Journal Pre-proof

Online Graph Based Transforms for Intra-Predicted Imaging Data

D. Roy, T. Guha, V. Sanchez

PII: S0031-3203(25)01312-3

DOI: https://doi.org/10.1016/j.patcog.2025.112649
Reference: PR 112649

To appear in: Pattern Recognition

Received date: 27 February 2024

Revised date: 20 October 2025

Accepted date: 21 October 2025

Please cite this article as: D. Roy, T. Guha, V. Sanchez, Online Graph Based Transforms for Intra-
Predicted Imaging Data, Pattern Recognition (2025), doi: https://doi.org/10.1016/j.patcog.2025.112649

This is a PDF of an article that has undergone enhancements after acceptance, such as the ad-
dition of a cover page and metadata, and formatting for readability. This version will undergo addi-
tional copyediting, typesetting and review before it is published in its final form. As such, this ver-
sion is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are
providing this early version to give early visibility of the article. Please note that Elsevier’s sharing
policy for the Published Journal Article applies to this version, see: https://www.elsevier.com/about/
policies-and-standards/sharing#4-published-journal-article. Please also note that, during the produc-
tion process, errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

(©) 2025 Published by Elsevier Ltd.


https://doi.org/10.1016/j.patcog.2025.112649
https://doi.org/10.1016/j.patcog.2025.112649
https://doi.org/10.1016/j.patcog.2025.112649
https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article
https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article
https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article
https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article

Journal Pre-proof

D . Roy et al. / Procedia Computer Science 00 (2025) 1-23 1
Highlights

e A novel online graph-based transform learning framework (GBT-ONL) is proposed, which learns Graph-Based

Transforms dynamically during encoding without any offline training phase.

o The method employs a shallow fully connected neural network (FC-NN) that predicts the graph Laplacian for

each residual block as data is pro- cessed, enabling real-time adaptation to content variations.

e GBT-ONL requires no transmission of graph or model parameters in the bitstream since the same online learning

process is mirrored at the decoder side.

e By learning transforms online, the framework eliminates the need for large, curated, or domain-specific train-
ing datasets, ensuring robustness and gen- eral applicability across different imaging domains (e.g., natural,

medical, remote sensing data).
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Abstract

Orthogonal transforms are key components of several image and video compression systems and standards, as they provide a
de-correlated representation of signals to enhance compressibility. However, the most commonly used transforms for compression,
such as the Discrete Cosine transforms (DCT) and Discrete Sine transtorms (DST), are fixed and non-adaptive, limiting their ability
to capture complex or varying signal characteristics. Graph-based transforms (GBTs) have shown improved energy compaction
and reconstruction performance, but face two major limitations: the need to signal graph information in the compressed bitstream,
which increases overhead and may complicates decoder synchronization, and a dependency on offline training process, which is
highly dependent on the quality and completeness of the training data. To address these issues, this paper introduces a novel frame-
work, GBT-ONL, which learns GBTs online in the context of block-based predictive transform coding. The proposed GBT-ONL
framework uses a shallow fully connected neural network to predict the graph Laplacian needed for both the forward and inverse
GBT. By relying only on information available during encoding, GBT-ONL eliminates the need to signal additional information
in the compressed bitstream, and removes the requirement for any prior offline training. Evaluations on several video sequences
show that GBT-ONL outperforms both traditional (non-learnable) transforms and existing learnable transforms in terms of energy
compaction, reconstruction error, and compression efficiency, as measured by BD-PSNR and BD-Rate metrics.

© 2011 Published by Elsevier Ltd.

Keywords: Graph-based transform, GBT-ONL, video coding, compression, online training, predictive transform coding.

1 1. Introduction

2 Block-based Predictive Transform Coding (PTC) is a technique used by several image and video compression
s systems to improve performance, including the state-of-the-art compression techniques as defined by the High Effi-
+ ciency Video Coding (HEVC) standard [1], Video Platform (VP9) [2], AOmedia Video 1 (AV1) [3] and the Versatile
s Video Coding (VVC) standard [4]. Fig. 1 shows a typical encoder-decoder pipeline for video compression based

s on block-based PTC and intra-prediction; i.e., the prediction is performed using information contained in the frame

*Corresponding author
Email addresses: D.Roy@aston.ac.uk (D. Roy), tanaya.guha@glasgow.ac.uk (T. Guha), v.f.sanchez-silva@warwick.ac.uk (V.
Sanchez)
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Figure 1. A typical encoder-decoder pipeline for video compression using block-based PTC using intra-prediction. The encoder
side is in charge of compressing the frames, while the decoder side is in charge of decompressing them.
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Figure 2. (a) Partition of a frame into non-overlapping blocks: (b) Directions of the intra-prediction modes that are common to the VVC and HEVC
standards. (c) Sample block with the reference samples used for prediction shaded in blue. (d) Block predicted by the mode 26 (pure vertical mode)
for the block in (c). Notice how the reference samples located above the block are simply copied into the locations of the predicted block following
a vertical direction.

being predicted. In this figure, four main components can be distinguished: (i) prediction, (ii) transform, (iii) quan-
tization, and (iv) entropy coding. In the prediction component, block-based PTC first divides the frame into several
non-overlapping blocks (see Fig. 2 (a)) and then processes the blocks one by one following a specific order; e.g., a
raster scanning order. It predicts each block by using previously processed blocks to exploit spatial redundancies. It
computes a residual block for each block as the difference between the original and predicted block. In the transform
and quantization components, each residual block is first transformed and the transform coefficients are quantized. In
the final entropy encoding component, the quantized coefficients are encoded to produce a compressed bit-stream. The
compressed blocks are reconstructed during encoding so that these blocks can be used to predict subsequent blocks.
This allows replicating the process at the decoder when decompressing the bit stream.

PTC in state-of-the-art compression techniques uses one of several prediction modes to predict a block using intra-
prediction. For example, the HEVC standard includes 33 angular modes to model 33 different directional patterns,
and a DC mode and a Planar mode to predict smooth textures. The VVC standard, on the other hand, supports up to
87 prediction modes, which include 65 angular modes, 20 wide angular modes, a DC mode, and a Planar mode (see

Fig. 2 (b)).
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Figure 3. The residual signal of a frame partitioned using 4 X 4 blocks, with one of these blocks represented as a 4-connected graph with 16 nodes.

The transform in block-based PTC is essential for improving compression performance because it allows decor-
relating the residual blocks into transform coefficients. An effective transform should have good energy compaction
properties, i.e., it should capture most of the signal’s energy in a few important transform coefficients. The Karhunen
Loeve Transform (KLT) is widely recognized as the linear transform with the best energy compaction properties for
any arbitrary signal with a known covariance matrix. The KLT computes the eigendecomposition of the signal’s co-
variance matrix. Since the Discrete Cosine Transform (DCT) does not require the signal’s covariance matrix and its
function bases are very similar to those of the KLT, it is widely used for the compression of natural images. However,
the DCT is a fixed transform that does not account for the statistical properties of the residual block to be trans-
formed. It has been shown that transforms that adjust to the statistical properties of the residual blocks can improve
compression performance [5, 6].

Recently, the Graph-Based Transform (GBT) has been shown to attain promising results for data decorrelation
and energy compaction [7], especially for block-based PTC. The GBT is an orthogonal transform that uses graphs
to describe the signal to be transformed. Hence, the GBT can adapt to the signal’s characteristics. In other words,
a separate graph can be used on each residual block (see Fig. 3) to adequately represent the intrinsic structure and
correlation among the residual values [8]. The GBT is constructed by eigendecomposition of the graph Laplacian of
the residual block to be encoded. In [9, 10], it was shown that the GBT can outperform the DCT and the combination
of the DCT and the Discrete Sine Transform (DST) as used in modern video codecs, in terms of energy compaction
properties and reconstruction quality.

In general, when the GBT is used in block-based PTC, the same graph used to compute the GBT during the trans-
form component should be available at the reconstruction stage to compute the inverse GBT needed to recover the
residual block. This extra information should then be signaled into the compressed bitstream, hence increasing the
overhead and hindering compression performance. To address this issue, several works have attempted to learn opti-
mal GBTs by using machine learning (ML) [11]. Recently, in [12, 13] we propose a framework for learning GBTs by
using deep learning (DL), where a trained fully connected neural network (FC-NN) is assumed to be common knowl-
edge between the encoder and decoder of a compression system that uses block-based PTC with intra-prediction. As
a result, that solution does not require signaling any additional information into the compressed bit-stream. How-

ever, it does require first training an FC-NN offline with the appropriate training data; i,e., training the FC-NN before

4
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operation.

The idea of learning GBTs offline for compression purposes by using ML has gained increasing popularity recently
[14]. However, the performance of such ML-based solutions depends on the amount, quality, and relevance of the
training data [15]. In many cases, the training data may not accurately reflect the characteristics of the data to be
processed after training the models. In such cases, the performance tends to be poor because, once trained offline, the
models cannot adapt to the characteristics of new data. Hence, online optimization of the ML model [16] has emerged
as an attractive solution to avoid the offline training process. In this context, online optimization refers to training the
ML model as data is being processed.

Let us recall that in block-based PTC, blocks are processed sequentially following a specific order. Hence, online
optimization is very amenable to be used within block-based PTC. In this work, we leverage online optimization and
propose the GBT-ONL framework to learn GBTs online for block-based PTC within the context of intra-prediction.
Specifically, our framework predicts the graph Laplacian needed to compute the GBT of each residual block by using
a shallow FC-NN that is optimized online with the data being processed.

Since the GBT-ONL framework processes the data progressively to update the FC-NN’s parameters as new data
becomes available, it can learn GBTs that adapt to pattern changes in video frames. Hence, a key advantage of the
online optimization used by the GBT-ONL framework is the dynamic adaptation to scene complexity, illumination and
motion changes, as a model is optimized on each residual block of a video frame. Other important advantage is the fact
that there is no need to signal any additional information into the compressed bitstream, as the same learning process
used by the encoder can be replicated by the decoder using only the available reconstructed blocks. This contrasts
with approaches based on pre-trained models, which require signaling the learned parameters into the bitstream, thus
increasing overhead. Additionally, the online optimization used by the GBT-ONL framework removes the dependency
on large, curated training datasets, making it more practical and adaptable across diverse content, including medical
and remote sensing imaging data [17, 18, 19, 20, 21].

In summary, our work has two main contributions. First, it introduces an online optimization framework to
compute GBTs, where an FC-NN is trained as blocks are being processed sequentially. This allows the FC-NN to
adapt to each residual block to accurately predict the graph needed to compute the corresponding GBT. Second, since
the training process is performed online using information available to block-based PTC, it can be exactly replicated
at the decoder, thus avoiding the need to signal extra information to compute the inverse GBT for reconstruction. To
the best of our knowledge, no other solutions have been proposed before to predict a graph Laplacian online for GBTs
by using ML within the context of block-based PTC and without the need to increase the signaling overhead of the
compressed bitstream.

Our performance evaluations on several video frames show that the GBTs learned by the GBT-ONL framework
outperform the DCT and the DCT/DST in terms of the percentage of the signal’s energy preserved by a small subset
of the largest transform coefficients, the mean squared error of the reconstructed data, and the compression efficiency

as measured by the BD-PSNR and BD-Rate metrics.
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83 The rest of the paper is organized as follows. Section 2 summarizes the computation of the GBT and briefly
s reviews the related work on learning transforms offline within the context of block-based PTC. We describe our
s proposed GBT-ONL framework in Section 3. Section 4 presents our performance evaluations and discusses the

s results. Finally, Section 5 concludes this paper.

ez 2. Related work

88 In this section, we first describe how GBTs are computed for residual blocks, followed by a summary of how
s GBTs are used within the context of block-based PTC. We then review several works that attempt to learn GBTs

« offline, including relevant works that attempt to learn offline other transforms used for image and video compression.

ot 2.1. GBTs for residual blocks

o The GBT of a (square) residual block S € R VMW with N residual values is usually constructed by eigendecom-
es position of the graph Laplacian, L, of its undirected graph G = (V, E, A). In this context, V is the set of N nodes
w V= {Vn}nN:p E is the set of edges, and A € RY*V is the symmetric weighted adjacency matrix. Each node in V repre-
s sent a pixel location in the residual block. The entry A;; in A represents the weight of the edge ¢;; connecting nodes
s Vv; and v;, where A;; = Aj; and nodes v; and v; represent, respectively, pixel locations i and j, in the block. If there is
o no edge e; ; connecting nodes v; and v;, A;; = 0. Large values in A usually represent a high similarity between the
¢ connected nodes, according to a given criterion; for example, similarity between residual values. The graph Laplacian,
% L,is computed as L = D — A, where D is the diagonal degree matrix, whose n'* diagonal element is equal to the sum
10 of the weights of all edges incident onto node v,. The eigendecomposition of L is used as the orthogonal transform
101 for the residual block since it has a complete set of eigenvectors with real, non-negative eigenvalues.

102 Let us denote the eigendecompostion of L by {1,,u,} where 1,/u, is the ¢ eigenvalue/eigenvector pair and
ws U is the set of eigenvectors. Analogous to the classical Fourier transform, one can define the GBT for the signal

w0 S eRVMW represented by the graph G, as the expansion of S in terms of the eigenvectors of L:

N-1
8(4) = (S,up) = > S(kyuy(k) = FS, (1)

k=0
s where N is the number of nodes, F = U™ is the graph Fourier transform and o"(LL) = (g, A1, -+ , Ay_1) denotes the

w6 set of eigenvalues of L. The signal can be reconstructed by the inverse GBT, which is given by S = F~'S = US. As a
w7 graph is defined by an adjacency matrix, A, it is possible to generate different transforms for the same block by using
ws different graph topologies and weights in G [22]. In general, the graph connectivity and the edge weights are inferred

100 from the data to be transformed.

1o 2.2. GBTs within the context of PTC
111 Within the context of block-based PTC, the GBT performs significantly well in generating decorrelated coefficients

12 that can compact the signal’s energy into a few largest coefficients [23]. S. Bagheri et. al [24] propose a solution for
6
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learning a graph Laplacian by minimizing a graphical lasso. In their work, the transformation of a signal is realized by
a hybrid model that combines the KLT and the DST. In [25], the authors show that GBTs are optimal for block-based
PTC if the signal follows a Gaussian Markov Random Field (GMRF) model. In [26], the authors propose an optimized
GBT for residual signals by introducing an intra-prediction scheme that exploits the differences between neighboring
pixel pairs and the mean of a cluster of pixels. In our previous work [9], we propose a class of GBTs for PTC that
are constructed by using a graph with unit edge weights and weighted self-loops in every node. The self-loops have
been shown to improve the decorrelation properties of the GBT. To avoid signaling any additional information into
the bitstream to compute the inverse GBT, we also introduce a coding framework that uses a template-based strategy
to predict blocks in the pixel and residual domains. Similarly, the work in [10] eliminates the need to signal the
graph information into the bitstreamby computing the GBT based on a predicted residual. Recently, the work in
[27] introduces the Symmetry-based Graph Fourier Transforms (SBGFTs), which are non-separable transforms based
on the generation of symmetric graphs by adding symmetrical connections between nodes. Although the SBGFTs
do not explicitly adapt to data, the authors exploit the correlations between optimal graphs and prediction modes in

intra-prediction to provide a type od data adaptation.

2.3. Offline and online learning of GBTs

Several works that attempt to learn GBTs within the context of block-based PTC have been proposed. In [28],
the author proposes two different techniques to design GBTs. In the first technique, they formulate an optimiza-
tion problem to learn graphs from data and provide solutions for optimal separable and non-separable GBT designs,
called GL-GBTs. The optimality of the proposed GL-GBTs is also theoretically analyzed based on GMRF models for
residual signals. The second technique develops edge-adaptive GBTs (EA-GBTs) to adapt transforms to signals with
strong edges (discontinuities). To accomplish this task, they train a large model offline with a large dataset collected
by predicting blocks of several sizes with several intra-prediction modes. The advantages of EA-GBTs are both theo-
retically and empirically demonstrated. The experimental results show that their proposed transforms can outperform
the KLT. In [11], the authors propose the graph template transform (GTT), which approximates the KLT by exploiting
a priori information the about signal as represented by a graph template. The GTT, which is learned by a constrained
optimization framework, has been shown to achieve a rate-distortion performance similar to that of the KLT with
significantly less complexity. In [29], the authors introduce the GBSTs (Graph Based Separable Transforms), based
on two line graphs with optimized weights. For the construction of the GBST, the authors formulate a graph learning
problem to design two separate line graphs using row-wise and column-wise residual block statistics, respectively.
They analyze the optimality of the resulting separable transforms and show that the GBST can outperform the DCT,
the DST, and the separable KLT. In [30] authors proposed to combine deep Probabilistic Graphical Networks (PGNs)
and deep compression techniques together to derive sparse versions of the deep probabilistic models. In [31], we
propose a GBT based on 3D convolutional neural networks (GBT-CNN). The 3D convolutional neural network (3D-

CNN) predicts the graph information needed to compute the transform and its inverse, thus reducing the signaling cost
7
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to reconstruct the data after transformation. We show that the GBT-CNN can outperform the DCT and the DCT/DST
in terms of the percentage of energy preserved by a small subset of the largest transform coefficients, the mean squared
error of the reconstructed data, and the transform coding gain. In [32], the authors address a problem of learning graph
Laplacians by adopting a factor analysis model that enforces minimizing the variations of the signal on the learned
graph. The work in [33] reports improvements over the DCT by introducing a novel adaptive separable path that
can provide better data decorrelation for intra-predicted data. However, differently from our proposed GBT-ONL
framework, it increases the signaling overhead in the bitstream, as it requires indicating the usage of the GBT on each
block.

Recently, the work in [34] introduces a block-adaptive separable path graph-based transform (GBT), which focuses
on adaptively modifying the block size and learning a GBT. Although the GBT is alo learned in an online scenario,
the learning process relies on sequential K-means clustering, where each available block size has K clusters and K
GBT kernels. Hence, different from our GBT-ONL framework, which optimizes an FC-NN, their approach relies on

finding the nearest cluster to a block, which is then used to derived the GBT.

2.4. Offline learning of other transforms

Apart from the GBT, several methods to learn other transforms for compression purposes may be found in the
literature [35]. For example, in [36], the authors propose a fully unsupervised deep-learning framework that can
extract a meaningful and sparse representation of raw high-frequency signals by embedding important properties of
the fast discrete wavelet transform (FDWT) in the architecture. In [37], a novel sub-pixel convolutional generative
adversarial network (GAN) is learnt for reconstruction of images in compressed sensing. Since the DCT is widely used
for block-based PTC, many works attempt to learn the mapping relationship between images compressed by using the
DCT and their original version to reduce compression artifacts [38, 39]. Similarly, several works focus on learning the
KLT offline [40]. For example, in [41] the authors propose a novel signal-independent separable transform based on
the KLT to improve its efficiency in block-based PTC. A KLT matrix is trained offline using several residual blocks to
account for different residual characteristics. Deep learning models are also exploited for learning the KLT [42] under
a supervised training tramerwork. Recently, the use of rate distortion optimized transform (RDOT) designs has re-
gained popularity to create data-dependent transforms that minimize rate-distortion costs. This is commonly achieved
by using a clustering step to identify training data examples that cannot be well represented by a fixed transforms;
e.g., the DCT. For example, the work in [43] proposes using this rate distortion approach to learn separable GBTs.

To summarize, a key difference between the work presented in this paper and the previously proposed methods that
attempt to learn an orthogonal transform is that several of those methods need to train a model offline and thus depend
on the quantity, quality, and relevance of the training data. Those methods that rely on an online learning process,
employ clustering approaches to find the most similar cluster to a block, which is subsequently used to construct a
GBT. Our proposed GBT-ONL framework does not require an offline training process, and more importantly, relies

on a true online learning process that requires the optimization of a loss function, as explained next.
8
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181 3. Proposed GBT-ONL framework for intra-predicted data

182 Online optimization aims to learn a mapping function based on a sequence of samples as the samples are processed
13 by a model [44, 45, 46]. Such a mapping function is expected to perform a specific task based on the processed
1s+  samples, for example, classification or regression. In the case of online optimization of an FC-NN, the mapping
s function is learned by defining the parameters of the network as samples are being processed. Those parameters are
s expected to perform the task very well for the current sample. Specifically, the parameters are usually initialized
17 to random values and are updated sequentially using only the data being processed. To improve performance, the
1s  parameters learned for the current sample can be used as the initial set of parameters to be optimized for the next
19 sample.

190 Our work concentrates on learning GBTs online within the context of block-based PTC. We focus on intra-
191 prediction as currently performed by the HEVC and VVC standards; however, this work is codec-agnostic and can
12 be used with any video and image codec that uses block-based PTC with intra-prediction. More specifically, our
15a - GBT-ONL framework relies on a shallow FC-NN trained over several iterations of gradient descent (GD) to predict
194 the graph Laplacian required to compute the GBT for the current residual block. Once the optimization for the current
15 residual block is complete, the FC-NN is optimized to predict the graph Laplacian of the subsequent residual block
196 using as the initial set of parameters those optimized for the previous block. This process is repeated until all residual
17 blocks are processed. The process of defining the initial set of parameters to be optimized for the current block can be

s expressed mathematically for any two consecutive blocks with indices k and k + 1 as follows:
Wg+1 — Wk, (2)

199 where Wg ., and W, denote the initial and final set of parameters for block k + 1 and block , respectively. For the
200 first residual block of a frame, our shallow FC-NN uses parameters initialized to known values, i.e., Wgzo is known
201 for block k = 0. Moreover, the FC-NN uses information obtained from the blocks that have been already processed
22 by block-based PTC as the input. Consequently, no additional information needs to be signaled into the bitstream to
208 repeat the same optimization process during the reconstruction of the blocks since the same input is available when
204 blocks are reconstructed sequentially and in the same order used to compute their GBTs. Let us recall that such
205 sequential encoding and decoding processes are common in modern video and image codecs that use block-based
26  PTC.

207 By using online optimization, our main objective is to learn a mapping function, £(-), between an average residual

28 block for the current block k, denoted by Cy, and the graph Laplacian of such an average residual block:
Ly ~ £(Cp), 3)

a0 where I is the predicted graph Laplacian of the average residual block and Cy = %ZZZI M, is computed as the
9
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Figure 4. Surrounding residual blocks of the current residual block to be encoded.
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Figure 5. Architecture of the shallow FC-NN used by the proposed GBT-ONL framework for 8 x 8 blocks.

average residual of the three residual blocks surrounding the current block, k. Here, M represents the d surrounding
residual block (see Fig. 4).

Note that in PTC, the blocks surrounding the current block, k, are already processed. Consequently, the same three
residual blocks, {M,}, are available when reconstructing a frame block-by-block. Hence, they can be used as an input
to the same FC-NN for predicting the same graph Laplacian, which is needed to compute the inverse GBT for block
k. The rationale behind using these three surrounding residual blocks is based on their similarities with the current
residual block. Namely, these three blocks are expected to have similar characteristics to those of the residual block
to be transformed. For residual blocks located in the corner or along the edges of a frame or image, which may not be
surrounded by three residual blocks, we use a residual block with a constant value equal to the DC value of the frame;
e.g., for 8 bpp images, we use a value of 128.

Our solution to learn the mapping function in Eq. 3 is based on an encoding-decoding shallow FC-NN, as depicted
in Fig. 5 for the case of 8 x 8 blocks. This shallow FC-NN has an input layer of 64 neurons and a 512-neuron hidden
layer, leading to the output layer of 4096 neurons. The average residual block, Cy, in vector form, denoted by ¢ is
used as input to the FC-NN, which is trained to predict the graph Laplacian of Cg, also in vector form and denoted

by I,. In other words, I, serves as the ground truth for the training process. Under the assumption that the three
10
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Figure 6. Sequential processing of blocks by the proposed GBT-ONL framework. To estimate the graph Laplacian of the current block, k, the
shallow FC-NN uses the average residual block in vector form, denoted by c¢x.

surrounding residual blocks {M,} are similar to the residual block to be transformed, the graph Laplacian 1, is then
expected to be similar to that of the current residual block, denoted by I;; hence I, ~ 1,.

Fig. 6 shows the overall functionality of the GBT-ONL framework to predict the graph Laplacian for each residual
block & under block-based PTC using intra-prediction. Note that the shallow FC-NN is optimized for each block
k over several iterations of gradient descent (GD) to accurately predict l,. This optimization process is stopped
based on threshold &, i.e., when the Mean Squared Error (MSE) between the predicted graph Laplacian, ick, and the
corresponding ground truth, I, is less than &, or when enough iterations of GD have been performed. In other words,
the FC-NN is overfitted on the input ¢;. Note that this overfitting process is appropriate for block-based PTC as the
prediction is based on a single input. The weights found after optimizing the FC-NN on block k, i.e., W, are used as
the initial weights for block k + 1 (see Eq. 2). The process is repeated for all K residual blocks in the frame.

Algorithm 1! summarizes the online optimization process used by the GBT-ONL framework, where P is the
maximum number of GD iterations to be performed for the current block, k, « is the learning rate, Arc(:) denotes the
architecture of the shallow FC-NN, {DC,;,.} is a reference block in vector form with all values equal to the DC value
of the image, m, is the d™ reference residual block in vector form, and {r, ¢} denotes the row and column, respectively,

where a block is located in the image The functionality of this algorithm is explained next:
e Line 1 of the algorithm iterates over all K residual blocks.
o Line 3 initializes all the parameters of the FC-NN for the first block to a value of 0.5.

e Line 4 calculates the average residual block for block k = 0 as a block with DC values.

I'The implementation details are available on GitHub: https://github.com/debaleena82/GBT-ONL.git
11
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Algorithm 1: Online training used by the GBT-ONL framework for an image with K blocks.

Require: {{m,}, 1} for each block k, Arch(:), P, &, &, {DC\qc}

1:

T N T N T S S et
W 72 9 ® 3N Rw N 2

24:

25

A A A S ol

fork=0— (K-1)do
if k£ = 0 then
WO, = {0.5)
¢ — {DCyaue}
else
W,? W,
if = 0 AND ¢! = 0 then
¢ — 1(m3 + {DCyue} + {DCoaic})
elseif ! = 0 AND ¢ = 0 then
¢ — 3 + {DCyae} + {DCyatic})
else
Cp — % T My
end
end
forp=1- Pdo
(I, WP} — Arch(ey, I, @, W)
if I, 1,13 > & then
Wo — Wy
go to line 16
else
W, « Wf
return ick
end

end

: end

Line 6 initializes the parameters of the FC-NN to the parameters found for the previous block.

Lines 7 -13 initialize the average residual block according to the position of the current block & to account for

any unavailable residual block m.
Line 15 optimizes the FC-NN for block k over a maximum of P iterations of GD.

Line 16 computes the predicted graph Laplacian and the optimized parameters of the FC-NN for iteration p of

GD, denoted by Wf . The optimization is based on the following loss function:

Ll o) =Ie, = Te 15 +2 1 W 11, “)
where || . ||, is the L2 norm and A is a hyperparameter to control the level of L2-regularization on Wi .

Line 17 computes the square of the error between the ground truth and the predicted graph Laplacian and checks
12
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Figure 7. The GBT-ONL framework incorporated into an encoder-decoder system that uses block-based PTC for compression.

if this squared error is above the threshold &. If this squared error is above &, the parameters found after iteration
p of GD are used as the initial set of parameters to be further optimized in Line 16. Otherwise, Line 21 defines

the final set of parameters as those found at iteration p.
e Line 22 returns the predicted graph Laplacian, which is to be used to compute the GBT for block «.

Fig. 7 shows how the proposed GBT-ONL framework can be incorporated into an encoder-decoder pipeline that
uses block-based PTC for compression with intra-prediction. Our framework assumes that the initial parameters W2=o
of the shallow FC-NN for block k& = 0 are common knowledge between the encoder and decoder. Note that the residual
blocks {My} used to compute the average residual block C; are those available at the encoder after the corresponding
blocks are processed and reconstructed. This guarantees that even after quantization of the corresponding transform

coefficients, these residual blocks are the same as those available at the decoder.

4. Performance Evaluation

4.1. Datasets and experimental setup

For our experiments, we use the standard video sequences provided by the ISO/IEC JCT1/SC29/WG11 under the
Common Test Conditions and Software Reference Configurations [47]. Our dataset to evaluate the performance of
the GBT-ONL framework comprises several 4:2:0 YUV video sequences commonly used to test the performance of
video codecs. These sequences are organized into six classes: A, B, C, D, E, and Screen Content (SC). They cover
a wide range of characteristics in terms of length, scene complexity, and type of visual content. These sequences

serve as a benchmark for evaluating transform performance (see Table 1). We use intra-prediction on each frame of
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Table 1. Characteristics of the 4:2:0 video sequences used for evaluation.

No. of  Frame Bit

Name Resolution
frames rate (fps) depth
Class A
Traffic 25601600 150 30 8
People_on_street  2560x1600 150 30 8
Nebuta_festival ~ 2560x1600 150 30 10
Class B
Kimono 19201080 240 24 8
Cactus 19201080 500 50 8
Park_scene 19201080 240 24 8
BQTerrace 1920x1080 600 60 8
Class C
Race_horse 832x480 300 30 8
BQMall 832x480 600 60 8
Party_scene 832x480 500 50 8
Basketball_drill 832x480 500 50 8
Class D
Race_horse_D 416x240 300 30 8
Blowing_bubble  416x240 500 50 8
BQ_square 416x240 600 60 8
Basketball_pass 416x240 500 50 8
Class E
Kristine_and_Sara 1280x720 -~ 600 60 8
Four_people 1280720 - 600 60 8
Jhonny 1280%720 -~ 600 60 8
Class SC
China_speed 1024x768 500 30 8
Slide_show 1280x720 500 20 8
Sc_Map 1280720 600 60 8
Sc_Programming  1280x720 600 60 8

the video sequences. Specifically, we use blocks of 8 x 8 pixels and the 35 intra-prediction modes that are common
to the HEVC and VVC standards. We use the mode that provides the lowest residual signal for block k. Note that
modern video codecs usually make intra-prediction decisions based on the Y and G components of Y:U:V and RGB
frames, respectively. For this reason, we use only these components of our dataset. For the evaluation of offline
trained models that predict transforms, we use 61,440 samples (residual blocks) which are partitioned into 80% for
training and 20% for testing, ensuring there is no overlap between the two sets. The residual data is processed using
quantization parameters (QPs) of 22, 27, 32, and 37, which are standard values used to attain various compression
levels. We evaluate performance using standard metrics, including BD-PSNR, BD-BR (with respect to DCT), and
Mean Squared Error (MSE). These metrics are computed to assess both the reconstruction quality and compression
efficiency. No additional pre-processing is applied beyond the quantization of residual blocks according to the selected
QP values.

We compare the GBTs learned by the proposed GBT-ONL framework against other GBTs, which vary in terms
of graph topology (including edge weigths) and construction. Specifically, we compare a GBT that uses covariance

14
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matrices from several training examples to estimate the graph Laplacian, hereinafter called the GL-GBT [48]. Note
that this GBT uses offline training. We also compare the GBT-CNN in [31], which uses graphs with unit edge weights
and no self-loops in the vertices. This method relies on training a 3D-CNN offline. Our experiments also include
other commonly used transforms for compression purposes; i.e., the KLT, the DCT, and the DCT/DST as used in the
HEVC and VVC standards. The KLT is used as the baseline in our experiments, as it is expected to provide the best
performance. However, it is important to recall that the KLT requires storing the covariance matrix of each block.
All these transforms; i.e, KLT (baseline) , GL-GBT [28], GBT-CNN [49], DCT (fixed transform), DCT/DST (fixed
transform) and our proposed GBT-ONL, are evaluated on the same data.

We organize the evaluated transforms into two groups: i) those that are computed based on offline training, ii)
those that are computed based on online training (including ours), and iii) those that require no training at all (e.g.,
DCT). Since the GBT-ONL framework does not require offline training, we highlight in bold font and underlined
font the best and second best results, respectively, among those obtained by the GBTs learned by the GBT-ONL
framework, the DCT, and the DCT/DST.

For all experiments, we initialize the parameters of the FC-NN used by the GBT-ONL framework to a value of 0.5
for the first block of each frame; i.e., Wgzo = {0.5}. To optimize the FC-NN, we use up to P = 100 iterations of GD
with a threshold of & = 1e7®. In other words, the optimization process for blokc & is stopped after P = 100 iterations
of GD steps or if the MSE between the predicted and ground-truth graph Laplacian is less than or equal to & = 18, A
learning rate @ = 0.005 is chosen based on seyeral tests to ensure reaching threshold & without significantly increasing
the computational complexity. A small learning rate results in longer times to process each block but may allow
reaching more precisely the threshold £. A large learning rate, on the other hand, results in short processing times,
but may not allow reaching precisely the threshold £. As explained in Section 3, the blocks are processed sequentially

and the parameters optimized for block k are used as the initial set of parameters for block k + 1.

4.2. Reconstruction quality and energy compaction performance with unquantized coefficients

The efficiency of a transform is usually measured by the signal’s energy that a small subset of the largest transform
coeflicients can concentrate. Based on this fact, we first compute the MSE of the reconstructed frames by using only
a subset of the largest coefficients under the assumption that no quantization is applied to the coefficients. We also
compute the percentage of the total signal’s energy preserved (PE) by the set of coefficients used for reconstruction,
where the PE values are computed as the average of the square of the coefficients used for reconstruction divided by
the square of all coefficients. To select the coefficients used for reconstruction, we set a threshold that indicates the
minimum absolute value that the coeflicients should have to be used to reconstruct a block. We gradually decrease
this threshold to increase the number of coefficients to be used for reconstruction. This strategy gradually includes the
largest coefficients in a subset by gradually lowering an initial large threshold [50]. Fig. 8 shows a toy example of this

strategy.

15
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Figure 8. (a) Absolute values of transform coefficients of a sample block of 8 x 6. (b) Sub-set of coefficients selected for a threshold = 70. (c)
Sub-set of coefficients selected for a threshold = 40. (d) The majority of the coefficients are in the sub-set when the threshold value is 10.

Table 2 tabulates the PE (%) and MSE values for all evaluated sequences using 5% and 10% of the largest coeffi-
cients, while Table 3 summarizes performance by tabulating average PE and MSE values over all evaluated sequences.
Compared to the DCT, the transforms learned by the GBT-ONL framework preserve 3.13% more energy for Class A
videos and 3.65% more energy for all classes, on average, if only 5% of the largest coefficients are used. The GL-GBT
outperforms the KLT in terms of the PE preserved and the MSE for the natural images of Class D (see Fig. 9 (a)-(b)
for an example). Recall that the GL-GBT and GBT-CNN rely on offline training, hence their performance depends on
the amount and relevance of the training data whereas the proposed GBT-ONL framework adapts to the patterns of
the data being processed without any offline training: As expected, the KLT performs the best for Classes C, E, SC.
However, let us recall that the KLT requires knowledge of the covariance matrix of each residual block. This implies

increasing the amount of data to be stored in the compressed bit-stream.

4.3. Reconstruction quality with quantized coefficients

We compute the reconstruction quality attained by the evaluated transforms in terms of the PSNR when quanti-
zation is used on the coefficients. Specifically, we employ four quantization parameters (QPs) used by the HEVC
and VVC standards: QP = {22,27,32,37}. Table 4 tabulates PSNR values for the evaluated videos when these QPs
are applied to the transform coefficients, while Table 5 summarizes performance by tabulating average PSNR (dB)
values over all evaluated sequences. Note that for Class A sequences and all QPs, except for QP = 27, the PSNR
values attained by the transforms learned by the GBT-ONL framework are larger than those attained by the DCT. For
example, the GBT-ONL framework outperforms the DCT and the DCT/DST by 2.1 dB and 7.2 dB, respectively, for
the Traffic sequence (Class A) when QP = 37. On the other hand, for Class C and Class A, the GBT-ONL framework
outperforms the DCT for QP = 27. Since these two classes include sequences depicting several smooth textures,
the DCT performs very well on them. For Class D and QP = {22,27,32}, the GBT-ONL framework outperforms
the DCT, while the DCT performs the best for QP = 37. For the sequence BQsquare, the DCT outperforms the
GBT-ONL framework by only 0.4 dB (see Fig. 9 (c))

The most challenging videos are those in the SC class, which tend to contain several edges. Fig. 10 depicts a
frame of the video SC_Programming. For this video, the GBTs learned by the GBT-ONL framework outperform the
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Figure 9. (a) PE (%) and (b) MSE when up to 10% of the largest coefficients are used for reconstruction of the Class D video BQsquare. (c) PSNR
(dB) of the Class D video BQsquare for several QPs.
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Figure 10. A frame of sequence SC_Programming of Class SC.

DCT by 2.4 dB, 2.1 dB, and 0.6 dB for QP = {22,27,32}, respectively. For all SC videos, the DCT surpasses the

GBT-ONL framework for QP = 37.
On average, the GL-GBT outperforms the GBT-ONL framework by 1.8 dB for QP = 22 for all the evaluated

video sequences since this method uses offline training to predict the graph Laplacian.

4.4. Compression performance with quantized coefficients

We evaluate performance when quantizing the transform coefficients in terms of Bjontegaard-based (BD) metrics.
We use the BD-BR metric (%) for bit-rate and the BD-PSNR metric (dB) for reconstruction quality. The BD-BR
metric represents the savings in bit-rate, where negative values mean that the transform uses fewer bits for the same
video quality. The BD-PSNR metric represents the increase in video quality for the same number of bits used. We

use the entropy [51] of the DCT coefficients as the lower limit for the average coding length in bits per pixel (bpp)
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for 4 QPs, i.e., QP = {22,27,32,37}. Table 6 tabulates the BD-PSNR and BD-BR values for all evaluated videos,
while Table 7 summarizes performance by tabulating the average BD-PSNR and BD-BR values over all evaluated
sequences. . The GBTs learned by the GBT-ONL framework provide BD-PSNR improvements of 1.01dB, 1.35dB,
2.15dB, 1.99 dB for Class A, B, C, and D sequences, respectively. The smallest improvements are attained for Class
SC, due to the complexity of these sequences in terms of edges and textures. Specifically, the gains in video quality
are only in the range [0.08 — 0.20] dB for SC sequences.

The GBT-CNN and the GL-GBT attain stronger performance than that of the GBT-ONL framework, however,
we should recall that those transforms need offline training. Compared to the DCT/DST, which do not require any
training, the GBT-ONL framework attains the best performance and provides important improvements compared to
the DCT. As expected, the KLT provides the best performance. However, as mentioned before, the KLT requires the
storage of the covariance matrices in the compressed bit-stream, which makes it impractical.

In terms of the BD-BR, we can see important improvements introduced by the GBTs learned by the GBT-ONL
framework. For the sequence People_on_street (Class A), the GBT-ONL framework saves 13.47% of bit-rate com-
pared to the DCT. Similarly, for the sequence BQ_mall (Class C), the GBT-ONL framework needs 11.85% fewer bits
than the DCT to store a video of similar quality. The performance on Class E sequences is particularly strong, as the
GBT-ONL framework saves up to 14.88% of bit rate compared to the DCT. The performance on Class SC is com-
paratively low due to the presence of several edges in these sequences. As expected, the KLT outperforms all other
transforms. Specifically, the KLT requires, on average, 70% fewer bits compared to the DCT to store the sequences at
a similar quality. For example, for sequence Traffic (Class A), the KLT requires 78.56% fewer bits compared to DCT.
It requires 76.65% and 70.07% less bits for sequences Blowing_bubble (Class E) and Map (Class SC).

The method proposed in [33] is similar to the proposed GBT-ONL framework in terms of learning GBTs online.
However, the method in [33] requires signaling into the bitstream the usage of the GBT on each block. That method
[33] attains a BD-BR value of —10.06, which is better than the BD-BR value of —9.20 attained by the GBT-ONL
framework for all the sequences evaluated in this work. It is important to note that the BD-BR reported in [33] is that
achieved by a complete compression pipeline, while that achieved by the GBT-ONL framework is for the block-wise
transform process of a compression pipeline. Hence, the relatively better results achieved by the method in [33] in
terms of BD-BR may be due to the use of a powerful entropy encoder to compress the transform coefficients.

Fig. 11 shows a reconstructed frame of the sequence Basketball_drill after transformation by several transforms
and quantization with QP = 37. As depicted, the GBT-ONL framework achieves a higher visual quality than that
achieved by the DCT. The GL-GBT, which requires offline training, achieves a visual quality very close to that
achieved by the KLT.

4.5. Complexity and processing times

The complexity of GBT-ONL framework depends on the operations involved in the optimization processes to

predict the graph Laplacian, the number of GD iterations, and the complexity of the eigen-decompensation. Predicting
18
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the graph Laplacian matrix of a (square) residual block S € R V¥V with N residual values using a shallow FC-NN
has the following complexity:

O(N x L x 0) )

where N, L, and O are the number of neurons in the input, hidden layer, and output (i.e., the number of elements in

the graph Laplacian), respectively. For P iterations of GD, the complexity is:

OPXNXLxO). (6)

The eigendecomposition of the graph Laplacian L € R VOXV0 with O elements has a complexity of:
0(0%). @)
The total complexity of the GBT-ONL framework for a block with N residual values is then:
O(P x N x Lx 0) + O(0%). ®)

Table 8, tabulates the average processing times, per frame, for each class of video sequence. As tabulated, the
GBL-ONL framework has longer processing times due to the online optimization that has to be performed as blocks
are processed. However, it offers several unique advantages. First, it enables dynamic adaptation to scene changes
by learning a graph Laplacian for each residual block, ensuring that the transform is tailored to the local character-
istics of the residual signal. Second, it achieves better data decorrelation, preserving more signal’s energy in a small
set of transform coefficients compared to the DCT. Third, it eliminates the need to signal any information into the

compressed bitstream, since the same online optimization process can be replicated at the decoder side.

5. Conclusion

In this paper, we proposed the GBT-ONL framework to learn GBTs in the context of block-based PTC with intra-
prediction. The GBT-ONL framework is based on online optimization of a shallow FC-NN designed to predict the
graph Laplacian needed to compute the GBTs of a residual block. Since the optimization process uses only informa-
tion available in the frame being processed, the GBT-ONL framework eliminates the need to signal extra information
into the bitstream. Specifically, the same online optimization process can be replicated at the reconstruction stage. We
evaluated the performance of the GBT-ONL framework in terms of the PE (%) and MSE when a small percentage of
the largest coefficients are used for reconstruction, as well as in terms of the PSNR when different quantization levels
are applied to the transform coefficients. We also evaluated performance in terms of the BD-PSNR and BD-BR met-
rics using the DCT as the reference transform. The evaluation results showed that the GBTs learned by the proposed

GBT-ONL framework can outperform the DCT and the DCT/DST. These results also confirmed the advantages of
19
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GBTs in adapting to new patterns by leveraging ML without the use of any offline training data or pre-trained models.

Our future work includes two strategies to improve performance: 1) Extracting features from the imaging data by

using convolutions. And 2) developing a hybrid framework that combines the strengths of GBT-ONL for edge-rich

content with those of traditional transforms, e.g., DCT, for smooth content.
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Figure 11. (a) An original frame of sequence Basketball_pass (Class D). (b) An area reconstructed after using the GL-GBT (PSNR = 31.3 dB), (¢)
the DCT (PSNR = 26.0 dB), (d) the KLT (PSNR = 28.7 dB), (e) the GBT-CNN (PSNR = 25.0 dB), and (f) the proposed GBT-ONL framework

(PSNR = 26.6 dB). In all cases, QP = 37.
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Table 2. PE (%) and MSE values using a small percentage of the largest coefficients. Results are for each sequence and on average per class and
for all classes, including standard deviation values (SD +).

Percentage of coefficients used for reconstruction

Baseline Offline training Online training No training
Sequence KLT GBT-CNN GL-GBT GBT-ONL (ours) DCT DCT/DST
PET MSE | PET MSE | PET MSE | PET MSE | PET MSE | PE T MSE |
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
4:2:0 YUV sequences
Class A
Traffic 89.1 93.1 139 12.1 67.1 85.0 37.8199 90.1 939 146 11.8 67.1 83.5 38.0 204 65.2 82.3 389 21.2  63.0 80.0 40.1 24.9

People_on_street 88.8 92.4 12.1 11.4 653 84.0 369 185 89.1 93.1 12.8 104 652 83.7 37.119.1 63.1 824 38.1 203 622788 39.0234

Nebuta_festival 87.2 90.9 13.6 10.8  63.8 82.8 33.6 16.5 874902 11.4 105 63.580.2 339182 632785 34420.1 585751 393214

Average 88.4 922 132115 654839 362183 889924 13.0109 653825 363192 638 81.1 372206 61.3 78.0 395232
SD 1.02 1.12 0.96 0.65 1.65 1.10 221 1.70 136 1.94 147 296 1.80 1.97 2.15 1.11 1.18 2.22 240 0.59  2.40 2.55 0.59 1.76
Class B
Kimono 932983 148 124  49.1 61.0 559419 96.599.9 08.6 069 43.560.5 61.646.2 41.6 60.0 63.7 464 414582 63.1 474
Cactus 92.6 974 13.1 122 485 60.2 55.1 412 96. 999 08.0 065 424598 60.7 444 404 58.1 62.6 46.0 403 57.1 62.4 46.0
Park_scene 92.1 948 135109 482 60.0 549 409 958999 079 064  42.7 59.6 59.743.7 40.1 58.1 62.045.1 404574 61.7459
BQTerrace 93.0954 11.6 10.5 49.0 60.1 55.041.0 96.0 999 08.0 06.7 43.5 583 57.842.1 415564 599442 399563 619 448
Average 92.796.5 133 11.5 487 60.3 552413 96.1 999 8.1 067 43.059.6 60.044.1 409 58.1 62.0 454  40.5 573 62.3 46.0
SD 049 1.65 132094 042046 046 045 030 000 0.32022 056092 1.631.70 0.76 1.47 1.60 098  0.64 0.79 0.62 1.07
Class C
Race_horse 92.0 959 095079 529703 468356 939945 061060  48.1 654 552369 463 63.2 57.039.1 463 622 582422
BQMall 89.8 93.3 09.7 07.1 522700 463 352 935939 06.1 06.1 48.0 64.5 53.9 37.1  46.0 62.8 559 38.8 45.1 61.0 55.1 41.7

Party_scene 90.3 942 089069  52.069.8 46.1 351 934 93.6 061 06.1  47.2 64.1 52.8 36.2 450 62.1 550382 44.1 60.3 56.0 40.0
Basketball_drill 94.5 98.1 08.7 07.7  53.0 70.1 46.7 357 93.8 944 06.1 059 47.5 63.3 494 373 43.1 614 538392 41.1 60.1 57.6 38.0

Average 91.6 954 09.1 07.4  52.570.1 46.5354 937941 06.1 060 47.7 643 528369 45.1 624 554388 442609 56.7 40.5
SD 2.12 2.11 048 048 0.50 0.21 0.33 0.29 024 042 0.00 0.10 0.42 0.87 2.49 0.48 144 079 136 045 222 095 1.43 1.90
Class D

Race_horse_ D  92.0 950 11.6 09.6 579 69.9 38.2 296  91.8 958 06.0 06.0 53.4 69.1 48.6 33.3 51.6 68.7 50.4 33. 50.6 67.1 51.3 35.6
Blowing_bubble 90.7 94.5 10.0 08.4  58.4 70.3 38.8 30.0 92.1 97.1 062 062 52.4 69.3 474 31.3 502 674 49.6332 495 662 50.8 343

BQ_square 90.2 942 09.8 08.1 580 70.1 385299 920959 06.106.1 52.469.2 49.331.1 50.1 67.3 47.0 33.0 49.1 66.0 50.1 34.1

Basketball_pass 89.8 94.0 09.3 07.6 ~ 57.8 70.0 38.329.7 92.0 94.6 06.0 06.0  52.3 69.4 47.6 30.9 50.5 67.9 49.4 324 492 66.1 51.4 34.7

Average 90.7 944 10.2 084  58.0 70.1 38.529.8 92.0959 06.1 06.1 52.6 693 47.731.7 50.6 67.9 49.1 33.1  49.6 66.4 50.9 34.7

SD 0.96 0.43 0.99 0.85  0.26 0.17 0.26 0.18 0.13 1.02 0.100.10 0.52 0.13 0.89 1.1l  0.69 0.64 1.47 0.54  0.69 0.51 0.59 0.67
Class E

Kristine_n_Sara 87.8 91.7 14.8 13.1 ~ 70.0 80.8 33.7 229 939 96.8 07.807.0 60.3 78.1 40.6 23.3 58.976.0 42.0 254 582750 43.227.0
Four_people 87.6 91.5 484130 693799 33.1219 931959 073065 60.6 77.5 40.1 23.7 58.8 759 419253 58.1 74.6 43.1 26.9

Jhonny 885919 158 13.6 69.380.1 33.621.8 934961 079067 613777 40.8 254 594759 427272 587757 437273

Average 87.9 91.7 150132  69.580.3 335222 934963 07.706.7 60.777.8 40.524.1 59.0 76.3 422256 583 75.1 433 27.1

SD 0.47 0.20 19.120.32 040 047 0.32 0.61 040 047 0.320.25 0.510.31 036 1.12 032 0.06 044 1.07 0.32 056 0.32 0.21
Class SC

China_speed 89.0 924 14.0 12.1  55.1 66.1 442319 927 969 06.0 04.8 485 65.5 52.3 36.0 464 63.6 544379 50.1 63.1 553 39.0
Slide_show 883919 135114 543650 43.0309 922962 058 043 48.1 64.7 52.2 36.4 46.1 634 54.2 37. 50.0 62.9 55.0 38.9

Sc_Map 879909 123109 546652 434312 925964 059045 47.7 651 522354 459632 540373 49.9 627 54.8 385
Sc_Prog 872922 126 11.1 546649 433313 929967 06.0 047 47.6 641 51.9 36.1 458 63.1 53.7 37.1 49.8 622 54.7 385
Average 88.1 919 13.1 11.3 547 653 435313 926 965 059 04.6 48.0 649 522360 46.1 63.8 54.1 37.5 50.0 62.7 55.0 37.3
SD 0.75 0.67 0.79 0.53 033 0.55 0.51 042 030 0.31 0.100.22 041 0.60 0.17 042 026 022 0.300.37 0.13 039 0.26 0.26

Overall avg. 89.7 934 122104 60.0 732 39.6 28.1 924 959 07.706.8 543 71.2 46.6 30.3 524 69.6 485319 519 68.1 49.8 335
Overall SD 0.61 0.74 744 023 052033 0.75056 045 0.70 0.60 0.26  0.54 0.65 0.96 048  0.47 0.82 0.78 0.29  0.99 0.81 0.42 0.73

**Notes: The bold values denote the best results, while underlined values indicate the second-best results within the respective comparisons.
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Table 3. Average PE (%) and MSE values using a small percentage of the largest coefficients.

PET MSE |
Transform
5% 10% 5% 10%
Baseline KLT 89.7 934 122 104

GBT-CNN | 60.0 73.2 39.6 28.1
Offline training
GL-GBT 924 959 07.7 06.8

Online training | GBT-ONL | 543 712  46.6 303

DCT 524 69.6 485 31.9
No training

DCT/DST | 519 68.1 49.8 335
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Table 4. PSNR (dB) values when using quantization on the transform coefficients. Results are for each sequence and on average per class and for
all classes, including standard deviation values (SD +)

Quantization parameters

Baseline Offline training Online training No training
Sequence KLT GBT-CNN GL-GBT GBT-ONL (ours) DCT DCT/DST
%y 22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37
Class A
Traffic 37.5 332 29.8 27.8  33.3 30.3 294 252 34.0 33.0 30.6 22.1 33.4 30.9 285 23.3 333 31.3 27.5 212 21.0 20.1 19.5 16.1

People_on_street 38.7 344 31.0 29.0 34.5 31.5 30.6 26.4 352 342 31.8 233 34.6 32.2 29.7 244 345 32.5 287 224 220 193 18.6 17.3
Nebuta_festival 39.5 352 31.8 29.8 353 323 314 272 36.0 350 32.6 241 354 329 304 253 353 33.3 295 232 21.7 202 19.5 17.0

Average 38.6 343 309 289 344 31.4 305 263 35.1 34.1 31.7 232 345 32.0 29.5 243 344 324 28.6 223 21.6 199 192 16.8
SD 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 0.96 1.00 1.01 1.01 1.01 1.01 0.51 0.49 0.52 0.62
Class B
Kimono 374 354 309 294 305 284 264 222 345 32.6 284 245 31.7 29.8 274 22.0 32.8 309 28.1 21.5 192 169 162 154
Cactus 38.1 36.1 31.7 30.0 31.2 29.0 27. 229 351 333 29.2 253 32.1 30.2 27.8 22.6 329 31.1 283 22.1 203 179 169 165
Park_scene 36.0 34.0 29.5 28.0 29.1 27.0 25.0 20.8 33.1 31.2 27.0 23.1 30.5 28.6 26.3 20.6 31.4 29.9 27.1 20.1 20.1 19.7 18.6 155
BQTerrace 38.8 36.7 32.3 30.7 35.1 31.7 305 23.5 35.8 33.4 29.8 259 34.1 31.6 29.5 23.3 329 31.1 284 22.8 21.6 209 204 17.7
Average 37.6 35.6 31.1 29.5 31.5 29.0 27.2 224 34.6 32.6 28.6 247 ~32.1 30.1 27.8 22.1 32.5 30.8 28.0 21.6 20.3 18.9 18.0 16.3
SD 1.20 1.16 1.21 1.15 257 197 2.34 1.16 1.15 1.01 1.21 1.21  1.50 1.24 1.33 1.15 0.73 0.57 0.60 1.15 0.99 1.79 1.88 1.07
Class C
Race_horse 38.8 36.0 30.7 23.8 30.8 28.6 26.7 22.5 34.8 329 28.7 248 322 295 27.7 22.3 33.1 30.0 28.1 21.8 205 16.8 162 15.6
BQMall 39.2 36.4 31.1 243  31.2 29.2 27.1 23.0 352 33.3 29.2 253 32.5 29.8 27.8 22.8 33.5 30.0 28.1 222 199 19.0 17.7 159
Party_scene 37.1 343 29.0 22.1  29.1 27.0 25.0 20.8 33.1 31.2 27.0 23.1 30.6 28.6 26.4 20.6 31.4 29.9 27.1 20.1 179 15.8 15.1 14.0
Basketball_drill 39.7 36.9 31.7 24.8 34.6 31.7 28.7 23.5 357 338 29.7 259 34.3 31.1 28.7 23.3 33.5 30.1 28.2 22.8 209 199 18.0 17.7
Average 38.7 359 30.6 23.8 314 29.1 269 225 347 32.8 28.7 248 324 29.8 27.7 22.3 329 30.0 279 21.7 19.8 179 16.8 158
SD 1.13 1.13 1.16 1.17 230 1.95 1.52 1.17  1.13 1.13 1.17 1.20 1.52 1.03 095 1.17 1.00 0.08 0.52 1.16 1.33 1.90 1.35 1.52
Class D
Race_horse_D 40.5 384 34.1 27.0 345 33.1 30.0 234 39.7 379 32.6 29.7 34.5 32.5 29.0 24.0 345 31.6 28.0 244 222 214 20.1 193
Blowing_bubble 41.9 40.0 354 284 379 35.6 32.4 247 41.1 39.2 340 31.1 37.0 34.2 30.8 253 359 23.6 29.0 25.7 23.6 224 21.1 20.6
BQ_square 39.1 37.0 32.7 25.6 33.1 31.7 28.6 220 383 36.5 31.2 283 33.2 31.6 279 22.6 33.1 31.2 27.0 23.0 20.8 20.0 19.0 17.9
Basketball_pass 422 40.3 357 28.7 379 36.8 32.7 250 41.4 395 343 31.3 37.1 35.0 31.1 25.6 36.0 329 293 26.0 23.7 22.7 21.3 209
Average 40.9 38.9 34.5 27.4 359 343 309 23.8 40.1 38.3 33.0 30.1 355 333 29.7 244 349 29.8 283 248 22.6 21.6 204 19.7
SD 1.42 153 1.37.142 244 232 197 1.37 142 1.37 142 140 192 1.55 1.52 1.37 1.37 421 1.04 1.37 1.37 1.22 1.06 1.37
Class E
Kristine_and_Sara  40.6 39.3 35.5 30.7 364 34.6 319 250 36.7 33.7 31.3 267 36.4 345 31.5 258 36.3 34.0 31.2 26.3 24.0 22.3 21.2 21.1
Four_people 39.0 37.7 339 29.1 34.8 33.0 303 23.4 351 32.1 29.7 25.1 34.8 33.2 30.0 242 347 33.0 29.6 24.7 224 21.8 209 19.6
Jhonny 41.8 40.5 36.7 319 37.6 35.8 33.1 263 38.0 349 325 28.0 37.6 35.6 32.6 27.0 37.5 35.0 322 27.5 24.0 21.3 202 17.7
Average 40.5 39.2 354 30.6 36.3 345 31.8 249 36.6 33.6 31.2 26.6 363 34.4 31.4 257 36.2 34.0 31.0 26.2 23.5 21.8 20.8 19.5
SD 1.40 1.40 1.40 140 1.40 1.40 1.40 145 145 1.40 1.40 145 140 1.20 1.31 1.40 140 1.00 1.31 1.40 0.92 0.50 0.51 1.70
Class SC
China_speed 402 37.0 339 33.1 36.1 33.7 27.4 246 369 34.0 30.5 25.1 35.8 334 28.8 254 349 32.8 29.6 26.0 204 18.7 18.1 17.9
Slide_show 42.1 35.1 32.0 31.2 342 31.8 255 227 350 32.1 28.6 23.2 344 32.1 27.6 234 339 323 29.1 241 204 184 18.1 18.0
Sc_Map 409 37.6 34.6 33.8 36.7 343 28.1 252 375 347 31.2 258 36.3 33.7 29.4 26.1 355 32.8 30.3 26.7 23.0 194 18.8 18.6
Sc_Programming ~ 41.2 37.9 349 34.1 40.1 36.6 314 255 379 350 31.6 26.1 38.0 349 30.9 264 35.6 32.8 30.3 27.0 23.3 22.7 223 219
Average 41.1 36.9 33.9 33.1 36.8 34.1 28.1 245 36.8 34.0 30.5 25.1 36.1 33.5 29.2 253 35.0 32.7 29.8 26.0 21.8 19.8 19.3 19.1
SD 0.79 1.26 1.30 1.30 2.46 198 246 1.26 1.28 1.30 1.33 1.30 1.49 1.15 1.37 1.35 0.78 0.25 0.59 1.30 1.59 1.98 2.01 1.89
Overall avg. 39.6 36.8 32.7 28.8 34.3 32.0 29.1 239 36.4 34.3 30.5 25.8 34.4 32.1 29.1 239 342 319 28.8 23.7 20.6 19.0 18.2 17.0
Overall SD 0.24 0.19 0.15 0.16 0.66 0.48 0.57 0.16 0.18 0.18 0.16 0.16 0.29 0.19 0.23 0.16 0.28 1.53 0.32 0.15 0.39 0.69 0.65 0.46

**Notes: The bold values denote the best results, while underlined values indicate the second-best results within the respective comparisons.
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Table 5. Average PSNR (dB) values when using quantization on the transform coefficients.

QP
Transform »y S

2 27 32 37

Baseline KLT 39.6 36.8 327 288

GBT-CNN | 343 32.0 29.1 239
Offline Training
GL-GBT 36.4 343 305 25.8

Online Training | GBT-ONL | 34.4 32.1 29.1 239

DCT 342 319 288 237
No training

DCT/DST 20.6 19.0 182 17.0
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Table 6. BD-PSNR, BD-BR values (with respect to the DCT) when using quantization on the transform coefficients. Results are for each sequence
and on average per class and for all classes, including standard deviation values (SD =).

Methods
Baseline Offline training Online training No training
KLT GBT-CNN GL-GBT GBT-ONL (ours) DCT/DST
Sequence BD-PSNR BD-BR  BD-PSNR BD-BR  BD-PSNR BD-BR BD-PSNR BD-BR  BD-PSNR BD-BR
Class A
Traffic 08.16 -78.56 01.17 -14.87 4.69 -31.44 01.01 -11.63 -6.39 23.62
People_on_street 07.02 -80.64 00.74 -15.61 3.83 -33.14 00.59 -13.47 -7.01 21.11
Nebut_festival 07.29 -80.35 00.92 -15.02 3.96 -33.04 00.81 -12.23 -6.32 22.94
Average 7.5 -79.9 0.9 -15.2 4.2 -32.5 0.8 -12.4 -6.6 22.6
SD 0.60 1.13 0.22 0.39 0.46 0.95 0.21 0.94 0.38 1.30
Class B
Kimono 03.75 -67.21 0.45 -09.23 02.33 -37.76 00.31 -06.44 -4.11 19.47
Cactus 02.91 -68.23 0.67 -08.22 1.31 -38.69 00.51 -06.08 -4.54 19.93
Park_scene 03.92 -67.30 1.03 -13.22 02.24 -37.67 00.90 -11.08 -5.12 16.94
BQTerrace 03.06 -68.18 1.51 -14.79 1.36 -38.64 1.35 -11.55 -3.82 13.01
Average 3.4 -67.7 0.9 -11.4 1.8 -38.2 0.8 -8.8 4.4 17.3
SD 0.50 0.55 0.46 3.14 0.55 0.55 0.46 293 0.57 3.17
Class C
Race_horse 10.83 -52.33 01.11 -12.43 5.17 -46.19 00.97 -09.44 -09.16 30.01
BQMall 09.99 -53.26 00.94 -14.99 4.15 -47.12 00.78 -11.85 -08.29 27.81
Party_scene 08.01 -52.24 02.26 -11.56 05.08 -46.10 02.15 -08.95 -06.77 20.76
Basketball_drill 10.13 -53.21 01.46 -12.03 04.20 -47.07 01.30 -09.29 -07.77 21.45
Average 9.7 -52.8 L4 -12.8 4.7 -46.6 1.3 -9.9 -8.0 25.0
SD 1.21 0.55 0.59 1.53 0.55 0.55 0.61 1.33 1.00 4.60
Class D
Race_horse_D 10.67 -75.72 02.12 -09.32 08.50 -75.26 01.98 -06.53 -15.27 32.85
Blowing_bubble 09.65 -76.65 02.15 -09.12 -07.66 -76.28 01.99 -06.98 -14.04 31.51
BQ_square 10.58 -75.63 01.06 -12.94 08.67 -75.35 00.95 -10.80 -11.88 29.03
Basketball_pass 09.70 -76.60 01.65 -11.22 07.81 -76.23 01.49 -07.98 -14.96 32.59
Average 10.2 -76.2 1.7 -10.7 4.3 -75.8 1.6 -8.1 -14.0 31.5
SD 0.55 0.55 0.51 1.80 8.00 0.55 0.49 1.92 1.53 1.74
Class E
Kristine_and_Sara 08.47 -69.89 0.56 -17.34 02.52 -22.28 00.40 -14.10 -12.92 35.96
Four_people 07.33 -71.97 0.64 -17.02 01.66 -23.98 00.49 -14.88 -11.93 36.01
Jhonny 07.60 -71.68 1.01 -10.50 01.79 -23.88 00.90 -07.71 -10.72 19.34
Average 7.8 -71.2 0.7 -15.0 2.0 -234 0.6 -12.2 -11.9 30.4
SD 0.60 1.13 0.24 3.86 0.46 0.95 0.27 3.93 1.10 9.61
Class SC
China_speed 09.21 -69.05 0.33 -08.61 06.15 -40.27 00.19 -05.82 -14.09 35.90
Slide_show 08.52 -70.02 0.36 -07.92 05.18 -41.16 00.20 -05.78 -14.71 35.01
Sc_Map 08.37 -70.07 0.21 -06.22 05.13 -41.20 00.08 -04.08 -15.82 37.90
Sc_Programming 10.21 -69.14 0.34 -09.05 06.06 -40.19 00.18 -05.81 -14.28 36.03
Average 9.1 -69.6 0.3 -8.0 5.6 -40.7 0.2 54 -14.7 36.2
SD 0.84 0.55 0.07 1.24 0.55 0.55 0.06 0.86 0.77 1.21
Overall average 7.97 -69.0 1.03 -11.87 3.82 -44.22 0.89 -9.20 -10.0 27.24
Overall SD 0.27 0.30 0.20 1.28 3.06 0.21 0.21 1.22 0.41 322

**Notes: The bold values denote the best results, while underlined values indicate the second-best results within the respective comparisons.
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Table 7. Average BD-PSNR and BD-BR values (with respect to DCT) when using quantization on the transform coefficients.

Metric
Transform | —————————
BD-PSNR BD-BR

Baseline KLT 7.97 -69.0

GBT-CNN 1.03 -11.87
Offline Training

GL-GBT 3.82 -44.22
Online Training | GBT-ONL 0.89 -9.20
No training DCT/DST -10.0 27.24

Table 8. Average processing times, per frame, in seconds(s) and milliseconds (ms) for several transforms.

Baseline Offline training Online training No training
Video KLT GBT-CNN GL-GBT GBT-ONL (ours) DCT DCT/DST
(ms) Train (s) Test(s)  Train (s) Test(ms) (s) (ms) (ms)
Class A
Traffic 102.31 50032 045 654.34  93.21 1.47 12.42 22.14
People_on_street 75.76 59843  0.62 634.23 105.32 2.63 17.23 25.90
Nebuta_festival 119.22 845.12  0.83 900.34  105.34 421 20.54 30.67
Class B
Kimono 65.12 73445 032 830.12 7246 4.12 15.48 22.14
Cactus 54.09 890.67  0.75 940.00  69.22 7.34 13.82 21.98
Park_scene 69.12 93475 091 993.20  79.31 10.25 17.45 26.21
BQTerrace 45.17 85727 034 860.30  58.34 5.96 16.23 21.72
Class C
Race_horse 30.48 327.67 0.58 41293 39.12 2.65 16.47 17.15
BQMall 38.87 333.60 0.78 35049  46.28 5.12 20.16 26.63
Party_scene6 34.54 379.34  0.62 438.45  39.27 4.56 18.38 23.56
Basketball_drill 31.73 365.03 051 41232 3588 3.99 17.44 20.61
Class D
Race_horse_D 20.89 280.11 043 30045 2549 2.67 23.66 27.39
Blowing_bubble 17.44 162.82 049 183.89 2541 1.98 21.79 29.33
BQ_square 38.72 21844  0.70 24946  47.29 432 13.76 17.89
Basketball_pass 36.93 28493  0.74 319.50  40.71 3.83 12.11 16.74
Class E
Kristine_and_Sara 61.86 482.17  0.65 54396  72.11 3.33 39.23 49.22
Four_people 65.90 41391  0.71 45845  69.25 421 47.35 54.23
Jhonny 87.48 517.33  0.82 56245  95.56 7.11 51.26 62.01
Class SC
China_speed 149.34 615.15 1.21 648.67  200.40 6.91 80.12 120.05
Slide_show 138.41 52243 1.10 579.04  183.56 5.62 73.67 104.38
Sc_Map 157.18 631.54  1.26 735.60  190.80 7.01 86.09 143.29
Sc_Programming 146.95 421.55 1.25 502.56  160.32 6.21 82.71 119.72
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