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Abstract: The traditional manufacturing industry, often reliant on paper-based manual processes, must digitalize to remain 
competitive in an era where artificial intelligence drives everyday processes. Accurate and realistic production planning and 
control are crucial for the success of small and medium-sized manufacturing enterprises (SMEs), and data is key to these 
processes. However, legacy machines in traditional manufacturing make data collection challenging. This work presents a 
data acquisition approach for collecting real-time production data, such as daily production volumes and downtime from a 
hand press machine. 
In this study, as a demonstration, a hand press machine in a manufacturing industry1 was digitalized by installing electronic 
hardware, including an inductive proximity sensor and an ESP8266 microcontroller with an optocoupler relay. The Arduino 
IDE environment was used for coding, and the Tdslite open-source library facilitated the transmission of sensor data from 
the microcontroller to the Microsoft Structured Query Language (MSSQL) Server Management Studio, which also served as 
a database to store live data. The processed data was then visualized using a Power BI dashboard, enabling the monitoring 
of hourly production rates and downtime. To measure the effectiveness of digitalization in business growth, KPI 
benchmarking was established for all relevant departments in the SME. This demonstration highlighted the potential of 
digitalization and showed how data acquisition and visualization help monitor and implement data-driven decision-making 
processes in production planning. 
 

1. Introduction 

Industry 4.0 is changing the way manufacturing works by 
bringing in new digital technologies that improve 
productivity, quality control, and resource management. 
However, small, and medium-sized enterprises (SMEs) often 
struggle to adopt these technologies due to high costs, 
complexity, and lack of technical skills. 

In many traditional manufacturing settings, companies still 
use manual methods to collect and monitor production data. 
These old-fashioned ways can lead to errors and 
inefficiencies. Accurate data collection and real-time 
monitoring are essential for effective production planning and 
control, but SMEs need a solution that is affordable and easy 
to implement. 

This paper presents a practical approach to digitalizing a hand 
press machine, which is a common piece of equipment in 
many SMEs. We used low-cost hardware like an inductive 
proximity sensor, Arduino UNO, and NodeMCU ESP8266, 
along with free software tools. Our system captures real-time 
production data, stores it in a Microsoft SQL Server database, 
and visualizes it using Power BI dashboards. 

 
1 Protaform Springs and Pressings Ltd 

2. Background  

Digital transformation begins with identifying the current 
stage of digital maturity within an organization [1]. As shown 
in Figure 1, the ISA-95 framework serves as a benchmark to 
map the digital maturity of Protaform Springs & Pressings. 
The levels of digitalization are represented on the Y-axis, 
while the pillars of transformation are depicted on the X-axis. 

In the company, some digital systems support key pillars at 
higher levels, such as Levels 4 and 5 (e.g., the SAGE 200 ERP 
system). However, there is a lack of systems at the lower and 
mid-levels, particularly at Level 1, which focuses on process 
sensing. Currently, there is no existing system at this level, 
and the input from Level 1 is directly linked to activities at 
higher levels. For example, live production monitoring is 
crucial for guiding business activities at Levels 3 and 4. E.g., 
such as to achieve effective production planning and control., 
real-time information on existing capacity, unplanned 
downtime and machine utilization etc. Therefore, while 
designing the future digital maturity stage of Protaform, 
retrofit sensors have been highlighted as a critical pillar at 
Level 1. Various machine monitoring solutions are available 
in the industry as an alternative solution, and for a small-to-
medium-sized manufacturing firm with 48 machines, the total 
cost of ownership over five years can range from £13,400 to 
£216,000. This cost includes both hardware and software 
components. For the details, please refer to Figure 9 in the 
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appendices.  Financial constraints are a significant barrier for  
SMEs in adopting these solutions. Additionally, these 
organizations often lack digital champions who can assess the 
current state of digital maturity, gather requirements from key 
stakeholders, and develop a future state map based on the 
stakeholders' vision. The absence of internal digital 
champions forces organizations to rely on third-party vendors 
who may not be familiar with the existing technology stack 
[2]. Integrating solutions from multiple vendors can become 
a complex challenge. Therefore, this study focuses on 
assessing the current state of digital maturity and 
implementing low-cost solutions at Level 1, specifically for 
machine monitoring. 

3. Methodology  

3.1. Machine Selection 

3.1.1. Value Stream mapping 
Value Stream Mapping (VSM) was employed to identify key 
process inefficiencies [3][4] and the location of data points 
within the operation of the hand press machine that could 
benefit from digitalization. The pin-forming machine was 
selected for analysis due to existing inefficiencies noted by 
the production team, which affected the timely delivery of 
orders. VSM helped visualize the current state of operations, 
highlighting inefficiencies and pinpointing areas where data 
acquisition could help the production team enhance 
production planning and control related to this specific pin- 
forming machine.  

 

The value stream map in Figure 2 shows a total of four such 
machines (jig 1, jig 2, jig 3, and jig 4), with jig 1 and jig 2 
performing identical operations for process 1, and jig 3 and 
jig 4 intended for process 2. Ideally, all four jigs should be 
operational when there are orders for two types of pins - jig 1 
and jig 2 for process 1, and jig 3 and jig 4 for process 2. The 
takt time was calculated based on machine availability and 
the promised delivery date, while the cycle time was 
measured manually using a stopwatch. Five readings were 
taken for two different operators to finish the operation on 
each jig, and the average was considered the final cycle time. 

A significant lead time was observed for process 2, primarily 
because each machine requires an individual pneumatic 
control circuit to operate manually. However, only two 
pneumatic circuits are available for the four machines, 
meaning that only two jigs can be operational at any given 
time. This limitation causes substantial waiting time for the 
second type of jig, as the pneumatic controls must be 
transferred to jig 3 and jig 4 after jig 1 and jig 2 have 
completed their operations. This bottleneck was reported to 
top management for resolution.   

3.2 Data Architecture 
 
The data acquisition system designed for this study involved 
multiple components working together to collect, transmit, 
and visualize production data in real time. The architecture 
was built to be low-cost and easily replicable for other small 
and medium-sized enterprises (SMEs). As shown in Figure 3 
the data was collected at the machine level using an inductive 
proximity sensor, which was processed by a NodeMCU and 
then transmitted to an SQL server using the Tdslite library for 

Figure 1. Current stage digital maturity mapping of the organisation using ISA 95 framework (Source: MTC, Coventry). 
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data storage. Data operations were managed in Microsoft 
SQL Server Management Studio, where two views were 
created: the first stores the machine number, DateTime, and 
count, while the second stores additional information about 
the downtime between two successive counts. These views 
were loaded into Power BI using the Direct Query option. As 
per the production manager’s requirement, the data needs to 
be updated hourly hence the page auto-refresh frequency was 
set to hourly in the Power BI dashboard setting. The 
Production Quantity and machine downtime were displayed 
on the Power BI dashboard after each update. The core 
system components included hardware (sensors and 
microcontrollers), a data transmission library (Tdslite), a 
database (MSSQL server), and a data visualization tool 
(Power BI). It’s also shown in Figure 7.  
 

 3.2.1 Flow Chart for Counting the production 
volume: 

The flow diagram is shown in Figure 4. The process begins 
with the initialization phase, where the system starts by 

initializing the inductive proximity sensor and the NodeMCU 
ESP8266 microcontroller. Once the hardware is set up, the 
NodeMCU connects to the specified Wi-Fi network, 
establishing a wireless communication link necessary for data 
transmission. Following the hardware setup, the NodeMCU 
attempts to connect to the Microsoft SQL Server 
Management Studio (MSSQL) database. During this database 
initialization phase, the program checks for the existence of 
the required table in the database. If the table does not exist, 
the program creates it, ensuring that the data schema is 
correctly set up to store incoming sensor data. The system 
then enters the main loop, a continuous cycle where the 
sensor's output is monitored in real-time. The NodeMCU 
reads data from the inductive proximity sensor, which is 
designed to detect metal objects. Each time the metal object 
is detected the proximity sensor generates the voltage which 
is then converted as a digital output signal and the timestamp 
is registered when the output is detected. If the sensor does 
not detect an object, the program continues to loop. 

3.3 Implementation  

 
3.3.1 Sensor selection: 

 
An inductive proximity sensor was chosen for its reliability 
and effectiveness in detecting metal objects as shown in 
Figure 5. (Model number:  NBB5-F9-E0) This sensor type is 
well-suited for industrial environments where metal detection 
is crucial. To ensure that no false counts were detected due to 
the presence of other metal parts, the inductive proximity 
sensor was mounted beneath the hole where the pin was 
inserted for the forming operation. As shown in Figure 5, the 
pin faces the sensor, and the in-built LED is illuminated, 

Figure 3. Data Architecture diagram (MSSQL – Microsoft 
SQL server, SSMS – SQL server management studio) 

Figure 2. Value stream mapping of pin-forming machines for measuring the process efficiency. 
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Figure 4. Flow diagram for the code used to program the 
NodeMCU using Arduino IDE to visualise the production 
count. 

indicating the presence of the pin. Along with this, the 
timestamp is also stored. The signal 
generated by the sensor is used as a count and the timestamp 
is analysed such as hourly production quantity and downtime 
leading to measure the machine utilisation. The connection 
for the wiring of the components is as shown in Figure 6: 
Inductive Proximity Sensor, which is wired to the digital 
input pin D2 of the NodeMCu. Power Supply: the sensor is 
powered using a 9V battery and NodeMCU is powered by the 
standard micro-USB charger from the AC power socket. 
 

3.3.2 Data Storage – MSSQL: 
 

The Microsoft SQL Server Management Studio (MSSQL) 
was used as the central repository for all collected data. The 
SQL server provided robust data management capabilities, 
allowing for the storage, retrieval, and querying of real-time 
production data [5]. The data schema was designed to 
accommodate various data points, including production 
counts, downtime events, and timestamps. The full source 
code will be available upon request. 

 
Figure 5. An inductive proximity sensor detects the pin placed 
in front of its detecting face. 

 

 
Figure 6. Hardware connections used on the machine for 
machine monitoring: 1) Microcontroller (NodeMCU), 2) 
Optocoupler Relay, 3) Power supply from the AC power 
socket outlet to the NodeMCU, 4) Power supply from the 9V 
battery to the proximity sensor. 

3.3.3 Data Processing &Visualisation: 
 

Power BI was employed for data visualization due to its 
powerful analytical capabilities and user-friendly interface. 
The data stored in MSSQL was processed and visualized 
using Power BI dashboards. The table data from the database 
was queried using the direct query method in Power BI. These 
dashboards enabled the monitoring of hourly production rates, 
downtime, and other key performance indicators (KPIs). The 
visualization provided actionable insights, helping the 
manufacturing enterprise make data-driven decisions to 
optimize production efficiency. 
 

 
Figure 7. Schematics of data flow from the machine level to 
the organisation level. 
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4. Results  

4.1 Key Performance Indicators (KPIs) 
Visualisation 

4.1.1. Production Volume: 
Production volume was calculated based on the detected 
counts. For the production manager, the data is updated every 
hour. On the dashboard, the hourly counts of the produced 
parts are updated and displayed automatically. It is shown in 
Figure 8 a) & b).  
 

4.1.2. Production Downtime: 
The company’s break times are as follows: a morning break 
from 10:00 AM to 10:15 AM and a lunch break from 1:00 
PM to 1:30 PM, with total machine availability for the given 
shift from 7:30 AM to 4:30 PM. Based on the production 
team's experience, it was noted that the hand press machines 
require minimal maintenance, as they do not have many 
heavy electrical or mechanical moving parts that could fail 
quickly. Therefore, unplanned downtime due to maintenance 
issues was considered negligible. To measure downtime 
using the timestamp and count, the following condition is 
applied: if the time interval between two successive counts 
exceeds 2 minutes and falls outside the scheduled break times, 
it is recorded as downtime. The 2-minute interval was chosen 
to account for the cycle time plus a few seconds of tolerance 
for the operators. Any intervals meeting these criteria are 
classified as downtime.  
 
The in-process quality checks with the help of gauges have to 
be conducted at the machine and it takes less than 2 minutes 
so again that is considered. As per the machine and the part, 
the in-process checks vary, where in some cases operator has 
to physically move from the workstation to the Quality 
department and carry out the inspection using the machines 
in the Quality department. In that case, it needs to be 
considered as time allocated for quality inspection and 
excluded from downtime.  
In such cases the machine monitoring kit along with the 
sensor can have the push button and the operator can press it 
when they have to conduct the quality check and that push 

button input will be counted towards the quality inspection 
check.   
 
 

 
Figure 8. a) Production KPIs visualised on the Power BI 
dashboard on the office laptop. 

 
 

 
Figure 8. b) Report page from Power BI displaying the 
production KPIs in detail. 

5. Discussion 

5.1. Cost-effectiveness 
The total direct cost of the hardware used in the project is £93, 
as detailed in the table below. The software for coding, 
Arduino IDE, is open source, as is the TDSLite library [6] 
used to connect the NodeMCU to the MSSQL database. Data 
was stored on an on-site server using Microsoft SQL Server 
Management Studio. We utilized the free license of Microsoft 
Power BI for data visualization. The cost of R&D and human 
resources involved in the project amounted to £10,400. This 
is still less than the lowest price quoted by the commercial 
vendors for machine monitoring solutions.  

5.2. Limitations of the low-cost solutions  

The low-cost solution adopted in this study is effective; 
however, the longevity of the NodeMCU hardware board is a 
concern. The lack of a troubleshooting guide or 
comprehensive documentation from the manufacturer or 
designer makes long-term maintenance challenging. 
Although the TDSlite library [6] used supports 
communication with an MSSQL server, the database 
structure needs to be redefined when more than one sensor is 

Table 1 Direct Cost of components involved. 
 

Component Quantity Cost in £ 
   
Proximity 
sensor 

1 50.3 

NodeMCU 1 4 
Optocoupler -
relay 

1 3.5 

Cables Pack 17 
Casing & 
mounting 
accessory 

Pack 11 

Battery 2 7 
Total   92.8 
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connected to a single NodeMCU, particularly when scaling 
up to multiple machines. Consequently, the limited 
processing power of the NodeMCU may be a significant 
limitation for complex data collection and processing 
applications. For more demanding tasks involving complex 
data collection, processing, and storage, the Raspberry Pi 3B+ 
could be a more suitable alternative.  

5.3. Improved shop floor visibility  

Before digitalization, there was a lack of shop floor data 
visibility. The primary requirement received from the 
production team was capacity planning. For this, there are 3 
main things needed which are machine, labour, and material. 
The machine availability data needed to be captured hence the 
machine monitoring solution was selected as the project 
scope at the beginning to display the hourly production 
volume and downtime. The ERP system used in the company 
has features for stock management. There is a 3rd party system 
for workforce management. With the implementation of a 
live machine monitoring solution, the live machine capacity 
is known which help to plan the capacity. This improvement 
allows for precise prediction of delivery dates, eliminating the 
need for guesswork.  

The secondary goal of the long-term digitalization project is 
to enhance Overall Equipment Effectiveness (OEE) by 
reducing unplanned downtimes and accurately estimating 
lead times based on production capacity. To measure OEE, 
three critical factors are required: Availability, Quality, and 
Performance. This study focused on visualizing Production 
Volume and Production Downtime, with machine availability 
directly measured, while quality and performance were 
assumed based on available data. To accurately reflect true 
OEE, it is essential to account separately for scrap quantities 
and the time allocated to quality checks and maintenance 
operations. Integrating these factors with the order 
management system can further refine the estimation of 
production lead times. The KPIs identified for the business 
should guide the digital transformation strategy and system 
selection. 

5.4. Change management 

In traditional manufacturing setups, the absence of machine 
monitoring and live shop floor data capture systems presents 
significant challenges for adopting Industry 4.0 technologies. 
These challenges are not only financial and technical but also 
involve integrating new infrastructure and addressing 
employee scepticism. Shop floor employees may perceive the 
technology as a threat, especially when manual hand machine 
outputs are monitored. This is being overcome using a soft 
systems change management methodology known as the 
PrOH (Process Oriented Holonic) Modelling methodology 
[7][8][9][10]; see prohmodeller.org [11]. 

For a successful digital transformation, it is crucial for top 
management to clearly articulate the organization’s vision 
and objectives to the mid-level and shop floor teams, 
emphasizing the tangible benefits to secure their buy-in and 
foster a collaborative implementation environment. 

Additionally, conducting training and engagement 
workshops can significantly increase awareness and 
acceptance among all involved teams, from shop floor 
workers to administrative staff. These initiatives foster a 
better understanding of digitalization's advantages, ultimately 
driving a smoother transition and greater buy-in from 
employees, and will be done partly by using PrOH Modelling 

6. Conclusion 

In this study, we explored the digital transformation of small 
to medium-sized enterprises (SMEs) within the 
manufacturing sector, focusing on the implementation of 
low-cost machine monitoring solutions. Using the ISA-95 
framework, we assessed the digital maturity of Protaform 
Springs & Pressings and identified Level 1 process sensing as 
a crucial area for improvement. 

Our implementation of an inductive proximity sensor and 
ESP8266 microcontroller demonstrated that it is possible to 
collect real-time production data cost-effectively. The data 
acquisition system successfully transmitted information to an 
MSSQL database, which was then visualized using Power BI. 
This setup provides a robust foundation for data-driven 
decision-making, enabling SMEs to improve their production 
planning and control. 

Financial constraints and the lack of internal digital 
champions are significant barriers for SMEs in adopting 
digital solutions. However, our study shows that with careful 
planning and the use of affordable technology, these barriers 
can be overcome. The success of our low-cost 
implementation highlights the potential for similar 
approaches in other SMEs, facilitating their journey towards 
Industry 4.0. 

Future research should focus on scaling this approach to other 
levels of the ISA-95 framework, exploring levels of systems 
thinking (e.g., strategic, tactical, and operational), and 
exploring additional low-cost technologies that can further 
enhance digital maturity. Collaboration with technology 
vendors and industry experts can also help SMEs navigate the 
complexities of digital transformation more effectively. 

By embracing digitalization, SMEs can not only improve 
their operational efficiency but also enhance their 
competitiveness in an increasingly digital world. Our study 
serves as a practical guide for other SMEs looking to embark 
on their digital transformation journey, proving that 
significant improvements can be achieved without substantial 
financial investment. 
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9. Appendices  

 
The cost analysis presented in Figure 9 considers electrically 
powered machines with an electrical signal. The shortlisted 
solutions aim to monitor machines for hourly production 
volume, downtime, and Overall Equipment Effectiveness 
(OEE). As per the vendor’s claim and demo, this data is 
monitored through the custom dashboard designed for the 
users and the reports can also be downloaded. The cost 
assessment is based on 48 machines, as some vendors offer 
discounts at this number; with fewer machines, the per-
machine cost may be slightly higher due to different pricing 
models. 
The solutions vary in terms of connection types and 
architectures: 
1. Vendor A provides a set that includes a current sensor, a 

wireless gateway, and a tablet for operators to input data 
on stop reasons and quality inspections. The current 
sensor has a way to detect the machine working based on 
the difference in power consumption. For 48 machines, 
there are 48 such sets, with data stored on the vendor’s 
cloud and accessed via a monthly subscription model. 

2. Vendor B offers hardware that connects to the machine’s 
power inlet cable to monitor activity. This data is 
transmitted to the vendor’s cloud through an Ethernet 
connection, which is suitable for facilities with existing 
Ethernet support. This solution also operates on a 
monthly subscription basis. 

3. Vendor C employs a system architecture with one node 
per machine. These nodes detect digital output from 
sensors (e.g., photoelectric, proximity) and communicate 
with a gateway that can connect to 60 nodes. Data from 
these nodes is accessible to the client and can be 
processed or manipulated as needed. Vendor C's solution 
involves a one-time cost for hardware and software 
without ongoing subscription fees. 

4. Vendor D provides a package that includes sensors, 
nodes, and gateways, with data access offered through a 
monthly subscription model. 

Each vendor supports different configurations, such as 
Ethernet connections or wireless options, and offers various 
combinations of hardware and data transmission methods. 
Depending on the specific requirements and existing 
infrastructure, the cost-effectiveness and suitability of each 
vendor's solution may vary. These vendors were selected for 
this study because they offer a wide variety of solutions 
tailored to the different needs of SMEs, considering factors 
such as machine age, operating principles, and specific 
monitoring requirements. 

Figure 9. Detailed total cost of ownership of the machine monitoring solutions for 48 machines. 
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