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Abstract

Over the past decade, there has been a massive increase in demand for bandwidth

to serve bandwidth-hungry applications, for example, video calls, the Internet of Things

(IoT), and 5G/6G. Many of these applications require not only high speed but also

low latency. It is widely known that the majority of digital data is transmitted over

optical fibers, resulting in a national and international infrastructure. However, fiber

nonlinearity (e.g., the Kerr effect) imposes significant limitations on the optical launch

power; as a result, it constrains the information rate in modern coherent transmission

systems. To address these challenges, the development of innovative system designs

is required, for instance, advanced modulation formats, wideband transmission, new

fiber types and enhanced digital signal processing (DSP) techniques to mitigate fiber

nonlinearity.

Mitigating fiber nonlinearity is essential to achieve higher transmission rates and

improved signal quality, without the need for new infrastructure. Various techniques

have been proposed, including traditional methods like digital backpropagation (DBP)

and the Volterra series-based approach. However, the computational complexity is still

the main challenge, encouraging the researchers to seek an alternative approach like

machine learning (ML). ML, especially neural networks (NNs), has demonstrated its

capability in a wide range of applications due to the universal approximation capability

of NNs. NNs have been intensively studied for the optical channel post-equalization,

because they can accurately approximate the inverse optical channel transfer function

and reverse the nonlinear distortions. Despite their promising equalization performance,

the limitations of the NN-based equalizers in real implementation still remain. The

major challenges include the computational complexity, the parallelizability, and the

generalizability.



This thesis investigates the integration of NN-based equalizers for nonlinear impair-

ment mitigation in coherent optical long-haul communication systems. By leveraging

NNs, this work aims to improve transmission quality while focusing on the three ma-

jor aspects of the challenges in NN-based equalizers. This thesis contains some key

contributions: i) the investigation of computational complexity reduction techniques,

including weight clustering, and activation function approximation; ii) parallelization

strategies using knowledge distillation to facilitate real-time inference; iii) the application

of multi-task learning frameworks to improve model flexibility and adaptability in dynamic

network conditions; and iv) the validation of these methods based on theoretical and

experimental data. The comprehensive analysis of this thesis highlights the performance-

complexity trade-offs, practical feasibility, and potential of NN-based equalizers. Finally,

the results show that the NN-based equalizers can improve the quality of transmission,

while keeping the complexity the same or lower than the traditional DSP algorithm,

offering a promising approach for future optical networks.

Keywords: Coherent Optical Communications, Nonlinearity Equalization, Digital

Signal Processing, Machine Learning, Computational Complexity
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NLSE Nonlinear Schrödinger Equation

ANN Artifcial Neural Network

NN Neural Network

OFDM Orthogonal Frequency Division Multiplexing
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S. Srivallapanondh, PhD Thesis, Aston University 2025.





Chapter 1

Introduction

1.1 Optical Communication Networks

In the past decade, demand for bandwidth has grown significantly, driven by bandwidth-

intensive applications such as video calls, the Internet of Things (IoT), cloud computing

and 5G/6G network [2, 3]. Many of these applications also require high speed and low

latency to function efficiently. Internet traffic is expected to continuously increase in

the coming year, especially with the increasing number of IoTs and the rise of artificial

intelligence (AI) applications, including generative AI like ChatGPT that require big

data processing and cloud computing.

The majority of digital data is transmitted over optical fibers, resulting in the

backbone of national and international communication infrastructures [4, 5]. To satisfy

the growing bandwidth demands, various advancements in optical communication

technologies have been developed. Starting from the key milestone of the low-loss

fiber, the fiber attenuation was reduced to 0.2 dB/km at 1.55 µm in 1979 [6], which

significantly extended the reach of optical signals. Then, the development of the

Erbium-Doped Fiber Amplifier (EDFA) in 1987 [7] came into play and enabled long-

haul optical transmission. Around the same period, wavelength-division multiplexing

(WDM) technology was also invented [8]. The WDM allows independent signals to be

transmitted over one fiber at different wavelengths, resulting in an increased transmission

capacity of optical communications. In the early days, optical communication relied

only on the Intensity Modulation and Direct Detection (IM/DD) system. The IM/DD

systems are simple and cost-effective, and are in use even today. Later on, in 2005,

coherent optical communication gained more attention due to the demonstration of

digital carrier-phase estimation in coherent receivers [9]. Coherent communication
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utilizes full information on in-phase and quadrature (IQ) components (or amplitude and

phase) of the complex amplitude of the optical electric field. This characteristic of

coherent systems allows higher modulation formats to cope with the rising data rates.

In current long-haul coherent optical transmission systems, the optical fiber non-

linearity seriously causes a significant challenge by limiting the information rate. In

addition, with the ever-increasing transmission bandwidth, the impact of nonlinearity

becomes even more crucial [4]. Significant efforts are being directed toward developing

new types of optical fibers, for example, hollow-core fibers [10] which provide reduced

nonlinearity or the multi-core or multimode fibers that allow space division multiplexing

(SDM) [11]. However, these new types of fibers necessitate a complete overhaul of the

existing infrastructure. To exploit the current infrastructure, higher-order modulation

formats are employed to boost the transmission rate. When the modulation format

increases, the signal-to-noise ratio requirement is higher to maintain the same BER. This

happens because higher modulation order adopts denser constellation points, making

them more susceptible to noise and distortion. This results in a higher demand for

optical launch power, and the increased power introduces the nonlinear impairments.

To achieve high data-rate transmission, various digital signal processing (DSP)

techniques have been proposed to mitigate some types of signal impairments in coherent

systems [12]. The signal impairments include linear effects such as chromatic dispersion

and nonlinear effects like Kerr effects [13]. The signal impairments can be observed

from the nonlinear Schrödinger equation (NLSE) [14]. The NLSE is a fundamental

equation to describe the light propagation down the optical fiber. The NLSE can be

directly derived from the Maxwell equations [15], which represent the foundations of

electricity and magnetism [16]. The NLSE is formulated as:

∂u(z,t)

∂z
= (D̂+ N̂)u(z,t), (1.1)

where u(z,t) denotes the electrical field which is a function of the propagation distance z

and time t. D̂ and N̂, represent the linear and nonlinear parts of the NLSE, respectively,

which are shown as:

D̂ = −
α

2⏞⏟⏟⏞
loss

−
jβ2
2

∂2

∂t2⏞ ⏟⏟ ⏞
GVD

+
jβ3
6

∂3

∂t3⏞ ⏟⏟ ⏞
GVD slope

, (1.2)

N̂ = jγ|u(z,t)|2⏞ ⏟⏟ ⏞
Kerr effect

,
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where α, β2,3, and γ are the attenuation, the group velocity dispersion (GVD) parameter,

and the nonlinear coefficient, respectively. As a result, the explicit form of the NLSE is

as follows:

∂u(z,t)

∂z
+
α

2
u(z,t)+

jβ2
2

∂2u(z,t)

∂t2
−
jβ3
6

∂3u(z,t)

∂t3
= jγ|u(z,t)|2u(z,t). (1.3)

The Eq. (1.3) is used to model the single-polarization transmission, for example,

the direct-detection systems deploying the intensity modulation [14]. However, in the

case of coherent systems, the dual polarization (DP) signal is detected by the coherent

transceiver deploying the advanced DSP. The spectral efficiency of the coherent system

is doubled. DP is also considered in a vectorized form. The Eq. (1.3) is then extended

to the Manakov equation which is given as:

∂uX(z,t)

∂z
=−
α

2
uX(z,t)+

jβ2
2

∂2

∂t2
uX(z,t)−

jβ3
6

∂3

∂t3
uX(z,t)⏞ ⏟⏟ ⏞

linear

−jγ
8

9

(︁
|uX(z,t)|2+ |uY (z,t)|2

)︁
uX(z,t)⏞ ⏟⏟ ⏞

nonlinear

,

∂uY (z,t)

∂z
=−
α

2
uY (z,t)+

jβ2
2

∂2

∂t2
uY (z,t)−

jβ3
6

∂3

∂t3
uY (z,t)

− jγ
8

9

(︁
|uX(z,t)|2+ |uY (z,t)|2

)︁
uY (z,t). (1.4)

where uX(z,t) and uY (z,t) denote the two orthogonal polarization components of

the electric field u(z,t).

To mitigate fiber impairments like chromatic dispersion and nonlinear impairments,

one needs a solution of the inverse Manakov equation with inverse optical link parameters.

The solution of the propagation equation is analytically possible only for particular

scenarios, for instance, zero-dispersion transmission. Thus, numerical solutions, such as

the split-step Fourier method (SSFM) [14], are often necessary. The SSFM solves the

NLSE by iteratively applying linear (dispersion) and nonlinear (Kerr effect) operators in

small propagation steps, alternating between the time and frequency domains using the

Fast Fourier Transform (FFT). The technique, like digital backpropagation (DBP) [17]

comes into play to solve the inverse NLSE using the SSFM. This approach calculates

the transmitted signal from the received signal. However, the main challenge of DBP is

computational complexity.
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In recent years, machine learning (ML), especially neural networks (NNs), has

demonstrated its capability in a wide range of applications, for instance, pattern

recognition, signal reconstruction, and time series analysis, etc [18, 19]. In addition,

NNs have proven to solve various signal processing tasks, especially in the areas related

to nonlinear signal processing, real-time signal processing and adaptive signal processing

[20–22]. The NNs have also made their way to the field of optical communications

and nonlinearity mitigation [23]. This thesis focuses on the application of NNs in the

channel equalization problem in coherent optical transmission systems.

1.2 Motivation

Due to the universal approximation capability of NNs, NNs have been intensively studied

for the optical channel post-equalization. The NNs can approximate the inverse optical

channel transfer function with reasonable accuracy and revert the nonlinear distortions.

However, despite their potential, significant challenges remain in implementing the

NN-based equalizers in real hardware. The primary limitations are the computational

complexity, inference latency, and flexibility [24, 25].

• Computational Complexity: The complexity of the model is not only reflected by

the number of trainable parameters or the number of multiplications required by the

model, but also by the model size, memory requirement, and the hardware resources

needed for real-time inference. In the optical systems, resource constraints, and

power efficiency are critical.

• Inference Latency: Ultra-low latency is one of the main requirements for real-

time high-speed communication systems. In certain NN architectures, such

as bi-directional long short-term memory (biLSTM) or recurrent NNs (RNN),

sequential operations may cause delays during the inference phase. Their limited

parallelizability prevents the NN-based equalizer from real implementation for

high-speed systems. Parallelization is important as it allows better utilization of

the hardware.

• Flexibility/Generalizability: The real-world optical networks are highly dynamic, in

which the channel parameters fluctuate over time. Therefore, NN-based equalizers

must be flexible enough to adapt to these changes without frequent retraining,

due to the resource-constrained environment.
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To allow the NN-based equalizers to be closer to the real implementations, the challenges

need to be investigated and addressed. The proposed method should be able to

outperform the traditional nonlinearity mitigation techniques, e.g. DBP, in terms of a

trade-off between the computational complexity and the performance. In addition, the

NN-based equalizers should also be studied in different types of transmission systems

to validate their potential, for instance, in single-channel single-carrier systems, WDM

systems and digital subcarrier multiplexing (DSCM) systems.

1.3 Contributions of the Thesis

This thesis focuses mainly on the possible solutions to alleviate the limitations of

the NN-based equalizers and to move towards a real hardware implementation. The

investigations are carried out in three different aspects: computational complexity,

inference latency, and flexibility. The main contributions of the thesis are as follows:

• The low-complexity NN-based equalizer used in the DSCM systems via the weight

clustering technique was proposed, showing the same level of performance with a

significant reduction in computational complexity compared to the previous NN

architecture based on perturbation theory [1].

• To reduce the complexity of the hardware implementation of NN-based equalizers,

it is demonstrated that the biLSTM equalizer with approximated activation

functions provides a performance close to that of the original model but significantly

reduces the hardware requirements.

• To improve the latency and the non-parallelizability of biLSTM-based equalizers,

knowledge distillation was proposed to recast the recurrent-based structure into a

more parallelizable feedforward structure.

• Multi-task learning (MTL) is proposed to improve the flexibility of NN-based

equalizers in coherent optical systems. A “single" NN-based equalizer improves

the Q-factor, without retraining, even with variations in launch power, symbol

rate, or transmission distance.

• To improve the flexibility of NN-based equalizers using MTL in coherent-detection

WDM systems, a “single” NN-based equalizer can mitigate different levels of

nonlinearity like cross-phase modulation (XPM) across diverse channel spacing,
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outperforming conventional training and enhancing Q-factor without retraining

the NN.

The following publications stem from this current research and are directly or

indirectly connected to various chapters of this thesis:

Conference papers:

C1 Srivallapanondh, S., Freire, P., Parisi, G., Devigili, M., Costa, N., Spinnler, B.,

Napoli A, Prilepsky, J.E. and Turitsyn, S.K., 2025, March. Weight-clustered neural

networks for low-complexity nonlinear equalization in digital subcarrier multiplexing

systems. In Optical Fiber Communication Conference. Optica Publishing Group.

C2 Srivallapanondh, S., Freire, P., Napoli, A., Prilepsky, J. and Turitsyn, S., 2024,

November. State-of-the-art neural network-based equalizers for coherent optical

communication systems: architectures and complexity. In SBFoton IOPC 2024

(pp. 1-3). doi: 10.1109/SBFotonIOPC62248.2024.10813543.

C3 Srivallapanondh, S., Freire, P.J., Alam, A., Costa, N., Spinnler, B., Napoli, A.,

Sedov, E., Turitsyn, S.K. and Prilepsky, J.E., 2023, October. Multi-task learning

to enhance generalizability of neural network equalizers in coherent optical systems.

In 49th European Conference on Optical Communications (ECOC 2023) (Vol.

2023, pp. 640-643). IET. doi: 10.1049/icp.2023.2276.

C4 Srivallapanondh, S., Freire, P.J., Napoli, A., Turitsyn, S.K. and Prilepsky, J.E.,

2023, May. Hardware realization of nonlinear activation functions for NN-based

optical equalizers. In CLEO: Science and Innovations (pp. SF1F-4). Optica

Publishing Group.

C5 Srivallapanondh, S., Freire, P.J., Spinnler, B., Costa, N., Napoli, A., Turitsyn,

S.K. and Prilepsky, J.E., 2023, March. Knowledge distillation applied to optical

channel equalization: Solving the parallelization problem of recurrent connection.

In Optical Fiber Communication Conference (pp. Th1F-7). Optica Publishing

Group. doi: 10.1364/OFC.2023.Th1F.7.

C6 Freire, P.J., Srivallapanondh, S., Spinnler, B., Napoli, A., Costa, N., Prilepsky,

J.E. and Turitsyn, S.K., 2023, October. Low-complexity efficient neural network

optical channel equalizers: Training, inference, and hardware synthesis. In 49th

S. Srivallapanondh, PhD Thesis, Aston University 2025.



1.3 Contributions of the Thesis 7

European Conference on Optical Communications (ECOC 2023) (Vol. 2023, pp.

542-545). IET. doi: 10.1049/icp.2023.2240.

Journal papers:

J1 Srivallapanondh, S., Freire, P., Parisi, G., Devigili, M., Costa, N., Spinnler, B.,

Napoli, A., Prilepsky, J. and Turitsyn, S., 2025. Low complexity neural network

equalizer for nonlinearity mitigation in digital subcarrier multiplexing systems.

Optics Express, 33(2), pp. 2558-2575, doi: 10.1364/OE.542061.

J2 Srivallapanondh, S., Freire, P., Spinnler, B., Costa, N., Schairer, W., Napoli,

A., Turitsyn, S.K. and Prilepsky, J.E., 2024. Experimental validation of XPM

mitigation using a generalizable multi-task learning neural network. Optics Letters,

49(24), pp.6900-6903, doi: 10.1364/OL.535396.

J3 Srivallapanondh, S., Freire, P.J., Spinnler, B., Costa, N., Napoli, A., Turitsyn,

S.K. and Prilepsky, J.E., 2024. Parallelization of recurrent neural network-based

equalizer for coherent optical systems via knowledge distillation. Journal of

Lightwave Technology, 42(7), pp.2275-2284, doi: 10.1109/JLT.2023.3337604.

J4 Freire, P., Srivallapanondh, S., Spinnler, B., Napoli, A., Costa, N., Prilep-

sky, J.E. and Turitsyn, S.K., 2024. Computational complexity optimization

of neural network-based equalizers in digital signal processing: a comprehen-

sive approach. Journal of Lightwave Technology, 42(12), pp. 4177-4201, doi:

10.1109/JLT.2024.3386886.

J5 Devigili, M., Sequeira, D., Torres-Ferrera, P., Srivallapanondh, S., Costa, N.,

Ruiz, M., Castro, C., Napoli, A., Pedro, J. and Velasco, L., 2024. Twining digital

subcarrier multiplexed optical signals with OCATA for lightpath provisioning. Jour-

nal of Lightwave Technology, 43(6), pp. 2599-2609, doi: 10.1109/JLT.2024.3498342.

J6 Freire, P.J., Srivallapanondh, S., Anderson, M., Spinnler, B., Bex, T., Eriksson,

T.A., Napoli, A., Schairer, W., Costa, N., Blott, M., Turitsyn, S.K. and Prilepsky,

J.E., 2023. Implementing neural network-based equalizers in a coherent optical

transmission system using field-programmable gate arrays. Journal of Lightwave

Technology, 41(12), pp.3797-3815, doi: 10.1109/JLT.2023.3272011.
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1.4 Thesis Outline

This thesis includes the technical introduction of the subject, the research findings, and

the conclusion. The thesis is outlined as follows:

• Chapter 2 presents an introduction to the channel equalization in the optical

communication systems. The traditional nonlinearity mitigation techniques for

optical channel equalization and their challenges are discussed. After that, the

fundamentals of the NN-based equalizers are presented. This chapter also provides

an overview of the different traditional nonlinearity mitigation techniques, as well

as NN topologies and their opportunities in the equalization tasks. The chapter

also mentions the three main challenges of NN-based equalizers covered in this

thesis: computational complexity, parallelizability, and generalizability. Finally, the

complexity reduction methods for NNs and the complexity metrics for training

and inference of NN are discussed.

• Chapter 3 examines the first challenge of the NN-based equalizer, which is the

computational complexity. It investigates two different complexity reduction

techniques: weight-clustering and the approximation of the nonlinear activation

functions. The weight-clustering method was applied to reduce the number of real

multiplications per equalized symbol in the NN-based equalizers used in DSCM. For

the nonlinear activation function approximation, the study focuses on a trade-off

between the performance and the hardware resources required for the nonlinear

activation functions with and without approximation techniques; this study was

examined with the data in a single-channel single-carrier system.

• Chapter 4 addresses the second aspect of the challenges of the NN-based equalizers

covered in this thesis. It discusses the parallelizability problem of the recurrent-

based NN equalizers. For the first time, a knowledge distillation framework was

applied to allow the feed-forward NN to learn better and provide comparable

performance in channel equalization as the recurrent NN-based equalizers. The

feed-forward structure enables faster processing time than the recurrent one. This

approach was studied using both simulated and experimental data.

• Chapter 5 investigates the last aspect of the challenges of NN-based equalizer

covered in this thesis, which is generalizability. The MTL approach helps improve

the flexibility of the NN equalizers. MTL allows the NN to still perform well when
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1.4 Thesis Outline 9

the transmission setup changes, without retraining the model. First, the MTL

was evaluated in the single-channel transmission where the launch power, number

of spans, and the symbol rate were dynamic. After that, the MTL was assessed

in the WDM systems, where the channel spacings can be dynamic.

• Chapter 6 concludes the thesis with some discussions and the future research

direction.

The main parts of this thesis are based on my original research published in conferences

C1 through C5 and journals J1 through J3, where I served as the primary author and

made the predominant contributions, including developing the code and generating the

results. Although some results and text are derived from journals J4 and J6—where

I was a secondary author—I was the primary author for the portions included in this

thesis. Finally, collaborative brainstorming with my co-authors was pivotal in shaping

the ideas and revising the papers.
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Chapter 2

NN-Based Equalizers in Optical
Communications

2.1 Introduction

Research into nonlinearity mitigation techniques in optical communication systems

remains an active area of investigation. Different techniques have been proposed and

investigated. This chapter introduces various classical algorithms: DBP, the Volterra

Series-based method, phase conjugation, and the perturbation theory-based method.

After that, the NN-based equalizers are discussed along with their architecture based on

data-driven and model-driven NNs, and previously proposed methods based on different

transmission schemes. Then, it presents the introduction of computational complexity

reduction techniques in the training, inference, and hardware synthesis phases. Finally,

the metrics to measure the computational complexity in the training and inference

phases are reviewed.

2.1.1 Traditional Equalizers for Nonlinearity Mitigation

Various techniques have been researched to alleviate the nonlinear effects of optical

fibers. The DSP algorithms are used to compensate for the fiber impairments in

coherent detection in optical communication. These DSP algorithms are deployed

either on the transmitter or the receiver side, or a combination of both [26]. The

digital nonlinearity compensation (NLC) techniques are presented as a key approach

which is cost-effective to increase the data rate in the next-generation WDM optical
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transmission systems [26]. The most common NLC techniques are presented here.

These techniques aim to solve the Manakov equation.

Digital Backpropagation

DBP is a powerful signal processing technique designed to compensate for both chromatic

dispersion and Kerr-induced nonlinear impairments. The idea of DBP is to digitally

model a fictitious fiber with inverse parameters (opposite sign) when compared to the

real fiber deployed in the forward propagation [26, 17], based on the SSFM. The SSFM

is an effective numerical technique used to solve NLSE [14]. The SSFM divides the

optical link into small segments. The signal propagation in those steps is modeled as

a concatenation of linear and nonlinear operations which are treated separately. The

DBP implemented on the receiver side can be seen in Fig. 2.1, where Nspan is the

number of steps. The conversion between time and frequency domains is undertaken

by the FFT and inverse FFT (IFFT) [26, 13]. The linear compensation section is

implemented in the frequency domain. With SSFM, we can derive the output of the

linear compensation as stated in [26] as:

UCD
X/Y (z,ω) = FFT (uX/Y (z,t))e

−jh
(︂
α
2+

β2
2 ω
2
)︂
, (2.1)

where h is the length of each step, ω is the frequency variable, and z is the current

transmission distance. The exponential term represents the inverse of the signal phase

change due to the dispersion.

𝑢𝑋/𝑌(𝑧, 𝑡)
FFT 𝑒−𝑗ℎ(

𝛼
2+

𝛽2
2 𝜔

2)

Linear Section

𝑈𝑋/𝑌
𝐶𝐷 (𝑧, 𝜔)

𝑒−𝑗𝜑𝛾
′ℎ( 𝑢𝑋

𝐶𝐷 2
+ 𝑢𝑌

𝐶𝐷 2
)

Nonlinear Section

𝑢𝑋/𝑌
′ (𝑧, 𝑡)

×𝑁

IFFT

Fig. 2.1 Principle of DBP implementation, FFT: fast Fourier transform and IFFT:
inverse FFT.
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After that, the NLC is performed in the time domain to address the Kerr effects.

The output of the DBP is formulated by [26] as:

u′X/Y (z,t) = IFFT (U
CD
X/Y (z,ω))e

−jϕγ′h(|uCD
X |

2+|uCD
Y |

2), (2.2)

where 0 < ϕ < 1 is a real-valued optimization parameter. The exponential term

represents the phase change due to the Kerr effect. Apart from the phase shift caused

by the self-modulation of polarization X/Y , the signal in polarization X induces a

nonlinear phase variation in polarization Y , and vice versa.

The approximation of the solution for this SSFM can be improved by increasing the

number of steps per span, resulting in better nonlinearity compensation. Nevertheless,

a higher number of steps per span makes the computation expensive and infeasible

in the implementation. Various research papers have made an effort to reduce the

complexity of the algorithm, for example, reduced complexity DBP based on the joint

usage of Wiener-Hammerstein model and a halved back-propagation [27], weighted

DBP [28], correlated DBP [29] and the time-domain DBP with deep-learned chromatic

dispersion filters [30]. The time-domain DBP is shown to be implementable in the

Application-Specific Integrated Circuit (ASIC) [30].

Volterra Series-Based Nonlinear Equalizer

The Volterra series-based nonlinear equalizer (VNLE) uses the Volterra series transfer

function (VSTF) to model the fiber nonlinear effects [31, 26]. The Volterra series is

suitable for modeling the memory effects and is a powerful tool for solving the Manakov

equation (Eq. (1.4)). After modeling the optical channel using VSTF, the inverse VSTF

(IVSTF) kernels are derived as a function of the VSTF as in Ref. [32]. The IVSTF

kernels characterize the nonlinear equalizer to compensate for the nonlinear effects and

the dispersion of a transmitted signal. The VNLE also aims to construct the inverse

of the channel like DBP. For each polarization, the compensation operation is divided

into linear (like chromatic dispersion) and nonlinear parts. However, the NLC part of

VNLE can perform the compensation operation in parallel, which can provide hardware

benefits. The compensated output signal is a combination of the output of linear and

each nonlinear stage; see Fig. 2.2. The output of VNLE can be formulated as a function

S. Srivallapanondh, PhD Thesis, Aston University 2025.



14 NN-Based Equalizers in Optical Communications

Linear Section

Nonlinear Compensation
Stage 1

Nonlinear Compensation
Stage 2

Nonlinear Compensation
Stage 𝑁𝑠𝑝𝑎𝑛

𝑈𝑋/𝑌(𝜔) 𝑈𝑋/𝑌
′ (𝜔)

…

Fig. 2.2 Principle of VNLE implementation.

of the received signal as follows:

U
′

X/Y (ω) = k1(ω)UX/Y (ω)+

∫︂∫︂
k3(ω1,ω2,ω−ω1+ω2)

× [UX(ω1)U∗X(ω2)+UY (ω1)U∗Y (ω2)]

×UX/Y (ω−ω1+ω2)dω1dω2, (2.3)

where k1 and k3 are the first- and third-order IVSTF kernels, ω is the physical optical

frequency, ω1 and ω2 dummy parameters that influence the interactions between light

waves at different frequencies, and the superscript * is the complex conjugation. The

equations of k1 and k3 can be written as:

k1(ω) = e
jω2β2NspanL/2 (2.4)

k3(ω1,ω2,ω−ω1+ω2) =
jck1(ω)

4π2

N

∑
k=1

e jkβ2∆ωL (2.5)

where L denotes the span length, ∆ω = (ω1−ω)(ω1−ω2) corresponds to the spacing

between the discrete frequencies in the sampling spectrum and c = γ
′
Lef f , where Lef f

is the effective length.

There are different forms of the VNLE attempting to improve the performance and

reduce the complexity; for instance, weighted Volterra series nonlinear equalizer [33].

Most of the VNLEs are based on truncating the series to the third order. However, some

papers propose the fifth-order equalizer [34, 35], offering performance improvement

in the single-channel systems but the complexity is also increased compared to the
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third order. It is worth noting that the nonlinear interference caused by the adjacent

subcarriers in the super-channel transmission decreases the VNLE performance [26].

Also, the complexity of the Volterra series-based method increases with the number of

spans [13].

Phase Conjugation-Based NLC

Phase conjugation (PC) exploits the symmetry of nonlinear distortions to address the

nonlinear phase shift induced by the Kerr effects. This PC approach has been proposed

for both in the optical domain as optical phase conjugation (OPC) [36] and in the

digital domain as digital phase conjugated twin waves (PCTW) [37].

OPC inverts the spectrum of the data signal in the optical domain midway through

the transmission link. The fundamental concept of OPC is that the nonlinear phase shift

accumulated in the first half of the fiber can be effectively canceled by the second half

when the conjugate wave is transmitted. The implementation of OPC is presented in

Fig. 2.3a However, this approach significantly limits the flexibility of the dynamic optical

network and is difficult to implement. The key challenge of OPC is the requirement for

a symmetric fiber link and precise positioning.

×
𝑁𝑠𝑝𝑎𝑛

2

OPCEDFA
Fiber

Transmitter

×
𝑁𝑠𝑝𝑎𝑛

2

EDFA
Fiber

Receiver

𝑈 →  𝑈∗

(a) OPC implementation.

𝑢𝑌(0, 𝑡) = 𝑢X
∗ (0, 𝑡)

× 𝑁𝑠𝑝𝑎𝑛

PCTW EDFA
Fiber

PCTW

At 𝑧 = 0 km

𝑈𝑌(0, 𝜔) = 𝑈X
∗(0, −𝜔) 𝑈 𝐿, 𝜔 = [𝑈𝑥, 𝑈𝑌]

𝑢 𝐿, 𝑡 = [𝑢𝑥, 𝑢𝑌]

At 𝑧 = 𝐿 km

Transmitter Receiver

(b) PCTW implementation.

Fig. 2.3 Implementations of phase conjugate-based NLC in (a) optical domain and (b)
digital domain.
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In the dual polarization system, PCTW is a DSP technique that was proposed to

mitigate the first-order nonlinear distortions [37]. PCTW is implemented at the receiver

side, as seen in Fig. 2.3b. With this approach, the original signal is transmitted on the

X polarization and its conjugate is sent on the Y polarization:

uY (0, t) = u
∗
X(0, t), UY (0,ω) = U

∗
X(0,−ω). (2.6)

The nonlinear distortions faced by PCTWs are anticorrelated. The nonlinear distortions

are:

δuY (L,t) =−[δuX(L,t)]∗, δUY (L,ω) =−[δUX(L,−ω)]∗. (2.7)

The received signal is approximated as:

uX/Y (L,t) = uX/Y (0, t)+ δuX/Y (L,t), UX/Y (L,ω) = UX/Y (0,ω)+ δUX/Y (L,ω).

(2.8)

The anticorrelation results in the first-order cancellation of nonlinear phase shift, by the

superposition of the two signals at the receiver side. The original signal field (u(0, t) or

UX(0,ω)) can be restored by:

u
′

X(L,t)≈ u(0, t) =
uX(L,t)+u

∗
Y (L,t)

2
, (2.9)

U
′

X(L,ω)≈ UX(0,ω) =
UX(L,ω)+U

∗
Y (L,−ω)

2
. (2.10)

The main advantage of this PC approach is its low complexity implementation. On

the contrary, when adopting PCTW, the loss of half spectral efficiency is the main

limitation because the conjugate signal requires transmission on the Y polarization. To

address this, advanced coding schemes such as polarization coding [38] and subcarrier

coding [39] have been proposed to improve efficiency.

Perturbation-Based NLC

The perturbation-based approach allows an approximate numerical solution to the

Manakov equation, or Eq. (1.4). The core concept of this technique is to treat the

field in the fiber as the combination of the linear propagation caused by dispersion

and attenuation, and perturbed terms due to nonlinear distortions [26]. With the

first-order perturbation, the received field uX/Y (z,t) is the sum of the solution to the
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linear propagation u0,X/Y (z,t) and the first-order perturbation u1,X/Y (z,t). It can be

written as: uX/Y (z,t) = u0,X/Y (z,t)+u1,X/Y (z,t).

Pulse of Interest

𝑚 𝑘 𝑛 𝑙

… … … … …

Pulse Index

Triplets

Fig. 2.4 Triplet pulses in perturbation-based NLC

Two simplifying assumptions hold in the first-order perturbation-based NLC, including:

the full electrical chromatic dispersion compensation (CDC) at the receiver and the

Gaussian shape assumption for input pulses [13]. Based on first-order perturbation

theory, at the time indices Tm, Tl and Tn, three input Gaussian pulses interact nonlinearly

and generate a ghost pulse. Fig. 2.4 provides a visual representation of the triplet

pulses to generate the first-order field. For simplification, without loss of generality, the

nonlinear distortion field is evaluated at index k = 0 (i.e. when l =m+n) by considering

the symbol rate operation. The first-order distortion field is as follows:

u1,X/Y (L,t) = j
8

9
γP
3/2
0 ∑

m
∑
n

[︂
am,X/Y a

∗
m+n,X/Y an,X/Y +am,Y/Xa

∗
m+n,Y/Xan,X/Y

]︂
Cm,n,

(2.11)

where Cm,n are the nonlinear perturbation coefficients, ∗ denotes the complex conjugate

operation, P0 is peak power of the pulse at the launch point and am,X/Y represents the

symbol complex amplitudes at time m for X and Y polarization. In a typical dispersion

uncompensated system, the pulse spreading due to chromatic dispersion is much higher

than the symbol duration, i.e., β2z ≫ τ2 [40]. Cm,n can be formulated as [41]:

Cm,n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ2√
3|β2|

∫︁ L
0 dz

1√
τ4/(3β22)+z

2
, m = n = 0

τ2√
3|β2|

1
2E1

(︂
(n−m)2τ2τ2
3|β2|2L2

)︂
, m or n = 0

τ2√
3|β2|
E1

(︂
−j mnτ

2

β2L

)︂
, m ̸= n ̸= 0,

(2.12)

where E1(x) =
∫︁∞
x
e−t

t dt. These perturbation coefficients are computed in advance and

stored in a look-up table. To compensate for nonlinearities, the first-order distortion
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field u1,x/y was calculated and is subtracted from the symbol for interest a0,X/Y to

generate a
′

0,X/Y . This can be written as: a
′

0,X/Y = a0,X/Y −u1,x/y .
The perturbed term can be calculated and utilized for the nonlinearity mitigation

at either the transmitter or the receiver side. The perturbation-based NLC can also

be implemented with one sample per symbol to reduce the speed requirement of the

digital-to-analog converter (DAC), and the analog-to-digital converter (ADC) [40].

Tao et al. [40] demonstrated that the perturbation-based NLC can be implemented

without any multipliers when adopting low spectral efficiency modulation formats, like

QPSK. However, it did not apply to the higher-order modulation. Different works have

attempted to reduce the number of perturbation terms, for example, quantization on

perturbation coefficients [42].

Nonlinear Fourier Transform

An alternative approach to nonlinearity mitigation is the nonlinear Fourier transform

(NFT). NFT is a framework that exploits the integrability of the NLSE (Eq. (1.1)),

which describes pulse propagation in single-mode fibers [43–45].

Tx RxINFT NFT
Phase
Shift

M
od
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n
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n
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r 
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r 
do

m
ai

n

Fiber

Fig. 2.5 Basic design of NFT-based transmission systems in the NFT domain.

Fig. 2.5 [44] shows the basic design of the NFT-based transmission systems, where

the transmitted information is encoded by inverse NFT (INFT) directly onto the

nonlinear Fourier (NF) signal spectrum (modulation in the nonlinear Fourier domain –

NFD). In this design, one can modulate discrete and continuous NF spectrum parts

either separately or simultaneously.

The forward NF decomposition can be performed by the solutions of the Za-

kharov–Shabat spectral problem (ZSSP) [46, 47]. For anomalous dispersion (β2 < 0),

the NLSE equation is integrable and can be mapped to the ZSSP. The ZSSP corresponds

to the scattering problem for two auxiliary functions φ1,2(t), where the transferred
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temporal profile u(0, t)≡ u(t) enters as an effective potential [45]:

d

dt

(︄
φ1(t,ξ)

φ2(t,ξ)

)︄
=

(︄
−iξ u(t)

−u∗(t) iξ

)︄(︄
φ1(t,ξ)

φ2(t,ξ)

)︄
, (2.13)

where ξ ∈ C is the nonlinear spectral parameter.

The nonlinear spectrum (NS) fully characterizes the original time-domain waveform

u(t) and is obtained from the scattering coefficients a(ξ) and b(ξ). It consists of two

distinct components:

1. Continuous spectrum — defined by the reflection coefficient

r(ξ) =
b(ξ)

a(ξ)
, ξ ∈ R. (2.14)

2. Discrete spectrum — a set of solitonic eigenvalues ξd ∈C+ satisfying a(ξd) = 0,

together with their associated residues:

r(ξd) =
b(ξd)

a′(ξd)
. (2.15)

For finite-duration pulses, these definitions are always valid in optical communication

applications. Low-energy signals contain only the continuous spectrum, while the

discrete part appears only when the signal energy exceeds a threshold [48]:∫︂ ∞
−∞
|q(t)|2dt > C. (2.16)

In the case of normal chromatic dispersion (β2 > 0), the discrete spectrum is absent

altogether.

The significance of the NFT in fiber-optic communications lies in the simple,

decoupled evolution of the nonlinear spectrum in the ideal, noise-free (without ASE

noise or higher-order perturbations) NLSE model. For the normalized NLSE, the

propagation over a distance L is described by [45]:

NS(L) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b(L,ξ) = b(0,ξ)e2iξ
2L,

a(L,ξ) = a(0,ξ),

a′(L,ξ) = a′(0,ξ),

ξd(L) = ξd(0),

∀ξ ∈ R∪Ξd . (2.17)
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This invariance under propagation is what makes the nonlinear spectrum an attractive

domain for information encoding and transmission.

In NFT-based transmission, data symbols are modulated directly onto the nonlinear

spectrum—often onto the continuous part [49, 48]. The INFT generates the cor-

responding time-domain waveform for transmission, while at the receiver, the NFT

recovers the transmitted nonlinear spectrum, which is largely free from deterministic

nonlinear distortions. This principle underlies nonlinear inverse synthesis (NIS) [50] and

nonlinear frequency-division multiplexing (NFDM) [44, 45].

Although NFT-based systems promise nonlinearity-immune transmission, practical

implementation faces challenges. The challenges include the computational cost of

accurate forward/inverse transforms and sensitivity to ASE noise in the nonlinear spectral

domain. Ongoing research is addressing these issues through fast NFT algorithms [51],

discrete-spectrum modulation strategies [49], and hybrid DSP–NFT architectures [44,

45].

2.1.2 Machine Learning-Based Equalizers for Nonlinearity Mitiga-
tion

Most traditional methods for nonlinearity compensation are still challenging to implement

due to their high complexity, despite their effectiveness. This limitation has driven

the research to seek alternative strategies. These new approaches should achieve

comparable performance while significantly reducing computational complexity. ML

techniques have been increasingly used in the past decade to design optical equalizers,

as they have the ability to learn from the data and adapt to changing channel conditions.

Different ML techniques are proposed to be used as optical equalizers, such as support

vector machine (SVM), K-means++ and NNs. The M-ary SVM in [52] was proposed

for use in the 16-QAM coherent optical systems to mitigate the nonlinear phase noise

(NLPN) which is one of the major distortion factors. The paper has shown that their

approach, based on numerical simulations for 112-Gb/s single channel 16-QAM systems,

can enhance the system performance independently of the specific characteristics of

the fiber link.

The sparse K-means++ equalizer in [53] was proposed to mitigate optical fiber

nonlinearity effects in a 16-QAM self-coherent real-time system at 40 Gb/s using an

FPGA. The authors reported a 3 dB Q-factor improvement with respect to linear

equalization only after transmission along 50 km of optical fiber using a launch power
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close to the optimal value of 14 dBm and the tested scenario was a single-span short-

reach system. The aforementioned techniques adapt their decision boundaries to the

residual nonlinear distortion of the received signal instead of performing hard decisions,

providing a significant performance gain. The improvement of the performance is

noticeable when they are deployed in the memoryless systems or coping with NLPN

[54].

Among the ML-based approaches, NN-based equalizers have garnered the most

attention for their ability to model and mitigate complex nonlinear impairments, offering

significant improvements over traditional nonlinearity compensation methods [55, 56].

For this reason, this thesis focuses on NN-based equalizers and the reduction of their

complexity.

2.2 NN-Based Equalizers for Nonlinearity Mitigation

One significant advantage of NNs is their capacity to handle the vast datasets generated

by optical transmission, enabling effective model training. With their universal approx-

imation capability, NNs have been extensively explored for optical post-equalization,

offering promising results compared to traditional techniques like DBP, particularly in

terms of reduced complexity [16]. A straightforward application of NN-based equalizers

is to be used as post-equalizers, where the NN is applied at the receiver side to reverse

the channel distortions and recover the transmitted signal with high accuracy. This

approach, which positions the NN structure only after the fiber channel at the receiver,

provides an intuitive yet powerful method for addressing signal impairments in optical

fiber systems. Fig. 2.6 illustrates the position of the post-equalizer in the optical

communication systems. Another approach is end-to-end learning [57], which uses

an autoencoder to optimize the entire communication system, including the trans-

mitter, channel, and receiver. This end-to-end learning method, in [58] based on a

parallelizable perturbative channel model, jointly optimized constellation shaping and

nonlinear pre-emphasis, demonstrating mutual information gain. In this thesis, we

focus on the post-equalization. By leveraging architectures such as convolutional NN

(CNN) and RNN, and particularly a biLSTM, NN-based equalizers have demonstrated

robust performance in mitigating nonlinear impairments [59, 16]. In this section, we

first discuss some fundamental architectures of the NNs, both the data-driven and

model-driven approaches for nonlinearity mitigation. Then the considerations when

designing the NN-based equalizers are presented.
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Fig. 2.6 Diagram depicting the position of NN as post equalizers in optical communica-
tions systems.

2.2.1 Architectures for Data-Driven NN-Based Equalizers

Multi-Layer Perceptron

Multi-layer perceptron or MLP is the simplest and feed-forward NN-based equalizer.

The MLP consists of some layers of a dense layer, which is formulated as:

y = φ(Wx +b), (2.18)

where y is the output vector, φ is a nonlinear activation function, W is the weight

matrix, and b is the bias vector. Writing explicitly the matrix operation inside the

activation function:

Wx +b =

⎡⎢⎢⎢⎢⎣
w11 w12 . . . w1ni
w21 w22 . . . w2ni
...

... . . .
...

wnn1 wnn2 . . . wnnni

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1

x2
...

xni

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
b1

b2
...

bnn

⎤⎥⎥⎥⎥⎦, (2.19)

where ni is the number of features in the input vector and nn represents the number of

neurons in the layer.

The MLP-based architectures have been well studied in the optical transmission

systems [54, 60, 61]. In [54], the channel response in long-haul transmission systems is

approximated by using the MLP networks. The paper demonstrates that their MLP-

based equalizer provides the equivalent mitigation performance to the traditional DBP

nonlinearity compensation of 2 STpS and 2 samples per symbol, but with a significantly

lower computational cost. As the MLP model is unsuitable for learning sequential

data, the extra step of data processing is required. In the paper, the delay blocks were

used at the input layer of the MLP to consider the channel memory effect, meaning
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that the preceding symbols are also considered when equalizing each symbol. The NN

topology consists of two 16-neuron hidden layers and their neurons have hyperbolic

tangent sigmoid transfer functions. The two output-layer neurons have linear transfer

functions, providing real and imaginary parts of the equalized symbol. Note that this

MLP equalizer is used after a linear equalization stage, enabling ideal CDC.

Three-layer MLP was demonstrated in [62] that when the complexity was restricted

to a lower level, the MLP showed the best performance compared to other more

complex models in terms of Q-factor. However, this type of NN used in the optical

communication systems with pseudorandom bit sequences or with limited memory

depths has the risk of overestimating the performance gain by predicting the short

pattern instead of compensating the studied channel/phenomena [63]. MLPs aim to

repeatedly discover the correlation among each pair of the data samples in each layer

using fully-connected layers. As a result, they are prone to over-fitting due to a large

number of trainable parameters and cause a large number of floating-point operations

(FLOPs) [64].

Convolutional Neural Network

CNNs are a feed-forward NN that has the capability to extract patterns from data. This

capability can be useful in learning and compensating nonlinearity, especially the stack

of convolutional layers, which acts as a multi-channel nonlinear learned local pattern

detector. It can overcome inter-symbol interference (ISI) and device nonlinearity [65].

In CNN, we apply the convolutions with different filters to extract the features and

convert them into a lower-dimensional feature set, while still preserving the original

properties. CNNs can be used in 1D, 2D, or 3D networks, depending on the applications.

In this thesis, we focus on 1D-CNNs, which apply to processing sequential data [18].

For simplicity of understanding, the 1D-CNN processing with padding equal to 0,

dilation equal to 1, and stride equal to 1, can be summarized as follows:

y fi = φ

(︄
ni

∑
n=1

nk

∑
j=1

x ini+j−1,n ·k fj,n+bf
)︄
, (2.20)

where y fi denotes the output, known as a feature map, of a convolutional layer built by

the filter f in the i-th input element, nk is the kernel size, ni is the size of the input

vector, x in represents the raw input data, k fj denotes the j-th trainable convolution

kernel of the filter f and bf is the bias of the filter f . In the general case, when designing
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the CNN, parameters like padding, dilation, and stride also affect the output size of the

CNN. It can be formulated as:

OutputSize =

[︃
ns +2padding−di lation(nk −1)−1

str ide
+1

]︃
, (2.21)

where ns is the input time sequence size.

The 1D-CNN has been proposed to be used with the MLP [66, 65, 67], using the

CNN part to capture short-temporal dependencies among neighboring symbols and

the MLP part for capturing long-term dependencies [64]. However, the MLP part

is still inefficient due to a large number of FLOPs [64]. For the CNN without the

MLP to capture long-term dependencies, it requires large sequential kernels, causing

high computational complexity [64]. The 1D-CNN for the equalization of nonlinear

impairments [66, 65, 67] were investigated in the short-reach transmission. Later on,

the CNN for nonlinear mitigation in coherent systems has been studied to be used with

other types of NNs, for example, 1D-CNN together with biLSTM network [62].

Vanila Recurrent Neural Network

RNNs are useful in learning sequential data due to their ability to handle memory, which

is different from the feed-forward NNs. This ability of RNN can be quite beneficial

for analyzing time series data. In RNN, the output of the current stage ht takes into

account the current stage input xt and the output of the previous stage ht−1, in which

the equation of the RNN for a given time step t is as follows:

ht = φ(Wxt +Uht−1+b), (2.22)

where φ is the nonlinear activation functions, xt ∈Rni is the ni -dimensional input vector

at time t, ht ∈ Rnh is a hidden layer vector of the current state with size nh, nh is the

number of hidden units, W ∈ Rnh×ni and U ∈ Rnh×nh represent the trainable weight

matrices, and b is the bias vector.

Despite RNN’s efficient memory handling, they still struggle to capture long-term

dependencies due to the vanishing gradient problem [68]. The RNN-based equalizers

have been researched in the nonlinearity mitigation subject, especially the bidirectional

RNN (bi-RNN) [69, 64, 70].
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Long Short-Term Memory Neural Networks

LSTM networks are a specialized form of RNNs. LSTM was designed to overcome

short-term memory issues of RNNs due to the vanishing gradient problem. The LSTM

network has the ability to learn long-term dependencies between time steps (t) [71, 72].

An LSTM cell consists of three types of gates: an input gate (it), a forget gate (ft),

and an output gate (ot). There is also a cell state vector (Ct) proposed as a long-term

memory to aggregate relevant information throughout the time steps. The forward

pass of the LSTM cell given a time step t can be formulated as follows:

it = σ(Wixt +Uiht−1+bi),

ft = σ(Wf xt +Uf ht−1+bf ),

ot = σ(Woxt +Uoht−1+bo),

Ct = ft ⊙Ct−1+ it ⊙φ(Wcxt +Ucht−1+bc),

ht = ot ⊙φ(Ct),

(2.23)

whereWi , Ui , Wf , Uf , Wo , Uo , Wc and Uc are weight matrices associated with each gate

(input gate, forget gate, cell state vector, and output gate, respectively), bi , bf , bo and

bc are biases for each gate, φ is usually the “tanh” activation function, σ is usually the

sigmoid activation function. The sizes of each variable are xt ∈ Rni , ft , it ,ot ∈ (0,1)nh ,
Ct ∈ Rnh and ht ∈ (−1,1)nh . The ⊙ symbol represents the element-wise (Hadamard)

multiplication.

Because of the ability to learn long-term dependencies and keep track of information

over large sequences, the biLSTM-based equalizers have gained research attention

[73, 62]. In [73], the LSTM architecture was used for the first time to mitigate the fiber

nonlinearity impairments in digital coherent systems for single-channel and multi-channel

16-QAM modulation format. The LSTM demonstrated superior performance over the

DBP, especially in the multi-channel transmission scenario, while being able to retain the

complexity to be less than that of the DBP in long distances (> 1000 km). However, it

is worth noting that the complexity of the LSTM grows as the number of hidden units

and the channel memory increase. Lastly, the key benefit of biLSTM is to handle the

ISI between the preceding and successive symbols induced by CD.
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2.2.2 Physics-Inspired/Model-Driven NN-Based Equalizers

Unlike purely data-driven methods, which rely solely on large datasets for training,

model-driven approaches integrate physical models, like the NLSE equation, into the

network architecture. With the integration of knowledge of a channel model, the model

has better interpretability.

Learned Digital Backpropagation

Learned DBP refers to the structure of a deep NN that is built upon the SSFM [74].

The analogy shows the similarity between the SSFM and the deep NN where each

layer alternates between linear operations and nonlinearities. In learned DBP, the

parameters in the deep NN are trainable, making it more flexible than the conventional

DBP. Ref. [74] demonstrated the significant complexity reduction of the learned DBP

compared to the conventional DBP, showing that the complexity can be reduced through

pruning while still maintaining high performance. Ref. [75] further enhanced learned

DBP for the WDM systems by addressing the nonlinearities from self-phase modulation

(SPM) and XPM using an improved SSFM.

While effective, the learned DBP still depends on the sequential operations of

the linear and nonlinear steps. Therefore, these sequential dependencies can make

the learned DBP less parallelizable and result in the processing latency as hardware

parallelism limitation [76].

Perturbation Theory-Based Models

Perturbation theory-based NN takes the intra-channel XPM (IXPM) and intra-channel

four-wave mixing (IFWM) symbol triplets as input [77, 78], based on Eq. (2.11). This

approach allows the perturbation parameters to be trainable. Different approaches have

been proposed: to estimate perturbation coefficients [78] or directly predict nonlinear

distortions from received symbols [77, 79]. Ref. [1] has proposed NN architecture based

on perturbation analysis of fiber nonlinearity for DSCM systems. The approach based

on perturbation theory offers an enhancement in the equalization tasks, however, the

computational complexities still need to be addressed.
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Learned Volterra Models

Learned Volterra algorithm builds upon the VSTF [76] and leverages machine learning

to optimize nonlinear filters for mitigating nonlinearities. Volterra series-based models

generally offer more parallelizable capabilities compared to SSFM-based methods like

DBP. Ref. [76] proposed to use the learned inverse VSTF (L-IVSTF) models in a multiple-

input multiple-output (MIMO) configuration for nonlinear equalization in WDM systems.

This approach incorporates trainable finite impulse response (FIR) filters at the input

and output of each nonlinear step and uses the hybrid structure between time and

frequency domains. Despite the improved equalization performance of this learned

Volterra algorithm, the computational complexity is still the main limitation.

It is worth noting that both the data- and model-driven approaches have their own

advantages and disadvantages. The data-driven approach can approximate highly com-

plex and unknown channel models without relying on explicit mathematical formulations

and the models can adapt to various channel conditions without prior knowledge of the

system’s parameters. However, this results in higher training costs and resources, and

the model is not interpretable. The model-driven NN improves the interpretability of

the model and reduces the dependence on the large training data. On the other hand,

the quality of the model-driven model is directly tied to how accurately the physical

model represents the real-world system and also may not perform well when the channel

contains unknown impairments. This thesis focuses on the data-driven approach.

2.2.3 Designing NN-Based Equalizers

Despite the NN’s potential, the computational complexity of NN-based equalizers

remains a challenge for real-world implementation, necessitating further research into

optimization techniques.

Regarding the NN architecture, various models, including feed-forward NN (FNN),

RNNs, and Transformers, have demonstrated their effectiveness in NLC. The FNN

has the risk of overestimating the performance gain by predicting the short pattern

instead of compensating the studied channel/phenomena [63]. RNNs have shown better

equalization performance compared to FNNs when addressing nonlinear impairments

[25]. Among these, RNNs, particularly in their bi-directional and gated configurations

e.g. LSTM, have shown great promise for addressing nonlinear optical fiber effects in

bandwidth-limited optical coherent systems [59]. Recurrent-based models are capable
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of modeling and compensating for the distortions of nonlinear channels with memory as

they account for the output of the previous time step.

Freire et al. [80] compared classification and regression modeling to determine the

best approach for NN-based equalizers. One challenge with classification is that the

datasets often contain few errors when calculating loss, making it difficult to train the

model effectively and causing issues like exploding or vanishing gradients. In contrast,

regression with mutual information early stopping allows every data point to contribute,

providing continuous feedback and improving model performance. These factors are

crucial when designing NN-based post-equalization techniques for transmission systems.

Another aspect to consider is if the NN would deploy the real or complex values.

With complex values, it is more challenging with the training, activation functions, and

more complex arithmetic. However, it has been shown that the optical NLC can benefit

from complex-valued NN [56].

Lastly, the output structure of an NN equalizer earlier focused on single-symbol

recovery, where the NN predicted the real and imaginary parts of each symbol. However,

multi-symbol equalization is currently used in recent studies [81, 55]. This approach

reduces overall complexity by cutting down the number of sliding windows in equalization,

as one sliding window can compensate for many more symbols at a time. This method

improves learning efficiency and system performance. Multi-symbol output not only

reduces the computational complexity per symbol but also reveals a superior performance

compared to its single-symbol counterpart [82, 81].

2.3 Previously Proposed NN-Based Equalizers in Dif-
ferent Transmission Schemes

2.3.1 Single-Channel Transmission

Many studies have focused on NN-based equalizers in single-channel transmission be-

cause they simplify the problem, allowing the isolation of key impairments like chromatic

dispersion and fiber nonlinearities without the added complexity of inter-channel inter-

ference found in multi-channel systems. Additionally, single-channel scenarios provide a

clear benchmark to prove the concept of NN-based equalization before extending it to

more complex systems like WDM.

Liu et al. [83] leveraged the Attention mechanism in the bidirectional RNN (biRNN)-

based equalizer. The Attention mechanism is a technique used in NNs, especially in
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sequence processing tasks, that allows the model to focus on the most relevant parts

of the input when making a prediction. This paper used this Attention mechanism

to explore the contribution of each input symbol in the input sequence as well as

their hidden representations for predicting the received symbols. The low-complexity

partial-biRNN with the gated recurrent unit was proposed, showing a 56.16% reduction

in real multiplications per symbol (RMpS) in comparison to the full biLSTM model.

Huang et al. [84] introduced a perturbation theory-aided complex-valued fully

connected NN (P-CFNN) model for NLC, enhanced by a complex principal component

analysis technique. The proposed P-CFNN model demonstrated superior performance,

while significantly reducing computational complexity. Specifically, it delivers a 40%

reduction in time complexity and a 70% reduction in space complexity compared to

real-valued NN with equivalent complexity. In this work, space complexity refers to how

much memory an algorithm needs to run, based on the size of the input data. It is

typically measured by the total number of parameters in the model.

Xiang et al. [85] proposed a low-complexity nonlinear equalizer based on a conditional

generative adversarial network (c-GAN) for coherent data-center interconnections. The

proposed c-GAN equalizer presented superior performance compared to traditional

approaches like Volterra filter equalizers and other models such as MLP and LSTM. The

c-GAN reduced the complexity by up to 98.8% compared to LSTM, while significantly

improving performance. The reduction in complexity resulted from lightweight c-

GAN architecture that uses only the generator during inference and optimizes input

representation via a sliding window and normalization.

Freire et al. [25] demonstrated biLSTM, CNN equalizer, and CDC block implemen-

tation on the FPGA. The authors assessed the complexity reduction of the NN due

to the implementation using fixed-point arithmetic and nonlinear activation function

approximations.

Gautam et al. [86] investigated a Transformer-based nonlinear equalizer, showing

superior performance compared to DBP, fully connected NNs (FCNN), and biLSTM.

This Transformer-based model leverages its self-attention mechanism and an optimized

encoder-only architecture with a linear feature extractor. Even though the Transformer

required significantly lower complexity in RMpS than DBP, it is more computationally

expensive than the FCNN and biLSTM.

Jiang et al. [87] developed a wide and deep-based equalizer. The authors explored

both wide and deep CNN-based and wide and deep bidirectional gated recurrent unit

(biGRU)-based nonlinear equalizers. It was reported that a wide network can capture
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the power feature factor of a single symbol better, whereas a deep network handles the

feature sequences that contain nonlinear interference relationships between symbols.

The results showed that this proposed approach improved the optical performance at a

cost of less than 0.1% increase in complexity compared to the normal architecture.

2.3.2 Wavelength-Division Multiplexing

To increase the capacity, it is necessary to adopt ultra-high bandwidth channels in

WDM, which are characterized by a dense arrangement. This approach allows for

the transmission of more data simultaneously by utilizing a greater number of closely

spaced wavelengths within the available spectrum. The difficulties of the nonlinearity

compensation in the WDM environment are the necessity to have more taps and more

memory in the equalizers to take into account the inter-channel nonlinearities. Many

papers have investigated the NN-based equalizer in WDM systems, however, more

investigations on the complexity and the requirement of the neighboring channel’s

information for the NLC are necessary.

Sidelnikov et al. [88] presented a deep CNN architecture for long-haul WDM systems.

The proposed model simulated the effects of DBP with optimized convolutional and

activation layers, effectively suppressing a significant portion of the XPM-induced signal

distortions while maintaining low computational complexity. The results demonstrate

that the proposed model outperforms traditional linear and DBP methods in both single

and multi-channel compensation scenarios.

Freire et al [89] introduced the CNN+biLSTM equalizer that outperformed DBP

with 3 STpS. This proposed equalizer only utilized the information of the channel under

test without additional information about neighboring channels (only information from

the signals leaked from the adjacent channels) as input. It was also reported that the

NN topology based on biLSTM layers was able to partially recover the XPM since the

higher gain in Q-factor was obtained compared to the single channel scenario.

Deligiannidis et al. [59] proposed a multichannel equalization approach using biRNN

for coherent WDM optical systems, through the simulated and experimental data. The

proposed method effectively mitigates nonlinear impairments such as XPM, offering

significant improvements in optical performance while drastically reducing computational

complexity compared to the full-field DBP.
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2.3.3 Digital Subcarrier Multiplexing

DSCM has recently gained attention as an effective solution to address the rapid growth

of internet traffic. In DSCM, subcarriers are generated and managed in the digital

domain using DSP. By optimizing symbol rates, DSCM offers greater resilience against

nonlinear distortion compared to traditional single-carrier systems [90]. This happens

because splitting a high-baud-rate signal into multiple low-baud-rate subcarriers improves

nonlinearity tolerance. This improved tolerance is attributed to the theory of four-wave

mixing efficiency or the walk-off between subcarriers due to chromatic dispersion [90].

This makes DSCM a promising approach for the evolution of optical networks, enabling

the transition from point-to-point to point-to-multipoint architectures. Its flexibility

leads to significant reductions in both capital and operational expenditures in optical

networks, making it an attractive choice for future deployments.

Saif et al. [91] presented deep learning-assisted NLC, based on the combination of

the subcarrier multiplexing (SCM)-DBP and learned DBP. The SCM-LDBP method

extends SCM-DBP by incorporating MLP to perform the compensation. Instead of

frequency-domain filters used in SCM-DBP for CDC and cross-subcarrier nonlinearity

(CSN) mitigation, SCM-LDBP employs time-domain filters implemented as MLP layers.

The results showed around 38% complexity reduction compared to the SCM-DBP [92].

Bakhshali et al. [1] proposed different NN architectures, including the black-box

approach and the model based on perturbation analysis to compensate for optical

channel nonlinearities in DSCM. The authors showed the performance of NN with

different complexity limits and demonstrated that the model based on perturbation

theory outperformed other models given the same complexity budget.

There are still a limited number of papers exploring the NN-based equalizer in DSCM.

However, some literature [93–95] investigated different NN architectures in orthogonal

frequency division multiplexing (OFDM). OFDM divides the available bandwidth into

multiple orthogonal subcarriers1, allowing data to be transmitted in parallel streams.

This approach also enhances spectral efficiency and provides robustness against channel

impairments like chromatic dispersion and polarization mode dispersion.

1In the DSCM, the subcarriers are not orthogonal.
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2.4 Complexity Reduction Techniques of NN-Based
Equalizers

As computational complexity is still the main challenge of the NN-based equalizers, dif-

ferent complexity reduction techniques have been explored. These complexity reduction

techniques are categorized into three phases of implementation: training, inference,

and hardware synthesis phase [55]. Fig. 2.7 shows the overview of the most common

approaches that can be used to reduce the complexity of the NN-based equalizers in

each phase. This thesis later shows the use case of some of the techniques mentioned

here and explains them in detail in the following chapters.

2.4.1 Complexity Reduction Techniques in Training Phase

Minimizing complexity in the training phase is crucial for efficiency, scalability, and

real-world deployment. As in the real-world situation, the training resources might be

limited, especially in resource-constrained optical systems. Various techniques can also

enhance the performance of the model and efficiency in the training, including transfer

learning and methods that improve generalization. Examples of these methods are data

augmentation, domain randomization, and semi-supervised learning. These strategies

Complexity Reduction Techniques

Data Pre-Processing

Transfer Learning

Domain Randomization

Semi-Supervised Learning

Meta Learning

Data Augmentation

Dimensionality Reduction

Training Phase

Network Pruning

Network Quantization

Weight Clustering

Tensor Decomposition

Knowledge Distillation

Dynamic Precision Scaling

Efficient Activation Function

Inference Phase

Approximate Multipliers/Adder

Parallelization

Data Partitioning

Skipping

Memoization

Layer Pipelining

Dynamic Computation Graphs

Hardware Synthesis Phase

Multi-Task Learning Dynamic Neural Networks
Activation Function 

Approximation

Fig. 2.7 Complexity reduction techniques for NN-based equalizers in training, inference,
and hardware synthesis phases.

S. Srivallapanondh, PhD Thesis, Aston University 2025.



2.4 Complexity Reduction Techniques of NN-Based Equalizers 33

help lower dependency on large training datasets. Improving generalization decreases

the need for complex models, resulting in faster and more efficient training.

Data pre-processing is an essential step to prepare the input for the NN training.

High-quality input data can be beneficial in enhancing the model’s efficiency and

accelerating convergence. This is because the quality of input data contributes to

the stability of the training, improves generalizability, and leads to successful data

interpretation by the model [96]. Data pre-processing includes data normalization and

feature engineering. Data normalization ensures features are on a consistent scale.

Feature engineering involves selecting and transforming input features to highlight

relevant information while eliminating noise and irrelevant data. In the context of

this thesis, feature engineering specifically evaluates the relevance of given features to

improve the Q-factor or Bit Error Rate (BER) performance. For example, while the

real and imaginary parts of received symbols are intuitive features, it is crucial to assess

whether transmission parameters (e.g., number of spans, transmission power) provide a

meaningful contribution to the learning process or merely increase model complexity

without proportional benefit.

Transfer learning (TL) applies the knowledge acquired in the source tasks to

the related target tasks. The training time and resources required can be reduced

significantly with TL. This approach is especially practical when training or fine-tuning

the models on resource-constrained hardware. TL allows the NN to derive knowledge

from a more sophisticated pre-trained model and fine-tune it for a more specific task.

TL was studied in equalization tasks in both direct detection [97] and coherent [98]

optical systems. Ref. [98] exhibited the potential of TL to reduce the training time

and the size of the training dataset while maintaining the equalizer’s performance. The

work carried out in this thesis also leverages TL to reduce the computational complexity

in the training.

Domain randomization is used for data generation to improve the flexibility and the

robustness of NN models when applied in new environments [99]. Domain randomization

generates training data from a random distribution with given desired properties and

stores it in a library accessible by the NN. By using synthetic data, this method reduces

the dependence on real-world data, thus improving the training efficiency [100]. This

technique is especially valuable when dealing with complex and dynamic environments,

as the model becomes more adaptable to variations encountered during deployment.

Semi-supervised learning combines labeled and unlabeled data in training, allowing

the model to learn from both. Semi-supervised learning enables NN to leverage the
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available labeled data more effectively by incorporating information from the unlabeled

samples. This method enhances the model’s performance without requiring additional

labeled data, which makes the model more flexible to transmission changes. This

method resembles decision-directed adaptive equalization [101] for channel equalization.

Meta learning involves training models that can efficiently adapt to new tasks with

only a small amount of training data based on experiences gained from a variety of

learning tasks [102]. This approach explicitly trains the model parameters to enable

efficient generalization on new tasks with a small number of gradient steps and minimal

training data, making it simple to fine-tune.

Data augmentation allows datasets to be more diverse and representative by

artificially generating additional data points from existing data [103]. Data augmentation

used in optical NN-based equalizers is a technique to improve equalization performance

and decrease the training complexity of supervised learning in nonlinearity mitigation.

In supervised learning tasks, normally a large training dataset is required. The model

will also need to be re-trained when the channel conditions change. However, big data

collection can be challenging. The efficient use of a limited dataset is more desirable for

practical implementation. Ref. [104] showed that data augmentation reduces the size

of the dataset up to 6 times while maintaining the optical performance. This technique

enables a less overfitting model, fewer model parameter requirements, and a faster

convergence of the training.

Dimensionality reduction techniques address the challenges associated with high-

dimensional input spaces. These techniques aim to capture and retain the most

informative aspects of the data while reducing the number of input features significantly

[105]. Principal Component Analysis (PCA) [106], for instance, transforms the original

features into a lower-dimensional space defined by principal components (a new set of

uncorrelated variables), retaining the maximum variance.

Multi-task learning (MTL) is a framework in which a single model is trained to

perform multiple but related tasks simultaneously. In contrast, traditional single-task

learning trains multiple separate models for each task independently. Multi-task learning

leverages shared representations across tasks and the model’s parameters are optimized

jointly across all tasks. This training approach can lead to better generalization of

the model and reduce the need to deploy several models for different tasks, and does

not require re-training when performing related tasks. This technique not only reduces

the number of models that need to be trained but also reduces the complexity in

the inference phase. However, this technique can exhibit a trade-off between overall

S. Srivallapanondh, PhD Thesis, Aston University 2025.



2.4 Complexity Reduction Techniques of NN-Based Equalizers 35

performance and specific task performance. This approach has been shown to be

efficient in the NN-based equalizers in both IM/DD [107] and coherent systems [108].

MTL is explained further with the case study in Chapter 5.

2.4.2 Complexity Reduction Techniques in Inference Phase

Next, during inference, the NN must accurately equalize the input signal using the

minimum computational resources while meeting the required performance metrics. As

in the real world, the environments and the resources are more constrained. This result

can be achieved by using different techniques, for example, network pruning, sparse

representation, knowledge distillation (KD), and tensor decomposition.

Network pruning or sparsification is the method to produce sparse NNs, aiming to

reduce the computational complexity of the NN. This technique removes parameters,

neurons, or even layers or parts of the NN that do not significantly impact its perfor-

mance [109]. Pruning is known to be robust to various settings, able to achieve good

performance, and able to support both trained from scratch and pre-trained models.

The area of NN pruning is wide and encompasses several subcategories: (a) static or

dynamic; (b) one-shot or iterative; (c) structured or unstructured; (d) magnitude-based

or information-based; (e) global or layer-wise [16]. The information on each type of

pruning is detailed in [110, 111]. The static, iterative, unstructured, global magnitude-

based pruning is one of the simplest pruning approaches. The lowest magnitude weights

are globally pruned throughout the NN. The weights are removed offline from the NN

after training but before inference [16]. This iterative approach enables the NN to

remove more weights while preserving accuracy.

Network quantization is an approach to decrease the bitwidth of the numbers

in arithmetic operations. When it is deployed in signal processing, the complexity

reduction of the processing is significant. For instance, the floating-point numbers are

quantized to be in integer forms. This approach enables the NN to be represented using

less memory and allows high-performance vectorized operations on various hardware

platforms [16, 112]. This quantization technique has shown promising results in different

NNs during both the training and inference process [112, 111]. This technique is even

more effective when being deployed in the inference phase since the computing resources

are saved without remarkable accuracy loss [16]. Particularly, the NNs can benefit from

quantization, as the NNs are exceptionally robust to aggressive quantization due to a

large number of parameters involved in the NN (over-parameterized models) [16].
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Weight clustering also known as weight-sharing, is a compression technique to

reduce the complexity of the NN. Weight clustering reduces the number of effective

weights used by the NN, considering that several connections may share the same

value of weights. Then it fine-tunes those shared weights [16]. Various papers have

addressed the complexity issues in the feed-forward NNs by this approach [113–115].

This approach was explained in detail and demonstrated with the use case in Chapter 3.

Tensor decomposition decomposes high-dimensional data into a lower-dimensional

space [116]. In other words, a multidimensional tensor is broken down into a combi-

nation of simpler tensors. By decomposing tensors, especially weight tensors in NN,

into smaller and more manageable components, tensor decomposition reduces the

number of parameters and computations needed in the inference phase. In [117], the

authors showed that the sparse decomposition of the tensor in convolutional filters can

successfully reduce model complexity and memory usage during inference.

Knowledge distillation (KD) is applied to transfer knowledge from a larger model

(teacher) to a more compact one (student) using teacher predictions to assist student

learning. KD can reduce the size of the model [118]. The distilled model retains the

essential information from the teacher model, making it suitable for deployment in

resource-constrained environments during the inference process. KD is discussed and

examined with the real optical data in Chapter 4, to allow parallelization.

Dynamic precision scaling (DPS) dynamically adjusts the precision of the numer-

ical values of the weights and activations during computation, based on the specific

requirements of each computation. With this approach, the NN can utilize lower preci-

sion when the accuracy demands allow, as DPS optimizes the utilization of available

resources. This approach provides an effective reduction of complexity during inference.

Ref. [119] showed that DPS could be used in both the forward pass (inference) and

backward pass for training.

Efficient activation function selection can play an important role in complexity

reduction. The expensive activation functions, e.g., hyperbolic tangent or sigmoid, can

be replaced by the approximated alternatives or with the look-up table to reduce the

computation [25]. Simpler functions such as Rectified Linear Unit (ReLU) are also

commonly chosen because of their simplicity in calculation and speed.

Dynamic neural networks [120] can adapt their structures or parameters and

dynamically allocate computational resources based on different inputs. Instead of

executing a fixed number of operations for all inputs, dynamic NN skips unnecessary

computations and leads to reducing overall complexity. For instance, early exiting
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processes the simpler samples with fewer layers or a more shallow network, without

executing deeper layers. Unlike pruning and quantization that permanently reduce the

size or precision of model parameters, dynamic NN offers a more dynamic and flexible

solution.

2.4.3 Complexity Reduction Techniques in Hardware Synthesis
Phase

Complexity reduction techniques of NN in hardware synthesis play a crucial role in

optimizing the NN implementation on dedicated hardware. In hardware synthesis, the

NN is mapped onto the hardware architecture, and the hardware design is optimized

to achieve the desired performance while minimizing resource utilization. There are

some techniques to reduce the complexity of the hardware, such as multiplier/adder

approximations, parallelization, memoization, and skipping. The choice of suitable

techniques depends on the NN architecture, the characteristics of the target hardware,

and the desired trade-off between computational efficiency and model accuracy.

Approximate Multipliers/adders are to reduce the hardware resource requirements

by approximating multiplier and adder, which are key components of the hardware

implementation for NN computation [121]. The approximation replaces full-precision

multipliers and adders with less resource-intensive multipliers and adder implementa-

tions, such as approximate adders or low-precision. Binary or ternary multipliers are

examples of low-precision alternatives. By using lower-precision multipliers and adder

implementations, the overall hardware complexity is reduced. This can lead to more

efficient use of hardware resources without significantly sacrificing model accuracy.

Parallelization involves dividing the NN into multiple sub-networks to be processed

simultaneously, aiming for faster and more efficient execution in terms of latency and

throughput [122]. This methodology capitalizes on parallel hardware architectures,

such as GPUs, yielding higher computational efficiency. As detailed in Ref. [123],

parallelization can take various forms including: Data Parallelism, where multiple

NN instances operate simultaneously on distinct data batches; Model Parallelism,

involving the division of a single NN across multiple processors or GPUs, with different

components processed on separate devices2; and Pipeline Parallelism (inter-layer
2In addition to the aforementioned parallelization techniques, another subcategory worth mentioning

is intra-layer parallelism, often referred to as Tensor Parallelism. This method entails parallelizing
computations within a single layer of the NN. Specifically, it involves partitioning large tensors, such as
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parallelism), which segments the NN computation into stages, each executed by a

distinct processing unit such that the data flow resembles a sequential assembly line.

Data partitioning is an approach to divide the input data into subsets to be

processed in parallel by different hardware components independently [124]. After that,

the result of each partition is combined. Ref. [125] demonstrated that with their data

partitioning approach, only small memory storage is required, instead of duplicating the

whole data set size over all the processing units.

Skipping can be used to decrease the executed workload and reduce computational

costs. This method selectively skips certain computations based on their relevance to

the final output or the predefined conditions. Skipping approximations can be performed

by a simple calculation to evaluate if a more complex computation can be eliminated

[126].

Memoization stores and reuses intermediate results of expensive computations in

memory to avoid recalculation when the same input reappears [126, 127]. This can be

especially beneficial in RNN or other architectures with repetitive computations, leading

to improved hardware efficiency. Even the simple implementation of memoization in

Ref. [127] could speed up different experiments with different workloads ranging from

7% up to 25%.

Layer pipelining splits the processing of different layers in NN into sequential stages

that overlap in time to allow parallelization of the computation. This method [128]

allows scalable model parallelism with high hardware utilization and training stability.

Pipelining algorithm library, GPipe, from [128] is a library to train a giant NN, with

efficiency (speeds up the process), flexibility (supports any deep network), and reliability

(guarantees consistent training).

Dynamic computation graph allows the structure of the NN to change dynamically

at runtime [129]. While the static graph fixes the structure of the NN (like the sequence

of operations and connections) before the beginning of training, the dynamic graph

constructs the structure of the NN on the fly during execution. This approach allows

flexibility as it adapts the structure efficiently depending on varying input types and

conditions.

Activation function approximation [130] simplifies the computation of nonlinear

functions, such as sigmoid, and tanh, which are commonly used in the LSTM layer.

The approximation can improve efficiency in hardware implementations. Standard

weight matrices, of a layer across multiple devices, facilitating parallel computations on these segmented
chunks.
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activation functions often involve exponentials, divisions, or other complex mathematical

operations. These functions are computationally expensive and not ideal for resource-

constrained hardware like FPGAs, ASICs, or other embedded systems. The common

approximation methods are piecewise linear functions, look-up tables (LUT) and Taylor

series expansions. This can reduce power consumption, decrease latency, and lower

memory requirements. This method is explained in depth and used in a study case in

Chapter 3.

2.5 Complexity Metrics: Training and Inference

After implementing the mentioned complexity reduction strategies, it is essential to

evaluate their effectiveness. This section gives a comprehensive understanding of the

model’s complexity during the training and real-time inference phases on the target

hardware platform. Fig. 2.8 and Fig. 2.9 show the metrics used to measure the

complexity of training and inference phases, respectively.

2.5.1 Complexity Metrics for Training Phase

For training, the computational complexity of the NN should be appropriately evaluated,

as it allows for efficient resource allocation and is useful for comparing different models

to assess the efficiency and effectiveness of various model architectures. Several metrics

can be used to assess the complexity of NNs as in Fig. 2.8, which can be categorized

Key Metrics for Training Complexity
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Fig. 2.8 Key metrics to evaluate complexity in the training phase for NN-equalizers.

S. Srivallapanondh, PhD Thesis, Aston University 2025.



40 NN-Based Equalizers in Optical Communications

into four key areas: time, space/architecture complexity, parallelism complexity, and

generalization [55]. Adopting a multidimensional perspective is important because a

single metric cannot provide a holistic understanding of the true complexity of training.

Each dimension offers unique insights, guiding informed trade-offs between model

performance, resource requirements, and generalization capabilities. Next, we will

further detail each of these key areas of training complexity measurements.

Time Complexity: The traditional measures refer to the training time and the

number of epochs required to achieve the desired performance. These metrics also take

into consideration the learning rate and the optimizer used. Even though the training

time metric and the number of epochs metrics show, to some degree, the training

complexity, these metrics are a poor benchmark since the training time depends heavily

on the hardware resources used and the size of the training dataset. In addition, two

NNs with the same number of epochs to achieve the same performance can have very

distinct training time, also depending on the batch size. To address these issues, an

additional metric is proposed. The product of the number of epochs and the number

of batches (NENB) [55], reflects the model’s computational demand. More training

epochs generally indicate a more complex and computationally demanding model. The

number of batches refers to the number of subsets of data used during each epoch,

which is affected proportionally by the dataset size and batch size. The number of

epochs and the number of batches cannot be evaluated separately, as one model may

require more epochs but fewer batches, while another model may require fewer epochs

but more batches. Lastly, FLOPs (floating-point operations) can be used to measure

the number of floating-point operations required to train the model. A higher number

of FLOPs typically indicates higher time complexity.

Space/Architecture Complexity: The number of trainable parameters, while

commonly used, may not fully capture the complexity due to different architectural

designs. For example, two NNs with the same number of trainable parameters can have

very distinct training complexity [131]. The model architecture indicates the complexity

of the NN architecture itself, such as the depth, width (e.g., the number of layers

and neurons) of the network, and specific architectural choices such as recurrent, or

convolution. The next metric is the memory requirement for storing the weights, biases

of the NN, and intermediate computations during training. The space complexity can

be influenced by the batch size used during training. Larger batch sizes might require

more memory, particularly on GPU devices.
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Parallelism Complexity: This aspect consists of data parallelism and model par-

allelism. Data parallelism is the parallelization of training across multiple devices by

splitting the dataset. Model parallelism is about distributing the model across different

devices for processing. Parallelizability also refers to how scalable the training process is,

with added computational resources and the efficiency of distributing the training process

across multiple GPUs. For example, the MLP feed-forward NN is fully parallelizable and

can result in faster training. To be more specific, the training time of RNN compared

to the MLP with the same number of trainable parameters can be significantly longer,

as the recurrent architecture of RNN is more complex than the feed-forward structure

of the MLP.

Generalization: The flexibility/generalizability is assessed by estimating the number

of operational ranges in which the NN equalizer operates with an acceptable gain. If

the NN can only perform a specific task, it requires frequent re-training in the future,

contributing to the overall complexity. Therefore, the NN that performs well in different

but related tasks without re-training is preferable [108].

2.5.2 Complexity Metrics for Inference Phase

Evaluating computational complexity accurately is essential in the design of DSP devices.

This will allow a better understanding of the implementation feasibility and bottlenecks

within each device’s structure. With this consideration, Fig. 2.9 summarizes the most

commonly used measures for assessing computational complexity, from the software to

the hardware level [55].
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Fig. 2.9 Key metrics to evaluate computational complexity in the inference phase for
NN-equalizers.
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Big-O Complexity

Big-O notation is a key concept for evaluating an algorithm’s computational complexity.

It describes how runtime or resource usage scales with input size. Big-O (O) provides

an upper bound on the worst-case scenario of the time required to operate. In addition,

there are also Big-Theta (θ) and Big-Omega (Ω) notations that are the same family

to compare the efficiency of different operations. Big-Theta (Θ) represents the exact

bound, while Big-Omega (Ω) is the best case or the lower bound. For instance, when

adding two integers with n digits, the computational complexity is Θ(n). This can be

interpreted as the time required growing linearly with the number of digits. On the

other hand, multiplication of two n-digit numbers results in O(n2) complexity. O(n2)

indicates a quadratic growth in processing time, showing that multiplication is often

more computationally expensive than addition.

Real Multiplications

One of the primary ways to evaluate the computational complexity of an algorithm is

the number of real multiplications (RM) [132, 133], while ignoring additions. RM is a

software-oriented estimation and is often defined per one processed element, such as per

sample or symbol. RM only focuses on multiplications because, in both hardware and

software implementations, the multiplier is generally the slowest element and consumes

the largest chip area [134, 132]. In contrast, additions are generally inexpensive in terms

of processing time and resource usage. For algorithms that use floating-point arithmetic

with a fixed bit-width precision, RM offers a practical way to compare complexity.

This metric is commonly used to benchmark the complexity in the DSP operations for

optical channel equalization tasks [133]. In this thesis, we also adopt RM as the main

complexity of the NN to benchmark against other methods.

Number of Bit-Operations

When transitioning to fixed-point arithmetic, it becomes necessary to consider the

number of bit-operations (BOP) to evaluate computational complexity. BOP reflects

the impact of varying the bitwidth precision on the complexity. This metric esti-

mates the BOP required for fundamental arithmetic operations, such as addition and

multiplication, based on the bitwidth of two operands. In essence, the BOP metric

extends the concept of floating-point operations (FLOPs) to a more accurate measure

of complexity in heterogeneously quantized NNs. FLOPs cannot efficiently evaluate
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integer arithmetic operations [135, 136]. For BOP estimation, both multiplication

and addition complexities must be assessed, since complexity is evaluated in terms

of the most common operations in NNs: multiply-and-accumulate (MAC) operations

[135, 136, 115]. BOP reflects how multiplier counts scale with operand bitwidth and

adder counts with accumulator bitwidth. Since most DSP implementations rely on

dedicated logic macros (e.g., DSP slices in FPGAs or MAC units in ASICs), BOP

serves as an effective complexity metric by considering operand-specific bitwidths in

MAC operations.

Number of Additions and Bit Shifts

With the development of advanced NN quantization techniques [137–140], fixed-point

multiplications can be efficiently implemented using a few bit-shifters and adders [141–

143]. BOP primarily counts bit-level operations from multiplications and additions

but does not distinguish between standard multiplications and those optimized using

bit-shifting techniques. Therefore, the NABS metric (the number of additions and

bit shifts) is required to measure the complexity one step closer to the hardware level.

NABS actually only counts the number of total equivalent additions to represent the

multiplication operation, while neglecting the shift operations. This is because shift

operations incur no additional hardware cost and execute in constant time with O(1)

complexity. Despite this, the term “number of additions and bit shift” is retained to

emphasize that multiplications are now represented through shifts and adders.

Number of Logic Gates

Unlike NABS, which estimates computational complexity based on additions and bit

shifts, the number of logic gates (NLG) is a hardware-level metric used to evaluate

the actual implementation cost of a design on hardware platforms such as ASICs and

FPGAs. In contrast to other complexity metrics, the NLG metric includes the cost of

the activation functions, which are often implemented using LUTs rather than adders

and multipliers, to reduce the complexity. Other relevant hardware-level metrics include

flip-flops (FF), registers, general logic blocks, memory blocks, and specialized functional

macros. Since NLG depends on the specific circuit design, there is no direct conversion

from NABS to NLG. Tools such as Synopsys Synthesis [144] can estimate gate counts

for ASICs. However, for the FPGA design, it is more challenging to correctly estimate

the gate count from the report of FPGA tools [145]. For FPGA-based designs, NLG
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can be estimated based on the number of logic gates per configurable logic block or

logic cell [146].

Power Consumption and other aspects

Power consumption, memory footprint, and activation function complexity should be

evaluated. Power consumption is critical as it can cause a bottleneck during the

implementation. Memory usage depends on the input size of the time series and the

number of parameters stored in the memory, considering the quantization scheme.

Additionally, activation function complexity, including different function types and

approximation methods, should be examined [25].

2.6 Conclusion

This chapter introduced NN-based equalizers for nonlinearity mitigation in optical commu-

nication systems. The chapter reviewed traditional equalization methods, including DBP,

Volterra series-based approaches, phase conjugation, and perturbation-theory-based

methods alongside machine learning-based techniques, emphasizing their advantages

and challenges. The chapter’s focus was to present different complexity reduction

techniques and how to evaluate the complexity of the NNs. Complexity reduction

techniques were introduced based on the different implementation phases: training,

inference, and hardware synthesis. Likewise, the complexity metrics were divided into

the training and inference phases. For the inference phase, the metrics can reflect the

complexity from the software to hardware levels.
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Chapter 3

Low-Complexity Techniques for
NN-Based Equalizers

3.1 Introduction

Although NN-based optical channel post-equalization can offer lower computational

complexity than traditional mitigation techniques like DBP [55], the computational com-

plexity still hinders their practical implementation. Among the various NN architectures,

RNNs, such as LSTM modules, have shown better equalization performance compared

to feed-forward NNs when addressing nonlinear impairments [62, 73], since the LSTM

layer is suitable for time-series processes. However, the computational complexity of

the LSTM layer is still considerably high.

This chapter discusses the first aspect of the challenges: computational complexity.

The reduction techniques used in the LSTM-based equalizers are investigated. Section

3.2, based on C1 [147] and J1 [148], considers the weight clustering method to reduce

the computational complexity in the NN-based equalizer in a DSCM system, which

is a more challenging transmission system compared to a single carrier transmission.

Section 3.3, based on C4 [149] and J6 [25], examines the approximation techniques of

the nonlinear activation functions in an LSTM-based equalizer, aiming to reduce the

hardware resources required for the implementation.
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3.2 Weight Clustering to Reduce Number of Real Mul-
tiplications

Several authors have investigated LSTM- or NN-based equalizers in single-carrier trans-

mission systems [62, 73, 108], however, a limited number of works [1, 91] investigated

the NN-based equalizer in the DSCM system. DSCM has recently emerged as an

effective alternative to cope with the current rapid evolution of internet traffic, e.g.

to limit effects such as equalization-enhanced phase noise (EEPN) [150]. It has also

been proven to provide more robustness against nonlinearity distortion by optimizing

symbol rates compared to single-carrier systems[90, 151]. DSCM and OFDM differ

in how subcarriers are managed. While OFDM relies on overlapping subcarriers with

carefully maintained orthogonality for efficient spectrum utilization, DSCM uses fully

separated subcarriers with virtually zero frequency cross-talk, simplifying receiver design.

Compared to OFDM, DSCM offers greater resilience to time-frequency synchronization

challenges within DSP algorithms. OFDM operates at a much lower symbol rate, which

complicates the detection of subcarriers, particularly when signals originate from multiple

OFDM transmitters at varying distances [152]. Finally, DSCM provides significant

flexibility, resulting in reduced capital and operational expenditures in optical networks

[153, 154].

Bakhshali et al. [1] have already proposed NN architectures for optical channel

nonlinearity compensation in DSCM systems. However, the complexity of their approach

remains considerable. Therefore, further complexity reductions are paramount in the

path towards real implementation and sustainable nonlinear equalizers.

This work investigates nonlinearity compensation in DSCM transmission systems

by applying the NN-based post-equalizer. To allow the lower complexity, the model

compression technique “weight clustering” is applied. Weight clustering reduces the

number of effective weights used by the model, resulting in a significant decrease in

computational complexity [16]. Note that the weight clustering method has already

been investigated in the single-carrier transmission [16]. The contribution of this chapter

can be summarized as follows:

• We demonstrate how the input structure and the NN architecture are adapted to

simultaneously recover signals from all subcarriers in DSCM systems.

• We investigated the potential of weight clustering as a complexity reduction

technique in an NN-based equalizer used in DSCM systems.
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• We propose the low-complexity NN model that offers a reduction of up to 34%

in computational complexity in terms of real multiplication per equalized symbols

(RMpS), compared to the standard DBP 1 STpS (step per span) and up to 97.9%

RMpS reduction compared to its uncompressed version.

• We propose NN models leading to optical performance similar to that reported

in [1], but with a reduction of up to 91% complexity in RMpS.

• We compare the trade-off between the NN models’ performance and complexity

with different numbers of weight clusters (WC).

3.2.1 NN Architecture

The utilization of NN in DSCM is notably under-researched. Various architectures of NN

have been proposed for nonlinear mitigation in single-channel single-carrier transmission

systems, such as MLP, CNN, or RNNs. However, feedforward NNs like MLP and

CNN have demonstrated inferior performance compared to RNN- or biLSTM-based

architectures [62]. Due to the increased complexity in DSCM systems arising from the

nonlinearities of adjacent subcarriers, the constraints of MLPs and CNNs are expected

to be even more significant. Consequently, the NN architecture proposed here is a

combination of the biLSTM and CNN model, as depicted in Fig. 3.1. The architecture

based on an LSTM layer has shown superior performance in previous research works
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Fig. 3.1 The NN equalizer design employs biLSTM and 1D-CNN layers, utilizing the
data from all four subcarriers as inputs to simultaneously recover symbols in the X
polarization across all four subcarriers.
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[1, 16, 73]. Unlike RNNs that face short-term memory limitations, LSTM networks are

capable of learning long-term dependencies across time steps, which are essential to

mitigate dispersion-induced memory effects and ISI caused by chromatic dispersion [73].

LSTM was specifically designed to overcome the gradient challenges associated with

RNNs [71, 72]. The core properties of the LSTM-based layer are sequential processing

and retaining past information through past hidden states. The biLSTM layer adopted

here consists of two separate LSTM layers for forward and backward directions. The

equations of the LSTM layer and its complexity can be found in Section 3.2.4. Note

that all of the NN-based equalizers in this work operate at one sample per symbol.

In this work, the biLSTM layer has 111 hidden units (nh), and the 1D-CNN layer

adopts 8 filters (nf ) and a kernel size (nk) of 15 with the linear activation function.

This 1D-CNN layer has 8 filters to recover real and imaginary parts of X polarization1

of all four subcarriers simultaneously. The input window (M) has a size of 221 input

symbols. In order to equalize the signal in DSCM systems, the NN takes in 16 input

features that consist of real and imaginary parts of X and Y polarization for four

subcarriers. In this way, the NN can have sufficient knowledge to learn the pattern

of nonlinear distortions like self-subcarrier nonlinearity (SSN) including those arising

from the neighboring subcarriers, and mitigate the cross-subcarrier nonlinearity (CSN).

The model performs a regression task to predict the real and imaginary parts of the

recovered symbols or 207 symbols for each subcarrier per one inference step. To recover

multiple symbols, it is necessary to account for the system memory length induced by

chromatic dispersion in fiber communication systems. When the NN equalizer processes

a window of M input symbols, only M− x symbols can be reliably recovered, where x

depends on the system’s memory length. This is because the initial and final symbols in

the input window lack sufficient information from their neighboring symbols (due to

dispersion-induced memory effects), making them difficult to recover accurately. To

address this, the dimensionality of the input window is reduced without losing crucial

information by using a 1D convolutional layer. This layer processes the data with a

kernel size nk , zero padding, dilation, and stride set to 1. As a result, the size of the

recovery window becomes M−nk +1. The loss function used in this model is mean

square error (MSE), and the optimizer is Adam with a learning rate of 5.81·10−4. Adam

is an optimization algorithm that extends Stochastic Gradient Descent (SGD) by using

1While it is possible to modify the NN output to recover both X and Y polarizations simultaneously,
this was not tested in this study. For consistency, the CDC block and the NN equalizer were applied
separately to each polarization.
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adaptive learning rates and momentum to improve convergence speed and stability. The

model with 214 hidden units of biLSTM is also included to enable better performance

in Q-factor, which aligned with findings in [1] for comparison.

Bayesian Optimizer [62, 155] was utilized to optimize the NN hyperparameters.

Unlike blind search methods like grid or random search, it leverages past evaluations to

build a probabilistic model (often a Gaussian Process) of the objective function. This

model helps it intelligently decide where to test next, balancing exploring new areas with

exploiting promising ones. This leads to much faster and more efficient optimization.

The optimized hyperparameters included the learning rate, batch size, number of hidden

units in the biLSTM layer, and number of output window taps. A range of acceptable

values for each hyperparameter optimized was defined to ensure that the model did

not end up with very high complexity. For example, models with 214 hidden units were

selected to achieve the highest Q factor, while models with 111 hidden units were

chosen to demonstrate a reasonable trade-off between complexity and performance.

Models with fewer hidden units were not included in this study, as the primary goal was

to maintain a performance level comparable to existing benchmarks while optimizing

computational efficiency.

3.2.2 Complexity Reduction of NN Using Weight Clustering

The weight clustering method illustrated in Fig. 3.2, which is also known as weight-

sharing, is a model compression technique that reduces the computational complexity

of NN by decreasing the number of distinct weight values used in the model. This

method takes advantage of the observation that many connections in an NN can share

the same weight value [113, 156] and, as a result, significantly reduce the number

of unique multipliers needed during matrix multiplication. The shared weights can be

defined by the centroids’ initialization technique using K-means++, thus ensuring that

multiple weights will converge to the nearest centroid. In addition, one can fine-tune

those shared weights to improve accuracy2. The number of multiplications required in

the NN is reduced by applying weight clustering, as multiple operations of the same

values can be combined into a single multiplication. The number of distinct multipliers

in matrix multiplication is reduced to at least the number of clusters per input element.

For example, the weight matrix on the top left in Fig. 3.2 is the matrix W . To define

2This work carried out a two-step training method. The original model without weight clustering was
first trained to achieve good performance and well-trained weights, after that the weights after clustering
were fine-tuned to mitigate the approximation errors.
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Fig. 3.2 Illustration of weight clustering framework where the trained weights of the
original MLP model (top) are clustered into 3 weight clusters with the closest centroid.

the output vector O before clustering, the input vector I needs to be multiplied by the

matrix W . In this example, multiplying W and I leads to 16 real multiplications (input

size × hidden layer size = 4×4), as follows:

O =W × I =

⎡⎢⎢⎢⎢⎣
w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
i1

i2

i3

i4

⎤⎥⎥⎥⎥⎦ . (3.1)

To cluster the weights into three clusters, as an example in Fig. 3.2 (bottom left), the

centroids of 3 clusters are calculated as c1, c2, and c3. This can be seen as:

O =

⎡⎢⎢⎢⎢⎣
o1

o2

o3

o4

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣
c2 c3 c1 c2

c2 c3 c2 c3

c2 c3 c2 c3

c2 c2 c1 c2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
i1

i2

i3

i4

⎤⎥⎥⎥⎥⎦ . (3.2)
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In this case, the multiplications can be rearranged by summing first the input elements

that share the common weight clusters. The number of multiplications is reduced to 9

multiplications from the original 16 multiplications as follows:

O =

⎡⎢⎢⎢⎢⎣
o1

o2

o3

o4

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣
(i1+ i4)c2+ i2c3+ i3c1

(i1+ i3)c2+(i2+ i4)c3

(i1+ i3)c2+(i2+ i4)c3

(i1+ i2+ i4)c2+ i3c1

⎤⎥⎥⎥⎥⎦ . (3.3)

In the worst case, the number of multiplications would be 12 real multiplications (input

size × the number of clusters = 4×3), as it carries out all possible unique multiplications

and the rest are only additions. The benefits of weight clustering depend on the size

of the input vectors, the weight matrices, and how the trained weight pattern spreads

over the weight matrix.

After the weights are clustered, the fine-tuning process can be applied to mitigate

the impact of clustering on the optical performance. This work follows the clustering

algorithm [156] from the TensorFlow framework. During training, the gradients are

computed with respect to these centroids, allowing the network to optimize while

reducing the number of unique weight values. This is accomplished through a lookup

table that maps weights to centroids during the forward pass and updates the centroids

during backpropagation. This approach effectively reduces the number of distinct

multipliers in matrix operations, resulting in significantly lower overall computational

load. Additionally, weight clustering acts as a form of non-uniform quantization, where

the NN’s weight distribution is optimized to fit a limited set of values. This not only

simplifies the hardware implementation and enables better memory efficiency, but also

maintains the model’s optical performance close to its original uncompressed state.

It is worth noting that the fine-tuning or training phase for weight-clustered models

indeed involves additional computational cost due to an additional stage to fine-tune

the clustered weights. However, this fine-tuning typically requires only about 10 to

20% of the original training epochs in this study. In this work, the main focus is on

the complexity of inference, specifically in terms of real multiplications, as this metric

directly reflects the cost of implementing the model in real-world deployments. It is

common practice to train the model on a more powerful device and deploy it on a

resource-constrained one. While training complexity can be assessed using metrics

mentioned in Section 2.4.1, such as the number of trainable parameters, training epochs,

or total training time [55], this analysis falls outside the scope of this study.
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3.2.3 Data Generation, Training, and Evaluation

Data Generation Using DSCM Simulator

The numerical simulator created the dataset assuming a single-channel DSCM transmis-

sion with 4 subcarriers and 16-QAM DP modulation format. The total symbol rate is

32 GBd, resulting in 8 GBd per subcarrier. The transmission length is 40×80 km along

standard single-mode fiber (SSMF) spans. The SSMF is modeled with an effective

area of 80µm2, chromatic dispersion coefficient D = 17 ps/(nm·km), and attenuation

parameter α = 0.2 dB/km. The block diagram of the system is reported in Fig. 3.3.

Furthermore, this work has also considered transmission along TrueWave Classic (TWC)

fiber with a total fiber length of 15×80 km and with the fiber parameters γ = 2.5 (W·
km)−1, D = 2.8 ps/(nm·km), and α = 0.23 dB/km.
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Fig. 3.3 Considered simulation setup.

The ideal electrical components3 are assumed, namely, Mach-Zhender modulator,

DAC, and ADC along with ideal TX/RX laser sources having zero linewidths and an

ideal optical front-end at the receiver. Moreover, electronic noise sources are not

considered for the simplicity of this analysis. At the transmitter side, the digital signals

of each subcarrier are filtered by a digital root-raised cosine (RRC) filter with a 1/16

roll-off4, shifted to different frequencies, and multiplexed in the frequency domain.

Subsequently, the pre-CDC was performed, where 50% of the total dispersion is digitally

pre-compensated. The full band signal is finally inverse Fourier transformed to the time

domain and propagated. The propagation of the signal through the fiber was modeled

3The primary focus of this work is to demonstrate a proof-of-concept method for mitigating fiber-
induced nonlinearities. In addition, in modern coherent transceivers, nonlinearities from devices such as
the Mach-Zehnder modulator (MZM) are typically mitigated (i) using a digital pre-distortion module
included within the DSP at the transceiver, or (ii) by operating the Mach-Zehnder in linear regime.
Therefore, the electrical components are assumed to be ideal and their nonlinear effects are out of the
scope of this work.

4Note that the channel parameters are set to match the parameters of the simulator in [1].
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according to the well-known Manakov equation [157]. The simulations were carried out

based on a full-band symmetric split-step method [14] with an adaptive step size [158].

At the end of each fiber span, optical fiber losses are perfectly compensated for by an

EDFA with a 6 dB noise figure.

On the receiver side, all subcarriers are captured simultaneously in a single detection.

The subcarrier multiplexed signal is digitized by an ideal ADC and re-sampled to twice

the total symbol rate5. After the transform to the frequency domain, each subcarrier is

successively shifted to the baseband and filtered out using a digital matched RRC filter.

Finally, the low-symbol-rate signal in each subcarrier is down-sampled at 2 samples

per symbol. Standard DSP algorithms [159] are used for the post-processing of the

received signals from each subcarrier, independently. Digital CDC is considered at the

front-end of the DSP unit for the post-compensation of 50% of the total link dispersion

when only linear equalization is considered. NLC is not performed. For the case of

the 16-QAM format, a training symbol-assisted decision-directed least mean square

(DD-LMS) with 1024 training symbols and a 21-tap filter to implement the MIMO

equalization [159] is used. A feedforward carrier recovery (CR) based on maximum

likelihood estimation [160] is adopted for phase correction under correlated nonlinear

phase noise. Within the CR algorithm, a joint CR method [161] has been chosen for

cycle slip corrections under non-differential phase coding. Afterward, the BER analysis

is performed based on the statistical Monte Carlo method. Finally, the received symbols

are used as inputs for the NN. The NN operates at one sample per symbol.

Note that for SSMF 40× 80 km, the simulator used in this study matched the

optimum power and Q-factor of [1]. The performance in the nonlinear regime of the

simulator in this work and the simulator in [1] is almost indistinguishable, while in the

linear regime, the simulator in this study provided a slightly better Q-factor than the

simulator in [1]. However, the main focus remains the nonlinear regime.

NN Training

The training datasets were generated with a random bitstream consisting of 219 symbols.

For each epoch, a subset of 218 symbols was randomly selected from this dataset as

input symbols to train the model. For testing and validation, the dataset contained 217

unseen symbols. All models in this work were trained, validated, and tested with the

same dataset size. The training was carried out for 1000 epochs and a mini-batch size

5Oversampling at three or more samples per symbol can have a slight improvement in the DBP
algorithm (see [17]).

S. Srivallapanondh, PhD Thesis, Aston University 2025.



54 Low-Complexity Techniques for NN-Based Equalizers

of 3824. The mini-batch input of the NN was structured in three dimensions [62]: (B,

ns , 16) where B is the mini-batch size and ns is the number of time steps or the memory

size depending on the number of neighbor symbols considered, N, as ns = 2N+1. The

last dimension, 16, corresponds to the number of features for each symbol across all

four subcarriers. The models used four input features per subcarrier (4 subcarriers× 2

polarizations× 2 complex value components), derived from the in-phase and quadrature

components of the complex signal (XI , XQ, YI , and YQ), where XI + jXQ and YI + jYQ
are the signals in the X and Y polarizations, respectively. The NN output is designed

to recover the real and imaginary parts of multiple symbols across all four subcarriers in

the X polarization simultaneously. The output batch shape is defined as (B, ns−nk +1,
8), where ns −nk +1 is the number of symbols recovered in the output and the third

dimension is 8 as it refers to the real and imaginary parts of the X polarization of four

subcarriers.

The weights of the trained models were saved at the epoch where the BER on

the test dataset was at its minimum, a technique known as early stopping. Note that

at the end of every epoch, the trained model is tested with the validation dataset to

evaluate the performance in BER. Once the model was trained for a specific launch

power, transfer learning [98] was employed to transfer the learned knowledge to different

launch powers, thereby accelerating the training process for these new conditions.

Once the uncompressed trained models were trained, the original model with 111

hidden units was selected for compression. The model is compressed by the weight

clustering framework, in this case from TensorFlow [156]. This study considers 25,

35, and 45 WCs for SSMF and 10, 20, and 30 WCs for TWC in order to evaluate

the trade-off between performance and complexity. The specific values of weight

clusters were determined through a grid search. The goal was to identify the number of

weight clusters that would provide performance comparable to the state-of-the-art work

presented in [1]. This ensures a fair comparison while demonstrating the effectiveness

of the proposed method.

Benchmarking Models

To benchmark the performance of the proposed approach, the NN models in this work

are compared against several established methods (Fig. 3.4): CDC, ideal DBP with

20 STpS, standard DBP with 1 STpS, advanced DBP (ADBP) - subcarrier multiplexing

(SCM) [92] with 1 STpS, and the NN architecture from [1].
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Fig. 3.4 Proposed NN models are compared against several benchmarking models.

The CDC method is the linear approach to compensate for chromatic dispersion by

dynamically adjusting the signal with the inverse of the chromatic dispersion transfer

function, based on the estimated chromatic dispersion after transmission. In this work,

both pre- and post-CDC are deployed, each compensating for 50% of the accumulated

chromatic dispersion6.

The ideal DBP with 20 STpS is included to approximate the theoretical perfor-

mance by considering the entire bandwidth and reversing the Manakov equation [162].

The complexity of this method will not be benchmarked, as the ideal DBP faces

implementation challenges [163], with complexity beyond what is considered in this

study.

The standard DBP [17] with 1 STpS and 2 Samples/symbol is performed after

demultiplexing at the subcarrier level, which means that each subcarrier is processed

independently. This method approximates the inverse of the Manakov equation for

each subcarrier, accounting only for SSN, but ignoring CSN. This approach reduces

the computational complexity compared to full-bandwidth DBP, therefore, it is also

considered as a benchmark for complexity.

The ADBP-SCM, applied to DSCM systems [92], takes into account both SSN and

CSN. The CSN compensation is carried out on the basis of the analytical model of

time-varying XPM distortion proposed for WDM systems. This method adjusts the

standard DBP to account for the nonlinear interactions between subcarriers, leading to

improved compensation for nonlinear impairments. The ADBP-SCM considers both the

6The performance of 50 % pre-CDC together with 50% post-CDC is not significantly different than
the 100% post compensation, however, we keep the former approach to be compatible with the simulation
of [1]
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CSN-induced cross-polarization modulation and phase noise. It achieves good overall

performance in scenarios where the CSN significantly affects signal quality.

Lastly, the state-of-the-art approaches for NN-based equalizers applied to DSCM

systems proposed in [1] are considered. In this case, the authors have demonstrated

the performance of the Q-factor with different complexity constraints, when training

was based on perturbation coefficients. The model with the best performance is called

“M2 iSPM+iXPM”. Both the Q-factor performance and the computational complexity

of the proposed NN in this study are benchmarked against the M2 iSPM+iXPM models.

In this work, “M2 iSPM+iXPM - 1” refers to their M2 iSPM+iXPM model with a full

complexity limit of 5×105 RMpS, whereas “M2 iSPM+iXPM - 2” corresponds to the

reduced complexity model with a complexity limit of 2.5×105 RMpS.

3.2.4 Complexity Analysis

This section outlines the complexity analysis for assessing the computational complexity

of NN layers, both with and without weight clustering, in comparison to conventional

techniques like CDC and DBP, including scenarios with and without XPM compensation.

Complexity is quantified using RMpS.

Complexity of Original NNs

In this work, the NN model consists of biLSTM and 1D-CNN layers. The complexity

equations for this NN model are reported in detail in [55]. Starting with the biLSTM

layer, first, the standard LSTM layer is assessed. The formulas are presented in

Section 2.2.1. The number of RM of an LSTM layer is:

RMLSTM = nsnh(4ni +4nh+3), (3.4)

where nh is the number of hidden units in the LSTM cell. Similarly to RNNs, the RM

can be calculated from the term associated with the input vector xt and the term

corresponding to the prior cell output ht−1; however, each term occurs four times,

as one can see in Eq. (2.23). Therefore, 4nhni and 4n2h are obtained, respectively.

Moreover, the complexity equation also needs to include the element-wise product

operated three times in Eq. (2.23), which costs 3nh. Finally, the process is repeated ns
times; therefore, ns is multiplied by the total number.
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For the 1D-CNN layer, the equation describing this layer is present in Eq. (2.20).

Note that the output size can be computed by:

OutputSize =

[︃
ns +2padding−di lation(nk −1)−1

str ide
+1

]︃
, (3.5)

where ns is the input sequence size. In this case, with padding equal to 0, dilation equal

to 1, and stride equal to 1, the output size is equal to ns −nk +1. To calculate the

complexity of a 1D-CNN layer, the number of RM can be formulated as:

RMCNN = nf nink ·OutputSize, (3.6)

where nf is the number of filters, also known as the output dimension, ni is the number

of features in the input vector and nk is the kernel size. Note that the input of the

1D-CNN layer is the output of the biLSTM layer. As in Eq. (3.6), there are nink
multiplications per sliding window, and the number of times that the sliding window

process needs to be repeated is equal to the output size. The procedure is then repeated

for all nf filters [55].

As a result, the complexity of the biLSTM+1D-CNN layer in terms of the number

of RMpS can be calculated by:

RMpSNN =
RMforward

LSTM +RM
backward
LSTM +RMCNN

(ns −nk +1) ·nsubcarriers
. (3.7)

The total RM of the NN is divided by (ns−nk +1) ·nsubcarriers, because the NN recovers

ns −nk +1 for all subcarriers simultaneously. To be specific, the last 1D-CNN layer has

2×nsubcarriers filters (number 2 represents real and imaginary parts of the symbol), and

each filter has the output size of ns −nk +1.

Complexity of Weight-Clustered NNs

In this section, the complexity of the NNs when the weight clustering technique [16]

is evaluated, as explained in Section 3.2.2, is applied. In the biLSTM layer, the input

weight matrix W is assumed to have ci clusters, and the recurrent kernel weight

matrix U is assumed to have ch clusters. In the worst case, the number of unique

real multiplications would be reduced to ni ×ci multiplications involving matrix W and

nh×ch multiplications involving matrix U. Therefore, the number of RM for a clustered

S. Srivallapanondh, PhD Thesis, Aston University 2025.



58 Low-Complexity Techniques for NN-Based Equalizers

LSTM layer is:

RMclustered LSTM = ns (nici +nhch+3nh) , (3.8)

For the 1D-CNN layer, it is supposed that there are cj clusters in each filter

nf . Normally, each filter has a size nk and the input has ni features, resulting in

ni × nk multiplications per filter application. With weight clustering, the number of

unique weights in each filter is reduced to cj clusters. Therefore, it only requires cj
multiplications per filter application. Deriving from Eq. (3.6), the number of RM of a

cluster 1D-CNN layer reads as:

RMclustered CNN =
(︁
nocj

)︁
·OutputSize. (3.9)

Lastly, the total RMpS of the clustered model can be calculated in the same way as in

Eq. (3.7), but with the clustered versions of these equations.

Complexity of CDC and DBP

According to Ref. [55], the computational complexity of CDC using the frequency

domain equalizer (FDE) is as follows:

RMCDC = 4 ·
(︃
N(log2N+1)q

N−ND+1

)︃
. (3.10)

Here, N represents the FFT size, q is the oversampling ratio, and ND = qτD/T where

τD/T is the dispersive channel impulse response, and T is the symbol interval. This

complexity calculation includes two polarizations, which require four N-point FFTs and

2N complex multiplications. The factor of 4 accounts for the fact that one complex

multiplication equals four real multiplications. The term N −ND+1 indicates the

number of useful samples based on the overlap-save algorithm for blockwise FD filtering.

Note that optimization of FFT size is crucial to minimize complexity.

For the standard DBP technique [17], DBP is performed at a subcarrier level

independently. Thus, the same formula as for a single carrier channel is considered.

The RM of the standard DBP is [55]:

RMDBP = 4qNSpNSTpS

(︃
N(log2N+1)

N−NDq+1
+1

)︃
, (3.11)

where NSp is the total number of spans, NSTpS is the number of propagation steps per

span, and q is the oversampling factor. The complexity of each DBP step includes the
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linear part, which matches the RM of the CDC, and a nonlinear part, represented by a

single RM corresponding to the multiplication with a nonlinear term.

For the ADBP-SCM, the RM per symbol is derived from the formula of complex

multiplication per sample in Ref. [92], as follows:

RMADBP-SCM = 4q

[︄
(M+1)

KCD(log2KCD+1)

KCD−PCD

+M

(︃
6.5+

1.5KNL(log2KNL+Nsc−1)
KNL−PNL

)︃]︄
, (3.12)

where the multiplier 4 refers to 4 real multiplications per one complex multiplication,

q is the oversampling ratio, M is the number of steps, KCD is the subcarrier block size

for the frequency domain CDC filter obtained by the overlap and add (OLA) method,

PCD is the overhead of CDC filter for each subcarrier; PCD = (1+ρ)πβ2(Lstep)/T
2
s , KNL

denotes the OLA block size of the CSN low-pass filter, PNL represents the CSN low-pass

filter overhead; PNL = NLspan+
2
α∆β

′
max/Ts . Here, ∆β′max = π(1+ ρ)β2(Nsc−1)/Ts

and Ts is the sampling rate for one subcarrier. In this analysis, KCD is set to 1024 and

KNL is set to 128.

3.2.5 Results and Discussion

Equalization Performance

This thesis presents the optical performance in terms of the Q-factor which is calculated

directly from the BER using:

Q= 20log10
[︂√
2erfc−1(2BER)

]︂
. (3.13)

First, the performance in Q-factor of the original NNs (without WC) is compared

with analytical approaches, namely, CDC, ideal DBP 20 STpS, standard DBP [17]

1 STpS, and ADBP-SCM [92] 1 STpS, which are described in Section 3.2.3. Fig. 3.5a

presents the Q-factor as a function of the optical launch power of the original NN

models proposed: with 214 and 111 LSTM hidden units. The ideal DBP 20 STpS is

used to provide a reference optical performance close to the ideal one. The results show

that the original models with 214 and 111 hidden units provide a Q-factor improvement

of 1 dB and 0.9 dB, respectively, when compared to employing CDC only. The optimal

launch power also increases from 1 dBm to 2 dBm in this case. Both NN models also
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outperform the standard DBP with 1 STpS by 0.35 dB for the model with 214 hidden

units and 0.24 dB for the model with 111 hidden units. As expected, the approach with

higher complexity (higher number of hidden units) leads to the best optical performance.

However, compared to the ADBP-SCM 1 STpS approach, the former still leads to a

1.4 dB higher Q-factor.
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Fig. 3.5b shows the Q-factor as a function of the optical launch power of the original

NN model proposed with 111 hidden units and compares it with the performance of its

compressed versions (with weight clustering) with different numbers of WC: 25, 35, and

45 clusters. It can be observed that with a lower number of WC, the optical performance

decreases. The NN with 45 WC experienced a 0.1 dB reduction in Q-factor compared

to the original NN, while the NN with 35 WC showed a decrease of 0.17 dB. The NN

with 35 WC demonstrated a performance close to the standard DBP 1 STpS. For the

NN with 25 WC, the Q-factor was reduced to around 8.5 dB which is comparable to

the M2 iSPM+iXPM - 2 [1] model and faced a drop of 0.35 dB from the original NN.

Note that all compressed models still maintain the optimum power of 2 dBm.

Considering the 15×80 km TWC system, Fig. 3.5c shows the Q-factor versus launch

power for the original NNs with 214 hidden LSTM units and 111 hidden units compared

with ideal DBP 20 STpS, ADBP-SCM [92] 1 STpS, standard DBP with 1 STpS and CDC

as baselines. The ideal DBP 20 STpS provides a reference optical performance close

to the ideal one. The model with 214 hidden units has a slight Q-factor improvement

compared to the model with 111 hidden units, however, it comes with the cost of

more complexity in terms of hidden units. Similar to the SSMF case, the performance

curves of the original NN with 111 hidden units and its compressed versions in Fig. 3.5d

exhibit a similar trend to that of the SSMF system. However, the NN-based equalizers

significantly outperformed the DBP 1StpS which only compensated for self-phase

modulation. In this case, increasing the number of steps per span in the standard DBP

did not further improve the Q-factor because TWC’s high nonlinearity coefficient made

inter-SC cross-phase modulation more significant [164]. It can be observed that even

the compressed NNs can partially compensate for the CSN in the DSCM systems,

showing the obvious improvement from the standard DBP. This figure clearly reflects

the trade-off between CC and performance; the higher number of WCs, the better the

Q-factor. In this case, the optimal Q-factor for the original NN, and the NNs with 45

WC, 35 WC and 25 WC were 8.36, 8.20, 8.12 and 8.01 dB, respectively.

Computational Complexity

This section highlights the computational complexity comparison of the proposed models

and the benchmarking models.

First, to demonstrate how the weight distribution of the original NN models changed

when the weight clustering was applied, Fig. 3.6a shows the weight distribution of the

original uncompressed NN and Fig. 3.6b for the NN with 25 WC. One can observe that
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Fig. 3.6 Comparison of weight distributions of all concatenated layers of (a) the original
model (without weight clustering) and (b) the model with 25 weight clusters.

the unique number of weights is drastically reduced. To be more specific, there are

1.39×105 unique weights in the original model but only 125 unique weights in the NN

with 25 WC. In summary, weight clustering is a powerful technique to reduce the com-

putational complexity of NN-based equalizers in optical communications. This approach

enables the NN-based equalizers to be more suitable for real-time implementation while

retaining their effectiveness in mitigating fiber nonlinearity.

For 40× 80 km of SSMF system, compared to [1], with the same transmission

scenarios, the simulator in this work provided the same optimal Q-factor and the

comparable Q-factor in the nonlinear regime. Ref. [1] has shown their “M2 iSPM+iXPM”

models with different complexity budgets. Among these models, their two most

outstanding models are utilized as benchmark: the model with the highest Q-factor (M2

iSPM+iXPM-1) and the model with the lowest complexity budget (M2 iSPM+iXPM-2).

Their model with the highest performance with full complexity provides up to around

8.95 dB Q-factor, at the cost of 5.0×105 RMpS, while the model with the lowest

complexity of 2.5×104 RMpS provides a Q-factor of around 8.5 dB. Fig. 3.7a presents

the complexity comparison of the original model with 214 hidden units and their M2

iSPM+iXPM-1 model, considering the same performance of 8.95 dB Q-factor. It

can be seen that the original model with 214 hidden units requires around 1.07×105

RMpS, which is 78.6% fewer RMpS than their M2 iSPM+iXPM-2 model. Similarly,

Fig. 3.7b shows the complexity of the proposed NN with 25 WC and their model with

the lowest complexity budget (M2 iSPM+iXPM-2). It highlights that with a similar level
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Fig. 3.7 Complexity in RMpS comparison of the models in this study and the models
M2 iSPM+iXPM in Ref. [1], for 40×80 km of SSMF.

of performance, the proposed NN with 25 WC enables a 91.1% reduction in complexity

or around 2215 RMpS.

Fig. 3.8 illustrates the complexity reduction of the compressed model compared to

the original model with 111 hidden units. The compressed model with 25 WC provided

97.9% reduction from the original model, at the cost of 0.45 dB Q-factor drop.
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Fig. 3.8 Complexity in RMpS comparison of the original model with 111 hidden units
and its compressed version with 25 WC for 40×80 km of SSMF.
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Fig. 3.9 Comparison of complexity (RMpS) between biLSTM+1D-CNN and traditional
channel equalizers (DBP 1STpS and CDC) as a function of the number of clusters
utilized in weight clustered compression.

Next, it is crucial to evaluate the trade-off between performance and complexity

in weight clustering for NN. In this regard, Fig. 3.9a illustrates the complexity in

terms of RMpS as a function of the number of WC, using CDC (FDE) and standard

DBP 1 STpS as benchmarks for 40×80 km of SSMF system. The NN with 35 WC

achieved performance levels comparable to standard DBP 1 STpS, but with a 31.5%

reduction in complexity (RMpS). However, when comparing the complexity of the

NN equalizer to that of CDC, it becomes clear that significant improvements are

necessary to achieve lower complexity levels, particularly in terms of multiplicative

operations. Notably, while CDC typically requires around 150 multiplications per

recovered symbol, the compressed NN still requires between 2000 and 3000 multipliers

in its lower complexity configurations. For the standard DBP 1 STpS, more than 4200

RMpS are typically necessary.

Similarly, for 15×80 km of TWC system, Fig. 3.9b illustrates the trade-off between

performance and complexity for the NNs with varying numbers of WC, using the standard

DBP with 1 STpS and CDC as benchmarks. As expected, a higher number of WC results

in a higher Q-factor. However, the improvement of the Q-factor is not linearly increased

with the number of WC, indicating that beyond a certain threshold, additional WC

contribute marginally to performance enhancement. To achieve comparable performance

to the standard DBP at 1 STpS, the model required 10 WC, resulting in a 34% reduction

in RMpS. Note that the standard DBP with more steps per span did not improve the

performance due to its limitation in compensating for the CSN.
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In this study, it can be observed that aggressive weight clustering (reducing the

number of clusters to very low values) is less effective for DSCM systems than for

simpler single-carrier single-channel systems. For instance, Ref. [16] demonstrated

that as few as three weight clusters could achieve performance comparable to DBP

in single-carrier systems. However, for the more complex DSCM system, at least 35

clusters were needed for SSMF transmission and 10 clusters for TWC transmission to

achieve similar performance to standard DBP with 1 STpS. This is also because the

NN in DSCM is designed to recover four subcarriers simultaneously, adding difficulties

to the weight clustering process. These findings highlight the increased computational

and modeling demands of DSCM systems, where the balance between performance

and complexity becomes particularly critical. The ongoing challenge of optimizing NN

equalizers to reduce computational complexity, especially in terms of multiplication

operations, while maintaining high performance, needs to be further investigated.

To show the comprehensive result comparing to the previous literature, Table 3.1

summarizes different equalization approaches for the 40× 80 km SSMF systems,

including CDC, ideal DBP, standard DBP, ADBP-SCM, the models from previous

literature [1], and the NN models in this work with different complexity limits. The

table shows their Q-factor performance, optimum launch power, and computational

complexity in terms of RMpS.

The current approach is to recover only one polarization at a time. Although

technically feasible to modify the output of the model to simultaneously recover the

X and Y polarizations, this approach was not explored in this study. For consistency,

Name Method
Average Optimal
Q-factor (dB)

Optimum Launch
Power (dBm)

Complexity
(RMpS)

CDC Linear 7.90 1.0 146
Standard DBP 1 STpS Nonlinear 8.60 1.5 4256

ADBP - SCM 1 STpS[92] Nonlinear 10.37 3.5 1.07×105
NN Eq. - M2 iSPM+iXPM-1 [1] Nonlinear 8.95 2.0 5.0×105
NN Eq. - M2 iSPM+iXPM-2 [1] Nonlinear 8.41 1.5 2.5×104

Original NN Eq.(214 hidden units) Nonlinear 8.95 2.0 1.07×105
Original NN Eq. (111 hidden units) Nonlinear 8.84 2.0 3.1×104

NN Eq. with 45WC Nonlinear 8.74 2.0 3611
NN Eq. with 35WC Nonlinear 8.67 2.0 2913

Proposed NN Eq.with 25WC (Proposed) Nonlinear 8.49 2.0 2215

Table 3.1 Summary of the different equalization approaches, with their Q-factor perfor-
mance, optimum launch power and complexity in terms of RMpS for 40×80 km of
SSMF.
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the CDC block and the NN equalizer were applied independently to each polarization

channel. It is worth noting that during the inference phase, the computational complexity

in terms of RMpS would not increase if two separate models were deployed for the

two polarizations. This is because the total number of recovered symbols would also

double, maintaining the RMpS at the same level. Moreover, modifying a single model

to recover both polarizations could potentially reduce RMpS, as a shared architecture

could leverage additional efficiencies while increasing the number of symbols recovered

per inference.

3.3 Approximation of Nonlinear Activation Functions

This section considers the approximation of the nonlinear activation functions in NN. In

this thesis, the main architecture is based on biLSTM, because of its performance and

aforementioned advantages in the time-series processing. In an LSTM cell, the sigmoid

and tanh functions are deployed as activation functions7, and they are computationally

expensive. Both functions contain exponential functions, making it difficult to implement

them on resource-constrained hardware and requiring a large chip area in the real

implementation [165]. The implementation of NNs’ nonlinear activation function is one

of the crucial components in the hardware design of NN. In contrast to the hardware

realization of the NN’s weights and inputs, which can be readily proceeded from the

float to fixed-point representation [55], the activation functions’ realization in hardware

is not straightforward. This is because activation functions directly influence the final

7Empirically, the simpler types of activation functions, such as ReLU or leaky ReLU, were tested in
the NN-based equalizers in this study. However, the performance has dropped drastically.

Approximated 
activation function

ф𝑎 (x, ѳ) 
ŷ

x

Coefficients 
(ѳ)

Logic box 
implemented in FPGA

y = ф(x) 

–
Approximation

errors

Fig. 3.10 Diagram of the input/output of approximated activation functions based on
the logic box implemented in FPGA.
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output of each layer. Moreover, while the overparameterization of NN weights can help

mitigate quantization errors, this benefit does not directly translate to the realization of

activation functions. Therefore, function approximation techniques are required in place

of the exact functions to reduce the overall computational complexity and to realize

them in the resource-constrained hardware like FPGA [166, 165, 167, 168]. This study

focuses on approximating the sigmoid and tanh. Three different approximation methods

are considered: Taylor series expansion, piecewise linear (PWL), and look-up table

(LUT). The scenario, in which the training of the NN with approximated activation

functions is undertaken to reduce the approximation errors, was also investigated. Finally,

the amount of resources required to implement the activation functions within the

FPGA, is also evaluated.

As shown in Fig. 3.10, to implement the approximated activation functions on the

FPGA, the FF8, LUT9, and DSP slices10 are used to build the logic box11, which

takes the value x and coefficients to return ŷ . The coefficients are stored in the

memory as input. The coefficients define the Taylor and PWL approximations, while

the LUT approximation represents the quantization levels list. ŷ is the output of

the approximated activation functions, while y represents the actual output of the

float-precision activation function. The difference between ŷ and y is the approximation

error.

The expression for the tanh function via exponential is:

tanh x =
ex −e−x

ex +e−x
, (3.14)

while that for the sigmoid function reads as:

σ(x) =
1

1+e−x
. (3.15)

8FF is a basic digital storage element in an FPGA, used to store the value of a digital signal and can
be used in conjunction with LUTs to implement sequential logic, such as state machines and counters.

9LUT is a basic building block of an FPGA used to implement equations built from Boolean logic
functions, such as AND, OR, and XOR, or to store pre-calculated values for use in arithmetic or other
operations.

10DSP blocks or slices are specialized components within an FPGA that are designed specifically
for processing digital signals. They contain dedicated hardware resources such as multipliers, adders,
accumulators, and registers that can perform complex mathematical operations at high speeds.

11FPGA uses LUTs, FF and DSP slices together to implement the digital logic, memory, and
computation required by the intended applications. LUTs, FFs, and DSPs are all programmable, meaning
that the user can reprogram the FPGA’s logic, memory, and computation elements to suit different
applications.
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3.3.1 Taylor Approximation Approach

In the Taylor series approximation, the higher the degree of an approximating polynomial

n, the better the approximation. The tanh Taylor series reads as:

tanh x =
∞

∑
n=0

22n(22n−1)B2n
(2n)!

x2n−1, where |x |<
π

2

= x −
x3

3
+
2x5

15
−
17x7

315
+
62x9

2835
− . . . ,

(3.16)

where B2n denotes the Bernoulli number [169], −at < x < at , and at is the boundary

of the approximation region: when x is not within [−at ,at ], the approximation error

is essential. Therefore, it is important to choose the value of at that maximizes

performance. Empirically, the slight difference in the value of at can noticeably affect

the performance. When x is outside the Taylor series approximation region, the value

of tanh x is set to -1 or 1, according to the following expression:

tanh x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x > at ,

x − x
3

3 +
2x5

15 −
17x7

315 +
62x9

2835 , if −at < x < at ,

−1, if x <−at .

(3.17)

The plots for the different order Taylor approximations are given in Fig. 3.11a–3.11b.

The value of at is the result of the grid search, which maximizes the performance of

the NN-based equalizer without retraining.

The Taylor series for the sigmoid function is:

σ(x) =
1

2
+
1

2
tanh

x

2

=
1

2
+
x

4
−
x3

48
+
x5

480
−
17x7

80640
+
31x9

1451520
− . . . ,

(3.18)

where −aσ < x < aσ and aσ is the point where the Taylor series approximation of the

sigmoid starts to diverge. Similarly to tanh, the values of the sigmoid approximation in

regions less than −aσ and greater than aσ are set to 0 and 1, respectively, as follows:

σ(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x > aσ,
1
2+
x
4−
x3

48+
x5

480−
17x7

80640+
31x9

1451520 , if −aσ<x<aσ,

0, if x <−aσ.

(3.19)
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Fig. 3.11 Taylor series approximation of tanh (a) – (b) and sigmoid functions (c) – (d).

The Taylor approximation plots corresponding to Eq. (3.19), when the highest order of

the polynomial is 3 and 9, are given in Fig. 3.11c–3.11d.

The performance in terms of Q-factor is evaluated when the approximation for

both tanh and sigmoid functions is carried out simultaneously, with different orders

of the approximating polynomial up to 9th order. The values of at and aσ are chosen

by using the grid search, aiming to maximize the Q-factor when replacing the exact

activation functions with their Taylor series approximation without retraining the weights.

The Taylor series approximation reduces the computational cost and time required to

compute the activation function considerably, compared to the processing using the

original function [167].

3.3.2 Piecewise Linear Approximation Approach

The PWL approximation, introduced in [170], is a combination of linear segments that

approximates the activation or nonlinear function [130, 166]. Increasing the number of
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linear segments to represent the nonlinear function allows us to achieve better accuracy.

The PWL approximation is a promising method to reach a higher processing speed since

it consumes fewer resources on FPGA12 compared to the Taylor approximation: to

reach higher accuracy, the Taylor approach fits the nonlinear function with high-order

expressions, which results in the consumption of resources, while the PWL can reach

the same level of accuracy with the use of more segments, but without employing

high-order operations [166].

This study compares the performance of the NN-based equalizers when applying

3-, 5-, 7-, and 9-segment PWL approximations to both tanh and sigmoid13. The

expressions for the PWL used in this study are included in Table A.1 in Appendix A.1.

The corresponding plots for the equations mentioned in Table A.1 with 3 and 9 segments

12[24] shows that the implementation of PWL can be further optimized to have zero multipliers by
simplifying the shift and addition operations.

13Note that when the number of segments is lower than 3 segments that used to represent sigmoid or
tanh in the biLSTM cell, the biLSTM model in this case is not able to learn to mitigate the approximation
errors.
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(b) Tanh with 9 segments.

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

(x
)

Sigmoid
PWL (3 segments)

(c) Sigmoid with 3 segments.
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Fig. 3.12 PWL approximation of tanh (a) – (b) and sigmoid functions (c) – (d).
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are depicted in Fig. 3.12a–3.12b for tanh, and Fig. 3.12c–3.12d for sigmoid. Note that

grid search is used to find the coefficients for each expression, aiming to maximize the

performance in terms of Q-factor, after the actual activation functions are replaced by

the approximations over the trained weights, instead of minimizing the difference/areas

between the exact function and the approximation curves. It is carried out because, in

this case, minimizing the difference/areas between the curves noticeably degrades the

Q-factor performance of the NN equalizer when the NN predicts the output with the

replaced approximated activation functions.

3.3.3 Lookup Table Approximation Approach

The LUT approximation is a commonly used method for the activation functions’

hardware implementation [171]. The LUT approximates the function with a limited

number of uniformly distributed points. This approach offers a high-performance design,

and the fastest implementation compared to other methods. At the same time, a large

amount of memory is required to store the LUT on the hardware [172, 173]. The chip

area requirements for the LUT approximation grow exponentially with the required

approximation accuracy [173]. The number of bits used to represent values in the LUT

directly affects the approximation error and the required memory size. An example

of the LUT approximation of tanh with the number of bits equal to 4 is presented in

Fig. 3.13.

The LUT approach is similar to traditional quantization, in which full precision values

are assigned to uniform quantization levels, i.e. the value x is mapped to x̂ which is

the closest value of x in the quantization level list [174]. The LUT stores the values
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Fig. 3.13 LUT approximation of tanh function with the number of bits equal to 4.
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of the quantization levels (x̂) and their corresponding f (x̂), in this case tanh(x̂) or

σ(x̂). The difference between the exact value f (x) (the blue curve in Fig. 3.13) and the

approximation f (x̂) (the red curve in Fig. 3.13) introduces the approximation errors.

This study investigates the Q-factor performance of the model for the LUT rep-

resentation of activation functions when the number of bits used ranges from 2 to

16.

3.3.4 Reducing Approximation Error through Learning via Stochas-
tic Gradient Descent

Once the activation functions are replaced by the approximation, the NN performance

can drastically drop (up to 5 dB when the approximation is the least complex). However,

training the model with approximated activation functions can enhance the performance

because the model learns to reduce the approximation error. SGD is the training approach

applied in this work. The training can be undertaken from scratch, which means that

the NN is trained when the activation functions are replaced by approximations from

the beginning without any pre-assigned weights. Another approach to training is to use

the weights of the model pre-trained with the true activation functions, then re-train

the model after the replacement of the approximations to learn the approximation

errors. The latter results in a considerably shorter training time. Only the results

of the second method are reported because, empirically, training from scratch takes

significantly longer to converge and sometimes can provide even worse results. It is

worth noting that another available training approach is to only train the coefficients
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Fig. 3.14 The derivative of the tanh function for the approximations using (a) Taylor
series with the highest order of 9, (b) PWL with 9 segments, (c) LUT approximation
with the number of bits equal to 4.
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of the Taylor and PWL equations without retraining the NN weights; however, in this

study, the performance was not acceptable when using a low number of segments in

PWL and training with this approach.

To train the NN with the approximation of the activation function via the SGD, the

gradient of the approximation function must be computed. For the Taylor approximation,

the Taylor series gradient is calculated with respect to the Taylor series approximation

equations Eq. (3.17) for tanh and Eq. (3.19) for sigmoid. Fig. 3.14a shows an example

of the derivative of the tanh approximation using the Taylor series with the highest

order of 9; the gradient (red curve) is not smooth due to the polynomial nature of

the Taylor series. This fact can limit the training ability, especially when training from

scratch, as noted in Section 3.3.6. Concerning the PWL, the gradient is the slope of the

expressions from Table A.1 (in the Appendix section). Fig. 3.14b depicts the gradient

of the PWL approximation with 9 segments. Note that due to the non-differentiability

of LUT, it is challenging to learn the LUT-approximated model [174]. In this work, to

train the LUT, the LUTs of the gradients are generated for both sigmoid and tanh for

each interval of the LUT approximations. Fig. 3.14c shows the gradient of the tanh

LUT with 4 bits, corresponding to the tanh approximation in Fig. 3.13.

3.3.5 Methodology

NN Architecture

The equalizer in this work, as depicted in Fig. 3.15, contains a biLSTM layer with 35

hidden units and a linear 1D-CNN layer with a kernel size of 21 without padding and 2

filters to recover real and imaginary parts in its output. The biLSTM+CNN equalizer

takes 81 symbols as inputs and retrieves 61 equalized symbols at the output. The

input vector contains four features from four real values (XI ,XQ,YI , and YQ) from X

and Y polarizations, derived from real and imaginary values of XI+ jXQ and YI+ jYQ,

respectively. The time domain depth is an additional dimension that characterizes

the system’s memory. Accordingly, the input shape can be described as (Batch size,

Memory, 4).

This equalizer is pre-trained with the actual activation functions which provide the

best performance. The training adopts the MSE loss estimator and the classical Adam

algorithm for the stochastic optimization step [175]. The training uses a mini-batch size

equal to 2001 and a learning rate equal to 0.0005, which were found by the Bayesian

optimization procedure described in [16]. The training set contains 220 symbols, and,
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Fig. 3.15 biLSTM+CNN equalizer structure used for activation function approximation
analysis.

at every epoch, 218 input symbols were randomly chosen from this dataset to train the

model. For the testing and validation, an unseen dataset with 218 symbols was utilized.

After the model was trained with original activation functions for the best perfor-

mance, the NN’s activation functions (sigmoid and tanh) were replaced by the different

approximation techniques. Then to alleviate the approximation errors, the weights of

the NN are re-trained.

Simulation Setup

The numerical simulator created the dataset by assuming the transmission of a single-

channel 34 GBd, 16-QAM DP channel along 17×70 km Large Effective Area Fiber

(LEAF) spans. The signal propagation through the fiber was represented by a generalized

Manakov equation split-step Fourier method [14]. The parameters of the LEAF are:

the attenuation coefficient α = 0.225 dB/km, the chromatic dispersion coefficient

D = 4.2 ps/(nm·km), and the effective nonlinear coefficient γ = 2 (W· km)−1. At the

end of each fiber span, optical fiber losses are compensated for by an EDFA with a 5 dB

noise figure. Downsampling and CDC were performed on the receiver end. The CDC

was performed in the frequency domain with the transfer function of the chromatic

dispersion given by [14]: G(z,ω) = exp
(︂
− jω

2β2z
2

)︂
where ω is the angular frequency, β2

is the group delay dispersion parameter of the fiber and z is the transmission length.

Afterward, the received symbols were normalized and used as inputs of the NN.
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3.3.6 Performance versus Complexity Investigation

Next, this subsection investigates the performance of the models when applying different

approximation techniques for nonlinear activation functions: Taylor series, PWL, and

LUT. Fig. 3.16 depicts the Q-factor in the optimal power (2 dBm)14 after equalization

for three scenarios: the original NN without approximation, the NN with approximation

(without retraining), and the NN with approximation (with retraining). Note that training

the NN from scratch when replacing exact activation functions with approximations

takes a considerably longer time to converge than retraining the original NN after

replacing floating-point activation functions with their approximations. The training

from scratch with the Taylor and LUT activation approximation even results in lower

eventual performance. Therefore, in this figure, only the results of the retraining

approach are reported. Fig. 3.16a and Fig. 3.16b, corresponding to the Taylor series

and PWL, respectively, reveal the same trend. Without training, as the complexity of

the approximation increases, the NN equalizer performs clearly better. However, with

training, the increasing complexity barely improves the performance: the NN is able

to adjust its parameters to mitigate the approximation error and provides comparable

performance to the NN without approximations. The Q-factor versus complexity

(order) of approximation plots, Fig. 3.16, highlight the remarkable performance gain

in all considered approaches when the model with activation functions replaced by the

approximation were retrained. It can also be seen that training can mitigate the errors

from the approximation. This means that even the low-order approximations, such as

14This work is a part of the journal paper [25].
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Fig. 3.16 Q-factor versus complexity in terms of polynomial order for the Taylor
approximation, pane (a), in terms of the number of segments for PWL approximation,
(b), and in terms of the number of bits for the LUT, (c).
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the simplest PWL with three segments, can still yield results nearly identical to those

rendered by the original activation functions.

Fig. 3.16c shows the performance of the LUT approximation. When replacing the

activation functions with LUT without retraining, a certain number of bits is needed

to provide an acceptable Q-factor level15. For example, the minimum number of bits

needed to provide a Q-factor greater than zero is 7 bits; 9 bits are needed to provide

performance comparable to the model without approximation. On the other hand,

when retraining the NN after the approximation, the Q-factor for the lower number

of bits (from 3 to 7 bits) considerably increases. In this case, the non-differentiability

makes the training challenging and limits the reachable performance in training, but the

improvement is still noticeable when the number of bits is between 3 and 7. Fig. 3.17

shows the convergence speed of the three approximation techniques. It can be seen that

the learning of Taylor and PWL is similar, whereas the retraining of LUT approximation

is more difficult. Although the LUT gradient, Fig. 3.14c, and the PWL gradient in

Fig. 3.14b seem interchangeable, the forward propagation of the LUT approximation

is still discrete, which means that with the lower number of bits, a gap between each

quantized level becomes larger. Thus, small changes that the gradient makes to update

the weights might not change the quantization level to the next value. This means that

the loss region is the same as it was in the last NN training interaction (trapped in a

local minimum). Notably, in [176] a similar circumstance was observed; the previous

15Note that this study followed the LUT implementation from Ref. [171, 172] which presented the
LUT with equal x-error intervals. The alternative approach (activation functions with equal y-error
intervals) can be used, but in this case, there is only a slight improvement in the Q-factor when the
number of bits is greater than 5, and with the retraining, the performance is very close to the x-interval
approach.
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Fig. 3.17 Convergence study of the retraining to mitigate the approximation errors of
Taylor series (3rd order), PWL (3 segments), and LUT (nbit = 7) approximations.
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reference also pointed to the instability of the training that can occur with a quantized

activation function. In the case of PWL, the learning is more stable due to the continuity

of the function’s approximation, as each weight update generates a new loss value and

a distinct point in the forward propagation.

In addition, as anticipated, it can be observed that when quantizing the LUT below

4 bits, no acceptable Q-factor can be reached even after the retraining. The reason

for this is that when the activation function is quantized, unlike when the weights are

quantized, the ability to represent the modulation of the equalized signal is limited. In

this situation, the signal adopts 16 QAM, which requires at least 4 bits to represent a

constellation data point. However, as can be observed, even 4 bits are insufficient in

this case to preserve all the essential features for the equalization process when using

the quantization of the activation function. When more bits are used, a better Q-factor

can be achieved; however, more memory is then required to represent the quantization.

It is worth noticing that when the number of bits is greater than 10, the Q-factor no

longer improves in both scenarios (with and without retraining).

In FPGA, the resources in terms of LUT, FF, and DSP slices are used to build

the logic behind the functionality of the approximation. In this work, the hardware

realization of the tanh function is undertaken on the EK-VCK190-G-ED Xilinx FPGA

chip16. The amount of resources required (in terms of LUT, FF, and DSP slices) in the

FPGA when using the approximations for tanh, is compared to that when applying the

actual tanh activation function in Fig. 3.18. This figure depicts the resources used to

build the logic behind the functionality of each approximation. Note that the coefficients

and values used in each panel of Fig. 3.10, are considered an input of the implemented

16The detailed explanation on FPGA realization was explained in [25]
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Fig. 3.18 Tanh implementation complexity in terms of LUT, FF, and DSP slices for the
Taylor series, PWL, and LUT approximations after the Xilinx realization pipeline.
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box, which is accessed by the FPGA memory. The implementation complexity of the

actual float activation functions is significantly higher than that of the approximations.

In the Taylor series approximations, Fig. 3.18a, the number of FF and LUT used to

implement the approximations is drastically reduced compared to the original activation

functions; to be more specific, when the highest order of the polynomial is 9, the

number of FF required decreases by 6.7 times, and the number of LUT required is

three times smaller. In terms of DSP slices, the 9th order approximation requires 6

DSP slices fewer than the original functions. As the approximation becomes simpler,

the implementation requires fewer resources, as expected. For the PWL approximation,

no usage of DSP slices is required for the implementation. Like in the Taylor series

approximation, the number of FF and LUT required decreases noticeably. Compared to

the original float-precision activation function, the PWL with 9 segments requires 2.8

times less LUT, and 13 times less FF. As the complexity decreases according to the

number of segments, fewer resources are needed. Turning to the LUT approximation,

it does not require any of the DSP slices as well, and the number of LUT and FF

decreases by a factor of 80 and 775, respectively. Regardless of the number of bits

in the quantized activation function, approximately the same amount of resources is

required to implement the logic of the LUT approximation (see Fig.3.18c). The LUT

approximation approach is an algorithm based on evaluating the closest value in the

LUT from a certain input and determining the memory address index that corresponds

to that closest value to retrieve the information. As the number of bits increases, a

larger memory is needed to store the LUT approximation points, which are a quantized

version of the function. However, this memory usage is not accounted for in this study

because this is considered one of the inputs to the implemented box.

In conclusion, when performance, memory, and resources are considered, the PWL

emerges as a viable candidate for hardware implementation, particularly, the 3-segment

PWL variant with retraining. When the model learns to reduce approximation errors,

the Q-factor of 3-segment PWL can reach a level comparable to that of the original

activation functions; in addition, there is no need for DSP slices, resulting in more

efficient use of resources than the Taylor approximation. With this, the RAM usage

in the PWL is efficient because only a few coefficients of the approximation must be

saved, whereas the LUT, which brings about difficulties during the retraining process,

requires that all values of each quantization level be saved, resulting in an exponential

increase in memory usage as the number of bits increases.
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3.4 Conclusion

This chapter focused on reducing the computational complexity of NN-based equalizers

while maintaining equalization performance in Q-factor. The weight clustering technique

was investigated to lower the number of real multiplications of the NN-based equalizer

used in digital subcarrier multiplexing systems. Additionally, approximation techniques

for nonlinear activation functions of the NN were analyzed. The result demonstrated

that approximation of the activation functions can reduce hardware resource usage

without severely affecting accuracy. A selection of the appropriate complexity reduction

strategies can lead to considerable improvements in computational efficiency. These

insights set the foundation for further enhancements in parallelization and generalizability,

which are discussed in the following chapters.
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Chapter 4

Parallelization of Recurrent NN-Based
Equalizer via Knowledge Distillation

4.1 Introduction

NN-based equalizers’ practical implementation in real-world systems has been hindered

by major challenges like computational complexity and the requirement for high-speed

processing. As previously observed in previous works [62, 73, 177], RNNs have out-

performed feedforward NNs in addressing nonlinear impairments. The feedback loop

structure of RNNs (e.g., biLSTM) presents inherent parallelization challenges despite

its benefit to learn the temporal sequence [178, 179]. The parallelization is necessary

to enable high-throughput and low-latency hardware implementations in modern optical

networks.

This chapter, based on C5 [180] and J3 [181], introduces a novel method that uses

knowledge distillation (KD) to solve the parallelization problem of RNN-based equalizers.

In particular, the proposed method converts the sequential biLSTM-based equalizer into

a feedforward structure that can be parallelized. KD, a technique traditionally applied

in classification tasks, involves transferring knowledge from a larger teacher model to a

more compact student model that requires fewer computations [182]. Classification

tasks involving teacher and student networks with similar topologies have been the

main focus of prior KD research. Only recently has there been interest in applying

KD to regression tasks and cross-architecture KD [183], as suggested in this work.

This work uses KD as a structural conversion tool, allowing parallel processing and

reducing inference latency, in contrast to the conventional use of KD for complexity

reduction. The difficulties in implementing biLSTM in low-complexity hardware for
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high-speed processing are addressed by this parallelizable structure. To further lower

the computational complexity per recovered symbol, the NN-based equalizers in this

work also recover multi-symbol outputs [184].

The key contributions of this chapter are as follows:

• A novel KD-based framework, as shown in Fig. 4.1, to allow parallelization of

RNN-based equalizers, by transforming a biLSTM-based teacher model coupled

with a 1D-CNN, proposed in [16], into a feedforward student model based on

1D-CNN,

• Comparative studies of performance in Q-factor, computational complexity, and

inference latency across various architectures of the NN, namely, biLSTM, biRNN,

1D-CNN, and MLP.

• Validation of the KD framework across diverse transmission scenarios using both

simulated and experimental data.

This chapter includes: first, Section 4.2 which explains the concept and benefits

of parallelization of NN architecture and symbol recovery. After that, in Section 4.3,

–
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ŷT

ŷS
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Fig. 4.1 KD framework with biLSTM+1D-CNN as a teacher model and dilated 1D-CNN
as a proposed student model.
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the KD framework and its background were introduced. Section 4.4 describes the

experimental and numerical setups, followed by the training methodology. Next, Section

4.6 presents a comparative analysis of performance and computational trade-offs for

the proposed model and other NN architectures across various transmission scenarios.

Finally, Section 4.7 provides the conclusion of the key results and discusses the future

work.

4.2 Parallelization

4.2.1 Parallelization of NN Architectures

Parallelization of the NN structure should be considered when designing the model.

Parallelization can more efficiently leverage hardware usages like multi-core GPUs and

CPUs, resulting in the acceleration of the training or inference of the NN. Each NN

type offers a different degree of parallelism, depending on its unique architecture. For

instance, the structure of NN can have a feedforward nature like CNNs or a recursive

one like RNNs. Fig. 4.2 illustrates the recurrent structure at the top with a feedback

loop, preventing parallelization, while the feedforward structure at the bottom can

process multiple sets of inputs and provide multiple outputs simultaneously.

This work centers on 1D-CNNs. These networks are based on a feedforward structure,

allowing input temporal sequences to be processed independently, which makes parallel

operations feasible [185, 186]. In the context of signal processing, convolutional layers

share similarities with finite impulse response (FIR) filters, as both rely on convolution

operations. Specifically, the output at a given time step is determined solely by the

current and preceding inputs. The mathematical formulation of a 1D-convolutional

layer is as follows:

y fi = φ

(︄
ni

∑
n=1

nk

∑
j=1

x ini+j−1,n ·k fj,n+bf
)︄
, (4.1)

where y fi denotes the output, known as a feature map, of a convolutional layer built by

the filter f in the i-th input element, nk is the kernel size, ni is the size of the input

vector, x in represents the raw input data, k fj denotes the j-th trainable convolution

kernel of the filter f and bf is the bias of the filter f . For the FIR filter, the equation

can be summarized as:

y(n) =
N

∑
i=0

bi · x(n− i), (4.2)
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Fig. 4.2 Illustration of the parallelizability comparison between a recurrent cell (top)
that is not easily parallelizable due to the feedback loop and a 1D-CNN (bottom) that
can process output simultaneously.

where y(n) represents the output signal, x(n) is the input signal, N denotes the filter

order. The FIR filter computation is fully parallelizable as it does not contain any

recursive part [187–189].

For RNNs, they are particularly effective in modeling sequential data. The output

at the current time step yt depends on the current stage input xt and the output of

the previous stage yt−1. The equation of the RNN for a given time step t is as follows:

ht = φ(Wxt +Uht−1+b), (4.3)

where φ is the nonlinear activation functions, xt ∈ Rni is the ni -dimensional input

vector at time t, ht ∈ Rnh is a hidden layer vector of the current state with size nh,

W ∈ Rnh×ni and U ∈ Rnh×nh represent the trainable weight matrices, and b is the bias

vector. Computing the output at the current stage as a function of the previous

stage output introduces a recursive evaluation, which inherently requires sequential

processing and prevents parallel execution. In signal processing, RNNs can be analogized

to infinite impulse response (IIR) filters [190, 191]. This similarity becomes evident

when comparing the equations Eq. (4.3) and Eq. (4.4). The equation of the first-order

IIR filter is:

y(n) = bx(n)+ay(n−1), (4.4)
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where y(n) refers to the output signal, x(n) is the input signal, b is the feedforward

filter coefficient and a denotes the feedback filter coefficient. Although Ref. [192]

demonstrates the potential for unfolding the pipelined processing of IIR filters into

partially parallel operations, the feedback loop remains, as illustrated in Fig. 8 of [192].

Therefore, RNN-based architectures are not entirely parallelizable. This limitation

extends to other RNN variants, including LSTM networks, biLSTM networks [71], and

Gated Recurrent Unit (GRU) networks.

To be more specific, this study focuses on the biLSTM model architecture. biLSTM is

the network consisting of two separate LSTM layers: for forward and backward directions

[193]. Because of a double recurrent setting, which cannot be fully parallelized, biLSTM

is even more computationally expensive than LSTM and RNN. The architecture of an

LSTM cell can be seen in Fig. 4.3. LSTM (see Eq. (2.23)) and RNN (see Eq. (2.22))

have essentially identical core properties: sequential processing and retaining past

information through past hidden states. Due to the sequential processing of the

recurrent setting, the model computation is very expensive due to limited parallelization

[186].

This study proposed to transform the model architecture from the biLSTM to

1D-convolutional layers to enable parallel computation. Parallel computing increases

the energy efficiency of the resources and reduces the time-to-solution. More impor-

tantly, parallelization allows the NN-based equalizer to be closer to the real hardware

implementation. Especially, the optical networks require high-speed data transfer and

the latency can be a crucial factor of the equalizers.
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4.2.2 Parallelization of Recovered Symbols

Traditionally, NN-based equalizers in earlier studies [62, 194, 66] were designed to

recover one symbol at a time, which means that the output of the NN model represents

only one recovered symbol at each inference step. However, the single-symbol output

NN-based equalizers can be computationally inefficient, as the weights and biases

trained to recover one symbol may still be useful for recovering multiple symbols [195].

When taking into account the pre- and post-cursor ISI and chromatic dispersion, the

input window should be wider than the output window [122]. The initial and final

input symbols in the window lack the information of their neighbors, resulting in a

smaller number of recovered output symbols [16]. Multi-symbol output equalizers draw

attention to the research areas, previously proposed by [195, 81, 16].

In this study, the proposed NN-based equalizer adopts a multi-symbol output design

to reduce computational complexity per recovered symbol. The shape of the input and

the output is illustrated in Fig. 4.4a and 4.4b, respectively. The last layer of the models

in this work (except for the MLP) adopts the 1D-convolutional layer as in Ref. [16].

The 1D-convolutional layer contains two filters to recover both real (I) and imaginary

(Q) components of X polarization of the output signal. The size of the output window

or the number of recovered symbols at each inference step is M−nk +1, where M

represents the input window size that NN processes at a time, and nk is the kernel size

in the 1D-convolutional layer. In this study, the padding is set to zero, while the dilation

and stride are set to one. The output size can be different depending on the padding,
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Fig. 4.4 (a) The input of the model contains M real (I) and imaginary (Q) components
of both X and Y polarization the received symbols; (b) the output of the model recovers
I and Q components of X polarization of M−nk +1 symbols at the output.
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dilation, and stride. Note that the MLP model does not deploy a 1D-convolutional layer

but it uses the neurons to recover multi-symbol output instead.

4.3 Knowledge Distillation

Generally, KD refers to a model compression technique of transferring knowledge from a

complex model, known as a teacher model, to a more compact one, known as a student

model, which is less computationally expensive to evaluate [182, 196]. KD allows the

student model to have a comparable performance with respect to the teacher while

requiring less CC. The student model exploits the teacher’s predictions to assist its

learning. The predictions from the teacher model referred to as “teacher labels” or “soft

labels”, are used to train the student model together with the ground truth labels to

aid the student’s learning. Most of the prior work proposed KD [197, 182, 198, 199]

in a classification task. In classification, the ground truth labels are usually one-hot

labels. The teacher labels contain useful information about the relative similarity of the

incorrect predictions, while the one-hot labels do not provide that sort of information

[200, 182, 201, 118]. For example, the teacher labels, which were the results of the

Softmax function, contain probabilities of each class in a multi-class problem, whereas

the one-hot label only contains one or zero for each class.

KD in a regression task is still in its infancy, but various papers, e.g., [200, 183, 202]

have shown that KD can demonstrate promising results in this context. However, it is

still ambiguous in some cases about how the student model can take advantage of the

teacher’s predictions in the regression task [200]. In this work, Fig. 4.1 demonstrated

how the teacher labels contain the noise information in the constellation diagram

compared to the ground truth labels. KD in regression also performs as an efficient

regularizer to improve generalization. Sec. 4.6 shows the weight distribution of the

student model trained with KD compared to the one without KD.

The loss paradigm for KD involves a joint loss function that considers both the

loss between the teacher’s and the student’s predictions and the difference between

the student’s predictions and the ground truth labels, as described in [183]. This

dual-component loss function is illustrated in Fig. 4.1 and is expressed as follows:

LKD = αL(ŷS, ŷT)+(1−α)L(ŷS,y true), (4.5)
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where y true is the actual labels, ŷS and ŷT represents the student’s and the teacher’s

predictions, respectively and α is the hyper-parameter to adjust the contribution for

each term to the final loss. The first term of the loss function enables the student

model to learn from the teacher’s predictions, while the second term ensures that the

student model learns directly from the ground truth. Empirically, this α parameter has

a similar impact on the performance as the regularizer coefficient, as it can impact

how overfitting the model is, depending on how much the student model learns from

the teacher or from the ground truth. In this study, the L function is the L2 distance

(Euclidean distance). It is worth noting other functions, such as MSE, can also be

adopted, but in this case, the L2 distance provides better learning.

Typically, KD is applied when the teacher and student models share similar network

topologies, with the primary objective of reducing computational complexity [118].

However, cross-architecture KD, where the teacher and student models have distinct

structures, has seen limited investigation [183]. In this work, KD is leveraged to

restructure the NN architecture in regression tasks. Unlike traditional KD applications

that aim to reduce computational complexity in terms of RMs, this approach focuses

on minimizing inference time to enhance practical deployment.

4.4 Data Generation and NN Training

4.4.1 Data Generation

The numerical simulator created the dataset by assuming the transmission of a single-

channel 30 GBd, 64-QAM DP channel along 20×50 km SSMF spans. The signal

propagation through the fiber was represented by a generalized Manakov equation

SSFM [14]. The SSMF is characterized by the effective nonlinearity coefficient γ = 1.2

(W· km)−1, chromatic dispersion coefficient D = 16.8 ps/(nm·km), and attenuation

parameter α = 0.21 dB/km. At the end of each fiber span, optical fiber losses are

compensated for by an EDFA with a 4.5 dB noise figure. Downsampling and CDC were

performed on the receiver end. The CDC was performed in the frequency domain with

the transfer function of the chromatic dispersion given by [14]: G(z,ω) = exp
(︂
− jω

2β2z
2

)︂
where ω is the angular frequency, β2 is the group delay dispersion parameter of the

fiber and z is the transmission length. Afterward, the received symbols were normalized

and used as inputs of the NN.
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input.

In this work, the experimental data were also analyzed to verify the performance

of the proposed KD framework. The transmission scenario was single-channel DP-

probabilistic shaped (PS)-64QAM1 in 34.4 GBd along 9×110 km SSMF fiber spans.

The experimental setup in Fig. 4.5 was detailed in Ref. [16]. At the transmitter side,

a symbol sequence with a modulation scheme of 64QAM (8 bits/4D symbol) with a

symbol rate of 34.4 GBd was mapped out of data bits generated by a Marsenner twister

generator [203]. After that, the symbol sequence was passed through a digital RRC

filter with a 0.1 roll-off factor to limit the channel bandwidth to 37.5 GHz. The filtered

digital samples were resampled and fed into a DAC operating at 96 GSamples/s. The

DAC outputs were then amplified by a four-channel electrical amplifier which drove

a DP in-phase/quadrature MZM. The modulator modulated a continuous waveform

carrier generated by an external cavity laser at a wavelength of λ = 1.55µm. The

resulting optical signal was transmitted along 9×110 km spans of SSMF with lumped

EDFA amplification with the noise figure ranging from 4.5 to 5 dB. The SSMF had α

= 0.21 dB/km, D = 16.8 ps/(nm·km), and γ = 1.14 (W· km)−1.

At the receiver side, the received optical signal was converted to the electrical

domain using an integrated coherent receiver. Then, the resulting signal was sampled at

1To demonstrate that the NN equalizer is applicable in different transmission scenarios, the experi-
mental data of the PS case was utilized.
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80 GSamples/s using a digital sampling oscilloscope. The sampled signal was processed

offline with the DSP algorithms described in [204]. The CDC was accomplished in

two steps. The first step of processing involved compensating for bulk accumulated

dispersion using a FDE with an FFT size of 12288 samples and an impulse response

length of 3072 samples2. After that, the residual chromatic dispersion and dynamic

impairments of channels were mitigated by the adaptive approach, MIMO equalization

with an FFT size of 192 samples and an overlap size of 48 samples. Next, the carrier

frequency offset was mitigated. A constant-amplitude zero autocorrelation-based

training sequence was located in the received frame, and the equalizer transfer function

was estimated from it. Then, the two polarizations of the signal were demultiplexed,

and clock frequency and phase offsets were corrected. The carrier phase estimation was

performed using pilot symbols. The resulting soft symbols were used as input for an NN

equalizer. Finally, the pre-FEC BER was evaluated based on the signal obtained at the

output of the NN equalizer. In this case, the NN focused on mitigating the nonlinear

effects, and was not designed to replace the regular DSP, instead, the NN was applied

as an extra step to the regular DSP.

4.4.2 KD Training to Solve the Parallelization Problem of Recur-
rent Connection

The KD framework is deployed to transform the model architecture from the biL-

STM+CNN to simpler ones. Fig. 4.1 shows the KD process with the teacher and

student model structure. The constellation diagrams of the teacher labels and the

ground-truth labels in Fig. 4.1 indicate that the training of the student model with the

teacher’s predictions that contained the information on noise and some uncertainty, can

result in not overly confident predictions of the student. This helps reduce overfitting

and improve the generalizability of the student model. The comparison of different

types of student models was carried out, namely, biRNN, 1D-CNN, and MLP. 1D-CNN

and MLP have a feedforward structure, enabling parallel computation for the previously

proposed biLSTM-based equalizer [16] or the teacher model. In contrast, biRNN still

has a recurrent structure. However, biRNN architecture is considerably less complex

than the biLSTM, thus allowing for faster computation. In this work, the biRNN is

limited to only one layer in order to maintain the complexity.

2These values allow to compensate for up to an accumulated dispersion of 300 nm/km, which is
significantly more than the one needed to compensate in a link with 9×110 km.
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The teacher model is pre-trained and used only to create teacher labels. For both

simulation and experiment, the training datasets were generated with random bitstream

of 220 symbols, however, at every epoch, 218 symbols were randomly chosen from this

dataset as input symbols to train the model. For testing and validation, the dataset

contained unseen 217 symbols. All the models in this work were trained, validated, and

tested with this same size of dataset. The training of the models in both simulation

and experiment was carried out for 1000 epochs. The TL is utilized to transfer the

knowledge from the models trained with higher power to the model with lower power

to save the training resources. A mini-batch size is 210 and the mini-batch input of the

NN is defined in three dimensions [62]: (B, M, 4). B is the mini-batch size. M is the

memory size depending on the number of neighbor symbols N as M = 2N+1. The last

dimension has the shape of four referring to the number of features for each symbol.

Both the teacher and student models accepted four input features resulting from the

in-phase and quadrature components of the complex signal (XI ,XQ,YI , and YQ) where

XI + jXQ and YI + jYQ were the signals in the X and Y polarizations, respectively. The

output is to recover the real and imaginary parts of multiple symbols in X polarization

simultaneously. The shape of the NN output batch can be expressed as (B, M−nk +1,
2), where M−nk +1 is the number of symbols recovered at the output. The weights

of the trained models were saved at the epoch where the BER of the validated dataset

was the lowest, as known as the early stopping method.

To evaluate the effectiveness of the KD framework, the training of the 1D-CNN

student model with KD is compared to the traditional training approach without

knowledge of the teacher model, known as the student model trained from scratch. In

addition, the model with the L2 regularizer [205] was also investigated to improve the

generalizability of the student model trained from scratch. The student model trained

from scratch has the same structure and hyper-parameters as the proposed student

trained with KD.

Teacher Network Architecture

The teacher model is a biLSTM+CNN model, see Fig. 4.1, which was trained previously

in [16]. The biLSTM layer has 100 hidden units (nh), and the 1D-CNN layer adopts 2

filters (nf ) and nk = 51 with the linear activation function. The loss function used in

this model is MSE, and the optimizer is Adam with a learning rate of 10−3. The input

window (M) has the size of 221 input symbols and the model performs a regression

task to predict the real and imaginary parts of the recovered symbols, or 171 symbols
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per one inference step. For the teacher model employed in the experimental setup, the

model has 117 hidden units and the output window is 195 symbols. More details can

be found in Ref. [16].

Student Network Architecture

This study investigated various types of student models—1D-CNN, biRNN, and MLP3

—to evaluate their equalization performance, computational complexity and inference

speed. For both simulation and experimental setups, the student models were trained

using the Euclidean distance (L2 distance) as the loss function.

For the proposed 1D-CNN model, the dilated CNN is applied. The dilated convolution

is an approach to inflate the kernel by inserting holes between its consecutive elements.

3Note that the hyper-paraments of all types of student models for both simulated and experimental
data were optimized with the dataset when the launch power was 2 dBm which was the optimum launch
power of the teacher model and these values were used for other launch power. The optimization for
each type of student model has undergone approximately the same amount of time.

Convolution 

Hidden 
Layer

Hidden 
Layer

Output

Input

(a) Normal CNN with dilation equal 0.

Dilated Convolution 

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Output
Dilation = 4

Input

(b) Dilated CNN.

Fig. 4.6 Visualization of (a) a stack of convolutional layers; (b) a stack of ‘dilated’
convolutional layers.
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Consequently, the network is operated on a coarser scale than with a normal convolution

filter with a dilation rate equal to zero [206–208]. This approach allows the NN to deal

with long-term temporal dependencies, and have larger receptive fields within only a few

layers as shown in Fig. 4.6b, compared to a normal CNN in Fig. 4.6a. The dilated CNN

preserves the input resolution throughout the network [209]. The dilated convolutions

demonstrated the longer receptive field in a cheaper way than the LSTM [206]. In Ref.

[183], the KD student model with dilated CNN architecture shows promising results

when the teacher model is the LSTM architecture and the data is in the form of a

time-series in the regression task. To mimic biLSTM, which learns the input data in

forward and backward directions, the 1D-CNN student model learns both directions of

the training data. The backward direction input means the input sequence (forward

direction) in reverse time order. The last 1D-CNN layer of both the teacher and the

student has the same parameters. The Bayesian optimizer [62] is used to optimize

the hyper-parameter values of the student model. The estimated optimal values found

by the Bayesian optimizer are depicted in Fig. 4.1. Note that (38, 23, 1) means that

the 1D-CNN layer operates with 38 filters, a kernel size of 23, and a dilation rate of

1. The alpha value is 0.903. The activation function of the dilated 1D-CNN part is

LeakyRelu [210]. Note that the architectures and parameters of the student models

in the simulation and experimental setup are the same, apart from the second layer

of the 1D-CNN, instead of 25 filters, it has 33 and 34 filters to maintain the output

dimensions.

The vanilla RNN is the simplest variant of the recurrent-based models [211]. This

RNN student model adopts one layer of biRNN with 135 hidden units followed by a

biRNN Layer
𝑛ℎ = 135
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Fig. 4.7 Different student architectures: (a) biRNN model as a student model; (b) MLP
model as a student model.
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1D-CNN layer with 2 filters and a kernel size of 51 as the teacher model, see Fig. 4.7a.

Stacking the biRNN layers is avoided to maintain the inference speed, therefore, the

performance can be limited. The training was carried out with the alpha value of 0.611,

optimized by Bayesian optimizer.

The last student model type is the MLP, shown in Fig. 4.7b, consisting of three

hidden layers with the hidden units of 401, 510 and 510, respectively, and an output

layer of 342 neurons. The output layer is reshaped to match the aforementioned output

window shape of the data. The neurons in the hidden layers have hyperbolic tangent

(tanh) as an activation function, while the output layer deploys a linear function. The

alpha value is 0.8.

4.5 Computational Complexity Evaluation Metrics

This section presents the formulas of the complexity metrics (RM, BOP, and NABS)

explained in Chapter 2, to evaluate the complexity of the NN models in this chapter.

The detailed explanation of each equation was discussed in [55].

Dense Layer

Starting with the MLP model explained in Section 2.2.1, an MLP model consists of

multiple dense layers. RM of a dense layer can be calculated as:

RMDense = nnni , (4.6)

where ni is the number of features in the input vector and nn represents the number

of neurons in the layer. After that, we move on to calculating BOP to take into

account the bitwidth or the precision. BOP of a dense layer includes the costs of

both multiplications and additions. BOPMul corresponds to the BOP of vector-matrix

multiplication and BOPBias represents bias addition [55]:

BOPMul = nn
[︁
nibwbi +(ni −1)(bw +bi + ⌈log2(ni)⌉)

]︁
, (4.7)

BOPBias ≈ nn(bw +bi + ⌈log2(ni)⌉), (4.8)

S. Srivallapanondh, PhD Thesis, Aston University 2025.



4.5 Computational Complexity Evaluation Metrics 95

where bw is the weight bitwidth and bi is the input bitwidth. For the convenience of

the upcoming expressions, short notations are defined:

Mult(ni ,bw ,bi) = nibwbi +(ni−1)
(︁
bw+bi+ ⌈log2(ni)⌉

)︁
, (4.9)

Acc(ni ,bw ,bi) = bw +bi + ⌈log2(ni)⌉. (4.10)

The Acc term represents the actual bitwidth of the accumulator required for MAC

operation. The BOP of a dense layer can be calculated as:

BOPDense = BOPMul+BOPBias

≈ nnni
[︁
bwbi +(bw +bi + ⌈log2(ni)⌉)

]︁
≈ nnni

[︁
bwbi +Acc(ni ,bw ,bi)

]︁
.

(4.11)

For the last metric, NABS of the dense layer can be formulated as [55]:

NABSDense ≈ nnni
[︁
XwAcc(ni ,bw ,bi)+Acc(ni ,bw ,bi)

]︁
≈ nnni(Xw +1)Acc(ni ,bw ,bi),

(4.12)

where Xw represents the number of adders required at most to perform the multiplication.

To be more specific, for the uniform quantization, we have Xw = bw −1. This is because

in the binary system, multiplying can be represented by a shift and adders, and the

number of adders needed at most is bw−1. In this chapter, only the uniform quantization

is assumed.

1D convolutional layer

Next, for the 1D convolutional layer as formulated in Eq. (2.20) and explained in

Section 2.2.1, the output size of the 1D-convolutional layer is:

OutputSize =

[︃
ns +2padding−di lation(nk −1)−1

str ide
+1

]︃
, (4.13)

where ns is the input time sequence size and nk is the kernel size. The RM of a

1D-convolutional layer can be calculated as follows:

RMCNN = nf nink ·OutputSize, (4.14)
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where nf is the number of filters or the output dimension. The BOP for a 1D-

convolutional layer, after considering the multiplications and additions, can be defined

as [55]:

BOPCNN =OutputSize ·nfMult(nink ,bw ,bi)

+nf Acc(nink ,bw ,bi).
(4.15)

The NABS of a 1D-convolutional layer is given by [55]:

NABSCNN =OutputSize ·nf
[︁
nink(Xw +1)−1

]︁
·Acc(nink ,bw ,bi)

+nf Acc(nink ,bw ,bi).

(4.16)

Vanilla Recurrent Neural Network

The equation of Vanilla RNN was defined and explained in Section 2.2.1. The RM of a

vanilla RNN is given by:

RMRNN = nsnh(ni +nh), (4.17)

where nh notes the number of hidden units. The BOP for a vanilla RNN is presented

as [55]:

BOPRNN = nsnhMult(ni ,bw ,bi)

+nsnhMult(nh,bw ,ba)

+2nsnhAcc(nh,bw ,ba),

(4.18)

where ba is the activation function bitwidth. Like other network types, the NABS of

vanilla RNN can be computed from its BOP equation by transforming the multiplication

to the number of adders needed at most (X) [55]:

NABSRNN = nsnh
[︁
ni(Xw +1)−1

]︁
Acc(ni ,bw ,bi)

+nsnh
[︁
nh(Xw +1)+1

]︁
Acc(nh,bw ,ba).

(4.19)

Long Short-Term Memory

The LSTM layer and its formulas were discussed in Section 2.2.1. The RM of an LSTM

layer is:

RMLSTM = nsnh(4ni +4nh+3), (4.20)
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where nh is the number of hidden units in the LSTM cell. The BOP for an LSTM layer

includes the bitwidth of the operands and the number of additions. Consequently, the

BOP can be defined as [55]:

BOPLSTM = 4nsnhMult(ni ,bw ,bi)

+4nsnhMult(nh,bw ,ba)

+3nsnhb
2
a

+9nsnhAcc(nh,bw ,ba).

(4.21)

Lastly, the NABS of LSTM layer is described as [55]:

NABSLSTM = 4nsnh
[︁
ni(Xw +1)−1

]︁
Acc(ni ,bw ,bi)

+4nsnh
[︁
nh(Xw +1)+1

]︁
Acc(nh,bw ,ba)

+6nsnhba.

(4.22)

Please note that when computing the complexity for the bi-directional layer, such

as bi-RNN, the complexity of a bidirectional layer is twice the unidirectional layer.

4.6 Results and Discussion

4.6.1 Equalization Performance

The proposed student model (1D-CNN) trained using the KD framework is compared

against the teacher model (biLSTM+CNN), the student model trained from scratch

without KD (using the same settings), and the student model trained from scratch

with an L2 regularizer [205]. The optimum L2 coefficient depends on the launch power.

At 2 dBm launch power, the optimum L2 coefficient found by grid search is 10−4

for simulated data and 5×10−6 for experimental data. Fig. 4.8a depicts Q-factor vs.

launch power for different types of NN-based equalizers in the simulated data. In all

NN-based equalizers, an improvement of the optimum launch power was achieved. It can

be observed that the Q-factor performance of the feedforward student model with KD

drops by 0.5 dB compared to the recurrent teacher model at its optimal launch power

(2 dBm). With KD, the performance of the student model is comparable to that of the

teacher model in the linear transmission regime, but the student’s performance degrades

slightly as the launch power increases. However, when training the student model

from scratch without KD, the model suffers from overfitting, resulting in a noticeable
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degradation of the peak performance by 2.4 dB at its optimal power. Training the

student model with the L2 regularizer, which helps enhance the generalization capability,

improves the performance of the NN compared to training it from scratch only, but still

does not reach a similar performance level as the one achieved when the student model

is trained with KD. The performance achieved using DBP 1 STpS and CDC are also

shown for reference.
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Fig. 4.8 Q-factor as a function of the launch power for the NN-based equalizers obtained
via KD, compared to the original (teacher) model, CDC in different transmission
scenarios.

With the experimental setup, the optimal performance of the student model with

KD, shown in Fig. 4.8b, was comparable to the teacher model. The performance

drop was not observed in the experimental data. However, the student model trained

from scratch did not suffer from severe overfitting as in the simulated data, but it still

could not reach the same Q-factor level as the teacher model or the student model

trained with KD. In the case that the student model was trained from scratch with

an L2 regularizer, the performance was improved slightly. When the model is not

significantly overfitting, the L2 regularizer parameter needs to be carefully selected. In

this experimental setup, the weaker regularization parameter was preferred (5×10−6),
to prevent the regularizer from excessively penalizing the weights, allowing the model

to still learn meaningful patterns from the data [212]. This result demonstrated that

the proposed student network trained with KD was highly effective in the experimental

data and the KD also maintained superior performance compared to the student models

trained from scratch. However, it can be observed that at the higher launch power, the
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performance gap was larger. At the launch power of 5 dBm, the model with KD and

the student model with L2 regularize performed worse than the student model trained

from scratch. This can be because the optimization process was carried out with the

dataset with the launch power of 2 dBm, resulting in a sub-optimal performance at

5 dBm and overly constrained weight distribution.
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Fig. 4.9 Comparison of different architectures (biRNN+CNN, 1D-CNN and MLP) of
the student model to the teacher model, CDC and 1 STpS DBP in: (a) simulation and
(b) experiment.

To demonstrate the effectiveness of the proposed 1D-CNN student model, the

1D-CNN is compared against the biRNN and MLP as student models, shown in Fig. 4.9a

and Fig. 4.9b for the simulated and experimental data, respectively. The performance

of the biRNN and MLP students was not comparable to the 1D-CNN model. In the

simulation, the biRNN model had around 1.4 dB Q-factor drop from the teacher model

but still outperformed the CDC and showed the improvement of the optimum launch

power. In the experiment, the biRNN revealed the same behavior as in the simulation.

Even the biRNN has a recurrent structure, but as the implementation was limited to

only one layer to limit the inference latency, the model did not learn well. In addition,

instability during the training was present, which can result from vanishing/exploding

gradients. In the case of the MLP as a student model4, the performance was poorer

than that of the CDC in both simulation and experiment. The MLP was not the most

suitable architecture for nonlinear mitigation when considering the performance [89],

4Note that during the optimization process, attempts were made to increase the number of layers to
determine if this would enhance performance; however, the MLP reached a point where adding more
hidden layers no longer improved performance.
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especially for recovering the multi-symbol output as in this case. This can be explained

by considering that the MLP lacks temporal information handling by design. The MLP

does not take the sequence of data points into account, which limits its capability to

effectively model time series dynamics.

4.6.2 Inference Speed Performance

For this analysis, the inference speed was tested with the simulation data and the

experimental data. Note that both the teacher and the student models recover 171

symbols per inference step in the simulation, and 195 symbols per inference step in

the experiment. The inference time analysis was carried out by using CPU (Intel Xeon

Processor 2.20 GHz) and GPU (Tesla T4) on Google Colab [213]5 as the inference

engine. In this analysis, the size of the test set was 800, and the batch size was 8.

As can be seen from Fig. 4.10a for the simulation and Fig. 4.10b for the experiment,

the biLSTM-based NNs require the longest inference time in both CPU and GPU as

inference engines.
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Fig. 4.10 Inference time of teacher and different student models when applied testing
data obtained from (a) simulation; (b) experiment.

The biRNN presented lower inference latency than the biLSTM due to its simpler

architecture. The inference time of the recurrent-based NN in the CPU and the GPU

did not differ significantly. In contrast, the feedforward NNs (1D-CNN and MLP) have

5Note that, in this study, the GPU-accelerated library of primitives for deep NNs cuDNN (NVIDIA
CUDA® Deep NN library) was not considered for the inference in the GPU.
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significantly lower inference latency in the GPU than that of the CPU, especially the

1D-CNN model. 1D-CNN model when the CPU was used as the inference engine

experienced similar latency as the recurrent-based NN. However, with the feedforward

nature of the 1D-CNN that allows parallelization, the GPU can demonstrate remarkably

faster computation. The MLP’s inference time is shorter than the 1D-CNN as it has

a simpler structure and operations. The recurrent networks (biLSTM and biRNN)

experienced longer inference latency in the GPU compared to the CPU. This can

happen due to the non-easily parallelizable recurrent structure and the complexity of

the model. GPUs are specialized for efficient parallel computing, handling complex

models with multiple layers and parameters. The GPUs are generally faster when the

computation is parallelizable and involves matrix multiplications, while in some other

types of computations, the GPU can be slower. The parallel computing ability of the

GPU can fully exploit the parallelizability of the feedforward structures of 1D-CNN

and MLP. Overall, the proposed 1D-CNN student model provided the most reasonable

trade-off between performance and inference speed. The parallelization of the proposed

feedforward equalizer and its savings in latency are key to the real-time hardware

implementation of NN-based equalizers.

4.6.3 Roles of Knowledge Distillation

This subsection discusses the features associated with the KD-trained model. For this

purpose, the weight distribution of the student model trained with different approaches

in Fig. 4.11a for the simulation and Fig. 4.11b for the experiment are reported. In

both figures, compared to the student model trained from scratch, the student model

with KD has a more regularized weight distribution: the weights are more concentrated

around zero. This characteristic helps reduce the model’s variance and overfitting. The

optimal value of α in the KD loss function is 0.903, which means that the student model

learns 90.3% from the teacher labels and the rest comes from the ground-truth labels.

This fact demonstrates the effectiveness of the teacher labels in the student’s learning.

The teacher constellation/labels depicted in Fig. 4.1 show that the teacher also provides

helpful information on the noise, whereas this information cannot be encoded in the

ground-truth labels (which contain only real values). The weight distribution of the

student model with KD and the improvement in Q-factor, compared to the training of

the 1D-CNN without KD, both support the concept of using teacher labels as efficient

regularizers [182].
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Fig. 4.11 Comparison of weight distributions of the student model trained with KD, the
student model trained from scratch, and the student model trained with L2 regularizer,
using the data obtained from: (a) simulation; (b) experiment.

KD can work as an efficient regularizer to allow the model to generalize well with

unseen data. In this regard, the KD framework provides the adequacy of the NN weight

constraints, in contrast, too strict or too weak L2 regularizer parameters, may not

provide significant benefits. However, the KD framework also shows some limitations.

The training complexity is increased because both the teacher and the student models

need to be trained. For example, when the transmission scenario changes, the teacher

model needs to be trained first before the student one with KD can be trained effectively.

This can be time and resource-consuming. During the training, KD involves learning via

the teacher’s predictions, resulting in a more complex training process. Moreover, the

student model relies heavily on the accuracy of the teacher model. When considering

the optimization process, to obtain the best performance, both the parameters of the

teacher and the student need to be optimized. A teacher with good performance is

necessary for the student’s learning.

4.6.4 Complexity Comparison of Different NN-Based Equalizers

In this section, we evaluate the performance versus computational complexity of the

NN-based equalizers after applying KD framework to train different student mod-

els (biRNN+CNN, 1D-CNN, and MLP) with the knowledge of teacher model (biL-

STM+CNN). The computational complexity in terms of the number of trainable
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parameters, RM, BOPs, NABS, and inference latency is compared. As mentioned

earlier, KD in general context is used to reduce the computational complexity in terms

of the NN parameters, however, in this work, the KD framework is used to recast the

NN structure from biLSTM-based (recurrent-based) to a feedforward-based equalizer

to allow parallelization in processing. Therefore, KD was applied to focus on enabling

parallelization and reducing the inference latency rather than reducing the RM, BOPs,

or NABS.

Data/
Output Shape

Performance Metric
biLSTM+CNN

(Teacher)
biRNN+CNN

(Student)
1D-CNN
(Student)

MLP
(Student)

Simulation
171

Symbols

Q-factor 10.66 9.22 10.19 6.3
No. Trainable
Parameters

1.04×105 6.53×104 2.93×105 9.95×105

RMpS 1.29×105 7.60×104 3.73×105 5.81×103
BOPpS 1.67×108 1.14×108 8.03×108 1.25×107
NABSpS 3.2×108 2.10×108 1.27×109 1.96×107

CPU Inference Time
per Window

5.78×10−3 4.51×10−3 5.12×10−3 3.83×10−4

GPU Inference Time
per Window

7.65×10−3 4.38×10−3 3.87×10−4 1.51×10−4

Experiment
195

Symbols

Q-factor 8.22 8.06 8.22 7.32
No. Trainable
Parameters

1.27×105 5.24×104 3.10×105 1.02×106

RMpS 1.42×105 5.71×104 3.43×105 5.22×103
BOPpS 1.73×108 7.93×107 7.38×108 1.12×107
NABSpS 3.39×108 1.50×108 1.17×109 1.76×107

CPU Inference Time
per Window

6.01×10−3 3.97×10−3 5.23×10−3 3.53×10−4

GPU Inference Time
per Window

7.02×10−3 4.39×10−3 3.18×10−4 1.43×10−4

Table 4.1 Summary of the performance versus complexity of different architectures of NN-
based equalizers after applying KD (biLSTM+CNN as a Teacher model, biRNN+CNN,
1D-CNN and MLP as Student models), where the bitwidth bi = 64, bw = 32, and ba =
32. The RM, BOP and NABS are reported “per equalized symbol”.

Table. 4.1 shows the summary of the performance versus complexity of these two

NN architectures when the precision is the default values from Tensorflow. The bitwidth

of the input (bi) is 64 bits, and the bitwidth of the weights (bw ) and activation function

(ba) is 32 bits. It can be seen that the Q-factor of the student model is slightly

lower than that of the teacher model when trained with the simulated data mentioned

above. Note that in the experiment, this KD approach did not show the performance

degradation in the student model. Even though the number of trainable parameters,
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RM, BOPs, and NABS of the student model are also higher than the teacher model,

the inference latency of the student is actually lower. This highlights the importance

of the “parallelization” strategy, which helps reduce the complexity of the processing

at the hardware synthesis level. This is crucial for real-world implementation. For the

training phase in this case, the trainable parameters can indicate the complexity to

some extent; however, empirically, the biLSTM+CNN has a longer training time, even

though the number of trainable parameters is lower than the 1D-CNN model. This

occurs because the recurrent structure of the biLSTM prevents the computation from

being fully parallelizable. At each time step of the calculation, the recurrent structure

takes into account the output of the previous time step. This sequential nature makes

the training and inference longer.

Fig. 4.12 shows BOPs and NABS as a function of the bitwidth of the weights (bw )

of the NN. It can be observed that the NABS grows with a steeper slope than the

BOPs when the bw increases. This fact highlights that towards the implementation of

resource-constrained devices or hardware accelerators, both metrics should be considered

carefully, because if only BOPs is assessed at higher precision of the weights, while

BOPs fits the requirement, NABS which escalates faster might exceed the requirement

of the implementation.
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Fig. 4.12 BOPs and NABS per equalized symbol as a function of bitwidth of weights of
biLSTM+CNN and 1D-CNN models.
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4.7 Conclusion

In this chapter, the knowledge distillation technique has been proposed as an efficient

tool to achieve the parallelizability of the recurrent-based equalizers. In this study,

KD transfers the knowledge from a recurrent-connection-based biLSTM equalizer

to a parallelizable feedforward 1D-CNN. This approach enables the parallelization of

signal processing, allowing us to essentially simplify the hardware implementation of

NN models. The effectiveness of the KD approach was tested with both simulated

and experimental data. The proposed 1D-CNN model was compared against other

NN architectures to verify the performance in terms of Q-factor and inference time.

In addition, the characteristics of the KD approach on how it assists the student’s

learning and the limitations of the KD are highlighted. It has also been shown that the

proposed feedforward equalizer obtained with KD, results in a significantly reduced signal

processing latency compared to the original biLSTM model. In the experimental setup,

the student model can perform at the same level as the teacher at the optimal launch

power, while in the simulated data, the student slightly reduces the maximum Q-factor

by 0.5 dB. In conclusion, the student model can provide 2.2 dB gain compared to the

CDC with an improvement of the optimum power by 3 dB in simulated data, while

having a 0.7 dB gain with 1 dB increment in optimum launch power in the experimental

data.
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Chapter 5

Generalizability Improvement via
Multi-Task Learning

5.1 Introduction

Apart from the computational complexity and the parallelization, which are the main

challenges of the NN-based equalizers, generalizability remains one of the major consid-

erations of NN-based equalizers and attracts more attention [100, 214]. The real-world

optical transmission systems are highly dynamic and subject to change over time. This

can result in different channel settings, different values of accumulated chromatic

dispersion [107], or the presence of channel distortion. Therefore, the equalizers in the

receiver or transmitter require reconfiguration and must be adjustable to compensate

for the variation of impairments as the channel characteristics change.

This chapter investigates the use of multi-task learning (MTL) to enhance the

generalizability and flexibility of the NN-based equalizer. Section 5.2 discusses the

concept of MTL and the difference between MTL and the traditional training approach

or single-task learning (STL). Section 5.3, based on C3 [108], demonstrates the

effectiveness of an MTL-based NN equalizer, which not only improves the equalization

performance but also works efficiently in different transmission regimes and scenarios,

leading to more generalizable and flexible solutions. Section 5.4, based on J2 [82],

shows the experimental validation of the MTL applied in coherent-detection WDM

systems, allowing flexibility when the channel spacing varies.
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5.2 Multi-Task Learning

STL is a commonly used approach to train NNs. STL refers to the training in which the

NN learns the representation of the function to provide the output of a “specific” task

[215]. One advantage of STL is that it allows the NN to focus solely on a specific task,

usually leading to very good performance in that task. However, the NN may behave

poorly when applied to different tasks (e.g., when the transmission scenario of interest

is not included in the initial training dataset). As shown in Fig. 5.1, if STL is used for

channel equalization in different transmission scenarios, multiple NN models (multiple

sets of trained weights) are usually required to provide acceptable performance. To

reduce the training complexity in (the training time and resources required) of STL

training, transfer learning (TL) can be applied [98]. TL adapts the knowledge acquired

in one task to the different tasks (different channel spacing). It is worth noting that to

be more effective, the knowledge should be transferred from the transmission scenario

with higher nonlinearity to the scenario with lower nonlinearity, for example, from higher

launch power to lower launch power. This is because the model learns and adapts

better from a more severe nonlinear impairment situation. Even though TL reduces the

training complexity, it does not contribute to the inference/implementation complexity,

as the multiple sets of weights of the NNs are still required for different transmission

scenarios.
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Note: Each task → different transmission scenario

Fig. 5.1 STL: multiple models are required for multiple transmission scenarios.
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In MTL, the NN is trained with multiple datasets from multiple related tasks, see

Fig. 5.2. In this case, the common representations learned from different but related

tasks are shared [216, 215]. The tasks refer to different transmission scenarios. With

the MTL, the model learns the different datasets randomly at each training epoch,

allowing the model to gain broader knowledge. As depicted in Fig. 5.2, MTL enables a

single NN to equalize the signal in different transmission scenarios by the joint training

on the datasets from different transmission scenarios. Fig. 5.2a shows the MTL applied

when varying the ranges of launch power, symbol rate, and transmission distance in

a single-channel system. On the other hand, Fig. 5.2b illustrates the MTL model

applied in WDM systems to learn different degrees of nonlinearities (SPM and XPM)

through different channel spacings. MTL allows the NN to generalize better by using the

domain-specific information contained in the different related tasks [215]. By training a

model to solve multiple tasks simultaneously, it can learn representations that generalize

better across tasks [217, 218]. In the case that the different tasks are sufficiently related,

the shared representation helps improve generalization, even for tasks that might not

perform as well in their STL. As a result, it can lead to better performance than learning

the tasks independently [219]. While MTL has potential, it does not always perform

better than STL, leading to a trade-off between the performance of individual tasks and

the overall performance of the model. Success in MTL depends heavily on appropriate
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Fig. 5.2 MTL: only one model is required for various situations.
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task selection and the degree of information sharing between tasks has to be carefully

controlled. Too much sharing can cause a negative information transfer, resulting in

performance degradation for each task [216]. Besides the generalization feature enabled

by the MTL, it reduces hardware costs. In fact, the shared weights are fixed, which

results in the simplification of the multipliers [107].

5.3 MTL in Adaptive Transmission

In this section, MTL [215] is proposed to calibrate the NN-based equalizer used

for different transmission conditions in coherent systems. MTL leverages shared

representations to enhance the adaptability of NN-based equalizers across different

system configurations of single-channel transmission systems. This approach does

not require retraining or additional data when the channel conditions change. The

considered transmission setup is altered by changing the symbol rate (RS) and launch

power (P ) of data channels and the transmission distance (number of spans, NSpan).

For the MTL, the NN is trained with different datasets resulting from the combination

of different transmission setups (to share the weights and biases).

5.3.1 NN Architecture and Training

The NN architecture, depicted in Fig. 5.3, contains a stack of four biLSTM layers

with 100 hidden units in each layer coupled with a dense output layer of 2 neurons to

deliver the real and imaginary values for the X-polarization. The biLSTM was selected

because it outperformed other types of NNs when used for nonlinear compensation

[62, 73]. The model took four input features resulting from the in-phase and quadrature

components of the complex signal (XI ,XQ,YI , and YQ) where XI+ jXQ and YI+ jYQ
were the signals in the X and Y polarizations, respectively. A set of 141 input symbols

was fed to the NN to recover one symbol at the output. A new set of synthetic data

of size 218 was randomly created with different system parameters and used in each

training epoch to allow the model to learn different transmission scenarios. The entire

training was carried out with a mini-batch size of 2000, and a learning rate of 0.001.

The MSE loss estimator and the classical Adam algorithm [175] were applied when

training the weights and biases. After the training, the models were evaluated by unseen

test sets of size 217 for each testing scenario.
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Fig. 5.3 Equalizer architecture with 4-layer biLSTM and a dense layer

The transmission scenarios include RS ranging from 30 to 70 GBd, number of spans

ranging between 10 and 50 (with fixed 50 km span length), and launch power ranging

between -1 and 5 dBm. The NNs were trained with MTL or STL as follows:

1. MTL trained for 1000 epochs with datasets including different NSpan, but fixed

RS = 40 GBd and P = 5 dBm.

2. MTL trained for 1000 epochs with datasets including different P , but fixed

NSpan = 50 and RS = 40 GBd1.

3. MTL trained for 1000 epochs with datasets including different RS but fixed NSpan
= 50 and P = 5 dBm.

4. MTL trained for 1200 epochs with datasets including different combinations of

NSpan, RS, and P . This NN is referred to as the “Universal model”2.

1This model has one extra input feature, which is the launch power. The model learns the data during
the training using a normalized launch power. Therefore, it could not learn to generalize well without
knowing the actual launch power.

2Here, the values of RS and NSpan are randomly selected from the list of possible baud rate values
with 5 GBd increment and the list of span number with the increments of 5 spans, respectively, to
decrease the possible number of combinations for the NN’s learning.
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5. STL (without MTL) trained for 1000 epochs with fixed parameters: RS = 40 GBd,

NSpan = 50 and P = 5 dBm.

5.3.2 Numerical Setup

The dataset was obtained by numerical simulation assuming the transmission of a

single 16-QAM DP channel along the SSMF. The signal propagation through the

fiber was represented by a generalized Manakov equation using the GPU-accelerated

split-step Fourier method [220]. The SSMF is characterized by the effective nonlinearity

coefficient γ = 1.2 (W· km)−1, chromatic dispersion coefficient D = 16.8 ps/(nm·km),

and attenuation parameter α = 0.21 dB/km. At the end of each fiber span, the optical

fiber losses were compensated by an EDFA with a noise figure of 4.5 dB. Downsampling

and CDC were performed on the receiver end. Afterward, the received symbols were

normalized and used as inputs of the NN.

5.3.3 Results and Discussion I

We considered MTL for multiple symbol rates, transmission distances, and launch

powers. To evaluate equalization performance and generalizability, the MTL models

were compared to CDC and the STL model trained with a fixed dataset.
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Fig. 5.4 Q-factor resulting from using MTL (orange and red) and STL model (blue) in
the following test cases; (a) when the transmission distance changes but the launch
power and symbol rate are set to 5 dBm and 40 GBd, respectively; (b) when the launch
power changes but the number of span and symbol rate are set to 50 and 40 GBd,
respectively; (c) when the symbol rate changes but the number of spans and launch
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Variation of transmission distance: Fig. 5.4a shows the optical performance for

different reaches considering a fixed launch power of 5 dBm and a signal baud rate

of 40 GBd. The STL model performed the best when NSpan was 50 (because it was

trained for this specific transmission scenario), significantly outperforming the remaining

approaches. However, its performance was significantly impacted in the shorter reaches

as it could not generalize. On the other hand, the MTL trained with different Nspan
showed much better performance than STL for the shorter reaches, achieving a better

Q-factor (about 3 dB Q-factor improvement) than CDC only for all considered scenarios.

The universal MTL model also showed better performance than the CDC alone, leading

to a maximum Q-factor improvement of about 2.5 dB at 50×50 km.

Variation of launch powers: Fig. 5.4b depicts the Q-factor as a function of the

launch power for a fixed RS of 40 GBd and transmission distance of 50×50 km. Again,

the STL model showed the best gain for launch powers close to the one it was trained

with (5 dBm), but revealed quite poor results for the remaining launch powers. In

contrast, the universal MTL model enabled a Q-factor improvement exceeding 2 dB for

the most relevant launch powers. The MTL, trained with various P but fixed NSpan
and RS, revealed the best performance, enabling a Q-factor improvement exceeding

4 dB for the most relevant launch powers. Interestingly, we can see that, at 5 dBm,

the MTL outperformed STL. The reason for this may be that the STL is overfitting

and cannot adapt to the unseen test data as effectively as the MTL model, which is

more generalized. Ref. [180] supported the claim that a more generalized model can

perform better.

Variation of symbol rates: Fig. 5.4c illustrates the Q-factor as a function of the

data signal baud rate for a fixed transmission distance of 50×50 km and launch power

of 5 dBm. STL led to very good results for the 40 GBd transmission scenario (training

scenario) but showed very poor generalization capability. The MTL, trained with multiple

RS but fixed NSpan and P , enabled a Q-factor improvement of up to 4.5 dB with

respect to the CDC only, whereas the universal MTL model showed up to 2.5 dB

improvement. The MTL provided a good gain in most cases.

The aforementioned results show that, although STL may lead to outstanding

performance in specific transmission conditions, it is not suitable for real-world system

application because it lacks the adaptability to dynamic optical network parameters.

MTL overcomes this limitation, allowing the equalizer to be more flexible, but at the

cost of small performance degradation compared to models trained only for a specific

task.
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Multi-task learning is proposed to allow a “single” NN-based equalizer, without

retraining, to recover received symbols when the transmission scenarios change. The

results showed that the MTL can provide up to 4 dB improvement in Q-factor with

respect to CDC alone even if the transmission distance, launch power, and symbol rate

vary, thus highlighting the adaptability of the MTL NN-based equalizer to the real-world

dynamic optical network.

5.4 Experimental Validation of MTL Applied in WDM
Systems

In this work, we trained the NN on different datasets with various channel spacing

(different degrees of XPM) in WDM systems. The channel spacing for each dataset

is 1000, 500, 400, 300, 200, 100, and 50 GHz from CUT, see Fig. 5.5. In this way,

we can observe how the NN tackles varying levels of XPM, focusing on the nonlinear

regime. We use MTL to train the NN to attain generalizability. The MTL, illustrated

in Fig. 5.2b, enables a single NN to perform in different channel spacing scenarios, as it

does not require retraining for different band spacing. In the MTL, the NN is trained

jointly with multiple datasets from multiple related tasks; the tasks refer to different

channel spacing. MTL leverages shared representations to enhance the generalizability

of the NN across the different intensities of XPM. With the MTL, the model learns the

different datasets with random channel spacing at each training epoch, allowing the

model to gain broader knowledge. We conducted a comparative analysis to assess the

MTL’s performance against the traditional STL model. The experimental data were

collected from three different setups: 9×50 km TWC, 23×50 km SSMF and 12×50

km LEAF.

5.4.1 NN Architecture and Training

The NN architecture described in Fig. 5.5, includes a 1D-CNN layer with nf filters,

a kernel size of 3 and LeakyReLU3 activation, followed by a biLSTM layer with nh
units, and another 1D-CNN layer with 2 filters to recover real and imaginary parts of

X-polarization output. The hyperparameters used to train the NN for each transmission

scenario (different fiber types and lengths) are summarized in Table 5.1. The NN

3Unlike ReLU, LeakyReLU allows a small gradient for negative values to ensure that the neurons
continue learning and helps with the weight updates.
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of CUT with different channel spacing as an input.

structure with 1D-CNN and biLSTM has proven superior in nonlinear compensation

compared to other NN types [221, 73, 89]. The NN received 221 input symbols to

simultaneously recover 189 or 191 output symbols, depending on the scenario (see

Table 5.1). The training dataset contained 219 independent symbols and, at every

epoch, 218 symbols were randomly picked for training. For the testing and validation, a

never-before-seen dataset with 217 symbols was utilized. The datasets were created

using a pseudo-random binary sequence (PRBS) of order 32. The training was carried

out with a mini-batch size, a learning rate shown in Table 5.1, MSE loss, and the

Adam algorithm. We also adopted early stopping and data augmentation, adding slight

random noise to the training data to avoid overfitting. The optimal hyper-parameters

were found by the Bayesian optimizer, given the range of acceptable complexity. The

Bayesian optimizer was applied specifically to optimize the hyperparameters for the STL

model trained on the 50 GHz channel spacing, due to its most exposure to nonlinear

impairments like XPM. Once the optimal hyperparameters were found for the STL

model, we applied the same set of hyperparameters for training the MTL model. The

model received four input features derived from the in-phase and quadrature components

of the complex signal (XI ,XQ,YI , and YQ) from X and Y polarizations, respectively. This

proposed NN only considers the data from the CUT without exploring the information

from adjacent channels. The models with MTL were trained for 1500 epochs (can

compensate for all channel spacings considered), whereas the traditional training models

were trained for 1000 epochs (to compensate for one channel spacing). To reduce the

training complexity of STL training, TL was applied [98]. TL adapts the knowledge
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acquired in one task to the different tasks (different channel spacing). We transferred

the knowledge from 50 GHz to the larger channel spacing as the model learns and

adapts better from a more severe XPM situation. Even though TL reduces the training

complexity, it does not contribute to the inference/implementation complexity, as the

multiple sets of weights of the NNs are still required for different transmission scenarios.

Transimission Output Window Size nf of 1D-CNN nh of LSTM Learning Rate Batch Size

TWC 9×50 km 189 Symbols 117 98 9.082×10−4 3786
SSMF 23×50 km 189 Symbols 99 48 1.787×10−3 1823
LEAF 12×50 km 181 Symbols 70 68 5.623×10−4 1000

Table 5.1 Training hyperparameters of each transmission scenario.

5.4.2 Experimental Setup

Fig. 5.6 depicts the experimental setup, as in Ref. [89], where the 16-QAM DP 34.4 GBd

symbol sequence was mapped from the data bits generated by a 232−1 order PRBS at

the transmitter. Then, the channel bandwidth was limited to 37.5 GHz by the RRC filter

with 0.1 roll-off. The processed digital samples were passed to a DAC operating at 88

Gsamples/s. The DAC outputs were amplified using a four-channel electrical amplifier,

which drove a DP in-phase/quadrature MZM, which in turn modulated a continuous

waveform carrier generated by an external cavity laser operating at λ= 1.55 µm. The

resulting optical signal was transmitted over various transmission scenarios as follows:

• Experiment 1: Transmission over 9×50 km TWC fiber spans with EDFA, with up

to 95 neighboring channels (100G QPSK, 50 GHz ITU grid). The ADC operated

at 50 Gsample/s.

• Experiment 2: Transmission over 23×50 km SSMF fiber spans with EDFA, with

up to 40 neighboring channels (100G QPSK, 50 GHz ITU grid). The ADC

operated at 88 Gsample/s.

• Experiment 2: Transmission over 12×50 km LEAF fiber spans with EDFA, with up

to 40 neighboring channels (100G QPSK, 50 GHz ITU grid). The ADC operated

at 88 Gsample/s.

We consider the WDM channels with different channel spacing, see Fig. 5.5. Table 5.2

shows the fiber parameters in terms of attenuation coefficient (α), dispersion coefficient

(D) and nonlinear coefficient (γ).
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Fiber Type α [dB/km] D [ ps/(nm· km)] γ [(W· km)−1]

TWC 0.23 2.8 2.5
SSMF 0.195 17.45 1.13
LEAF 0.2 3.9 1.25

Table 5.2 Fiber parameters of TWC, SSMF and LEAF used in the experiment.

At Rx, an integrated coherent receiver converted the signal to the electrical domain,

which was sampled using a digital sampling oscilloscope. The signal underwent offline

DSP processing as in Ref. [204], including CDC, MIMO equalization, carrier frequency

offset correction, clock recovery, and a pilot-aided carrier recovery4. The resulting

symbols were fed as an NN input for nonlinear mitigation. Finally, at the output of the

NN, the pre-forward error correction (pre-FEC) Q-factor was evaluated.

5.4.3 Results and Discussion II

Experiment 1: 9×50 km TWC with up to 95 neighboring channels

Starting with Experiment 1 with 9×50 km TWC, Fig. 5.7 presents the Q-factor

as a function of launch power for different channel spacing. Albeit the MTL was

4The carrier recovery block in Fig. 5.6 includes both frequency offset compensation and carrier phase
recovery
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not optimized for the specific cases like in the STL, the MTL models still slightly

outperformed the traditional STL approach, especially when the launch power was

higher, or the regime was extremely nonlinear. This advantage of MTL was also reported

in [219]. We attribute this to the MTL’s ability to acquire knowledge across all XPM

levels simultaneously. This result shows that the MTL models partially learn the complex

patterns associated with the XPM, enhancing the Q-factor compared to the CDC. The

DBP with 3 STpS did not perform well, providing only a small gain because the DBP only

compensated for SPM; TWC’s high nonlinearity coefficient made XPM more significant

[164]. The NNs also show the potential to mitigate real-world component-induced

impairments beyond Kerr nonlinear effects. The component-induced impairments can

be the effects of the transceivers (ADC/DAC, drive amplifier, or MZM), also observed

in [25].
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Fig. 5.7 For the 9×50 km TWC fiber transmission, Q-factor versus the launch power
for the NN trained with MTL and STL, compared to the CDC and DBP 3 STpS,
evaluating when the channel spacing was 50, 200, 400 and 1000 GHz.
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Fig. 5.8 For the 9×50 km TWC fiber transmission, (a) Q-factor gain for MTL models
with respect to the CDC performance; (b) Q-factor at 1 dBm launch power of MTL
compared to the CDC and two models trained solely with datasets of 50 GHz and
1000 GHz, respectively.

Fig. 5.8a depicts the Q-factor improvement achieved by MTL compared to the

CDC for different channel spacings. Considering the optimum power when the channel

spacings were 50 GHz and 1000 GHz, the gain of the 50 GHz scenario was around

0.2 dB higher than in the case of 1000 GHz spacing. To assess the performance and

robustness of the MTL, we consider the launch power where the fiber nonlinearity

started to play a noticeable role, i.e., exceeding -3 dBm. For a narrower channel spacing

(SPM and XPM are essential), the gain was even more pronounced than that for a

wider channel spacing (where the XPM impact becomes less pronounced). With the

increase in power, the difference between the gain at 50 GHz and 1000 GHz channel

spacings also increased: the difference was 0.3 dB at -3 dBm launch power, 0.8 dB at

-1 dBm launch power and 1.2 dB at 1 dBm launch power. This observation shows that

the NN trained with MTL efficiently compensates both SPM and XPM.

CDC
DBP

3 STpS
Original
MTL

MTL with
8 WC

Q-factor [dB] 7.81 8.08 9.7 8.9
RMpS 109 2928 209884 5930

Table 5.3 For the 9×50 km TWC fiber transmission, Q-factor and computational
complexity of different methods when considering 50 GHZ spacing at its optimum
performance.
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To emphasize the NN’s adaptability and efficiency in mitigating XPM, Fig. 5.8b

shows that at the 1 dBm launch power for inference, the MTL model outperforms

both traditional STL models trained on 50 GHz and 1000 GHz channel spacings and

the CDC. This showcases the MTL’s superior generalization capability across different

scenarios. While the STL models trained for specific spacings perform well for the cases

matching the specific training conditions, they perform worse when applied to other

scenarios. Even though the model trained with 50 GHz spacing data had only a slight

drop in Q-factor compared to the MTL, this difference may be larger for other launch

powers. Notably, the model trained on 50 GHz spacing generalizes better, likely due to

greater exposure to XPM dynamics in dense WDM (DWDM) systems, unlike the 1000

GHz model that exhibits reduced adaptability due to limited XPM exposure.

Tab. 5.3 shows the Q-factor and computational complexity in terms of number

of RMpS [55] for CDC, DBP with 3 STpS, original MTL model, and the reduced

complexity MTL model using weight clustering technique, detailed in Section 3.2. The

weight clustered model groups similar weights into clusters and shares a single value

within each cluster; in our case, we used 8 clusters. The weight clustered model was

included to demonstrate the possibility of reducing the computational complexity in the

MTL NN-based equalizer. While DBP offers about half the complexity of the MTL

model with 8 WC, it only compensates for SPM and not XPM. We can notice the

trade-off between the Q-factor and complexity. The numbers reported in Tab. 5.3

were assessed using the dataset considering the optimum launch power of the 50 GHz

channel spacing scenario. Note that the NN in this work was not optimized for lower

complexity.

Experiment 2: 23×50 km SSMF with up to 40 neighboring channels

Fig. 5.9 demonstrates the Q factor as a function of launch power for Experiment 2,

with 23×50 km SSMF. Overall, the NN-based equalizers, both the MTL and STL

outperformed the CDC and DBP with 1 STpS. The MTL clearly outperforms the STL

model when the channel spacing is 50 GHz and performs as well as the STL in the other

cases. Specifically, the MTL improved the Q-factor by up to 0.77 dB. The classical

nonlinearity mitigation method, like DBP, did not provide such significant gain in the

DWDM scenario (50 GHz channel spacing) but can perform better in single-channel

transmission. This is because the DBP in this work can only compensate for SPM, and

the SPM is the major nonlinear impairment in the single-channel transmission. Note
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that, in this experiment, increasing the number of steps per span in the DBP did not

provide reasonable improvement.

Regarding the gain for the MTL with respect to the CDC, Fig 5.10a showed that

the DWDM systems exhibited a higher gain in Q-factor compared to the single-channel

transmission. When comparing the gain of the MTL with respect to the CDC in their

optimum power, the higher gain in the scenario with 50 GHz can also be observed.

It can be implied that the NN-based equalizers can partially mitigate the XPM. The

results are similar to Experiment 1.

Fig 5.10b confirms the flexibility of the MTL-based equalizers. All the models are

tested at the launch power of 1 dBm. This MTL requires no retraining to be able to

compensate for the nonlinear impairments in the transmissions with different channel

spacings. The STL model trained only with 50 GHz channel spacing can generalize
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Fig. 5.9 For the 23×50 km SSMF fiber transmission, Q-factor versus the launch power
for the NN trained with MTL and STL, compared to the CDC and DBP 1 STpS,
evaluating when the channel spacing was 50, 200, 400 and 1000 GHz.

S. Srivallapanondh, PhD Thesis, Aston University 2025.



122 Generalizability Improvement via Multi-Task Learning

50 100 200 300 400 500 1000
0

0.5

1

1.5

2
SPM + XPM

SPM

Channel Spacing (GHz)

Q
-f

ac
to

r
ga

in
M

T
L

w
.r
.t

.
C

D
C

(d
B

)

2 dBm 1 dBm 0 dBm
-1 dBm -2 dBm -3 dBm

0

0.5

1

1.5

2
Optimum power

(a)

50 200 400 1000
5

6

7

8

Channel Spacing (GHz)

Q
-f

ac
to

r
(d

B
)

MTL (Proposed)
STL Model 1000GHz
STL Model 50GHz

5

6

7

8

CDC

(b)

Fig. 5.10 For the 23×50 km SSMF fiber transmission, (a) Q-factor gain for MTL
models with respect to the CDC performance; (b) Q-factor at 1 dBm launch power of
MTL compared to the CDC and two models trained solely with datasets of 50 GHz
and 1000 GHz, respectively.

better than the STL model trained only with single-channel data because the STL

model with 50 GHz spacing learned more nonlinearity from both SPM and XPM.

Lastly, even if the complexity is not the main focus of this chapter, weight clustering

was applied in this case to demonstrate the possibility of compressing the MTL model.

Table 5.4 concludes the Q-factor and complexity of CDC, DBP with 1 STpS, original

MTL and weight-clustered MTL with 8 clusters at their optimum performance (at

-1 dBm launch power). With 8 WC, the RMpS is reduced drastically compared to the

original model. The MTL model experienced a performance drop when the complexity

was reduced. The DBP in this case is cheaper in complexity than the MTL model with

8 WC, however, the performance of the DBP cannot be improved even with a higher

number of STpS. In addition, the MTL can be optimized further for lower complexity.

CDC
DBP

1 STpS
Original
MTL

MTL with
8 WC

Q-factor [dB] 6.77 6.98 7.54 7.35
RMpS 146 2430 70222 4120

Table 5.4 For the 23×50 km SSMF fiber transmission, Q-factor and computational
complexity of different methods when considering 50 GHZ spacing at its optimum
performance.

S. Srivallapanondh, PhD Thesis, Aston University 2025.



5.4 Experimental Validation of MTL Applied in WDM Systems 123

Experiment 3: 12×50 km LEAF with up to 40 neighboring channels

Similarly to the previous two experiments, in Experiment 3 with 12×50 km LEAF fibers,

the MTL also revealed superior performance compared to other methods, including

CDC, DBP with 1 STpS and the STL model, see Fig. 5.11. The MTL provided up

to 0.6 dB Q-factor improvement compared to the CDC, while the DBP struggled to

enhance the Q-factor, especially in the DWDM transmission.

Regarding the gain for the MTL with respect to the CDC, it can be observed in

Fig 5.12a that the gain in Q-factor is slightly higher in the WDM system with a 50

GHz channel gap than in the single channel transmission. The result of this experiment

validates the assumption made previously that the MTL model can partially mitigate

for the XPM.
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Fig. 5.11 For the 12×50 km LEAF fiber transmission, Q-factor versus the launch power
for the NN trained with MTL and STL, compared to the CDC and DBP 1 STpS,
evaluating when the channel spacing was 50, 200, 400 and 1000 GHz.
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Fig. 5.12 For the 12×50 km LEAF fiber transmission, (a) Q-factor gain for MTL
models with respect to the CDC performance; (b) Q-factor at -3 dBm launch power of
MTL compared to the CDC and two models trained solely with datasets of 50 GHz
and 1000 GHz, respectively.

Fig 5.12b shows the generalizability when the models were tested at a launch

power of -3 dBm. The finding indicates similar trends as in the previous experiments,

demonstrating that the MTL model has the most generalizability. The STL model

trained with 50 GHz spacing appears to be more flexible than the one trained with 1000

GHz spacing, as the former learned from the dataset containing more nonlinearity.

Table 5.5 shows the comparison of the Q-factor and complexity in RMpS of different

approaches. The results are similar to the previous two transmission scenarios. The

model with 8 WC exhibited a significant reduction in RMpS compared to the original

NN model, at a cost of 0.8 dB drop in Q-factor. Even the DBP with 1 STpS required

less RMpS than the model with 8 WC, it can only provide 0.04 dB in the equalization

CDC
DBP

1 STpS
Original
MTL

MTL with
8 WC

Q-factor [dB] 7.85 7.89 8.42 8.18
RMpS 144 1252 97792 3980

Table 5.5 For the 12×50 km LEAF fiber transmission, Q-factor and computational
complexity of different methods when considering 50 GHZ spacing at its optimum
performance.
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performance gain compared to the CDC. Note that the model in this work was not

optimized for low complexity.

In Subsection 5.3, the MTL model was used to equalize symbols when the channel

characteristics varied, and a trade-off between the Q-factor of individual tasks and

the overall performance was observed. In the current study, the MTL model applied

for varying XPM levels did not demonstrate the same trade-off. Instead, the MTL

framework contributed to enhancing each specific task’s performance. The MTL’s

performance boost and its ability to work without retraining are notable advantages

compared to employing several STL models for different channel spacings in traditional

training. Additionally, in this study, our NN leveraged the dataset from the same

experimental setup and a similar NN architecture as in Ref. [89], but our model here

was designed to recover multiple output symbols simultaneously. Multi-symbol output

not only reduces the computational complexity per symbol but also reveals superior

performance compared to its single-symbol counterpart.

In conclusion, we employed MTL to develop an NN-based equalizer capable of

mitigating nonlinear impairments in coherent-detection DWDM systems. Learning

from the experimental data and leveraging the MTL concept, our MTL NN-based

equalizer demonstrates excellent adaptability to varying levels of SPM and XPM. The

proposed MTL model has remarkable generalizability, as we need only a “single” model

without the necessity of retraining for different channel spacing or diverse levels of

XPM. We showed that the MTL model outperforms the CDC, DBP with 3 STpS, and

the “traditional” single-task model. The MTL can optimize the performance across all

studied tasks without compromising the performance of individual tasks; moreover, we

revealed that the MTL can even enhance the performance for specific tasks. Additionally,

we explored and assessed the potential for reducing the computational complexity of

our MTL-based model, making it more viable for real-world optical communication

networks, and demonstrated the possibility of essential complexity reduction for our

MTL equalizer without a significant penalty in its performance.

5.5 Conclusion

This chapter explored the application of MTL to improve the generalizability of NN-

based equalizers. The MTL was investigated in the single-channel transmission when the

symbol rate, transmission distance, and launch power were changing, and in the WDM

systems where the channel spacing was altering. From the findings, it can be confirmed
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that MTL enables flexibility of the NN-based equalizers across various transmission

scenarios. The MTL model utilizes only a single model for different related tasks and

does not require retraining. When the tasks are related enough, MTL could potentially

outperform STL in Q-factor performance. The results also suggest the possibility of

integrating MTL with other complexity reduction techniques, like weight clustering and

transfer learning, to further optimize computational efficiency.
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Chapter 6

Conclusion and Future Works

6.1 Review of Thesis

To battle the capacity crunch that can occur in the near future, nonlinearity mitigation

techniques are required to enhance the capacity of the optical transmission systems.

Neural networks (NN) have gained more attention in nonlinearity compensation tasks

due to their universal approximation capability. Despite the effectiveness in equalization

performance, NN-based equalizers still face some major limitations: computational

complexity, parallelization, and generalizability. This thesis examined methods to enhance

the computational efficiency of NN-based equalizers in coherent optical communication

systems. The focus has been on exploring and proposing possible solutions for the

aforementioned three aspects of the challenges of NN-based equalizers.

First, to lower computational complexity, weight clustering has been proposed to

substantially lower the number of real multiplications per equalized symbol (RMpS)

of the NN-based equalizers used in digital subcarrier multiplexing (DSCM) systems.

With this approach, the complexity in terms of RMpS was reduced by up to 97%

compared to the original NN, and up to 91% with respect to the NN based on the

perturbation analysis. It also offers a reduction of up to 34% in RMpS, compared to the

standard digital backpropagation (DBP) 1 STpS. In addition, the different approaches to

approximate the nonlinear activation functions of NN were assessed in the single-channel

systems to reduce the hardware resources required for the implementation. The findings

revealed that the approximated activation functions required significantly fewer hardware

resources than the original ones, while maintaining satisfactory performance. This was

because the approximation errors were mitigated by the learning of the NNs.
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Next, to address the challenge of parallelizability of the promising recurrent NN-

based equalizers in high-speed optical communication, knowledge distillation has been

employed to transform recurrent NN structures into more hardware-friendly feedforward

architectures. With this technique, the feedforward model demonstrated a reduction in

inference latency, without a major drop in Q-factor performance. The results, validated

with both the simulated and experimental data, showed that the knowledge distillation

acted as an efficient regularizer to avoid overfitting when training the NN.

Lastly, tackling the generalizability problems of the NN is crucial to accommodate

the dynamic optical systems. Multi-task learning (MTL) was proposed to enhance the

flexibility of the NN-based equalizers, so that a single MTL model can mitigate the

nonlinearity across different transmission scenarios, without retraining. MTL was tested

in both single-channel and WDM transmissions. For the single-channel transmission,

the MTL showed an improvement in Q-factor over the linear compensation even when

the transmission length, symbol rate and launch power varied. For the WDM systems,

experimental validation showed that MTL-based equalizers outperformed traditional

single-task models and DBP in performance when channel spacing changed.

In summary, the findings of this thesis contribute to the research area of NN-

based equalization by offering a systematic approach to alleviate the limitations of the

NN-based equalizer, while preserving robust performance. The complexity reduction

techniques were demonstrated with the use case from both simulated and experimental

data. These contributions allow a step closer to efficient and scalable NN deployments

in real-world optical networks.

6.2 Future Work Direction

In spite of the results and strategies presented in this thesis, several open research

directions remain. These open problems should be investigated to further improve the

efficiency and practicality of NN-based equalizers in optical communication systems.

Possible directions for further research are outlined in the following areas:

• NN-based equalizers should be studied further to be used in WDM and DSCM sys-

tems. These systems represent real-world optical networks beyond single-channel

transmission. Some studies, including this thesis, have already presented the

potential of NN in these systems. However, existing work is limited to only some

specific study cases. These WDM and DSCM networks are more complex than
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the single-channel systems, due to the higher nonlinearity affected by the neigh-

boring channels/subcarriers. Further research should investigate efficient training

strategies and the dependence of the performance of the channel/subcarrier under

test on the information of the neighboring channels/subcarriers.

• Other computational complexity reduction techniques should be studied more

deeply to explore more opportunities for low-complexity NN-based equalizers.

Different approaches can be combined to understand if the NN could still maintain

the performance while reducing complexity.

• Meta-learning [222] and multi-task learning are promising research directions to

enable flexible and generalizable NN-based equalizers. These techniques have an

opportunity to work together such that the multi-task model can learn to adapt

to an unseen task in fewer steps. This multi-task meta-learning approach has

already been proposed in the image tasks [223].

• Not only the time sequence of the complex symbols, but also the different types

of inputs of NN should be investigated. Examples of the input types could be

spectrum, triplets, or signal constellations. This is worth comparing to understand

the performance and complexity trade-off for different alternatives.

• Physics-based activation functions could be explored to improve the performance

and efficiency of NN-based equalizers. Physics-inspired functions can possibly

better represent the underlying nonlinearities of the optical channel. This could

lead to a more accurate signal equalization and make the NN more interpretable.

• Hardware implementation is another aspect that requires deeper investigation.

There are still a limited number of papers on real hardware implementation to

ensure practical deployment. Optimizing hardware implementations, including

quantization and parallelization, remains a critical challenge for NN-based equaliz-

ers.

• Power consumption and power efficiency of the reduced-complexity NN-based

equalizers should be quantified and compared as another performance metric.

Power consumption is a critical consideration for effective, and sustainable equal-

izers, especially as networks scale and data rates increase. Efficient power man-

agement ensures hardware longevity and reduces operational costs.
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Future research can further optimize NN-based equalizers in terms of complexity,

performance and flexibility for scalable, low-power, and high-speed optical communication

systems. This could make the NN-based equalizers more viable for deployment in next-

generation networks.
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Appendix A

A.1 PWL equations

The equations of the PWL approximations of sigmoid and tanh can be found in Table A.1

for 3, 5, 7, and 9 segments.

Functions
tanh sigmoidNo. of segments

Equation Condition Equation Condition

3
1

0.90909x

−1

x > 1.1

−1.1< x ≤ 1.1
x ≤−1.1

1

0.22727x +0.5

0

x > 2.2

−2.2< x ≤ 2.2
x ≤−2.2

5

1

0.41666x +0.29166

x

0.41666x −0.29166
−1

x > 1.7

0.5< x ≤ 1.7
−0.5< x ≤ 0.5
−1.7< x ≤−0.5
x ≤−1.7

1

0.17223x +0.55219

0.23747x +0.5

0.17223x +0.44781

0

x > 2.6

0.8< x ≤ 2.6
−0.8< x ≤ 0.8
−2.6< x ≤−0.8
x ≤−2.6

7

1

0.285x +0.48699

0.57214x +0.17114

x

0.57214x −0.17114
0.285x −0.48699

−1

x > 1.8

1.1< x ≤ 1.8
0.4< x ≤ 1.1
−0.4< x ≤ 0.4
−1.1< x ≤−0.4
−1.8< x ≤−1.1
x ≤−1.8

1

0.12363x +0.62909

0.18701x +0.54036

0.23747x +0.5

0.18701x +0.45964

0.12363x +0.37091

0

x > 3

1.4< x ≤ 3
0.8< x ≤ 1.4
−0.8< x ≤ 0.8
−1.4< x ≤−0.8
−3< x ≤−1.4
x ≤−3

9

1

0.14331x +0.68417

0.3381x +0.412

0.269382x +0.09185

x

0.269382x −0.09185
0.3381x −0.412
0.14331x −0.68417

−1

x > 2.2

1.4< x ≤ 2.2
0.9< x ≤ 1.4
0.3< x ≤ 0.9
−0.3< x ≤ 0.3
−0.9< x ≤−0.3
−1.4< x ≤−0.9
−2.2< x ≤−1.4
x ≤−2.2

1

0.08514x +0.71051

0.12644x +0.62791

0.182242x +0.09185

0.23747x +0.5

0.08514x +0.45585

0.12644x +0.37209

0.182242x +0.28949

0

x > 3.4

2< x ≤ 3.4
1.5< x ≤ 2
0.8< x ≤ 1.5
−0.8< x ≤ 0.8
−1.5< x ≤−0.8
−2< x ≤−1.5
−3.4< x ≤−2
x ≤−3.4

Table A.1 PWL approximation equations of sigmoid and tanh for 3, 5, 7 and 9 segments.
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