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Transformation and amplification of light modulated by a traveling wave
with a relatively low frequency
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The behavior of electromagnetic waves in a medium modulated in time and space, largely investigated decades
ago, has recently attracted renewed interest. Here, we address an intriguing problem of this research: can light
with an initial frequency ω0 be amplified solely pumped by a traveling wave with a much lower frequency
ωp � ω0? Generally, the bandwidth of the modulation-induced optical frequency comb spectrum can be
substantially broadened when the phase velocity of the traveling wave, vp, approaches the phase velocity of
light, v0. However, in realistic photonic waveguides, the amplification effect remains small due to the unfeasible
modulation and waveguide parameters required. In contrast, we demonstrate that modulating an optical resonator
by a traveling wave having the frequency ωp and phase velocity vp much smaller than the frequency ω0 and
phase velocity v0 of light can result in large light amplification accompanied by conversion to multiple comb
lines within a relatively small frequency band.
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I. INTRODUCTION

The growing interest in exploring wave propagation
through media parametrically modulated in time and space
is driven by its intriguing features—not possible in the
stationary case—along with current and potential applica-
tions [1–3]. Numerous earlier and recent papers investigated
modulation-induced amplification of waves [4–18], signal
processing [19–24], frequency comb generation [25–28], and
sideband transitions, including the effects of propagation
nonreciprocity and complete inelastic transparency [29–39].
Temporal modulation can also create dynamic band gaps
where waves with certain frequencies are trapped in localized
regions [35,40,41]. Modulating the properties of a medium
can affect the group velocity of waves, resulting in slow or
fast light [42]. Temporal modulation also allows for real-time
wave-front control, enabling dynamic beam steering, focus-
ing, and diffraction pattern manipulation, which are important
in adaptive optics and beamforming technologies [43].

A crucial feature of wave propagation in a time-modulated
medium is the potential for amplification. Modulation can
transfer energy to the wave, enhancing its amplitude, or can
extract energy from it, leading to attenuation. For example, the
temporal modulation of the medium refractive index �n(t ) =
�npcos(ωpt ) with frequency ωp close to a multiple of the
input electromagnetic wave half-frequency, ω0/2, can lead to
amplification or attenuation of this wave described by Floquet
theory (see, e.g., Refs. [11,44]). For applications in optics,
the amplification is customarily achieved by pumping with a
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high-power light whose frequency ωp is comparable to the
frequency of input light to be amplified, ωp/ω0 ∼ 1 [45].
For example, in Brillouin and Raman lasers, the acoustic and
molecular vibrations are excited by a pump light with a fre-
quency ωp that is relatively close to the frequency of amplified
light, commonly with |ωp − ω0| � ωp [46–49].

However, is it possible to amplify an optical wave with
a frequency ω0 in a realistic photonic circuit modulated
solely by a traveling wave with a much smaller frequency
ωp � ω0 (e.g., by an acoustic or RF wave) in the absence
of pumping light? For an ideal waveguide with negligible
dispersion and losses over a large bandwidth �ωB � ω0, a
positive answer to this question was given several decades
ago [8,9]. The authors of Refs. [8,9] (and, independently, the
authors of Ref. [14]) found the exact solution of this problem
for a one-dimensional propagation of a wave in a medium
with constant impedance modulated by a traveling wave [8]
and its asymptotic (eikonal, WKB) solution for a medium
with constant permeability [9,14]. It was shown that, under
these conditions, amplification is indeed possible if the phase
velocity of light v0 is close to the phase velocity vp of
the traveling wave. These results are irrelevant to realistic
photonic circuits since their transmission loss and disper-
sion are never negligible within the frequency bandwidth
�ωB � ω0 required for the observation of substantial am-
plification [6,9,15]. Consequently, the intriguing question of
whether light amplification can be achieved by modulating a
photonic circuit solely with a traveling wave having frequency
ωp � ω0 remains open.

Here, we suggest an answer to this question. First, we
explore the described problem using the eikonal approxima-
tion, which is valid when the modulation is slow in time and
space, i.e., when it has a relatively small frequency ωp � ω0

(assumed throughout the paper) and wave number kp = ωp

vp
�

k0 = ω0
v0

[50–54]. We show that, due to the requirement of
the broadband and lossless transmission [8,9], the substan-
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FIG. 1. An optical waveguide with the refractive index modulated by a traveling wave along the interval (0, L).

tial amplification of light by a low-frequency modulation is
unfeasible in realistic optical waveguides if the phase veloc-
ities of the modulating wave and light have the same order,
vp ∼ v0, and, in particular, are equal to each other, vp = v0.
For a very small phase velocity vp, when the wave numbers of
light and modulating wave become comparable, ωp

vp
∼ ω0

v0
, the

eikonal approximation fails, but a regular perturbation theory
over the modulation amplitude of refractive index comes into
force. Using this theory, we show that the amplification effect
can significantly increase with a decrease in the phase velocity
of the modulating wave, vp. However, it still remains small
for realistic waveguides and feasible modulation methods.
In contrast, we demonstrate that light propagating forward
through an optical racetrack lithium niobate resonator with
potentially feasible characteristics can be significantly ampli-
fied by an acoustic wave. The developed theory is valid under
the assumption of sufficiently small power of light inside the
resonator introducing negligible nonlinear effects.

II. TRANSFORMATION AND AMPLIFICATION OF LIGHT
IN AN OPTICAL WAVEGUIDE IN THE EIKONAL

APPROXIMATION

In this section, we consider the propagation of an optical
wave along a dispersionless waveguide modulated by a low-
frequency traveling wave, illustrated in Fig. 1 in the eikonal
approximation. We assume that the input wave has the initial
phase velocity v0 and frequency ω0, while the modulating
traveling wave has the phase velocity vp and a much smaller
frequency ωp � ω0. The one-dimensional wave propagation
is described by the wave equation

(n2E )tt − c2Exx = 0, (1)

where the subindices denote partial derivatives and c is the
speed of light. The dependence of refractive index on time t
and coordinate x along the waveguide is set to

n(x, t ) = n0 + �n(x, t ),

�n(x, t ) =
{

iη0 + �np cos
(
ωp

(
t − x

vp

))
, 0 < x < L,

0, elsewhere.
(2)

The waveguide propagation loss α0 is expressed through
the imaginary part of the refractive index η0 introduced in this
equation as

α0 = η0ω0

c
. (3)

The boundary condition for the solution of Eq. (1) along
a waveguide (Fig. 1) is defined by the input wave with fre-
quency ω0 and phase velocity v0 = c/n0:

E (in)(x, t ) = exp

[
iω0

(
x

v0
− t

)]
, v0 = c

n0
, x < 0. (4)

We notice that even for a small modulation amplitude
�np � n0, solution of Eq. (1) by the perturbation theory
over �np is incorrect if the phase velocities vp and v0 are
close to each other so that |vp − v0|/v0 ∼ �np/n0 � 1. The
problem one faces here is similar to the small denominator
problem (see, e.g., Ref. [55]). Alternatively, the propagation
of waves in a medium, whose parameters are slowly varying in
space and time, can be described in the eikonal approximation
also known as the geometric optics approximation in electro-
magnetic theory [8,9,50,51] and the WKB and semiclassical
approximation in quantum mechanics [52,53].

A. Solution of the wave equation in the eikonal
(WKB) approximation

Application of the eikonal approximation requires that the
parameters of the optical waveguide vary slowly in both time
and space. Specifically, the frequency ωp and wave number
kp of the traveling wave should be small compared to the
frequency ω0 and wave number k0 of the input wave:

ωp � ω0, kp � k0,

k0 = ω0

v0
, kp = ωp

vp
. (5)

We also assume that the material waveguide loss η0 is
relatively small, η0 � n0. Then, the solution of Eq. (1) E (x, t )
in the region 0 < x < L can be found by the eikonal (semi-
classical) theory [50,51]. In this theory, the solution of Eq. (1)
is presented as E (x, t ) = exp(iS0(x, t )/ε)

∑∞
n=0 εnUn(x, t ),

where the small parameter ε = max(ωp/ω0, kp/k0) � 1 and
S(x, t ) = S0(x, t )/ε is the eikonal satisfying the equation
n2(x, t )S2

t − c2S2
x = 0. For the small modulation, �n0 � n0,

or, alternatively, for the modulation adiabatically switching on
near the coordinate x = 0 and off near x = L (the switching
region is not illustrated in Fig. 1), we can ignore the reflected
waves at x = 0 and x = L. Then, similar to calculations of
Ref. [8], we find the zero order in ε asymptotic solution of
Eq. (1) with the refractive index defined by Eq. (2) and the
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boundary condition of Eq. (4) (see Appendix A):

E (x, t ) = U0(x, t ) exp (iS(x, t )),

S(x, t ) = −ω0t̄ (ξ (x, t )),

U0(x, t ) = (1 + μ cos(ωpt̄ (ξ (x, t )))
√

1 + μδ cos(ωpt̄ (ξ (x, t ))(
1 + μ cos

(
ωp

(
t − x

vp

)))√
1 + μδ cos

(
ωp

(
t − x

vp

)) , (6)

t̄ (ξ ) = − 2

ωp
	

⎛
⎝

√
1 + μ

1 − μ
,

√
1 − μ2

2v0vp
(vp − v0)ωpξ

⎞
⎠, (7)

ξ (x, t ) = x − 2v0vp

ωp(vp − v0)
√

1 − μ2
	

⎛
⎝

√
1 − μ

1 + μ
,
ωp

2

(
t − x

vp

)⎞
⎠, (8)

μ = �np

n0δ
, δ =

(
1 − v0

vp
+ i

η0

n0

)
. (9)

Here, function 	(x, y) is the smooth continuation of
arctan(x · tan(y)) as a function of y [see Eq. (A12)].

It follows from Eqs. (6)–(9) that the field E (x, t ) is periodic
in time with the period 2π/ωp though may be aperiodic in
space. In the major calculations below, we ignore the factors
under the square roots in Eq. (6) since we always assume
that μδ = �np/n0 � 1. The behavior of solution E (x, t ) at
position x is characterized by the complex-valued (in the
presence of losses) synchronization parameter μ introduced
in Eq. (9). For small losses considered below, η0 � �np,
this parameter is the ratio of the relative modulation am-
plitude �np/n0 and the relative proximity of velocities of
the input wave and the modulating traveling wave, 1−v/vp.
Following Refs. [8,9], we call the modulation asynchronous
if |μ| < 1, call it completely asynchronous if |μ| � 1 (in
particular, call it instantaneous if vp = ∞), call it synchronous
if |μ| > 1, and call it completely synchronous if |μ| � 1 (in
particular, if vp = v). While the solution defined by Eqs. (6)–
(9) is quasiperiodic in space in the case of asynchronous
modulation, it can exponentially grow in space for syn-
chronous modulation.

B. The wave amplification effect in the absence of losses

Under the condition of negligible material losses, η0 = 0,
the synchronization parameter μ is real and there exist two
qualitatively different cases of the spatially unstable (|μ| > 1)
and spatially stable (|μ| < 1) solutions, corresponding to the
synchronous and the asynchronous cases introduced above.
Figure 2 presents the characteristic behavior of the normalized
field amplitude |U0(L, t )| at a fixed time t = 0 and time-
averaged normalized wave power, an average of the squared
amplitude U0(x, t ) defined by Eq. (6) over the time period
2π/ωp:

Pav(L) = ωp

2π

∫ 2π/ωp

0
U0(L, t )2dt . (10)

Figure 2(f) presents Pav(L) as a function of modula-
tion length L for different synchronization parameters μ.
In this figure, we consider the propagation of light along

the lithium niobate waveguide with refractive index n0 = 2.2
modulated with relative amplitude �np/n0 = 10−3. The input
light frequency and modulation frequency are set to ω0 =
2π × 193 THz and ωp = 2π × 100 GHz. These values and
the value of refractive index of the lithium niobate waveguide
n0 = 2.2 corresponding to the phase velocity of light v0 =
c
n0

= 1.364 × 108 m/s are assumed throughout the paper.
The purpose of so large modulation amplitude �np and fre-

quency ωp considered is to evaluate the largest possible effects
of modulation including the largest possible amplification.
To visually resolve the fine spatial oscillations of the wave
amplitude, Figs. 2(a)–2(e) show the behavior of |U0(L, 0)|
(blue frequently oscillating curves) and Pav(L) (bold curves
of different color) along the interval 0 < L < 0.25 m, while
Fig. 2(f) shows the behavior of Pav(L) over a longer interval
0 < L < 1 m. It is seen that for |μ| > 1 the wave amplitude
|U0(L, t )| oscillates and grows with L while its time-averaged
value grows exponentially. In contrast, for |μ| < 1, both
|U0(L, 0)| and Pav(L) remain, respectively, quasiperiodic and
periodic as a function of modulation length L.

It is also seen from Fig. 2(f) that, for the parameters con-
sidered, the dependencies of the wave amplitude |U0(L, 0)|
and the time-averaged power Pav(L) on L are similar for mod-
ulation lengths L < 0.1 m. Consequently, in this interval, the
proximity to the full synchronization condition vp = v does
not enhance the wave amplification, which is always small at
these modulation lengths.

C. The effect of losses

Material losses can significantly modify the behavior of
the propagating wave shown in Fig. 2. Here, we find the
effect of relatively small though practically feasible material
losses for an ideally dispersionless waveguide. We note that
the light propagation loss α0 [Eq. (3)] of a lithium niobate
waveguide can be as small as 0.2 dB/m [56,57] corresponding
to η0 ∼ 10−8 and commonly has the order of 10 dB/m or
greater [22,23]. In Fig. 3, we consider the effect of broadband
dispersionless material losses for the phase velocity rela-
tion vp = 1.0005v0. In this figure, the blue curves show the
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FIG. 2. The amplitude and time-averaged power of the output wave as a function of modulation length L for different synchronization
parameters μ corresponding to close phase velocities v and vp of the input light and modulation. (a)–(e) The amplitude (left vertical axes) and
normalized time-averaged power (right vertical axes) for modulation lengths 0 < L < 0.25 m. (a) |μ| = ∞, v = vp (completely synchronous
case); (b) |μ| = 2, v = 1.001vp (synchronous case); (c) |μ| = 1, v = 1.001vp; (d) |μ| = 0.5, v = 1.002vp (asynchronous case); and
(e) |μ| = 0.2, v = 1.005vp (asynchronous case). (f) Time-averaged power Pav(L) for modulation lengths 0 < L < 1 m for the relations
between v and vp of plots (a)–(e).

normalized wave power |U0(L, 0)|2 as a function of modula-
tion length at a fixed time, t = 0, the black curves show this
dependence for the unmodulated waveguide, �np = 0, and
the red curves are the dependencies of time-averaged wave
power Pav(L) on the modulation length L. We notice that the
relation vp = 1.0005v0 considered in Fig. 3 corresponds to
the synchronization parameter |μ| = 2 similar to that for the
relation v0 = 1.0005vp considered in Fig. 2(b). Consequently,
the behavior of the field power shown in Fig. 2(b) and the
corresponding time-averaged field power [orange curve in
Fig. 2(f)] is similar to those in Fig. 3(a) for η0 = 0. We find
that the effect of attenuation for η0 = 10−8 [Fig. 3(b)] is small
for modulation lengths L < 0.3 m and grows for larger L.

This effect is much stronger for η0 = 10−7 [Fig. 3(b)] and for
η0 = 10−6 [Fig. 3(c)].

D. Wave propagation and wave spectrum in the lossless
completely synchronous case vp = v0

Of special interest is the ideal lossless and completely
synchronous case when the phase velocities v and vp are
equal, vp = v0, illustrated in Figs. 2(a) and 2(f). For opti-
cal wave propagation, this case is also referred to as the
luminal case [16,17]. Then, the expressions for the solution
phase (eikonal) S(x, t ) and normalized amplitude U0(x, t ) are
simplified (see Appendix B):

E (x, t ) = U0(x, t ) exp (iS(x, t )),

S(x, t ) = 2ω

ωp
arctan

⎛
⎝ tanh

(�npωpx
2n0v0

) − tan
(ωp

2

(
t − x

v0

))
1 − tanh

(�npωpx
2n0v0

)
tan

(ωp

2

(
t − x

v0

))
⎞
⎠,

U0(x, t ) = 1

cosh
(�npωpx

n0
v0

) − sin
(
ωp

(
t − x

v0

))
sinh

(�nωpx
n0

v0
) . (11)
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FIG. 3. The transmission power and time-averaged power of the output wave as a function of modulation length L for different losses η0

in the synchronous case |μ| = 0.2, vp = 1.0005v. (a) η0 = 0. (b) η0 = 10−8n0. (c) η0 = 10−7n0. (d) η0 = 10−6n0.

Here, the expression for U0(x, t ) is derived under the
commonly satisfied condition �np/n0 � 1. For a relatively
small argument of cosh(· · ·) in the expression for U0(x, t )
in Eq. (11), x�npωp/n0v0 � 1 (weak amplification), the ex-
pansion of U0(x, t ) up to the second order in x�n0ωp/n0v0

coincides with that found in Ref. [16] where the case |μ| � 1
was considered (see below). From Eqs. (10) and (11), the
time-averaged wave power can be found analytically:

Pav(L) = cosh

(
�npωpL

c

)
. (12)
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This result coincides with that found for the exactly solv-
able problem of waveguides with constant impedance [8]. It
is seen from Fig. 2 that the completely synchronous condition
corresponds to the maximum wave power amplification. It
follows from Eq. (12) and is also seen in Fig. 2(f) that the
average amplification power grows exponentially with mod-
ulation length L if L � c/�npωp. For the optical waveguide
and modulation parameters indicated in Fig. 3, we have L ∼=
0.5 m. We find from Eq. (11) that for x � c/�npωp the am-
plitude U0(x, t ) becomes a fast function of the coordinate and
time if sin(ωp(t− x

vp
)) is close to unity. In the latter case, the

eikonal approximation may fail since its condition of validity
reads (see Appendix B)

ωp

ω0
� exp

(
−2�npωp

n0v0
x

)
. (13)

This condition is well satisfied for the parameters consid-
ered in our numerical modeling.

For a relatively small amplification length L � c/�npωp,
the spectrum of the output light is localized near the input
frequency ω0. Consequently, it is convenient to introduce the
spectrum centered at ω0 by the expansion

E (L, t ) =
∞∑

m=−∞
U (c)

m exp(−i(ω0 + mωp)t ), (14)

U (c)
m = ωp

2π

∫ 2π/ωp

0
E (L, t ) exp(i(ω0 + mωp)t )dt . (15)

For eikonal S(x, t ) and amplitude U0(x, t ), which are slow
functions of time, the integral for U (c)

n in Eq. (15) can be cal-
culated by the stationary phase method. Calculations detailed
in Appendix C show that the stationary points of this integral
exist only within the frequency band

ωB1(L) < ω < ωB2(L),

ωB1,2 = ω0

(
2 − exp

(
±�npωp

n0v0
L

))
(16)

with the bandwidth

�ωB = ωB2(L) − ωB2(L) = 2ω0 sinh

(
�npωp

n0v0
L

)
. (17)

Close to the edges of this band, the second derivative Sxx

tends to zero and the stationary phase method fails. The ab-
sence of the real stationary points of the integral in Eq. (15)
outside of this frequency band suggests that the position of
the spectral bandwidth of the solution given by Eq. (11) is
determined by Eqs. (16) and (17). This result is confirmed by
numerical calculations of the spectrum for different modula-
tion lengths L = 0.01, 0.05, 0.1, 0.2, and 0.5 m presented in
Fig. 4. For a relatively small modulation length L = 0.01 m,
the average field amplification is negligible, Pav(L) = 1.001,
and the spectral bandwidth is small compared to the in-
put light frequency, �νB = �ωB/2π = 18 THz � ω0/2π =
193 THz. At L = 0.05 and 0.1 m, the bandwidth �νB becomes
comparable to the input frequency, though the average am-
plification remains small. For larger modulation lengths xp,
the left-hand side bandwidth edge ωB1(L) becomes negative
and exponentially grows with L. Alternatively, for large L the
right-hand side edge ωB2(L) tends to 2ω0 and the output wave

spectrum localizes in the vicinity of 2ω0 as illustrated by the
spectrum of the output wave at L = 0.5 m in Fig. 4.

The feasibility of amplification of light by a synchronous
traveling wave can be better understood by comparing
Eqs. (12) and (17). From these equations, we find a simple
relation between the time-averaged normalized power and the
spectral bandwidth of the outgoing wave:

Pav(L) =
√

1 +
(

�ωB(L)

2ω0

)2

. (18)

Thus, significant time-averaged amplification is impossi-
ble if the spectrum bandwidth �ωB(L) is small compared to
the input frequency ω0. Equation (18) is derived under the
condition of dispersionless propagation, which, for realistic
optical waveguides, can be valid only within a relatively small
bandwidth �ωB. Since the transmission bandwidths of optical
materials are also relatively small, the significant amplifica-
tion of light in optical waveguides parametrically modulated
by a traveling wave is currently unfeasible.

E. Wave propagation and wave spectrum in a completely
asynchronous case |μ| � 1

In contrast to the amplification, the traveling wave modula-
tion with the phase velocity vp approaching the phase velocity
of light v0 is important for enhancing the performance of
broadband optical modulators and frequency comb genera-
tors [19–28]. The frequency comb bandwidth, which is close
to maximum possible for a given modulation length L and
amplitude �np, can be achieved without the accurate prox-
imity to the completely synchronous condition vp = v0 (i.e.,
satisfying the condition |μ| � 1 and even |μ| > 1) considered
in the previous section. Here, we demonstrate these results
considering the asynchronous case

|μ| = �npvp

n0

∣∣vp − v0

∣∣ � 1. (19)

Keeping the zero and the first order in |μ| and η0 terms
in the expression for the wave amplitude U0(x, t ) and phase
S(x, t ) given by Eqs. (6)–(9), we find

E (x, t ) = U0(x, t ) exp (iS(x, t )),

S(x, t ) = ω0

(
x

v0
− t

)
+ i

ω0η0

c
x + �p(x)

× cos

(
ωp

(
t − (v0 + vp)

2v0vp
x

))
,

U0(x, t ) = 1 − �p(x)
ωp

2ω0

(
v0

vp
− 3

)

× sin

(
ωp

(
t − (v0 + vp)

2v0vp
x

))
. (20)

In this equation, we introduce the modulation index �p(x)
that characterizes the effect of modulation on the propagation
of a wave along the modulation length L:

�p(L) = 2�npω0vp

n0ωp(v0 − vp)
sin

(
(v0 − vp)

2v0vp
ωpL

)
. (21)
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FIG. 4. Transmission spectra and time-averaged amplification power at the completely synchronous condition vp = v0 for different
modulation lengths L = 0.01, 0.05, 0.1, 0.2, and 0.5 m. Parameters of the input light, waveguide, and modulation are indicated at the
top of the figure.

The structure of the eikonal S(x, t ) in Eq. (20) resembles
the expressions known in the theory of optical modula-
tors [20,24]. In particular, it follows from this equation
that, in this case, the effect of material losses is de-
scribed by the factor exp(−ω0η0x/c), which is the same
as for the stationary (unmodulated) wave propagation. For
the case of instantaneous modulation, vp = ∞, Eq. (21)

coincides with that for the absolute value of modula-
tion index found in Ref. [58]. The expression for the
normalized amplitude U0(x, t ) in Eq. (20) shows that its de-
viations from unity are commonly small due to the factor
ωp/ω0 � 1. It also follows from this expression that the
first order in modulation amplitude �np term in the time-
averaged power Pav(x) defined by Eq. (10) vanishes. Taking
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into account the second order in �np (more precisely—in μ)
term, we find

Pav(L) ∼= 1 − 2ω0η0

c
x + (v0 − 2vp)(v0 − 3vp)

v2
p

(
�p(L)

ωp

ω0

)2

= 1 − 2ω0η0

c
L + �n2

0

4n2
0

(v0 − 2vp)(v0 − 3vp)

(v0 − vp)2

× sin2

(
v0 − vp

2v0vp
ωpL

)
. (22)

This equation shows that, close to the completely
synchronous condition v0 = vp or, more precisely, for
|v0 − vp| � v0 and modulation lengths satisfying the inequal-
ity

L � Ls = 2v0vp

ωp|v0 − vp| , (23)

the modulation leads to a small wave amplification equal to

Pav(L)|L<<Ls
∼= 1 − 2ω0η0

c
L + �n2

0ω
2
p

2c2
L2. (24)

Unexpectedly, for zero losses, η0 = 0, this result co-
incides with that given by Eq. (12) for �n0ωpL/c � 1.
This result is also similar to that found in Ref. [16] under
the same assumption |μ| � 1. From Eq. (24), the modula-
tion length leading to the noticeable amplification of light
can be estimated as La = c/(�n0ωp). For the parameters
considered here, ωp ∼ 2π × 100 GHz, n0 = 2.2, �n0/n0 ∼
10−3, we have La ∼ 20 cm. Equation (22) shows that Pav(L)
vanishes if the relation between phase velocities is close to
v0 = 2vp and v0 = 3vp. Alternatively, modulation leads to the
wave attenuation if 2vp < v0 < 3vp. It follows from Eq. (22)
that amplification is always small outside the vicinity where
|v0 − vp|/vp � 1. This result is also evident from the solu-
tions given by Eqs. (6)–(9) for |μ| � 1 and �np/n0 � 1.
Equation (22) will be used below to discuss the relation be-
tween the possible amplification and the required transmission
bandwidth.

The characteristic dependencies of �p(L) as a function
of the ratio vp/v at different modulation lengths, L = 0.05,
0.68, 4.77, and 49.8 mm, are shown in Fig. 5. In this fig-
ure, we again assume that the waveguide refractive index
is that of lithium niobate, n0 = 2.2, the relative amplitude
of refractive index modulation is �np/n0 = 10−3, and the
light and modulation frequencies are ω0 = 2π × 193 THz
and ωp = 2π × 100 GHz. Due to the periodic dependence of
�p(L), the values of L in Fig. 5 correspond to the maxima
of �p(L) nearest to the lengths L = 0.05, 0.5, 5, and 50 mm
at vp = ∞. From Eq. (21), these maxima are situated at the
periodic sequence of modulation lengths L = πv0

ωp
(2N + 1),

N = 0, 1, 2, . . .. It is seen from the plots of Fig. 5 that,
while the modulation index for the completely synchronous
modulation (v = vp) and instantaneous modulation (vp = ∞)
are close to each other for the small modulation length L �
0.1 mm, the modulation index becomes much greater for
larger modulation lengths at vp approaching v. Due to the
condition of Eq. (19), the synchronous case, and in particu-
lar, the exact equality v = vp is excluded in the considered
approximation. However, as follows from Eq. (19), the plots

in Fig. 5 are accurate everywhere except for a relatively small
vicinity of the completely synchronous coordinate vp/v = 1,
where |vp/v0 − 1| ∼ �np/n0 = 10−3. Therefore, these plots
are reasonably accurate for all vp/v0. Assuming that the mod-
ulation length L is sufficiently small as defined by Eq. (23), or
that vp/v0 → 1, we simplify Eq. (21) for �p(L) to

�p(L)|L<<Ls
= �npω0

c
L. (25)

From this equation, the maximum of modulation index at
v0

∼= vp grows linearly with the modulation length L. Indeed,
Fig. 5 shows that the modulation index can be dramatically
increased for large L if the phase velocity of the traveling wave
is sufficiently close to the phase velocity of light.

While, for realistic waveguides, the substantial amplifica-
tion of light is unfeasible, the modulation index �p(L) defined
by Eq. (21) can significantly exceed unity and lead to the
creation of a relatively broadband comb spectrum near the
synchronous condition vp = v0 [see Figs. 5(c) and 5(d)]. To
determine the spectrum of the output wave for |μ| � 1, we
rewrite Eq. (20) as

E (x, t ) = exp

[
iω0

(
x

v0
− t

)
− ω0η0

c
x + i�p(x)

× cos

(
ωp

(
t − v0 + vp

2v0vp
x

)
− iGp

)]
. (26)

Here, we introduce a small parameter

Gp = ωp

2ω0

(
v0

vp
− 3

)
,

∣∣Gp

∣∣ � 1. (27)

We note that |Gp| � 1 due to Eq. (5). Applying the Jacobi-
Unger expansion to Eq. (26), we find

E (L, t ) =
∞∑

m=−∞
U (c)

m exp[−i(ω0 + mωp)t],

U (c)
m = Jm(�p(L)) exp

[
−ω0η0

v0
L − iπm

2
+iω0

L

v0

+ iωp
v0 + vp

2v0vp
Lm − Gpm

]
. (28)

To estimate the maximum possible amplitude of conver-
sion ω0 → ω0 + mωp, we note that, while the maximum
argument of the Bessel function in Eq. (28) can be large,
z = �p(L) � 1, the maximum of |Jm(z)| is always smaller
than 2−1/2 [59]. For |m| � 1, the |Jm(z)| maximum is defined
by its asymptotics equal to 0.674|m|−1/3 [59], i.e., vanishes
very slowly. This maximum is achieved at z ∼= |m|, while
|Jm(z)| rapidly vanishes for |z| > |m|. Thus, the frequency
comb bandwidth of E (xp, t ) is determined from Eq. (28) as

�ωB(L) = 2ωp|�p(L)|, (29)

and the amplification of a comb line is determined from
Eqs. (27) and (28) by the factor

Fm = exp(−mGp) = exp

[
−m

ωp

2ω0

(
v0

vp
− 3

)]
. (30)

Since in the approximation considered |Gp| � 1, the factor
Fm can be large only for sufficiently large negative comb
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FIG. 5. Modulation index �p as a function of the ratio vp/v0 at different modulation lengths, (a) L = 0.05 mm, (b) L = 0.68 mm, (c)
L = 4.77 mm, and (d) L = 49.8 mm, for the lithium niobate waveguide. The light and modulation parameters are shown at the top of the
figure.

line numbers m. From Eqs. (29) and (30), we find that the
maximum possible amplification takes place for the maxi-
mum absolute value of negative m = −|�p(L)| within this
bandwidth. Then, we find from Eq. (21) for �p(L) that the
amplification effect defined by Fm is always small away from
the synchronous condition, confirming the general result di-
rectly following from Eq. (22).

As noted above, proximity to the completely synchronous
condition vp = v0 can significantly increase the modulation
index (up to the values of ∼40 and ∼400 for the lithium nio-
bate waveguide with L ∼= 5 mm and L ∼= 50 mm, respectively;
see Fig. 5) and as follows from Eq. (29) can increase the
frequency comb bandwidth �ωp proportionally. A dramatic
enhancement of the spectral bandwidth generated by a trav-
eling wave having the phase velocity close to v0 though still
for |μ| � 1, as compared to the bandwidth generated by the
instantaneous modulation with vp = ∞ and reverse modula-
tion with the reverse sign of vp, is evidenced from Fig. 6.
The reason for the enhancement is a much greater value of

the modulation index of a traveling wave having vp
∼= v0. The

parameters of light, waveguide, and modulation, which are
similar to the parameters considered in our previous examples,
are indicated at the top of this figure. For the waveguide
with these parameters, the value of �p(L) reaches 81 at
L = 14.3 mm [Fig. 6(a)] at vp = 1.05v, though it remains
much smaller for the instantaneous and reverse modulations
when vp = ∞ and vp = −1.05v0, respectively. Figure 7(b)
shows the dependences of the reduced eikonal, S(L, 0) −
ω0L/v0, on the modulation length for the same phase ve-
locity relations as well as for the completely synchronous
case vp = v0. It is seen that the oscillation amplitude of
the eikonal as a function of modulation length is propor-
tional to the local modulation index, as directly follows
from Eq. (21). Figures 7(c)–7(e) compare the frequency
comb spectra of solutions for (c) vp = 1.05v0, (d) vp =
∞, and (e) vp = −1.05v for different modulation lengths
L indicated in plot (b) of Fig. 6. It is seen that, in ac-
cordance with Eq. (29), the generated frequency comb
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FIG. 6. (a) Dependence of the modulation index �p(L) on the modulation length L for close phase velocities, vp = 1.05v, in the
asynchronous case |μ| = 0.02 (light blue curve), for the instantaneous modulation, vp = ∞ (blue curve), and for the reverse modulation
vp = −1.05v0 (black curve). (b) Dependences of the reduced eikonal, S(L, 0) − ω0L/v0, on the modulation length L for the completely
synchronous modulation, vp = v0 (dimmed light blue curve), vp = 1.05v0 (light blue curve), vp = ∞ (blue curve), and vp = −1.05v0 (black
curve). The transmission amplitudes for (c) vp = 1.05v0, (d) vp = ∞, and (e) vp = −1.05v0 for different modulation lengths L indicated in
the plots of this figure.
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FIG. 7. An optical waveguide with the refractive index modulated by a traveling wave fully attenuating within the interval (0, L).

bandwidth is proportional to the value of the correspond-
ing modulation index shown in Fig. 6(a). We note that the
dramatic reduction of the modulation effect of the reverse vs
the direct modulation manifests the strong nonreciprocity of
the considered device.

In contrast to the optical frequency comb bandwidth,
the total amplification of light induced by modulation re-
mains small for �ωB(L) � ω0. Indeed, comparing Eqs. (29)
and (22), we find

Pav(L) ∼= 1 − 2ω0η0

c
L + (v0 − 2vp)(v0 − 3vp)

v2
p

(
�ωB(L)

4ω0

)2

.

(31)
In particular, close to the completely synchronous condi-

tion vp = v0,

Pav(L)|vp→v0
= 1 − 2ωη0

c
L + 1

8

(
�ωB(L)

ω0

)2

. (32)

Remarkably, this equation coincides with Eq. (18) for a
relatively small bandwidth �ωB � ω0. Assuming that veloc-
ities v0 and vp are of the same order, we find from Eq. (31)
that, similar to the completely synchronous case described
by Eq. (18), significant amplification of light is impossible
in realistic waveguides, which always have �ωB � ω0. How-
ever, the situation for small traveling wave velocities vp � v0

cannot be clarified from Eq. (31) due to the restriction of
the eikonal approximation, vp � v0 ωp/ω0 following from
Eq. (5). The latter restriction will be removed in the following
section.

III. THE PERTURBATION THEORY APPROACH

The eikonal approximation used above does not allow us
to consider sufficiently small values of vp since, according
to Eq. (5), the condition of slowness of modulation in space
restricts these values to vp � ωpv0/ω0. However, we will
show in Sec. IV that the case of comparable ωp/vp ∼ ω0/v0 is
important to arrive at the strong amplification of light in an op-
tical resonator. We find from Eq. (21) that for ωp/vp ∼ ω0/v0

and ωp � ω0 the modulation index |�p(L)| ∼ �np/n0 � 1.
Under the latter condition, the restriction ωp/vp � ω0/v0 can
be withdrawn and solution of the wave equation, Eq. (1), can
be found by the regular perturbation theory.

Having in mind modulation by acoustic traveling waves,
which for a relatively large interdigital transducer (IDT) tilt
angle θ [see Fig. 1(c)] may strongly attenuate in space [60,61],
we consider now the refractive index in Eq. (1) in the form
(Fig. 7)

n(x, t ) = n0 + �n(x, t ),

�n(x, t ) = iη0 + �np cos

(
ωp

(
t − x

vp

))
exp(−αpx).

(33)

Here, αp defines the attenuation of the modulating wave.
In the first order over �np/n0 and η0/n0, the solution of
Eq. (1) with the boundary condition

E (0)(x, t ) = exp

(
iω0

(
x

v0
− t

))
(34)

is found as

E (x, t ) = E (0)(x, t )(1 + �Up(x, t )), (35)

where |�Up(x, t )| � 1. Under the latter condition, it is con-
venient to present this solution in the form similar to that
in Eq. (26) using 1 + �Up(x, t ) ∼= exp(�Up(x, t )). Then, the
calculations detailed in Appendix D yield

E (x, t ) = E (0)(x, t ) exp

(
−η0

ω0x

c
+ i�̃p(x)

× cos

(
ωp

(
t − v0 + vp

2v0vp
x

)
− iG̃p(x)

))
, (36)

�̃p(x) = −2i
√

�U +�U −W +(x)W −(x),

G̃p(x) = 1

2
ln

(
�U −W −(x)

�U +W +(x)

)
, (37)

where

W ±(x) = sin

(
±v0 − vp

2v0vp
ωpx + iαp

2
x

)
exp

(
−αp

2
x
)
, (38)

�U ± = �npv
2
p(ω0 ± ωp)2

n0[±ωp(v0 − vp) + iαpv0vp][2ω0vp ± ωp(v0 + vp) + iαpv0vp]
. (39)
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FIG. 8. An optical racetrack resonator with the refractive index
modulated by a traveling wave along the interval (0, L). (a) Uniform
modulation. (b) Attenuating modulation.

This solution is valid only if |�Up(x, t )| � 1 or

|�U ±| � 1. (40)

Obviously, in contrast to the eikonal approximation, the
solution described by Eqs. (36)–(39) includes transitions with
acquisition or loss of a single frequency ωp only. This solution
includes a backward propagating wave if the wave number
kp of the traveling wave is larger than the wave number
k0 of the input wave, while the perturbed wave is forward
propagating in the opposite case, kp < k0 (see Appendix D).
Here, we restrict our consideration to the forward propagation
case, kp < k0, and chose the solution so that it vanishes at
the starting point of modulation, x = 0, �Up(0, t ) = 0. The
important case kp > k0 including Brillouin backscattering will
be considered elsewhere [62]. At zero attenuation, αp = 0,
under the conditions of Eqs. (5) and (40), the determined
solution coincides with that given by Eq. (26). In particular,
�̃p(L) coincides with �p(L) and G̃p(L) coincides with Gp.

IV. TRANSFORMATION AND AMPLIFICATION
OF LIGHT BY AN OPTICAL RESONATOR

We consider now a closed optical waveguide with length
2L forming a racetrack resonator that is coupled to an input-
output waveguide as illustrated in Fig. 8. We assume that the
modulation is described by Eq. (1) with the refractive index

defined by Eq. (2) (Sec. IV A) and by Eq. (33) (Sec. IV B)
and takes place along the length L of the resonator waveguide.
The monochromatic input light in the input-output waveguide
near position x = x0 in front of the coupling region is set
to Ein(x, t ) = exp(iω0(x/v0 − t )). As noted above, here we
consider only the case of forward propagating optical waves,
i.e., assume that kp < k0 and modulation does not introduce
backward propagation of light. In addition, we assume that the
input light power is small enough so that the nonlinear effects
caused by the resonance propagation of light in the resonator
are negligible. Then, using the transfer matrix approach (see,
e.g., Ref. [63]), we find the output light field Eout (t ) from the
equation(

Eout (t )
E (x0, t )

)
= S

(
Ein(t )

E (2L + x0, t )

)
, S =

(
τ κ

−κ τ

)
, (46)

where matrix S is the unitary S matrix, so that τ 2 + κ2 = 1.
In this equation, the coordinates x = 2L + x0 and x = x0 de-
fine the beginning and the end of the coupling region and the
S-matrix parameters κ and τ determine the coupling between
the input-output waveguide and resonator (Fig. 8).

A. The eikonal approximation

In our calculations, we follow the approach of Ref. [58]
where the determination of the output wave Eout (t ) was re-
duced to the solution of a functional equation. For modulation
without attenuation [Fig. 8(a)], using Eq. (20) we find

E (x0, t ) = exp (−iωt )�(t ), (47)

E (2L + x0, t ) = exp (−iωt )A(t )�(t − T ), T = 2L

v0
,

(48)

A(t ) = exp

[
iω0T − η0

n0
ω0T + i�p(L)

× cos

(
ωp

(
t − (v0 + vp)

2v0vp
L − iGp

))]
. (49)

Here, T is the roundtrip circulation time. Equations (46)–
(49) lead to the functional equation for the arbitrary function
�(t ):

�(t ) = τA(t )�(t − T ) − κ, (50)

which can be solved exactly [58]. As a result, in full analogy
with calculations of Ref. [58] (see Appendixes B and C of
Ref. [58]), the comb spectral amplitudes U (c)

m of Eout (t ) are
found from the expansion

Eout (t ) =
∞∑

m=−∞
U (c)

m exp[−i(ω0 + mωp)t], U (c)
m = τδ0m − κ2 exp

[
im

(
−π

2
+ ωpT

2
+ ωp

(
v0 + vp

)
2v0vp

L + iGp

)]

×
∞∑

n=0

τ nJm(σn+1�p(L)) exp

[
(n + 1)

(
im

2
ωpT + iω0T − η0

n0
ω0T

)]
,

σn = sin
(

n
2ωpT

)
sin

(
1
2ωpT

) , Gp = ωp

2ω0

(
v0

vp
− 3

)
, (51)
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where δnm is the Kronecker delta and the amplification param-
eter Gp is the same as in Eq. (27). The total time-averaged
output power is calculated from this equation as

P(out)
av =

∞∑
m=−∞

∣∣U (c)
m

∣∣2
. (52)

In our further calculations, we assume that the coupling
between the input-output and resonator waveguides κ is small
so that τ ∼= 1 − κ2/2 and, in Eq. (51), τ n ∼= exp(−nκ2/2).
Under this assumption, the microresonator Q factor found
from Eq. (51) is

Q = 1

2

(
η0

n0
+ κ2

2ω0T

)−1

(53)

and its intrinsic Q factor is Qint = n0/(2η0).
Similar to Eq. (28), which describes the nonresonant

propagation, the difference of the expressions for the spec-
tral amplitudes U (c)

m determined here for the traveling wave
modulation compared to those previously found for the in-
stantaneous modulation [58] consists in a different expression
for the modulation index �p(L) defined now by Eq. (21), the
additional phase factor exp(−imωp(vp + v0)L/(2v0vp)), and
amplification factor Fm defined by Eq. (30). Now, in contrast
to the nonresonant propagation, the factor Fm can be large
for a sufficiently small traveling wave phase velocity vp and
large negative comb line numbers m. Therefore, this factor
can significantly increase the total output power as well as the
power of individual frequency comb lines.

The maximum amplitude and bandwidth of the output
wave spectrum defined by Eq. (51) are achieved at the ex-
act optical and modulation resonances, ω0 = ω

(res)
0,N0

and ωp =
ω

(res)
p,Np

, determined, respectively, by equations

ω
(res)
0,N0

T = 2πN0, N0 � 1, integer (54)

and

ω
(res)
p,Np

T = 2πNp, Np= 1, 2,.... (55)

It follows from the expression for U (c)
m in Eq. (51) that the

deviation of the modulation frequency from this resonance
condition,

�ωp = ω
(res)
p,Np

− 2πNp

T
, (56)

will reduce the magnitude of U (c)
m . Indeed, the reduction

grows with the frequency comb number m due to the term
i(n + 1)mωpT /2 in the exponent of the sum over n. This
result, illustrated in Fig. 5(b) of Ref. [64] for the instantaneous
modulation (vp = ∞), suggests that choosing an appropri-
ate offset �ωp we can appropriately shrink the transmission
bandwidth �ωB of the resonator.

The effect of the modulation frequency offset �ωp on
the transmission bandwidth and light amplification is il-
lustrated in Fig. 9. In this figure, we again assume that
the waveguide refractive index is that of lithium niobate,
n0 = 2.2, and set the light and modulation frequencies equal
to ω0 = 2π × 193 THz and ωp = 2π × 30 GHz, the ampli-
tude of refractive index modulation equal to �np = 5 × 10−4,
and waveguide loss equal to 2α0 = 0.2 dB/m (the smallest

value demonstrated to date [56]). It is seen from Fig. 9(a) that,
for the synchronous modulation when vp = v0, significant
offset values �ωp ∼ 2π × 10 MHz are required to confine
the output light within the bandwidth ∼10 THz. Comparison
of Figs. 9(a) and 10(b) shows that increasing the offset �ωp

allows one to decrease the bandwidth proportionally to �ω−1
p .

However, no significant growth of the optical frequency am-
plitudes with shrinking the bandwidth is observed. In contrast,
in agreement with Ref. [64], Figs. 9(b) and 9(c) show that,
for the instantaneous modulation, vp = ∞, these amplitudes
significantly grow with �ωp and, consequently, with the re-
duction of the optical comb bandwidth. Figures 9(e) and 10(f)
consider the case of a relatively small phase velocity of the
modulation wave, vp = 0.002v0. In this case, the effect of
the amplification factor Fm = exp(−mGp), where Gp grows
proportionally to v0/vp [see Eqs. (30) and (51)], becomes
significant and shows up in the negative tilting of the comb
spectrum. However, the validity of the eikonal approximation
used, vp

v0
� ωp

ω0
= 1.5 × 10−4 [Eq. (5)], does not allow us to

consider smaller modulation wave velocities. In Sec. IV B,
we will overcome this limitation using the perturbation theory
approach developed in Sec. III.

B. The perturbation theory approach

The eikonal approximation used in Sec. IV A does not
allow us to consider sufficiently small values of vp since,
according to Eq. (5), the condition of slowness of modulation
in space restricts these values to vp � ωpv0/ω0. Remarkably,
the latter restriction can be withdrawn for the parameters of
our interest. Indeed, as shown in Sec. IV A, the value of the
modulation index �p(L) required to arrive at the substantial
effect of the amplification factor Fm = exp(−mGp) is small,
|�p(L)| � 1. Then, the solution of the wave equation, Eq. (1),
can be found by the regular perturbation theory developed in
Sec. III rather than by the eikonal approximation.

Here, we restrict our consideration to the forward wave
propagation, assuming kp < k0, while the qualitatively differ-
ent case including backward propagation and, in particular,
Brillouin scattering will be considered elsewhere [62]. Then,
using the solution of the wave equation determined in Sec. III
for modulation with attenuation [Fig. 8(b)], we determine the
output amplitude Eout (t ) following Eqs. (46)–(48) where the
expression for function A(t ) is now modified to

A(t ) = exp

[
iω0T − η0

n0
ω0T + i�̃p(L) cos(ωpt + iG̃p(L))

]
.

(57)

Here, functions �̃p(L) and G̃(L) are defined by Eqs. (37)–
(39). It is now straightforward to determine the output
transmission amplitude Eout (t ) by comparing the expressions
for A(t ) in Eqs. (49) and (57). It follows from this comparison
that the comb spectral amplitudes U (c)

m of Eout (t ) can be found
from Eq. (51) after the substitutions:

�p(L) → �̃p(L), iGp → iG̃p(L). (58)

Figure 10 shows the frequency comb spectra of a racetrack
lithium niobate resonator with parameters indicated in the
table at the top of this figure. Compared to Fig. 9, here we
consider a much smaller phase velocity of the modulating
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FIG. 9. The resonant transmission power spectra for a racetrack resonator. The system parameters are indicated at the top of the figure.
Plots (a)–(f) correspond to different relations between the velocity of light v0 and traveling wave velocity vp: (a), (b) vp = v0; (c), (d) vp = ∞;
and (e), (f) vp = 0.002v0. The right-hand side plots vs the left-hand side plots demonstrate the shrinking of the transmission with the deviation
�ωp from the exact modulation resonance condition.
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FIG. 10. The resonant transmission power spectra for a racetrack resonator. The values of the system parameters of panel (a) are indicated
in the table at the top of this figure. In plots (b)–(e), one parameter value from this table (�np, ωp, αp, or 2α0) is changed. The updated
value of this parameter is indicated at the top of each plot, followed by the table showing the updated modulation frequency offset �ωp and
parameters whose values are changed accordingly. In plot (f), two parameters are changed (ωp and 2α0).
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wave, vp = 0.0002v0, so that, for the considered modulation
frequency ωp = 2π × 30 GHz, we have kp = 0.772k0. For
this relation between the propagation constants, the eikonal
approximation fails, while the optical propagation remains
forward since kp < k0. The modulation frequency offsets �ωp

in the plot of Fig. 10(a) are chosen so that the bandwidth of
the generated spectrum is �ωB/2π ∼= 2.5 THz. To optimize
the amplification effect, we slightly modified the coupling
coefficient to κ = 0.0055 compared to κ = 0.005 in Fig. 9.
Then, as shown in Fig. 10(a), for the modulation ampli-
tude �np = 5 × 10−4 (the same as in Fig. 9), we choose
�ωp/2π = 0.015 MHz to arrive at the total amplification of
Pav = 32.4 dB. For a smaller modulation amplitude �np =
3 × 10−4, we choose �ωp/2π = 0.01 MHz to arrive at the
total amplification of Pav = 7.6 dB [Fig. 10(b)]. Reduction of
the modulation frequency to ωp = 2π × 20 GHz and keeping
the same relation between the propagation constants, kp =
0.772k0, results in Pav = 10.2 dB [Fig. 10(c)]. In this case,
the output comb bandwidth is reduced to �ωB/2π ∼= 1 THz.
Figures 10(d) and 10(e) show that increasing the modula-
tion wave amplitude attenuation from zero to αp = 20 dB/cm
and the waveguide loss from 2α0 = 0.2 dB/m [assumed in
Figs. 9 and 10(a)–10(c)] to 2α0 = 0.3 dB/m results in the re-
duction of amplification to Pav = 11.2 dB and Pav = 10.5 dB,
respectively. Finally, Fig. 10(f) shows that the amplification
effect vanishes when the waveguide loss is below 2α0 =
0.3 dB/m and, simultaneously, modulation frequency is below
ωp = 2π × 20 GHz. In the latter case, further decreasing the
modulation frequency offset did not allow us to arrive at a
significant amplification of light within the considered band-
width �ωB/2π ∼ 3 THz.

V. EXPERIMENTAL CHALLENGES

Current progress in the research and development of
lithium niobate optical microresonators with exception-
ally small losses [56,57,65] and eigenfrequency disper-
sion [66,67], as well as in the design of microscopic
RF electromagnetic and acoustic traveling wave genera-
tors [61,68–73], suggests that the system parameters required
for the substantial amplification of light by electromagnetic
and acoustic waves with dramatically smaller frequencies are
potentially feasible. In this section, we compare the microres-
onator and modulation parameters considered in Sec. IV with
those experimentally achievable.

Waveguide propagation loss. The condition of amplifica-
tion demonstrated in Sec. IV B imposes a significant upper
bound on the waveguide propagation loss of an optical res-
onator. This restriction can be relaxed by decreasing the ratio
of phase velocities vp/v0 and increasing the modulation am-
plitude �np. The phase velocity considered in Sec. IV B is
vp = 0.0002v0

∼= 27 280 m/s, while the modulation frequency
and amplitude are ωp = 2π × 30 GHz and �np = 5 × 10−4.
Practically, it is challenging to achieve so large modulation
frequency and amplitude simultaneously. Here, these values
were chosen to arrive at the smallest practically achiev-
able waveguide loss of 0.2 dB/m required for the substantial
amplification of light [see Fig. 10(a)]. A lithium niobate
resonator with dramatically small waveguide loss 0.34 dB/m
approaching the bulk material loss was demonstrated recently

by chemomechanical waveguide polishing in Ref. [57]. The
waveguide loss as small as 0.2 dB/m was demonstrated in
Ref. [56] by postfabrication annealing in oxygen atmosphere.
Thus, the waveguides with losses required to experimentally
realize the amplification with parameters of the transmission
spectrum shown in Fig. 10 have been experimentally demon-
strated.

Resonator eigenfrequency dispersion. The waveguide dis-
persion can be optimized to arrive at the smallest possible
eigenfrequency dispersion. In contrast to the optimization for
the optical frequency comb spectrum generated by optical
microresonators commonly targeted at the largest possible
bandwidth [28,67], here we are interested in the accurate
minimization of dispersion along a finite bandwidth �ωB.
In Sec. IV B, we have �ωB

∼= 2 THz. The eigenfrequency
dispersion of microresonators is characterized by the de-
viation from linear dependence δω(�ω) = ωm − ω0 − mωp

of their spectral series ωm. Here, �ω is the continuous
extrapolation of mωp and m = int(�ω/ωp) (see, e.g.,
Refs. [66,67]). For the light frequency ω0 in the vicinity of
the δω(�ω) minimum, the amplification power will approach
the values determined above in Sec. IV B if δω(�ωB) is much
smaller than the resonance width �ωres = ω0/Q, where the
quality factor Q is determined by Eq. (53), |δω(�ωB)| �
�ωres. For the microresonator and modulation parameters
leading to the amplification with the transmission spectra
of Fig. 9, we have Q ∼ 108 and resonance width �ωres ∼
2 MHz. The value of deviation δω(�ωB) achieved in Ref. [66]
for lithium niobate and in Ref. [67] for silicon nitride mi-
croresonators is smaller than 10 MHz over the bandwidth
�ωB = 0.8 THz and much smaller than 10 MHz over the
bandwidth �ωB = 0.4 THz. The dispersion required to realize
the amplification effect described in Fig. 10 is an order of
magnitude smaller. We suggest that microresonators with such
a dispersion are potentially feasible.

Modulation methods. Different approaches have been
developed for the effective optical waveguide modulation
illustrated in Fig. 11 (see Refs. [19–28,61,67,69–73] and
references therein). The simplest design is represented by a
spatially uniform capacitor, which can generate instantaneous
modulation �npcos(ωpt ) corresponding to vp = ∞ [37,73]
[Fig. 11(a)]. A traveling wave refractive index modulation
�n0cos(ωp(t−x/vp)) can also be introduced by an RF wave
propagating parallel to the optical waveguide [19–21,74]
[Fig. 11(b)]. This approach is beneficial for the modulation
of photonic circuits with a traveling wave having the phase
velocity vp comparable or equal to the phase velocity of
light v0. For a relatively small traveling wave phase veloc-
ity, vp � v0, the surface acoustic waves (SAWs) and bulk
acoustic waves generated by an IDT can be used [34,70–
72] [Fig. 11(c)]. SAWs modulate the refractive index of an
optical waveguide through the elasto-optic effect. An IDT
tilted with respect to an optical waveguide by angle θ gen-
erates SAW propagating along the waveguide with the phase
velocity vp = vsound/sin(θ ), where vsound is the speed of sound
in the material. Thus, any traveling wave velocity vp ex-
ceeding vsound can be introduced. The characteristic refractive
index variation induced by SAWs generated by an IDT in
lithium niobate is estimated as �np ∼ 1

2 n3
0(r33 − p33d33)V/w,

where V is the voltage applied to the IDT, w is the IDT
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FIG. 11. Illustration of approaches to modulate the refractive index of an optical waveguide: (a) using a uniform capacitor; (b) using an RF
waveguide; (c) using a tilted IDT; AND (d) using two phase-shifted IDT-shaped electrodes.

finger separation, and we set the electro-optic coefficient
r33 = 30 pm/V, the photoelastic coefficient p33 = 0.1, and the
piezoelectric coefficient d33 = 6 pm/V. Assuming V/w ∼ 1–
10 V/µm, we find �np ∼ 10−4 to 10−3 at the IDT position.
Assuming that the IDT tilt angle θ and, thus, the SAW
attenuation is small enough, we suggest that the modula-
tion amplitude required for realization of amplification effect
demonstrated in Fig. 10 is potentially feasible.

In a more general case, an advanced design of the modula-
tors based on elasto-optic and electro-optic effects is required
to arrive at the phase velocity, frequency, and spatial distribu-
tion of modulation. A single tilted IDT generating a traveling
wave with velocity vp � v0 may be insufficient to generate
the amplification of light due to the rapid SAW attenuation
in space. However, a combination of in-phase tilted IDTs dis-
tributed along the optical waveguide and generating properly
aligned SAWs may solve the problem. Alternatively, modu-
lation of refractive index of an optical waveguide through a
combination of bulk acoustic wave and Pockels electro-optic
effects can be introduced by the IDT-type RF waveguides
spatially modulated with the period d and aligned along
the optical waveguide [Fig. 11(d)]. In this design, one RF
waveguide introduces the optical waveguide’s refractive in-
dex modulation equal to �n0cos(ωp(t−x/vp0))cos(2πx/d ).
In turn, another RF waveguide introduced modulation
�n0sin(ωp(t−x/vp0))sin(2πx/d ), which is phase shifted in
time from the first one by π/2. The superposition of these
modulations yields the traveling wave �n0cos(ωp(x/vp − t ))

with the phase velocity vp = ( 2π
dωp

+ 1
vp0

)
−1

, which can be
small for a small IDT period d . For example, for the case
considered in Sec. IV B and vp0 � v0, we have d =
2πvp/ωp

∼= 1 µm. Realization of such complex modulation

structures is challenging since their proximity to the optical
waveguide leading to the enhancement of modulation ampli-
tude should be compromised with their effect on the optical
waveguide loss.

Suppression of nonlinear effects. A critical requirement for
maximizing the resonator Q factor is the suppression of the
nonlinear effects leading to the attenuation of light at the input
frequency ω0. It has been shown in Ref. [57] that the exper-
imentally observed Q factor ∼108 in an LN ring resonator is
not affected by nonlinear effects if the inter-resonator light
power is ∼1 mW or smaller. Then, for the cases considered in
Fig. 10 with coupling coefficient κ = 0.0055 and ∼20 dB am-
plification, the output power will not exceed ∼10 nW, while
the input light power has to be as small as 0.1 nW.

VI. DISCUSSION

We investigated the propagation of light with frequency
ω0 through optical waveguides and racetrack resonators mod-
ulated by a traveling wave with relatively small frequency
ωp � ω0 using the eikonal (semiclassical, WKB) approxima-
tion [9,51,52] (Secs. II and IV A) and a regular perturbation
theory (Secs. III and IV B).

Section II was dedicated to the analysis of propagation of
light in ideally dispersionless waveguides under the modula-
tion of a traveling wave with a spatially uniform amplitude.
We derived a general eikonal expression for the transmis-
sion amplitude similar to that derived several decades ago
in application to the propagation of electromagnetic waves
in transmission lines [8,9]. Consequently, most of the results
presented in this section either resemble or complement the
previously known results being now applied to the propaga-
tion of light. In particular, we showed that the effect of the
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traveling wave modulation can be significantly enhanced if
modulation takes place along a sufficiently large waveguide
length L and in a close vicinity of the completely synchronous
condition vp = v0. The determined transmission amplitude
is periodic in time. However, its dependence on modulation
length L becomes aperiodic and growing for sufficiently small
material losses if |μ| > 1 and remains quasiperiodic if |μ| < 1
[8–11]. We also showed that synchronous modulation is not
advantageous compared to the commonly used instantaneous
modulation for a relatively small modulation length L of sev-
eral tens of microns [see Figs. 4(a), 4(b), 5(c), 5(d), and 5(f)].

One of the major goals of this paper was understand-
ing the feasibility of light amplification by a low-frequency
modulation of realistic optical waveguides and resonators.
Having in mind realistic applications, we focused on the sit-
uations when light is propagating within a relatively small
bandwidth �ωB(L) � ω0. We found that, for a relatively
large phase velocity of modulating wave, vp � v0, or for
comparable velocities, vp ∼ v0, the averaged over time am-
plification Pav(L) is always small being proportional to
(�ωB(L)/ω0)2 [see Eq. (31)]. The situation becomes different
for vp � v0 when Eq. (31) suggests that a moderate ampli-
fication of light may be possible within a small bandwidth
�ωB(L). We found that such an amplification is currently
very challenging to achieve experimentally in an open optical
waveguide.

In Sec. IV, we develop the theory of light propagating
in a racetrack resonator modulated by a traveling wave with
a relatively small frequency. Generally, a larger amplifica-
tion can be achieved with a larger modulation frequency ωp

and amplitude �np and a smaller resonator waveguide loss
η0. To demonstrate the potential feasibility of amplification,
we noticed that the transmission bandwidth �ωB of a res-
onator can be controlled and made small by increasing the
offset of frequency ωp from the exact modulation resonance.
We found that, in the eikonal approximation, the amplifica-
tion of individual comb lines increases with the parameter
−mv0ωp/vpω0, where m is the frequency comp line num-
ber [see the expression for Gp in Eqs. (27) and (51)]. For
the small modulation frequencies of our interest, ωp � ω0,
this parameter increases with a decrease of the phase ve-
locity of the modulating wave vp. For very small vp ∼
v0ωp/ω0, the eikonal approximation fails and in Sec. IV B
we apply the perturbation theory. Here, we restrict the con-
sideration by the case of forward propagation of light, while
a qualitatively different case involving backward propaga-
tion and, in particular, Brillouin scattering will be described
elsewhere [62]. As an example, we demonstrated that the
amplification of the full power of light as much as 30 dB
can be achieved within the bandwidth �ωB ∼ 2 GHz in
a racetrack resonator with the waveguide half-length L =
2.27 mm and loss 2α0 = 0.2 dB/m modulated by an acoustic
wave propagating along the waveguide with velocity vp =
0.0002v0 = 27 280 m/s and modulation index �np = 5 ×
10−4 [Fig. 10(a)]. We showed in Sec. V that the required res-
onator waveguide and modulation parameters are potentially
feasible.

While the developed theory assumes that the power of light
inside the resonator is small enough not to introduce essential
nonlinear effects, it is interesting to investigate whether these

effects can coexist with modulation-induced amplification. On
the other hand, since the developed theory assumes very low
input light power, it is interesting to explore its quantum ver-
sion and investigate whether the proposed device can amplify
single-photon or few-photon signals.
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APPENDIX A: EIKONAL (WKB) APPROXIMATION

We assume that the refractive index is a slow function of
time and coordinates and formally introduce slow coordinate
and time, ζ = εx and τ = εt , where ε ∼ ωp/ω0 � 1. We look
for the solution of Eq. (1) in the form [50,51]

E (x, t ) = (U0(x, t ) + εU1(x, t ) + · · ·) exp

(
i

ε
S(x, t )

)
.

(A1)
Substituting Eq. (A1) into Eq. (1) and expanding the result

in powers of ε, we arrive at a series of coupled equations for
Um(x, t ) and S(x, t ). In the zero order in ε, we obtain the
equation for the eikonal S(x, t ), which determines the phase
of solution:

n2(x, t )S2
t − c2S2

x = 0. (A2)

This equation is reduced to the linear equation

n(x, t )St + cSx = 0, (A3)

where it is assumed that the speed of light c can have pos-
itive or negative sign. Once the solution S(x, t ) of Eq. (A3)
is found, the amplitude terms Um(x, t ) are determined from
linear equations that can be solved successively. In particular,
the zero-order term U0(x, t ) of the amplitude of solution is
found from the equation

n(x, t )U0t + cU0x +
(

3

2
nt + c

2n
nx

)
U = 0. (A4)

For the case of the traveling wave refractive index defined
by Eq. (2), solution of eikonal equation (A2) for the field
phase and Eq. (A4) for the field amplitude can be found by
the introduction of variables

t ′ = t − x

v0
, x′ = x, (A5)
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where v = c/n0 is the phase velocity of light (Fig. 1). Then,
the refractive index in Eq. (2) depends on t ′ only and Eqs. (A4)
and (A5) can be rewritten as

(a + b cos(ωpt ′))St ′ + v0Sx′ = 0, (A6)

(a + b cos(ωpt ′))U0t ′ + v0U0x′ − δ(t ′)U = 0, (A7)

where

a = 1 − v0

vp
+ i

η0

n0
, b = �np

n0
,

δ(t ) = bωp sin(ωpt )
2 + b + 3b cos(ωpt )

2(1 + b cos(ωpt ))
. (A8)

The general solutions of Eqs. (A3) and (A4) expressed
through the original variables x and t are [75]

S(x, t ) = �0(ξ (x, t )), (A9)

U0(x, t ) = �1(ξ (x, t ))W

(
t − x

vp

)
,

W (t ) = exp

(∫ t

0

δ(t )dt

a + b cos(ωpt )

)

= (a + b)
√

1 + b

(a + b cos(ωpt ))
√

1 + b cos(ωpt )
. (A10)

Here, �k (ξ ) are arbitrary functions determined by the
boundary and initial conditions and

ξ (x, t ) = x − v

∫ t− x
vp

0

dt

a + b cos(ωpt )

= x − 2v

ωp

√
a2 − b2

	

(√
a − b

a + b
,

(
ωp

2

(
t − x

vp

)))
.

(A11)

Here, function 	(x, y) is the smooth continuation of
arctan(x · tan(y)) as a function of y, which is convenient to
calculate as

	(x, y) =
∫ y

0

∂

∂y
(arctan (x, tan(y)))dy

=
∫ y

0

dy

x2sin2(y) + cos2(y)
. (A12)

Ignoring the reflected wave, we determine the asymptotic
solution of Eq. (1) corresponding to the boundary condition at
x = 0 (Fig. 1):

E (in)(x, t ) = exp

[
iω

(
x

v0
− t

)]
, x < 0, (A13)

separating it into the boundary conditions for S(x, t ) and
U0(x, t ):

S(0, t ) = −ωt, (A14)

U0(0, t ) = 1. (A15)

Following the approach of Ref. [8], we introduce function
t̄ (ξ̄ ) inverse to function ξ̄ (t ) = ξ (t, 0), which is found from
Eq. (A11) as

t̄ (ξ̄ ) = − 2

ωp
	

(√
a + b

a − b
,

ωp

2v0

√
a2 − b2ξ̄

)
, (A16)

where, again, function 	(x, y) is the smooth continuation of
arctan(x · tan(y)) as a function of y defined by Eq. (A12).
Using Eqs. (A11)–(A16), we find

S(x, t ) = −ωt̄ (ξ (x, t )) = 2ω

ωp
	

(√
a + b

a − b
,

ωp

2v0

√
a2 − b2ξ̄

)
(A17)

and

U0(x, t ) =
W

(
t − x

vp

)
W (t̄ (ξ (x, t )))

= (a + b cos(ωpt̄ (ξ (x, t )))
√

1 + b cos(ωpt̄ (ξ (x, t ))(
a + b cos

(
ωp

(
t − x

vp

)))√
1 + b cos

(
ωp

(
t − x

vp

)) . (A18)

APPENDIX B: THE OUTGOING WAVE FOR THE
COMPLETELY SYNCHRONOUS AND LOSSLESS

CASE vp = v0 AND η0 = 0

In the synchronous lossless case, vp = v0 and η0 = 0
(i.e., a = 0), Eqs. (A17) and (A18) are simplified. Setting
	(x, y) = arctan(x · tan(y)), we find

S0(x, t ) = 2ω

ωp
arctan

(
i tan

(
iωpbx

2v0

− arctan

(
i tan

(
ωp

2

(
t − x

vp

)))))

= 2ω

ωp
arctan

⎛
⎝ tanh

( bωpx
2v0

) − tan
(ωp

2

(
t − x

vp

))
1 − tanh

( bωpx
2v0

)
tan

(ωp

2

(
t − x

vp

))
⎞
⎠.

(B1)

Next, we simplify Eq. (A18) for the amplitude U0(x, t )
under the same assumption a = 0 assuming �np/n0 � 1. As
the result, we have

U0(x, t ) = cos
(
ωpt̄ (ξ (x, t )

)
cos

(
ωp

(
t − x

vp

)) , (B2)

where

cos(ωpt̄ (ξ (x, t )) =
(

cosh

(
bωp

v0
ξ (x, t )

))−1

. (B3)

Then, from Eqs. (B2) and (B3),

U0(x, t ) = 1

cosh
( bωpx

v0

) − sin
(
ωp

(
t − x

vp

))
sinh

( bωpx
v0

) . (B4)
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Averaging the output power, P(x, t ) = U0(x, t )2, over time,
we find

Pav(x) = ωp

2π

∫ 2π/ωp

0
U0(x, t )2dt = cosh

(
bωpx

v0

)
. (B6)

This equation coincides with Eq. (12). It is seen from
Eq. (B4) that for a sufficiently large modulation length x
corresponding to exp( bωp

v0
) � 1 the amplitude U0(x, t ) rapidly

changes with time in small intervals, where sin(ωp(t−x/vp))
is close to unity. We determine the position tmax of the max-
imum slope of U0(x, t ) as a function of time by finding the
zeros of its second derivative. Then, the condition of validity
of the eikonal approximation, ∂

∂t U0(x, t )|
t=tmax

� ω0 yields
Eq. (13).

APPENDIX C: THE SPECTRAL BANDWIDTH FOR THE
COMPLETELY SYNCHRONOUS AND LOSSLESS

CASE vp = v AND η0 = 0

We determine the transmission bandwidth by calculat-
ing the integral for the frequency comb amplitude given by
Eq. (15) using the stationary phase method. For briefness, we
introduce notations

txt = tan

(
ωp

(
x

vp
− t

))
, tx = tanh

(
bωpx

2v0

)
. (C1)

The stationary phase time is then found by zeroing the
derivative of the phase in the exponent of the integral of
Eq. (15), where E (x, t ) is determined by Eq. (11):

ω0
(
t2
x − 1

)(
t2
xt + 1

)
t2
x t2

xt + t2
x + 4txtxt + t2

xt + 1
+ ω0 − ωpn = 0. (C2)

From here, we find

t±
xt =

(ς+ς−)1/2
(
t2
x − 1

)1/2 ± 2tx
(

ω0
ωp

− n
)

(
n − 2 ω0

ωp

)
t2
x − n

, (C3)

ς± = n +
(

n ± 2
ω0

ωp

)
tx. (C4)

From Eq. (C3), the real stationary points exist only if
�+�− � 0. After substitution of the expressions for tx, ς+,
and ς− from Eqs. (C1) and (C4) into the latter inequality, we
find the transmission band defined by Eq. (16).

APPENDIX D: SOLUTION OF THE WAVE EQUATION
BY THE PERTURBATION THEORY

For sufficiently small modulation of the refractive index
�np and small modulation index |�p| � 1, solution of the
wave equation, Eq. (1), can be found by the perturbation
theory. We rewrite Eq. (1) as

((n0 + �n(x, t ))2E )tt − c2Exx = 0 (D1)

and solve it by perturbations,

E (x, t ) = E (0)(x, t ) + E (1)(x, t ) + E (2)(x, t ) · · · , (D2)
over �n(x, t ). The general solution of Eq. (D1) is

E (gen)(x, t ) = E (x, t ) + �+
(

t − x

v0

)
+ �−

(
t + x

v0

)
,

(D3)
where �±(t ) are arbitrary functions. The general solution of
our interest, which is used in calculations of the transmis-
sion amplitude through an optical resonator, corresponds to
�−(t ) ≡ 0, since it includes only optical waves propagating
along a positive direction of axis x. In the zero, first, and
second order, we have

n2
0E (0)

tt − c2E (0)
xx = 0, (D4)

n2
0E (1)

tt − c2E (1)
xx = −2n0(�n(x, t )E (0) )tt , (D5)

n2
0E (2)

tt − c2E (2)
xx = −2n0(�n2(x, t )E (0) )tt

− 2n0(�n(x, t )E (1) )tt . (D6)

Here, we take into account the attenuation αp of modula-
tion along the waveguide length setting

�n(x, t ) = �np0 exp(−αpx) cos

(
ωp

(
t − x

vp

))
. (D7)

We choose the zero-order solution of Eq. (D1) as

E (0)(x, t ) = exp

[
iω0

(
x

v0
− t

)]
. (D8)

To solve Eq. (D5) with E (0)(0, t ) defined by Eq. (D8), we separate Eq. (D5) into two equations for E (1)(+)(x, t ) and
E (1)(−)(x, t ):

n2
0E (1)(±)

tt − c2E (1)(±)
xx = −n0�np0

(
exp

(
±iωp

(
x

vp
− t

)
+ iω0

(
x

v0
− t

)
− αpx

))
tt

. (D9)

Then, a particular solution of Eq. (D5) vanishing for �n(x, t ) → 0 is

E (1)(x, t ) = E (1)(+)(x, t ) + E (1)(−)(x, t ). (D10)

Functions E (1)(±)(x, t ) can be found in the form proportional to the right-hand side function of Eq. (D9):

E (1)(±)(x, t ) = �U ±
0 exp

(
±iωp

(
x

vp
− t

)
+ iω0

(
x

v0
− t

)
− αpx

)
. (D11)
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Substitution Eq. (D11) into Eq. (D9) yields

�U ±
0 = �npv

2
p(ω0 ± ωp)2

n0[±ωp(v0 − vp) + iαpv0vp][2ω0vp ± ωp(v0 + vp) + iαpv0vp]
. (D12)

It follows from Eq. (D11) that the perturbation component E (1)(−)(x, t ) is a backward propagating wave if the wave number
kp of the traveling wave is larger than the wave number k0 of the input wave:

kp > k0,

kp = ωp

vp
, k0 = ω0

v0
(D13)

In this paper, we assume that the perturbed wave is forward propagating, i.e.,

kp < k0. (D14)

Then, choosing an appropriate function �+(t ) in Eq. (D3), we find the first-order solution of Eq. (D1) satisfying the boundary
condition E (1)(0, t ) = 0:

E (1)(x, t ) = E (0)(x, t )
∑
±

(�U ±
0 exp(∓iωpt )W ±(x)), (D15)

W ±(x) = exp

(
±i

ωpx

vp
− αpx

)
− exp

(
±i

ωpx

v0

)
. (D16)

This solution can be directly transformed to the form presented by Eqs. (36)–(39).
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frequency comb generation in a lithium niobate microring res-
onator, Nature (London) 568, 373 (2019).

[26] A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G.
L. Schwefel, Resonant electro-optic frequency comb, Nature
(London) 568, 378 (2019).

[27] A. Parriaux, K. Hammani, and G. Millot, Electro-optic fre-
quency combs, Adv. Opt. Photon. 12, 223 (2020).

[28] H. Sun, M. Khalil, Z. Wang, and L. R. Chen, Recent
progress in integrated electro-optic frequency comb generation,
J. Semicond. 42, 041301 (2021).

[29] L. Kuhn, P. F. Heidrich, and E. G. Lean, Optical guided wave
mode conversion by an acoustic surface wave, Appl. Phys. Lett.
19, 428 (1971).

[30] M. Yu. Sumetskii and M. L. Fel’shtyn, Absolute transparency of
an inelastic channel and the photovoltaic effect in the resonance
tunneling through the two-well heterojunction, JETP Lett. 53,
24 (1991).

[31] S. K. Ibrahim, S. Bhandare, D. Sandel, H. Zhang, and R. Noe,
Non-magnetic 30 dB integrated optical isolator in III/V mate-
rial, Electron. Lett 40, 1 (2004).

[32] Z. Yu and S. Fan, Complete optical isolation created by indirect
interband photonic transitions, Nat. Photon. 3, 91 (2009).

[33] S. Taravati, Giant linear nonreciprocity, zero reflection, and zero
band gap in equilibrated space-time-varying media, Phys. Rev.
Appl. 9, 064012 (2018).

[34] D. B. Sohn, S. Kim, and G. Bahl, Time-reversal symmetry
breaking with acoustic pumping of nanophotonic circuits, Nat.
Photon. 12, 91 (2018).

[35] T. T. Koutserimpas and R. Fleury, Electromagnetic fields in a
time-varying medium: Exceptional points and operator symme-
tries, IEEE Trans. Antennas Propag 68, 6717 (2020).

[36] I. A. Williamson, M. Minkov, A. Dutt, J. Wang, A. Y. Song, and
S. Fan, Integrated nonreciprocal photonic devices with dynamic
modulation, IEEE Proc. 108, 1759 (2020).

[37] Y. Hu, M. Yu, D. Zhu, N. Sinclair, A. Shams-Ansari, L.
Shao, J. Holzgrafe, E. Puma, M. Zhang, and M. Lončar, On-
chip electro-optic frequency shifters and beam splitters, Nature
(London) 599, 587 (2021).

[38] Y. Zhou, F. Ruesink, S. Gertler, H. Cheng, M. Pavlovich, E.
Kittlaus, A. L. Starbuck, A. J. Leenheer, A. T. Pomerene, D. C.
Trotter, and C. Dallo, Nonreciprocal dissipation engineering via
strong coupling with a continuum of modes, Phys. Rev. X 14,
021002 (2024).

[39] J. B. Khurgin, Optical isolation by temporal modulation: Size,
frequency, and power constraints, ACS Photon. 10, 1037
(2023).

[40] J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-González,
Reflection and transmission of a wave incident on a slab with a
time-periodic dielectric function ε(t), Phys. Rev. A 79, 053821
(2009).

[41] D. L. Sounas and A. Alù, Non-reciprocal photonics based on
time modulation, Nat. Photon. 11, 774 (2017).

[42] L. Thévenaz, Slow and fast light in optical fibres, Nat. Photon.
2, 474 (2008).

[43] V. G. Ataloglou, S. Taravati, and G. V. Eleftheriades, Meta-
surfaces: Physics and applications in wireless communications,
Natl. Sci. Rev. 10, nwad164 (2023).

[44] T. T. Koutserimpas, A. Alù, and R. Fleury, Parametric
amplification and bidirectional invisibility in PT-symmetric
time-Floquet systems, Phys. Rev. A 97, 013839 (2018).

[45] R. W. Boyd, Nonlinear Optics (Academic Press, San Diego,
CA, 2020), 4th ed.

[46] S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Ultralow-
threshold Raman laser using a spherical dielectric microcavity,
Nature (London) 415, 621 (2002).

[47] I. S. Grudinin, A. B. Matsko, and L. Maleki, Brillouin lasing
with a CaF2 whispering gallery mode resonator, Phys. Rev. Lett.
102, 043902 (2009).

[48] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K.
J. Vahala, Chemically etched ultrahigh-Q wedge-resonator on a
silicon chip, Nat. Photon. 6, 369 (2012).

[49] N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang,
and P. T. Rakich, A silicon Brillouin laser, Science 360, 1113
(2018).

[50] Y. A. Kravtsov, L. A. Ostrovsky, and N. S. Stepanov, Geo-
metrical optics of inhomogeneous and nonstationary dispersive
media, Proc. IEEE 62, 1492 (1974).

[51] Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomo-
geneous Media (Springer, Berlin, 1990).

[52] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-
Relativistic Theory (Elsevier, New York, 2013).

[53] V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation
in Quantum Mechanics (Reidel, Dordrecht, 1981).

[54] M. Sumetskii, Forming of wave packets by one-dimensional
tunneling structures having a time-dependent potential, Phys.
Rev. B 46, 4702 (1992).

[55] J. Ford, The Fermi-Pasta-Ulam problem: Paradox turns discov-
ery, Phys. Rep. 213, 271 (1992).

[56] R. Gao, N. Yao, J. Guan, L. Deng, J. Lin, M. Wang, and
Y. Cheng, Lithium niobate microring with ultra-high Q factor
above 108, Chin. Opt. Lett. 20, 011902 (2022).

[57] A. Shams-Ansari, G. Huang, L. He, Z. Li, J. Holzgrafe, M.
Jankowski, M. Churaev, P. Kharel, R. Cheng, D. Zhu, N.
Sinclair, B. Desiatov, M. Zhang, T. J. Kippenberg, and M.
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