10

11

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

TSMS-HRO: A Two-Stage Multi-Strategy Hybrid Rice Optimisation Algorithm for High-Dimensional Feature Selection 3

Zhiwei Ye^{1,2}, Jie Sun^{1,2}, Wen Zhou^{1,2}, Bogdan Adamyk^{3,*}, Jixin Zhang^{1,2}, Ting Cai^{1,2}, Jun Shen⁴, Mengya Lei^{1,2}, Jing Zhou^{1,2}, and Ruihan Li^{1,2}

School of Computer Science, Hubei University of Technology, No.28, Nanli Road, Hongshan District, Wuhan, 430068, Hubei, China, https://orcid.org/0000-0002-1218-0681
 Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Wuhan,

²Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Wuhan, 430068, Hubei, China

³Aston Business School, Aston University, Birmingham B4 7ET, UK, https://orcid.org/0000-0001-5136-3854

⁴School of Computing and Information Technology, University of Wollongong, Wollongong, 2500, New South Wales, Australia, https://orcid.org/0000-0002-9403-7140

*Corresponding author. b.adamyk@aston.ac.uk 14

Abstract

High-dimensional feature selection remains a challenging and active topic in machine learning. Swarm intelligence and evolutionary computation have demonstrated promising results for high-dimensional feature selection, such as ant colony optimisation algorithm, particle swarm optimisation algorithm, and hybrid rice optimisation algorithm, etc. However, these algorithms still face two major challenges: The first is the presence of excessive redundant features in the selected subset, which degrades classification performance; the second is the long runtime of existing methods, which hampers efficient search and timely solution. To address these challenges, the paper proposes a novel two-stage algorithm, termed the two-stage multistrategy hybrid rice optimisation algorithm (TSMS-HRO), specifically designed for high-dimensional feature selection. In the first stage, the minimum redundancy maximum relevance method is used to compute prior information to enhance the guidance of the feature subset search in the second stage. In the second stage, the hybrid rice optimisation algorithm is enhanced through four mechanisms: enhancing the quality and diversity of the initial population with good point set and elite opposition-based learning strategies; increasing the utilisation rate of maintainer line individuals with multiple adaptive differential operator selection strategies; improving the global and local search capabilities of the hybridisation process with a

35

36

37

38

39

40

41

42

43

46

48

49

50

51

52

t-distribution mutation perturbation strategy; and enhancing the flexibility and diversity of the selfing process of restorer line individuals by introducing an improved adaptive crossover strategy. To evaluate the performance of the proposed method, extensive numerical experiments were conducted using benchmark functions from CEC2022. Results are compared with other well-known algorithms, such as the whale optimisation algorithm and grey wolf optimiser. Furthermore, TSMS-HRO is applied to 12 high-dimensional biomedical datasets. The experimental results show that TSMS-HRO outperforms other two-stage and metaheuristic algorithms based feature selection methods in terms of accuracy and convergence speed. For example, on the CLL_SUB_111 dataset with 11,340 dimensions, TSMS-HRO achieved an average accuracy of 95.25% with a 98.86% reduction in features, clearly surpassing other methods in both effectiveness and stability. These findings confirm that TSMS-HRO is an efficient and reliable algorithm not only for the optimisation of functions with different characteristics but also for real-world optimisation problems.

Keywords: High-dimensional feature selection, Hybrid Rice Optimisation algorithm, Minimum redundancy maximum relevance, Good point set, Elite opposition-based learning.

Nomenclature

 α

 X_m The individuals of maintainer line The individuals of sterile line X_s X_r The individuals of restorer line SThe number or ratio of feature selection V_{max}^d, V_{min}^d The maximum and minimum values of the d-th dimension The smoothing factor The boundary adjustment parameters s_{max}, s_{min} The maximum and minimum mutation scales $\sigma_{max}, \sigma_{min}$ The growth rate to control σ g_r The crossover rate in the differential evolution stage c_r The values of the selfing upper and lower limit SC_{max}, SC_{min} SCThe maximum number of selfing in HRO

λ The weight of error rate

The weight of the feature selection

The weight of the feature selection rate

The step-size control factor

8

1. Introduction

In today's era of information explosion, massive amounts of data are being generated (Badshah et al., 2024), characterised by large volumes and high dimensionality. While those features reflect the richness of data, they have also included some redundant features and noise (Barbieri et al., 2024). In a higher-dimensional data environment, redundant features and noise have significantly impacted the effectiveness of intelligent systems, leading to biased analysis results (G. Li et al., 2024). For example, in gene expression data analysis, these issues significantly hinder the development of intelligent systems (Liang et al., 2024). Among tens of thousands of genes, only a small subset of the gene expression levels has been closely associated with the disease diagnosis, resulting in the data sparsity (Y.-C. Wang et al., 2024). In the context of high-dimensional data, feature engineering is key to improving the generalisation ability of models, as it enables models to better understand and interpret complex data (Lameesa et al., 2024). Consequently, effective feature reduction enhances both classification accuracy and computational efficiency.

Dimensionality reduction techniques are used to reduce the number of data features by retaining important ones while eliminating redundant features. This not only conserves storage but also aids in uncovering meaningful information and mitigates the potential risk of model overfitting. Dimensionality reduction techniques can be broadly classified into two categories: Feature Extraction (Kapoor et al., 2024) and Feature Selection (FS) (Moslemi, 2023; X. Song, Zhang et al., 2024). Feature extraction methods, such as Principal Components Analysis (PCA) (Zheng et al., 2024), Linear Discriminant Analysis (LDA) (J. Zhou et al., 2024), and Independent Component Analysis (ICA) (Buchaiah & Shakya, 2022), reduce data dimensionality by projecting the original feature space onto a new lower-dimensional feature space through a specified mapping process. These methods have been successfully applied in various fields, including disease classification (Yu et al., 2022) and hyperspectral image classification (C. Wang et al., 2024).

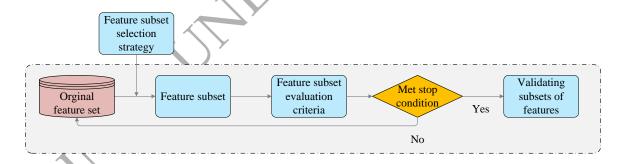


Figure 1. Basic process of feature selection.

FS has been one of the key steps in pattern recognition and classification (Nematzadeh et al., 2024). Its goal has been to eliminate some redundant and irrelevant features from the data, enabling the extraction of valuable information from the higher-dimensional data. The basic flowchart of FS is shown in Figure 1. The application of FS in high-

86

88

90

91

92

93

94

96

106

dimensional data environments is crucial. First, it effectively addresses the curse of dimensionality, where distances between data points become smaller in high-dimensional spaces, making it difficult for classifiers to distinguish different samples (Anuragi et al., 2024). Second, minimising the feature space can save storage space, facilitate information discovery, and reduce the likelihood of model overfitting (Telikani et al., 2021). Moreover, a key advantage of FS lies in its direct selection of optimal feature subsets from the original feature space. Traditional FS methods rely solely on the information inherent to the samples themselves, without directly depending on learning algorithms. These methods are based on various evaluation metrics, including statistical (BinSaeedan & Alramlawi, 2021), information-theoretic (Gao et al., 2023; He et al., 2024), similarity-based (Ouadfel & Abd Elaziz, 2022; B. Zhang et al., 2022), and sparsity-based (R. Zhou et al., 2023) approaches. In contrast, another category of FS methods evaluates the performance of feature subsets through learning algorithms, assisting in the selection of the optimal feature subset. Currently, mainstream approaches in this category utilise metaheuristic algorithms with strong search capabilities to explore the entire feature space. These algorithms validate subsets using a predefined learning algorithm until the optimal solution is found. Common methods include the Genetic Algorithm (GA) (Fang et al., 2024), Grey Wolf Optimiser (GWO) (Y. Wang et al., 2024), Whale Optimisation Algorithm (WOA) 100 (Miao et al., 2024), Harris Hawks Optimisation (HHO) (Peng et al., 2023; Zhao et al., 101 2024), Salp Swarm Algorithm (SSA) (Qaraad et al., 2022), Equilibrium Optimiser (EO) 102 (Ahmed et al., 2021) and Particle Swarm Optimisation (PSO) (Xue & Zhang, 2024). FS 103 avoids the potential loss of semantic information that may occur during the transform- 104 ation process in feature extraction techniques, making it a more extensively researched 105 field (Rajammal et al., 2022).

With the rapid increase in dataset dimensionality, traditional FS techniques face 107 challenges such as high computational costs and degraded model performance. To address these issues, researchers have proposed FS methods specifically designed for highdimensional data scenarios (Osama et al., 2023). Manikandan & Abirami (2021) proposed 110 a high-dimensional FS method based on mutual information (MI) and Monte Carlo tech- 111 niques. It employs an approximate Markov blanket, MI, and a novel strategy based on 112 Monte Carlo Tree Search (MCTS) technology. In the first stage, primary features are se- 113 lected from high-dimensional data, and in the second stage, redundant features identified 114 in the first stage are eliminated. This approach achieves dimensionality reduction and 115 effectively enhances feature interaction. J. Zhang et al. (2021) proposed FS-GBDT, a hybrid FS framework combining Fisher score and Gradient Boosting Decision Tree (GBDT), 117 to identify robust cancer-related gene subsets from high-dimensional expression data. By 118 jointly analysing 11 cancer types, FS-GBDT effectively discovered overlapping risk gene 119 modules. Zuo et al. (2025) proposed an unsupervised FS method (MRMGRFS) that combines spectral clustering-based relevance evaluation with global redundancy minimisation 121 using Jensen-Shannon divergence, effectively selecting informative and non-redundant 122

features from high-dimensional data. Chamlal et al. (2024) proposed a supervised FS 123 method ISClique, which first uses a Kendall's tau-based filter to evaluate feature interactions, and then applies a maximal clique strategy to construct optimal subsets, achieving 125 superior performance in high-dimensional regression tasks.

Although the aforementioned FS methods have made adaptive improvements for highdimensional FS tasks, they still face challenges such as low search efficiency and suboptimal classification accuracy of the selected feature subsets. Moreover, many of these 129 methods require prior knowledge to guide the search process of FS. This limitation not 130 only restricts their general applicability but also necessitates expert knowledge to assist in 131 the search process, making their usage less straightforward. Metaheuristic algorithms are 132 a class of strategies designed to solve optimisation problems. They generally do not rely on specific assumptions about data distribution or require prior knowledge to guide the 134 search process. Instead, they utilise general search mechanisms, combining randomness 135 and heuristic information to iteratively seek near-optimal solutions. This makes them 136 particularly suitable for tackling large-scale, nonlinear, high-dimensional problems with 137 challenging gradient-based solutions. Metaheuristic algorithms have shown great potential in handling high-dimensional FS tasks (Nssibi et al., 2023; X. Song et al., 2022), 139 and their applications in this domain have significantly increased in recent years. When 140 applying metaheuristic algorithms to high-dimensional FS problems, the initial feature 141 subsets are typically generated randomly. The algorithms rely on their search strategies 142 to explore the feature space for the optimal feature combinations. Consequently, the 143 search efficiency and update mechanisms for candidate solutions directly influence the 144 quality of the selected feature subsets. This has become a primary focus for researchers in the field. Currently, various high-performance metaheuristic methods have been 146 successfully applied to different FS tasks. Hussain et al. (2021) proposed a hybrid optim- 147 isation method called Sine-Cosine Harris Hawk Optimisation (SCHHO), which combines 148 the Sine Cosine Algorithm (SCA) and HHO. This method aims to enhance the performance of numerical optimisation and FS. To effectively select the optimal gene combination 150 from microarray data, Pashaei (2022) utilised Minimum Redundancy Maximum Relev- 151 ance (mRMR) in the initial stage to filter the top m promising genes and reduce the 152 feature space. Subsequently, the Aquila Optimiser (AO) with a mutation mechanism and 153 a Time-Varying Mirrored S-shaped (TVMS) transfer function was applied to search for 154 the optimal feature subset. Nssibi et al. (2024) proposed a hybrid binary FS method called 155 iBABC-CGO, combining the island model of the Binary Artificial Bee Colony (BABC) 156 with Chaos Game Optimisation (CGO). To enhance the search process in binary space, 157 two transfer functions were used. The method integrates SVM for evaluating gene subsets 158 and was tested on 15 biological datasets. Experimental results showed that iBABC-CGO 159 achieved competitive classification accuracy, efficient gene selection, and fast convergence, 160 with meaningful biological interpretations of selected genes. Jiang et al. (2024) proposed 161 the Dynamic Crow Search Algorithm (DCSA) to enhance FS for high-dimensional biomedical data classification. To improve exploration and exploitation balance, a dynamic bi-level awareness probability was introduced. Additionally, Lévy flight with an adaptive 164 step length replaced the original random search mechanism, and a dynamic flight length 165 strategy was employed to accelerate convergence. Experimental results on seven high-166 dimensional biomedical datasets demonstrated that DCSA achieved superior classification 167 accuracy and selected the smallest feature subsets, with 100% accuracy on SRBCT data. 168

To further enhance the performance and efficiency of FS methods based on metaheuristic algorithms in high-dimensional FS problems, researchers have combined filter-based 170 FS methods with metaheuristic algorithms to form a multi-stage FS approach (X. Song, 171 Ma et al., 2024). These approaches aim to leverage the high search efficiency of filter methods and the strong search capability of metaheuristic algorithms. For example, X. Song, 173 Ma et al. (2024) introduced a three-stage Streaming Feature Selection method based on 174 Dynamic feature clustering and Particle Swarm Optimisation (SFS-DPSO). The method 175 combines online relevance analysis to quickly eliminate irrelevant features, dynamic clustering to handle redundancy, and an integer PSO to search for the optimal subset. Experiments on 12 benchmark datasets and a real-world case demonstrated that SFS-DPSO achieves superior classification performance within reasonable time compared to existing algorithms. Got et al. (2021) developed a novel multi-objective hybrid filter-wrapper 180 method to address the FS problem. The method leverages the WOA to explore promising 181 regions in the feature space. Additionally, two objective functions were considered during 182 the optimisation process: the first objective uses MI as a filter fitness function to assess 183 the relevance and redundancy among features, aiming to identify a non-dominated subset 184 of features with minimal redundancy and maximum relevance to the target class. The 185 second objective employs a learning classifier as a wrapper fitness function to evaluate 186 classification accuracy. Experimental results demonstrated that the proposed algorithm 187 could achieve multiple feature subsets with fewer features while maintaining excellent 188 classification accuracy. X.-F. Song et al. (2021) proposed a novel three-stage hybrid 189 FS algorithm (Hybrid FS algorithm based on correlation-guided Clustering and Particle 190 Swarm Optimisation, HFS-C-P) to address the challenge of high computational costs 191 in high-dimensional data. In the first and second stages, a filter-based FS method and 192 a correlation-guided clustering approach were designed to reduce the search space for 193 the third stage. Subsequently, in the third stage, an evolutionary algorithm with global 194 search capabilities was employed to identify the optimal feature subset. To enhance the 195 performance of all three stages, the authors developed a feature elimination method based 196 on symmetrical uncertainty, a fast correlation-guided feature clustering strategy, and an 197 improved integer PSO algorithm. Experimental results on 18 datasets demonstrated that 198 this algorithm could obtain a high-quality feature subset with minimal computational 199 cost. Thirumoorthy et al. (2023) employed a two-stage FS strategy combining filter and 200 wrapper-based methods. In the first stage, four filtering techniques (MI, ReliefF, In- 201

formation Gain (IG), and F-Score) were used to select a reduced feature subset. In the 202

second stage, a wrapper-based hybrid Coati Optimisation Algorithm (COA) was applied. 203 This hybrid strategy incorporated opposition-based learning, adaptive population size ad- 204 justment, elite learning, and differential evolution operations to enhance search efficiency 205 and accuracy. The proposed method was evaluated on three benchmark datasets. The 206 comprehensive results demonstrated that the method outperformed other compared approaches, significantly improving breast cancer classification success rates while reducing 208 the FS ratio. Moustafa et al. (2024) proposed an innovative hybrid FS approach to derive 209 an optimal feature subset for high-precision crop mapping. In the first stage, MI and 210 ReliefF filtering methods were employed to rank the spectral-temporal remote sensing 211 features in the dataset. The most relevant features identified by these filtering methods 212 were then combined into a unified subset. Subsequently, the GWO was applied to refine 23 the initial feature set. Finally, a Random Forest classifier was used with the optimised 214 feature subset to predict crop types accurately. Performance evaluation conducted in the 215 Behiera province of Egypt demonstrated that the proposed method outperformed existing 216 crop mapping approaches, achieving an accuracy of 82%. Agrawal et al. (2022) proposed 217 a Normalised MI-based Equilibrium Optimiser (NMIEO) to enhance the efficiency of FS 218 in high-dimensional datasets. This method integrates a novel local search strategy based 219 on Normalised Mutual Information (NMI) to improve the algorithm's local exploitation 220 capabilities. Additionally, chaotic mapping is employed to enhance the diversity of the 221 initial population. Before searching for the optimal feature subset, NMIEO reduces the 222 feature space using a filtering method. Four common filtering methods were compared 223 experimentally, and the most suitable one was selected as the first-stage filter. Results 224 demonstrated that NMIEO outperformed eight well-known metaheuristic algorithms from 225 recent literature in handling high-dimensional datasets. Askr et al. (2024) proposed the 226 Binary Enhanced Golden Jackal Optimisation (BEGJO) algorithm to improve FS for 227 high-dimensional data. To overcome the local optima, enhancement strategies were introduced, and Copula Entropy (CE) was integrated for dimensionality reduction while 229 maintaining classification accuracy. The sigmoid transfer function transformed BEGJO 230 into a binary form suited for FS tasks. Experimental results showed that BEGJO out- 231 performed existing algorithms in classification accuracy and FS efficiency, with statistical 232 validation confirming its effectiveness. 233

In addition to the above-mentioned well-known algorithms, a novel population-based 234 metaheuristic algorithm named Hybrid Rice Optimisation Algorithm (HRO) is proposed 235 (Z. Ye et al., 2016), which is inspired by the hybrid breeding process of three-line hybrid 236 rice. According to heterosis theory, first-generation hybrid offspring often exhibit superior 237 traits in growth, reproduction, and behavioural characteristics compared to their parents. 238 As a result, HRO shows strong search capability, high efficiency, and adaptability. Because 239 of these advantages, coupled with its high flexibility and ease of implementation, HRO 240 has been applied by researchers to problems such as disease diagnosis (Mei et al., 2025; 241 A. Z. Ye et al., 2023) and intrusion detection (Z. Ye et al., 2024). Compared to tradi-

275

251

tional metaheuristic algorithms, HRO stands out by emphasizing the utilisation of hybrid 243 breeding mechanisms and heterosis to enhance the population's evolution and iteration. 244 Therefore, the paper intends to take advantage of the HRO algorithm and combine it with 245 the aforementioned two-stage method, which might exhibit even better performance. 246

The newly proposed FS technique combines the mRMR filtering method with the 247 HRO enhanced by multiple strategies, specifically targeting the classification of ultra- 248 high-dimensional biomedical gene expression data. Experimental results validate the ef- 249 fectiveness of the approach, achieving superior performance compared to other related 250 methods. The main contributions of the study can be summarised as follows:

- 1. A Two-Stage Multi-Strategy Hybrid Rice Optimisation Algorithm (TSMS-HRO), 252 is proposed based on the improved HRO algorithm. Unlike existing two-stage ap- 253 proaches that often rely on simple filter-wrapper combinations, our method establishes a tighter coupling between filtering and metaheuristic search, improving both 255 search efficiency and feature subset quality.
- 2. Multi-strategy enhancements are introduced into HRO. Compared with single-strategy. improvements in existing HRO variants, these four mechanisms work collaboratively to achieve a better balance between global exploration and local exploitation. 259
- 3. The method's effectiveness is demonstrated by employing an SVM classifier on 12 260 biomedical datasets. In terms of classification accuracy, feature reduction rate, and 261 convergence speed, our method consistently outperforms state-of-the-art two-stage 262 feature selection algorithms and advanced metaheuristic-based algorithms. 263
- 4. A series of auxiliary experiments is conducted to demonstrate the effectiveness of the 264 proposed method, such as ablation experiments. By isolating different strategies, 265 we verify that the joint design of the two-stage framework and multi-strategy en- 266 hancements is essential for achieving superior stability and robustness. 267

The remainder of this study is organised as follows: Section 2 introduces the basic HRO 268 algorithm and the mRMR filtering method. Section 3 details the methodology proposed 269 in this study. Section 4 presents the experimental setup and discusses the results. Finally, 270 the conclusions of this work and future research are provided in Section 5. 271

Preliminaries 2.

Before detailing the TSMS-HRO algorithm, we first review the basic components of the 273 HRO algorithm, which serves as the core metaheuristic in this work. 274

The hybrid rice optimisation algorithm

HRO is a novel population-based metaheuristic algorithm, proposed by Z. Ye et al. (2016), 276 that boasts strong search capabilities and high computational efficiency. The algorithm's 277

main process includes four stages: Three-line Division, Hybridisation, Selfing, and Re- 278 newal. The core idea is shown in Figure 2.

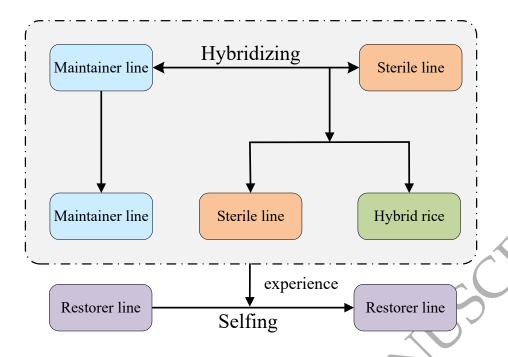


Figure 2: Basic HRO algorithm.

(i) Three-line Division: In the breeding process, the initial populations $X = \{X_1, X_2, \cdots 280, X_n\}$ are sorted in each iteration according to the fitness values, where n demonstrates 281 the size of populations. The maintainer line represents a subgroup of the population 282 with the best fitness values and is denoted as $X_m = \{X_1, X_2, \cdots, X_p\}$, where $p = 283 \lfloor n/3 \rfloor$. A group of seeds with poorer fitness values, which need to hybridise with the 284 maintainer line to improve the quality of individuals, forms the sterile line, denoted as 285 $X_s = \{X_{2p+1}, X_{2p+2}, \cdots, X_n\}$. The remaining subgroup is the restorer line, represented as 286 $X_r = \{X_p, X_{p+1}, \cdots, X_{2p}\}$, which attempts to update its position toward the maintainer 287 line through selfing.

(ii) *Hybridisation*: The hybridisation process involves crossing the maintainer line and the sterile line, which exhibit the greatest difference in fitness values. This process is designed to enhance the genetic quality of sterile line individuals via heterosis-inspired recombination with superior hybrid individuals. The procedure for generating new individuals through hybridisation is described in Equation 1.

$$\begin{cases}
X_{new(i)}^d(t+1) = r_1 \cdot X_s^d(t) + (1-r_1) \cdot X_m^d(t), \\
m \in \{1, 2, \dots, p\}; i, s \in \{2p+1, 2p+2, \dots, n\}.
\end{cases}$$
(1)

where $X_{new(i)}^d$ denotes the d-th gene of i-th hybrid in the sterile line during the (t+1)-th 294 iteration. $X_s^d(t)$ and $X_m^d(t)$ denote the d-th gene of randomly selected individuals from 295

the sterile line and maintainer line populations, respectively. r_1 is a random number in 296 the range [0,1].

(iii) Selfing: The selfing stage is a critical step in optimising the individuals within the restorer line. During this, the seed individuals in the restorer line exchange genetic information through crossover and recombination, enabling subpopulations to evolve toward the optimal solution. Equation 2 models the selfing process.

$$\begin{cases} X_{new(i)}^d(t+1) = r_2(X_{best}^d(t) - X_{r(j)}^d(t)) + X_{r(i)}^d(t), \\ i, j \in \{p+1, p+2, \cdots, 2p\}; i \neq j. \end{cases}$$
 (2)

where $X_{new(i)}^d$ denotes the new gene generated through selfing between the *i*-th and *j*-th 302 individuals $(i \neq j)$ of the restorer line. $X_{best}^d(t)$ denotes the *d*-th gene of the best individual 303 found so far, while $X_{r(j)}^d(t)$ denotes the *d*-th gene of the *i*-th individual randomly selected 304 from the restorer line. r_2 is a random number in the range [0,1].

After generating new individuals through hybridisation and selfing, they are compared with the original candidate individuals. If the fitness value of the new individual is superior to that of the original candidate, replacement is performed according to Equation 3.

$$X_i(t+1) = \begin{cases} X_{new(i)}(t+1), & iff(X_{new(i)}(t)) > f(X_i(t)), \\ X_i(t), & otherwise. \end{cases}$$
(3)

(iv) Renewal: In the HRO algorithm, the Self Crossing (SC) count is used to measure 309 the cumulative number of iterations in which an individual from the restorer line has 310 not been updated. When the self-crossing count for a restorer line individual reaches the 311 preset maximum value (SCmax), it indicates that the individual has not been effectively 312 updated over multiple consecutive iterations. At this point, a reset operation is performed, 313 as described by the following Equation 4.

$$X_{r(i)}^{d}(t+1) = r_3(V_{max}^{d} - V_{min}^{d}) + X_{r(i)}^{d}(t) + V_{min}^{d}.$$
 (4)

where $X_{r(i)}^d(t)$ denotes the d-th gene of the i-th restorer line individual that has not been 315 updated. V_{max}^d and V_{min}^d denote the maximum and minimum values of the d-th dimension. 316 r_3 is a random number selected from the range [0,1].

2.2 Minimum redundancy - maximum relevance (mRMR) 318

The mRMR algorithm aims to select a subset of features that are highly relevant to the 319 target variable while maintaining minimal redundancy among the features. This approach 320 is based on an intuitive concept: a good feature set should contain features that are 321 closely related to the target variable while ensuring independence among the features to 322 avoid redundant information. This balance is achieved by jointly considering the mutual 323 information between each feature and the target variable, as well as the average mutual 324

340

information among the features. Formally, let X represent the feature set and Y represent the target variable. The mRMR selection criterion is shown in Equation 5.

$$\max\left(\frac{1}{|S|}\sum_{x_i \in S} I(x_i; Y) - \frac{1}{|S|^2}\sum_{x_i, x_j \in S} I(x_i; x_j)\right). \tag{5}$$

where S denotes the set of selected features (the default value is 300, confirmed in subsequent experiments). $I(x_i; Y)$ denotes the mutual information between feature x_i and 328 the target variable Y, which measures their relevance. On the other hand, $I(x_i; x_j)$ denotes the mutual information between features, which measures their redundancy. The 330 mRMR method aims to maximise the difference between these two quantities, thereby 331 ensuring that the selected feature set contains features that are highly relevant to the 332 target variable while being mutually independent within the set.

3. The Proposed Approach

In this paper, a two-stage improved FS approach is proposed. A filter-based method 335 is employed in the first stage to preliminarily filter high-dimensional features, with the 336 features subset selected by the filter serving as the initial search space. In the second 337 stage, the multi-strategy integrated HRO algorithm searches within this refined feature 338 space and outputs the final feature subset.

3.1 mRMR-based filter

In the first stage of this method, the mRMR-based technique is used to select a feature 341 set that is both highly relevant to the target variable and minimally redundant among 342 features, as defined in Equation 5. The selected features subset serves as the initial search 343 space for the subsequent metaheuristic algorithm. 344

The pseudo code is in Algorithm 1. After we input the feature subset size |S| and the 345 dataset, for each feature x_i in the dataset, we need to calculate the mutual information 346 between it and the feature label Y and all other features x_j , and then use Equation 5 to 347 calculate the mRMR score of each feature. According to the size of |S|, the feature with 348 the highest score is taken as the feature subset S_1 , and S_1 is used as the input of the 349 second stage.

3.2 MS-HRO: multi-strategy integrated hybrid rice optimisa- 351 tion 352

In the second stage of this method, four different strategies are employed to optimise 353 the basic HRO algorithm. As shown in the Figure 3, in the MS-HRO algorithm, the 354 population is initialised using the good point set and elite opposition-based learning to 355 initialise the population. This is very important, as it effectively improves the quality and 356

Algorithm 1 Preliminary Filtering with mRMR.

Require: Desired subset size |S|, dataset.
Ensure: Initial feature subset S₁ for Stage 2.
1: for each feature x_i in the dataset do
2: Calculate mutual information I(x_i; Y) between feature x_i and target variable Y;
3: end for
4: for each pair of features (x_i, x_j) in the dataset do
5: Calculate mutual information I(x_i, x_j) between features x_i and x_j;
6: end for
7: for each feature x_i do
8: Compute mRMR score using Equation 5;
9: end for
10: Select the top-ranked features based on mRMR scores to form the initial feature subset S₁;
11: return the initial feature subset S₁.

diversity of our initialised population. Then it enters the iterative optimisation until the specified maximum number of iterations is reached and the optimal solution is output. In the iteration, the fitness of all individuals in the population must be measured first, and then the three-line population is sorted and divided according to the fitness. Subsequently, the maintainer line is updated by the aptive difference operator selection strategy, the sterile line is hybridised with the maintainer line to obtain its excellent genes while using the t-distribution mutation perturbation strategy to improve the search performance at different stages, and the restorer line is updated by the enhanced adaptive selfing strategy and the Lévy flight strategy. Finally, the global optimal solution is updated, and the next iteration is entered. And Algorithm 2 for the pseudocode.

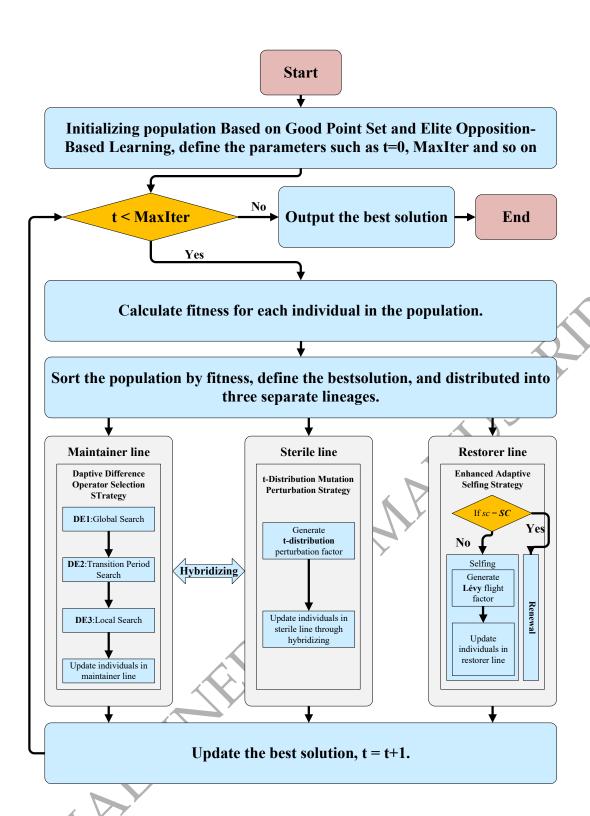


Figure 3: The Flowchart of MS-HRO.

Algorithm 2 MS-HRO-based optimisation. **Require:** Maximum iterations *MaxIter*, population size $n, F \Leftarrow 0.5, s_{max} \Leftarrow 0.92, s_{min} \Leftarrow$ 0.01, $\sigma_{max} \Leftarrow 1.0$, $\sigma_{min} \Leftarrow 0.1$, $g_r \Leftarrow 2$, $cr \Leftarrow 0.9$, $SC_{max} \Leftarrow 10$, $SC_{min} \Leftarrow 4$, $\alpha \Leftarrow 0.1$. **Ensure:** Best solution S. 1: Initialise population $X \Leftarrow \{X_1, X_2, \dots, X_n\}$ using good point set and elite reverse learning for diversity (Equations 6-9); 2: for t = 1 to MaxIter do ▷ Three-line Division Calculate fitness for each individual in the population; 3: Sort the population by fitness: 4: Maintainer line $X_m \Leftarrow \{X_1, X_2, \dots, X_p\}$; 5: Restorer line $X_r \Leftarrow \{X_{p+1}, \dots, X_{2p}\};$ 6: Sterile line $X_s \leftarrow \{X_{2p+1}, \dots, X_n\};$ 7: ▶ Adaptive Differential Operator Selection 8: for each individual in maintainer line X_m do Select differential operator based on adaptive probabilities (Equation 19) 9: 10: Apply DE1, DE2, or DE3 (Equations 10 - 12); Update individual positions in X_m ; 11: end for 12: Hybridisation 13: for each individual $X_s(i)$ in sterile line do Select a random individual X_m and $X_s(j)$; 14: Apply t-distribution-based mutation (Equations 20 – 15: Update $X_s(i)$; 16: end for 17: ▷ Selfing for each individual $X_r(i)$ in restorer line do 18: Select a neighboring individual $X_r(j)$: 19: Perform self-crossing (Equations 25—) 20: Update $X_r(i)$ and increment self-crossing counter SC21: end for 22: ▶ Renewal for each individual in X_r with sc = SC (Equation 24) do 23: 24: Perform reset operation; Reset SC for $X_r(i)$; 25: 26: end for Update the best solution found so far; 27:

3.2.1 Initialisation strategy based on good point set and elite oppositionbased learning (INIT) 368

28: end for

29: **return** The best solution S.

To address the issue of insufficient diversity in the initial population of HRO, a population initialisation strategy based on good point set mapping and elite reverse learning is
proposed to optimise the generation of the initial population. The mapping of the good
point set to the initial search vectors of the population individuals is expressed as follows
372

in Equation 6.

$$X_i^d = (UB^d - LB^d) \times \{r_d^i \times k\} + LB^d. \tag{6}$$

where X_i^d denotes the value of the d-th dimension of the i-th individual. UB^d and LB^d 374 denote the upper and lower bounds of the d-th dimension of the search space. r_d^i denotes 375 the proportional factor of the i-th individual in the d-th dimension. k is a scaling factor 376 used to adjust the search range.

Figure 4 illustrates the two-dimensional initial population distributions generated by uniform distribution, good point set initialisation, logistic chaotic mapping, and Gaussian 379 chaotic mapping. It could be observed that when the population sizes are 30, 45, and 60, 380 the initial populations generated by the good point set are more evenly distributed. This 381 effectively avoids the clustering and dispersion of individuals in specific regions, signific- 382 antly enhancing the diversity of the population. As a result, the global search capability 383 of the algorithm is improved, facilitating the discovery of the global optimal solution. In 384 contrast, the other three strategies tend to generate populations with clustering or un- 385 covered regions in the search space. For instance, logistic chaotic mapping often leads to 386 individuals aggregating near the boundary while leaving large gaps in the center, which 387 not only slows down convergence but also increases the risk of overlooking promising 388 areas, thus hampering the search for high-quality individuals.

Initial Population Distribution of Four Different Initialization Methods under Three Different Population Sizes

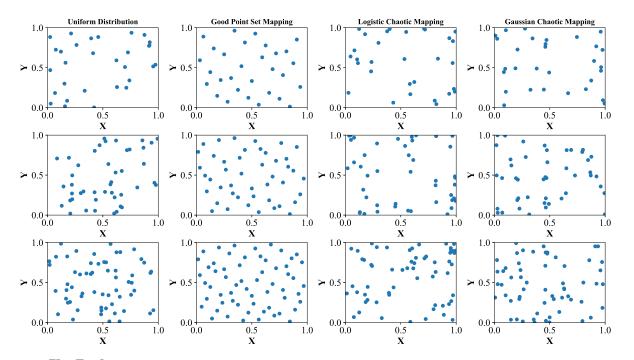


Figure 4: The initial populations generated by different initialisation strategies.

Additionally, since elite individuals often carry more effective search information, this 390 study applies elite opposition-based learning to the population initialised by the good 391 point set. Let $X_i = \left(x_i^1, x_i^2, \dots, x_i^D\right)$, $(i = 1, 2, \dots, n)$ represent elite individuals in a 392 D-dimensional search space. Their opposition-based individuals could be expressed by 393

Equations 7 and 8.

$$\widetilde{X}_i = (\widetilde{x_i^1}, \widetilde{x_i^2}, \cdots, \widetilde{x_i^D}).$$
 (7)

$$\widetilde{x_i^j} = K \cdot (LB^j + UB^j) - x_i^j, \quad j = 1, 2, \dots, D.$$
 (8)

where K is a dynamic coefficient within the range [0,1]. UB^j and LB^j are the upper and lower bounds of the j-th dimension.

If the dynamic coefficient causes the opposition-based solution to exceed the search 398 boundaries, rendering it an infeasible solution, it is corrected using a uniform distribution, 399 as shown in Equation 9.

$$\widetilde{x_i^j} = \text{Uniform}(LB^j, UB^j).$$
 (9)

In summary, this study constructs elite opposition-based individuals for the population initialised by the good point set. The optimal individuals are selected from the 402 combination of the initial solutions from the good point set and their opposition-based 403 individuals, forming the final initial solution set.

3.2.2 Adaptive difference operator selection strategy (DE)

To address the absence of an effective strategy for updating the maintainer line in the 406 basic HRO algorithm, this study proposes an adaptive difference operator-based dynamic 407 selection strategy to improve the quality of maintainer line. This includes the global 408 difference operator DE_1 for the global search phase, the transitional difference operator 409 DE_2 for transitioning from the global search phase to the local search phase, and the local 410 difference operator DE_3 for the local exploitation phase, as described in Equations 10 - 411 12.

$$DE_1: X_i^d(t+1) = X_i^d(t) + r_1 \cdot (X_{p_1}^d(t) - X_{p_2}^d(t)) + (1 - r_1) \cdot (X_{p_3}^d(t) - X_i^d(t)).$$
 (10)

$$DE_2: X_i^d(t+1) = X_i^d(t) + F \cdot (X_{p_1}^d(t) - X_{p_2}^d(t)) + F \cdot (X_{\text{best}}^d(t) - X_i^d(t)). \tag{11}$$

$$DE_3: X_i^d(t+1) = X_{\text{best}}^d(t) + r_2 \cdot (X_{p_1}^d(t) - X_{p_2}^d(t)) + (1 - r_2) \cdot (X_{p_3}^d(t) - X_{p_4}^d(t)). \tag{12}$$

where $X_i^d(t+1)$ denotes the updated value of the d-th dimension of the i-th maintainer 413 population individual in the (t+1)-th iteration. $X_{best}^d(t)$ denotes the value of the d-th 414 dimension of the best solution found in the t-th iteration. X_{p_m} denotes a randomly selected 415 individual from the maintainer line $(p_m \neq i)$, and $(p_i \neq p_j, i \neq j, 1 \leq i, j \leq 4)$. F 416 is a smoothing factor controlling the transition of the maintainer population from global 417 search to local search, with values in the range [0,1]. r_1 and r_2 are random numbers in 418

the range of [0,1].

To enable the algorithm to select different difference operators with varying probabilities during different optimisation phases, this study defines an adaptive probability 421 generation method to dynamically generate selection probabilities for the three types 422 of difference operators. The selection process utilises a roulette wheel algorithm. The 423 formulation is as follows, Equations 13 - 19.

$$s_1 = \frac{peak}{1 + \exp\left(\left(t - \frac{T}{6}\right)/\frac{T}{25}\right)} + s_{min}.$$
 (13)

$$s_2 = peak \cdot \exp\left(-(t - \frac{T}{2})^2/(10 \cdot T)\right) + s_{min}.$$
 (14)

$$s_3 = \frac{peak}{1 + \exp\left(-(t - 5 \cdot \frac{T}{6})/\frac{T}{25}\right)} + s_{min}.$$
 (15)

$$peak = s_{max} - s_{min}. (16)$$

$$S = s_1 + s_2 + s_3. (17)$$

$$p_i = s_i/S, i = 1, 2, 3. (18)$$

$$DE_s = roulette_wheele_selection(p).$$
 (19)

where s_{min} and s_{max} are boundary adjustment parameters to prevent excessively small 425 or large values before normalisation. $p_i(i=1,2,3)$ denotes the normalised probability 426 of selecting the *i*-th difference operator. t and T denote the current iteration count and 427 the maximum number of iterations, respectively. DE_s denotes the difference operator 428 ultimately selected using the roulette wheel strategy.

Figure 5 illustrates the adaptive dynamic adjustment of selection probabilities for 430 the three different operators as the number of iterations increases. At the early stage 431 of optimisation, the algorithm selects the global difference operator DE_1 with a higher 432 probability to emphasize global exploration. During the transition phase from global to 433 local search, the transitional difference operator DE_2 is chosen with a higher probability 434 of balancing exploration and exploitation. In the later stages of optimisation, the local 435 search operator DE_3 is selected with a higher probability to refine and enhance the optimal 436 solution obtained.

3.2.3 t-distribution mutation perturbation strategy (TD)

The paper addresses the lack of differentiation between the early global exploration phase 439 and the later local exploitation phase in the original HRO update strategy by introducing a 440

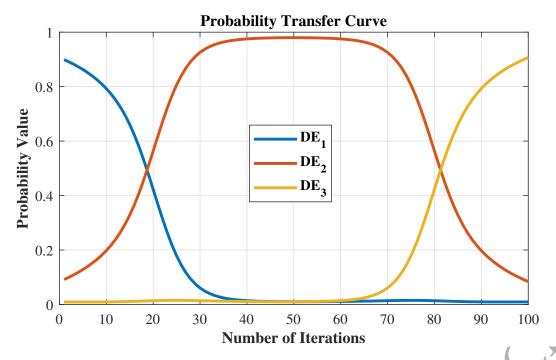


Figure 5: Differential operator selection probability transfer curve.

t-distribution-based mutation perturbation strategy to improve the hybridisation process. 441 By leveraging t-distribution characteristics, the hybridisation phase in HRO is improved 442 (Equations 20 - 23), where the original random number r_1 is replaced by t-distribution 443 sampling.

$$X_{new(i)}^{d}(t) = \mathbf{t} \cdot X_{s(j)}^{d}(t) + (1 - \mathbf{t}) \cdot X_{m}^{d}(t).$$
 (20)

$$f(t|df,\sigma) = \frac{\Gamma\left(\frac{df+1}{2}\right)}{\Gamma\left(\frac{df}{2}\right)\sqrt{df\pi}\sigma} \left(1 + \frac{1}{df}\left(\frac{t}{\sigma}\right)^2\right)^{-\frac{df+1}{2}}.$$
 (21)

$$df = 2 + \frac{t}{T} \cdot 28. \tag{22}$$

$$\sigma = (\sigma_{max} - \sigma_{min}) \cdot \left(1 - \left(\frac{t}{T}\right)^{gr}\right) + \sigma_{min}.$$
 (23)

where $X_{new(i)}^d(t)$ denotes the updated value of the d-th gene of the i-th sterile line individual at iteration t. $X_{s(j)}^d(j \neq i)$ and $X_m^d(t)$ denote the individuals selected randomly 446 from sterile line and maintainer line, respectively. Each dimension of a newly generated 447 sterile line individual is perturbed by a random variable generated from the t-distribution. 448 Γ denotes the Gamma function, σ_{max} and σ_{min} are the maximum and minimum mutation 449 scales, controlling the range of generated random numbers. Larger scales result in broader 450 mutation ranges, and smaller scales result in narrower ranges. gr denotes the growth rate 451 that controls the convexity of the σ variation curve.

Figure 6 illustrates the shapes of the t-distribution under different degrees of freedom and mutation scales. This study leverages the characteristics of this distribution 454

465

by combining various degrees of freedom and mutation scales to control the shape of the t-distribution, to dynamically adjust between global exploration and local exploitation stages for individuals. In the initial stages of iteration, the degree of freedom is relatively small while the mutation scale is large. At this point, the t-distribution approximates a Cauchy distribution, with data being more dispersed, resulting in larger perturbations that drive the updates of individuals toward global exploration. As the iterations progress, the degree of freedom gradually increases, and the mutation scale decreases. The t-distribution then transitions towards a normal distribution with a smaller standard deviation, generating smaller perturbations that make individuals more inclined to search within local regions.

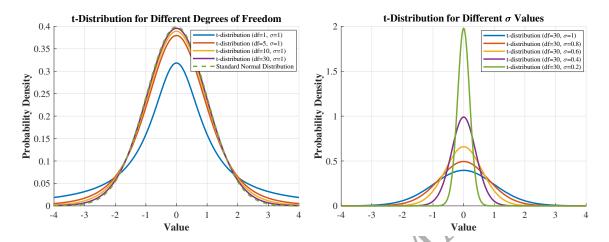


Figure 6: The shapes of t-distributions corresponding to different degrees of freedom and mutation scales.

3.2.4 Enhanced adaptive selfing strategy (SC)

To address the limitation of simply setting the selfing upper limit parameter (SC) as 466 a constant during the selfing process, this study proposes an adaptive dynamic adjustment mechanism based on the iteration count and introduces a Lévy flight mechanism to 468 improve the update of recovery system individuals.

469

To overcome the deficiency of SC being fixed as a constant in the basic HRO, the 470 value of SC is improved by making it adaptively adjustable with iterations, as shown in 471 Equation 24.

$$SC = SC_{\min} + (SC_{\max} - SC_{\min}) \cdot \left(1 - \left(\frac{t}{T}\right)^{2}\right). \tag{24}$$

where SC_{max} and SC_{min} denote the values of the selfing upper and lower limit, respectively.

In the early stages of the algorithm, when the algorithm is in a global search state, 475 most individuals have a higher probability of performing effective updates within a small 476 number of iterations. At this point, SC is set to a relatively high value. If a seed individual 477 reaches this value in the early stage, it indicates that the individual has already fallen into 478

a local optimum. In such cases, a forced reset operation is executed. As the iterations 479 progress to later stages, the likelihood of individuals being trapped in the local optima 480 increases. Therefore, setting SC to a smaller value at this stage can help individuals 481 quickly escape from the local optima and improve the overall search efficiency. 482

Additionally, this study also improves the selfing strategy for individuals from restorer line, replacing the original gene update formula with the following Equations 25 - 27.

$$X_{new(i)}^{d}(t) = r_3 \cdot (X_{best}^{d} - X_{r(j)}^{d} + c_1 \cdot (LB^d + L)).$$
 (25)

$$L = \alpha \cdot \text{L\'{e}}(\beta) \cdot (UB^d - LB^d). \tag{26}$$

$$c_1 = 2 \cdot \exp\left(-\left(\frac{4 \cdot t}{T}\right)^2\right). \tag{27}$$

where α is the step-size control factor, and c_1 is an adaptive parameter that nonlinearly 485 decreases from 2 to nearly 0 as iterations progress, providing dynamic global and local 486 search capabilities for the recovery system individuals. $X_{r(j)}^d$ denotes the d-th dimensional 487 gene value of the j-th seed individual randomly selected from the recovery system ($j \neq 488$ i). X_{best}^d denotes the d-th dimensional gene value of the best solution found up to the 489 current iteration. r_3 is a random number in the range [0,1]. Lévy(β) refers to the 490 Lévy distribution with parameter, characterised by alternating short-distance searches 491 and random long-distance searches. This property enhances the algorithm's global and 492 local search capabilities. The specific form of the Lévy distribution is given in Equation 28. 493

Lévy(
$$\beta$$
) $\sim \mu = t^{-\mu}$, $(1 < \beta \le 3)$. (28)

where β controls the step length; smaller β promotes global exploration, larger β favours 494 local exploitation. μ is the Lévy exponent related to β , influencing the probability of long 495 jumps.

3.3 TSMS-HRO: a high-dimensional feature selection algorithm 497

Based on MS-HRO, the first-stage filter-based algorithm, along with transformation functions and classifiers, is integrated to adapt the algorithm for high-dimensional FS tasks 499 (refer to Figure 7 for the TSMS-HRO flowchart, and Algorithm 3 for the pseudocode). 500

3.3.1 Binary encoding strategy and classifier

In common, most of metaheuristic algorithms were originally designed for continuous 502 optimisation problems and cannot be directly applied to discrete optimisation problems 503 like FS. The solutions obtained by HRO are continuous, and they need to be mapped to 504 the FS solution space using a transfer function. The transfer function used in this study 505

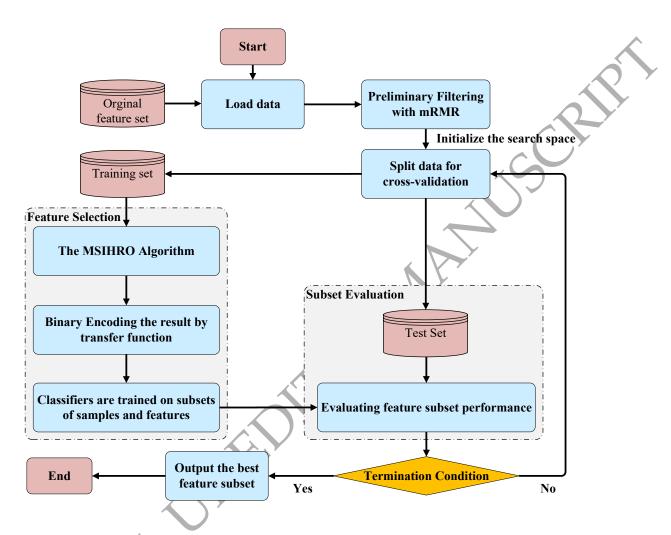


Figure 7: The Flowchart of TSMS-HRO.

$$S(x) = \frac{1}{1 + \exp(-x/2)}. (29)$$

$$X_i^d = \begin{cases} 1, & if S(X_i^d) > rand, \\ 0, & otherwise. \end{cases}$$
 (30)

In addition, to validate the effectiveness of the proposed algorithm, this study uses 507 SVM as the classifier.

3.3.2 The fitness function

509

The fitness function used in this study is defined as Equation 31.

$$Fitness = \lambda \cdot error + \mu \cdot \frac{n}{N}.$$
 (31)

where error denotes the classification error rate. n and N are the sizes of the selected 511 feature subset and the total number of features, respectively. λ and μ are weighting 512 factors used to balance the influence of the classification error rate and the feature subset 513 size. The weights λ and μ satisfy the condition $\lambda + \mu = 1$, ensuring that the fitness values 514 of all algorithms range between 0 and 1. This normalisation facilitates a fair comparison 515 of the performance across different algorithms.

Algorithm 3 TSMS-HRO for Feature Selection.

Require: Subset S_1 , maximum iterations MaxIter, population size $n, F \Leftarrow 0.5, s_{max} \Leftarrow 0.92, s_{min} \Leftarrow 0.01, \sigma_{max} \Leftarrow 1.0, \sigma_{min} \Leftarrow 0.1, g_r \Leftarrow 2, cr \Leftarrow 0.9, SC_{max} \Leftarrow 10, SC_{min} \Leftarrow 4, \alpha \Leftarrow 0.1, \lambda \Leftarrow 0.99, \mu \Leftarrow 0.01.$

Ensure: Best feature subset.

- 1: Initialise population $X \Leftarrow \{X_1, X_2, ..., X_n\}$ using:
- 2: Use subset S_1 from Stage 1 as the initial search space;
- 3: Good point set and elite reverse learning for diversity (Equations 6-9);
- 4: **for** t = 1 to MaxIter **do**
- 5: Calculate fitness for each individual in the population;
- 6: Sort the population by fitness:
- 7: Maintainer line $X_m \Leftarrow \{X_1, X_2, \dots, X_p\};$
- 8: Restorer line $X_r \Leftarrow \{X_{p+1}, \dots, X_{2p}\};$
- 9: Sterile line $X_s \Leftarrow \{X_{2p+1}, \dots, X_n\}$;
- 10: Apply MS-HRO's improvement strategies;

▷ Discretization

11: Apply S-shaped transfer function to convert continuous solutions to binary values (Equations 29 - 30);

▶ Fitness Evaluation

- 2: Calculate fitness using error rate and feature subset size (Equation 31);
- 13: Update the best solution found so far if the new solution is better;
- 14: end for
- 15: return Best feature subset.

526

4. Experiment and Discussion

To assess the effectiveness of the proposed method, this section presents a series of benchmark experiments. It begins with a description of the experimental framework, including datasets and baseline algorithms, followed by a detailed analysis of the results.

The experiments were conducted on a PC running the Windows 10 operating system. 521 The hardware specifications include a 13th Gen Intel(R) Core(TM) i9-13900K CPU @ 522 3.00 GHz and 64GB of memory. All algorithms were implemented using the Python 523 programming language. 524

4.1 Experimental settings

To evaluate the proposed algorithm, five groups of experiments were organised:

- 1. Validation of MS-HRO's performance in continuous space: To demonstrate the 527 optimisation capability of MS-HRO in a continuous space, this section uses the 528 CEC2022 benchmark functions as benchmarks.
- 2. Integration of filter methods into MS-HRO: To enhance the search efficiency and the 530 quality of selected feature subsets, the filter method was incorporated into MS-HRO. 531 Several mainstream filter methods, including Fisher, Laplacian, Maximal Information Coefficient (MIC), MI, mRMR, ReliefF, and Trace Ratio Criterion (TR), were 533 compared and evaluated. 534
- 3. Verification of classifier-independence: To examine whether the proposed method 535 is adaptable to different classifiers, additional experiments were conducted using 536 KNN, DecisionTree (DT), Naive Bayes (NB), XGBoost, and Random Forest (RF) 537 while keeping the selected feature subsets unchanged. This allows us to evaluate 538 the generalisation capability of the algorithm and confirm that its effectiveness is 539 not limited to SVM.
- 4. Evaluation of TSMS-HRO on high-dimensional biomedical datasets: The classification performance of the TSMS-HRO algorithm was assessed (mRMR + SVM as the baseline algorithm) and analyzed on 12 high-dimensional gene expression datasets derived from biomedical microarray databases.
- 5. Ablation study of TSMS-HRO components: To evaluate the effectiveness of each 545 mechanism in TSMS-HRO, we conducted an ablation study on multiple high-dimensioned biomedical datasets by selectively incorporating different strategies into the al- 547 gorithm.

4.2 Dataset and parameter settings

To validate the performance of MS-HRO, the study utilised the CEC2022 benchmark 550 functions, which include: 1 Unimodal Function, 4 Basic Functions, 3 Hybrid Functions, 551 and 4 Composition Functions. For comparative experiments, the study selected several 552 state-of-the-art optimisation algorithms as baselines, including HRO, GA, Honey Badger 553 Algorithm (HBA), HHO, JAYA, Rime Optimisation Algorithm (RIME), SSA, WOA, AO, 554 Clonal Selection Algorithm (CSA), GWO. The parameters of these comparison algorithms 555 are provided in Table 1. All algorithms shared a consistent configuration: an initial 556 population size of 42, a maximum of 1000 iterations, and 30 independent runs for each 557 20-dimensional test function, ensuring statistical reliability and fairness. 558

Table 1: Parameter Settings.

Algorithm	Parameter Setting
HRO	$r_1, r_2, r_3 \in [0, 1], SC = 8$
MS-HRO	$F = 0.5, s_{\text{max}} = 0.92, s_{\text{min}} = 0.01, \sigma_{\text{max}} = 1.0, \sigma_{\text{min}} = 0.1$
	$g_r = 2, cr = 0.9, SC_{\text{max}} = 10, SC_{\text{min}} = 4, \alpha = 0.1$
GA	CR = 1, MR = 0.01
HBA	$C = 2, \beta = 6, F \in \{-1, 1\}$
ННО	$E_1 = 2(1 - \frac{t}{T}), E_0 \sim \mathcal{U}(-1, 1), E = E_1 \cdot E_0, q, r \sim \mathcal{U}(0, 1),$
	$J = 2(1 - \text{rand}), \text{L\'evy}(\beta = 1.5)$
JAYA	
RIME	W = 5
SSA	$c_1 = 2e^{-(\frac{4t}{T})^2}, c_2 \sim \mathcal{U}(0, 1)^n, c_3 \sim \mathcal{U}(0, 1)^n$
WOA	$a \in [0, 2], A = 2ar_1 - a, C = 2r_2, b = 1, l \in [1, a_2], p \in [0, 1]$
AO	$\alpha = 0.1, \ \delta = 0.1, \ a = 2(1 - \frac{t}{T}), \ r_1 \sim \mathcal{U}(0, 1), \ \text{Lévy}(\beta = 1.5)$
CSA	CR = 0.1, MR = 0.1, SR = 0.2
GWO	$\alpha \in [0,2]$

This study aimed to select a more effective filter method by evaluating mainstream 559 filter techniques, including Fisher, Laplacian, MIC, MI, mRMR, ReliefF, and TR. Each 560 filter method was compared and validated under varying fixed dimensions (ranging from 561 100 to 500, with an increment of 50) and feature ratios (ranging from 5% to 30%, with 562 an increment of 5%). The evaluation criterion was based on calculating the average 563 classification accuracy achieved by each filter method across all datasets in Table 2 when 564 selecting the corresponding number of features.

To verify the classifier-independence of the proposed feature selection algorithm, multiple classifiers, including SVM, KNN, DT, NB, XGBoost, and RF, were employed for evaluation. Each classifier was executed 30 times on the 12 datasets listed in Table 2, and their performance was assessed under the same feature subsets generated by the proposed algorithm. The parameter settings for each classifier are summarised in Table 3.

To validate the performance of the proposed FS method, it is compared with the latest 571 two-stage FS methods, such as MBAO (Pashaei, 2022), HFSIA (Zhu et al., 2023), MG- 572

Table 2: Datasets used for feature selection by TSMS-HRO.

ID	Dataset	Instances	Number of Features	Number of Classes
D1	colon	62	2000	2
D2	lung	203	3312	5
D3	GLIOMA	50	4434	4
D4	leukemia_1	72	5327	3
D5	DLBCL	77	5469	2
D6	TOX_171	171	5748	4
D7	ALLAML	72	7129	2
D8	Brain_Tumor_2	50	10367	4
D9	Prostate_Tumors	102	10509	2
D10	CLL_SUB_111	111	11340	3
D11	SMK_CAN_187	187	19993	2
D12	GLI_85	85	22283	2

Note: These datasets vary significantly in the number of features, ranging from 2,000 to 22,283. Specifically, datasets D1-D7 are high-dimensional datasets with feature counts between 2,000 and 7,129, while datasets D8-D12 have even higher feature dimensions, ranging from 10,367 to 22,283. This diversity in feature numbers provides a broad spectrum of data perspectives and analytical layers for in-depth research.

Table 3: Classifier Parameter Settings.

A.11	D + 0.44
Algorithm	Parameter Setting
SVM	$C \neq 4$
KNN	K = 5
DT	$criterion = gini, max_depth = None$
NB	
XGBoost	$max_depth = 3, learning_rate = 0.01, n_estimators = 100, subsample = 1.0, colsample_bytree = 1.0$
	$100, subsample = 1.0, colsample_bytree = 1.0$
RF	$n_estimators = 100, max_depth = None, criterion = gini$

Note: The parameters are based on commonly used or default settings in the respective classifiers, without further hyperparameter tuning, to ensure a fair comparison under the same feature subsets.

594

595

WOR (Pan et al., 2023), BIGWO (Moustafa et al., 2024), and improved two-stage methods, TS-GA, TS-GWO, TS-HBA, TS-HHO, TS-JAYA, TS-RIME, TS-SSA, TS-WOA, in 574 12 datasets listed in Table 2. These datasets were derived from gene expression profiles 575 in high-dimensional biomedical microarray databases (Ghosh et al., 2021; J. Li et al., 576 2017). The collection of such datasets typically relies on high-throughput technologies, 577 such as microarray techniques or next-generation sequencing, which enable the measurement of thousands of gene expression levels in a single experiment. These datasets are 579 widely used in disease diagnosis, biomarker discovery, and drug development. By analysing differences in gene expression patterns, researchers can uncover molecular mechanisms 581 underlying specific diseases and support the development of novel therapeutic approaches. 582 The experiments were conducted under a unified standard. Each algorithm was run 30 times on each data set. The population size was set to 30, the minimum number of 584 iterations was 100, and the filters used by the improved TS-GA, TS-GWO and other 585 algorithms were all mRMR (the parameters were consistent with TSMS-HRO), and the other algorithm parameters were consistent with those in Table 1. 587

To evaluate the effectiveness of each mechanism within TSMS-HRO, an ablation study 588 was conducted by selectively incorporating different strategies into the algorithm. The 589 impact of each component on performance was assessed across multiple high-dimensional 590 biomedical datasets in Table 2 to determine its contribution to the overall effectiveness of 591 the algorithm. The parameters of all comparison algorithms are consistent with TSMS- 592 HRO. The comparison algorithm list and its explanation are shown in Table 4.

Table 4: Comparison of algorithms in ablation experiments.

Algorithm	Description
HRO	Original HRO algorithm.
TS-HRO	Two-stage HRO algorithm with mRMR-based filter.
MS-HRO	Multi-strategy improved HRO algorithm.
TSMS-HRO	Two-Stage Multi-Strategy HRO algorithm with mRMR-based filter.
TS-HRO-DE	Two-stage DE-improved HRO algorithm with mRMR-based filter.
TS-HRO-INIT	Two-stage INIT-improved HRO algorithm with mRMR-based filter.
TS-HRO-SC	Two-stage SC-improved HRO algorithm with mRMR-based filter.
TS-HRO-TD	Two-stage TD-improved HRO algorithm with mRMR-based filter.

Note: The parameters of all variant algorithms are consistent with TSMS-HRO.

4.3 Performance metrics

4.3.1 The result of the CEC2022 benchmark tests

MS-HRO demonstrates significant advantages in most benchmark functions. Specifically, 596 in test functions F5, F6, F8, F9, F10, F11, and F12, MS-HRO outperforms other 597 algorithms, achieving solutions that are closer to the optimal. Additionally, for functions 598 F1, F2, F3, and F7, the algorithm consistently converges to competitive solutions, albeit 599

slightly behind the top-performing algorithm in those cases. Moreover, we can observe 600 that MS-HRO performs better in the Hybrid and Composition functions. Among the 7 601 functions from F6 to F12, MS-HRO achieved the best average fitness values in 6 cases 602 and demonstrated excellent performance in terms of variance, indicating a certain level of 603 stability. This suggests that MS-HRO possesses strong search capabilities, allowing it to 604 explore the search space and identify the optimal values thoroughly. For example, in F8, 605 MS-HRO outperformed other methods by several orders of magnitude, reaching 2.36E+3, 606 and achieved the lowest variance of 2.66E+2 compared to other algorithms in the same 607 group. However, at the same time, we can also observe that MS-HRO performs worse 608 than HBA on Basic and Simple Multimodal functions.

In Figure 8 (mainly Unimodal Functions and Basic Functions), we first observe that the convergence speed of MS-HRO is not as fast as that of a few other algorithms. This is 611 because, in order to avoid premature convergence to a local optimum, MS-HRO continues 612 to explore unknown regions in search of better solutions. This exploratory behaviour also 613 lays the groundwork for its excellent performance on subsequent Hybrid and Composite 614 Functions. Secondly, although its convergence speed is relatively slow, MS-HRO still 615 converges to the optimal value on certain functions, such as F5 and F6. On F5, the 616 convergence of MS-HRO in the early iterations is not as strong as that of the original 617 HRO and GWO algorithms. However, after 100 iterations, it surpasses all algorithms and 618 achieves the optimal value. On F6, after nearly 400 iterations, MS-HRO escapes from 619 the local optimum, outperforms the AO algorithm, which remains trapped, and reaches 620 the best convergence value. In addition, MS-HRO performs slightly worse than the HBA 621 algorithm on F1, F2, and F3, but the performance gap is minor. Notably, the convergence 622 speed of MS-HRO is much faster than that of HBA, indicating a better trade-off between 623 optimisation quality and convergence efficiency. Finally, on F4, MS-HRO fails to obtain 624 a competitive solution before the end of the iteration, likely due to being trapped in 625 a local optimum. The rugged and multimodal nature of F4 may not align well with 626MS-HRO's search dynamics, leading to reduced exploration and premature convergence. 627 Nevertheless, its convergence trend still indicates potential for further improvement. 628

In Figure 9 (Hybrid Functions and Composition Functions), we observe that, in terms of convergence value, MS-HRO achieves the optimal results on 5 out of 6 functions, with the exception of F7, where its performance is slightly worse than that of the original HRO. 631 Overall, MS-HRO shows a significant advantage. Although the original HRO obtains 632 relatively competitive results on F8, F9, and F12, its performance still falls short of 633 that of MS-HRO. This demonstrates the effectiveness of our multi-strategy improvement 634 approach. Regarding convergence speed, MS-HRO remains ahead of most algorithms even 635 when dealing with more complex functions. This highlights the efficiency of the proposed 636 exploration strategy in finding high-quality solutions more rapidly. For instance, MS-637 HRO converges to the optimal value on F10 within approximately 300 iterations, while 638 other algorithms continue to search without reaching optimal convergence under the same 639

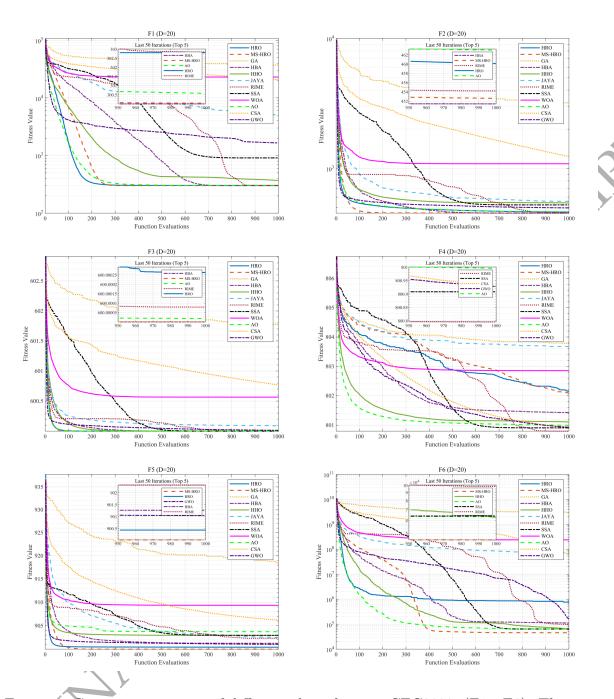


Figure 8: Convergence curves of different algorithms on CEC2022, (F1 - F6). The proposed method MS-HRO is represented by an orange dotted line.

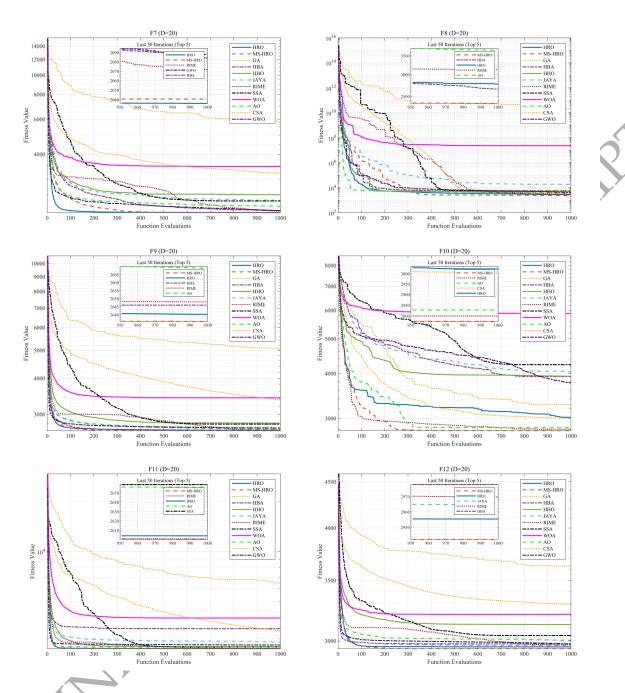


Figure 9: Continued (F7 - F12).

iteration count.

To further compare the performance differences between MS-HRO and other algorithms 641 in terms of convergence value, variance, and runtime, we present a bar chart. Additionally, 642 we take the logarithm of the convergence values to make the comparisons more visually 643 apparent. In Figure 10 (mainly Unimodal Functions and Basic Functions), on F1, F2, 644 and F3, although the HBA algorithm achieves slightly better convergence values, the 645 differences between HBA and MS-HRO are marginal. MS-HRO still converges to highly 646 competitive solutions. For instance, on F1, the difference between MS-HRO and HBA is 647 only 3.00E-3, which is negligible. On F2, HBA achieves 4.51E+2, and MS-HRO achieves 648 4.53E+2, with a gap of only 1.86, while also obtaining the lowest variance, which highlights 649 the stability of MS-HRO. On F3, the difference is merely 8.30E-12, which is practically insignificant. On F4, MS-HRO ranks eighth, likely due to being trapped in a local op- 651 timum. However, most algorithms—including MS-HRO—approach the optimal value of 652 approximately 800, as shown in the figure. On both F5 and F6, MS-HRO achieves the 653best convergence values. Notably, it also achieves the lowest variance (0.08) on F5. On 654 F6, MS-HRO performs particularly well, reaching 4.53E+4, significantly outperforming the second-best AO algorithm at 6.34E+4. 656

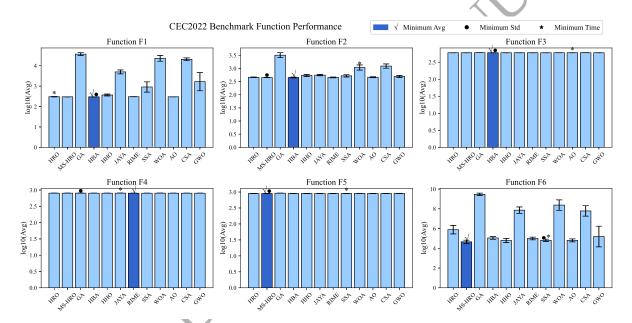


Figure 10: Bar chart comparing the performance of different algorithms on CEC2022. The algorithm with the best convergence value is marked with dark blue and a check mark; the one with the smallest variance is marked with a circle and an error bar; and the asterisk indicates the algorithm with the shortest running time (F1 - F6).

In Figure 11 (Hybrid Functions and Composition Functions), the performance from F7 657 to F12 is even more impressive. MS-HRO achieves both the best convergence values and 658 the lowest variances on F8, F9, F10, F11, and F12, demonstrating strong optimisation 659 ability and excellent stability when dealing with complex functions. Although the original 660 HRO algorithm performs best on F7, the gap with MS-HRO is only 4.07—relatively 661 small compared to the differences observed with other algorithms. Additionally, MS- 662

HRO demonstrates outstanding convergence values on other functions. For example, on 663 F8, its result exceeds the second-best HBA algorithm by 2.93E+2. On F12, MS-HRO 664 achieves 2.94E+3, whereas the second-best HRO algorithm only reaches 2.96E+3.

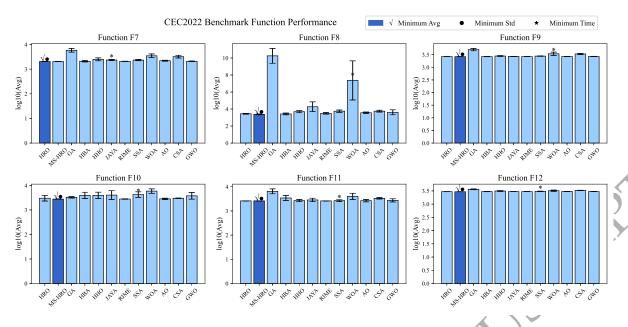


Figure 11: Continued. (F7 - F12)

In summary, after multiple iterations, MS-HRO demonstrates exceptional optimisation 666 capabilities on the CEC2022 benchmark suite. These results can be attributed to the 667 solid foundation of the original HRO algorithm and the effectiveness of the proposed 668 enhancements, making MS-HRO a highly competitive optimisation method. 669

4.3.2 The result of the filter experiment

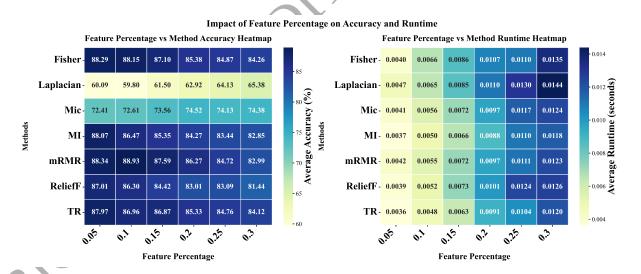


Figure 12: Heat map showing the average accuracy and average running time of each filter on 12 datasets at different feature percentages. Darker colors on the left indicate higher accuracy, while lighter colors on the right indicate shorter running times.

As shown in Figure 12, within the feature ratio range of 0.05 to 0.30, the mRMR, 671 Fisher, and MI methods achieved the highest classification accuracy. Among them, the 672 mRMR method exhibited remarkable stability across all ratios, achieving a peak accuracy 673 of 88.93% at a feature ratio of 0.1, thereby outperforming most other methods. In contrast, 674 Laplacian yielded the lowest accuracy, which increased slightly with the feature ratio but 675 remained significantly lower than that of other methods. Regarding runtime, all methods 676 exhibited increased execution time as the feature ratio rose, which is an expected trend. 677 Although TR had the shortest runtimes at lower feature ratios, the runtime of mRMR was 678 comparable to that of other mainstream methods (such as reliefF and MI) and remained 679 within an acceptable range. 680

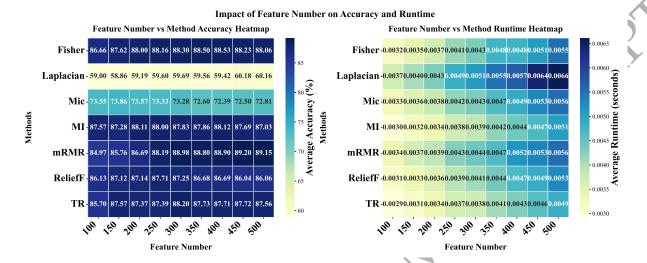


Figure 13: Heat map showing the average accuracy and average running time of each filter on 12 datasets with different numbers of features. Darker colors on the left indicate higher accuracy, while lighter colors on the right indicate shorter running times.

As shown in Figure 13, the classification accuracy of the mRMR method steadily increases as the number of features grows from 100 to 500, reaching peak values of 89.20% 682 at 450 features and 89.15% at 500 features. Notably, at 300 features, the accuracy already 683 reaches 88.98%, only 0.22% below the maximum, indicating it is very close to optimal. 684 Compared to other methods (such as Fisher, MI, and ReliefF), mRMR consistently maintains a leading performance across medium and high-dimensional settings. In terms of 686 runtime, mRMR shows a near-linear increase with the number of features, reaching approximately 0.0043 seconds at 300 features—substantially faster than the 0.0056 seconds 688 at the maximum feature count. Given the marginal gain in accuracy versus the notable increase in computational cost, selecting 300 features represents a more cost-effective 690 trade-off. 691

In conclusion, by comprehensively evaluating classification accuracy and computa- 692 tional efficiency, we selected the mRMR method with 300 features as the first-stage filter 693 in our FS method.

4.3.3 The result of the classifier experiment

As shown in Figure 14 and Table 5, the results demonstrate that the proposed feature selection method maintains high classification performance across different classifiers, which 697 verifies the generalisation capability and classifier-independence of the selected features. 698 Overall, all six classifiers (SVM, KNN, DT, NB, XGBoost, and RF) achieve consistently 699 high accuracy values on most datasets, suggesting that the selected features preserve 700 discriminative information independent of the specific classifier applied. 701

From an overall perspective, SVM consistently yields the best or near-best results, 702 achieving the highest accuracy on 11 out of 12 datasets. For instance, it reaches perfect 703 classification (100%) on four datasets (D4, D5, D7, D12), and above 95% accuracy on 704 most others, with the exception of D11, where the accuracy drops to 85.93%. KNN also 705 performs strongly, matching or surpassing SVM in several datasets, such as D2 (98.67%) 706 and D12 (100%).

Other classifiers also exhibit competitive performance. NB achieves 100% accuracy on 708 three datasets (D4, D5, D7), while RF attains 100% on D4 and nearly perfect accuracy 709 on D5 and D12. XGBoost maintains balanced and stable results, often close to SVM 710 (e.g., 97.65% on D12, compared with SVM's 100%). In contrast, DT shows relatively 711 lower performance, particularly on D6 (76.10%) and D11 (77.09%), indicating higher 712 sensitivity to dataset characteristics.

In summary, although SVM achieves the most stable and superior results overall, the 714 fact that other classifiers—especially KNN, RF, and NB—also achieve competitive or 715 even identical accuracy on several datasets demonstrates that the proposed method is 716 not limited to a single classifier. This confirms that the selected features possess strong 717 generalisation ability and classifier independence.

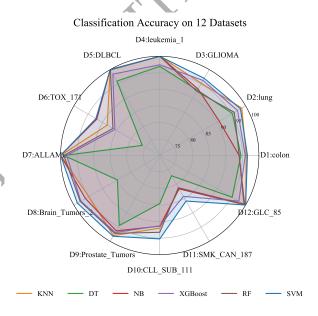


Figure 14: Radar chart of the average accuracy of each classifier running on 12 data sets.

33

719

Table 5: The average accuracy of each classifier running on 12 data sets.

Dataset	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
SVM	96.52	98.21	96.93	100	100	92.30	100	98.80	98.23	95.25	85.93	100
KNN	96.17	98.67	95.20	100	100	88.34	100	94.80	98.00	91.98	81.69	100
DT	94.55	95.39	92.80	96.95	95.97	76.10	99.02	84.80	94.47	84.55	77.09	95.29
NB	94.03	90.78	93.20	100	100	91.98	100	96.00	96.33	91.38	81.67	99.65
XGBoost	95.87	97.19	96.20	97.43	98.40	85.69	98.14	97.60	96.90	91.29	84.30	97.65
RF	94.05	96.05	92.40	100	99.87	86.36	99.02	97.80	97.22	93.24	81.26	99.41

TSMS-HRO two-stage high-dimensional feature selection results 4.3.4

From the convergence curves, it can be observed that TSMS-HRO achieved the highest 720 accuracy on 10 out of the 12 datasets, demonstrating leading performance particularly on D1, D3, D8, and D11. As shown in Figure 15, for the first seven datasets (with feature 722) dimensions ranging from 2,000 to 7,129), TSMS-HRO achieved the top accuracy in five 723 cases and exhibited clear advantages on the D1 and D3 datasets. It not only outperformed 724 the second-best algorithms, HFSIA and MGWOR, by nearly 2 percentage points but also 725 demonstrated the fastest convergence to the optimal solution. Although the convergence 726 speed of TSMS-HRO was relatively slower on the D2 and D6 datasets, it ultimately 727 achieved strong results, ranking third and second, respectively. On the D4, D5, and D7 728 datasets, TSMS-HRO—as well as several other improved two-stage algorithms (including 729 TS-GA, TS-HBA, TS-RIME, and HFSIA)—reached the maximum convergence accuracy 730 of 100%. Furthermore, it is worth noting that these algorithms already exhibited high 731 accuracy in the early stages of iteration, which can be largely attributed to the mRMR 732 filter employed during the first selection stage. 733

As illustrated in Figure 16, on the final five high-dimensional datasets (with feature 734 dimensions ranging from 10,367 to 22,283), TSMS-HRO delivered even stronger performance, consistently converging to the optimal accuracy. On D8 and D9, TSMS-HRO main-736 tained superior convergence curves throughout the entire optimisation process, reflecting 737 its excellent global and local search capabilities. Although it initially lagged behind HFSIA 738 on D10, TSMS-HRO surpassed it after 40 iterations and eventually reached the best convergence value. Particularly on D11—the second most high-dimensional dataset—TSMS-740 HRO outperformed the second-ranked MGWOR algorithm by a margin of 5 percentage 741 points, demonstrating a clear and significant advantage. Moreover, on D12, the dataset 742 with the highest dimensionality, TSMS-HRO was the only algorithm to achieve 100% 743 accuracy, further underscoring its superior capability in high-dimensional FS tasks.

In general, TSMS-HRO demonstrates excellent convergence ability, particularly on 745 high-dimensional datasets. Its superior initial solutions can be attributed to the effectiveness of the first stage, which significantly reduces noise and redundancy. Meanwhile, the 747 algorithm's ability to reach better final convergence values is largely due to the strengths 748 of the original HRO algorithm and the enhancements introduced in the second-stage optimisation. This synergy between the two stages highlights the overall robustness and 750

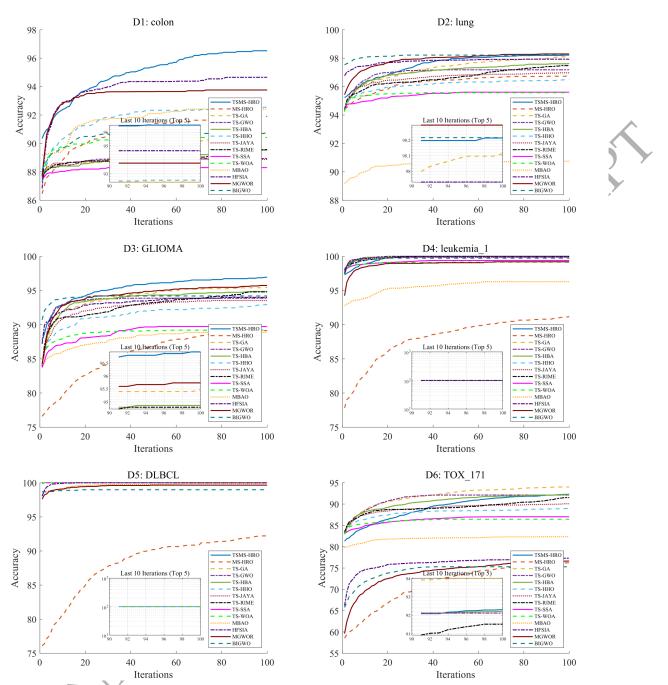
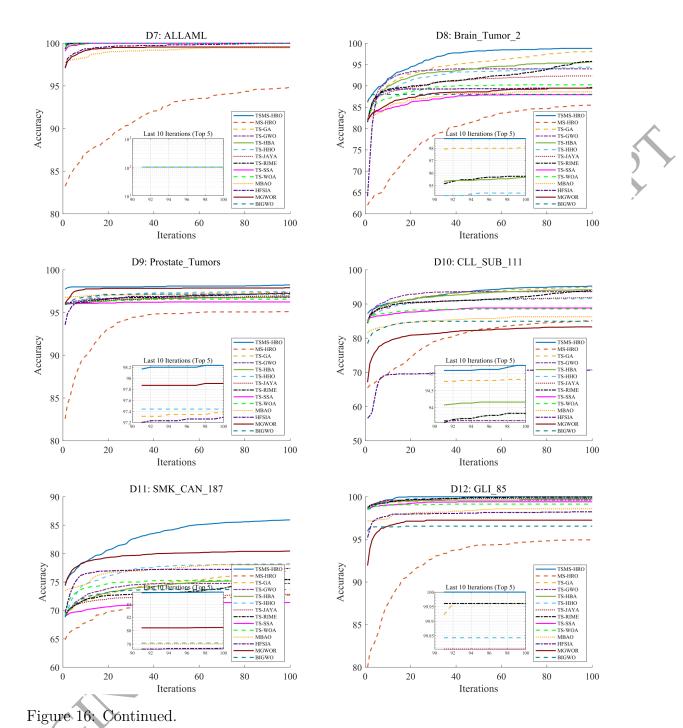


Figure 15: Convergence curves of TSMS-HRO and other algorithms on 12 datasets. The dotted line represents the convergence curve of TSMS-HRO.



36

751

effectiveness of the proposed TSMS-HRO method.

In order to further observe the indicators of TSMA-HRO in the high-dimensional FS 752 task, we drew the bar graph and provided the detailed data, and the yellow horizontal 753 line is used to represent the results of the baseline experiment. And Table 6 shows the 754 accuracy of the baseline methods on 12 datasets, along with the improvements achieved 755 by TSMS-HRO. We can see that after the improved HRO algorithm is used for feature selection, the accuracy rate is mostly improved by more than 20%. 757

Table 6: The average accuracy of baseline algorithm (mRMR + SVM) on 12 data sets.

Dataset	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
baseline	82.18	92.61	70.00	74.86	75.33	51.5	76.38	58.00	71.24	55.81	63.09	69.41
Improvements	+14.34	+5.60	+26.93	+25.14	+24.67	+40.80	+23.62	+40.80	+26.99	+39.44	+22.84	+30.59

As shown in Figure 17 and Table 7, the best accuracy was achieved on the datasets 758 D1, D3, D4, and D5, reaching 96.52%, 96.93%, 100%, and 100% respectively. And the 759 variance was 0 on the datasets D4 and D5, and TSMS-HRO showed strong stability. But 760 at the same time, we can also observe that most of the other methods that added mRMR 761 filters also achieved the same indicators, which shows that the mRMR method played 762 a key role in the first stage, and the algorithm's search in the second stage was only to 763 select fewer features and achieve the same effect. On the dataset D2, although TSMS- 764 HRO did not reach the optimal value, the gap with the optimal algorithm MGWOR 765 was only 0.07%, but TSMS-HRO had a smaller variance and was more stable. On the 766 D6 dataset, TSMS-HRO ranked second with an accuracy of 92.30%, which is lower than 767 the 94.03% of the TS-GA algorithm. However, it is worth noting that TSMS-HRO only 768 selected 71.57 features to achieve the effect of TS-GA selecting 136.40 features.

As shown in Figure 18 and Table 8, TSMS-HRO performed better in the following six 770 datasets with higher dimensions, all of which achieved the best accuracy. On the D7, D8, 771 D9, D10, and D11, they achieved the best 100%, 98.80%, 98.23%, 95.25%, and 85.93%, 772 respectively. At the same time, the variance on the D7 datasets was 0. In particular, 773 TSMS-HRO achieves 100% accuracy and 0 variance on the dataset D12 with the highest 774 data dimension (dimension is 22283), which shows the excellence of TSMS-HRO in highdimensional FS.

At the same time, we also noticed that TSMS-HRO achieved 100% accuracy on some 777 datasets, such as D4, D5, D7, and D12. This impressive performance is primarily due 778 to the mRMR filtering method in the first stage of TSMS-HRO. Figure 15 and Figure 779 16 show that algorithms using the mRMR method in the first stage (including TSME-780 HRO, TS-GA, and TS-GWO etc.) consistently achieve excellent solutions in the early 781 stages of iteration. On datasets that achieve 100% accuracy, the average accuracy of 782 the initial population is above 95%. Furthermore, the convergence to 100% accuracy is 783 closely related to the search performed by the improved HRO algorithm. During the 784 iteration process, the algorithm further reduces data dimensionality while maintaining 785 accuracy, thereby improving accuracy. Subsequent ablation experiments further validate 786

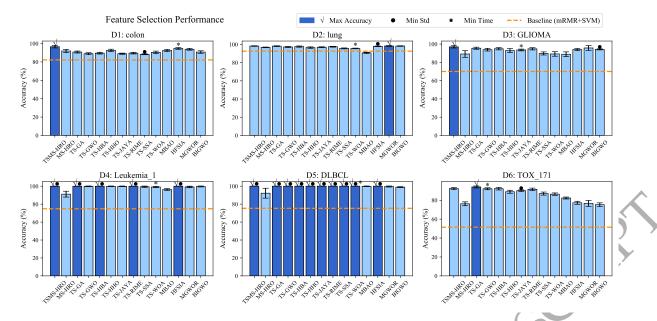


Figure 17: Bar chart comparing the performance of different algorithms on the FS problem. The algorithm with the highest accuracy is marked with a dark blue check mark; the one with the lowest variance is marked with a circle and error bars; and the asterisk indicates the algorithm with the shortest running time.

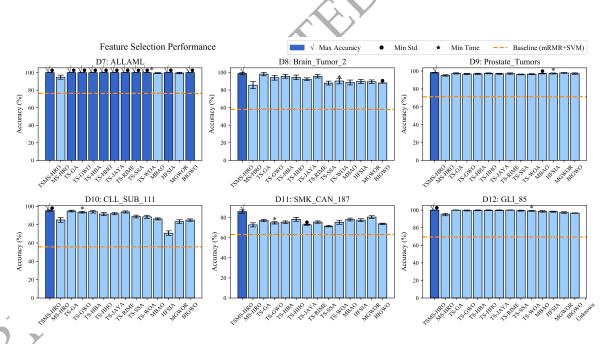


Figure 18: Continued.

Dataset Metric TSMS-HRO MS-HRO TS-GA TS-GWO TS-HBA TS-HHO TS-JAYA TS-RIME TS-SSA TS-WOA MBAO HFSIA MGWOR BIGWO 46.11 5.9776.2726.87 99.1511.27 1.33589.20 2.51 01.73 3.91 0.70 3.47 41.07 11.32 0.7837.4728.83 38.60 89.73 1.6941.53 99.3911.26 78.83 97.4810.03 39.09 11.68 84.93 0.451.22100.27 100 0.0094.8011.21 0.463.824.06 58.90 6.430.9954.13 136.40 30.830.344.61 93.53 99.91 18.87 12.64 97.47 43.70 92.932.1759.70 11.75 99.91 0.00 18.26 06.30 56.46 76.40 |9.54|97.620.6894.871.2396.70 16.84 81.97 23.13 0.43104.90 97.18 7.44 12.60 99.864.0790.83 93.87 4.04 4.81 0.61 81.20 1.15 02.335.2095.47100 0.00 33.00 5.09840.87 147.68 74.97 89.13 3.6487.07 52.86 3.2658.57 80.73 91.1720.71 96.7415.97 5.3547.670.00 41.704.89115.33 16.74 96.93 1.244.94 100 98.21 Time Time Time Time Num Num Num Num AccAccStd Std Std

D2

D1

98.22

90.75

5.478.03

8.03

4.23

0.40

02.93

22.9316.66

40.17

40.37

94.200.6090.474.53

95.73

3.03

17.13 6.22

1.15

2.6230.73 10.02

88.87

8.41

99.73 0.5385.17

99.20

100

96.29

[0.10]

10.07

5.25

13.87

0.86

0.008.87

1.06

19.13

98.98 0.5675.40

99.65

100 0.00

99.88

100

100

100

100 0.00

100

100 0.00

100

100 0.00 37.57 6.23

92.21

100

Acc

D5

Std

5.53

8.73 97.91

23.97

Num

0.00

0.58

0.38

0.00

0.00 75.07 14.06

5.679.72

5.10

24.83

55.03

23.77 13.95

22.50

13.33 18.20

72.87 21.46

4.81

0.00 82.30

4.95

16.53

3.80

75.291.93

> 3.13 23.40

1.07

29.17

0.07

7.48

58.20

50.97 15.86

1.61

1.30

0.85

1.38 37.47

> 38.70 6.53

> > 331.86

Num

70.97

91.52

88.96

92.21

92.12

94.03

76.23 2.06

92.301.08

Acc Std

D6

Comparison Results of the Two-stage Improved Metaheuristic Algorithm on Datasets. Table 7:

Downloaded from https://academic.oup.com/jcde/advance-article/doi/10.1093/jcde/qwaf113/8297130 by guest on 05 November 2025

D4

D3

Downloaded from https://academic.oup.com/jcde/advance-article/doi/10.1093/jcde/qwaf113/8297130 by guest on 05 November 2025

Table 8: Continued.

Datas	et Metric 1	Dataset Metric TSMS-HRO MS-HRO TS-GA TS-GWO TS-	MS-HRO	TS-GA TE	S-GWO T	S-HBA T	S-HHO T	HBA TS-HHO TS-JAYA TS-RIME TS-SSA TS-WOA MBAO HFSIA MGWOR BIGWC	S-RIME	FS-SSA T	S-WOA I	MBAO F	IFSIA M	GWORB	IGWO
D7	Acc	100	94.83	100	100	100	100	100	100	100	100	99.46	100	99.56	100
	Std	00.00	2.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.87	0.00
	Num	38.57	145.20	73.37	91.03	76.57	28.03	126.90	76.97	131.63	81.00	29.90	10.13	8.10	80.70
	Time	4.79	112.08	5.39	4.03	17.73	12.55	4.00	12.08	11.98	3.95	41.55	4.76	8.43	4.67
D8	Acc	98.80	85.53	98.13	94.00	95.67	94.40	92.33	95.73	87.93	90.27	88.60	29.68	89.47	88.00
	Std	1.42	4.02	1.93	2.73	2.26	2.65	1.56	2.05	2.22	3.26	2.79	2.37	2.06	0.00
	Num	22.09	26.17	104.23	116.90	102.80	38.57	155.20	103.27	139.13	71.73	24.07	6.20	14.13	83.93
	Time	5.60	137.57	5.24	4.00	17.39	11.79	3.69	10.93	11.84	3.55	40.43	4.12	8.35	4.33
 D6	Acc	98.23	95.10	97.38	96.76	98.96	97.44	96.92	97.21	96.24	96.57	97.21	97.30	97.90	97.15
	Std	0.42	0.81	0.69	0.71	92.0	0.55	0.61	0.77	0.46	09.0	0.39	0.00	0.47	0.86
	Num	30.00	74.67	79.63	94.93	29.00	23.43	133.67	84.63	128.77	57.57	24.70	8.33	5.57	84.13
	Time	4.69	327.10	5.41	4.15	20.12	12.82	4.00	13.92	14.54	4.91	47.29	3.74	7.04	3.81
D10	Acc	95.25	85.12	94.83	93.62	94.16	91.58	91.91	93.83	88.84	88.55	86.26	70.73	83.30	84.95
	Std	0.84	2.58	0.99	0.99	1.55	1.78	1.14	1.17	1.53	1.70	1.11	2.49	2.02	1.32
	Num	128.73	83.90	128.80	129.60	120.43	92.47	166.93	121.80	141.87	113.90	25.50	4.03	15.17	124.03
	Time	7.72	339.49	5.20	3.53	21.92	16.85	4.46	23.05	26.62	6.13	88.49	6.29	13.05	5.60
D11	Acc	85.93	72.71	96.92	74.74	75.42	78.21	72.83	75.45	71.38	75.28	78.04	77.41	80.45	73.68
	Std	1.66	2.05	1.10	1.16	1.21	2.05	0.64	1.15	0.71	2.03	1.43	1.40	1.33	0.75
	Num	26.50	58.10	121.77	123.77	118.13	15.73	156.57	119.03	140.80	20.30	10.37	5.17	13.20	115.27
	Time	7.74	1226.14	6.16	4.21	13.40	12.82	5.82	13.66	25.20	5.05	82.09	4.89	9.93	6.48
D12	Acc	100	94.94	96.66	99.61	99.73	99.84	99.80	96.66	99.41	99.14	98.59	98.24	97.25	96.55
	Std	0.00	1.36	0.21	0.55	0.50	0.40	0.44	0.21	0.59	0.52	0.88	0.59	0.88	0.29
	Num	35.80	35.27	78.80	93.33	81.17	29.47	133.87	82.33	131.50	00.09	24.10	6.77	6.57	85.67
	Time	3.92	373.73	4.13	3.03	14.55	68.6	2.96	10.10	10.11	2.88	35.12	3.50	6.62	3.53

this observation by comparing MS-HRO and TSMS-HRO.

In terms of the number of selected features, TSMS-HRO has a smaller number of 788 selected features than other traditional algorithms while ensuring leading accuracy, and 789 there is no extreme number of selected features. Regarding the maximum number of 790 features, TSMS-HRO limits the initial search space to 300 features filtered by mRMR. 791 This algorithm directly removes many obvious redundant features, effectively reducing 792 the data dimensionality. Furthermore, there is no case of too few features. If TSMS-HRO 793 selects too few features, or even excludes core features, the final accuracy will certainly 794 not be as good as it is now (for example, on the D10, HFSIA selected only 4.03 features, 795 resulting in the lowest accuracy). The specific performance of TSMS-HRO in terms of 796 feature count is as follows: TSMS-HRO selects 47.67 and 26.50 features on D3 and D11, respectively. Despite selecting more features than MGWOR (13.03 features on D3) and 798 HFSIA (5.17 features on D11), its accuracy improves by 1.20 and 8.52 percentage points, 799 respectively, compared to MGWOR and HFSIA. On the other hand, TS-GA selected 800 102.33 and 121.77 features on D3 and D11, respectively, far exceeding the number of features selected by TSMS-HRO. However, its accuracy dropped by 1.46 and 8.97 percentage points, respectively, as some redundant features interfered with classifier performance. This demonstrates that TSMS-HRO effectively balances the number of selected features, retaining important features while removing redundant ones to achieve higher accuracy.

In terms of algorithm running time, it still maintains a low running time on high-dimensional datasets and has a high overall efficiency. Compared with the MS-HRO method without filters, its running time has been greatly reduced, and the rate of running time reduction is accelerating as the dimension of the dataset increases. As shown in Figure 19, on the D1 dataset with the lowest dimension, TSMS-HRO reduces the running time by more than 15 seconds compared to MS-HRO, with a reduction ratio of nearly more than 15 seconds compared to MS-HRO, with a reduction ratio of nearly dataset with the highest dimension, the running time is reduced by 98.95%, which once again proves the effectiveness of the first stage improvements.

In order to comprehensively evaluate the performance difference between the proposed algorithm, TSMS-HRO, and other comparison algorithms, this paper uses the Friedman 816 test and the Wilcoxon signed rank test with the Holm multiple comparison correction 817 method for statistical analysis. Table 9 shows the average ranking and final ranking of 818 each algorithm on all experimental tasks. The results show that TSMS-HRO ranks first 819 with an average ranking of 2.21 and the narrowest 95% confidence interval [94.21, 99.49], 820 significantly better than other algorithms. The Friedman test statistic is 73.37, and the 821 corresponding p-value is 1.91×10^{-10} , which is significantly less than 0.05, indicating that 822 there are significant differences in overall performance between different algorithms.

Further, to verify the pairwise significant differences between TSMS-HRO and other algorithms, this paper conducts paired comparisons based on the Wilcoxon signed rank test and uses the Holm method to correct for multiple comparisons. The results are shown 826

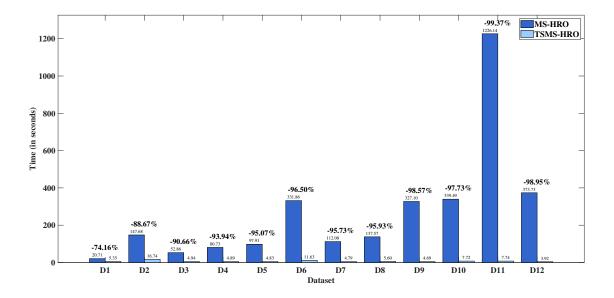


Figure 19: Comparison of running time between the algorithm with and without the filter (MS-HRO vs. TSMS-HRO). TSMS-HRO greatly improves the running efficiency of the algorithm.

Table 9: Comparison of Algorithms: Friedman Rankings and 95% Confidence Intervals

		$\lambda \lambda Y$	
Algorithm Name	Average Rank	Final Rank	95% Confidence Intervals
TSMS-HRO	2.21	1	[94.21, 99.49]
TS-GA	3.83	2	[91.33, 99.61]
TS-RIME	5.33	3	[90.20, 99.06]
TS-HBA	5.79	4	[90.27, 99.08]
TS-HHO	6.00	5	[90.34, 98.39]
HFSIA	6.96	6	[84.83, 98.04]
TS-GWO	7.54	7	[89.71, 98.74]
MGWOR 🔏	7.67	8	[87.41, 97.79]
TS-JAYA	7.83	9	[88.70, 98.50]
TS-WOA	9.46	10	[87.87, 97.22]
BIGWO	9.50	11	[85.58, 97.33]
MBAO	10.17	12	[87.07, 96.05]
TS-SSA	10.21	13	[86.69, 97.28]
MS-HRO	12.50	14	[83.94, 93.67]

Note: The Friedman test yields a test statistic of 73.37 with a corresponding p-value of 1.91×10^{-10} , indicating statistically significant differences among the algorithms at the 0.05 level.

in Table 10. The comparison results show that TSMS-HRO has a significant advantage 827 over all other 13 algorithms (the corrected p-values are all less than 0.05), and all the 828 null hypotheses are rejected. Especially in comparison with poorly performing algorithms 829 such as MS-HRO and MBAO, the p-value is as low as 0.0063, indicating that TSMS-HRO 830 has a significant statistical advantage over these algorithms in multiple tasks. 831

Table 10: Wilcoxon Test Results with Holm Correction (TSMS-HRO vs. other algorithms)

Comparison	R+	R-	Stat	p-value	Corrected p	Hypothesis
MS-HRO	78.0	0.0	0.0	0.0005	0.0063	Rejected
TS-GA	65.0	13.0	13.0	0.0411	0.0411	Rejected
TS-GWO	76.5	1.5	1.5	0.0033	0.0325	Rejected
TS-HBA	75.0	3.0	3.0	0.0047	0.0325	Rejected
TS-HHO	76.5	1.5	1.5	0.0033	0.0325	Rejected
TS-JAYA	76.5	1.5	1.5	0.0033	0.0325	Rejected
TS-RIME	75.0	3.0	3.0	0.0047	0.0325	Rejected
TS-SSA	76.5	1.5	1.5	0.0033	0.0325	Rejected
TS-WOA	76.5	1.5	1.5	0.0033	0.0325	Rejected
MBAO	78.0	0.0	0.0	0.0005	0.0063	Rejected
HFSIA	75.0	3.0	3.0	0.0047	0.0325	Rejected
MGWOR	77.0	1.0	1.0	0.0010	0.0107	Rejected
BIGWO	75.5	2.5	2.5	0.0042	0.0325	Rejected

In summary, the statistical test results fully verify that TSMS-HRO has the best comprehensive performance under the selected test sets and tasks, and its improved strategy has shown significant advantages in improving search efficiency and solution quality.

4.3.5 The results of ablation experiments

It is clear from the heatmap (Figure 20) that the improved algorithm generally has higher accuracy than the baseline HRO on all datasets in the high-dimensional FS task, and the average number of selected features is generally less than the baseline HRO. Notably, TSMS-HRO presents the darkest color on all datasets, with an accuracy of 100% on D4, B39 D7, D5, and D12, demonstrating its strong generalisation ability and stability. Other variants, such as TS-HRO and its extensions (DE, INIT, SC, TD), also show similarly excellent performance, highlighting the effectiveness of the proposed two-stage feature selection method. For example, after adding the two-stage mechanism, the accuracy on multiple datasets reached 100%.

In contrast, HRO has a relatively low accuracy while selecting a very large number of 845 features. In particular, on some datasets, features with more than 1000 dimensions were 846 selected, but at the same time, their accuracy was not high enough: D8: (num: 2102.3, 847 acc: 65.53%), D10: (num: 1347.7, acc: 69.76%), D11: (num: 1432.4, acc: 66.16%). These 848 results indicate that HRO selects numerous redundant or irrelevant features, leading to reduced classification accuracy and limited adaptability to heterogeneous high-dimensional 850

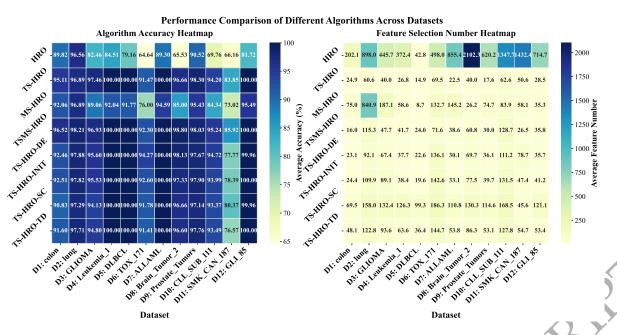


Figure 20: Heat map showing the average accuracy and feature count. Darker shades on the left indicate higher accuracy, while darker shades on the right indicate more selected features.

data. In addition, its performance on high-dimensional feature selection tasks varies greatly, up to 96.56% on the D2 dataset, but only 64.65% and 65.53% on D6 and D8, respectively, indicating that it is highly sensitive to feature redundancy or noise. By adopting a two-stage strategy, TS-HRO significantly alleviates these problems, achieving states on D6, an improvement of nearly 27% over HRO, while selecting only selecting only selectiveness of the mRMR feature filter. Multi-strategy enhancement (DE, INIT, SC, structure) further improves performance, albeit to varying degrees. For example, TS-HRO-DE selections particularly well on D6 (94.27%), outperforming other sub-strategies. TS-HRO-SC performs slightly better than INIT and TD on D3 and D10. While TS-HRO-TD selections significant.

Despite TSMS-HRO achieving or approaching 100% accuracy on most datasets, it 863 performs slightly lower on D6 (92.30%) and D11 (85.93%). This may suggest that complex 864 nonlinear correlations among features have not been fully exploited, and that there is 865 still room for improvement in the joint optimisation of strategies under high-dimensional 866 sparse conditions.

As shown in Table 11, HRO achieves an average accuracy of 80.02% with 794.30 868 selected features, serving as the baseline for comparison. By introducing the mRMR feature filter and adopting a two-stage selection mechanism, TS-HRO significantly improves 870 performance, reaching 96.17% accuracy while reducing the average number of selected 871 features to only 38.20. This highlights the strong advantage of the two-stage framework 872 in simultaneously enhancing predictive accuracy and promoting feature dimension reduc-

894

tion. When only multi-strategy optimisation (DE, INIT, SC, TD) is applied, MS-HRO 874 improves accuracy to 88.81% with an average of 143.85 features. Although its accuracy 875 is lower than that of TS-HRO, the considerable reduction in feature count (81.89% fewer 876 than HRO) still confirms the effectiveness of the individual strategies in driving feature 877 selection. This trade-off also suggests that excessive feature reduction may risk eliminating informative attributes and thereby lower accuracy, while insufficient reduction may 879 retain redundant features and compromise classification performance.

Importantly, the proposed TSMS-HRO, which integrates both the two-stage mechanism and multi-strategy optimisation, achieves the best overall performance with 96.83% 882 accuracy and 53.05 selected features. This result demonstrates that the two components 883 are highly complementary: the two-stage mechanism ensures effective feature filtering, 884 while the multiple strategies enhance search robustness, together leading to superior generalisation and stability.

Further examination of the four TS-HRO variants, each augmented with a single 887 strategy, reveals that all strategies consistently contribute to performance gains, though 888 with different emphases. DE and INIT tend to yield relatively higher accuracy, SC retains 889 more features and thus favours stability, while TD provides a balanced trade-off between 890 accuracy and feature reduction. Although none of these variants surpasses the integrated TSMS-HRO, their complementary strengths explain why the combined framework 892 achieves the most robust and well-rounded results

Table 11: Comparison of average accuracy and feature selection results on 12 datasets.

Algorithm	Avg. Acc.	Lift vs. HRO	Avg. Features	Red. Ratio vs. HRO
HRO	80.02%	-	794.30	_
TS-HRO	96.17%	+16.15%	38.20	$\mathbf{-95.19}\%$
MS-HRO	88.81%	+8.83%	143.85	-81.89%
TSMS-HRO	96.83 %	+16.81%	53.05	-93.32%
TS-HRO-DE	95.71%	+15.69%	61.70	-92.23%
TS-HRO-INIT	95.51%	+15.49%	66.21	-91.66%
TS-HRO-SC	95.13%	+15.11%	121.90	-84.65%
TS-HRO-TD	95.00%	+14.98%	78.19	-90.16%

5. Conclusion and Future Work

In this paper, we propose a two-stage high-dimensional FS algorithm based on a modified 895 HRO algorithm to enhance the classification performance of feature subsets while reducing 896 the computational time required to search for the optimal subset. The study found that 897 the filtering method in the first stage eliminated some redundant features, significantly reducing the search space and greatly shortening the algorithm's runtime. Furthermore, the 899 introduction of four mechanisms has significantly improved the original HRO algorithm. 900 The good point set and elite opposition-based learning strategy effectively improve the 901

932

quality and diversity of the initial population. The adaptive differential operator strategy enhances the utilisation rate of maintainer line individuals. The t-distribution mutation 903 strategy balances global and local search capabilities. The improved adaptive crossover 904 strategy increases the flexibility and diversity of the selfing process in restorer line individuals. The proposed algorithm was compared with recent two-stage and improved 906 metaheuristic-based FS methods, such as MBAO, MGWOR, HFSIA, BIGWO, and improved two-stage methods, such as TS-GA, TS-GWO, TS-HBA, TS-HHO, TS-JAYA, 908 TS-RIME, TS-SSA, and TS-WOA. The results show that TSMS-HRO achieves better 909 initial solutions in the early iterations and converges to more promising values in the later 910 iterations in the field of high-dimensional FS.

Despite its advantages, TSMS-HRO still presents several limitations. First, while it performs well on benchmark functions and 12 high-dimensional biomedical datasets, its properties applicability to non-biomedical domains such as text or image data may face new challenges, including data noise and class imbalance. Second, although the mRMR method properties assumption of linear relationships based on mutual information limits its properties ability to capture high-order nonlinear interactions—such as gene co-regulation—in biological data, potentially leading to the omission of critical feature combinations. Lastly, the properties integration of multiple strategies inevitably increases algorithmic complexity compared to properties of simpler methods.

In future work, more effective optimisation strategies can be explored to ensure the 921 algorithm's generalisation ability across problems of varying scale and dimension. Additionally, investigating different transfer functions, filters, and advanced classifiers would 923 be highly beneficial, as these components have the potential to further enhance the algorithm's performance in various optimisation scenarios. In particular, integrating deep 925 learning—based classifiers with the feature subsets generated by TSMS-HRO could improve 926 its adaptability to complex biomedical data. Moreover, further optimising the operators 927 of HRO—such as developing adaptive hybridisation or crossover mechanisms—may significantly boost both convergence efficiency and solution quality. 929

Conflicts of Interest

We declare that there are no conflicts of interest regarding the publication of this paper. 931

Author Contributions

Zhiwei Ye: Writing – review & editing, Resources, Methodology, Funding acquisition, 933
Formal analysis, Conceptualization. Jie Sun: Writing – original draft, Visualisation, 934
Validation, Methodology, Software. Wen Zhou: Formal analysis, Data curation, Con935
ceptualization. Bogdan Adamyk: Writing – review & editing. Jixin Zhang: Invest936
igation. Ting Cai: Formal analysis, Data curation, Conceptualization. Jun Shen:
937

Conceptualization, Methodology, Software.	939
Data Availability	940
The datasets used in this paper can be accessed via the following link: UCI Machine Learning Repository.	941 942
Acknowledgments	943
This research was supported by the National Natural Science Foundation of China (Grant Nos. 62376089, 62302153, 62302154, U23A20318), the Key Research and Development Program of Hubei Province, China (Grant No.2023BEB024), the Young and Middle-aged Scientific and Technological Innovation Team Plan in Higher Education Institutions in Hubei Province, China (Grant No. T2023007).	945 946
References	949
Agrawal, U., Rohatgi, V., & Katarya, R. (2022). Normalized mutual information-based equilibrium optimizer with chaotic maps for wrapper-filter feature selection. Expert Systems with Applications, 207, 118107. https://doi.org/10.1016/j.eswa.2022. 118107 Ahmed, S., Ghosh, K. K., Mirjalili, S., & Sarkar, R. (2021). Aieou: Automata-based improved equilibrium optimizer with u-shaped transfer function for feature selection. Knowledge-Based Systems, 228, 107283. https://doi.org/10.1016/j.knosys.2021. 107283 Anuragi, A., Sisodia, D. S., & Pachori, R. B. (2024). Mitigating the curse of dimensionality using feature projection techniques on electroencephalography datasets: An empirical review. Artificial Intelligence Review, 57(3), 75. https://doi.org/10.1007/s10462-024-10711-8 Askr, H., Abdel-Salam, M., & Hassanien, A. E. (2024). Copula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problems. Ex-	951 952 953 954 955 956 957 958 959 960 961
pert Systems with Applications, 238, 121582. https://doi.org/10.1016/j.eswa.2023. 121582 Badshah, A., Daud, A., Alharbey, R., Banjar, A., Bukhari, A., & Alshemaimri, B. (2024). Big data applications: Overview, challenges and future. Artificial Intelligence Review, 57(11), 290. https://doi.org/10.1007/s10462-024-10938-5 Barbieri, M. C., Grisci, B. I., & Dorn, M. (2024). Analysis and comparison of feature selection methods towards performance and stability. Expert Systems with Applications, 249, 123667. https://doi.org/10.1016/j.eswa.2024.123667	964 965 966 967 968 969 970

Data curation. Mengya Lei: Supervision. Jing Zhou: Data curation. Ruihan Li: 938

BinSaeedan, W., & Alramlawi, S. (2021). Cs-bpso: Hybrid feature selection based on chi-	972
square and binary pso algorithm for a rabic email authorship analysis. $Knowledge$	973
$Based\ Systems,\ 227,\ 107224.\ https://doi.org/10.1016/j.knosys.2021.107224$	974
Buchaiah, S., & Shakya, P. (2022). Bearing fault diagnosis and prognosis using data	975
fusion based feature extraction and feature selection. Measurement, 188, 110506.	976
$\rm https://doi.org/10.1016/j.measurement.2021.110506$	977
Chamlal, H., Benzmane, A., & Ouaderhman, T. (2024). Maximal cliques-based hybrid	978
high-dimensional feature selection with interaction screening for regression. $Neuro-$	979
$computing, 607, 128361. \ https://doi.org/10.1016/j.neucom.2024.128361$	980
Fang, Y., Yao, Y., Lin, X., Wang, J., & Zhai, H. (2024). A feature selection based on	981
genetic algorithm for intrusion detection of industrial control systems. Computers	982
& Security, 139, 103675. https://doi.org/10.1016/j.cose.2023.103675	983
Gao, W., Hao, P., Wu, Y., & Zhang, P. (2023). A unified low-order information-theoretic	984
feature selection framework for multi-label learning. Pattern Recognition, 134,	985
109111. https://doi.org/10.1016/j.patcog.2022.109111	986
Ghosh, K. K., Begum, S., Sardar, A., Adhikary, S., Ghosh, M., Kumar, M., & Sarkar, R.	987
(2021). Theoretical and empirical analysis of filter ranking methods: Experimental	988
study on benchmark dna microarray data. Expert Systems with Applications, 169,	989
114485. https://doi.org/10.1016/j.eswa.2020.114485	990
Got, A., Moussaoui, A., & Zouache, D. (2021). Hybrid filter-wrapper feature selection	991
using whale optimization algorithm: A multi-objective approach. Expert Systems	992
$with \ Applications, \ 183, \ 115312. \ \ https://doi.org/10.1016/j.eswa. 2021.115312$	993
He, J., Qu, L., Wang, P., & Li, Z. (2024). An oscillatory particle swarm optimization	994
feature selection algorithm for hybrid data based on mutual information entropy.	995
$Applied\ Soft\ Computing,\ 152,\ 111261.\ https://doi.org/10.1016/j.asoc.2024.111261$	996
Hussain, K., Neggaz, N., Zhu, W., & Houssein, E. H. (2021). An efficient hybrid sine-	997
cosine harris hawks optimization for low and high-dimensional feature selection.	998
Expert Systems with Applications, 176, 114778. https://doi.org/10.1016/j.eswa.	999
2021.114778	1000
Jiang, H., Yang, Y., Wan, O., & Dong, Y. (2024). Feature selection based on dynamic	1001

Kapoor, P., Kaushal, S., Kumar, H., & Kanwar, K. (2024). A survey on feature extraction 1004 and learning techniques for link prediction in homogeneous and heterogeneous 1005 complex networks. Artificial Intelligence Review, 57(12), 348. https://doi.org/10.1006 1007/s10462-024-10998-7

Applications, 250, 123871. https://doi.org/10.1016/j.eswa.2024.123871

crow search algorithm for high-dimensional data classification. Expert Systems with 1002

Lameesa, A., Hoque, M., Alam, M. S. B., Ahmed, S. F., & Gandomi, A. H. (2024). Role 1008 of metaheuristic algorithms in healthcare: A comprehensive investigation across 1009 clinical diagnosis, medical imaging, operations management, and public health. 1010

Journal of Computational Design and Engineering, 11(3), 223–247. https://doi.	1011
org/10.1093/jcde/qwae046	1012
Li, G., Yu, Z., Yang, K., Lin, M., & Chen, C. P. (2024). Exploring feature selection	1013
with limited labels: A comprehensive survey of semi-supervised and unsupervised	1014
approaches. IEEE Transactions on Knowledge and Data Engineering. https://doi.	1015
m org/10.1109/TKDE.2024.3397878	1016
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017).	1017
Feature selection: A data perspective. ACM computing surveys (CSUR), 50(6), 1-	
45. https://doi.org/10.1145/3136625	1019
Liang, J., Hu, Z., Bi, Y., Cheng, H., Yu, K., Yue, CT., Wang, X., & Guo, WF. (2024). A	1020
survey on evolutionary computation for identifying biomarkers of complex disease.	1021
IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/	1022
TEVC.2024.3414442	1023
Manikandan, G., & Abirami, S. (2021). An efficient feature selection framework based	1024
on information theory for high dimensional data. Applied Soft Computing, 111,	1025
107729. https://doi.org/10.1016/j.asoc.2021.107729	1026
Mei, M., Zhang, S., Ye, Z., Wang, M., Zhou, W., Yang, J., Zhang, J., Yan, L., & Shen,	1027
J. (2025). A cooperative hybrid breeding swarm intelligence algorithm for feature	1028
selection. Pattern Recognition, 111901. https://doi.org/10.1016/j.patcog.2025.	1029
111901	1030
Miao, F., Wu, Y., Yan, G., & Si, X. (2024). A memory interaction quadratic interpolation	1031
whale optimization algorithm based on reverse information correction for high-	1032
dimensional feature selection. Applied Soft Computing, 164, 111979. https://doi.	1033
org/10.1016/j.asoc.2024.111979	1034
Moslemi, A. (2023). A tutorial-based survey on feature selection: Recent advancements on	1035
feature selection. Engineering Applications of Artificial Intelligence, 126, 107136.	1036
https://doi.org/10.1016/j.engappai.2023.107136	1037
Moustafa, M. S., Mahmoud, A. S., Farg, E., Nabil, M., & Arafat, S. M. (2024). Bi-stage	1038
feature selection for crop mapping using grey wolf metaheuristic optimization.	1039
Advances in Space Research, 73(10), 5005–5016. https://doi.org/10.1016/j.asr.	1040
2024.02.037	1041
Nematzadeh, H., García-Nieto, J., Aldana-Montes, J. F., & Navas-Delgado, I. (2024).	1042
Pattern recognition frequency-based feature selection with multi-objective discrete	1043
evolution strategy for high-dimensional medical datasets. Expert Systems with Ap-	1044
plications, 249, 123521. https://doi.org/10.1016/j.eswa.2024.123521	1045
Nssibi, M., Manita, G., Chhabra, A., Mirjalili, S., & Korbaa, O. (2024). Gene selection for	1046
high dimensional biological datasets using hybrid island binary artificial bee colony	1047
with chaos game optimization. Artificial Intelligence Review, 57(3), 51. https://	1048
doi.org/10.1007/s10462-023-10675-1	1049

Nssibi, M., Manita, G., & Korbaa, O. (2023). Advances in nature-inspired metaheuristic	1050
optimization for feature selection problem: A comprehensive survey. Computer	1051
Science Review, 49, 100559. https://doi.org/10.1016/j.cosrev.2023.100559	1052
Osama, S., Shaban, H., & Ali, A. A. (2023). Gene reduction and machine learning al-	1053
gorithms for cancer classification based on microarray gene expression data: A	1054
comprehensive review. Expert Systems with Applications, 213, 118946. https://doi.	1055
org/10.1016/j.eswa.2022.118946	1056
Ouadfel, S., & Abd Elaziz, M. (2022). Efficient high-dimension feature selection based on	1057
enhanced equilibrium optimizer. Expert Systems with Applications, 187, 115882.	1058
https://doi.org/10.1016/j.eswa.2021.115882	1059
Pan, H., Chen, S., & Xiong, H. (2023). A high-dimensional feature selection method	1060
based on modified gray wolf optimization. Applied Soft Computing, 135, 110031.	1061
https://doi.org/10.1016/j.asoc.2023.110031	1062
Pashaei, E. (2022). Mutation-based binary aquila optimizer for gene selection in cancer	1063
classification. Computational Biology and Chemistry, 101, 107767. https://doi.org/	1064
10.1016/j.compbiolchem.2022.107767	1065
Peng, L., Cai, Z., Heidari, A. A., Zhang, L., & Chen, H. (2023). Hierarchical harris hawks	1066
optimizer for feature selection. Journal of Advanced Research, 53, 261–278. https://	1067
$//{ m doi.org/10.1016/j.jare.2023.01.014}$	1068
Qaraad, M., Amjad, S., Hussein, N. K., & Elhosseini, M. A. (2022). Addressing con-	1069
strained engineering problems and feature selection with a time-based leadership	1070
salp-based algorithm with competitive learning. Journal of Computational Design	1071
and $Engineering$, 9(6), 2235–2270. https://doi.org/10.1093/jcde/qwac095	1072
Rajammal, R. R., Mirjalili, S., Ekambaram, G., & Palanisamy, N. (2022). Binary grey wolf	1073
optimizer with mutation and adaptive k-nearest neighbour for feature selection	1074
in parkinson's disease diagnosis. Knowledge-Based Systems, 246, 108701. https://	1075
//doi.org/10.1016/j.knosys.2022.108701	1076
Song, X., Ma, H., Zhang, Y., Gong, D., Guo, Y., & Hu, Y. (2024). A streaming feature	1077
selection method based on dynamic feature clustering and particle swarm optimiz-	1078
ation. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/	1079
TEVC.2024.3451688	1080
Song, XF., Zhang, Y., Gong, DW., & Gao, XZ. (2021). A fast hybrid feature selection	1081
based on correlation-guided clustering and particle swarm optimization for high-	1082
dimensional data. IEEE Transactions on Cybernetics, 52(9), 9573–9586. https://	1083
//doi.org/10.1109/TCYB.2021.3061152	1084
Song, X., Zhang, Y., Gong, D., Liu, H., & Zhang, W. (2022). Surrogate sample-assisted	1085
particle swarm optimization for feature selection on high-dimensional data. IEEE	1086
Transactions on Evolutionary Computation, 27(3), 595–609, https://doi.org/10.	1087

 $1109/\mathrm{TEVC}.2022.3175226$

- Song, X., Zhang, Y., Zhang, W., He, C., Hu, Y., Wang, J., & Gong, D. (2024). Evolution- 1089 ary computation for feature selection in classification: A comprehensive survey of 1090 solutions, applications and challenges. Swarm and Evolutionary Computation, 90, 1091 101661. https://doi.org/10.1016/j.swevo.2024.101661
- Telikani, A., Tahmassebi, A., Banzhaf, W., & Gandomi, A. H. (2021). Evolutionary ma-1093 chine learning: A survey. *ACM Comput. Surv.*, 54(8). https://doi.org/10.1145/1094 3467477
- Thirumoorthy, K., et al. (2023). A two-stage feature selection approach using hybrid 1096 quasi-opposition self-adaptive coati optimization algorithm for breast cancer clas- 1097 sification. Applied Soft Computing, 146, 110704. https://doi.org/10.1016/j.asoc. 1098 2023.110704
- Wang, C., Zhan, C., Lu, B., Yang, W., Zhang, Y., Wang, G., & Zhao, Z. (2024). Ssfan: A 1100 compact and efficient spectral-spatial feature extraction and attention-based neural 1101 network for hyperspectral image classification. *Remote Sensing*, 16(22), 4202. https://doi.org/10.3390/rs16224202
- Wang, Y., Ran, S., & Wang, G.-G. (2024). Role-oriented binary grey wolf optimizer us- 1104 ing foraging-following and lévy flight for feature selection. *Applied Mathematical* 1105 *Modelling*, 126, 310–326. https://doi.org/10.1016/j.apm.2023.08.043
- Wang, Y.-C., Song, H.-M., Wang, J.-S., Song, Y.-W., Qi, Y.-L., & Ma, X.-R. (2024). Gog- 1107 mbsho: Multi-strategy fusion binary sea-horse optimizer with gaussian transfer 1108 function for feature selection of cancer gene expression data. *Artificial Intelligence* 1109 *Review*, 57(12), 347. https://doi.org/10.1007/s10462-024-10954-5
- Xue, Y., & Zhang, C. (2024). A novel importance-guided particle swarm optimization 1111 based on mlp for solving large-scale feature selection problems. Swarm and Evol-1112 utionary Computation, 91, 101760. https://doi.org/10.1016/j.swevo.2024.101760 1113
- Ye, A. Z., Li, B. R., Zhou, C. W., Wang, D. M., Mei, E. M., Shu, F. Z., & Shen, 1114
 G. J. (2023). High-dimensional feature selection based on improved binary ant 1115
 colony optimization combined with hybrid rice optimization algorithm. *Interna*-1116
 tional Journal of Intelligent Systems, 2023(1), 1444938. https://doi.org/10.1155/1117
 2023/1444938
- Ye, Z., Luo, J., Zhou, W., Wang, M., & He, Q. (2024). An ensemble framework with 1119 improved hybrid breeding optimization-based feature selection for intrusion detection. Future Generation Computer Systems, 151, 124–136. https://doi.org/10.1121 1016/j.future.2023.09.035
- Ye, Z., Ma, L., & Chen, H. (2016). A hybrid rice optimization algorithm. 2016 11th 1123

 International Conference on Computer Science & Education (ICCSE), 169–174. 1124

 https://doi.org/10.1109/ICCSE.2016.7581575
- Yu, W., Kang, H., Sun, G., Liang, S., & Li, J. (2022). Bio-inspired feature selection in brain 1126 disease detection via an improved sparrow search algorithm. *IEEE Transactions* 1127

on Instrumentation and Measurement, 72, 1–15. https://doi.org/10.1109/TIM.11	128
2022.3228003	129
Zhang, B., Li, Y., & Chai, Z. (2022). A novel random multi-subspace based relieff for 11	130
feature selection. Knowledge-Based Systems, 252, 109400. https://doi.org/10.11	131
1016/j.knosys.2022.109400	132
Zhang, J., Xu, D., Hao, K., Zhang, Y., Chen, W., Liu, J., Gao, R., Wu, C., & De Marinis, 11	133
Y. (2021). Fs–gbdt: Identification multicancer-risk module via a feature selection 11	
algorithm by integrating fisher score and gbdt. Briefings in bioinformatics, 22(3), 11	
11. 100 11. //11: //10/1000/11//11 100	136
Zhao, Z., Yu, H., Guo, H., & Chen, H. (2024). Multi-strategy augmented harris hawks op- 11	137
timization for feature selection. Journal of Computational Design and Engineering, 1	
11(0) 111 100 111 //11: /10 1000 /: 1 / 000	139
Zheng, J., Yang, Z., & Ge, Z. (2024). Deep residual principal component analysis as feature 13	140
engineering for industrial data analytics. <i>IEEE Transactions on Instrumentation</i> 11	
and Measurement, 73, 1–10. https://doi.org/10.1109/TIM.2024.3420267	142
Zhou, J., Zhang, Q., Zeng, S., Zhang, B., & Fang, L. (2024). Latent linear discriminant 11	143
analysis for feature extraction via isometric structural learning. Pattern Recogni- 11	
110 110 110 110 111 111 111 111 111 111	145
Zhou, R., Zhang, Y., & He, K. (2023). A novel hybrid binary whale optimization al-	146
gorithm with chameleon hunting mechanism for wrapper feature selection in qsar 11	
classification model: A drug-induced liver injury case study. Expert Systems with 11	
4 7 7 004 101017 111 //11 //101017 0000 101017	149
Zhu, Y., Li, W., & Li, T. (2023). A hybrid artificial immune optimization for high-	
dimensional feature selection. Knowledge-Based Systems, 260, 110111. https://in	
1 : /10 1016 /: 1	152
Zuo, X., Zhang, W., Wang, X., Dang, L., Qiao, B., & Wang, Y. (2025). Unsupervised 11	
feature selection via maximum relevance and minimum global redundancy. Pattern 11	
D 44 144 100 144 140 140 140 140 140 140	155
J) - /	