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Abstract Order parameters have proved a vital tool for simplifying and understanding complex dynamics in
a range of physical systems. However, applying these approaches to the high-dimensional time-dependent
variability inherent to thermodynamically open systems—such as those found in neural networks and
climate dynamics—remains a challenge. We introduce a novel order parameter based on alignment of
component frequencies, in contrast to the widely used Kuramoto order parameter’s alignment of process
phases. We present numerical simulations comparing this new parameter to the Kuramoto order parameter
in a range of models, including a prototypical phase-oscillator model relevant to many open systems, such as
neuronal dynamics. These results show that the new parameter more accurately identifies synchronisation
in conditions characteristic of open systems, revealing dynamics entirely missed by established methods.

1 Introduction

The concept of an order parameter was introduced independently by Gorsky [1] and Bragg and Williams [2]
to describe order—disorder transition of alloys. It was developed in its modern form by Landau [3] to provide a
phenomenological description of phase transitions. It was extended by Haken [4] to an ‘enslaving-principle’ in which
dynamics is governed by a few order parameters due to external forcing. This latter contribution—serving as a
dynamical-systems-theory analogue to Prigogine’s thermodynamic theory of dissipative structures [5]—particularly
helped to extend the application of order parameters to non-equilibrium behaviour in thermodynamically open
systems, where external forcing is ubiquitous. One of the most prevalent order parameters in dynamical systems was
proposed by Kuramoto [6, 7], within a framework of phase dynamics, to capture the degree of synchrony amongst
a collection of phase oscillators. The Kuramoto order parameter has been widely used to describe the degree of
synchronisation [8-12], which is a fundamental and universal phenomenon throughout the sciences, including both
classical and quantum physics [13-15], and is essential to the robust functioning of, inter alia, biological systems
[16-23]. However, most of the study of synchronisation and application of order parameters for synchronisation
has been in the setting of infinite-time autonomous dynamical systems, where the intrinsic time-variability central
to the functioning of biological and other thermodynamically open systems is entirely missed. In this article, we
introduce a new order parameter for phase-oscillator networks based on synchronisation of angular velocities,
motivated particularly by the limitations of previous approaches for studying time-dependent dynamics.

Synchronisation is classically concerned with the alignment of the frequencies of interacting rhythmic processes.
Such processes can be effectively represented by oscillator networks [11], of which Kuramoto oscillators are a
leading example [6, 7]. These include both autonomous (i.e. not externally forced) networks as well as determin-
istically non-autonomous [24-26] and stochastically forced [9, 27-29] oscillator networks. More precise concepts of
synchronisation include:
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(i) The synchrony of the rates of progression of the oscillators through their respective cycles, without concern
for the absolute positions along the cycle across different oscillators. The strongest kind of synchronisation
in this category is called frequency synchronisation or phase locking [11, 13, 30]. This is where the angular
velocities of the oscillators tend towards being identical.

(ii) Those that concern the extent to which the oscillators share approximately the same positions along their
cycles, as opposed to merely progressing through their respective cycles at the same rate. The strongest
kind of synchronisation in this category is called phase synchronisation [11]. This is where the phases of the
oscillators tend towards being identical.

Another important distinction when discussing synchronisation is that of finite-timescale behaviour versus long-
time-asymptotic behaviour [31, 32]. For models with time-independent dynamics (autonomous models) or models
whose time-dependence follows a fixed infinite-time deterministic or statistical pattern, it is often natural to
analyse dynamics at the level of long-time-asymptotic behaviour, and synchronisation has usually been addressed
at that level. However, for systems such as biological systems that need to be able to perpetually adapt their
internal rhythms to their ever-changing environment, time-independent models are not appropriate and long-time-
asymptotic analysis of dynamics is not suitable, and so synchronisation should be considered on finite timescales.

The physical phenomenon of synchronisation is most often defined qualitatively using (i) [9]. Nevertheless, for
quantification of synchronisation, order parameters have been defined both in terms of alignment of frequencies and
alignment of phases. The most commonly used order parameter for studying synchronisation of phase oscillators
is the Kuramoto order parameter [6, 7], which measures alignment of phases. At each instant in time, it takes
a value in the interval [0, 1], where a value of 1 corresponds precisely to the scenario that all the oscillators
have exactly the same phase at that instant in time. Thus, the Kuramoto order parameter really quantifies
synchrony in the sense of (ii). One natural consequence is that it will not detect synchronisation of frequencies
in situations where this does not correlate to alignment of phases; this is particularly important for networks with
repulsive or with mized attractive and repulsive [16, 30, 33, 34] coupling, which lie at the forefront of contemporary
research in oscillatory dynamics including biological oscillators. Another important point is that for autonomous
networks with a critical coupling strength for frequency synchronisation, even if the Kuramoto order parameter
is correlated to the coupling strength, the Kuramoto order parameter will take values below 1 when the coupling
strength is slightly above the critical value [30, 35]; we will see that this then has an important consequence
for nonautonomous models: Despite being an explicitly time-dependent order parameter and hence applicable to
nonautonomous systems, the Kuramoto order parameter will generally fail to clearly reveal temporally intermittent
synchronisation in nonautonomous systems even when those systems take a form in which the Kuramoto order
parameter is correlated to the coupling strength.

For systems where long-time-asymptotic analysis is applicable, time-independent order parameters for frequency
synchronisation have been developed, such as ones quantifying the proportion of oscillators taken up by a maximal
frequency-synchronised collection [36, 37], and one quantifying the long-time-asymptotic alignment of phase growth
in analogy to how the Kuramoto order parameter quantifies the instantaneous alignment of phases [38]. In [37], the
instantaneous variance of angular velocities has been applied in the context of studying frequency synchronisation
in an autonomous thermodynamically-limiting lattice of phase oscillators.

Our new order parameter is an explicitly time-dependent order parameter for quantifying synchronisation in the
sense of (i), analogous to how the Kuramoto order parameter quantifies synchronisation in the sense of (ii). It is
based on the instantaneous variance of angular velocities, but suitably transformed to make it an order parameter
in the interval [0, 1] that is appropriately applicable not only to autonomous systems but also to nonautonomous
systems with gradually time-dependent natural frequencies. It measures at each instant in time how close the
network’s coupling brings the oscillators to time-localised phase locking: it gives a value of 0 when there is no
coupling, and a value of 1 when the oscillators have exactly the same angular velocity. Thus, by supplementing the
Kuramoto order parameter with our new order parameter, our understanding of the synchronisation that occurs
in widely physically relevant models is brought closer to the physical reality of synchronisation.

The paper is organised as follows: In the next section we define the new angular frequency order parameter and
make clear its relation to the Kuramoto order parameter. After that, we contrast the two order parameters in

(i) a simplest-case two-oscillator system,

(ii) more physically realistic higher-dimensional networks with autonomous and non-autonomous oscillators,

(iii) mixed attractive-repulsive coupling of multiple forms in higher-order autonomous and non-autonomous net-
works, representing complex systems such as neuronal dynamics.

Finally, we discuss macroscopic-phase descriptions of oscillator networks associated with each of the two parame-
ters, which is of important relevance to network outputs and inter-network interactions.
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2 Derivation of the order parameter

We begin by recalling the definition of the Kuramoto order parameter. Given a network of N phase oscillators 61,
..., O, where at each time ¢ the state 6,(t) of the j-th oscillator #; is an angle between 0 and 27, the mean field
of the network is defined as

| N
_ 0, ()
p(t) = E 1 et
N

It is a complex-valued function of time, taking values in the unit disc. The magnitude r(¢) := |u(t)| is known as
the Kuramoto order parameter of the network. At any time ¢,

rt) =1 = 01(t)=0s(t) = = On(2). (1)

When pu(t) # 0, we can also consider the argument ¢(t) := arg(u(t)), called the mean phase of the network.

To be able to carry over the concept of the Kuramoto order parameter from its original setting of alignment
of phases to the new setting of alignment of angular velocities, we first need to understand how the Kuramoto
order parameter relates to the variance of the phases. In a linear geometry, the (population) variance of a list of
numbers z1, ..., £y € R is the mean of the squared deviations from mean(zy, ..., zx). For a phase-oscillator
network, regarding the phase 6,(t) of each oscillator as a value on the unit circle, we define the variance of the
phases at a given time ¢ to be the mean of the squared Euclidean distances from the mean phase; that is,
it (1) _ gio)|*

LN
var(t) = i Z
j=1

This assumes that p(t) # 0, since ¢(t) is not well-defined when p(t) = 0. When u(t) = 0, one can show (see Sec. I
of the Supplementary Information for a proof) that

. .12
Wi _ il =9 V¢ elo,2m),

1 N
N2
j=1

and so in this case, we simply take var(t) = 2. Having defined the variance of a phase-oscillator network, one can
show (see Sec. I of the Supplementary Information for a proof) that the Kuramoto order parameter r is related
to the variance by

var(t) actual variance

1-r(t) = 20 (2)

2 variance in absence of order’

By “variance in absence of order,” we mean the variance when r = 0, which we have said is indeed equal to 2.
We now go on to define our new order parameter. It is defined for phase-oscillator networks where:

e Each of the N oscillators 6, is assumed to have an internal frequency f;(t) > 0 (which is allowed to depend
gradually on time t), where, in the absence of coupling with the other N — 1 oscillators in the network, the phase
of #; would approximately evolve as 8;(t) = 27 f;(t).

e The N oscillators do not all have the same internal dynamics. Specifically, we will assume that at every time ¢,
we do not have f1(t) = fa(t) = ... = fn(?).

e The phases 6;(t) evolve as differentiable functions of time (as opposed to, say, being governed by a white-noise-
driven stochastic differential equation), where the contributions to the angular velocity 6;(t) are the internal-
dynamics component 27 f;(¢) and the coupling to the other oscillators in the network.

From a practical point of view: The “internal frequency” models a natural frequency for the mechanisms responsi-
ble for producing oscillations. For example, a spring-mass oscillator with slowly varying stiffness k;(¢) and slowly
1 [ k() .
27 \/ m;(t)’
lators can also often be understood as analogously having an internal frequency arising from their mechanism of
oscillations. However, if there is a relatively sharp change in internal frequency, then our order parameter cannot

varying mass m;(t) would have an internal frequency f;(t) = and more sophisticated real-world oscil-
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meaningfully be applied during the time that the sharp change is taking place. The second of the three points
above is saying, practically speaking, that the oscillators cannot all be identical or near-identical copies of each
other; the different oscillators must have different internal frequencies. The third of the three points is saying
that our order parameter, in its current form, cannot be applied when there is significant dynamical noise or
other very-fast-timescale behaviour (compared to the internal frequencies) present in the phase component of
the oscillator dynamics. Sometimes dynamical noise can significantly affect the amplitude components while still
allowing the extraction of sufficiently smooth time-series for the phases of the oscillators, in which case our order
parameter is still applicable. A direction of future research would be to introduce time-windowed versions of the
order parameter better suited for dealing with dynamical noise. The issue of dealing with measurement noise will
be addressed towards the end of this paper.
For a system fulfilling the above three points, writing w;(t) = 27 f;(t), our order parameter R(t) is defined as

(3)

R(t) = max(l - variance(0y (t), ..., HN(t))) 7 0>7

variance(wi (t), ..., wn(t)

where the ‘variances’ refer to the usual (i.e. linear-geometry) definition of variance. In terms of the analogy to

equation (2), variance(61(t), ..., On(t)) represents the variance of the actual angular velocities of the network,
while variance(wq (t), ..., wn(t)) represents the variance of what the angular frequencies of the oscillators would
be if their dynamics were not coupled to each other. So, at any time ¢, having the former variance equal to the
latter would give a value of R(t) = 0, representing an absence of coupling-induced order. If, at some time ¢, the
presence of coupling causes the angular velocities to have greater variance than the internal angular frequencies,
we still simply regard there as being no coupling-induced order; and so, rather than allowing R(¢) to become
negative, we simply cut it off at 0. Thus, R(¢) takes values in the unit interval [0, 1], like r(¢) does. In analogy to
Eq. (1), we have

Rit)=1 <= 0y(t) =0:(t) =--- = On(t).
At each time ¢, the dependence of R(#) on (61 (t), ..., Ox(t)) is continuous, but is not differentiable at the boundary
between R = 0 and R > 0. This is somewhat akin to how the dependence of the Kuramoto order parameter r
on (61, ..., Ox) is continuous, but is not differentiable at » = 0. For both order parameters, an everywhere-

differentiable version of the order parameter can be obtained simply by squaring it (still giving a value in the unit
interval [0, 1]).

3 lllustrative examples

We now illustrate the order parameter R(¢) and its comparison with the Kuramoto order parameter r(¢). Our
examples will be ordinary differential equations of the form

0;(t) = wi(t) + gj(0:(t), ..., On(t), 1), j=1,...,N. (4)

Phase-oscillator network models of this form can often be derived from higher-dimensional oscillator networks via
phase-reduction [39-41]. Such a system is autonomous if for every j, the value w;(t) and the function g;(-, ...,
-, t) do not depend on ¢; otherwise, it is non-autonomous. The former thus represents a closed system, and the
latter an open one. Just as the Kuramoto order parameter can be constructed as an observable over the (61, ...,
0N )-state space by

<

—~
~

S~—"
Il

7(61(), ..., On(2))

1|
701, ..., 0n) = = Zewi ,
N =

so likewise our new order parameter can be constructed as a time-dependent observable over the (61, ..., Oy )-state
space by

R(t) =R(61(t), ..., On(t), 1) (5)
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Ror, . 0w 1) ::max(l _ variance(w;(t) + g; (01, ..., On, t) 1 j€{L, ..., N}) 7 0)

variance(w;(t) : j € {1, ..., N})

(6)

We compute R(t) by (5)—(6) applied to the numerically obtained solution (61(¢), ..., Ox(t)). All numerics were
performed using a Runge-Kutta 4-step numerical integration algorithm with an integration step of 0.001 s. For each
system under consideration, the initial phases 6;(0) for the simulations are randomly sampled from the uniform
distribution on [—m, 7]; when varying the coupling strength K in a given model, the same random values of 6,(0)
were used across the varying K.

3.1 Two-oscillator system

We first consider the simplest example, namely an autonomous pair of coupled oscillators

O (t) = wr + %sin(Qg(t) —0.(1)

05(t) = wy + %sin(é)l(t) — Ba(t)), (7)

with constants ws > wj > 0 corresponding to the internal angular frequencies of #; and 6; respectively, and a
coupling strength constant K € R.

e For —K— very small, the new order parameter assigns near-perfect disorder (R = 0), while the Kuramoto order
parameter r oscillates over the full range between 0 and 1.

e For |K|> ws — wy, there is a stable phase-locked solution, corresponding to ‘perfect order’ under the new order
parameter (R = 1). In the case of large positive K (attractive coupling), the Kuramoto order parameter similarly
assigns near-perfect order (r &~ 1) as the two oscillators are approximately in phase. However, in the case of
large negative K (repulsive [42] coupling), the Kuramoto order parameter assigns near-perfect disorder (r = 0)
as the two oscillators are approximately in antiphase, despite exhibiting frequency synchronisation.

Hence, it is already evident from this simplest example how the new angular velocity order parameter aligns with
the physical concept of synchronisation in cases where the Kuramoto order parameter does not. See Sec. II of the
Supplementary Information for further theoretical calculation details and numerics.

3.2 Higher-dimensional networks with attractive coupling

Moving to more complex and physically significant examples, we consider, initially, autonomous Kuramoto net-
works of the form

N
. K .
0;(t) =wj + > sin(Bx(t) — 0;(t)). (8)
k=1
The network size is N = 100. The natural angular frequencies w; were randomly sampled from a Gaussian

distribution of mean p, = 7 rad/s and standard deviation o,, = 0.5 rad/s. After this selection of natural angular
frequencies, the system (8) was simulated for varying non-negative values of K.

The results are shown in Fig. 1 (see Fig. S2 in the Supplementary Information for more gradual K-increments).
We see that the critical coupling strength [6] for frequency synchronisation occurs between K = 1.5 and K = 1.6
rad/s. The new order parameter settles at a value of 1 when K is greater than the critical coupling strength for
frequency synchronisation. By contrast, the Kuramoto order parameter is seen to settle towards a value clearly
below 1, whose closeness to 1 increases as the coupling strength is further increased. Similarly, the angular velocity
order parameter remains at exactly 0 when K = 0, while the Kuramoto order rapidly fluctuates at a low level. While
not a transformational difference in this relatively simple case, this further illustrates the conceptual distinctions
between the two parameters.

We next consider a non-autonomous version of (8), of greater relevance to open complex systems [22],

0;(t) = wj + Mw; sin(wpt) + % Z sin(0x(t) — 0;(t)), (9)
k=1
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Fig. 1 The order parameters for the autonomous Kuramoto network specified in (8) with N = 100, u, = w rad/s and
0w = 0.5 rad/s, and with coupling strength K having the indicated values as measured in rad/s. The Kuramoto order
parameter (blue line) takes a non-zero value for the case of zero coupling. It can then be seen to asymptotically converge
to 1 as the coupling strength is increased. In contrast, the new order parameter (red line) starts at a value of 0 for the zero
coupling case and has a value of 1 for all coupling strengths above the critical coupling for frequency synchronisation
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Fig. 2 The order parameters for the non-autonomous Kuramoto network specified in (9) with N = 100, p, = 7 rad/s,
ow = 0.5 rad/s, M = 0.5, wym, = 0.1 rad/s and K = 1.578 rad/s. The lower plot is a zoomed-in picture of the dashed-
rectangled region of the upper plot. The new order parameter (red line) reveals intermittent synchronisation in the system,
staying at 1 during synchronised states but oscillating over a broader range during non-synchronised states. The Kuramoto
order parameter (blue line) shows subtle alternations between smoother and rougher time-evolution, but does not clearly
reveal intermittent synchrony

where the oscillators’ natural angular frequencies w; + Mwj sin(wy,t) are time-dependent. We take the centre
frequencies w; of the sinusoidal frequency modulation to be the same as the values of the time-independent
natural frequencies w; in the autonomous case (8). We take M = 0.5, w,, = 0.1 rad/s and the coupling strength
K = 1.578 rad/s, which is approximately the critical coupling strength of the autonomous case (8).

The results are shown in Fig. 2, where we see intermittent synchronisation [32, 43, 44]. This is indicated by
transitions between times when the new order parameter is approximately constant at 1 and times when the
new order parameter is oscillating over a range of values. The Kuramoto order parameter more subtly evidences
transitions between different behaviours by showing transitions between time-locally smoother and time-locally
rougher evolution.

3.3 Higher-dimensional networks with symmetric mixed coupling

We next incorporate mixed, i.e. attractive and repulsive, coupling between oscillators, in an extension to yet
more complex and heterogeneous physical systems such as neural networks [16, 45]. In the introduction of [33] are
mentioned three forms of Kuramoto model involving mixed attractive and repulsive coupling; the first is symmetric
coupling, which we consider now. We will just consider the case of networks with a uniform coupling-strength
magnitude K. Again we start with the autonomous case, which takes the form

. K&
0;(t) = wj + N D ag, ke sin(Bi(t) — 6(1)), (10)
k=1
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Fig. 3 The order parameters for the autonomous Kuramoto network as specified in (10) with N = 100, u, = 7 rad/s,
o, = 0.5 rad/s, ay; xy € {£1} (with even split between —1 and 1), and with coupling strength K having the indicated
values as measured in rad/s. The value of the Kuramoto order parameter (blue line) remains at approximately the same
value for all coupling strengths. In contrast, the new order parameter (red line) increases in value up to K = 21 where it is
equal to 1, indicating that the oscillators are phase-locked

where N = 100 and the value Q) k) = Ok, 5} is equal to either 1 or —1 for each distinct j, k. The case j = k does
not matter, since the sine term is 0 for j = k, but for this case, for the numerics we set ay; ;1 = 0. For further
details see Sec IIT of the Supplementary Informatlon

Results are shown in Fig. 3 (see also Figs. S3 and S4 in the Supplementary Information). As K increases, the
new order parameter is clearly seen to also steadily increase. Thus, the new order parameter is able to quantify
the level of coupling-induced synchrony quite clearly. By contrast, across the varying K, the Kuramoto order
parameter remains within roughly the same band fairly close to 0. At K = 21 rad/s, we appear to have phase
locking, as seen by the new order parameter settling towards 1 (and evidenced indirectly by the Kuramoto order
parameter settling towards a constant value). However, unlike in the case of purely attractive coupling, this phase
locking does not persist as K is further increased; this is again seen in the new order parameter, which no longer
stays at 1 for K = 24. Thus, we have clearly demonstrated the strength and utility of the angular velocity order
parameter, in its ability both to detect qualitative synchronisation phenomena and quantify varying degrees of
synchronisation, in situations where the Kuramoto order parameter cannot do so.

A significant topic for future investigation would be to understand the dynamics in regimes of intermediate
values of R, such as seen for K = 6 rad/s. In general, intermediate R values would arise both in the situation that
(i) few oscillators are frequency-synchronised but the spread of angular velocities is narrowed by the coupling, and
(ii) an intermediate proportion of the oscillators have become frequency-synchronised.

Once again, we now consider a non-autonomous version of (10),

éj (t) =w; + Mw; sin(wmt) + % Z Qagj k) sin(@k(t) - 9]' (t)) (11)
k=1

The values of ay;, ) are the same as for the autonomous case (10), and all other parameters except K are the same
as for (9). We take K = 20.503 rad/s, which is approximately equal to one of the critical values for a transition
into frequency synchronisation for the autonomous system (10).

Results are shown in Fig. 4. The new order parameter indicates a fairly complex pattern of transitions into
and out of time-locally near-perfect frequency synchronisation. This seems to match the high density of K-
parameterised transitions into and out of frequency synchronisation for the autonomous case (10) (see Fig. S4
in the Supplementary Information for K-increments of 0.001 rad/s in the autonomous case (10)).

3.4 Higher-dimensional networks with asymmetric mixed coupling

The second form of mixed attractive and repulsive coupling model mentioned in the introduction of [33] is highly
relevant to a range of physical open systems, including analysis of swarmalators [46, 47], quantum phase oscillators
[13-15] and excitatory and inhibitory neurons, the latter of which the same authors study in their subsequent paper
[34]. We will again just consider the case of networks with a uniform coupling-strength magnitude K, giving the
model
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Fig. 4 The order parameters for the non-autonomous Kuramoto network as specified in (11) with N = 100, ., = 7 rad/s,
o, =0.5rad/s, M = 0.5, wy, = 0.1 rad/s, ay; xy € {£1} (with even split between —1 and 1), and K = 20.503 rad/s. The
Kuramoto order parameter (blue line) remains at a value close to 0, while the new order parameter (red line) reveals a
series of transitions between frequency synchronisation (R = 1) and non-synchronised states

. KX
0(t) = w; + 55 D o sin(Os(t) = 0;(1), (12)
k=1

where for each k, ay, is equal to either 1 (for an excitatory neuron ;) or —1 (for an inhibitory neuron ). The
third of the three types of model mentioned in the introduction of [33] (which is the main subject of [33]) is a
prototype of conformist and contrarian oscillators. Again considering just the case of networks with a uniform
coupling-strength magnitude K, the model takes the form

(%

0;(t) = wj + jv D sin(0x(t) — 0;(1)), (13)
k=1

where for each j, a; is equal to either 1 (for a conformist oscillator 8;) or —1 (for a contrarian oscillator ;). Due
to our assumption of a uniform coupling-strength magnitude, we can transform between the form (12) and the
form (13) by the following simple change of variables (which works in both directions):

) 9]' ifozj:1
03'_){03- +mif a; =—1. (14)

When studying the excitatory-inhibitory Kuramoto network, the paper [34] by Hong and Strogatz considers both
the classical Kuramoto order parameter r(¢) and a modified version that, for our system (12), reduces to

N
1 30
“@:‘NE:%B%@' (15)
j=1

This coincides precisely with the classical Kuramoto order parameter of (13) after applying the change of vari-
ables (14). We also note that our new order parameter R(t) is preserved under the change of variables (14).
Therefore, in this section, it will only be necessary to carry out numerical simulations of the model (12) and show
the results for r(t), s(t) and R(t), and this will automatically provide the same information for the model (13) as
well.

We consider the system (12) with N = 15, with ap =1for k=1,..., 6 and ap = -1 for k=7, ..., 15 (so the
ratio of attractive to repulsive oscillators is 2 : 3). Due to the relatively small size of the network, we do not choose
the natural angular frequencies w; randomly, but rather, deterministically in such a manner as to approximate a
Gaussian distribution of mean u,, = 7 rad/s and standard deviation o,, = 0.5 rad/s; for further details see Sec. IV
of the Supplementary Information.

Results are shown in Fig. 5 (see Fig. S5 in the Supplementary Information for more gradual K-increments).
We see that for sufficiently large K (larger than a critical value of about 15.2 rad/s), R(t) is equal to 1, implying
synchronisation, while the Kuramoto order parameter r(t) is not close to 1. Moreover, s(t) is close to 0, implying
that for the system (13), the synchronised state is one of ‘near-perfect disorder’ from the perspective of the classical
Kuramoto order parameter. The fact that (%) is not close to 1 for the system (12) persists as K is increased further:
we provide evidence in Sec. IV of the Supplementary Information that as K — oo, the post-transient value of r(t)
tends to about 0.7 and the post-transient value of s(t) tends to 0.
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Value of metric

O omm—

Fig. 5 The order parameters for the autonomous Kuramoto network specified by (12) with N = 15 and with oy € {1}
in a 2 : 3 ratio of excitatory (ax = 1) to inhibitory (ax = —1) oscillators. The Hong-Strogatz order parameter s(t) (yellow
line, as defined by Eq. (15)) shown here for the system (12) is equivalent to the classical Kuramoto order parameter of
the system (13), while the new order parameter (red line) is the same for (13) as for (12). The natural angular frequencies
wj deterministically approximate a Gaussian distribution of mean 7 rad/s and standard deviation 0.5 rad/s. The coupling
strength K has the indicated values as measured in rad/s. Above the critical coupling strength of about K = 15.2 rad/s, the
new order parameter takes a value of 1, indicating frequency synchronisation, while the classical Kuramoto order parameter
(blue line) settles on a value between 0 and 1 and the Hong-Strogatz order parameter takes a value close to 0

Speaking from the perspective of the investigations carried out in [34], the papers [33, 34] assert that the
excitatory-inhibitory form of the Kuramoto model yields nothing qualitatively new compared with attractive-
coupling-only Kuramoto networks. Nevertheless, in terms of what we consider in this present paper, we do find an
important difference: for attractive-only networks, in the limit of large coupling strength the synchronised state
has a Kuramoto order parameter tending to 1; but in our particular example of the excitatory-inhibitory form of
Kuramoto network, in the limit of large coupling strength the synchronised state has a Kuramoto order parameter
not tending to 1. The use of the angular velocity order parameter may hence transform the utility of excitatory-
inhibitory oscillator networks for understanding complex systems as diverse as neuronal interactions and ecology
(16, 45, 48].

A natural next step would be to consider larger networks of the form (12)/(13). Challenges to achieving this are
discussed in Sec. IV of the Supplementary Information.

4 Macroscopic phase of phase-oscillator networks

The notion of a macroscopic phase of a network is another tool for describing the network’s behaviour. When the
Kuramoto order parameter r(¢) is close to 1, i.e. when the variance of the phases is close to 0, the mean phase
¢(t) can serve as a quantification of the macroscopic phase. By contrast, when r(¢) is much less than 1, the mean
phase ¢(t) has little meaning. Nevertheless, if the phases in the network progress synchronously over some time
interval, i.e. if the pairwise phase differences within the network stay roughly constant over this time interval, then
the instantaneous macroscopic state of the network can still be meaningfully described by a one-dimensional phase
variable ®(t) during this time-interval. This is true even if () is close to 0 throughout the time-interval (such as
in the system (10) with K = 21 rad/s, or the system (13) with K > 15.2 rad/s). To be precise, just as having r(¢)
close to 1 enables one to take ¢(t) for the macroscopic phase of the network, so by analogy, having R(t) close to
1 enables us to take a macroscopic phase ®(¢) that progresses as

®(t) = mean(6y(t), ..., On(t)).

It is true that if 7(t) = 1, or if R(t) = 1 while r(t) # 0, then ¢(t) = &(t). Nevertheless, when 7 is close to 0, it is
possible to have R(t) staying arbitrarily close to 1 while ¢ and ® progress at drastically different rates.
See Sec. V of the Supplementary Information for discussion of further issues concerning ®(¢).
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5 Conclusions and outlook

We have seen that the new order parameter R(¢) offers potentially transformative new information regarding
synchronisation not provided by the Kuramoto order parameter r(¢). The new order parameter is especially useful
for

e showing transitions into and out of time-localised frequency synchronisation in non-autonomous networks
exhibiting intermittent synchronisation, which is a defining dynamic particularly in living systems [22, 49, 50],

e showing varying levels of synchrony in mixed-coupling networks, which already attracts significant interest from
a variety of physical applications [16, 45, 48].

We have also seen that a high value of the new order parameter R(¢) enables a macroscopic-phase description ®(¢)
of the time-evolution of the state of the network, even when the Kuramoto order parameter r(¢) is small and the
latter is unable to provide such a description.

In this paper, we have illustrated the effectiveness of the new order parameter for theoretical and numerical
investigation of synchronisation phenomena; but we also anticipate its effective application to experimental time-
series data. Since, in general, angular velocities extracted from time-series data can be sensitive to measurement
noise, some smoothing may be appropriate, such as the procedure described in [51] where we can take éj (t) to
be a smoothed version of a frequency time-series obtained through ridge-extraction [52] from a time-frequency
representation of the signal. In all such smoothing, an important issue is the trade-off between the filtering of noise
and the capturing of the fastest timescales of genuine dynamics. For experimental data from systems where the
oscillators’ internal frequencies f;(t) are varying over time, tracking these variations over time may be achievable
through estimation of f;(¢) via measurements of context-specific proxies for f;(t), or in cases where synchronisation
is fairly weak, f;(¢t) may be estimated directly from the signals measuring the N oscillatory processes through
dynamical Bayesian inference [53].

The angular velocity order parameter promises to be a transformative addition to the toolbox of oscillator-
network analysis methodologies. In combination with new frameworks for non-autonomous phase descriptions [31,
32, 49], the capability of phase-based descriptions to understand the complex open systems that challenge all
physical disciplines [12-14, 16-18, 20-23, 30, 33, 48, 54, 55] is hugely expanded. This is especially crucial for those
scenarios in which the Kuramoto order parameter provides little to no indication of the extent of synchronisation,
such as for networks with a mixture of attractive and repulsive coupling [19, 30, 33, 45, 48] as illustrated in
Figs. 3-5 (and in Figs. S3 and S5 in the Supplementary Information). Examples of areas that could especially
benefit from our work include, but are not limited to: brain dynamics [16-18, 21, 30, 33, 56, 57], where mixed
attractive and repulsive coupling is highly relevant to the study of excitatory and inhibitory neurons; physiological
oscillations [58] such as in circadian rhythms [59], cardiorespiratory coupling [60], and partial synchronisation of
cellular rhythms [61]; coupled climate oscillators [62]; electric current oscillations [63, 64]; the newly developing
area of synchronisation in quantum phase-oscillator networks [13-15]; and other applications as discussed in [53,
65, 66).

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/
epjs/s11734-025-01984-3.
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