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Abstract: The continuous and strategic planning of full-service carriers plays a prominent role in
transferring and adapting them into resilient full-service carrier network structures. The exploration
of full-service carrier network structures using the latest long-term empirical data facilitates enhanc-
ing cognitive capabilities in aspects of identifying network development tendencies, readjusting
network structures, and supporting determinations of strategic business routes. Aiming at providing
sustainable transport network solutions with historical long-term network structure analysis, this
paper researches the global top 10 full-service carriers” air transport networks from 2007 to 2022,
applied using social network analysis (SNA). The static metrics from local to path-based perspectives
are adopted to explore the global network evolution trend, along with competitiveness characteristics
over critical airports. The cascading failure model is applied as a key indicator to analyze the dynamic
robustness capability for the network. The similarity changing feature among the selected networks
over the past years from 2007 to 2022 is measured using the autocorrelation function (ACF). The
results indicate that, from 2011 to 2019, the majority of full-service carrier networks belong to the
network types of closed, structural symmetry and two-way transitivity. The critical airports in North
America present superiority in terms of network efficiency over those in Europe, Asia, and Oceania.
The 10 full-service carriers’ air transport networks all show the trend of being more destruction-
resistant. During the COVID-19 pandemic period, the merger with other airlines and the signing of a
joint venture agreement led to higher temporal variability in the network structure.

Keywords: air transportation; network structure; SNA analysis; full-service carriers

1. Introduction

With the rapid development of air transport liberalization, the full-service carrier
industry plays an increasingly significant role in facilitating international trade affairs. To
adjust the business model and improve competitiveness in the global aviation market, the
investigation of air transport network structures is one prominent factor in carrier operation
and management that fits sustainable scopes in the future transportation system [1,2]. For
full-service carriers, exploring the network structure is conducive to understanding the
air transportation system at the network layer [3]. Performing research on the changes in
network structure topological metrics of full-service carriers with long-term empirical data
is critical to providing theoretical support when drafting network strategic plans, as well as
optimizing carriers’ network structures to increase profits potentially [4].

An air transport network is a complex system in which the relationships between
airports and routes are intricate, changeable, and perplexing, and it demands a specialized
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network analysis method to research [5]. With unique features of implication regularities in
network structures with ambiguous network boundaries benefited from graph theory and
sociology, social network analysis (SNA) is widely used in assessing network relationships
and evolution with scenarios like sociology, anthropology, business, and management
disciplines [6,7].

In SNA, relations among units are represented with edges and networks composed
of nodes, also named as actors [8]. SNA network structures can be categorized into three
types in accordance with network topology forms, and these are ego-networks, partial
networks, and whole networks [9]. In air transport networks, the ego-network type is
typically applied, with specific components consisting of airports, adjacent airports, and
routes between airports and adjacent airports. Researching the ego-network and the whole
network is instrumental in exploring air transport network structures from the micro and
macro perspectives. SNA can efficiently process network data with large-scale and complex
connectivity relationships and identify critical nodes in the network. Hence, this paper
utilizes social network analysis (SNA) to analyze the networks of large-scale airlines and
understand the role and importance of each airport in the different airline networks.

With the purposes of investigating full-service carrier industry development for en-
hancing sustainability in terms of network structural evolution, this paper analyzes air
transport networks over the global top 10 full-service carriers, and uses the static metrics
from local to path-based and dynamic metrics to explore the overall network evolution
trend, critical airport competitiveness, robustness, and similarity for full-service carriers
over the years 2011-2019 and the similarity metric using ACF from 2007 to 2022 to explore
network similarities.

The remainder of the paper is organized as follows. Section 2 reviews the most
relevant papers considering air transport network structures. The construction of air
transport networks, and a series of metrics of the SNA method and similarity metric using
ACEF are proposed in Section 3. Section 4 analyzes the structure and evolution characteristics
of full-service carriers. Finally, the results are concluded in Section 5.

2. Literature Review

With the continuous popularization of complex network theory and graph theory, the
research on air transport network structures has attracted much attention.
Guimera et al. [10] first explored the worldwide air transport network structure through
complex network theory and found that the network exhibits scale-free and small-world
properties. Since then, numerous scholars have researched the topological structure of the
air transport network for a certain region or carrier. Guida and Maria [11] investigated the
structure and topological characteristics of the air transport network in Italia. Grubesic
et al. [12] studied the global air transport network between 4650 airports in 2006 through
graph theory. Wang et al. [13] analyzed the structure and node centrality of China’s air
transport network. Min and Taeyeo [14] researched the characteristics of an air trans-
port network composed of three alliance carriers through the SNA method. Kim and
Yoon [15] explored three kinds of air route segment network structures in Northeast Asia:
unweighted, distance-weighted, and demand-weighted. Bombelli et al. [16] investigated
the topological structure of the worldwide cargo air transport network using complex
network theory. However, those above studies analyzed the network topological character-
istics for only a short time, and therefore cannot reflect the long-term evolvement trend of
network structures.

To investigate the air transport network structural evolution for long-term analy-
sis, spatial structure organizations and formulations have been widely investigated. For
instance, Burghouwt et al. [17] studied the spatial structure evolution of European air
transport networks from 1990 to 1999. Papatheodorou and Arvanitis [18] investigated
the air transport network topological characteristics in Greece during the years 1978-2006.
Jimenez et al. [19] analyzed the air transport network structure in Portugal over the period
2001-2010. Jiang et al. [20] researched the evolution of Spring Airlines” domestic air trans-
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port network from 2005 to 2013 using mathematical statistics and social network analysis.
Dai et al. [21] explored the topology evolution of the Southeast Asian air transport network
over the period 1979-2012. Chung et al. [22] studied the structural characteristics of the
Asian international air transport network in 2014 and 2018 using the weighted network
method. However, those above works only consider the structure towards a single network
within a limited range of region, and therefore cannot compare the characteristics among
multiple same-type air transport networks.

To obtain the similarities and differences between the same-type network structure
characteristics, many scholars have concentrated on comparing air transport networks
among differing carriers, airports, or regions. Han et al. [4] compared the air transport
networks of four carriers: Austrian Airlines, British Airways, France Netherlands Airline,
and Lufthansa. Reynolds [23] studied the structure characteristics of North American
and European carrier air transport networks. Nedvédova [24] researched the differences
between the major airport networks in 19 countries in Central and Eastern Europe. Wan-
delt and Sun [25] investigated the evolution of domestic air transport networks in seven
countries in Europe. Suau-Sanchez et al. [26] explored the differences between the Lon-
don Heathrow airport network and South East airport networks in 2013. Wu et al. [27]
compared the network community structure of American Airlines and Southwest Airlines
using an improved Clauset-Newman-Moore (CNM) algorithm. Morlotti and Redondi [28]
analyzed the air transport networks of four major cargo carriers in Europe: DHL, FedEx,
UPS, and TNT. However, those above works rarely involve the comparison of full-service
carrier air transport networks from the perspectives of network evolution.

Table 1 summarizes the literature in terms of network type, network weight, and
topological metrics. Most studies concentrated on regional networks such as a certain
country or continent, whilst the research on carrier networks lacked investigation. In
addition, most studies focused on unweighted air transport network structures, whereas
actual networks are weighted because different numbers of flights in airports and routes
represent different network structures. Moreover, most studies applied static metrics in
network evolution analysis, whilst only a few studies combined static metrics and dynamic
metrics such as robustness in the research.

Considering the shortcomings above, the contributions of this paper are highlighted
as follows. (1) This paper explores full-service carriers’ air transport networks, which
facilitates providing reference for the optimizing and planning of full-service carriers’
network structures. (2) This paper explores the weighted air transport networks with
weighted metrics such as weighted triangle betweenness centrality, weighted closeness
centrality, and weighted eigenvector centrality. (3) This paper uses the static metrics from
local to path-based combined with dynamic robustness analysis through the cascading
failure model to extract structure characteristics, combining the static metrics and dynamic
metrics at the same time. (4) This paper researches the development trend of closed,
structural symmetry and two-way transitivity of airline network structures using a new
topological metric-directed triad. (5) This paper studies the competitive power of airports
in carrier competition from the perspective of redundancy and constraint of the airports’
ego-networks through the structural hole for the first time.

Table 1. Review of related works.

Ref.

Network Type Network Weight Topological Metrics

Regional Carrier . . Static Dynamic
Network Network Weighted Unweighted Metrics Metrics

Burghouwt et al. [17]
Guimera et al. [10]
Guida and Maria [11]
Grubesic et al. [12]
Han et al. [4]

L
L
L
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Table 1. Cont.
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3. Network Modeling and Performance Evaluation Methodology

Regarding the airport as a node, the route as a directed edge, and the number of
flights of the route as the edge weight, the weighted directed air transport network
G = (V,E) is constructed, where V = {v,v;,--- ,vN} represents the set of nodes,
E = {(vi,v) |0;,v; € {v1,02,- - -vn}} represents the set of edges, (v;,vj) represents the
edge from node v; to node v;, and N represents the number of nodes. The element 4;; in
adjacency matrix A of the network is as follows:

[ Wi, (vi,0) €E
Aij = { 0, others g @

where A;; represents the edge weight from node v; to node v;, and W;; represents the
number of flights from node v; to node v;. In air transport networks, using the number
of flights can effectively reflect actual passenger traffic among airports beyond simple
connections rather than using 0 or 1.

SNA is a network analysis method that can be used for evaluating the interactive
relationships and patterns among different airports in air transport networks through
a series of metrics [29]. To explore the network structure comprehensively, the metrics
of SNA used in this paper include 2 types: static metrics and dynamic metrics. Static
metrics include directed triad, structural hole, and centrality metrics, which are from local
to path-based and profitable for static structure analysis from micro to macro. Dynamic
metrics include robustness and similarity, which are conducive to exploring the dynamic
characteristics of the network.

3.1. Directed Triad

To explore the overall network structure from a micro perspective, this paper intro-
duces the directed triad, which is a local metric considering the relationship of 3 nodes. It
was proposed by Wasserman and Faust [30], and contains 16 kinds of triangular structures
composed of 3 nodes and the directed connections between nodes. The directed triad
embeds the multi relationship between “node-self”, “adjacent nodes”, and “other nodes”
into the social network, which reflects the tightness, symmetry, and transitivity of the
network [31].
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The metrics of a structural hole include effective size and constraint [33]. The node’s
effective size refers to the remaining size of the node’s degree minus the redundancy,
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which represents the number of non-redundant connections of the node [39]. The node’s
redundancy is numerically equal to the average degree of the node’s ego-network. For
node v;, the formula of effective size is:

(0]

1

ef fective size; = kj — ———— [ k; + j 2)
it |r<z>|+1< 2 qf)

where k; represents the degree of node v;, which is equal to the edge number of node v;,
|7(7)| represents the number of adjacent nodes of node v;, and g; represents the j-th adjacent
node v;’s degree in node v;’s ego-network.

For an airport, numerous redundant connections may put the airport at a disadvanta-
geous position in terms of airport competition.

The constraint of a node refers to the extent to which the node is limited by the
adjacent nodes, indicating the ability of the node to control the structural hole in the
ego-network [40]. For node v;, the formula of constraint is:

2

O/ ROt 4
constraint; = Y [ —+ Y, —— 3)
j=1 ki q=1 ki kq

where |7(i) N 7(j)| represents the number of the common adjacent nodes of node v; and
node v}, and k; represents the degree of node v,, which is the g-th common adjacent node
of node v; and node v;.

In air transport networks, the airport with low constrain holds a higher status in the
structural hole and has more superiority in terms of airport competition.

3.3. Centrality Metrics

As the above 2 are local metrics, the network structure cannot be explored from
an overall perspective. In fact, some local nodes showing less significance may play an
immense role in the overall network. Therefore, this paper introduces path-based metrics—
centrality metrics, which are conducive to the analysis of nodes from an overall perspective.
Three kinds of centrality metrics are introduced in this section: weighted triangle between-
ness centrality, weighted closeness centrality, and weighted eigenvector centrality. The
usual centrality metrics show drawbacks of neglecting the strength of connections between
nodes, and the assessment results of node importance may be inaccurate. Hereby, this
paper adopts weighted centrality metrics to improve the accuracy of the node importance
assessment results, which can better reflect the structural characteristics of the weighted air
transport network.

3.3.1. Weighted Triangle Betweenness Centrality

Lee [41] first proposed the weighted triangle betweenness centrality, Crp;, in 2013,
which is applied to evaluate the ability of a node as a mediator in the weighted network by
computing the number of times the node plays the intermediary role between other nodes.
For node v;, Crp; is expressed as:

1 N
Crgi = mkzg;:lf(l)ﬂ #FjFk 4)

1, if Aj <min(A
0, else

i Aik)

) = { ®
In air transport networks, the airport with high weighted triangle betweenness cen-
trality plays a central and transfer role and is highly likely to become hub airport that has a

high level of passenger connections and transfers [22,23].
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3.3.2. Weighted Closeness Centrality

Weighted closeness centrality, Cc;, was first proposed by Freeman [42], and considers
the reciprocal of the sum of weighted shortest path length between the node and other
nodes [7]. The difference between edge and path is that the former is used to describe the
connection of 2 directly connected nodes, while the latter is composed of several edges and
can be used for the connection of 2 nodes not directly connected.

For 2 nodes, v; and v;, assuming that there are m paths from node v; to node v;, and
{vi,v1,02,-- -, vr,v;} represents the nodes in the p-th path, then the weighted path length,
dp, is:

1 1 1
dp = ——+——+ -+ —. 6
P An An Ay ©)

Using {dl, dy, -+ ,dp,- -+, dm} to represent the set of the weighted path length of all
paths from node v; to node v;, the weighted closeness centrality, Cc;, can be expressed
as [42]:

2(N—-1
Coi = —2N-1)

B (45 + )
df;] :min{dlld2/"' /dp/"' /dm}/ (8)

JAF] )

where df;’ represents the weighted shortest path length from node v; to node v;, which is
equal to the minimum value of all the weighted path lengths.

For an airport, C¢; reflects the closeness between the airport and other airports, and,
the larger the Cc;, the more convenient it is to reach other airports [13].

3.3.3. Weighted Eigenvector Centrality

Bonacich [43] first proposed the weighted eigenvector centrality, Cg;, in 1972, and the
basic idea is that a node connected to the node with high connectivity should be more
central than that connected to the node with low connectivity, which fully captures the
number and importance of adjacent nodes. The formula of Cg; is:

_ N i _ N i . .
CEi = )\1‘ ! Zj:l Al]e; + AZ‘ ! Zj:l 14]'1‘6;‘1Z 7é 1 (9)

where A; represents the i-th eigenvalue of adjacency matrix A, and (¢}, e}, - - -, el;) repre-
sents the corresponding eigenvector of A;. In the air transport network, Cg; reveals the
importance of airports from the perspective of the number of flights and the adjacent
airports’ connectivity.

3.4. Robustness Metric

To judge the resilience of air transport networks against an attack environment, this
paper applied robustness metrics for analyzing the characteristics of the network structure
of different full-service carriers under random attack and deliberate attack.

The cascading failure model considers the dynamic robustness of a series of adjacent
nodes failures caused by the failure of a node in the network, which is more scientific
and comprehensive [44]. Therefore, the cascading failure model is used in this paper for
robustness analysis, and it is mainly composed of four parts: initial load and capacity, node
state identification, load distribution model, and cascading failure metric [44].

For each node in the cascading failure model, this paper uses the airport flight volume
as the initial load and the nonlinear function of the initial load as the capacity. The formula
for initial load and capacity is:

N N .
L;(0) = 2].:1 Wi + Z]-:1 Wii,ie (1,---,N), (10)

where L;(0) represents the initial load of node v;.
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If the load of a node exceeds its capacity, the node will transition into a failure state.
At time ¢, the formula of state identification for node v; is:

| Normal state, L;(t) < C;
Node state = { Failure state, L;i(t) > C; (1
Ci = Li(0) + A(Li(0))",i € (1, ,N), (12)

where L;(t) represents the load of node v; at time ¢, C; represents the capacity of node v;,
and A > 0,60 > 0 represents the nonlinear parameters.

In the load distribution model, if node v; is in a failure state at time ¢, the load of node
v; is allocated to all the adjacent nodes of node v; in a certain proportion, and the load
allocation formula is:

L;(t)
o L)
where AL;(t) represents the load allocated by the j-th adjacent node of node v; at time ¢.

The cascading failure metric used in the model in this paper is network efficiency. For
node v;, the formula of network efficiency, 7, is:

AL(t) = Lit), (13)

N N 1
1= N(N—l ;;7; (14)

In the air transport network, the higher the network efficiency is, the stronger is the
robustness of the network.

3.5. Similarity Metric

To measure the similarity between air transport networks over time, we utilize an
autocorrelation function (ACF) for a given carrier from [45]:

1 bmax—T

ACF(1) =1——— Y d(G;,Gi11) (15)
t=1

fax — T

where 7 is the time lag and d(G¢, G;1) is the normalized network distance between two
snapshot networks. The normalized network distance between two snapshot networks, G
and G/, is:
M(GNG')
M(G)M(G’)

where M(G) and M(G') are the numbers of edges in G and G, respectively, and M(G N G’)
is the number of edges that G and G’ have in common. Network distance d ranges between
0 and 1, measuring the similarity between two networks. The distance matrix for a carrier
is @ tyax X tmax Symmetric matrix of which the (t,#')th entry is given by d (Gt, Gt’), where
Gt is the network at year f and t,,,y is the number of years observed. If d(Gy, G') is small,
where t < t/, it indicates that the network at year ' approximately recurs to that at year ¢.

We identify states of the temporal air transport networks for each carrier based on
its distance matrix. Consider a sequence of ¢, static networks. To assign a state to each
snapshot network, we apply a hierarchical clustering algorithm to the ¢35 X tyqx distance
matrix. Hierarchical clustering divides the yearly networks into C discrete states, where
the number of states, C, ranges between 1 and t,,,4x. We adopt the value of C (2 < C < ty44)
that maximizes the Dunn’s index, D, defined by [46]:

d(G,G) = (16)

Tninlgc#c’nginGi€cth state, Gjec/th state d(Gi/ G])
D= 17)

MAX <ot SCmaxGi,, Gyec'th state d(Gi’/ G]’)
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For intuitive observation of network structures, the structure diagrams of 10 full-
service carriers in 2011 and 2019 are drawn by network drawing software “PAJEK 5.16”,
as shown in Figure 5. In the structure diagrams, the nodes represent airports, and the
connections represent the routes between airports. It can be seen that the air transport
networks of Delta Air Lines and United Airlines are hub-and-spoke structures with multiple
hubs, whose hub airports are evenly distributed in the whole network. These carriers focus
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shown in Figure 5. In the structure diagrams, the nodes represent airports, and the con-
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works of Delta Air Lines and United Airlines are hub-and-spoke structures with mullﬁpzlze
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past 9 years in terms of improvement in the network scale and the number of hub airports,
as well as a denser network structure. The network scale of British Airways, All Nippon
Airways, Emirates, and China’s three full-service carriers has also improved noticeably,
along with more complex hub-and-spoke structure formations. However, as a large carrier
in Europe, Lufthansa has gradually concentrated its flights on two airports, i.e., Frankfurt
and Munich, in recent years, leading to a hub-and-spoke network structure change from
multiple hubs into a twin hubs type. The network scale of Air New Zealand has gradually
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reduced in the past 9 years, and the hub-and-spoke structure has become looser than in
previous years.

4.2. Network Development Trend Analysis

The above analysis explores the overall network structure from a macro perspective,
which ignores the microcosmic angle. Therefore, this section uses the local metric-directed
triad to analyze the overall air transport networks from the microstructure point of view.

Among 16 kinds of directed triads, carrier networks contain, as the majority, four
kinds of triads: A01, B02, C06, and D07. The proportion of the main four directed triads of
each carrier’s network is shown in Figure 6. The proportion of the other 12 triads are not
shown because they are too small. The accumulative proportion of these dominant four
triads is more than 96%, indicating that the structure of the air transport network is mostly
bidirectional and symmetrical. Among the four triads, the proportion of the A01 triad is
dominant, reaching more than 80%, which reveals that, for any full-service carrier, the air
transport network is very sparse.

For All Nippon Airways and Air New Zealand, the B02, C06, and D07 triads represent
the highest proportion, indicating that these carriers show stronger connectivity and better
network efficiency, resulting in being more conducive to address the transfer and stopover
of flights as well as distributing passenger flows. Nevertheless, in mega-scale air transport
networks such as Delta Air Lines and United Airlines, the B02, C06, and D07 triads account
for a relatively low proportion, revealing that the network connectivity is less tight than
that of All Nippon Airways and Air New Zealand.

From 2011 to 2019, the proportion of B02, C06, and D07 triads of Delta Air Lines,
United Airlines, Air China, China Southern Airlines, and China Eastern Airlines increased
gradually. The proportion of the B02 triad and the summarization of the proportions
of B02, C06, and D07 triads over 10 full-service carriers have increased. The changing
trends show that two-way connected-pair triads, structural hole triads, and tight triads
in full-service carrier air transport networks account for an increased proportion. The air
transport networks are evolving towards structural symmetry and two-way transitivity.
Apart from Lufthansa, Emirates, and Air New Zealand, other carrier networks also have
shown the closed development trend.

4.3. Airports” Competitiveness Analysis

This section calculates the structural hole to measure airports’ competitiveness char-
acteristic from the microscopic perspective, which considers the impact of the adjacent
nodes’ impact. It was found by Goyal et al. [38] that the “middle-man” of a structural
hole is located on the shortest path among node pairs so as to reflect stronger betweenness
centrality. Providing that the degree is also the key indicator representing the airport’s
significance, this paper gives each airport a score based on the degree and the weighted
triangle betweenness centrality, and the airports whose scores are significantly higher than
others are selected as the typical “middle-man” airports in structural holes. The typical
identified “middle-man” airports are shown in Table 4.

From Table 4, it is observed that Delta Air Lines and United Airlines have higher
numbers of the typical “middle-man” airports; Lufthansa has two typical “middle-man”
airports—FRA and MUC; while the numbers of typical “middle-man” airports of All
Nippon Airways, Emirates, and Air New Zealand are the least. The typical “middle-man”
airport numbers in the structure holes reflect positive relevance to the hub-and-spoke
structure of full-service carriers’ networks.

Table 4 shows that the airport with the highest scores in each air transport network
has the greatest competitive power in its own air transport network. To compare the
maximum airport competitive power among different full-service carriers, the effective
size and constraint of these airports are respectively calculated, shown in Figure 7. The
majority of carriers show an increment in terms of the effective size of the “middle-man”
airports, which indicates an increasing tendency of network efficiency qualities through
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noticeably, along with more complex hub-and-spoke structure tormations. However, as a
large carrier in Europe, Lufthansa has gradually concentrated its flights on two airports,
i.e., Frankfurt and Munich, in recent years, leading to a hub-and-spoke network structure
change from multiple hubs into a twin hubs type. The network scale of Air New Zealand
has gradually reduced in the past 9 years, and the hub-and-spoke structure has become
looser than in previous years. 13 of 22
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For All Nippon Airways and Air New Zealand, the B02, C06, and D07 triads repre-
sent the highest proportion, indicating that these carriers show stronger connectivity and
better network efficiency, resulting in being more conducive to address the transfer and
stopover of flights as well as distributing passenger flows. Nevertheless, in mega-scale air
transport networks such as Delta Air Lines and United Airlines, the B02, C06, and D07
triads account for a relatively low proportion, revealing that the network connectivity is
less tight than that of All Nippon Airways and Air New Zealand.

From 2011 to 2019, the proportion of B02, C06, and D07 triads of Delta Air Lines,
United Airlines Air China China Southern Airlines and China Eastern Airlines increased
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Table 4. Typical “middle-man” airports in structural holes of 10 full-service carriers.

Carriers 2011 2015 2019
Delta Air Lines ATL, DTW, MSP, JEK ATL, MSP, DTW, JEK ATL, MSP, DTW, JEK
United Airlines ORD, DEN, IAD IAH, ORD, EWR, DEN ORD, IAH, EWR, DEN
Lufthansa FRA, MUC FRA, MUC FRA, MUC
British Airways LHR LHR, LGW LHR, LGW
All Nippon Airways HND HND HND
Emirates DXB DXB DXB
Air New Zealand AKL AKL AKL
Acrospace 2098 {FNR®R PEER REVIEW PEK, CTU PEK, CTU PEK,CTU 45 o 23
hina Southern Airlines CAN, URC CAN, SZX CAN, SZX
China Eastern Airlines PVG, KMG PVG, KMG PVG, KMG, XIY
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4.4. Network Centrality Analysis
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Table 5. The results of the centralities of critical airports of 10 full-service carriers.

, 2011 2015 2019
Carriers AC WTBC WCC WEC AC WTBC WCC WEC AC WTBC WCC WEC
ATL 0482 0727 0374 ATL 0525 0767 0385 ATL 0523 0773 0356

Delta Air Lines ~ DTW 0173 0625 0318 MSP 0.195 0.636 0310 MSP 0201 0.644 0.299
NP N 22A NA&PE NRNOAE DTW N 12" NAIR NNP20QR DTW N 147 NARY  NHOH
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Table 5. Centralities values of the top three critical airports of 10 full-service carriers.
2011 2015 2019
Carriers

AC WTBC wcC WEC AC WTBC WCC WEC AC WTBC WCC WEC
ATL 0.482 0.727 0.374 ATL 0.525 0.767 0.385 ATL 0.523 0.773 0.356
Delta Air Lines DTW 0.173 0.625 0.318 MSP 0.195 0.636 0.310 MSP 0.201 0.644 0.299
MSP 0.226 0.625 0.306 DTW 0.132 0.618 0.298 DTW 0.147 0.632 0.292
ORD 0.431 0.735 0.427 IAH 0.311 0.622 0.31 ORD 0.271 0.686 0.334
United Airlines DEN 0.282 0.658 0.364 ORD 0.252 0.620 0.322 IAH 0.273 0.660 0.302
IAD 0.280 0.644 0.316 EWR 0.223 0.594 0.293 EWR 0216 0.641 0.289
FRA 0.697 0.821 0.496 FRA 0.723 0.842 0.551 FRA 0.704 0.876 0.544
Lufthansa MUC 0.321 0.767 0418 MUC 0.380 0.706 0.458 MUC 0.365 0.737 0.468

DUS 0.071 0.554 0.262
LHR 0.804 0.596 0.684 LHR 0.835 0.616 0.675 LHR 0.812 0.638 0.649
British Airways LGW 0.382 0.398 0.130 LGW 0.382 0.407 0.144 LGW 0.367 0.431 0.207
LCY 0.081 0.369 0.157
HND 0.432 0.619 0414 HND 0.548 0.642 0434 HND 0.484 0.604 0.439
All Nippon Airways NRT 0.412 0.580 0.266 NRT 0.385 0.554 0.282 NRT 0.408 0.545 0.275
CTS 0.115 0.568 0.287 CTS 0.093 0.557 0.282 CTS 0.113 0.545 0.281
Emirates DXB 0.993 0.954 0.702 DXB 0.993 0.951 0.703 DXB 0.995 0.934 0.702
AKL 0.782 0.898 0.504 AKL 0.812 0.918 0.525 AKL 0.833 0911 0.529
Air New Zealand WLG 0.145 0.638 0.375 WLG 0.123 0.616 0.351 WLG 0.086 0.607 0.356
CHC 0.125 0.624 0.354 CHC 0.100 0.624 0.365 CHC 0.093 0.614 0.366
- Chin PEK 0.762 0.814 0.514 PEK 0.781 0.843 0477 PEK 0.732 0.820 0.424
Adr China CTU 0.233 0.618 0.351 CTU 0.197 0.610 0.325 CTU 0.166 0.612 0.328
b N CAN 0.526 0.691 0.304 CAN 0.464 0.67 0.299 CAN 0.450 0.691 0.293
China Sif"“ ern URC 0271 0.541 0.146 S7X 0.114 0.485 0.231 S7X 0.075 0.508 0.220
Adrlines PEK 0.080 0.557 0.230 URC 0.231 0.537 0.158 URC 0.197 0.551 0.161
) PVG 0.430 0.648 0.311 PVG 0.407 0.661 0.301 PVG 0.381 0.669 0.276
China Eastern KMG 0.271 0.602 0.288 KMG 0.233 0.605 0.279 KMG 0.203 0.617 0.266
Alrlines XIY 0.097 0.569 0.244 XIY 0.177 0.604 0.238

From Table 5, it is observed that the weighted triangle betweenness centralities of
FRA, LHR, DXB, AKL, and PEK have the highest values, indicating that the transfer ability
and connectivity between those airports are stronger than others. ATL, FRA, MUC, DXB,
AKL, and PEK have the highest weighted closeness centralities, revealing that the total
airport transfer times to other airports are the least. The airports of FRA, MUC, LHR,
HND, DXB, AKL, and PEK have the highest weighted eigenvector centralities, showing
that those airports have higher number of adjacent airports, with better centralities and
connectivity capability. Compared with mega-scale hub-and-spoke networks with multiple
hubs, the airports with higher centralities tend to appear in small-scale or medium-scale
hub-and-spoke networks with a single hub or twin hubs.

From 2011 to 2019, the centralities of most critical airports of Delta Air Lines, United
Airlines, Air China, China Southern Airlines, and China Eastern Airlines present a decreas-
ing tendency. The centralities of the most critical airports like Lufthansa, British Airways,
All Nippon Airways, Emirates, and Air New Zealand have increased over the past years.
The above observations indicate that the traditional critical airports with large-scale and
medium-scale full-service carriers are gradually being replaced by new critical airports
with small-scale full-service carriers.

4.5. Network Robustness Analysis

This section aims to measure network robustness to explore the network resilience
capability under random attacks and deliberate attacks. The cascading failure model under
random attacks and deliberate attacks is applied to 10 full-service carriers’ air transport
networks over the period between 2011 and 2019. By repeating consecutive random attacks
and deliberate attacks 20 times, the network efficiency is calculated, as shown in Table 6.

By injecting random attacks into the cascading failure model, it is found that the latest
network structure in year 2019 has a higher resilience capability than the structure in 2011
in terms of network efficiency. United Airlines shows the most significant improvement
in terms of network resilience across the years between 2011 and 2019. Specifically, the
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network efficiency of United Airlines under random attacks and deliberate attacks in year
2019 is 1.65 times and 1.99 times higher than in 2011. The robustness of the full-service
carriers’ air transport networks for other full-service carriers also reveals enhancement over
recent years.

Table 6. Network efficiency under 20 consecutive random attacks and deliberate attacks.

Network Efficiency Network Efficiency Network Efficiency Network Efficiency

Carriers under Random under Random under Deliberate under Deliberate

Attack in 2011/x10~3  Attack in 2019/x10~3  Attack in 2011/x10—3  Attack in 2019/x10—3
Delta Air Lines 0.896 1.042 0.124 0.182
United Airlines 15.357 25.343 40.578 80.661
Lufthansa 0.489 0.713 0.000 0.000
British Airways 0.587 0.737 0.012 0.031
All Nippon Airways 0.932 1.278 4.563 6.611
Emirates 0.123 0.299 0.023 0.065
Air New Zealand 0.011 0.016 1.632 1.841
Air China 1.012 1.403 0.345 0.386
China Southern Airlines 2.191 2.601 3.467 5.992
China Eastern Airlines 1.443 1.890 2.231 2.601

By injecting distinguished attack modes, the network efficiency under the random
attack mode is higher than that under deliberate attack. The variation in United Airline
is highest, whose network efficiency in 2011 and 2019 under random attack is 37.85 times
and 29.24 times higher than that under deliberate attack, respectively, which demonstrates
that the network cascade failure speed under random attack is slower, and therefore the
network is more robust.

The preliminary finding of network robustness analysis is that United Airlines presents
the highest network efficiency among the 10 full-service carriers, and thereby it requires
the highest attack numbers for achieving a failure. The higher efficiency also represents a
slower speed of cascading failure in the network, and thus United Airline presents a smaller
cascading failure and the strongest robustness of the cascading. The network efficiencies of
China Eastern Airlines, China Southern Airlines, and All Nippon Airways have smaller
values than that of United Airlines, but still show strong robustness. Lufthansa, British
Airways, Air New Zealand, and Emirates have the lowest network efficiencies, which
reveal the worst network robustness.

4.6. Network Similarity Analysis

This section evaluates the network similarities in the temporal domain among the
global top 10 full-service carriers” air transport networks from 2007 to 2022. The ACF
calculation is applied to measure the similarity between individual carrier’s discrete states.
To identify the states of the air transport networks for each carrier, this paper runs a hierar-
chical clustering method on its distance matrix, and the number of states is determined by
Dunn’s index in Section 3.5. The snapshot networks in the same cluster are regarded as a
state, which means that networks with high similarity belong to the same state. Note that a
lower ACF suggests a larger temporal variability of time series.

The ACFs for each state and each carrier are displayed in Figure 8, where 7 is the time
lag in years of each state. For the airlines of Lufthansa, All Nippon Airways, Emirates,
Air New Zealand, Air China, China Southern Airlines, and China Eastern Airlines, state
1 shows the largest ACF values, followed by state 2, and then by state 3 across the whole
lag range (Figure 8c,e—j). The larger ACF value indicates a smaller temporal variability,
and thereby the carriers over 2007 to 2017 for state 1 have less temporal variability than
state 3 ranging from 2020 to 2022. The increment of the temporal variability in state 3 is
likely induced by the COVID-19 pandemic side effects to the network.
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When analyzing the ACF figures in Figure 8b for United Airlines, the ACF result
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(2) The small-scale or medium-scale hub-and-spoke structures with a single hub or
twin hubs mostly appear in European, Asian, and Oceanian full-service carriers’ air
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transport networks, whose routes are concentrated on one or two hub airports. The
critical airports in networks have higher weighted triangle betweenness centrality,
weighted closeness centrality, and weighted eigenvector centrality. Yet, the effective
size of the “middle-man” airports in structural holes is usually small, indicating less
superiority in carrier competition.

(3) Among the 10 full-service carriers, the scale of Delta Air Lines’ air transport network
is relatively stable, while Lufthansa’s and Air New Zealand’s networks are gradually
shrinking, and the scale of the others are expanding. All full-service carriers’ air
transport networks are developing toward the trend of structural symmetry and
two-way transitivity. Except for Lufthansa, Emirates, and Air New Zealand, other
carriers’ networks also have the closed development trend.

(4) From 2011 to 2019, the robustness of the 10 full-service carriers’ air transport networks
enhanced, and the networks are more robust under random attack than deliberate
attack. Among the 10 full-service carriers, United Airlines has the strongest robustness,
while Lufthansa, British Airways, Air New Zealand, and Emirates have the worst
robustness.

(5) The COVID-19 pandemic caused greater variability in the networks for Lufthansa, All
Nippon Airways, Emirates, Air New Zealand, Air China, China Southern Airlines,
and China Eastern Airlines. The merger of Delta Air Lines and Northwest Airlines in
2008 caused the larger temporal variability from 2009 to 2011 for Delta Air Lines. The
signing of a joint venture agreement with Qatar Airways in 2016 caused the larger
temporal variability from 2017 to 2018 for British Airways.

With the above findings, it is believed that the network structure of full-service carriers
will be more closely connected, more symmetrical, more destruction-resistant, and have a
great advantage in the air transport market.

For future studies, external factors affecting network evolution such as the economy,
policy, and air traffic rights could be taken into consideration during the exploration of
topological structural characteristics of air transport networks for further optimization of
full-service carriers’ network structures.
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Appendix A

Table A1. The results of the centralities of critical airports of 10 full-service carriers.

2011 2015 2019
Carriers
AC WTBC  WCC WEC AC WTBC  WCC WEC AC WIBC  WCC WEC
ATL 0.482 0.727 0.374 ATL 0.525 0.767 0.385 ATL 0.523 0.773 0.356
DTW 0.173 0.625 0.318 MSP 0.195 0.636 0.310 MSspP 0.201 0.644 0.299
MSP 0.226 0.625 0.306 DTW 0.132 0.618 0.298 DTW 0.147 0.632 0.292
Delta Air Lines JEK 0.146 0.578 0.219 JEK 0.141 0.592 0.236 JEK 0.122 0.588 0.229
SLC 0.142 0.563 0.190 SLC 0.152 0.574 0211 SLC 0.123 0.584 0.226
MEM 0.070 0.538 0.219 LGA 0.017 0.508 0.174 LGA 0.032 0.520 0.165
CVG 0.013 0.534 0.207 LAX 0.040 0.546 0.171 SEA 0.055 0.549 0.171
ORD 0.431 0.735 0.427 IAH 0.311 0.622 0.31 ORD 0.271 0.686 0.334
DEN 0.282 0.658 0.364 ORD 0.252 0.620 0322 IAH 0.273 0.660 0.302
IAD 0.280 0.644 0.316 EWR 0.223 0.594 0.293 EWR 0216 0.641 0.289
United Airlines SFO 0.145 0.596 0.278 DEN 0.145 0.563 0.259 DEN 0.210 0.638 0.278
LAX 0.086 0.564 0.233 SFO 0.113 0.539 0.225 IAD 0.076 0.585 0.240
IAD 0.065 0.539 0.225 SFO 0.105 0.582 0.225
LAX 0.043 0.516 0.183 LAX 0.041 0.548 0.176
FRA 0.697 0.821 0.496 FRA 0.723 0.842 0.551 FRA 0.704 0.876 0.544
Lufthansa MUC 0.321 0.767 0.418 MUC 0.380 0.706 0.458 MUC 0.365 0.737 0.468
DUS 0.071 0.554 0.262
LHR 0.804 0.596 0.684 LHR 0.835 0.616 0.675 LHR 0.812 0.638 0.649
British Airways LGW 0.382 0.398 0.130 LGW 0.382 0.407 0.144 LGW 0.367 0.431 0.207
LCY 0.081 0.369 0.157
HND 0432 0.619 0.414 HND 0.548 0.642 0.434 HND 0.484 0.604 0.439
All Nippon Airways NRT 0.412 0.580 0.266 NRT 0.385 0.554 0.282 NRT 0.408 0.545 0.275
CTS 0.115 0.568 0.287 CTS 0.093 0.557 0.282 CTS 0.113 0.545 0.281
Emirates DXB 0.993 0.954 0.702 DXB 0.993 0.951 0.703 DXB 0.995 0.934 0.702
AKL 0.782 0.898 0.504 AKL 0.812 0918 0.525 AKL 0.833 0911 0.529
Air New Zealand WLG 0.145 0.638 0.375 WLG 0.123 0.616 0.351 WLG 0.086 0.607 0.356
CHC 0.125 0.624 0.354 CHC 0.100 0.624 0.365 CHC 0.093 0.614 0.366
Air Ch PEK 0.762 0.814 0514 PEK 0.781 0.843 0477 PEK 0.732 0.820 0.424
1riina CTU 0233 0.618 0.351 CTU 0.197 0.610 0.325 CTU 0.166 0.612 0.328
CAN 0.526 0.691 0.304 CAN 0.464 0.67 0.299 CAN 0.450 0.691 0.293
URC 0.271 0.541 0.146 SZX 0.114 0.485 0.231 SzX 0.075 0.508 0.220
. PEK 0.080 0.557 0.230 URC 0.231 0.537 0.158 URC 0.197 0.551 0.161
China Southern CsX 0.046 0.537 0.225 WUH 0.080 0.558 0215
Alrlines CGO 0.041 0.540 0.224 CGO 0.091 0.545 0.186
PEK 0.051 0.532 0.191 CsX 0.044 0.548 0.211
PEK 0.040 0.532 0.175
PVG 0.430 0.648 0.311 PVG 0.407 0.661 0.301 PVG 0.381 0.669 0.276
KMG 0271 0.602 0.288 KMG 0.233 0.605 0.279 KMG 0.203 0.617 0.266
China E Airli XIY 0.097 0.569 0.244 XIY 0.177 0.604 0.238
ina Eastern Airlines NKG 0.063 0.553 0.229 NKG 0.054 0.560 0.206
SHA 0.077 0.506 0.200 PEK 0.042 0.546 0.189
PEK 0.071 0.549 0.206 SHA 0.038 0.496 0.158
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