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Abstract

Over the past decade, there has been a massive increase in demand for bandwidth
to serve bandwidth-hungry applications, for example, video calls, the Internet of Things
(IoT), and 5G/6G. Many of these applications require not only high speed but also
low latency. It is widely known that the majority of digital data is transmitted over
optical fibers, resulting in a national and international infrastructure. However, fiber
nonlinearity (e.g., the Kerr effect) imposes significant limitations on the optical launch
power; as a result, it constrains the information rate in modern coherent transmission
systems. To address these challenges, the development of innovative system designs
is required, for instance, advanced modulation formats, wideband transmission, new
fiber types and enhanced digital signal processing (DSP) techniques to mitigate fiber
nonlinearity.

Mitigating fiber nonlinearity is essential to achieve higher transmission rates and
improved signal quality, without the need for new infrastructure. Various techniques
have been proposed, including traditional methods like digital backpropagation (DBP)
and the Volterra series-based approach. However, the computational complexity is still
the main challenge, encouraging the researchers to seek an alternative approach like
machine learning (ML). ML, especially neural networks (NNs), has demonstrated its
capability in a wide range of applications due to the universal approximation capability
of NNs. NNs have been intensively studied for the optical channel post-equalization,
because they can accurately approximate the inverse optical channel transfer function
and reverse the nonlinear distortions. Despite their promising equalization performance,
the limitations of the NN-based equalizers in real implementation still remain. The
major challenges include the computational complexity, the parallelizability, and the
generalizability.



This thesis investigates the integration of NN-based equalizers for nonlinear impair-
ment mitigation in coherent optical long-haul communication systems. By leveraging
NNs, this work aims to improve transmission quality while focusing on the three ma-
Jor aspects of the challenges in NN-based equalizers. This thesis contains some key
contributions: i) the investigation of computational complexity reduction techniques,
including weight clustering, and activation function approximation; ii) parallelization
strategies using knowledge distillation to facilitate real-time inference; iii) the application
of multi-task learning frameworks to improve model flexibility and adaptability in dynamic
network conditions; and iv) the validation of these methods based on theoretical and
experimental data. The comprehensive analysis of this thesis highlights the performance-
complexity trade-offs, practical feasibility, and potential of NN-based equalizers. Finally,
the results show that the NN-based equalizers can improve the quality of transmission,
while keeping the complexity the same or lower than the traditional DSP algorithm,

offering a promising approach for future optical networks.

Keywords: Coherent Optical Communications, Nonlinearity Equalization, Digital
Signal Processing, Machine Learning, Computational Complexity
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Chapter 1

Introduction

1.1 Optical Communication Networks

In the past decade, demand for bandwidth has grown significantly, driven by bandwidth-
intensive applications such as video calls, the Internet of Things (loT), cloud computing
and 5G/6G network [2, 3]. Many of these applications also require high speed and low
latency to function efficiently. Internet traffic is expected to continuously increase in
the coming year, especially with the increasing number of l10Ts and the rise of artificial
intelligence (Al) applications, including generative Al like ChatGPT that require big
data processing and cloud computing.

The majority of digital data is transmitted over optical fibers, resulting in the
backbone of national and international communication infrastructures [4, 5]. To satisfy
the growing bandwidth demands, various advancements in optical communication
technologies have been developed. Starting from the key milestone of the low-loss
fiber, the fiber attenuation was reduced to 0.2 dB/km at 1.55 um in 1979 [6], which
significantly extended the reach of optical signals. Then, the development of the
Erbium-Doped Fiber Amplifier (EDFA) in 1987 [7] came into play and enabled long-
haul optical transmission. Around the same period, wavelength-division multiplexing
(WDM) technology was also invented [8]. The WDM allows independent signals to be
transmitted over one fiber at different wavelengths, resulting in an increased transmission
capacity of optical communications. In the early days, optical communication relied
only on the Intensity Modulation and Direct Detection (IM/DD) system. The IM/DD
systems are simple and cost-effective, and are in use even today. Later on, in 2005,
coherent optical communication gained more attention due to the demonstration of

digital carrier-phase estimation in coherent receivers [9]. Coherent communication
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2 Introduction

utilizes full information on in-phase and quadrature (IQ) components (or amplitude and
phase) of the complex amplitude of the optical electric field. This characteristic of
coherent systems allows higher modulation formats to cope with the rising data rates.
In current long-haul coherent optical transmission systems, the optical fiber non-
linearity seriously causes a significant challenge by limiting the information rate. In
addition, with the ever-increasing transmission bandwidth, the impact of nonlinearity
becomes even more crucial [4]. Significant efforts are being directed toward developing
new types of optical fibers, for example, hollow-core fibers [10] which provide reduced
nonlinearity or the multi-core or multimode fibers that allow space division multiplexing
(SDM) [11]. However, these new types of fibers necessitate a complete overhaul of the
existing infrastructure. To exploit the current infrastructure, higher-order modulation
formats are employed to boost the transmission rate. When the modulation format
Increases, the signal-to-noise ratio requirement is higher to maintain the same BER. This
happens because higher modulation order adopts denser constellation points, making
them more susceptible to noise and distortion. This results in a higher demand for
optical launch power, and the increased power introduces the nonlinear impairments.
To achieve high data-rate transmission, various digital signal processing (DSP)
techniques have been proposed to mitigate some types of signal impairments in coherent
systems [12]. The signal impairments include linear effects such as chromatic dispersion
and nonlinear effects like Kerr effects [13]. The signal impairments can be observed
from the nonlinear Schrodinger equation (NLSE) [14]. The NLSE is a fundamental
equation to describe the light propagation down the optical fiber. The NLSE can be
directly derived from the Maxwell equations [15], which represent the foundations of
electricity and magnetism [16]. The NLSE is formulated as:
%z(ﬁ—i—ﬂ/)u(z,t), (1.1)
where u(z, t) denotes the electrical field which is a function of the propagation distance z
and time t. D and N, represent the linear and nonlinear parts of the NLSE, respectively,
which are shown as:
o & JP20°  jBs O
\; 2 0t2 6 ot3’
loss GVD GVD slope
N =jylu(z, 1),
—_

(1.2)

Kerr effect
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1.1 Optical Communication Networks 3

where a, B> 3, and -y are the attenuation, the group velocity dispersion (GVD) parameter,
and the nonlinear coefficient, respectively. As a result, the explicit form of the NLSE is

as follows:
du(z,t)  « JB28%u(z,t) jB3du(z.t) . >
£ +2u(z,t)+ > a2 6 a8 =Jvlu(z, t)|7u(z,t). (1.3)

The Eq. (1.3) is used to model the single-polarization transmission, for example,
the direct-detection systems deploying the intensity modulation [14]. However, in the
case of coherent systems, the dual polarization (DP) signal is detected by the coherent
transceiver deploying the advanced DSP. The spectral efficiency of the coherent system
is doubled. DP is also considered in a vectorized form. The Eq. (1.3) is then extended

to the Manakov equation which is given as:

Oux(z,t) « jB2 2 JjBs &°
Toz T 2D e ) —TEgpux(2.0)

(.

-~

linear

Y2 (lux(z )R+ |y (2, D) ux(2. ©),

9 >
nonTirnear
Ouy(z,t) _ B2 & JBs 83
bz~ 2N ppiv(z DT apun(a)
.8
—J’Y§(!UX(Z-?-‘)|2+!UY(Z. t)%) uy(z, t). (1.4)

where ux(z,t) and uy(z,t) denote the two orthogonal polarization components of
the electric field u(z, t).

To mitigate fiber impairments like chromatic dispersion and nonlinear impairments,
one needs a solution of the inverse Manakov equation with inverse optical link parameters.
The solution of the propagation equation is analytically possible only for particular
scenarios, for instance, zero-dispersion transmission. Thus, numerical solutions, such as
the split-step Fourier method (SSFM) [14], are often necessary. The SSFM solves the
NLSE by iteratively applying linear (dispersion) and nonlinear (Kerr effect) operators in
small propagation steps, alternating between the time and frequency domains using the
Fast Fourier Transform (FFT). The technique, like digital backpropagation (DBP) [17]
comes into play to solve the inverse NLSE using the SSFM. This approach calculates
the transmitted signal from the received signal. However, the main challenge of DBP is

computational complexity.
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In recent years, machine learning (ML), especially neural networks (NNs), has
demonstrated its capability in a wide range of applications, for instance, pattern
recognition, signal reconstruction, and time series analysis, etc [18, 19]. In addition,
NNs have proven to solve various signal processing tasks, especially in the areas related
to nonlinear signal processing, real-time signal processing and adaptive signal processing
[20—22]. The NNs have also made their way to the field of optical communications
and nonlinearity mitigation [23]. This thesis focuses on the application of NNs in the

channel equalization problem in coherent optical transmission systems.

1.2 Motivation

Due to the universal approximation capability of NNs, NNs have been intensively studied
for the optical channel post-equalization. The NNs can approximate the inverse optical
channel transfer function with reasonable accuracy and revert the nonlinear distortions.
However, despite their potential, significant challenges remain in implementing the
NN-based equalizers in real hardware. The primary limitations are the computational
complexity, inference latency, and flexibility [24, 25].

e Computational Complexity: The complexity of the model is not only reflected by

the number of trainable parameters or the number of multiplications required by the
model, but also by the model size, memory requirement, and the hardware resources
needed for real-time inference. In the optical systems, resource constraints, and
power efficiency are critical.

e Inference Latency: Ultra-low latency is one of the main requirements for real-

time high-speed communication systems. In certain NN architectures, such
as bi-directional long short-term memory (biLSTM) or recurrent NNs (RNN),
sequential operations may cause delays during the inference phase. Their limited
parallelizability prevents the NN-based equalizer from real implementation for
high-speed systems. Parallelization is important as it allows better utilization of

the hardware.

e Flexibility/Generalizability: The real-world optical networks are highly dynamic, in

which the channel parameters fluctuate over time. Therefore, NN-based equalizers
must be flexible enough to adapt to these changes without frequent retraining,
due to the resource-constrained environment.
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To allow the NN-based equalizers to be closer to the real implementations, the challenges
need to be investigated and addressed. The proposed method should be able to
outperform the traditional nonlinearity mitigation techniques, e.g. DBP, in terms of a
trade-off between the computational complexity and the performance. In addition, the
NN-based equalizers should also be studied in different types of transmission systems
to validate their potential, for instance, in single-channel single-carrier systems, WDM
systems and digital subcarrier multiplexing (DSCM) systems.

1.3 Contributions of the Thesis

This thesis focuses mainly on the possible solutions to alleviate the limitations of
the NN-based equalizers and to move towards a real hardware implementation. The
investigations are carried out in three different aspects: computational complexity,
inference latency, and flexibility. The main contributions of the thesis are as follows:

e The low-complexity NN-based equalizer used in the DSCM systems via the weight
clustering technique was proposed, showing the same level of performance with a
significant reduction in computational complexity compared to the previous NN
architecture based on perturbation theory [1].

e To reduce the complexity of the hardware implementation of NN-based equalizers,
it is demonstrated that the biLSTM equalizer with approximated activation
functions provides a performance close to that of the original model but significantly

reduces the hardware requirements.

e To improve the latency and the non-parallelizability of biLSTM-based equalizers,
knowledge distillation was proposed to recast the recurrent-based structure into a
more parallelizable feedforward structure.

e Multi-task learning (MTL) is proposed to improve the flexibility of NN-based
equalizers in coherent optical systems. A “single" NN-based equalizer improves
the Q-factor, without retraining, even with variations in launch power, symbol

rate, or transmission distance.

e To improve the flexibility of NN-based equalizers using MTL in coherent-detection
WDM systems, a “single” NN-based equalizer can mitigate different levels of
nonlinearity like cross-phase modulation (XPM) across diverse channel spacing,
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outperforming conventional training and enhancing Q-factor without retraining
the NN.

The following publications stem from this current research and are directly or

indirectly connected to various chapters of this thesis:

Conference papers:

C1

C2

C3

C4

C5

C6

Srivallapanondh, S., Freire, P., Parisi, G., Devigili, M., Costa, N., Spinnler, B.,
Napoli A, Prilepsky, J.E. and Turitsyn, S.K., 2025, March. Weight-clustered neural
networks for low-complexity nonlinear equalization in digital subcarrier multiplexing
systems. In Optical Fiber Communication Conference. Optica Publishing Group.

Srivallapanondh, S., Freire, P., Napoli, A., Prilepsky, J. and Turitsyn, S., 2024,
November. State-of-the-art neural network-based equalizers for coherent optical

communication systems: architectures and complexity. In SBFoton IOPC 2024
(pp. 1-3). doi: 10.1109/SBFotonlOPC62248.2024.10813543.

Srivallapanondh, S., Freire, P.J., Alam, A., Costa, N., Spinnler, B., Napoli, A.,
Sedov, E., Turitsyn, S.K. and Prilepsky, J.E., 2023, October. Multi-task learning
to enhance generalizability of neural network equalizers in coherent optical systems.
In 49th European Conference on Optical Communications (ECOC 2023) (Vol.
2023, pp. 640-643). IET. doi: 10.1049/icp.2023.2276.

Srivallapanondh, S., Freire, P.J., Napoli, A., Turitsyn, S.K. and Prilepsky, J.E.,
2023, May. Hardware realization of nonlinear activation functions for NN-based
optical equalizers. In CLEO: Science and Innovations (pp. SF1F-4). Optica
Publishing Group.

Srivallapanondh, S., Freire, P.J., Spinnler, B., Costa, N., Napoli, A., Turitsyn,
S.K. and Prilepsky, J.E., 2023, March. Knowledge distillation applied to optical
channel equalization: Solving the parallelization problem of recurrent connection.
In Optical Fiber Communication Conference (pp. Th1F-7). Optica Publishing
Group. doi: 10.1364/0OFC.2023.Th1F.7.

Freire, P.J., Srivallapanondh, S., Spinnler, B., Napoli, A., Costa, N., Prilepsky,
J.E. and Turitsyn, S.K., 2023, October. Low-complexity efficient neural network
optical channel equalizers: Training, inference, and hardware synthesis. In 49th
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European Conference on Optical Communications (ECOC 2023) (Vol. 2023, pp.
542-545). IET. doi: 10.1049/icp.2023.2240.

Journal papers:

J1 Srivallapanondh, S., Freire, P., Parisi, G., Devigili, M., Costa, N., Spinnler, B.,
Napoli, A., Prilepsky, J. and Turitsyn, S., 2025. Low complexity neural network
equalizer for nonlinearity mitigation in digital subcarrier multiplexing systems.
Optics Express, 33(2), pp. 2558-2575, doi: 10.1364/OE.542061.

J2 Srivallapanondh, S., Freire, P., Spinnler, B., Costa, N., Schairer, W., Napoli,
A., Turitsyn, S.K. and Prilepsky, J.E., 2024. Experimental validation of XPM
mitigation using a generalizable multi-task learning neural network. Optics Letters,
49(24), pp.6900-6903, doi: 10.1364/0L.535396.

J3 Srivallapanondh, S., Freire, P.J., Spinnler, B., Costa, N., Napoli, A., Turitsyn,
S.K. and Prilepsky, J.E., 2024. Parallelization of recurrent neural network-based
equalizer for coherent optical systems via knowledge distillation. Journal of
Lightwave Technology, 42(7), pp.2275-2284, doi: 10.1109/JLT.2023.3337604.

J4 Freire, P., Srivallapanondh, S., Spinnler, B., Napoli, A., Costa, N., Prilep-
sky, J.E. and Turitsyn, S.K., 2024. Computational complexity optimization
of neural network-based equalizers in digital signal processing: a comprehen-
sive approach. Journal of Lightwave Technology, 42(12), pp. 4177-4201, doi:
10.1109/JLT.2024.3386886.

J5 Devigili, M., Sequeira, D., Torres-Ferrera, P., Srivallapanondh, S., Costa, N.,
Ruiz, M., Castro, C., Napoli, A., Pedro, J. and Velasco, L., 2024. Twining digital
subcarrier multiplexed optical signals with OCATA for lightpath provisioning. Jour-
nal of Lightwave Technology, 43(6), pp. 2599-2609, doi: 10.1109/JLT.2024.3498342.

J6 Freire, P.J., Srivallapanondh, S., Anderson, M., Spinnler, B., Bex, T., Eriksson,
T.A., Napoli, A., Schairer, W., Costa, N., Blott, M., Turitsyn, S.K. and Prilepsky,
J.E., 2023. Implementing neural network-based equalizers in a coherent optical

transmission system using field-programmable gate arrays. Journal of Lightwave
Technology, 41(12), pp.3797-3815, doi: 10.1109/JLT.2023.3272011.
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1.4 Thesis Outline

This thesis includes the technical introduction of the subject, the research findings, and
the conclusion. The thesis is outlined as follows:

e Chapter 2 presents an introduction to the channel equalization in the optical
communication systems. The traditional nonlinearity mitigation techniques for
optical channel equalization and their challenges are discussed. After that, the
fundamentals of the NN-based equalizers are presented. This chapter also provides
an overview of the different traditional nonlinearity mitigation techniques, as well
as NN topologies and their opportunities in the equalization tasks. The chapter
also mentions the three main challenges of NN-based equalizers covered in this
thesis: computational complexity, parallelizability, and generalizability. Finally, the
complexity reduction methods for NNs and the complexity metrics for training

and inference of NN are discussed.

e Chapter 3 examines the first challenge of the NN-based equalizer, which is the
computational complexity. It investigates two different complexity reduction
techniques: weight-clustering and the approximation of the nonlinear activation
functions. The weight-clustering method was applied to reduce the number of real
multiplications per equalized symbol in the NN-based equalizers used in DSCM. For
the nonlinear activation function approximation, the study focuses on a trade-off
between the performance and the hardware resources required for the nonlinear
activation functions with and without approximation techniques; this study was

examined with the data in a single-channel single-carrier system.

e Chapter 4 addresses the second aspect of the challenges of the NN-based equalizers
covered in this thesis. It discusses the parallelizability problem of the recurrent-
based NN equalizers. For the first time, a knowledge distillation framework was
applied to allow the feed-forward NN to learn better and provide comparable
performance in channel equalization as the recurrent NN-based equalizers. The
feed-forward structure enables faster processing time than the recurrent one. This
approach was studied using both simulated and experimental data.

e Chapter 5 investigates the last aspect of the challenges of NN-based equalizer
covered in this thesis, which is generalizability. The MTL approach helps improve
the flexibility of the NN equalizers. MTL allows the NN to still perform well when
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1.4 Thesis Outline 9

the transmission setup changes, without retraining the model. First, the MTL
was evaluated in the single-channel transmission where the launch power, number
of spans, and the symbol rate were dynamic. After that, the MTL was assessed
in the WDM systems, where the channel spacings can be dynamic.

e Chapter 6 concludes the thesis with some discussions and the future research
direction.

The main parts of this thesis are based on my original research published in conferences
C1 through C5 and journals J1 through J3, where | served as the primary author and
made the predominant contributions, including developing the code and generating the
results. Although some results and text are derived from journals J4 and J6—where
| was a secondary author—I was the primary author for the portions included in this
thesis. Finally, collaborative brainstorming with my co-authors was pivotal in shaping
the ideas and revising the papers.
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Chapter 2

NN-Based Equalizers in Optical
Communications

2.1 Introduction

Research into nonlinearity mitigation techniques in optical communication systems
remains an active area of investigation. Different techniques have been proposed and
investigated. This chapter introduces various classical algorithms: DBP, the Volterra
Series-based method, phase conjugation, and the perturbation theory-based method.
After that, the NN-based equalizers are discussed along with their architecture based on
data-driven and model-driven NNs, and previously proposed methods based on different
transmission schemes. Then, it presents the introduction of computational complexity
reduction techniques in the training, inference, and hardware synthesis phases. Finally,
the metrics to measure the computational complexity in the training and inference

phases are reviewed.

2.1.1 Traditional Equalizers for Nonlinearity Mitigation

Various techniques have been researched to alleviate the nonlinear effects of optical
fibers. The DSP algorithms are used to compensate for the fiber impairments in
coherent detection in optical communication. These DSP algorithms are deployed
either on the transmitter or the receiver side, or a combination of both [26]. The
digital nonlinearity compensation (NLC) techniques are presented as a key approach
which is cost-effective to increase the data rate in the next-generation WDM optical
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12 NN-Based Equalizers in Optical Communications

transmission systems [26]. The most common NLC techniques are presented here.
These techniques aim to solve the Manakov equation.

Digital Backpropagation

DBP is a powerful signal processing technique designed to compensate for both chromatic
dispersion and Kerr-induced nonlinear impairments. The idea of DBP is to digitally
model a fictitious fiber with inverse parameters (opposite sign) when compared to the
real fiber deployed in the forward propagation [26, 17], based on the SSFM. The SSFM
is an effective numerical technique used to solve NLSE [14]. The SSFM divides the
optical link into small segments. The signal propagation in those steps is modeled as
a concatenation of linear and nonlinear operations which are treated separately. The
DBP implemented on the receiver side can be seen in Fig. 2.1, where Nsp,, Is the
number of steps. The conversion between time and frequency domains is undertaken
by the FFT and inverse FFT (IFFT) [26, 13]. The linear compensation section is
implemented in the frequency domain. With SSFM, we can derive the output of the
linear compensation as stated in [26] as:

UR (z.w) = FFT (ux,y (2. £))e (%) (2.1)
where h is the length of each step, w is the frequency variable, and z is the current
transmission distance. The exponential term represents the inverse of the signal phase

change due to the dispersion.

4 h

Linear Section Nonlinear Section

ux/y(Z, t) U)?/Dy(Z, 0)) Dlz) u)'(/y(z, t)

) 2
IFFT e—Joy h([ugP| +[uf

FFT

. <)

Fig. 2.1 Principle of DBP implementation, FFT: fast Fourier transform and IFFT:
inverse FFT.
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After that, the NLC is performed in the time domain to address the Kerr effects.
The output of the DBP is formulated by [26] as:

Uy (2.8) = IFFT(USR, (z,w))e 7o I FHF) (2.2)
where 0 < ¢ < 1 is a real-valued optimization parameter. The exponential term
represents the phase change due to the Kerr effect. Apart from the phase shift caused
by the self-modulation of polarization X/Y’, the signal in polarization X induces a
nonlinear phase variation in polarization Y, and vice versa.

The approximation of the solution for this SSFM can be improved by increasing the
number of steps per span, resulting in better nonlinearity compensation. Nevertheless,
a higher number of steps per span makes the computation expensive and infeasible
in the implementation. Various research papers have made an effort to reduce the
complexity of the algorithm, for example, reduced complexity DBP based on the joint
usage of Wiener-Hammerstein model and a halved back-propagation [27], weighted
DBP [28], correlated DBP [29] and the time-domain DBP with deep-learned chromatic
dispersion filters [30]. The time-domain DBP is shown to be implementable in the
Application-Specific Integrated Circuit (ASIC) [30].

Volterra Series-Based Nonlinear Equalizer

The Volterra series-based nonlinear equalizer (VNLE) uses the Volterra series transfer
function (VSTF) to model the fiber nonlinear effects [31, 26]. The Volterra series is
suitable for modeling the memory effects and is a powerful tool for solving the Manakov
equation (Eq. (1.4)). After modeling the optical channel using VSTF, the inverse VSTF
(IVSTF) kernels are derived as a function of the VSTF as in Ref. [32]. The IVSTF
kernels characterize the nonlinear equalizer to compensate for the nonlinear effects and
the dispersion of a transmitted signal. The VNLE also aims to construct the inverse
of the channel like DBP. For each polarization, the compensation operation is divided
into linear (like chromatic dispersion) and nonlinear parts. However, the NLC part of
VNLE can perform the compensation operation in parallel, which can provide hardware
benefits. The compensated output signal is a combination of the output of linear and
each nonlinear stage; see Fig. 2.2. The output of VNLE can be formulated as a function
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Fig. 2.2 Principle of VNLE implementation.

of the received signal as follows:

Uy y(w) = kl(w)UX/Y(w)+///<3(w1,w2,w—uJ1 + w2)

X [Ux (w1)Ux (w2) + Uy (w1) Uy (w2)]
X Uy (w — w1 +w2)dwy dwo, (2.3)

where ki and ks are the first- and third-order IVSTF kernels, w is the physical optical
frequency, w1 and wy dummy parameters that influence the interactions between light
waves at different frequencies, and the superscript * is the complex conjugation. The
equations of k; and k3 can be written as:

ki (w) = e/ B2NspanL./2 (2.4)
jcki(w) & kBoAwl
k3(Ld1,UJ2,UJ—OJ1—|—UJ2):WZ e/ (2.5)
k=1

where L denotes the span length, Aw = (w1 —w)(w; —w>) corresponds to the spacing
between the discrete frequencies in the sampling spectrum and ¢ :’Y/Leff, where L.ff
Is the effective length.

There are different forms of the VNLE attempting to improve the performance and
reduce the complexity; for instance, weighted Volterra series nonlinear equalizer [33].
Most of the VNLEs are based on truncating the series to the third order. However, some
papers propose the fifth-order equalizer [34, 35], offering performance improvement
In the single-channel systems but the complexity is also increased compared to the
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third order. It is worth noting that the nonlinear interference caused by the adjacent
subcarriers in the super-channel transmission decreases the VNLE performance [26].
Also, the complexity of the Volterra series-based method increases with the number of
spans [13].

Phase Conjugation-Based NLC

Phase conjugation (PC) exploits the symmetry of nonlinear distortions to address the
nonlinear phase shift induced by the Kerr effects. This PC approach has been proposed
for both in the optical domain as optical phase conjugation (OPC) [36] and in the
digital domain as digital phase conjugated twin waves (PCTW) [37].

OPC inverts the spectrum of the data signal in the optical domain midway through
the transmission link. The fundamental concept of OPC is that the nonlinear phase shift
accumulated in the first half of the fiber can be effectively canceled by the second half
when the conjugate wave is transmitted. The implementation of OPC is presented in
Fig. 2.3a However, this approach significantly limits the flexibility of the dynamic optical
network and is difficult to implement. The key challenge of OPC is the requirement for
a symmetric fiber link and precise positioning.

U - U"
Transmitter OPC Receiver
Nspan
2
(a) OPC implementation.
uy(0,) = uk(0,t) u(L,t) = [uy, uy]
Uy (0, w) = Uz (0, —w) ( U(L, w) = [Uy, Uy]
PCTW @ > EDF. PCTW
Fiber
Atz = 0 km N Atz = L km
X
Transmitter span Receiver

(b) PCTW implementation.

Fig. 2.3 Implementations of phase conjugate-based NLC in (a) optical domain and (b)
digital domain.
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16 NN-Based Equalizers in Optical Communications

In the dual polarization system, PCTW is a DSP technique that was proposed to
mitigate the first-order nonlinear distortions [37]. PCTW is implemented at the receiver
side, as seen in Fig. 2.3b. With this approach, the original signal is transmitted on the

X polarization and its conjugate is sent on the Y polarization:
uy(0,t) =ux(0,t), Uy(0,w)=Ux(0,—w). (2.6)

The nonlinear distortions faced by PCTWs are anticorrelated. The nonlinear distortions
are:
duy (L, t) =—[0ux(L,t)]*, Uy (L, w)=—[0Ux(L,—w)]". (2.7)

The received signal is approximated as:

ux/y (L, t) = ux/y(0,t) +0ux/y (L. t), Uxy(L w)=Ux/y(0,w)+0Ux/y(L w).
(2.8)
The anticorrelation results in the first-order cancellation of nonlinear phase shift, by the
superposition of the two signals at the receiver side. The original signal field (u(0, t) or

Ux(0,w)) can be restored by:

ux(L,t)+uy(L,t)
> ,
Ux (L, w)+ Ui (L, —w)
) :

Uy (L, t) ~ u(0,t) = (2.9)

Us (L, w) ~ Ux (0,w) = (2.10)

The main advantage of this PC approach is its low complexity implementation. On
the contrary, when adopting PCTW, the loss of half spectral efficiency is the main
limitation because the conjugate signal requires transmission on the Y polarization. To
address this, advanced coding schemes such as polarization coding [38] and subcarrier

coding [39] have been proposed to improve efficiency.

Perturbation-Based NLC

The perturbation-based approach allows an approximate numerical solution to the
Manakov equation, or Eq. (1.4). The core concept of this technique is to treat the
field in the fiber as the combination of the linear propagation caused by dispersion
and attenuation, and perturbed terms due to nonlinear distortions [26]. With the

first-order perturbation, the received field ux/y(z,t) is the sum of the solution to the

S. Srivallapanondh, PhD Thesis, Aston University 2025.



2.1 Introduction 17

linear propagation ug x/y(z, t) and the first-order perturbation u; x,y(z,t). It can be

written as: le/y(Z, t) = UO,X/Y(Zv t) + Ul,X/Y(Z’ t).

Pulse of Interest

A-F-A - A

m '\k /n/ l Pulse Index

Triplets

Fig. 2.4 Triplet pulses in perturbation-based NLC

Two simplifying assumptions hold in the first-order perturbation-based NLC, including:
the full electrical chromatic dispersion compensation (CDC) at the receiver and the
Gaussian shape assumption for input pulses [13]. Based on first-order perturbation
theory, at the time indices T,,, T; and T,, three input Gaussian pulses interact nonlinearly
and generate a ghost pulse. Fig. 2.4 provides a visual representation of the triplet
pulses to generate the first-order field. For simplification, without loss of generality, the
nonlinear distortion field is evaluated at index k =0 (i.e. when / = m+n) by considering
the symbol rate operation. The first-order distortion field is as follows:

t x/y (L, t) =J S’Y REYY [am,X/Ya%n,x/van,X/v +amy/xminy/xnx/y | Cmn.

m (2.11)
where Cp, 5 are the nonlinear perturbation coefficients, * denotes the complex conjugate
operation, Py is peak power of the pulse at the launch point and am,x/y represents the
symbol complex amplitudes at time m for X and Y polarization. In a typical dispersion
uncompensated system, the pulse spreading due to chromatic dispersion is much higher
than the symbol duration, i.e., B2z > 72 [40]. Cp, can be formulated as [41]:

( 7° L 1 o
V3|B2| fO dz T4/(365)+22" m=n=0
o 2 1 ( _ )2 2,2 o
Conn =14 236 (U5pR=). morn=0 (2.12)
T2 'ITIFI'T2
| B (V). m#En70

-t . .. .
where E1(x) = [° €~ dt. These perturbation coefficients are computed in advance and

stored in a look-up table. To compensate for nonlinearities, the first-order distortion
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field vy »/, was calculated and is subtracted from the symbol for interest ag x/y to
/ _ _ /
generate 0. x/y" This can be written as: 30.x/y = A0.X/Y ~ U1 x/y-

The perturbed term can be calculated and utilized for the nonlinearity mitigation
at either the transmitter or the receiver side. The perturbation-based NLC can also
be implemented with one sample per symbol to reduce the speed requirement of the
digital-to-analog converter (DAC), and the analog-to-digital converter (ADC) [40].
Tao et al. [40] demonstrated that the perturbation-based NLC can be implemented
without any multipliers when adopting low spectral efficiency modulation formats, like
QPSK. However, it did not apply to the higher-order modulation. Different works have
attempted to reduce the number of perturbation terms, for example, quantization on

perturbation coefficients [42].

Nonlinear Fourier Transform

An alternative approach to nonlinearity mitigation is the nonlinear Fourier transform
(NFT). NFT is a framework that exploits the integrability of the NLSE (Eq. (1.1)),
which describes pulse propagation in single-mode fibers [43—45].

@Z Z} Phase
Tx INFT NFT . Rx
Fiber Shift

. 2.5 Basic design of NFT-based transmission systems in the NFT domain.

Modulation in
nonlinear Fourier
domain

=

Q

Fig. 2.5 [44] shows the basic design of the NFT-based transmission systems, where
the transmitted information is encoded by inverse NFT (INFT) directly onto the
nonlinear Fourier (NF) signal spectrum (modulation in the nonlinear Fourier domain —
NFD). In this design, one can modulate discrete and continuous NF spectrum parts
either separately or simultaneously.

The forward NF decomposition can be performed by the solutions of the Za-
kharov—Shabat spectral problem (ZSSP) [46, 47]. For anomalous dispersion (B2 < 0),
the NLSE equation is integrable and can be mapped to the ZSSP. The ZSSP corresponds
to the scattering problem for two auxiliary functions ¢1 2(t), where the transferred
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temporal profile u(0, t) = u(t) enters as an effective potential [45]:

d (6t _ [ —i&  u(®)) [#u(tE) (2.13)
dt \ ¢o(t,£) —ut(t) i€ $o(t,8) )
where £ € C is the nonlinear spectral parameter.
The nonlinear spectrum (NS) fully characterizes the original time-domain waveform

u(t) and is obtained from the scattering coefficients a(§) and b(§). It consists of two
distinct components:

1. Continuous spectrum — defined by the reflection coefficient

ne =28 cep (2.14)

a(§)’

2. Discrete spectrum — a set of solitonic eigenvalues ¢4 € CT satisfying a(§€4) =0,
together with their associated residues:

b(&q)

f(Ed)Zm-

(2.15)

For finite-duration pulses, these definitions are always valid in optical communication
applications. Low-energy signals contain only the continuous spectrum, while the

discrete part appears only when the signal energy exceeds a threshold [48]:

/OO lq(t)[2dt > C. (2.16)

In the case of normal chromatic dispersion (B2 > 0), the discrete spectrum is absent
altogether.

The significance of the NFT in fiber-optic communications lies in the simple,
decoupled evolution of the nonlinear spectrum in the ideal, noise-free (without ASE
noise or higher-order perturbations) NLSE model. For the normalized NLSE, the
propagation over a distance L is described by [45]:

(b(L,€) = b(0,£) €L,
Ns(L) = 3 A58 = 0.0, Ve eRUZ,. (2.17)
(L&) =2(0,),

| €a(L) = £a(0),
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This invariance under propagation is what makes the nonlinear spectrum an attractive
domain for information encoding and transmission.

In NFT-based transmission, data symbols are modulated directly onto the nonlinear
spectrum—often onto the continuous part [49, 48]. The INFT generates the cor-
responding time-domain waveform for transmission, while at the receiver, the NFT
recovers the transmitted nonlinear spectrum, which is largely free from deterministic
nonlinear distortions. This principle underlies nonlinear inverse synthesis (NIS) [50] and
nonlinear frequency-division multiplexing (NFDM) [44, 45].

Although NFT-based systems promise nonlinearity-immune transmission, practical
implementation faces challenges. The challenges include the computational cost of
accurate forward/inverse transforms and sensitivity to ASE noise in the nonlinear spectral
domain. Ongoing research is addressing these issues through fast NFT algorithms [51],
discrete-spectrum modulation strategies [49], and hybrid DSP—-NFT architectures [44,
45].

2.1.2 Machine Learning-Based Equalizers for Nonlinearity Mitiga-
tion

Most traditional methods for nonlinearity compensation are still challenging to implement
due to their high complexity, despite their effectiveness. This limitation has driven
the research to seek alternative strategies. These new approaches should achieve
comparable performance while significantly reducing computational complexity. ML
techniques have been increasingly used in the past decade to design optical equalizers,
as they have the ability to learn from the data and adapt to changing channel conditions.
Different ML techniques are proposed to be used as optical equalizers, such as support
vector machine (SVM), K-means++ and NNs. The M-ary SVM in [52] was proposed
for use in the 16-QAM coherent optical systems to mitigate the nonlinear phase noise
(NLPN) which is one of the major distortion factors. The paper has shown that their
approach, based on numerical simulations for 112-Gb/s single channel 16-QAM systems,
can enhance the system performance independently of the specific characteristics of
the fiber link.

The sparse K-means++ equalizer in [53] was proposed to mitigate optical fiber
nonlinearity effects in a 16-QAM self-coherent real-time system at 40 Gb/s using an
FPGA. The authors reported a 3 dB Q-factor improvement with respect to linear
equalization only after transmission along 50 km of optical fiber using a launch power
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close to the optimal value of 14 dBm and the tested scenario was a single-span short-
reach system. The aforementioned techniques adapt their decision boundaries to the
residual nonlinear distortion of the received signal instead of performing hard decisions,
providing a significant performance gain. The improvement of the performance is
noticeable when they are deployed in the memoryless systems or coping with NLPN
[54].

Among the ML-based approaches, NN-based equalizers have garnered the most
attention for their ability to model and mitigate complex nonlinear impairments, offering
significant improvements over traditional nonlinearity compensation methods [55, 56].
For this reason, this thesis focuses on NN-based equalizers and the reduction of their

complexity.

2.2 NN-Based Equalizers for Nonlinearity Mitigation

One significant advantage of NNs is their capacity to handle the vast datasets generated
by optical transmission, enabling effective model training. With their universal approx-
imation capability, NNs have been extensively explored for optical post-equalization,
offering promising results compared to traditional techniques like DBP, particularly in
terms of reduced complexity [16]. A straightforward application of NN-based equalizers
Is to be used as post-equalizers, where the NN is applied at the receiver side to reverse
the channel distortions and recover the transmitted signal with high accuracy. This
approach, which positions the NN structure only after the fiber channel at the receiver,
provides an intuitive yet powerful method for addressing signal impairments in optical
fiber systems. Fig. 2.6 illustrates the position of the post-equalizer in the optical
communication systems. Another approach is end-to-end learning [57], which uses
an autoencoder to optimize the entire communication system, including the trans-
mitter, channel, and receiver. This end-to-end learning method, in [58] based on a
parallelizable perturbative channel model, jointly optimized constellation shaping and
nonlinear pre-emphasis, demonstrating mutual information gain. In this thesis, we
focus on the post-equalization. By leveraging architectures such as convolutional NN
(CNN) and RNN, and particularly a biLSTM, NN-based equalizers have demonstrated
robust performance in mitigating nonlinear impairments [59, 16]. In this section, we
first discuss some fundamental architectures of the NNs, both the data-driven and
model-driven approaches for nonlinearity mitigation. Then the considerations when
designing the NN-based equalizers are presented.
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Fig. 2.6 Diagram depicting the position of NN as post equalizers in optical communica-
tions systems.

2.2.1 Architectures for Data-Driven NN-Based Equalizers
Multi-Layer Perceptron

Multi-layer perceptron or MLP is the simplest and feed-forward NN-based equalizer.

The MLP consists of some layers of a dense layer, which is formulated as:
y=¢(Wx+Db), (2.18)

where y is the output vector, ¢ is a nonlinear activation function, W is the weight
matrix, and b is the bias vector. Writing explicitly the matrix operation inside the
activation function:

Wit Wi ... Wi | | Xt by
Woi Woo ... Wop | | X2 b>

Wx+b=1] . . o A e O (2.19)
Wno1 Wnp2 oo Waan | | Xn; bn,

where n; is the number of features in the input vector and n, represents the number of
neurons in the layer.

The MLP-based architectures have been well studied in the optical transmission
systems [54, 60, 61]. In [54], the channel response in long-haul transmission systems is
approximated by using the MLP networks. The paper demonstrates that their MLP-
based equalizer provides the equivalent mitigation performance to the traditional DBP
nonlinearity compensation of 2 STpS and 2 samples per symbol, but with a significantly
lower computational cost. As the MLP model is unsuitable for learning sequential
data, the extra step of data processing is required. In the paper, the delay blocks were
used at the input layer of the MLP to consider the channel memory effect, meaning
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that the preceding symbols are also considered when equalizing each symbol. The NN
topology consists of two 16-neuron hidden layers and their neurons have hyperbolic
tangent sigmoid transfer functions. The two output-layer neurons have linear transfer
functions, providing real and imaginary parts of the equalized symbol. Note that this
MLP equalizer is used after a linear equalization stage, enabling ideal CDC.

Three-layer MLP was demonstrated in [62] that when the complexity was restricted
to a lower level, the MLP showed the best performance compared to other more
complex models in terms of Q-factor. However, this type of NN used in the optical
communication systems with pseudorandom bit sequences or with limited memory
depths has the risk of overestimating the performance gain by predicting the short
pattern instead of compensating the studied channel/phenomena [63]. MLPs aim to
repeatedly discover the correlation among each pair of the data samples in each layer
using fully-connected layers. As a result, they are prone to over-fitting due to a large
number of trainable parameters and cause a large number of floating-point operations
(FLOPs) [64].

Convolutional Neural Network

CNNs are a feed-forward NN that has the capability to extract patterns from data. This
capability can be useful in learning and compensating nonlinearity, especially the stack
of convolutional layers, which acts as a multi-channel nonlinear learned local pattern
detector. It can overcome inter-symbol interference (ISI) and device nonlinearity [65].
In CNN, we apply the convolutions with different filters to extract the features and
convert them into a lower-dimensional feature set, while still preserving the original
properties. CNNs can be used in 1D, 2D, or 3D networks, depending on the applications.
In this thesis, we focus on 1D-CNNs, which apply to processing sequential data [18].

For simplicity of understanding, the 1D-CNN processing with padding equal to O,
dilation equal to 1, and stride equal to 1, can be summarized as follows:

n;p Ny )
vi=0¢ (Z Y X1 kJ?,cn + bf) ' (2.20)

n=1,=1

where ylf denotes the output, known as a feature map, of a convolutional layer built by
the filter f in the /-th input element, ny is the kernel size, n; is the size of the input
vector, x'" represents the raw input data, kf denotes the j-th trainable convolution
kernel of the filter f and b is the bias of the filter f. In the general case, when designing
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the CNN, parameters like padding, dilation, and stride also affect the output size of the
CNN. It can be formulated as:

ns+2padding—dilation(ny—1)—1

OutputSize = -
P stride

+1], (2.21)

where ns is the input time sequence size.

The 1D-CNN has been proposed to be used with the MLP [66, 65, 67], using the
CNN part to capture short-temporal dependencies among neighboring symbols and
the MLP part for capturing long-term dependencies [64]. However, the MLP part
is still inefficient due to a large number of FLOPs [64]. For the CNN without the
MLP to capture long-term dependencies, it requires large sequential kernels, causing
high computational complexity [64]. The 1D-CNN for the equalization of nonlinear
impairments [66, 65, 67] were investigated in the short-reach transmission. Later on,
the CNN for nonlinear mitigation in coherent systems has been studied to be used with
other types of NNs, for example, 1D-CNN together with biLSTM network [62].

Vanila Recurrent Neural Network

RNNs are useful in learning sequential data due to their ability to handle memory, which
is different from the feed-forward NNs. This ability of RNN can be quite beneficial
for analyzing time series data. In RNN, the output of the current stage h; takes into
account the current stage input x; and the output of the previous stage hy_1, in which
the equation of the RNN for a given time step t is as follows:

ht = ¢(Wxt—|—Uht,1—|—b), (222)

where ¢ is the nonlinear activation functions, x; € R" is the n;-dimensional input vector
at time t, hy € R™ is a hidden layer vector of the current state with size np, nj is the
number of hidden units, W € R™*" and U € R"™*" represent the trainable weight
matrices, and b is the bias vector.

Despite RNN's efficient memory handling, they still struggle to capture long-term
dependencies due to the vanishing gradient problem [68]. The RNN-based equalizers
have been researched in the nonlinearity mitigation subject, especially the bidirectional
RNN (bi-RNN) [69, 64, 70].
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Long Short-Term Memory Neural Networks

LSTM networks are a specialized form of RNNs. LSTM was designed to overcome
short-term memory issues of RNNs due to the vanishing gradient problem. The LSTM
network has the ability to learn long-term dependencies between time steps (t) [71, 72].
An LSTM cell consists of three types of gates: an input gate (i), a forget gate (f;),
and an output gate (o;). There is also a cell state vector (C;) proposed as a long-term
memory to aggregate relevant information throughout the time steps. The forward
pass of the LSTM cell given a time step t can be formulated as follows:

ir = o(Wix¢ +Uiht—1 + b)),
ft = o(Wexe + Urhe—1+ br),
ot = 0(Woxt +Uoht—1+ bo), (2.23)
Ce =1 OCr1+1t ©P(Wexe +Uche—1+ bc),
ht = o © ¢(Cy),

where W;, U;, W¢, Ur, W,, Uy, Wc and U, are weight matrices associated with each gate
(input gate, forget gate, cell state vector, and output gate, respectively), b;, bs, b, and
bc are biases for each gate, ¢ is usually the “tanh” activation function, o is usually the
sigmoid activation function. The sizes of each variable are x; € R™, f;, i, 0; € (0,1)",
Ct € R™ and hy € (—1,1)". The ® symbol represents the element-wise (Hadamard)
multiplication.

Because of the ability to learn long-term dependencies and keep track of information
over large sequences, the biLSTM-based equalizers have gained research attention
[73, 62]. In [73], the LSTM architecture was used for the first time to mitigate the fiber
nonlinearity impairments in digital coherent systems for single-channel and multi-channel
16-QAM modulation format. The LSTM demonstrated superior performance over the
DBP, especially in the multi-channel transmission scenario, while being able to retain the
complexity to be less than that of the DBP in long distances (> 1000 km). However, it
is worth noting that the complexity of the LSTM grows as the number of hidden units
and the channel memory increase. Lastly, the key benefit of biLSTM is to handle the
ISI between the preceding and successive symbols induced by CD.
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2.2.2 Physics-Inspired/Model-Driven NN-Based Equalizers

Unlike purely data-driven methods, which rely solely on large datasets for training,
model-driven approaches integrate physical models, like the NLSE equation, into the
network architecture. With the integration of knowledge of a channel model, the model
has better interpretability.

Learned Digital Backpropagation

Learned DBP refers to the structure of a deep NN that is built upon the SSFM [74].
The analogy shows the similarity between the SSFM and the deep NN where each
layer alternates between linear operations and nonlinearities. In learned DBP, the
parameters in the deep NN are trainable, making it more flexible than the conventional
DBP. Ref. [74] demonstrated the significant complexity reduction of the learned DBP
compared to the conventional DBP, showing that the complexity can be reduced through
pruning while still maintaining high performance. Ref. [75] further enhanced learned
DBP for the WDM systems by addressing the nonlinearities from self-phase modulation
(SPM) and XPM using an improved SSFM.

While effective, the learned DBP still depends on the sequential operations of
the linear and nonlinear steps. Therefore, these sequential dependencies can make
the learned DBP less parallelizable and result in the processing latency as hardware

parallelism limitation [76].

Perturbation Theory-Based Models

Perturbation theory-based NN takes the intra-channel XPM (IXPM) and intra-channel
four-wave mixing (IFWM) symbol triplets as input [77, 78], based on Eq. (2.11). This
approach allows the perturbation parameters to be trainable. Different approaches have
been proposed: to estimate perturbation coefficients [78] or directly predict nonlinear
distortions from received symbols [77, 79]. Ref. [1] has proposed NN architecture based
on perturbation analysis of fiber nonlinearity for DSCM systems. The approach based
on perturbation theory offers an enhancement in the equalization tasks, however, the

computational complexities still need to be addressed.
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Learned Volterra Models

Learned Volterra algorithm builds upon the VSTF [76] and leverages machine learning
to optimize nonlinear filters for mitigating nonlinearities. Volterra series-based models
generally offer more parallelizable capabilities compared to SSFM-based methods like
DBP. Ref. [76] proposed to use the learned inverse VSTF (L-IVSTF) models in a multiple-
input multiple-output (MIMO) configuration for nonlinear equalization in WDM systems.
This approach incorporates trainable finite impulse response (FIR) filters at the input
and output of each nonlinear step and uses the hybrid structure between time and
frequency domains. Despite the improved equalization performance of this learned
Volterra algorithm, the computational complexity is still the main limitation.

It is worth noting that both the data- and model-driven approaches have their own
advantages and disadvantages. The data-driven approach can approximate highly com-
plex and unknown channel models without relying on explicit mathematical formulations
and the models can adapt to various channel conditions without prior knowledge of the
system’s parameters. However, this results in higher training costs and resources, and
the model is not interpretable. The model-driven NN improves the interpretability of
the model and reduces the dependence on the large training data. On the other hand,
the quality of the model-driven model is directly tied to how accurately the physical
model represents the real-world system and also may not perform well when the channel

contains unknown impairments. This thesis focuses on the data-driven approach.

2.2.3 Designing NN-Based Equalizers

Despite the NN's potential, the computational complexity of NN-based equalizers
remains a challenge for real-world implementation, necessitating further research into
optimization techniques.

Regarding the NN architecture, various models, including feed-forward NN (FNN),
RNNs, and Transformers, have demonstrated their effectiveness in NLC. The FNN
has the risk of overestimating the performance gain by predicting the short pattern
instead of compensating the studied channel/phenomena [63]. RNNs have shown better
equalization performance compared to FNNs when addressing nonlinear impairments
[25]. Among these, RNNs, particularly in their bi-directional and gated configurations
e.g. LSTM, have shown great promise for addressing nonlinear optical fiber effects in

bandwidth-limited optical coherent systems [59]. Recurrent-based models are capable
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of modeling and compensating for the distortions of nonlinear channels with memory as
they account for the output of the previous time step.

Freire et al. [80] compared classification and regression modeling to determine the
best approach for NN-based equalizers. One challenge with classification is that the
datasets often contain few errors when calculating loss, making it difficult to train the
model effectively and causing issues like exploding or vanishing gradients. In contrast,
regression with mutual information early stopping allows every data point to contribute,
providing continuous feedback and improving model performance. These factors are
crucial when designing NN-based post-equalization techniques for transmission systems.

Another aspect to consider is if the NN would deploy the real or complex values.
With complex values, it is more challenging with the training, activation functions, and
more complex arithmetic. However, it has been shown that the optical NLC can benefit
from complex-valued NN [56].

Lastly, the output structure of an NN equalizer earlier focused on single-symbol
recovery, where the NN predicted the real and imaginary parts of each symbol. However,
multi-symbol equalization is currently used in recent studies [81, 55]. This approach
reduces overall complexity by cutting down the number of sliding windows in equalization,
as one sliding window can compensate for many more symbols at a time. This method
Improves learning efficiency and system performance. Multi-symbol output not only
reduces the computational complexity per symbol but also reveals a superior performance

compared to its single-symbol counterpart [82, 81].

2.3 Previously Proposed NN-Based Equalizers in Dif-

ferent Transmission Schemes

2.3.1 Single-Channel Transmission

Many studies have focused on NN-based equalizers in single-channel transmission be-
cause they simplify the problem, allowing the isolation of key impairments like chromatic
dispersion and fiber nonlinearities without the added complexity of inter-channel inter-
ference found in multi-channel systems. Additionally, single-channel scenarios provide a
clear benchmark to prove the concept of NN-based equalization before extending it to
more complex systems like WDM.

Liu et al. [83] leveraged the Attention mechanism in the bidirectional RNN (biRNN)-
based equalizer. The Attention mechanism is a technique used in NNs, especially in
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sequence processing tasks, that allows the model to focus on the most relevant parts
of the input when making a prediction. This paper used this Attention mechanism
to explore the contribution of each input symbol in the input sequence as well as
their hidden representations for predicting the received symbols. The low-complexity
partial-biRNN with the gated recurrent unit was proposed, showing a 56.16% reduction
in real multiplications per symbol (RMpS) in comparison to the full biLSTM model.

Huang et al. [84] introduced a perturbation theory-aided complex-valued fully
connected NN (P-CFNN) model for NLC, enhanced by a complex principal component
analysis technique. The proposed P-CFNN model demonstrated superior performance,
while significantly reducing computational complexity. Specifically, it delivers a 40%
reduction in time complexity and a 70% reduction in space complexity compared to
real-valued NN with equivalent complexity. In this work, space complexity refers to how
much memory an algorithm needs to run, based on the size of the input data. It is
typically measured by the total number of parameters in the model.

Xiang et al. [85] proposed a low-complexity nonlinear equalizer based on a conditional
generative adversarial network (c-GAN) for coherent data-center interconnections. The
proposed c-GAN equalizer presented superior performance compared to traditional
approaches like Volterra filter equalizers and other models such as MLP and LSTM. The
c-GAN reduced the complexity by up to 98.8% compared to LSTM, while significantly
improving performance. The reduction in complexity resulted from lightweight c-
GAN architecture that uses only the generator during inference and optimizes input
representation via a sliding window and normalization.

Freire et al. [25] demonstrated biLSTM, CNN equalizer, and CDC block implemen-
tation on the FPGA. The authors assessed the complexity reduction of the NN due
to the implementation using fixed-point arithmetic and nonlinear activation function
approximations.

Gautam et al. [86] investigated a Transformer-based nonlinear equalizer, showing
superior performance compared to DBP, fully connected NNs (FCNN), and biLSTM.
This Transformer-based model leverages its self-attention mechanism and an optimized
encoder-only architecture with a linear feature extractor. Even though the Transformer
required significantly lower complexity in RMpS than DBP, it is more computationally
expensive than the FCNN and biLSTM.

Jiang et al. [87] developed a wide and deep-based equalizer. The authors explored
both wide and deep CNN-based and wide and deep bidirectional gated recurrent unit
(biGRU)-based nonlinear equalizers. It was reported that a wide network can capture
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the power feature factor of a single symbol better, whereas a deep network handles the
feature sequences that contain nonlinear interference relationships between symbols.
The results showed that this proposed approach improved the optical performance at a

cost of less than 0.1% increase in complexity compared to the normal architecture.

2.3.2 Wavelength-Division Multiplexing

To increase the capacity, it is necessary to adopt ultra-high bandwidth channels in
WDM, which are characterized by a dense arrangement. This approach allows for
the transmission of more data simultaneously by utilizing a greater number of closely
spaced wavelengths within the available spectrum. The difficulties of the nonlinearity
compensation in the WDM environment are the necessity to have more taps and more
memory in the equalizers to take into account the inter-channel nonlinearities. Many
papers have investigated the NN-based equalizer in WDM systems, however, more
investigations on the complexity and the requirement of the neighboring channel's
information for the NLC are necessary.

Sidelnikov et al. [88] presented a deep CNN architecture for long-haul WDM systems.
The proposed model simulated the effects of DBP with optimized convolutional and
activation layers, effectively suppressing a significant portion of the XPM-induced signal
distortions while maintaining low computational complexity. The results demonstrate
that the proposed model outperforms traditional linear and DBP methods in both single
and multi-channel compensation scenarios.

Freire et al [89] introduced the CNN+biLSTM equalizer that outperformed DBP
with 3 STpS. This proposed equalizer only utilized the information of the channel under
test without additional information about neighboring channels (only information from
the signals leaked from the adjacent channels) as input. It was also reported that the
NN topology based on biLSTM layers was able to partially recover the XPM since the
higher gain in Q-factor was obtained compared to the single channel scenario.

Deligiannidis et al. [59] proposed a multichannel equalization approach using biRNN
for coherent WDM optical systems, through the simulated and experimental data. The
proposed method effectively mitigates nonlinear impairments such as XPM, offering
significant improvements in optical performance while drastically reducing computational
complexity compared to the full-field DBP.
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2.3.3 Digital Subcarrier Multiplexing

DSCM has recently gained attention as an effective solution to address the rapid growth
of internet traffic. In DSCM, subcarriers are generated and managed in the digital
domain using DSP. By optimizing symbol rates, DSCM offers greater resilience against
nonlinear distortion compared to traditional single-carrier systems [90]. This happens
because splitting a high-baud-rate signal into multiple low-baud-rate subcarriers improves
nonlinearity tolerance. This improved tolerance is attributed to the theory of four-wave
mixing efficiency or the walk-off between subcarriers due to chromatic dispersion [90].
This makes DSCM a promising approach for the evolution of optical networks, enabling
the transition from point-to-point to point-to-multipoint architectures. Its flexibility
leads to significant reductions in both capital and operational expenditures in optical
networks, making it an attractive choice for future deployments.

Saif et al. [91] presented deep learning-assisted NLC, based on the combination of
the subcarrier multiplexing (SCM)-DBP and learned DBP. The SCM-LDBP method
extends SCM-DBP by incorporating MLP to perform the compensation. Instead of
frequency-domain filters used in SCM-DBP for CDC and cross-subcarrier nonlinearity
(CSN) mitigation, SCM-LDBP employs time-domain filters implemented as MLP layers.
The results showed around 38% complexity reduction compared to the SCM-DBP [92].

Bakhshali et al. [1] proposed different NN architectures, including the black-box
approach and the model based on perturbation analysis to compensate for optical
channel nonlinearities in DSCM. The authors showed the performance of NN with
different complexity limits and demonstrated that the model based on perturbation
theory outperformed other models given the same complexity budget.

There are still a limited number of papers exploring the NN-based equalizer in DSCM.
However, some literature [93-95] investigated different NN architectures in orthogonal
frequency division multiplexing (OFDM). OFDM divides the available bandwidth into
multiple orthogonal subcarriers!, allowing data to be transmitted in parallel streams.
This approach also enhances spectral efficiency and provides robustness against channel
impairments like chromatic dispersion and polarization mode dispersion.

LIn the DSCM, the subcarriers are not orthogonal.
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2.4 Complexity Reduction Techniques of NN-Based
Equalizers

As computational complexity is still the main challenge of the NN-based equalizers, dif-
ferent complexity reduction techniques have been explored. These complexity reduction
techniques are categorized into three phases of implementation: training, inference,
and hardware synthesis phase [55]. Fig. 2.7 shows the overview of the most common
approaches that can be used to reduce the complexity of the NN-based equalizers in
each phase. This thesis later shows the use case of some of the techniques mentioned
here and explains them in detail in the following chapters.

2.4.1 Complexity Reduction Techniques in Training Phase

Minimizing complexity in the training phase is crucial for efficiency, scalability, and
real-world deployment. As in the real-world situation, the training resources might be
limited, especially in resource-constrained optical systems. Various techniques can also
enhance the performance of the model and efficiency in the training, including transfer
learning and methods that improve generalization. Examples of these methods are data
augmentation, domain randomization, and semi-supervised learning. These strategies

Complexity Reduction Techniques

|
! ! |

Training Phase Inference Phase Hardware Synthesis Phase
Data Pre-Processing Network Pruning Approximate Multipliers/Adder
Transfer Learning Network Quantization Parallelization
Domain Randomization Weight Clustering Data Partitioning
Semi-Supervised Learning Tensor Decomposition Skipping
Meta Learning Knowledge Distillation Memoization
Data Augmentation Dynamic Precision Scaling Layer Pipelining
Dimensionality Reduction Efficient Activation Function Dynamic Computation Graphs
Multi-Task Learning Dynamic Neural Networks Activation Function

Approximation

Fig. 2.7 Complexity reduction techniques for NN-based equalizers in training, inference,
and hardware synthesis phases.
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help lower dependency on large training datasets. Improving generalization decreases
the need for complex models, resulting in faster and more efficient training.

Data pre-processing is an essential step to prepare the input for the NN training.
High-quality input data can be beneficial in enhancing the model’s efficiency and
accelerating convergence. This is because the quality of input data contributes to
the stability of the training, improves generalizability, and leads to successful data
interpretation by the model [96]. Data pre-processing includes data normalization and
feature engineering. Data normalization ensures features are on a consistent scale.
Feature engineering involves selecting and transforming input features to highlight
relevant information while eliminating noise and irrelevant data. In the context of
this thesis, feature engineering specifically evaluates the relevance of given features to
improve the Q-factor or Bit Error Rate (BER) performance. For example, while the
real and imaginary parts of received symbols are intuitive features, it is crucial to assess
whether transmission parameters (e.g., number of spans, transmission power) provide a
meaningful contribution to the learning process or merely increase model complexity
without proportional benefit.

Transfer learning (TL) applies the knowledge acquired in the source tasks to
the related target tasks. The training time and resources required can be reduced
significantly with TL. This approach is especially practical when training or fine-tuning
the models on resource-constrained hardware. TL allows the NN to derive knowledge
from a more sophisticated pre-trained model and fine-tune it for a more specific task.
TL was studied in equalization tasks in both direct detection [97] and coherent [98]
optical systems. Ref. [98] exhibited the potential of TL to reduce the training time
and the size of the training dataset while maintaining the equalizer's performance. The
work carried out in this thesis also leverages TL to reduce the computational complexity
In the training.

Domain randomization is used for data generation to improve the flexibility and the
robustness of NN models when applied in new environments [99]. Domain randomization
generates training data from a random distribution with given desired properties and
stores it in a library accessible by the NN. By using synthetic data, this method reduces
the dependence on real-world data, thus improving the training efficiency [100]. This
technique is especially valuable when dealing with complex and dynamic environments,
as the model becomes more adaptable to variations encountered during deployment.

Semi-supervised learning combines labeled and unlabeled data in training, allowing
the model to learn from both. Semi-supervised learning enables NN to leverage the
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available labeled data more effectively by incorporating information from the unlabeled
samples. This method enhances the model’s performance without requiring additional
labeled data, which makes the model more flexible to transmission changes. This
method resembles decision-directed adaptive equalization [101] for channel equalization.

Meta learning involves training models that can efficiently adapt to new tasks with
only a small amount of training data based on experiences gained from a variety of
learning tasks [102]. This approach explicitly trains the model parameters to enable
efficient generalization on new tasks with a small number of gradient steps and minimal
training data, making it simple to fine-tune.

Data augmentation allows datasets to be more diverse and representative by
artificially generating additional data points from existing data [103]. Data augmentation
used in optical NN-based equalizers is a technique to improve equalization performance
and decrease the training complexity of supervised learning in nonlinearity mitigation.
In supervised learning tasks, normally a large training dataset is required. The model
will also need to be re-trained when the channel conditions change. However, big data
collection can be challenging. The efficient use of a limited dataset is more desirable for
practical implementation. Ref. [104] showed that data augmentation reduces the size
of the dataset up to 6 times while maintaining the optical performance. This technique
enables a less overfitting model, fewer model parameter requirements, and a faster
convergence of the training.

Dimensionality reduction techniques address the challenges associated with high-
dimensional input spaces. These techniques aim to capture and retain the most
informative aspects of the data while reducing the number of input features significantly
[105]. Principal Component Analysis (PCA) [106], for instance, transforms the original
features into a lower-dimensional space defined by principal components (a new set of
uncorrelated variables), retaining the maximum variance.

Multi-task learning (MTL) is a framework in which a single model is trained to
perform multiple but related tasks simultaneously. In contrast, traditional single-task
learning trains multiple separate models for each task independently. Multi-task learning
leverages shared representations across tasks and the model’s parameters are optimized
jointly across all tasks. This training approach can lead to better generalization of
the model and reduce the need to deploy several models for different tasks, and does
not require re-training when performing related tasks. This technique not only reduces
the number of models that need to be trained but also reduces the complexity in
the inference phase. However, this technique can exhibit a trade-off between overall
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performance and specific task performance. This approach has been shown to be
efficient in the NN-based equalizers in both IM/DD [107] and coherent systems [108].
MTL is explained further with the case study in Chapter 5.

2.4.2 Complexity Reduction Techniques in Inference Phase

Next, during inference, the NN must accurately equalize the input signal using the
minimum computational resources while meeting the required performance metrics. As
in the real world, the environments and the resources are more constrained. This result
can be achieved by using different techniques, for example, network pruning, sparse
representation, knowledge distillation (KD), and tensor decomposition.

Network pruning or sparsification is the method to produce sparse NNs, aiming to
reduce the computational complexity of the NN. This technique removes parameters,
neurons, or even layers or parts of the NN that do not significantly impact its perfor-
mance [109]. Pruning is known to be robust to various settings, able to achieve good
performance, and able to support both trained from scratch and pre-trained models.
The area of NN pruning is wide and encompasses several subcategories: (a) static or
dynamic; (b) one-shot or iterative; (c) structured or unstructured; (d) magnitude-based
or information-based; (e) global or layer-wise [16]. The information on each type of
pruning is detailed in [110, 111]. The static, iterative, unstructured, global magnitude-
based pruning is one of the simplest pruning approaches. The lowest magnitude weights
are globally pruned throughout the NN. The weights are removed offline from the NN
after training but before inference [16]. This iterative approach enables the NN to
remove more weights while preserving accuracy.

Network quantization is an approach to decrease the bitwidth of the numbers
in arithmetic operations. When it is deployed in signal processing, the complexity
reduction of the processing is significant. For instance, the floating-point numbers are
quantized to be in integer forms. This approach enables the NN to be represented using
less memory and allows high-performance vectorized operations on various hardware
platforms [16, 112]. This quantization technique has shown promising results in different
NNs during both the training and inference process [112, 111]. This technique is even
more effective when being deployed in the inference phase since the computing resources
are saved without remarkable accuracy loss [16]. Particularly, the NNs can benefit from
quantization, as the NNs are exceptionally robust to aggressive quantization due to a
large number of parameters involved in the NN (over-parameterized models) [16].
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Weight clustering also known as weight-sharing, is a compression technique to
reduce the complexity of the NN. Weight clustering reduces the number of effective
weights used by the NN, considering that several connections may share the same
value of weights. Then it fine-tunes those shared weights [16]. Various papers have
addressed the complexity issues in the feed-forward NNs by this approach [113-115].
This approach was explained in detail and demonstrated with the use case in Chapter 3.

Tensor decomposition decomposes high-dimensional data into a lower-dimensional
space [116]. In other words, a multidimensional tensor is broken down into a combi-
nation of simpler tensors. By decomposing tensors, especially weight tensors in NN,
into smaller and more manageable components, tensor decomposition reduces the
number of parameters and computations needed in the inference phase. In [117], the
authors showed that the sparse decomposition of the tensor in convolutional filters can
successfully reduce model complexity and memory usage during inference.

Knowledge distillation (KD) is applied to transfer knowledge from a larger model
(teacher) to a more compact one (student) using teacher predictions to assist student
learning. KD can reduce the size of the model [118]. The distilled model retains the
essential information from the teacher model, making it suitable for deployment in
resource-constrained environments during the inference process. KD is discussed and
examined with the real optical data in Chapter 4, to allow parallelization.

Dynamic precision scaling (DPS) dynamically adjusts the precision of the numer-
ical values of the weights and activations during computation, based on the specific
requirements of each computation. With this approach, the NN can utilize lower preci-
sion when the accuracy demands allow, as DPS optimizes the utilization of available
resources. This approach provides an effective reduction of complexity during inference.
Ref. [119] showed that DPS could be used in both the forward pass (inference) and
backward pass for training.

Efficient activation function selection can play an important role in complexity
reduction. The expensive activation functions, e.g., hyperbolic tangent or sigmoid, can
be replaced by the approximated alternatives or with the look-up table to reduce the
computation [25]. Simpler functions such as Rectified Linear Unit (ReLU) are also
commonly chosen because of their simplicity in calculation and speed.

Dynamic neural networks [120] can adapt their structures or parameters and
dynamically allocate computational resources based on different inputs. Instead of
executing a fixed number of operations for all inputs, dynamic NN skips unnecessary
computations and leads to reducing overall complexity. For instance, early exiting
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processes the simpler samples with fewer layers or a more shallow network, without
executing deeper layers. Unlike pruning and quantization that permanently reduce the
size or precision of model parameters, dynamic NN offers a more dynamic and flexible

solution.

2.4.3 Complexity Reduction Techniques in Hardware Synthesis
Phase

Complexity reduction techniques of NN in hardware synthesis play a crucial role in
optimizing the NN implementation on dedicated hardware. In hardware synthesis, the
NN is mapped onto the hardware architecture, and the hardware design is optimized
to achieve the desired performance while minimizing resource utilization. There are
some techniques to reduce the complexity of the hardware, such as multiplier/adder
approximations, parallelization, memoization, and skipping. The choice of suitable
techniques depends on the NN architecture, the characteristics of the target hardware,
and the desired trade-off between computational efficiency and model accuracy.
Approximate Multipliers/adders are to reduce the hardware resource requirements
by approximating multiplier and adder, which are key components of the hardware
implementation for NN computation [121]. The approximation replaces full-precision
multipliers and adders with less resource-intensive multipliers and adder implementa-
tions, such as approximate adders or low-precision. Binary or ternary multipliers are
examples of low-precision alternatives. By using lower-precision multipliers and adder
implementations, the overall hardware complexity is reduced. This can lead to more
efficient use of hardware resources without significantly sacrificing model accuracy.
Parallelization involves dividing the NN into multiple sub-networks to be processed
simultaneously, aiming for faster and more efficient execution in terms of latency and
throughput [122]. This methodology capitalizes on parallel hardware architectures,
such as GPUs, yielding higher computational efficiency. As detailed in Ref. [123],
parallelization can take various forms including: Data Parallelism, where multiple
NN instances operate simultaneously on distinct data batches; Model Parallelism,
involving the division of a single NN across multiple processors or GPUs, with different
components processed on separate devices?; and Pipeline Parallelism (inter-layer

2In addition to the aforementioned parallelization techniques, another subcategory worth mentioning
is intra-layer parallelism, often referred to as Tensor Parallelism. This method entails parallelizing
computations within a single layer of the NN. Specifically, it involves partitioning large tensors, such as
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parallelism), which segments the NN computation into stages, each executed by a
distinct processing unit such that the data flow resembles a sequential assembly line.

Data partitioning is an approach to divide the input data into subsets to be
processed in parallel by different hardware components independently [124]. After that,
the result of each partition is combined. Ref. [125] demonstrated that with their data
partitioning approach, only small memory storage is required, instead of duplicating the
whole data set size over all the processing units.

Skipping can be used to decrease the executed workload and reduce computational
costs. This method selectively skips certain computations based on their relevance to
the final output or the predefined conditions. Skipping approximations can be performed
by a simple calculation to evaluate if a more complex computation can be eliminated
[126].

Memoization stores and reuses intermediate results of expensive computations in
memory to avoid recalculation when the same input reappears [126, 127]. This can be
especially beneficial in RNN or other architectures with repetitive computations, leading
to improved hardware efficiency. Even the simple implementation of memoization in
Ref. [127] could speed up different experiments with different workloads ranging from
7% up to 25%.

Layer pipelining splits the processing of different layers in NN into sequential stages
that overlap in time to allow parallelization of the computation. This method [128]
allows scalable model parallelism with high hardware utilization and training stability.
Pipelining algorithm library, GPipe, from [128] is a library to train a giant NN, with
efficiency (speeds up the process), flexibility (supports any deep network), and reliability
(guarantees consistent training).

Dynamic computation graph allows the structure of the NN to change dynamically
at runtime [129]. While the static graph fixes the structure of the NN (like the sequence
of operations and connections) before the beginning of training, the dynamic graph
constructs the structure of the NN on the fly during execution. This approach allows
flexibility as it adapts the structure efficiently depending on varying input types and
conditions.

Activation function approximation [130] simplifies the computation of nonlinear
functions, such as sigmoid, and tanh, which are commonly used in the LSTM layer.

The approximation can improve efficiency in hardware implementations. Standard

weight matrices, of a layer across multiple devices, facilitating parallel computations on these segmented
chunks.
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activation functions often involve exponentials, divisions, or other complex mathematical
operations. These functions are computationally expensive and not ideal for resource-
constrained hardware like FPGAs, ASICs, or other embedded systems. The common
approximation methods are piecewise linear functions, look-up tables (LUT) and Taylor
series expansions. This can reduce power consumption, decrease latency, and lower
memory requirements. This method is explained in depth and used in a study case In
Chapter 3.

2.5 Complexity Metrics: Training and Inference

After implementing the mentioned complexity reduction strategies, it is essential to
evaluate their effectiveness. This section gives a comprehensive understanding of the
model’s complexity during the training and real-time inference phases on the target
hardware platform. Fig. 2.8 and Fig. 2.9 show the metrics used to measure the
complexity of training and inference phases, respectively.

2.5.1 Complexity Metrics for Training Phase

For training, the computational complexity of the NN should be appropriately evaluated,
as it allows for efficient resource allocation and is useful for comparing different models
to assess the efficiency and effectiveness of various model architectures. Several metrics
can be used to assess the complexity of NNs as in Fig. 2.8, which can be categorized

Key Metrics for Training Complexity
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Fig. 2.8 Key metrics to evaluate complexity in the training phase for NN-equalizers.
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into four key areas: time, space/architecture complexity, parallelism complexity, and
generalization [55]. Adopting a multidimensional perspective is important because a
single metric cannot provide a holistic understanding of the true complexity of training.
Each dimension offers unique insights, guiding informed trade-offs between model
performance, resource requirements, and generalization capabilities. Next, we will
further detail each of these key areas of training complexity measurements.

Time Complexity: The traditional measures refer to the training time and the
number of epochs required to achieve the desired performance. These metrics also take
into consideration the learning rate and the optimizer used. Even though the training
time metric and the number of epochs metrics show, to some degree, the training
complexity, these metrics are a poor benchmark since the training time depends heavily
on the hardware resources used and the size of the training dataset. In addition, two
NNs with the same number of epochs to achieve the same performance can have very
distinct training time, also depending on the batch size. To address these issues, an
additional metric is proposed. The product of the number of epochs and the number
of batches (NENB) [55], reflects the model's computational demand. More training
epochs generally indicate a more complex and computationally demanding model. The
number of batches refers to the number of subsets of data used during each epoch,
which is affected proportionally by the dataset size and batch size. The number of
epochs and the number of batches cannot be evaluated separately, as one model may
require more epochs but fewer batches, while another model may require fewer epochs
but more batches. Lastly, FLOPs (floating-point operations) can be used to measure
the number of floating-point operations required to train the model. A higher number
of FLOPs typically indicates higher time complexity.

Space/Architecture Complexity: The number of trainable parameters, while
commonly used, may not fully capture the complexity due to different architectural
designs. For example, two NNs with the same number of trainable parameters can have
very distinct training complexity [131]. The model architecture indicates the complexity
of the NN architecture itself, such as the depth, width (e.g., the number of layers
and neurons) of the network, and specific architectural choices such as recurrent, or
convolution. The next metric is the memory requirement for storing the weights, biases
of the NN, and intermediate computations during training. The space complexity can
be influenced by the batch size used during training. Larger batch sizes might require
more memory, particularly on GPU devices.
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Parallelism Complexity: This aspect consists of data parallelism and model par-
allelism. Data parallelism is the parallelization of training across multiple devices by
splitting the dataset. Model parallelism is about distributing the model across different
devices for processing. Parallelizability also refers to how scalable the training process is,
with added computational resources and the efficiency of distributing the training process
across multiple GPUs. For example, the MLP feed-forward NN is fully parallelizable and
can result in faster training. To be more specific, the training time of RNN compared
to the MLP with the same number of trainable parameters can be significantly longer,
as the recurrent architecture of RNN is more complex than the feed-forward structure
of the MLP.

Generalization: The flexibility/generalizability is assessed by estimating the number
of operational ranges in which the NN equalizer operates with an acceptable gain. If
the NN can only perform a specific task, it requires frequent re-training in the future,
contributing to the overall complexity. Therefore, the NN that performs well in different

but related tasks without re-training is preferable [108].

2.5.2 Complexity Metrics for Inference Phase

Evaluating computational complexity accurately is essential in the design of DSP devices.
This will allow a better understanding of the implementation feasibility and bottlenecks
within each device’s structure. With this consideration, Fig. 2.9 summarizes the most
commonly used measures for assessing computational complexity, from the software to
the hardware level [55].
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Fig. 2.9 Key metrics to evaluate computational complexity in the inference phase for

NN-equalizers.
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Big-O Complexity

Big-O notation is a key concept for evaluating an algorithm’s computational complexity.
It describes how runtime or resource usage scales with input size. Big-O (O) provides
an upper bound on the worst-case scenario of the time required to operate. In addition,
there are also Big-Theta (6) and Big-Omega (Q2) notations that are the same family
to compare the efficiency of different operations. Big-Theta (©) represents the exact
bound, while Big-Omega (Q2) is the best case or the lower bound. For instance, when
adding two integers with n digits, the computational complexity is ©(n). This can be
interpreted as the time required growing linearly with the number of digits. On the
other hand, multiplication of two n-digit numbers results in O(n?) complexity. O(n?)
indicates a quadratic growth in processing time, showing that multiplication is often

more computationally expensive than addition.

Real Multiplications

One of the primary ways to evaluate the computational complexity of an algorithm is
the number of real multiplications (RM) [132, 133], while ignoring additions. RM is a
software-oriented estimation and is often defined per one processed element, such as per
sample or symbol. RM only focuses on multiplications because, in both hardware and
software implementations, the multiplier is generally the slowest element and consumes
the largest chip area [134, 132]. In contrast, additions are generally inexpensive in terms
of processing time and resource usage. For algorithms that use floating-point arithmetic
with a fixed bit-width precision, RM offers a practical way to compare complexity.
This metric is commonly used to benchmark the complexity in the DSP operations for
optical channel equalization tasks [133]. In this thesis, we also adopt RM as the main
complexity of the NN to benchmark against other methods.

Number of Bit-Operations

When transitioning to fixed-point arithmetic, it becomes necessary to consider the
number of bit-operations (BOP) to evaluate computational complexity. BOP reflects
the impact of varying the bitwidth precision on the complexity. This metric esti-
mates the BOP required for fundamental arithmetic operations, such as addition and
multiplication, based on the bitwidth of two operands. In essence, the BOP metric
extends the concept of floating-point operations (FLOPs) to a more accurate measure

of complexity in heterogeneously quantized NNs. FLOPs cannot efficiently evaluate
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integer arithmetic operations [135, 136]. For BOP estimation, both multiplication
and addition complexities must be assessed, since complexity is evaluated in terms
of the most common operations in NNs: multiply-and-accumulate (MAC) operations
[135, 136, 115]. BOP reflects how multiplier counts scale with operand bitwidth and
adder counts with accumulator bitwidth. Since most DSP implementations rely on
dedicated logic macros (e.g., DSP slices in FPGAs or MAC units in ASICs), BOP
serves as an effective complexity metric by considering operand-specific bitwidths in
MAC operations.

Number of Additions and Bit Shifts

With the development of advanced NN quantization techniques [137—-140], fixed-point
multiplications can be efficiently implemented using a few bit-shifters and adders [141-
143]. BOP primarily counts bit-level operations from multiplications and additions
but does not distinguish between standard multiplications and those optimized using
bit-shifting techniques. Therefore, the NABS metric (the number of additions and
bit shifts) is required to measure the complexity one step closer to the hardware level.
NABS actually only counts the number of total equivalent additions to represent the
multiplication operation, while neglecting the shift operations. This is because shift
operations incur no additional hardware cost and execute in constant time with O(1)
complexity. Despite this, the term “number of additions and bit shift” is retained to
emphasize that multiplications are now represented through shifts and adders.

Number of Logic Gates

Unlike NABS, which estimates computational complexity based on additions and bit
shifts, the number of logic gates (NLG) is a hardware-level metric used to evaluate
the actual implementation cost of a design on hardware platforms such as ASICs and
FPGAs. In contrast to other complexity metrics, the NLG metric includes the cost of
the activation functions, which are often implemented using LUTs rather than adders
and multipliers, to reduce the complexity. Other relevant hardware-level metrics include
flip-flops (FF), registers, general logic blocks, memory blocks, and specialized functional
macros. Since NLG depends on the specific circuit design, there is no direct conversion
from NABS to NLG. Tools such as Synopsys Synthesis [144] can estimate gate counts
for ASICs. However, for the FPGA design, it is more challenging to correctly estimate
the gate count from the report of FPGA tools [145]. For FPGA-based designs, NLG
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can be estimated based on the number of logic gates per configurable logic block or
logic cell [146].

Power Consumption and other aspects

Power consumption, memory footprint, and activation function complexity should be
evaluated. Power consumption is critical as it can cause a bottleneck during the
implementation. Memory usage depends on the input size of the time series and the
number of parameters stored in the memory, considering the quantization scheme.
Additionally, activation function complexity, including different function types and
approximation methods, should be examined [25].

2.6 Conclusion

This chapter introduced NN-based equalizers for nonlinearity mitigation in optical commu-
nication systems. The chapter reviewed traditional equalization methods, including DBP,
Volterra series-based approaches, phase conjugation, and perturbation-theory-based
methods alongside machine learning-based techniques, emphasizing their advantages
and challenges. The chapter’'s focus was to present different complexity reduction
techniques and how to evaluate the complexity of the NNs. Complexity reduction
techniques were introduced based on the different implementation phases: training,
inference, and hardware synthesis. Likewise, the complexity metrics were divided into
the training and inference phases. For the inference phase, the metrics can reflect the
complexity from the software to hardware levels.
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Chapter 3

Low-Complexity Techniques for
NN-Based Equalizers

3.1 Introduction

Although NN-based optical channel post-equalization can offer lower computational
complexity than traditional mitigation techniques like DBP [55], the computational com-
plexity still hinders their practical implementation. Among the various NN architectures,
RNNs, such as LSTM modules, have shown better equalization performance compared
to feed-forward NNs when addressing nonlinear impairments [62, 73], since the LSTM
layer is suitable for time-series processes. However, the computational complexity of
the LSTM layer is still considerably high.

This chapter discusses the first aspect of the challenges: computational complexity.
The reduction techniques used in the LSTM-based equalizers are investigated. Section
3.2, based on C1 [147] and J1 [148], considers the weight clustering method to reduce
the computational complexity in the NN-based equalizer in a DSCM system, which
iIs a more challenging transmission system compared to a single carrier transmission.
Section 3.3, based on C4 [149] and J6 [25], examines the approximation techniques of
the nonlinear activation functions in an LSTM-based equalizer, aiming to reduce the

hardware resources required for the implementation.
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3.2 Weight Clustering to Reduce Number of Real Mul-

tiplications

Several authors have investigated LSTM- or NN-based equalizers in single-carrier trans-
mission systems [62, 73, 108], however, a limited number of works [1, 91] investigated
the NN-based equalizer in the DSCM system. DSCM has recently emerged as an
effective alternative to cope with the current rapid evolution of internet traffic, e.g.
to limit effects such as equalization-enhanced phase noise (EEPN) [150]. It has also
been proven to provide more robustness against nonlinearity distortion by optimizing
symbol rates compared to single-carrier systems[90, 151]. DSCM and OFDM differ
in how subcarriers are managed. While OFDM relies on overlapping subcarriers with
carefully maintained orthogonality for efficient spectrum utilization, DSCM uses fully
separated subcarriers with virtually zero frequency cross-talk, simplifying receiver design.
Compared to OFDM, DSCM offers greater resilience to time-frequency synchronization
challenges within DSP algorithms. OFDM operates at a much lower symbol rate, which
complicates the detection of subcarriers, particularly when signals originate from multiple
OFDM transmitters at varying distances [152]. Finally, DSCM provides significant
flexibility, resulting in reduced capital and operational expenditures in optical networks
[153, 154].

Bakhshali et al. [1] have already proposed NN architectures for optical channel
nonlinearity compensation in DSCM systems. However, the complexity of their approach
remains considerable. Therefore, further complexity reductions are paramount in the
path towards real implementation and sustainable nonlinear equalizers.

This work investigates nonlinearity compensation in DSCM transmission systems
by applying the NN-based post-equalizer. To allow the lower complexity, the model
compression technique “weight clustering” is applied. Weight clustering reduces the
number of effective weights used by the model, resulting in a significant decrease in
computational complexity [16]. Note that the weight clustering method has already
been investigated in the single-carrier transmission [16]. The contribution of this chapter

can be summarized as follows:

e \We demonstrate how the input structure and the NN architecture are adapted to
simultaneously recover signals from all subcarriers in DSCM systems.

e We investigated the potential of weight clustering as a complexity reduction
technique in an NN-based equalizer used in DSCM systems.
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e We propose the low-complexity NN model that offers a reduction of up to 34%
in computational complexity in terms of real multiplication per equalized symbols
(RMpS), compared to the standard DBP 1 STpS (step per span) and up to 97.9%
RMpS reduction compared to its uncompressed version.

e \We propose NN models leading to optical performance similar to that reported
in [1], but with a reduction of up to 91% complexity in RMpS.

e \We compare the trade-off between the NN models’ performance and complexity
with different numbers of weight clusters (WC).

3.2.1 NN Architecture

The utilization of NN in DSCM is notably under-researched. Various architectures of NN
have been proposed for nonlinear mitigation in single-channel single-carrier transmission
systems, such as MLP, CNN, or RNNs. However, feedforward NNs like MLP and
CNN have demonstrated inferior performance compared to RNN- or biLSTM-based
architectures [62]. Due to the increased complexity in DSCM systems arising from the
nonlinearities of adjacent subcarriers, the constraints of MLPs and CNNs are expected
to be even more significant. Consequently, the NN architecture proposed here is a
combination of the biLSTM and CNN model, as depicted in Fig. 3.1. The architecture
based on an LSTM layer has shown superior performance in previous research works
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Fig. 3.1 The NN equalizer design employs biLSTM and 1D-CNN layers, utilizing the
data from all four subcarriers as inputs to simultaneously recover symbols in the X
polarization across all four subcarriers.
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[1, 16, 73]. Unlike RNNs that face short-term memory limitations, LSTM networks are
capable of learning long-term dependencies across time steps, which are essential to
mitigate dispersion-induced memory effects and ISI caused by chromatic dispersion [73].
LSTM was specifically designed to overcome the gradient challenges associated with
RNNs [71, 72]. The core properties of the LSTM-based layer are sequential processing
and retaining past information through past hidden states. The biLSTM layer adopted
here consists of two separate LSTM layers for forward and backward directions. The
equations of the LSTM layer and its complexity can be found in Section 3.2.4. Note
that all of the NN-based equalizers in this work operate at one sample per symbol.

In this work, the biLSTM layer has 111 hidden units (np), and the 1D-CNN layer
adopts 8 filters (n¢) and a kernel size (nx) of 15 with the linear activation function.
This 1D-CNN layer has 8 filters to recover real and imaginary parts of X polarization?
of all four subcarriers simultaneously. The input window (M) has a size of 221 input
symbols. In order to equalize the signal in DSCM systems, the NN takes in 16 input
features that consist of real and imaginary parts of X and Y polarization for four
subcarriers. In this way, the NN can have sufficient knowledge to learn the pattern
of nonlinear distortions like self-subcarrier nonlinearity (SSN) including those arising
from the neighboring subcarriers, and mitigate the cross-subcarrier nonlinearity (CSN).
The model performs a regression task to predict the real and imaginary parts of the
recovered symbols or 207 symbols for each subcarrier per one inference step. To recover
multiple symbols, it is necessary to account for the system memory length induced by
chromatic dispersion in fiber communication systems. When the NN equalizer processes
a window of M input symbols, only M — x symbols can be reliably recovered, where x
depends on the system’s memory length. This is because the initial and final symbols in
the input window lack sufficient information from their neighboring symbols (due to
dispersion-induced memory effects), making them difficult to recover accurately. To
address this, the dimensionality of the input window is reduced without losing crucial
information by using a 1D convolutional layer. This layer processes the data with a
kernel size ny, zero padding, dilation, and stride set to 1. As a result, the size of the
recovery window becomes M — n, 4+ 1. The loss function used in this model is mean
square error (MSE), and the optimizer is Adam with a learning rate of 5.81-10~*. Adam
Is an optimization algorithm that extends Stochastic Gradient Descent (SGD) by using

WWhile it is possible to modify the NN output to recover both X and Y polarizations simultaneously,
this was not tested in this study. For consistency, the CDC block and the NN equalizer were applied
separately to each polarization.
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adaptive learning rates and momentum to improve convergence speed and stability. The
model with 214 hidden units of biLSTM is also included to enable better performance
in Q-factor, which aligned with findings in [1] for comparison.

Bayesian Optimizer [62, 155] was utilized to optimize the NN hyperparameters.
Unlike blind search methods like grid or random search, it leverages past evaluations to
build a probabilistic model (often a Gaussian Process) of the objective function. This
model helps it intelligently decide where to test next, balancing exploring new areas with
exploiting promising ones. This leads to much faster and more efficient optimization.
The optimized hyperparameters included the learning rate, batch size, number of hidden
units in the biLSTM layer, and number of output window taps. A range of acceptable
values for each hyperparameter optimized was defined to ensure that the model did
not end up with very high complexity. For example, models with 214 hidden units were
selected to achieve the highest Q factor, while models with 111 hidden units were
chosen to demonstrate a reasonable trade-off between complexity and performance.
Models with fewer hidden units were not included in this study, as the primary goal was
to maintain a performance level comparable to existing benchmarks while optimizing
computational efficiency.

3.2.2 Complexity Reduction of NN Using Weight Clustering

The weight clustering method illustrated in Fig. 3.2, which is also known as weight-
sharing, is a model compression technique that reduces the computational complexity
of NN by decreasing the number of distinct weight values used in the model. This
method takes advantage of the observation that many connections in an NN can share
the same weight value [113, 156] and, as a result, significantly reduce the number
of unique multipliers needed during matrix multiplication. The shared weights can be
defined by the centroids’ initialization technique using K-means++, thus ensuring that
multiple weights will converge to the nearest centroid. In addition, one can fine-tune
those shared weights to improve accuracy?. The number of multiplications required in
the NN is reduced by applying weight clustering, as multiple operations of the same
values can be combined into a single multiplication. The number of distinct multipliers
in matrix multiplication is reduced to at least the number of clusters per input element.
For example, the weight matrix on the top left in Fig. 3.2 is the matrix W. To define

2This work carried out a two-step training method. The original model without weight clustering was
first trained to achieve good performance and well-trained weights, after that the weights after clustering
were fine-tuned to mitigate the approximation errors.
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Fig. 3.2 lllustration of weight clustering framework where the trained weights of the
original MLP model (top) are clustered into 3 weight clusters with the closest centroid.

the output vector O before clustering, the input vector / needs to be multiplied by the

matrix W. In this example, multiplying W and / leads to 16 real multiplications (input

size x hidden layer size = 4 x 4), as follows:

O=WxI=

w11 Wiz Wi3
Wo1 Woo W23
W31 Wsp W33

W41 W42 W43

Wig | |1
wWog | |
W3 | |13
Waa | |la

(3.1)

To cluster the weights into three clusters, as an example in Fig. 3.2 (bottom left), the

centroids of 3 clusters are calculated as c¢1, ¢, and c3. This can be seen as:

01

02
O =

03

04

& G
G G @
C C3 O
G @ G

| |h
| |k
C3 /3
Co /4

(3.2)
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In this case, the multiplications can be rearranged by summing first the input elements
that share the common weight clusters. The number of multiplications is reduced to 9

multiplications from the original 16 multiplications as follows:

01 (/1+/4)C2+IQC3+/3C1
o) H+RB)co+ (lbh+1a)cC
o= || = |t latiea) (3.3)
03 (h+nR)co+ (b +is)c3
04 (1'1—|-l'2—|-l'4)C2+l'3C1

In the worst case, the number of multiplications would be 12 real multiplications (input
size X the number of clusters = 4 x 3), as it carries out all possible unique multiplications
and the rest are only additions. The benefits of weight clustering depend on the size
of the input vectors, the weight matrices, and how the trained weight pattern spreads
over the weight matrix.

After the weights are clustered, the fine-tuning process can be applied to mitigate
the impact of clustering on the optical performance. This work follows the clustering
algorithm [156] from the TensorFlow framework. During training, the gradients are
computed with respect to these centroids, allowing the network to optimize while
reducing the number of unique weight values. This is accomplished through a lookup
table that maps weights to centroids during the forward pass and updates the centroids
during backpropagation. This approach effectively reduces the number of distinct
multipliers in matrix operations, resulting in significantly lower overall computational
load. Additionally, weight clustering acts as a form of non-uniform quantization, where
the NN's weight distribution is optimized to fit a limited set of values. This not only
simplifies the hardware implementation and enables better memory efficiency, but also
maintains the model’s optical performance close to its original uncompressed state.

It is worth noting that the fine-tuning or training phase for weight-clustered models
indeed involves additional computational cost due to an additional stage to fine-tune
the clustered weights. However, this fine-tuning typically requires only about 10 to
20% of the original training epochs in this study. In this work, the main focus is on
the complexity of inference, specifically in terms of real multiplications, as this metric
directly reflects the cost of implementing the model in real-world deployments. It is
common practice to train the model on a more powerful device and deploy it on a
resource-constrained one. While training complexity can be assessed using metrics
mentioned in Section 2.4.1, such as the number of trainable parameters, training epochs,
or total training time [55], this analysis falls outside the scope of this study.
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3.2.3 Data Generation, Training, and Evaluation
Data Generation Using DSCM Simulator

The numerical simulator created the dataset assuming a single-channel DSCM transmis-
sion with 4 subcarriers and 16-QAM DP modulation format. The total symbol rate is
32 GBd, resulting in 8 GBd per subcarrier. The transmission length is 40 x 80 km along
standard single-mode fiber (SSMF) spans. The SSMF is modeled with an effective
area of 80um?, chromatic dispersion coefficient D = 17 ps/(nm-km), and attenuation
parameter o = 0.2 dB/km. The block diagram of the system is reported in Fig. 3.3.
Furthermore, this work has also considered transmission along TrueWave Classic (TWC)
fiber with a total fiber length of 15 x 80 km and with the fiber parameters v = 2.5 (W-
km)~%, D = 2.8 ps/(nm-km), and a = 0.23 dB/km.
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Fig. 3.3 Considered simulation setup.

The ideal electrical components® are assumed, namely, Mach-Zhender modulator,
DAC, and ADC along with ideal TX/RX laser sources having zero linewidths and an
ideal optical front-end at the receiver. Moreover, electronic noise sources are not
considered for the simplicity of this analysis. At the transmitter side, the digital signals
of each subcarrier are filtered by a digital root-raised cosine (RRC) filter with a 1/16
roll-off*, shifted to different frequencies, and multiplexed in the frequency domain.
Subsequently, the pre-CDC was performed, where 50% of the total dispersion is digitally
pre-compensated. The full band signal is finally inverse Fourier transformed to the time

domain and propagated. The propagation of the signal through the fiber was modeled

3The primary focus of this work is to demonstrate a proof-of-concept method for mitigating fiber-
induced nonlinearities. In addition, in modern coherent transceivers, nonlinearities from devices such as
the Mach-Zehnder modulator (MZM) are typically mitigated (i) using a digital pre-distortion module
included within the DSP at the transceiver, or (ii) by operating the Mach-Zehnder in linear regime.
Therefore, the electrical components are assumed to be ideal and their nonlinear effects are out of the
scope of this work.

#Note that the channel parameters are set to match the parameters of the simulator in [1].
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according to the well-known Manakov equation [157]. The simulations were carried out
based on a full-band symmetric split-step method [14] with an adaptive step size [158].
At the end of each fiber span, optical fiber losses are perfectly compensated for by an
EDFA with a 6 dB noise figure.

On the receiver side, all subcarriers are captured simultaneously in a single detection.
The subcarrier multiplexed signal is digitized by an ideal ADC and re-sampled to twice
the total symbol rate®. After the transform to the frequency domain, each subcarrier is
successively shifted to the baseband and filtered out using a digital matched RRC filter.
Finally, the low-symbol-rate signal in each subcarrier is down-sampled at 2 samples
per symbol. Standard DSP algorithms [159] are used for the post-processing of the
received signals from each subcarrier, independently. Digital CDC is considered at the
front-end of the DSP unit for the post-compensation of 50% of the total link dispersion
when only linear equalization is considered. NLC is not performed. For the case of
the 16-QAM format, a training symbol-assisted decision-directed least mean square
(DD-LMS) with 1024 training symbols and a 21-tap filter to implement the MIMO
equalization [159] is used. A feedforward carrier recovery (CR) based on maximum
likelihood estimation [160] is adopted for phase correction under correlated nonlinear
phase noise. Within the CR algorithm, a joint CR method [161] has been chosen for
cycle slip corrections under non-differential phase coding. Afterward, the BER analysis
is performed based on the statistical Monte Carlo method. Finally, the received symbols
are used as inputs for the NN. The NN operates at one sample per symbol.

Note that for SSMF 40 x 80 km, the simulator used in this study matched the
optimum power and Q-factor of [1]. The performance in the nonlinear regime of the
simulator in this work and the simulator in [1] is almost indistinguishable, while in the
linear regime, the simulator in this study provided a slightly better Q-factor than the

simulator in [1]. However, the main focus remains the nonlinear regime.

NN Training

The training datasets were generated with a random bitstream consisting of 219 symbols.

218

For each epoch, a subset of symbols was randomly selected from this dataset as

input symbols to train the model. For testing and validation, the dataset contained 217
unseen symbols. All models in this work were trained, validated, and tested with the

same dataset size. The training was carried out for 1000 epochs and a mini-batch size

5Qversampling at three or more samples per symbol can have a slight improvement in the DBP
algorithm (see [17]).
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of 3824. The mini-batch input of the NN was structured in three dimensions [62]: (B,
ns, 16) where B is the mini-batch size and ns is the number of time steps or the memory
size depending on the number of neighbor symbols considered, N, as ns =2N+1. The
last dimension, 16, corresponds to the number of features for each symbol across all
four subcarriers. The models used four input features per subcarrier (4 subcarriersx 2
polarizationsx 2 complex value components), derived from the in-phase and quadrature
components of the complex signal (X;, Xq, Y;, and Yg), where X; +,Xg and Y, +,Yo
are the signals in the X and Y polarizations, respectively. The NN output is designed
to recover the real and imaginary parts of multiple symbols across all four subcarriers in
the X polarization simultaneously. The output batch shape is defined as (B, ns —nx+1,
8), where ns — ng + 1 is the number of symbols recovered in the output and the third
dimension is 8 as it refers to the real and imaginary parts of the X polarization of four
subcarriers.

The weights of the trained models were saved at the epoch where the BER on
the test dataset was at its minimum, a technique known as early stopping. Note that
at the end of every epoch, the trained model is tested with the validation dataset to
evaluate the performance in BER. Once the model was trained for a specific launch
power, transfer learning [98] was employed to transfer the learned knowledge to different
launch powers, thereby accelerating the training process for these new conditions.

Once the uncompressed trained models were trained, the original model with 111
hidden units was selected for compression. The model is compressed by the weight
clustering framework, in this case from TensorFlow [156]. This study considers 25,
35, and 45 WCs for SSMF and 10, 20, and 30 WCs for TWC in order to evaluate
the trade-off between performance and complexity. The specific values of weight
clusters were determined through a grid search. The goal was to identify the number of
weight clusters that would provide performance comparable to the state-of-the-art work
presented in [1]. This ensures a fair comparison while demonstrating the effectiveness
of the proposed method.

Benchmarking Models

To benchmark the performance of the proposed approach, the NN models in this work
are compared against several established methods (Fig. 3.4): CDC, ideal DBP with
20 STpS, standard DBP with 1 STpS, advanced DBP (ADBP) - subcarrier multiplexing
(SCM) [92] with 1 STpS, and the NN architecture from [1].

S. Srivallapanondh, PhD Thesis, Aston University 2025.



3.2 Weight Clustering to Reduce Number of Real Multiplications 55

CDC - FDE
>
Proposed NN-based > Ideal DBP 20 STpS
Equalizers -
gEsTM e Standard DBP 1 STpS

Output
e B Benchmark
5

ADBP - SCM 1 STpS

M2 iSPM+iXPM-1: Full complexity NN Eq. in Ref.[1]

4’[ M2 iSPM+iXPM-2: Reduced-complexity NN Eq. in Ref.[1]

Fig. 3.4 Proposed NN models are compared against several benchmarking models.

The CDC method is the linear approach to compensate for chromatic dispersion by
dynamically adjusting the signal with the inverse of the chromatic dispersion transfer
function, based on the estimated chromatic dispersion after transmission. In this work,
both pre- and post-CDC are deployed, each compensating for 50% of the accumulated
chromatic dispersion®.

The ideal DBP with 20 STpS is included to approximate the theoretical perfor-
mance by considering the entire bandwidth and reversing the Manakov equation [162].
The complexity of this method will not be benchmarked, as the ideal DBP faces
implementation challenges [163], with complexity beyond what is considered in this
study.

The standard DBP [17] with 1 STpS and 2 Samples/symbol is performed after
demultiplexing at the subcarrier level, which means that each subcarrier is processed
independently. This method approximates the inverse of the Manakov equation for
each subcarrier, accounting only for SSN, but ignoring CSN. This approach reduces
the computational complexity compared to full-bandwidth DBP, therefore, it is also
considered as a benchmark for complexity.

The ADBP-SCM, applied to DSCM systems [92], takes into account both SSN and
CSN. The CSN compensation is carried out on the basis of the analytical model of
time-varying XPM distortion proposed for WDM systems. This method adjusts the
standard DBP to account for the nonlinear interactions between subcarriers, leading to

improved compensation for nonlinear impairments. The ADBP-SCM considers both the

6The performance of 50 % pre-CDC together with 50% post-CDC is not significantly different than
the 100% post compensation, however, we keep the former approach to be compatible with the simulation
of [1]
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CSN-induced cross-polarization modulation and phase noise. It achieves good overall
performance in scenarios where the CSN significantly affects signal quality.

Lastly, the state-of-the-art approaches for NN-based equalizers applied to DSCM
systems proposed in [1] are considered. In this case, the authors have demonstrated
the performance of the Q-factor with different complexity constraints, when training
was based on perturbation coefficients. The model with the best performance is called
“M2 ISPM+iXPM". Both the Q-factor performance and the computational complexity
of the proposed NN in this study are benchmarked against the M2 iISPM+iXPM models.
In this work, “M2 ISPM+iXPM - 1" refers to their M2 iISPM+iXPM model with a full
complexity limit of 5x10° RMpS, whereas “M2 iISPM+iXPM - 2" corresponds to the
reduced complexity model with a complexity limit of 2.5x10°> RMpS.

3.2.4 Complexity Analysis

This section outlines the complexity analysis for assessing the computational complexity
of NN layers, both with and without weight clustering, in comparison to conventional
techniques like CDC and DBP, including scenarios with and without XPM compensation.
Complexity is quantified using RMpS.

Complexity of Original NNs

In this work, the NN model consists of biLSTM and 1D-CNN layers. The complexity
equations for this NN model are reported in detail in [55]. Starting with the biLSTM
layer, first, the standard LSTM layer is assessed. The formulas are presented in
Section 2.2.1. The number of RM of an LSTM layer is:

RMistm = nsnh(4n,-—l—4nh+3), (3.4)

where nj is the number of hidden units in the LSTM cell. Similarly to RNNs, the RM
can be calculated from the term associated with the input vector x; and the term
corresponding to the prior cell output hs_1; however, each term occurs four times,
as one can see in Eq. (2.23). Therefore, 4n,n; and 4n,27 are obtained, respectively.
Moreover, the complexity equation also needs to include the element-wise product
operated three times in Eq. (2.23), which costs 3np. Finally, the process is repeated nsg

times; therefore, ng is multiplied by the total number.
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For the 1D-CNN layer, the equation describing this layer is present in Eq. (2.20).
Note that the output size can be computed by:

ns+2padding—dilation(ngy—1)—1
stride

OutputSize = +11, (3.5)
where ns Is the input sequence size. In this case, with padding equal to 0, dilation equal
to 1, and stride equal to 1, the output size is equal to ns — n, + 1. To calculate the
complexity of a 1D-CNN layer, the number of RM can be formulated as:

RMcnn = nening - OutputSize, (3.6)

where n¢ is the number of filters, also known as the output dimension, n; is the number
of features in the input vector and ny is the kernel size. Note that the input of the
1D-CNN layer is the output of the biLSTM layer. As in Eq. (3.6), there are njny
multiplications per sliding window, and the number of times that the sliding window
process needs to be repeated is equal to the output size. The procedure is then repeated
for all nf filters [55].

As a result, the complexity of the biLSTM+1D-CNN layer in terms of the number
of RMpS can be calculated by:

RMforward + RMbackward +RM
RMDSNN _ LSTM LSTM CNN _

3.7
(ns — N+ 1) * Nsubcarriers ( )

The total RM of the NN is divided by (ns — ng+1) - Nsubcarriers, because the NN recovers
ns — ny + 1 for all subcarriers simultaneously. To be specific, the last 1D-CNN layer has
2 X Nsubcarriers filters (number 2 represents real and imaginary parts of the symbol), and
each filter has the output size of ng — nx + 1.

Complexity of Weight-Clustered NNs

In this section, the complexity of the NNs when the weight clustering technique [16]
is evaluated, as explained in Section 3.2.2, is applied. In the biLSTM layer, the input
weight matrix W is assumed to have ¢; clusters, and the recurrent kernel weight
matrix U is assumed to have c¢j, clusters. In the worst case, the number of unique
real multiplications would be reduced to n; x ¢; multiplications involving matrix W and

np X cp multiplications involving matrix U. Therefore, the number of RM for a clustered
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LSTM layer is:
RMcjustered LsTM = Ns (NG 4+ npch +3np), (3.8)

For the 1D-CNN layer, it is supposed that there are ¢; clusters in each filter
ng. Normally, each filter has a size n, and the input has n; features, resulting in
n; x nx multiplications per filter application. With weight clustering, the number of
unique weights in each filter is reduced to ¢; clusters. Therefore, it only requires ¢;
multiplications per filter application. Deriving from Eq. (3.6), the number of RM of a
cluster 1D-CNN layer reads as:

RMciustered CNN = (non) -OutputSize. (3.9)

Lastly, the total RMpS of the clustered model can be calculated in the same way as in

Eq. (3.7), but with the clustered versions of these equations.

Complexity of CDC and DBP

According to Ref. [55], the computational complexity of CDC using the frequency
domain equalizer (FDE) is as follows:

(3.10)

N(logy N+ 1
Rl\/lcoc=4-< (logo N+ )q)'

N—Np+1

Here, N represents the FFT size, g is the oversampling ratio, and Np = q7p/T where
Tp/T is the dispersive channel impulse response, and T is the symbol interval. This
complexity calculation includes two polarizations, which require four N-point FFTs and
2N complex multiplications. The factor of 4 accounts for the fact that one complex
multiplication equals four real multiplications. The term N — Np+ 1 indicates the
number of useful samples based on the overlap-save algorithm for blockwise FD filtering.
Note that optimization of FFT size is crucial to minimize complexity.

For the standard DBP technique [17], DBP is performed at a subcarrier level
independently. Thus, the same formula as for a single carrier channel is considered.
The RM of the standard DBP is [55]:

w 1), (3.11)

RMpgp = 4qNsp NsTps ( N—Npot1
aq

where Nsp, is the total number of spans, Nstps is the number of propagation steps per

span, and g is the oversampling factor. The complexity of each DBP step includes the
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linear part, which matches the RM of the CDC, and a nonlinear part, represented by a
single RM corresponding to the multiplication with a nonlinear term.
For the ADBP-SCM, the RM per symbol is derived from the formula of complex

multiplication per sample in Ref. [92], as follows:

Kcp(log, Kep+1)
Kcp — Pep

1.5KN|_(|092 KnL + Nsc — 1)) ]

RMapgp.scm =4q| (M +1)

+/\/I(6.5+ (3.12)

KL — P

where the multiplier 4 refers to 4 real multiplications per one complex multiplication,
g is the oversampling ratio, M is the number of steps, Kcp is the subcarrier block size
for the frequency domain CDC filter obtained by the overlap and add (OLA) method,
Pcp is the overhead of CDC filter for each subcarrier; Pcp = (14 p)mB2(Lstep)/ T2, KL
denotes the OLA block size of the CSN low-pass filter, Py represents the CSN low-pass
filter overhead; Py = NLspan + %A,Bﬁnax/TS. Here, AB .« = (14 0)B2(Nsc — 1)/ Ts
and T is the sampling rate for one subcarrier. In this analysis, Kcp is set to 1024 and
KnL Is set to 128.

3.2.5 Results and Discussion
Equalization Performance

This thesis presents the optical performance in terms of the Q-factor which is calculated
directly from the BER using:

Q = 20log1 [\/Eerfc_l(2BER) : (3.13)

First, the performance in Q-factor of the original NNs (without WC) is compared
with analytical approaches, namely, CDC, ideal DBP 20 STpS, standard DBP [17]
1 STpS, and ADBP-SCM [92] 1 STpS, which are described in Section 3.2.3. Fig. 3.5a
presents the Q-factor as a function of the optical launch power of the original NN
models proposed: with 214 and 111 LSTM hidden units. The ideal DBP 20 STpS is
used to provide a reference optical performance close to the ideal one. The results show
that the original models with 214 and 111 hidden units provide a Q-factor improvement
of 1 dB and 0.9 dB, respectively, when compared to employing CDC only. The optimal
launch power also increases from 1 dBm to 2 dBm in this case. Both NN models also
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outperform the standard DBP with 1 STpS by 0.35 dB for the model with 214 hidden
units and 0.24 dB for the model with 111 hidden units. As expected, the approach with
higher complexity (higher number of hidden units) leads to the best optical performance.
However, compared to the ADBP-SCM 1 STpS approach, the former still leads to a

1.4 dB higher Q-factor.

105 T I I I 7 |
10 140%80 km s 4
V' d
95 [ SS M F /./ |
T 2 |
. 85| 3
5 8| £ i Y
C 7.5 | —— Original-NN eq. (214 hidden urits) \\ N
Z 7 | —8=Original NN eq. (111 hidden units) |2, <
. \
CIF NN eq. - M2 iSPM+iXPM - 1 [1] 4
6.58 . _ ideal DBP 20 STPS o
6 ADBP-SCM 1 STpS *
55 —x— Standard DBP 1 STpS ‘
) «+in-+ CDC (Regular DSP)
|

-2 -1 0 1 2 3 4
Launch power [dBm]

(a) 40 x 80 km SSMF - Original NNs (with-
out complexity reduction) compared with
NN model from Ref. [1] with full complexity
(M2 iSPM+iXPM-1), different approaches
of DBP and CDC.

9.5

15x80 km
o Twe 7 |
8.5 7
8 i
75 5 .*'/’:_...-?h.*’\x

—— Qriginal NN eq. (214 hidden units)
—&— Original NN eq. (111 hidden wunits)

Q-Factor [dB]

5
7

6.5§""_ Ideal DBP 20 STpS
6

ADBP-SCM 1 STpS

5 5 | —*— Standard DBP 1 STpS 1\.\7
'5 -4+ CDC (Regular DSP) .
-4 -3 -2 -1 0 1 2

Launch power [dBm]

(c) 15x 80 km TWC — Original NNs (with-
out complexity reduction) compared with
different approaches of DBP and CDC.

40x80 km
8.5 SSMF

— 8L

—= Original NN eq. (111 hidden units) [
——NN eq. with 45 WC N
NN eq. with 35 WC
NN eq. with 25 WC i
—x— Standard DBP 1 STpS k.
NN eq. - M2 iSPM+iXPM - 2 [1] | |
-me- CDC (Regular DSP)
-2 -1 0 1 2 3 4

Launch power [dBm]

(b) 40 x 80 km SSMF — Reduced-complexity
NNs with different numbers of WC, com-
pared to reduced-complexity NN model (M2
iISPM+iXPM-2) from [1], standard DBP and

CDC.

8.5

15%x80 km
8 TWC
-Q—J- 7.5}
5 [ N
?é 6.5, —g— Original NN eq. (111 hidden units) | %
L ¥ —a— NN eq. with 45 WC
o 6 NN eq. with 35 WC .
NN eq. with 25 WC "\
5.5 | —x— Standard DBP 1 STpS L\
- CDC (Regular DSP) -

T4 3 2 1 o0 1 2

Launch power [dBm]
(d) 15 x 80 km TWC — Reduced-complexity

NNs with different numbers of WC, com-
pared with standard DBP and CDC.

Fig. 3.5 Q-factor as a function of the launch power for the NN-based equalizers with
the original complexity (left) and the reduced complexity (right), compared to the CDC

and different approaches of DBP.
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Fig. 3.5b shows the Q-factor as a function of the optical launch power of the original
NN model proposed with 111 hidden units and compares it with the performance of its
compressed versions (with weight clustering) with different numbers of WC: 25, 35, and
45 clusters. It can be observed that with a lower number of WC, the optical performance
decreases. The NN with 45 WC experienced a 0.1 dB reduction in Q-factor compared
to the original NN, while the NN with 35 WC showed a decrease of 0.17 dB. The NN
with 35 WC demonstrated a performance close to the standard DBP 1 STpS. For the
NN with 25 WC, the Q-factor was reduced to around 8.5 dB which is comparable to
the M2 iISPM+iXPM - 2 [1] model and faced a drop of 0.35 dB from the original NN.
Note that all compressed models still maintain the optimum power of 2 dBm.

Considering the 15x80 km TWC system, Fig. 3.5¢ shows the Q-factor versus launch
power for the original NNs with 214 hidden LSTM units and 111 hidden units compared
with ideal DBP 20 STpS, ADBP-SCM [92] 1 STpS, standard DBP with 1 STpS and CDC
as baselines. The ideal DBP 20 STpS provides a reference optical performance close
to the ideal one. The model with 214 hidden units has a slight Q-factor improvement
compared to the model with 111 hidden units, however, it comes with the cost of
more complexity in terms of hidden units. Similar to the SSMF case, the performance
curves of the original NN with 111 hidden units and its compressed versions in Fig. 3.5d
exhibit a similar trend to that of the SSMF system. However, the NN-based equalizers
significantly outperformed the DBP 1StpS which only compensated for self-phase
modulation. In this case, increasing the number of steps per span in the standard DBP
did not further improve the Q-factor because TWC's high nonlinearity coefficient made
inter-SC cross-phase modulation more significant [164]. It can be observed that even
the compressed NNs can partially compensate for the CSN in the DSCM systems,
showing the obvious improvement from the standard DBP. This figure clearly reflects
the trade-off between CC and performance; the higher number of WCs, the better the
Q-factor. In this case, the optimal Q-factor for the original NN, and the NNs with 45
WC, 35 WC and 25 WC were 8.36, 8.20, 8.12 and 8.01 dB, respectively.

Computational Complexity

This section highlights the computational complexity comparison of the proposed models
and the benchmarking models.

First, to demonstrate how the weight distribution of the original NN models changed
when the weight clustering was applied, Fig. 3.6a shows the weight distribution of the
original uncompressed NN and Fig. 3.6b for the NN with 25 WC. One can observe that
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Fig. 3.6 Comparison of weight distributions of all concatenated layers of (a) the original
model (without weight clustering) and (b) the model with 25 weight clusters.

the unique number of weights is drastically reduced. To be more specific, there are
1.39x10° unique weights in the original model but only 125 unique weights in the NN
with 25 WC. In summary, weight clustering is a powerful technique to reduce the com-
putational complexity of NN-based equalizers in optical communications. This approach
enables the NN-based equalizers to be more suitable for real-time implementation while
retaining their effectiveness in mitigating fiber nonlinearity.

For 40 x 80 km of SSMF system, compared to [1], with the same transmission
scenarios, the simulator in this work provided the same optimal Q-factor and the
comparable Q-factor in the nonlinear regime. Ref. [1] has shown their “M2 iISPM+iXPM"
models with different complexity budgets. Among these models, their two most
outstanding models are utilized as benchmark: the model with the highest Q-factor (M2
ISPM+iXPM-1) and the model with the lowest complexity budget (M2 iISPM+iXPM-2).
Their model with the highest performance with full complexity provides up to around
8.95 dB Q-factor, at the cost of 5.0x10°> RMpS, while the model with the lowest
complexity of 2.5x10* RMpS provides a Q-factor of around 8.5 dB. Fig. 3.7a presents
the complexity comparison of the original model with 214 hidden units and their M2
ISPM+iXPM-1 model, considering the same performance of 8.95 dB Q-factor. It
can be seen that the original model with 214 hidden units requires around 1.07x10°
RMpS, which is 78.6% fewer RMpS than their M2 iISPM+iXPM-2 model. Similarly,
Fig. 3.7b shows the complexity of the proposed NN with 25 WC and their model with
the lowest complexity budget (M2 iISPM+iXPM-2). It highlights that with a similar level
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Fig. 3.7 Complexity in RMpS comparison of the models in this study and the models
M2 iISPM+iXPM in Ref. [1], for 40 x 80 km of SSMF.

of performance, the proposed NN with 25 WC enables a 91.1% reduction in complexity
or around 2215 RMpS.

Fig. 3.8 illustrates the complexity reduction of the compressed model compared to
the original model with 111 hidden units. The compressed model with 25 WC provided
97.9% reduction from the original model, at the cost of 0.45 dB Q-factor drop.

|

‘IlOriginaI NN (111 h.u.) " NN with 25 WC ‘
Is) 5| i
2 100}
£ B
>, B
wn
2 I
(D] .
N
S 104 i
o C
(D) [
0] I
o
= =
E 103} o) E

: £

Original Compressed
model model

Fig. 3.8 Complexity in RMpS comparison of the original model with 111 hidden units
and its compressed version with 25 WC for 40 x 80 km of SSMF.
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Fig. 3.9 Comparison of complexity (RMpS) between biLSTM+1D-CNN and traditional
channel equalizers (DBP 1STpS and CDC) as a function of the number of clusters
utilized in weight clustered compression.

Next, it is crucial to evaluate the trade-off between performance and complexity
in weight clustering for NN. In this regard, Fig. 3.9a illustrates the complexity in
terms of RMpS as a function of the number of WC, using CDC (FDE) and standard
DBP 1 STpS as benchmarks for 40 x 80 km of SSMF system. The NN with 35 WC
achieved performance levels comparable to standard DBP 1 STpS, but with a 31.5%
reduction in complexity (RMpS). However, when comparing the complexity of the
NN equalizer to that of CDC, it becomes clear that significant improvements are
necessary to achieve lower complexity levels, particularly in terms of multiplicative
operations. Notably, while CDC typically requires around 150 multiplications per
recovered symbol, the compressed NN still requires between 2000 and 3000 multipliers
in its lower complexity configurations. For the standard DBP 1 STpS, more than 4200
RMpS are typically necessary.

Similarly, for 15 x 80 km of TWC system, Fig. 3.9b illustrates the trade-off between
performance and complexity for the NNs with varying numbers of WC, using the standard
DBP with 1 STpS and CDC as benchmarks. As expected, a higher number of WC results
in a higher Q-factor. However, the improvement of the Q-factor is not linearly increased
with the number of WC, indicating that beyond a certain threshold, additional WC
contribute marginally to performance enhancement. To achieve comparable performance
to the standard DBP at 1 STpS, the model required 10 WC, resulting in a 34% reduction
in RMpS. Note that the standard DBP with more steps per span did not improve the

performance due to its limitation in compensating for the CSN.
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In this study, it can be observed that aggressive weight clustering (reducing the
number of clusters to very low values) is less effective for DSCM systems than for
simpler single-carrier single-channel systems. For instance, Ref. [16] demonstrated
that as few as three weight clusters could achieve performance comparable to DBP
in single-carrier systems. However, for the more complex DSCM system, at least 35
clusters were needed for SSMF transmission and 10 clusters for TWC transmission to
achieve similar performance to standard DBP with 1 STpS. This is also because the
NN in DSCM is designed to recover four subcarriers simultaneously, adding difficulties
to the weight clustering process. These findings highlight the increased computational
and modeling demands of DSCM systems, where the balance between performance
and complexity becomes particularly critical. The ongoing challenge of optimizing NN
equalizers to reduce computational complexity, especially in terms of multiplication
operations, while maintaining high performance, needs to be further investigated.

To show the comprehensive result comparing to the previous literature, Table 3.1
summarizes different equalization approaches for the 40 x 80 km SSMF systems,
including CDC, ideal DBP, standard DBP, ADBP-SCM, the models from previous
literature [1], and the NN models in this work with different complexity limits. The
table shows their Q-factor performance, optimum launch power, and computational
complexity in terms of RMpS.

The current approach is to recover only one polarization at a time. Although
technically feasible to modify the output of the model to simultaneously recover the

X and Y polarizations, this approach was not explored in this study. For consistency,

Average Optimal | Optimum Launch | Complexity
Name Method Q-factor (dB) Power (dBm) (RMpS)
CDC Linear 7.90 1.0 146
Standard DBP 1 STpS Nonlinear 8.60 1.5 4256
ADBP - SCM 1 STpS[92] Nonlinear 10.37 35 1.07x10°
NN Eg. - M2 iSPM+iXPM-1 [1] Nonlinear 8.95 2.0 5.0%x10°
NN Eq. - M2 iISPM+iXPM-2 [1] Nonlinear 8.41 1.5 2.5%x10%
Original NN Eq.(214 hidden units) Nonlinear 8.95 2.0 1.07x10°
Original NN Eq. (111 hidden units) Nonlinear 8.84 2.0 3.1x10%
NN Eq. with 45WC Nonlinear 8.74 2.0 3611
NN Eqg. with 35WC Nonlinear 8.67 2.0 2913
Proposed NN Eq.with 25WC (Proposed) | Nonlinear 8.49 2.0 2215

Table 3.1 Summary of the different equalization approaches, with their Q-factor perfor-
mance, optimum launch power and complexity in terms of RMpS for 40 x 80 km of
SSMF.
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the CDC block and the NN equalizer were applied independently to each polarization
channel. It is worth noting that during the inference phase, the computational complexity
in terms of RMpS would not increase if two separate models were deployed for the
two polarizations. This is because the total number of recovered symbols would also
double, maintaining the RMpS at the same level. Moreover, modifying a single model
to recover both polarizations could potentially reduce RMpS, as a shared architecture
could leverage additional efficiencies while increasing the number of symbols recovered

per inference.

3.3 Approximation of Nonlinear Activation Functions

This section considers the approximation of the nonlinear activation functions in NN. In
this thesis, the main architecture is based on biLSTM, because of its performance and
aforementioned advantages in the time-series processing. In an LSTM cell, the sigmoid
and tanh functions are deployed as activation functions’, and they are computationally
expensive. Both functions contain exponential functions, making it difficult to implement
them on resource-constrained hardware and requiring a large chip area in the real
implementation [165]. The implementation of NNs' nonlinear activation function is one
of the crucial components in the hardware design of NN. In contrast to the hardware
realization of the NN's weights and inputs, which can be readily proceeded from the
float to fixed-point representation [55], the activation functions’ realization in hardware
Is not straightforward. This is because activation functions directly influence the final

"Empirically, the simpler types of activation functions, such as ReLU or leaky ReLU, were tested in
the NN-based equalizers in this study. However, the performance has dropped drastically.

X ——p| Approximated
N activation function L }A,
Coeff1c1ents_> cl)a (%, 0)
(0) .
Logic box Approximation
implemented in FPGA errors

y =X

Fig. 3.10 Diagram of the input/output of approximated activation functions based on
the logic box implemented in FPGA.
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output of each layer. Moreover, while the overparameterization of NN weights can help
mitigate quantization errors, this benefit does not directly translate to the realization of
activation functions. Therefore, function approximation techniques are required in place
of the exact functions to reduce the overall computational complexity and to realize
them in the resource-constrained hardware like FPGA [166, 165, 167, 168]. This study
focuses on approximating the sigmoid and tanh. Three different approximation methods
are considered: Taylor series expansion, piecewise linear (PWL), and look-up table
(LUT). The scenario, in which the training of the NN with approximated activation
functions is undertaken to reduce the approximation errors, was also investigated. Finally,
the amount of resources required to implement the activation functions within the
FPGA, is also evaluated.

As shown in Fig. 3.10, to implement the approximated activation functions on the
FPGA, the FF®, LUT?, and DSP slices'? are used to build the logic box!!, which
takes the value x and coefficients to return . The coefficients are stored in the
memory as input. The coefficients define the Taylor and PWL approximations, while
the LUT approximation represents the quantization levels list. ¥ is the output of
the approximated activation functions, while y represents the actual output of the
float-precision activation function. The difference between § and y is the approximation
error.

The expression for the tanh function via exponential is:

X —X

eX—e
tanh x = ———, 3.14
ann x eX+e X ( )
while that for the sigmoid function reads as:
()= — (3.15)
o(x)= ——. i
1+eX

8FF is a basic digital storage element in an FPGA, used to store the value of a digital signal and can
be used in conjunction with LUTs to implement sequential logic, such as state machines and counters.

9LUT is a basic building block of an FPGA used to implement equations built from Boolean logic
functions, such as AND, OR, and XOR, or to store pre-calculated values for use in arithmetic or other
operations.

10DSP blocks or slices are specialized components within an FPGA that are designed specifically
for processing digital signals. They contain dedicated hardware resources such as multipliers, adders,
accumulators, and registers that can perform complex mathematical operations at high speeds.

LFPGA uses LUTs, FF and DSP slices together to implement the digital logic, memory, and
computation required by the intended applications. LUTs, FFs, and DSPs are all programmable, meaning
that the user can reprogram the FPGA's logic, memory, and computation elements to suit different
applications.
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3.3.1 Taylor Approximation Approach

In the Taylor series approximation, the higher the degree of an approximating polynomial
n, the better the approximation. The tanh Taylor series reads as:

00 22n 22[1_1 B
tanh x = ) ( )B2n 2n=1 " where | x| <g

|
= (3.16)
x3 N 2x®  17x’ n 62x9
=X—— — — ...
3 15 315 2835 '

where By, denotes the Bernoulli number [169], —a; < x < at, and a¢ is the boundary
of the approximation region: when x is not within [—a¢, a¢], the approximation error
is essential. Therefore, it is important to choose the value of a; that maximizes
performance. Empirically, the slight difference in the value of a; can noticeably affect
the performance. When x is outside the Taylor series approximation region, the value

of tanh x is set to -1 or 1, according to the following expression:

1, if x > a,

tanh x ={ x— X 20 10 4 620 jf o oy < g (3.17)
X—73 T35 ~ 315 T 2835 ! t <x<ar, :
-1, if x < —ay.

The plots for the different order Taylor approximations are given in Fig. 3.11a-3.11b.
The value of at is the result of the grid search, which maximizes the performance of
the NN-based equalizer without retraining.

The Taylor series for the sigmoid function is:

1
o(x) = 5 + Etanh g
Nl
1 +x x3 N x° 17x’ N 31x° (3.18)
2 4 8 480 80640 1451520

where —ay < x < a5 and ay Is the point where the Taylor series approximation of the
sigmoid starts to diverge. Similarly to tanh, the values of the sigmoid approximation in
regions less than —a, and greater than a, are set to 0 and 1, respectively, as follows:

1, if x> ag,
_ 1, x x° x> 17x’ 31x° :
0(x)=9 3+%— %5 +750—s06a0 T Tasiso0: T —a0 <x<ao, (3.19)
0, if x < —ag.
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Fig. 3.11 Taylor series approximation of tanh (a) — (b) and sigmoid functions (c) — (d).

The Taylor approximation plots corresponding to Eq. (3.19), when the highest order of
the polynomial is 3 and 9, are given in Fig. 3.11c-3.11d.

The performance in terms of Q-factor is evaluated when the approximation for
both tanh and sigmoid functions is carried out simultaneously, with different orders
of the approximating polynomial up to 9t order. The values of a; and a, are chosen
by using the grid search, aiming to maximize the Q-factor when replacing the exact
activation functions with their Taylor series approximation without retraining the weights.
The Taylor series approximation reduces the computational cost and time required to
compute the activation function considerably, compared to the processing using the

original function [167].

3.3.2 Piecewise Linear Approximation Approach

The PWL approximation, introduced in [170], is a combination of linear segments that
approximates the activation or nonlinear function [130, 166]. Increasing the number of
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linear segments to represent the nonlinear function allows us to achieve better accuracy.
The PWL approximation is a promising method to reach a higher processing speed since
it consumes fewer resources on FPGA1?2 compared to the Taylor approximation: to
reach higher accuracy, the Taylor approach fits the nonlinear function with high-order
expressions, which results in the consumption of resources, while the PWL can reach
the same level of accuracy with the use of more segments, but without employing
high-order operations [166].

This study compares the performance of the NN-based equalizers when applying
3-, 5-, 7-, and 9-segment PWL approximations to both tanh and sigmoid!3. The
expressions for the PWL used in this study are included in Table A.1 in Appendix A.1.
The corresponding plots for the equations mentioned in Table A.1 with 3 and 9 segments

12124] shows that the implementation of PWL can be further optimized to have zero multipliers by
simplifying the shift and addition operations.

I3Note that when the number of segments is lower than 3 segments that used to represent sigmoid or
tanh in the biLSTM cell, the biLSTM model in this case is not able to learn to mitigate the approximation
errors.

191 — Tunh ; 10— Tanh
=== PWL (3 segments) / ===+ PWL (9 segments)
0.5
B ®
= <= 0.0
[=1 =1
8 8
—0.5
-1.0
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Fig. 3.12 PWL approximation of tanh (a) — (b) and sigmoid functions (c) — (d).
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are depicted in Fig. 3.12a-3.12b for tanh, and Fig. 3.12c-3.12d for sigmoid. Note that
grid search is used to find the coefficients for each expression, aiming to maximize the
performance in terms of Q-factor, after the actual activation functions are replaced by
the approximations over the trained weights, instead of minimizing the difference/areas
between the exact function and the approximation curves. It is carried out because, in
this case, minimizing the difference/areas between the curves noticeably degrades the
Q-factor performance of the NN equalizer when the NN predicts the output with the
replaced approximated activation functions.

3.3.3 Lookup Table Approximation Approach

The LUT approximation is a commonly used method for the activation functions’
hardware implementation [171]. The LUT approximates the function with a limited
number of uniformly distributed points. This approach offers a high-performance design,
and the fastest implementation compared to other methods. At the same time, a large
amount of memory is required to store the LUT on the hardware [172, 173]. The chip
area requirements for the LUT approximation grow exponentially with the required
approximation accuracy [173]. The number of bits used to represent values in the LUT
directly affects the approximation error and the required memory size. An example
of the LUT approximation of tanh with the number of bits equal to 4 is presented in
Fig. 3.13.

The LUT approach is similar to traditional quantization, in which full precision values
are assigned to uniform quantization levels, i.e. the value x is mapped to X which is
the closest value of x in the quantization level list [174]. The LUT stores the values

—— Tanh
-=-=- LUT (4 bits)

Fig. 3.13 LUT approximation of tanh function with the number of bits equal to 4.
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of the quantization levels (X) and their corresponding f(X), in this case tanh(X) or
o(X). The difference between the exact value f(x) (the blue curve in Fig. 3.13) and the
approximation f(X) (the red curve in Fig. 3.13) introduces the approximation errors.

This study investigates the Q-factor performance of the model for the LUT rep-
resentation of activation functions when the number of bits used ranges from 2 to
16.

3.3.4 Reducing Approximation Error through Learning via Stochas-
tic Gradient Descent

Once the activation functions are replaced by the approximation, the NN performance
can drastically drop (up to 5 dB when the approximation is the least complex). However,
training the model with approximated activation functions can enhance the performance
because the model learns to reduce the approximation error. SGD is the training approach
applied in this work. The training can be undertaken from scratch, which means that
the NN is trained when the activation functions are replaced by approximations from
the beginning without any pre-assigned weights. Another approach to training is to use
the weights of the model pre-trained with the true activation functions, then re-train
the model after the replacement of the approximations to learn the approximation
errors. The latter results in a considerably shorter training time. Only the results
of the second method are reported because, empirically, training from scratch takes
significantly longer to converge and sometimes can provide even worse results. It is

worth noting that another available training approach is to only train the coefficients

12 Tanh_Derivative 10 Tanh_Derivative "\ 1.0 Tanh_Derivative
Taylor (9" order) PWL (9 segments) LUT_Derivative
= - y! iad -— N = —-—
=10 Derivative =08 Derivative ! =08 (4 bits)
= E i g
= = =
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o 5] o
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(a) Gradient of Taylor approxi- (b) Gradient of PWL approxi-
mation. mation.

(c) Gradient of LUT approxi-
mation.

Fig. 3.14 The derivative of the tanh function for the approximations using (a) Taylor
series with the highest order of 9, (b) PWL with 9 segments, (c) LUT approximation
with the number of bits equal to 4.
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of the Taylor and PWL equations without retraining the NN weights; however, in this
study, the performance was not acceptable when using a low number of segments in
PWL and training with this approach.

To train the NN with the approximation of the activation function via the SGD, the
gradient of the approximation function must be computed. For the Taylor approximation,
the Taylor series gradient is calculated with respect to the Taylor series approximation
equations Eq. (3.17) for tanh and Eq. (3.19) for sigmoid. Fig. 3.14a shows an example
of the derivative of the tanh approximation using the Taylor series with the highest
order of 9; the gradient (red curve) is not smooth due to the polynomial nature of
the Taylor series. This fact can limit the training ability, especially when training from
scratch, as noted in Section 3.3.6. Concerning the PWL, the gradient is the slope of the
expressions from Table A.1 (in the Appendix section). Fig. 3.14b depicts the gradient
of the PWL approximation with 9 segments. Note that due to the non-differentiability
of LUT, it is challenging to learn the LUT-approximated model [174]. In this work, to
train the LUT, the LUTs of the gradients are generated for both sigmoid and tanh for
each interval of the LUT approximations. Fig. 3.14c shows the gradient of the tanh
LUT with 4 bits, corresponding to the tanh approximation in Fig. 3.13.

3.3.5 Methodology
NN Architecture

The equalizer in this work, as depicted in Fig. 3.15, contains a biLSTM layer with 35
hidden units and a linear 1D-CNN layer with a kernel size of 21 without padding and 2
filters to recover real and imaginary parts in its output. The biLSTM+CNN equalizer
takes 81 symbols as inputs and retrieves 61 equalized symbols at the output. The
input vector contains four features from four real values (X;, Xg,Y}, and Yg) from X
and Y polarizations, derived from real and imaginary values of X;+,Xq and Y; +,Yo,
respectively. The time domain depth is an additional dimension that characterizes
the system's memory. Accordingly, the input shape can be described as (Batch size,
Memory, 4).

This equalizer is pre-trained with the actual activation functions which provide the
best performance. The training adopts the MSE loss estimator and the classical Adam
algorithm for the stochastic optimization step [175]. The training uses a mini-batch size
equal to 2001 and a learning rate equal to 0.0005, which were found by the Bayesian
optimization procedure described in [16]. The training set contains 229 symbols, and,
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Fig. 3.15 biLSTM+CNN equalizer structure used for activation function approximation
analysis.

at every epoch, 28 input symbols were randomly chosen from this dataset to train the
model. For the testing and validation, an unseen dataset with 2'® symbols was utilized.

After the model was trained with original activation functions for the best perfor-
mance, the NN's activation functions (sigmoid and tanh) were replaced by the different
approximation techniques. Then to alleviate the approximation errors, the weights of

the NN are re-trained.

Simulation Setup

The numerical simulator created the dataset by assuming the transmission of a single-
channel 34 GBd, 16-QAM DP channel along 17 x 70 km Large Effective Area Fiber
(LEAF) spans. The signal propagation through the fiber was represented by a generalized
Manakov equation split-step Fourier method [14]. The parameters of the LEAF are:
the attenuation coefficient a = 0.225 dB/km, the chromatic dispersion coefficient
D = 4.2 ps/(nm-km), and the effective nonlinear coefficient v = 2 (W- km)~1. At the
end of each fiber span, optical fiber losses are compensated for by an EDFA with a 5 dB
noise figure. Downsampling and CDC were performed on the receiver end. The CDC
was performed in the frequency domain with the transfer function of the chromatic
dispersion given by [14]: G(z,w) = exp(—%) where w is the angular frequency, B,
Is the group delay dispersion parameter of the fiber and z is the transmission length.
Afterward, the received symbols were normalized and used as inputs of the NN.
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3.3.6 Performance versus Complexity Investigation

Next, this subsection investigates the performance of the models when applying different
approximation techniques for nonlinear activation functions: Taylor series, PWL, and
LUT. Fig. 3.16 depicts the Q-factor in the optimal power (2 dBm)14 after equalization
for three scenarios: the original NN without approximation, the NN with approximation
(without retraining), and the NN with approximation (with retraining). Note that training
the NN from scratch when replacing exact activation functions with approximations
takes a considerably longer time to converge than retraining the original NN after
replacing floating-point activation functions with their approximations. The training
from scratch with the Taylor and LUT activation approximation even results in lower
eventual performance. Therefore, in this figure, only the results of the retraining
approach are reported. Fig. 3.16a and Fig. 3.16b, corresponding to the Taylor series
and PWL, respectively, reveal the same trend. Without training, as the complexity of
the approximation increases, the NN equalizer performs clearly better. However, with
training, the increasing complexity barely improves the performance: the NN is able
to adjust its parameters to mitigate the approximation error and provides comparable
performance to the NN without approximations. The Q-factor versus complexity
(order) of approximation plots, Fig. 3.16, highlight the remarkable performance gain
in all considered approaches when the model with activation functions replaced by the
approximation were retrained. It can also be seen that training can mitigate the errors
from the approximation. This means that even the low-order approximations, such as

4This work is a part of the journal paper [25].
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Fig. 3.16 Q-factor versus complexity in terms of polynomial order for the Taylor
approximation, pane (a), in terms of the number of segments for PWL approximation,
(b), and in terms of the number of bits for the LUT, (c).
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the simplest PWL with three segments, can still yield results nearly identical to those
rendered by the original activation functions.

Fig. 3.16¢ shows the performance of the LUT approximation. When replacing the
activation functions with LUT without retraining, a certain number of bits is needed
to provide an acceptable Q-factor level'®. For example, the minimum number of bits
needed to provide a Q-factor greater than zero is 7 bits; 9 bits are needed to provide
performance comparable to the model without approximation. On the other hand,
when retraining the NN after the approximation, the Q-factor for the lower number
of bits (from 3 to 7 bits) considerably increases. In this case, the non-differentiability
makes the training challenging and limits the reachable performance in training, but the
improvement is still noticeable when the number of bits is between 3 and 7. Fig. 3.17
shows the convergence speed of the three approximation techniques. It can be seen that
the learning of Taylor and PWL is similar, whereas the retraining of LUT approximation
is more difficult. Although the LUT gradient, Fig. 3.14c, and the PWL gradient in
Fig. 3.14b seem interchangeable, the forward propagation of the LUT approximation
is still discrete, which means that with the lower number of bits, a gap between each
quantized level becomes larger. Thus, small changes that the gradient makes to update
the weights might not change the quantization level to the next value. This means that
the loss region is the same as it was in the last NN training interaction (trapped in a
local minimum). Notably, in [176] a similar circumstance was observed; the previous

15Note that this study followed the LUT implementation from Ref. [171, 172] which presented the
LUT with equal x-error intervals. The alternative approach (activation functions with equal y-error
intervals) can be used, but in this case, there is only a slight improvement in the Q-factor when the
number of bits is greater than 5, and with the retraining, the performance is very close to the x-interval
approach.
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Fig. 3.17 Convergence study of the retraining to mitigate the approximation errors of
Taylor series (3™ order), PWL (3 segments), and LUT (npix = 7) approximations.
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reference also pointed to the instability of the training that can occur with a quantized
activation function. In the case of PWL, the learning is more stable due to the continuity
of the function’s approximation, as each weight update generates a new loss value and
a distinct point in the forward propagation.

In addition, as anticipated, it can be observed that when quantizing the LUT below
4 bits, no acceptable Q-factor can be reached even after the retraining. The reason
for this is that when the activation function is quantized, unlike when the weights are
quantized, the ability to represent the modulation of the equalized signal is limited. In
this situation, the signal adopts 16 QAM, which requires at least 4 bits to represent a
constellation data point. However, as can be observed, even 4 bits are insufficient in
this case to preserve all the essential features for the equalization process when using
the quantization of the activation function. When more bits are used, a better Q-factor
can be achieved; however, more memory is then required to represent the quantization.
It is worth noticing that when the number of bits is greater than 10, the Q-factor no
longer improves in both scenarios (with and without retraining).

In FPGA, the resources in terms of LUT, FF, and DSP slices are used to build
the logic behind the functionality of the approximation. In this work, the hardware
realization of the tanh function is undertaken on the EK-VCK190-G-ED Xilinx FPGA
chip'®. The amount of resources required (in terms of LUT, FF, and DSP slices) in the
FPGA when using the approximations for tanh, is compared to that when applying the
actual tanh activation function in Fig. 3.18. This figure depicts the resources used to
build the logic behind the functionality of each approximation. Note that the coefficients

and values used in each panel of Fig. 3.10, are considered an input of the implemented

16The detailed explanation on FPGA realization was explained in [25]
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Fig. 3.18 Tanh implementation complexity in terms of LUT, FF, and DSP slices for the
Taylor series, PWL, and LUT approximations after the Xilinx realization pipeline.
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box, which is accessed by the FPGA memory. The implementation complexity of the
actual float activation functions is significantly higher than that of the approximations.
In the Taylor series approximations, Fig. 3.18a, the number of FF and LUT used to
implement the approximations is drastically reduced compared to the original activation
functions; to be more specific, when the highest order of the polynomial is 9, the
number of FF required decreases by 6.7 times, and the number of LUT required is
three times smaller. In terms of DSP slices, the 9t/ order approximation requires 6
DSP slices fewer than the original functions. As the approximation becomes simpler,
the implementation requires fewer resources, as expected. For the PWL approximation,
no usage of DSP slices is required for the implementation. Like in the Taylor series
approximation, the number of FF and LUT required decreases noticeably. Compared to
the original float-precision activation function, the PWL with 9 segments requires 2.8
times less LUT, and 13 times less FF. As the complexity decreases according to the
number of segments, fewer resources are needed. Turning to the LUT approximation,
it does not require any of the DSP slices as well, and the number of LUT and FF
decreases by a factor of 80 and 775, respectively. Regardless of the number of bits
in the quantized activation function, approximately the same amount of resources is
required to implement the logic of the LUT approximation (see Fig.3.18c). The LUT
approximation approach is an algorithm based on evaluating the closest value in the
LUT from a certain input and determining the memory address index that corresponds
to that closest value to retrieve the information. As the number of bits increases, a
larger memory is needed to store the LUT approximation points, which are a quantized
version of the function. However, this memory usage is not accounted for in this study
because this is considered one of the inputs to the implemented box.

In conclusion, when performance, memory, and resources are considered, the PWL
emerges as a viable candidate for hardware implementation, particularly, the 3-segment
PWL variant with retraining. When the model learns to reduce approximation errors,
the Q-factor of 3-segment PWL can reach a level comparable to that of the original
activation functions; in addition, there is no need for DSP slices, resulting in more
efficient use of resources than the Taylor approximation. With this, the RAM usage
in the PWL is efficient because only a few coefficients of the approximation must be
saved, whereas the LUT, which brings about difficulties during the retraining process,
requires that all values of each quantization level be saved, resulting in an exponential
increase in memory usage as the number of bits increases.
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3.4 Conclusion

This chapter focused on reducing the computational complexity of NN-based equalizers
while maintaining equalization performance in Q-factor. The weight clustering technique
was investigated to lower the number of real multiplications of the NN-based equalizer
used in digital subcarrier multiplexing systems. Additionally, approximation techniques
for nonlinear activation functions of the NN were analyzed. The result demonstrated
that approximation of the activation functions can reduce hardware resource usage
without severely affecting accuracy. A selection of the appropriate complexity reduction
strategies can lead to considerable improvements in computational efficiency. These
insights set the foundation for further enhancements in parallelization and generalizability,
which are discussed in the following chapters.
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Chapter 4

Parallelization of Recurrent NN-Based
Equalizer via Knowledge Distillation

4.1 Introduction

NN-based equalizers’ practical implementation in real-world systems has been hindered
by major challenges like computational complexity and the requirement for high-speed
processing. As previously observed in previous works [62, 73, 177], RNNs have out-
performed feedforward NNs in addressing nonlinear impairments. The feedback loop
structure of RNNs (e.g., biLSTM) presents inherent parallelization challenges despite
its benefit to learn the temporal sequence [178, 179]. The parallelization is necessary
to enable high-throughput and low-latency hardware implementations in modern optical
networks.

This chapter, based on C5 [180] and J3 [181], introduces a novel method that uses
knowledge distillation (KD) to solve the parallelization problem of RNN-based equalizers.
In particular, the proposed method converts the sequential biLSTM-based equalizer into
a feedforward structure that can be parallelized. KD, a technique traditionally applied
in classification tasks, involves transferring knowledge from a larger teacher model to a
more compact student model that requires fewer computations [182]. Classification
tasks involving teacher and student networks with similar topologies have been the
main focus of prior KD research. Only recently has there been interest in applying
KD to regression tasks and cross-architecture KD [183], as suggested in this work.
This work uses KD as a structural conversion tool, allowing parallel processing and
reducing inference latency, in contrast to the conventional use of KD for complexity

reduction. The difficulties in implementing biLSTM in low-complexity hardware for
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high-speed processing are addressed by this parallelizable structure. To further lower
the computational complexity per recovered symbol, the NN-based equalizers in this
work also recover multi-symbol outputs [184].

The key contributions of this chapter are as follows:

e A novel KD-based framework, as shown in Fig. 4.1, to allow parallelization of
RNN-based equalizers, by transforming a biLSTM-based teacher model coupled

with a 1D-CNN, proposed in [16], into a feedforward student model based on
1D-CNN,

e Comparative studies of performance in Q-factor, computational complexity, and

inference latency across various architectures of the NN, namely, biLSTM, biRNN,
1D-CNN, and MLP.

e Validation of the KD framework across diverse transmission scenarios using both
simulated and experimental data.

This chapter includes: first, Section 4.2 which explains the concept and benefits

of parallelization of NN architecture and symbol recovery. After that, in Section 4.3,
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Fig. 4.1 KD framework with biLSTM+1D-CNN as a teacher model and dilated 1D-CNN
as a proposed student model.
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the KD framework and its background were introduced. Section 4.4 describes the
experimental and numerical setups, followed by the training methodology. Next, Section
4.6 presents a comparative analysis of performance and computational trade-offs for
the proposed model and other NN architectures across various transmission scenarios.
Finally, Section 4.7 provides the conclusion of the key results and discusses the future

work.

4.2 Parallelization

4.2.1 Parallelization of NN Architectures

Parallelization of the NN structure should be considered when designing the model.
Parallelization can more efficiently leverage hardware usages like multi-core GPUs and
CPUs, resulting in the acceleration of the training or inference of the NN. Each NN
type offers a different degree of parallelism, depending on its unique architecture. For
instance, the structure of NN can have a feedforward nature like CNNs or a recursive
one like RNNs. Fig. 4.2 illustrates the recurrent structure at the top with a feedback
loop, preventing parallelization, while the feedforward structure at the bottom can
process multiple sets of inputs and provide multiple outputs simultaneously.

This work centers on 1D-CNNs. These networks are based on a feedforward structure,
allowing input temporal sequences to be processed independently, which makes parallel
operations feasible [185, 186]. In the context of signal processing, convolutional layers
share similarities with finite impulse response (FIR) filters, as both rely on convolution
operations. Specifically, the output at a given time step is determined solely by the
current and preceding inputs. The mathematical formulation of a 1D-convolutional
layer is as follows:

ni Nk
y/'f:d)<z le!ij—l,n'kj?,cn—'—bf) , (4-1)

n=1j=1

where y,-f denotes the output, known as a feature map, of a convolutional layer built by
the filter f in the /-th input element, ny is the kernel size, n; is the size of the input
vector, x'" represents the raw input data, kf denotes the j-th trainable convolution
kernel of the filter f and b’ is the bias of the filter f. For the FIR filter, the equation
can be summarized as:

N
y(n)= Zb,--x(n—/'), (4.2)
i=0
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Fig. 4.2 lllustration of the parallelizability comparison between a recurrent cell (top)
that is not easily parallelizable due to the feedback loop and a 1D-CNN (bottom) that
can process output simultaneously.

where y(n) represents the output signal, x(n) is the input signal, N denotes the filter
order. The FIR filter computation is fully parallelizable as it does not contain any
recursive part [187-189].

For RNNs, they are particularly effective in modeling sequential data. The output
at the current time step y; depends on the current stage input x; and the output of

the previous stage y;_1. The equation of the RNN for a given time step t is as follows:
ht = ¢(Wx¢ +Uh¢—1+ b), (4.3)

where ¢ is the nonlinear activation functions, x; € R" is the n;-dimensional input
vector at time t, hy € R" is a hidden layer vector of the current state with size ny,
W e R™*" and U € R™*" represent the trainable weight matrices, and b is the bias
vector. Computing the output at the current stage as a function of the previous
stage output introduces a recursive evaluation, which inherently requires sequential
processing and prevents parallel execution. In signal processing, RNNs can be analogized
to infinite impulse response (lIR) filters [190, 191]. This similarity becomes evident
when comparing the equations Eq. (4.3) and Eq. (4.4). The equation of the first-order
IR filter is:

y(n)=bx(n)+ay(n—1), (4.4)
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Fig. 4.3 Architecture of an LSTM cell.

where y(n) refers to the output signal, x(n) is the input signal, b is the feedforward
filter coefficient and a denotes the feedback filter coefficient. Although Ref. [192]
demonstrates the potential for unfolding the pipelined processing of IIR filters into
partially parallel operations, the feedback loop remains, as illustrated in Fig. 8 of [192].
Therefore, RNN-based architectures are not entirely parallelizable. This limitation
extends to other RNN variants, including LSTM networks, biLSTM networks [71], and
Gated Recurrent Unit (GRU) networks.

To be more specific, this study focuses on the biLSTM model architecture. biLSTM is
the network consisting of two separate LSTM layers: for forward and backward directions
[193]. Because of a double recurrent setting, which cannot be fully parallelized, biLSTM
is even more computationally expensive than LSTM and RNN. The architecture of an
LSTM cell can be seen in Fig. 4.3. LSTM (see Eq. (2.23)) and RNN (see Eq. (2.22))
have essentially identical core properties: sequential processing and retaining past
information through past hidden states. Due to the sequential processing of the
recurrent setting, the model computation is very expensive due to limited parallelization
[186].

This study proposed to transform the model architecture from the biLSTM to
1D-convolutional layers to enable parallel computation. Parallel computing increases
the energy efficiency of the resources and reduces the time-to-solution. More impor-
tantly, parallelization allows the NN-based equalizer to be closer to the real hardware
implementation. Especially, the optical networks require high-speed data transfer and

the latency can be a crucial factor of the equalizers.
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4.2.2 Parallelization of Recovered Symbols

Traditionally, NN-based equalizers in earlier studies [62, 194, 66] were designed to
recover one symbol at a time, which means that the output of the NN model represents
only one recovered symbol at each inference step. However, the single-symbol output
NN-based equalizers can be computationally inefficient, as the weights and biases
trained to recover one symbol may still be useful for recovering multiple symbols [195].
When taking into account the pre- and post-cursor ISI and chromatic dispersion, the
input window should be wider than the output window [122]. The initial and final
input symbols in the window lack the information of their neighbors, resulting in a
smaller number of recovered output symbols [16]. Multi-symbol output equalizers draw
attention to the research areas, previously proposed by [195, 81, 16].

In this study, the proposed NN-based equalizer adopts a multi-symbol output design
to reduce computational complexity per recovered symbol. The shape of the input and
the output is illustrated in Fig. 4.4a and 4.4b, respectively. The last layer of the models
in this work (except for the MLP) adopts the 1D-convolutional layer as in Ref. [16].
The 1D-convolutional layer contains two filters to recover both real (1) and imaginary
(Q) components of X polarization of the output signal. The size of the output window
or the number of recovered symbols at each inference step is M —n,+ 1, where M
represents the input window size that NN processes at a time, and ny is the kernel size
in the 1D-convolutional layer. In this study, the padding is set to zero, while the dilation
and stride are set to one. The output size can be different depending on the padding,
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Fig. 4.4 (a) The input of the model contains M real (1) and imaginary (Q) components
of both X and Y polarization the received symbols; (b) the output of the model recovers
I and Q components of X polarization of M — n, + 1 symbols at the output.
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dilation, and stride. Note that the MLP model does not deploy a 1D-convolutional layer
but it uses the neurons to recover multi-symbol output instead.

4.3 Knowledge Distillation

Generally, KD refers to a model compression technique of transferring knowledge from a
complex model, known as a teacher model, to a more compact one, known as a student
model, which is less computationally expensive to evaluate [182, 196]. KD allows the
student model to have a comparable performance with respect to the teacher while
requiring less CC. The student model exploits the teacher’s predictions to assist its
learning. The predictions from the teacher model referred to as “teacher labels” or “soft
labels”, are used to train the student model together with the ground truth labels to
aid the student's learning. Most of the prior work proposed KD [197, 182, 198, 199]
in a classification task. In classification, the ground truth labels are usually one-hot
labels. The teacher labels contain useful information about the relative similarity of the
incorrect predictions, while the one-hot labels do not provide that sort of information
[200, 182, 201, 118]. For example, the teacher labels, which were the results of the
Softmax function, contain probabilities of each class in a multi-class problem, whereas
the one-hot label only contains one or zero for each class.

KD in a regression task is still in its infancy, but various papers, e.g., [200, 183, 202]
have shown that KD can demonstrate promising results in this context. However, it is
still ambiguous in some cases about how the student model can take advantage of the
teacher's predictions in the regression task [200]. In this work, Fig. 4.1 demonstrated
how the teacher labels contain the noise information in the constellation diagram
compared to the ground truth labels. KD in regression also performs as an efficient
regularizer to improve generalization. Sec. 4.6 shows the weight distribution of the
student model trained with KD compared to the one without KD.

The loss paradigm for KD involves a joint loss function that considers both the
loss between the teacher’'s and the student’s predictions and the difference between
the student’s predictions and the ground truth labels, as described in [183]. This
dual-component loss function is illustrated in Fig. 4.1 and is expressed as follows:

Lup =al(¥s,.y7)+(1—a)L(¥Vs, Yirue). (4.5)
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where yi.e IS the actual labels, ys and y+ represents the student’s and the teacher’s
predictions, respectively and « is the hyper-parameter to adjust the contribution for
each term to the final loss. The first term of the loss function enables the student
model to learn from the teacher’s predictions, while the second term ensures that the
student model learns directly from the ground truth. Empirically, this o parameter has
a similar impact on the performance as the regularizer coefficient, as it can impact
how overfitting the model is, depending on how much the student model learns from
the teacher or from the ground truth. In this study, the L function is the L, distance
(Euclidean distance). It is worth noting other functions, such as MSE, can also be
adopted, but in this case, the L, distance provides better learning.

Typically, KD is applied when the teacher and student models share similar network
topologies, with the primary objective of reducing computational complexity [118].
However, cross-architecture KD, where the teacher and student models have distinct
structures, has seen limited investigation [183]. In this work, KD is leveraged to
restructure the NN architecture in regression tasks. Unlike traditional KD applications
that aim to reduce computational complexity in terms of RMs, this approach focuses

on minimizing inference time to enhance practical deployment.

4.4 Data Generation and NN Training

4.4.1 Data Generation

The numerical simulator created the dataset by assuming the transmission of a single-
channel 30 GBd, 64-QAM DP channel along 20 x 50 km SSMF spans. The signal
propagation through the fiber was represented by a generalized Manakov equation
SSFM [14]. The SSMF is characterized by the effective nonlinearity coefficient y = 1.2
(W- km)~!, chromatic dispersion coefficient D = 16.8 ps/(nm-km), and attenuation
parameter a = 0.21 dB/km. At the end of each fiber span, optical fiber losses are
compensated for by an EDFA with a 4.5 dB noise figure. Downsampling and CDC were
performed on the receiver end. The CDC was performed in the frequency domain with
the transfer function of the chromatic dispersion given by [14]: G(z,w) = exp<—j°"2%>
where w is the angular frequency, B» is the group delay dispersion parameter of the
fiber and z is the transmission length. Afterward, the received symbols were normalized

and used as inputs of the NN.
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Fig. 4.5 Experimental setup where the data after the DSP Rx is fed into the NN as the
input.

In this work, the experimental data were also analyzed to verify the performance
of the proposed KD framework. The transmission scenario was single-channel DP-
probabilistic shaped (PS)-64QAM! in 34.4 GBd along 9 x 110 km SSMF fiber spans.
The experimental setup in Fig. 4.5 was detailed in Ref. [16]. At the transmitter side,
a symbol sequence with a modulation scheme of 64QAM (8 bits/4D symbol) with a
symbol rate of 34.4 GBd was mapped out of data bits generated by a Marsenner twister
generator [203]. After that, the symbol sequence was passed through a digital RRC
filter with a 0.1 roll-off factor to limit the channel bandwidth to 37.5 GHz. The filtered
digital samples were resampled and fed into a DAC operating at 96 GSamples/s. The
DAC outputs were then amplified by a four-channel electrical amplifier which drove
a DP in-phase/quadrature MZM. The modulator modulated a continuous waveform
carrier generated by an external cavity laser at a wavelength of A = 1.55um. The
resulting optical signal was transmitted along 9x 110 km spans of SSMF with lumped
EDFA amplification with the noise figure ranging from 4.5 to 5 dB. The SSMF had «
= 0.21 dB/km, D = 16.8 ps/(nm-km), and v = 1.14 (W- km)~!.

At the receiver side, the received optical signal was converted to the electrical
domain using an integrated coherent receiver. Then, the resulting signal was sampled at

1To demonstrate that the NN equalizer is applicable in different transmission scenarios, the experi-
mental data of the PS case was utilized.
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80 GSamples/s using a digital sampling oscilloscope. The sampled signal was processed
offline with the DSP algorithms described in [204]. The CDC was accomplished in
two steps. The first step of processing involved compensating for bulk accumulated
dispersion using a FDE with an FFT size of 12288 samples and an impulse response
length of 3072 samples?. After that, the residual chromatic dispersion and dynamic
impairments of channels were mitigated by the adaptive approach, MIMO equalization
with an FFT size of 192 samples and an overlap size of 48 samples. Next, the carrier
frequency offset was mitigated. A constant-amplitude zero autocorrelation-based
training sequence was located in the received frame, and the equalizer transfer function
was estimated from it. Then, the two polarizations of the signal were demultiplexed,
and clock frequency and phase offsets were corrected. The carrier phase estimation was
performed using pilot symbols. The resulting soft symbols were used as input for an NN
equalizer. Finally, the pre-FEC BER was evaluated based on the signal obtained at the
output of the NN equalizer. In this case, the NN focused on mitigating the nonlinear
effects, and was not designed to replace the regular DSP, instead, the NN was applied
as an extra step to the regular DSP.

4.4.2 KD Training to Solve the Parallelization Problem of Recur-
rent Connection

The KD framework is deployed to transform the model architecture from the bil-
STM+CNN to simpler ones. Fig. 4.1 shows the KD process with the teacher and
student model structure. The constellation diagrams of the teacher labels and the
ground-truth labels in Fig. 4.1 indicate that the training of the student model with the
teacher’s predictions that contained the information on noise and some uncertainty, can
result in not overly confident predictions of the student. This helps reduce overfitting
and improve the generalizability of the student model. The comparison of different
types of student models was carried out, namely, biRNN, 1D-CNN, and MLP. 1D-CNN
and MLP have a feedforward structure, enabling parallel computation for the previously
proposed biLSTM-based equalizer [16] or the teacher model. In contrast, biRNN still
has a recurrent structure. However, biIRNN architecture is considerably less complex
than the biLSTM, thus allowing for faster computation. In this work, the biRNN is

limited to only one layer in order to maintain the complexity.

°These values allow to compensate for up to an accumulated dispersion of 300 nm/km, which is
significantly more than the one needed to compensate in a link with 9x110 km.
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The teacher model is pre-trained and used only to create teacher labels. For both
simulation and experiment, the training datasets were generated with random bitstream

of 220 symbols, however, at every epoch, 218

symbols were randomly chosen from this
dataset as input symbols to train the model. For testing and validation, the dataset
contained unseen 217 symbols. All the models in this work were trained, validated, and
tested with this same size of dataset. The training of the models in both simulation
and experiment was carried out for 1000 epochs. The TL is utilized to transfer the
knowledge from the models trained with higher power to the model with lower power
to save the training resources. A mini-batch size is 210 and the mini-batch input of the
NN is defined in three dimensions [62]: (B, M, 4). B is the mini-batch size. M is the
memory size depending on the number of neighbor symbols N as M =2N+1. The last
dimension has the shape of four referring to the number of features for each symbol.
Both the teacher and student models accepted four input features resulting from the
in-phase and quadrature components of the complex signal (X, Xg,Y;, and Yg) where
X+ Xg and Y] + Yo were the signals in the X and Y polarizations, respectively. The
output is to recover the real and imaginary parts of multiple symbols in X polarization
simultaneously. The shape of the NN output batch can be expressed as (B, M —n,+1,
2), where M — ni+ 1 is the number of symbols recovered at the output. The weights
of the trained models were saved at the epoch where the BER of the validated dataset
was the lowest, as known as the early stopping method.

To evaluate the effectiveness of the KD framework, the training of the 1D-CNN
student model with KD is compared to the traditional training approach without
knowledge of the teacher model, known as the student model trained from scratch. In
addition, the model with the L2 regularizer [205] was also investigated to improve the
generalizability of the student model trained from scratch. The student model trained
from scratch has the same structure and hyper-parameters as the proposed student
trained with KD.

Teacher Network Architecture

The teacher model is a biLSTM+CNN model, see Fig. 4.1, which was trained previously
in [16]. The biLSTM layer has 100 hidden units (n,), and the 1D-CNN layer adopts 2
filters (nf) and n, = 51 with the linear activation function. The loss function used in
this model is MSE, and the optimizer is Adam with a learning rate of 10~3. The input
window (M) has the size of 221 input symbols and the model performs a regression
task to predict the real and imaginary parts of the recovered symbols, or 171 symbols
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per one inference step. For the teacher model employed in the experimental setup, the
model has 117 hidden units and the output window is 195 symbols. More details can
be found in Ref. [16].

Student Network Architecture

This study investigated various types of student models—1D-CNN, biRNN, and MLP3
—to evaluate their equalization performance, computational complexity and inference
speed. For both simulation and experimental setups, the student models were trained
using the Euclidean distance (L, distance) as the loss function.

For the proposed 1D-CNN model, the dilated CNN is applied. The dilated convolution
Is an approach to inflate the kernel by inserting holes between its consecutive elements.

3Note that the hyper-paraments of all types of student models for both simulated and experimental
data were optimized with the dataset when the launch power was 2 dBm which was the optimum launch
power of the teacher model and these values were used for other launch power. The optimization for
each type of student model has undergone approximately the same amount of time.
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(a) Normal CNN with dilation equal 0.
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(b) Dilated CNN.

Fig. 4.6 Visualization of (a) a stack of convolutional layers; (b) a stack of ‘dilated’
convolutional layers.
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Consequently, the network is operated on a coarser scale than with a normal convolution
filter with a dilation rate equal to zero [206—208]. This approach allows the NN to deal
with long-term temporal dependencies, and have larger receptive fields within only a few
layers as shown in Fig. 4.6b, compared to a normal CNN in Fig. 4.6a. The dilated CNN
preserves the input resolution throughout the network [209]. The dilated convolutions
demonstrated the longer receptive field in a cheaper way than the LSTM [206]. In Ref.
[183], the KD student model with dilated CNN architecture shows promising results
when the teacher model is the LSTM architecture and the data is in the form of a
time-series in the regression task. To mimic biLSTM, which learns the input data in
forward and backward directions, the 1D-CNN student model learns both directions of
the training data. The backward direction input means the input sequence (forward
direction) in reverse time order. The last 1D-CNN layer of both the teacher and the
student has the same parameters. The Bayesian optimizer [62] is used to optimize
the hyper-parameter values of the student model. The estimated optimal values found
by the Bayesian optimizer are depicted in Fig. 4.1. Note that (38, 23, 1) means that
the 1D-CNN layer operates with 38 filters, a kernel size of 23, and a dilation rate of
1. The alpha value is 0.903. The activation function of the dilated 1D-CNN part is
LeakyRelu [210]. Note that the architectures and parameters of the student models
in the simulation and experimental setup are the same, apart from the second layer
of the 1D-CNN, instead of 25 filters, it has 33 and 34 filters to maintain the output
dimensions.

The vanilla RNN is the simplest variant of the recurrent-based models [211]. This
RNN student model adopts one layer of biRNN with 135 hidden units followed by a
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biRNN Layer
np =135 1D-CNN .
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Fig. 4.7 Different student architectures: (a) biRNN model as a student model; (b) MLP
model as a student model.
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1D-CNN layer with 2 filters and a kernel size of 51 as the teacher model, see Fig. 4.7a.
Stacking the biRNN layers is avoided to maintain the inference speed, therefore, the
performance can be limited. The training was carried out with the alpha value of 0.611,
optimized by Bayesian optimizer.

The last student model type is the MLP, shown in Fig. 4.7b, consisting of three
hidden layers with the hidden units of 401, 510 and 510, respectively, and an output
layer of 342 neurons. The output layer is reshaped to match the aforementioned output
window shape of the data. The neurons in the hidden layers have hyperbolic tangent
(tanh) as an activation function, while the output layer deploys a linear function. The
alpha value is 0.8.

4.5 Computational Complexity Evaluation Metrics

This section presents the formulas of the complexity metrics (RM, BOP, and NABS)
explained in Chapter 2, to evaluate the complexity of the NN models in this chapter.
The detailed explanation of each equation was discussed in [55].

Dense Layer

Starting with the MLP model explained in Section 2.2.1, an MLP model consists of
multiple dense layers. RM of a dense layer can be calculated as:

RMpense = 1nn;j, (4.6)

where n; is the number of features in the input vector and n, represents the number
of neurons in the layer. After that, we move on to calculating BOP to take into
account the bitwidth or the precision. BOP of a dense layer includes the costs of
both multiplications and additions. BOPy, corresponds to the BOP of vector-matrix
multiplication and BOPgj,s represents bias addition [55]:

BOPMul = np[nibw bi 4 (nj — 1) (by + bi+ [loga(ni)1)]. (4.7)

BOPgias = np(bw + b + [logs(n;)1), (4.8)
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where b, is the weight bitwidth and b; is the input bitwidth. For the convenience of
the upcoming expressions, short notations are defined:

Mult(n;, by, b;) = niby b; + (n,-—l)(bw+b,-+ “092(17,')-‘), (4.9)

Acc(nj, by, bj) = by + bj+ [logs(n;)]. (4.10)

The Acc term represents the actual bitwidth of the accumulator required for MAC
operation. The BOP of a dense layer can be calculated as:

BOPDense - B()I:>l\/|u| + BOPBias
~ N[ bwbj + (bw + bi + [10ga(n)])] (4.11)
~ npn; [bwbi + Acc(nj, by, bj)].

For the last metric, NABS of the dense layer can be formulated as [55]:

NABSDense & nnnj [ XwAcc(n;, by, bj)+Acc(n;, bw, b;)]

(4.12)
~ ny,n;(Xy +1)Acc(n;, by, b)),

where X, represents the number of adders required at most to perform the multiplication.
To be more specific, for the uniform quantization, we have X,, = b, — 1. This is because
In the binary system, multiplying can be represented by a shift and adders, and the
number of adders needed at most is b,, — 1. In this chapter, only the uniform quantization
Is assumed.

1D convolutional layer

Next, for the 1D convolutional layer as formulated in Eq. (2.20) and explained in
Section 2.2.1, the output size of the 1D-convolutional layer is:

ns+2padding—dilation(n,—1)—1

OutputSize = -
P stride

+1], (4.13)

where ng is the input time sequence size and ny is the kernel size. The RM of a
1D-convolutional layer can be calculated as follows:

RMcnn = nening - OutputSize, (4.14)
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where nf is the number of filters or the output dimension. The BOP for a 1D-
convolutional layer, after considering the multiplications and additions, can be defined
as [55]:

BOPcnn = OutputSize - nfl\/lult(n,-nk, bw, b,‘) (4.15)
+ancc(n,nk, bW, b,‘). .

The NABS of a 1D-convolutional layer is given by [55]:

NABScnN = OutputSize - nf [n,-nk(XW +1)— 1}
-Acc(ning, by, b;) (4.16)
—l—ancc(n,-nk, bW, b,)

Vanilla Recurrent Neural Network

The equation of Vanilla RNN was defined and explained in Section 2.2.1. The RM of a
vanilla RNN is given by:
RMgnN = nsnh(n,-+nh), (4.17)

where nj, notes the number of hidden units. The BOP for a vanilla RNN is presented
as [55]:

BOPgrNN = nsnhl\/lult(n,-, bw., b,)
+nsnpMult(np, by, ba) (4.18)
+2nsnpAcc(np, by, b,),

where b, is the activation function bitwidth. Like other network types, the NABS of
vanilla RNN can be computed from its BOP equation by transforming the multiplication
to the number of adders needed at most (X) [55]:

NABSRNN = NsNp [n,—(XW + 1) - 1} ACC(H/, bW, b,)

(4.19)
+nsnp[np(Xw + 1) + 1] Acc(np, bw, ba).

Long Short-Term Memory

The LSTM layer and its formulas were discussed in Section 2.2.1. The RM of an LSTM
layer is:
RMistm = nsnp(4n;+4n,+3), (4.20)
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where np, is the number of hidden units in the LSTM cell. The BOP for an LSTM layer
includes the bitwidth of the operands and the number of additions. Consequently, the
BOP can be defined as [55]:

BOP| stm = 4n5nhl\/lult(n,', by, b,’)
+4nsnyMult(np, by, ba)

(4.21)
+3nsnyb>
+9nsnpAcc(np, by, ba).
Lastly, the NABS of LSTM layer is described as [55]:
NABSLSTM = 4n5nh [n,-(XW + 1) - 1] ACC(I’I,‘, bW, b,)
+4nsnp [np(Xw + 1) + 1] Acc(np, bw, ba) (4.22)

+6nsnhba

Please note that when computing the complexity for the bi-directional layer, such
as bi-RNN, the complexity of a bidirectional layer is twice the unidirectional layer.

4.6 Results and Discussion

4.6.1 Equalization Performance

The proposed student model (1D-CNN) trained using the KD framework is compared
against the teacher model (biLSTM+CNN), the student model trained from scratch
without KD (using the same settings), and the student model trained from scratch
with an L2 regularizer [205]. The optimum L2 coefficient depends on the launch power.
At 2 dBm launch power, the optimum L2 coefficient found by grid search is 10~%
for simulated data and 5 x 107° for experimental data. Fig. 4.8a depicts Q-factor vs.
launch power for different types of NN-based equalizers in the simulated data. In all
NN-based equalizers, an improvement of the optimum launch power was achieved. It can
be observed that the Q-factor performance of the feedforward student model with KD
drops by 0.5 dB compared to the recurrent teacher model at its optimal launch power
(2 dBm). With KD, the performance of the student model is comparable to that of the
teacher model in the linear transmission regime, but the student’s performance degrades
slightly as the launch power increases. However, when training the student model
from scratch without KD, the model suffers from overfitting, resulting in a noticeable
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degradation of the peak performance by 2.4 dB at its optimal power. Training the
student model with the L2 regularizer, which helps enhance the generalization capability,
improves the performance of the NN compared to training it from scratch only, but still
does not reach a similar performance level as the one achieved when the student model
is trained with KD. The performance achieved using DBP 1 STpS and CDC are also

shown for reference.

8 -
= = 7 |
48 61 —8— Teacher model (biLSTM+CNN) + *8 . AN
2 —e— Student model with KD (1D CNN) 2 —8— Teacher model (biLSTM+CNN)
e} Student model trained from scratch e} 6L —e— Student model - 1D CNN
4 Student model with L2 reg. Student model trained from scratch
DBP 1 STpS Student model with L2 reg.
5 -+ CDC (Regular DSP) -+ CDC (Regular DSP)
C I I I I I I I 5 I I I I I I
-3 -2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4
Launch power [dBm] Launch power [dBm]
(a) SC-DP 30GBd; 64QAM; 20 x 50km (b) SC-DP 34.4GBd; 64QAM-PS; 9 x 110km
SSMF link (Simulation). SSMF link (Experiment).

Fig. 4.8 Q-factor as a function of the launch power for the NN-based equalizers obtained
via KD, compared to the original (teacher) model, CDC in different transmission

scenarios.

With the experimental setup, the optimal performance of the student model with
KD, shown in Fig. 4.8b, was comparable to the teacher model. The performance
drop was not observed in the experimental data. However, the student model trained
from scratch did not suffer from severe overfitting as in the simulated data, but it still
could not reach the same Q-factor level as the teacher model or the student model
trained with KD. In the case that the student model was trained from scratch with
an L2 regularizer, the performance was improved slightly. When the model is not
significantly overfitting, the L2 regularizer parameter needs to be carefully selected. In
this experimental setup, the weaker regularization parameter was preferred (5 x 10_6),
to prevent the regularizer from excessively penalizing the weights, allowing the model
to still learn meaningful patterns from the data [212]. This result demonstrated that
the proposed student network trained with KD was highly effective in the experimental
data and the KD also maintained superior performance compared to the student models
trained from scratch. However, it can be observed that at the higher launch power, the
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performance gap was larger. At the launch power of 5 dBm, the model with KD and
the student model with L2 regularize performed worse than the student model trained
from scratch. This can be because the optimization process was carried out with the
dataset with the launch power of 2 dBm, resulting in a sub-optimal performance at

5 dBm and overly constrained weight distribution.
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Fig. 4.9 Comparison of different architectures (biRNN+CNN, 1D-CNN and MLP) of
the student model to the teacher model, CDC and 1 STpS DBP in: (a) simulation and

(b) experiment.

To demonstrate the effectiveness of the proposed 1D-CNN student model, the
1D-CNN is compared against the biRNN and MLP as student models, shown in Fig. 4.9a
and Fig. 4.9b for the simulated and experimental data, respectively. The performance
of the biRNN and MLP students was not comparable to the 1D-CNN model. In the
simulation, the biRNN model had around 1.4 dB Q-factor drop from the teacher model
but still outperformed the CDC and showed the improvement of the optimum launch
power. In the experiment, the biIRNN revealed the same behavior as in the simulation.
Even the biIRNN has a recurrent structure, but as the implementation was limited to
only one layer to limit the inference latency, the model did not learn well. In addition,
instability during the training was present, which can result from vanishing/exploding
gradients. In the case of the MLP as a student model?, the performance was poorer
than that of the CDC in both simulation and experiment. The MLP was not the most
suitable architecture for nonlinear mitigation when considering the performance [89],

“Note that during the optimization process, attempts were made to increase the number of layers to
determine if this would enhance performance; however, the MLP reached a point where adding more

hidden layers no longer improved performance.
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especially for recovering the multi-symbol output as in this case. This can be explained
by considering that the MLP lacks temporal information handling by design. The MLP
does not take the sequence of data points into account, which limits its capability to
effectively model time series dynamics.

4.6.2 Inference Speed Performance

For this analysis, the inference speed was tested with the simulation data and the
experimental data. Note that both the teacher and the student models recover 171
symbols per inference step in the simulation, and 195 symbols per inference step in
the experiment. The inference time analysis was carried out by using CPU (Intel Xeon
Processor 2.20 GHz) and GPU (Tesla T4) on Google Colab [213]° as the inference
engine. In this analysis, the size of the test set was 800, and the batch size was 8.
As can be seen from Fig. 4.10a for the simulation and Fig. 4.10b for the experiment,
the biLSTM-based NNs require the longest inference time in both CPU and GPU as
inference engines.

lacpu

Result obtained on Google Colab

Result obtained on Google Colab

biLSTM biRNN 1D-CNN MLP
NN architectures NN architectures

biLSTM biRNN 1D-CNN MLP

Inference time per recovered window (sec)
Inference time per recovered window (sec)

(a) Simulation. (b) Experiment.

Fig. 4.10 Inference time of teacher and different student models when applied testing
data obtained from (a) simulation; (b) experiment.

The biRNN presented lower inference latency than the biLSTM due to its simpler
architecture. The inference time of the recurrent-based NN in the CPU and the GPU
did not differ significantly. In contrast, the feedforward NNs (1D-CNN and MLP) have

>Note that, in this study, the GPU-accelerated library of primitives for deep NNs cuDNN (NVIDIA
CUDA® Deep NN library) was not considered for the inference in the GPU.
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significantly lower inference latency in the GPU than that of the CPU, especially the
1D-CNN model. 1D-CNN model when the CPU was used as the inference engine
experienced similar latency as the recurrent-based NN. However, with the feedforward
nature of the 1D-CNN that allows parallelization, the GPU can demonstrate remarkably
faster computation. The MLP’s inference time is shorter than the 1D-CNN as it has
a simpler structure and operations. The recurrent networks (biLSTM and biRNN)
experienced longer inference latency in the GPU compared to the CPU. This can
happen due to the non-easily parallelizable recurrent structure and the complexity of
the model. GPUs are specialized for efficient parallel computing, handling complex
models with multiple layers and parameters. The GPUs are generally faster when the
computation is parallelizable and involves matrix multiplications, while in some other
types of computations, the GPU can be slower. The parallel computing ability of the
GPU can fully exploit the parallelizability of the feedforward structures of 1D-CNN
and MLP. Overall, the proposed 1D-CNN student model provided the most reasonable
trade-off between performance and inference speed. The parallelization of the proposed
feedforward equalizer and its savings in latency are key to the real-time hardware
implementation of NN-based equalizers.

4.6.3 Roles of Knowledge Distillation

This subsection discusses the features associated with the KD-trained model. For this
purpose, the weight distribution of the student model trained with different approaches
in Fig. 4.11a for the simulation and Fig. 4.11b for the experiment are reported. In
both figures, compared to the student model trained from scratch, the student model
with KD has a more regularized weight distribution: the weights are more concentrated
around zero. This characteristic helps reduce the model’s variance and overfitting. The
optimal value of a in the KD loss function is 0.903, which means that the student model
learns 90.3% from the teacher labels and the rest comes from the ground-truth labels.
This fact demonstrates the effectiveness of the teacher labels in the student’s learning.
The teacher constellation/labels depicted in Fig. 4.1 show that the teacher also provides
helpful information on the noise, whereas this information cannot be encoded in the
ground-truth labels (which contain only real values). The weight distribution of the
student model with KD and the improvement in Q-factor, compared to the training of
the 1D-CNN without KD, both support the concept of using teacher labels as efficient
regularizers [182].
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Fig. 4.11 Comparison of weight distributions of the student model trained with KD, the
student model trained from scratch, and the student model trained with L2 regularizer,
using the data obtained from: (a) simulation; (b) experiment.

KD can work as an efficient regularizer to allow the model to generalize well with
unseen data. In this regard, the KD framework provides the adequacy of the NN weight
constraints, in contrast, too strict or too weak L2 regularizer parameters, may not
provide significant benefits. However, the KD framework also shows some limitations.
The training complexity is increased because both the teacher and the student models
need to be trained. For example, when the transmission scenario changes, the teacher
model needs to be trained first before the student one with KD can be trained effectively.
This can be time and resource-consuming. During the training, KD involves learning via
the teacher’s predictions, resulting in @ more complex training process. Moreover, the
student model relies heavily on the accuracy of the teacher model. When considering
the optimization process, to obtain the best performance, both the parameters of the
teacher and the student need to be optimized. A teacher with good performance is

necessary for the student’s learning.

4.6.4 Complexity Comparison of Different NN-Based Equalizers

In this section, we evaluate the performance versus computational complexity of the
NN-based equalizers after applying KD framework to train different student mod-
els (biRNN+CNN, 1D-CNN, and MLP) with the knowledge of teacher model (bil-
STM+CNN). The computational complexity in terms of the number of trainable
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parameters, RM, BOPs, NABS, and inference latency is compared. As mentioned
earlier, KD In general context is used to reduce the computational complexity in terms
of the NN parameters, however, in this work, the KD framework is used to recast the
NN structure from biLSTM-based (recurrent-based) to a feedforward-based equalizer
to allow parallelization in processing. Therefore, KD was applied to focus on enabling
parallelization and reducing the inference latency rather than reducing the RM, BOPs,
or NABS.

Data/ Serformance Metric | PIES TM+CNN TbiRNN+CNN [ 1D-CNN MLP

Output Shape (Teacher) (Student) (Student) (Student)
Q-factor 10.66 9.22 10.19 6.3

N No. Trainable 1.04x10° 6.53x10% | 2.93x105 | 9.95x10°

Simulation Parameters

171 RMpS 1.29x10° 7.60x10% 3.73x10° | 5.81x103

Symbols BOPpS 1.67x10°8 1.14x10° 8.03x10% | 1.25x107

NABSpPS 3.2x10° 2.10x10% | 1.27x10° | 1.96x107

CPU Inference Time | ¢ 20 103 | 4515103 | 5.12%10~2 | 3.83x 104

per Window

GPUp'er;f\e/(ﬁ;‘gin'me 7.65x1073 | 438x10°3 |3.87x107% | 1.561x10~*

Q-factor 8.22 8.06 8.22 7.32

Experiment Ns;]raTr:?el:;bsle 1.27x10° 5.24x10% | 3.10x10° | 1.02x10°
195 RMpS 1.42x10° 5.71x10% 3.43x10° | 5.22x103
Symbols BOPpS 1.73x10° 7.93x107 7.38x10% | 1.12x107
NABSpS 3.39x108 1.50%x 108 1.17x10° | 1.76x107
CPUp'er;ff/(/ei:SZWT'me 6.01x10~3 | 3.97x10°3 | 523x10°3 | 3.53x104
GPUp'er;ff/(/?QSEWT'me 7.02x1073 | 439x10°3 |3.18x107* | 1.43x10~%

Table 4.1 Summary of the performance versus complexity of different architectures of NN-
based equalizers after applying KD (biLSTM+CNN as a Teacher model, biRNN+CNN,
1D-CNN and MLP as Student models), where the bitwidth b; = 64, b,, = 32, and b, =
32. The RM, BOP and NABS are reported “per equalized symbol".

Table. 4.1 shows the summary of the performance versus complexity of these two
NN architectures when the precision is the default values from Tensorflow. The bitwidth
of the input (b;) is 64 bits, and the bitwidth of the weights (b,,) and activation function
(bs) is 32 bits. It can be seen that the Q-factor of the student model is slightly
lower than that of the teacher model when trained with the simulated data mentioned
above. Note that in the experiment, this KD approach did not show the performance
degradation in the student model. Even though the number of trainable parameters,
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RM, BOPs, and NABS of the student model are also higher than the teacher model,
the inference latency of the student is actually lower. This highlights the importance
of the “parallelization” strategy, which helps reduce the complexity of the processing
at the hardware synthesis level. This is crucial for real-world implementation. For the
training phase in this case, the trainable parameters can indicate the complexity to
some extent; however, empirically, the biLSTM+CNN has a longer training time, even
though the number of trainable parameters is lower than the 1D-CNN model. This
occurs because the recurrent structure of the biLSTM prevents the computation from
being fully parallelizable. At each time step of the calculation, the recurrent structure
takes into account the output of the previous time step. This sequential nature makes
the training and inference longer.

Fig. 4.12 shows BOPs and NABS as a function of the bitwidth of the weights (by,)
of the NN. It can be observed that the NABS grows with a steeper slope than the
BOPs when the by, increases. This fact highlights that towards the implementation of
resource-constrained devices or hardware accelerators, both metrics should be considered
carefully, because if only BOPs is assessed at higher precision of the weights, while
BOPs fits the requirement, NABS which escalates faster might exceed the requirement

of the implementation.

108
—— BOPs of biLSTM+CNN |
2.5 || 4 BOPs of 1D-CNN p”

—o— NABS of biLSTM+CNN o
2 || =t— NABS of 1D-CNN he -

BOPs, NABS per equalized symbol

[~

7 T 7 \\T
234567 8 910111213141516

Bitwidth of Weights [bits]

Fig. 4.12 BOPs and NABS per equalized symbol as a function of bitwidth of weights of
biLSTM+CNN and 1D-CNN models.
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4.7 Conclusion

In this chapter, the knowledge distillation technique has been proposed as an efficient
tool to achieve the parallelizability of the recurrent-based equalizers. In this study,
KD transfers the knowledge from a recurrent-connection-based biLSTM equalizer
to a parallelizable feedforward 1D-CNN. This approach enables the parallelization of
signal processing, allowing us to essentially simplify the hardware implementation of
NN models. The effectiveness of the KD approach was tested with both simulated
and experimental data. The proposed 1D-CNN model was compared against other
NN architectures to verify the performance in terms of Q-factor and inference time.
In addition, the characteristics of the KD approach on how it assists the student’s
learning and the limitations of the KD are highlighted. It has also been shown that the
proposed feedforward equalizer obtained with KD, results in a significantly reduced signal
processing latency compared to the original biLSTM model. In the experimental setup,
the student model can perform at the same level as the teacher at the optimal launch
power, while in the simulated data, the student slightly reduces the maximum Q-factor
by 0.5 dB. In conclusion, the student model can provide 2.2 dB gain compared to the
CDC with an improvement of the optimum power by 3 dB in simulated data, while
having a 0.7 dB gain with 1 dB increment in optimum launch power in the experimental
data.
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Chapter 5

Generalizability Improvement via
Multi-Task Learning

5.1 Introduction

Apart from the computational complexity and the parallelization, which are the main
challenges of the NN-based equalizers, generalizability remains one of the major consid-
erations of NN-based equalizers and attracts more attention [100, 214]. The real-world
optical transmission systems are highly dynamic and subject to change over time. This
can result in different channel settings, different values of accumulated chromatic
dispersion [107], or the presence of channel distortion. Therefore, the equalizers in the
receiver or transmitter require reconfiguration and must be adjustable to compensate
for the variation of impairments as the channel characteristics change.

This chapter investigates the use of multi-task learning (MTL) to enhance the
generalizability and flexibility of the NN-based equalizer. Section 5.2 discusses the
concept of MTL and the difference between MTL and the traditional training approach
or single-task learning (STL). Section 5.3, based on C3 [108], demonstrates the
effectiveness of an MTL-based NN equalizer, which not only improves the equalization
performance but also works efficiently in different transmission regimes and scenarios,
leading to more generalizable and flexible solutions. Section 5.4, based on J2 [82],
shows the experimental validation of the MTL applied in coherent-detection WDM
systems, allowing flexibility when the channel spacing varies.
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5.2 Multi-Task Learning

STL is a commonly used approach to train NNs. STL refers to the training in which the
NN learns the representation of the function to provide the output of a “specific” task
[215]. One advantage of STL is that it allows the NN to focus solely on a specific task,
usually leading to very good performance in that task. However, the NN may behave
poorly when applied to different tasks (e.g., when the transmission scenario of interest
is not included in the initial training dataset). As shown in Fig. 5.1, if STL is used for
channel equalization in different transmission scenarios, multiple NN models (multiple
sets of trained weights) are usually required to provide acceptable performance. To
reduce the training complexity in (the training time and resources required) of STL
training, transfer learning (TL) can be applied [98]. TL adapts the knowledge acquired
in one task to the different tasks (different channel spacing). It is worth noting that to
be more effective, the knowledge should be transferred from the transmission scenario
with higher nonlinearity to the scenario with lower nonlinearity, for example, from higher
launch power to lower launch power. This is because the model learns and adapts
better from a more severe nonlinear impairment situation. Even though TL reduces the
training complexity, it does not contribute to the inference/implementation complexity,
as the multiple sets of weights of the NNs are still required for different transmission

scenarios.

Single-Task Learning

Output Task 1 Output Task 2 Output Task N
s @ .Y P Y
XIl_. .IXQ XII_. ‘IXQ XIL.____JXQ
f f f
Output Output Output
Layer 1 Layer 2 Layer N

f
NN NN NN
Model 1 Model 2 Model N
! f ot
o) fo] lejx, [o| o [o|X, ol Tl eix
loj lo) . lojX, || (o . loix, . (oo .. eix,
1o 1oy “Clejy; HO SIS ey
il Ly, Dl Ly, IS T
Input Task 1 Input Task 2 Input Task N

Note: Each task = different transmission scenario

Fig. 5.1 STL: multiple models are required for multiple transmission scenarios.
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In MTL, the NN is trained with multiple datasets from multiple related tasks, see
Fig. 5.2. In this case, the common representations learned from different but related
tasks are shared [216, 215]. The tasks refer to different transmission scenarios. With
the MTL, the model learns the different datasets randomly at each training epoch,
allowing the model to gain broader knowledge. As depicted in Fig. 5.2, MTL enables a
single NN to equalize the signal in different transmission scenarios by the joint training
on the datasets from different transmission scenarios. Fig. 5.2a shows the MTL applied
when varying the ranges of launch power, symbol rate, and transmission distance in
a single-channel system. On the other hand, Fig. 5.2b illustrates the MTL model
applied in WDM systems to learn different degrees of nonlinearities (SPM and XPM)
through different channel spacings. MTL allows the NN to generalize better by using the
domain-specific information contained in the different related tasks [215]. By training a
model to solve multiple tasks simultaneously, it can learn representations that generalize
better across tasks [217, 218]. In the case that the different tasks are sufficiently related,
the shared representation helps improve generalization, even for tasks that might not
perform as well in their STL. As a result, it can lead to better performance than learning
the tasks independently [219]. While MTL has potential, it does not always perform
better than STL, leading to a trade-off between the performance of individual tasks and

the overall performance of the model. Success in MTL depends heavily on appropriate

Output Task 1 Output Task 2  Output Task N ?Btgft Task1 Output Task2  Output Task N
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Xi®_ Ox, xi®_ ®x, - x[® ®x, it R A RS AR
Output Layer Lt
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loj loj . lojx, loj loj  lojx, . lojle;  lojx o o1 Teix, [ei fei [eix o] o] TeiX;
loj 1o **lo|y? [lo| lo| 1Yl le tleyy loj log .. lojx, loilo|  loix, loj lo . loix,
Lyl Ly Lyl Ly Drlp Ly b R sl iel e
Input Task 1 Input Task 2 Input Task N _IIT;ZI lT;zJ il 50:G112Q e T g R
P o o e N 111111111
| Launch power (g~ 0dBm " 5dBm | Input Task 1 Input Task 2 Input Task N
| Baud rate 30GBA - 35GBd.- ... 70GEd |
} Span number 10 v 15 e 50 } . .
************************* (b) MTL used in WDM systems where dif-
(a) MTL used in single channel systems ferent tasks refer to the transmission scenar-
where different tasks refer to the transmis- ios with different channel spacings between
sion scenarios with different launch powers, the channel under test and the neighboring
baud rates, and numbers of spans. channels.

Fig. 5.2 MTL: only one model is required for various situations.
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task selection and the degree of information sharing between tasks has to be carefully
controlled. Too much sharing can cause a negative information transfer, resulting in
performance degradation for each task [216]. Besides the generalization feature enabled
by the MTL, it reduces hardware costs. In fact, the shared weights are fixed, which
results in the simplification of the multipliers [107].

5.3 MTL in Adaptive Transmission

In this section, MTL [215] is proposed to calibrate the NN-based equalizer used
for different transmission conditions in coherent systems. MTL leverages shared
representations to enhance the adaptability of NN-based equalizers across different
system configurations of single-channel transmission systems. This approach does
not require retraining or additional data when the channel conditions change. The
considered transmission setup is altered by changing the symbol rate (Rs) and launch
power (P) of data channels and the transmission distance (number of spans, Nspap).
For the MTL, the NN is trained with different datasets resulting from the combination
of different transmission setups (to share the weights and biases).

5.3.1 NN Architecture and Training

The NN architecture, depicted in Fig. 5.3, contains a stack of four biLSTM layers
with 100 hidden units in each layer coupled with a dense output layer of 2 neurons to
deliver the real and imaginary values for the X-polarization. The biLSTM was selected
because it outperformed other types of NNs when used for nonlinear compensation
[62, 73]. The model took four input features resulting from the in-phase and quadrature
components of the complex signal (X, Xg,Y;, and Yg) where X, +Xqg and Y; +,Yg
were the signals in the X and Y polarizations, respectively. A set of 141 input symbols
was fed to the NN to recover one symbol at the output. A new set of synthetic data
of size 218 was randomly created with different system parameters and used in each
training epoch to allow the model to learn different transmission scenarios. The entire
training was carried out with a mini-batch size of 2000, and a learning rate of 0.001.
The MSE loss estimator and the classical Adam algorithm [175] were applied when
training the weights and biases. After the training, the models were evaluated by unseen

test sets of size 217 for each testing scenario.
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Fig. 5.3 Equalizer architecture with 4-layer biLSTM and a dense layer

The transmission scenarios include Rg ranging from 30 to 70 GBd, number of spans
ranging between 10 and 50 (with fixed 50 km span length), and launch power ranging
between -1 and 5 dBm. The NNs were trained with MTL or STL as follows:

1. MTL trained for 1000 epochs with datasets including different Nsp,,, but fixed
Rs =40 GBd and P =5 dBm.

2. MTL trained for 1000 epochs with datasets including different P, but fixed
Nspan = 50 and Rs = 40 GBd!.

3. MTL trained for 1000 epochs with datasets including different Rs but fixed Nsp,,
=50 and P =5 dBm.

4. MTL trained for 1200 epochs with datasets including different combinations of
Nspan. Rs, and P. This NN is referred to as the “Universal model”2.

IThis model has one extra input feature, which is the launch power. The model learns the data during
the training using a normalized launch power. Therefore, it could not learn to generalize well without
knowing the actual launch power.

?Here, the values of Rs and Nspan are randomly selected from the list of possible baud rate values
with 5 GBd increment and the list of span number with the increments of 5 spans, respectively, to
decrease the possible number of combinations for the NN's learning.
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5. STL (without MTL) trained for 1000 epochs with fixed parameters: Rs = 40 GBd,
Nspan = 50 and P = 5 dBm.

5.3.2 Numerical Setup

The dataset was obtained by numerical simulation assuming the transmission of a
single 16-QAM DP channel along the SSMF. The signal propagation through the
fiber was represented by a generalized Manakov equation using the GPU-accelerated
split-step Fourier method [220]. The SSMF is characterized by the effective nonlinearity
coefficient v = 1.2 (W- km) ™!, chromatic dispersion coefficient D = 16.8 ps/(nm-km),
and attenuation parameter a = 0.21 dB/km. At the end of each fiber span, the optical
fiber losses were compensated by an EDFA with a noise figure of 4.5 dB. Downsampling
and CDC were performed on the receiver end. Afterward, the received symbols were
normalized and used as inputs of the NN.

5.3.3 Results and Discussion |

We considered MTL for multiple symbol rates, transmission distances, and launch
powers. To evaluate equalization performance and generalizability, the MTL models
were compared to CDC and the STL model trained with a fixed dataset.
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Fig. 5.4 Q-factor resulting from using MTL (orange and red) and STL model (blue) in
the following test cases; (a) when the transmission distance changes but the launch
power and symbol rate are set to 5 dBm and 40 GBd, respectively; (b) when the launch
power changes but the number of span and symbol rate are set to 50 and 40 GBd,
respectively; (c) when the symbol rate changes but the number of spans and launch
power are set to 50 and 5 dBm, respectively.
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Variation of transmission distance: Fig. 5.4a shows the optical performance for

different reaches considering a fixed launch power of 5 dBm and a signal baud rate
of 40 GBd. The STL model performed the best when Ns,,, was 50 (because it was
trained for this specific transmission scenario), significantly outperforming the remaining
approaches. However, its performance was significantly impacted in the shorter reaches
as it could not generalize. On the other hand, the MTL trained with different Nspa,
showed much better performance than STL for the shorter reaches, achieving a better
Q-factor (about 3 dB Q-factor improvement) than CDC only for all considered scenarios.
The universal MTL model also showed better performance than the CDC alone, leading
to a maximum Q-factor improvement of about 2.5 dB at 50x50 km.

Variation of launch powers: Fig. 5.4b depicts the Q-factor as a function of the

launch power for a fixed Rs of 40 GBd and transmission distance of 50x50 km. Again,
the STL model showed the best gain for launch powers close to the one it was trained
with (5 dBm), but revealed quite poor results for the remaining launch powers. In
contrast, the universal MTL model enabled a Q-factor improvement exceeding 2 dB for
the most relevant launch powers. The MTL, trained with various P but fixed Nspa,
and Rg, revealed the best performance, enabling a Q-factor improvement exceeding
4 dB for the most relevant launch powers. Interestingly, we can see that, at 5 dBm,
the MTL outperformed STL. The reason for this may be that the STL is overfitting
and cannot adapt to the unseen test data as effectively as the MTL model, which is
more generalized. Ref. [180] supported the claim that a more generalized model can
perform better.

Variation of symbol rates: Fig. 5.4c illustrates the Q-factor as a function of the

data signal baud rate for a fixed transmission distance of 50x50 km and launch power
of 5 dBm. STL led to very good results for the 40 GBd transmission scenario (training
scenario) but showed very poor generalization capability. The MTL, trained with multiple
Rs but fixed Nsp,, and P, enabled a Q-factor improvement of up to 4.5 dB with
respect to the CDC only, whereas the universal MTL model showed up to 2.5 dB
improvement. The MTL provided a good gain in most cases.

The aforementioned results show that, although STL may lead to outstanding
performance in specific transmission conditions, it is not suitable for real-world system
application because it lacks the adaptability to dynamic optical network parameters.
MTL overcomes this limitation, allowing the equalizer to be more flexible, but at the
cost of small performance degradation compared to models trained only for a specific
task.
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Multi-task learning is proposed to allow a “single” NN-based equalizer, without
retraining, to recover received symbols when the transmission scenarios change. The
results showed that the MTL can provide up to 4 dB improvement in Q-factor with
respect to CDC alone even if the transmission distance, launch power, and symbol rate
vary, thus highlighting the adaptability of the MTL NN-based equalizer to the real-world
dynamic optical network.

5.4 Experimental Validation of MTL Applied in WDM
Systems

In this work, we trained the NN on different datasets with various channel spacing
(different degrees of XPM) in WDM systems. The channel spacing for each dataset
is 1000, 500, 400, 300, 200, 100, and 50 GHz from CUT, see Fig. 5.5. In this way,
we can observe how the NN tackles varying levels of XPM, focusing on the nonlinear
regime. We use MTL to train the NN to attain generalizability. The MTL, illustrated
in Fig. 5.2b, enables a single NN to perform in different channel spacing scenarios, as it
does not require retraining for different band spacing. In the MTL, the NN is trained
jointly with multiple datasets from multiple related tasks; the tasks refer to different
channel spacing. MTL leverages shared representations to enhance the generalizability
of the NN across the different intensities of XPM. With the MTL, the model learns the
different datasets with random channel spacing at each training epoch, allowing the
model to gain broader knowledge. We conducted a comparative analysis to assess the
MTL's performance against the traditional STL model. The experimental data were
collected from three different setups: 9x50 km TWC, 23x50 km SSMF and 12x50
km LEAF.

5.4.1 NN Architecture and Training

The NN architecture described in Fig. 5.5, includes a 1D-CNN layer with nf filters,
a kernel size of 3 and LeakyRelL.U3 activation, followed by a biLSTM layer with nj,
units, and another 1D-CNN layer with 2 filters to recover real and imaginary parts of
X-polarization output. The hyperparameters used to train the NN for each transmission
scenario (different fiber types and lengths) are summarized in Table 5.1. The NN

3Unlike ReLU, LeakyReLU allows a small gradient for negative values to ensure that the neurons
continue learning and helps with the weight updates.
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Fig. 5.5 NN equalizer architecture with 1D-CNN and biLSTM layers, taking WDM data
of CUT with different channel spacing as an input.

structure with 1D-CNN and biLSTM has proven superior in nonlinear compensation
compared to other NN types [221, 73, 89]. The NN received 221 input symbols to
simultaneously recover 189 or 191 output symbols, depending on the scenario (see
Table 5.1). The training dataset contained 2'° independent symbols and, at every

218

epoch, symbols were randomly picked for training. For the testing and validation, a

never-before-seen dataset with 217

symbols was utilized. The datasets were created
using a pseudo-random binary sequence (PRBS) of order 32. The training was carried
out with a mini-batch size, a learning rate shown in Table 5.1, MSE loss, and the
Adam algorithm. We also adopted early stopping and data augmentation, adding slight
random noise to the training data to avoid overfitting. The optimal hyper-parameters
were found by the Bayesian optimizer, given the range of acceptable complexity. The
Bayesian optimizer was applied specifically to optimize the hyperparameters for the STL
model trained on the 50 GHz channel spacing, due to its most exposure to nonlinear
impairments like XPM. Once the optimal hyperparameters were found for the STL
model, we applied the same set of hyperparameters for training the MTL model. The
model received four input features derived from the in-phase and quadrature components
of the complex signal (X, Xg, Y7, and Yg) from X and Y polarizations, respectively. This
proposed NN only considers the data from the CUT without exploring the information
from adjacent channels. The models with MTL were trained for 1500 epochs (can
compensate for all channel spacings considered), whereas the traditional training models
were trained for 1000 epochs (to compensate for one channel spacing). To reduce the
training complexity of STL training, TL was applied [98]. TL adapts the knowledge
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acquired in one task to the different tasks (different channel spacing). We transferred
the knowledge from 50 GHz to the larger channel spacing as the model learns and
adapts better from a more severe XPM situation. Even though TL reduces the training
complexity, it does not contribute to the inference/implementation complexity, as the
multiple sets of weights of the NNs are still required for different transmission scenarios.

‘ Transimission ‘ Output Window Size ‘ ng of 1D-CNN ‘ np of LSTM ‘ Learning Rate ‘ Batch Size ‘

TWC 9 x 50 km 189 Symbols 117 98 0.082 x 10~% 3786
SSMF 23 x 50 km 189 Symbols 99 48 1.787 x 1073 1823
LEAF 12 x50 km 181 Symbols 70 68 5.623 x 1074 1000

Table 5.1 Training hyperparameters of each transmission scenario.

5.4.2 Experimental Setup

Fig. 5.6 depicts the experimental setup, as in Ref. [89], where the 16-QAM DP 34.4 GBd
symbol sequence was mapped from the data bits generated by a 232 — 1 order PRBS at
the transmitter. Then, the channel bandwidth was limited to 37.5 GHz by the RRC filter
with 0.1 roll-off. The processed digital samples were passed to a DAC operating at 88
Gsamples/s. The DAC outputs were amplified using a four-channel electrical amplifier,
which drove a DP in-phase/quadrature MZM, which in turn modulated a continuous
waveform carrier generated by an external cavity laser operating at A =1.55 um. The
resulting optical signal was transmitted over various transmission scenarios as follows:

e Experiment 1. Transmission over 9x50 km TWC fiber spans with EDFA, with up
to 95 neighboring channels (100G QPSK, 50 GHz ITU grid). The ADC operated
at 50 Gsample/s.

e Experiment 2: Transmission over 23x50 km SSMF fiber spans with EDFA, with
up to 40 neighboring channels (100G QPSK, 50 GHz ITU grid). The ADC
operated at 88 Gsample/s.

e Experiment 2: Transmission over 12x50 km LEAF fiber spans with EDFA, with up
to 40 neighboring channels (100G QPSK, 50 GHz ITU grid). The ADC operated
at 88 Gsample/s.

We consider the WDM channels with different channel spacing, see Fig. 5.5. Table 5.2
shows the fiber parameters in terms of attenuation coefficient (o), dispersion coefficient

(D) and nonlinear coefficient (y).
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Fig. 5.6 Schematics of the experimental setup used in this work, where the input of the
NN is the soft output (before decision unit) of the DSP Rx.

‘ Fiber Type ‘ a [dB/km] ‘ D [ ps/(nm- km)] ‘ ~ [(W- km)™1] ‘

TWC 0.23 2.8 25
SSMF 0.195 17.45 1.13
LEAF 0.2 3.9 1.25

Table 5.2 Fiber parameters of TWC, SSMF and LEAF used in the experiment.

At Rx, an integrated coherent receiver converted the signal to the electrical domain,
which was sampled using a digital sampling oscilloscope. The signal underwent offline
DSP processing as in Ref. [204], including CDC, MIMO equalization, carrier frequency
offset correction, clock recovery, and a pilot-aided carrier recovery*. The resulting
symbols were fed as an NN input for nonlinear mitigation. Finally, at the output of the

NN, the pre-forward error correction (pre-FEC) Q-factor was evaluated.

5.4.3 Results and Discussion Il
Experiment 1: 9x50 km TWC with up to 95 neighboring channels

Starting with Experiment 1 with 9x50 km TWC, Fig. 5.7 presents the Q-factor
as a function of launch power for different channel spacing. Albeit the MTL was

4The carrier recovery block in Fig. 5.6 includes both frequency offset compensation and carrier phase
recovery
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not optimized for the specific cases like in the STL, the MTL models still slightly
outperformed the traditional STL approach, especially when the launch power was
higher, or the regime was extremely nonlinear. This advantage of MTL was also reported
in [219]. We attribute this to the MTL's ability to acquire knowledge across all XPM
levels simultaneously. This result shows that the MTL models partially learn the complex
patterns associated with the XPM, enhancing the Q-factor compared to the CDC. The
DBP with 3 STpS did not perform well, providing only a small gain because the DBP only
compensated for SPM; TWC's high nonlinearity coefficient made XPM more significant
[164]. The NNs also show the potential to mitigate real-world component-induced
impairments beyond Kerr nonlinear effects. The component-induced impairments can
be the effects of the transceivers (ADC/DAC, drive amplifier, or MZM), also observed
in [25].

00 oo . 100 & 1 .
—__ -
-
= 8l Ay N . 8 e i \‘ 1
S ~ g O e ™\
= 3. = .,
5 6 SN\ 5 o :
% .,'.\A %
'5.- 4 |-~ MTL (Proposed) ) "C'; 41 *. 3
Traditional model (STL)| —e— MTL (Proposed)
2 -e--CDC A 2+ Traditional model (STL) .
-+- DBP 3 STpS I ¢ CDC 1
O 1 1 1 1 1 1 1 | e O 1 1 1 1 1 1 1 |
-6 -5-4-3-2-10 1 2 3 -6 -5-4-3-2-10 1 2 3
Launch power [dBm] Launch power [dBm]
(a) 50GHz spacing. (b) 200 GHz spacing.
T T T T T T
107 s ‘-_“=\ | 10 L | SR S S e B
i i .‘..‘_"‘*——A-_‘\
= B e S \ = Be- DEPER R e : L .
S, ) . ) o, ’ A\
s 6 ., 1 5 6| o
o . + L3
2 ., ?
L(; 4l g s '-(; 4+ —e—MTL (Proposed) 3
—e— MTL (Proposed) Traditional model (STL)
2 Traditional model (STL) S 2 {--e--CDC 8
o--CDC -4- DBP 3 STpS
0 06 5-4-32-10 1

Fig. 5.7 For the 9x50 km TWC fiber transmission, Q-factor versus the launch power
for the NN trained with MTL and STL, compared to the CDC and DBP 3 STpS,

-6 -5-4-3-2-10 1

Launch power [dBm]

(c) 400 GHz spacing.

Launch power [dBm]

(d) Single Channel.
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Fig. 5.8 For the 9x50 km TWC fiber transmission, (a) Q-factor gain for MTL models
with respect to the CDC performance; (b) Q-factor at 1 dBm launch power of MTL
compared to the CDC and two models trained solely with datasets of 50 GHz and
1000 GHz, respectively.

Fig. 5.8a depicts the Q-factor improvement achieved by MTL compared to the
CDC for different channel spacings. Considering the optimum power when the channel
spacings were 50 GHz and 1000 GHz, the gain of the 50 GHz scenario was around
0.2 dB higher than in the case of 1000 GHz spacing. To assess the performance and
robustness of the MTL, we consider the launch power where the fiber nonlinearity
started to play a noticeable role, i.e., exceeding -3 dBm. For a narrower channel spacing
(SPM and XPM are essential), the gain was even more pronounced than that for a
wider channel spacing (where the XPM impact becomes less pronounced). With the
increase in power, the difference between the gain at 50 GHz and 1000 GHz channel
spacings also increased: the difference was 0.3 dB at -3 dBm launch power, 0.8 dB at
-1 dBm launch power and 1.2 dB at 1 dBm launch power. This observation shows that
the NN trained with MTL efficiently compensates both SPM and XPM.

coc | DBP | Original | MTL with
3STpS | MTL 8 WC
Q-factor [dB] | 7.81 | 8.08 9.7 8.9
RMpS 109 | 2928 | 209884 | 5930

Table 5.3 For the 9x50 km TWC fiber transmission, Q-factor and computational
complexity of different methods when considering 50 GHZ spacing at its optimum
performance.
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To emphasize the NN's adaptability and efficiency in mitigating XPM, Fig. 5.8b
shows that at the 1 dBm launch power for inference, the MTL model outperforms
both traditional STL models trained on 50 GHz and 1000 GHz channel spacings and
the CDC. This showcases the MTL's superior generalization capability across different
scenarios. While the STL models trained for specific spacings perform well for the cases
matching the specific training conditions, they perform worse when applied to other
scenarios. Even though the model trained with 50 GHz spacing data had only a slight
drop in Q-factor compared to the MTL, this difference may be larger for other launch
powers. Notably, the model trained on 50 GHz spacing generalizes better, likely due to
greater exposure to XPM dynamics in dense WDM (DWDM) systems, unlike the 1000
GHz model that exhibits reduced adaptability due to limited XPM exposure.

Tab. 5.3 shows the Q-factor and computational complexity in terms of number
of RMpS [55] for CDC, DBP with 3 STpS, original MTL model, and the reduced
complexity MTL model using weight clustering technique, detailed in Section 3.2. The
weight clustered model groups similar weights into clusters and shares a single value
within each cluster; in our case, we used 8 clusters. The weight clustered model was
included to demonstrate the possibility of reducing the computational complexity in the
MTL NN-based equalizer. While DBP offers about half the complexity of the MTL
model with 8 WC, it only compensates for SPM and not XPM. We can notice the
trade-off between the Q-factor and complexity. The numbers reported in Tab. 5.3
were assessed using the dataset considering the optimum launch power of the 50 GHz
channel spacing scenario. Note that the NN in this work was not optimized for lower

complexity.

Experiment 2: 23x50 km SSMF with up to 40 neighboring channels

Fig. 5.9 demonstrates the Q factor as a function of launch power for Experiment 2,
with 23x50 km SSMF. Overall, the NN-based equalizers, both the MTL and STL
outperformed the CDC and DBP with 1 STpS. The MTL clearly outperforms the STL
model when the channel spacing is 50 GHz and performs as well as the STL in the other
cases. Specifically, the MTL improved the Q-factor by up to 0.77 dB. The classical
nonlinearity mitigation method, like DBP, did not provide such significant gain in the
DWDM scenario (50 GHz channel spacing) but can perform better in single-channel
transmission. This is because the DBP in this work can only compensate for SPM, and

the SPM is the major nonlinear impairment in the single-channel transmission. Note
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that, in this experiment, increasing the number of steps per span in the DBP did not
provide reasonable improvement.

Regarding the gain for the MTL with respect to the CDC, Fig 5.10a showed that
the DWDM systems exhibited a higher gain in Q-factor compared to the single-channel
transmission. When comparing the gain of the MTL with respect to the CDC in their
optimum power, the higher gain in the scenario with 50 GHz can also be observed.
It can be implied that the NN-based equalizers can partially mitigate the XPM. The
results are similar to Experiment 1.

Fig 5.10b confirms the flexibility of the MTL-based equalizers. All the models are
tested at the launch power of 1 dBm. This MTL requires no retraining to be able to
compensate for the nonlinear impairments in the transmissions with different channel
spacings. The STL model trained only with 50 GHz channel spacing can generalize
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Fig. 5.9 For the 23x50 km SSMF fiber transmission, Q-factor versus the launch power
for the NN trained with MTL and STL, compared to the CDC and DBP 1 STpS,
evaluating when the channel spacing was 50, 200, 400 and 1000 GHz.
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Fig. 5.10 For the 23x50 km SSMF fiber transmission, (a) Q-factor gain for MTL
models with respect to the CDC performance; (b) Q-factor at 1 dBm launch power of
MTL compared to the CDC and two models trained solely with datasets of 50 GHz
and 1000 GHz, respectively.

better than the STL model trained only with single-channel data because the STL
model with 50 GHz spacing learned more nonlinearity from both SPM and XPM.
Lastly, even if the complexity is not the main focus of this chapter, weight clustering
was applied in this case to demonstrate the possibility of compressing the MTL model.
Table 5.4 concludes the Q-factor and complexity of CDC, DBP with 1 STpS, original
MTL and weight-clustered MTL with 8 clusters at their optimum performance (at
-1 dBm launch power). With 8 WC, the RMpS is reduced drastically compared to the
original model. The MTL model experienced a performance drop when the complexity
was reduced. The DBP in this case is cheaper in complexity than the MTL model with
8 WC, however, the performance of the DBP cannot be improved even with a higher
number of STpS. In addition, the MTL can be optimized further for lower complexity.

cDC DBP | Original | MTL with
1STpS | MTL 8 WC
Q-factor [dB] | 6.77 | 6.98 7.54 7.35
RMpS 146 2430 70222 4120

Table 5.4 For the 23x50 km SSMF fiber transmission, Q-factor and computational
complexity of different methods when considering 50 GHZ spacing at its optimum
performance.
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Experiment 3: 12x50 km LEAF with up to 40 neighboring channels

Similarly to the previous two experiments, in Experiment 3 with 12x50 km LEAF fibers,

the MTL also revealed superior performance compared to other methods, including
CDC, DBP with 1 STpS and the STL model, see Fig. 5.11. The MTL provided up
to 0.6 dB Q-factor improvement compared to the CDC, while the DBP struggled to

enhance the Q-factor, especially in the DWDM transmission.
Regarding the gain for the MTL with respect to the CDC, it can be observed in

Fig 5.12a that the gain in Q-factor is slightly higher in the WDM system with a 50
GHz channel gap than in the single channel transmission. The result of this experiment
validates the assumption made previously that the MTL model can partially mitigate

for the XPM.
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Fig. 5.11 For the 12x50 km LEAF fiber transmission, Q-factor versus the launch power
for the NN trained with MTL and STL, compared to the CDC and DBP 1 STpS,
evaluating when the channel spacing was 50, 200, 400 and 1000 GHz.

S. Srivallapanondh, PhD Thesis, Aston University 2025.



124 Generalizability Improvement via Multi-Task Learning

-1 dBm -2 dBm -3 dBm
—~ —— -4 dBm —— -5 dBm —&— -6 dBm
% T T T
S 12
5 /SPI\/I + XPM xOp P 85|
a
o 1 [ 1 —~
- omn
5 SPM S
= 08} \ 5
— o
£ S
= 06, . S
BN O 751
s —e— e MTL (Proposed)
5 047 = o o FISTL Model 1000GHz
o . JISTL Model 50GHz
O 50 100 200 300 400 500 1000 50 200 400 1000
Channel Spacing (GHz) Channel Spacing (GHz)
(a) (b)

Fig. 5.12 For the 12x50 km LEAF fiber transmission, (a) Q-factor gain for MTL
models with respect to the CDC performance; (b) Q-factor at -3 dBm launch power of
MTL compared to the CDC and two models trained solely with datasets of 50 GHz
and 1000 GHz, respectively.

Fig 5.12b shows the generalizability when the models were tested at a launch
power of -3 dBm. The finding indicates similar trends as in the previous experiments,
demonstrating that the MTL model has the most generalizability. The STL model
trained with 50 GHz spacing appears to be more flexible than the one trained with 1000
GHz spacing, as the former learned from the dataset containing more nonlinearity.

Table 5.5 shows the comparison of the Q-factor and complexity in RMpS of different
approaches. The results are similar to the previous two transmission scenarios. The
model with 8 WC exhibited a significant reduction in RMpS compared to the original
NN model, at a cost of 0.8 dB drop in Q-factor. Even the DBP with 1 STpS required
less RMpS than the model with 8 WC, it can only provide 0.04 dB in the equalization

CDC DBP | Original | MTL with
1STpS | MTL 8 WC
Q-factor [dB] | 7.85 | 7.89 8.42 8.18
RMpS 144 1252 97792 3980

Table 5.5 For the 12x50 km LEAF fiber transmission, Q-factor and computational
complexity of different methods when considering 50 GHZ spacing at its optimum
performance.
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performance gain compared to the CDC. Note that the model in this work was not
optimized for low complexity.

In Subsection 5.3, the MTL model was used to equalize symbols when the channel
characteristics varied, and a trade-off between the Q-factor of individual tasks and
the overall performance was observed. In the current study, the MTL model applied
for varying XPM levels did not demonstrate the same trade-off. Instead, the MTL
framework contributed to enhancing each specific task’s performance. The MTL's
performance boost and its ability to work without retraining are notable advantages
compared to employing several STL models for different channel spacings in traditional
training. Additionally, in this study, our NN leveraged the dataset from the same
experimental setup and a similar NN architecture as in Ref. [89], but our model here
was designed to recover multiple output symbols simultaneously. Multi-symbol output
not only reduces the computational complexity per symbol but also reveals superior
performance compared to its single-symbol counterpart.

In conclusion, we employed MTL to develop an NN-based equalizer capable of
mitigating nonlinear impairments in coherent-detection DWDM systems. Learning
from the experimental data and leveraging the MTL concept, our MTL NN-based
equalizer demonstrates excellent adaptability to varying levels of SPM and XPM. The
proposed MTL model has remarkable generalizability, as we need only a “single” model
without the necessity of retraining for different channel spacing or diverse levels of
XPM. We showed that the MTL model outperforms the CDC, DBP with 3 STpS, and
the “traditional” single-task model. The MTL can optimize the performance across all
studied tasks without compromising the performance of individual tasks; moreover, we
revealed that the MTL can even enhance the performance for specific tasks. Additionally,
we explored and assessed the potential for reducing the computational complexity of
our MTL-based model, making it more viable for real-world optical communication
networks, and demonstrated the possibility of essential complexity reduction for our

MTL equalizer without a significant penalty in its performance.

5.5 Conclusion

This chapter explored the application of MTL to improve the generalizability of NN-
based equalizers. The MTL was investigated in the single-channel transmission when the
symbol rate, transmission distance, and launch power were changing, and in the WDM

systems where the channel spacing was altering. From the findings, it can be confirmed
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that MTL enables flexibility of the NN-based equalizers across various transmission
scenarios. The MTL model utilizes only a single model for different related tasks and
does not require retraining. When the tasks are related enough, MTL could potentially
outperform STL in Q-factor performance. The results also suggest the possibility of
integrating MTL with other complexity reduction techniques, like weight clustering and
transfer learning, to further optimize computational efficiency.
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Chapter 6

Conclusion and Future Works

6.1 Review of Thesis

To battle the capacity crunch that can occur in the near future, nonlinearity mitigation
techniques are required to enhance the capacity of the optical transmission systems.
Neural networks (NN) have gained more attention in nonlinearity compensation tasks
due to their universal approximation capability. Despite the effectiveness in equalization
performance, NN-based equalizers still face some major limitations: computational
complexity, parallelization, and generalizability. This thesis examined methods to enhance
the computational efficiency of NN-based equalizers in coherent optical communication
systems. The focus has been on exploring and proposing possible solutions for the
aforementioned three aspects of the challenges of NN-based equalizers.

First, to lower computational complexity, weight clustering has been proposed to
substantially lower the number of real multiplications per equalized symbol (RMpS)
of the NN-based equalizers used in digital subcarrier multiplexing (DSCM) systems.
With this approach, the complexity in terms of RMpS was reduced by up to 97%
compared to the original NN, and up to 91% with respect to the NN based on the
perturbation analysis. It also offers a reduction of up to 34% in RMpS, compared to the
standard digital backpropagation (DBP) 1 STpS. In addition, the different approaches to
approximate the nonlinear activation functions of NN were assessed in the single-channel
systems to reduce the hardware resources required for the implementation. The findings
revealed that the approximated activation functions required significantly fewer hardware
resources than the original ones, while maintaining satisfactory performance. This was
because the approximation errors were mitigated by the learning of the NNs.
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Next, to address the challenge of parallelizability of the promising recurrent NN-
based equalizers in high-speed optical communication, knowledge distillation has been
employed to transform recurrent NN structures into more hardware-friendly feedforward
architectures. With this technique, the feedforward model demonstrated a reduction in
inference latency, without a major drop in Q-factor performance. The results, validated
with both the simulated and experimental data, showed that the knowledge distillation
acted as an efficient regularizer to avoid overfitting when training the NN.

Lastly, tackling the generalizability problems of the NN is crucial to accommodate
the dynamic optical systems. Multi-task learning (MTL) was proposed to enhance the
flexibility of the NN-based equalizers, so that a single MTL model can mitigate the
nonlinearity across different transmission scenarios, without retraining. MTL was tested
in both single-channel and WDM transmissions. For the single-channel transmission,
the MTL showed an improvement in Q-factor over the linear compensation even when
the transmission length, symbol rate and launch power varied. For the WDM systems,
experimental validation showed that MTL-based equalizers outperformed traditional
single-task models and DBP in performance when channel spacing changed.

In summary, the findings of this thesis contribute to the research area of NN-
based equalization by offering a systematic approach to alleviate the limitations of the
NN-based equalizer, while preserving robust performance. The complexity reduction
techniques were demonstrated with the use case from both simulated and experimental
data. These contributions allow a step closer to efficient and scalable NN deployments

in real-world optical networks.

6.2 Future Work Direction

In spite of the results and strategies presented in this thesis, several open research
directions remain. These open problems should be investigated to further improve the
efficiency and practicality of NN-based equalizers in optical communication systems.

Possible directions for further research are outlined in the following areas:

e NN-based equalizers should be studied further to be used in WDM and DSCM sys-
tems. These systems represent real-world optical networks beyond single-channel
transmission. Some studies, including this thesis, have already presented the
potential of NN in these systems. However, existing work is limited to only some

specific study cases. These WDM and DSCM networks are more complex than

S. Srivallapanondh, PhD Thesis, Aston University 2025.



6.2 Future Work Direction 129

the single-channel systems, due to the higher nonlinearity affected by the neigh-
boring channels/subcarriers. Further research should investigate efficient training
strategies and the dependence of the performance of the channel/subcarrier under

test on the information of the neighboring channels/subcarriers.

e Other computational complexity reduction techniques should be studied more
deeply to explore more opportunities for low-complexity NN-based equalizers.
Different approaches can be combined to understand if the NN could still maintain
the performance while reducing complexity.

e Meta-learning [222] and multi-task learning are promising research directions to
enable flexible and generalizable NN-based equalizers. These techniques have an
opportunity to work together such that the multi-task model can learn to adapt
to an unseen task in fewer steps. This multi-task meta-learning approach has
already been proposed in the image tasks [223].

e Not only the time sequence of the complex symbols, but also the different types
of inputs of NN should be investigated. Examples of the input types could be
spectrum, triplets, or signal constellations. This is worth comparing to understand

the performance and complexity trade-off for different alternatives.

e Physics-based activation functions could be explored to improve the performance
and efficiency of NN-based equalizers. Physics-inspired functions can possibly
better represent the underlying nonlinearities of the optical channel. This could
lead to a more accurate signal equalization and make the NN more interpretable.

e Hardware implementation is another aspect that requires deeper investigation.
There are still a limited number of papers on real hardware implementation to
ensure practical deployment. Optimizing hardware implementations, including
quantization and parallelization, remains a critical challenge for NN-based equaliz-
ers.

e Power consumption and power efficiency of the reduced-complexity NN-based
equalizers should be quantified and compared as another performance metric.
Power consumption is a critical consideration for effective, and sustainable equal-
izers, especially as networks scale and data rates increase. Efficient power man-
agement ensures hardware longevity and reduces operational costs.
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Future research can further optimize NN-based equalizers in terms of complexity,
performance and flexibility for scalable, low-power, and high-speed optical communication
systems. This could make the NN-based equalizers more viable for deployment in next-

generation networks.
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Appendix A

A.1 PWL equations

The equations of the PWL approximations of sigmoid and tanh can be found in Table A.1
for 3, 5, 7, and 9 segments.

Functions
No. of segments tanh sigmoid
Equation Condition Equation Condition
1 x>1.1 1 X>2.2
3 0.90909x —-1.1<x<1.1 0.22727x+0.5 —22<x<L22
-1 x<-1.1 0 x< =22
1 x>1.7 1 x>2.6
0.41666x+0.29166 05<x<17 0.17223x 4 0.55219 0.8<x<26
5 X —-05<x<05 0.23747x+0.5 —-0.8<x<0.8
0.41666x —0.29166 —-1.7<x<-05 0.17223x+0.44781 —26<x<-0.8
-1 x<—-1.7 0 x<—-2.6
1 x>1.8 1 x>3
0.285x +0.48699 1.1<x<18 0.12363x + 0.62909 14<x<3
0.57214x+0.17114 04<x<1.1 0.18701x+0.54036 08<x<14
7 X —04<x<04 0.23747x+0.5 —0.8<x<0.8
0.57214x—0.17114 —-1.1<x<-04 0.18701x+0.45964 —1.4<x<-0.8
0.285x —0.48699 —-18<x<-1.1 0.12363x+0.37091 —3<x<-14
—1 x<—-1.8 0 x< -3
1 x>22 1 x>3.4
0.14331x4-0.68417 14<x<L22 0.08514x40.71051 2<x<34
0.3381x+0.412 09<x<14 0.12644x 4+ 0.62791 15<x<2
0.269382x+0.09185 0.3<x<0.9 0.182242x+0.09185 08<x<15
9 X -03<x<0.3 0.23747x+0.5 —-0.8<x<0.8
0.269382x —0.09185 —-09<x<-0.3 0.08514x + 0.45585 —-15<x<-0.8
0.3381x—0.412 —1.4<x<-09 0.12644x+0.37209 —2<x<—-15
0.14331x—0.68417 —22<x<-14 0.182242x +0.28949 —34<x< =2
-1 x< =22 0 x<-34

Table A.1 PWL approximation equations of sigmoid and tanh for 3, 5, 7 and 9 segments.
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