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Abstract 15 %

=)

High-dimensional feature selection remains“a challenging and active topic in 16 §

machine learning. Swarm intelligence and,€volutionary computation have demon- 17 g

strated promising results for high-dimensional féature selection, such as ant colony 18 %

optimisation algorithm, particle swarm optimisation algorithm, and hybrid rice op- 19 %

timisation algorithm, etc. Howeyer, these algorithms still face two major challenges: 20 §

The first is the presence of exeessive redundant features in the selected subset, which 21 E

degrades classification performance; the second is the long runtime of existing meth- 22 %

ods, which hampers efficient search and timely solution. To address these chal- 23 é

lenges, the paper proposes a novel two-stage algorithm, termed the two-stage multi- 24 g

strategy hybrid(rice optimisation algorithm (TSMS-HRO), specifically designed for 25 §

high-dimensional feature selection. In the first stage, the minimum redundancy 26 o

maximum relévance method is used to compute prior information to enhance the 27 §
guidancerof'the feature subset search in the second stage. In the second stage, the 28
hybrid rice optimisation algorithm is enhanced through four mechanisms: enhan- 29
cing the quality and diversity of the initial population with good point set and elite 30
opposition-based learning strategies; increasing the utilisation rate of maintainer 31
line individuals with multiple adaptive differential operator selection strategies; im- 32
proving the global and local search capabilities of the hybridisation process with a 33
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Minimum redundancy maximum relevance, Good point set, Elite opposition-based learn-

t-distribution mutation perturbation strategy; and enhancing the flexibility and di-
versity of the selfing process of restorer line individuals by introducing an improved
adaptive crossover strategy. To evaluate the performance of the proposed method,
extensive numerical experiments were conducted using benchmark functions from
CEC2022. Results are compared with other well-known algorithms, such as the
whale optimisation algorithm and grey wolf optimiser. Furthermore, TSMS-HRO is
applied to 12 high-dimensional biomedical datasets. The experimental results show
that TSMS-HRO outperforms other two-stage and metaheuristic algorithms based
feature selection methods in terms of accuracy and convergence speed. For example,
on the CLL_SUB_ 111 dataset with 11,340 dimensions, TSMS-HRO achieved an
average accuracy of 95.25% with a 98.86% reduction in features, clearly surpass-
ing other methods in both effectiveness and stability. These findings confirm that
TSMS-HRO is an efficient and reliable algorithm not only for the optimisation of
functions with different characteristics but also for real-world optimisation prob-

lems.

Keywords: High-dimensional feature selection, Hybrid Rice Optimisation algorithm,

ing.

Nomenclature

X The individuals of maintainer line

X, The individuals of sterile line

X, The individuals of restorer, line

S The number or ratio of feature selection

e v The maximum and minimum values of the d-th dimension
F The smoothing factor

Simazs Smin The boundary adjustment parameters

Omazs Tmin The maximum=and minimum mutation scales

9r The growth rate to control o

Cr The crossever rate in the differential evolution stage

SCrazs SCrin  The values of the selfing upper and lower limit

SC

(67

The maximum number of selfing in HRO
The step-size control factor
The weight of error rate

The weight of the feature selection rate
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1. Introduction

In today’s era of information explosion, massive amounts of data are being generated
(Badshah et al., 2024), characterised by large volumes and high dimensionality. While
those features reflect the richness of data, they have also included some redundant features
and noise (Barbieri et al., 2024). In a higher-dimensional data environment, redundant
features and noise have significantly impacted the effectiveness of intelligent systems,
leading to biased analysis results (G. Li et al., 2024). For example, in gene expression data
analysis, these issues significantly hinder the development of intelligent systems (Liang
et al., 2024). Among tens of thousands of genes, only a small subset of the gene expression
levels has been closely associated with the disease diagnosis, resulting in the data sparsity
(Y.-C. Wang et al., 2024). In the context of high-dimensional data, feature engineering
is key to improving the generalisation ability of models, as it enables models to better
understand and interpret complex data (Lameesa et al., 2024). Consequently, effective
feature reduction enhances both classification accuracy and computational efficiency.
Dimensionality reduction techniques are used to reduce the number of datafeatures by
retaining important ones while eliminating redundant features. This(not ‘only conserves
storage but also aids in uncovering meaningful information and mitigates the potential
risk of model overfitting. Dimensionality reduction techniques can be broadly classified
into two categories: Feature Extraction (Kapoor et al., 2024) and’Feature Selection (FS)
(Moslemi, 2023; X. Song, Zhang et al., 2024). Feature \extraction methods, such as
Principal Components Analysis (PCA) (Zheng et al,, 2024), Linear Discriminant Analysis
(LDA) (J. Zhou et al., 2024), and Independent Cemponent Analysis (ICA) (Buchaiah &
Shakya, 2022), reduce data dimensionality by ‘projecting the original feature space onto a
new lower-dimensional feature space throughua specified mapping process. These methods
have been successfully applied in various, fields, including disease classification (Yu et al.,

2022) and hyperspectral image classification (C. Wang et al., 2024).

Feature subset

selection
strategy

S Feature subset Valldatmg
S Met stop
Orginal » Feature subset evaluation subsets of
condmon
feature set crlterla features

Figure 13 Basic process of feature selection.

F'S has been one of the key steps in pattern recognition and classification (Nematzadeh
et al., 2024). Its goal has been to eliminate some redundant and irrelevant features from
the data, enabling the extraction of valuable information from the higher-dimensional

data. The basic flowchart of FS is shown in Figure 1. The application of FS in high-
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dimensional data environments is crucial. First, it effectively addresses the curse of di-
mensionality, where distances between data points become smaller in high-dimensional
spaces, making it difficult for classifiers to distinguish different samples (Anuragi et al.,
2024). Second, minimising the feature space can save storage space, facilitate information
discovery, and reduce the likelihood of model overfitting (Telikani et al., 2021). Moreover,
a key advantage of FS lies in its direct selection of optimal feature subsets from the ori-
ginal feature space. Traditional F'S methods rely solely on the information inherent to the
samples themselves, without directly depending on learning algorithms. These methods
are based on various evaluation metrics, including statistical (BinSaeedan & Alramlawi,
2021), information-theoretic (Gao et al., 2023; He et al., 2024), similarity-based (Ouadfel
& Abd Elaziz, 2022; B. Zhang et al., 2022), and sparsity-based (R. Zhou et al., 2023)
approaches. In contrast, another category of FS methods evaluates the performanee
of feature subsets through learning algorithms, assisting in the selection of the optimal
feature subset. Currently, mainstream approaches in this category utilise metaheuristic
algorithms with strong search capabilities to explore the entire feature space. These al-
gorithms validate subsets using a predefined learning algorithm until the optimal“solution
is found. Common methods include the Genetic Algorithm (GA) (Fang et al.;2024), Grey
Wolf Optimiser (GWO) (Y. Wang et al., 2024), Whale Optimisation, Algorithm (WOA)
(Miao et al., 2024), Harris Hawks Optimisation (HHO) (Peng etval., 2023; Zhao et al.,
2024), Salp Swarm Algorithm (SSA) (Qaraad et al., 2022); Equilibrium Optimiser (EO)
(Ahmed et al., 2021) and Particle Swarm Optimisation (PSO).(Xue & Zhang, 2024). FS
avoids the potential loss of semantic information that may occur during the transform-
ation process in feature extraction techniques, making it a more extensively researched
field (Rajammal et al., 2022).

With the rapid increase in dataset dimensionality, traditional FS techniques face
challenges such as high computationalscosts and degraded model performance. To ad-
dress these issues, researchers have proposed FS methods specifically designed for high-
dimensional data scenarios (Osama‘et al., 2023). Manikandan & Abirami (2021) proposed
a high-dimensional F'S method-based on mutual information (MI) and Monte Carlo tech-
niques. It employs an appreximate Markov blanket, MI, and a novel strategy based on
Monte Carlo Tree Search (MCTS) technology. In the first stage, primary features are se-
lected from high-dimensional data, and in the second stage, redundant features identified
in the first stage are eliminated. This approach achieves dimensionality reduction and
effectively enhances feature interaction. J. Zhang et al. (2021) proposed FS-GBDT, a hy-
brid ESframework combining Fisher score and Gradient Boosting Decision Tree (GBDT),
to identity robust cancer-related gene subsets from high-dimensional expression data. By
jointly analysing 11 cancer types, FS-GBDT effectively discovered overlapping risk gene
modules. Zuo et al. (2025) proposed an unsupervised FS method (MRMGRFS) that com-
bines spectral clustering-based relevance evaluation with global redundancy minimisation

using Jensen—Shannon divergence, effectively selecting informative and non-redundant
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features from high-dimensional data. Chamlal et al. (2024) proposed a supervised FS
method ISClique, which first uses a Kendall’s tau-based filter to evaluate feature interac-
tions, and then applies a maximal clique strategy to construct optimal subsets, achieving
superior performance in high-dimensional regression tasks.

Although the aforementioned F'S methods have made adaptive improvements for high-
dimensional F'S tasks, they still face challenges such as low search efficiency and subop-
timal classification accuracy of the selected feature subsets. Moreover, many of these
methods require prior knowledge to guide the search process of FS. This limitation not
only restricts their general applicability but also necessitates expert knowledge to assist in
the search process, making their usage less straightforward. Metaheuristic algorithms are
a class of strategies designed to solve optimisation problems. They generally do not rely
on specific assumptions about data distribution or require prior knowledge to guide the
search process. Instead, they utilise general search mechanisms, combining randomness
and heuristic information to iteratively seek near-optimal solutions. This makes them
particularly suitable for tackling large-scale, nonlinear, high-dimensional prgblems with
challenging gradient-based solutions. Metaheuristic algorithms have shown_ great poten-
tial in handling high-dimensional FS tasks (Nssibi et al., 2023; X..Song, et"al., 2022),
and their applications in this domain have significantly increased in‘recent years. When
applying metaheuristic algorithms to high-dimensional FS problems, the initial feature
subsets are typically generated randomly. The algorithms_ rely onrtheir search strategies
to explore the feature space for the optimal feature combinations. Consequently, the
search efficiency and update mechanisms for candidate solutions directly influence the
quality of the selected feature subsets. This has,become a primary focus for research-
ers in the field. Currently, various high-performance metaheuristic methods have been
successfully applied to different FS tasks, Hussain et al. (2021) proposed a hybrid optim-
isation method called Sine-Cosine Harris Hawk Optimisation (SCHHO), which combines
the Sine Cosine Algorithm (SCA).and HHO. This method aims to enhance the perform-
ance of numerical optimisationandFS. To effectively select the optimal gene combination
from microarray data, Pashaei=(2022) utilised Minimum Redundancy Maximum Relev-
ance (mRMR) in the initial stage to filter the top m promising genes and reduce the
feature space. Subsequentlyythe Aquila Optimiser (AO) with a mutation mechanism and
a Time-Varying Mirrored S-shaped (TVMS) transfer function was applied to search for
the optimal featuressubset. Nssibi et al. (2024) proposed a hybrid binary FS method called
iBABC-CGO, combining the island model of the Binary Artificial Bee Colony (BABC)
with Chaos\Game Optimisation (CGO). To enhance the search process in binary space,
two transfer functions were used. The method integrates SVM for evaluating gene subsets
and, was tested on 15 biological datasets. Experimental results showed that iBABC-CGO
achieved competitive classification accuracy, efficient gene selection, and fast convergence,
with meaningful biological interpretations of selected genes. Jiang et al. (2024) proposed
the Dynamic Crow Search Algorithm (DCSA) to enhance FS for high-dimensional bio-
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medical data classification. To improve exploration and exploitation balance, a dynamic
bi-level awareness probability was introduced. Additionally, Lévy flight with an adaptive
step length replaced the original random search mechanism, and a dynamic flight length
strategy was employed to accelerate convergence. Experimental results on seven high-
dimensional biomedical datasets demonstrated that DCSA achieved superior classification
accuracy and selected the smallest feature subsets, with 100% accuracy on SRBCT data.

To further enhance the performance and efficiency of F'S methods based on metaheur-
istic algorithms in high-dimensional F'S problems, researchers have combined filter-based
F'S methods with metaheuristic algorithms to form a multi-stage F'S approach (X. Song,
Ma et al., 2024). These approaches aim to leverage the high search efficiency of filter meth-
ods and the strong search capability of metaheuristic algorithms. For example, X. Song,
Ma et al. (2024) introduced a three-stage Streaming Feature Selection method based ofi
Dynamic feature clustering and Particle Swarm Optimisation (SFS-DPSO). The method
combines online relevance analysis to quickly eliminate irrelevant features, dynamic clus-
tering to handle redundancy, and an integer PSO to search for the optimal gubset.” Ex-
periments on 12 benchmark datasets and a real-world case demonstrated that=SFS-DPSO
achieves superior classification performance within reasonable time .compared to exist-
ing algorithms. Got et al. (2021) developed a novel multi-objective hybrid filter-wrapper
method to address the F'S problem. The method leverages the WOA to explore promising
regions in the feature space. Additionally, two objective functions were considered during
the optimisation process: the first objective uses MI as a filter fitness function to assess
the relevance and redundancy among features, aiming to identify a non-dominated subset
of features with minimal redundancy and maximum relevance to the target class. The
second objective employs a learning classifierias a, wrapper fitness function to evaluate
classification accuracy. Experimental results, demonstrated that the proposed algorithm
could achieve multiple feature subsetswwith fewer features while maintaining excellent
classification accuracy. X.-F. Songhet al. (2021) proposed a novel three-stage hybrid
FS algorithm (Hybrid FS algorithim based on correlation-guided Clustering and Particle
Swarm Optimisation, HFS<€=R):to address the challenge of high computational costs
in high-dimensional data. In the first and second stages, a filter-based FS method and
a correlation-guided clustering approach were designed to reduce the search space for
the third stage. Subsequently, in the third stage, an evolutionary algorithm with global
search capabilities™was employed to identify the optimal feature subset. To enhance the
performance of.all three stages, the authors developed a feature elimination method based
on symmetrical uncertainty, a fast correlation-guided feature clustering strategy, and an
improved, integer PSO algorithm. Experimental results on 18 datasets demonstrated that
thig algorithm could obtain a high-quality feature subset with minimal computational
cost. Thirumoorthy et al. (2023) employed a two-stage FS strategy combining filter and
wrapper-based methods. In the first stage, four filtering techniques (MI, ReliefF, In-

formation Gain (IG), and F-Score) were used to select a reduced feature subset. In the
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second stage, a wrapper-based hybrid Coati Optimisation Algorithm (COA) was applied.
This hybrid strategy incorporated opposition-based learning, adaptive population size ad-
justment, elite learning, and differential evolution operations to enhance search efficiency
and accuracy. The proposed method was evaluated on three benchmark datasets. The
comprehensive results demonstrated that the method outperformed other compared ap-
proaches, significantly improving breast cancer classification success rates while reducing
the F'S ratio. Moustafa et al. (2024) proposed an innovative hybrid F'S approach to derive
an optimal feature subset for high-precision crop mapping. In the first stage, MI and
ReliefF filtering methods were employed to rank the spectral-temporal remote sensing
features in the dataset. The most relevant features identified by these filtering methods
were then combined into a unified subset. Subsequently, the GWO was applied to refine
the initial feature set. Finally, a Random Forest classifier was used with the optimised
feature subset to predict crop types accurately. Performance evaluation conducted insthe
Behiera province of Egypt demonstrated that the proposed method outperformedexisting
crop mapping approaches, achieving an accuracy of 82%. Agrawal et al. (2022) proposed
a Normalised MI-based Equilibrium Optimiser (NMIEO) to enhance the éffieicncy of F'S
in high-dimensional datasets. This method integrates a novel local search strategy based
on Normalised Mutual Information (NMI) to improve the algorithm’s lecal exploitation
capabilities. Additionally, chaotic mapping is employed to enhance the diversity of the
initial population. Before searching for the optimal feature subset,; NMIEO reduces the
feature space using a filtering method. Four common_filtering methods were compared
experimentally, and the most suitable one was selected ‘as the first-stage filter. Results
demonstrated that NMIEO outperformed eight well-known metaheuristic algorithms from
recent literature in handling high-dimensional\dataséts. Askr et al. (2024) proposed the
Binary Enhanced Golden Jackal Optimisation (BEGJO) algorithm to improve FS for
high-dimensional data. To overcome.the local optima, enhancement strategies were in-
troduced, and Copula Entropy (CE)was integrated for dimensionality reduction while
maintaining classification accuracy. The sigmoid transfer function transformed BEGJO
into a binary form suited fer-ES:tasks. Experimental results showed that BEGJO out-
performed existing algorithms in classification accuracy and FS efficiency, with statistical
validation confirming its effectiveness.

In addition to the above-mentioned well-known algorithms, a novel population-based
metaheuristic algorithm named Hybrid Rice Optimisation Algorithm (HRO) is proposed
(Z. Ye et al., 2016), which is inspired by the hybrid breeding process of three-line hybrid
rice. Aceording to heterosis theory, first-generation hybrid offspring often exhibit superior
traits in‘growth, reproduction, and behavioural characteristics compared to their parents.
Aswa result, HRO shows strong search capability, high efficiency, and adaptability. Because
of*these advantages, coupled with its high flexibility and ease of implementation, HRO
has been applied by researchers to problems such as disease diagnosis (Mei et al., 2025;
A. 7. Ye et al., 2023) and intrusion detection (Z. Ye et al., 2024). Compared to tradi-
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tional metaheuristic algorithms, HRO stands out by emphasizing the utilisation of hybrid
breeding mechanisms and heterosis to enhance the population’s evolution and iteration.
Therefore, the paper intends to take advantage of the HRO algorithm and combine it with
the aforementioned two-stage method, which might exhibit even better performance.
The newly proposed FS technique combines the mRMR filtering method with the
HRO enhanced by multiple strategies, specifically targeting the classification of ultra-
high-dimensional biomedical gene expression data. Experimental results validate the ef-
fectiveness of the approach, achieving superior performance compared to other related

methods. The main contributions of the study can be summarised as follows:

1. A Two-Stage Multi-Strategy Hybrid Rice Optimisation Algorithm (TSMS-HRO),
is proposed based on the improved HRO algorithm. Unlike existing two-stage ap-
proaches that often rely on simple filter—wrapper combinations, our method estab-
lishes a tighter coupling between filtering and metaheuristic search, improving,both

search efficiency and feature subset quality.

243
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258
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255

256

2. Multi-strategy enhancements are introduced into HRO. Compared with singlé-strategys?

improvements in existing HRO variants, these four mechanisms work collaboratively

to achieve a better balance between global exploration and local exploitation.

3. The method’s effectiveness is demonstrated by employing an\SVM classifier on 12
biomedical datasets. In terms of classification accuraey, feature reduction rate, and
convergence speed, our method consistently outperforms state-of-the-art two-stage

feature selection algorithms and advanced metaheuristic-based algorithms.

4. A series of auxiliary experiments is conducted to’demonstrate the effectiveness of the
proposed method, such as ablation€xperiments. By isolating different strategies,
we verify that the joint design of the two-stage framework and multi-strategy en-

hancements is essential for achieving superior stability and robustness.

The remainder of this study‘is organised as follows: Section 2 introduces the basic HRO
algorithm and the mRMR, filtéring method. Section 3 details the methodology proposed
in this study. Section 49presents the experimental setup and discusses the results. Finally,

the conclusions of this work and future research are provided in Section 5.

2. Preliminaries

Before detailing the TSMS-HRO algorithm, we first review the basic components of the

HROQ algorithm, which serves as the core metaheuristic in this work.

2.1 The hybrid rice optimisation algorithm

HRO is a novel population-based metaheuristic algorithm, proposed by Z. Ye et al. (2016),

that boasts strong search capabilities and high computational efficiency. The algorithm’s
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main process includes four stages: Three-line Division, Hybridisation, Selfing, and Re-

newal. The core idea is shown in Figure 2.

Maintainer line

Hybridizing

N Y eSS, -

{ experience
Restorer line
Selfing

Figure 2: Basic HRO algorithm.

(
|
|
!
i
!
|
|
|
|
!

(i) Three-line Division: In the breeding process, the initial populations X = { Xy, Xo, - -
X, } are sorted in each iteration according to the fitness values, where n demonstrates
the size of populations. The maintainer line’represénts a subgroup of the population
with the best fitness values and is denoted as,X,, = {Xi, Xs,---,X,}, where p =
|n/3]. A group of seeds with poorer fitnessivalues, which need to hybridise with the
maintainer line to improve the quality of individuals, forms the sterile line, denoted as
Xs ={Xopt1, Xopyo, - -+, Xy }. The ¥emaining subgroup is the restorer line, represented as
X, ={X,, Xps1, -+, Xop}, which atfempts to update its position toward the maintainer
line through selfing.

(ii) Hybridisation: The hybridisation process involves crossing the maintainer line and
the sterile line, which exhibit the greatest difference in fitness values. This process is
designed to enhance the genetic quality of sterile line individuals via heterosis-inspired
recombination with superior hybrid individuals. The procedure for generating new indi-
vidualsdhrough hybridisation is described in Equation 1.
Xyt +1) =71 XE() + (1 — 1) - X (1),

n

m6{172a"' 7p}7273€{2p+1»2p+27 ,TL}.

(1)

d
where X7 i

) denotes the d-th gene of i-th hybrid in the sterile line during the (¢ +1)-th
iteration. X%(¢t) and X¢(t) denote the d-th gene of randomly selected individuals from
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the sterile line and maintainer line populations, respectively. r; is a random number in
the range [0, 1].

(iii) Selfing: The selfing stage is a critical step in optimising the individuals within the
restorer line. During this, the seed individuals in the restorer line exchange genetic in-
formation through crossover and recombination, enabling subpopulations to evolve toward
the optimal solution. Equation 2 models the selfing process.

Xy (1) = ra( XL, (1) — X5 () + X7y (1),

new T

(2)

where Xgew(i) denotes the new gene generated through selfing between the i-th and j-th
individuals (i # j) of the restorer line. X2 ,(¢) denotes the d-th gene of the best individual
found so far, while X ;1( i) (t) denotes the d-th gene of the i-th individual randomly selected
from the restorer line. ry is a random number in the range [0, 1].

After generating new individuals through hybridisation and selfing, they arve compared
with the original candidate individuals. If the fitness value of the new individual'isssuperior

to that of the original candidate, replacement is performed according to Equation 3.

Xnew(i) (t + 1)7 iff(Xnew(i) (t)) > f(Xz(t))a

X;(), otherwise.

(3)

(iv) Renewal: In the HRO algorithm, the Self Crossing (SC) count is used to measure
the cumulative number of iterations in which an”individual from the restorer line has
not been updated. When the self-crossing courit forsa‘restorer line individual reaches the
preset maximum value (SCmazx), it indicates that'the individual has not been effectively
updated over multiple consecutive iterations. At this point, a reset operation is performed,
as described by the following Equation 4.

Xg(i) (t+ 1= 7"3(‘/72” - Vncim) + er(z‘) (t)+ V,Zm- (4)

where Xﬁl(i) (t) denotes the d-th gene of the i-th restorer line individual that has not been
updated. V¢ and V¢

max min

denote the maximum and minimum values of the d-th dimension.

r3 is a random number/Selected from the range [0, 1].

2.2 Minimum redundancy - maximum relevance (mRMR)

The mRMR algorithm aims to select a subset of features that are highly relevant to the
targetvariable while maintaining minimal redundancy among the features. This approach
is=based on an intuitive concept: a good feature set should contain features that are
closely related to the target variable while ensuring independence among the features to
avoid redundant information. This balance is achieved by jointly considering the mutual

information between each feature and the target variable, as well as the average mutual
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information among the features. Formally, let X represent the feature set and Y represent

the target variable. The mRMR selection criterion is shown in Equation 5.

max (1 S I(z;Y) — 1 > I(mi;xj)> . (5)
151 i< 51?4 mes
where S denotes the set of selected features (the default value is 300, confirmed in sub-
sequent experiments). I(z;;Y) denotes the mutual information between feature x; and
the target variable Y, which measures their relevance. On the other hand, I(z;;x;) de-
notes the mutual information between features, which measures their redundancy. The
mRMR method aims to maximise the difference between these two quantities, thereby
ensuring that the selected feature set contains features that are highly relevant to the

target variable while being mutually independent within the set.

3. The Proposed Approach

In this paper, a two-stage improved FS approach is proposed. A filter-based method
is employed in the first stage to preliminarily filter high-dimensional features, with the
features subset selected by the filter serving as the initial searéh=space. In the second
stage, the multi-strategy integrated HRO algorithm searches within this refined feature

space and outputs the final feature subset.

3.1 mRMR-based filter

In the first stage of this method, the mRMR-based technique is used to select a feature
set that is both highly relevant to the target variable and minimally redundant among
features, as defined in Equation 5. The'seleeted features subset serves as the initial search
space for the subsequent metaheuristic algorithm.

The pseudo code is in Algorithin 1: After we input the feature subset size |S| and the
dataset, for each feature z;inthe dataset, we need to calculate the mutual information
between it and the feature label Y and all other features z;, and then use Equation 5 to
calculate the mRMR scoreof each feature. According to the size of |S|, the feature with
the highest score is‘taken as the feature subset S;, and S; is used as the input of the

second stage:

3.2 ~MS-HRO: multi-strategy integrated hybrid rice optimisa-
tion

In=the second stage of this method, four different strategies are employed to optimise

the basic HRO algorithm. As shown in the Figure 3, in the MS-HRO algorithm, the

population is initialised using the good point set and elite opposition-based learning to

initialise the population. This is very important, as it effectively improves the quality and
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Algorithm 1 Preliminary Filtering with mRMR.

Require: Desired subset size |S|, dataset.
Ensure: Initial feature subset S; for Stage 2.
for each feature z; in the dataset do
Calculate mutual information 7(z;;Y") between feature x; and target variable Y;
end for
for each pair of features (x;,x;) in the dataset do
Calculate mutual information I(x;, z;) between features x; and z;;
end for
for each feature z; do
Compute mRMR score using Equation 5;
end for
Select the top-ranked features based on mRMR scores to form the initial feature
subset S7;
11: return the initial feature subset S;.

,_.
e

diversity of our initialised population. Then it enters the iterative optimisation until the
specified maximum number of iterations is reached and the optimal solutiomisioutput. In
the iteration, the fitness of all individuals in the population must be measured first, and
then the three-line population is sorted and divided according to the fitness./Subsequently,
the maintainer line is updated by the aptive difference operater=selection strategy, the
sterile line is hybridised with the maintainer line to obtain itstexcellent genes while using
the t-distribution mutation perturbation strategy to improve the search performance at
different stages, and the restorer line is updated by the enhanced adaptive selfing strategy
and the Lévy flight strategy. Finally, the global optimal solution is updated, and the next
iteration is entered. And Algorithm 2 for the pseudocode.
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Start

Initializing population Based on Good Point Set and Elite Opposition-
Based Learning, define the parameters such as t=0, MaxIter and so on

)

Output the best solution End

¥

Calculate fitness for each individual in the population.

v

Sort the population by fitness, define the bestsolution, and distributed into
three separate lineages.

v v v

Maintainer line Sterile line Restorer line

Daptive Difference
Operator Selection

Enhanced Adaptive
Selfing Strategy

t-Distribution Mutation
Perturbation Strategy

STrategy
DE1:Global Search
Generate
t-distribution
v perturbation factor
DE2:Transition Period Hvbridizin Selfing
Search 1ybridizing Corame
Lévy flight
v v factor =
DE3:Local Search Update individuals in + E
sterile line through 8
hybridizing Update
v individuals in
Update individuals in Rl
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./ / /

— Update the best solution, t = t+1.

Figure 3: TheFlowchart of MS-HRO.
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Algorithm 2 MS-HRO-based optimisation.

Require: Maximum iterations Maxlter, population size n, F' <= 0.5, Spae <= 0.92, Sppin <

0.01, oppae <= 1.0, 0pin <= 0.1, g, <= 2, cr <= 0.9, SChroe <= 10, SCrin <= 4, a <= 0.1.

Ensure: Best solution S.
1: Initialise population X < {X;, Xs,...,X,,} using good point set and elite reverse

learning for diversity (Equations 6 — 9);

2: for t = 1 to Maxlter do

> Three-line Division

3: Calculate fitness for each individual in the population;
4: Sort the population by fitness:
5: Maintainer line X,, < {X1, Xo,..., X}
6: Restorer line X, <= {X,.1,..., Xo,};
7: Sterile line X < {Xopt1,. .., Xn};
> Adaptive Differential Operator Selection
8: for each individual in maintainer line X,, do
9: Select differential operator based on adaptive probabilities (Equation 19J;
10: Apply DE1, DE2, or DE3 (Equations 10 — 12);
11: Update individual positions in X,,;
12: end for
>*Hybridisation
13: for each individual X,(7) in sterile line do
14: Select a random individual X, and X(7);
15: Apply t-distribution-based mutation (Equations 20 — 23);
16: Update X,(7);
17: end for
> Selfing
18: for each individual X, () in restorer line do
19: Select a neighboring individual X,.(j);
20: Perform self-crossing (Equations 25~ 27);
21: Update X, (i) and increment self‘crossing counter SC
22: end for
> Renewal
23: for each individual in X, with sc = SC (Equation 24) do
24: Perform reset operation;
25: Reset SC for X, (i);
26: end for
27: Update the best¢solution found so far;
28: end for

29: return The bést solution S.

3.2.1 Initialisation strategy based on good point set and elite opposition-

based learning (INIT)

To address the issue of insufficient diversity in the initial population of HRO, a popula-

tionyinitialisation strategy based on good point set mapping and elite reverse learning is

proposed to optimise the generation of the initial population. The mapping of the good

point set to the initial search vectors of the population individuals is expressed as follows
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in Equation 6.
X?= (UB* - LB x {r} x k} + LB". (6)

where X¢ denotes the value of the d-th dimension of the i-th individual. UB¢ and LB?
denote the upper and lower bounds of the d-th dimension of the search space. 1’ denotes
the proportional factor of the i-th individual in the d-th dimension. k is a scaling factor
used to adjust the search range.

Figure 4 illustrates the two-dimensional initial population distributions generated by
uniform distribution, good point set initialisation, logistic chaotic mapping, and Gaussian
chaotic mapping. It could be observed that when the population sizes are 30, 45, and 60,
the initial populations generated by the good point set are more evenly distributed. This
effectively avoids the clustering and dispersion of individuals in specific regions, signific-
antly enhancing the diversity of the population. As a result, the global search capability
of the algorithm is improved, facilitating the discovery of the global optimal solutien. ‘In
contrast, the other three strategies tend to generate populations with clusterihg or un-
covered regions in the search space. For instance, logistic chaotic mapping-often leads to
individuals aggregating near the boundary while leaving large gaps in the“center, which
not only slows down convergence but also increases the risk of overlooking promising

areas, thus hampering the search for high-quality individuals.

Initial Population Distribution of Four Different Initialization Methods under Three Different Population Sizes

Uniform Distribution Good Point Set Mapping Logistic Chaotic Mapping Gaussian Chaotic Mapping
v
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Figure 4: The initial populations generated by different initialisation strategies.

Additionally, since elite individuals often carry more effective search information, this

study applies elite opposition-based learning to the population initialised by the good

D

point set. Let X; = ( xlx? - al ) , (i =1,2,--- ,n) represent elite individuals in a

D-dimensional search space. Their opposition-based individuals could be expressed by

15

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389
390

391

392

393

GZ0Z JoquianoN G0 Uo 1sanb Aq 0€ | L6Z8/E L LIeMb/apal/e60L 01/10p/a[o1e-00uBApE/apol/w0d dno oiwspes.//:Sd)y Wolj Papeojumoq



Equations 7 and 8.

1

ol =K (LB +UBY) —al, j=1,2,---,D. (8)
where K is a dynamic coefficient within the range [0,1]. UB’ and LB’ are the upper and
lower bounds of the j-th dimension.

If the dynamic coefficient causes the opposition-based solution to exceed the search
boundaries, rendering it an infeasible solution, it is corrected using a uniform distribution,
as shown in Equation 9.

E = Uniform(LB?,UB). (9)

In summary, this study constructs elite opposition-based individuals for the popu-
lation initialised by the good point set. The optimal individuals are selected from the
combination of the initial solutions from the good point set and their opposition=based

individuals, forming the final initial solution set.

3.2.2 Adaptive difference operator selection strategy (DE)

To address the absence of an effective strategy for updating the maintainer line in the
basic HRO algorithm, this study proposes an adaptive difference operator-based dynamic
selection strategy to improve the quality of maintainer line) “Fhis includes the global
difference operator DF; for the global search phase, the transitional difference operator
DE, for transitioning from the global search phase to theldeal search phase, and the local
difference operator D F3 for the local exploitation” phase, as described in Equations 10 -
12.

DEy: X{(t+1) = X{(t) + 1 (X5, (D= X5, (1)) + (1 =) - (X5, (1) — X{(1). (10)

7

DEy : X{!(t+1) = X{(h) + F - (X7, (t) = X5, (1) + F + (X{eq, (8) — X7(1))- (11)

DEy : XU+ = X (6) + v - (X2 (1) — X4 (0) + (1 —ra) - (X2 (1) — XA (1) (12)

where- X'%(¢ '+ 1) denotes the updated value of the d-th dimension of the i-th maintainer
population individual in the (¢ + 1)-th iteration. X _,(#) denotes the value of the d-th
dimension of the best solution found in the ¢-th iteration. X, denotes a randomly selected
individual from the maintainer line (p,, # ¢), and (p; # p;, ¢ #j, 1<4,j<4). F
is a smoothing factor controlling the transition of the maintainer population from global

search to local search, with values in the range [0, 1]. 7 and ry are random numbers in
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the range of [0, 1].

To enable the algorithm to select different difference operators with varying prob-
abilities during different optimisation phases, this study defines an adaptive probability
generation method to dynamically generate selection probabilities for the three types

of difference operators. The selection process utilises a roulette wheel algorithm. The

formulation is as follows, Equations 13 - 19.

peak

S1 = + Smin- (13)
1+ exp ((t— 1)/ %)
T,

So = peak - exp (—(t - 5) /(10 - T)) + Spin- (14)

peak
S3 — —+ Smin- (15)

1+ exp (—(t —5- %)/%)

peak = Smaz — Smin- (16)
5281+82+83. (17)
pi:Si/S,i:1,2,3. (18)
DE; = roulette_wheelé_seléction(p). (19)

where S, and s, are boundary adjustmentiparameters to prevent excessively small
or large values before normalisation. pf{i ="1,2,3) denotes the normalised probability
of selecting the i-th difference operator. ¢ and 7' denote the current iteration count and
the maximum number of iterations, respectively. DFE, denotes the difference operator
ultimately selected using the roulette wheel strategy.

Figure 5 illustrates the adaptive dynamic adjustment of selection probabilities for
the three different operators as the number of iterations increases. At the early stage
of optimisation, the algorithm selects the global difference operator DFE; with a higher
probability to emphasize global exploration. During the transition phase from global to
local searchy‘the\transitional difference operator DFs is chosen with a higher probability
of balancing exploration and exploitation. In the later stages of optimisation, the local
search operator D Fj is selected with a higher probability to refine and enhance the optimal

selution obtained.

3.2.3 t-distribution mutation perturbation strategy (TD)

The paper addresses the lack of differentiation between the early global exploration phase
and the later local exploitation phase in the original HRO update strategy by introducing a
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Probability Transfer Curve
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Figure 5: Differential operator selection probability transfer curve.

t-distribution-based mutation perturbation strategy to improve the hybridisation process.
By leveraging t-distribution characteristics, the hybridisation phasein*"HRO is improved
(Equations 20 - 23), where the original random number 7 is replaced by t-distribution

sampling.

Xtowny () =t - X35 () +41 =) - X0 (1). (20)

I (%5%) (1 L L <t) >_de+1 , (21)

f(ﬂdf’g):r(dg)—\/ﬂ; i \o
df = 2+;,-28. (22)

@ = (Omaz — Omin) - (1 — (;>QT> + Opin.- (23)

where Xffew(i) (t) denotes the updated value of the d-th gene of the i-th sterile line indi-
vidual at iterationst. Xg(j)(j # i) and X%(t) denote the individuals selected randomly
from sterile line and maintainer line, respectively. Each dimension of a newly generated
sterile Hne individual is perturbed by a random variable generated from the ¢-distribution.
I dénotes the Gamma function, 0,,,, and 0,,;, are the maximum and minimum mutation
scalesycontrolling the range of generated random numbers. Larger scales result in broader
mutation ranges, and smaller scales result in narrower ranges. gr denotes the growth rate
that controls the convexity of the ¢ variation curve.

Figure 6 illustrates the shapes of the t-distribution under different degrees of free-

dom and mutation scales. This study leverages the characteristics of this distribution
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by combining various degrees of freedom and mutation scales to control the shape of the
t-distribution, to dynamically adjust between global exploration and local exploitation
stages for individuals. In the initial stages of iteration, the degree of freedom is relatively
small while the mutation scale is large. At this point, the t-distribution approximates
a Cauchy distribution, with data being more dispersed, resulting in larger perturbations
that drive the updates of individuals toward global exploration. As the iterations pro-
gress, the degree of freedom gradually increases, and the mutation scale decreases. The
t-distribution then transitions towards a normal distribution with a smaller standard de-
viation, generating smaller perturbations that make individuals more inclined to search

within local regions.

04 t-Distribution for Different Degrees of Freedom 5 t-Distribution for Different o Values
' tdistribution (df=1, o=1) ——— t-distribution (df=30, o=1)
t-distribution (df=5, o=1) t-distribution (df=30, 0=0.8)
0.35 t on (df=10, o=1) t-distribution (df=30, 0=0.6)
——— tdistribution (df=30, o=1) ——— t-distribution (df=30, 5=0.4)
= = = Standard Normal Distribution t-distribution (df=30, 0=0.2)
. 03 . 1.5
= =
& &
5025+ 5
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£ 02t 2 1
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Figure 6: The shapes of t-distributions corresponding te different degrees of freedom
and mutation scales.

3.2.4 Enhanced adaptive selfing strategy (SC)

To address the limitation of simply setting the selfing upper limit parameter (SC') as
a constant during the selfing process, this study proposes an adaptive dynamic adjust-
ment mechanism based on the iteration count and introduces a Lévy flight mechanism to
improve the update of recoyery system individuals.

To overcome the deficiency of SC' being fixed as a constant in the basic HRO, the
value of SC' is improved by making it adaptively adjustable with iterations, as shown in

Equation 24.

2
SC = SCiuin + (SChaw — SComin) - (1 - (;) ) . (24)

where Sy, and SC,,;,, denote the values of the selfing upper and lower limit, respect-
ively.

Iw the early stages of the algorithm, when the algorithm is in a global search state,
most individuals have a higher probability of performing effective updates within a small
number of iterations. At this point, SC is set to a relatively high value. If a seed individual

reaches this value in the early stage, it indicates that the individual has already fallen into
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a local optimum. In such cases, a forced reset operation is executed. As the iterations
progress to later stages, the likelihood of individuals being trapped in the local optima
increases. Therefore, setting SC to a smaller value at this stage can help individuals
quickly escape from the local optima and improve the overall search efficiency.

Additionally, this study also improves the selfing strategy for individuals from restorer

line, replacing the original gene update formula with the following Equations 25 - 27.
X;zlew(i) (t) =T3- (Xgest - X;l(j) +cre (LBd + L)) (25)
L =a-Lévy(B)- (UB*— LBY). (26)

=2 oxp <_ (A‘Tt)Q) | 27)

where « is the step-size control factor, and ¢, is an adaptive parameter that monlinearly
decreases from 2 to nearly 0 as iterations progress, providing dynamic globaland local
search capabilities for the recovery system individuals. Xf( ;) denotes the d-th. dimensional
gene value of the j-th seed individual randomly selected from the Tecovery system (j #
i). X2, denotes the d-th dimensional gene value of the best solution found up to the
current iteration. 73 is a random number in the range [0,1]»Iévy(3) refers to the
Lévy distribution with parameter, characterised by alternating short-distance searches
and random long-distance searches. This property enhances the algorithm’s global and

local search capabilities. The specific form of the Lévy distribution is given in Equation 28.

Lévy(B) ~ p =), W1 < B <3). (28)

where [ controls the step length; smaller, Fypromotes global exploration, larger § favours
local exploitation. pu is the Lévy exponent related to 3, influencing the probability of long

jumps.

3.3 TSMS-HRO: a high-dimensional feature selection algorithm

Based on MS-HROj the first-stage filter-based algorithm, along with transformation func-
tions and classifiers, is integrated to adapt the algorithm for high-dimensional FS tasks
(refer to Figure 7for the TSMS-HRO flowchart, and Algorithm 3 for the pseudocode).

3.3/1 Binary encoding strategy and classifier

In eommon, most of metaheuristic algorithms were originally designed for continuous
optimisation problems and cannot be directly applied to discrete optimisation problems
like F'S. The solutions obtained by HRO are continuous, and they need to be mapped to

the F'S solution space using a transfer function. The transfer function used in this study
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Figure 7: The Flowchart of TSMS-HRO.
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is defined as Equations 29 - 30.

B 1
C l4exp(—2/2)

S(x) (29)

1, ifS(X%) > rand,

0, otherwise.

In addition, to validate the effectiveness of the proposed algorithm, this study uses
SVM as the classifier.

3.3.2 The fitness function

The fitness function used in this study is defined as Equation 31.
. n
Fitness = X\ - error + i - N (31)

where error denotes the classification error rate. n and N are the sizes 'of*the selected
feature subset and the total number of features, respectively. A and phare weighting
factors used to balance the influence of the classification error rate and the feature subset
size. The weights A and p satisfy the condition A+ p = 1, ensuring'that the fitness values
of all algorithms range between 0 and 1. This normalisatien faeilitates a fair comparison

of the performance across different algorithms.

Algorithm 3 TSMS-HRO for Feature Selection.,

Require: Subset S;, maximum iterations MaZlterypopulation size n, F' < 0.5, Sy <
0.92, spin <= 0.01, e <= 1.0, ol =01, g, <= 2, cr <= 0.9, SChe < 10,
SChin <4, a<=0.1, A <= 0.99, 1 <0.0

Ensure: Best feature subset.

1: Initialise population X < {X}, Xy, ..., X} using:
2:  Use subset S; from Stage-, as the initial search space;

Good point set and elite reverse learning for diversity (Equations 6 — 9);

: for t =1 to MaxlIter do

Calculate fitness for each individual in the population;

Sort the population.by fitness:

Maintainer line X, < {X1,Xo,..., X}
Restorer line”X, <= {X,.1,..., Xo,};
Stetile\line X < {Xopi1, ..., Xn};

Apply.MS-HRO’s improvement strategies;

1

e

> Discretization

11: Apply S-shaped transfer function to convert continuous solutions to binary values
(Equations 29 — 30);

> Fitness Evaluation

12: Calculate fitness using error rate and feature subset size (Equation 31);
13: Update the best solution found so far if the new solution is better;
14: end for

15: return Best feature subset.
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4. Experiment and Discussion

To assess the effectiveness of the proposed method, this section presents a series of bench-
mark experiments. It begins with a description of the experimental framework, including
datasets and baseline algorithms, followed by a detailed analysis of the results.

The experiments were conducted on a PC running the Windows 10 operating system.
The hardware specifications include a 13th Gen Intel(R) Core(TM) i9-13900K CPU @
3.00 GHz and 64GB of memory. All algorithms were implemented using the Python

programming language.

4.1 Experimental settings

To evaluate the proposed algorithm, five groups of experiments were organised:

1. Validation of MS-HRQO’s performance in continuous space: To demonstrate the
optimisation capability of MS-HRO in a continuous space, this section uses the
CEC2022 benchmark functions as benchmarks.

2. Integration of filter methods into MS-HRO: To enhance the search efficiency and the
quality of selected feature subsets, the filter method was incorporated into MS-HRO.
Several mainstream filter methods, including Fisher, Laplacian, Maximal Informa-
tion Coefficient (MIC), MI, mRMR, ReliefF, and Trace,Ratio Criterion (TR), were

compared and evaluated.

3. Verification of classifier-independence: T6 examine whether the proposed method
is adaptable to different classifiers, additional experiments were conducted using
KNN, DecisionTree (DT), Naive Bayes (NB), XGBoost, and Random Forest (RF)
while keeping the selected feature subsets unchanged. This allows us to evaluate
the generalisation capability of thé algorithm and confirm that its effectiveness is
not limited to SVM.

4. Evaluation of TSMS-HRO on high-dimensional biomedical datasets: The classifica-
tion performance of the TSMS-HRO algorithm was assessed (mnRMR + SVM as the
baseline algorithm) and analyzed on 12 high-dimensional gene expression datasets

derived from hiomedical microarray databases.

5. Ablation study of TSMS-HRO components: To evaluate the effectiveness of each
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mechanism in TSMS-HRO, we conducted an ablation study on multiple high-dimensionsl

biemedical datasets by selectively incorporating different strategies into the al-

gorithm.
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4.2 Dataset and parameter settings

To validate the performance of MS-HRO, the study utilised the CEC2022 benchmark
functions, which include: 1 Unimodal Function, 4 Basic Functions, 3 Hybrid Functions,
and 4 Composition Functions. For comparative experiments, the study selected several
state-of-the-art optimisation algorithms as baselines, including HRO, GA, Honey Badger
Algorithm (HBA), HHO, JAYA, Rime Optimisation Algorithm (RIME), SSA, WOA, AO,
Clonal Selection Algorithm (CSA), GWO. The parameters of these comparison algorithms
are provided in Table 1. All algorithms shared a consistent configuration: an initial
population size of 42, a maximum of 1000 iterations, and 30 independent runs for each

20-dimensional test function, ensuring statistical reliability and fairness.

Table 1: Parameter Settings.

Algorithm Parameter Setting

HRO r1,7e,1r3 € [0,1], SC =8

MS-HRO  F = 0.5, Spax = 0.92, spin = 0.01, 0o = 1.0, o™= 0.1,
gr=2,cr =0.9, SChax = 10, SChin =4, a = 0.1

GA CR=1, MR =0.01

HBA C=23=6 Fe{-1,1}

HHO By =2(1— 1), By~U(=1,1), E = By - Egrq.i ~ U(0,1),
J =2(1 —rand), Lévy(8 = 1.5)

JAYA -

RIME W =5

SSA ¢ =2e" (T ey ~ U(0,1)", 5 ondd (0351)"

WOA a€0,2], A=2ary —a, C =2ry, b=1,1€ [1,as], p € [0,1]

AO a=01,6=01,a=21< L)% ~U0,1), Lévy(B = 1.5)

CSA CR = 0.1, MR = 0.1, SR —0.2

GWO a€0,2]

This study aimed to select asmoreseffective filter method by evaluating mainstream
filter techniques, including Fisher, Laplacian, MIC, MI, mRMR, ReliefF, and TR. Each
filter method was compared and validated under varying fixed dimensions (ranging from
100 to 500, with an intrement of 50) and feature ratios (ranging from 5% to 30%, with
an increment of 5%). The evaluation criterion was based on calculating the average
classification aceuracy-achieved by each filter method across all datasets in Table 2 when
selecting the‘corresponding number of features.

To verify the classifier-independence of the proposed feature selection algorithm, mul-
tiple~classifiers, including SVM, KNN, DT, NB, XGBoost, and RF, were employed for
evaluation. Each classifier was executed 30 times on the 12 datasets listed in Table 2, and
theirperformance was assessed under the same feature subsets generated by the proposed
algorithm. The parameter settings for each classifier are summarised in Table 3.

To validate the performance of the proposed FS method, it is compared with the latest
two-stage FS methods, such as MBAO (Pashaei, 2022), HFSIA (Zhu et al., 2023), MG-
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Table 2: Datasets used for feature selection by TSMS-HRO.

ID  Dataset Instances Number of Features Number of Classes
D1  colon 62 2000 2
D2  lung 203 3312 5
D3 GLIOMA 50 4434 4
D4  leukemia 1 72 5327 3
D5 DLBCL 7 5469 2
D6 TOX 171 171 5748 4
D7 ALLAML 72 7129 2
D8  Brain Tumor 2 50 10367 4
D9  Prostate Tumors 102 10509 2
D10 CLL SUB 111 111 11340 3
D11 SMK CAN 187 187 19993 2
D12 GLI 85 85 22283 2

Note: These datasets vary significantly in the number of features, rangingfrom 2, 000
to 22,283. Specifically, datasets D1—D7 are high-dimensional .datasets with feature
counts between 2,000 and 7,129, while datasets D8-D12 hawve.even higher feature
dimensions, ranging from 10, 367 to 22, 283. This diversity in feature numbers provides
a broad spectrum of data perspectives and analytical layersfor in-depth research.

Table 3: Classifier Parameter Settings:

Algorithm Parameter=Setting

SVM C=4

KNN K =5

DT criterion = gini, max__depth = None

NB —

XGBoost! ‘max_depth = 3,learning rate = 0.01,n_estimators =
100, subsample = 1.0, colsample__bytree = 1.0

RF n__estimators = 100, max__depth = None, criterion = gini

Note: The parameters are based on commonly used or default settings in the respective
classifiers, without further hyperparameter tuning, to ensure a fair comparison under
the same feature subsets.
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WOR (Pan et al., 2023), BIGWO (Moustafa et al., 2024), and improved two-stage meth-
ods, TS-GA, TS-GWO, TS-HBA, TS-HHO, TS-JAYA, TS-RIME, TS-SSA, TS-WOA, in
12 datasets listed in Table 2. These datasets were derived from gene expression profiles
in high-dimensional biomedical microarray databases (Ghosh et al., 2021; J. Li et al.,
2017). The collection of such datasets typically relies on high-throughput technologies,
such as microarray techniques or next-generation sequencing, which enable the measure-
ment of thousands of gene expression levels in a single experiment. These datasets are
widely used in disease diagnosis, biomarker discovery, and drug development. By analys-
ing differences in gene expression patterns, researchers can uncover molecular mechanisms
underlying specific diseases and support the development of novel therapeutic approaches.
The experiments were conducted under a unified standard. Each algorithm was run 30
times on each data set. The population size was set to 30, the minimum number of
iterations was 100, and the filters used by the improved TS-GA, TS-GWO and other
algorithms were all mRMR (the parameters were consistent with TSMS-HRO) “and.the
other algorithm parameters were consistent with those in Table 1.

To evaluate the effectiveness of each mechanism within TSMS-HRO, an ablation study
was conducted by selectively incorporating different strategies into the algorithm. The
impact of each component on performance was assessed across multiple high-dimensional
biomedical datasets in Table 2 to determine its contribution to thewoverall effectiveness of
the algorithm. The parameters of all comparison algorithms are eonsistent with TSMS-

HRO. The comparison algorithm list and its explanation aresshown in Table 4.

Table 4: Comparison of algorithms in ablation expériments.

Algorithm Description

HRO Original HRO algorithin.

TS-HRO Two-stage HRO algerithm with mRMR-based filter.
MS-HRO Multi-strategy improved HRO algorithm.

TSMS-HRO Two-Stage Multi-Strategy HRO algorithm with mRMR-based filter.
TS-HRO-DE = Two-stage DE-improved HRO algorithm with mRMR-based filter.
TS-HRO-INIT Two-stage INIT=improved HRO algorithm with mRMR-based filter.
TS-HRO-SC Two-stage. S€-improved HRO algorithm with mRMR-based filter.
TS-HRO-TD  Two-stage/TD-improved HRO algorithm with mRMR-based filter.

Note: The parameters of all variant algorithms are consistent with TSMS-HRO.

4.3 “Performance metrics

4(3.1 The result of the CEC2022 benchmark tests

MS-HRO demonstrates significant advantages in most benchmark functions. Specifically,
in test functions F5, F6, F'8 F9, F10, F11, and F12, MS-HRO outperforms other
algorithms, achieving solutions that are closer to the optimal. Additionally, for functions

F1, F2, F3, and F'7, the algorithm consistently converges to competitive solutions, albeit

26

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

GZ0Z JoquianoN G0 Uo 1sanb Aq 0€ | L6Z8/E L LIeMb/apal/e60L 01/10p/a[o1e-00uBApE/apol/w0d dno oiwspes.//:Sd)y Wolj Papeojumoq



slightly behind the top-performing algorithm in those cases. Moreover, we can observe
that MS-HRO performs better in the Hybrid and Composition functions. Among the 7
functions from F'6 to F'12, MS-HRO achieved the best average fitness values in 6 cases
and demonstrated excellent performance in terms of variance, indicating a certain level of
stability. This suggests that MS-HRO possesses strong search capabilities, allowing it to
explore the search space and identify the optimal values thoroughly. For example, in F'8,
MS-HRO outperformed other methods by several orders of magnitude, reaching 2.36E+3,
and achieved the lowest variance of 2.66E+2 compared to other algorithms in the same
group. However, at the same time, we can also observe that MS-HRO performs worse
than HBA on Basic and Simple Multimodal functions.

In Figure 8 (mainly Unimodal Functions and Basic Functions), we first observe that
the convergence speed of MS-HRO is not as fast as that of a few other algorithms. ThisAS
because, in order to avoid premature convergence to a local optimum, MS-HRO continues
to explore unknown regions in search of better solutions. This exploratory behavieur.also
lays the groundwork for its excellent performance on subsequent Hybrid and Composite
Functions. Secondly, although its convergence speed is relatively slow,. MS-HRO still
converges to the optimal value on certain functions, such as F'5 and F6, “On F5, the
convergence of MS-HRO in the early iterations is not as strong as‘that“of the original
HRO and GWO algorithms. However, after 100 iterations, it surpasses all algorithms and
achieves the optimal value. On F'6, after nearly 400 iterations, MS-HRO escapes from
the local optimum, outperforms the AO algorithm, which rémains trapped, and reaches
the best convergence value. In addition, MS-HRO performs slightly worse than the HBA
algorithm on F'1, F'2, and F'3, but the performaneé,gap is minor. Notably, the convergence
speed of MS-HRO is much faster than that of HBA, indicating a better trade-off between
optimisation quality and convergence efficiency. Finally, on F'4, MS-HRO fails to obtain
a competitive solution before the end=oftthe iteration, likely due to being trapped in
a local optimum. The rugged and ‘multimodal nature of F'4 may not align well with
MS-HRQ'’s search dynamics, leading to reduced exploration and premature convergence.
Nevertheless, its convergenee-trend still indicates potential for further improvement.

In Figure 9 (Hybrid Funetions and Composition Functions), we observe that, in terms
of convergence value, MS-HRO achieves the optimal results on 5 out of 6 functions, with
the exception of F'7Twhere its performance is slightly worse than that of the original HRO.
Overall, MS-HRO"shows a significant advantage. Although the original HRO obtains
relatively_competitive results on F'8, F'9, and F'12, its performance still falls short of
that of MS-HRO. This demonstrates the effectiveness of our multi-strategy improvement
approach, Regarding convergence speed, MS-HRO remains ahead of most algorithms even
when dealing with more complex functions. This highlights the efficiency of the proposed
exploration strategy in finding high-quality solutions more rapidly. For instance, MS-
HRO converges to the optimal value on F'10 within approximately 300 iterations, while

other algorithms continue to search without reaching optimal convergence under the same
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iteration count.

To further compare the performance differences between MS-HRO and other algorithms
in terms of convergence value, variance, and runtime, we present a bar chart. Additionally,
we take the logarithm of the convergence values to make the comparisons more visually
apparent. In Figure 10 (mainly Unimodal Functions and Basic Functions), on F1, F2,
and F'3, although the HBA algorithm achieves slightly better convergence values, the
differences between HBA and MS-HRO are marginal. MS-HRO still converges to highly
competitive solutions. For instance, on F'1, the difference between MS-HRO and HBA is
only 3.00E—3, which is negligible. On F'2, HBA achieves 4.51E+2, and MS-HRO achieves
4.53E42, with a gap of only 1.86, while also obtaining the lowest variance, which highlights
the stability of MS-HRO. On F'3, the difference is merely 8.30E—12, which is practically
insignificant. On F'4, MS-HRO ranks eighth, likely due to being trapped in a local op-
timum. However, most algorithms—including MS-HRO—approach the optimal valtie of
approximately 800, as shown in the figure. On both F'5 and F6, MS-HRO achieves.the
best convergence values. Notably, it also achieves the lowest variance (0.08)fon F'5” On
F6, MS-HRO performs particularly well, reaching 4.53E+4, significantlyl outperforming
the second-best AO algorithm at 6.34E-+4.
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Figure 10: Bar chatrt comparing the performance of different algorithms on CEC2022.
The algorithm with the best convergence value is marked with dark blue and a check
mark; the ome with the smallest variance is marked with a circle and an error bar; and
the asterisk.indicates the algorithm with the shortest running time (F1 - F6).

In Figure 11 (Hybrid Functions and Composition Functions), the performance from F'7
to E'1271s even more impressive. MS-HRO achieves both the best convergence values and
thelowest variances on F'8, F'9, F'10, F'11, and F'12, demonstrating strong optimisation
ability and excellent stability when dealing with complex functions. Although the original
HRO algorithm performs best on F'7, the gap with MS-HRO is only 4.07—relatively
small compared to the differences observed with other algorithms. Additionally, MS-
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HRO demonstrates outstanding convergence values on other functions. For example, on 663
F'8, its result exceeds the second-best HBA algorithm by 2.93E+2. On F12, MS-HRO 664

achieves 2.94E4-3, whereas the second-best HRO algorithm only reaches 2.96E+-3.

CEC2022 Benchmark Function Performance BN V' Minimum Avg ®  Minimum Std *  Minimum Time

Function F7 Function F8 Function F9

* 104 35
34 3.0
w251
§/2.0<
E;"l.5<

1.0

0.5

log10(Avg)
o - ©
log10(Avg)
o v & o =
1+

0.0 +

o
Q7<

O OF T T ¥ L oo O OF T O T ¥ L & O o
FFTIFF TSI I F FOTFF TS & &
A ~

Function F10 Function F11 Function F12

FEFFF T

%,
%

3549
5

3.0

~ 251

2

< 204

E3ER
104

0.5

log10(Avg)
o - © w IS
log10(Avg)
o - © w IS
o

0.0 -

O O S @vv r O O OF T O T ¥ L o0 O O T L T & O &0
QS'&&'O @&@b \\“Q"% ® C’%@é Q&V\,’?‘Q—e ?‘3’*2“2”\?:&@‘“%% Or e *23'&323'0 ‘z@@?”\@@@év O v e

Figure 11: Continued. (F7 - F12)

In summary, after multiple iterations, MS-HRO demonstratesiexceptional optimisation
capabilities on the CEC2022 benchmark suite. These results jcan be attributed to the
solid foundation of the original HRO algorithm and the“effectiveness of the proposed

enhancements, making MS-HRO a highly competitive optimisation method.

4.3.2 The result of the filter experiment

Impact of Feature Percentage on Accuracy and Runtime
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Figure 12: Heat map showing the average accuracy and average running time of each
filter on 12 datasets at different feature percentages. Darker colors on the left indicate
higher accuracy, while lighter colors on the right indicate shorter running times.
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As shown in Figure 12, within the feature ratio range of 0.05 to 0.30, the mRMR,
Fisher, and MI methods achieved the highest classification accuracy. Among them, the
mRMR method exhibited remarkable stability across all ratios, achieving a peak accuracy
of 88.93% at a feature ratio of 0.1, thereby outperforming most other methods. In contrast,
Laplacian yielded the lowest accuracy, which increased slightly with the feature ratio but
remained significantly lower than that of other methods. Regarding runtime, all methods
exhibited increased execution time as the feature ratio rose, which is an expected trend.
Although TR had the shortest runtimes at lower feature ratios, the runtime of mRMR was
comparable to that of other mainstream methods (such as reliefF and MI) and remained
within an acceptable range.

Impact of Feature Number on Accuracy and Runtime

Feature Number vs Method Accuracy Heatmap Feature Number vs Method Runtime Heatmap
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Figure 13: Heat map showing the average accuracy and average running time of each
filter on 12 datasets with different numbers of features. Darker colors on the left
indicate higher accuracy, while lighter colorsionthe right indicate shorter running times.

As shown in Figure 13, the classifieation accuracy of the mRMR method steadily in-
creases as the number of features grows from 100 to 500, reaching peak values of 89.20%
at 450 features and 89.15% at 500catures. Notably, at 300 features, the accuracy already
reaches 88.98%, only 0.22%below the maximum, indicating it is very close to optimal.
Compared to other methods\(such as Fisher, MI, and ReliefF'), mRMR consistently main-
tains a leading performanee across medium and high-dimensional settings. In terms of
runtime, mRMR shews’a near-linear increase with the number of features, reaching ap-
proximately 0.0043"seconds at 300 features—substantially faster than the 0.0056 seconds
at the maximum feature count. Given the marginal gain in accuracy versus the not-
able increase in computational cost, selecting 300 features represents a more cost-effective
trade-off:

In “conclusion, by comprehensively evaluating classification accuracy and computa-
tional efficiency, we selected the mRMR method with 300 features as the first-stage filter

in our F'S method.
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4.3.3 The result of the classifier experiment

As shown in Figure 14 and Table 5, the results demonstrate that the proposed feature se-
lection method maintains high classification performance across different classifiers, which
verifies the generalisation capability and classifier-independence of the selected features.
Overall, all six classifiers (SVM, KNN, DT, NB, XGBoost, and RF) achieve consistently
high accuracy values on most datasets, suggesting that the selected features preserve
discriminative information independent of the specific classifier applied.

From an overall perspective, SVM consistently yields the best or near-best results,
achieving the highest accuracy on 11 out of 12 datasets. For instance, it reaches perfect
classification (100%) on four datasets (D4, D5, D7, D12), and above 95% accuracy on
most others, with the exception of D11, where the accuracy drops to 85.93%. KNN also
performs strongly, matching or surpassing SVM in several datasets, such as D2 (98.67%),)
and D12 (100%).

Other classifiers also exhibit competitive performance. NB achieves 100% acturacy on
three datasets (D4, D5, D7), while RF attains 100% on D4 and nearly perfeet acturacy
on D5 and D12. XGBoost maintains balanced and stable results, oftén“¢close to SVM
(e.g., 97.65% on D12, compared with SVM’s 100%). In contrast,.DT shows relatively
lower performance, particularly on D6 (76.10%) and D11 (7709%).indicating higher
sensitivity to dataset characteristics.

In summary, although SVM achieves the most stable and superior results overall, the
fact that other classifiers—especially KNN, RF, and“NB=-also achieve competitive or
even identical accuracy on several datasets demornistrates that the proposed method is
not limited to a single classifier. This confirms“that the selected features possess strong

generalisation ability and classifier independence.

Classification Accuracy on 12 Datasets
D4:leukemia_1

DS:DLBCL

_—

D3:GLIOMA

D9:Prostate_Tumors D11:SMK_CAN_187

DI10:CLL_SUB_111

—— KNN — DT —— NB —— XGBoost —— RF — SVM

Figure 14: Radar chart of the average accuracy of each classifier running on 12 data sets.
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Table 5: The average accuracy of each classifier running on 12 data sets.

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

SVM 96.52 98.21 96.93 100 100 92.30 100 98.80 98.23 95.25 85.93 100
KNN 96.17 98.67 9520 100 100 88.34 100 9480 98.00 91.98 81.69 100
DT 94.55 9539 92.80 96.95 9597 76.10 99.02 84.80 94.47 84.55 77.09 95.29
NB 94.03 90.78 93.20 100 100 91.98 100 96.00 96.33 91.38 81.67 99.65
XGBoost 95.87 97.19 96.20 9743 98.40 85.69 98.14 97.60 96.90 91.29 84.30 97.65
RF 94.05 96.05 92.40 100 99.87 86.36 99.02 97.80 97.22 93.24 81.26 99.41

4.3.4 TSMS-HRO two-stage high-dimensional feature selection results

From the convergence curves, it can be observed that TSMS-HRO achieved the highest
accuracy on 10 out of the 12 datasets, demonstrating leading performance particularly on
D1, D3, D8, and D11. As shown in Figure 15, for the first seven datasets (with feature
dimensions ranging from 2,000 to 7,129), TSMS-HRO achieved the top accuracy in five
cases and exhibited clear advantages on the D1 and D3 datasets. It not only outperformed
the second-best algorithms, HFSTA and MGWOR, by nearly 2 percentage points but also
demonstrated the fastest convergence to the optimal solution. Althoughthe“convergence
speed of TSMS-HRO was relatively slower on the D2 and D6 datasets,) it ultimately
achieved strong results, ranking third and second, respectively. On the D4, D5, and D7
datasets, TSMS-HRO—as well as several other improved two-stage-algorithms (including
TS-GA, TS-HBA, TS-RIME, and HFSIA )—reached the maximum convergence accuracy
of 100%. Furthermore, it is worth noting that these algorithms already exhibited high
accuracy in the early stages of iteration, which can<be largely attributed to the mRMR
filter employed during the first selection stage.

As illustrated in Figure 16, on the finalfive high-dimensional datasets (with feature
dimensions ranging from 10,367 to 22,283), TSMS-HRO delivered even stronger perform-
ance, consistently converging to the optimalaccuracy. On D8 and D9, TSMS-HRO main-
tained superior convergence curves throughout the entire optimisation process, reflecting
its excellent global and local sedarch'eapabilities. Although it initially lagged behind HFSTA
on D10, TSMS-HRO surpassed it after 40 iterations and eventually reached the best con-
vergence value. Particularly on'D11—the second most high-dimensional dataset—TSMS-
HRO outperformed the second-ranked MGWOR algorithm by a margin of 5 percentage
points, demonstrating a clear and significant advantage. Moreover, on D12, the dataset
with the highest dithensionality, TSMS-HRO was the only algorithm to achieve 100%
accuracysfurther underscoring its superior capability in high-dimensional FS tasks.

In~general, TSMS-HRO demonstrates excellent convergence ability, particularly on
high-dimensional datasets. Its superior initial solutions can be attributed to the effective-
ness,of the first stage, which significantly reduces noise and redundancy. Meanwhile, the
algorithm’s ability to reach better final convergence values is largely due to the strengths
of the original HRO algorithm and the enhancements introduced in the second-stage op-

timisation. This synergy between the two stages highlights the overall robustness and
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effectiveness of the proposed TSMS-HRO method.

In order to further observe the indicators of TSMA-HRO in the high-dimensional FS
task, we drew the bar graph and provided the detailed data, and the yellow horizontal
line is used to represent the results of the baseline experiment. And Table 6 shows the
accuracy of the baseline methods on 12 datasets, along with the improvements achieved
by TSMS-HRO. We can see that after the improved HRO algorithm is used for feature

selection, the accuracy rate is mostly improved by more than 20%.

Table 6: The average accuracy of baseline algorithm (mRMR + SVM) on 12 data sets.

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

baseline 82.18 92.61  70.00 74.86 75.33 51.5 76.38 58.00 71.24 5581 63.09 69.41
Improvements +14.34 +5.60 +26.93 +25.14 +24.67 +40.80 +23.62 +40.80 +26.99 +39.44 +22.84 +30.59

As shown in Figure 17 and Table 7, the best accuracy was achieved on the datasets
D1, D3, D4, and D5, reaching 96.52%, 96.93%, 100%, and 100% respectively. “And._the
variance was 0 on the datasets D4 and D5, and TSMS-HRO showed strong stability. " But
at the same time, we can also observe that most of the other methods that added' mRMR
filters also achieved the same indicators, which shows that the mRMR method played
a key role in the first stage, and the algorithm’s search in the second stage was only to
select fewer features and achieve the same effect. On the dataset D2, although TSMS-
HRO did not reach the optimal value, the gap with the optimal algorithm MGWOR
was only 0.07%, but TSMS-HRO had a smaller variance and was more stable. On the
D6 dataset, TSMS-HRO ranked second with an accuracy.of 92.30%, which is lower than
the 94.03% of the TS-GA algorithm. However, it\is worth noting that TSMS-HRO only
selected 71.57 features to achieve the effect of \I'S-GA selecting 136.40 features.

As shown in Figure 18 and Table 8, TSMS-HRO performed better in the following six
datasets with higher dimensions, all of-which achieved the best accuracy. On the D7, DS,
D9, D10, and D11, they achieved.the best 100%, 98.80%, 98.23%, 95.25%, and 85.93%,
respectively. At the same time, the variance on the D7 datasets was 0. In particular,
TSMS-HRO achieves 100%accuracy and 0 variance on the dataset D12 with the highest
data dimension (dimension'is 22283), which shows the excellence of TSMS-HRO in high-
dimensional F'S.

At the same time, we also noticed that TSMS-HRO achieved 100% accuracy on some
datasets, such as B4, D5, D7, and D12. This impressive performance is primarily due
to the mRMR:filtering method in the first stage of TSMS-HRO. Figure 15 and Figure
16 shownthat algorithms using the mRMR method in the first stage (including TSME-
HRO, PS-GA, and TS-GWO etc.) consistently achieve excellent solutions in the early
stages of iteration. On datasets that achieve 100% accuracy, the average accuracy of
therinitial population is above 95%. Furthermore, the convergence to 100% accuracy is
closely related to the search performed by the improved HRO algorithm. During the
iteration process, the algorithm further reduces data dimensionality while maintaining

accuracy, thereby improving accuracy. Subsequent ablation experiments further validate
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this observation by comparing MS-HRO and TSMS-HRO.

In terms of the number of selected features, TSMS-HRO has a smaller number of
selected features than other traditional algorithms while ensuring leading accuracy, and
there is no extreme number of selected features. Regarding the maximum number of
features, TSMS-HRO limits the initial search space to 300 features filtered by mRMR.
This algorithm directly removes many obvious redundant features, effectively reducing
the data dimensionality. Furthermore, there is no case of too few features. If TSMS-HRO
selects too few features, or even excludes core features, the final accuracy will certainly
not be as good as it is now (for example, on the D10, HFSIA selected only 4.03 features,
resulting in the lowest accuracy). The specific performance of TSMS-HRO in terms of
feature count is as follows: TSMS-HRO selects 47.67 and 26.50 features on D3 and D11,
respectively. Despite selecting more features than MGWOR (13.03 features on D3) and
HFSIA (5.17 features on D11), its accuracy improves by 1.20 and 8.52 percentage poits,
respectively, compared to MGWOR and HFSIA. On the other hand, TS-GA-selected
102.33 and 121.77 features on D3 and D11, respectively, far exceeding the number of fea-
tures selected by TSMS-HRO. However, its accuracy dropped by 1.46 and 8.97petrcentage
points, respectively, as some redundant features interfered with clagsifier, pérformance.
This demonstrates that TSMS-HRO effectively balances the number-of selected features,
retaining important features while removing redundant ones to achieve higher accuracy.

In terms of algorithm running time, it still maintains.a low running time on high-
dimensional datasets and has a high overall efficiency. Compared with the MS-HRO
method without filters, its running time has been greatly reduced, and the rate of running
time reduction is accelerating as the dimension“ef the dataset increases. As shown in
Figure 19, on the D1 dataset with the lowest, dimension, TSMS-HRO reduces the running
time by more than 15 seconds compared(to, MS-HRO, with a reduction ratio of nearly
75%. As the dimension increases, thereduction ratio continues to increase. On the D12
dataset with the highest dimension, the running time is reduced by 98.95%, which once
again proves the effectiveness of the first stage improvements.

In order to comprehensively-evaluate the performance difference between the proposed
algorithm, TSMS-HRO, and, other comparison algorithms, this paper uses the Friedman
test and the Wilcoxon signéd rank test with the Holm multiple comparison correction
method for statistical analysis. Table 9 shows the average ranking and final ranking of
each algorithm on"all experimental tasks. The results show that TSMS-HRO ranks first
with an ayerage ranking of 2.21 and the narrowest 95% confidence interval [94.21,99.49],
significantly. better than other algorithms. The Friedman test statistic is 73.37, and the
corfesponding p-value is 1.91 x 1071°, which is significantly less than 0.05, indicating that
there are significant differences in overall performance between different algorithms.

Further, to verify the pairwise significant differences between TSMS-HRO and other
algorithms, this paper conducts paired comparisons based on the Wilcoxon signed rank

test and uses the Holm method to correct for multiple comparisons. The results are shown
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Figure 19: Comparison of running time between the algorithm with and\without the
filter (MS-HRO vs. TSMS-HRO). TSMS-HRO greatly improves the running efficiency of
the algorithm.

Table 9: Comparison of Algorithms: Friedman Rankings and 95% Confidence Intervals

Algorithm Name Average Rank _Einal'Rank 95% Confidence Intervals

TSMS-HRO 2.21 1 [94.21,99.49]
TS-GA 3.83 2 [91.33,99.61]
TS-RIME 5.33 3 [90.20, 99.06]
TS-HBA 5.79 4 [90.27,99.08]
TS-HHO 6100 5 [90.34, 98.39)]
HFSTA 6.96 6 84.83,98.04]
TS-GWO 7.54 7 [89.71,98.74]
MGWOR 7.67 8 [87.41,97.79]
TS-JAYA 7.83 9 [88.70, 98.50]
TS-WOA 9.46 10 [87.87,97.22]
BIGWO 9.50 11 [85.58,97.33]
NIBAO 10.17 12 [87.07,96.05]
TS-SSA 10.21 13 [86.69, 97.28]
MS-HRO 12.50 14 83.94, 93.67]

Note: The Friedman test yields a test statistic of 73.37 with a corresponding p-value
of 1.91 x 10719, indicating statistically significant differences among the algorithms at
the 0.05 level.
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in Table 10. The comparison results show that TSMS-HRO has a significant advantage
over all other 13 algorithms (the corrected p-values are all less than 0.05), and all the
null hypotheses are rejected. Especially in comparison with poorly performing algorithms
such as MS-HRO and MBAO, the p-value is as low as 0.0063, indicating that TSMS-HRO

has a significant statistical advantage over these algorithms in multiple tasks.

Table 10: Wilcoxon Test Results with Holm Correction (TSMS-HRO vs. other
algorithms)

Comparison R+ R-  Stat p-value Corrected p Hypothesis

MS-HRO 78.0 0.0 0.0 0.0005 0.0063 Rejected
TS-GA 65.0 13.0 13.0 0.0411 0.0411 Rejected
TS-GWO 76.5 1.5 1.5 0.0033 0.0325 Rejected
TS-HBA 75.0 3.0 3.0 0.0047 0.0325 Rejected
TS-HHO 76.5 1.5 1.5 0.0033 0.0325 Rejected
TS-JAYA 76.5 1.5 1.5 0.0033 0.0325 Rejected
TS-RIME 75.0 3.0 3.0 0.0047 0.0325 Rejected
TS-SSA 76.5 1.5 1.5 0.0033 0.0325 Rejected
TS-WOA 76.5 1.5 1.5 0.0033 0.0325 Rejécted
MBAO 78.0 0.0 0.0 0.0005 0.0063 Rejected
HEFSTA 75.0 3.0 3.0 0.0047 0.0325 Rejeeted
MGWOR 77.0 1.0 1.0 0.0010 0.0107 Réjected
BIGWO 75.5 2.5 25 0.0042 0.0325 Rejected

In summary, the statistical test results fully verify that*TSMS-HRO has the best com-
prehensive performance under the selected test sets and tasks, and its improved strategy

has shown significant advantages in improving search/efficiency and solution quality.

4.3.5 The results of ablation experiments

It is clear from the heatmap (Figure¢ 20) that the improved algorithm generally has higher
accuracy than the baseline HROwon jall datasets in the high-dimensional FS task, and
the average number of selected-feattures is generally less than the baseline HRO. Notably,
TSMS-HRO presents the darkest color on all datasets, with an accuracy of 100% on D4,
D7, D5, and D12, demonstrating its strong generalisation ability and stability. Other
variants, such as T'S-HRO and its extensions (DE, INIT, SC, TD), also show similarly
excellent performanee, highlighting the effectiveness of the proposed two-stage feature
selection methed! For example, after adding the two-stage mechanism, the accuracy on
multiplezdatasets reached 100%.

In centrast, HRO has a relatively low accuracy while selecting a very large number of
features. In particular, on some datasets, features with more than 1000 dimensions were
selected, but at the same time, their accuracy was not high enough: D8: (num: 2102.3,
acc: 65.53%), D10: (num: 1347.7, acc: 69.76%), D11: (num: 1432.4, acc: 66.16%). These
results indicate that HRO selects numerous redundant or irrelevant features, leading to re-

duced classification accuracy and limited adaptability to heterogeneous high-dimensional
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Performance Comparison of Different Algorithms Across Datasets
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Figure 20: Heat map showing the average accuracy and feature count. Darker-shades on
the left indicate higher accuracy, while darker shades on the right indicate more selected
features.

data. In addition, its performance on high-dimensional feature selection tasks varies
greatly, up to 96.56% on the D2 dataset, but only 64.65% and 65.53% on D6 and D8,
respectively, indicating that it is highly sensitive to feature védindancy or noise. By
adopting a two-stage strategy, TS-HRO significantly alleviates-these problems, achieving
91.47% accuracy on D6, an improvement of nearly.27% ‘ever HRO, while selecting only
69.5 features on average. Similar trends are obsetved across multiple datasets, validating
the effectiveness of the mRMR feature filter. Multi-strategy enhancement (DE, INIT, SC,
TD) further improves performance, albeit{towarying degrees. For example, TS-HRO-DE
performs particularly well on D6 (94.27%) soutperforming other sub-strategies. TS-HRO-
SC performs slightly better thanINIT and TD on D3 and D10. While TS-HRO-TD
performs slightly worse than INIT on D11 (76.57% vs. 78.39%), the difference is not
significant.

Despite TSMS-HRQ achieving or approaching 100% accuracy on most datasets, it
performs slightly lower on D6 (92.30%) and D11 (85.93%). This may suggest that complex
nonlinear correlations among features have not been fully exploited, and that there is
still room for improvement in the joint optimisation of strategies under high-dimensional
sparse conditions.

As. shown in Table 11, HRO achieves an average accuracy of 80.02% with 794.30
selected features, serving as the baseline for comparison. By introducing the mRMR fea-
ture filter and adopting a two-stage selection mechanism, TS-HRO significantly improves
performance, reaching 96.17% accuracy while reducing the average number of selected
features to only 38.20. This highlights the strong advantage of the two-stage framework

in simultaneously enhancing predictive accuracy and promoting feature dimension reduc-
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tion. When only multi-strategy optimisation (DE, INIT, SC, TD) is applied, MS-HRO
improves accuracy to 88.81% with an average of 143.85 features. Although its accuracy
is lower than that of TS-HRO, the considerable reduction in feature count (81.89% fewer
than HRO) still confirms the effectiveness of the individual strategies in driving feature
selection. This trade-off also suggests that excessive feature reduction may risk elimin-
ating informative attributes and thereby lower accuracy, while insufficient reduction may
retain redundant features and compromise classification performance.

Importantly, the proposed TSMS-HRO, which integrates both the two-stage mechan-
ism and multi-strategy optimisation, achieves the best overall performance with 96.83%
accuracy and 53.05 selected features. This result demonstrates that the two components
are highly complementary: the two-stage mechanism ensures effective feature filtering,
while the multiple strategies enhance search robustness, together leading to superior gen-
eralisation and stability.

Further examination of the four TS-HRO variants, each augmented with-a, single
strategy, reveals that all strategies consistently contribute to performance gains, though
with different emphases. DE and INIT tend to yield relatively higher accutacys SC retains
more features and thus favours stability, while TD provides a balanced trade=off between
accuracy and feature reduction. Although none of these variants surpasses the integ-
rated TSMS-HRQO, their complementary strengths explain why the combined framework

achieves the most robust and well-rounded results

Table 11: Comparison of average accuracy and featuresselection results on 12 datasets.

Algorithm Avg. Acc. Lift vs. HRO Avg. Features Red. Ratio vs. HRO
HRO 80.02% — 794.30 —

TS-HRO 96.17% +16.15% 38.20 —-95.19%

MS-HRO 88.81% +8.83% 143.85 —81.89%
TSMS-HRO 96.83% +16.81% 53.05 —93.32%
TS-HRO-DE 95.71% +15.69% 61.70 -92.23%
TS-HRO-INIT  95.51% +15.49% 66.21 —91.66%
TS-HRO-SC 95.13% +15.11% 121.90 —84.65%
TS-HRO-TD  95.00% +14.98% 78.19 —90.16%

5. Conclusion and Future Work

In this“paper, we propose a two-stage high-dimensional FS algorithm based on a modified
HRO algorithm to enhance the classification performance of feature subsets while reducing
the,computational time required to search for the optimal subset. The study found that
thefiltering method in the first stage eliminated some redundant features, significantly re-
ducing the search space and greatly shortening the algorithm’s runtime. Furthermore, the
introduction of four mechanisms has significantly improved the original HRO algorithm.

The good point set and elite opposition-based learning strategy effectively improve the
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quality and diversity of the initial population. The adaptive differential operator strategy
enhances the utilisation rate of maintainer line individuals. The t-distribution mutation
strategy balances global and local search capabilities. The improved adaptive crossover
strategy increases the flexibility and diversity of the selfing process in restorer line in-
dividuals. The proposed algorithm was compared with recent two-stage and improved
metaheuristic-based FS methods, such as MBAO, MGWOR, HFSIA, BIGWO, and im-
proved two-stage methods, such as TS-GA, TS-GWO, TS-HBA, TS-HHO, TS-JAYA,
TS-RIME, TS-SSA, and TS-WOA. The results show that TSMS-HRO achieves better
initial solutions in the early iterations and converges to more promising values in the later
iterations in the field of high-dimensional F'S.

Despite its advantages, TSMS-HRO still presents several limitations. First, while it
performs well on benchmark functions and 12 high-dimensional biomedical datasets, its
applicability to non-biomedical domains such as text or image data may face new <Chal-
lenges, including data noise and class imbalance. Second, although the mRMR“method
is effective, its assumption of linear relationships based on mutual information limits its
ability to capture high-order nonlinear interactions—such as gene co-regulation—<in biolo-
gical data, potentially leading to the omission of critical feature combinationss Lastly, the
integration of multiple strategies inevitably increases algorithmic complexity compared to
simpler methods.

In future work, more effective optimisation strategies ean'\be explored to ensure the
algorithm’s generalisation ability across problems of varying'scale and dimension. Addi-
tionally, investigating different transfer functions, filters;zand advanced classifiers would
be highly beneficial, as these components have the potential to further enhance the al-
gorithm’s performance in various optimisatiof,seéenatrios. In particular, integrating deep
learning-based classifiers with the feature subsets'generated by TSMS-HRO could improve
its adaptability to complex biomedical=data. Moreover, further optimising the operators
of HRO—such as developing adaptive hybridisation or crossover mechanisms—may sig-

nificantly boost both convergencesefficiency and solution quality.
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