostered by universities to address societal challenges, including those  
26

27 posed by climate change (Guerrero et al., 2016; Meek and Gianiodis, 2022; Wurth et al., 2021).

28 However, there remains limited empirical understanding of how entrepreneurship education

29 specifically supports the development of NetZero-focused ventures.

30 Addressing this gap, the present study investigates the extent to which entrepreneurship education and  
31 associated institutional support systems influence graduates in founding NetZero-aligned businesses.

32 Focusing on four UK universities known for their entrepreneurship ecosystems and sustainability  
33 agendas, this research explores how these educational environments shape graduate entrepreneurial

34 intent and enable sustainable start-up formation. By examining the lived experiences of 32 recent  
35 graduates who have launched NetZero ventures, the study seeks to identify critical enablers and

36 barriers within university settings.

37 This research adopts a qualitative methodology underpinned by the Gioia method, allowing for a  
38 rigorous and transparent interpretation of complex experiential data. The findings contribute to the

39 literature on sustainability in higher education and entrepreneurship by highlighting five thematic  
40 challenges that constrain NetZero-oriented entrepreneurial activity: limited curriculum integration,

41 terminological inconsistency, weak practical implementation, over-reliance on classroom teaching,  
42 and fragmented institutional support.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

In doing so, the study addresses Sustainable Development Goals (SDG) SDG 4 (Quality Education) and SDG 13 (Climate Action), providing actionable insights for policy, pedagogy, and institutional design. It advances understanding of how HEIs can align entrepreneurship education with the imperatives of climate action, equipping graduates to become proactive contributors to a sustainable and resilient economy.

## 2. Literature Review

The escalating climate crisis has underscored the urgency for businesses to transition towards environmentally responsible models. Within this broader transformation, entrepreneurship is increasingly viewed not just as an economic driver, but as a mechanism for social and ecological innovation. As a result, a growing body of literature has emerged around sustainable entrepreneurship—defined by its dual focus on value creation and environmental stewardship. Central to this discourse is the role of higher education institutions (HEIs), which have the potential to shape entrepreneurial intent and capabilities through curricula, mentorship, and institutional ecosystems. This review critically examines three interrelated strands: the concept of sustainable entrepreneurship and its alignment with climate action; the influence of entrepreneurship education on sustainable entrepreneurial intention; and the role of universities in fostering institutional ecosystems that support NetZero-aligned ventures.

### 2.1 Sustainable Entrepreneurship and Climate-Oriented Innovation

Traditionally, entrepreneurship has been framed through the lens of economic utility and market efficiency, often guided by profit-maximisation logic (Friedman, 2007). However, this orientation has come under scrutiny in light of complex global challenges, particularly climate change, biodiversity loss, and inequality. In response, an alternative model of sustainable entrepreneurship has emerged, emphasizing ventures that simultaneously deliver economic, social, and ecological value (Laukkanen and Tura, 2020; Lüdeke-Freund et al., 2020).

Sustainable entrepreneurs distinguish themselves by incorporating environmental priorities—such as carbon neutrality, renewable energy, and circular economy principles—into the very design of their business models. Peng et al. (2021) define sustainable entrepreneurship as a process where ventures are formed with intentional strategies to balance ecological, social, and financial objectives. This contrasts with the traditional post hoc integration of corporate social responsibility (CSR) in business, wherein sustainability is often treated as an add-on rather than a foundational principle.

Entrepreneurs with high environmental values are more likely to pursue businesses that explicitly tackle environmental degradation (Yasir et al., 2021; Qazi et al., 2021). Such ventures are not only driven by market opportunities but also by a sense of environmental responsibility, often characterised by a “people–planet–profit” orientation. These value systems are increasingly shaped during

1  
2  
3 formative experiences, including education. Thus, universities—by integrating sustainability into  
4 entrepreneurial training—can act as catalysts for NetZero-aligned innovation.  
5  
6 Despite this potential, a persistent gap remains in the translation of sustainability ideals into  
7 entrepreneurial practice. Few empirical studies explore how sustainable entrepreneurship specifically  
8 relates to climate mitigation goals, such as the formation of NetZero ventures. The current study  
9 contributes to closing this gap by examining how educational systems influence the entrepreneurial  
10 pathways of graduates seeking to build climate-aligned businesses.  
11  
12  
13

## 14 15 16 *2.2 Entrepreneurship Education and Sustainable Entrepreneurial Intention*

### 17 2.2 Entrepreneurship Education and Sustainable Entrepreneurial Intention

18  
19  
20 Entrepreneurship education has emerged as a central mechanism for fostering sustainable  
21 entrepreneurial intention (SEI), equipping students with the knowledge, skills, and values necessary to  
22 engage in sustainability-oriented venture creation. While early research on entrepreneurial intention  
23 drew heavily from Ajzen's (1991) Theory of Planned Behaviour (TPB), more recent scholarship has  
24 extended this framework to incorporate environmental attitudes, social norms, and institutional  
25 contexts as critical antecedents of SEI (Arru, 2020; Yasir et al., 2021; Sharma et al., 2024). This shift  
26 underscores a growing recognition that entrepreneurship education is not merely a vehicle for  
27 imparting technical skills, but also a transformative platform for cultivating sustainability-oriented  
28 mindsets and competencies (Islam & Mehdi, 2024; Ramos-Rodríguez et al., 2024).  
29  
30  
31  
32  
33

34  
35 A central theme in recent studies is the role of curriculum design and assessment in embedding  
36 sustainability within entrepreneurship education. Educator perspectives emphasize that sustainability  
37 integration must extend beyond elective modules or isolated case studies to become a core element of  
38 entrepreneurial training (Kotla & Bosman, 2023). Curriculum assessments reveal that programs  
39 emphasizing experiential learning, sustainability-infused case studies, and interdisciplinary  
40 collaboration significantly enhance students' SEI (Bridgman et al., 2024; Zherdeva et al., 2025). For  
41 example, Zherdeva et al. (2025) argue that embedding contextual critical thinking and ecological  
42 problem framing within assessment design cultivates sustainability literacy while enabling students to  
43 link entrepreneurial processes to real-world environmental and societal challenges.  
44  
45  
46  
47  
48

49  
50 Educators also highlight the importance of transformative learning approaches pedagogies that  
51 integrate reflection, action, and value-driven inquiry. Bridgman et al. (2024) demonstrate that  
52 entrepreneurship curricula employing third-order critical reflection enable students to interrogate  
53 unsustainable business norms and envision entrepreneurial models aligned with long-term societal  
54 value creation. Such reflective practices, when coupled with experiential learning (e.g., living labs,  
55 green incubators, and community-based projects), help translate sustainability theory into  
56  
57  
58

entrepreneurial practice, reinforcing students' belief in their capacity to address ecological and social issues through venture creation (Qazi et al., 2021).

From an educator standpoint, psychological capital (PsyCap) is increasingly viewed as a critical target of entrepreneurship education, mediating the relationship between pedagogy and SEI (Cui, 2021). Courses incorporating safe-failure environments, iterative feedback, and resilience training help students build self-efficacy, optimism, and perseverance traits essential for navigating the high uncertainty inherent in sustainability-oriented entrepreneurship (Zhao & Wibowo, 2021). Educators thus argue that curriculum assessment must account not only for knowledge acquisition but also for students' development of entrepreneurial resilience and sustainability-oriented self-efficacy, which are predictors of their entrepreneurial intentions and post-graduation behaviour.

Furthermore, educators stress the necessity of aligning entrepreneurship curricula with the Sustainable Development Goals (SDGs) and institutional sustainability agendas. Kotla and Bosman (2023) contend that embedding SDG frameworks within course design provides students with a clear normative orientation, encouraging them to view entrepreneurship as a tool for systemic change. Such alignment also facilitates cross-disciplinary collaboration, allowing students to draw on expertise from fields such as environmental science, engineering, and social policy, thereby broadening their opportunity recognition capabilities for sustainability-driven ventures (Ramos-Rodríguez et al., 2024).

Curriculum evaluations also point to the pivotal role of institutional support and educator agency in fostering SEI. Islam and Mehdi (2024) emphasize that universities which integrate climate awareness campaigns, sustainability-focused competitions, and incubation support within entrepreneurship programs not only increase students' sustainability knowledge but also strengthen their perceived behavioral control—a key TPB variable influencing entrepreneurial intention. Educators further argue for the value of co-curricular initiatives, such as mentorship programs with sustainability entrepreneurs, partnerships with local green businesses, and stakeholder engagement projects, which contextualize sustainability challenges and provide role models who reinforce pro-environmental entrepreneurial norms (Lüdeke-Freund et al., 2020; Demirel et al., 2019).

Importantly, assessment-driven insights from educators reveal that fostering SEI requires a dual focus: (1) technical entrepreneurial competencies (e.g., business modeling, resource mobilization, and opportunity recognition) and (2) sustainability literacy and values formation. For instance, Ramos-Rodríguez et al. (2024) demonstrate that intellectual capital (knowledge and skills) and social capital (networks and partnerships) cultivated through entrepreneurship education directly enhance students' capacity to identify sustainability-oriented opportunities. Similarly, Peng et al. (2021) find that normative beliefs around environmental responsibility, reinforced through structured curricular and co-curricular experiences, are essential drivers of SEI.

1  
2  
3 Collectively, these findings suggest that educator-led curriculum innovation is central to advancing  
4  
5 SEI. By integrating sustainability across teaching content, pedagogical methods, and assessment  
6 design, educators not only influence students' entrepreneurial knowledge but also reshape their  
7 attitudes, self-efficacy, and normative commitments toward sustainability (Anjum et al., 2024; Islam  
8 & Mehdi, 2024). However, as several scholars note, intention alone is insufficient without enabling  
9 institutional ecosystems. Demirel et al. (2019) and Qazi et al. (2021) highlight that even when SEI is  
10 strengthened through education, the absence of incubation resources, mentorship, and funding  
11 opportunities often prevents these intentions from translating into tangible ventures.  
12  
13

14  
15 Thus, future research and practice should focus on how curriculum reform, educator engagement, and  
16 institutional support systems interact to convert sustainability-oriented entrepreneurial intentions into  
17 viable business creation. By positioning educators as both designers and facilitators of transformative  
18 entrepreneurship curricula, higher education institutions can play a pivotal role in shaping a  
19 generation of entrepreneurs capable of addressing pressing global sustainability challenges.  
20  
21

22  
23 However, there is a growing recognition that intent alone is insufficient. Without the necessary  
24 infrastructure and institutional backing, many sustainability-oriented entrepreneurial intentions fail to  
25 materialise. This leads to a broader question: how can universities provide environments that enable  
26 sustainable business creation?  
27  
28

### 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 *2.3 The Role of University-Based Ecosystems in Fostering NetZero Ventures*

56 Entrepreneurial intention theory, grounded in frameworks such as Ajzen's Theory of Planned  
57 Behavior (TPB), positions entrepreneurial action as the product of intention shaped by attitudes,  
58 perceived behavioral control, and social norms (Ajzen, 1991; Krueger et al., 2000). Within  
59 sustainability entrepreneurship research, this perspective has been extended to argue that education  
60 can enhance sustainable entrepreneurial intention by shaping pro-environmental attitudes, knowledge,  
and efficacy beliefs (Vuorio et al., 2018). However, while entrepreneurship education is necessary to  
cultivate intention, the translation of intention into venture creation requires supportive institutional  
environments (Fayolle & Liñán, 2014). Universities thus play a pivotal role in bridging this gap:  
beyond delivering entrepreneurship curricula, they function as ecosystem builders that provide the  
structural, cultural, and networked supports essential for transforming sustainability-oriented intention  
into NetZero-aligned ventures (Guerrero et al., 2016).

The entrepreneurial ecosystem framework offers a useful lens for understanding this expanded role.  
Audretsch and Belitski (2017) define such ecosystems as dynamic networks of interdependent actors,  
including entrepreneurs, mentors, investors, universities, and government agencies, embedded within  
enabling socio-cultural and institutional contexts. For sustainability-focused entrepreneurship, these

1  
2  
3 ecosystems must be explicitly aligned with green innovation imperatives and climate governance  
4 frameworks, thereby linking entrepreneurial development to broader NetZero and sustainability  
5 agendas (Isenberg, 2010; Volkmann et al., 2021).  
6  
7  
8

### 9 Integrating Sustainability into Curricula and Venture Development Pathways 10

11 A growing body of research underscores the role of curricular design in shaping NetZero  
12 entrepreneurship. Embedding sustainability challenges, practical learning, and venture prototyping  
13 into entrepreneurship programs has been shown to enhance student engagement and increase the  
14 likelihood of sustainability-oriented venture creation (Fichter et al., 2024). This aligns with Cai and  
15 Ahmad's (2021) conceptualization of the "sustainable entrepreneurial university," where incubators  
16 evolve from generic start-up support mechanisms into platforms that scaffold mission-driven ventures  
17 aligned with the Sustainable Development Goals (SDGs) especially SDG 4 (Quality Education) and  
18 SDG 13 (Climate Action), through structured pedagogy and venture development programming  
19 (Millette et al., 2020).  
20  
21  
22  
23  
24  
25

26 In addition to curricular reform, universities are investing in physical and institutional infrastructure  
27 that bridges academic learning with entrepreneurial practice. Dedicated innovation spaces—including  
28 co-working hubs, laboratories, and prototyping facilities—equip students with the technical resources  
29 needed to develop climate-impact solutions. Complementary initiatives such as Green Offices and  
30 sustainability governance hubs further embed sustainability into campus culture, engaging students in  
31 co-creating institutional sustainability strategies while linking these experiences directly to  
32 entrepreneurship pathways (Gosse et al., 2022; Bazan et al., 2020).  
33  
34  
35  
36  
37

### 38 Addressing Fragmentation through Systems Thinking and Interdisciplinary Collaboration 39

40 Despite these developments, research cautions that many university ecosystems remain fragmented,  
41 with sustainability initiatives siloed across disparate offices, student clubs, and business incubators  
42 (Marteau et al., 2021). Such fragmentation limits their systemic impact and perpetuates a narrow  
43 focus on economic performance metrics, such as revenue growth and scalability, at the expense of  
44 environmental and social value creation. A systems-thinking perspective is increasingly advocated to  
45 counteract this, embedding sustainability holistically across curricula, research agendas, mentoring  
46 schemes, and external engagement activities (Volkmann et al., 2021).  
47  
48  
49  
50  
51

52 Interdisciplinary collaboration is particularly critical in this regard. Integrating expertise from  
53 technical disciplines such as engineering or environmental sciences with entrepreneurial training in  
54 business faculties fosters the cross-pollination of knowledge necessary to identify and develop  
55 NetZero-oriented ventures. Such integration also reflects Marteau et al.'s (2021) call for universities  
56 to design ecosystems that transcend organizational silos and cultivate innovation capacity through  
57 coordinated, institution-wide sustainability agendas.  
58  
59  
60

### 1 2 3 Leveraging External Partnerships 4

5 University-based NetZero ecosystems are further strengthened by robust external partnerships,  
6 consistent with the Triple Helix model of innovation (Etzkowitz & Leydesdorff, 2000).  
7 Collaborations with industry, government agencies, NGOs, and investors not only provide students  
8 with access to critical resources but also confer legitimacy and exposure to climate policy and  
9 financing mechanisms. For example, the Green Future Investment Fund and Cranfield University's  
10 partnerships with SMEs, climate experts, and investors illustrate how universities can prepare student  
11 ventures for participation in emerging climate finance frameworks and NetZero scaling opportunities  
12 (Bettany Centre for Entrepreneurship, 2025).  
13

14 Similarly, Cornell University's Center for Sustainable Global Enterprise embeds performance-based  
15 learning into its programs by engaging students in industry-sponsored sustainability projects with  
16 partners such as GE, IBM, and Shell Hydrogen, thereby combining experiential learning with access  
17 to professional sustainability networks (Cornell University, 2023). Programs such as UCSD's  
18 BlueStart and NSF I-Corps also demonstrate how ecosystem models can leverage regional cultural  
19 and historical contexts to nurture entrepreneurial mindsets that prioritize sustainable innovation (Ly-  
20 Baro et al., 2024).  
21

### 22 Visibility of NetZero Ventures 23 24

25 The visibility of successful NetZero student ventures also plays an important cultural role within  
26 university ecosystems. As Volkmann et al. (2021) argue, showcasing these ventures through  
27 accelerators, competitions, and targeted communication campaigns both inspires subsequent cohorts  
28 and signals institutional commitment to sustainability entrepreneurship. Visibility thus functions both  
29 as a motivational tool and a means of normalizing sustainability-aligned entrepreneurial behaviour  
30 within university contexts.  
31

### 32 Toward Integrated Ecosystem Design 33 34

35 Despite notable progress, the literature continues to emphasize the persistence of fragmentation in  
36 university ecosystems (Marteau et al., 2021). To address this, scholars call for more integrated  
37 ecosystem design that embeds sustainability across teaching, research, incubation, mentoring, funding  
38 networks, and evaluation metrics, explicitly measuring ecological as well as economic value. Such  
39 approaches position universities not simply as sites of education but as generative institutional  
40 ecosystems that actively enable, accelerate, and legitimize NetZero entrepreneurial activity  
41 (Volkmann et al., 2021; Cai & Ahmad, 2021).  
42

43 By aligning curricula, infrastructure, partnerships, and cultural norms with global sustainability  
44 imperatives, universities can transcend their traditional educational role to become critical nodes in  
45

1  
2  
3 regional and global NetZero innovation ecosystems, thereby bridging the gap between sustainable  
4 entrepreneurial intention and real-world venture creation.  
5  
6

#### 7 2.4 Summary and Emerging Research Gap 8

9 In summary, existing literature points to a growing convergence between sustainability,  
10 entrepreneurship, and higher education. Sustainable entrepreneurship provides a promising vehicle for  
11 addressing global environmental challenges. Entrepreneurship education influences students' intention  
12 to launch sustainable ventures, while university ecosystems provide the contextual infrastructure  
13 necessary for implementation.  
14

15 Yet, a specific research gap persists: How do entrepreneurship education ecosystems within  
16 universities enable the formation of NetZero-focused businesses? While general links between  
17 sustainability and entrepreneurship are well-documented, there is limited empirical evidence  
18 connecting entrepreneurship education to climate-specific business outcomes. Moreover, few studies  
19 explore this question through the lived experiences of recent graduates who have attempted to build  
20 climate-aligned start-ups.  
21

22 This study addresses that gap by empirically exploring how entrepreneurship education across four  
23 leading UK universities supports (or hinders) the creation of NetZero ventures. The findings  
24 contribute to theory by extending entrepreneurial intention models into the climate innovation domain  
25 and to practice by offering actionable recommendations for university policymakers and educators.  
26 The next section introduces a conceptual framework that synthesises these theoretical foundations and  
27 guides the empirical investigation.  
28

### 29 3. Methodology 30

#### 31 3.1 Research Design and Philosophical Position 32

33 This study adopts an interpretivist philosophical stance and a qualitative research design to explore  
34 how university-based entrepreneurship education influences the creation of NetZero-oriented  
35 ventures. An interpretivist approach is appropriate given the focus on understanding the subjective  
36 experiences, perceptions, and contextual factors that shape the entrepreneurial pathways of graduates  
37 (Bell, Bryman and Harley, 2022, p. 696).  
38

39 Qualitative methods are particularly suited to uncovering the nuanced and often tacit ways in which  
40 institutional ecosystems, curricula, and cultural contexts influence graduates' sustainability-oriented  
41 business formation. The Gioia method was selected for its ability to provide a systematic yet inductive  
42 framework for analysing complex, experience-driven narratives while preserving participants' voices  
43 (Gioia, Corley, & Hamilton, 2012). The qualitative design enables the exploration of meanings  
44 constructed by individuals in relation to sustainability and innovation, allowing the researchers to  
45 uncover the nuanced ways in which institutional ecosystems influence entrepreneurial outcomes.  
46

47 Figure 1 presents the sequence of steps that guided the study from its conceptual starting point to the  
48

49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

development of practical recommendations. The process began with an examination of the literature to identify a gap in understanding about how entrepreneurship education can support the creation of NetZero-oriented ventures. This gap was informed by the absence of detailed empirical evidence connecting university-based teaching and support with the establishment of climate-focused businesses.

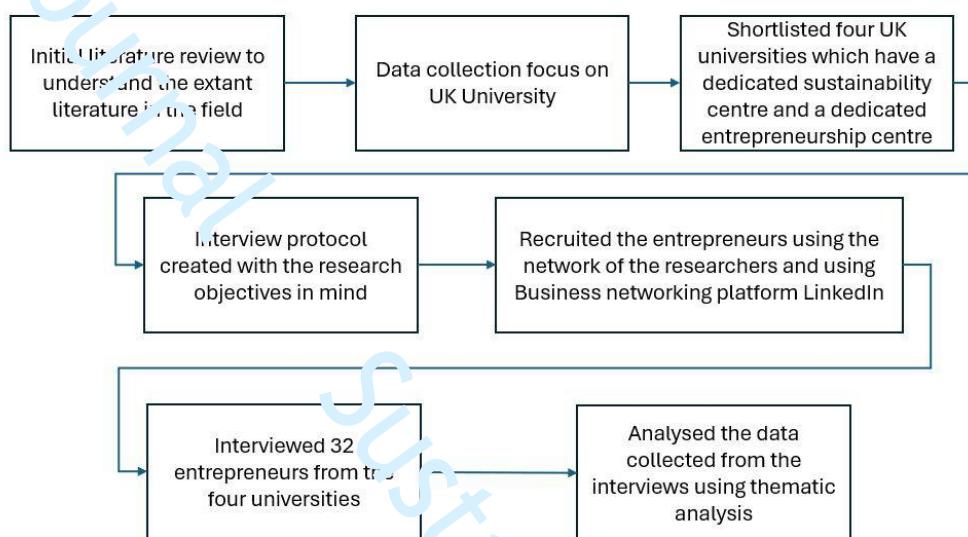



Figure 1. Research Framework.

### 3.2 Sampling Strategy and Participant Criteria

The study adopted a purposive sampling strategy to identify participants whose experiences aligned with the research objectives. Thirty-two recent graduates from UK universities were interviewed, each of whom had established a NetZero oriented business after engaging in entrepreneurship education during their academic studies. Participants were required to have graduated from a UK higher education institution between 2020 and 2023, to have completed at least one entrepreneurship focused module, programme or co-curricular activity during their studies, and to have founded or co-founded a business that explicitly embedded NetZero principles such as carbon neutrality, renewable energy adoption or circular economy practices within its mission or operations.

Theoretical sampling technique (Glaser & Strauss, 2017) is adopted to select the sample for this research. The sampling frame comprised graduates from four UK universities recognised for the maturity of their entrepreneurship education. These institutions were selected to reflect both geographic and institutional diversity, encompassing research intensive universities as well as those with practice-oriented entrepreneurship programmes. They also varied in pedagogical approaches, institutional sustainability agendas and the configuration of support infrastructures available to students. A geographically stratified approach was employed to ensure representation across different

1  
2  
3 institutional contexts, student demographics and the sectoral domains of the participating start-ups.  
4

5 The final sample size was deemed sufficient to achieve thematic saturation, defined as the point at  
6 which no new themes emerged during the latter stages of data collection (Ritchie et al., 2013).  
7  
8

9 Participants varied in academic background, gender, and entrepreneurial sector focus. The cohort  
10 included both undergraduate (n=14) and postgraduate (n=18) alumni, spanning disciplines such as  
11 business, engineering, environmental science, and social innovation.  
12  
13

14 A summary of the participants and the profiles of the universities is provided in appendix 1. The  
15 universities (coded A, C, W, D) were selected for their mature entrepreneurship ecosystems and  
16 explicit sustainability agendas. Each offers distinctive combinations of entrepreneurship support and  
17 climate-focused initiatives, ranging from incubators and accelerators to climate leadership  
18 programmes and zero-carbon campus strategies. For anonymity, each participant was assigned a code.  
19 The first letter of the code (A, C, W, D) corresponds to the anonymised university from which the  
20 participant graduated, while the number denotes the order in which participants from that institution  
21 were interviewed (e.g., A2 refers to the second participant interviewed from University A). This  
22 system allowed us to preserve confidentiality while still distinguishing between participants and  
23 linking their responses to institutional contexts.  
24  
25

### 31 *3.3 Data Collection*

32 Data were collected via semi-structured interviews, chosen for their flexibility and ability to elicit in-  
33 depth, context-rich insights (Saunders, Lewis and Thornhill, 2019). This format allowed participants  
34 to share detailed accounts of their experiences while enabling the researchers to explore emerging  
35 areas of interest during the conversation.  
36  
37

38 Each interview lasted approximately 40 to 60 minutes and was conducted via a secure video  
39 conferencing platform. Interviews were recorded with consent and subsequently transcribed verbatim.  
40 The interview protocol was designed around four key focus areas: (i) awareness and understanding of  
41 NetZero principles, (ii) perceived influence of entrepreneurship education, (iii) access to institutional  
42 support, and (iv) perceived gaps or limitations in university resources and guidance. All participants  
43 were informed of their rights, and ethical protocols were followed to ensure confidentiality and  
44 voluntary participation.  
45  
46

### 47 *3.4 Data Analysis Process*

48 The Gioia method technique (Gioia, Corley and Hamilton, 2012) was used for qualitative data  
49 analysis. This structured approach is particularly effective for inductive research and allows the voices  
50 of participants to be preserved while distilling higher-order conceptual themes.  
51  
52

The analysis followed four stages as shown in figure 2 below:

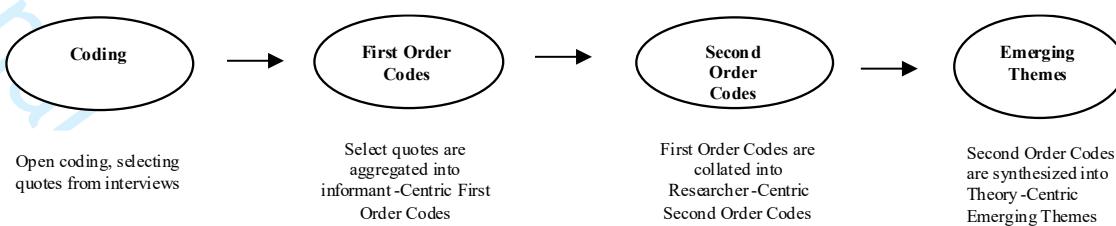



Figure 2. Data analysis

First, open coding involved extracting raw quotes “as-is” from transcripts to preserve the language of participants. Second, these extracts were organised into first-order codes, reflecting participants’ lived experiences. Third, the research team grouped these into second-order themes, informed by the literature on entrepreneurial intention, ecosystems, and sustainability education. Finally, the themes were synthesised into aggregate dimensions representing the systemic challenges and opportunities in entrepreneurship education for NetZero.

The analysis was iterative and comparative. Data were examined within and across institutional clusters (C, W, A, D) to capture both university-specific nuances and cross-case patterns. Reflexivity was maintained throughout, with memos documenting coding decisions, and peer debriefing used to challenge emerging interpretations. The use of Gioia’s data structure ensured methodological rigour, transparency, and alignment between empirical evidence and conceptual insights.

### 3.5 Research Boundaries and Constraints

As with all qualitative research, several factors were beyond the researchers’ control and may have shaped the data. The study was conducted in the aftermath of the COVID-19 pandemic, during which universities were still transitioning back to in-person teaching. This limited students’ access to some resources and shaped how they experienced entrepreneurship education. Institutional differences across the four universities — in funding, sustainability commitments, and ecosystem maturity — also created uneven experiences that could not be standardised. While these factors were acknowledged and recorded during analysis, they reflect contextual realities rather than variables the research could influence.

Beyond these contextual realities, the research is also bounded by several methodological constraints. First, self-selection bias is possible, since participants were graduates who had voluntarily engaged in sustainability entrepreneurship; their perspectives may over-represent individuals with strong pro-environmental values. Second, the study’s temporal scope (graduates from 2020–2023) coincides with the post-COVID disruption of higher education,

1  
2  
3 where hybrid teaching, reduced campus access, and altered resource availability may have  
4 influenced how students engaged with entrepreneurship education. Third, the reliance on self-  
5 reported narratives raises the possibility of recall bias or social desirability bias. While the  
6 Gioia method mitigates this through systematic coding, triangulation with educator or  
7 institutional perspectives would further enhance validity.  
8  
9  
10  
11  
12

13 These constraints do not undermine the study's contributions but rather delimit its scope. The findings  
14 should therefore be interpreted as reflective of student-led perspectives in specific institutional  
15 contexts, rather than generalised to all higher education settings.  
16  
17  
18

#### 19 **4. Findings**

20

21 The findings from interviews with 32 university graduates reveal five thematic insights into how  
22 entrepreneurship education in UK universities influences the formation of NetZero-oriented start-ups.  
23  
24

25 These themes shed light on systemic gaps, institutional challenges, and opportunities for universities  
26 to realign their entrepreneurship ecosystems with climate goals.  
27

28 In an effort to reach NetZero, UK businesses have a crucial role to play. While existing businesses are  
29 moving from orthodox business models to become sustainable, it is equally important to encourage  
30

31 the birth of new businesses that are founded on the principles of NetZero. Without such new  
32 businesses, the journey towards becoming environmentally friendly will be a constant catch-up game.  
33

34 In the UK alone, more than two-thousand businesses are founded every day, highlighting the  
35 importance of developing NetZero entrepreneurship. Prior research has shown that entrepreneurship  
36 education can influence the entrepreneurial intentions of new businesses, but how it influences the  
37 intentions of entrepreneurs to start NetZero businesses has not been explored yet. But how  
38 entrepreneurship education influences the entrepreneurial intentions of entrepreneurs to start NetZero  
39 business has not been explored in the extant research yet. To address this gap in the literature, and to  
40 inform practice, we conducted interpretive research by interviewing entrepreneurs who pursued  
41 university education before starting their businesses. Based on the thematic analysis of the interviews,  
42 visually represented in Figure 2, we identified five emerging themes presented as follows.  
43  
44

##### 45 *4.1 Theme 1: Teaching NetZero as a business opportunity*

46 The first emerging theme from the research reveals that universities are overlooking the importance of  
47 incorporating the concept of Net-Zero emissions in their curricula. There appears to be a lack of  
48 awareness among university students about the concept of NetZero and sustainability goals. This is  
49 evidenced by the fact that many participants expressed confusion about what NetZero means and how  
50 it relates to their daily lives. There seems to be a need for universities to prioritize educational  
51 initiatives that focus on raising awareness and educating students about NetZero and sustainability  
52 goals. The interviews highlighted that NetZero is seldom positioned within curricula as a viable  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 business opportunity. Instead, it is generally framed in terms of social responsibility or climate  
4 awareness, leaving students struggling to connect sustainability knowledge with entrepreneurial  
5 practice. Participants repeatedly pointed out that while they understood the importance of NetZero in  
6 theory, they were not encouraged to view it as a driver of value creation or a strategic advantage. One  
7 participant, A5 (female, 28, MSc, graduated 2020, founder of a circular economy retail venture),  
8 observed:  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

*"Sustainability was taught to us as something important to society, but it was never shown how it could be built into a profitable start-up. That disconnect makes it difficult to take the next step."*

Her reflections suggest that even when students are motivated to pursue entrepreneurial careers, they may lack the framing necessary to translate climate commitments into commercially viable models. Another participant, C4 (male, 30, MSc, graduated 2021, working on a sustainable urban mobility venture), reinforced this point:

*"We learn about climate change and NetZero in general terms, but not how this can translate into a real opportunity for a start-up. Without that connection, it feels like two separate conversations."*

His perspective demonstrates that sustainability knowledge is often siloed from entrepreneurship modules, which prevents students from seeing the full potential of climate action as a business opportunity. This concern was echoed by W2 (female, 27, BSc, graduated 2022, founder of a sustainable fashion venture), who stated:

*"The business side of NetZero is missing. We need to see where the opportunities are — otherwise it feels like sustainability is just another lecture topic."*

Her reflection illustrates how a lack of integration leads students to view NetZero as an abstract agenda, rather than a practical basis for entrepreneurial innovation.

Taken together, these accounts show that while awareness of NetZero is embedded in the student experience, its entrepreneurial potential remains underdeveloped. Students want to see NetZero embedded in value creation, opportunity recognition, and venture design — the core logics of entrepreneurship education. Without this alignment, sustainability risks being seen as a side note, rather than a catalyst for innovation. The participants emphasized the need for more examples of start-ups that have successfully implemented NetZero strategies in teaching material, enabling students to understand how they can apply NetZero principles to their entrepreneurial ventures, irrespective of the size or stage of development of the ventures. Therefore, there seems to be a need for universities to broaden their focus and provide more comprehensive teaching material that covers not just large corporations but also start-ups, to foster entrepreneurship in the field of NetZero emissions. The visual representation of the theme is shown in Figure 2.




Figure 2. NetZero Business Opportunity.

#### 4.2 Theme 2: Lack of use of appropriate terminology

The second theme emerging from our research highlights the lack of appropriate terminology being used in universities to teach NetZero. The study reveals that the use of a wide range of overlapping terminologies leads to confusion among students, making it difficult for them to fully understand the concept of NetZero. Terms such as CSR, triple bottom line, sustainability, green business, B Corp, UN SDG, organizational purpose, social purpose, and others are often used interchangeably with NetZero, creating confusion. For example, W2 (female, 27, BSc, graduated 2022, sustainable fashion entrepreneur) explained:

*“Sometimes lecturers would say sustainability, then sometimes NetZero, and other times CSR or SDGs. It makes it harder to know what exactly we are working towards, or how it connects to starting a business.”*

Her reflections highlight how the overlap and inconsistency of terminology risks confusing students at a stage when conceptual clarity is critical for building entrepreneurial intentions. Similarly, D3 (male, 29, MSc, graduated 2021, renewable energy solutions start-up founder) observed:

*“It is like every part of the university uses a different word for the same thing. You go to one event and they say it’s about NetZero, another says SDGs, another calls it CSR. In the end, it feels fragmented, and as students we are left to decide what it really means for us.”*

His perspective points to the consequences of inconsistency at the institutional level, where different units communicate sustainability in disconnected ways, which in turn makes it difficult for students to anchor their entrepreneurial projects to a coherent framework.

The lack of terminological alignment was also seen as a barrier to recognising NetZero as a distinct business opportunity, as highlighted in Theme 1. Students felt that if NetZero continues to be conflated with CSR or other broad agendas, its entrepreneurial potential will remain obscured. This creates uncertainty about whether NetZero represents a specific pathway for innovation or just another term in the sustainability lexicon.

Overall, this theme demonstrates that inconsistent terminology weakens students' ability to view sustainability as a structured and strategic entrepreneurial field. When sustainability-related concepts are used without alignment, students struggle to internalise them as normative expectations or actionable venture frameworks. Clearer and more consistent terminology is therefore essential if universities wish to foster strong entrepreneurial intentions aligned with NetZero objectives. The visual representation of the theme is shown in Figure 3.

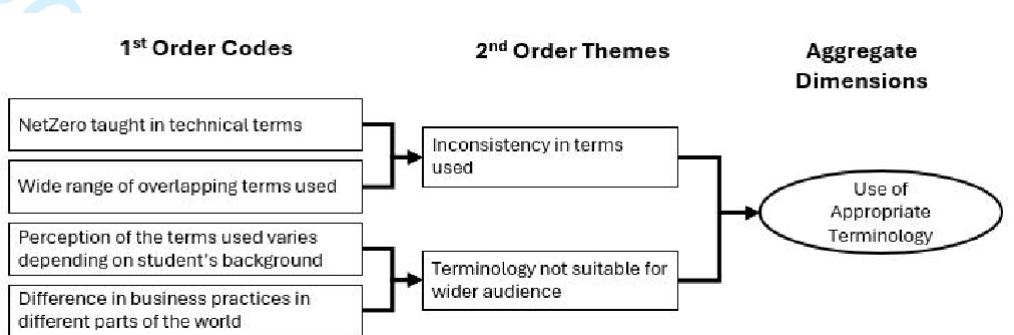



Figure 3. Use of Appropriate Terminology.

#### 4.3 Theme 3: Teaching implementation and not just importance

The third emerging theme suggests that although universities are including NetZero and its significance in their teaching, they are not sufficiently preparing students to implement the principles of NetZero in creating new businesses. This lack of practical implementation instruction could pose a significant challenge for future business leaders who will need to integrate NetZero principles into their business models and contribute to efforts to combat climate change. One participant, W3 (female, 26, MSc, graduated 2023, founder of a carbon accounting venture), described her struggle: "We learned about why sustainability is urgent, but not about how to integrate it into a start-up model. I had to look for tools outside the university to actually make sense of how NetZero works in practice." Her account illustrates how entrepreneurial intention may be formed but left unsupported, forcing students to seek knowledge independently.

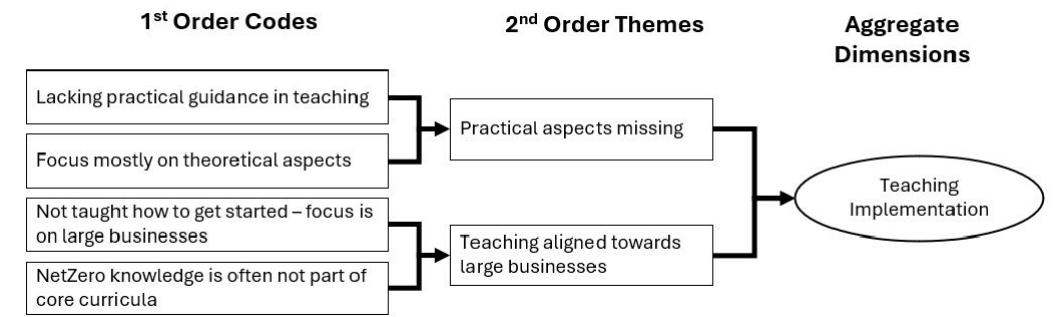
Another participant, C3 (male, 27, MSc, graduated 2021, co-founder of a renewable energy consultancy), made a similar point:

"It was more about awareness than implementation. I was motivated to start something, but there was no practical direction on things like partnerships or technical know-how."

This perspective reflects the shortcomings of programmes that stress values without embedding them in actionable venture pathways.

The same theme was raised by D3 (male, 29, MSc, graduated 2021, renewable energy solutions start-up founder), who explained:

1  
2  
3 “There is enthusiasm, but the ‘how’ part is missing. You leave the class with an idea, but you don’t  
4  
5 know what the steps are to make it happen.”


6 His remarks point directly to the structural barriers in higher education that leave students with strong  
7  
8 sustainability intentions but few resources for execution.

9  
10 Finally, W2 (female, 27, BSc, graduated 2022, sustainable fashion entrepreneur) added:

11  
12 “They told us sustainability matters, but not what to do when designing a product or launching a  
13 brand. For me, it was trial and error.”

14  
15 Her experience shows how students often depend on personal experimentation rather than structured  
16 guidance, widening the gap between climate awareness and entrepreneurial application.

17  
18 Taken together, these accounts reveal that while NetZero education succeeds in building awareness, it  
19 falls short in teaching students how to operationalise climate-conscious entrepreneurship. Without  
20 access to tools, mentors, and clear institutional support, students risk remaining aspirational without  
21 becoming active contributors to the NetZero transition. The visual representation of the theme is  
22 shown in Figure 4.



40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60 **Figure 4. Teaching Implementation.**

#### 4.4 Theme 4: Beyond classroom training

The fourth emerging theme suggests that universities rely heavily on classroom teaching materials to educate students about NetZero, but there is significant potential to broaden the learning experience beyond the classroom. Participants in this study highlighted the need for additional activities such as guest lectures by alumni who have started NetZero businesses, networking events, and field trips to climate-focused enterprises in the local economy. For instance, participant A8 (male graduate student, age 25, founder of a Sustainable tourism platform) observed:

“I think they (university) need to move beyond merely teaching about climate change and rather sharing real-life examples of successful businesses which have done something significant about it, which can be shown to them (students) to show a way of how businesses can actually do it.”

As someone engaged in the sustainable tourism sector, A8’s perspective reflects the necessity of linking classroom theory with the practical realities of venture building. His comment illustrates that

1  
2  
3 classroom-based case studies may not carry the same motivational or instructional value as direct  
4 interaction with entrepreneurs tackling NetZero challenges in the field.  
5  
6  
7

8 Similarly, participant W2 (female undergraduate student, age 27, founder of a sustainable fashion  
9 venture) emphasised the importance of hands-on exposure:  
10  
11

12 *"Ventures which are already working for sustainability development would help the students to know  
13 how it goes, like showing us hands-on how we can actually create a venture keeping in mind an idea  
14 of NetZero emissions."*

15 Her call for "hands-on" experiences highlights the limitations of static classroom learning for students  
16 in creative, design-driven sectors such as fashion. For such fields, where market entry is tied to  
17 consumer-facing sustainability narratives, opportunities to observe and engage with sustainable  
18 enterprises can reinforce how NetZero practices can be embedded across the value chain.  
19  
20  
21

22  
23 The value of external engagement was further reinforced by participant D2 (female undergraduate  
24 student, age 26, founder of an electric mobility venture):  
25  
26

27 *"We have never had somebody saying consider the carbon footprint of your business. We have an  
28 entrepreneur in residence, we have had a lot of sorts of investors come in, we've had a lot of business  
29 owners come in, and they've tackled multiple topics, but nobody talking in terms of carbon  
30 responsibility."*

31  
32  
33  
34  
35 Operating in the electric mobility sector, where carbon accountability is integral, participant's remarks  
36 underscore the gap between the types of expertise universities expose students to and the expertise  
37 needed to advance NetZero entrepreneurship. Although many institutions host entrepreneurs-in-  
38 residence and investor panels, sustainability considerations often remain peripheral, suggesting that  
39 NetZero is not yet seen as a mainstream business concern within entrepreneurship ecosystems.  
40  
41

42  
43  
44 Finally, participant W3 (female postgraduate student, age 26, founder of a carbon accounting services  
45 venture) expressed disappointment at the lack of expert interaction on this topic:  
46  
47

48 *"I do not know of any guest lectures or interaction with industry experts on the topic."*

49 This absence of structured opportunities for student-expert engagement illustrates that universities  
50 may still undervalue the motivational and practical benefits of integrating external voices into  
51 NetZero education. It also suggests a broader structural issue: despite commitments to sustainability  
52 agendas, institutional silos between entrepreneurship centres and sustainability offices may prevent  
53 meaningful guest contributions from being embedded into entrepreneurship modules.  
54  
55

56 Taken together, these findings demonstrate that while entrepreneurship education provides essential  
57 business foundations, it often fails to deliver the experiential learning, networking, and industry  
58 engagement needed to prepare graduates to apply NetZero principles in practice.  
59  
60

Universities could strengthen this area by embedding experiential components into curricula, such as NetZero hackathons, alumni-led venture showcases, and industry immersion weeks. Partnerships with local businesses pursuing NetZero transitions could be leveraged to provide site visits or consultancy projects, enabling students to apply classroom knowledge to real-world contexts. Guest lecture series that prioritise founders of sustainable enterprises, rather than generic business leaders, could also serve to normalise climate-conscious entrepreneurship as a viable and aspirational career path. This highlights the current lack of such opportunities and the potential for universities to enhance the NetZero education experience for their students. The visual representation of the theme is shown in Figure 5.

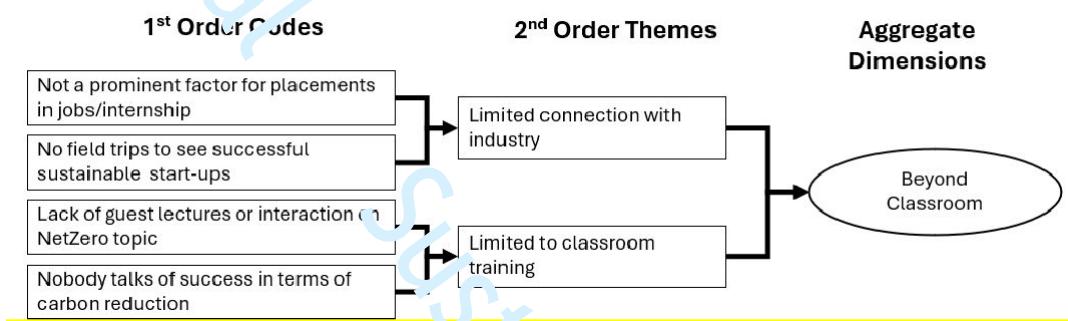



Figure 5. Beyond Classroom

#### 4.5 Theme 5: Working in silos

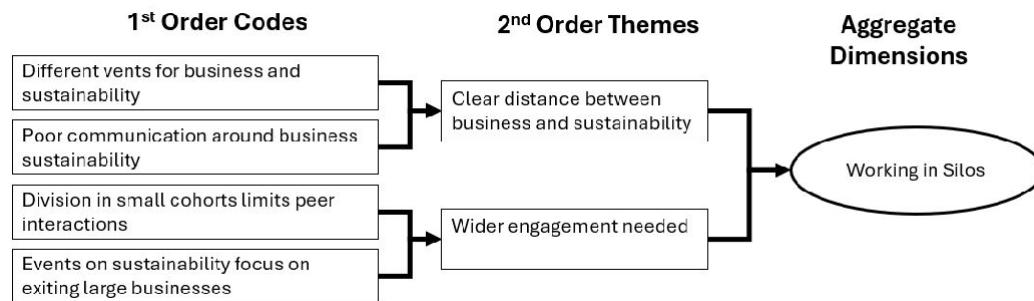
The phenomenon of “working in silos” refers to different individuals or groups within an organisation working independently without adequate communication or coordination. In the context of university education on NetZero, this means that student resources are not integrated or aligned, resulting in a fragmented approach to achieving climate-related goals. Many participants noted that while their universities provide resources such as environmental clubs, research centres, and entrepreneurship accelerators, these often operate in isolation rather than as part of a coherent ecosystem.

Participant C2 (male postgraduate student, age 31, founder of a green FinTech venture) remarked: *“Socializing is not good enough because (we are) divided into three cohorts. It'll be good for us if we change cohorts, more socializing can happen, more networking can happen, and we can learn from each other as to what is happening in other cohorts.”*

His reflection illustrates that fragmentation exists not only between sustainability-focused resources but also within student cohorts themselves, reducing opportunities for collaboration and peer-to-peer learning that could strengthen NetZero venture creation.

1  
2  
3 The lack of integrated communication was also highlighted by participant W3 (female postgraduate  
4 student, age 26, founder of a carbon accounting services venture):

5 *"There are some parts of the university, accelerator that are organizing entrepreneurship and  
6 climate-related events, they haven't reached out. See, you are organizing all these helpful events  
7 about how to create a new business while thinking about sustainability and climate, but if you don't  
8 communicate this properly across all students, how do you think it is going to make a full impact?"*


9 W3's observation suggests that although institutions may host relevant events, poor cross-campus  
10 communication limits their visibility and therefore their effectiveness. This reflects a wider challenge  
11 where entrepreneurship centres and sustainability offices often operate as parallel initiatives without  
12 strong mechanisms for collaboration.

13 Similarly, participant D4 (female undergraduate student, age 25, founder of a water purification  
14 systems venture) pointed to the difficulty of accessing information about sustainability initiatives:

15 *"I know that something would be available if I asked, but it was never part of the information  
16 provided beforehand... kind of curriculum or the university system itself that every student is  
17 communicated with, kind of making everyone aware of it..."*

18 For D4, whose venture depends on specialised technical knowledge and resources, the absence of  
19 proactive communication created additional barriers to aligning her business with NetZero principles.

20 Taken together, these perspectives show that even when universities provide multiple opportunities  
21 and resources to support sustainability, the lack of integration and proactive communication creates  
22 fragmentation. This can undermine institutional goals of advancing NetZero entrepreneurship, leaving  
23 students without clear pathways to access or combine the resources available to them. To overcome  
24 these silos, institutions need to improve collaboration and coordination across entrepreneurship,  
25 sustainability, and academic units, ensuring that students receive timely and comprehensive  
26 information on NetZero-related opportunities. The visual representation of the theme is shown in  
27 Figure 6.



57 Figure 6. Working in Silos  
58  
59  
60

The findings reveal a comprehensive picture of how entrepreneurship education shapes and at times constrains the potential for NetZero start-up creation. Across the five themes, participants consistently emphasised gaps in awareness, clarity of language, practical implementation, experiential opportunities, and cross-campus coordination. Despite rising interest in climate innovation, current university ecosystems often fall short in bridging values and entrepreneurial action. At the same time, the findings highlight clear opportunities for improvement, suggesting that with more integrated and practice-oriented approaches, universities could play a transformative role in enabling a new generation of climate-conscious entrepreneurs. The following Discussion section interprets these five themes in light of established theories and existing literature.

## 5. Discussion

This study explored how entrepreneurship education in UK universities shapes the creation of NetZero-oriented start-ups. The findings revealed systemic gaps in awareness, terminology, practical implementation, experiential learning, and ecosystem integration. In this section, these findings are interpreted through the lens of established theories and prior research to highlight areas of agreement, divergence, and contribution.

### 5.1 Teaching NetZero as a Business Opportunity

The finding that NetZero is rarely presented as a business opportunity in entrepreneurship curricula highlights a structural gap in how sustainability is framed in higher education. Participants repeatedly stressed that while they valued knowledge about climate change, they did not see how this could be transformed into viable entrepreneurial ventures. This aligns with Muñoz and Dimov (2015), who argue that sustainability often remains a peripheral concern in entrepreneurship education, treated as an ethical or technical issue rather than a driver of competitive advantage. Bischoff and Volkmann (2018) similarly caution that entrepreneurship courses risk reducing sustainability to an “add-on,” rather than embedding it in opportunity recognition and venture design.

From the perspective of the Theory of Planned Behaviour (TPB) (Ajzen, 1991), this finding illustrates a weakness in cultivating attitudes toward NetZero entrepreneurship. While students acknowledge the urgency of climate change, they do not perceive NetZero as an attractive entrepreneurial goal unless it is framed in terms of opportunity creation. In line with Fayolle and Liñán (2014), the gap reflects the importance of aligning pedagogical content with students’ entrepreneurial value systems: if NetZero is presented merely as compliance or moral obligation, it is less likely to motivate entrepreneurial intention. Our findings contribute by showing how framing NetZero as a business opportunity could strengthen positive attitudes and therefore increase the likelihood of sustainability-oriented start-up creation.

This gap also connects with Theme 2 (terminology). When NetZero is conflated with CSR, triple bottom line, or SDGs, it becomes difficult for students to see its entrepreneurial potential. Clearer conceptual framing could position NetZero as distinct from broader sustainability goals, directly linked to innovation and growth opportunities. Similarly, it overlaps with Theme 3 (implementation), as participants explained that understanding the urgency of NetZero was insufficient without actionable pathways for building ventures around it.

At the ecosystem level, the lack of emphasis on NetZero opportunities challenges the idea of universities as entrepreneurial ecosystems (Guerrero et al., 2016; Audretsch & Belitski, 2017). If entrepreneurship centres and curricula do not connect climate goals with venture opportunities, the ecosystem risks reproducing traditional business models rather than fostering innovation for sustainability. Prior research has shown that university ecosystems play a catalytic role in shaping entrepreneurial trajectories (Volkmann et al., 2021). Our findings extend this by showing that omissions in framing NetZero as opportunity actively constrain the formation of climate-oriented ventures. The divergence between policy ambitions and educational practice is also notable. The UK government has made NetZero by 2050 a national commitment (HM Government, 2021), and yet students reported that their education rarely prepared them to contribute through entrepreneurship. This mismatch suggests that universities are not fully leveraging their potential as partners in achieving national climate goals.

Our findings both confirm and extend existing literature. They confirm critiques that sustainability is marginalised in entrepreneurship curricula, but they extend this by showing how the absence of NetZero opportunity framing undermines the motivational mechanisms theorised in TPB. The contribution here lies in shifting the conversation: NetZero in entrepreneurship education must not only be about awareness but about opportunity recognition, venture design, and value creation — the core logics of entrepreneurship.

### 5.2 Lack of Appropriate Terminology

The findings revealed that inconsistent and overlapping terminology (CSR, triple bottom line, SDGs, NetZero) confused students and weakened the pedagogical impact of sustainability education. This resonates with Shrivastava et al. (2012), who argued that without a shared conceptual vocabulary, sustainability knowledge lacks clarity and comparability across contexts. Our participants confirmed this at the lived experience level, particularly noting that when terms were conflated, the specific meaning and entrepreneurial potential of NetZero was lost.

From the lens of the Theory of Planned Behaviour (TPB), this inconsistency undermines subjective norms. If students do not see NetZero articulated as a distinct and widely endorsed entrepreneurial

expectation, they are less likely to perceive it as a normative standard for venture creation. Fayolle and Liñán (2014) stress that intention is strengthened when normative signals are clear and consistent; our findings show that terminological ambiguity dilutes these signals. This problem is especially acute in international classrooms, where students compare UK discourses with home-country contexts. As highlighted by W3 in the findings, students from regions where sustainability is less institutionalised found it even harder to differentiate between overlapping concepts. Prior research on international entrepreneurship education has not sufficiently acknowledged how terminological inconsistency can become a cross-cultural barrier. Our study contributes by demonstrating that language and conceptual clarity are not just academic issues but crucial enablers of inclusive entrepreneurial ecosystems.

This theme also connects with Theme 1 (NetZero as opportunity) and Theme 3 (implementation). If students cannot distinguish NetZero from CSR or social purpose, they struggle to see it as an entrepreneurial opportunity (Theme 1). Likewise, if they lack precise definitions, they cannot translate NetZero into practical tools and business models (Theme 3). In this way, terminology becomes a cross-cutting foundation upon which awareness, opportunity recognition, and implementation depend. At the institutional level, the absence of a shared vocabulary undermines universities' role as entrepreneurial ecosystems (Guerrero et al., 2016). Ecosystems depend on common frames of reference to connect actors and resources (Audretsch & Belitski, 2017). If accelerators, sustainability offices, and entrepreneurship modules use divergent language, they inadvertently reproduce silos (as seen in Theme 5). Thus, terminological inconsistency not only confuses students but fragments institutional support structures.

Our findings confirm existing critiques of inconsistent sustainability vocabularies but extend the literature in two ways. First, they show how ambiguity affects students' entrepreneurial intentions by weakening the normative and motivational mechanisms identified in TPB. Second, they reveal how these effects are magnified in international classrooms, raising issues of inclusivity and accessibility in entrepreneurship education. By demonstrating that a lack of terminological clarity has consequences for both intention formation and ecosystem integration, the study underscores the foundational importance of a shared NetZero vocabulary in higher education.

### 5.3 From Awareness to Action: Bridging the Intention–Action Gap

While universities frequently raise awareness of the importance of NetZero, the findings show they often fail to provide students with sufficient guidance on how to integrate these principles into entrepreneurial ventures. Participants described a gap between knowing about climate imperatives and being able to translate them into actionable business strategies. This reflects Fayolle and Gailly's (2015) argument that entrepreneurship education tends to shape attitudes but lacks mechanisms to support behaviour. Similarly, Demirel et al. (2019) caution that sustainability-oriented intentions often remain unimplemented when institutional scaffolding is weak.

1  
2  
3 Through the lens of the Theory of Planned Behaviour (TPB) (Ajzen, 1991), these gaps reflect  
4  
5 weaknesses in perceived behavioural control. Students may recognise NetZero as valuable (attitudes)  
6 and acknowledge the broader societal importance of sustainability (subjective norms), but without  
7  
8 access to mentoring, networks, and practical tools, they doubt their own capacity to build ventures  
9 aligned with NetZero. This undermines the intention–action link that TPB identifies as crucial. Our  
10  
11 findings extend TPB by showing that institutional design — including the provision of structured  
12  
13 resources and guidance — actively shapes whether students feel able to pursue sustainability-oriented  
14 entrepreneurship.

15  
16 This gap also connects with other themes. The absence of practical implementation guidance  
17 compounds the challenge identified in Theme 1 (framing NetZero as opportunity): if sustainability is  
18 not shown as a business opportunity and simultaneously lacks actionable pathways, students are  
19 unlikely to integrate it into their ventures. It also intersects with Theme 4 (experiential learning), as  
20  
21 students repeatedly highlighted the absence of hands-on exposure to tools such as carbon accounting,  
22 sustainable supply chain design, and energy efficiency modelling. Finally, Theme 5 (silos) amplifies  
23  
24 the issue, since even when sustainability resources exist, weak communication across units prevents  
25  
26 students from accessing them.

27  
28 Prior literature has emphasised the intention–action gap in sustainable entrepreneurship (Markman et  
29  
30 al., 2016; Islam & Mehdi, 2024). Our contribution is to show how this gap is experienced by students  
31  
32 in higher education: as missing “guidance steps,” fragmented access to resources, and insufficient  
33  
34 mentoring. This lived experience evidence adds nuance to prior conceptual discussions and suggests  
35  
36 that the failure to support implementation is not simply a curricular shortcoming, but a systemic  
37  
38 design flaw in entrepreneurial ecosystems within universities.

39  
40 In practical terms, this finding suggests that entrepreneurship education must move beyond teaching  
41 why NetZero matters to embedding how it can be achieved in entrepreneurial practice. Embedding  
42 simulations, case-based exercises, and collaborative projects with local climate innovators could  
43  
44 strengthen students’ perceived ability to launch NetZero ventures. In this way, universities can bridge  
45  
46 the intention–action gap and position themselves as active enablers of climate-conscious  
47  
48 entrepreneurship.

#### 49 50 *5.4 Beyond Classroom Training*

51  
52 The findings showed that while universities frequently introduce students to sustainability concepts in  
53  
54 classroom settings, they rarely extend this engagement into the real-world contexts where  
55 entrepreneurial learning becomes transformative. Participants repeatedly stressed the absence of guest  
56  
57 lectures, alumni showcases, field visits, and exposure to successful NetZero entrepreneurs. This  
58 reinforces prior research emphasising that entrepreneurship education is most effective when it

1  
2  
3 combines theoretical knowledge with experiential learning and role models (Brundiers, Wiek &  
4  
5 Redman, 2010; Rae, 2010).

6  
7 From the perspective of the Theory of Planned Behaviour (TPB), this lack of experiential exposure  
8  
9 weakens both subjective norms and perceived behavioural control. Role models and industry  
10 engagement are central in shaping what students perceive as normal or aspirational (Lans et al., 2014).

11  
12 When sustainability is absent from guest lectures and entrepreneurial panels, students receive weak  
13 normative cues that NetZero entrepreneurship is valued. At the same time, the absence of  
14 opportunities to “see and do” lowers their sense of competence, undermining their perceived ability to  
15 pursue NetZero ventures. Our findings extend TPB by showing how pedagogical choices around  
16 experiential content can either amplify or dilute the social and control mechanisms that underpin  
17 entrepreneurial intention.

18  
19 This theme also interacts with others. Without exposure to sustainability entrepreneurs, students  
20 struggle to connect abstract climate knowledge to practical opportunity (Theme 1). Likewise, the  
21 absence of applied training hinders their ability to implement NetZero in business models (Theme 3).  
22 The issue is further compounded by institutional silos (Theme 5): even when external speakers or  
23 events are available in one part of the university, weak communication and coordination mean  
24 entrepreneurship students are often unaware of them.

25  
26 Existing literature on entrepreneurial ecosystems (Guerrero et al., 2016; Audretsch & Belitski, 2017)  
27 positions universities as central nodes that connect students to external actors. Our findings diverge by  
28 showing that while connections may exist in principle, their content orientation often overlooks  
29 sustainability. In other words, universities are already offering networking opportunities, but they  
30 largely reproduce mainstream entrepreneurship rather than advancing NetZero agendas. This nuance  
31 extends prior work by highlighting that the challenge is not simply “more experiential learning” but  
32 relevant experiential learning aligned with climate-conscious entrepreneurship.

33  
34 The contribution of this study is therefore twofold. First, it confirms the central role of experiential  
35 and role model exposure in shaping entrepreneurial self-efficacy but extends this by showing that  
36 content matters as much as format. Second, it reveals that even when institutions offer rich  
37 experiential ecosystems, their neglect of sustainability content sends weak normative signals to  
38 students. If universities are to cultivate NetZero entrepreneurs, they must recalibrate experiential  
39 learning to feature climate innovators, sustainable alumni founders, and partnerships with  
40 organisations actively pursuing NetZero transitions.

41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

### 5.5 Universities as Entrepreneurial Ecosystems: The Problem of Silos

The findings revealed that while universities provide multiple resources to support entrepreneurship and sustainability — such as accelerators, clubs, research centres, and sustainability offices — these often operate in silos, with limited integration or communication. Participants noted that opportunities exist, but they are fragmented and poorly communicated, requiring students to actively “chase” resources rather than being proactively supported. This echoes existing critiques of fragmented institutional structures, where the lack of coordination reduces the effectiveness of entrepreneurship education (Volkmann et al., 2021).

From the perspective of entrepreneurial ecosystem theory, this represents a significant limitation. Universities are increasingly recognised as key ecosystem actors that connect resources, networks, and knowledge (Guerrero et al., 2016; Audretsch & Belitski, 2017). However, our findings suggest that instead of functioning as integrated ecosystems, universities often resemble loose collections of disconnected initiatives. This fragmentation reduces the visibility of NetZero-related opportunities and undermines the systemic support students need to launch sustainability-oriented ventures. The findings also resonate with the Theory of Planned Behaviour (TPB). Poor communication and fragmented support structures weaken subjective norms by signalling that NetZero entrepreneurship is not an institutional priority. At the same time, they undermine perceived behavioural control, since students who are unaware of or unable to access relevant resources perceive fewer opportunities to act on their intentions. Thus, silos have both cultural and practical consequences, shaping the motivational mechanisms central to TPB.

Connections with other themes further illustrate the systemic nature of this problem. For example, Theme 2 (terminology) shows that inconsistency in language confuses students, while silos exacerbate this by distributing conflicting messages across different departments. Theme 4 (experiential learning) highlights the absence of sustainability-focused guest speakers and role models, which often stems from weak coordination between entrepreneurship centres and sustainability offices. In this way, the silo issue cuts across multiple dimensions of the student experience, compounding the challenges of framing, implementation, and experiential exposure. At the same time, the findings diverge from some ecosystem literature that celebrates universities as integrators of entrepreneurship and innovation (Audretsch et al., 2019). While such models may describe institutional aspirations, our evidence suggests that at the student level, ecosystems are perceived as disjointed and inaccessible. This divergence underscores the importance of incorporating student perspectives into ecosystem research, since the mere presence of resources does not guarantee their integration or impact.

The contribution of this theme lies in reframing silos as both a structural and informational problem. Structurally, different units often pursue their own agendas with limited coordination. Informationally, communication channels are weak, leaving students unaware of opportunities. This

1  
2  
3 double fragmentation highlights the need for universities to create more joined-up systems — not just  
4 co-located resources but coordinated strategies and shared communication platforms that make  
5 NetZero entrepreneurship visible and accessible.  
6  
7  
8

### 9 5.6 Contributions

10 Taken together, the findings of this study advance both theory and practice in entrepreneurship  
11 education for sustainability. Thematically, they demonstrate how gaps in opportunity framing,  
12 conceptual clarity, implementation support, experiential learning, and institutional integration  
13 intersect to constrain NetZero start-up creation. Theoretically, the study extends the Theory of  
14 Planned Behaviour by showing that institutional practices may mediate the three determinants of  
15 intention: attitudes (shaped by whether NetZero is framed as an opportunity), subjective norms  
16 (influenced by the consistency of terminology and exposure to role models), and perceived  
17 behavioural control (affected by access to tools, networks, and coordinated resources). The research  
18 also contributes to entrepreneurial ecosystem literature by revealing that universities, while positioned  
19 as key ecosystem actors, are often perceived by students as fragmented and poorly connected, with  
20 silos and weak communication limiting their systemic potential. Practically, the findings point to  
21 specific institutional levers, from embedding NetZero in core curricula to breaking down silos  
22 between sustainability and entrepreneurship initiatives, that can transform higher education into a  
23 catalyst for climate-conscious entrepreneurship. These insights lay the foundation for the  
24 Recommendations that follow, which translate these contributions into actionable strategies for  
25 universities and policymakers.  
26  
27  
28  
29  
30  
31  
32  
33  
34

## 35 36 37 38 39 6. Recommendations

40 The findings of this study underscore critical gaps in entrepreneurship education and its ability to  
41 support NetZero-oriented ventures. To transform higher education institutions (HEIs) into engines of  
42 sustainability-focused innovation, this section offers five targeted recommendations. These  
43 suggestions respond to participant insights and are framed within the broader academic literature on  
44 sustainability, entrepreneurial intention, and educational ecosystems. They also align with the  
45 Sustainable Development Goals — particularly SDG 4 (Quality Education) and SDG 13 (Climate  
46 Action).  
47  
48  
49  
50

### 51 52 53 6.1 Integrate NetZero into Core Entrepreneurship Curricula

54 The traditional siloing of sustainability content from core entrepreneurship subjects limits students'  
55 ability to see climate challenges as business opportunities. HEIs must reframe sustainability, and  
56 specifically NetZero, as a strategic foundation for innovation, embedding it into the design and  
57 development of business models. This shift demands more than just the inclusion of environmental  
58 modules. Instead, it requires a reorientation of entrepreneurship pedagogy toward sustainability-  
59  
60

1  
2  
3 oriented venture creation (Muñoz and Dimov, 2015; Stubbs and Cocklin, 2008). Courses should  
4  
5 include topics such as carbon pricing, environmental risk modelling, and sustainable product  
6 development. Such integrative teaching has been shown to elevate entrepreneurial intentions when  
7  
8 sustainability is positioned as a driver of value (Bischoff and Volkmann, 2018).  
9  
10

#### 11 *6.2 Establish a Shared Terminology and Conceptual Framework*

12 Students across multiple institutions reported confusion due to inconsistent terminology used in  
13 teaching materials, e.g., conflating CSR, triple bottom line, SDGs, and NetZero. A unified conceptual  
14 language is needed to ensure clarity and precision, especially for international and interdisciplinary  
15 cohorts. A clear definitional framework can also help embed sustainability into the institutional  
16 culture of the university (Shrivastava, Ivanaj and Ivanaj, 2012). Creating consistent sustainability  
17 glossaries and frameworks across faculties can facilitate cross-disciplinary understanding and help  
18 students map their learning across courses and activities.  
19  
20

#### 21 *6.3 Provide Practical Implementation Support*

22 Entrepreneurial intention must be matched with action-oriented tools and support systems.  
23 Universities should provide hands-on training on applying NetZero strategies — including carbon  
24 footprint analysis, supply chain decarbonisation, green marketing, and access to sustainability  
25 funding. Providing these experiential opportunities can help overcome the intention–action gap  
26 observed in sustainability-oriented entrepreneurship (Fayolle and Gailly, 2015; Zahra et al., 2009).  
27  
28 Start-up support should be tailored to sustainability ventures, including NetZero-specific accelerators,  
29 mentoring by green founders, and specialised seed funding mechanisms. As Markman et al. (2016)  
30 argue, sustainable entrepreneurship flourishes when institutions support multiple goals — including  
31 social, environmental, and financial performance — within business formation.  
32  
33

#### 34 *6.4 Enhance Experiential Learning and Industry Exposure*

35 Moving beyond classroom instruction to include real-world experiences is critical. Engaging students  
36 in case-based learning, site visits, pitch events, and alumni panels centred on sustainability has been  
37 shown to enhance learning outcomes and retention (Brundiers, Wiek and Redman, 2010). Guest  
38 lectures from founders of sustainable ventures can serve as motivational touchpoints and offer  
39 students role models who challenge the conventional norms of business success (Rae, 2010). More  
40 importantly, sustained relationships between HEIs and green start-ups provide students with live  
41 learning environments — turning the classroom into a sustainability incubator.  
42  
43

#### 44 *6.5 Break Down Institutional Silos and Build Entrepreneurial Ecosystems*

45 This recommendation addresses institutional structure. Many sustainability initiatives,  
46 entrepreneurship centres, and support programmes operate in silos, limiting visibility and synergy. A  
47 systems-oriented approach is needed to ensure that students can access and benefit from the full  
48 spectrum of resources available on campus. As Morris, Shirokova and Tsukanova (2017) argue,  
49  
50

1  
2  
3 successful university ecosystems support sustainable entrepreneurship through integration of  
4  
5 curricula, infrastructure, mentorship, and networks. Institutions should consider establishing a unified  
6  
7 sustainability-entrepreneurship hub — a one-stop platform where students find mentorship, funding,  
8  
9 partnerships, and NetZero guidance in a coordinated manner.

10  
11 *6.6 Strategic Alignment with the SDGs*

12  
13 Implementing these recommendations can help universities deliver on key elements of:  
14 SDG 4 (Quality Education) - by making entrepreneurship curricula inclusive, contextually relevant,  
15 and socially responsive; and SDG 13 (Climate Action) - by empowering students to become founders  
16 of ventures that actively mitigate climate change. By reimagining entrepreneurship education through  
17 the lens of NetZero innovation, universities can position themselves at the heart of a new, climate-  
18 conscious entrepreneurial ecosystem.

19  
20 **7. Limitations**

21  
22 While this study offers important insights into the role of entrepreneurship education in enabling  
23 NetZero-oriented ventures, several limitations should be acknowledged to contextualise the findings  
24 and inform future research directions.

25  
26 *7.1 Sample Scope and Generalisability*

27 The research is based on interviews with 32 recent graduates from four UK universities, each with  
28 relatively advanced entrepreneurship ecosystems. While this purposive sample ensured rich, relevant  
29 data, it may not capture the full diversity of student experiences across the UK or globally.

30 Entrepreneurship education practices vary significantly across countries, disciplines, and institutional  
31 types. Therefore, the findings may have limited generalisability beyond the sampled context.

32  
33 Moreover, participants self-identified as founders of NetZero-oriented businesses, which introduces a  
34 degree of self-selection bias. Those who chose to participate were likely more engaged with  
35 sustainability and entrepreneurship than the broader graduate population. Future studies may consider  
36 larger, more representative samples or comparative case studies across different university types and  
37 national systems.

38  
39 *7.2 Methodological Boundaries*

40  
41 The study adopted a qualitative interpretivist approach using semi-structured interviews and the Gioia  
42 method. While appropriate for exploring under-researched and complex social phenomena, this  
43 method does not allow for statistical generalisation or hypothesis testing. The emphasis was on depth  
44 rather than breadth.

45  
46 Additionally, although thematic saturation was achieved, the reliance on self-reported narratives  
47 introduces potential recall bias and social desirability bias, particularly when discussing institutional

1 support or personal motivation. Triangulation with institutional documents, curricula, or educator  
2 perspectives could enhance validity in future studies.  
3  
4

#### 5 *7.3 Temporal Constraints and Post-COVID Context*

6 Most participants graduated between 2020 and 2023, a period marked by significant disruption in  
7 higher education due to the COVID-19 pandemic and its aftereffects. Remote teaching, hybrid  
8 learning formats, and limited access to on-campus resources likely influenced students' engagement  
9 with entrepreneurship support services. While this context adds depth to the study, it may also skew  
10 findings in ways that are specific to this historical moment.  
11

12 As universities return to more stable operations, future research should examine whether the barriers  
13 and gaps identified here persist, diminish, or evolve in new forms.  
14

#### 15 *7.4 Focus on Student-Led Perspectives*

16 This research intentionally focused on the student entrepreneur's perspective to foreground lived  
17 experiences and bottom-up insights. However, this perspective excludes the views of faculty  
18 members, entrepreneurship educators, and policy makers within universities, who are equally  
19 influential in shaping curricular and institutional ecosystems.  
20

21 Incorporating multiple stakeholder voices through multi-actor research designs would provide a more  
22 comprehensive picture of how NetZero thinking is—or is not—integrated across the entrepreneurship  
23 education spectrum.  
24

#### 25 *7.5 Conceptual Scope*

26 Finally, the study is bounded by its focus on NetZero entrepreneurship. While this offers a sharp and  
27 policy-relevant lens, it does not encompass broader sustainability entrepreneurship themes such as  
28 biodiversity, just transition, or climate adaptation. Future research may expand this focus to include  
29 other dimensions of environmental and social entrepreneurship, offering a more holistic  
30 understanding of sustainability-driven innovation in higher education.  
31

### 32 **8. Conclusions**

33 Intrinsic to the notion that we are living in times of competing concerns, including climate change,  
34 food security and energy security, this research is topical and important for society. This study  
35 advances research on entrepreneurship education and brings new knowledge on the impact of  
36 entrepreneurial ecosystems in the context of climate change. The findings of this research addresses  
37 theory and practice alike. This study explored how entrepreneurship education within higher  
38 education institutions (HEIs) influences the creation of NetZero-aligned start-ups. Drawing on the  
39 experiences of 32 recent UK university graduates who launched climate-conscious ventures, the  
40 research revealed five systemic gaps: the limited framing of NetZero as a business opportunity,  
41 inconsistent sustainability terminology, insufficient implementation guidance, lack of experiential  
42 learning, and fragmented institutional ecosystems.  
43

1  
2  
3 These insights demonstrate that while HEIs have embraced sustainability discourse at a strategic  
4 level, significant barriers remain at the operational and pedagogical levels—particularly in  
5 entrepreneurship education. In its current form, entrepreneurship training often stops short of  
6 equipping students with the tools, networks, and clarity needed to create ventures that are both  
7 financially viable and environmentally impactful.  
8  
9

10  
11 By integrating NetZero thinking into curricula, offering hands-on implementation support, and  
12 fostering interdisciplinary collaboration, universities can catalyse a new wave of student-led climate  
13 innovation. Doing so requires a deliberate reconfiguration of educational ecosystems—connecting  
14 knowledge, intention, and institutional infrastructure.  
15  
16

17  
18 The study makes three core contributions. First, it provides empirical evidence linking  
19 entrepreneurship education with the operationalisation of NetZero values in new business formation.  
20 Second, it offers a conceptual framework that captures the multi-level dynamics—curriculum,  
21 intention, ecosystem—that shape climate-oriented entrepreneurial pathways. Third, it presents  
22 actionable recommendations for institutions aiming to align their teaching, support structures, and  
23 community engagement efforts with sustainability imperatives.  
24  
25

26 In advancing both SDG 4 (Quality Education) and SDG 13 (Climate Action), this research affirms the  
27 potential of HEIs not only as knowledge providers but as active co-creators of a sustainable, low-  
28 carbon future. By centring NetZero within entrepreneurship education, universities can position their  
29 graduates not merely as job seekers, but as solution-builders for one of humanity's most urgent  
30 challenges.  
31  
32  
33

34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

### References

Ajzen, I. (2020). The theory of planned behavior: Frequently asked questions. *Hum Behav & Emerg Tech*, [online] 2(4), pp.314–324. doi:<https://doi.org/10.1002/hbe2.195>.

Alvarez, S. and Barney, J.B. (2019). Has the Concept of Opportunities Been Fruitful in the Field of Entrepreneurship? *AMP*, [online] 34(3), pp.300–310. doi:<https://doi.org/10.5465/amp.2018.0014>.

Anjum, T., Díaz Tautiva, J. A., Zaheer, M. A., & Heidler, P. (2024). Entrepreneurial intentions: Entrepreneurship education programs, cognitive motivational factors of planned behavior, and business incubation centers. *Education Sciences*, 14(9), 983

Arru, B. (2020). An integrative model for understanding the sustainable entrepreneurs' behavioural intentions: an empirical study of the Italian context. *Environment, Development and Sustainability*, [online] 22(4), pp.3519–3576. doi:<https://doi.org/10.1007/s1066801900356x>.

Audretsch, D.B. and Belitski, M. (2017). Entrepreneurial ecosystems in cities: establishing the framework conditions. *The Journal of Technology Transfer*, [online] 42(5), pp.1030–1051. doi:<https://doi.org/10.1007/s1096101694738>.

Barney, J.B. (1996). The ResourceBased Theory of the Firm. *Organization Science*, [online] 7(5), pp.469–469. doi:<https://doi.org/10.1287/orsc.7.5.469>.

Bell, E., Bryman, A. and Harley, B. (2022). *Business Research Methods*. 6th ed. [online] New York, NY: Oxford University Press, p.696. doi:<https://doi.org/10.1093/hebz/9780198869443.001.0001>.

Bischoff, K.M. and Volkmann, C.K. (2018). Sustainability in entrepreneurship education: Introducing sustainabilityoriented entrepreneurial intentions. *Journal of Business Venturing Insights*, 10, pp.45–51.

Bridgman, R., Olalla, A., & Merino, C. (2024). Towards transformative experiential learning in science- and technology-based entrepreneurship education for sustainable technological innovation. *Journal of Innovation & Knowledge*, 9(3), Article 100544

British Business Bank (2021). Smaller Businesses and the Transition to Net Zero. [online] Available at: [https://www.british-business-bank.co.uk/wp-content/uploads/2021/10/J0026\\_Net\\_Zero\\_Report\\_AW.pdf](https://www.british-business-bank.co.uk/wp-content/uploads/2021/10/J0026_Net_Zero_Report_AW.pdf).

Brundiers, K., Wiek, A. and Redman, C.L. (2010). Realworld learning opportunities in sustainability: From classroom into the real world. *International Journal of Sustainability in Higher Education*, 11(4), pp.308–324.

Cross, I.D. and Congreve, A. (2020). Teaching (super) wicked problems: authentic learning about climate change. *Journal of Geography in Higher Education*, 45(4), pp.1–26. doi:<https://doi.org/10.1080/03098265.2020.1849066>.

Cui, J. (2021). The influence of entrepreneurial education and psychological capital on entrepreneurial behavior among college students. *Frontiers in Psychology*, 12, Article 755479

Demirel, P., Li, Q.C., Rentocchini, F. and Pawan, T.J. (2019). Born to be green: new insights into the economics and management of green entrepreneurship. *Small Business Economics*, [online] 52(4), pp.759–771. doi:<https://doi.org/10.1007/s111870179933z>.

Engle, R.L., Dimitriadi, N., Gavidia, J.V., Schlaegel, C., Delanoe, S., Alvarado, I., He, X., Buame, S. and Wolff, B. (2010). Entrepreneurial intent. *International Journal of Entrepreneurial Behavior & Research*, [online] 16(1), pp.35–57. doi:<https://doi.org/10.1108/13552551011020063>.

Fayolle, A. and Gailly, B. (2015). The impact of entrepreneurship education on entrepreneurial attitudes and intention: Hysteresis and persistence. *Journal of Small Business Management*, 53(1), pp.75–93.

Fichter, K., Bocken, N., & Hjalager, A. M. (2024). Entrepreneurial ecosystems for sustainability-oriented startups: Evidence from higher education initiatives. *Small Business Economics*. Advance online publication

1  
2  
3 Florian Lüdeke-Freund, Rauter, R., Pedersen, G. and Nielsen, C. (2020a). Sustainable Value Creation  
4 Through Business Models: The What, the Who and the How. *Journal of Business Models*, 8(3), pp.62–  
5 90.

6 Friedman, M. (2007). The Social Responsibility of Business Is to Increase Its Profits. In: *Corporate*  
7 *Ethics and Corporate Governance*. [online] Berlin, Heidelberg: Springer, pp.173–178.  
8 doi:[https://doi.org/10.1007/978-3-540-70818-6\\_14](https://doi.org/10.1007/978-3-540-70818-6_14).

9 Gioia, Dennis A, Corley, Kevin G and Hamilton, Aimee L (2012). Seeking Qualitative Rigor in  
10 Inductive Research: Notes on the Gioia Methodology. *Organizational Research Methods*, [online]  
11 16(1), pp.15–31. doi:<https://doi.org/10.1177/1094428112452151>.

12 Glaser, B. G., & Strauss, A. L. (2017). Theoretical sampling. In *Sociological methods* (pp. 105–114).  
13 Routledge.

14 GraddyReed, A., Lanahan, L. and D'Agostino, J. (2021). Training across the academy: The impact of  
15 R&D funding on graduate students. *Research Policy*, [online] 50(5), p.104224.  
16 doi:<https://doi.org/10.1016/j.respol.2021.104224>.

17 Guerrero, M., Cunningham, J.A. and Urbano, D. (2015). Economic impact of entrepreneurial  
18 universities' activities: An exploratory study of the United Kingdom. *Research Policy*, 44(3), pp.748–  
19 764. doi:<https://doi.org/10.1016/j.respol.2014.10.008>.

20 Guerrero, M., Urbano, D., Fayolle, A., Klofsten, M. and Mian, S. (2016). Entrepreneurial universities:  
21 emerging models in the new social and economic landscape. *Small Business Economics*, 47(3), pp.551–  
22 563. doi:<https://doi.org/10.1007/s11187-016-9755-4>.

23 HM Government (2021). Net Zero Strategy: Build Back Greener. [online] Available at:  
24 <https://www.gov.uk/government/publications/net-zero-strategy>.

25 IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working  
26 Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [online]  
27 Available at: [https://report.ipcc.ch/ar6/wg2/IPCC\\_AR6\\_WGII\\_FullReport.pdf](https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf).

28 Isenberg, D. (2010). The Big Idea: How to Start an Entrepreneurial Revolution. [online] Harvard  
29 Business Review. Available at: <https://hbr.org/2010/06/the-big-idea-how-to-start-an-entrepreneurial-revolution>.

30 Islam, M. R., & Al Mehd i, A. (2024). Bridging climate awareness and sustainable entrepreneurship:  
31 A conceptual framework based on the theory of planned behavior. *arXiv preprint arXiv:2407.16838*.

32 Kotla, B., & Bosman, L. (2023). Redefining Sustainability and Entrepreneurship Teaching. *Trends in*  
33 *Higher Education*, 2(3), 498–513

34 Kuratko, D.F., Holt, H.L. and Neubert, E. (2020). Blitzscaling: The good, the bad, and the ugly.  
35 *Business Horizons*, [online] 63(1), pp.109–119. doi:<https://doi.org/10.1016/j.bushor.2019.10.002>.

36 Lans, T., Blok, V. and Wesselink, R. (2014). Learning apart and together: towards an integrated  
37 competence framework for sustainable entrepreneurship in higher education. *Higher Education for*  
38 *Sustainable Development: Emerging Areas*, [online] 62, pp.37–47.  
39 doi:<https://doi.org/10.1016/j.jclepro.2013.03.036>.

40 Laukkanen, M. and Tura, N. (2020). The Potential of Sharing Economy Business Models for  
41 Sustainable Value Creation. *Journal of Cleaner Production*, 253.  
42 doi:<https://doi.org/10.1016/j.jclepro.2020.120004>.

43 Lüdeke-Freund, F., Rauter, R., Pedersen, E.R.G. and Nielsen, C. (2020b). Sustainable Value Creation  
44 Through Business Models: The What, the Who and the How. *Journal of Business Models*, 8(3), pp.62–  
45 90. , F, Rauter, R, Pedersen, ERG & Nielsen, C.

46 Ly-Baro, F., York, J. M., & Ihasz, O. (2024). Seeking for effectiveness of sustainability  
47 entrepreneurial education programs: A multiple case analysis. *Journal of the International Council for*  
48 *Small Business*, 6(2), 297–310.

1  
2  
3 Markman, G.D., Russo, M., Lumpkin, G.T., Jennings, P.D. and Mair, J. (2016). Entrepreneurship as a  
4 platform for pursuing multiple goals: A special issue on sustainability, ethics, and entrepreneurship.  
5 Journal of Management Studies, 53(5), pp.673–694.  
6  
7 Marteau, T.M., Chater, N. and Garnett, E.E. (2021). Changing behaviour for net zero 2050. BMJ,  
8 [online] 375, p.n2293. doi:<https://doi.org/10.1136/bmj.n2293>.  
9  
10 Meek, W.R. and Gianiodis, P.T. (2022). The Death and Rebirth of the Entrepreneurial University  
11 Model. AMP, [online] 37(1), pp.55–71. doi:<https://doi.org/10.5465/amp.2020.0180>.  
12  
13 Morris, M.H., Shirokova, G. and Tsukanova, T. (2017). Student entrepreneurship and the university  
14 ecosystem: A multicountry empirical exploration. European Journal of International Management, 11(1), pp.65–85.  
15  
16 Muñoz, P. and Dimov, D. (2015). The call of the whole in understanding sustainable entrepreneurship.  
17 Journal of Business Venturing, 30(5), pp.632–654.  
18  
19 NatWest Bank (2021). A Springboard to Sustainable Recovery: Unlocking the Net-Zero Opportunity  
20 for UK SMEs. [online] Available at: <https://www.natwest.com/content/dam/natwest/business-insights/documents/nw-bus-springboard-to-sustainable-recovery-full.pdf>.  
21  
22 ONS (2022). Climate Change Insights UK. [online] Available at: <https://www.ons.gov.uk/economy/environmentalaccounts/articles/climatechangeinsightsuk/may2022>.  
23  
24 Peng, H., Li, B., Zhou, C. and Sadowski, B.M. (2021). How Does the Appeal of Environmental Values  
25 Influence Sustainable Entrepreneurial Intention? International Journal of Environmental Research and  
26 Public Health, 18(3), p.1070. doi:<https://doi.org/10.3390/ijerph18031070>.  
27  
28 Qazi, W., Qureshi, J.A., Raza, S.A., Khan, K.A. and Qureshi, M.A. (2021). Impact of personality traits  
29 and university green entrepreneurial support on students' green entrepreneurial intentions: the  
30 moderating role of environmental values. Journal of Applied Research in Higher Education, [online]  
13(4), pp.1154–1180. doi:<https://doi.org/10.1108/JARHE0520200130>.  
31  
32 Rae, D. (2010). Universities and enterprise education: Responding to the challenges of the new era.  
33 Journal of Small Business and Enterprise Development, 17(4), pp.591–606.  
34  
35 Ramos-Rodriguez, A. R., Medina-Garrido, J. A., Lorenzo-Gómez, J. D., & Ruiz-Navarro, J. (2010).  
36 What you know or who you know? The role of intellectual and social capital in opportunity recognition.  
37 *International small business journal*, 28(6), 566-582Ritchie, J., Lewis, J., McNaughton Nicholls, C.  
38 and Ormston, R. (2013). Qualitative research practice: a guide for social science students and  
39 researchers. Los Angeles: Sage.  
40  
41 Saunders, M., Lewis, P. and Thornhill, A. (2019). Research Methods for Business Students. [online]  
42 Pearson Deutschland, p.872. doi:<https://doi.org/DOI>.  
43  
44 Sharma, L., Bulsara, H. P., Bagdi, H., & Trivedi, M. (2024). Exploring sustainable entrepreneurial  
45 intentions through the lens of theory of planned behaviour: A PLS-SEM approach. *Journal of  
46 Advances in Management Research*, 21(1), 20–43.  
47  
48 Shrivastava, P., Ivanaj, S. and Ivanaj, V. (2012). Sustainable development and the university: New goals  
49 for higher education. *Sustainability Accounting, Management and Policy Journal*, 3(3), pp.246–257.  
50  
51 Spigel, B. and Harrison, R. (2018). Toward a process theory of entrepreneurial ecosystems. *Strategic  
52 Entrepreneurship Journal*, 12(1), pp.151–168. doi:<https://doi.org/10.1002/sej.1268>.  
53  
54 Stubbs, W. and Cocklin, C. (2008). Teaching sustainability to business students: Shifting mindsets.  
55 *International Journal of Sustainability in Higher Education*, 9(3), pp.206–221.  
56  
57 Sun, H., Lo, C.T., Liang, B. and Belle, L. (2017). The impact of entrepreneurial education on  
58 entrepreneurial intention of engineering students in Hong Kong. *Management Decision*, [online] 55(7),  
59 pp.1371–1393. doi:<https://doi.org/10.1108/MD0620160392>.  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
5510  
5511  
5512  
5513  
5514  
5515  
5516  
5517  
5518  
5519  
5520  
5521  
5522  
5523  
5524  
5525  
5526  
5527  
5528  
5529  
5530  
5531  
5532  
5533  
5534  
5535  
5536  
5537  
5538  
5539  
5540  
5541  
5542  
5543  
5544  
5545  
5546  
5547  
5548  
5549  
5550  
5551  
5552  
5553  
5554  
5555  
5556  
5557  
5558  
5559  
55510  
55511  
55512  
55513  
55514  
55515  
55516  
55517  
55518  
55519  
55520  
55521  
55522  
55523  
55524  
55525  
55526  
55527  
55528  
55529  
55530  
55531  
55532  
55533  
55534  
55535  
55536  
55537  
55538  
55539  
55540  
55541  
55542  
55543  
55544  
55545  
55546  
55547  
55548  
55549  
55550  
55551  
55552  
55553  
55554  
55555  
55556  
55557  
55558  
55559  
555510  
555511  
555512  
555513  
555514  
555515  
555516  
555517  
555518  
555519  
555520  
555521  
555522  
555523  
555524  
555525  
555526  
555527  
555528  
555529  
555530  
555531  
555532  
555533  
555534  
555535  
555536  
555537  
555538  
555539  
555540  
555541  
555542  
555543  
555544  
555545  
555546  
555547  
555548  
555549  
555550  
555551  
555552  
555553  
555554  
555555  
555556  
555557  
555558  
555559  
5555510  
5555511  
5555512  
5555513  
5555514  
5555515  
5555516  
5555517  
5555518  
5555519  
5555520  
5555521  
5555522  
5555523  
5555524  
5555525  
5555526  
5555527  
5555528  
5555529  
5555530  
5555531  
5555532  
5555533  
5555534  
5555535  
5555536  
5555537  
5555538  
5555539  
5555540  
5555541  
5555542  
5555543  
5555544  
5555545  
5555546  
5555547  
5555548  
5555549  
5555550  
5555551  
5555552  
5555553  
5555554  
5555555  
5555556  
5555557  
5555558  
5555559  
55555510  
55555511  
55555512  
55555513  
55555514  
55555515  
55555516  
55555517  
55555518  
55555519  
55555520  
55555521  
55555522  
55555523  
55555524  
55555525  
55555526  
55555527  
55555528  
55555529  
55555530  
55555531  
55555532  
55555533  
55555534  
55555535  
55555536  
55555537  
55555538  
55555539  
55555540  
55555541  
55555542  
55555543  
55555544  
55555545  
55555546  
55555547  
55555548  
55555549  
55555550  
55555551  
55555552  
55555553  
55555554  
55555555  
55555556  
55555557  
55555558  
55555559  
555555510  
555555511  
555555512  
555555513  
555555514  
555555515  
555555516  
555555517  
555555518  
555555519  
555555520  
555555521  
555555522  
555555523  
555555524  
555555525  
555555526  
555555527  
555555528  
555555529  
555555530  
555555531  
555555532  
555555533  
555555534  
555555535  
555555536  
555555537  
555555538  
555555539  
555555540  
555555541  
555555542  
555555543  
555555544  
555555545  
555555546  
555555547  
555555548  
555555549  
555555550  
555555551  
555555552  
555555553  
555555554  
555555555  
555555556  
555555557  
555555558  
555555559  
5555555510  
5555555511  
5555555512  
5555555513  
5555555514  
5555555515  
5555555516  
5555555517  
5555555518  
5555555519  
5555555520  
5555555521  
5555555522  
5555555523  
5555555524  
5555555525  
5555555526  
5555555527  
5555555528  
5555555529  
5555555530  
5555555531  
5555555532  
5555555533  
5555555534  
5555555535  
5555555536  
5555555537  
5555555538  
5555555539  
5555555540  
5555555541  
5555555542  
5555555543  
5555555544  
5555555545  
5555555546  
5555555547  
5555555548  
5555555549  
5555555550  
5555555551  
5555555552  
5555555553  
5555555554  
5555555555  
5555555556  
5555555557  
5555555558  
5555555559  
55555555510  
55555555511  
55555555512  
55555555513  
55555555514  
55555555515  
55555555516  
55555555517  
55555555518  
55555555519  
55555555520  
55555555521  
55555555522  
55555555523  
55555555524  
55555555525  
55555555526  
55555555527  
55555555528  
55555555529  
55555555530  
55555555531  
55555555532  
55555555533  
55555555534  
55555555535  
55555555536  
55555555537  
55555555538  
55555555539  
55555555540  
55555555541  
55555555542  
55555555543  
55555555544  
55555555545  
55555555546  
55555555547  
55555555548  
55555555549  
55555555550  
55555555551  
55555555552  
55555555553  
55555555554  
55555555555  
55555555556  
55555555557  
55555555558  
55555555559  
555555555510  
555555555511  
555555555512  
555555555513  
555555555514  
555555555515  
555555555516  
555555555517  
555555555518  
555555555519  
555555555520  
555555555521  
555555555522  
555555555523  
555555555524  
555555555525  
555555555526  
555555555527  
555555555528  
555555555529  
555555555530  
555555555531  
555555555532  
555555555533  
555555555534  
555555555535  
555555555536  
555555555537  
555555555538  
555555555539  
555555555540  
555555555541  
555555555542  
555555555543  
555555555544  
555555555545  
555555555546  
555555555547  
555555555548  
555555555549  
555555555550  
555555555551  
555555555552  
555555555553  
555555555554  
555555555555  
555555555556  
555555555557  
555555555558  
555555555559  
5555555555510  
5555555555511  
5555555555512  
5555555555513  
5555555555514  
5555555555515  
5555555555516  
5555555555517  
5555555555518  
5555555555519  
5555555555520  
5555555555521  
5555555555522  
5555555555523  
5555555555524  
5555555555525  
5555555555526  
5555555555527  
5555555555528  
5555555555529  
5555555555530  
5555555555531  
5555555555532  
5555555555533  
5555555555534  
5555555555535  
5555555555536  
5555555555537  
5555555555538  
5555555555539  
5555555555540  
5555555555541  
5555555555542  
5555555555543  
5555555555544  
5555555555545  
5555555555546  
5555555555547  
5555555555548  
5555555555549  
5555555555550  
5555555555551  
5555555555552  
5555555555553  
5555555555554  
5555555555555  
5555555555556  
5555555555557  
5555555555558  
5555555555559  
55555555555510  
55555555555511  
55555555555512  
55555555555513  
55555555555514  
55555555555515  
55555555555516  
55555555555517  
55555555555518  
55555555555519  
55555555555520  
55555555555521  
55555555555522  
55555555555523  
55555555555524  
55555555555525  
55555555555526  
55555555555527  
55555555555528  
55555555555529  
55555555555530  
55555555555531  
55555555555532  
55555555555533  
55555555555534  
55555555555535  
55555555555536  
55555555555537  
55555555555538  
55555555555539  
55555555555540  
55555555555541  
55555555555542  
55555555555543  
55555555555544  
55555555555545  
55555555555546  
55555555555547  
55555555555548  
55555555555549  
55555555555550  
55555555555551  
55555555555552  
55555555555553  
55555555555554  
55555555555555  
55555555555556  
55555555555557  
55555555555558  
55555555555559  
555555555555510  
555555555555511  
555555555555512  
555555555555513  
555555555555514  
555555555555515  
555555555555516  
555555555555517  
555555555555518  
555555555555519  
555555555555520  
555555555555521  
555555555555522  
555555555555523  
555555555555524  
555555555555525  
555555555555526  
555555555555527  
555555555555528  
555555555555529  
555555555555530  
555555555555531  
555555555555532  
555555555555533  
555555555555534  
555555555555535  
555555555555536  
555555555555537  
555555555555538  
555555555555539  
555555555555540  
555555555555541  
555555555555542  
555555555555543  
555555555555544  
555555555555545  
555555555555546  
555555555555547  
555555555555548  
555555555555549  
555555555555550  
555555555555551  
555555555555552  
555555555555553  
555555555555554  
555555555555555  
555555555555556  
555555555555557  
5555555

1  
2  
3 Wurth, B., Stam, E. and Spigel, B. (2021). Toward an Entrepreneurial Ecosystem Research Program.  
4 Entrepreneurship Theory and Practice, 46(3), p.104225872199894.  
5 doi:<https://doi.org/10.1177/1042258721998948>.

6 Yasır, N., Mahmood, N., Mehmood, H.S., Babar, M., Irfan, M. and Liren, A. (2021). Impact of  
7 Environmental, Social Values and the Consideration of Future Consequences for the Development of a  
8 Sustainable Entrepreneurial Intention. Sustainability, 13(5), p.2648.  
9 doi:<https://doi.org/10.3390/su13052648>.

10 Zahra, S.A., Gedajlovic, E., Neubaum, D.O. and Shulman, J.M. (2009). A typology of social  
11 entrepreneurs: Motives, search processes and ethical challenges. *Journal of Business Venturing*, 24(5),  
12 pp.519–532.

13 Zhao, H., & Wibowo, A. (2021). Entrepreneurship resilience: Can psychological traits of  
14 entrepreneurial intention support overcoming entrepreneurial failure? *Frontiers in Psychology*, 12,  
15 Article 707803.

16 Zherdeva, A., et al. (2025). Developing entrepreneurial mindset through sustainability-informed  
17 entrepreneurial education. *Irish Journal of Management*. Advance online publication

18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

### Appendix 1 - Anonymised Participants and University Profile

| Participant ID | Age | Gender | Degree Level | Graduation Year | Venture Type                         |
|----------------|-----|--------|--------------|-----------------|--------------------------------------|
| A1             | 25  | Female | BSc          | 2022            | Sustainable Food Packaging           |
| A2             | 27  | Male   | MSc          | 2021            | Renewable Energy Consultancy         |
| A3             | 26  | Female | MSc          | 2023            | Carbon Footprint Analytics           |
| A4             | 24  | Male   | BSc          | 2024            | Eco-friendly Transport Solutions     |
| A5             | 28  | Female | MSc          | 2020            | Circular Economy Retail              |
| A6             | 29  | Male   | MSc          | 2021            | Low-carbon Building Materials        |
| A7             | 30  | Female | MSc          | 2022            | Green Supply Chain Services          |
| A8             | 25  | Male   | BSc          | 2023            | Sustainable Tourism Platform         |
| W1             | 25  | Male   | MSc          | 2020            | Renewable Energy Solutions           |
| W2             | 27  | Female | BSc          | 2021            | Sustainable Fashion                  |
| W3             | 26  | Female | MSc          | 2022            | Carbon Accounting Services           |
| W4             | 28  | Male   | BSc          | 2023            | Eco-friendly Packaging               |
| W5             | 24  | Female | BSc          | 2024            | Sustainable Agriculture              |
| W6             | 29  | Male   | MSc          | 2021            | Green Construction                   |
| W7             | 26  | Female | MSc          | 2022            | Urban Farming Solutions              |
| W8             | 28  | Male   | BSc          | 2020            | Sustainable Logistics Platform       |
| D1             | 30  | Male   | MSc          | 2020            | Recycling Technologies               |
| D2             | 26  | Female | BSc          | 2023            | Electric Mobility                    |
| D3             | 27  | Male   | MSc          | 2022            | Energy Efficiency Consulting         |
| D4             | 25  | Female | BSc          | 2024            | Water Purification Systems           |
| D5             | 28  | Male   | MSc          | 2021            | Circular Economy Marketplace         |
| D6             | 27  | Male   | MSc          | 2023            | Smart Energy Monitoring Systems      |
| D7             | 24  | Female | BSc          | 2024            | Sustainable Beauty & Cosmetics       |
| D8             | 30  | Male   | MSc          | 2021            | Eco-friendly Construction Materials  |
| D9             | 25  | Female | MSc          | 2022            | Plastic Waste Recycling Services     |
| C1             | 24  | Female | BSc          | 2020            | Upcycled Products                    |
| C2             | 31  | Male   | MSc          | 2023            | Green FinTech                        |
| C3             | 26  | Female | MSc          | 2024            | Organic Food Supply                  |
| C4             | 27  | Male   | MSc          | 2021            | Sustainable Tourism                  |
| C5             | 29  | Female | MSc          | 2022            | CleanTech R&D                        |
| C6             | 28  | Male   | MSc          | 2020            | Community Solar Projects             |
| C7             | 29  | Male   | MSc          | 2021            | Low-carbon Transport Sharing Venture |

C – This university's entrepreneurship hub connects research, teaching, and practice, offering mentoring, networking, and events to help students develop and launch ventures. It also provides incubation and acceleration facilities, seed funding opportunities, and targeted programmes for early-stage businesses. On sustainability, it delivers specialist master's degrees and professional courses in areas such as low-carbon systems, environmental management, and sustainable business, integrating climate-focused content across disciplines.

W – This institution integrates entrepreneurship into student life through coaching, academic modules, and innovation programmes, complemented by a dedicated innovation district that connects students and startups with industry networks. Its sustainability agenda includes a net-zero carbon

1  
2  
3 energy target by 2030 and net-zero for all emissions by 2050, alongside curricular offerings that focus  
4 on sustainable business practices, organisational transformation, and climate-focused leadership.  
5  
6

7 A – This university supports entrepreneurial students through accelerator programmes, startup  
8 bootcamps, and a year-long incubator with mentoring, workspace, and funding advice. It embeds  
9 sustainability into operations and teaching, with a strategy to achieve net-zero Scope 1 and 2  
10 emissions by 2030 and significant investment in a zero-carbon campus. Its initiatives include  
11 professional sustainability training programmes, sector-specific climate action support, and  
12 compulsory environmental sustainability learning for undergraduates.  
13

14 D – This institution promotes entrepreneurship through its business school's enterprise centre,  
15 offering venture support, competitions, and experiential learning modules that encourage students to  
16 test and launch their ideas. In sustainability, it has committed to achieving net-zero carbon emissions  
17 by 2035, with climate-focused modules embedded across multiple programmes and cross-disciplinary  
18 research addressing global environmental challenges.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 **Conflicts of Interest:** The authors declare no conflicts of interest.  
4

5 **Funding:** This research received no specific grant from any funding agency in the public,  
6 commercial, or not-for-profit sectors.  
7

8 **Data Availability Statement:** The data that support the findings of this study are available from the  
9 corresponding author upon reasonable request.  
10

11 **Informed Consent Statement:** Informed consent was obtained from all subjects involved in the  
12 study.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60