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Highlights

• A novel online graph-based transform learning framework (GBT-ONL) is proposed, which learns Graph-Based

Transforms dynamically during encoding without any offline training phase.

• The method employs a shallow fully connected neural network (FC-NN) that predicts the graph Laplacian for

each residual block as data is pro- cessed, enabling real-time adaptation to content variations.

• GBT-ONL requires no transmission of graph or model parameters in the bitstream since the same online learning

process is mirrored at the decoder side.

• By learning transforms online, the framework eliminates the need for large, curated, or domain-specific train-

ing datasets, ensuring robustness and gen- eral applicability across different imaging domains (e.g., natural,

medical, remote sensing data).
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Abstract

Orthogonal transforms are key components of several image and video compression systems and standards, as they provide a
de-correlated representation of signals to enhance compressibility. However, the most commonly used transforms for compression,
such as the Discrete Cosine transforms (DCT) and Discrete Sine transforms (DST), are fixed and non-adaptive, limiting their ability
to capture complex or varying signal characteristics. Graph-based transforms (GBTs) have shown improved energy compaction
and reconstruction performance, but face two major limitations: the need to signal graph information in the compressed bitstream,
which increases overhead and may complicates decoder synchronization, and a dependency on offline training process, which is
highly dependent on the quality and completeness of the training data. To address these issues, this paper introduces a novel frame-
work, GBT-ONL, which learns GBTs online in the context of block-based predictive transform coding. The proposed GBT-ONL
framework uses a shallow fully connected neural network to predict the graph Laplacian needed for both the forward and inverse
GBT. By relying only on information available during encoding, GBT-ONL eliminates the need to signal additional information
in the compressed bitstream, and removes the requirement for any prior offline training. Evaluations on several video sequences
show that GBT-ONL outperforms both traditional (non-learnable) transforms and existing learnable transforms in terms of energy
compaction, reconstruction error, and compression efficiency, as measured by BD-PSNR and BD-Rate metrics.

© 2011 Published by Elsevier Ltd.

Keywords: Graph-based transform, GBT-ONL, video coding, compression, online training, predictive transform coding.

1. Introduction1

Block-based Predictive Transform Coding (PTC) is a technique used by several image and video compression2

systems to improve performance, including the state-of-the-art compression techniques as defined by the High Effi-3

ciency Video Coding (HEVC) standard [1], Video Platform (VP9) [2], AOmedia Video 1 (AV1) [3] and the Versatile4

Video Coding (VVC) standard [4]. Fig. 1 shows a typical encoder-decoder pipeline for video compression based5

on block-based PTC and intra-prediction; i.e., the prediction is performed using information contained in the frame6

∗Corresponding author
Email addresses: D.Roy@aston.ac.uk (D. Roy), tanaya.guha@glasgow.ac.uk (T. Guha), v.f.sanchez-silva@warwick.ac.uk (V.

Sanchez)
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Figure 1. A typical encoder-decoder pipeline for video compression using block-based PTC using intra-prediction. The encoder
side is in charge of compressing the frames, while the decoder side is in charge of decompressing them.
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Figure 2. (a) Partition of a frame into non-overlapping blocks. (b) Directions of the intra-prediction modes that are common to the VVC and HEVC
standards. (c) Sample block with the reference samples used for prediction shaded in blue. (d) Block predicted by the mode 26 (pure vertical mode)
for the block in (c). Notice how the reference samples located above the block are simply copied into the locations of the predicted block following
a vertical direction.

being predicted. In this figure, four main components can be distinguished: (i) prediction, (ii) transform, (iii) quan-7

tization, and (iv) entropy coding. In the prediction component, block-based PTC first divides the frame into several8

non-overlapping blocks (see Fig. 2 (a)) and then processes the blocks one by one following a specific order; e.g., a9

raster scanning order. It predicts each block by using previously processed blocks to exploit spatial redundancies. It10

computes a residual block for each block as the difference between the original and predicted block. In the transform11

and quantization components, each residual block is first transformed and the transform coefficients are quantized. In12

the final entropy encoding component, the quantized coefficients are encoded to produce a compressed bit-stream. The13

compressed blocks are reconstructed during encoding so that these blocks can be used to predict subsequent blocks.14

This allows replicating the process at the decoder when decompressing the bit stream.15

PTC in state-of-the-art compression techniques uses one of several prediction modes to predict a block using intra-16

prediction. For example, the HEVC standard includes 33 angular modes to model 33 different directional patterns,17

and a DC mode and a Planar mode to predict smooth textures. The VVC standard, on the other hand, supports up to18

87 prediction modes, which include 65 angular modes, 20 wide angular modes, a DC mode, and a Planar mode (see19

Fig. 2 (b)).20
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Figure 3. The residual signal of a frame partitioned using 4 × 4 blocks, with one of these blocks represented as a 4-connected graph with 16 nodes.

The transform in block-based PTC is essential for improving compression performance because it allows decor-21

relating the residual blocks into transform coefficients. An effective transform should have good energy compaction22

properties, i.e., it should capture most of the signal’s energy in a few important transform coefficients. The Karhunen23

Loève Transform (KLT) is widely recognized as the linear transform with the best energy compaction properties for24

any arbitrary signal with a known covariance matrix. The KLT computes the eigendecomposition of the signal’s co-25

variance matrix. Since the Discrete Cosine Transform (DCT) does not require the signal’s covariance matrix and its26

function bases are very similar to those of the KLT, it is widely used for the compression of natural images. However,27

the DCT is a fixed transform that does not account for the statistical properties of the residual block to be trans-28

formed. It has been shown that transforms that adjust to the statistical properties of the residual blocks can improve29

compression performance [5, 6].30

Recently, the Graph-Based Transform (GBT) has been shown to attain promising results for data decorrelation31

and energy compaction [7], especially for block-based PTC. The GBT is an orthogonal transform that uses graphs32

to describe the signal to be transformed. Hence, the GBT can adapt to the signal’s characteristics. In other words,33

a separate graph can be used on each residual block (see Fig. 3) to adequately represent the intrinsic structure and34

correlation among the residual values [8]. The GBT is constructed by eigendecomposition of the graph Laplacian of35

the residual block to be encoded. In [9, 10], it was shown that the GBT can outperform the DCT and the combination36

of the DCT and the Discrete Sine Transform (DST) as used in modern video codecs, in terms of energy compaction37

properties and reconstruction quality.38

In general, when the GBT is used in block-based PTC, the same graph used to compute the GBT during the trans-39

form component should be available at the reconstruction stage to compute the inverse GBT needed to recover the40

residual block. This extra information should then be signaled into the compressed bitstream, hence increasing the41

overhead and hindering compression performance. To address this issue, several works have attempted to learn opti-42

mal GBTs by using machine learning (ML) [11]. Recently, in [12, 13] we propose a framework for learning GBTs by43

using deep learning (DL), where a trained fully connected neural network (FC-NN) is assumed to be common knowl-44

edge between the encoder and decoder of a compression system that uses block-based PTC with intra-prediction. As45

a result, that solution does not require signaling any additional information into the compressed bit-stream. How-46

ever, it does require first training an FC-NN offline with the appropriate training data; i,e., training the FC-NN before47
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operation.48

The idea of learning GBTs offline for compression purposes by using ML has gained increasing popularity recently49

[14]. However, the performance of such ML-based solutions depends on the amount, quality, and relevance of the50

training data [15]. In many cases, the training data may not accurately reflect the characteristics of the data to be51

processed after training the models. In such cases, the performance tends to be poor because, once trained offline, the52

models cannot adapt to the characteristics of new data. Hence, online optimization of the ML model [16] has emerged53

as an attractive solution to avoid the offline training process. In this context, online optimization refers to training the54

ML model as data is being processed.55

Let us recall that in block-based PTC, blocks are processed sequentially following a specific order. Hence, online56

optimization is very amenable to be used within block-based PTC. In this work, we leverage online optimization and57

propose the GBT-ONL framework to learn GBTs online for block-based PTC within the context of intra-prediction.58

Specifically, our framework predicts the graph Laplacian needed to compute the GBT of each residual block by using59

a shallow FC-NN that is optimized online with the data being processed.60

Since the GBT-ONL framework processes the data progressively to update the FC-NN’s parameters as new data61

becomes available, it can learn GBTs that adapt to pattern changes in video frames. Hence, a key advantage of the62

online optimization used by the GBT-ONL framework is the dynamic adaptation to scene complexity, illumination and63

motion changes, as a model is optimized on each residual block of a video frame. Other important advantage is the fact64

that there is no need to signal any additional information into the compressed bitstream, as the same learning process65

used by the encoder can be replicated by the decoder using only the available reconstructed blocks. This contrasts66

with approaches based on pre-trained models, which require signaling the learned parameters into the bitstream, thus67

increasing overhead. Additionally, the online optimization used by the GBT-ONL framework removes the dependency68

on large, curated training datasets, making it more practical and adaptable across diverse content, including medical69

and remote sensing imaging data [17, 18, 19, 20, 21].70

In summary, our work has two main contributions. First, it introduces an online optimization framework to71

compute GBTs, where an FC-NN is trained as blocks are being processed sequentially. This allows the FC-NN to72

adapt to each residual block to accurately predict the graph needed to compute the corresponding GBT. Second, since73

the training process is performed online using information available to block-based PTC, it can be exactly replicated74

at the decoder, thus avoiding the need to signal extra information to compute the inverse GBT for reconstruction. To75

the best of our knowledge, no other solutions have been proposed before to predict a graph Laplacian online for GBTs76

by using ML within the context of block-based PTC and without the need to increase the signaling overhead of the77

compressed bitstream.78

Our performance evaluations on several video frames show that the GBTs learned by the GBT-ONL framework79

outperform the DCT and the DCT/DST in terms of the percentage of the signal’s energy preserved by a small subset80

of the largest transform coefficients, the mean squared error of the reconstructed data, and the compression efficiency81

as measured by the BD-PSNR and BD-Rate metrics.82
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The rest of the paper is organized as follows. Section 2 summarizes the computation of the GBT and briefly83

reviews the related work on learning transforms offline within the context of block-based PTC. We describe our84

proposed GBT-ONL framework in Section 3. Section 4 presents our performance evaluations and discusses the85

results. Finally, Section 5 concludes this paper.86

2. Related work87

In this section, we first describe how GBTs are computed for residual blocks, followed by a summary of how88

GBTs are used within the context of block-based PTC. We then review several works that attempt to learn GBTs89

offline, including relevant works that attempt to learn offline other transforms used for image and video compression.90

2.1. GBTs for residual blocks91

The GBT of a (square) residual block S ∈ R
√

N×√N with N residual values is usually constructed by eigendecom-92

position of the graph Laplacian, L, of its undirected graph G = (V, E,A). In this context, V is the set of N nodes93

V = {vn}Nn=1, E is the set of edges, and A ∈ RN×N is the symmetric weighted adjacency matrix. Each node in V repre-94

sent a pixel location in the residual block. The entry Ai j in A represents the weight of the edge ei j connecting nodes95

vi and v j, where Ai j = A ji and nodes vi and v j represent, respectively, pixel locations i and j, in the block. If there is96

no edge ei, j connecting nodes vi and v j, Ai j = 0. Large values in A usually represent a high similarity between the97

connected nodes, according to a given criterion, for example, similarity between residual values. The graph Laplacian,98

L, is computed as L = D − A, where D is the diagonal degree matrix, whose nth diagonal element is equal to the sum99

of the weights of all edges incident onto node vn. The eigendecomposition of L is used as the orthogonal transform100

for the residual block since it has a complete set of eigenvectors with real, non-negative eigenvalues.101

Let us denote the eigendecompostion of L by {λq,uq} where λq/uq is the qth eigenvalue/eigenvector pair and102

U is the set of eigenvectors. Analogous to the classical Fourier transform, one can define the GBT for the signal103

S ∈ R
√

N×√N represented by the graph G, as the expansion of S in terms of the eigenvectors of L:104

Ŝ(λq) = ⟨S,uq⟩ =
N−1∑

k=0

S(k)uq(k) = FS, (1)

where N is the number of nodes, F = U−1 is the graph Fourier transform and σ(L) = (λ0, λ1, · · · , λN−1) denotes the105

set of eigenvalues of L. The signal can be reconstructed by the inverse GBT, which is given by S = F−1Ŝ = UŜ. As a106

graph is defined by an adjacency matrix, A, it is possible to generate different transforms for the same block by using107

different graph topologies and weights in G [22]. In general, the graph connectivity and the edge weights are inferred108

from the data to be transformed.109

2.2. GBTs within the context of PTC110

Within the context of block-based PTC, the GBT performs significantly well in generating decorrelated coefficients111

that can compact the signal’s energy into a few largest coefficients [23]. S. Bagheri et. al [24] propose a solution for112
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learning a graph Laplacian by minimizing a graphical lasso. In their work, the transformation of a signal is realized by113

a hybrid model that combines the KLT and the DST. In [25], the authors show that GBTs are optimal for block-based114

PTC if the signal follows a Gaussian Markov Random Field (GMRF) model. In [26], the authors propose an optimized115

GBT for residual signals by introducing an intra-prediction scheme that exploits the differences between neighboring116

pixel pairs and the mean of a cluster of pixels. In our previous work [9], we propose a class of GBTs for PTC that117

are constructed by using a graph with unit edge weights and weighted self-loops in every node. The self-loops have118

been shown to improve the decorrelation properties of the GBT. To avoid signaling any additional information into119

the bitstream to compute the inverse GBT, we also introduce a coding framework that uses a template-based strategy120

to predict blocks in the pixel and residual domains. Similarly, the work in [10] eliminates the need to signal the121

graph information into the bitstreamby computing the GBT based on a predicted residual. Recently, the work in122

[27] introduces the Symmetry-based Graph Fourier Transforms (SBGFTs), which are non-separable transforms based123

on the generation of symmetric graphs by adding symmetrical connections between nodes. Although the SBGFTs124

do not explicitly adapt to data, the authors exploit the correlations between optimal graphs and prediction modes in125

intra-prediction to provide a type od data adaptation.126

2.3. Offline and online learning of GBTs127

Several works that attempt to learn GBTs within the context of block-based PTC have been proposed. In [28],128

the author proposes two different techniques to design GBTs. In the first technique, they formulate an optimiza-129

tion problem to learn graphs from data and provide solutions for optimal separable and non-separable GBT designs,130

called GL-GBTs. The optimality of the proposed GL-GBTs is also theoretically analyzed based on GMRF models for131

residual signals. The second technique develops edge-adaptive GBTs (EA-GBTs) to adapt transforms to signals with132

strong edges (discontinuities). To accomplish this task, they train a large model offline with a large dataset collected133

by predicting blocks of several sizes with several intra-prediction modes. The advantages of EA-GBTs are both theo-134

retically and empirically demonstrated. The experimental results show that their proposed transforms can outperform135

the KLT. In [11], the authors propose the graph template transform (GTT), which approximates the KLT by exploiting136

a priori information the about signal as represented by a graph template. The GTT, which is learned by a constrained137

optimization framework, has been shown to achieve a rate-distortion performance similar to that of the KLT with138

significantly less complexity. In [29], the authors introduce the GBSTs (Graph Based Separable Transforms), based139

on two line graphs with optimized weights. For the construction of the GBST, the authors formulate a graph learning140

problem to design two separate line graphs using row-wise and column-wise residual block statistics, respectively.141

They analyze the optimality of the resulting separable transforms and show that the GBST can outperform the DCT,142

the DST, and the separable KLT. In [30] authors proposed to combine deep Probabilistic Graphical Networks (PGNs)143

and deep compression techniques together to derive sparse versions of the deep probabilistic models. In [31], we144

propose a GBT based on 3D convolutional neural networks (GBT-CNN). The 3D convolutional neural network (3D-145

CNN) predicts the graph information needed to compute the transform and its inverse, thus reducing the signaling cost146

7

                  



D . Roy et al. / Procedia Computer Science 00 (2025) 1–23 8

to reconstruct the data after transformation. We show that the GBT-CNN can outperform the DCT and the DCT/DST147

in terms of the percentage of energy preserved by a small subset of the largest transform coefficients, the mean squared148

error of the reconstructed data, and the transform coding gain. In [32], the authors address a problem of learning graph149

Laplacians by adopting a factor analysis model that enforces minimizing the variations of the signal on the learned150

graph. The work in [33] reports improvements over the DCT by introducing a novel adaptive separable path that151

can provide better data decorrelation for intra-predicted data. However, differently from our proposed GBT-ONL152

framework, it increases the signaling overhead in the bitstream, as it requires indicating the usage of the GBT on each153

block.154

Recently, the work in [34] introduces a block-adaptive separable path graph-based transform (GBT), which focuses155

on adaptively modifying the block size and learning a GBT. Although the GBT is alo learned in an online scenario,156

the learning process relies on sequential K-means clustering, where each available block size has K clusters and K157

GBT kernels. Hence, different from our GBT-ONL framework, which optimizes an FC-NN, their approach relies on158

finding the nearest cluster to a block, which is then used to derived the GBT.159

2.4. Offline learning of other transforms160

Apart from the GBT, several methods to learn other transforms for compression purposes may be found in the161

literature [35]. For example, in [36], the authors propose a fully unsupervised deep-learning framework that can162

extract a meaningful and sparse representation of raw high-frequency signals by embedding important properties of163

the fast discrete wavelet transform (FDWT) in the architecture. In [37], a novel sub-pixel convolutional generative164

adversarial network (GAN) is learnt for reconstruction of images in compressed sensing. Since the DCT is widely used165

for block-based PTC, many works attempt to learn the mapping relationship between images compressed by using the166

DCT and their original version to reduce compression artifacts [38, 39]. Similarly, several works focus on learning the167

KLT offline [40]. For example, in [41] the authors propose a novel signal-independent separable transform based on168

the KLT to improve its efficiency in block-based PTC. A KLT matrix is trained offline using several residual blocks to169

account for different residual characteristics. Deep learning models are also exploited for learning the KLT [42] under170

a supervised training framerwork. Recently, the use of rate distortion optimized transform (RDOT) designs has re-171

gained popularity to create data-dependent transforms that minimize rate-distortion costs. This is commonly achieved172

by using a clustering step to identify training data examples that cannot be well represented by a fixed transforms;173

e.g., the DCT. For example, the work in [43] proposes using this rate distortion approach to learn separable GBTs.174

To summarize, a key difference between the work presented in this paper and the previously proposed methods that175

attempt to learn an orthogonal transform is that several of those methods need to train a model offline and thus depend176

on the quantity, quality, and relevance of the training data. Those methods that rely on an online learning process,177

employ clustering approaches to find the most similar cluster to a block, which is subsequently used to construct a178

GBT. Our proposed GBT-ONL framework does not require an offline training process, and more importantly, relies179

on a true online learning process that requires the optimization of a loss function, as explained next.180
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3. Proposed GBT-ONL framework for intra-predicted data181

Online optimization aims to learn a mapping function based on a sequence of samples as the samples are processed182

by a model [44, 45, 46]. Such a mapping function is expected to perform a specific task based on the processed183

samples, for example, classification or regression. In the case of online optimization of an FC-NN, the mapping184

function is learned by defining the parameters of the network as samples are being processed. Those parameters are185

expected to perform the task very well for the current sample. Specifically, the parameters are usually initialized186

to random values and are updated sequentially using only the data being processed. To improve performance, the187

parameters learned for the current sample can be used as the initial set of parameters to be optimized for the next188

sample.189

Our work concentrates on learning GBTs online within the context of block-based PTC. We focus on intra-190

prediction as currently performed by the HEVC and VVC standards; however, this work is codec-agnostic and can191

be used with any video and image codec that uses block-based PTC with intra-prediction. More specifically, our192

GBT-ONL framework relies on a shallow FC-NN trained over several iterations of gradient descent (GD) to predict193

the graph Laplacian required to compute the GBT for the current residual block. Once the optimization for the current194

residual block is complete, the FC-NN is optimized to predict the graph Laplacian of the subsequent residual block195

using as the initial set of parameters those optimized for the previous block. This process is repeated until all residual196

blocks are processed. The process of defining the initial set of parameters to be optimized for the current block can be197

expressed mathematically for any two consecutive blocks with indices k and k + 1 as follows:198

W0
k+1 ← W̃k, (2)

where W0
k+1 and W̃k denote the initial and final set of parameters for block k + 1 and block k, respectively. For the199

first residual block of a frame, our shallow FC-NN uses parameters initialized to known values, i.e., W0
k=0 is known200

for block k = 0. Moreover, the FC-NN uses information obtained from the blocks that have been already processed201

by block-based PTC as the input. Consequently, no additional information needs to be signaled into the bitstream to202

repeat the same optimization process during the reconstruction of the blocks since the same input is available when203

blocks are reconstructed sequentially and in the same order used to compute their GBTs. Let us recall that such204

sequential encoding and decoding processes are common in modern video and image codecs that use block-based205

PTC.206

By using online optimization, our main objective is to learn a mapping function, f(·), between an average residual207

block for the current block k, denoted by Ck, and the graph Laplacian of such an average residual block:208

L̂k ≈ f(Ck), (3)

where L̂k is the predicted graph Laplacian of the average residual block and Ck =
1
3

∑3
d=1 Md is computed as the209
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Figure 5. Architecture of the shallow FC-NN used by the proposed GBT-ONL framework for 8 × 8 blocks.

average residual of the three residual blocks surrounding the current block, k. Here, Md represents the dth surrounding210

residual block (see Fig. 4).211

Note that in PTC, the blocks surrounding the current block, k, are already processed. Consequently, the same three212

residual blocks, {Md}, are available when reconstructing a frame block-by-block. Hence, they can be used as an input213

to the same FC-NN for predicting the same graph Laplacian, which is needed to compute the inverse GBT for block214

k. The rationale behind using these three surrounding residual blocks is based on their similarities with the current215

residual block. Namely, these three blocks are expected to have similar characteristics to those of the residual block216

to be transformed. For residual blocks located in the corner or along the edges of a frame or image, which may not be217

surrounded by three residual blocks, we use a residual block with a constant value equal to the DC value of the frame;218

e.g., for 8 bpp images, we use a value of 128.219

Our solution to learn the mapping function in Eq. 3 is based on an encoding-decoding shallow FC-NN, as depicted220

in Fig. 5 for the case of 8 × 8 blocks. This shallow FC-NN has an input layer of 64 neurons and a 512-neuron hidden221

layer, leading to the output layer of 4096 neurons. The average residual block, Ck, in vector form, denoted by ck is222

used as input to the FC-NN, which is trained to predict the graph Laplacian of Ck, also in vector form and denoted223

by lck . In other words, lck serves as the ground truth for the training process. Under the assumption that the three224
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Figure 6. Sequential processing of blocks by the proposed GBT-ONL framework. To estimate the graph Laplacian of the current block, k, the
shallow FC-NN uses the average residual block in vector form, denoted by ck .

surrounding residual blocks {Md} are similar to the residual block to be transformed, the graph Laplacian lck is then225

expected to be similar to that of the current residual block, denoted by lk; hence lck ≈ lk .226

Fig. 6 shows the overall functionality of the GBT-ONL framework to predict the graph Laplacian for each residual227

block k under block-based PTC using intra-prediction. Note that the shallow FC-NN is optimized for each block228

k over several iterations of gradient descent (GD) to accurately predict lck . This optimization process is stopped229

based on threshold ξ, i.e., when the Mean Squared Error (MSE) between the predicted graph Laplacian, l̂ck , and the230

corresponding ground truth, lck , is less than ξ, or when enough iterations of GD have been performed. In other words,231

the FC-NN is overfitted on the input ck. Note that this overfitting process is appropriate for block-based PTC as the232

prediction is based on a single input. The weights found after optimizing the FC-NN on block k, i.e., W̃k, are used as233

the initial weights for block k + 1 (see Eq. 2). The process is repeated for all K residual blocks in the frame.234

Algorithm 1 1 summarizes the online optimization process used by the GBT-ONL framework, where P is the235

maximum number of GD iterations to be performed for the current block, k, α is the learning rate, Arc(·) denotes the236

architecture of the shallow FC-NN, {DCvalue} is a reference block in vector form with all values equal to the DC value237

of the image, md is the dth reference residual block in vector form, and {r, c} denotes the row and column, respectively,238

where a block is located in the image The functionality of this algorithm is explained next:239

• Line 1 of the algorithm iterates over all K residual blocks.240

• Line 3 initializes all the parameters of the FC-NN for the first block to a value of 0.5.241

• Line 4 calculates the average residual block for block k = 0 as a block with DC values.242

1The implementation details are available on GitHub: https://github.com/debaleena82/GBT-ONL.git
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Algorithm 1: Online training used by the GBT-ONL framework for an image with K blocks.
Require:

{{md}, lck

}
for each block k, Arch(·), P, α, ξ, {DCvalue}

1: for k = 0→ (K − 1) do

2: if k = 0 then

3: W0
k=0 = {0.5}

4: ck ← {DCvalue}
5: else

6: W0
k ← W̃k−1

7: if r = 0 AND c! = 0 then

8: ck ← 1
3 (m3 + {DCvalue} + {DCvalue})

9: elseif r! = 0 AND c = 0 then

10: ck ← 1
3 (m2 + {DCvalue} + {DCvalue})

11: else

12: ck ← 1
3

∑3
d=1 md

13: end

14: end

15: for p = 1→ P do

16:
{
l̂ck ,W

p
k

}← Arch(ck, lck , α,W
0
k)

17: if ||l̂ck − lck ||22 > ξ then

18: W0
k ←Wp

k

19: go to line 16

20: else

21: W̃k ←Wp
k

22: return l̂ck

23: end

24: end

25: end

• Line 6 initializes the parameters of the FC-NN to the parameters found for the previous block.243

• Lines 7 -13 initialize the average residual block according to the position of the current block k to account for244

any unavailable residual block md.245

• Line 15 optimizes the FC-NN for block k over a maximum of P iterations of GD.246

• Line 16 computes the predicted graph Laplacian and the optimized parameters of the FC-NN for iteration p of247

GD, denoted by Wp
k . The optimization is based on the following loss function:248

L(l̂ck , lck ) =∥ l̂ck − lck ∥22 +λ ∥Wp
k ∥22, (4)

where ∥ . ∥2 is the L2 norm and λ is a hyperparameter to control the level of L2-regularization on Wp
k .249

• Line 17 computes the square of the error between the ground truth and the predicted graph Laplacian and checks250
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Figure 7. The GBT-ONL framework incorporated into an encoder-decoder system that uses block-based PTC for compression.

if this squared error is above the threshold ξ. If this squared error is above ξ, the parameters found after iteration251

p of GD are used as the initial set of parameters to be further optimized in Line 16. Otherwise, Line 21 defines252

the final set of parameters as those found at iteration p.253

• Line 22 returns the predicted graph Laplacian, which is to be used to compute the GBT for block k.254

Fig. 7 shows how the proposed GBT-ONL framework can be incorporated into an encoder-decoder pipeline that255

uses block-based PTC for compression with intra-prediction. Our framework assumes that the initial parameters W0
k=0256

of the shallow FC-NN for block k = 0 are common knowledge between the encoder and decoder. Note that the residual257

blocks {Md} used to compute the average residual block Ck are those available at the encoder after the corresponding258

blocks are processed and reconstructed. This guarantees that even after quantization of the corresponding transform259

coefficients, these residual blocks are the same as those available at the decoder.260

4. Performance Evaluation261

4.1. Datasets and experimental setup262

For our experiments, we use the standard video sequences provided by the ISO/IEC JCT1/SC29/WG11 under the263

Common Test Conditions and Software Reference Configurations [47]. Our dataset to evaluate the performance of264

the GBT-ONL framework comprises several 4:2:0 YUV video sequences commonly used to test the performance of265

video codecs. These sequences are organized into six classes: A, B, C, D, E, and Screen Content (SC). They cover266

a wide range of characteristics in terms of length, scene complexity, and type of visual content. These sequences267

serve as a benchmark for evaluating transform performance (see Table 1). We use intra-prediction on each frame of268
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Table 1. Characteristics of the 4:2:0 video sequences used for evaluation.

Name Resolution
No. of Frame Bit

frames rate (fps) depth

Class A

Traffic 2560×1600 150 30 8

People_on_street 2560×1600 150 30 8

Nebuta_festival 2560×1600 150 30 10

Class B

Kimono 1920×1080 240 24 8

Cactus 1920×1080 500 50 8

Park_scene 1920×1080 240 24 8

BQTerrace 1920×1080 600 60 8

Class C

Race_horse 832×480 300 30 8

BQMall 832×480 600 60 8

Party_scene 832×480 500 50 8

Basketball_drill 832×480 500 50 8

Class D

Race_horse_D 416×240 300 30 8

Blowing_bubble 416×240 500 50 8

BQ_square 416×240 600 60 8

Basketball_pass 416×240 500 50 8

Class E

Kristine_and_Sara 1280×720 600 60 8

Four_people 1280×720 600 60 8

Jhonny 1280×720 600 60 8

Class SC

China_speed 1024×768 500 30 8

Slide_show 1280×720 500 20 8

Sc_Map 1280×720 600 60 8

Sc_Programming 1280×720 600 60 8

the video sequences. Specifically, we use blocks of 8 × 8 pixels and the 35 intra-prediction modes that are common269

to the HEVC and VVC standards. We use the mode that provides the lowest residual signal for block k. Note that270

modern video codecs usually make intra-prediction decisions based on the Y and G components of Y:U:V and RGB271

frames, respectively. For this reason, we use only these components of our dataset. For the evaluation of offline272

trained models that predict transforms, we use 61,440 samples (residual blocks) which are partitioned into 80% for273

training and 20% for testing, ensuring there is no overlap between the two sets. The residual data is processed using274

quantization parameters (QPs) of 22, 27, 32, and 37, which are standard values used to attain various compression275

levels. We evaluate performance using standard metrics, including BD-PSNR, BD-BR (with respect to DCT), and276

Mean Squared Error (MSE). These metrics are computed to assess both the reconstruction quality and compression277

efficiency. No additional pre-processing is applied beyond the quantization of residual blocks according to the selected278

QP values.279

We compare the GBTs learned by the proposed GBT-ONL framework against other GBTs, which vary in terms280

of graph topology (including edge weigths) and construction. Specifically, we compare a GBT that uses covariance281
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matrices from several training examples to estimate the graph Laplacian, hereinafter called the GL-GBT [48]. Note282

that this GBT uses offline training. We also compare the GBT-CNN in [31], which uses graphs with unit edge weights283

and no self-loops in the vertices. This method relies on training a 3D-CNN offline. Our experiments also include284

other commonly used transforms for compression purposes; i.e., the KLT, the DCT, and the DCT/DST as used in the285

HEVC and VVC standards. The KLT is used as the baseline in our experiments, as it is expected to provide the best286

performance. However, it is important to recall that the KLT requires storing the covariance matrix of each block.287

All these transforms; i.e, KLT (baseline) , GL-GBT [28], GBT-CNN [49], DCT (fixed transform), DCT/DST (fixed288

transform) and our proposed GBT-ONL, are evaluated on the same data.289

We organize the evaluated transforms into two groups: i) those that are computed based on offline training, ii)290

those that are computed based on online training (including ours), and iii) those that require no training at all (e.g.,291

DCT). Since the GBT-ONL framework does not require offline training, we highlight in bold font and underlined292

font the best and second best results, respectively, among those obtained by the GBTs learned by the GBT-ONL293

framework, the DCT, and the DCT/DST.294

For all experiments, we initialize the parameters of the FC-NN used by the GBT-ONL framework to a value of 0.5295

for the first block of each frame; i.e., W0
k=0 = {0.5}. To optimize the FC-NN, we use up to P = 100 iterations of GD296

with a threshold of ξ = 1e−8. In other words, the optimization process for blokc k is stopped after P = 100 iterations297

of GD steps or if the MSE between the predicted and ground-truth graph Laplacian is less than or equal to ξ = 1e−8. A298

learning rate α = 0.005 is chosen based on several tests to ensure reaching threshold ξ without significantly increasing299

the computational complexity. A small learning rate results in longer times to process each block but may allow300

reaching more precisely the threshold ξ. A large learning rate, on the other hand, results in short processing times,301

but may not allow reaching precisely the threshold ξ. As explained in Section 3, the blocks are processed sequentially302

and the parameters optimized for block k are used as the initial set of parameters for block k + 1.303

4.2. Reconstruction quality and energy compaction performance with unquantized coefficients304

The efficiency of a transform is usually measured by the signal’s energy that a small subset of the largest transform305

coefficients can concentrate. Based on this fact, we first compute the MSE of the reconstructed frames by using only306

a subset of the largest coefficients under the assumption that no quantization is applied to the coefficients. We also307

compute the percentage of the total signal’s energy preserved (PE) by the set of coefficients used for reconstruction,308

where the PE values are computed as the average of the square of the coefficients used for reconstruction divided by309

the square of all coefficients. To select the coefficients used for reconstruction, we set a threshold that indicates the310

minimum absolute value that the coefficients should have to be used to reconstruct a block. We gradually decrease311

this threshold to increase the number of coefficients to be used for reconstruction. This strategy gradually includes the312

largest coefficients in a subset by gradually lowering an initial large threshold [50]. Fig. 8 shows a toy example of this313

strategy.314
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(a) (b) (c) (d)

Figure 8. (a) Absolute values of transform coefficients of a sample block of 8 × 6. (b) Sub-set of coefficients selected for a threshold = 70. (c)
Sub-set of coefficients selected for a threshold = 40. (d) The majority of the coefficients are in the sub-set when the threshold value is 10.

Table 2 tabulates the PE (%) and MSE values for all evaluated sequences using 5% and 10% of the largest coeffi-315

cients, while Table 3 summarizes performance by tabulating average PE and MSE values over all evaluated sequences.316

Compared to the DCT, the transforms learned by the GBT-ONL framework preserve 3.13% more energy for Class A317

videos and 3.65% more energy for all classes, on average, if only 5% of the largest coefficients are used. The GL-GBT318

outperforms the KLT in terms of the PE preserved and the MSE for the natural images of Class D (see Fig. 9 (a)-(b)319

for an example). Recall that the GL-GBT and GBT-CNN rely on offline training, hence their performance depends on320

the amount and relevance of the training data whereas the proposed GBT-ONL framework adapts to the patterns of321

the data being processed without any offline training. As expected, the KLT performs the best for Classes C, E, SC.322

However, let us recall that the KLT requires knowledge of the covariance matrix of each residual block. This implies323

increasing the amount of data to be stored in the compressed bit-stream.324

4.3. Reconstruction quality with quantized coefficients325

We compute the reconstruction quality attained by the evaluated transforms in terms of the PSNR when quanti-326

zation is used on the coefficients. Specifically, we employ four quantization parameters (QPs) used by the HEVC327

and VVC standards: QP = {22, 27, 32, 37}. Table 4 tabulates PSNR values for the evaluated videos when these QPs328

are applied to the transform coefficients, while Table 5 summarizes performance by tabulating average PSNR (dB)329

values over all evaluated sequences. Note that for Class A sequences and all QPs, except for QP = 27, the PSNR330

values attained by the transforms learned by the GBT-ONL framework are larger than those attained by the DCT. For331

example, the GBT-ONL framework outperforms the DCT and the DCT/DST by 2.1 dB and 7.2 dB, respectively, for332

the Traffic sequence (Class A) when QP = 37. On the other hand, for Class C and Class A, the GBT-ONL framework333

outperforms the DCT for QP = 27. Since these two classes include sequences depicting several smooth textures,334

the DCT performs very well on them. For Class D and QP = {22, 27, 32}, the GBT-ONL framework outperforms335

the DCT, while the DCT performs the best for QP = 37. For the sequence BQsquare, the DCT outperforms the336

GBT-ONL framework by only 0.4 dB (see Fig. 9 (c))337

The most challenging videos are those in the SC class, which tend to contain several edges. Fig. 10 depicts a338

frame of the video SC_Programming. For this video, the GBTs learned by the GBT-ONL framework outperform the339
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Figure 9. (a) PE (%) and (b) MSE when up to 10% of the largest coefficients are used for reconstruction of the Class D video BQsquare. (c) PSNR
(dB) of the Class D video BQsquare for several QPs.

 

Figure 10. A frame of sequence SC_Programming of Class SC.

DCT by 2.4 dB, 2.1 dB, and 0.6 dB for QP = {22, 27, 32}, respectively. For all SC videos, the DCT surpasses the340

GBT-ONL framework for QP = 37.341

On average, the GL-GBT outperforms the GBT-ONL framework by 1.8 dB for QP = 22 for all the evaluated342

video sequences since this method uses offline training to predict the graph Laplacian.343

4.4. Compression performance with quantized coefficients344

We evaluate performance when quantizing the transform coefficients in terms of Bjontegaard-based (BD) metrics.345

We use the BD-BR metric (%) for bit-rate and the BD-PSNR metric (dB) for reconstruction quality. The BD-BR346

metric represents the savings in bit-rate, where negative values mean that the transform uses fewer bits for the same347

video quality. The BD-PSNR metric represents the increase in video quality for the same number of bits used. We348

use the entropy [51] of the DCT coefficients as the lower limit for the average coding length in bits per pixel (bpp)349
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for 4 QPs, i.e., QP = {22, 27, 32, 37}. Table 6 tabulates the BD-PSNR and BD-BR values for all evaluated videos,350

while Table 7 summarizes performance by tabulating the average BD-PSNR and BD-BR values over all evaluated351

sequences. . The GBTs learned by the GBT-ONL framework provide BD-PSNR improvements of 1.01dB, 1.35dB,352

2.15dB, 1.99 dB for Class A, B, C, and D sequences, respectively. The smallest improvements are attained for Class353

SC, due to the complexity of these sequences in terms of edges and textures. Specifically, the gains in video quality354

are only in the range [0.08 − 0.20] dB for SC sequences.355

The GBT-CNN and the GL-GBT attain stronger performance than that of the GBT-ONL framework, however,356

we should recall that those transforms need offline training. Compared to the DCT/DST, which do not require any357

training, the GBT-ONL framework attains the best performance and provides important improvements compared to358

the DCT. As expected, the KLT provides the best performance. However, as mentioned before, the KLT requires the359

storage of the covariance matrices in the compressed bit-stream, which makes it impractical.360

In terms of the BD-BR, we can see important improvements introduced by the GBTs learned by the GBT-ONL361

framework. For the sequence People_on_street (Class A), the GBT-ONL framework saves 13.47% of bit-rate com-362

pared to the DCT. Similarly, for the sequence BQ_mall (Class C), the GBT-ONL framework needs 11.85% fewer bits363

than the DCT to store a video of similar quality. The performance on Class E sequences is particularly strong, as the364

GBT-ONL framework saves up to 14.88% of bit rate compared to the DCT. The performance on Class SC is com-365

paratively low due to the presence of several edges in these sequences. As expected, the KLT outperforms all other366

transforms. Specifically, the KLT requires, on average, 70% fewer bits compared to the DCT to store the sequences at367

a similar quality. For example, for sequence Traffic (Class A), the KLT requires 78.56% fewer bits compared to DCT.368

It requires 76.65% and 70.07% less bits for sequences Blowing_bubble (Class E) and Map (Class SC).369

The method proposed in [33] is similar to the proposed GBT-ONL framework in terms of learning GBTs online.370

However, the method in [33] requires signaling into the bitstream the usage of the GBT on each block. That method371

[33] attains a BD-BR value of −10.06, which is better than the BD-BR value of −9.20 attained by the GBT-ONL372

framework for all the sequences evaluated in this work. It is important to note that the BD-BR reported in [33] is that373

achieved by a complete compression pipeline, while that achieved by the GBT-ONL framework is for the block-wise374

transform process of a compression pipeline. Hence, the relatively better results achieved by the method in [33] in375

terms of BD-BR may be due to the use of a powerful entropy encoder to compress the transform coefficients.376

Fig. 11 shows a reconstructed frame of the sequence Basketball_drill after transformation by several transforms377

and quantization with QP = 37. As depicted, the GBT-ONL framework achieves a higher visual quality than that378

achieved by the DCT. The GL-GBT, which requires offline training, achieves a visual quality very close to that379

achieved by the KLT.380

4.5. Complexity and processing times381

The complexity of GBT-ONL framework depends on the operations involved in the optimization processes to382

predict the graph Laplacian, the number of GD iterations, and the complexity of the eigen-decompensation. Predicting383
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the graph Laplacian matrix of a (square) residual block S ∈ R
√

N×√N with N residual values using a shallow FC-NN384

has the following complexity:385

O(N × L × O) (5)

where N, L, and O are the number of neurons in the input, hidden layer, and output (i.e., the number of elements in386

the graph Laplacian), respectively. For P iterations of GD, the complexity is:387

O(P × N × L × O). (6)

The eigendecomposition of the graph Laplacian L ∈ R
√

O×√O with O elements has a complexity of:388

O(O3). (7)

The total complexity of the GBT-ONL framework for a block with N residual values is then:389

O(P × N × L × O) + O(O3). (8)

Table 8, tabulates the average processing times, per frame, for each class of video sequence. As tabulated, the390

GBL-ONL framework has longer processing times due to the online optimization that has to be performed as blocks391

are processed. However, it offers several unique advantages. First, it enables dynamic adaptation to scene changes392

by learning a graph Laplacian for each residual block, ensuring that the transform is tailored to the local character-393

istics of the residual signal. Second, it achieves better data decorrelation, preserving more signal’s energy in a small394

set of transform coefficients compared to the DCT. Third, it eliminates the need to signal any information into the395

compressed bitstream, since the same online optimization process can be replicated at the decoder side.396

5. Conclusion397

In this paper, we proposed the GBT-ONL framework to learn GBTs in the context of block-based PTC with intra-398

prediction. The GBT-ONL framework is based on online optimization of a shallow FC-NN designed to predict the399

graph Laplacian needed to compute the GBTs of a residual block. Since the optimization process uses only informa-400

tion available in the frame being processed, the GBT-ONL framework eliminates the need to signal extra information401

into the bitstream. Specifically, the same online optimization process can be replicated at the reconstruction stage. We402

evaluated the performance of the GBT-ONL framework in terms of the PE (%) and MSE when a small percentage of403

the largest coefficients are used for reconstruction, as well as in terms of the PSNR when different quantization levels404

are applied to the transform coefficients. We also evaluated performance in terms of the BD-PSNR and BD-BR met-405

rics using the DCT as the reference transform. The evaluation results showed that the GBTs learned by the proposed406

GBT-ONL framework can outperform the DCT and the DCT/DST. These results also confirmed the advantages of407
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GBTs in adapting to new patterns by leveraging ML without the use of any offline training data or pre-trained models.408

Our future work includes two strategies to improve performance: 1) Extracting features from the imaging data by409

using convolutions. And 2) developing a hybrid framework that combines the strengths of GBT-ONL for edge-rich410

content with those of traditional transforms, e.g., DCT, for smooth content.411
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Table 2. PE (%) and MSE values using a small percentage of the largest coefficients. Results are for each sequence and on average per class and
for all classes, including standard deviation values (SD ±).

Percentage of coefficients used for reconstruction

Sequence

Baseline Offline training Online training No training

KLT GBT-CNN GL-GBT GBT-ONL (ours) DCT DCT/DST

PE↑ MSE ↓ PE ↑ MSE ↓ PE↑ MSE ↓ PE ↑ MSE ↓ PE ↑ MSE ↓ PE ↑ MSE ↓
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

4:2:0 YUV sequences

Class A

Traffic 89.1 93.1 13.9 12.1 67.1 85.0 37.8 19.9 90.1 93.9 14.6 11.8 67.1 83.5 38.0 20.4 65.2 82.3 38.9 21.2 63.0 80.0 40.1 24.9

People_on_street 88.8 92.4 12.1 11.4 65.3 84.0 36.9 18.5 89.1 93.1 12.8 10.4 65.2 83.7 37.1 19.1 63.1 82.4 38.1 20.3 62.2 78.8 39.0 23.4

Nebuta_festival 87.2 90.9 13.6 10.8 63.8 82.8 33.6 16.5 87.4 90.2 11.4 10.5 63.5 80.2 33.9 18.2 63.2 78.5 34.4 20.1 58.5 75.1 39.3 21.4

Average 88.4 92.2 13.2 11.5 65.4 83.9 36.2 18.3 88.9 92.4 13.0 10.9 65.3 82.5 36.3 19.2 63.8 81.1 37.2 20.6 61.3 78.0 39.5 23.2

SD 1.02 1.12 0.96 0.65 1.65 1.10 2.21 1.70 1.36 1.94 1.47 2.96 1.80 1.97 2.15 1.11 1.18 2.22 2.40 0.59 2.40 2.55 0.59 1.76

Class B

Kimono 93.2 98.3 14.8 12.4 49.1 61.0 55.9 41.9 96.5 99.9 08.6 06.9 43.5 60.5 61.6 46.2 41.6 60.0 63.7 46.4 41.4 58.2 63.1 47.4

Cactus 92.6 97.4 13.1 12.2 48.5 60.2 55.1 41.2 96. 99.9 08.0 06.5 42.4 59.8 60.7 44.4 40.4 58.1 62.6 46.0 40.3 57.1 62.4 46.0

Park_scene 92.1 94.8 13.5 10.9 48.2 60.0 54.9 40.9 95.8 99.9 07.9 06.4 42.7 59.6 59.7 43.7 40.1 58.1 62.0 45.1 40.4 57.4 61.7 45.9

BQTerrace 93.0 95.4 11.6 10.5 49.0 60.1 55.0 41.0 96.0 99.9 08.0 06.7 43.5 58.3 57.8 42.1 41.5 56.4 59.9 44.2 39.9 56.3 61.9 44.8

Average 92.7 96.5 13.3 11.5 48.7 60.3 55.2 41.3 96.1 99.9 8.1 06.7 43.0 59.6 60.0 44.1 40.9 58.1 62.0 45.4 40.5 57.3 62.3 46.0

SD 0.49 1.65 1.32 0.94 0.42 0.46 0.46 0.45 0.30 0.00 0.32 0.22 0.56 0.92 1.63 1.70 0.76 1.47 1.60 0.98 0.64 0.79 0.62 1.07

Class C

Race_horse 92.0 95.9 09.5 07.9 52.9 70.3 46.8 35.6 93.9 94.5 06.1 06.0 48.1 65.4 55.2 36.9 46.3 63.2 57.0 39.1 46.3 62.2 58.2 42.2

BQMall 89.8 93.3 09.7 07.1 52.2 70.0 46.3 35.2 93.5 93.9 06.1 06.1 48.0 64.5 53.9 37.1 46.0 62.8 55.9 38.8 45.1 61.0 55.1 41.7

Party_scene 90.3 94.2 08.9 06.9 52.0 69.8 46.1 35.1 93.4 93.6 06.1 06.1 47.2 64.1 52.8 36.2 45.0 62.1 55.0 38.2 44.1 60.3 56.0 40.0

Basketball_drill 94.5 98.1 08.7 07.7 53.0 70.1 46.7 35.7 93.8 94.4 06.1 05.9 47.5 63.3 49.4 37.3 43.1 61.4 53.8 39.2 41.1 60.1 57.6 38.0

Average 91.6 95.4 09.1 07.4 52.5 70.1 46.5 35.4 93.7 94.1 06.1 06.0 47.7 64.3 52.8 36.9 45.1 62.4 55.4 38.8 44.2 60.9 56.7 40.5

SD 2.12 2.11 0.48 0.48 0.50 0.21 0.33 0.29 0.24 0.42 0.00 0.10 0.42 0.87 2.49 0.48 1.44 0.79 1.36 0.45 2.22 0.95 1.43 1.90

Class D

Race_horse_D 92.0 95.0 11.6 09.6 57.9 69.9 38.2 29.6 91.8 95.8 06.0 06.0 53.4 69.1 48.6 33.3 51.6 68.7 50.4 33.7 50.6 67.1 51.3 35.6

Blowing_bubble 90.7 94.5 10.0 08.4 58.4 70.3 38.8 30.0 92.1 97.1 06.2 06.2 52.4 69.3 47.4 31.3 50.2 67.4 49.6 33.2 49.5 66.2 50.8 34.3

BQ_square 90.2 94.2 09.8 08.1 58.0 70.1 38.5 29.9 92.0 95.9 06.1 06.1 52.4 69.2 49.3 31.1 50.1 67.3 47.0 33.0 49.1 66.0 50.1 34.1

Basketball_pass 89.8 94.0 09.3 07.6 57.8 70.0 38.3 29.7 92.0 94.6 06.0 06.0 52.3 69.4 47.6 30.9 50.5 67.9 49.4 32.4 49.2 66.1 51.4 34.7

Average 90.7 94.4 10.2 08.4 58.0 70.1 38.5 29.8 92.0 95.9 06.1 06.1 52.6 69.3 47.7 31.7 50.6 67.9 49.1 33.1 49.6 66.4 50.9 34.7

SD 0.96 0.43 0.99 0.85 0.26 0.17 0.26 0.18 0.13 1.02 0.10 0.10 0.52 0.13 0.89 1.11 0.69 0.64 1.47 0.54 0.69 0.51 0.59 0.67

Class E

Kristine_n_Sara 87.8 91.7 14.8 13.1 70.0 80.8 33.7 22.9 93.9 96.8 07.8 07.0 60.3 78.1 40.6 23.3 58.9 76.0 42.0 25.4 58.2 75.0 43.2 27.0

Four_people 87.6 91.5 48.4 13.0 69.3 79.9 33.1 21.9 93.1 95.9 07.3 06.5 60.6 77.5 40.1 23.7 58.8 75.9 41.9 25.3 58.1 74.6 43.1 26.9

Jhonny 88.5 91.9 15.8 13.6 69.3 80.1 33.6 21.8 93.4 96.1 07.9 06.7 61.3 77.7 40.8 25.4 59.4 75.9 42.7 27.2 58.7 75.7 43.7 27.3

Average 87.9 91.7 15.0 13.2 69.5 80.3 33.5 22.2 93.4 96.3 07.7 06.7 60.7 77.8 40.5 24.1 59.0 76.3 42.2 25.6 58.3 75.1 43.3 27.1

SD 0.47 0.20 19.120.32 0.40 0.47 0.32 0.61 0.40 0.47 0.32 0.25 0.51 0.31 0.36 1.12 0.32 0.06 0.44 1.07 0.32 0.56 0.32 0.21

Class SC

China_speed 89.0 92.4 14.0 12.1 55.1 66.1 44.2 31.9 92.7 96.9 06.0 04.8 48.5 65.5 52.3 36.0 46.4 63.6 54.4 37.9 50.1 63.1 55.3 39.0

Slide_show 88.3 91.9 13.5 11.4 54.3 65.0 43.0 30.9 92.2 96.2 05.8 04.3 48.1 64.7 52.2 36.4 46.1 63.4 54.2 37.7 50.0 62.9 55.0 38.9

Sc_Map 87.9 90.9 12.3 10.9 54.6 65.2 43.4 31.2 92.5 96.4 05.9 04.5 47.7 65.1 52.2 35.4 45.9 63.2 54.0 37.3 49.9 62.7 54.8 38.5

Sc_Prog 87.2 92.2 12.6 11.1 54.6 64.9 43.3 31.3 92.9 96.7 06.0 04.7 47.6 64.1 51.9 36.1 45.8 63.1 53.7 37.1 49.8 62.2 54.7 38.5

Average 88.1 91.9 13.1 11.3 54.7 65.3 43.5 31.3 92.6 96.5 05.9 04.6 48.0 64.9 52.2 36.0 46.1 63.8 54.1 37.5 50.0 62.7 55.0 37.3

SD 0.75 0.67 0.79 0.53 0.33 0.55 0.51 0.42 0.30 0.31 0.10 0.22 0.41 0.60 0.17 0.42 0.26 0.22 0.30 0.37 0.13 0.39 0.26 0.26

Overall avg. 89.7 93.4 12.2 10.4 60.0 73.2 39.6 28.1 92.4 95.9 07.7 06.8 54.3 71.2 46.6 30.3 52.4 69.6 48.5 31.9 51.9 68.1 49.8 33.5

Overall SD 0.61 0.74 7.44 0.23 0.52 0.33 0.75 0.56 0.45 0.70 0.60 0.26 0.54 0.65 0.96 0.48 0.47 0.82 0.78 0.29 0.99 0.81 0.42 0.73

**Notes: The bold values denote the best results, while underlined values indicate the second-best results within the respective comparisons.
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Table 3. Average PE (%) and MSE values using a small percentage of the largest coefficients.

Transform
PE ↑ MSE ↓

5% 10% 5% 10%

Baseline KLT 89.7 93.4 12.2 10.4

Offline training
GBT-CNN 60.0 73.2 39.6 28.1

GL-GBT 92.4 95.9 07.7 06.8

Online training GBT-ONL 54.3 71.2 46.6 30.3

No training
DCT 52.4 69.6 48.5 31.9

DCT/DST 51.9 68.1 49.8 33.5

25

                  



D . Roy et al. / Procedia Computer Science 00 (2025) 1–23 26

Table 4. PSNR (dB) values when using quantization on the transform coefficients. Results are for each sequence and on average per class and for
all classes, including standard deviation values (SD ±)

Quantization parameters

Sequence

Baseline Offline training Online training No training

KLT GBT-CNN GL-GBT GBT-ONL (ours) DCT DCT/DST

Q
P 22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37

Class A

Traffic 37.5 33.2 29.8 27.8 33.3 30.3 29.4 25.2 34.0 33.0 30.6 22.1 33.4 30.9 28.5 23.3 33.3 31.3 27.5 21.2 21.0 20.1 19.5 16.1

People_on_street 38.7 34.4 31.0 29.0 34.5 31.5 30.6 26.4 35.2 34.2 31.8 23.3 34.6 32.2 29.7 24.4 34.5 32.5 28.7 22.4 22.0 19.3 18.6 17.3

Nebuta_festival 39.5 35.2 31.8 29.8 35.3 32.3 31.4 27.2 36.0 35.0 32.6 24.1 35.4 32.9 30.4 25.3 35.3 33.3 29.5 23.2 21.7 20.2 19.5 17.0

Average 38.6 34.3 30.9 28.9 34.4 31.4 30.5 26.3 35.1 34.1 31.7 23.2 34.5 32.0 29.5 24.3 34.4 32.4 28.6 22.3 21.6 19.9 19.2 16.8

SD 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 0.96 1.00 1.01 1.01 1.01 1.01 0.51 0.49 0.52 0.62

Class B

Kimono 37.4 35.4 30.9 29.4 30.5 28.4 26.4 22.2 34.5 32.6 28.4 24.5 31.7 29.8 27.4 22.0 32.8 30.9 28.1 21.5 19.2 16.9 16.2 15.4

Cactus 38.1 36.1 31.7 30.0 31.2 29.0 27. 22.9 35.1 33.3 29.2 25.3 32.1 30.2 27.8 22.6 32.9 31.1 28.3 22.1 20.3 17.9 16.9 16.5

Park_scene 36.0 34.0 29.5 28.0 29.1 27.0 25.0 20.8 33.1 31.2 27.0 23.1 30.5 28.6 26.3 20.6 31.4 29.9 27.1 20.1 20.1 19.7 18.6 15.5

BQTerrace 38.8 36.7 32.3 30.7 35.1 31.7 30.5 23.5 35.8 33.4 29.8 25.9 34.1 31.6 29.5 23.3 32.9 31.1 28.4 22.8 21.6 20.9 20.4 17.7

Average 37.6 35.6 31.1 29.5 31.5 29.0 27.2 22.4 34.6 32.6 28.6 24.7 32.1 30.1 27.8 22.1 32.5 30.8 28.0 21.6 20.3 18.9 18.0 16.3

SD 1.20 1.16 1.21 1.15 2.57 1.97 2.34 1.16 1.15 1.01 1.21 1.21 1.50 1.24 1.33 1.15 0.73 0.57 0.60 1.15 0.99 1.79 1.88 1.07

Class C

Race_horse 38.8 36.0 30.7 23.8 30.8 28.6 26.7 22.5 34.8 32.9 28.7 24.8 32.2 29.5 27.7 22.3 33.1 30.0 28.1 21.8 20.5 16.8 16.2 15.6

BQMall 39.2 36.4 31.1 24.3 31.2 29.2 27.1 23.0 35.2 33.3 29.2 25.3 32.5 29.8 27.8 22.8 33.5 30.0 28.1 22.2 19.9 19.0 17.7 15.9

Party_scene 37.1 34.3 29.0 22.1 29.1 27.0 25.0 20.8 33.1 31.2 27.0 23.1 30.6 28.6 26.4 20.6 31.4 29.9 27.1 20.1 17.9 15.8 15.1 14.0

Basketball_drill 39.7 36.9 31.7 24.8 34.6 31.7 28.7 23.5 35.7 33.8 29.7 25.9 34.3 31.1 28.7 23.3 33.5 30.1 28.2 22.8 20.9 19.9 18.0 17.7

Average 38.7 35.9 30.6 23.8 31.4 29.1 26.9 22.5 34.7 32.8 28.7 24.8 32.4 29.8 27.7 22.3 32.9 30.0 27.9 21.7 19.8 17.9 16.8 15.8

SD 1.13 1.13 1.16 1.17 2.30 1.95 1.52 1.17 1.13 1.13 1.17 1.20 1.52 1.03 0.95 1.17 1.00 0.08 0.52 1.16 1.33 1.90 1.35 1.52

Class D

Race_horse_D 40.5 38.4 34.1 27.0 34.5 33.1 30.0 23.4 39.7 37.9 32.6 29.7 34.5 32.5 29.0 24.0 34.5 31.6 28.0 24.4 22.2 21.4 20.1 19.3

Blowing_bubble 41.9 40.0 35.4 28.4 37.9 35.6 32.4 24.7 41.1 39.2 34.0 31.1 37.0 34.2 30.8 25.3 35.9 23.6 29.0 25.7 23.6 22.4 21.1 20.6

BQ_square 39.1 37.0 32.7 25.6 33.1 31.7 28.6 22.0 38.3 36.5 31.2 28.3 33.2 31.6 27.9 22.6 33.1 31.2 27.0 23.0 20.8 20.0 19.0 17.9

Basketball_pass 42.2 40.3 35.7 28.7 37.9 36.8 32.7 25.0 41.4 39.5 34.3 31.3 37.1 35.0 31.1 25.6 36.0 32.9 29.3 26.0 23.7 22.7 21.3 20.9

Average 40.9 38.9 34.5 27.4 35.9 34.3 30.9 23.8 40.1 38.3 33.0 30.1 35.5 33.3 29.7 24.4 34.9 29.8 28.3 24.8 22.6 21.6 20.4 19.7

SD 1.42 1.53 1.37 1.42 2.44 2.32 1.97 1.37 1.42 1.37 1.42 1.40 1.92 1.55 1.52 1.37 1.37 4.21 1.04 1.37 1.37 1.22 1.06 1.37

Class E

Kristine_and_Sara 40.6 39.3 35.5 30.7 36.4 34.6 31.9 25.0 36.7 33.7 31.3 26.7 36.4 34.5 31.5 25.8 36.3 34.0 31.2 26.3 24.0 22.3 21.2 21.1

Four_people 39.0 37.7 33.9 29.1 34.8 33.0 30.3 23.4 35.1 32.1 29.7 25.1 34.8 33.2 30.0 24.2 34.7 33.0 29.6 24.7 22.4 21.8 20.9 19.6

Jhonny 41.8 40.5 36.7 31.9 37.6 35.8 33.1 26.3 38.0 34.9 32.5 28.0 37.6 35.6 32.6 27.0 37.5 35.0 32.2 27.5 24.0 21.3 20.2 17.7

Average 40.5 39.2 35.4 30.6 36.3 34.5 31.8 24.9 36.6 33.6 31.2 26.6 36.3 34.4 31.4 25.7 36.2 34.0 31.0 26.2 23.5 21.8 20.8 19.5

SD 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.45 1.45 1.40 1.40 1.45 1.40 1.20 1.31 1.40 1.40 1.00 1.31 1.40 0.92 0.50 0.51 1.70

Class SC

China_speed 40.2 37.0 33.9 33.1 36.1 33.7 27.4 24.6 36.9 34.0 30.5 25.1 35.8 33.4 28.8 25.4 34.9 32.8 29.6 26.0 20.4 18.7 18.1 17.9

Slide_show 42.1 35.1 32.0 31.2 34.2 31.8 25.5 22.7 35.0 32.1 28.6 23.2 34.4 32.1 27.6 23.4 33.9 32.3 29.1 24.1 20.4 18.4 18.1 18.0

Sc_Map 40.9 37.6 34.6 33.8 36.7 34.3 28.1 25.2 37.5 34.7 31.2 25.8 36.3 33.7 29.4 26.1 35.5 32.8 30.3 26.7 23.0 19.4 18.8 18.6

Sc_Programming 41.2 37.9 34.9 34.1 40.1 36.6 31.4 25.5 37.9 35.0 31.6 26.1 38.0 34.9 30.9 26.4 35.6 32.8 30.3 27.0 23.3 22.7 22.3 21.9

Average 41.1 36.9 33.9 33.1 36.8 34.1 28.1 24.5 36.8 34.0 30.5 25.1 36.1 33.5 29.2 25.3 35.0 32.7 29.8 26.0 21.8 19.8 19.3 19.1

SD 0.79 1.26 1.30 1.30 2.46 1.98 2.46 1.26 1.28 1.30 1.33 1.30 1.49 1.15 1.37 1.35 0.78 0.25 0.59 1.30 1.59 1.98 2.01 1.89

Overall avg. 39.6 36.8 32.7 28.8 34.3 32.0 29.1 23.9 36.4 34.3 30.5 25.8 34.4 32.1 29.1 23.9 34.2 31.9 28.8 23.7 20.6 19.0 18.2 17.0

Overall SD 0.24 0.19 0.15 0.16 0.66 0.48 0.57 0.16 0.18 0.18 0.16 0.16 0.29 0.19 0.23 0.16 0.28 1.53 0.32 0.15 0.39 0.69 0.65 0.46

**Notes: The bold values denote the best results, while underlined values indicate the second-best results within the respective comparisons.
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Table 5. Average PSNR (dB) values when using quantization on the transform coefficients.

QP
Transform

22 27 32 37

Baseline KLT 39.6 36.8 32.7 28.8

GBT-CNN 34.3 32.0 29.1 23.9
Offline Training

GL-GBT 36.4 34.3 30.5 25.8

Online Training GBT-ONL 34.4 32.1 29.1 23.9

DCT 34.2 31.9 28.8 23.7
No training

DCT/DST 20.6 19.0 18.2 17.0
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Table 6. BD-PSNR, BD-BR values (with respect to the DCT) when using quantization on the transform coefficients. Results are for each sequence
and on average per class and for all classes, including standard deviation values (SD ±).

Methods

Baseline Offline training Online training No training

Sequence
KLT GBT-CNN GL-GBT GBT-ONL (ours) DCT/DST

BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR

Class A

Traffic 08.16 -78.56 01.17 -14.87 4.69 -31.44 01.01 -11.63 -6.39 23.62

People_on_street 07.02 -80.64 00.74 -15.61 3.83 -33.14 00.59 -13.47 -7.01 21.11

Nebut_festival 07.29 -80.35 00.92 -15.02 3.96 -33.04 00.81 -12.23 -6.32 22.94

Average 7.5 -79.9 0.9 -15.2 4.2 -32.5 0.8 -12.4 -6.6 22.6

SD 0.60 1.13 0.22 0.39 0.46 0.95 0.21 0.94 0.38 1.30

Class B

Kimono 03.75 -67.21 0.45 -09.23 02.33 -37.76 00.31 -06.44 -4.11 19.47

Cactus 02.91 -68.23 0.67 -08.22 1.31 -38.69 00.51 -06.08 -4.54 19.93

Park_scene 03.92 -67.30 1.03 -13.22 02.24 -37.67 00.90 -11.08 -5.12 16.94

BQTerrace 03.06 -68.18 1.51 -14.79 1.36 -38.64 1.35 -11.55 -3.82 13.01

Average 3.4 -67.7 0.9 -11.4 1.8 -38.2 0.8 -8.8 -4.4 17.3

SD 0.50 0.55 0.46 3.14 0.55 0.55 0.46 2.93 0.57 3.17

Class C

Race_horse 10.83 -52.33 01.11 -12.43 5.17 -46.19 00.97 -09.44 -09.16 30.01

BQMall 09.99 -53.26 00.94 -14.99 4.15 -47.12 00.78 -11.85 -08.29 27.81

Party_scene 08.01 -52.24 02.26 -11.56 05.08 -46.10 02.15 -08.95 -06.77 20.76

Basketball_drill 10.13 -53.21 01.46 -12.03 04.20 -47.07 01.30 -09.29 -07.77 21.45

Average 9.7 -52.8 1.4 -12.8 4.7 -46.6 1.3 -9.9 -8.0 25.0

SD 1.21 0.55 0.59 1.53 0.55 0.55 0.61 1.33 1.00 4.60

Class D

Race_horse_D 10.67 -75.72 02.12 -09.32 08.50 -75.26 01.98 -06.53 -15.27 32.85

Blowing_bubble 09.65 -76.65 02.15 -09.12 -07.66 -76.28 01.99 -06.98 -14.04 31.51

BQ_square 10.58 -75.63 01.06 -12.94 08.67 -75.35 00.95 -10.80 -11.88 29.03

Basketball_pass 09.70 -76.60 01.65 -11.22 07.81 -76.23 01.49 -07.98 -14.96 32.59

Average 10.2 -76.2 1.7 -10.7 4.3 -75.8 1.6 -8.1 -14.0 31.5

SD 0.55 0.55 0.51 1.80 8.00 0.55 0.49 1.92 1.53 1.74

Class E

Kristine_and_Sara 08.47 -69.89 0.56 -17.34 02.52 -22.28 00.40 -14.10 -12.92 35.96

Four_people 07.33 -71.97 0.64 -17.02 01.66 -23.98 00.49 -14.88 -11.93 36.01

Jhonny 07.60 -71.68 1.01 -10.50 01.79 -23.88 00.90 -07.71 -10.72 19.34

Average 7.8 -71.2 0.7 -15.0 2.0 -23.4 0.6 -12.2 -11.9 30.4

SD 0.60 1.13 0.24 3.86 0.46 0.95 0.27 3.93 1.10 9.61

Class SC

China_speed 09.21 -69.05 0.33 -08.61 06.15 -40.27 00.19 -05.82 -14.09 35.90

Slide_show 08.52 -70.02 0.36 -07.92 05.18 -41.16 00.20 -05.78 -14.71 35.01

Sc_Map 08.37 -70.07 0.21 -06.22 05.13 -41.20 00.08 -04.08 -15.82 37.90

Sc_Programming 10.21 -69.14 0.34 -09.05 06.06 -40.19 00.18 -05.81 -14.28 36.03

Average 9.1 -69.6 0.3 -8.0 5.6 -40.7 0.2 -5.4 -14.7 36.2

SD 0.84 0.55 0.07 1.24 0.55 0.55 0.06 0.86 0.77 1.21

Overall average 7.97 -69.0 1.03 -11.87 3.82 -44.22 0.89 -9.20 -10.0 27.24

Overall SD 0.27 0.30 0.20 1.28 3.06 0.21 0.21 1.22 0.41 3.22

**Notes: The bold values denote the best results, while underlined values indicate the second-best results within the respective comparisons.
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Table 7. Average BD-PSNR and BD-BR values (with respect to DCT) when using quantization on the transform coefficients.

Metric
Transform

BD-PSNR BD-BR

Baseline KLT 7.97 -69.0

GBT-CNN 1.03 -11.87
Offline Training

GL-GBT 3.82 -44.22

Online Training GBT-ONL 0.89 -9.20

No training DCT/DST -10.0 27.24

Table 8. Average processing times, per frame, in seconds(s) and milliseconds (ms) for several transforms.

Video

Baseline Offline training Online training No training

KLT GBT-CNN GL-GBT GBT-ONL (ours) DCT DCT/DST

(ms) Train (s) Test (s) Train (s) Test(ms) (s) (ms) (ms)

Class A

Traffic 102.31 500.32 0.45 654.34 93.21 1.47 12.42 22.14

People_on_street 75.76 598.43 0.62 634.23 105.32 2.63 17.23 25.90

Nebuta_festival 119.22 845.12 0.83 900.34 105.34 4.21 20.54 30.67

Class B

Kimono 65.12 734.45 0.32 830.12 72.46 4.12 15.48 22.14

Cactus 54.09 890.67 0.75 940.00 69.22 7.34 13.82 21.98

Park_scene 69.12 934.75 0.91 993.20 79.31 10.25 17.45 26.21

BQTerrace 45.17 857.27 0.34 860.30 58.34 5.96 16.23 21.72

Class C

Race_horse 30.48 327.67 0.58 412.93 39.12 2.65 16.47 17.15

BQMall 38.87 333.60 0.78 350.49 46.28 5.12 20.16 26.63

Party_scene6 34.54 379.34 0.62 438.45 39.27 4.56 18.38 23.56

Basketball_drill 31.73 365.03 0.51 412.32 35.88 3.99 17.44 20.61

Class D

Race_horse_D 20.89 280.11 0.43 300.45 25.49 2.67 23.66 27.39

Blowing_bubble 17.44 162.82 0.49 183.89 25.41 1.98 21.79 29.33

BQ_square 38.72 218.44 0.70 249.46 47.29 4.32 13.76 17.89

Basketball_pass 36.93 284.93 0.74 319.50 40.71 3.83 12.11 16.74

Class E

Kristine_and_Sara 61.86 482.17 0.65 543.96 72.11 3.33 39.23 49.22

Four_people 65.90 413.91 0.71 458.45 69.25 4.21 47.35 54.23

Jhonny 87.48 517.33 0.82 562.45 95.56 7.11 51.26 62.01

Class SC

China_speed 149.34 615.15 1.21 648.67 200.40 6.91 80.12 120.05

Slide_show 138.41 522.43 1.10 579.04 183.56 5.62 73.67 104.38

Sc_Map 157.18 631.54 1.26 735.60 190.80 7.01 86.09 143.29

Sc_Programming 146.95 421.55 1.25 502.56 160.32 6.21 82.71 119.72
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