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Compliant mechanisms are crucial in a wide range of applications, and straight flexure beams with uniform
thickness serve as their fundamental building blocks. While techniques and methods exist to estimate the so-
phisticated load-displacement behavior of these beams, dealing with the nonlinear large deformation and
parametric design of complex compliant mechanisms using these beams remains a significant challenge. To
address this challenge, an analytical model has been developed to integrate six independent geometric param-
eters into a general lumped-compliance beam, known as the general lumped-compliance beam model (GLBM).
This approach enables the determinate synthesis of force-displacement characteristics in compliant mechanisms
that feature any two flexure beams connected in series, such as the conventional lumped-compliance beam,
distributed beam, inverted beam, and folded beam. The closed-form beam constraint model (BCM) is utilized to
derive the GLBM that accurately captures geometric nonlinearity and load-dependent effects. To demonstrate the
effectiveness of this modeling technique, we verified five specific configurations of the GLBM using nonlinear
finite element analysis (FEA). In addition, we selected two representative compliant mechanisms, a revolute joint
and a bistable mechanism, for nonlinear analysis and experimental validation, which further showcases the
efficacy of this proposed GLBM.

1. Introduction

Over the past few decades, compliant mechanisms have gained
widespread recognition due to their merits such as no backlash, wear-
free, and low noise [1]. They have opened up new horizons in nano-
positioning development [2-4], energy harvesting [5-7], micro-
electromechanical systems (MEMS) [8-10], etc. Compliant mechanisms
often present a monolithic body with either lumped-compliance beams
or distributed-compliance beams, which exhibit different deformation
characteristics. The lumped-compliance beam, usually combining two
elastic notch-type hinges and a rigid-body link, has a limited deforma-
tion range [11]. However, the deformation of the
distributed-compliance beam occurs along the whole beam and is,
therefore, much larger [12]. Both types of beams are widely used in the
design of compliant building blocks including bistable mechanism
[13-15], statistically-balanced mechanism [16], compliant amplifier
[17,18], translational joint [19,20], rotational joint [21,22]. Therefore,
it is the intention of this paper to come up with a model that is simple,
accurate, and applicable to a more general lumped-compliance beam for
large deflections, which can facilitate the parametric design of
compliant mechanisms. Here, a general lumped-compliance beam has
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more design parameters than a conventional lumped-compliance beam,
which is inspired by the position space concept [22]. The general
lumped-compliance beams can find their specific applications in the
design of bistable mechanisms with equal switch forces [14], compliant
tensural multi-stable mechanisms [23], and a novel parallelogram
mechanism [24].

The finite element analysis (FEA) method is a popular and effective
numerical approach for analyzing the kinetostatics and dynamics of
compliant mechanisms, thanks to its ability to handle complex geome-
tries and boundary conditions. However, there are some inherent
drawbacks associated with this method. While users have complete
control over model manipulation, they cannot guarantee its accuracy.
Additionally, discretization errors and stress singularities can cause
unconverged solutions, particularly when compressive forces are
applied to flexure beams. Consequently, the FEA method may produce
incorrect or unrealistic shape configurations. In general, the accuracy of
the FEA method depends on various factors, including the degrees of
freedom, discretization, and element type used [25].

Apart from the FEA method, a considerable number of modeling
methods have been developed for kinetostatic or dynamic modeling of
compliant mechanisms. These methods include the pseudo-rigid-body
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model (PRBM), beam constraint model (BCM) [20], smooth curvature
model (SCM) [26], elliptic integral solution (EIS) and their derivatives
like chained-BCM (CBCM) [27], Timoshenko-BCM (TBCM) [28], the
integral method based BCM (IMBCM) [29,30], spatial-BCM (SBCM) [31,
32], chained-PRBM (CPRBM) [33-35], PRBM-based dynamic model
[36], comprehensive-EIS (CEIS) [37], multiple-SCM (MSCM) [38].

The PRBM generally serves as an effective modeling method in the
early-stage design of compliant mechanisms, where the nonlinear
deflection of a flexure beam is approximated as a series of torsional
springs or linear springs connected by rigid mechanisms [39,40]. As a
result of the limited degree of freedom, the 1R-PRBM has load depen-
dent effect degrading the accuracy of the model. To improve the accu-
racy of 1R-PRBM, the 2R-PRBM [34], 3R-PRBM [35,41], 5R-PRBM [42],
and CPRBM [43,44] were prosed. However, a higher amount of dis-
cretization of the PRBM model inevitably leads to higher dimensional
mathematical models, which causes longer computational time. They
are not capable of capturing the elasto-kinematic effect and large errors
in response to arbitrary loads, which is another significant hinder in the
application of compliant mechanism synthesize.

The BCM is based on the Euler-Bernoulli beam model and considers
geometric nonlinearity and load-dependent effect associated with line-
arized beam curvature assumptions. It is simple, parametric, closed-
form, and accurately predicts the behavior of flexure beams with in-
termediate deflections [45]. As aforementioned, BCM has been extended
for different modeling scenarios of nonlinear deflections, including the
SBCM [46,47], CBCM [27], IMBCM [29,30], TBCM [28], BCM with
semi-rigid element [48]. The SBCM is capable of capturing the spatial
motion of a wire beam. The CBCM discretizes a flexure beam into
multiple segments to extend the range of the allowable axial load and
the deflection. The CBCM with only two BCM elements, commonly
known as Bi-BCM, is widely preferred and adopted due to its balance
between accuracy and simplicity [49,50]. The IMBCM is proposed to
model nonlinear fillet leaf springs. The TBCM incorporates the sheer
effect which can model stubby beams. The BCM with a semi-rigid
element is a method based on BCM to investigate the nonlinear static
load-displacement relationships of beam-based flexure modules con-
taining an intermediate semi-rigid element. An intermediate stiffening
element is commonly treated as a perfect rigid element. The BCM with a
semi-rigid element removes this untrue assumption, which is more ac-
curate. The BCM modeling method is a versatile and easy-to-use tool
that can be integrated into various modeling scenarios.

A classic method for solving large deflections (more than 0.15 of the
beam’s length) of a compliant mechanism is the EIS, which is an exact
solution to the Euler- Bernoulli beam equation. However, it is limited to
the range of slope angles and has no inflection point [51-53]. To over-
come the limitations of no inflection point, an EIS for a large beam
deflection with an inflection point subject to arbitrary loading condi-
tions was derived in reference [54]. In [37], a CEIS with multiple in-
flection points and subject to arbitrary loading was proposed. To
eliminate the limitation of the range of slope angles, an alternative
method was introduced in [52]. The original EIS has been improved in
terms of the inflection point, end loads, and slope angles. However, it is
not a preferred technique for intermediate displacement ranges due to
its rather complex derivation and implementation. For instance, the
derivation process may be sensitive to initial guesses of unknown pa-
rameters if the end slope and load parameters are not provided [55].

As opposed to many other modeling techniques that involve nu-
merical integration or discretization, the SCM [26] assumes that the
curvature of a beam in bending is smooth and can therefore be
approximated by low-order polynomials (e.g., Legendre polynomials).
This approach enables the extraction of kinematic Jacobians and
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Hessians, as well as generalized stiffness matrices, which can be used to
predict the deformation or stiffness of structures with multiple links.
Additionally, it is capable of predicting the first several buckling modes,
making it an attractive method for designing graspers [56-58]. How-
ever, this approach is not suitable to synthesize planar-compliant
mechanisms such as those for finger-type robots. Additionally, synthe-
sizing more complex mechanisms using the smooth curvature mode has
not been thoroughly studied.

As previously discussed, these models have certain limitations, such
as their inability to accurately predict large deflection and inflection
points, and/or their large difficulty in being applied to complex struc-
tures. Therefore, this study aims to address these problems by incorpo-
rating more geometric parameters into a lumped-compliance beam and
proposing a general lumped-compliance beam model (GLBM). Outlined
below are the primary benefits of utilizing the GLBM:

1) Simply by regulating the six geometry parameters, the GLBM can
effectively predict the force-displacement characteristics of a general
lumped-compliance beam that features any two flexure beams con-
nected in series and with a rigid body between them. The model can
deal with all special design cases such as the folded beam and
inverted lumped-compliance beam.

The developed GLBM has increased accuracy while predicting the
large-deformation kinetostatic characteristic. Notably, the GLBM
extends the application range of allowable axial forces. For instance,
it increases the allowable normalized compressive axial force from
T2EIl/(4L%) to TEZEI/L2, if a straight distributed-compliance flexure
beam is divided into two equal segments [59,55]. Another strength
of this model is its ability to accurately predict the load-displacement
relations and deformation in certain designs, such as a bistable
mechanism, with two inflection points along the deformed beam,

2

—

2. General lumped-compliance beam model

The objective of this section is to introduce the derivation of the
GLBM. The section begins by presenting the BCM as a basis for the
development of the model, which is documented in Appendix A. Sub-
sequently, the derivation of the GLBM is elaborated step by step,
providing detailed explanations of the process.

Fig. 1(a) shows the parameterized lumped-compliance beam that
features two flexure beams connected in serial. The GLBM is dominantly
defined by six geometrical parameters, i.e., L, Lio, 75, @, fi, and W;,
which are labeled in Fig. 1(a). The symbol i corresponds to a general
beam configuration. It is worth noting that the length W is the distance
between the two center points (labeled as C,; and C;) of the two flexure
beams. By manipulating these parameters, we can obtain any beam
configurations that consist of any two flexure beams and one rigid stage
in the middle (including only two flexure beams without a rigid stage as
defined below).

Wicos(y) = Lycos(a;)/2 + Lpcos(p;)/2 and W;sin(y;) = Ly sin(a;)/2
+ Lisin(B;)/2 €y}

To obtain the relationship between the tip input forces (Fs;, Pgj, M)
and the tip output displacements (X;, Y;, 0s;) with respect to the coor-
dinate frame X-Y-Z, we utilize the BCM in conjunction with the Free
Body Diagram (FBD) method. This approach is what we commonly used
in solving a typical mechanic problem which involves three compo-
nents: constitutive equations, force equilibrium, and geometry
compatibility [60-62]. The constitutive equation of each flexure beam is
obtained from the BCM [45], which is explained in Appendix A.

The constitutive equations of flexure beam 1 can be expressed below.
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Fig. 1. Configuration of a general beam: (a) geometry parameters of the GLBM; (b) FBD of the general beam.
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In its deformed configuration, the tip displacement of the GLBM is
generally the combination of the tip displacement of each beam in their

The constitutive equations of flexure beam 2 can be expressed below. local coordinates and the displacement caused by the rotation of the
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rigid stage in the global coordinate.

The force balance equations are derived based on the deformed

configuration as shown in Fig. 1(b), which captures the contributions of
the axial load to the bending moment.

Xi-cos(a; + 6i) + Xin-cos(f;) — Yi-sin(a; + 6,2) — Yin-sin(p;)
— 2-hy-sin(0n/2)-cos(n/2 — arcsin((W;-sin(y;) — sinf;-L; /2
+ sin(ai)~Li1/2)/h0) — 0,2/2) — X

Py cos(a; +0,) sin(a;+0n) | [Py
Fy a —sin(a; +0n) cos(a;+0n) | | Fu =0 Yij-cos(a; + O) + Yip-cos(f;) + Xir-sin(a; + 6) + Xp-sin(f3;)
+ 2-hy-sin(6;,/2)-sin(x/2 — arcsin((W;-sin(y;) — sinp;-L;; /2
0 cos(a;+0p) —sin(a;+6,) | [ Pa cos(f;) —sin(B;) | [ Pn ) o-sin(02/2) sin(r/ (« ) brla/
0) ™ [sinte+0n) costa+6a) | [ £ ] [sinis) costp) | [F (L 2) o) = 0n/2)
sin(a; 4+ 0n) cos(a; +6; ; sin(f;) cos(p; ;
’ v ’ =00, =0,+0, ®)
My —M;=0
Miy +Fiy (X +Lia) = P Yoy = Mip +(Wi-cos(y; +0;) —cos(f; +0z) where hy = \/(Wi-coS()/i) — cos(f)Li /2 + cos(a;)-Li /2)* + (Wi-sin(y;)—
-Ly1 /2 —cos(a; +0p)-Liy /2)-(Fiy-cos(a; +0) + Py -sin(a; +0,)) sin(f;)-Lin /2 + sin(aq) Ly /2)>
+(W;-sin(y; +6;) —sin(B, + 6 )Ly /2 — sin(a; +6;)-Liy /2) The derivation of the force-displacement characteristic of the GLBM
(Fiusin(@; 4+ 8) — Py -cos(a; +61)) =0 is based on the six constitutive equations (three each of the flexure
i iR e beams), six force balance equations, and three geometry compatibility

4 equations. When solving the system of equations, one can obtain the
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Fig. 2. GLBM in different configurations: (a) straight/conventional lumped-compliance beam; (b) distributed-compliance beam; (c) folded beam; (d) inverted beam;

(e) inclined beam.

Table 1
Geometric parameters of the five configurations for the GLBM.
Cases a; (deg) pi (deg) 7i (deg) W; (mm) Ly (mm) Lz (mm) T; (mm) U; (mm)
1 0 0 0 10 10 4 0.4 20
2 0 0 0 10 10 4 0.4 10
3 0 90 33.70 20 30 4 0.4 18.03
4 180 —-180 0 10 10 4 0.4 20
5 -20 -20 0 10 10 4 0.4 20

displacements (Xs;, Ys;, 6s) by giving the input force (Fy;, Ps;, Ms;), and
vice versa. Each GLBM contains 15 equations that govern the force-
displacement characteristics. Using the GLBM to synthesize a complex
structure that contains multiple general beams, the corresponding
equations will be bulky. However, this issue can easily be solved in most
existing mathematical software, i.e., Maple, MATLAB, and Mathematica
by simply adding a loop function to repeat the force-displacement
equations multiple times.

3. FEA verification and parametric analysis

The GLBM offers a versatile approach to effectively model a general
beam that incorporates any two flexure beams connected in series for
various configurations. These general beam configurations are widely
favored in the design of compliant mechanisms, owing to their wide-
spread popularity and numerous advantages. We have compiled a list of
some existing specific configurations as shown in Appendix B.

In this section, we focus on showcasing five representative configu-
rations (Fig. 2) using the GLBM. To ensure the credibility of our findings,
we conducted a thorough verification process by comparing the
analytical results with those obtained from the nonlinear FEA tool.

These configurations, displayed in Fig. 2, are widely adopted in the
design of compliant mechanisms. For instance, the inverted beam and
the inclined beam, shown in Fig. 2(d) and (e), respectively, are
frequently employed in the design of bistable mechanisms [63,64,14,
65-67] and translational joints [68,19], whereas the folded beam, pre-
sented in Fig. 2(c) is commonly used in the design of flexure joints [69,
70]. Additionally, the distributed-compliance beam and the straight
lumped-compliance beam, which are among the most popular building
blocks, are also utilized in various applications. The geometry parame-
ters of each configuration are shown in Table 1. Each configuration
(beam) was subjected to generalized end-loads (Fiy, Pin, Mip), resulting in
end displacements (Xout, Yout, and 6oyt) With respect to the global co-
ordinates X-Y-Z.

The FEA simulations were performed in commercial software
COMSOL@5.0. A general flowchart depicting the FEA simulation pro-
cess with Comsol software is presented in Fig. 3. In line with the

assumptions made in the analytical model, the stages and frames were
set as rigid, and no fillet was added around the sharp corner. However, it
is important to avoid sharp corners in the connection area between the
rigid part and the flexure, as these can cause stress singularities. In this
instance, a finer mesh did not result in superior outcomes. Therefore, it
may be necessary to perform a singularity check to ensure that the re-
sults converge.

3.1. FEA verification of GLBM in different configurations

By incorporating the relevant parameters into the GLBM derived in
Section 2, we can obtain an analytical model that governs the force-
displacement characteristics of each case, subject to generalized end-
loads. To comprehensively study the force-displacement characteristic,
a relatively large force is applied to the beams to induce a substantial
displacement.

Fig. 4 presents a comparison between the analytical model and FEA
simulation results in terms of the force-displacement relationship for the
straight lumped-compliance beam. The analytical model was able to
predict the resulting displacements in each direction (Xout, Yout, and Oout)
with a prominent level of accuracy, as evidenced by the close agreement
between the analytical and FEA results. The maximum error between the
analytical and FEA results was 4.93 % for the transverse displacement
(Youy) in Fig. 4(b), which reached 54 % of the beam length (30 mm). For
the axial displacement (X,yt) and tip rotation (0oy) in Fig. 4(a) and (c),
respectively, the maximum errors were 4.48 % and 5.85 %, respectively.
Generally, a smaller displacement resulted in a better correlation be-
tween the analytical and FEA results. These findings validate the reli-
ability of the analytical model in predicting the force-displacement
behavior of the straight lumped-compliance beam.

The results of the distributed-compliance beam are plotted in Fig. 5
where the error is below 4.71 % for the tip rotation. When the axial
displacement reaches 2.4 mm (beam length 20 mm), it produces a
maximum error of 2.27 % between the FEA and analytical results as
shown in Fig. 5(c). A force combination of Fj, = 2 N, Pj, = — 0.8 N, Mj,
= 0.04 Nm produces a transverse displacement (Y, of 8.43 mm with a
maximum error of 3.77 %, which is illustrated in Fig. 5(b).
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Start Comsol
Physics Interface: Solid Mechanics
Study Type: Stationary Analysis

Material Selection
Linear elastic material: Selected.
Elastic beams: Al 6028, E = 69 (GPa), p = 2700 (kg/m?), v = 0.33.
Remaining parts: Rigid domains.

!

Geometry Creation
Livelink or geometry modelling in Solidworks

Pre-process

!

Assign Boundary Conditions
Fixed constraint: Bottom surface
Loading position: Top surface.
Loading type: Incremental moments, forces, or displacement.

!

Mesh
Slender beams:
= Mesh type: Cuboids built by selecting ‘Free Quad’ or ‘Mapped’.
Element Size: Fine mesh defined.
Remaining parts:
=  Mesh type: Tetrahedrons built by selecting ‘Free tetrahedral’.
Element size: Normal mesh defined.

||

Processing =<

NO

|
Solver
Geometric nonlinearity: Selected.
Stationary Solver: Automatic Newton method.
Maximum number of iterations: 300.
Tolerance factor: 0.1.

= Convergence

[

\

Post-process

—

Displacement X, [mm]

(2)

S—

l Yes
Results Assessment
Rotation: Evaluated by selecting “Global Evaluation” of the loading position.
Displacement: Obtained by selecting “Surface” and “Deformation”.

Fig. 3. Flowchart of the process of FEA simulation based on the software Comsol.
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Fig. 4. FEA verification of the lumped-compliance beam: (a) displacement in X-direction versus the input force Fi,; (b) displacement in Y-direction versus the input
force Fip; () rotation about Z-axis versus the input force Fj,.
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Fig. 6. FEA verification of the inverted beam: (a) displacement in X-direction versus the input force F,; (b) displacement in Y-direction versus the input force Fi,; (¢)

rotation about Z-axis versus the input force Fy,.

The comparison between the analytical and FEA results of case 3
(inverted beam) is plotted in Fig. 6. The maximum error that occurs in
the tip rotation is 3.12 % while the maximum error for the transverse
displacement (Fig. 6(b)) and axial displacement (Fig. 6(a)) is 4.69 % and
2.64 %, respectively. Fig. 7 presents the comparison of the results for
case 4 (inclined beam). While the beam yields 16.82 mm in the trans-
verse direction (Y,yy), it has a maximum error of 4.98 %. The maximum
error between the analytical results and FEA results, in this case, is 4.28
% (for Ooyt) and 5.75 % (for Xoyy).

Fig. 8(a) displays the force-displacement characteristic of the folded
beam, with a maximum error of 4.48 % observed between the analytical
and FEA results in terms of axial displacement. The transverse
displacement and tip rotation exhibit errors of 2.75 % and 5.41 %, which
are depicted in Fig. 8(b) and (c), respectively.

In Section 3.1, we utilized the developed GLBM to model five

representative flexure beam units. We verified the results by comparing
them with those obtained from an FEA tool. Our analysis revealed that
the error between the analytical results and the FEA results was in the
range of 2 % to 6 % for a large deflection (transverse displacement over
40 % of the beam length). Overall, the results suggest that the GLBM is
effective in predicting the force-displacement behavior in any configu-
ration, with reasonable accuracy as compared to the FEA simulations.

3.2. Parametric analysis

A parametric analysis is performed to analyze the influence of geo-
metric parameters on the stiffness of a general lumped-compliance
beam. This analysis helps in evaluating trade-offs between different
design options and making informed decisions during certain compliant
mechanism design processes. The analysis was implemented and
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Fig. 7. FEA verification of the inclined beam: (a) displacement in X-direction versus the input force F;,; (b) displacement in Y-direction versus the input force Fiy; (c)

rotation about Z-axis versus the input force Fj,.



J. Zhu and G. Hao

International Journal of Mechanical Sciences 263 (2024) 108779

FEA: * P, =-08N,M;=0.04Nm
Ana: ---- P, =-08N,M;=004Nm - — -

P, =-0.4N, M,=0.02 Nm
P, =-0.4N, M,=0.02 Nm

P,,= 0N, M;=0Nm
P, =0N, M,=0Nm

15

l == .
*

I SN
RN

-1 BN

104
54

54 -

Displacement X, [mm]
‘
Displacement Y, [mm]

e
0 " .-

: 0.6 -
L *,‘*'

,*»'*,i 0.41 LT e

. .

0.2 xT AT

004 %" _+~

021

Tip Rotation 6, [rad]
*
A

-0.44

T T - -10+ T
-0.50 -0.25  0.00 0.25 0.50 -0.50  -0.25

a) Input Force F, [N] (b)

~

000 025 050  .050 -025 000 025 050
Input Force F, [N] (c)

Input Force Fj [N]

Fig. 8. FEA verification of the folded beam: (a) displacement in X-direction versus the input force Fi,; (b) displacement in Y-direction versus the input force Fi,; (c)

rotation about Z-axis versus the input force Fi,.

Stiffness in the Y - direction (N/m)

o (deg)

80
70
60
50

40

30 -
400

Stiffness in the Y - direction (N/m)

Stiffness in the Y - direction (N/m)

The GLBM configurations for peaks 1, 3, 7, and 9

3

The GLBM configurations for peak 5

£

"

The GLBM configurations for peaks 2, 4, 6, and 8

(d)

Fig. 9. The stiffness in Y-direction with varying geometry parameters « and $: (a) instantons stiffness, the case of Y;, = 0 mm, X, = 0 and 6;, = 0; (b) under the case
of Yi, = 0.1 mm, X;, = 0 and 6;, = 0; (c) under the case of Y;, = 0.2 mm, X;, = 0 and 6;, = 0; (d) and the general beam configurations for each peak.

computed using Matlab.

Specifically, the geometric parameters a; and f; were chosen as
variables, ranging from 0° to 360° with increments of 10°, to investigate
the changes in stiffness along the Y-direction. And the rest parameters
are defined as Ly; = L12 = 10 mm, y; = 0 deg and W; = 20 mm. By
applying input displacements and solving the system of equations, the
stiffness was determined. Fig. 9(a) depicts the stiffness with a neglective
input displacement of 10~° mm in the Y-direction. Fig. 9(b) illustrates
the stiffness for a given input displacement of Yj, = 0.1 mm, Xj, = 0 and
Oin = 0. Fig. 9(c) illustrates the stiffness for a given input displacement of
Yin = 0.2 mm, Xj;, = 0 and 6;;, = 0. The input only occurs in the Y-di-
rection, which mimics the single-leg motion of the symmetrical

traditional translational joint [68].

Fig. 9(a) clearly illustrates the variation in stiffness at a small scale,
ranging from 34 N/mm to 37 N/mm, when subjected to a negligible
input of 1073 mm in the Y-direction. However, as we increase the input
displacement to 0.1 mm and 0.2 mm, the stiffness of different GLBM
configurations exhibits a significant variation, ranging from 34 N/mm to
44 N/mm and from 34 N/mm to 65 N/mm, respectively.

Fig. 9(d) presents the corresponding GLBM configurations of each
peak in Fig. 9(b) and (c). Notably, the GLBM designs featuring colinear
flexure beams, such as the inverted beam and the lump-compliance
beam, exhibit higher stiffness compared to the GLBM designs with
non-colinear flexure beams, such as the folded beam and inclined beam.
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Fig. 10. Revolute joint with inverted beams: (a) geometry; (b) deformed configuration; (c) FBD of the joint.
Table 2
The geometric parameters of the revolute joint.
GLBM 1 a; (deg) 1 (deg) 71 (deg) Wi (mm) Ly; (mm) Ly2 (mm) T, (mm) U; (mm)
—-150 210 30 40 20 20 0.4 4
GLBM 2 az (deg) f2 (deg) 72 (deg) W, (mm) Ly; (mm) Loy (mm) T 5 (mm) U (mm)
150 -210 -30 40 20 20 0.4 4
Base  Flexure beam Rigid link Motion stage
Y
Z®

X (@

(®)

Fig. 11. Translational joint derived from the revolute joint [65]: (a) geometric composition; (b) deformed configuration.

Furthermore, an interesting observation from Fig. 9 is that the load-
dependent effect is not prominent in the GLBM designs with parallel
but not colinear flexure beams. This can be attributed to the minimal
compression or tensile forces experienced by the flexure beams when
subjected to small input displacements. In these configurations, the
displacement in the X-direction and tip rotation remains zero while a
displacement is applied in the Y-direction. However, it is worth noting
that the GLBM model with colinear beams experiences significant tensile
forces even for small displacements. The load-dependent effect is also
observed by comparing Fig. 9(a) and (b). Fig. 9(b) shows a larger value
while the input displacement Yj, increases.

The parametric analysis conducted in this study incorporates the

variables a and f to examine the impact of various GLBM configurations
on stiffness. Remarkably, this approach enables simultaneous analysis of
thousands of configurations, with each analysis requiring only 30 s of
computing time in Matlab. This level of efficiency surpasses that of FEA
simulation software and proves to be highly advantageous for the
parametric optimization of compliant mechanisms.

4. Application to design compliant mechanisms
In this Section, the proposed GLBM was used to synthesize two

different cases, namely, the revolute joint and the bistable mechanism.
To analyze the force-displacement characteristics of each compliant
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mechanism, we need to format a system of equations consisting of the
GLBM, force equilibrium, and geometry compatibility. The system
equations are solved in Maple using Fsolve function and the obtained
results are further verified by the FEA tool using Comsol. The process of
the FEA simulation generally follows the same process presented in
Fig. 3.

4.1. Case I - revolute Joint with two identical inverted beams

Fig. 10 illustrates the revolute joint design using an inverted beam
with specific geometry parameters, which are listed in Table 2. By
simply changing the value of these parameters, we can quickly model a
translational joint as shown in Fig. 11 [71]. This allows for quick and
efficient design iterations, reducing development time. In this case
study, the revolute joint is being utilized as the subject of analysis.

The revolute joint with inverted beams is typically capable of with-
standing a large compression force. In this case, the flexure beam only
suffers tensile force which avoids buckling [71]. To derive the force
balance equation, we will begin by analyzing the FBD, along with the
GLBM and geometry compatibility. By combining these mechanics, we
can obtain a system of equations that govern the force-displacement
characteristics of the revolute joint.

Fig. 10(a) and (b) illustrate the geometry and the deformed config-
uration under given end forces, respectively. We then substituted the
corresponding geometry parameters as shown in Table. 2, into the GLBM
to extract the constitutive equations of the inverted beams. It is impor-
tant to note that each of the inverted beams has its own GLBM, as
derived previously. With the constitutive equation in hand, we then
continued with the force equilibrium analysis and geometry compati-
bility to gain a deeper understanding of the revolute joint.

Based on the FBD (Fig. 10(c)), we can obtain the force equilibrium:

Fin =Fg + FsZ

Pin = Psl +P52

My = Mgy + Mg — Py-c08(0oy)-D/2 — Feo-sin(6ow)-D/2 + Pg;-c08(0ow)-D/2
+F-sin(Bow)-D/2

(6)
where D = 50 mm is the length of the motion stage.

The geometry compatibility conditions for the revolute joint are
shown below:
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Xsl = Xoul + Sin(eom)'D/z; XSZ = Xoul -
- COS(GQU[)'D/Z); YsZ
= You! - (1 - cos(Gum)~D/2); Hs] = goul; 052 = goul (7)

sin(Qou ) D/2; Y = You + (1

To gain insight into the force-displacement characteristics of the
revolute joint, a system of nonlinear equations was developed. Among
them, 30 equations were governed by two GLBMs responsible for
describing the force-displacement characteristics, and constitutive con-
ditions of the resulting compliant mechanism. The remaining 9 equa-
tions comprised three force-equilibrium equations and 6 geometry
compatibility equations. This analytical model was then used to validate
our findings with the FEA tool, Comsol. By comparing the results ob-
tained from both the analytical model and the FEA tool, we were able to
obtain a more comprehensive understanding of the force-displacement
behavior of the revolute joint. This approach allowed us to verify the
accuracy of our model and identify any discrepancies or limitations that
may exist in the analytical or computational methods used. Incremental
input forces including F,, Pin, and M, are applied to the input stages
with 10 steps. Calculation of the 10 steps together takes about 3-5 s
using the Loop function in Maple, while the calculation using the FEA
method takes about 80-85 s.

Fig. 12 depicts the mesh type and deformed configuration of the
revolute joint in the FEA simulation. In Fig. 12(a), the rigid parts utilize
default tetrahedral elements, while the flexure parts employ cuboid el-
ements. This combination optimizes the element count, achieving a
balance between computing time and accuracy without compromising
the results. The displacement plot in Fig. 12(b) illustrates the outcome of
applying an input force of 0.8 N in the Y-direction. As a result, the
motion stage undergoes a significant displacement of 2.11 mm along the
Y-direction.

Fig. 13 illustrates a comparison between the analytical results and
the FEA simulation of the output displacement of the motion stage. The
comparison shows good agreement between the two methods. Specif-
ically, Fig. 13(a) presents the results of the motion stage rotation (6oy),
with a maximum error between the analytical results and FEA simula-
tion of 4.1 %. Fig. 13(b) plots the out displacement in the X-direction of
the revolute joint under incremental input forces, demonstrating a
nonlinear characteristic with a maximum error of 4.3 %. Finally, Fig. 13
(c) depicts the output displacement in the Y-direction, with an error
between the analytical results and FEA results of less than 2.0 %.
Overall, these results indicate the accuracy and reliability of both
analytical and FEA methods in analyzing the behavior of the revolute

(b)

Fig. 12. FEA simulation in Comsol: (a) mesh type for the rigid bodies and flexure beams; (b) displacement plot of the revolute joint in Comsol.
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Fig. 13. FEA verification of the revolute joint with inverted beam: (a) displacement in X-direction versus the input force F;,; (b) displacement in Y-direction versus
the input force Fi,; (c) rotation about Z-axis versus the input force Fy,.

joint.
4.2. Case II - bistable mechanism using two types of GLBMs

A novel bistable mechanism with triangle shape flexure [72] in
which torsion reinforce structures are used to increase the out-of-plane

stiffness as depicted in Fig. 14. It is mainly composed of a folded beam

P, s2, - (X outs Yout, Houl)
- \
2 .
= D

P2

Fig. 14. Bistable mechanism with increased out-of-plane stiffness: (a) geometry

(®)

parameters; (b) deformed configuration and the FBD of the shuttle.
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Fig. 16. FEA verification of the behavior of the bistable mechanism.

Table 3
The geometry parameters of the bistable mechanism.
GLBM 1 a; (deg) f1 (deg) 71 (deg) Wi (mm) Ly; (mm) Ly (mm) T, (mm) U; (mm)
—25.68 42.18 12.53 18.69 20 25 0.4 4
GLBM 2 ay (deg) P2 (deg) 72 (deg) W, (mm) Ly; (mm) Loy (mm) T, (mm) U, (mm)
11 11 13.65 22.42 15 15 0.4 4
mm mm
A 4.4x10™ A 153x1073

Inflection point

(a) vz (b)

-1.6

Fig. 15. Inflection points simulated in Comsol with one inflection point vanishing during snap-through: (a) bending with two inflection points; (b) the second
bistable position with only one inflection point.
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(GLBM 1) and an inclined beam (GLBM 2), shuttle and base. The folded
beam is used to increase the torsional stiffness of the shuttle along the
X-axis. To prevent self-retraction, the inclined beam is used to increase
the strain energy stored in the second stable position and also to prevent
the model from getting a higher buckling mode compared to the
distributed-compliance beam. Fig. 14(b) displays the labeled geometry
parameters of the bistable mechanism, while Table 3 presents their
corresponding values.

To model this bistable mechanism, it is necessary to establish the
constitutive, force equilibrium, and geometry compatibility conditions.
This process is identical to the one presented in case one. Section 2
provides the derivation of the constitutive equation for each GLBM.
Meanwhile, the force equilibrium can be obtained by the given FBD in
Fig. 14(b), which is shown below.

Fin/2 = _(Fsl +F52); Pin/2 = _(Psl +Ps2)§ luin/2

=M, + Mgy — (Fy +Fy)-D/2 (8)
where D = 10 mm is the length of the shuttle, as labelled in Fig. 14(b).

The geometry compatibility conditions for the bistable mechanism
are shown below:

X =0; Xo=0; Y = —You; Yo = —You; 050 = 0; 0, =0 C)

The force-displacement characteristic of the bistable mechanism
now can be obtained by solving the system of nonlinear equations
derived above. The shuttle is subjected to incremental displacement to
activate its bistable mechanism, which is also simulated in the FEA
analysis.

The bistable mechanism’s FEA simulation was conducted using
Comsol, following a process similar to that presented in Fig. 3. It’s noted
that achieving convergence for the solution requires setting an appro-
priate iteration number, especially when dealing with significant
nonlinear deformations. For this study, the maximum iteration number
was set to 200 (default is 25). During the simulation, a critical buckling
force was determined, causing the beam to buckle into a bending mode
[70]. The shape taken by the buckled mechanism is defined by the
number of inflection points. Fig. 15(a) visually illustrates the deformed
shape of the bistable mechanism, which exhibits two inflection points
before the snap-through position. However, after passing this

Revolute Joint
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snap-through position, the mechanism moves towards its second stable
position. Fig. 15(b) shows the deformed shape with only one inflection
point.

Fig. 16 depicts a comparison of the analytical and FEA results,
revealing good agreement between the two. The maximum absolute
error in the reaction force is found to be below 0.035 N, validating the
accuracy of the developed model in precisely modeling bistable mech-
anisms with both large deflections and high axial forces.

5. Experimental validation of the revolute joint

In this section, we conducted an experimental test to validate both
the FEA and analytical results of the revolute joint, as shown in Fig. 17.
To ensure a robust experiment setup, we fabricated a prototype with
specific parameters outlined in Table 4. The flexure beams were made
from copper, and all other components were 3D printed by Ultimaker S3
using Polylactic Acid (PLA) as material. We employed an auxiliary
positioning frame depicted in Fig. 17(b) to achieve precise assembly of
the revolute joint to the 3D printed parts. The flexure beams were
securely fixed to the rigid parts using super glue.

5.1. Experimental setup of the revolute joint

Fig. 17(a) illustrates the experimental setup used to evaluate the
force-displacement characteristics of the revolute joint under different
loading conditions. The setup comprises five key components: a micro-
meter, a force sensor, a linear guide, the fabricated prototype, and a
pulley system. The micrometer enabled us to precisely control and apply
prescribed input displacements, while the force sensor, sitting on a
linear guide, measured the reaction force from the motion stage. We
utilized a pulley system to apply 100-gram and 200-gram weights acting
payloads (Py,) to the motion stage in addition to the exerted input force
from the micrometer. Fig. 17(c) showcases the deformed configuration
of the revolute joint with a 200-gram payload. To ensure the reliability
of our results, each experimental procedure was repeated three times,
and the average of the experiment results was calculated for plot and
comparison.

Positioning
Frame

Motion
Stage

Fig. 17. Experimental setup and the prototype of the revolute joint: (a) Experimental setup; (b) 3D-printed positioning frame, motion stage, rigid link, and base; (c)

its deformed configuration.
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Ly; (mm) Ly5 (mm) T, (mm) U; (mm)
20 20 0.3 10
Lp; (mm) Ly (mm) T, (mm) U, (mm)
20 20 0.3 10

Table 4
The geometric parameters of the fabricated revolute joint prototype.
a; (deg) 1 (deg) 71 (deg) Wi (mm)
GLBM 1 —-150 210 30 52
az (deg) B2 (deg) 72 (deg) W (mm)
GLBM 2 150 -210 -30 52
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Fig. 18. Tip force-displacement characteristics under different payload.
5.2. Experimental results

The experiment was carried out successfully to validate both the FEA
and analytical results. Fig. 18 shows the tip force-displacement char-
acteristics of the revolute joint under different payloads. As expected,
the experimental results align closely with both the FEA and analytical
results, demonstrating a maximum error of 5.6 %. Notably, the revolute
joint displays a load-dependent effect, where an increase in payload
leads to a reduction in the rotational stiffness of the joint.

‘Bistable mechanism A. Linear guide ¥ Micrometer

(@)

6. Experimental validation of the bistable mechanism

In this section, we conducted experiments on a new bistable mech-
anism as shown in Fig. 19. To create a cost-effective experimental setup,
we fabricated a monolithic 3D-printed prototype (Fig. 19(b)) and
assembled it on the testing apparatus. The prototype was printed using
the Ultimaker S3, with a layer height of 0.1 mm. PLA was used as the
material, with a Young’s modulus of 3.3 GPa and a Yield strength of
52.5 MPa. The experiment was carried out within the yield strength
which is first simulated in the Comsol. The new bistable mechanism
comprises two identical bistable mechanisms, each of which was pre-
viously presented in Section 4.2. The two compositional bistable
mechanisms are arranged in parallel to reduce the stage rotation while
achieving prescribed translational displacement. The specific geometry
parameters of each GLBM used in the mechanism are outlined in Table 5.

6.1. Experimental setup

The assembly of the experimental setup primarily involves four
components: the micrometer, force sensor, linear guide, and fabricated
prototype, as depicted in Fig. 19(a). To accurately measure the retrac-
tion force of the bistable mechanism, we affixed a powerful magnet to
the shuttle of the mechanism. This magnet ensures a firm attachment
between the shuttle and the probe of the force sensor. Fig. 19(c) illus-
trates the new bistable mechanism at its second stable position. To

Frame Magnet

(b)

Fig. 19. Experimental setup and the prototype of the bistable mechanism: (a) Experimental setup; (b) 3D-printed prototype; (c) Second stable position of the

bistable mechanism.

Table 5
The geometry parameters of the fabricated bistable mechanism.
ay (deg) 1 (deg) 71 (deg) W1 (mm)
GLBM 1 -19.17 40.83 10.93 28
a3 (deg) P2 (deg) 72 (deg) W (mm)
GLBM 2 10 10 11.59 36.01

Ly1 (mm) Ly2 (mm) T, (mm) U; (mm)
32.32 32.32 0.4 8
Ly; (mm) Loy (mm) T, (mm) U, (mm)
20 20 0.4 8

12
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Fig. 20. Force-displacement characteristic of the bistable mechanism.

ensure reliable results, each experimental procedure was repeated three
times, and the average of the experiment results was calculated for plot
and comparison. Additionally, we calculated the standard deviation of
these three results to assess the repeatability of the measurements.

6.2. Experimental results

After conducting the experiment three times, we plotted the average
reaction force along with its standard deviation in Fig. 20. A comparison
of the experimental results with both the FEA and analytical results
revealed a similar pattern. Remarkably, the FEA and analytical results
showed better agreement, while the experimental results deviated from
both, with a maximum difference of 0.62 N. Several factors could
contribute to this deviation, including potential fabrication or assembly
errors and undesired elastic deformation of the parts that were assumed
to be rigid during the theoretical analysis.

7. Discussions
In this section, we provide a summary of the modeling method and

discuss the potential errors associated with this method. This may lead
to insights into the approach’s applicability and limitations.

7.1. Summary of the modeling method

As depicted in Fig. 21, the process of modeling compliant mecha-
nisms using the GLBM entails initializing the geometry property,
defining the boundary conditions, formating the force-displacement

Initialize the target geometric property, i.e.,
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relationships, solving the equations, and determining if optimization is
required.

The geometry property of a compliant mechanism is initialized by
assigning design parameters including the Lj, Lis, v, a; f; and Wi
Derivation of the force-displacement relationships of a compliant
mechanism using the GLBM generally includes three components,
namely the GLBM, force equilibrium, and geometry compatibility. The
system equations of the force-displacement relationships can be solved
numerically by providing initial guesses in mathematical software, such
as Maple. Although the system of equations may appear cumbersome
when dealing with complex structures that involve multiple general
lumped-compliance beams, the use of the Loop function in Maple or
other mathematical software allowed for a streamlined process by
eliminating the need for repeating the constitutive equilibrium. This
approach significantly reduced the required effort, even for complex
structures.

Integrating geometry parameters into the mathematical model of a
compliant mechanism enables optimization of its geometry to achieve
desired performance characteristics. Designers can vary these parame-
ters to explore the design space and find the optimal geometry that
meets the required specifications. For instance, Ref. [14] introduces
several novel parameters into the bistable mechanism to better control
its behavior. By adjusting the defined geometry parameters, the pro-
grammable bistable lattices can be optimized for specific targets such as
a larger deformation range or higher stability. However, the optimiza-
tion in Ref. [14] is done by the enumeration method, which is not effi-
cient. In contrast, the proposed GLBM makes it possible to optimize for
multiple objectives simultaneously, which is more efficient and
cost-effective.

7.2. Model error

The errors observed could be attributed to model errors and nu-
merical errors. The model error arose from the fact that the constitutive
equation relied on the mechanics of the Euler-Bernoulli beam, which
disregards the shear effect. In the case of stubby beams, the model error
could be significant. To address this issue, the Timoshenko beam theory,
which accounts for the effect of shear strains in a beam and adds a
correction term to the Euler-Bernoulli beam theory, can be used.

On the other hand, numerical errors could have resulted from the
iterative numerical methods used in Maple to solve nonlinear equations.
In some cases, these methods may not converge to the exact solution due
to issues such as poor initial guesses. Additionally, the mesh quality
(element size and shape) in the FEA tool can also contribute to numerical
errors. A coarse mesh can lead to significant errors, while a fine mesh

Define the boundary conditions: fixture
and either input force or input

L1, L2, y1, a1, frand W

Yes

displacement.

geometric property.

Modification of the target

\4

Format the force-displacement
equations: GLBM model, force

Optimization
required?

equilibrium and geometry
compatibility.

v

Verification of numerical results

Solving nonlinear equations

Fig. 21. The general process of using the GLBM to model compliant mechanisms.
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can be computationally expensive. However, a finer mesh does not
necessarily guarantee better results if the solution does not converge.

8. Conclusion

The paper has proposed an analytical model for a general lumped-
compliance beam, which can accurately and efficiently synthesize
force-displacement characteristics in compliant mechanisms that
feature any two flexure beams connected in series. The model, termed
GLBM, is shown to address the limitations of existing models.

To demonstrate the effectiveness of the proposed GLBM, the present
work has conducted thorough analyses on five representative general
beam designs and two resulting compliant mechanisms composed of the
general beams. The results were compared to nonlinear FEA, where the
maximum error between the analytical and FEA models was found to be
6 %. This validation indicates that the GLBM is a promising tool to
significantly enhance the design and analysis of compliant mechanisms.

Furthermore, this paper has successfully implemented two experi-
ments to validate the analytical models of the above two compliant
mechanisms, the revolute joint and the bistable mechanism. The com-
parison confirms the credibility of the proposed modeling method.

In our future work, we aim to incorporate the Timoshenko beam
theory into our model to capture the shear deformation of the beam
cross-sections. This will enable us to better account for the effects of
shear strains in our analysis, leading to more accurate results. We
believe that this will further enhance the precision of our approach in
predicting the behavior of compliant mechanisms with very short

Appendix A. Force-displacement characteristic of a flexure beam
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flexure beams. In addition, the GLBM will be utilized in the optimization
of the force-displacement performance of compliant mechanisms.
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As shown in Fig. A1, the loading conditions for a single flexure beam are represented by F;; (axial force), P;; (transverse force), and M;; (moment)
acting at the tip of the beam. The resulting displacements are represented by X;; (displacement along X-axis), Y;; (displacement along Y-axis), and 6;;
(rotational angle along Z-axis) with respect to the local coordinate frame. The closed-form solution of the force-displacement characteristic for this

flexure beam is represented below [45]:

Y

L

Fig. Al. Simple slender beam with generalized end load.

FaLj JEI 12 —6][Yy/La 1.2 —0.17[Yu/La
= + PyL} | EI
ML} EI -6 4 O -0.1 2/15 0
X 12 —0.17[Yy/Ly
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—1/1400 11/6300 0
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Appendix B. Summary of commonly-used GLBM configurations

See Appendix Table B1.

International Journal of Mechanical Sciences 263 (2024) 108779

Table B1
Several commonly used GLBM configurations
Configurations Parameters References
X Y 9 a;i=04=0; 7, =0; [49,55]
( outs 4 outs out) F- L+
M "
F a4 =0:6;=0; 7, =0; [45]
n W Ly +Ly
i 2
(X outs Y outs Hout) mn
P in
a; = 180°; 4 = —180°; ;= 0; [63,24,19]
Ly + Ly
=5
a; =180% 4, =0; y; =0; [22]
Xouts Yout> O,
Fin ( outs £ outs out) W Ly +Ly
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Table B1 (continued)
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Configurations Parameters References
a;p =04 =90°; y; = 45°; [73,74]
Fin welith
in
(X outs Y out» Hout)
P in
. a; = —180% 4 = 0; y; = —90%; [751
‘ w>0
-
F in
M;, (X out> ¥ outs Hout)
P in
a; = 0;4; = —180°; y; = 0; [15]
F in M W Ly + Ly
in 2
(X outs Y outs eout)
P in

Appendix C. Abbreviations and Nomenclature

See Appendix Tables C1 and C2

Table C1
Abbreviations.

FEA
BCM
FBD
GLBM
PRBM
CPRBM
CBCM
TBCM
SCM
EIS
CEIS
MSCM

Finite element analysis.

Beam constraint model

Free body diagram

General lumped compliance beam
Pseudo-rigid-body model

Chained- pseudo-rigid-body model
Chained beam constraint model
Timoshenko beam constraint model
Smooth curvature model

Elliptic integral solution
Comprehensive elliptic integral solution
Multiple smooth curvature model

16
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Table C2
Nomenclature.
F; Tip force on the flexure beam in the Y-direction
p; Tip force on the flexure beam in the X-direction
M; Tip force on the flexure beam about Z-direction
Y; Tip displacement on the flexure beam in the X-direction
X; Tip displacement on the flexure beam in the Y-direction
0; Tip rotation on the flexure beam along Z-direction
L; The length of ith flexure beam
Li i1 The length of i + 1th flexure beam
Yi The (i + 1)/2th angle between ith flexure beam and i + 1th flexure beam with the X-axis
o The (i + 1)/2th angle of the ith flexure beam with the X-axis
Bi The (i + 1)/2th angle of the i + 1th flexure beam with the X-axis
Fi Tip force on the general lumped-compliance beam in the Y-direction
P Tip force on the general lumped-compliance beam in the X-direction
Ms; Tip moment on the general lumped-compliance beam about the Z-direction
Ysi Tip displacement on the general lumped-compliance beam in the X-direction
Xi Tip displacement on the general lumped-compliance beam in the Y-direction
Osi Tip rotation on the general lumped-compliance beam along Z-direction
I Moment of inertia of the flexure beam
E Elastic modulus of the flexure beam
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Corrigendum 1) ‘
Corrigendum to “Modelling of a general lumped-compliance beam for s

compliant mechanisms” [International Journal of Mechanical Sciences,

Volume 263, 108779]

Jiaxiang Zhu, Guangbo Hao

School of Engineering and Architecture-Electrical and Electronic Engineering, University College Cork, Cork, Ireland

Following the publication of our article, we have identified errors in
the representation of two figures that require correction. The inaccur-
acies are detailed below.

1. Fig. 1: Configuration of a general beam: (a) geometry parameters
of the GLBM; (b) FBD of the general beam

There was error on the labelling of parameter y; in Fig. 1(a) in the
original article. The corrected figure is provided below.

DOI of original article: https://doi.org/10.1016/j.ijmecsci.2023.108779.
E-mail address: G.Hao@ucc.ie (G. Hao).

https://doi.org/10.1016/j.ijmecsci.2024.109169

Available online 11 March 2024

2. Fig. 14: Bistable mechanism with increased out-of-plane stiffness:
(a) geometry parameters; (b) deformed configuration and the FBD of the
shuttle.

The original labelling of Fig. 14(a) is missing parameter y,. The
corrected version is provided below.

The authors extend their sincere apologies for any inconvenience
caused by these oversights.

0020-7403/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Configuration of a general beam: (a) geometry parameters of the GLBM; (b) FBD of the general beam.
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Fig. 14. Bistable mechanism with increased out-of-plane stiffness: (a) geometry parameters; (b) deformed configuration and the FBD of the shuttle.
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