
International Journal of Mechanical Sciences 263 (2024) 108779

Available online 30 September 2023
0020-7403/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Modelling of a general lumped-compliance beam for compliant mechanisms 

Jiaxiang Zhu , Guangbo Hao * 

School of Engineering and Architecture-Electrical and Electronic Engineering, University College Cork, Cork, Ireland   

A R T I C L E  I N F O   

Keywords: 
Compliant mechanisms 
General lumped-compliance beam 
Nonlinear kinetostatic modeling 
Beam constraint model 

A B S T R A C T   

Compliant mechanisms are crucial in a wide range of applications, and straight flexure beams with uniform 
thickness serve as their fundamental building blocks. While techniques and methods exist to estimate the so
phisticated load-displacement behavior of these beams, dealing with the nonlinear large deformation and 
parametric design of complex compliant mechanisms using these beams remains a significant challenge. To 
address this challenge, an analytical model has been developed to integrate six independent geometric param
eters into a general lumped-compliance beam, known as the general lumped-compliance beam model (GLBM). 
This approach enables the determinate synthesis of force-displacement characteristics in compliant mechanisms 
that feature any two flexure beams connected in series, such as the conventional lumped-compliance beam, 
distributed beam, inverted beam, and folded beam. The closed-form beam constraint model (BCM) is utilized to 
derive the GLBM that accurately captures geometric nonlinearity and load-dependent effects. To demonstrate the 
effectiveness of this modeling technique, we verified five specific configurations of the GLBM using nonlinear 
finite element analysis (FEA). In addition, we selected two representative compliant mechanisms, a revolute joint 
and a bistable mechanism, for nonlinear analysis and experimental validation, which further showcases the 
efficacy of this proposed GLBM.   

1. Introduction 

Over the past few decades, compliant mechanisms have gained 
widespread recognition due to their merits such as no backlash, wear- 
free, and low noise [1]. They have opened up new horizons in nano
positioning development [2–4], energy harvesting [5–7], micro
electromechanical systems (MEMS) [8–10], etc. Compliant mechanisms 
often present a monolithic body with either lumped-compliance beams 
or distributed-compliance beams, which exhibit different deformation 
characteristics. The lumped-compliance beam, usually combining two 
elastic notch-type hinges and a rigid-body link, has a limited deforma
tion range [11]. However, the deformation of the 
distributed-compliance beam occurs along the whole beam and is, 
therefore, much larger [12]. Both types of beams are widely used in the 
design of compliant building blocks including bistable mechanism 
[13–15], statistically-balanced mechanism [16], compliant amplifier 
[17,18], translational joint [19,20], rotational joint [21,22]. Therefore, 
it is the intention of this paper to come up with a model that is simple, 
accurate, and applicable to a more general lumped-compliance beam for 
large deflections, which can facilitate the parametric design of 
compliant mechanisms. Here, a general lumped-compliance beam has 

more design parameters than a conventional lumped-compliance beam, 
which is inspired by the position space concept [22]. The general 
lumped-compliance beams can find their specific applications in the 
design of bistable mechanisms with equal switch forces [14], compliant 
tensural multi-stable mechanisms [23], and a novel parallelogram 
mechanism [24]. 

The finite element analysis (FEA) method is a popular and effective 
numerical approach for analyzing the kinetostatics and dynamics of 
compliant mechanisms, thanks to its ability to handle complex geome
tries and boundary conditions. However, there are some inherent 
drawbacks associated with this method. While users have complete 
control over model manipulation, they cannot guarantee its accuracy. 
Additionally, discretization errors and stress singularities can cause 
unconverged solutions, particularly when compressive forces are 
applied to flexure beams. Consequently, the FEA method may produce 
incorrect or unrealistic shape configurations. In general, the accuracy of 
the FEA method depends on various factors, including the degrees of 
freedom, discretization, and element type used [25]. 

Apart from the FEA method, a considerable number of modeling 
methods have been developed for kinetostatic or dynamic modeling of 
compliant mechanisms. These methods include the pseudo-rigid-body 
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model (PRBM), beam constraint model (BCM) [20], smooth curvature 
model (SCM) [26], elliptic integral solution (EIS) and their derivatives 
like chained-BCM (CBCM) [27], Timoshenko-BCM (TBCM) [28], the 
integral method based BCM (IMBCM) [29,30], spatial-BCM (SBCM) [31, 
32], chained-PRBM (CPRBM) [33–35], PRBM-based dynamic model 
[36], comprehensive-EIS (CEIS) [37], multiple-SCM (MSCM) [38]. 

The PRBM generally serves as an effective modeling method in the 
early-stage design of compliant mechanisms, where the nonlinear 
deflection of a flexure beam is approximated as a series of torsional 
springs or linear springs connected by rigid mechanisms [39,40]. As a 
result of the limited degree of freedom, the 1R-PRBM has load depen
dent effect degrading the accuracy of the model. To improve the accu
racy of 1R-PRBM, the 2R-PRBM [34], 3R-PRBM [35,41], 5R-PRBM [42], 
and CPRBM [43,44] were prosed. However, a higher amount of dis
cretization of the PRBM model inevitably leads to higher dimensional 
mathematical models, which causes longer computational time. They 
are not capable of capturing the elasto-kinematic effect and large errors 
in response to arbitrary loads, which is another significant hinder in the 
application of compliant mechanism synthesize. 

The BCM is based on the Euler-Bernoulli beam model and considers 
geometric nonlinearity and load-dependent effect associated with line
arized beam curvature assumptions. It is simple, parametric, closed- 
form, and accurately predicts the behavior of flexure beams with in
termediate deflections [45]. As aforementioned, BCM has been extended 
for different modeling scenarios of nonlinear deflections, including the 
SBCM [46,47], CBCM [27], IMBCM [29,30], TBCM [28], BCM with 
semi-rigid element [48]. The SBCM is capable of capturing the spatial 
motion of a wire beam. The CBCM discretizes a flexure beam into 
multiple segments to extend the range of the allowable axial load and 
the deflection. The CBCM with only two BCM elements, commonly 
known as Bi-BCM, is widely preferred and adopted due to its balance 
between accuracy and simplicity [49,50]. The IMBCM is proposed to 
model nonlinear fillet leaf springs. The TBCM incorporates the sheer 
effect which can model stubby beams. The BCM with a semi-rigid 
element is a method based on BCM to investigate the nonlinear static 
load-displacement relationships of beam-based flexure modules con
taining an intermediate semi-rigid element. An intermediate stiffening 
element is commonly treated as a perfect rigid element. The BCM with a 
semi-rigid element removes this untrue assumption, which is more ac
curate. The BCM modeling method is a versatile and easy-to-use tool 
that can be integrated into various modeling scenarios. 

A classic method for solving large deflections (more than 0.15 of the 
beam’s length) of a compliant mechanism is the EIS, which is an exact 
solution to the Euler- Bernoulli beam equation. However, it is limited to 
the range of slope angles and has no inflection point [51–53]. To over
come the limitations of no inflection point, an EIS for a large beam 
deflection with an inflection point subject to arbitrary loading condi
tions was derived in reference [54]. In [37], a CEIS with multiple in
flection points and subject to arbitrary loading was proposed. To 
eliminate the limitation of the range of slope angles, an alternative 
method was introduced in [52]. The original EIS has been improved in 
terms of the inflection point, end loads, and slope angles. However, it is 
not a preferred technique for intermediate displacement ranges due to 
its rather complex derivation and implementation. For instance, the 
derivation process may be sensitive to initial guesses of unknown pa
rameters if the end slope and load parameters are not provided [55]. 

As opposed to many other modeling techniques that involve nu
merical integration or discretization, the SCM [26] assumes that the 
curvature of a beam in bending is smooth and can therefore be 
approximated by low-order polynomials (e.g., Legendre polynomials). 
This approach enables the extraction of kinematic Jacobians and 

Hessians, as well as generalized stiffness matrices, which can be used to 
predict the deformation or stiffness of structures with multiple links. 
Additionally, it is capable of predicting the first several buckling modes, 
making it an attractive method for designing graspers [56–58]. How
ever, this approach is not suitable to synthesize planar-compliant 
mechanisms such as those for finger-type robots. Additionally, synthe
sizing more complex mechanisms using the smooth curvature mode has 
not been thoroughly studied. 

As previously discussed, these models have certain limitations, such 
as their inability to accurately predict large deflection and inflection 
points, and/or their large difficulty in being applied to complex struc
tures. Therefore, this study aims to address these problems by incorpo
rating more geometric parameters into a lumped-compliance beam and 
proposing a general lumped-compliance beam model (GLBM). Outlined 
below are the primary benefits of utilizing the GLBM:  

1) Simply by regulating the six geometry parameters, the GLBM can 
effectively predict the force-displacement characteristics of a general 
lumped-compliance beam that features any two flexure beams con
nected in series and with a rigid body between them. The model can 
deal with all special design cases such as the folded beam and 
inverted lumped-compliance beam.  

2) The developed GLBM has increased accuracy while predicting the 
large-deformation kinetostatic characteristic. Notably, the GLBM 
extends the application range of allowable axial forces. For instance, 
it increases the allowable normalized compressive axial force from 
π2EI/(4L2) to π2EI/L2, if a straight distributed-compliance flexure 
beam is divided into two equal segments [59,55]. Another strength 
of this model is its ability to accurately predict the load-displacement 
relations and deformation in certain designs, such as a bistable 
mechanism, with two inflection points along the deformed beam, 

2. General lumped-compliance beam model 

The objective of this section is to introduce the derivation of the 
GLBM. The section begins by presenting the BCM as a basis for the 
development of the model, which is documented in Appendix A. Sub
sequently, the derivation of the GLBM is elaborated step by step, 
providing detailed explanations of the process. 

Fig. 1(a) shows the parameterized lumped-compliance beam that 
features two flexure beams connected in serial. The GLBM is dominantly 
defined by six geometrical parameters, i.e., Li1, Li2, γi, αi, βi, and Wi, 
which are labeled in Fig. 1(a). The symbol i corresponds to a general 
beam configuration. It is worth noting that the length W is the distance 
between the two center points (labeled as Cp1 and Cp2) of the two flexure 
beams. By manipulating these parameters, we can obtain any beam 
configurations that consist of any two flexure beams and one rigid stage 
in the middle (including only two flexure beams without a rigid stage as 
defined below). 

Wicos(γ) = Li1cos(αi)/2 + Li2cos(βi)/2 and Wisin(γi) = Li1sin(αi)/2

+ Li2sin(βi)/2 (1) 

To obtain the relationship between the tip input forces (Fsi, Psi, Msi) 
and the tip output displacements (Xsi, Ysi, θsi) with respect to the coor
dinate frame X-Y-Z, we utilize the BCM in conjunction with the Free 
Body Diagram (FBD) method. This approach is what we commonly used 
in solving a typical mechanic problem which involves three compo
nents: constitutive equations, force equilibrium, and geometry 
compatibility [60–62]. The constitutive equation of each flexure beam is 
obtained from the BCM [45], which is explained in Appendix A. 

The constitutive equations of flexure beam 1 can be expressed below. 

J. Zhu and G. Hao                                                                                                                                                                                                                              



International Journal of Mechanical Sciences 263 (2024) 108779

3

The constitutive equations of flexure beam 2 can be expressed below.  

The force balance equations are derived based on the deformed 
configuration as shown in Fig. 1(b), which captures the contributions of 
the axial load to the bending moment. 
[

Pi1

Fi1

]

=

[
cos(αi + θi2) sin(αi + θi2)

− sin(αi + θi2) cos(αi + θi2)

][
Psi

Fsi

]

[
0

0

]

=

[
cos(αi + θi2) − sin(αi + θi2)

sin(αi + θi2) cos(αi + θi2)

][
Pi1

Fi1

]

−

[
cos(βi) − sin(βi)

sin(βi) cos(βi)

][
Pi2

Fi2

]

Mi1 − Msi = 0

Mi1 + Fi1(Xi1 + Li1) − Pi1Yi1 − Mi2 + (Wi⋅cos(γi + θi2) − cos(βi + θi2)

⋅Li1/2 − cos(αi + θi2)⋅Li1/2)⋅(Fi1⋅cos(αi + θi2) + Pi1⋅sin(αi + θi2))

+(Wi⋅sin(γi + θi2) − sin(βi + θi2)⋅Li1/2 − sin(αi + θi2)⋅Li1/2)

⋅(Fi1sin(αi + θi2) − Pi1⋅cos(αi + θi2)) = 0
(4) 

In its deformed configuration, the tip displacement of the GLBM is 
generally the combination of the tip displacement of each beam in their 
local coordinates and the displacement caused by the rotation of the 

rigid stage in the global coordinate. 

Xi1⋅cos(αi + θi2) + Xi2⋅cos(βi) − Yi1⋅sin(αi + θi2) − Yi2⋅sin(βi)

− 2⋅h0⋅sin(θi2/2)⋅cos(π/2 − arcsin((Wi⋅sin(γi) − sinβi⋅Li1/2

+ sin(αi)⋅Li1/2)/h0) − θi2/2) − Xsi

= 0 Yi1⋅cos(αi + θi2) + Yi2⋅cos(βi) + Xi1⋅sin(αi + θi2) + Xi2⋅sin(βi)

+ 2⋅h0⋅sin(θi2/2)⋅sin(π/2 − arcsin((Wi⋅sin(γi) − sinβi⋅Li1/2

+ sin(αi)⋅Li1/2)/h0) − θi2/2) − Ysi

= 0 θsi = θi + θi2 (5)  

where h0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Wi⋅cos(γi) − cos(βi)⋅Li1/2 + cos(αi)⋅Li1/2)
2

+ (Wi⋅sin(γi)−

√

sin(βi)⋅Li1/2 + sin(αi)⋅Li1/2)
2 

The derivation of the force-displacement characteristic of the GLBM 
is based on the six constitutive equations (three each of the flexure 
beams), six force balance equations, and three geometry compatibility 
equations. When solving the system of equations, one can obtain the 

Fig. 1. Configuration of a general beam: (a) geometry parameters of the GLBM; (b) FBD of the general beam.  

⎡
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(3)   
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displacements (Xsi, Ysi, θsi) by giving the input force (Fsi, Psi, Msi), and 
vice versa. Each GLBM contains 15 equations that govern the force- 
displacement characteristics. Using the GLBM to synthesize a complex 
structure that contains multiple general beams, the corresponding 
equations will be bulky. However, this issue can easily be solved in most 
existing mathematical software, i.e., Maple, MATLAB, and Mathematica 
by simply adding a loop function to repeat the force-displacement 
equations multiple times. 

3. FEA verification and parametric analysis 

The GLBM offers a versatile approach to effectively model a general 
beam that incorporates any two flexure beams connected in series for 
various configurations. These general beam configurations are widely 
favored in the design of compliant mechanisms, owing to their wide
spread popularity and numerous advantages. We have compiled a list of 
some existing specific configurations as shown in Appendix B. 

In this section, we focus on showcasing five representative configu
rations (Fig. 2) using the GLBM. To ensure the credibility of our findings, 
we conducted a thorough verification process by comparing the 
analytical results with those obtained from the nonlinear FEA tool. 

These configurations, displayed in Fig. 2, are widely adopted in the 
design of compliant mechanisms. For instance, the inverted beam and 
the inclined beam, shown in Fig. 2(d) and (e), respectively, are 
frequently employed in the design of bistable mechanisms [63,64,14, 
65-67] and translational joints [68,19], whereas the folded beam, pre
sented in Fig. 2(c) is commonly used in the design of flexure joints [69, 
70]. Additionally, the distributed-compliance beam and the straight 
lumped-compliance beam, which are among the most popular building 
blocks, are also utilized in various applications. The geometry parame
ters of each configuration are shown in Table 1. Each configuration 
(beam) was subjected to generalized end-loads (Fin, Pin, Min), resulting in 
end displacements (Xout, Yout, and θout) with respect to the global co
ordinates X-Y-Z. 

The FEA simulations were performed in commercial software 
COMSOL@5.0. A general flowchart depicting the FEA simulation pro
cess with Comsol software is presented in Fig. 3. In line with the 

assumptions made in the analytical model, the stages and frames were 
set as rigid, and no fillet was added around the sharp corner. However, it 
is important to avoid sharp corners in the connection area between the 
rigid part and the flexure, as these can cause stress singularities. In this 
instance, a finer mesh did not result in superior outcomes. Therefore, it 
may be necessary to perform a singularity check to ensure that the re
sults converge. 

3.1. FEA verification of GLBM in different configurations 

By incorporating the relevant parameters into the GLBM derived in 
Section 2, we can obtain an analytical model that governs the force- 
displacement characteristics of each case, subject to generalized end- 
loads. To comprehensively study the force-displacement characteristic, 
a relatively large force is applied to the beams to induce a substantial 
displacement. 

Fig. 4 presents a comparison between the analytical model and FEA 
simulation results in terms of the force-displacement relationship for the 
straight lumped-compliance beam. The analytical model was able to 
predict the resulting displacements in each direction (Xout, Yout, and θout) 
with a prominent level of accuracy, as evidenced by the close agreement 
between the analytical and FEA results. The maximum error between the 
analytical and FEA results was 4.93 % for the transverse displacement 
(Yout) in Fig. 4(b), which reached 54 % of the beam length (30 mm). For 
the axial displacement (Xout) and tip rotation (θout) in Fig. 4(a) and (c), 
respectively, the maximum errors were 4.48 % and 5.85 %, respectively. 
Generally, a smaller displacement resulted in a better correlation be
tween the analytical and FEA results. These findings validate the reli
ability of the analytical model in predicting the force-displacement 
behavior of the straight lumped-compliance beam. 

The results of the distributed-compliance beam are plotted in Fig. 5 
where the error is below 4.71 % for the tip rotation. When the axial 
displacement reaches 2.4 mm (beam length 20 mm), it produces a 
maximum error of 2.27 % between the FEA and analytical results as 
shown in Fig. 5(c). A force combination of Fin = 2 N, Pin = − 0.8 N, Min 
= 0.04 Nm produces a transverse displacement (Yout) of 8.43 mm with a 
maximum error of 3.77 %, which is illustrated in Fig. 5(b). 

Fig. 2. GLBM in different configurations: (a) straight/conventional lumped-compliance beam; (b) distributed-compliance beam; (c) folded beam; (d) inverted beam; 
(e) inclined beam. 

Table 1 
Geometric parameters of the five configurations for the GLBM.  

Cases αi (deg) βi (deg) γi (deg) Wi (mm) Li1 (mm) Li2 (mm) Ti (mm) Ui (mm) 

1 0 0 0 10 10 4 0.4 20 
2 0 0 0 10 10 4 0.4 10 
3 0 90 33.70 20 30 4 0.4 18.03 
4 180 − 180 0 10 10 4 0.4 20 
5 − 20 − 20 0 10 10 4 0.4 20  
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Fig. 3. Flowchart of the process of FEA simulation based on the software Comsol.  

Fig. 4. FEA verification of the lumped-compliance beam: (a) displacement in X-direction versus the input force Fin; (b) displacement in Y-direction versus the input 
force Fin; (c) rotation about Z-axis versus the input force Fin. 
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The comparison between the analytical and FEA results of case 3 
(inverted beam) is plotted in Fig. 6. The maximum error that occurs in 
the tip rotation is 3.12 % while the maximum error for the transverse 
displacement (Fig. 6(b)) and axial displacement (Fig. 6(a)) is 4.69 % and 
2.64 %, respectively. Fig. 7 presents the comparison of the results for 
case 4 (inclined beam). While the beam yields 16.82 mm in the trans
verse direction (Yout), it has a maximum error of 4.98 %. The maximum 
error between the analytical results and FEA results, in this case, is 4.28 
% (for θout) and 5.75 % (for Xout). 

Fig. 8(a) displays the force-displacement characteristic of the folded 
beam, with a maximum error of 4.48 % observed between the analytical 
and FEA results in terms of axial displacement. The transverse 
displacement and tip rotation exhibit errors of 2.75 % and 5.41 %, which 
are depicted in Fig. 8(b) and (c), respectively. 

In Section 3.1, we utilized the developed GLBM to model five 

representative flexure beam units. We verified the results by comparing 
them with those obtained from an FEA tool. Our analysis revealed that 
the error between the analytical results and the FEA results was in the 
range of 2 % to 6 % for a large deflection (transverse displacement over 
40 % of the beam length). Overall, the results suggest that the GLBM is 
effective in predicting the force-displacement behavior in any configu
ration, with reasonable accuracy as compared to the FEA simulations. 

3.2. Parametric analysis 

A parametric analysis is performed to analyze the influence of geo
metric parameters on the stiffness of a general lumped-compliance 
beam. This analysis helps in evaluating trade-offs between different 
design options and making informed decisions during certain compliant 
mechanism design processes. The analysis was implemented and 

Fig. 5. FEA verification of the distributed-compliance beam: (a) displacement in X-direction versus the input force Fin; (b) displacement in Y-direction versus the 
input force Fin; (c) rotation about Z-axis versus the input force Fin. 

Fig. 6. FEA verification of the inverted beam: (a) displacement in X-direction versus the input force Fin; (b) displacement in Y-direction versus the input force Fin; (c) 
rotation about Z-axis versus the input force Fin. 

Fig. 7. FEA verification of the inclined beam: (a) displacement in X-direction versus the input force Fin; (b) displacement in Y-direction versus the input force Fin; (c) 
rotation about Z-axis versus the input force Fin. 
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computed using Matlab. 
Specifically, the geometric parameters α1 and β1 were chosen as 

variables, ranging from 0◦ to 360◦ with increments of 10◦, to investigate 
the changes in stiffness along the Y-direction. And the rest parameters 
are defined as L11 = L12 = 10 mm, γ1 = 0 deg and W1 = 20 mm. By 
applying input displacements and solving the system of equations, the 
stiffness was determined. Fig. 9(a) depicts the stiffness with a neglective 
input displacement of 10− 5 mm in the Y-direction. Fig. 9(b) illustrates 
the stiffness for a given input displacement of Yin = 0.1 mm, Xin = 0 and 
θin = 0. Fig. 9(c) illustrates the stiffness for a given input displacement of 
Yin = 0.2 mm, Xin = 0 and θin = 0. The input only occurs in the Y-di
rection, which mimics the single-leg motion of the symmetrical 

traditional translational joint [68]. 
Fig. 9(a) clearly illustrates the variation in stiffness at a small scale, 

ranging from 34 N/mm to 37 N/mm, when subjected to a negligible 
input of 10− 3 mm in the Y-direction. However, as we increase the input 
displacement to 0.1 mm and 0.2 mm, the stiffness of different GLBM 
configurations exhibits a significant variation, ranging from 34 N/mm to 
44 N/mm and from 34 N/mm to 65 N/mm, respectively. 

Fig. 9(d) presents the corresponding GLBM configurations of each 
peak in Fig. 9(b) and (c). Notably, the GLBM designs featuring colinear 
flexure beams, such as the inverted beam and the lump-compliance 
beam, exhibit higher stiffness compared to the GLBM designs with 
non-colinear flexure beams, such as the folded beam and inclined beam. 

Fig. 8. FEA verification of the folded beam: (a) displacement in X-direction versus the input force Fin; (b) displacement in Y-direction versus the input force Fin; (c) 
rotation about Z-axis versus the input force Fin. 

Fig. 9. The stiffness in Y-direction with varying geometry parameters α and β: (a) instantons stiffness, the case of Yin = 0 mm, Xin = 0 and θin = 0; (b) under the case 
of Yin = 0.1 mm, Xin = 0 and θin = 0; (c) under the case of Yin = 0.2 mm, Xin = 0 and θin = 0; (d) and the general beam configurations for each peak. 
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Furthermore, an interesting observation from Fig. 9 is that the load- 
dependent effect is not prominent in the GLBM designs with parallel 
but not colinear flexure beams. This can be attributed to the minimal 
compression or tensile forces experienced by the flexure beams when 
subjected to small input displacements. In these configurations, the 
displacement in the X-direction and tip rotation remains zero while a 
displacement is applied in the Y-direction. However, it is worth noting 
that the GLBM model with colinear beams experiences significant tensile 
forces even for small displacements. The load-dependent effect is also 
observed by comparing Fig. 9(a) and (b). Fig. 9(b) shows a larger value 
while the input displacement Yin increases. 

The parametric analysis conducted in this study incorporates the 

variables α and β to examine the impact of various GLBM configurations 
on stiffness. Remarkably, this approach enables simultaneous analysis of 
thousands of configurations, with each analysis requiring only 30 s of 
computing time in Matlab. This level of efficiency surpasses that of FEA 
simulation software and proves to be highly advantageous for the 
parametric optimization of compliant mechanisms. 

4. Application to design compliant mechanisms 

In this Section, the proposed GLBM was used to synthesize two 
different cases, namely, the revolute joint and the bistable mechanism. 
To analyze the force-displacement characteristics of each compliant 

Fig. 10. Revolute joint with inverted beams: (a) geometry; (b) deformed configuration; (c) FBD of the joint.  

Table 2 
The geometric parameters of the revolute joint.  

GLBM 1 
α1 (deg) β1 (deg) γ1 (deg) W1 (mm) L11 (mm) L12 (mm) T1 (mm) U1 (mm) 
− 150 210 30 40 20 20 0.4 4 

GLBM 2 
α2 (deg) β2 (deg) γ2 (deg) W2 (mm) L21 (mm) L22 (mm) T 2 (mm) U2 (mm) 
150 − 210 − 30 40 20 20 0.4 4  

Fig. 11. Translational joint derived from the revolute joint [65]: (a) geometric composition; (b) deformed configuration.  
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mechanism, we need to format a system of equations consisting of the 
GLBM, force equilibrium, and geometry compatibility. The system 
equations are solved in Maple using Fsolve function and the obtained 
results are further verified by the FEA tool using Comsol. The process of 
the FEA simulation generally follows the same process presented in 
Fig. 3. 

4.1. Case I - revolute Joint with two identical inverted beams 

Fig. 10 illustrates the revolute joint design using an inverted beam 
with specific geometry parameters, which are listed in Table 2. By 
simply changing the value of these parameters, we can quickly model a 
translational joint as shown in Fig. 11 [71]. This allows for quick and 
efficient design iterations, reducing development time. In this case 
study, the revolute joint is being utilized as the subject of analysis. 

The revolute joint with inverted beams is typically capable of with
standing a large compression force. In this case, the flexure beam only 
suffers tensile force which avoids buckling [71]. To derive the force 
balance equation, we will begin by analyzing the FBD, along with the 
GLBM and geometry compatibility. By combining these mechanics, we 
can obtain a system of equations that govern the force-displacement 
characteristics of the revolute joint. 

Fig. 10(a) and (b) illustrate the geometry and the deformed config
uration under given end forces, respectively. We then substituted the 
corresponding geometry parameters as shown in Table. 2, into the GLBM 
to extract the constitutive equations of the inverted beams. It is impor
tant to note that each of the inverted beams has its own GLBM, as 
derived previously. With the constitutive equation in hand, we then 
continued with the force equilibrium analysis and geometry compati
bility to gain a deeper understanding of the revolute joint. 

Based on the FBD (Fig. 10(c)), we can obtain the force equilibrium: 

Fin = Fs1 + Fs2
Pin = Ps1 + Ps2
Min = Ms1 + Ms2 − Ps2⋅cos(θout)⋅D/2 − Fs2⋅sin(θout)⋅D/2 + Ps1⋅cos(θout)⋅D/2
+Fs1⋅sin(θout)⋅D/2

(6)  

where D = 50 mm is the length of the motion stage. 
The geometry compatibility conditions for the revolute joint are 

shown below: 

Xs1 = Xout + sin(θout)⋅D/2; Xs2 = Xout − sin(θout)⋅D/2; Ys1 = Yout + (1

− cos(θout)⋅D/2); Ys2

= Yout − (1 − cos(θout)⋅D/2); θs1 = θout; θs2 = θout (7) 

To gain insight into the force-displacement characteristics of the 
revolute joint, a system of nonlinear equations was developed. Among 
them, 30 equations were governed by two GLBMs responsible for 
describing the force-displacement characteristics, and constitutive con
ditions of the resulting compliant mechanism. The remaining 9 equa
tions comprised three force-equilibrium equations and 6 geometry 
compatibility equations. This analytical model was then used to validate 
our findings with the FEA tool, Comsol. By comparing the results ob
tained from both the analytical model and the FEA tool, we were able to 
obtain a more comprehensive understanding of the force-displacement 
behavior of the revolute joint. This approach allowed us to verify the 
accuracy of our model and identify any discrepancies or limitations that 
may exist in the analytical or computational methods used. Incremental 
input forces including Fin, Pin, and Min are applied to the input stages 
with 10 steps. Calculation of the 10 steps together takes about 3–5 s 
using the Loop function in Maple, while the calculation using the FEA 
method takes about 80–85 s. 

Fig. 12 depicts the mesh type and deformed configuration of the 
revolute joint in the FEA simulation. In Fig. 12(a), the rigid parts utilize 
default tetrahedral elements, while the flexure parts employ cuboid el
ements. This combination optimizes the element count, achieving a 
balance between computing time and accuracy without compromising 
the results. The displacement plot in Fig. 12(b) illustrates the outcome of 
applying an input force of 0.8 N in the Y-direction. As a result, the 
motion stage undergoes a significant displacement of 2.11 mm along the 
Y-direction. 

Fig. 13 illustrates a comparison between the analytical results and 
the FEA simulation of the output displacement of the motion stage. The 
comparison shows good agreement between the two methods. Specif
ically, Fig. 13(a) presents the results of the motion stage rotation (θout), 
with a maximum error between the analytical results and FEA simula
tion of 4.1 %. Fig. 13(b) plots the out displacement in the X-direction of 
the revolute joint under incremental input forces, demonstrating a 
nonlinear characteristic with a maximum error of 4.3 %. Finally, Fig. 13 
(c) depicts the output displacement in the Y-direction, with an error 
between the analytical results and FEA results of less than 2.0 %. 
Overall, these results indicate the accuracy and reliability of both 
analytical and FEA methods in analyzing the behavior of the revolute 

Fig. 12. FEA simulation in Comsol: (a) mesh type for the rigid bodies and flexure beams; (b) displacement plot of the revolute joint in Comsol.  

J. Zhu and G. Hao                                                                                                                                                                                                                              



International Journal of Mechanical Sciences 263 (2024) 108779

10

joint. 

4.2. Case II - bistable mechanism using two types of GLBMs 

A novel bistable mechanism with triangle shape flexure [72] in 
which torsion reinforce structures are used to increase the out-of-plane 
stiffness as depicted in Fig. 14. It is mainly composed of a folded beam 

Fig. 13. FEA verification of the revolute joint with inverted beam: (a) displacement in X-direction versus the input force Fin; (b) displacement in Y-direction versus 
the input force Fin; (c) rotation about Z-axis versus the input force Fin. 

Fig. 14. Bistable mechanism with increased out-of-plane stiffness: (a) geometry 
parameters; (b) deformed configuration and the FBD of the shuttle. 

Table 3 
The geometry parameters of the bistable mechanism.  

GLBM 1 
α1 (deg) β1 (deg) γ1 (deg) W1 (mm) L11 (mm) L12 (mm) T1 (mm) U1 (mm) 
− 25.68 42.18 12.53 18.69 20 25 0.4 4 

GLBM 2 
α2 (deg) β2 (deg) γ2 (deg) W2 (mm) L21 (mm) L22 (mm) T2 (mm) U2 (mm) 
11 11 13.65 22.42 15 15 0.4 4  

Fig. 15. Inflection points simulated in Comsol with one inflection point vanishing during snap-through: (a) bending with two inflection points; (b) the second 
bistable position with only one inflection point. 

Fig. 16. FEA verification of the behavior of the bistable mechanism.  
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(GLBM 1) and an inclined beam (GLBM 2), shuttle and base. The folded 
beam is used to increase the torsional stiffness of the shuttle along the 
X-axis. To prevent self-retraction, the inclined beam is used to increase 
the strain energy stored in the second stable position and also to prevent 
the model from getting a higher buckling mode compared to the 
distributed-compliance beam. Fig. 14(b) displays the labeled geometry 
parameters of the bistable mechanism, while Table 3 presents their 
corresponding values. 

To model this bistable mechanism, it is necessary to establish the 
constitutive, force equilibrium, and geometry compatibility conditions. 
This process is identical to the one presented in case one. Section 2 
provides the derivation of the constitutive equation for each GLBM. 
Meanwhile, the force equilibrium can be obtained by the given FBD in 
Fig. 14(b), which is shown below. 

Fin/2 = − (Fs1 + Fs2); Pin/2 = − (Ps1 + Ps2); Min/2

= Ms1 + Ms2 − (Fs1 + Fs2)⋅D/2 (8)  

where D = 10 mm is the length of the shuttle, as labelled in Fig. 14(b). 
The geometry compatibility conditions for the bistable mechanism 

are shown below: 

Xs1 = 0; Xs2 = 0; Ys1 = − Yout; Ys2 = − Yout; θs1 = 0; θs2 = 0 (9) 

The force-displacement characteristic of the bistable mechanism 
now can be obtained by solving the system of nonlinear equations 
derived above. The shuttle is subjected to incremental displacement to 
activate its bistable mechanism, which is also simulated in the FEA 
analysis. 

The bistable mechanism’s FEA simulation was conducted using 
Comsol, following a process similar to that presented in Fig. 3. It’s noted 
that achieving convergence for the solution requires setting an appro
priate iteration number, especially when dealing with significant 
nonlinear deformations. For this study, the maximum iteration number 
was set to 200 (default is 25). During the simulation, a critical buckling 
force was determined, causing the beam to buckle into a bending mode 
[70]. The shape taken by the buckled mechanism is defined by the 
number of inflection points. Fig. 15(a) visually illustrates the deformed 
shape of the bistable mechanism, which exhibits two inflection points 
before the snap-through position. However, after passing this 

snap-through position, the mechanism moves towards its second stable 
position. Fig. 15(b) shows the deformed shape with only one inflection 
point. 

Fig. 16 depicts a comparison of the analytical and FEA results, 
revealing good agreement between the two. The maximum absolute 
error in the reaction force is found to be below 0.035 N, validating the 
accuracy of the developed model in precisely modeling bistable mech
anisms with both large deflections and high axial forces. 

5. Experimental validation of the revolute joint 

In this section, we conducted an experimental test to validate both 
the FEA and analytical results of the revolute joint, as shown in Fig. 17. 
To ensure a robust experiment setup, we fabricated a prototype with 
specific parameters outlined in Table 4. The flexure beams were made 
from copper, and all other components were 3D printed by Ultimaker S3 
using Polylactic Acid (PLA) as material. We employed an auxiliary 
positioning frame depicted in Fig. 17(b) to achieve precise assembly of 
the revolute joint to the 3D printed parts. The flexure beams were 
securely fixed to the rigid parts using super glue. 

5.1. Experimental setup of the revolute joint 

Fig. 17(a) illustrates the experimental setup used to evaluate the 
force-displacement characteristics of the revolute joint under different 
loading conditions. The setup comprises five key components: a micro
meter, a force sensor, a linear guide, the fabricated prototype, and a 
pulley system. The micrometer enabled us to precisely control and apply 
prescribed input displacements, while the force sensor, sitting on a 
linear guide, measured the reaction force from the motion stage. We 
utilized a pulley system to apply 100-gram and 200-gram weights acting 
payloads (Pin) to the motion stage in addition to the exerted input force 
from the micrometer. Fig. 17(c) showcases the deformed configuration 
of the revolute joint with a 200-gram payload. To ensure the reliability 
of our results, each experimental procedure was repeated three times, 
and the average of the experiment results was calculated for plot and 
comparison. 

Fig. 17. Experimental setup and the prototype of the revolute joint: (a) Experimental setup; (b) 3D-printed positioning frame, motion stage, rigid link, and base; (c) 
its deformed configuration. 
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5.2. Experimental results 

The experiment was carried out successfully to validate both the FEA 
and analytical results. Fig. 18 shows the tip force-displacement char
acteristics of the revolute joint under different payloads. As expected, 
the experimental results align closely with both the FEA and analytical 
results, demonstrating a maximum error of 5.6 %. Notably, the revolute 
joint displays a load-dependent effect, where an increase in payload 
leads to a reduction in the rotational stiffness of the joint. 

6. Experimental validation of the bistable mechanism 

In this section, we conducted experiments on a new bistable mech
anism as shown in Fig. 19. To create a cost-effective experimental setup, 
we fabricated a monolithic 3D-printed prototype (Fig. 19(b)) and 
assembled it on the testing apparatus. The prototype was printed using 
the Ultimaker S3, with a layer height of 0.1 mm. PLA was used as the 
material, with a Young’s modulus of 3.3 GPa and a Yield strength of 
52.5 MPa. The experiment was carried out within the yield strength 
which is first simulated in the Comsol. The new bistable mechanism 
comprises two identical bistable mechanisms, each of which was pre
viously presented in Section 4.2. The two compositional bistable 
mechanisms are arranged in parallel to reduce the stage rotation while 
achieving prescribed translational displacement. The specific geometry 
parameters of each GLBM used in the mechanism are outlined in Table 5. 

6.1. Experimental setup 

The assembly of the experimental setup primarily involves four 
components: the micrometer, force sensor, linear guide, and fabricated 
prototype, as depicted in Fig. 19(a). To accurately measure the retrac
tion force of the bistable mechanism, we affixed a powerful magnet to 
the shuttle of the mechanism. This magnet ensures a firm attachment 
between the shuttle and the probe of the force sensor. Fig. 19(c) illus
trates the new bistable mechanism at its second stable position. To 

Table 4 
The geometric parameters of the fabricated revolute joint prototype.  

GLBM 1 
α1 (deg) β1 (deg) γ1 (deg) W1 (mm) L11 (mm) L12 (mm) T1 (mm) U1 (mm) 
− 150 210 30 52 20 20 0.3 10 

GLBM 2 α2 (deg) β2 (deg) γ2 (deg) W2 (mm) L21 (mm) L22 (mm) T2 (mm) U2 (mm) 
150 − 210 − 30 52 20 20 0.3 10  

Fig. 18. Tip force-displacement characteristics under different payload.  

Fig. 19. Experimental setup and the prototype of the bistable mechanism: (a) Experimental setup; (b) 3D-printed prototype; (c) Second stable position of the 
bistable mechanism. 

Table 5 
The geometry parameters of the fabricated bistable mechanism.  

GLBM 1 
α1 (deg) β1 (deg) γ1 (deg) W1 (mm) L11 (mm) L12 (mm) T1 (mm) U1 (mm) 
− 19.17 40.83 10.93 28 32.32 32.32 0.4 8 

GLBM 2 
α2 (deg) β2 (deg) γ2 (deg) W2 (mm) L21 (mm) L22 (mm) T2 (mm) U2 (mm) 
10 10 11.59 36.01 20 20 0.4 8  
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ensure reliable results, each experimental procedure was repeated three 
times, and the average of the experiment results was calculated for plot 
and comparison. Additionally, we calculated the standard deviation of 
these three results to assess the repeatability of the measurements. 

6.2. Experimental results 

After conducting the experiment three times, we plotted the average 
reaction force along with its standard deviation in Fig. 20. A comparison 
of the experimental results with both the FEA and analytical results 
revealed a similar pattern. Remarkably, the FEA and analytical results 
showed better agreement, while the experimental results deviated from 
both, with a maximum difference of 0.62 N. Several factors could 
contribute to this deviation, including potential fabrication or assembly 
errors and undesired elastic deformation of the parts that were assumed 
to be rigid during the theoretical analysis. 

7. Discussions 

In this section, we provide a summary of the modeling method and 
discuss the potential errors associated with this method. This may lead 
to insights into the approach’s applicability and limitations. 

7.1. Summary of the modeling method 

As depicted in Fig. 21, the process of modeling compliant mecha
nisms using the GLBM entails initializing the geometry property, 
defining the boundary conditions, formating the force-displacement 

relationships, solving the equations, and determining if optimization is 
required. 

The geometry property of a compliant mechanism is initialized by 
assigning design parameters including the Li1, Li2, γi, αi, βi and Wi. 
Derivation of the force-displacement relationships of a compliant 
mechanism using the GLBM generally includes three components, 
namely the GLBM, force equilibrium, and geometry compatibility. The 
system equations of the force-displacement relationships can be solved 
numerically by providing initial guesses in mathematical software, such 
as Maple. Although the system of equations may appear cumbersome 
when dealing with complex structures that involve multiple general 
lumped-compliance beams, the use of the Loop function in Maple or 
other mathematical software allowed for a streamlined process by 
eliminating the need for repeating the constitutive equilibrium. This 
approach significantly reduced the required effort, even for complex 
structures. 

Integrating geometry parameters into the mathematical model of a 
compliant mechanism enables optimization of its geometry to achieve 
desired performance characteristics. Designers can vary these parame
ters to explore the design space and find the optimal geometry that 
meets the required specifications. For instance, Ref. [14] introduces 
several novel parameters into the bistable mechanism to better control 
its behavior. By adjusting the defined geometry parameters, the pro
grammable bistable lattices can be optimized for specific targets such as 
a larger deformation range or higher stability. However, the optimiza
tion in Ref. [14] is done by the enumeration method, which is not effi
cient. In contrast, the proposed GLBM makes it possible to optimize for 
multiple objectives simultaneously, which is more efficient and 
cost-effective. 

7.2. Model error 

The errors observed could be attributed to model errors and nu
merical errors. The model error arose from the fact that the constitutive 
equation relied on the mechanics of the Euler-Bernoulli beam, which 
disregards the shear effect. In the case of stubby beams, the model error 
could be significant. To address this issue, the Timoshenko beam theory, 
which accounts for the effect of shear strains in a beam and adds a 
correction term to the Euler-Bernoulli beam theory, can be used. 

On the other hand, numerical errors could have resulted from the 
iterative numerical methods used in Maple to solve nonlinear equations. 
In some cases, these methods may not converge to the exact solution due 
to issues such as poor initial guesses. Additionally, the mesh quality 
(element size and shape) in the FEA tool can also contribute to numerical 
errors. A coarse mesh can lead to significant errors, while a fine mesh 

Fig. 20. Force-displacement characteristic of the bistable mechanism.  

Fig. 21. The general process of using the GLBM to model compliant mechanisms.  
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can be computationally expensive. However, a finer mesh does not 
necessarily guarantee better results if the solution does not converge. 

8. Conclusion 

The paper has proposed an analytical model for a general lumped- 
compliance beam, which can accurately and efficiently synthesize 
force-displacement characteristics in compliant mechanisms that 
feature any two flexure beams connected in series. The model, termed 
GLBM, is shown to address the limitations of existing models. 

To demonstrate the effectiveness of the proposed GLBM, the present 
work has conducted thorough analyses on five representative general 
beam designs and two resulting compliant mechanisms composed of the 
general beams. The results were compared to nonlinear FEA, where the 
maximum error between the analytical and FEA models was found to be 
6 %. This validation indicates that the GLBM is a promising tool to 
significantly enhance the design and analysis of compliant mechanisms. 

Furthermore, this paper has successfully implemented two experi
ments to validate the analytical models of the above two compliant 
mechanisms, the revolute joint and the bistable mechanism. The com
parison confirms the credibility of the proposed modeling method. 

In our future work, we aim to incorporate the Timoshenko beam 
theory into our model to capture the shear deformation of the beam 
cross-sections. This will enable us to better account for the effects of 
shear strains in our analysis, leading to more accurate results. We 
believe that this will further enhance the precision of our approach in 
predicting the behavior of compliant mechanisms with very short 

flexure beams. In addition, the GLBM will be utilized in the optimization 
of the force-displacement performance of compliant mechanisms. 
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Appendix A. Force-displacement characteristic of a flexure beam 

As shown in Fig. A1, the loading conditions for a single flexure beam are represented by Fi1 (axial force), Pi1 (transverse force), and Mi1 (moment) 
acting at the tip of the beam. The resulting displacements are represented by Xi1 (displacement along X-axis), Yi1 (displacement along Y-axis), and θi1 
(rotational angle along Z-axis) with respect to the local coordinate frame. The closed-form solution of the force-displacement characteristic for this 
flexure beam is represented below [45]:

Fig. A1. Simple slender beam with generalized end load.  
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Appendix B. Summary of commonly-used GLBM configurations 

See Appendix Table B1.  

Table B1 
Several commonly used GLBM configurations  

Configurations Parameters References 

αi = 0;βi = 0; γi = 0;

W =
L1 + L2

2 

[49,55] 

αi = 0;βi = 0; γi = 0;

W >
L1 + L2

2 

[45] 

αi = 180∘; βi = − 180∘; γi = 0;

W >
L1 + L2

2 

[63,24,19] 

αi = 180∘; βi = 0; γi = 0;

W >
L1 + L2

2 

[22] 

(continued on next page) 
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Table B1 (continued ) 

Configurations Parameters References 

αi = 0∘; βi = 90∘ ; γi = 45∘;

W <
L1 + L2

2 

[73,74] 

αi = − 180∘; βi = 0; γi = − 90∘ ;

W > 0 
[75] 

αi = 0; βi = − 180∘; γi = 0;

W >
L1 + L2

2  

[15]  

Appendix C. Abbreviations and Nomenclature 

See Appendix Tables C1 and C2  

Table C1 
Abbreviations.  

FEA Finite element analysis. 
BCM Beam constraint model 
FBD Free body diagram 
GLBM General lumped compliance beam 
PRBM Pseudo-rigid-body model 
CPRBM Chained- pseudo-rigid-body model 
CBCM Chained beam constraint model 
TBCM Timoshenko beam constraint model 
SCM Smooth curvature model 
EIS Elliptic integral solution 
CEIS Comprehensive elliptic integral solution 
MSCM Multiple smooth curvature model   
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Table C2 
Nomenclature.  

Fi Tip force on the flexure beam in the Y-direction 
Pi Tip force on the flexure beam in the X-direction 
Mi Tip force on the flexure beam about Z-direction 
Yi Tip displacement on the flexure beam in the X-direction 
Xi Tip displacement on the flexure beam in the Y-direction 
θi Tip rotation on the flexure beam along Z-direction 
Li The length of ith flexure beam 
Li + 1 The length of i + 1th flexure beam 
γi The (i + 1)/2th angle between ith flexure beam and i + 1th flexure beam with the X-axis 
αi The (i + 1)/2th angle of the ith flexure beam with the X-axis 
βi The (i + 1)/2th angle of the i + 1th flexure beam with the X-axis 
Fsi Tip force on the general lumped-compliance beam in the Y-direction 
Psi Tip force on the general lumped-compliance beam in the X-direction 
Msi Tip moment on the general lumped-compliance beam about the Z-direction 
Ysi Tip displacement on the general lumped-compliance beam in the X-direction 
Xsi Tip displacement on the general lumped-compliance beam in the Y-direction 
θsi Tip rotation on the general lumped-compliance beam along Z-direction 
I Moment of inertia of the flexure beam 
E Elastic modulus of the flexure beam  
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Corrigendum 

Corrigendum to “Modelling of a general lumped-compliance beam for 
compliant mechanisms” [International Journal of Mechanical Sciences, 
Volume 263, 108779] 

Jiaxiang Zhu, Guangbo Hao 
School of Engineering and Architecture-Electrical and Electronic Engineering, University College Cork, Cork, Ireland 

Following the publication of our article, we have identified errors in 
the representation of two figures that require correction. The inaccur
acies are detailed below. 

1. Fig. 1: Configuration of a general beam: (a) geometry parameters 
of the GLBM; (b) FBD of the general beam 

There was error on the labelling of parameter γi in Fig. 1(a) in the 
original article. The corrected figure is provided below. 

2. Fig. 14: Bistable mechanism with increased out-of-plane stiffness: 
(a) geometry parameters; (b) deformed configuration and the FBD of the 
shuttle. 

The original labelling of Fig. 14(a) is missing parameter γ2. The 
corrected version is provided below. 

The authors extend their sincere apologies for any inconvenience 
caused by these oversights. 

DOI of original article: https://doi.org/10.1016/j.ijmecsci.2023.108779. 
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Fig. 1. Configuration of a general beam: (a) geometry parameters of the GLBM; (b) FBD of the general beam.  

Fig. 14. Bistable mechanism with increased out-of-plane stiffness: (a) geometry parameters; (b) deformed configuration and the FBD of the shuttle.  

J. Zhu and G. Hao                                                                                                                                                                                                                              
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