
© The Author(s) 2025. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This is an Open Access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

TSMS-HRO: A Two-Stage Multi-Strategy Hybrid Rice 1

Optimisation Algorithm for High-Dimensional Feature 2

Selection 3

Zhiwei Ye1,2, Jie Sun1,2, Wen Zhou1,2, Bogdan Adamyk3,*, Jixin Zhang1,2, 4

Ting Cai1,2, Jun Shen4, Mengya Lei1,2, Jing Zhou1,2, and Ruihan Li1,2 5

1School of Computer Science, Hubei University of Technology, No.28, Nanli Road, Hongshan 6

District, Wuhan, 430068, Hubei, China, https://orcid.org/0000-0002-1218-0681 7
2Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Wuhan, 8

430068, Hubei, China 9
3Aston Business School, Aston University, Birmingham B4 7ET, UK, 10

https://orcid.org/0000-0001-5136-3854 11
4School of Computing and Information Technology, University of Wollongong, Wollongong, 12

2500, New South Wales, Australia, https://orcid.org/0000-0002-9403-7140 13
*Corresponding author. b.adamyk@aston.ac.uk 14

Abstract 15

High-dimensional feature selection remains a challenging and active topic in 16

machine learning. Swarm intelligence and evolutionary computation have demon- 17

strated promising results for high-dimensional feature selection, such as ant colony 18

optimisation algorithm, particle swarm optimisation algorithm, and hybrid rice op- 19

timisation algorithm, etc. However, these algorithms still face two major challenges: 20

The first is the presence of excessive redundant features in the selected subset, which 21

degrades classification performance; the second is the long runtime of existing meth- 22

ods, which hampers efficient search and timely solution. To address these chal- 23

lenges, the paper proposes a novel two-stage algorithm, termed the two-stage multi- 24

strategy hybrid rice optimisation algorithm (TSMS-HRO), specifically designed for 25

high-dimensional feature selection. In the first stage, the minimum redundancy 26

maximum relevance method is used to compute prior information to enhance the 27

guidance of the feature subset search in the second stage. In the second stage, the 28

hybrid rice optimisation algorithm is enhanced through four mechanisms: enhan- 29

cing the quality and diversity of the initial population with good point set and elite 30

opposition-based learning strategies; increasing the utilisation rate of maintainer 31

line individuals with multiple adaptive differential operator selection strategies; im- 32

proving the global and local search capabilities of the hybridisation process with a 33
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t-distribution mutation perturbation strategy; and enhancing the flexibility and di- 34

versity of the selfing process of restorer line individuals by introducing an improved 35

adaptive crossover strategy. To evaluate the performance of the proposed method, 36

extensive numerical experiments were conducted using benchmark functions from 37

CEC2022. Results are compared with other well-known algorithms, such as the 38

whale optimisation algorithm and grey wolf optimiser. Furthermore, TSMS-HRO is 39

applied to 12 high-dimensional biomedical datasets. The experimental results show 40

that TSMS-HRO outperforms other two-stage and metaheuristic algorithms based 41

feature selection methods in terms of accuracy and convergence speed. For example, 42

on the CLL_SUB_111 dataset with 11,340 dimensions, TSMS-HRO achieved an 43

average accuracy of 95.25% with a 98.86% reduction in features, clearly surpass- 44

ing other methods in both effectiveness and stability. These findings confirm that 45

TSMS-HRO is an efficient and reliable algorithm not only for the optimisation of 46

functions with different characteristics but also for real-world optimisation prob- 47

lems. 48

Keywords: High-dimensional feature selection, Hybrid Rice Optimisation algorithm, 49

Minimum redundancy maximum relevance, Good point set, Elite opposition-based learn- 50

ing. 51

Nomenclature 52

Xm The individuals of maintainer line
Xs The individuals of sterile line
Xr The individuals of restorer line
S The number or ratio of feature selection
V d

max, V d
min The maximum and minimum values of the d-th dimension

F The smoothing factor
smax, smin The boundary adjustment parameters
σmax, σmin The maximum and minimum mutation scales
gr The growth rate to control σ

cr The crossover rate in the differential evolution stage
SCmax, SCmin The values of the selfing upper and lower limit
SC The maximum number of selfing in HRO
α The step-size control factor
λ The weight of error rate
µ The weight of the feature selection rate
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1. Introduction 53

In today’s era of information explosion, massive amounts of data are being generated 54

(Badshah et al., 2024), characterised by large volumes and high dimensionality. While 55

those features reflect the richness of data, they have also included some redundant features 56

and noise (Barbieri et al., 2024). In a higher-dimensional data environment, redundant 57

features and noise have significantly impacted the effectiveness of intelligent systems, 58

leading to biased analysis results (G. Li et al., 2024). For example, in gene expression data 59

analysis, these issues significantly hinder the development of intelligent systems (Liang 60

et al., 2024). Among tens of thousands of genes, only a small subset of the gene expression 61

levels has been closely associated with the disease diagnosis, resulting in the data sparsity 62

(Y.-C. Wang et al., 2024). In the context of high-dimensional data, feature engineering 63

is key to improving the generalisation ability of models, as it enables models to better 64

understand and interpret complex data (Lameesa et al., 2024). Consequently, effective 65

feature reduction enhances both classification accuracy and computational efficiency. 66

Dimensionality reduction techniques are used to reduce the number of data features by 67

retaining important ones while eliminating redundant features. This not only conserves 68

storage but also aids in uncovering meaningful information and mitigates the potential 69

risk of model overfitting. Dimensionality reduction techniques can be broadly classified 70

into two categories: Feature Extraction (Kapoor et al., 2024) and Feature Selection (FS) 71

(Moslemi, 2023; X. Song, Zhang et al., 2024). Feature extraction methods, such as 72

Principal Components Analysis (PCA) (Zheng et al., 2024), Linear Discriminant Analysis 73

(LDA) (J. Zhou et al., 2024), and Independent Component Analysis (ICA) (Buchaiah & 74

Shakya, 2022), reduce data dimensionality by projecting the original feature space onto a 75

new lower-dimensional feature space through a specified mapping process. These methods 76

have been successfully applied in various fields, including disease classification (Yu et al., 77

2022) and hyperspectral image classification (C. Wang et al., 2024).

Orginal
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Feature subset 
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Figure 1: Basic process of feature selection.
78

FS has been one of the key steps in pattern recognition and classification (Nematzadeh 79

et al., 2024). Its goal has been to eliminate some redundant and irrelevant features from 80

the data, enabling the extraction of valuable information from the higher-dimensional 81

data. The basic flowchart of FS is shown in Figure 1. The application of FS in high- 82
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dimensional data environments is crucial. First, it effectively addresses the curse of di- 83

mensionality, where distances between data points become smaller in high-dimensional 84

spaces, making it difficult for classifiers to distinguish different samples (Anuragi et al., 85

2024). Second, minimising the feature space can save storage space, facilitate information 86

discovery, and reduce the likelihood of model overfitting (Telikani et al., 2021). Moreover, 87

a key advantage of FS lies in its direct selection of optimal feature subsets from the ori- 88

ginal feature space. Traditional FS methods rely solely on the information inherent to the 89

samples themselves, without directly depending on learning algorithms. These methods 90

are based on various evaluation metrics, including statistical (BinSaeedan & Alramlawi, 91

2021), information-theoretic (Gao et al., 2023; He et al., 2024), similarity-based (Ouadfel 92

& Abd Elaziz, 2022; B. Zhang et al., 2022), and sparsity-based (R. Zhou et al., 2023) 93

approaches. In contrast, another category of FS methods evaluates the performance 94

of feature subsets through learning algorithms, assisting in the selection of the optimal 95

feature subset. Currently, mainstream approaches in this category utilise metaheuristic 96

algorithms with strong search capabilities to explore the entire feature space. These al- 97

gorithms validate subsets using a predefined learning algorithm until the optimal solution 98

is found. Common methods include the Genetic Algorithm (GA) (Fang et al., 2024), Grey 99

Wolf Optimiser (GWO) (Y. Wang et al., 2024), Whale Optimisation Algorithm (WOA) 100

(Miao et al., 2024), Harris Hawks Optimisation (HHO) (Peng et al., 2023; Zhao et al., 101

2024), Salp Swarm Algorithm (SSA) (Qaraad et al., 2022), Equilibrium Optimiser (EO) 102

(Ahmed et al., 2021) and Particle Swarm Optimisation (PSO) (Xue & Zhang, 2024). FS 103

avoids the potential loss of semantic information that may occur during the transform- 104

ation process in feature extraction techniques, making it a more extensively researched 105

field (Rajammal et al., 2022). 106

With the rapid increase in dataset dimensionality, traditional FS techniques face 107

challenges such as high computational costs and degraded model performance. To ad- 108

dress these issues, researchers have proposed FS methods specifically designed for high- 109

dimensional data scenarios (Osama et al., 2023). Manikandan & Abirami (2021) proposed 110

a high-dimensional FS method based on mutual information (MI) and Monte Carlo tech- 111

niques. It employs an approximate Markov blanket, MI, and a novel strategy based on 112

Monte Carlo Tree Search (MCTS) technology. In the first stage, primary features are se- 113

lected from high-dimensional data, and in the second stage, redundant features identified 114

in the first stage are eliminated. This approach achieves dimensionality reduction and 115

effectively enhances feature interaction. J. Zhang et al. (2021) proposed FS–GBDT, a hy- 116

brid FS framework combining Fisher score and Gradient Boosting Decision Tree (GBDT), 117

to identify robust cancer-related gene subsets from high-dimensional expression data. By 118

jointly analysing 11 cancer types, FS–GBDT effectively discovered overlapping risk gene 119

modules. Zuo et al. (2025) proposed an unsupervised FS method (MRMGRFS) that com- 120

bines spectral clustering-based relevance evaluation with global redundancy minimisation 121

using Jensen–Shannon divergence, effectively selecting informative and non-redundant 122
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features from high-dimensional data. Chamlal et al. (2024) proposed a supervised FS 123

method ISClique, which first uses a Kendall’s tau-based filter to evaluate feature interac- 124

tions, and then applies a maximal clique strategy to construct optimal subsets, achieving 125

superior performance in high-dimensional regression tasks. 126

Although the aforementioned FS methods have made adaptive improvements for high- 127

dimensional FS tasks, they still face challenges such as low search efficiency and subop- 128

timal classification accuracy of the selected feature subsets. Moreover, many of these 129

methods require prior knowledge to guide the search process of FS. This limitation not 130

only restricts their general applicability but also necessitates expert knowledge to assist in 131

the search process, making their usage less straightforward. Metaheuristic algorithms are 132

a class of strategies designed to solve optimisation problems. They generally do not rely 133

on specific assumptions about data distribution or require prior knowledge to guide the 134

search process. Instead, they utilise general search mechanisms, combining randomness 135

and heuristic information to iteratively seek near-optimal solutions. This makes them 136

particularly suitable for tackling large-scale, nonlinear, high-dimensional problems with 137

challenging gradient-based solutions. Metaheuristic algorithms have shown great poten- 138

tial in handling high-dimensional FS tasks (Nssibi et al., 2023; X. Song et al., 2022), 139

and their applications in this domain have significantly increased in recent years. When 140

applying metaheuristic algorithms to high-dimensional FS problems, the initial feature 141

subsets are typically generated randomly. The algorithms rely on their search strategies 142

to explore the feature space for the optimal feature combinations. Consequently, the 143

search efficiency and update mechanisms for candidate solutions directly influence the 144

quality of the selected feature subsets. This has become a primary focus for research- 145

ers in the field. Currently, various high-performance metaheuristic methods have been 146

successfully applied to different FS tasks. Hussain et al. (2021) proposed a hybrid optim- 147

isation method called Sine-Cosine Harris Hawk Optimisation (SCHHO), which combines 148

the Sine Cosine Algorithm (SCA) and HHO. This method aims to enhance the perform- 149

ance of numerical optimisation and FS. To effectively select the optimal gene combination 150

from microarray data, Pashaei (2022) utilised Minimum Redundancy Maximum Relev- 151

ance (mRMR) in the initial stage to filter the top m promising genes and reduce the 152

feature space. Subsequently, the Aquila Optimiser (AO) with a mutation mechanism and 153

a Time-Varying Mirrored S-shaped (TVMS) transfer function was applied to search for 154

the optimal feature subset. Nssibi et al. (2024) proposed a hybrid binary FS method called 155

iBABC-CGO, combining the island model of the Binary Artificial Bee Colony (BABC) 156

with Chaos Game Optimisation (CGO). To enhance the search process in binary space, 157

two transfer functions were used. The method integrates SVM for evaluating gene subsets 158

and was tested on 15 biological datasets. Experimental results showed that iBABC-CGO 159

achieved competitive classification accuracy, efficient gene selection, and fast convergence, 160

with meaningful biological interpretations of selected genes. Jiang et al. (2024) proposed 161

the Dynamic Crow Search Algorithm (DCSA) to enhance FS for high-dimensional bio- 162
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medical data classification. To improve exploration and exploitation balance, a dynamic 163

bi-level awareness probability was introduced. Additionally, Lévy flight with an adaptive 164

step length replaced the original random search mechanism, and a dynamic flight length 165

strategy was employed to accelerate convergence. Experimental results on seven high- 166

dimensional biomedical datasets demonstrated that DCSA achieved superior classification 167

accuracy and selected the smallest feature subsets, with 100% accuracy on SRBCT data. 168

To further enhance the performance and efficiency of FS methods based on metaheur- 169

istic algorithms in high-dimensional FS problems, researchers have combined filter-based 170

FS methods with metaheuristic algorithms to form a multi-stage FS approach (X. Song, 171

Ma et al., 2024). These approaches aim to leverage the high search efficiency of filter meth- 172

ods and the strong search capability of metaheuristic algorithms. For example, X. Song, 173

Ma et al. (2024) introduced a three-stage Streaming Feature Selection method based on 174

Dynamic feature clustering and Particle Swarm Optimisation (SFS-DPSO). The method 175

combines online relevance analysis to quickly eliminate irrelevant features, dynamic clus- 176

tering to handle redundancy, and an integer PSO to search for the optimal subset. Ex- 177

periments on 12 benchmark datasets and a real-world case demonstrated that SFS-DPSO 178

achieves superior classification performance within reasonable time compared to exist- 179

ing algorithms. Got et al. (2021) developed a novel multi-objective hybrid filter-wrapper 180

method to address the FS problem. The method leverages the WOA to explore promising 181

regions in the feature space. Additionally, two objective functions were considered during 182

the optimisation process: the first objective uses MI as a filter fitness function to assess 183

the relevance and redundancy among features, aiming to identify a non-dominated subset 184

of features with minimal redundancy and maximum relevance to the target class. The 185

second objective employs a learning classifier as a wrapper fitness function to evaluate 186

classification accuracy. Experimental results demonstrated that the proposed algorithm 187

could achieve multiple feature subsets with fewer features while maintaining excellent 188

classification accuracy. X.-F. Song et al. (2021) proposed a novel three-stage hybrid 189

FS algorithm (Hybrid FS algorithm based on correlation-guided Clustering and Particle 190

Swarm Optimisation, HFS-C-P) to address the challenge of high computational costs 191

in high-dimensional data. In the first and second stages, a filter-based FS method and 192

a correlation-guided clustering approach were designed to reduce the search space for 193

the third stage. Subsequently, in the third stage, an evolutionary algorithm with global 194

search capabilities was employed to identify the optimal feature subset. To enhance the 195

performance of all three stages, the authors developed a feature elimination method based 196

on symmetrical uncertainty, a fast correlation-guided feature clustering strategy, and an 197

improved integer PSO algorithm. Experimental results on 18 datasets demonstrated that 198

this algorithm could obtain a high-quality feature subset with minimal computational 199

cost. Thirumoorthy et al. (2023) employed a two-stage FS strategy combining filter and 200

wrapper-based methods. In the first stage, four filtering techniques (MI, ReliefF, In- 201

formation Gain (IG), and F-Score) were used to select a reduced feature subset. In the 202
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second stage, a wrapper-based hybrid Coati Optimisation Algorithm (COA) was applied. 203

This hybrid strategy incorporated opposition-based learning, adaptive population size ad- 204

justment, elite learning, and differential evolution operations to enhance search efficiency 205

and accuracy. The proposed method was evaluated on three benchmark datasets. The 206

comprehensive results demonstrated that the method outperformed other compared ap- 207

proaches, significantly improving breast cancer classification success rates while reducing 208

the FS ratio. Moustafa et al. (2024) proposed an innovative hybrid FS approach to derive 209

an optimal feature subset for high-precision crop mapping. In the first stage, MI and 210

ReliefF filtering methods were employed to rank the spectral-temporal remote sensing 211

features in the dataset. The most relevant features identified by these filtering methods 212

were then combined into a unified subset. Subsequently, the GWO was applied to refine 213

the initial feature set. Finally, a Random Forest classifier was used with the optimised 214

feature subset to predict crop types accurately. Performance evaluation conducted in the 215

Behiera province of Egypt demonstrated that the proposed method outperformed existing 216

crop mapping approaches, achieving an accuracy of 82%. Agrawal et al. (2022) proposed 217

a Normalised MI-based Equilibrium Optimiser (NMIEO) to enhance the efficiency of FS 218

in high-dimensional datasets. This method integrates a novel local search strategy based 219

on Normalised Mutual Information (NMI) to improve the algorithm’s local exploitation 220

capabilities. Additionally, chaotic mapping is employed to enhance the diversity of the 221

initial population. Before searching for the optimal feature subset, NMIEO reduces the 222

feature space using a filtering method. Four common filtering methods were compared 223

experimentally, and the most suitable one was selected as the first-stage filter. Results 224

demonstrated that NMIEO outperformed eight well-known metaheuristic algorithms from 225

recent literature in handling high-dimensional datasets. Askr et al. (2024) proposed the 226

Binary Enhanced Golden Jackal Optimisation (BEGJO) algorithm to improve FS for 227

high-dimensional data. To overcome the local optima, enhancement strategies were in- 228

troduced, and Copula Entropy (CE) was integrated for dimensionality reduction while 229

maintaining classification accuracy. The sigmoid transfer function transformed BEGJO 230

into a binary form suited for FS tasks. Experimental results showed that BEGJO out- 231

performed existing algorithms in classification accuracy and FS efficiency, with statistical 232

validation confirming its effectiveness. 233

In addition to the above-mentioned well-known algorithms, a novel population-based 234

metaheuristic algorithm named Hybrid Rice Optimisation Algorithm (HRO) is proposed 235

(Z. Ye et al., 2016), which is inspired by the hybrid breeding process of three-line hybrid 236

rice. According to heterosis theory, first-generation hybrid offspring often exhibit superior 237

traits in growth, reproduction, and behavioural characteristics compared to their parents. 238

As a result, HRO shows strong search capability, high efficiency, and adaptability. Because 239

of these advantages, coupled with its high flexibility and ease of implementation, HRO 240

has been applied by researchers to problems such as disease diagnosis (Mei et al., 2025; 241

A. Z. Ye et al., 2023) and intrusion detection (Z. Ye et al., 2024). Compared to tradi- 242
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tional metaheuristic algorithms, HRO stands out by emphasizing the utilisation of hybrid 243

breeding mechanisms and heterosis to enhance the population’s evolution and iteration. 244

Therefore, the paper intends to take advantage of the HRO algorithm and combine it with 245

the aforementioned two-stage method, which might exhibit even better performance. 246

The newly proposed FS technique combines the mRMR filtering method with the 247

HRO enhanced by multiple strategies, specifically targeting the classification of ultra- 248

high-dimensional biomedical gene expression data. Experimental results validate the ef- 249

fectiveness of the approach, achieving superior performance compared to other related 250

methods. The main contributions of the study can be summarised as follows: 251

1. A Two-Stage Multi-Strategy Hybrid Rice Optimisation Algorithm (TSMS-HRO), 252

is proposed based on the improved HRO algorithm. Unlike existing two-stage ap- 253

proaches that often rely on simple filter–wrapper combinations, our method estab- 254

lishes a tighter coupling between filtering and metaheuristic search, improving both 255

search efficiency and feature subset quality. 256

2. Multi-strategy enhancements are introduced into HRO. Compared with single-strategy257

improvements in existing HRO variants, these four mechanisms work collaboratively 258

to achieve a better balance between global exploration and local exploitation. 259

3. The method’s effectiveness is demonstrated by employing an SVM classifier on 12 260

biomedical datasets. In terms of classification accuracy, feature reduction rate, and 261

convergence speed, our method consistently outperforms state-of-the-art two-stage 262

feature selection algorithms and advanced metaheuristic-based algorithms. 263

4. A series of auxiliary experiments is conducted to demonstrate the effectiveness of the 264

proposed method, such as ablation experiments. By isolating different strategies, 265

we verify that the joint design of the two-stage framework and multi-strategy en- 266

hancements is essential for achieving superior stability and robustness. 267

The remainder of this study is organised as follows: Section 2 introduces the basic HRO 268

algorithm and the mRMR filtering method. Section 3 details the methodology proposed 269

in this study. Section 4 presents the experimental setup and discusses the results. Finally, 270

the conclusions of this work and future research are provided in Section 5. 271

2. Preliminaries 272

Before detailing the TSMS-HRO algorithm, we first review the basic components of the 273

HRO algorithm, which serves as the core metaheuristic in this work. 274

2.1 The hybrid rice optimisation algorithm 275

HRO is a novel population-based metaheuristic algorithm, proposed by Z. Ye et al. (2016), 276

that boasts strong search capabilities and high computational efficiency. The algorithm’s 277
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main process includes four stages: Three-line Division, Hybridisation, Selfing, and Re- 278

newal. The core idea is shown in Figure 2.

Maintainer line Sterile line

Restorer line

Maintainer line

Restorer line

Sterile line Hybrid rice

Hybridizing

Selfing

experience

Figure 2: Basic HRO algorithm.
279

(i)Three-line Division: In the breeding process, the initial populations X = {X1, X2, · · · ,280

Xn} are sorted in each iteration according to the fitness values, where n demonstrates 281

the size of populations. The maintainer line represents a subgroup of the population 282

with the best fitness values and is denoted as Xm = {X1, X2, · · · , Xp}, where p = 283

⌊n/3⌋. A group of seeds with poorer fitness values, which need to hybridise with the 284

maintainer line to improve the quality of individuals, forms the sterile line, denoted as 285

Xs = {X2p+1, X2p+2, · · · , Xn}. The remaining subgroup is the restorer line, represented as 286

Xr = {Xp, Xp+1, · · · , X2p}, which attempts to update its position toward the maintainer 287

line through selfing. 288

(ii)Hybridisation: The hybridisation process involves crossing the maintainer line and 289

the sterile line, which exhibit the greatest difference in fitness values. This process is 290

designed to enhance the genetic quality of sterile line individuals via heterosis-inspired 291

recombination with superior hybrid individuals. The procedure for generating new indi- 292

viduals through hybridisation is described in Equation 1. 293

Xd
new(i)(t + 1) = r1 · Xd

s (t) + (1 − r1) · Xd
m(t),

m ∈ {1, 2, · · · , p}; i, s ∈ {2p + 1, 2p + 2, · · · , n}.
(1)

where Xd
new(i) denotes the d-th gene of i-th hybrid in the sterile line during the (t + 1)-th 294

iteration. Xd
s (t) and Xd

m(t) denote the d-th gene of randomly selected individuals from 295
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the sterile line and maintainer line populations, respectively. r1 is a random number in 296

the range [0, 1]. 297

(iii)Selfing: The selfing stage is a critical step in optimising the individuals within the 298

restorer line. During this, the seed individuals in the restorer line exchange genetic in- 299

formation through crossover and recombination, enabling subpopulations to evolve toward 300

the optimal solution. Equation 2 models the selfing process. 301

Xd
new(i)(t + 1) = r2(Xd

best(t) − Xd
r(j)(t)) + Xd

r(i)(t),

i, j ∈ {p + 1, p + 2, · · · , 2p}; i ̸= j.
(2)

where Xd
new(i) denotes the new gene generated through selfing between the i-th and j-th 302

individuals (i ̸= j) of the restorer line. Xd
best(t) denotes the d-th gene of the best individual 303

found so far, while Xd
r(j)(t) denotes the d-th gene of the i-th individual randomly selected 304

from the restorer line. r2 is a random number in the range [0, 1]. 305

After generating new individuals through hybridisation and selfing, they are compared 306

with the original candidate individuals. If the fitness value of the new individual is superior 307

to that of the original candidate, replacement is performed according to Equation 3. 308

Xi(t + 1) =

Xnew(i)(t + 1), iff(Xnew(i)(t)) > f(Xi(t)),

Xi(t), otherwise.
(3)

(iv)Renewal: In the HRO algorithm, the Self Crossing (SC) count is used to measure 309

the cumulative number of iterations in which an individual from the restorer line has 310

not been updated. When the self-crossing count for a restorer line individual reaches the 311

preset maximum value (SCmax), it indicates that the individual has not been effectively 312

updated over multiple consecutive iterations. At this point, a reset operation is performed, 313

as described by the following Equation 4. 314

Xd
r(i)(t + 1) = r3(V d

max − V d
min) + Xd

r(i)(t) + V d
min. (4)

where Xd
r(i)(t) denotes the d-th gene of the i-th restorer line individual that has not been 315

updated. V d
max and V d

min denote the maximum and minimum values of the d-th dimension. 316

r3 is a random number selected from the range [0, 1]. 317

2.2 Minimum redundancy - maximum relevance (mRMR) 318

The mRMR algorithm aims to select a subset of features that are highly relevant to the 319

target variable while maintaining minimal redundancy among the features. This approach 320

is based on an intuitive concept: a good feature set should contain features that are 321

closely related to the target variable while ensuring independence among the features to 322

avoid redundant information. This balance is achieved by jointly considering the mutual 323

information between each feature and the target variable, as well as the average mutual 324
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information among the features. Formally, let X represent the feature set and Y represent 325

the target variable. The mRMR selection criterion is shown in Equation 5. 326

max

 1
|S|

∑
xi∈S

I(xi; Y ) − 1
|S|2

∑
xi,xj∈S

I(xi; xj)
 . (5)

where S denotes the set of selected features (the default value is 300, confirmed in sub- 327

sequent experiments). I(xi; Y ) denotes the mutual information between feature xi and 328

the target variable Y , which measures their relevance. On the other hand, I(xi; xj) de- 329

notes the mutual information between features, which measures their redundancy. The 330

mRMR method aims to maximise the difference between these two quantities, thereby 331

ensuring that the selected feature set contains features that are highly relevant to the 332

target variable while being mutually independent within the set. 333

3. The Proposed Approach 334

In this paper, a two-stage improved FS approach is proposed. A filter-based method 335

is employed in the first stage to preliminarily filter high-dimensional features, with the 336

features subset selected by the filter serving as the initial search space. In the second 337

stage, the multi-strategy integrated HRO algorithm searches within this refined feature 338

space and outputs the final feature subset. 339

3.1 mRMR-based filter 340

In the first stage of this method, the mRMR-based technique is used to select a feature 341

set that is both highly relevant to the target variable and minimally redundant among 342

features, as defined in Equation 5. The selected features subset serves as the initial search 343

space for the subsequent metaheuristic algorithm. 344

The pseudo code is in Algorithm 1. After we input the feature subset size |S| and the 345

dataset, for each feature xi in the dataset, we need to calculate the mutual information 346

between it and the feature label Y and all other features xj, and then use Equation 5 to 347

calculate the mRMR score of each feature. According to the size of |S|, the feature with 348

the highest score is taken as the feature subset S1, and S1 is used as the input of the 349

second stage. 350

3.2 MS-HRO: multi-strategy integrated hybrid rice optimisa- 351

tion 352

In the second stage of this method, four different strategies are employed to optimise 353

the basic HRO algorithm. As shown in the Figure 3, in the MS-HRO algorithm, the 354

population is initialised using the good point set and elite opposition-based learning to 355

initialise the population. This is very important, as it effectively improves the quality and 356
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Algorithm 1 Preliminary Filtering with mRMR.
Require: Desired subset size |S|, dataset.
Ensure: Initial feature subset S1 for Stage 2.

1: for each feature xi in the dataset do
2: Calculate mutual information I(xi; Y ) between feature xi and target variable Y ;
3: end for
4: for each pair of features (xi, xj) in the dataset do
5: Calculate mutual information I(xi, xj) between features xi and xj;
6: end for
7: for each feature xi do
8: Compute mRMR score using Equation 5;
9: end for

10: Select the top-ranked features based on mRMR scores to form the initial feature
subset S1;

11: return the initial feature subset S1.

diversity of our initialised population. Then it enters the iterative optimisation until the 357

specified maximum number of iterations is reached and the optimal solution is output. In 358

the iteration, the fitness of all individuals in the population must be measured first, and 359

then the three-line population is sorted and divided according to the fitness. Subsequently, 360

the maintainer line is updated by the aptive difference operator selection strategy, the 361

sterile line is hybridised with the maintainer line to obtain its excellent genes while using 362

the t-distribution mutation perturbation strategy to improve the search performance at 363

different stages, and the restorer line is updated by the enhanced adaptive selfing strategy 364

and the Lévy flight strategy. Finally, the global optimal solution is updated, and the next 365

iteration is entered. And Algorithm 2 for the pseudocode. 366
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Figure 3: The Flowchart of MS-HRO.
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Algorithm 2 MS-HRO-based optimisation.
Require: Maximum iterations MaxIter, population size n, F ⇐ 0.5, smax ⇐ 0.92, smin ⇐

0.01, σmax ⇐ 1.0, σmin ⇐ 0.1, gr ⇐ 2, cr ⇐ 0.9, SCmax ⇐ 10, SCmin ⇐ 4, α ⇐ 0.1.
Ensure: Best solution S.

1: Initialise population X ⇐ {X1, X2, . . . , Xn} using good point set and elite reverse
learning for diversity (Equations 6 – 9);

2: for t = 1 to MaxIter do
▷ Three-line Division

3: Calculate fitness for each individual in the population;
4: Sort the population by fitness:
5: Maintainer line Xm ⇐ {X1, X2, . . . , Xp};
6: Restorer line Xr ⇐ {Xp+1, . . . , X2p};
7: Sterile line Xs ⇐ {X2p+1, . . . , Xn};

▷ Adaptive Differential Operator Selection
8: for each individual in maintainer line Xm do
9: Select differential operator based on adaptive probabilities (Equation 19);

10: Apply DE1, DE2, or DE3 (Equations 10 – 12);
11: Update individual positions in Xm;
12: end for

▷ Hybridisation
13: for each individual Xs(i) in sterile line do
14: Select a random individual Xm and Xs(j);
15: Apply t-distribution-based mutation (Equations 20 – 23);
16: Update Xs(i);
17: end for

▷ Selfing
18: for each individual Xr(i) in restorer line do
19: Select a neighboring individual Xr(j);
20: Perform self-crossing (Equations 25 – 27);
21: Update Xr(i) and increment self-crossing counter SC
22: end for

▷ Renewal
23: for each individual in Xr with sc = SC (Equation 24) do
24: Perform reset operation;
25: Reset SC for Xr(i);
26: end for
27: Update the best solution found so far;
28: end for
29: return The best solution S.

3.2.1 Initialisation strategy based on good point set and elite opposition- 367

based learning (INIT) 368

To address the issue of insufficient diversity in the initial population of HRO, a popula- 369

tion initialisation strategy based on good point set mapping and elite reverse learning is 370

proposed to optimise the generation of the initial population. The mapping of the good 371

point set to the initial search vectors of the population individuals is expressed as follows 372

14

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article/doi/10.1093/jcde/qw

af113/8297130 by guest on 05 N
ovem

ber 2025



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

in Equation 6. 373

Xd
i = (UBd − LBd) × {ri

d × k} + LBd. (6)

where Xd
i denotes the value of the d-th dimension of the i-th individual. UBd and LBd 374

denote the upper and lower bounds of the d-th dimension of the search space. ri
d denotes 375

the proportional factor of the i-th individual in the d-th dimension. k is a scaling factor 376

used to adjust the search range. 377

Figure 4 illustrates the two-dimensional initial population distributions generated by 378

uniform distribution, good point set initialisation, logistic chaotic mapping, and Gaussian 379

chaotic mapping. It could be observed that when the population sizes are 30, 45, and 60, 380

the initial populations generated by the good point set are more evenly distributed. This 381

effectively avoids the clustering and dispersion of individuals in specific regions, signific- 382

antly enhancing the diversity of the population. As a result, the global search capability 383

of the algorithm is improved, facilitating the discovery of the global optimal solution. In 384

contrast, the other three strategies tend to generate populations with clustering or un- 385

covered regions in the search space. For instance, logistic chaotic mapping often leads to 386

individuals aggregating near the boundary while leaving large gaps in the center, which 387

not only slows down convergence but also increases the risk of overlooking promising 388

areas, thus hampering the search for high-quality individuals.
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Figure 4: The initial populations generated by different initialisation strategies.
389

Additionally, since elite individuals often carry more effective search information, this 390

study applies elite opposition-based learning to the population initialised by the good 391

point set. Let Xi =
(

x1
i , x2

i , · · · , xD
i

)
, (i = 1, 2, · · · , n) represent elite individuals in a 392

D-dimensional search space. Their opposition-based individuals could be expressed by 393
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Equations 7 and 8. 394

X̃i = (x̃1
i , x̃2

i , · · · , x̃D
i ). (7)

395

x̃j
i = K · (LBj + UBj) − xj

i , j = 1, 2, · · · , D. (8)

where K is a dynamic coefficient within the range [0, 1]. UBj and LBj are the upper and 396

lower bounds of the j-th dimension. 397

If the dynamic coefficient causes the opposition-based solution to exceed the search 398

boundaries, rendering it an infeasible solution, it is corrected using a uniform distribution, 399

as shown in Equation 9. 400

x̃j
i = Uniform(LBj, UBj). (9)

In summary, this study constructs elite opposition-based individuals for the popu- 401

lation initialised by the good point set. The optimal individuals are selected from the 402

combination of the initial solutions from the good point set and their opposition-based 403

individuals, forming the final initial solution set. 404

3.2.2 Adaptive difference operator selection strategy (DE) 405

To address the absence of an effective strategy for updating the maintainer line in the 406

basic HRO algorithm, this study proposes an adaptive difference operator-based dynamic 407

selection strategy to improve the quality of maintainer line. This includes the global 408

difference operator DE1 for the global search phase, the transitional difference operator 409

DE2 for transitioning from the global search phase to the local search phase, and the local 410

difference operator DE3 for the local exploitation phase, as described in Equations 10 - 411

12. 412

DE1 : Xd
i (t + 1) = Xd

i (t) + r1 · (Xd
p1(t) − Xd

p2(t)) + (1 − r1) · (Xd
p3(t) − Xd

i (t)). (10)

DE2 : Xd
i (t + 1) = Xd

i (t) + F · (Xd
p1(t) − Xd

p2(t)) + F · (Xd
best(t) − Xd

i (t)). (11)

DE3 : Xd
i (t + 1) = Xd

best(t) + r2 · (Xd
p1(t) − Xd

p2(t)) + (1 − r2) · (Xd
p3(t) − Xd

p4(t)). (12)

where Xd
i (t + 1) denotes the updated value of the d-th dimension of the i-th maintainer 413

population individual in the (t + 1)-th iteration. Xd
best(t) denotes the value of the d-th 414

dimension of the best solution found in the t-th iteration. Xpm denotes a randomly selected 415

individual from the maintainer line (pm ̸= i), and (pi ̸= pj, i ̸= j, 1 ≤ i, j ≤ 4). F 416

is a smoothing factor controlling the transition of the maintainer population from global 417

search to local search, with values in the range [0, 1]. r1 and r2 are random numbers in 418
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the range of [0, 1]. 419

To enable the algorithm to select different difference operators with varying prob- 420

abilities during different optimisation phases, this study defines an adaptive probability 421

generation method to dynamically generate selection probabilities for the three types 422

of difference operators. The selection process utilises a roulette wheel algorithm. The 423

formulation is as follows, Equations 13 - 19. 424

s1 = peak

1 + exp
(
(t − T

6 )/ T
25

) + smin. (13)

s2 = peak · exp
(

−(t − T

2 )2/(10 · T )
)

+ smin. (14)

s3 = peak

1 + exp
(
−(t − 5 · T

6 )/ T
25

) + smin. (15)

peak = smax − smin. (16)

S = s1 + s2 + s3. (17)

pi = si/S, i = 1, 2, 3. (18)

DEs = roulette_wheele_selection(p). (19)

where smin and smax are boundary adjustment parameters to prevent excessively small 425

or large values before normalisation. pi(i = 1, 2, 3) denotes the normalised probability 426

of selecting the i-th difference operator. t and T denote the current iteration count and 427

the maximum number of iterations, respectively. DEs denotes the difference operator 428

ultimately selected using the roulette wheel strategy. 429

Figure 5 illustrates the adaptive dynamic adjustment of selection probabilities for 430

the three different operators as the number of iterations increases. At the early stage 431

of optimisation, the algorithm selects the global difference operator DE1 with a higher 432

probability to emphasize global exploration. During the transition phase from global to 433

local search, the transitional difference operator DE2 is chosen with a higher probability 434

of balancing exploration and exploitation. In the later stages of optimisation, the local 435

search operator DE3 is selected with a higher probability to refine and enhance the optimal 436

solution obtained. 437

3.2.3 t-distribution mutation perturbation strategy (TD) 438

The paper addresses the lack of differentiation between the early global exploration phase 439

and the later local exploitation phase in the original HRO update strategy by introducing a 440
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Figure 5: Differential operator selection probability transfer curve.

t-distribution-based mutation perturbation strategy to improve the hybridisation process. 441

By leveraging t-distribution characteristics, the hybridisation phase in HRO is improved 442

(Equations 20 - 23), where the original random number r1 is replaced by t-distribution 443

sampling. 444

Xd
new(i)(t) = t · Xd

s(j)(t) + (1 − t) · Xd
m(t). (20)

f(t|df, σ) =
Γ
(

df+1
2

)
Γ
(

df
2

)√
dfπσ

(
1 + 1

df

(
t

σ

)2)− df+1
2

. (21)

df = 2 + t

T
· 28. (22)

σ = (σmax − σmin) ·
(

1 −
(

t

T

)gr)
+ σmin. (23)

where Xd
new(i)(t) denotes the updated value of the d-th gene of the i-th sterile line indi- 445

vidual at iteration t. Xd
s(j)(j ̸= i) and Xd

m(t) denote the individuals selected randomly 446

from sterile line and maintainer line, respectively. Each dimension of a newly generated 447

sterile line individual is perturbed by a random variable generated from the t-distribution. 448

Γ denotes the Gamma function, σmax and σmin are the maximum and minimum mutation 449

scales, controlling the range of generated random numbers. Larger scales result in broader 450

mutation ranges, and smaller scales result in narrower ranges. gr denotes the growth rate 451

that controls the convexity of the σ variation curve. 452

Figure 6 illustrates the shapes of the t-distribution under different degrees of free- 453

dom and mutation scales. This study leverages the characteristics of this distribution 454
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by combining various degrees of freedom and mutation scales to control the shape of the 455

t-distribution, to dynamically adjust between global exploration and local exploitation 456

stages for individuals. In the initial stages of iteration, the degree of freedom is relatively 457

small while the mutation scale is large. At this point, the t-distribution approximates 458

a Cauchy distribution, with data being more dispersed, resulting in larger perturbations 459

that drive the updates of individuals toward global exploration. As the iterations pro- 460

gress, the degree of freedom gradually increases, and the mutation scale decreases. The 461

t-distribution then transitions towards a normal distribution with a smaller standard de- 462

viation, generating smaller perturbations that make individuals more inclined to search 463

within local regions.

-4 -3 -2 -1 0 1 2 3 4

Value

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

b
a

b
il

it
y

 D
en

si
ty

t-Distribution for Different Degrees of Freedom

t-distribution (df=1, =1)

t-distribution (df=5, =1)

t-distribution (df=10, =1)

t-distribution (df=30, =1)

Standard Normal Distribution

-4 -3 -2 -1 0 1 2 3 4

Value

0

0.5

1

1.5

2

P
ro

b
a

b
il

it
y

 D
en

si
ty

t-Distribution for Different  Values

t-distribution (df=30, =1)

t-distribution (df=30, =0.8)

t-distribution (df=30, =0.6)

t-distribution (df=30, =0.4)

t-distribution (df=30, =0.2)

Figure 6: The shapes of t-distributions corresponding to different degrees of freedom
and mutation scales.

464

3.2.4 Enhanced adaptive selfing strategy (SC) 465

To address the limitation of simply setting the selfing upper limit parameter (SC) as 466

a constant during the selfing process, this study proposes an adaptive dynamic adjust- 467

ment mechanism based on the iteration count and introduces a Lévy flight mechanism to 468

improve the update of recovery system individuals. 469

To overcome the deficiency of SC being fixed as a constant in the basic HRO, the 470

value of SC is improved by making it adaptively adjustable with iterations, as shown in 471

Equation 24. 472

SC = SCmin + (SCmax − SCmin) ·
(

1 −
(

t

T

)2)
. (24)

where SCmax and SCmin denote the values of the selfing upper and lower limit, respect- 473

ively. 474

In the early stages of the algorithm, when the algorithm is in a global search state, 475

most individuals have a higher probability of performing effective updates within a small 476

number of iterations. At this point, SC is set to a relatively high value. If a seed individual 477

reaches this value in the early stage, it indicates that the individual has already fallen into 478
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a local optimum. In such cases, a forced reset operation is executed. As the iterations 479

progress to later stages, the likelihood of individuals being trapped in the local optima 480

increases. Therefore, setting SC to a smaller value at this stage can help individuals 481

quickly escape from the local optima and improve the overall search efficiency. 482

Additionally, this study also improves the selfing strategy for individuals from restorer 483

line, replacing the original gene update formula with the following Equations 25 - 27. 484

Xd
new(i)(t) = r3 · (Xd

best − Xd
r(j) + c1 · (LBd + L)). (25)

L = α · Lévy(β) · (UBd − LBd). (26)

c1 = 2 · exp
(

−
(4 · t

T

)2)
. (27)

where α is the step-size control factor, and c1 is an adaptive parameter that nonlinearly 485

decreases from 2 to nearly 0 as iterations progress, providing dynamic global and local 486

search capabilities for the recovery system individuals. Xd
r(j) denotes the d-th dimensional 487

gene value of the j-th seed individual randomly selected from the recovery system (j ̸= 488

i). Xd
best denotes the d-th dimensional gene value of the best solution found up to the 489

current iteration. r3 is a random number in the range [0, 1]. Lévy(β) refers to the 490

Lévy distribution with parameter, characterised by alternating short-distance searches 491

and random long-distance searches. This property enhances the algorithm’s global and 492

local search capabilities. The specific form of the Lévy distribution is given in Equation 28. 493

Lévy(β) ∼ µ = t−µ, (1 < β ≤ 3). (28)

where β controls the step length; smaller β promotes global exploration, larger β favours 494

local exploitation. µ is the Lévy exponent related to β, influencing the probability of long 495

jumps. 496

3.3 TSMS-HRO: a high-dimensional feature selection algorithm 497

Based on MS-HRO, the first-stage filter-based algorithm, along with transformation func- 498

tions and classifiers, is integrated to adapt the algorithm for high-dimensional FS tasks 499

(refer to Figure 7 for the TSMS-HRO flowchart, and Algorithm 3 for the pseudocode). 500

3.3.1 Binary encoding strategy and classifier 501

In common, most of metaheuristic algorithms were originally designed for continuous 502

optimisation problems and cannot be directly applied to discrete optimisation problems 503

like FS. The solutions obtained by HRO are continuous, and they need to be mapped to 504

the FS solution space using a transfer function. The transfer function used in this study 505
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Figure 7: The Flowchart of TSMS-HRO.
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is defined as Equations 29 - 30. 506

S(x) = 1
1 + exp (−x/2) . (29)

Xd
i =

1, ifS(Xd
i ) > rand,

0, otherwise.
(30)

In addition, to validate the effectiveness of the proposed algorithm, this study uses 507

SVM as the classifier. 508

3.3.2 The fitness function 509

The fitness function used in this study is defined as Equation 31. 510

Fitness = λ · error + µ · n

N
. (31)

where error denotes the classification error rate. n and N are the sizes of the selected 511

feature subset and the total number of features, respectively. λ and µ are weighting 512

factors used to balance the influence of the classification error rate and the feature subset 513

size. The weights λ and µ satisfy the condition λ + µ = 1, ensuring that the fitness values 514

of all algorithms range between 0 and 1. This normalisation facilitates a fair comparison 515

of the performance across different algorithms. 516

Algorithm 3 TSMS-HRO for Feature Selection.
Require: Subset S1, maximum iterations MaxIter, population size n, F ⇐ 0.5, smax ⇐

0.92, smin ⇐ 0.01, σmax ⇐ 1.0, σmin ⇐ 0.1, gr ⇐ 2, cr ⇐ 0.9, SCmax ⇐ 10,
SCmin ⇐ 4, α ⇐ 0.1, λ ⇐ 0.99, µ ⇐ 0.01.

Ensure: Best feature subset.
1: Initialise population X ⇐ {X1, X2, . . . , Xn} using:
2: Use subset S1 from Stage 1 as the initial search space;
3: Good point set and elite reverse learning for diversity (Equations 6 – 9);
4: for t = 1 to MaxIter do
5: Calculate fitness for each individual in the population;
6: Sort the population by fitness:
7: Maintainer line Xm ⇐ {X1, X2, . . . , Xp};
8: Restorer line Xr ⇐ {Xp+1, . . . , X2p};
9: Sterile line Xs ⇐ {X2p+1, . . . , Xn};

10: Apply MS-HRO’s improvement strategies;
▷ Discretization

11: Apply S-shaped transfer function to convert continuous solutions to binary values
(Equations 29 – 30);

▷ Fitness Evaluation
12: Calculate fitness using error rate and feature subset size (Equation 31);
13: Update the best solution found so far if the new solution is better;
14: end for
15: return Best feature subset.
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4. Experiment and Discussion 517

To assess the effectiveness of the proposed method, this section presents a series of bench- 518

mark experiments. It begins with a description of the experimental framework, including 519

datasets and baseline algorithms, followed by a detailed analysis of the results. 520

The experiments were conducted on a PC running the Windows 10 operating system. 521

The hardware specifications include a 13th Gen Intel(R) Core(TM) i9-13900K CPU @ 522

3.00 GHz and 64GB of memory. All algorithms were implemented using the Python 523

programming language. 524

4.1 Experimental settings 525

To evaluate the proposed algorithm, five groups of experiments were organised: 526

1. Validation of MS-HRO’s performance in continuous space: To demonstrate the 527

optimisation capability of MS-HRO in a continuous space, this section uses the 528

CEC2022 benchmark functions as benchmarks. 529

2. Integration of filter methods into MS-HRO: To enhance the search efficiency and the 530

quality of selected feature subsets, the filter method was incorporated into MS-HRO. 531

Several mainstream filter methods, including Fisher, Laplacian, Maximal Informa- 532

tion Coefficient (MIC), MI, mRMR, ReliefF, and Trace Ratio Criterion (TR), were 533

compared and evaluated. 534

3. Verification of classifier-independence: To examine whether the proposed method 535

is adaptable to different classifiers, additional experiments were conducted using 536

KNN, DecisionTree (DT), Naive Bayes (NB), XGBoost, and Random Forest (RF) 537

while keeping the selected feature subsets unchanged. This allows us to evaluate 538

the generalisation capability of the algorithm and confirm that its effectiveness is 539

not limited to SVM. 540

4. Evaluation of TSMS-HRO on high-dimensional biomedical datasets: The classifica- 541

tion performance of the TSMS-HRO algorithm was assessed (mRMR + SVM as the 542

baseline algorithm) and analyzed on 12 high-dimensional gene expression datasets 543

derived from biomedical microarray databases. 544

5. Ablation study of TSMS-HRO components: To evaluate the effectiveness of each 545

mechanism in TSMS-HRO, we conducted an ablation study on multiple high-dimensional546

biomedical datasets by selectively incorporating different strategies into the al- 547

gorithm. 548
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4.2 Dataset and parameter settings 549

To validate the performance of MS-HRO, the study utilised the CEC2022 benchmark 550

functions, which include: 1 Unimodal Function, 4 Basic Functions, 3 Hybrid Functions, 551

and 4 Composition Functions. For comparative experiments, the study selected several 552

state-of-the-art optimisation algorithms as baselines, including HRO, GA, Honey Badger 553

Algorithm (HBA), HHO, JAYA, Rime Optimisation Algorithm (RIME), SSA, WOA, AO, 554

Clonal Selection Algorithm (CSA), GWO. The parameters of these comparison algorithms 555

are provided in Table 1. All algorithms shared a consistent configuration: an initial 556

population size of 42, a maximum of 1000 iterations, and 30 independent runs for each 557

20-dimensional test function, ensuring statistical reliability and fairness. 558

Table 1: Parameter Settings.

Algorithm Parameter Setting
HRO r1, r2, r3 ∈ [0, 1], SC = 8
MS-HRO F = 0.5, smax = 0.92, smin = 0.01, σmax = 1.0, σmin = 0.1,

gr = 2, cr = 0.9, SCmax = 10, SCmin = 4, α = 0.1
GA CR = 1, MR = 0.01
HBA C = 2, β = 6, F ∈ {−1, 1}
HHO E1 = 2(1 − t

T
), E0 ∼ U(−1, 1), E = E1 · E0, q, r ∼ U(0, 1),

J = 2(1 − rand), Lévy(β = 1.5)
JAYA –
RIME W = 5
SSA c1 = 2e−( 4t

T
)2 , c2 ∼ U(0, 1)n, c3 ∼ U(0, 1)n

WOA a ∈ [0, 2], A = 2ar1 − a, C = 2r2, b = 1, l ∈ [1, a2], p ∈ [0, 1]
AO α = 0.1, δ = 0.1, a = 2(1 − t

T
), r1 ∼ U(0, 1), Lévy(β = 1.5)

CSA CR = 0.1, MR = 0.1, SR = 0.2
GWO α ∈ [0, 2]

This study aimed to select a more effective filter method by evaluating mainstream 559

filter techniques, including Fisher, Laplacian, MIC, MI, mRMR, ReliefF, and TR. Each 560

filter method was compared and validated under varying fixed dimensions (ranging from 561

100 to 500, with an increment of 50) and feature ratios (ranging from 5% to 30%, with 562

an increment of 5%). The evaluation criterion was based on calculating the average 563

classification accuracy achieved by each filter method across all datasets in Table 2 when 564

selecting the corresponding number of features. 565

To verify the classifier-independence of the proposed feature selection algorithm, mul- 566

tiple classifiers, including SVM, KNN, DT, NB, XGBoost, and RF, were employed for 567

evaluation. Each classifier was executed 30 times on the 12 datasets listed in Table 2, and 568

their performance was assessed under the same feature subsets generated by the proposed 569

algorithm. The parameter settings for each classifier are summarised in Table 3. 570

To validate the performance of the proposed FS method, it is compared with the latest 571

two-stage FS methods, such as MBAO (Pashaei, 2022), HFSIA (Zhu et al., 2023), MG- 572

24

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article/doi/10.1093/jcde/qw

af113/8297130 by guest on 05 N
ovem

ber 2025



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Table 2: Datasets used for feature selection by TSMS-HRO.

ID Dataset Instances Number of Features Number of Classes
D1 colon 62 2000 2
D2 lung 203 3312 5
D3 GLIOMA 50 4434 4
D4 leukemia_1 72 5327 3
D5 DLBCL 77 5469 2
D6 TOX_171 171 5748 4
D7 ALLAML 72 7129 2
D8 Brain_Tumor_2 50 10367 4
D9 Prostate_Tumors 102 10509 2
D10 CLL_SUB_111 111 11340 3
D11 SMK_CAN_187 187 19993 2
D12 GLI_85 85 22283 2

Note: These datasets vary significantly in the number of features, ranging from 2, 000
to 22, 283. Specifically, datasets D1−D7 are high-dimensional datasets with feature
counts between 2, 000 and 7, 129, while datasets D8-D12 have even higher feature
dimensions, ranging from 10, 367 to 22, 283. This diversity in feature numbers provides
a broad spectrum of data perspectives and analytical layers for in-depth research.

Table 3: Classifier Parameter Settings.

Algorithm Parameter Setting
SVM C = 4
KNN K = 5
DT criterion = gini, max_depth = None
NB −
XGBoost max_depth = 3, learning_rate = 0.01, n_estimators =

100, subsample = 1.0, colsample_bytree = 1.0
RF n_estimators = 100, max_depth = None, criterion = gini

Note: The parameters are based on commonly used or default settings in the respective
classifiers, without further hyperparameter tuning, to ensure a fair comparison under
the same feature subsets.
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WOR (Pan et al., 2023), BIGWO (Moustafa et al., 2024), and improved two-stage meth- 573

ods, TS-GA, TS-GWO, TS-HBA, TS-HHO, TS-JAYA, TS-RIME, TS-SSA, TS-WOA, in 574

12 datasets listed in Table 2. These datasets were derived from gene expression profiles 575

in high-dimensional biomedical microarray databases (Ghosh et al., 2021; J. Li et al., 576

2017). The collection of such datasets typically relies on high-throughput technologies, 577

such as microarray techniques or next-generation sequencing, which enable the measure- 578

ment of thousands of gene expression levels in a single experiment. These datasets are 579

widely used in disease diagnosis, biomarker discovery, and drug development. By analys- 580

ing differences in gene expression patterns, researchers can uncover molecular mechanisms 581

underlying specific diseases and support the development of novel therapeutic approaches. 582

The experiments were conducted under a unified standard. Each algorithm was run 30 583

times on each data set. The population size was set to 30, the minimum number of 584

iterations was 100, and the filters used by the improved TS-GA, TS-GWO and other 585

algorithms were all mRMR (the parameters were consistent with TSMS-HRO), and the 586

other algorithm parameters were consistent with those in Table 1. 587

To evaluate the effectiveness of each mechanism within TSMS-HRO, an ablation study 588

was conducted by selectively incorporating different strategies into the algorithm. The 589

impact of each component on performance was assessed across multiple high-dimensional 590

biomedical datasets in Table 2 to determine its contribution to the overall effectiveness of 591

the algorithm. The parameters of all comparison algorithms are consistent with TSMS- 592

HRO. The comparison algorithm list and its explanation are shown in Table 4.

Table 4: Comparison of algorithms in ablation experiments.

Algorithm Description
HRO Original HRO algorithm.
TS-HRO Two-stage HRO algorithm with mRMR-based filter.
MS-HRO Multi-strategy improved HRO algorithm.
TSMS-HRO Two-Stage Multi-Strategy HRO algorithm with mRMR-based filter.
TS-HRO-DE Two-stage DE-improved HRO algorithm with mRMR-based filter.
TS-HRO-INIT Two-stage INIT-improved HRO algorithm with mRMR-based filter.
TS-HRO-SC Two-stage SC-improved HRO algorithm with mRMR-based filter.
TS-HRO-TD Two-stage TD-improved HRO algorithm with mRMR-based filter.

Note: The parameters of all variant algorithms are consistent with TSMS-HRO.
593

4.3 Performance metrics 594

4.3.1 The result of the CEC2022 benchmark tests 595

MS-HRO demonstrates significant advantages in most benchmark functions. Specifically, 596

in test functions F5, F6, F8, F9, F10, F11, and F12, MS-HRO outperforms other 597

algorithms, achieving solutions that are closer to the optimal. Additionally, for functions 598

F1, F2, F3, and F7, the algorithm consistently converges to competitive solutions, albeit 599
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slightly behind the top-performing algorithm in those cases. Moreover, we can observe 600

that MS-HRO performs better in the Hybrid and Composition functions. Among the 7 601

functions from F6 to F12, MS-HRO achieved the best average fitness values in 6 cases 602

and demonstrated excellent performance in terms of variance, indicating a certain level of 603

stability. This suggests that MS-HRO possesses strong search capabilities, allowing it to 604

explore the search space and identify the optimal values thoroughly. For example, in F8, 605

MS-HRO outperformed other methods by several orders of magnitude, reaching 2.36E+3, 606

and achieved the lowest variance of 2.66E+2 compared to other algorithms in the same 607

group. However, at the same time, we can also observe that MS-HRO performs worse 608

than HBA on Basic and Simple Multimodal functions. 609

In Figure 8 (mainly Unimodal Functions and Basic Functions), we first observe that 610

the convergence speed of MS-HRO is not as fast as that of a few other algorithms. This is 611

because, in order to avoid premature convergence to a local optimum, MS-HRO continues 612

to explore unknown regions in search of better solutions. This exploratory behaviour also 613

lays the groundwork for its excellent performance on subsequent Hybrid and Composite 614

Functions. Secondly, although its convergence speed is relatively slow, MS-HRO still 615

converges to the optimal value on certain functions, such as F5 and F6. On F5, the 616

convergence of MS-HRO in the early iterations is not as strong as that of the original 617

HRO and GWO algorithms. However, after 100 iterations, it surpasses all algorithms and 618

achieves the optimal value. On F6, after nearly 400 iterations, MS-HRO escapes from 619

the local optimum, outperforms the AO algorithm, which remains trapped, and reaches 620

the best convergence value. In addition, MS-HRO performs slightly worse than the HBA 621

algorithm on F1, F2, and F3, but the performance gap is minor. Notably, the convergence 622

speed of MS-HRO is much faster than that of HBA, indicating a better trade-off between 623

optimisation quality and convergence efficiency. Finally, on F4, MS-HRO fails to obtain 624

a competitive solution before the end of the iteration, likely due to being trapped in 625

a local optimum. The rugged and multimodal nature of F4 may not align well with 626

MS-HRO’s search dynamics, leading to reduced exploration and premature convergence. 627

Nevertheless, its convergence trend still indicates potential for further improvement. 628

In Figure 9 (Hybrid Functions and Composition Functions), we observe that, in terms 629

of convergence value, MS-HRO achieves the optimal results on 5 out of 6 functions, with 630

the exception of F7, where its performance is slightly worse than that of the original HRO. 631

Overall, MS-HRO shows a significant advantage. Although the original HRO obtains 632

relatively competitive results on F8, F9, and F12, its performance still falls short of 633

that of MS-HRO. This demonstrates the effectiveness of our multi-strategy improvement 634

approach. Regarding convergence speed, MS-HRO remains ahead of most algorithms even 635

when dealing with more complex functions. This highlights the efficiency of the proposed 636

exploration strategy in finding high-quality solutions more rapidly. For instance, MS- 637

HRO converges to the optimal value on F10 within approximately 300 iterations, while 638

other algorithms continue to search without reaching optimal convergence under the same 639
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Figure 8: Convergence curves of different algorithms on CEC2022, (F1 - F6). The
proposed method MS-HRO is represented by an orange dotted line.
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Figure 9: Continued (F7 - F12).
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iteration count. 640

To further compare the performance differences between MS-HRO and other algorithms 641

in terms of convergence value, variance, and runtime, we present a bar chart. Additionally, 642

we take the logarithm of the convergence values to make the comparisons more visually 643

apparent. In Figure 10 (mainly Unimodal Functions and Basic Functions), on F1, F2, 644

and F3, although the HBA algorithm achieves slightly better convergence values, the 645

differences between HBA and MS-HRO are marginal. MS-HRO still converges to highly 646

competitive solutions. For instance, on F1, the difference between MS-HRO and HBA is 647

only 3.00E−3, which is negligible. On F2, HBA achieves 4.51E+2, and MS-HRO achieves 648

4.53E+2, with a gap of only 1.86, while also obtaining the lowest variance, which highlights 649

the stability of MS-HRO. On F3, the difference is merely 8.30E−12, which is practically 650

insignificant. On F4, MS-HRO ranks eighth, likely due to being trapped in a local op- 651

timum. However, most algorithms—including MS-HRO—approach the optimal value of 652

approximately 800, as shown in the figure. On both F5 and F6, MS-HRO achieves the 653

best convergence values. Notably, it also achieves the lowest variance (0.08) on F5. On 654

F6, MS-HRO performs particularly well, reaching 4.53E+4, significantly outperforming 655

the second-best AO algorithm at 6.34E+4. 656
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Figure 10: Bar chart comparing the performance of different algorithms on CEC2022.
The algorithm with the best convergence value is marked with dark blue and a check
mark; the one with the smallest variance is marked with a circle and an error bar; and
the asterisk indicates the algorithm with the shortest running time (F1 – F6).

In Figure 11 (Hybrid Functions and Composition Functions), the performance from F7 657

to F12 is even more impressive. MS-HRO achieves both the best convergence values and 658

the lowest variances on F8, F9, F10, F11, and F12, demonstrating strong optimisation 659

ability and excellent stability when dealing with complex functions. Although the original 660

HRO algorithm performs best on F7, the gap with MS-HRO is only 4.07—relatively 661

small compared to the differences observed with other algorithms. Additionally, MS- 662

30

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article/doi/10.1093/jcde/qw

af113/8297130 by guest on 05 N
ovem

ber 2025



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

HRO demonstrates outstanding convergence values on other functions. For example, on 663

F8, its result exceeds the second-best HBA algorithm by 2.93E+2. On F12, MS-HRO 664

achieves 2.94E+3, whereas the second-best HRO algorithm only reaches 2.96E+3. 665
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Figure 11: Continued. (F7 - F12)

In summary, after multiple iterations, MS-HRO demonstrates exceptional optimisation 666

capabilities on the CEC2022 benchmark suite. These results can be attributed to the 667

solid foundation of the original HRO algorithm and the effectiveness of the proposed 668

enhancements, making MS-HRO a highly competitive optimisation method. 669

4.3.2 The result of the filter experiment 670
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Figure 12: Heat map showing the average accuracy and average running time of each
filter on 12 datasets at different feature percentages. Darker colors on the left indicate
higher accuracy, while lighter colors on the right indicate shorter running times.
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As shown in Figure 12, within the feature ratio range of 0.05 to 0.30, the mRMR, 671

Fisher, and MI methods achieved the highest classification accuracy. Among them, the 672

mRMR method exhibited remarkable stability across all ratios, achieving a peak accuracy 673

of 88.93% at a feature ratio of 0.1, thereby outperforming most other methods. In contrast, 674

Laplacian yielded the lowest accuracy, which increased slightly with the feature ratio but 675

remained significantly lower than that of other methods. Regarding runtime, all methods 676

exhibited increased execution time as the feature ratio rose, which is an expected trend. 677

Although TR had the shortest runtimes at lower feature ratios, the runtime of mRMR was 678

comparable to that of other mainstream methods (such as reliefF and MI) and remained 679

within an acceptable range. 680
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Figure 13: Heat map showing the average accuracy and average running time of each
filter on 12 datasets with different numbers of features. Darker colors on the left
indicate higher accuracy, while lighter colors on the right indicate shorter running times.

As shown in Figure 13, the classification accuracy of the mRMR method steadily in- 681

creases as the number of features grows from 100 to 500, reaching peak values of 89.20% 682

at 450 features and 89.15% at 500 features. Notably, at 300 features, the accuracy already 683

reaches 88.98%, only 0.22% below the maximum, indicating it is very close to optimal. 684

Compared to other methods (such as Fisher, MI, and ReliefF), mRMR consistently main- 685

tains a leading performance across medium and high-dimensional settings. In terms of 686

runtime, mRMR shows a near-linear increase with the number of features, reaching ap- 687

proximately 0.0043 seconds at 300 features—substantially faster than the 0.0056 seconds 688

at the maximum feature count. Given the marginal gain in accuracy versus the not- 689

able increase in computational cost, selecting 300 features represents a more cost-effective 690

trade-off. 691

In conclusion, by comprehensively evaluating classification accuracy and computa- 692

tional efficiency, we selected the mRMR method with 300 features as the first-stage filter 693

in our FS method. 694

32

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article/doi/10.1093/jcde/qw

af113/8297130 by guest on 05 N
ovem

ber 2025



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

4.3.3 The result of the classifier experiment 695

As shown in Figure 14 and Table 5, the results demonstrate that the proposed feature se- 696

lection method maintains high classification performance across different classifiers, which 697

verifies the generalisation capability and classifier-independence of the selected features. 698

Overall, all six classifiers (SVM, KNN, DT, NB, XGBoost, and RF) achieve consistently 699

high accuracy values on most datasets, suggesting that the selected features preserve 700

discriminative information independent of the specific classifier applied. 701

From an overall perspective, SVM consistently yields the best or near-best results, 702

achieving the highest accuracy on 11 out of 12 datasets. For instance, it reaches perfect 703

classification (100%) on four datasets (D4, D5, D7, D12), and above 95% accuracy on 704

most others, with the exception of D11, where the accuracy drops to 85.93%. KNN also 705

performs strongly, matching or surpassing SVM in several datasets, such as D2 (98.67%) 706

and D12 (100%). 707

Other classifiers also exhibit competitive performance. NB achieves 100% accuracy on 708

three datasets (D4, D5, D7), while RF attains 100% on D4 and nearly perfect accuracy 709

on D5 and D12. XGBoost maintains balanced and stable results, often close to SVM 710

(e.g., 97.65% on D12, compared with SVM’s 100%). In contrast, DT shows relatively 711

lower performance, particularly on D6 (76.10%) and D11 (77.09%), indicating higher 712

sensitivity to dataset characteristics. 713

In summary, although SVM achieves the most stable and superior results overall, the 714

fact that other classifiers—especially KNN, RF, and NB—also achieve competitive or 715

even identical accuracy on several datasets demonstrates that the proposed method is 716

not limited to a single classifier. This confirms that the selected features possess strong 717

generalisation ability and classifier independence. 718

D1:colon

D2:lung

D3:GLIOMA

D4:leukemia_1

D5:DLBCL

D6:TOX_171

D7:ALLAML

D8:Brain_Tumors_2

D9:Prostate_Tumors

D10:CLL_SUB_111

D11:SMK_CAN_187

D12:GLC_85

75
80

85
90

95
100

Classification Accuracy on 12 Datasets

KNN DT NB XGBoost RF SVM

Figure 14: Radar chart of the average accuracy of each classifier running on 12 data sets.
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Table 5: The average accuracy of each classifier running on 12 data sets.

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
SVM 96.52 98.21 96.93 100 100 92.30 100 98.80 98.23 95.25 85.93 100
KNN 96.17 98.67 95.20 100 100 88.34 100 94.80 98.00 91.98 81.69 100
DT 94.55 95.39 92.80 96.95 95.97 76.10 99.02 84.80 94.47 84.55 77.09 95.29
NB 94.03 90.78 93.20 100 100 91.98 100 96.00 96.33 91.38 81.67 99.65
XGBoost 95.87 97.19 96.20 97.43 98.40 85.69 98.14 97.60 96.90 91.29 84.30 97.65
RF 94.05 96.05 92.40 100 99.87 86.36 99.02 97.80 97.22 93.24 81.26 99.41

4.3.4 TSMS-HRO two-stage high-dimensional feature selection results 719

From the convergence curves, it can be observed that TSMS-HRO achieved the highest 720

accuracy on 10 out of the 12 datasets, demonstrating leading performance particularly on 721

D1, D3, D8, and D11. As shown in Figure 15, for the first seven datasets (with feature 722

dimensions ranging from 2,000 to 7,129), TSMS-HRO achieved the top accuracy in five 723

cases and exhibited clear advantages on the D1 and D3 datasets. It not only outperformed 724

the second-best algorithms, HFSIA and MGWOR, by nearly 2 percentage points but also 725

demonstrated the fastest convergence to the optimal solution. Although the convergence 726

speed of TSMS-HRO was relatively slower on the D2 and D6 datasets, it ultimately 727

achieved strong results, ranking third and second, respectively. On the D4, D5, and D7 728

datasets, TSMS-HRO—as well as several other improved two-stage algorithms (including 729

TS-GA, TS-HBA, TS-RIME, and HFSIA)—reached the maximum convergence accuracy 730

of 100%. Furthermore, it is worth noting that these algorithms already exhibited high 731

accuracy in the early stages of iteration, which can be largely attributed to the mRMR 732

filter employed during the first selection stage. 733

As illustrated in Figure 16, on the final five high-dimensional datasets (with feature 734

dimensions ranging from 10,367 to 22,283), TSMS-HRO delivered even stronger perform- 735

ance, consistently converging to the optimal accuracy. On D8 and D9, TSMS-HRO main- 736

tained superior convergence curves throughout the entire optimisation process, reflecting 737

its excellent global and local search capabilities. Although it initially lagged behind HFSIA 738

on D10, TSMS-HRO surpassed it after 40 iterations and eventually reached the best con- 739

vergence value. Particularly on D11—the second most high-dimensional dataset—TSMS- 740

HRO outperformed the second-ranked MGWOR algorithm by a margin of 5 percentage 741

points, demonstrating a clear and significant advantage. Moreover, on D12, the dataset 742

with the highest dimensionality, TSMS-HRO was the only algorithm to achieve 100% 743

accuracy, further underscoring its superior capability in high-dimensional FS tasks. 744

In general, TSMS-HRO demonstrates excellent convergence ability, particularly on 745

high-dimensional datasets. Its superior initial solutions can be attributed to the effective- 746

ness of the first stage, which significantly reduces noise and redundancy. Meanwhile, the 747

algorithm’s ability to reach better final convergence values is largely due to the strengths 748

of the original HRO algorithm and the enhancements introduced in the second-stage op- 749

timisation. This synergy between the two stages highlights the overall robustness and 750

34

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article/doi/10.1093/jcde/qw

af113/8297130 by guest on 05 N
ovem

ber 2025



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Figure 15: Convergence curves of TSMS-HRO and other algorithms on 12 datasets. The
dotted line represents the convergence curve of TSMS-HRO.
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Figure 16: Continued.
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effectiveness of the proposed TSMS-HRO method. 751

In order to further observe the indicators of TSMA-HRO in the high-dimensional FS 752

task, we drew the bar graph and provided the detailed data, and the yellow horizontal 753

line is used to represent the results of the baseline experiment. And Table 6 shows the 754

accuracy of the baseline methods on 12 datasets, along with the improvements achieved 755

by TSMS-HRO. We can see that after the improved HRO algorithm is used for feature 756

selection, the accuracy rate is mostly improved by more than 20%. 757

Table 6: The average accuracy of baseline algorithm (mRMR + SVM) on 12 data sets.

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
baseline 82.18 92.61 70.00 74.86 75.33 51.5 76.38 58.00 71.24 55.81 63.09 69.41
Improvements +14.34 +5.60 +26.93 +25.14 +24.67 +40.80 +23.62 +40.80 +26.99 +39.44 +22.84 +30.59

As shown in Figure 17 and Table 7, the best accuracy was achieved on the datasets 758

D1, D3, D4, and D5, reaching 96.52%, 96.93%, 100%, and 100% respectively. And the 759

variance was 0 on the datasets D4 and D5, and TSMS-HRO showed strong stability. But 760

at the same time, we can also observe that most of the other methods that added mRMR 761

filters also achieved the same indicators, which shows that the mRMR method played 762

a key role in the first stage, and the algorithm’s search in the second stage was only to 763

select fewer features and achieve the same effect. On the dataset D2, although TSMS- 764

HRO did not reach the optimal value, the gap with the optimal algorithm MGWOR 765

was only 0.07%, but TSMS-HRO had a smaller variance and was more stable. On the 766

D6 dataset, TSMS-HRO ranked second with an accuracy of 92.30%, which is lower than 767

the 94.03% of the TS-GA algorithm. However, it is worth noting that TSMS-HRO only 768

selected 71.57 features to achieve the effect of TS-GA selecting 136.40 features. 769

As shown in Figure 18 and Table 8, TSMS-HRO performed better in the following six 770

datasets with higher dimensions, all of which achieved the best accuracy. On the D7, D8, 771

D9, D10, and D11, they achieved the best 100%, 98.80%, 98.23%, 95.25%, and 85.93%, 772

respectively. At the same time, the variance on the D7 datasets was 0. In particular, 773

TSMS-HRO achieves 100% accuracy and 0 variance on the dataset D12 with the highest 774

data dimension (dimension is 22283), which shows the excellence of TSMS-HRO in high- 775

dimensional FS. 776

At the same time, we also noticed that TSMS-HRO achieved 100% accuracy on some 777

datasets, such as D4, D5, D7, and D12. This impressive performance is primarily due 778

to the mRMR filtering method in the first stage of TSMS-HRO. Figure 15 and Figure 779

16 show that algorithms using the mRMR method in the first stage (including TSME- 780

HRO, TS-GA, and TS-GWO etc.) consistently achieve excellent solutions in the early 781

stages of iteration. On datasets that achieve 100% accuracy, the average accuracy of 782

the initial population is above 95%. Furthermore, the convergence to 100% accuracy is 783

closely related to the search performed by the improved HRO algorithm. During the 784

iteration process, the algorithm further reduces data dimensionality while maintaining 785

accuracy, thereby improving accuracy. Subsequent ablation experiments further validate 786
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Figure 17: Bar chart comparing the performance of different algorithms on the FS
problem. The algorithm with the highest accuracy is marked with a dark blue check
mark; the one with the lowest variance is marked with a circle and error bars; and the
asterisk indicates the algorithm with the shortest running time.
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Figure 18: Continued.
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this observation by comparing MS-HRO and TSMS-HRO. 787

In terms of the number of selected features, TSMS-HRO has a smaller number of 788

selected features than other traditional algorithms while ensuring leading accuracy, and 789

there is no extreme number of selected features. Regarding the maximum number of 790

features, TSMS-HRO limits the initial search space to 300 features filtered by mRMR. 791

This algorithm directly removes many obvious redundant features, effectively reducing 792

the data dimensionality. Furthermore, there is no case of too few features. If TSMS-HRO 793

selects too few features, or even excludes core features, the final accuracy will certainly 794

not be as good as it is now (for example, on the D10, HFSIA selected only 4.03 features, 795

resulting in the lowest accuracy). The specific performance of TSMS-HRO in terms of 796

feature count is as follows: TSMS-HRO selects 47.67 and 26.50 features on D3 and D11, 797

respectively. Despite selecting more features than MGWOR (13.03 features on D3) and 798

HFSIA (5.17 features on D11), its accuracy improves by 1.20 and 8.52 percentage points, 799

respectively, compared to MGWOR and HFSIA. On the other hand, TS-GA selected 800

102.33 and 121.77 features on D3 and D11, respectively, far exceeding the number of fea- 801

tures selected by TSMS-HRO. However, its accuracy dropped by 1.46 and 8.97 percentage 802

points, respectively, as some redundant features interfered with classifier performance. 803

This demonstrates that TSMS-HRO effectively balances the number of selected features, 804

retaining important features while removing redundant ones to achieve higher accuracy. 805

In terms of algorithm running time, it still maintains a low running time on high- 806

dimensional datasets and has a high overall efficiency. Compared with the MS-HRO 807

method without filters, its running time has been greatly reduced, and the rate of running 808

time reduction is accelerating as the dimension of the dataset increases. As shown in 809

Figure 19, on the D1 dataset with the lowest dimension, TSMS-HRO reduces the running 810

time by more than 15 seconds compared to MS-HRO, with a reduction ratio of nearly 811

75%. As the dimension increases, the reduction ratio continues to increase. On the D12 812

dataset with the highest dimension, the running time is reduced by 98.95%, which once 813

again proves the effectiveness of the first stage improvements. 814

In order to comprehensively evaluate the performance difference between the proposed 815

algorithm, TSMS-HRO, and other comparison algorithms, this paper uses the Friedman 816

test and the Wilcoxon signed rank test with the Holm multiple comparison correction 817

method for statistical analysis. Table 9 shows the average ranking and final ranking of 818

each algorithm on all experimental tasks. The results show that TSMS-HRO ranks first 819

with an average ranking of 2.21 and the narrowest 95% confidence interval [94.21, 99.49], 820

significantly better than other algorithms. The Friedman test statistic is 73.37, and the 821

corresponding p-value is 1.91×10−10, which is significantly less than 0.05, indicating that 822

there are significant differences in overall performance between different algorithms. 823

Further, to verify the pairwise significant differences between TSMS-HRO and other 824

algorithms, this paper conducts paired comparisons based on the Wilcoxon signed rank 825

test and uses the Holm method to correct for multiple comparisons. The results are shown 826
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Figure 19: Comparison of running time between the algorithm with and without the
filter (MS-HRO vs. TSMS-HRO). TSMS-HRO greatly improves the running efficiency of
the algorithm.

Table 9: Comparison of Algorithms: Friedman Rankings and 95% Confidence Intervals

Algorithm Name Average Rank Final Rank 95% Confidence Intervals
TSMS-HRO 2.21 1 [94.21, 99.49]
TS-GA 3.83 2 [91.33, 99.61]
TS-RIME 5.33 3 [90.20, 99.06]
TS-HBA 5.79 4 [90.27, 99.08]
TS-HHO 6.00 5 [90.34, 98.39]
HFSIA 6.96 6 [84.83, 98.04]
TS-GWO 7.54 7 [89.71, 98.74]
MGWOR 7.67 8 [87.41, 97.79]
TS-JAYA 7.83 9 [88.70, 98.50]
TS-WOA 9.46 10 [87.87, 97.22]
BIGWO 9.50 11 [85.58, 97.33]
MBAO 10.17 12 [87.07, 96.05]
TS-SSA 10.21 13 [86.69, 97.28]
MS-HRO 12.50 14 [83.94, 93.67]

Note: The Friedman test yields a test statistic of 73.37 with a corresponding p-value
of 1.91 × 10−10, indicating statistically significant differences among the algorithms at
the 0.05 level.
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in Table 10. The comparison results show that TSMS-HRO has a significant advantage 827

over all other 13 algorithms (the corrected p-values are all less than 0.05), and all the 828

null hypotheses are rejected. Especially in comparison with poorly performing algorithms 829

such as MS-HRO and MBAO, the p-value is as low as 0.0063, indicating that TSMS-HRO 830

has a significant statistical advantage over these algorithms in multiple tasks. 831

Table 10: Wilcoxon Test Results with Holm Correction (TSMS-HRO vs. other
algorithms)

Comparison R+ R- Stat p-value Corrected p Hypothesis
MS-HRO 78.0 0.0 0.0 0.0005 0.0063 Rejected
TS-GA 65.0 13.0 13.0 0.0411 0.0411 Rejected
TS-GWO 76.5 1.5 1.5 0.0033 0.0325 Rejected
TS-HBA 75.0 3.0 3.0 0.0047 0.0325 Rejected
TS-HHO 76.5 1.5 1.5 0.0033 0.0325 Rejected
TS-JAYA 76.5 1.5 1.5 0.0033 0.0325 Rejected
TS-RIME 75.0 3.0 3.0 0.0047 0.0325 Rejected
TS-SSA 76.5 1.5 1.5 0.0033 0.0325 Rejected
TS-WOA 76.5 1.5 1.5 0.0033 0.0325 Rejected
MBAO 78.0 0.0 0.0 0.0005 0.0063 Rejected
HFSIA 75.0 3.0 3.0 0.0047 0.0325 Rejected
MGWOR 77.0 1.0 1.0 0.0010 0.0107 Rejected
BIGWO 75.5 2.5 2.5 0.0042 0.0325 Rejected

In summary, the statistical test results fully verify that TSMS-HRO has the best com- 832

prehensive performance under the selected test sets and tasks, and its improved strategy 833

has shown significant advantages in improving search efficiency and solution quality. 834

4.3.5 The results of ablation experiments 835

It is clear from the heatmap (Figure 20) that the improved algorithm generally has higher 836

accuracy than the baseline HRO on all datasets in the high-dimensional FS task, and 837

the average number of selected features is generally less than the baseline HRO. Notably, 838

TSMS-HRO presents the darkest color on all datasets, with an accuracy of 100% on D4, 839

D7, D5, and D12, demonstrating its strong generalisation ability and stability. Other 840

variants, such as TS-HRO and its extensions (DE, INIT, SC, TD), also show similarly 841

excellent performance, highlighting the effectiveness of the proposed two-stage feature 842

selection method. For example, after adding the two-stage mechanism, the accuracy on 843

multiple datasets reached 100%. 844

In contrast, HRO has a relatively low accuracy while selecting a very large number of 845

features. In particular, on some datasets, features with more than 1000 dimensions were 846

selected, but at the same time, their accuracy was not high enough: D8: (num: 2102.3, 847

acc: 65.53%), D10: (num: 1347.7, acc: 69.76%), D11: (num: 1432.4, acc: 66.16%). These 848

results indicate that HRO selects numerous redundant or irrelevant features, leading to re- 849

duced classification accuracy and limited adaptability to heterogeneous high-dimensional 850
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Figure 20: Heat map showing the average accuracy and feature count. Darker shades on
the left indicate higher accuracy, while darker shades on the right indicate more selected
features.

data. In addition, its performance on high-dimensional feature selection tasks varies 851

greatly, up to 96.56% on the D2 dataset, but only 64.65% and 65.53% on D6 and D8, 852

respectively, indicating that it is highly sensitive to feature redundancy or noise. By 853

adopting a two-stage strategy, TS-HRO significantly alleviates these problems, achieving 854

91.47% accuracy on D6, an improvement of nearly 27% over HRO, while selecting only 855

69.5 features on average. Similar trends are observed across multiple datasets, validating 856

the effectiveness of the mRMR feature filter. Multi-strategy enhancement (DE, INIT, SC, 857

TD) further improves performance, albeit to varying degrees. For example, TS-HRO-DE 858

performs particularly well on D6 (94.27%), outperforming other sub-strategies. TS-HRO- 859

SC performs slightly better than INIT and TD on D3 and D10. While TS-HRO-TD 860

performs slightly worse than INIT on D11 (76.57% vs. 78.39%), the difference is not 861

significant. 862

Despite TSMS-HRO achieving or approaching 100% accuracy on most datasets, it 863

performs slightly lower on D6 (92.30%) and D11 (85.93%). This may suggest that complex 864

nonlinear correlations among features have not been fully exploited, and that there is 865

still room for improvement in the joint optimisation of strategies under high-dimensional 866

sparse conditions. 867

As shown in Table 11, HRO achieves an average accuracy of 80.02% with 794.30 868

selected features, serving as the baseline for comparison. By introducing the mRMR fea- 869

ture filter and adopting a two-stage selection mechanism, TS-HRO significantly improves 870

performance, reaching 96.17% accuracy while reducing the average number of selected 871

features to only 38.20. This highlights the strong advantage of the two-stage framework 872

in simultaneously enhancing predictive accuracy and promoting feature dimension reduc- 873
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tion. When only multi-strategy optimisation (DE, INIT, SC, TD) is applied, MS-HRO 874

improves accuracy to 88.81% with an average of 143.85 features. Although its accuracy 875

is lower than that of TS-HRO, the considerable reduction in feature count (81.89% fewer 876

than HRO) still confirms the effectiveness of the individual strategies in driving feature 877

selection. This trade-off also suggests that excessive feature reduction may risk elimin- 878

ating informative attributes and thereby lower accuracy, while insufficient reduction may 879

retain redundant features and compromise classification performance. 880

Importantly, the proposed TSMS-HRO, which integrates both the two-stage mechan- 881

ism and multi-strategy optimisation, achieves the best overall performance with 96.83% 882

accuracy and 53.05 selected features. This result demonstrates that the two components 883

are highly complementary: the two-stage mechanism ensures effective feature filtering, 884

while the multiple strategies enhance search robustness, together leading to superior gen- 885

eralisation and stability. 886

Further examination of the four TS-HRO variants, each augmented with a single 887

strategy, reveals that all strategies consistently contribute to performance gains, though 888

with different emphases. DE and INIT tend to yield relatively higher accuracy, SC retains 889

more features and thus favours stability, while TD provides a balanced trade-off between 890

accuracy and feature reduction. Although none of these variants surpasses the integ- 891

rated TSMS-HRO, their complementary strengths explain why the combined framework 892

achieves the most robust and well-rounded results

Table 11: Comparison of average accuracy and feature selection results on 12 datasets.

Algorithm Avg. Acc. Lift vs. HRO Avg. Features Red. Ratio vs. HRO
HRO 80.02% − 794.30 −
TS-HRO 96.17% +16.15% 38.20 −95.19%
MS-HRO 88.81% +8.83% 143.85 −81.89%
TSMS-HRO 96.83% +16.81% 53.05 −93.32%
TS-HRO-DE 95.71% +15.69% 61.70 −92.23%
TS-HRO-INIT 95.51% +15.49% 66.21 −91.66%
TS-HRO-SC 95.13% +15.11% 121.90 −84.65%
TS-HRO-TD 95.00% +14.98% 78.19 −90.16%

893

5. Conclusion and Future Work 894

In this paper, we propose a two-stage high-dimensional FS algorithm based on a modified 895

HRO algorithm to enhance the classification performance of feature subsets while reducing 896

the computational time required to search for the optimal subset. The study found that 897

the filtering method in the first stage eliminated some redundant features, significantly re- 898

ducing the search space and greatly shortening the algorithm’s runtime. Furthermore, the 899

introduction of four mechanisms has significantly improved the original HRO algorithm. 900

The good point set and elite opposition-based learning strategy effectively improve the 901
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quality and diversity of the initial population. The adaptive differential operator strategy 902

enhances the utilisation rate of maintainer line individuals. The t-distribution mutation 903

strategy balances global and local search capabilities. The improved adaptive crossover 904

strategy increases the flexibility and diversity of the selfing process in restorer line in- 905

dividuals. The proposed algorithm was compared with recent two-stage and improved 906

metaheuristic-based FS methods, such as MBAO, MGWOR, HFSIA, BIGWO, and im- 907

proved two-stage methods, such as TS-GA, TS-GWO, TS-HBA, TS-HHO, TS-JAYA, 908

TS-RIME, TS-SSA, and TS-WOA. The results show that TSMS-HRO achieves better 909

initial solutions in the early iterations and converges to more promising values in the later 910

iterations in the field of high-dimensional FS. 911

Despite its advantages, TSMS-HRO still presents several limitations. First, while it 912

performs well on benchmark functions and 12 high-dimensional biomedical datasets, its 913

applicability to non-biomedical domains such as text or image data may face new chal- 914

lenges, including data noise and class imbalance. Second, although the mRMR method 915

is effective, its assumption of linear relationships based on mutual information limits its 916

ability to capture high-order nonlinear interactions—such as gene co-regulation—in biolo- 917

gical data, potentially leading to the omission of critical feature combinations. Lastly, the 918

integration of multiple strategies inevitably increases algorithmic complexity compared to 919

simpler methods. 920

In future work, more effective optimisation strategies can be explored to ensure the 921

algorithm’s generalisation ability across problems of varying scale and dimension. Addi- 922

tionally, investigating different transfer functions, filters, and advanced classifiers would 923

be highly beneficial, as these components have the potential to further enhance the al- 924

gorithm’s performance in various optimisation scenarios. In particular, integrating deep 925

learning–based classifiers with the feature subsets generated by TSMS-HRO could improve 926

its adaptability to complex biomedical data. Moreover, further optimising the operators 927

of HRO—such as developing adaptive hybridisation or crossover mechanisms—may sig- 928

nificantly boost both convergence efficiency and solution quality. 929
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