
1

Defending Against Knowledge Poisoning Attacks
During Retrieval-Augmented Generation

Kennedy Edemacu∗, Vinay M. Shashidhar†, Micheal Tuape‡, Dan Abudu§, Beakcheol Jang¶, Jong Wook Kim∥

Abstract—Retrieval-Augmented Generation (RAG) has
emerged as a powerful approach to boost the capabilities
of large language models (LLMs) by incorporating external,
up-to-date knowledge sources. However, this introduces a
potential vulnerability to knowledge poisoning attacks, where
attackers can compromise the knowledge source to mislead the
generation model. One such attack is the PoisonedRAG in which
the injected adversarial texts steer the model to generate an
attacker chosen response for a target question. In this work, we
propose novel defense methods, FilterRAG and ML-FilterRAG,
to mitigate the PoisonedRAG attack. First, we propose a new
property to uncover distinct properties to differentiate between
adversarial and clean texts in the knowledge data source. Next,
we employ this property to filter out adversarial texts from
clean ones in the design of our proposed approaches. Evaluation
of these methods using benchmark datasets demonstrate their
effectiveness, with performances close to those of the original
RAG systems.

Index Terms—Large language models, retrieval-augmented
generation, and knowledge poisoning attack

I. INTRODUCTION

AKEY challenge associated with large language models
(LLMs) [1]–[3] is their tendency of becoming outdated

and struggling to integrate the most recent knowledge [4],
[5]. This fundamental short-coming is addressed by the recent
emergency of retrieval-augmented generation (RAG) [6]–[9].
Typically, a RAG system comprises two phases: Retrieval
and Generation. The retrieval phase is accomplished through
two components: a retriever and a knowledge database, while
generation is performed by an LLM. During retrieval, the
retriever retrieves information relevant to a user’s query from
the knowledge database. The retrieved text is then passed
as a context to the LLM together with the user query to
generate the final answer. Various studies have demonstrated
the effectiveness of RAGs for different real-world applications
[10]–[13].

RAG has attracted significant attention from the research
community in recent years, with a primary focus on improving
its effectiveness and efficiency [14]–[18]. However, more

∗Department of Computer Science, The City University of New
York - College of Staten Island, Staten Island, NY, USA. (Email:
kennedy.edemacu@csi.cuny.edu). Corresponding Author.

†Department of Mathematics and Computer Science, Northern Michigan
University, Marquette, MI, USA.

‡Department of Software Engineering, Lappeenranta-Lahti University of
Technology, Lappeenranta, Finland.

¶Energy and Bioproducts Research Institute, Aston University, Birming-
ham, U.K.

§Graduate School of Information, Yonsei University, Seoul, South Korea.
∥Department of Computer Science, Sangmyung University, Seoul, South

Korea. (Email: jkim@smu.ac.kr). Corresponding Author.

recently, an emerging body of research, although limited, has
begun to explore the security aspects of RAG systems [4],
[5], [19]–[22]. Specifically, [5], [19], [20] have developed
knowledge poisoning attacks for RAG, with PoisonedRAG [5]
standing out as an initial significant contributor towards this
direction.

In PoisonedRAG [5], an attacker compromises the knowl-
edge database by injecting adversarial texts. The primary
objective is to manipulate the RAG system to generate an
attacker-desired response for a specific target question, par-
ticularly when using the retrieved, poisoned context during
the generation phase. As an example, for a user query, Which
disease is normally caused by the human immunodeficiency
virus? The attacker can compromise the knowledge database
so that the text retrieved from the compromised knowledge
database will drive the generation LLM to output Syphilis
instead of AIDS as the final RAG response. Such attacks
are highly practical and pose a significant threat, particularly
within fact-sensitive application areas such as healthcare,
finance, and scientific research, where their impact can be
detrimental.

Few efforts have attempted to defend against the Poisone-
dRAG attack [4], [22]. Specifically, [4] proposes the detection
of adversarial texts through LLM activations. Although a
positive advancement, this method is restricted to white-box
access only. With the majority of powerful LLMs being propri-
etory and only grant black-box access, its applicability maybe
limited. In contrast, [22] employs an ensemble approach, using
multiple LLMs to generate responses from retrieved texts
and then aggregating these into a final answer. However, a
significant limitation of this method is its vulnerability to
large-scale attacks. If an attacker is capable of injecting a
sufficiently high volume of adversarial texts, their desired
response is still likely to be produced.

In this work, we introduce an additional Filtration compo-
nent within RAG systems, designed to remove adversarial texts
from retrieved context texts. We then propose two distinct ap-
proaches for this filtration: FilterRAG and ML-FilterRAG. For
FilterRAG, we propose a new property referred to as frequency
density (Freq-Density) which quantifies the concentration of
given words within a text. This property helps to measure
how ”dense” a context sample is with words relevant to, or
shared with the query-answer pair (more on this in section III).
Our findings demonstrate that this property enables effective
differentiation between adversarial and clean samples within
the text retrieved from the knowledge database. By setting
appropriate thresholds, we demonstrate how this property can
be effectively utilized to filter out adversarial texts, preventing

ar
X

iv
:2

50
8.

02
83

5v
1

 [
cs

.L
G

]
 4

 A
ug

 2
02

5

https://arxiv.org/abs/2508.02835v1

2

their inclusion in the context during the generation phase.
One potential challenge with FilterRAG is the identification
of a suitable threshold value. To overcome this challenge, we
propose ML-FilterRAG, in which we incorporate additional
features and train a simple machine learning model that can
be utilized to filter out adversarial texts. We evaluate the per-
formance of our proposed methods using benchmark datasets
and observe that their performance levels are comparable to
the established baseline. We summarize our main contributions
as follows:

• We discover a distinct concentration of query-answer pair
words, differentiating adversarial texts from clean texts in
PoisonedRAG, and propose a new property Freq-Density
to quantify these concentrations.

• We propose two methods, FilterRAG and ML-FilterRAG,
to filter out adversarial texts from the retrieved texts.

• We evaluate the effectiveness of these methods against
established baselines, observing that their performance
levels are comparable.

The rest of the paper is organized as follows. Section II
presents the preliminaries. In Section III we present the
methodology. Sections IV and V present the experimental
setup and the results. Section VII concludes the paper.

II. PRELIMINARIES

A. Threat Model

Attacker’s Goal: We maintain the same threat model as
PoisonedRAG [5]. We assume that the attacker pre-selects a
set of target questions, denoted asQ = {q1, q2, · · · , qm}, and a
corresponding set of desired responses R = {r1, r2, · · · , rm}.
The attacker’s goal is to subvert the RAG system so that
for each target question qi ∈ Q, the system generates the
attacker-desired response, ri ∈ R. For example, if the target
question is, Which disease is normally caused by the human
immunodeficiency virus? the compromised RAG system would
erroneously answer Syphilis instead of the correct response
AIDS.

Attacker’s Capabilities: For each target question qi, we
assume that the attacker can inject a set of n poisoned texts
denoted as P = {p1i , p2i , · · · , pni } directly into the knowledge
database D. We then consider both black-box and white-
box settings of the RAG retriever. In the black-box setting,
we assume that the attacker has no access to the retriever’s
parameters and cannot directly query it. However, in the
white-box setting, the attacker is assumed to have access
to the retriever’s parameters. The white-box setting is vital
especially considering the potential use of publicly available
retrievers such as WhereIsAI/UAE-Large-V1 [23], and be-
cause it allows evaluations adhering to the well-established
Kerchoffs’principle [24].

B. The Knowledge Corruption Attack

The knowledge corruption attack in PoisonedRAG is a
constrained problem, in which a set of malicious texts D̃ =
{pji |i = 1, 2, · · · ,m, j = 1, 2, · · · , n} is constructed such that
the LLM in the RAG system generates the attacker-desired

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8Freq-Ratio
1.0

1.1

1.2

1.3

1.4

1.5

1.6

Pe
rp

le
xi

ty

Adversarial
Non-Adversarial

Freq-Density

Fig. 1: Pair Plot for Freq-Density vs Perplexity

response ri ∈ R for the target question qi ∈ Q when utilizing
k texts retrieved from the compromised knowledge database
D ∪ D̃.

Formally, the attack is represented as:

max
D̃

1

m

m∑
i=1

I
(
LLM

(
qi; E(qi;D ∪ D̃)

)
= ri

)
(1)

where; I(.) is an indicator function with value 1 if the
condition is satisfied and 0 otherwise. E(qi;D ∪ D̃) is the
k texts retrieved from the compromised knowledge database
D ∪ D̃.

C. Rationale

Equation 1 shows that a necessary condition for the success
of the knowledge corruption attack is that the malicious text
P is in the top-k of the retrieved texts for the target question
qi, i.e., P ∈ E(qi;D ∪ D̃). To this end, PoisonedRAG crafts
P to not only rank highly during retrieval, but effectively
steer the RAG LLM towards the attacker-desired response ri.
We hypothesize that an analysis of the statistical properties
of retrieved texts offers a way to identify the malicious text
P . Statistical properties have been used successfully to detect
malicious text samples in NLP. For example, [25] introduced a
rule-based method that identifies adversarial texts by analyzing
discrepancies in word frequencies between adversarial and
original texts. Since PoisonedRAG strives to promote adver-
sarial texts to the top-k retrieved samples, we believe that
these texts will possess distinct statistical properties compared
to legitimate ones. We introduce frequency density (Freq-
Density) as a statistical property to enable the differentiation
of adversarial texts from legitimate ones1. When combined
with other features, it can offer valuable information on data
clusters through visualization. Figure 1 presents the visualiza-
tion of the frequency density against perplexity (see Appendix
D for more visualizations). From this visualization, we can
clearly observe distinct clusters of clean and adversarial data
points, which confirms our hypothesis.

3

User Queries

E.g., When was the first
COVID-19 case reported?

Retriever

COVID-19 ….
Beijing, in
Jan, 2009

COVID-19 ….
Wuhan, in
Dec, 2019

Poisoned Knowledge Database
Clean Text
Poisoned Text

SLM Filter

2- COVID-19 was
1- In 2009, Covid

. . . .
3- Beijing was on

Candidates

1- In 2009, Covid
3- Beijing was on

…

Drop
Poisoned Text

2- COVID-19 was
…

Keep
Clean Text for

Generation

LLM

Retrieval Filtration Generation

Fig. 2: A high-level illustration of our framework. A filtration phase is integrated into the tradition RAG components to filter-out
adversarial texts before the generation phase.

III. METHODOLOGY

A. Overview
In this study, we introduce methods to defend against the

PoisonedRAG knowledge attack. Our approaches are based
on filtering out adversarial texts in the retrieved text from the
poisoned knowledge database. Figure 2 presents a high-level
illustration of our method. Notably, our method introduces
an additional phase, filtration that augments the retrieval and
generation phases of traditional RAG systems. Our approaches
maintain traditional RAG operations for the retrieval and
generation phases. However, the key distinction is that during
retrieval, both poisoned and clean texts can be returned. In
the filtration phase, we use a smaller language model (SLM).
The inclusion of SLM in the filtration phase simulates the
generative behavior of the LLM in a lighter manner to extract
the statistical properties of each retrieved text. We input these
properties through a filter to identify and remove adversarial
texts. The remaining text, now adversarial-free, can then be
combined and leveraged as a context during the generation
phase. For practical applications, the filtration phase can be
performed on the retrieval side. We present the details of the
filtration phase in subsequent sections.

B. Filtration of Adversarial Texts
In this section, we introduce our proposed frameworks for

filtering out adversarial texts. The frameworks aim to minimize
the influence/presence of adversarial texts within the context
used during the generation phase.

Problem Statement: Given a set of target queries Q =
{q1, q2, · · · , qm}, a corresponding set of desired responses
R = {r1, r2, · · · , rm} and a poisoned knowledge database
D ∪ D̃, we seek to minimize Equation 1 so that the target
query qi ∈ Q does not result in its corresponding desired
response ri ∈ R. Formally represented as:

min
D̃

1

m

m∑
i=1

I
(

LLM
(
qi; E(qi;D ∪ D̃)

)
= ri

)
(2)

1More about this in the next section

subject to ||D̃|| → 0. By incorporating the latter constraint,
we reduce the chances of obtaining the desired response ri for
the target query qi. Our proposed methods are:

1) FilterRAG (Threshold-Based Approach): This is a two-
stage approach based on selecting a threshold value for a
statistical property. We summarize the steps in Algorithm 1.

Algorithm 1 FilterRAG (Threshold-Based Approach)

1: Input: Target Query: qi, Poisoned Knowledge Database:
D ∪ D̃, Integer: top-s, Float: ϵ, SLM, LLM, Retriever

2: Output: List of Clean Context Items (top-k for LLM
prompting)

3: Retrieve Candidate Texts:
4: RetrievedItems← Retriever(qi,D ∪ D̃, top− s)
5: Extract Statistical Property (Freq-Density):
6: for each item dj in RetrievedItems do
7: aj ← SLM(qi, dj)
8: (qi ⊕ aj)← Concatenate(qi, aj)
9: Freq-Density← Compute((qi⊕aj), dj) // Compute(.)

computes according to Eq. 4
10: end for
11: Filter Adversarial Texts:
12: CleanContextItems← EmptyList()
13: for each dj in RetrievedItems do
14: if Freq-Density[dj] < ϵ then
15: Add dj to CleanContextItems
16: else
17: Discard dj
18: end if
19: end for
20: Return Context:
21: return CleanContextItems

Stage 1 - Statistical Property Extraction: Given a query
set Q = {q1, q2, · · · , qm} and a poisoned knowledge database
D∪D̃, we leverage a smaller language model (SLM) to extract
the Freq-Density statistical property for each retrieved item. In
particular, during the retrieval phase, for each query qi ∈ Q,
we retrieve the top-s items from the poisoned knowledge base

4

D ∪ D̃ rather than the traditional top-k items. Then, for each
of the top-s retrieved items, dj in the top-s, we input both the
query qi and dj into SLM to generate an output aj .

aj = SLM(qi, dj) for j ∈ {1, 2, . . . , s} (3)

Next, we define our Freq-Density as follows:

Freq-Density =

∑
w∈(qi⊕aj)∩dj

Freq(w, dj)

UniqueWords(dj)
(4)

where, ⊕ means concatenation, (qi⊕aj)∩dj are semantically
similar words common to (qi ⊕ aj) and dj , i.e., word pairs
in (qi ⊕ aj) and dj whose computed similarities exceed a
predetermined threshold, Freq(w, dj) denotes the frequency of
the word w within the text dj and UniqueWords(dj) denotes
the total number of unique words in dj . The rationale behind
this metric is rooted in the attackers’ strategy. To both steer
the LLM to their desired response ri for the target query qi,
and to ensure high retrieval relevance, attackers populate their
adversarial texts with words that are statistically similar to
the target queries and their corresponding desired responses.
This overlap makes Freq-Density a valuable indicator for
identifying malicious texts. Figure 1 presents an empirical
illustration of this claim.

Stage 2 - Removal of Adversarial Texts: We then em-
ploy the defined Freq-Density to identify adversarial texts for
removal by setting a threshold ϵ. We define a filter indicator
function (Equation 5) to determine whether a retrieved text dj
is adversarial.

Filter(dj) =

{
1, if Freq-Density < ϵ

0, otherwise
(5)

We feed each item in the top-s through the filter function.
Next, we remove the items whose return value from the filter
function is 0. From the remaining items, the top-k items
which constitutes the context used to prompt the global LLM
are chosen. The effectiveness of this method depends on
the choice of ϵ. This parameter is crucial for balancing the
trade-off between the overall performance and the presence of
adversarial texts in the final top-k items.

2) ML-FilterRAG (Machine Learning Approach): The ef-
fectiveness of our first approach hinges on the choice of ϵ.
A high value of ϵ risks allowing adversarial text samples to
appear in the final top-k items. Meanwhile, a low value could
filter out legitimately clean texts. Striking the right balance is
very crucial and yet challenging. Inspired by the work in [5],
which used perplexity to attempt to filter out adversarial texts,
we believe that combining multiple features can effectively
address the challenge of ϵ selection. Thus, we propose ML-
FilterRAG, a machine learning-based filtering approach. In
this method, a filtering machine learning model takes multiple
features extracted from each retrieved text dj as input and
predicts whether dj is an adversarial sample. Similarly, this is
a two-stage method. We summarize the steps in Algorithm 2.

Stage 1 - Feature Extraction: Similar to the extraction
method discussed in III-B1, we employ an SLM that takes
the target query qi and a retrieved text dj as input and
subsequently outputs aj . However, on top of the Freq-Density,

Algorithm 2 ML-FilterRAG (Machine Learning Approach)

1: Input: Target Query: qi, Poisoned Knowledge Database:
D∪D̃, Trained Machine Learning Model:M, top-s, SLM,
LLM, Retriever

2: Output: List of Clean Context Items (top-k for prompting
LLM)

3: Retrieve Candidate Texts:
4: RetrievedItems← Retriever(qi,D ∪ D̃, top− s)
5: Extract Features:
6: for each item dj in RetrievedItems do
7: aj ← SLM(qi, dj)
8: features[dj]← Feature(qi, dj)
9: end for

10: Predict Adversarial Texts:
11: CleanContextItems← EmptyList()
12: for each dj in RetrievedItems do
13: Predict←M(features[dj])
14: if Predict is ”non-adversarial” then
15: Add dj to CleanContextItems
16: else
17: Discard dj
18: end if
19: end for
20: Return Context:
21: return CleanContextItems

we also compute perplexity, joint log probability of the SLM’s
output aj and sum of frequencies of semantically similar
words between (qi ⊕ aj) and dj . We incorporate these as
supplementary features for our filter model.

Stage 2 - Adversarial Text Prediction: Given a light-
weight trained machine learning-based filter model M, each
of the retrieved items in the the top-s undergoes the feature
extraction process discussed previously. Once these feature
values are extracted, they are fed into M (according to
Equation 6) to predict whether the item dj is an adversarial
text.

predj =M(Feature((qi, dj)) (6)

where, predj can be adversarial or non-adversarial, and
Feature(.) is a function that extracts features. Finally, the top-k
items are chosen from the non-adversarial items as context to
prompt the LLM. By generating features that capture semantic
similarities, we believe that our approaches offer an expanded
scope for identifying adversarial texts. To trainM, we use the
supervised learning approach in which the labeled datasets of
retrieved texts for each target query are annotated as adversar-
ial and non-adversarial. For each training instance, we extract
features using the method discussed above. These features
capture the statistical cues indicative of adversarial texts.M is
trained to learn the mappings between these features and their
corresponding labels. Once trained, M serves as an effective
filter that predicts if dj is adversarial based on its computed
features.

5

IV. EXPERIMENTS

A. Datasets

For our experiments, we utilize three benchmark question-
answering datasets: MS-MARCO [26], Natural Questions (NQ)
[27] and HotpotQA [28]. Each of these original datasets
contains a distinct knowledge database. Specifically, NQ con-
tains 2,681,468 texts, HotpotQA contains 5,233,329 texts, and
MS-MARCO contains 8,841,823 texts within their respective
knowledge databases. In addition, each dataset provides a
set of queries and answers. To facilitate the identification of
adversarial texts, we leverage the version of these datasets
detailed in [5]. In this version, 100 closed-ended questions
from each dataset are designated as target questions, each
paired with a ground-truth answer and an attacker-desired
answer. Furthermore, for each target question, 5 adversarial
texts are injected into the original knowledge database.

To evaluate our ML-FilterRAG approach, we had GPT-
4o generate an additional 5 adversarial texts for each target
question, mimicking the characteristics of the original five. We
carefully examined each of these newly generated texts to en-
sure that they meet two crucial criteria: they successfully out-
put the attacker-desired response, and they rank highly among
the retrieved texts from the knowledge base. Specifically, we
selected those that appeared within the top 15 retrieved results.
We then randomly selected five adversarial texts, along with
an equivalent number of randomly selected original (clean)
texts, to train our machine learning-based filter models. We
keep the rest for evaluating our proposed framework. For the
white-box attack, we adopt the HotFlip method as in [5], with
all the other settings remaining consistent as for the black-box
attack.

B. RAG Settings

1) Retriever: We employ the Contriever [15] as our re-
triever. Following [5], [6], and unless otherwise stated, we
employ the dot product to measure similarities between queries
and texts within the knowledge database.

2) SLM: We leverage two language models as our SLM:
LLaMA-3 [29] and LLaMA-2 [30]. For our first filtration
approach, we used a default ϵ value of 0.2. In contrast, for
the machine learning-based approach, we defined and trained
a dedicated model for each dataset. Specifically, we employ
an XGBoost model for the NQ dataset, while Random Forest
models were utilized for both the HotpotQA and MS-MARCO
datasets. The training details of the models are presented in
the Appendix C. For semantic word similarity matching, we
employ a huggingface sentence transformer2 and set a default
similarity threshold value of 0.6 for cosine similarity. We will
also study the impact of the similarity threshold and ϵ in our
evaluations.

3) LLM: For the generation LLM, we consider a family of
GPT models, GPT-3.5 [1], GPT-4 [2] and GPT-4o [31], and
LLaMA-3. We adopt the system prompt discussed in [5] and
we present it in Appendix B. We use a temperature value of
0.1 for all the models.

2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

C. Metrics

1) Adversarial Text Ratio (ATR): We introduce a new
performance metric, adversarial text ratio (ATR) to quantify
the fraction of adversarial texts within the retrieved top-k
texts. This metric is particularly relevant given our objective
of minimizing Equation 2, an objective directly influenced by
the number of adversarial texts. Therefore, ATR is crucial
for accurately assessing the effectiveness of our proposed
methods.

2) Attack Success Rate (ASR): We also consider ASR as
discussed in [5]. ASR quantifies the fraction of target questions
whose answers match the attacker-desired answers. Substring
matching between the attacker desired answer and the LLM
generated answer is used to determine if the two answers are
the same. In other words, the two answers do not need to
match exactly.

3) Accuracy: Accuracy measures the fraction of target
questions whose ground-truth answers match the answers gen-
erated by the LLM. In a similar manner, we adopt the substring
matching approach to determine a match between the two
answers. We expect higher accuracy values for frameworks
with minimal number of adversarial texts in the retrieved top-
k texts and vice versa.

D. Baselines

1) PoisonedRAG: We compare our framework with Poi-
sonedRAG [5]. In doing so, our aim is to assess whether our
proposed approaches minimize the influence of adversarial
texts injected into the knowledge database through the Poi-
sonedRAG attack.

2) CleanRAG: Similarly, we consider comparing our meth-
ods with the traditional RAG with no adversarial texts within
its knowledge database. We hope to achieve performance
similar or close to the CleanRAG framework.

E. Other Experimental Parameters

To evaluate our methods within a poisoned knowledge
database setting, we set the top-s retrieval to 4 and intention-
ally retrieve an equal number of adversarial and clean texts.
Then, we set the top-k of 2. We use a default value of 10
for m. We repeat each experiment 10 times so that all target
questions are examined.

V. EXPERIMENTAL RESULTS

A. Main Results

To explore whether our proposed methods can filter out
adversarial texts from the retrieved texts with no significant
negative impacts on performance, we conduct experiments on
the three datasets: HotpotQA, MS-MARCO and NQ datasets
under white-box and black-box PoisonedRAG attacks. The
results are presented in Table I. From the experimental results,
we make the following observations. First, our proposed ap-
proaches, FilterRAG and ML-FilterRAG consistently achieve
higher accuracies in the presence of adversarial texts. For
example, FilterRAG can achieve accuracies of 88.1%, 82.0%,
and 75.6% with GPT-3.5 on HotpotQA, MS-MARCO, and NQ

6

TABLE I: Performance Comparison of RAG Frameworks Across Different LLMs for Black-box Attack

Dataset Framework ATR ↓ GPT-3.5 GPT-4 GPT-4o LLaMA-3

ASR ↓ Accuracy ↑ ASR ↓ Accuracy ↑ ASR ↓ Accuracy ↑ ASR ↓ Accuracy ↑

HotpotQA

CleanRAG 0.000 0.080 0.913 0.090 0.908 0.090 0.907 0.310 0.665
PoisonedRAG 1.000 0.940 0.042 0.900 0.000 0.930 0.000 0.980 0.001
FilterRAG (ϵ = 0.2) 0.000 0.082 0.881 0.090 0.870 0.091 0.820 0.380 0.536
ML-FilterRAG 0.015 0.090 0.903 0.091 0.905 0.094 0.899 0.330 0.541

MS-MARCO

CleanRAG 0.000 0.060 0.859 0.050 0.851 0.050 0.867 0.310 0.667
PoisonedRAG 0.825 0.820 0.160 0.824 0.173 0.834 0.128 0.912 0.082
FilterRAG (ϵ = 0.2) 0.065 0.090 0.820 0.090 0.840 0.080 0.840 0.430 0.509
ML-FilterRAG 0.045 0.060 0.851 0.060 0.849 0.080 0.831 0.400 0.565

NQ

CleanRAG 0.000 0.010 0.831 0.020 0.833 0.020 0.831 0.140 0.575
PoisonedRAG 0.980 0.880 0.108 0.870 0.119 0.864 0.118 0.980 0.100
FilterRAG (ϵ = 0.2) 0.010 0.030 0.756 0.030 0.818 0.030 0.773 0.190 0.480
ML-FilterRAG 0.030 0.020 0.811 0.030 0.810 0.030 0.803 0.180 0.544

datasets, respectively. While, ML-FilterRAG achieves accura-
cies of 90.3%, 85.1% and 81.1% with GPT-3.5 on HotpotQQ,
MS-MARCO, and NQ datasets, respectively.

We also observe that our proposed FilterRAG and ML-
FilterRAG methods achieve some of the lowest ASRs in
comparison to the baselines. For example, FilterRAG has
ASRs of 8.2%, 9.0%, and 3.0% with GPT-3.5 on HotpotQA,
MS-MARCO, and NQ datasets, respectively. Meanwhile, ML-
FilterRAG achieves ASRs of 9.00%, 6.0%, and 2.0% on
HotpotQA, MS-MARCO, and NQ datasets, respectively.

Similarly, FilterRAG and ML-FilterRAG achieve some of
the lowest ATRs. For example, FilterRAG has ATR of 0.0%,
6.5%, and 1.0% with HotpotQA, MS-MARCO, and NQ
datasets, respectively. While ML-FilterRAG has ATR of only
1.5%, 4.5%, and 3.0% with HotpotQA, MS-MARCO, and
NQ datasets, respectively. More results for white-box attack
settings are shown in Appendix A.

Although our methods are able to achieve lower ATRs, they
cannot exceed the CleanRAG baseline in terms of accuracy.
This is mainly because some clean texts get misclassified
as adversarial texts. However, this misclassification is more
common with FilterRAG than with ML-FilterRAG. Setting
the right ϵ-value is crucial for the success of FilterRAG.
However, this is fairly difficult to achieve. It is a trade-off
between ATR and accuracy. But both of our proposed methods
show significant improvements compared to the PoisonedRAG
baseline, and they achieve performance that closely match the
original RAG.

B. Ablation Studies

We also performed ablation studies and present the results
as follows.

1) Varying Similarity Threshold: The similarity threshold
determines the level of exactness between the query-answer
combination and the context text words. This exactness is
crucial for both the FilterRAG and ML-FilterRAG methods.
As a result, we perform experiments that demonstrate how
this exactness affects our proposed methods. We present the
results in Table II. From the results, we observe that at the
similarity threshold of 1.0, FilterRAG and ML-FilterRAG
both have high ATR and ASR, and low accuracies. As the
similarity threshold decreases from 0.9 to 0.6, both FilterRAG

and ML-FilterRAG show decreasing ATR and ASR, while
their accuracies increase. Beyond the similarity threshold value
of 0.6, FilterRAG shows decreasing ATR, ASR and accuracy
values, while ML-FilterRAG shows increasing ATR and ASR
values, but decreasing accuracy values. This result demon-
strates that, at highest similarity threshold of 1.0, only query-
answer combination words that perfectly match the context
text words are considered. This level of perfection can allow
attackers to evade our proposed methods simply using mod-
ified word versions or synonyms and allow more adversarial
texts to go undetected by our methods. A reason our proposed
methods show high ATR and ASR values, and low accuracy at
similarity threshold of 1.0. As we relax the level of exactness
by reducing the similarity threshold, the match between query-
answer combination and context text words is now measured
at semantic level. This is reflected by the decrease in both
ATR and ASR values and the increase in accuracy values for
similarity thresholds of 0.9 to 0.6. However, further decrease
in similarity threshold values beyond 0.6, blurs the boundary
between legitimate and adversarial texts and results in poor
performance for both FilterRAG and ML-FilterRAG.

2) Effect of SLM: We also investigate the performance
of our proposed methods with two SLMs, LLaMA-2 and
LLaMA-3. The results are presented in Table III. From the
result, we observe that with LLaMA-2 SLM, FilterRAG has a
better ASR value compared to ML-FilterRAG. However, ML-
FilterRAG has better accuracy. With LLaMA-3 as SLM, we
observe that ML-FilterRAG performs better on all metrics.
This result generally shows that using a large model as an SLM
achieves a better performance. This makes sense as a more
extensive SLM possesses the ability to generate precise and
clear results based on the provided context, thereby enabling
more accurate matching between query-answer combination
and the context text.

3) Effect of ϵ-value: The performance of FilterRAG de-
pends on the choice of ϵ. We demonstrate this through
experiments. We present the experimental results for the MS-
MARCO dataset in Table IV. From the result, we observe
that at the lowest ϵ value of 0.1, FilterRAG achieves its
lowest ATR and ASR, however the accuracy is low, at only
62.4%. As ϵ-value increases to 0.2, FilterRAG achieves the
best performance at an accuracy of 84.0%. However, its

7

TABLE II: Performances with Varying Similarity Threshold Values for MS-MARCO Dataset using GPT-4

Method Similarity Threshold
1.0 0.9 0.8 0.7 0.6 0.5 0.4

FilterRAG
ATR ↓ 0.415 0.080 0.070 0.065 0.065 0.020 0.000
ASR ↓ 0.260 0.080 0.090 0.090 0.090 0.070 0.050
Accuracy ↑ 0.621 0.827 0.831 0.833 0.840 0.766 0.497

ML-FilterRAG
ATR ↓ 0.425 0.090 0.080 0.060 0.045 0.195 0.480
ASR ↓ 0.290 0.090 0.086 0.070 0.060 0.120 0.230
Accuracy ↑ 0.589 0.834 0.834 0.844 0.849 0.793 0.538

TABLE III: Performances with Varying SLMs for MS-MARCO Dataset with GPT-4

Method LLaMA-2 LLaMA-3

ATR ↓ ASR ↓ Accuracy ↑ ATR ↓ ASR ↓ Accuracy ↑

FilterRAG 0.215 0.15 0.786 0.065 0.090 0.840
ML-FilterRAG 0.215 0.16 0.791 0.045 0.060 0.849

TABLE IV: FilterRAG Performance with respect to ϵ-Values
for MS-MARCO Dataset with GPT-4

ϵ-value
0.1 0.2 0.3 0.4 0.5

ATR ↓ 0.005 0.065 0.230 0.540 0.765
ASR ↓ 0.050 0.090 0.200 0.320 0.540
Accuracy ↑ 0.624 0.840 0.764 0.462 0.280

ATR and ASR begin to drop. Further increase in ϵ-values
from 2.0 results in more increase in ATR and ASR values
with decreasing accuracy. At lower ϵ-values, the majority of
adversarial texts from top-s are filtered out. However, some
legitimate texts are mistakenly filtered out too. This is why
the ATR and ASR are lower, but the accuracy is relatively low
as well. The accuracy begins to increase with the increasing
ϵ-values because more legitimate texts are being captured in
the top-k. But, this affects both ATR and ASR, as more
more adversarial texts sneak into the top-k. This becomes
more evident at higher ϵ-values. This result emphasizes that
choosing an ϵ-value is a trade-off between minimizing the
number of adversarial texts in the retrieved top-s and achieving
better performance.

VI. OTHER RELATED WORKS

A. RAG Knowledge Poisoning Attacks

In other knowledge poisoning attacks, [32] et al. introduced
GARAG. GARAG corrupts the knowledge database through
low-level perturbation to original documents. Zhong et al.
[33] proposed PRCAP, which introduces adversarial texts into
the knowledge database. The introduced texts are generated
by perturbing discrete tokens that enhance their similarity to
target queries. Gong et al. [19] proposed Topic-fliprag attack.
Topic-fliprag performs adversarial perturbations on original
documents to influence opinions across target queries. Nazary
et al. [20] proposed a stealthy knowledge poisoning attack
for RAG-based recommender systems. Their attack performs
adversarial perturbations to item descriptions to either promote
or demote the item. These methods have further demonstrated
the vulnerability of RAGs to knowledge positioning attacks.

B. Defense Against Knowledge Poisoning

Few works show potential in protecting against knowledge
poisoning attacks. Tan et al. [4] propose the use of LLMs’
activations to detect adversarial texts. However, this method
is limited to only white-box access. Xiang et al. [22] uses an
ensemble approach with multiple LLMs to generate responses
and then aggregate them into the final RAG answer. Although
suitable for black-box access, it is still vulnerable to large-
scale attacks. For example, if an attacker injects a high volume
of adversarial texts, their desired response is still likely to
be produced. Zou et al. [5] suggested several methods such
as paraphrasing, use of perplexity, duplicate text filtering and
knowledge to defend against PoisonedRAG. However, all these
methods are not robust enough. Our work uses a combination
of statistical properties to identify adversarial texts and defend
against PoisonedRAG in black-box setting.

VII. CONCLUSION

In this work, we propose a statistical property and establish
that the clean and adversarial texts in PoisonedRAG exhibit
distinct values for our proposed property. We then propose two
defense methods: FilterRAG and ML-FilterRAG that employ
the above insight to defend against PoisonedRAG when re-
trieving texts from RAG’s knowledge database. Our methods
demonstrate robustness under various LLMs. Experimental
results show that our proposed methods achieve tremendous
performance with a performance gap difference of merely
up to 0.2% compared to the original RAG. In general, our
methods can defend robustly against PoisonedRAG in the
black-box setting.

Limitations and Future Works: The following are the
limitations of our work.

• Our work focuses primarily on addressing the Poisone-
dRAG knowledge poisoning attack. It is not tested against
other forms of RAG knowledge poisoning attacks such as
emotional-based and topic-flipping attacks. Future explo-
rations are required to investigate how it works against
the mentioned attacks.

• For the ML-FilterRAG method, we only use simple
machine learning models to detect adversarial texts. In

8

the future, the use of more extensive machine learning
models can be explored.

• Our proposed methods add a component (filtration) to
the traditional RAG. This introduces an additional com-
putation demand. The analysis of this computational
requirement and its solutions can be explored in the
future.

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[2] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[3] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos,
S. Shakeri, E. Taropa, P. Bailey, Z. Chen et al., “Palm 2 technical report,”
arXiv preprint arXiv:2305.10403, 2023.

[4] X. Tan, H. Luan, M. Luo, X. Sun, P. Chen, and J. Dai, “Knowledge
database or poison base? detecting rag poisoning attack through llm
activations,” arXiv preprint arXiv:2411.18948, 2024.

[5] W. Zou, R. Geng, B. Wang, and J. Jia, “Poisonedrag: Knowledge
corruption attacks to retrieval-augmented generation of large language
models,” arXiv preprint arXiv:2402.07867, 2024.

[6] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
neural information processing systems, vol. 33, pp. 9459–9474, 2020.

[7] V. Karpukhin, B. Oguz, S. Min, P. S. Lewis, L. Wu, S. Edunov,
D. Chen, and W.-t. Yih, “Dense passage retrieval for open-domain
question answering.” in EMNLP (1), 2020, pp. 6769–6781.

[8] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Milli-
can, G. B. Van Den Driessche, J.-B. Lespiau, B. Damoc, A. Clark et al.,
“Improving language models by retrieving from trillions of tokens,” in
International conference on machine learning. PMLR, 2022, pp. 2206–
2240.

[9] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T.
Cheng, A. Jin, T. Bos, L. Baker, Y. Du et al., “Lamda: Language models
for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.

[10] S. J. Semnani, V. Z. Yao, H. C. Zhang, and M. S. Lam, “Wikichat:
Stopping the hallucination of large language model chatbots by few-
shot grounding on wikipedia,” arXiv preprint arXiv:2305.14292, 2023.

[11] A. Lozano, S. L. Fleming, C.-C. Chiang, and N. Shah, “Clinfo. ai:
An open-source retrieval-augmented large language model system for
answering medical questions using scientific literature,” in PACIFIC
SYMPOSIUM ON BIOCOMPUTING 2024. World Scientific, 2023,
pp. 8–23.

[12] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao, “Reflex-
ion: Language agents with verbal reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 36, pp. 8634–8652, 2023.

[13] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” in
International Conference on Learning Representations (ICLR), 2023.

[14] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-rag: Learning
to retrieve, generate, and critique through self-reflection,” in The Twelfth
International Conference on Learning Representations, 2023.

[15] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin,
and E. Grave, “Unsupervised dense information retrieval with contrastive
learning,” arXiv preprint arXiv:2112.09118, 2021.

[16] L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed,
and A. Overwijk, “Approximate nearest neighbor negative contrastive
learning for dense text retrieval,” arXiv preprint arXiv:2007.00808,
2020.

[17] Z. Peng, X. Wu, Q. Wang, and Y. Fang, “Soft prompt tuning for
augmenting dense retrieval with large language models,” Knowledge-
Based Systems, vol. 309, p. 112758, 2025.

[18] N. Kassner and H. Schütze, “Bert-knn: Adding a knn search com-
ponent to pretrained language models for better qa,” arXiv preprint
arXiv:2005.00766, 2020.

[19] Y. Gong, Z. Chen, M. Chen, F. Yu, W. Lu, X. Wang, X. Liu, and
J. Liu, “Topic-fliprag: Topic-orientated adversarial opinion manipula-
tion attacks to retrieval-augmented generation models,” arXiv preprint
arXiv:2502.01386, 2025.

[20] F. Nazary, Y. Deldjoo, T. Di Noia, and E. Di Sciascio, “Stealthy
llm-driven data poisoning attacks against embedding-based retrieval-
augmented recommender systems,” in Adjunct Proceedings of the 33rd
ACM Conference on User Modeling, Adaptation and Personalization,
2025, pp. 98–102.

[21] Z. Wei, W.-L. Chen, and Y. Meng, “Instructrag: Instructing retrieval-
augmented generation with explicit denoising,” arXiv e-prints, pp.
arXiv–2406, 2024.

[22] C. Xiang, T. Wu, Z. Zhong, D. Wagner, D. Chen, and P. Mittal,
“Certifiably robust rag against retrieval corruption,” arXiv preprint
arXiv:2405.15556, 2024.

[23] X. Li and J. Li, “Angle-optimized text embeddings,” arXiv preprint
arXiv:2309.12871, 2023.

[24] F. Petitcolas, “La cryptographie militaire,” J. des Sci. Militaires, vol. 9,
pp. 161–191, 1883.

[25] M. Mozes, P. Stenetorp, B. Kleinberg, and L. D. Griffin, “Frequency-
guided word substitutions for detecting textual adversarial examples,”
arXiv preprint arXiv:2004.05887, 2020.

[26] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder,
and L. Deng, “Ms marco: A human generated machine reading compre-
hension dataset,” choice, vol. 2640, p. 660, 2016.

[27] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh,
C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee et al., “Natural
questions: a benchmark for question answering research,” Transactions
of the Association for Computational Linguistics, vol. 7, pp. 453–466,
2019.

[28] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and
C. D. Manning, “Hotpotqa: A dataset for diverse, explainable multi-
hop question answering,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 2018, pp. 2369–
2380.

[29] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle,
A. Letman, A. Mathur, A. Schelten, A. Vaughan et al., “The llama 3
herd of models,” arXiv preprint arXiv:2407.21783, 2024.

[30] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[31] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark,
A. Ostrow, A. Welihinda, A. Hayes, A. Radford et al., “Gpt-4o system
card,” arXiv preprint arXiv:2410.21276, 2024.

[32] S. Cho, S. Jeong, J. Seo, T. Hwang, and J. C. Park, “Typos that broke the
rag’s back: Genetic attack on rag pipeline by simulating documents in
the wild via low-level perturbations,” arXiv preprint arXiv:2404.13948,
2024.

[33] Z. Zhong, Z. Huang, A. Wettig, and D. Chen, “Poisoning re-
trieval corpora by injecting adversarial passages,” arXiv preprint
arXiv:2310.19156, 2023.

APPENDIX A
PERFORMANCE FOR WHITE-BOX ATTACKS

Further results of our proposed methods for white-box
attack are shown in Table V.

APPENDIX B
PROMPT TEMPLATE

You are a helpful assistant. The user has provided a query

along with relevant context information. Use this context

to answer the question briefly and clearly. If you cannot

find the answer to the question, respond with “I don’t

know.”

Contexts: [context]

Query: [question]

Answer:

Fig. 3: The prompt template used to produce the results

9

TABLE V: Performance Comparison of RAG Frameworks Across Different LLMs for White-box Attack

Dataset Framework ATR ↓ GPT-3.5 GPT-4 GPT-4o LLaMA-3

ASR ↓ Accuracy ↑ ASR ↓ Accuracy ↑ ASR ↓ Accuracy ↑ ASR ↓ Accuracy ↑

HotpotQA

CleanRAG 0.000 0.080 0.913 0.090 0.908 0.090 0.907 0.310 0.665
PoisonedRAG 1.000 0.860 0.056 0.870 0.022 0.872 0.021 0.980 0.001
FilterRAG (ϵ = 0.2) 0.000 0.005 0.721 0.090 0.733 0.090 0.731 0.335 0.600
ML-FilterRAG 0.030 0.090 0.729 0.090 0.745 0.080 0.755 0.330 0.650

MS-MARCO

CleanRAG 0.000 0.060 0.859 0.050 0.851 0.050 0.867 0.310 0.667
PoisonedRAG 0.980 0.720 0.074 0.710 0.107 0.750 0.102 0.960 0.030
FilterRAG (ϵ = 0.2) 0.125 0.120 0.721 0.110 0.729 0.110 0.706 0.320 0.596
ML-FilterRAG 0.155 0.110 0.762 0.110 0.777 0.112 0.782 0.318 0.629

NQ

CleanRAG 0.000 0.010 0.831 0.020 0.833 0.020 0.831 0.140 0.575
PoisonedRAG 1.000 0.730 0.031 0.700 0.033 0.720 0.046 0.970 0.010
FilterRAG (ϵ = 0.2) 0.025 0.050 0.823 0.050 0.816 0.050 0.828 0.160 0.500
ML-FilterRAG 0.040 0.060 0.824 0.050 0.827 0.050 0.829 0.170 0.542

APPENDIX C
ML-FILTERRAG MACHINE LEARNING MODELS

TABLE VI: ML-FilterRAG Model Training Results

Dataset Model Training Accuracy Test Accuracy

MS-MARCO Random Forest 0.860 0.850
NQ XGBoost 0.990 0.970
HotpotQA Random Forest 0.990 0.982

APPENDIX D
FEATURE PAIR PLOTS

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Pe
rp

le
xi

ty

25

20

15

10

5

0

Lo
g

Pr
ob

0.0

0.2

0.4

0.6

0.8

Fr
eq

-R
at

io

1.0 1.5
Perplexity

0

5

10

15

20

25

Fr
eq

ue
nc

y

20 0
Log Prob

0.0 0.5 1.0
Freq-Ratio

0 20 40
Frequency

Label
Adversarial
Non-Adversarial

Freq-Density

Fr
eq
-D
en
si
ty

Fig. 4: Pair plots for all the features

