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Integrated Fuzzy Condition Assessment and Decision
Support for Water Pipe Mains

Nasser M. Amaitika,∗, Christopher D. Buckinghama

aCollege of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK

Abstract

This paper presents a novel Integrated Fuzzy Condition Assessment and Decision Sup-
port (IFCADS) method that has been applied to predicting the condition of large pre-
stressed concrete cylinder water pipes. IFCADS encodes human expertise within fuzzy
rules to emulate human reasoning and solve condition problems when data are scarce.
It is based on a new, simple and intuitive elicitation method for: (i) converting both
input variables and hierarchical concept memberships into fuzzy linguistic values and
(ii) determining the relative influences or weights of each child node on the parent
compared to their siblings. These tasks are scalable to high-dimensional and complex
hierarchical knowledge domains because all the associated rules can be automatically
generated without any further human input.

Additional innovations of IFCADS involve improved representation and processing
of fuzzy uncertainties. Fuzzy equality has been made more consistent with other fuzzy
comparisons by ensuring fuzziness extends equally on both sides of the mid-point.
The integrity of fuzzy values is maintained even when the combined fuzzy influence of
children on their parent concept has an upper triangular extension beyond the parent’s
value range. And there is no interim defuzzification during the inference process, which
means full fuzziness is carried through from inputs to outputs.

IFCADS uses this combination of fuzzy numbers, linguistic variables, and If-Then
rules to facilitate elicitation of uncertainties associated with decision-making and con-
vert expert knowledge into a mathematical formalism. It was applied to the challenges
of assessing buried water pipe conditions using limited and imprecise data from the
Libyan Man-Made River Project (MMRP), which manages thousands of kilometres
of pipes carrying water from the desert to coastal conurbations. IFCADS performed
better than the existing model used by the MMRP and, more pertinently, better than
similar fuzzy approaches that lack the full-fuzzification innovations of IFCADS. The
application demonstrates a method that has the flexibility and tractability to be applied
in many different knowledge-rich and high-dimensional domains of human expertise.
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1. Introduction

Deterioration and failure of buried water pipes is a complex process that depends
heavily on pipe material, environmental surroundings, and operational conditions. Con-
tinuous evaluation of their structural integrity and performance is important because
they degrade and fail even under normal service conditions (Makar and Kleiner, 2000).
The American Society of Civil Engineers (ASCE) recently gave America’s drinking
water infrastructure a grade of “C-”, Mediocre, because of its risk of failure (ASCE,
2021). US water systems currently lose at least 6 billion gallons of water every day and
an estimated $7.6 billion of treated water in 2019 due to leaks. This is an indication
of the complexity of the water mains condition assessment problem and the economic
impact on society.

Many water utilities around the world use large diameter Pre-stressed Concrete
Cylinder Pipe (PCCP) as the transmission backbone of their water supply systems due
to its high capability for resisting large internal pressure and external forces. They have
been deployed for more than 70 years in the U.S., Mexico, Canada, the Middle East,
North Africa and China (Zarghamee et al., 2012).

The Man-Made River Project (MMRP), located in the northern African state of
Libya, is one of the largest water supply projects that uses PCCP as a main transmission
system. The project encountered a series of ruptures ten years after installation of
the pipes (Essamin and Holley, 2004), which are significant due to the large diameter
and high internal operating pressure of PCCPs. Figure 1 shows scenes of the damage
caused by pipe rupture at the MMRP.

Figure 1: Pipe rupture and damage at the MMRP.

To date, there is no prescribed method for water utilities to assess their buried pipes.
Alternative approaches include destructive and nondestructive testing (Rizzo, 2010;
Liu et al., 2012; Liu and Kleiner, 2013; Loganathan et al., 2022). The field observa-
tions obtained from inspections are related to the condition of pipes and converted into
an overall condition rating so that an appropriate course of action regarding repair and
maintenance is undertaken. However, obtaining such observed data is not always feasi-
ble due to the prohibitive costs of applying direct inspections and/or inability to apply
them while the pipeline is operating. In these situations, knowledge from experienced
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engineers can be exploited to model the relationships between influencing factors and
pipe condition.

Past experience and lessons learned at the MMRP showed that pipes with only a
few wire breaks are still capable of sustaining operating conditions with low risk of
failure and do not need urgent intervention. Nondestructive inspection methods such
as electromagnetic or acoustic monitoring can detect wire breaks but excavating every
single pipe showing them is costly, time consuming, and unnecessary. At the same
time, corrosion and pipe damage leading to ruptures can remain undetected in large
areas of pipelines where no assessments or excavations have been conducted.

The substantial challenge facing water utilities in general, and the MMRP in partic-
ular, is to find an effective and reliable decision support tool for pipe condition assess-
ment that incorporates direct distress data (e.g. breaks, leaks, corrosion etc.) together
with indirect distress data (e.g. soil properties, environmental surrounds, etc.) for
accurately assessing the condition of each individual pipe. Utilizing indirect distress
data accounts for corrosion possibilities that cannot be detected by electromagnetic and
acoustic monitoring inspection technologies. The upshot is more accurate and feasi-
ble inferences about different pipe components and the formulation of future renewal,
repair and inspection requirements for each individual pipe.

Most data and knowledge concerning water pipe condition assessment and deteri-
oration processes are associated with uncertainties. These originate in: (1) the relative
reliability and calibration methods of inspection technology; (2) the natural variability
of data (time-dependent); (3) the imprecision of natural language that describes and
measures qualitative data; and (4) the conversion of test signals into quantitative num-
bers using human judgement. In addition, data are scarce for large buried pipes such
as PCCP and so exploiting experts’ intuitive understanding and experience is an im-
portant supplement to formulating the relationships between variables. However, this
introduces uncertainty relating to the organisation and representation of that human
expertise.

The principle motivation for this paper is to model and exploit these different un-
certainties more effectively. It is a continuation of the preliminary work presented by
Amaitik and Buckingham (2017). It introduces an improved fuzzy-based methodology
for modelling human expertise in solving water pipes condition assessment when his-
torical data are scarce, or not available. The proposed methodology is intended to be
generically applicable for other knowledge domains with similar qualities.

The developed methodology has the advantage of employing tractable and simple
methods for knowledge engineering that allow the system to generate multiple rules
itself. The complexity of rule generation is reduced and means the methodology can be
used for high-dimensional systems, where a large number of rules might be required
to produce accurate results; eliciting them directly from experts would be difficult,
impractical and often impossible.

The pioneering part of the novel Integrated Fuzzy Condition Assessment and De-
cision Support (IFCADS) method is that its fuzzy computations for transforming and
combining model parameters during knowledge construction and inference ensure full
information about uncertainty is maintained from inputs right through to outputs. This
leads to more accurate model outcomes compared to existing methods, which lose pre-
cision during fuzzy computations. It also provides better explanations for how different
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representations of the model parameters affect the performance of the model.
Although many fuzzy-based MCDM models exist, few manage hierarchical expert

knowledge, full fuzzification, and uncertainty propagation in a unified framework. This
study is motivated by the need to support robust decision-making under data scarcity
and subjective expert knowledge, where conditions often encountered in infrastructure
condition assessment. Our aim is to build a tractable, scalable, and fully-fuzzy infer-
ence framework that mimics expert reasoning from incomplete or indirect observations.

The next section provides a literature survey on the methods used for water pipe
condition assessment and decision support. A discussion on methods for modelling
human expertise within the decision support system is presented in Section 3. Section
4 details the proposed one for IFCADS. Section 5 evaluates the application of IF-
CADS on real-world pipes data to predict the pipe condition and rehabilitation actions
required. It also compares the performance of IFCADS with other models. Section
6 draws conclusions from the research, summarises the new contributions made, and
discusses future work.

2. Modelling Approaches for Water Pipe Condition Assessment and Decision Sup-
port

Various approaches have been proposed for modelling the condition of buried water
pipes and supporting decisions regarding maintenance and rehabilitation. These can
generally be classified into statistical and artificial intelligence (AI) approaches (Liu
et al., 2012; Dawood et al., 2020). These are summarised in this section, including how
fuzzy approaches link with human expertise to provide a strong synergistic approach
when the available data do not provide full understanding of the domain.

2.1. Statistical Modelling Approaches

Statistical modelling is widely used in solving engineering problems and has ex-
panded rapidly since the 1970s for predicting system failures (Lawless, 2003). Several
models have been used to quantify the condition or deterioration of water mains by
forecasting the number of pipe failures (breaks). They are usually applied when his-
torical failure records and/or condition data are much easier to obtain (Kleiner and
Rajani, 2001). They include survival analysis using Weibull/Exponential equations
(Le Gat and Eisenbeis, 2000; Pelletier et al., 2003), regression models (Wang et al.,
2009; Liu et al., 2009), simple time-linear and time-exponential models (Poulton et al.,
2007; Wood and Lence, 2009), and physical probabilistic models (Davis et al., 2007;
Moglia et al., 2008). Most are simple mathematical models and can be used for any
type of pipe materials.

They are less effective without large amounts of historical pipe condition/failure
data recorded over a long period of time. It reduces the variety of variables required for
accurate analysis Kleiner et al. (2007) and they are unable to account properly for the
subjective and probabilistic nature of pipe deterioration and condition. Even if data are
available, they may not be linked to known outcomes, which affects model training.

Another limitation is that data do not provide information about pipes that have
not yet failed Dawood et al. (2020). One of the motivations for the present work is to
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produce a model capable of inferring the condition of pipes when they do not indicate
any signs of distress.

2.2. Artificial Intelligence Modelling Approaches
Artificial intelligence (AI) covers a multitude of approaches, many of which have

been effective in modelling complex problems. Choosing the appropriate one depends
mainly on the type and availability of data.

Artificial Neural Networks (ANNs) have been recently used for modelling the con-
dition and deterioration of water pipe infrastructures (Najafi and Kulandaivel, 2005;
Achim et al., 2007; Geem et al., 2007; Amaitik and Amaitik, 2008; Jang et al., 2018;
Kerwin et al., 2020). They are appropriate when there are no clearly stated rules or
mathematical steps that lead to the solution of a problem, and also when there is no ex-
act knowledge about probabilistic relationships between predictors and the dependent
variables. They can determine model structure and learn cause-effect relationships
from past data and generalise results. On the other hand, ANN models are hard to
interpret and usually require a large amount of historical data for training to obtain the
most accurate network architecture (Haykin, 2007; Tang et al., 2007; Jang et al., 2018).

Case-Based Reasoning (CBR) is a useful AI technique when a large and varied
database of experienced cases (case library) about the problem is available. The condi-
tion assessment of pipes given input data can be predicted by retrieving and adjusting
relevant information obtained from the case library. It has been applied to a variety
of infrastructures (Morcous et al., 2002a,b) but it requires a large library of previously
experienced cases that is regularly updated to generate accurate results.

Bayesian Belief Networks (BBNs), also called causal probabilistic networks, are
graphical models that are popular for evaluating water-pipe systems (Francis et al.,
2014; Kabir et al., 2015; Demissie et al., 2017; Elmasry et al., 2017; Balekelayi and
Tesfamariam, 2022). They can be effective when causal relationships between vari-
ables are clear and well understood, or enough complete data are available to infer
variable relationships and conditional probabilities.

Fuzzy-based approaches come into their own when historical data are not available
or, if available, they are ambiguous or imprecise. It has been widely applied to water
pipes infrastructure (Kleiner et al., 2004; Najjaran et al., 2004; Kleiner et al., 2006;
Rajani et al., 2006; Fares and Zayed, 2010; Amaitik and Buckingham, 2017; Xu, 2022;
Dawood et al., 2023). Fuzzy sets and fuzzy logic technologies are the tools for handling
both quantitative and qualitative data types and enable expert judgements to formulate
cause-effect knowledge of system variables (Zimmermann, 2001; Siler and Buckley,
2005; Amaitik, 2020).

Recent developments in fuzzy-based multi-criteria decision-making (MCDM) have
expanded their utility in uncertain and complex environments. Lin et al. (2020a) pro-
posed a TODIM-based model with hesitant fuzzy linguistic term sets to allow decision-
makers to express uncertainty across multiple linguistic evaluations. Although hesita-
tion is not explicitly modelled in the present study, the use of fuzzy linguistic rules in
our approach similarly aims to accommodate expert uncertainty in evaluating buried
pipe conditions.

In parallel, Lin et al. (2020b) also applied MULTIMOORA under a picture fuzzy
environment to the problem of car-sharing station site selection. Picture fuzzy sets
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allow representation of membership, non-membership, and neutrality degrees, which
enrich the model’s ability to reflect real-world decision-maker behaviour. While our
work does not implement picture fuzzy theory directly, it shares the motivation of pre-
serving uncertainty through the inference process, using full fuzzy propagation from
input to output.

Another notable contribution is the integration of entropy and correlation weight-
ing into Pythagorean fuzzy TOPSIS, as explored by Lin et al. (2019). These tech-
niques support better balance between expert judgment and data-derived weights. Our
method echoes this philosophy by employing fuzzy analytic hierarchy process (FAHP)
to establish expert weights, while maintaining linguistic fuzziness through rule-based
inference.

Furthermore, Lin et al. (2018) introduced a group decision-making framework us-
ing probabilistic uncertain linguistic term sets (PULTS). This model captures uncer-
tainty by allowing linguistic evaluations to be expressed as probability distributions, an
approach conceptually related to the graded membership in fuzzy rule-based systems
like ours.

More recently, Fan et al. (2025) proposed an opinion dynamics model for group
decision-making with probabilistic uncertain linguistic information, addressing how
expert consensus evolves through multiple iterations. Similarly, Qin et al. (2023) de-
veloped a probabilistic linguistic multi-attribute decision-making approach based on
generalized MSM operators, offering enhanced aggregation strategies for uncertain lin-
guistic evaluations. These studies reflect a growing emphasis on decision robustness
and flexible linguistic modelling, key principles that also guide the development of the
IFCADS model proposed in this work.

The advantage of our approach lies in combining these principles, uncertainty mod-
elling, expert weighting, and interpretability, within a hierarchical and fully fuzzy rule-
based architecture that can be scaled to infrastructure-level systems, such as condition
assessment of buried water pipes.

3. Modelling Human Expertise

The previous section showed how different mathematical models are dependent on
the amount, quality, and richness of data. It concluded with fuzzy approaches that have
the potential to supplement data paucity with human expertise. This section will review
how this expertise can be modelled to provide the required synergy.

Human expertise is high level cognitive understanding of a subject in the form of
concepts, facts and their relationships. Modelling the knowledge base is a complex
task in the construction process of knowledge-based decision support systems (Pradier
et al., 2021). Generally, the knowledge base can be established either by eliciting
it, directly or indirectly, from domain experts, or by learning it from historical data
using one of the machine-learning techniques. The former is more complicated and
challenging because it requires knowledge engineers to find an appropriate mechanism
for converting and combining experts’ knowledge so that it simulates human reasoning
efficiently, taking into account experts’ uncertainty and imprecision about the domain.
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3.1. Knowledge Representation

Determining how the knowledge base is organised and represented is a signifi-
cant challenge(Pradier et al., 2021). Since the 1960s, hierarchical structures have been
widely used for cognition-based domains (Cohen, 2000). Categorising data and infor-
mation into different concepts (groups) is a basic characteristic of hierarchical struc-
tures, which is also a fundamental function of human cognition and thinking (Voor-
spoels et al., 2011). It allows people to view missing data as a problem only involving
the concept and any concept can be processed independently.

In large buried PCCP water pipes, data and information about the pipes are nat-
urally hierarchical, with meaningful concepts encapsulating related data. The lower
levels of the hierarchy represent more specific and detailed concept information, which
becomes more general when moving up to the target concept: the overall pipe condition
and recommended actions.

Hierarchical models of human expertise include probabilistic graphs and rule-based
approaches. Bayesian belief networks are graphs capturing causal relationships be-
tween variables/concepts and their associated probabilities. Targeted concept predic-
tions or probabilities (the hypothesis) can be inferred by transmitting probabilities
throughout the network based on certain evidence (observed data). However, in the
absence of data, specifying causal relationships and conditional probabilities by ex-
perts requires large amount of questions to be answered and experts are not able to
provide the required probabilities easily, let alone reliable conditionally independent
chains.

Rule-based approaches are an alternative hierarchical representation. They capture
human expertise in the form of “IF-Then” rules consisting of simple linguistic terms.
The set of rules are combined within an inference engine that simulates human reason-
ing to reproduce the expert’s solution of the problem. MYCIN was a seminal rule-based
expert system (Shortliffe, 1976) providing diagnoses and advice about bacterial infec-
tions. It comprised of around 600 rules elicited directly from human practitioners, each
one associated with a certainty-factor encapsulating uncertainty. It was a goal-directed
expert system based on backward-chaining where the system reasons by first matching
the available information to the conclusion part of the rule and then searching for condi-
tions relevant to the problem. The system demonstrated a performance commensurate
with the human expert and stimulated a well-populated field of similar rule-based ex-
pert systems. This paper follows in that tradition but with a different “fuzzy” approach
to eliciting and propagating uncertainty. It is justified in the next section.

3.2. Why Use a Fuzzy Rule-based Approach?

Fuzzy set theory originated with Zadeh (1965), where items are assigned to sets
based on a membership function that has a continuous grade varying between 0 and 1.
This “membership grade” determines how much an item belongs to the set. Fuzzy logic
(also called multi- or many-valued logic) calculus is similar, with assertions having
multiple truth or membership values. These partial truths extend traditional Aristotelian
two-valued logic where statements can either be true or false and nothing in between.

The philosophy of fuzzy logic provides an appropriate framework for reasoning
about uncertain or inexact knowledge rather than traditional approaches that concen-
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trate on exact or absolute solutions (Ross, 2004; Amaitik, 2020). It is the main mo-
tivation for our research using fuzzy linguistic variables and fuzzy numbers, and also
because they resonate with human cognition. Fuzzy numbers apply membership func-
tions to create approximations that efficiently process imprecise or vague input data and
their ranges. They also encapsulate partial knowledge where human experts are not cer-
tain about the contribution of variables to the different potential outcomes, which is the
case in the water-pipes domain.

Linguistic variables play a fundamental role in modelling fuzzy systems. They
provide a sensible way of describing the behaviour of complex systems by repre-
senting uncertain variables in terms of propositions that humans use and understand.
These propositions (phrases) expressed in natural language are then converted into
fuzzy meaning (fuzzy numbers) for processing using fuzzy mathematics (Ross, 2004;
Amaitik, 2020). An important goal is to eliminate loss of uncertainty information
gleaned from human experts at the rule construction phase when propagating uncer-
tainty through the hierarchy.

In solving real-world problems, producing an exact representation of the system’s
structure and parameters (i.e. assuming that the system under study is known with
certainty) is rarely feasible for systems of any complexity. A complete description or
understanding of the system’s behavior depends on many interacting parameters that
humans are not able to perceive and process simultaneously. At the same time, ma-
chines are unable to elicit them without a sufficiently large data set and some prior
understanding of its structure. An intermediate method that converts available knowl-
edge into a mathematical or logical formalism is our proposed solution. It captures
uncertainty and then processes it formally so that there is a transparent relationship
between input data, hierarchical rule-based processing, and output advice. The next
section explains the methodology.

4. Proposed Methodology

This section presents an innovative combination of fuzzy-based approaches result-
ing in an integrated, simplified and effective fuzzy methodology for supporting the
elicitation of human expertise and adapting uncertainty propagation during knowledge
processing. The proposed IFCADS employs linguistic variables and fuzzy numbers
for knowledge-base representation and processing, and fuzzy logic for the inference
process. It is mainly composed of three phases (Figure 2): 1) defining inputs, member-
ship functions, and the tree structure; 2) fuzzy rule construction; and 3) the inference
process. A detailed description of the IFCADS methodology is given next, along with
illustrative examples from the water pipes domain.

4.1. Phase 1: Defining Inputs, Membership Functions, and the Tree Structure
The structuring of data can have a significant effect on model performance. This

research adopts a hierarchical approach that is suited to fuzzy modelling and integra-
tion of various types of uncertainties. The conceptual hierarchy is elicited from experts
through interviews and subsequent thematic analysis that explore their understanding
of the domain variables, how they are organised into concepts, and the overall relation-
ships of those concepts Buckingham et al. (2008, 2013).
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Figure 2: The main steps of IFCADS Methodology.

Figure 3 shows a typical tree structure composed of variables and concepts. A
concept is defined as an aggregate effect of a group of variables and/or other concepts.
Input variables contribute to the condition of their parent concept at intermediate levels
up to the final system output level.

Figure 3: A typical condition/risk assessment tree where variables and concepts interact towards the final
output. The white ovals show input variables and light-green ovals represent intermediate concepts at differ-
ent levels of the tree up to the final output.

4.1.1. Determine Membership Function Scale for Variables and Concepts
Having identified the problem tree structure, we need to establish the values asso-

ciated with each variable and concept along with the scales for measuring variables.
A proposed three-step method for creating the membership functions (MFs) for the
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variables and concepts is manageable and possible to automate due to the simple way
of eliciting information required from experts. The method employs triangular fuzzy
numbers to express the linguistic values associated with the concepts and variables.
They are fast in computation and give more intuitive and natural interpretation due to
the simple shape of the MF.

Step 1: Ask the expert to specify the minimum and maximum values of a variable’s
values, beyond which there is no change to the variable’s influence on the concept
being assessed (which may just be the limits of those values or some intermediate
range). Figure 4 shows this for the number of wire breaks in a pipe section where
the range of values covering zero to maximum influence on condition is 0 to 400 wire
breaks.

Step 2: Ask the expert to determine how many distinctive linguistic values (categories)
should be used to encompass the meaningful range of values for the variable/concept.
These capture the division of variable values into psychological scales such as low,
medium, and high. In our example, Figure 4 divides the scale into five linguistic cate-
gories from minimum to maximum.

Step 3: Create the Triangular Fuzzy Numbers (TFNs) for each linguistic value of the
variable/concept so that the membership grade (MG) distributions are placed evenly
across the scale. This is done automatically by dividing the range of values by the
number of linguistic values minus 1, ( Max−Min

Linguistic V alues−1 ). The resulting value is then
added to the minimum value, determined in Step 1, to determine the middle value of
the TFN next to the minimum value, and then added to this middle value to get the
middle value of its next variable and so on until all middle values of the TFNs are de-
termined, as shown by Figure 4. Now, the TFNs are evenly distributed across the scale,
such that the lines of the TFN for both sides are extended to the middle values of the
neighbouring TFN, giving a half-way overlapping between adjacent TFNs. it means
the MG of a value always adds up to one across the associated linguistic variables. For
the illustration in Figure 4, the three parameters and their values for the number of wire
breaks are: minimum value = 0, maximum value = 400, number of linguistic values
= 5. Accordingly, the distance between middle values is ( 400−0

5−1 =100) and the result-

ing Membership Functions (MFs) are: ( 0,0,100
Minimum , 0,100,200

Low , 100,200,300
Moderate , 200,300,400

High ,
300,400,400
Maximum ).

Membership scales effectively capture the degree to which variables belong to spe-
cific fuzzy sets, which aligns with the primary goal of representing expert judgments
in condition assessment. For this domain, our approach has stuck with the traditional
“special case” fuzzy-set methodology where there is a single membership function, and
non-membership is 1 − membership. Intuitionistic fuzzy sets (Atanassov, 1986) are a
generalisation that allows for separate functions for membership and non-membership
where the sum does not have to equal unity. This additional complexity has not been
needed for the current domain as yet but we acknowledge that it may be something
worth exploring in future applications. Separate non-membership functions could com-
plement the current approach and further enhance the model’s flexibility and applica-
bility.
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Figure 4: The MFs scale of TWB.

4.2. Phase 2: fuzzy rule construction

The general fuzzy rule structure in IFCADS is as follows:

IF x1 is A1k AND x2 is A2k ..... AND xn is Ank THEN y is Bk

where, xi is the ith input variable (i=1, 2, ..., n), y is the output variable, Aik is the
linguistic value (fuzzy set) of the ith input variable in kth rule, Bk is the linguistic
value (consequent fuzzy set) of the output variable in kth rule and n is the number of
input variables. Constructing the rules will be illustrated with the Pre-stressed Wires
Condition, “PWC”, concept and its child variables, Total Wire Breaks, “TWB”, Max-
imum Wire Breaks per Positions, “MWBpP ”, and Number of Wire Breaks Positions,
“NWBP ”.

IFCADS adopts a five-step method that is based on a full fuzzy processing environ-
ment to build the knowledge base of the system (fuzzy rule-base). Figure 5 illustrates
the steps and will be fully explained later. Step 1 determines the fuzzy influence (FI)
of each child’s values on its parent concept. Step 2 identifies every combination of
each child’s fuzzified values with every combination of the siblings’ fuzzified values.
The combinations are separate rules, mapping those particular input variable values to
the output parent concept. In Step 3, the children of a concept have their fuzzy rel-
ative importance (FRI) calculated with respect to each other. These are fuzzy scales
that moderate the influence of the child’s value depending on how much influence that
child has on the parent node compared to its siblings. Step 4 finds the total influence
of each combination of input variable values on the parent concept. It is the combined
fuzzy influence, CFI, of the input variable values calculated by multiplying the FI of
the input variable linguistic value by the FRI of that variable and summing them across
all the input values. The resulting CFI is shown in Figure 5 as a fuzzy number in bold.
Step 5 maps the CFI fuzzy number onto the MF scale of the parent to determine the
maximum support for the linguistic values describing the condition of the parent. Ac-
cordingly, for the first variable FRI in the figure, the particular combination of values
of Rule 1 have more support for the “Excellent” condition of PWC than for any of the
others. And therefore, the “Excellent” condition has been selected to be the consequent
linguistic value for Rule 1. These 5 steps are described in detail next.
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4.2.1. Step 1: Determine the Influence of Variables’ Values on the Concept
In general, the influence of a child’s particular value on its parent concept is de-

termined by a membership function (MF) specifying the child’s influence distribution
across all its values. The innovation of IFCADS is its manageable and simple method
for generating the MF. It maps linguistic values of the child variable or concept to the
parent membership grade distribution using minimal information from the expert.

The approach is similar to the GRiST (Galatean Risk and Safety Tool) clinical
decision support system for mental-health risk assessment (Buckingham, 2002; Buck-
ingham et al., 2013) where the MF of risk factors is specified using the least number of
reference points for generating the distribution. The difference for IFCADS is the use
of linguistic values that map to intuitive rules rather than the numerical MG distribu-
tions of GRiST. There are two tasks that need to be carried out for IFCADS.

Figure 6: Proportional mapping where extreme values of TWB map to the best and worst of PWC. (a)
illustrates mapping process, (b) shows resulting influence MFs.

Task 1: Ask the expert to identify the variable values that are associated with least and
most influence on the parent concept. In the simplest case, the extremes of the child
range map to the extremes of the parent range, as shown in Figure 6. The “Minimum”
value of TWB has an “Excellent” influence value on the parent PWC. Similarly for
the other extreme value, where “Maximum” of TWB maps to “Critical” of PWC.

The child always has to map to the extreme values of the parent but not necessarily
with each pole of its own range. For example, a child value of high might map to the
maximum influence on the parent and any value above the child’s high (e.g. maximum)
will also map to the same influence. Unusually, but still possible, is the case where a
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child’s intermediate value maps to the parent’s extreme and one above the child’s inter-
mediate value maps to a parent value below the extreme. In other words, the influence
reaches a maximum for an intermediate child value and then decreases above it. As a
purely hypothetical example, the moisture of soil might have the largest influence on
pipe corrosion at an intermediate level where the influence reduces as the soil becomes
more saturated, as shown in Figure 7-b.

Figure 7: Example of SoilMoisture influence on SoilCorrosivity where the largest influence is at an
intermediate level and reduces as the soil becomes more saturated. (a) illustrates mapping process, (b) shows
resulting influence MFs.

Task 1 establishes mappings between all child and parent values. However, the
child values may not have a linear influence on the parent, which is explored in the
next task.

Task 2: Ask the expert whether the child’s influence on its parent changes proportion-
ately between all its values.

(a) If the expert wants an even distribution of the fuzzy influence of the variable’s
values on the parent concept, then it is automatically generated, as shown in
Figure 6-a and described in Section 4.1.1.

(b) If the expert thinks the influence of a variable on the parent concept is not propor-
tionally increasing or decreasing with the values, then the expert is asked to give
the variable values that define the different shape. They just need to specify the
additional mappings that are causing the uneven influence and the algorithm then
works out the proportional changes in between these values. For example, Fig-
ure 8-a shows the child’s Moderate mapping to Good and then the High mapping
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to Critical. We apply the same process mentioned in (a), but for two intervals,
where the mapping within the intervals are proportionate. The resulting influ-
ence MFs are compressed or stretched, ensuring that the total MGs across the
linguistic values always add up to 1.

Figure 8: Disproportional mapping where non extreme values of TWB map to the best and worst of PWC.
(a) illustrates mapping process, (b) shows resulting influence MFs.

Having established the individual fuzzy influences of each child on its parent, the
next step determines all the different combinations of children values that can occur for
a parent. Each combination will be a separate rule for the parent.

4.2.2. Step 2: Specify All Combinations of Sibling Variable Values
In our example, the variables TWB, MWBpP and NWBP have 5, 3 and 4

linguistic values, respectively. This means there will be 60 combinations of variable
values that represents the entire relationship between the siblings, as shown in Figure
9. Each one is computer generated and will become a rule with its own certainty
propagation, as explained next.

4.2.3. Step 3: Compute Variables’ FRI
IFCADS employs the Fuzzy Analytic Hierarchy Process (FAHP) to calculate the

FRI of variables and concepts needed to build the fuzzy rule-base of the system. The
process is similar to the Analytic Hierarchy Process (AHP) introduced by Saaty (1980).
However, the pairwise comparison matrix of variable relative importance is obtained in
the form of linguistic values, which is next translated into TFNs according to a fuzzy
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Figure 9: Variable combinations of the parent concept PWC. The yellow ovals are the linguistic values
associated with each variable, and their acronyms shown are: Mi = Minumum,L = Low,M =
Moderate,H = High,Ma = Maximum,N = None, Si = Single,D = Double, and S =
Several. The green ovals are the summed influence of their particular combination of variable values on
the parent concept.

comparison scale. Finally, the TFNs comparison ratios are normalised to produce FRIs
across all the child variables/concepts of a parent.

Task 1: Determine the fuzzy comparison scale used to conduct the comparisons and
specify the extent of the importance or domination of one variable/concept over another
with respect to the parent concept. Many fuzzy comparison scales have been developed
and used in solving decision support problems (Cebeci, 2009; Güngör et al., 2009;
Cinar and Ahiska, 2010; Ablhamid et al., 2013; Kengpol et al., 2013; Taibi and Atmani,
2017), based on the original crisp (absolute) numbers scale introduced by Saaty (1980).

All fuzzy comparison scales mentioned above had the same TFNs for preference
judgment except for the comparison of equality, where they either use a fuzzy singleton
(1,1,1) with (l = m = u), or an imbalanced fuzzy value such as (1,1,2) or (1,1,3) with
(m − l ̸= u − m). In the latter case, the values are unbalanced because the TFN
is stretched out in one direction only (u=2 or 3), which leads to an inconsistency in
resulting FRIs for equal importance variables. Our innovation is to address this by
keeping the middle value as one (m=1) and extending the fuzziness equally on both
sides. We created a new fuzzy comparison scale for the TFN representing equality,
TFN (1/3, 1, 3), as shown in Table 1. It is applied within the framework of IFCADS
to compute the set of FRIs for variables and concepts. It improves the consistency of
fuzzy propagation and is a novel contribution of our research to fuzzy AHP comparison
algorithms.
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Table 1: The fuzzy comparison scale used in IFCADS methodology.

Intensity of Importance Definition
(1/3,1,3) Equal Importance
(1,3,5) Moderate Importance
(3,5,7) Strong Importance
(5,7,9) Very strong Importance
(7,9,9) Extreme Importance

Task 2: Obtain the pairwise Fuzzy Relative Influences (FRIs). In our example using
the parent concept PWC, to compute the FRI of its variables TWB, MWBpP and
NWBP , we first construct a square matrix where the rows and columns contain the
same variables, TWB, MWBpP and NWBP , in the same order. Then, for each
row, the experts compare the importance of the variable in the row with respect to
each variable in the columns for assessing the parent concept. For group preference,
judgments can be aggregated using a weighted averaging method (e.g. establishing
weights for experts based on their years of experience). The expert judgments are then
translated into TFNs according to the fuzzy comparison scale (Table 1).

Only half of the comparison matrix is filled directly by the experts’ judgments,
while the other half is filled automatically by taking the reciprocal values of compar-
isons. For example, if comparing TWB to NWBP was given a relative importance of
(3,5,7), then comparing NWBP to TWB has to be given a reversed order of relative
importance, (1/7,1/5,1/3), because the inverse of the strongest value is the weakest. Our
three example variables, require experts to answer three pairs of comparisons. Equa-
tion 1 determines the number of pairwise comparisons, NoC, needed for n variables.
The fuzzy pairwise comparison matrix, M , of the variables is shown in Table 2.

NoC =
n(n− 1)

2
(1)

Table 2: Fuzzy pairwise comparison matrix for the variables TWB, MWBpP and NWBP

Variable TWB MWBpP NWBP
TWB (1,1,1) (1,3,5) (3,5,7)

MWBpP (1/5,1/3,1) (1,1,1) (1/3,1,3)
NWBP (1/7,1/5,1/3) (1/3,1,3) (1,1,1)

Csutora and Buckley (2001) proved that the fuzzy pairwise comparison matrix is
considered consistent if the corresponding crisp pairwise comparison matrix is con-
sistent. The crisp format of the fuzzy pairwise comparison matrix is constructed by
considering the middle value of the TFN, and the consistency ratio is calculated based
on Saaty (1980); it was found to be within the range of consistency for our method.

Task 3: Calculate the normalised FRI of variables. Normalising the fuzzy values takes
into account the weights of all their siblings. This is done using the pairwise com-
parison matrix. Three slightly different methods have been evaluated: (a) Fuzzy Row
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Means of Normalised Columns with Geometric Fuzzy Division Normalisation (FRM-
GFD); (b) Fuzzy Row Means of Normalised Columns with Fuzzy Division Normali-
sation (FRM-FD); and (c) Fuzzy Geometric Row Means with Fuzzy Division Normal-
isation (FGRM-FD) (Chang and Lee, 1995).

First, the Mean Relative Fuzziness of the pair-wise comparison data, FuD, is cal-
culated using Equation 2, where lij , mij and uij are the lower, middle and upper-bound
of the pairwise comparison TFN.

FuD =
1

n2

n∑

i,j=1

uij − lij
mij

(2)

This FuD is then compared with the Mean Relative Fuzziness of normalised FRIs,
FuRI , from the three different methods of generating the FRIs. The FuRI , are cal-
culated using Equation 3, where lFRI

i , mFRI
i , uFRI

i are the lower, middle and upper-
bound of the FRIs TFN, respectively.

FuRI =
1

n

n∑

i=1

uFRI
i − lFRI

i

mFRI
i

(3)

The FuD is 1.202 and the FuRI are 1.230, 2.710, and 2.498 for the three methods
FRM-GFD, FRM-FD, and FGRM-FD, respectively. The FuD and FuRI calculated
using FRM-GFD are very close, which means this normalisation approach is best at
preserving the fuzziness experts have in their judgments. Hence it was selected for
normalising the pair-wise comparison data in IFCADS and Equations 4 and 5 show
how it is calculated.

GF = (lGF
ij ,mGF

ij , uGF
ij ) =

(
lij

(
∑n

i=1 lij
∑n

i=1 uij)1/2
,

mij∑n
i=1 mij

,
uij

(
∑n

i=1 lij
∑n

i=1 uij)1/2
) (4)

FRIi = (lFRI
i ,mFRI

i , uFRI
i ) = (

∑n
j=1 l

GF
ij

n
,

∑n
j=1 m

GF
ij

n
,

∑n
j=1 u

GF
ij

n
) (5)

where, GF is the matrix of normalised comparison ratios using geometric fuzzy divi-
sion, and lGF

ij , mGF
ij and uGF

ij are the lower, middle and upper-bound of normalised
comparison ratios TFN, respectively.

Table 3: Normalised FRIs of the variables.

Variable Normalised FRI
TWB (0.406,0.655,0.890)

MWBpP (0.126,0.187,0.406)
MWB (0.099,0.158,0.329)
Total (0.632,1.000,1.625)
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Table 3 presents the computed normalised FRIs for the example concept PWC
and the variables associated with it. These values can be shown to satisfy the fuzzy
numbers normalisation condition (Chang and Lee, 1995; Sevastjanov et al., 2010). For
triangular fuzzy numbers, let l∗i (α) and u∗

i (α) represent the α-level set of the fuzzy
number. Then, the set of FRIs is normalised if equations 6 and 7 are satisfied:

n∑

i=1

l∗i (α)
n∑

i=1

u∗
i (α) = 1,∀ α ∈ [0, 1] (6)

where l∗i (α) =
li(α)∑n

i=1 ui(α)
and u∗

i (α) =
ui(α)∑n
i=1 li(α)

, and

n∑

i=1

m∗
i = 1 for α = 1 (7)

where m∗
i = mi∑n

i=1 mi
, and li,mi, ui are the lower, middle and upper-bound of nor-

malised FRI, and n is the number of variables in equations (6 and 7).
To test the conditions, we take the FRIs for variables TWB, MWBpP and NWBP

and calculate the set of li(0.75) and ui(0.75) values, as shown in Figure 10. Applying
Equations 6 and 7 demonstrates that the set of FRIs are normalised, as illustrated in
Table 4.

Figure 10: FRIs for variables TWB, MWBpP and NWBP and normalisation test at α=0.75.

Table 4: Test of normalisation for the FRIs.

FRI for li(0.75) ui(0.75) l∗i (0.75) u∗
i (0.75)

∑
l∗i (0.75)×∑
u∗
i (0.75)

m∗
i

TWB 0.593 0.714 0.513 0.787 0.655

MWBpP 0.172 0.242 0.149 0.267 0.187

NWBP 0.143 0.200 0.123 0.221 0.158∑
0.908 1.156 0.785 1.273 1.0 1.0

The fuzzy influences of the children on their parents are combined with the FRIs
to establish the consequent part of the fuzzy rules associated with the parent and its
children, as explained in the next step.
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4.2.4. Step 4: Compute the Combined Influence of Each Combination of Variable Val-
ues

The aggregated influence for each combination of sibling variables and their val-
ues shown in Figure 9 is calculated using an aggregation operator. In this study, the
aggregation strategy employed is the sum of products of the fuzzy values, where the
FI (obtained in 4.2.1) and the FRI (obtained in 4.2.3) of each variable are multiplied
and then summed to compute the combined fuzzy influence (CFI) of the variables’
combination on the parent concept, represented as a TFN. This is implemented using
Equation 8 as follows:

CFIk = (lCFI
k ,mCFI

k , uCFI
k ) = (

n∑

i=1

lFRI
i lFI

i ,

n∑

i=1

mFRI
i mFI

i ,

n∑

i=1

uFRI
i uFI

i ) (8)

where, CFI is the combined fuzzy influence of children on their parent concept, and
lCFI
ij , mCFI

ij and uCFI
ij are the lower, middle and upper-bound of the combined fuzzy

influence TFN, respectively.
Consider the variables’ combination in our example of the concept PWC, where

TWB = Minimum, MWBpP = High and NWBP = Single. Applying Equa-
tion 8 using arithmetic operations of fuzzy numbers, the CFI = (lCFI ,mCFI , uCFI) =
(12.954, 34.451, 95.765)

In some cases we obtain a relaxed CFI that goes outside the range of the MFs scale
of the concept PWC (refer to Step 5 in Figure 5 for an illustration, where the CFI is
represented by a black-lined triangle). This is because the sum of the upper-bounds
(uFRI

i ) of the normalised FRI of variables can be greater than 1. Our method does not
adjust for this by changing the shape of the line, which would reduce the influence of
the higher boundary on uncertainty. Instead, we keep the original combined value in
the mapping process (next step). This ensures consistency of calculations and main-
tains untrimmed uncertainty information during processing. It is another distinction of
our approach, with the same goal of maintaining consistent and complete uncertainty
throughout the fuzzy processing.

4.2.5. Step 5: Determine the Linguistic Value of a Rule’s Output
Determining the linguistic value of a rule’s output is done by mapping the TFN

of the CFI (obtained in 4.2.4) onto the fuzzy MFs scale of the concept, as shown in
Figure 11 for the PWC concept. The linguistic values shown in the fuzzy MFs scale
of the concept represent alternatives to the rule output and the MGs of their intersec-
tions could be interpreted as the degree of preference for alternatives. Accordingly, the
resulting MGs of the intersections are ranked and the linguistic value with the highest
MG of intersection is selected to be the output linguistic value of the rule, as shown in
Equation 9.

µint−H
k = max(

s⋃

i=1

(µint
k )) (9)
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Figure 11: Mapping of CFI of variables on the PWC membership function scale. The resulting MGs of
intersections are: 0.26/Excellent, 0.80/Good, 0.82/Moderate, 0.53/Poor and 0.24/Critical, represent
the degrees of influence of the variables combination on PWC.

where, µint−H
k is the highest MG of the intersections, µint

ik , between the MF of each
linguistic value i of all s linguistic values and the combined fuzzy influence of a par-
ticular child combination of values, k.

The research explored an alternative criteria for selecting the output linguistic value
of the rule, which was to evaluate the area of intersections with the fuzzy linguistic
values rather than the single MG points of intersection. However, combining the MG
intersections led to better model outcomes and is simpler.

Figure 11 provides a graphical interpretation of the combined influence for this
combination of variables and values on their parent concept. The resulting output lin-
guistic value is selected to be “Moderate” because it holds the highest MG intersec-
tion, µint−H = 0.82. The MG could also be interpreted as a degree of confidence in the
selected linguistic value, and will be used as a rule weight. The mapping operation is
carried out for all CFIs of the 60 variable combinations to generate the full set of fuzzy
rules for the concept PWC.

4.2.6. Illustrative Summary of Fuzzy Rules Construction
Figure 5 summarises how expert knowledge is elicited and implemented in the full

IFCADS fuzzy environment. First, the influence of every variable’s value on the parent
concept is generated as shown in Step 1 of the figure. For example, a Low number
of wire breaks is indicated by L inside a light green oval shape in the figure and the
variable TWB has an influence TFN as (0,25,50) on the parent concept PWC. In Step
2, all possible combinations of variables and values are formulated. Step 3 establishes
the set of FRIs (fuzzy weights) for the variables.

The input from human experts is straightforward and scaleable for Steps 1 and 3.
All other steps are executed computationally and need no further human involvement,
which is a major advantage of IFCADS. Step 4 integrates the influences of each combi-
nation of values to generate a TFN for their joint influence by multiplying the variable’s
weights by their influence on the parent concept. The CFI for Rule 30, in the middle, is
(10.147,47.370,129.289). The output TFN is then mapped on to the MFs scale of the
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parent concept linguistic variables and the MGs of their intersections are calculated, as
shown by Step 5. The concept linguistic level associated with the highest MG inter-
section is selected as the linguistic value of the rule output, with the MG as the rule
weight. For combination 30, this is “Moderate”, weighted “0.983”, which is the rule
conclusion for the given set of input variable values as the conditions.

4.3. Phase 3: Fuzzy Inference Process

Phase 2 created the full fuzzy rule-based architecture. The next phase processes
the input data by the rule hierarchy to produce output assessments. The first step is to
convert variable values into fuzzy versions that can be input to the rules.

4.3.1. Step 1: Fuzzification of the Input Variables
The fuzzy hierarchy defined linguistic categories for the quantity levels of a vari-

able, such as low, medium, high etc, which encompass the full range of values the
variable can take. Step 1 uses these to generate the fuzzy MG associated with the vari-
able’s numerical value. The membership grade, µij , of variable i associated with the
linguistic value j is determined using Equation 10.

µij = max(min(
x− lLiV

ij

mLiV
ij − lLiV

ij

,
uLiV
ij − x

uLiV
ij −mLiV

ij

), 0) (10)

where, lLiV
ij , mLiV

ij and uLiV
ij are the lower-bound, middle and upper-bound of TFN of

the variable’s linguistic values, respectively.
Step 1 of the Figure 12 shows an example of how the real-world input values are

converted into MGs having a value from 0 to 1. These MGs represent the variable’s
degree of support for one or more matching input variable’s fuzzy linguistic categories.
In the example presented, 280-wire breaks in the pipe generated 0.20 and 0.80 MGs
for categories “Moderate” and “High”, respectively. Each category (linguistic value)
is represented by a triangular membership function.

4.3.2. Step 2: Rule Evaluation
Once the input data have been converted into the format required for the rules, Step

2 can evaluate the matched rules.

Task 1: The antecedent (condition) part of the rule is evaluated to determine its firing
strength (activation degree) using the AND logical operator. The input to this opera-
tion is the membership grades for each membership function (obtained in 4.3.1) and the
output is a single value representing the firing strength of the rule. The firing strength
of the kth rule, µfs

k , is calculated using the fuzzy intersection operation shown in Equa-
tion 11.

µfs
k =

n⋂

i=1

µik (11)
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Task 2: All fired rules in the rule set are weighted by multiplying their firing strength
and the membership grade associated with their consequent linguistic value, µint−H

k ,
(rule weight obtained in 4.2.5). The weighted firing strength of the kth rule, µwt

k , is
calculated using the multiplication operation shown in Equation 12.

µwt
k = µfs

k (·)µint−H
k (12)

Task 3: The output fuzzy set of the kth rule, Fk(y), is obtained by reshaping (truncat-
ing) the consequent membership function of the rule using the weighted firing strength.
This operation is illustrated in Equation 13, where, µQMF

k is the consequent member-
ship function of the rule k.

Fk(y) = µwt
k

⋂
µQMF
k (13)

The rule evaluation process is illustrated in Step 2 of Figure 12, where the linguis-
tice categories and their MGs are matched against the rule conditions and processed
according to the rule inference algorithm. It can be seen that 4 rules are fired in this
example. Consider Rule 32 on the left-side of the diagram: the conditions of the rule
are matched with the input MGs and evaluated to give a firing strength of 0.2. This
is multiplied by the rule weight, 0.918, producing a weighted firing strength of 0.184,
which instantiates the output fuzzy set “Moderate” of the rule. The other fired rules
are evaluated in the same way.

4.3.3. Step 3: Aggregation of Rules Outputs
All output fuzzy sets of the set of r rules are aggregated by using the fuzzy union

operator. It generates a single fuzzy set, F (y), for the output variable of the concept as
illustrated in Equation 14.

F (y) =
r⋃

k=1

Fk(y) (14)

Step 3 of the Figure 12 shows how the output fuzzy sets of the fired rules are ag-
gregated to get the fuzzy set of MG contributions to the parent concept, (0/Excellent,
0/Good, 0.184/Moderate, 0.703/Poor, 0/Critical). The concept PWC would thus
be represented by two contiguous condition categories, “Moderate” and “Poor” with
respective degrees of support of 0.184 and 0.703. The output fuzzy set of MGs would
be passed up to the subsequent level as a fuzzy input value.

Starting with the first level of the hierarchy structure of the problem, these three
steps of the fuzzy inference algorithm are applied for every concept in the level. Then,
for subsequent levels, apply only (4.3.2) and (4.3.3), i.e. the output of the first level is
passed to the second level as a fuzzy value so that fuzzification of the input variables
(4.3.1) is no longer needed. The process continues until all levels of the hierarchy are
evaluated and a fuzzy set of MGs representing the condition is obtained. In the final
level, the output fuzzy set could be defuzzified into a single crisp value using an appro-
priate defuzzification method or it could be left fuzzy, depending on the application. A
fuzzy version of the output might be helpful for additional explanation of the solution,
especially for problems characterised by a subjective nature (which is invariably the
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case for expert-based systems). The next section applies the full method to the PCCP
water-pipe domain for the MMRP.

5. Application of Integrated Fuzzy Methodology to PCCP Water Pipes

The £14 billion MMRP uses PCCP pipe sections of typically 7.5 metre lengths,
with various diameters ranging from 1.6 to 4.0 metre (Figure 13). The project aims to
extract and convey a total of 6 million cubic metres of high quality groundwater a day
from deep aquifers in the Sahara Desert to the northern coastal strip. The total length
of all project pipelines network is about 4,300 km, which represents 585,000 individual
PCCP pipes. It also includes five open circular concrete reservoirs and ten tanks with
total storage capacity of 56 million cubic metres (Essamin and Holley, 2004; Kuwairi,
2006).

This paper applies IFCADS to assessing these large buried PCCP water pipes. Pre-
dictions have been analysed and compared to actual outcomes as well as outcomes
of alternative models in order to determine how well IFCADS can help explain and
represent uncertainties inherent in the PCCP pipes domain.

• Model-I (fully-fuzzified IFCADS) is the main model proposed in this research
work, where all model parameters are represented by fuzzy numbers in the com-
putational processes and propagation of knowledge, as explained in Section 4.

• Model-II (partially-fuzzified IFCADS) is the same as Model-I except that it
uses a defuzzified version of the FAHP relative importance of variables (An et al.,
2011; Verma and Chaudhri, 2014) for rule construction.

• Model-III is based on Fares and Zayed (2010) approach, where parameters are
represented by crisp values in the computational processes of rule construction.
In the inference process, the output fuzzy set at each level is defuzzified into a
single number and then propagated as a crisp value.

• Model-IV is the Pipe Risk Management System (PRMS) model used by the
MMRP (Essamin et al., 2004, 2005). The PRMS was developed for the MMRP
to estimate the level and rate of pipes deterioration using deterministic (struc-
tural) and statistical approaches. The system also incorporates a web-based GIS
interface to access data and model results. The research work does not experi-
ment with the model due to lack of details about methods used in its develop-
ment: only the outcomes are used for comparison purposes.

Table 5 summarizes the main differences between Models I to III. Predictions of
the models are compared with known outcomes obtained from the MMRP to determine
how different types of uncertainty representation affect accuracy.
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Figure 13: Cross section of the PCCP pipe.

Table 5: Differences between Model-I (IFCADS), Model-II and Model-III.

Element Model-I and Model-II Model-III
Variables relative
importance

Represented as fuzzy numbers
computed by FAHP

Represented as absolute
numbers calculated by
traditional AHP.

Variables influence Represented as fuzzy numbers
based on fuzzy influence MFs
scale.

Expressed as absolute num-
bers based on crisp influ-
ence MFs scale.

Combining vari-
ables relative
importance and
influence

Model-I: Multiplues the fuzzy ver-
sion of variables relative impor-
tance and their influence; Model-
II: Multiplies the defuzzified crisp
version of variables relative impor-
tance and their fuzzy influence.

Uses weighted average
method to calculate the
crisp value of the combined
influence.

Determining rule
consequent linguis-
tic value

The resulting combined fuzzy influ-
ence is mapped onto the fuzzy MFs
scale to determine the consequent
linguistic value of the rule with its
weight.

The resulting combined
crisp influence is matched
to a crisp scale to determine
the rule consequent linguis-
tic value. No weights are
assigned to the rules.

Knowledge propa-
gation during infer-
ence process

Model-I: The knowledge is propa-
gated throughout the hierarchy in its
fuzzy format. The output of the sys-
tem is then obtained in a fuzzy for-
mat; Model-II: Same as Model-III

The knowledge at each
level of the hierarchy is
converted into a crisp value,
and then propagated to the
upper level as an absolute
number. The final output of
the system is then obtained
in a crisp format.

5.1. PCCP Condition Variables and Model Tree Structure

Overall, 17 variables, including both direct distress data and inferential data, were
selected to model the PCCP water pipe condition assessment. The output of the model
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is the “Recommended Action” required for rehabilitation. It is either “No Action Re-
quired”, “Inspection/Monitoring”, “Repair” or “Replace”. The selected variables were
organized into concepts based on their potential influence on condition and deteriora-
tion of the pipes as shown by Figure 14.

Figure 14: The hierarchical structure of the PCCP condition assessment. The rectangles at the bottom show
basic input variables connected to their parent concepts, shown in light-green ovals. The top dark-green oval
represents the model output.

5.2. Implementation and Results

Real-world sample data of one-hundred PCCP pipes collected from the MMRP
were made available for testing the models. Software developed with the Visual Ba-
sic for Applications (VBA) programming language implemented the knowledge base
development and inference process for the models.

The final output of each model is a rehabilitation prescription suggested for the pipe
that explains the required action and the level of priority/urgency of that action. The
“Recommended Action” is the category, or fuzzy subset, in the final fuzzy set of the
inference that has the highest MG of support. The level of priority or urgency is based
on the following criteria:

(a) Priority “Low”. if the selected recommended action category has one or more
lower level contiguous categories;

(b) Priority “Medium”. if the selected recommended action category has any contigu-
ous category, or lies between two categories;

(c) Priority “High”. if the selected recommended action category has one or more
higher level contiguous categories.

Figure 15 illustres how the priority level is determined for the selected “Recom-
mended Action” category based on these criteria.
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Figure 15: Examples of how priority level is assigned to the “Recommended Action”.

Figure 16 compares outcomes and recommendations of the developed models. It
shows the IFCADS model (Model-I) to have perfectly predicted 85 of the outcomes.
This was higher than any other model: 68 for Model-II, 62 for Model-III and 37 for
Model-IV. IFCADS also yielded the lowest number of false negatives, 5, compared
to the others: 28 for Model-II, 36 for Model-III and 21 for Model-IV. False nega-
tives are critical because they mean the model is underestimating the poor quality of
pipes. An estimated pipe action of “Inspection/Monitoring” when it is really “Repair”
or “Replace” could lead to a sudden failure of the pipe with the serious consequences
described earlier. False positive outcomes have less effect because overestimating poor
condition, such as “Repair” or “Replace”, simply leads to the cost of an extra inspection
and excavation.

Figure 16: False positive and false negative analysis of results.

Figure 17 provides a clear illustration of how fuzzy parameter representation in-
fluences the accuracy of pipe condition predictions, particularly demonstrating the su-
periority of IFCADS (Model I) in minimising false negatives. The figure is useful as
it provides a comparative analysis of different models, highlighting IFCADS’ ability
to enhance predictive reliability while preserving expert knowledge during process-
ing. By illustrating the relationship between fuzziness and accuracy, the figure offers
valuable insights into how varying degrees of fuzziness influence model performance,
making it a practical reference for decision-makers in infrastructure management.

A key contribution of Figure 17 is its explicit depiction of the trade-off between
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fuzziness and precision. Traditional models often assume that increased fuzziness leads
to greater uncertainty, but the figure demonstrates that an optimal level of fuzziness en-
hances predictive accuracy by capturing expert reasoning more effectively. Addition-
ally, the figure demonstrates that IFCADS avoids premature defuzzification, ensuring
that uncertainty is carried through the inference process rather than lost at intermediate
stages. These findings suggest that the approach could be generalised to other domains,
such as medical diagnostics or financial forecasting, where expert-driven assessments
are critical.

Figure 17: Relationship between fuzziness of parameter representation and accuracy of results.

6. Conclusion

The IFCADS methodology presented in this paper applies a new hierarchical fuzzy
rule-based approach for condition assessment and decision support in representing and
processing human expertise. It elicits human expertise using simple activities that are
scalable for high-dimensional complex knowledge domains. The resulting system en-
ables more precise risk management actions and has been successfully applied to the
real-world problem of predicting the condition of large-sized buried PCCP water pipes.
The dataset was obtained from the Libyan Man-Made River Project (MMRP). Analy-
sis of the results demonstrated the ability of IFCADS to exploit human expertise and
improve automated decision making.

More specifically, the significance and contributions of the IFCADS methodology
can be summarised as follows:

1. Applying a simple and intuitive elicitation method for:
(a) transforming input variables into fuzzy linguistic equivalents;
(b) generating scales of fuzzy linguistic values for concept memberships within

the knowledge hierarchy;
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(c) mapping from child linguistic values into their individual fuzzy influence
on membership of the parent concept;

(d) and determining the relative importance or weights of each child node using
FAHP so that the combined influence of children on parent membership can
be calculated.

2. Automating generation of rules based on the elicited conceptual hierarchy and
fuzzy scales already given, meaning rule complexity is independent of the expert
and modelling high-dimensional hierarchies is tractable.

3. Improving the representation of fuzzy equalities, so that the triangular fuzzy
value extends equally on both sides from the crisp mid-point, which is not the
case for existing fuzzy systems.

4. Maintaining the integrity of uncertainty information (fuzziness) throughout the
rule construction and inference process even when the upper fuzzy triangular
extension goes beyond the concept value range.

5. Processing fuzziness throughout the rule inference system without any interim
defuzzification.

6. Introducing a new hierarchical model of PCCP pipe knowledge based on rigor-
ous categorisation of data that affect the condition and deterioration process of
pipes.

7. Showing that a fuzzy version of the relative influence of child nodes compared
to their siblings leads to more natural representation of data and better model
performance than a defuzzified crisp version.

8. Improving explanations of outputs to help decision makers analyse and under-
stand their problems.

9. Demonstrating a method that has the flexibility and tractability to be applied in
many different knowledge-rich and high-dimenstional domains of human exper-
tise.

The IFCADS condition assessment model predicts the current condition of an entity
with recommendations for the types of treatments required and their priority. Expand-
ing the work by integrating time-to-failure predictions will improve the output of the
model both for when to intervene and how. This involves modelling the deterioration
process over time, which might be appropriate for a Markov chain (Sharabah et al.,
2006; Tran et al., 2010; Setunge and Hasan, 2011; Edirisinghe et al., 2015; Liang and
Parlikad, 2015) where the current condition state, estimated by the existing IFCADS
model, flows to the new condition state at the next timepoint, with its associated IF-
CADS configuration. It would enable IFCADS to look ahead and plan accordingly,
based on the current advice and the advice it would give if that predicted state did,
indeed, arise.
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