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Abstract

Community energy systems, where communities own their renewable energy sources, are key to the energy
transition. But to effectively exploit renewable energy, communities need to reduce their peak consumption.
For households, this involves spreading the use of high-power appliances, like washing machines, throughout
the day. Traditional approaches rely on differential pricing set by utility companies, but this has been ineffec-
tive and raises issues of fairness and transparency. To address this, we investigate a decentralised agent-based
mechanism. Agents, representing households, are initially allocated time-slots for when to run their appliances,
and can then exchange these with other agents to try and better meet their own preferences. Previous work
found this to be an effective approach to reducing peak load when social capital—the tracking of favours—was
introduced to incentivise agents to accept exchanges that do not immediately benefit them. We expand this
here by implementing appliance usage data from the UK Household Electricity Survey, to determine conditions
under which the mechanism can meet the demands of real households. We also demonstrate how smaller and
demographically diverse populations of households, with heterogeneity in their demand patterns, can optimise
more effectively than larger communities, and discuss the implications of this for designing community energy
systems.
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1 Introduction

In response to anthropogenic climate change, many countries and international organisations have committed to
legally binding greenhouse gas emissions targets. The UK and the EU have both recently updated their legislation
to include net zero emissions targets in place for 2050 [1, 2]. This requires moving away from using fossil fuels
for energy generation and moving towards renewable sources such as photovoltaic cells and wind turbines. In the
UK this is reflected in the proportion of UK energy supplied from low carbon sources rising from 10.1% in 2010
to 20.7% in 2022 [3].

However, increasing reliance on renewable energy raises a key challenge: balancing supply and demand.
Traditionally, centralised national grids managed this by adjusting supply - switching fossil fuel power plants on
and off to meet users’ needs. But as more energy is generated from weather-dependent renewable energy sources,
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this approach becomes less viable. How can load balancing be managed when supply is inherently intermittent?
This problem is more tractable at smaller scales. As a result, governments and energy providers are increasingly
supporting the development of community energy systems — local networks where small towns or neighbour-
hoods own, manage, and share renewable resources [4, 5]. The European Union’s renewable energy strategy, for
example, establishes a legal framework for community energy [6].

Decentralised community energy systems allow for a higher share of renewable technologies to be integrated
into energy generation [7], minimise transmission losses between the source of energy generation and the end
users [8], and improve energy security as the energy supply is less impacted by geopolitical factors [9]. As social
awareness of environmental issues increases, the willingness of communities to invest in community energy sys-
tems is also expected to increase [10]. But while there are clear benefits to widespread adoption, the shift towards
community energy systems means that communities now become involved in some of the tasks that were previ-
ously handled by a centralised national grid. In particular, they now become involved in the balancing of supply
and demand from their shared renewable energy sources.

A key problem is how to reduce peak demand, i.e. the maximal amount of electricity that is demanded at
any one moment in time. If a community’s peak demand is too high then it is unlikely that it will be able to be
met by the community’s renewable energy sources, and so the community is likely to have to resort to buying
in electricity from non-renewable sources. On the other hand, if the demand could be spread out more evenly
throughout the day then all of it may be met from their renewable sources. In the energy literature, this is known
as demand-side management — changing user demands to meet the available supply [11]. The opposite approach
is supply-side management — changing the amount of energy supplied to meet the demand. However, doing so is
often infeasible when weather-dependent renewable energy sources are used. Consequently, mechanisms to try
to adapt the energy demands of users to the available supply have come to the fore in recent years, including in
UK government policy [12].

In this paper, we examine an agent-based mechanism for demand-side management that does not rely on
charging households more to use appliances at certain times, which is often perceived as unfair. We build on
preliminary work that proposed a mechanism based on reciprocal exchange of energy usage time-slots between
households [13, 14]. However, this work relied on artificially flat demand curves that do not reflect real-world
patterns in the times when households use electricity. As such, it has been unclear whether this non-monetary
approach to demand-side management can work in real-world conditions.

To resolve this, we address here two research questions: (1) Can a non-monetary, agent-based exchange mech-
anism effectively perform demand-side management under real-world appliance usage patterns? (2) How does
the size and demographic diversity of a community affect performance? To answer these, we incorporate real-
world appliance usage data from the UK Household Electricity Survey [15] into our analysis. Our results show
the robustness and scalability of the mechanism to real-world community energy systems. They demonstrate that
agent-based approaches to demand-side management do not have to rely on changing prices. Instead, we show
that a more cooperative approach based on reciprocal exchange of time-slots can be an effective approach for
community energy systems.

2 Background

2.1 Pricing-Based Mechanisms for Demand-Side Management

A commonly proposed solution for demand-side management is differential pricing. The idea is that households
can be incentivised to run their appliances at times of low demand through lower pricing at these times [16—18].

This has traditionally involved utility companies offering cheaper electricity at fixed off-peak times, such as
overnight.
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The increasing adoption of smart meters into households has further introduced the possibility of real-time
pricing, where prices could vary at each hour of the day based on predicted supply and demand [19]. This idea is
at the core of most agent-based approaches to demand -side management. With agent-based approaches, house-
holds have an intelligent agent program running on a home gateway, which can automatically schedule appli-
ances to run at different times based on price signals (see [20, 21] for reviews).

In theory, a community energy system could use a differential pricing mechanism. However, increasing prices
at times of peak demand risks disadvantaging certain types of households, such as those with lower incomes or
elderly residents, and magnifying inequalities in access to energy [22]. Charging more to access a resource at
peak times is often perceived as unfair by people [23], and people generally rank pricing as one of the least fair
resource allocation methods [24].

Moreover, setting higher prices to access the community’s renewable energy sources at peak times may lead to
people perceiving this as a fine for peak use. Perversely, this can lead to more people using the resource at peak
times, as they feel justified in doing so by paying for it — a behavioural economics phenomenon known as “a fine
is a price” [25-27]. This suggests that using pricing for resource allocation in a community energy system may
erode the cooperation and prosocial norms of behaviour that are necessary for the community energy system to
work in the long term [10, 28]. Other price-based mechanisms, such as auctions [29], similarly risk setting up
competitive rather than cooperative interactions between community members.

2.2 Behavioural Interventions

In contrast to pricing-based mechanisms, an alternative approach from behavioural science uses non-monetary
interventions to influence electricity consumption habits [30]. This is often viewed as more socially acceptable
than differential pricing. Examples include providing households with individual feedback on their energy con-
sumption, providing them with social information on their energy use compared to similar households, and gami-
fication techniques such as setting individual and neighbourhood goals to reduce energy consumption [31-33].
Field experiments have demonstrated that these non-monetary incentives can be an effective approach to demand
-side management [34, 35].

However, two issues arise when applying these techniques to community energy systems. First, non-monetary
incentives need to be done in a way that is sensitive to the social psychology of the households being targeted.
Behavioural science research shows that people compare themselves to how well other people are doing when
these kinds of interventions are used, and that perceived inequality (“why should I change my behaviour if you
don’t change yours”) can be a behavioural barrier to changing energy usage [36]. Second, behavioural interven-
tions are limited in their flexibility, typically requiring households to manually change their electricity usage
on each day. In contrast, agent-based systems can automate scheduling of appliances, reducing the burden on
households.

These limitations point to an opportunity: to combine the social sensitivity of non-monetary incentives [37]
with the flexibility and automation of agent-based appliance scheduling. Such a hybrid approach could facilitate
fair demand-side management without imposing heavy burdens or monetary penalties on households.

2.3 Agent-Based Appliance Scheduling with Non-monetary Incentives

To try and achieve fair and cooperative demand-side management, Petruzzi et al. [13] and Brooks et al. [14]
developed a mechanism to implement non-monetary agent-based appliance scheduling in a community energy
system. They considered a scenario where a number of households share a renewable energy source [38]. This
scenario is important because sharing photovoltaic cells (for example, among apartments in a building) can lower
energy costs more than each household having its own private system, and this cost-saving effect grows as the
energy community increases in size [39—41]. However, sharing a renewable energy source between households
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introduces a resource allocation problem — which households should get access to the community’s renewable
energy at a particular time?

To address this, Petruzzi et al. [13] and Brooks et al. [14] assumed that each household has an agent program
running on a home gateway connected to their smart meter, into which they can input their preferred time-slots
for when they would like to run high-powered but time-flexible appliances, such as washing machines, dishwash-
ers and clothes dryers. The aim is then to allocate actual time-slots to each household agent for when they run
their appliances [42].

Petruzzi et al. [13] proposed an allocation mechanism based on the exchange of time-slots between agents.
Agents begin with randomly assigned time-slots for when they can power their appliances from the commu-
nity energy system’s shared renewable energy source. They are then allowed to negotiate and propose time-slot
exchanges with other agents, in order to try to get time-slots that better match their own appliance usage prefer-
ences. Petruzzi et al. [13] showed that the mechanism was effective at demand-side management when agents
used reciprocal exchange through the tracking of favours. That is, when agents accepted time-slot exchange
requests from other agents that did not immediately benefit themselves, but that made the other agent more likely
to accept one of their own exchange requests in future. They considered this building of favours as an electronic
form of social capital amongst agents [43, 44].

Brooks et al. [14] extended this work by addressing the question of whether the mechanism could still be
effective when agents could choose to be selfish. Selfish agents only accept exchange requests that immediately
benefit themselves, rather then engaging in reciprocal exchange. Brooks et al. [14] showed that the mechanism
was resistant to exploitation by selfish agents, provided that agents could keep track of who had provided them
with a favour in the past, and could preferentially exchange with them. In a practical implementation this result
is important, because it means that each household can be free to choose the initial strategy of its agent from the
point of view of self-interest, but that even selfish agents will be incentivised to become cooperative in order to
improve their performance. This can allow explanations to be given to households in terms of how their agent is
acting in their best interest.

Importantly, the exchange mechanism is decentralised. It would also be possible to use a centralised mecha-
nism, where all agents send their time-slot preferences to a central authority who performs the allocation. How-
ever, a centralised mechanism would require all agents to truthfully reveal their preferences, which requires
trust in the central authority and could compromise privacy [45]. Such a centralised mechanism may also suffer
from scalability problems as the number of agents increases. In addition, we suggest that a centralised mecha-
nism is likely to be perceived as less fair by households, since it may be less transparent and intuitive than the
simple exchange of favours. In particular, any allocation mechanism, centralised or decentralised, needs to deal
with the problem that there are multiple different allocations that will give the same mean satisfaction of agent
preferences. The mechanism then needs to be able to choose one of these allocations, and for this decision to be
justifiable to the households affected by it. For example, households may ask questions such as “why did another
household have all of their preferences met today, whereas only half of mine were?”. Reciprocal exchange — the
trading of favours between agents over time — allows explanations to be given based on the reciprocity principle
[46]. For example, “You helped the other household today by giving them a time-slot that you initially had but
did not plan to use. This means that household will repay the favour to you on a future day, helping your prefer-
ences to be satisfied then”.

2.4 Research Gap

The work of Petruzzi et al. [13] and Brooks et al. [14] left unanswered two important questions about the robust-
ness of the non-monetary agent-based mechanism and its adaptability to real-world conditions. First, their models
assumed a uniform distribution of time-slot preferences, which fails to reflect real-world patterns of appliance
usage. In reality, certain periods — such as early evening — are more likely to experience high demand, with
many agents preferring these time-slots. We hypothesise that this will reduce the effectiveness of the exchange
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mechanism in satisfying agent preferences, because when there is less complementarity in preferences then there
are less opportunities for exchanges that benefit one or both agents. To investigate this, we analyse the mechanism
by building a simulation that uses real-world appliance usage data from the UK Household Electricity Survey
(HES) [15].

Second, scalability remains an open question. Previous analyses only considered a fixed-size community
energy system. When designing a community energy system, it may be possible to engineer the population size,
by breaking a large population into smaller populations within which exchanges occur. It is therefore important
to determine which population sizes facilitate reciprocal exchanges and thus maximise mean agent satisfaction.
We hypothesise that increasing the number of agents will have two effects. First, theory from economics and
social science suggests that smaller populations of agents should be more conducive to reciprocal exchange [47].
Second, in larger populations agents may be more likely to find another agent with a time-slot that they need. To
investigate this trade-off, we allow the population size in our simulation to be varied, and discuss the implications
of varying population size for a real-world implementation of the mechanism.

We also hypothesise that scalability will be affected by the demographic composition of the population. Dif-
ferent demographics can have very different usage patterns for their appliances. For example, a large family will
need to use their washing machine more frequently and at different times of day than a young individual who
lives alone. A more demographically diverse population would therefore be expected to have a more diverse
set of time-slot preferences, creating more opportunities for exchanges and greater mean satisfaction. The HES
contains appliance usage data from households across a range of demographics (e.g. working age, pensioner,
single-person household, multi-person household). We use this to investigate how effectively the mechanism can
adapt to the demand profiles of different demographics, and to determine whether it is more effective at satisfying
household preferences when communities are more demographically diverse.

3 Methods

In order to analyse the mechanism experimentally, we have developed the Energy Exchange Simulation (avail-
able to download from the following GitHub repository: https://github.com/NathanABrooks/EnergyExchangeA
rena).

3.1 The Energy Exchange Simulation

The algorithm implemented in the simulation is shown in Algorithm 1, and a flowchart representation is provided
in Fig. 1.
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Fig. 1 Flow chart showing
each stage of a run within the
Energy Exchange Simulation
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1: simulation <— current simulation 35: end if
2: d 4 current day 36: end for
3: A < set of a agents
4: f < single population counter = 0 37: d.no_trades() = true
5: while simulation.is_complete() == false do 38: for eacha € A do
6: for each a € A do 39: if a.made_exchange() == true then
7 a.receive_random_-allocation() 40: d.no_trades() = false
8: end for 41: end if
9: e < inactive exchange count = 0 42: end for
43: if d.no_trades() == false then
10: while d.is_complete() == false do 44: e=¢€e+1
11: V < set of v adverts 45: else
12: for each a € A do 46: e=20
13: v 4+ a.select_unwanted_time_slots() 47: end if
14: V .list_advert(v) 48: if e == 10 then
15: end for 49: d.is_.complete() = true
50: end if
16: for eacha € A do 51: end while
17: if a.received_request() == true then
18: go to next agent 52: for each a € A do
19: end if 53: as < random agent to observe
20: if a.satisfaction() == 1 then 54: if a.satisfaction() < ag.satisfaction()
21: go to next agent then
22: else 55: z < random value between 0 and 1
23: r < a.identify_exchange(V') 56: if a.learning_probability(a.satisfaction())
24: a.request_exchange(r) > = then
25: end if 57: a.copy-strategy(az)
26: end for 58: end if
59: end if
27: for eacha € A do 60: end for
28: if a.received_request() == true then
29: a.accept_exchange_if_approved() 61: if s.single_type_remaining() == true then
30: end if 62: f=r+1
31: end for 63: end if
64: if f == 100 then
32: for each a € A do 65: simulation.is_.complete() = true
33: if a.made_exchange() and 66: end if
a.agent_type == Social then 67: d=d+1
34: a.update_social_capital() 68: end while

Algorithm 1 Pseudo-code for the Energy Exchange Simulation.

The simulation iterates for a number of days, as follows. Each day, every agent i requests four hour-long
time-slots in which they require electricity. This defines their set of time-slot preferences, denoted by ®;, where
|®;| = 4. These preferences are generated from demand curves, as described in Sect. 3.2.

The aim of the algorithm is to allocate a set of actual time-slots 7; to each agent 7, such that the difference
between the actual and preferred time-slots is minimised. We define the satisfaction of agent i, s;, as the propor-
tion of its time-slot preferences that have been satisfied:

|®; N T
=g (M

We track the mean value of s;, which we refer to as mean satisfaction, as a measure of how well the mechanism
is satisfying the agents’ preferences. We can calculate a theoretical optimum for the mean satisfaction on a par-
ticular day, by comparing all of the requested time-slots at the start of the day with all those available within the
simulation. This allows us to compute the maximum % of the agents’ time-slot preferences that can possibly be
satisfied, and so provides an upper bound on the performance of a time-slot allocation mechanism.
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Allocation of time-slots into 7; proceeds as follows. Time-slots are initially allocated to each agent at random
at the start of the day, with each agent given four time-slots drawn from a uniform distribution (line 7 in Algo-
rithm 1). This randomness in the initial allocation allows for privacy, since preferences do not have to be shared
with the agent doing the initial allocation. It also produces maximal reduction in peak consumption, by spreading
consumption evenly across the time-slots. However, agents are highly unlikely to have this random allocation
match all of their requested time-slots. To address this problem, after the initial allocation agents can take part in
pairwise exchanges where one agent requests to swap one of its time-slots with a second agent, and the second
agent decides whether or not to fulfil the request.

Exchanges begin every day once each agent has received their initial allocation and decided which of these
time-slots they wish to keep. They then anonymously advertise slots that they have been allocated but do not want
to an ‘advertising board’ (lines 11-15 of Algorithm 1). Several exchange rounds then take place during the day,
with exchanges continuing until no request has been accepted in the past 10 rounds of exchanges (line 48) and the
mean satisfaction has therefore stopped increasing. In each exchange round, agents can request a time-slot from
the board so long as they have not already received a request from another agent during that round (lines 16-26).
Agents accept or refuse requests (line 29) based on their strategy.

Agents can follow either a social or a selfish strategy when deciding whether to accept exchange requests from
other agents. Selfish agents will only accept exchanges that are in their immediate interest. This means that self-
ish agents need to be offered a time-slot that they have initially requested (an element of |®;|) and do not already
have (not currently an element of 7;) in order for them to agree to the exchange. Social agents also agree to these
mutually beneficial exchanges. In addition, social agents also make decisions based on social capital, in the form
of repaying previous favours given to them by other agents. Specifically, when a social agent’s own exchange
request is accepted, they record it as a favour given to them. When a social agent receives a request from another
agent who previously gave them a favour they will accept the request, if it does not cause them to lose one of
their preferred time-slots (i.e. they do not lose a time-slot in ®; as a result of the exchange), and then record that
the favour has been repaid (line 34). Favours that have been repaid can not be used again — this social capital is
considered spent, and so agents need to continue to offer beneficial exchanges in order to build up social capital.
This leads to a system of social agents earning and repaying favours among one another, increasing the number
of accepted exchange requests.

Agents can change their strategy via social learning (note that both selfish and social agents undergo ‘social’
learning). This occurs at the end of each day after the exchange rounds are complete and works as follows (lines
52-60). Each agent i observes a randomly selected second agent ;. If the observed agent j has a higher satisfaction
(Eq. 1) than agent i, then i switches to js strategy with a probability:

1
p = max <0’ 2 (1 +exp(—p(s; — Si))> ) 1> | )

This is a truncated, scaled sigmoid, which ensures that an agent will only change strategy if the agent it observes
has a higher satisfaction than itself. This is in contrast to the standard Fermi function often used in social learning,
where agents can copy a strategy giving worse observed outcomes than their own with a non-zero probability
[48]. While this allows for elegant mathematical analysis of long-run behaviour at the population level, our focus
is on the immediate behaviour of self-interested agents in real-world settings, who would likely never copy strate-
gies observed to be objectively doing worse than their own.

Equation 2 results in payoff-biased imitation dynamics in which strategies giving higher individual satisfac-
tion are more likely to spread in the population. The value of 5 determines the strength of selection. With larger
5 values, smaller differences in satisfaction are more likely to cause agents to change their strategy compared to
when [ is smaller. This thus allows us to control how sensitive agents are to the difference between their own and
another agent’s satisfaction when deciding whether to change strategy. Agents that change from the social to the
selfish strategy retain their accumulated social capital.
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The day ends after social learning. Only unspent social capital, i.e. social agents’ memory of favours, remains
between days. The simulation continues until the entire population of agents has adopted a single strategy, which
always occurs because the population is finite and there is no mutation in the social learning equation. Once a
single strategy has fixed in the population at 100% frequency, the simulation continues for a further 100 days
(lines 61-66), so that performance can be evaluated once only one strategy has been present for a prolonged
period of time. This analysis is necessary because the long-run performance of the social strategy is dependent
on agents having the opportunity to build social capital, which may not occur if the simulation terminates after a
small number of days.

3.2 Demand Curves

We used data from the HES to integrate realistic energy demand into the simulation [15]. The HES was conducted
between 2010 and 2011, and was then the most detailed monitoring of electricity use ever carried out in the UK,
providing real demand curves for specific household appliances from 250 UK households [49]. The survey pro-
vides dis-aggregated data about specific types of appliances, and can be sorted by key demographic metrics such
as the size of the household, the number of residents, and the residents’ ages.

We used demand curves for “switchable” appliances, which refers to appliances that are not inherently time
bound and so can potentially be shifted, such as dishwashers, washing machines and clothes dryers [49]. The data
for the appliances was taken from the “HES 24-Hour Chooser” tool provided with the dataset, with switchable
appliances considered to be those classified under “Washer/Drying”.

The resulting demand curves used in this paper are shown in Fig. 2. We normalised the demand curves so that
the peak demand for each curve is scaled to one, allowing for easy comparison between the curves given the
assumption that each household requires the same number of time-slots. Agent preferences on each day, ®;, were
generated by selecting four time-slots for each agent from the demand curve by roulette wheel sampling.

For our base analysis, we use the “All Households” curve, which is the mean demand curve for “Washer/
Drying” for all households in the HES. To answer our second research question, we also consider the curves for
“Single Pensioners” and “Single Non-Pensioners” taken from the survey. These two groups have clear differences

Fig.2 Demand curves com- Normalised demand curves
puted from appliance usage

data in the UK Household
Electricity Survey [15]. These
were adapted for the hourly
time-slot model by combin-
ing data from each 10 min
period into the corresponding
hour’s time-slot. The demand
curves were then normalised
so that the peak demand of
each curve is one (see text).
The demand curves repre-
sent usage data taken from
“Switchable appliances” such
as washing machines, dish-
washers, and clothes dryers
that can be scheduled and do
not typically have to be used
at a specific time. “Single
pensioners” and “Single
non-pensioners” represent
demographics of individuals Hour
living alone

—— All Households

—— Single Pensioners
—— Single Non-Pensioners
----- Flat Demand

Demand
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in their usage patterns, with pensioners having a large spike in usage between 10:00 and 11:00 with usage steadily
declining until midnight, and non-pensioners having comparatively more consistent usage throughout the day. A
larger number of single non-pensioners used their appliances at night, potentially representing appliances running
at a scheduled time or being started before the user went to bed. We therefore selected these two demographic
groups for analysis as they had markedly different demand curves, so their pairing had the largest potential to
increase agent satisfaction. These two demographics were also approximately the same size in the HES, with
the single pensioners group representing 34 households and the single non-pensioner group representing 35
households.

3.3 Parameter Values

Unless otherwise specified, parameters were kept consistent with [13] to allow for a comparison of results. The
baseline consists of a population of 96 individual agents, each requesting 1kWh units of energy during four
time-slots, with 16 kWh energy available to be allocated in each time-slot. In order to vary the population size,
we allow the total availability of energy to linearly scale with the total demand (this assumption corresponds to
a community energy system with more members installing proportionately more renewable energy). The default
value for the strength of selection, 3, was 1. We initialised the simulations with 50% of the population using each
strategy. All of the parameter values can be set in the config.properties file in the simulation code.

3.4 Statistical Analysis

Because the simulation is stochastic, we repeated each experiment for 100 simulation runs. We compared the
performance of agents using the selfish and social strategies, in terms of their mean agent satisfactions, as well
as reporting the number of runs in which either the selfish or the social strategy went to fixation in the popula-
tion (termed selfish takeover and social takeover, respectively). Where we report statistical significance, we first
checked for normality using a Shapiro-Wilk test. This showed the distribution of agent satisfactions to not deviate
significantly from the normal distribution (p > 0.05) in these cases. We also used Levene’s test and found no sta-
tistically significant difference in the variances of the selfish and social agent satisfaction distributions (p > 0.05)
in these cases. Consequently, we tested whether the difference in mean agent satisfaction between selfish and
social populations was statistically significant using the independent Student’s t-test. We considered the differ-
ence to be significant when p < 0.01.

4 Results

4.1 Logical Comparison of Strategies

Prior to any experimentation, we can logically deduce that agents choosing the social strategy should increase the
mean satisfaction of the agents as a collective more so than agents choosing the selfish strategy. This is because
given that no agent gives away a slot that it has requested, and agents only request time-slots that they want, any
exchange must increase the satisfaction of the agent making the request, and either have no effect on or increase
the satisfaction of the agent receiving the request. With exchanges only having a positive or neutral impact on the
agents involved, more exchanges must lead to a greater mean satisfaction. In pure populations, where all agents
are utilising the same strategy, strategies that allow for more exchanges will have a higher mean satisfaction. As
agents using the social strategy will accept any exchange that a selfish agent would accept but will also make
exchanges based on social capital, a population of purely social agents will be more satisfied than a population
of purely selfish agents.

) Springer International Journal of Computational Intelligence Systems



https://doi.org/10.1007/544196-025-01060-7 Page 11 of 21 307

In order to confirm this behaviour we ran the simulation with pure populations and compared the mean sat-
isfaction of the agents. After a single day, purely selfish populations finished with a mean satisfaction of 0.683,
where a mean satisfaction of 1 would mean that all agents had all their preferred time-slots. Purely social popula-
tions performed similarly after a single day with a mean satisfaction of 0.696. This is because after a single day
very little social capital will have been accumulated by the agents, and so the number of exchanges will be similar
to the selfish populations. After 100 days, once social capital has been built up by the social agents, selfish agents
see no notable change in performance while social agents’ mean satisfaction jumps to 0.834. The difference in
mean satisfaction between pure populations was statistically significant, and the highest performing selfish popu-
lation had a lower mean satisfaction than the worst performing social population. This confirms our hypothesis
that purely social populations will be able to outperform purely selfish populations. In this experiment, the theo-
retical optimum mean satisfaction (as defined in Sect. 3.1) across the 100 runs was 0.852, which the population
of social agents was close to obtaining with their mean satisfaction of 0.834.

4.2 Flat Demand Curve

In order to understand how using real-world demand data impacts the behaviour of the system, we first ran the
simulation with a flat demand curve, where agents had an equal likelihood of requesting any hour of the day when
choosing their four preferred time-slots. All 100 runs finished with the entire population adopting the social strat-
egy from a starting point of half the agents using the social strategy and half using the selfish strategy. The social
takeover — the day in which all agents adopted the social strategy — took a mean of 165 days to occur, with the
mean satisfaction of the agents being 0.834 on the day that the selfish strategy was eliminated, and 0.843 when
the simulation finished. All agents had been able to build up social capital through using the social strategy 100
days after the social takeover.

4.3 Switchable Appliance Demand Curves from the UK Household Electricity Survey

We next considered the “All Households” demand curve for switchable appliances. With this change, social
agents were only able to take over the population in 56 of the 100 runs of the simulation, with the other 44 runs
resulting in a purely selfish population. In runs where the population fully adopted the social strategy, the mean
time for the social strategy to takeover was 310 days, with a mean satisfaction of 0.707 when the strategy was
fully adopted, and 0.716 when the simulation ended 100 days later. The optimum satisfaction was a mean of
0.721 across all the days in all simulation runs, and so when the social strategy does fully takeover the population
then the agents are able to perform at a near optimum level. In the 44 runs where the selfish strategy took over
the population the mean satisfaction of the agents was 0.578 at the end of the simulation, a clear drop in perfor-
mance compared to the social strategy, which was found to be statistically significant, with no overlap between
the two sets of results. This supports our hypothesis that real-world demand curves decrease the effectiveness of
the mechanism at satisfying agent preferences, by increasing the ability of selfish agents to take over. When more
agents have similar preferences, there are less opportunities for exchanges, and hence less opportunities for social
agents to exchange favours.

The time for one strategy to fix in the population, and hence for the simulation to end, is different on different
runs. While our focus is on the equilibrium end states, we can also examine what happens to the satisfaction of
agents as either the selfish or social strategy starts to take over. Figure 3 shows a representative run where the
selfish strategy took over, and a representative run where the social strategy took over. The specific runs shown
represent the median run when the runs that ended in the strategy fixing are ordered by how many days it took for
fixation (recall that we always run the simulation until either all agents are social or all agents are selfish). The
mean satisfaction values shown on the graphs represent a five-day moving mean in order to minimise the effect
of day-to-day variance. In both the run that resulted in a fully social population, and the run that resulted in a fully
selfish population, the mean satisfaction was very similar for the first 100 days, with selfish agents performing
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Fig.3 Representative runs of Typical Selfish Run
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Table 1 Statistics for specific days from the typical social run displayed in Fig. 3. Social Population shows the number of the
96 agents that are using the social strategy. SD refers to standard deviation from the mean satisfaction

Day 1 50 100 150 200 250 300 350
Social population 48 52 66 47 77 92 96 96
Mean social satisfaction 0.641 0.654 0.700 0.654 0.714 0.687 0.716 0.734
Mean social SD 0.244 0.215 0.236 0.239 0.257 0.281 0.257 0.262
Mean selfish satisfaction 0.526 0.590 0.742 0.689 0.711 0.4 0 0
Mean selfish SD 0.193 0.233 0.199 0.217 0.233 0.122 0 0

very similarly to their social counterparts. Later in the simulation however, the selfish run’s mean satisfaction
dropped. This is because there were no longer enough social agents in the population to increase the mean satis-
faction by performing more exchanges.

Tables 1 and 2 show specific days in the typical simulation runs displayed in Fig. 3. Upon comparing the out-
comes after a single day within the simulation, it becomes evident that the two runs exhibit distinct disparities in
mean social satisfaction. This observation underscores the considerable variation in the distribution of time-slots
between simulation runs, which can be attributed to the initial random assignment of these time-slots. It is also
clear that the strategy used by agents fluctuates greatly throughout a typical simulation, with neither run hav-
ing a steady trend in strategy used towards its final state. This fluctuation greatly benefits the selfish strategy, as
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Table 2 Statistics for specific days from the typical selfish run displayed in Fig. 3. Selfish Population shows the number of
the 96 agents that are using the Selfish strategy. SD refers to standard deviation from the mean satisfaction

Day 1 50 100 150 200 250 300 350
Selfish population 48 60 40 65 84 88 92 96
Mean selfish satisfaction 0.526 0.629 0.663 0.6 0.628 0.545 0.568 0.596
Mean selfish SD 0.246 0.216 0.241 0.227 0.227 0.243 0.236 0.226
Mean social satisfaction 0.589 0.590 0.665 0.710 0.583 0.563 0.689 0
Mean social SD 0.213 0.237 0.223 0.212 0.236 0.207 0.108 0

Table 3 How population size affects the performance of social and selfish strategies

Population size 24 48 72 96 120 144 168 192
Social takeovers 84 87 82 56 31 11 5 1
Mean takeover days (social) 111 184 229 310 318 367 477 380
Mean takeover satisfaction (social) 0.598 0.663 0.694 0.707 0.722 0.736 0.725 0.731
Mean satisfaction 100 days after takeover(social) 0.623 0.688 0.704 0.716 0.727 0.733 0.738 0.730
Selfish takeovers 16 13 18 44 69 89 95 99
Mean takeover days (selfish) 131 219 277 365 355 334 317 302
Mean takeover satisfaction (selfish) 0.421 0.514 0.555 0.584 0.604 0.617 0.625 0.632

agents can accrue social capital while being social before switching to the selfish strategy and benefiting from
their existing social capital with social agents, while no longer assisting others by accepting requests based on
social capital. These tables also demonstrate how on a given day there is often little difference between the mean
performance of the two strategies, with the better performing strategy often fluctuating day to day. This promotes
the fluctuation between strategies, benefiting the selfish strategy as discussed. As we have previously shown, the
population fully adopting the social strategy is in the best interest of all agents involved, as it increases the mean
satisfaction of the agents. These results show that in order for a population to consistently adopt the social strat-
egy, there needs to be enough of a consistent performance difference between the two strategies that agents are
both more likely to adopt the social strategy, and unlikely to switch when observing a selfish agent.

4.4 Effect of Population Size

We investigated the optimum population size for the mechanism by re-running the simulation with a variety
of population sizes between 24 and 192 agents. These numbers were chosen in order to be between 25% and
200% of the initial population of 96 agents. These populations continued to use the “All Households” demand
curve. Table 3 shows how the system’s behaviour changed by adjusting only the population size. We show mean
satisfaction at the point one strategy takes over in the population, and for social takeovers, mean satisfaction a
further 100 days after this (to show the effect of pure social populations accumulating social capital). The smallest
population of 24 agents adopted the social strategy far more frequently than the larger populations, with the social
strategy fixing in 84 of the 100 simulation runs. This is a clear contrast with the largest population of 192 agents,
which adopted the social strategy only once in all 100 simulation runs. However, while the smallest population
adopted the social strategy more often, the mean satisfaction at the end of the simulation was only 0.623, which
is similar to the mean satisfaction seen with the 192 population size selfish runs (0.632).

This result supports the hypothesis that a trade-off must be made when deciding on the population size for a
community energy system using this energy exchange mechanism. Smaller populations are more likely to adopt
the social strategy . Larger populations are less likely to adopt the social strategy, but their potential perfor-
mance is higher when they are able to do so. The reason we see this behaviour is because in smaller populations,
each individual is more likely to interact with each other individual and so social capital can be built up much
more quickly. At the end of the simulation runs, with the smallest population size agents had a mean of 32.55
unspent social capital, whereas in the largest population the mean was only 21.44 unspent social capital. In larger
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populations social capital is slower to build, but with more agents there are more time-slots in the system, and
so more agents to potentially trade with. It is also worth noting that there was little difference in the number of
populations taken over by the social strategy between the simulations with populations of 24, 48 and 72 agents,
which were taken over by the social strategy 84, 87 and 82 times, respectively. This shows how decreasing popu-
lation size only benefits the social strategy up to a certain point, and so it is important not to reduce the population
size beyond this in order to maximise mean agent satisfaction, which was higher with larger social populations.

4.5 Effect of Diverse Demographics

We next explored how having mixed demographics within the population influenced performance, by using the
demand curves for single pensioners and single non-pensioners (Fig. 2). We ran the simulation such that half the
agents would use the demand curve of single pensioners for their requests for time-slots and the other half used
the demand curve of single non-pensioners.

In this mixed demographic scenario, the social strategy was able to take over the population in 90 of the 100
simulation runs for a population size of 96. This took a mean of 272 days and resulted in a mean satisfaction of
0.733 immediately after all agents became social, and a mean satisfaction of 0.750 when the simulation ended
100 days later. As the social strategy is able to effectively allocate time-slots for maximum agent satisfaction,
mean satisfaction of social agents was typically within 0.01 of the calculated optimum value for any given run.
For the 10 simulation runs that adopted the selfish strategy, it took a mean of 385 days for the selfish strategy to
take over, and the mean satisfaction was 0.600 at the end of the simulation. The lowest mean satisfaction from
a social takeover at the end of a run was higher than the highest mean satisfaction from a selfish run, with the
difference between the two types of runs being statistically significant. Comparing these social populations with
social populations using a single real-world demand curve (see the 96 population size shown in Table 3) shows a
statistically significant increase in mean satisfaction.

By diversifying the population such that they have varied demand curves, the social strategy was able to take
over more consistently and the mean satisfaction increased compared to when all agents used a single demand
curve. This supports the hypothesis that a demographically diverse population, with a greater heterogeneity of
time-slot preferences, increases the effectiveness of the mechanism.

We also considered the effect of population size on this mixed population of 50% single pensioners demand
curve and 50% single non-pensioners demand curve. To do this we re-ran the simulation with varying population
sizes, as with Table 3, to see whether alternative population sizes notably affect the results. As seen in Table 4, a
mixed population allowed for improved mean satisfaction for runs where the social strategy took over, and also
allowed the social strategy to take over more consistently compared to when a single demand curve was used
as seen in Table 3. This impact was most evident with the larger population sizes -- the populations of 96, 120
and 144 agents improved on the number of runs adopting the social strategy from 56, 31 and 11 runs to 90, 81
and 80 runs, respectively. This clearly shows how a population with diverse demands can perform well with a
much larger range of population sizes than a population with more similar demands. It is also worth noting how
the smallest population tested, 24 agents, adopted the social strategy less frequently than the slightly larger sizes

Table 4 The effect of population size in mixed populations of single pensioners and single non-pensioners (see text)

Population size 24 48 72 96 120 144 168 192
Social takeovers 85 94 93 90 81 80 57 42
Mean takeover days (social) 107 169 192 272 321 382 409 463
Mean takeover satisfaction (social) 0.609 0.683 0.712 0.733 0.747 0.756 0.758 0.770
Mean satisfaction 100 days after takeover(social) 0.656 0.706 0.731 0.750 0.754 0.758 0.768 0.767
Selfish takeovers 15 6 7 10 19 20 43 58
Mean takeover days (selfish) 108 174 282 385 340 549 552 533
Mean takeover satisfaction (selfish) 0.413 0.505 0.574 0.604 0.617 0.626 0.648 0.654
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Table 5 The effect of the strength of selection in mixed populations of single pensioners and single non-pensioners (see text)

p value 0.5 0.75 1 2 3 4 5
Social takeovers 100 95 90 51 38 30 25
Mean takeover days (social) 325 282 272 219 176 152 111
Mean takeover satisfaction (social) 0.737 0.734 0.733 0.735 0.726 0.730 0.726
Mean satisfaction 100 days after takeover(social) 0.741 0.743 0.750 0.749 0.744 0.734 0.742
Selfish takeovers 0 5 10 49 62 70 75
Mean takeover days (selfish) - 332 385 258 176 145 128
Mean takeover satisfaction (selfish) - 0.630 0.604 0.599 0.607 0.603 0.606

of 48, 72 and 96 agents. This further demonstrates how it is important to select a population size that allows for
populations to adopt the social strategy while being large enough for a high mean satisfaction, but goes beyond
our previous understanding by suggesting that having too small of a population size can reduce the social strate-
gies ability to take over consistently. This is because while smaller populations build up social capital more easily,
with less potential trade partners there is a greater risk of only a small number of trades happening in a day, and
those trades being between selfish agents.

4.6 Effect of the Strength of Selection During Social Learning

Finally, we considered the effect of the agents’ learning process by varying the strength of selection, /3, in Eq. 2.
We ran a population of 96 agents using the two separate demand curves for single pensioners and single non-
pensioners from the previous experiment. Table 5 shows how the dynamics and outcomes of the mechanism are
affected as [ is varied. The results show how as the strength of selection increases, the number of simulation runs
in which the social strategy successfully takes over the population decreases. This makes logical sense, as with
a greater strength of selection agents will change their strategy more frequently. This will lead to more selfish
agents benefiting from social capital they gained from when they were previously social, preventing social agents
from having an advantage. We also see that with a greater strength of selection both strategies are able to take
over the population considerably more quickly. Conversely, when the strength of selection is lowered the social
strategy is much more effective, as agents are able to build up social capital more effectively when their strategy
remains consistent. With a 3 value of 0.5 the social strategy was able to take over in all 100 simulation runs. Fur-
ther experiments even showed that with the largest population size of 192 agents, the social strategy was able to
take over in 97 of the 100 simulation runs when a 5 value of 0.5 was used. However, this takeover took a mean
of 566 days . Lowering the strength of selection, and hence the rate with which agents change their strategies, is
clearly very successful in promoting social behaviour. However, it can greatly slow down the time required for
agents to settle on a single strategy.

5 Discussion

We have demonstrated a decentralised and non-monetary mechanism for demand-side management that is effec-
tive at satisfying agents’ preferences. A real-world implementation of the system could easily operate in a socio-
technical manner, with households “in-the-loop” in their agent’s decision-making and learning processes [50].
At one level, this could involve households setting the strategy of their agent, based on information presented
to them such as their satisfaction metric and current social capital. At a more detailed level, this could involve
households interactively making decisions on whether or not to accept requested exchanges. In an actual imple-
mentation, the exchanges might occur through software agents that operate on home gateways connected to smart
meters, and hosted entirely within households. Alternatively, agents could be hosted on cloud servers where smart
meters serve as the intermediary interface [51].
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Utilising a system based on social capital represented as ‘favours’ is intuitive for people to understand, agree-
ing with the reciprocity principle of “I will scratch your back if you scratch mine” [46]. Ease of understanding a
mechanism for demand-side management has been shown to be a determinant for whether people perceive the
mechanism as procedurally fair, and in turn whether they would be willing to use that mechanism [52]. As such,
the use of the reciprocity principle should facilitate perceived procedural justice and hence promote social behav-
iour within the community. This is in contrast to mechanisms based on dynamic pricing, where evidence from
behavioural economics shows that consumers view procedures for setting prices based on supply and demand as
unfair [23], which may at least in part explain the low uptake of dynamic pricing tariffs by households.

Future work can investigate the perceived procedural fairness of our mechanism, by inviting participants to
use a simulated version of the system [42]. In such a system we can vary the extent to which participants interact
with the exchange process, and can control the information that is shown to them, e.g. whether or not they see
the satisfaction of other agents, and the number of neutral exchanges that they have performed. The study could
also be run through a serious game to help increase participants’ attention and motivation [31]. In these kinds of
experiments, the perceived fairness of the mechanism can also be directly compared to other mechanisms such as
auctions and dynamic pricing. This approach to investigating perceived procedural fairness should be contrasted
with much of the work in the smart energy literature. This literature tends to focus on distributive (outcome)
rather than procedural fairness. It typically measures fairness using theoretical measures, such as the mean devia-
tion in agents’ utility from the mean utility [53]. However, measures like this say nothing about the procedure
that led to that outcome, suggesting that they are likely to be limited as proxies for household engagement and
trust. Consequently, we argue that there is an urgent need to move beyond theoretical measures of fairness and to
actually examine perceived fairness in empirical settings.

Beyond the community energy system application, the time-slot exchange mechanism developed here is
addressing a classic resource allocation problem — which agents (households) get which resource (time-slots)?
Many other approaches to resource allocation, such as the use of virtual auctions, have been found to maximise
social welfare — the sum of agents’ utilities — that can be gained from a resource, and can be adapted to also
increase the equity of distribution [54, 55]. These approaches are, however, centred around trading some form of
currency, which can be either real money or virtual credits [56]. In the case of a decentralised community energy
system, even if all households are allocated an equal amount of virtual credits, removing the ability for wealthier
individuals to have more bidding power, this approach would still be dependent on competition between agents.
Investment and use of a community energy system is reliant on cooperation from a community [10]. We have
demonstrated that an approach that is based on incentivising cooperation instead of competition can also be effec-
tive. This could allow for stronger social relations to develop if the system is used in a socio-technical manner
[37]. Such real-world social capital could, in turn, allow the community to better solve the other cooperation and
coordination dilemmas inherent in running a community energy system, such as planning and maintenance [38].

An alternative approach to energy sharing between households is peer-to-peer energy trading [29]. This relies
on each house being fitted with its own renewable energy source, such as roof-mounted photovoltaic cells. House-
holds with surplus energy can then sell this to households with a deficit of energy, typically using an auction
mechanism to determine prices based on supply and demand [57]. Peer-to-peer energy trading thus treats renew-
able energy sources as individual, private goods, that can be allocated by market mechanisms. A modified ver-
sion of peer-energy trading can allow households to borrow energy from neighbours and repay that energy when
they are able without a direct financial transaction [58]. However, as energy generation will rarely match demand
when using renewable energy sources, this approach requires households to be equipped with expensive bat-
tery storage as well as their own individual sources of energy generation, making implementation costly for the
individual. This cost not only makes communities as a whole less likely to adopt the approach [10], but further
risks disadvantaging those who cannot afford the initial cost of household renewable energy generation such as
photovoltaic cells and battery storage [59]. Given the importance that access to energy has to both individuals
and to the environment, there is a pressing need to consider the concept of energy justice when designing mecha-
nisms for the allocation of energy. Energy justice means moving towards an energy system that considers both the
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traditional economic needs of societies, but also the environmental issues surrounding climate change and social
justice considerations for end users, such as reducing energy poverty [60—62]. Our approach does not require
each household to generate energy individually, with the costs that this entails, and instead treats the community’s
renewable energy sources as a common pool resource [38]. As such, we suggest that this offers more alignment
with the principles of energy justice, compared to mechanisms such as peer-to-peer energy trading.

A significant limitation of our simulation model lies in its binary treatment of agent preferences, where they
are either fully satisfied or entirely dissatisfied with a given time-slot. In real-world scenarios, users are more
likely to retain some level of preference for time-slots near their initial choices. As a result, future research should
consider the dynamic impact on the behaviours of both social and selfish agents as the satisfaction they derive
from an allocated time-slot becomes contingent on its proximity to their initial preference. This will enable the
exploration of more intricate social dynamics, including instances where agents relinquish a moderately satisfy-
ing time-slot to benefit others who could attain a higher level of satisfaction. Additionally, this approach will
facilitate the examination of scenarios wherein agents may choose to giveaway a time-slot that they somewhat
desire (rather than a neutral one) in exchange for the possibility of securing a more favourable time-slot in sub-
sequent exchanges. We also showed that by lowering the strength of selection used when agents are consider-
ing changing their strategy, social agents can build up more social capital and the social strategy takes over the
population much more consistently. However, in a real implementation the strength of selection would depend on
how likely households were to change their agent’s strategy. Future work should empirically investigate this, for
example, by running user experiments with a simulated version of the system [42]. Future modelling work could
also investigate the effect of other agent decision-making mechanisms beyond payoff-biased learning, such as
mechanisms based on trust, risk aversion, or social norms.

In conclusion, we have shown how realistic demand peaks make it substantially harder for social agents to take
over a population consistently when compared to the artificial flat demand curve used in previous work [13, 14].
However, we have also shown that there is a clear improvement in performance when a population consists of
mixed demographics, and so this non-monetary approach to demand-side management can be effective in some
realistic scenarios. Our analysis also demonstrates how it is important that the population size is large enough to
allow for a high potential mean satisfaction, but not so large that the social agents are unable to build up social
capital. One approach for larger populations could be to use a global social capital mechanism — a form of indirect
reciprocity [63] — where favours can be repaid by any other agent. However, this could remove the user privacy
that comes from agents tracking social capital in a pairwise manner and storing it themselves. As an alterna-
tive, larger populations could be grouped into specific community clusters, with a variety of demographics with
complementary time-slot preferences. Allowing agents to form self-organised clusters working to optimise their
collective performance has been shown to be an effective approach to supply and demand matching within large-
scale energy systems [64]. The process of clustering and the subsequent inter-cluster communication will play a
vital role in enabling the effectiveness of this demand-side management strategy within real-world markets. This
mechanism opens the possibility for distinct clusters to engage in energy trading when surplus energy is available
within one cluster [65]. For example, available but unwanted time-slots could be exchanged between clusters,
using the reciprocal exchange mechanism analysed in this paper at the level of clusters as well as at the level of
households.
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