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Abstract
Purpose – Supplier Selection (SS) and Order Allocation (OA) are strategic procurement processes crucial for 
mitigating supply chain uncertainties and potentially becoming a competitive advantage for companies in the 
mitigation strategies. Most of the previous studies dealing with SS and OA focused on straight rebuy situations, while 
there is a limited number of studies focusing on modified rebuy and new task situations, where uncertainty is higher, 
and comparison between historical and new suppliers is needed in a world, where the demand for new, technologically 
advanced products and services keeps increasing, pushing companies to continuously search for new suppliers.
Design/methodology/approach – Considering this gap, this paper aims to propose a Multiple-Criteria 
Decision-Making (MCDM) model to compare new and historical suppliers, with limited knowledge about the 
new suppliers, using measurable and forecastable decision criteria through a scenario planning approach that 
considers decision-makers’ different risk attitudes in evaluating suppliers’ performance. The proposed model 
adopts the Best-Worst Method and a two-stage Linear Programming model. The effectiveness of the model has 
been tested in a real industrial setting.
Findings – This model would support companies in their decision-making process to anticipate and address 
potential risks inherent in SS and OA decisions, thus enhancing supply chain resilience and agility in dynamic 
market environments.
Originality/value – The proposed model, requiring minimal computational resources, is accessible to a broad 
range of companies. It fills a literature gap by enabling comparison between new and historical suppliers in modified 
rebuy and new task situations, where uncertainty is higher, thereby enhancing supply chain decision-making.
Keywords Supply chain management, Supplier selection, Order allocation, Purchasing, Risk mitigation, 
Best-worst method
Paper type Research paper

1. Introduction
The recent disruptions in global supply chains have highlighted the importance of managing and 
controlling the risk within a supply chain. Supply Chain Risk Management (SCRM) is thus playing 
an increasingly strategic role within the Supply Chain Management (SCM) related activities. 
Suppliers represent a major source of risk for supply chains, and a properly managed 

procurement process should mitigate these risks as much as possible (Jain et al., 2013). Given 
the complexity of the procurement process, several authors analysed proposed frameworks for 
its optimization (see, e.g. De Boer, 1998), distinguishing the different activities that contribute
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to the procurement process, such as Supplier Selection (SS) and Order Allocation (OA) 
(Singh, 2014). While SS aims at selecting the best supplier based on criteria such as time, cost, 
quality and risk, OA aims at allocating the orders among the selected suppliers, based on 
several objectives, which include risk minimization (Jolai et al., 2011).
The complexity of SS and OA varies based on the nature of the buying situation. Robinson 

et al. (1967) distinguish three different buying situations, characterized by increasing levels of 
complexity: a straight rebuy, a modified rebuy and a new task situation. In straight rebuy, the 
buyer regularly buys routine items or strategic bottleneck items from historical suppliers. 
These situations are generally considered “safe” and characterized by low complexity, with 
little need for supplier revaluation unless there are problems with performance (Leonidou, 
2005). The criteria and historical data are well-established, which frequently results in 
minimal supplier interaction and simple decisions based on past performance. In contrast, 
modified rebuy and new task situations are characterized by increasing uncertainty in the 
purchasing process. The higher complexity of the modified rebuy and the new task situation 
depends on the fact that Decision-Makers (DMs) can rely on a limited amount of historical data 
for the assessment of supplier performance and supplier-related risk. In a new task buying 
situation, the purchasing organization purchases a product or service for the first time, without 
prior data or predefined criteria. DMs must choose and assess new criteria, often leading to 
extensive interaction and the use of multi-criteria models to evaluate a small pool of potential 
suppliers (De Boer et al., 2001). In modified rebuy situations, where a company adjusts its 
supplier base, the decisions are moderately complex, with the availability of historical data, 
involving a large initial pool of suppliers that gets refined based on ranking and sorting also in 
terms of allocation volumes (De Boer et al., 2001; Leonidou, 2005).
Despite this higher complexity, there is a limited number of studies focusing on modified 

rebuy and new task situations and most of the previous studies deal with SS and OA in straight 
rebuy situations, using historical data on the performance of suppliers in the decision-making 
process. There are very few examples of studies that adequately consider the uncertainty in SS 
and OA problems in new task situations when a comparison between historical and new 
suppliers is needed (Acar Alagoz et al., 2022; Stewart et al., 2013). Because of the lack of 
information that usually characterizes the knowledge of buyers about new suppliers, DMs are 
frequently prone to select a historical supplier rather than a new one (Aditi et al., 2023). 
Uncertainty is a characterizing feature of modified rebuy and new task situations; indeed, DMs 
might differently behave in the same uncertain situations; for this reason, the risk attitude of a 
single DM plays a critical role. However, previous approaches supporting SS and OA do not 
consider that different DMs might have different risk attitudes. Considering the different risk 
attitudes of the DMs is essential for a robust risk mitigation strategy.
Considering these gaps and the relevance of embedding risk and uncertainty in SS and OA 

problems, this paper proposes a Multiple-Criteria Decision-Making (MCDM) model enabling a 
comparison between new and historical suppliers, with limited knowledge of the new suppliers. 
The proposed MCDM model adopts the Best-Worst Method (BWM) (Rezaei, 2015, 2016), a 
pairwise comparisons-based method and a two-stage Linear Programming (LP) model for the 
OA problem. The model includes two crucial novelties to enhance supplier evaluation under 
uncertainty. First, it enables a structured comparison between new and historical suppliers by 
distinguishing between measurable and forecastable decision criteria. This structured distinction 
ensures a more accurate and reliable SS process integrating both qualitative and quantitative 
factors. While measurable criteria (e.g. cost, delivery time) can be directly assessed from supplier 
bids, forecastable criteria (e.g. quality, business integration and punctuality) require different 
evaluation approaches. Past performance data serve as a reference for historical suppliers, 
whereas for new suppliers, the absence of historical data requires an assessment based on DMs’ 
expertise through a scenario planning approach. Second, indeed, this approach accounts for the 
varying risk attitudes of DMs when evaluating forecastable criteria. Given the inherent 
uncertainty in assessing new suppliers, five distinct scenarios (optimistic, medium-optimistic, 
expected, medium-pessimistic and pessimistic) are introduced, with DMs assigning probabilities
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of occurrence based on historical supplier performance. This feature strengthens the centrality of 
DMs and reduces evaluation biases linked to the DMs’ varying risk attitudes and perceptions.
The remainder of this paper is organized as follows. Section 2 provides an overview of the 

literature on MCDM for SS and OA, posing the research gaps in the end. Section 3 explains the 
proposed model. Section 4 shows the results of a real-world industrial application. Section 5 
summarizes the conclusions, highlighting theoretical and managerial contributions and 
proposing avenues for future research.

2. Literature review
The field of SCRM (Mentzer et al., 2001) has seen the proposition of several models assisting 
DMs in the identification and assessment of risk, as well as in the definition of risk mitigation 
measures (Micheli and Vitrano, 2024; Micheli et al., 2014; Wu et al., 2006). The procurement 
process plays a pivotal role in an SCRM strategy (Micheli et al., 2008), and several studies 
have analysed the possibility of mitigating risk through procurement-related activities (Lee, 
2017), such as SS and OA. Indeed, the selection of the right supplier enables mitigating the 
risks related to regulatory and quality standards, customer demand, as well as firm reputation 
(Hru�ska et al., 2014). Similarly, the OA procedure can allocate supplies among the selected 
suppliers in such a way that the corresponding risks are minimized.
The first stage of the purchasing process is to formally choose suppliers by screening them 

via an assessment process that incorporates both qualitative and quantitative metrics (Luo 
et al., 2009). The second stage is OA, which determines the order quantity, for each supplier 
(Govindan et al., 2015). Even though there are many works on SS and OA in the literature, 
very few companies consider these approaches perhaps because the manual implementation of 
these models is time-intensive, complicated and frequently necessitates the use of a model 
expert (Bruno et al., 2012). Furthermore, the decision process’s objectives and accompanying 
restrictions are prone to alter over time. As a result, connected databases should be used to 
assist the models. All these characteristics should be integrated into a Decision Support System 
(DSS) that delivers a dynamic, rapid and flexible decision-making environment (Lee et al., 
2001; Ordoobadi, 2009; Yang and Chen, 2006).
This paper proposes an MCDM model enabling a comparison between new and historical 

suppliers in the SS and OA. Accordingly, this section will introduce the model by providing an 
overview of the literature on SS (2.1) and OA (2.2) focusing on the related MCDM models 
used in the context of risk mitigation.

2.1 Supplier selection (SS)
Thanks to its leading role in structuring and managing a supply chain, SS has received extensive 
attention over the years. Many authors have proposed categorizations of the SS process itself, in 
addition to the mentioned classification given by Robinson et al. (1967), De Boer et al. (2001) 
integrated this classification with Kraljic’s portfolio matrix, where items are classified according 
to two factors: supply risk and profit impact (Kraljic, 1983). Considering both the buying 
situation and the position of the purchased product/service in the Kraljic matrix, a structured 
framework was created where each specific buying circumstance finds its place. Suppliers are 
considered the most valuable intangible assets of any industrial organization (Hru�ska et al., 
2014), for this reason, it is not surprising that the issues related to the SS process have been 
widely examined by academics. Based on Chai et al. (2013) work, it is possible to classify the 
proposed methods for solving the SS problem into three main groups: (1) Mathematical 
Programming (MP), (2) Multiple-Criteria Decision-Making (MCDM) and (3) Artificial 
Intelligence (AI) methods. The first two, relevant to the purpose of this study, are below detailed.

2.1.1 Mathematical programming (MP). MP is a very well-known term in decision-making 
research. It has different SS techniques out of which six techniques were adopted from Chai 
et al. (2013). They include Data Envelopment Analysis (DEA), Linear Programming (LP),
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Nonlinear Programming (NLP), Multi-Objective Programming (MOP), Goal Programming 
(GP) and Stochastic Programming (SP).
DEA is a nonparametric MP approach for comparing the relative efficiency of comparable 

entities about decision-making units (DMUs). A simple DEA model is a performance assessor 
that may be used to assess DMU efficiency based on numerous outputs and inputs. DEA is very 
important in terms of complementing the different models of SS selections (Adler et al., 2002). 
Different types of LP have been developed for SS such as the fuzzy LP (Amin et al., 2011), the 
simple LP employment (Chen et al., 2011), the mixed-integer LP (Amin and Zhang, 2012) and 
the multi-objective LP (Ozkok and Tiryaki, 2011). NLP enables some nonlinear restrictions or 
objective functions. NLP is mostly used in two ways, first is the usage of NLP as a decision tool 
and second is the usage of NLP as a problem solver for the mixed-integer formulations of NLP 
(Hsu et al., 2010; Rezaei and Davoodi, 2012; Yeh and Chuang, 2011). MOP is used to solve 
decision problems with multiple, conflicting objective functions that can be optimized across a 
collection of viable solutions. From 2008 to 2012, fuzzy Multi-Objective Linear Programming 
(MOLP) was the most popular research topic for SS (Haleh and Hamidi, 2011). GP may be 
considered as an extension of MOLP that can be used to deal with various conflicting objective 
measurements. Each of these metrics has a target value that must be met. There are seven GP 
models which are used for SS: directly employed GP as a decision tool (Kull and Talluri, 
2008), fuzzy GP approach (Tsai and Hung, 2009), GP and ANP hybrid decision modelling 
(Demirtas and Ustun, 2009), integrated multiple MP techniques using GP (Chen et al., 2011), 
Genetic Algorithm (GA) based GP models (Sadeghieh et al., 2012), multi-choice GP (Liao 
and Kao, 2011). The last MP technique is SP. Despite the presence of numerous unknown 
factors, SP is a framework for modelling uncertainty optimization issues in which the 
probability distributions controlling the data are known or may be approximated. This method 
is a useful mathematical tool for handling a variety of real-world SS issues (Kara, 2011).

2.1.2 Multiple-Criteria Decision-Making (MCDM). In the SS background, MCDM
represents the approach that has received the greatest attention over the years. Several reasons 
support the choice to select MCDM methods: (1) MCDM models are intuitive for real-world 
decision-makers, (2) they allow to consider not only quantitative criteria but also qualitative 
ones, (3) they can effectively integrate the opinions of individual DMs in the selection process,
(4) they enable integration of risk and uncertainty in estimating the suppliers’ performances,
(5) while MP and AI methods are completely automated techniques, MCDM approaches 
guarantee a high level of interaction between the DM(s) and the decision process. DMs, the 
players of the decision process, criteria, representing the features considered in the evaluation 
process and the ranking process, are the milestones of MCDM methods. Because they 
constitute fundamental elements for applying an MCDM method, great effort has been spent 
by authors so far for their analysis.
2.1.2.1 Decision-makers. In real-life work environments, the way decisions are taken has 

significantly changed over the last decades, indeed it has evolved from single-criterion-single-
decision maker to multi-criteria-multi-decision makers (B€uy€uk€ozkan and G€oçer, 2017). The 
different contributions provided by each DM lead to more robust choices. Therefore, new 
MCDM methods have been introduced, such as Group Decision-Making (GDM), as the most 
collaborative way to make decisions. In this context, Chan and Chan (2004) exploited the 
geometric average to integrate the opinions of single DMs, Rezaei (2016) gave the same weight 
to all the experts composing the decision group, and Zhang et al. (2009) defined the weights of 
single DMs employing Vague Set Theory (VST). Furthermore, since DMs have different 
attitudes towards gains and losses (Sun et al., 2024), they need a gradual process to understand 
the situation of suppliers and both past and present information should be considered when 
selecting suppliers (Li et al., 2022).
2.1.2.2 Criteria. The set of criteria considered in the literature is very wide and includes both 

quantitative and qualitative criteria (Luo et al., 2009). Price, quality and delivery are the most 
frequently adopted criteria, but their relative importance has changed over time, indeed if once 
price was dominant, nowadays quality and delivery have gained a primary role (Ho et al.,
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2010). Kumar Kar and Pani (2014) offered one of the most recent investigations about SS 
criteria, pointing out over 60 generic criteria that have been used in the SS context. Moreover, 
moved by the growing concern about environmental issues and sustainable processes that have 
characterized recent years, many authors have tried to integrate the so-called green criteria 
with traditional ones (e.g. Genovese et al., 2013).
The wide-ranging literature not only regards the considered criteria but also the methods 

applied to calculate the associated weights. Criteria weights determine the importance covered 
by criteria in the decision process, thus, the higher the weight the more influential the criterion 
in the evaluation. Eight methods for criteria evaluation have been identified by the literature 
review with the majority of them belonging to pairwise comparison-based methods: Analytic 
Hierarchy Process (AHP); Analytic Network Process (ANP); Best-Worst Method (BWM); 
Pivot Pairwise Relative Criteria Importance Assessment (PIPRECIA); Measuring 
Attractiveness through a Categorical-Based Evaluation Technique (MACBETH); Stepwise 
Weight Assessment Ratio Analysis (SWARA); Rank Order Centroid (ROC); Criteria 
Importance Through Intercriteria Correlation (CRITIC).
The AHP is a popular method that structures the decision problem into a hierarchy of 

criteria, enabling pairwise comparisons to determine their relative importance. Many cases in 
the literature, such as those presented by Hazza et al. (2022), Koc et al. (2023) and Menon and 
Ravi (2022), illustrate the application of AHP in SS processes. Additionally, fuzzy logic is 
frequently integrated with AHP to address uncertainties and enhance decision-making, such as 
in Erdebilli et al. (2023), Jafari-Raddani et al. (2024), Yalcin et al. (2023), Zeydan et al. (2011) 
and Zhou and Chen (2023). A more advanced version, the ANP, considers interdependencies 
between criteria, addressing more complex supply chain scenarios where criteria influence one 
another (Sarkis and Talluri, 2002). This is the case in Bakeshlou et al. (2017) and B€uy€uk€ozkan 
and Ifi (2012), where ANP is employed to tackle the complex multi-criteria evaluation of green 
suppliers based on both quantitative and qualitative factors. Another pairwise comparison-
based method is BWM, recently developed, which compares the most and least important 
criteria against others, providing consistent weight allocation. This method reduces 
comparison workload, making it particularly suitable for SS. Since its introduction in 2015, 
numerous applications in the SS process have been proposed (Aditi et al., 2023; Afrasiabi 
et al., 2022; Asadabadi et al., 2023; Gupta and Barua, 2018; Nemati, 2024; Rezaei et al., 2015, 
2016; Rezaei and Fallah Lajimi, 2019; Shaw et al., 2023; Shidpour et al., 2023; Song et al., 
2024), with some studies introducing modifications, such as fuzzy BWM in Masoomi et al.
(2022) and stratified BWM in Zhang et al. (2024). PIPRECIA, another pairwise comparison-
based method, introduces a stepwise approach with sequential pairwise comparisons of 
criteria where weights are assigned incrementally, allowing for gradual refinement of criteria 
importance; it is especially desirable for dynamic decision environments such as in Mishra 
et al. (2023). Similarly, still using pairwise comparisons but differently compared to traditional 
methods like AHP or BWM, the MACBETH method evaluates criteria based on categorical 
attractiveness ratings, converting subjective preferences into numerical weights. For example, 
Pamucar et al. (2023) employed this method to address the complex SS problem faced by 
healthcare centres during the COVID-19 pandemic.
Other methods do not involve pairwise comparisons and some of them assign weights 

based on ratios, direct assessments or specialized procedures. ROC, such as in Esangbedo et al.
(2024) and Sureeyatanapas et al. (2018), assigns weights to criteria based on their rank order 
and may lack precision for more complex problems due to its oversimplification of weight 
assignment. Similarly, but with a stepwise evaluation, SWARA ranks criteria and adjusts their 
importance ratios based on relative significance, as applied in Debnath et al. (2023) for the 
sustainable SS process in healthcare facilities.
CRITIC is another method that differs from the others because it minimizes subjectivity in 

the weighting process and requires quantitative data to quantify criteria importance by 
analysing the standard deviation and the correlation between criteria, as seen in Mishra et al.
(2023) and Xu et al. (2023). To address the interdependence among criteria, the Decision-
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Making Trial and Evaluation Laboratory (DEMATEL) method is particularly useful, as it 
analyses the cause-effect relationships between criteria. However, since DEMATEL itself 
does not assess alternatives directly, it is frequently combined with other methods to evaluate 
alternatives, as evidenced by Mohammed et al. (2019).
2.1.2.3 Ranking process. The literature on SS using MCDM models is rich with methods, 

each with its own set of theoretical foundations and applications. MCDM methods aim to 
provide a structured and clear approach for evaluating alternatives by considering multiple 
criteria and determining the most preferred option. The review of the literature has revealed 12 
commonly used methods for ranking suppliers which are Simple Additive Weighting (SAW); 
Weighted Aggregated Sum Product Assessment (WASPAS); Technique for Order Preference 
by Similarity to Ideal Solution (TOPSIS); Stable Preference Ordering Towards Ideal Solution 
(SPOTIS); Combinative Distance-Based Assessment (CODAS); Multi-Criteria Optimization 
and Compromise Solution (VIKOR); Multi-Objective Optimization on the basis of Ratio 
Analysis (MOORA); Complex Proportional Assessment (COPRAS); Measurement of 
Alternatives and Ranking based on Compromise Solution (MARCOS); Elimination and 
Choice Expressing Reality (ELECTRE); Preference Ranking Organization Method for 
Enrichment Evaluations (PROMETHEE); Interactive Multi-objective Decision-Making 
(TODIM); and Grey Relational Analysis (GRA).
SAW and WASPAS can be considered as weighted sum and related simple aggregation 

methods. The SAW method is known to be simple, easy to understand and flexible for various 
contexts, allowing decision-makers to assign weights to criteria. This method aggregates these 
weights to compute a single total score for each alternative (Haryono et al., 2024; Schramm 
et al., 2020). Similarly, WASPAS creates a more robust supplier ranking system by integrating 
the strengths of the weighted sum model (WSM) and the weighted product model (WPM) 
(Debnath et al., 2023).
Following distance-based methods, such as TOPSIS, SPOTIS and CODAS, are designed to 

evaluate alternatives based on their proximity to an ideal solution. TOPSIS, one of the most
widely used methods, calculates the relative distance of each supplier to the ideal and worst-
case solutions (Haryono et al., 2024; Hwang and Yoon, 1981; Kaya et al., 2023; �Stili�c and
Pu�ska, 2023). The method’s applicability in various industries is well-documented (Meena 
et al., 2023). Several studies have integrated TOPSIS with other decision-making tools to 
enhance its effectiveness. Mohammed et al. (2019) combined TOPSIS with DEMATEL and 
ELECTRE to evaluate vendors for a passport tracking system. Similarly, Jafari-Raddani et al. 
(2024) combined fuzzy TOPSIS and fuzzy AHP. Sureeyatanapas et al. (2018) explored 
extending the TOPSIS method to handle uncertainty and incomplete information, proposing a 
modification using the ROC method to determine criterion weights. Yalcin et al. (2023) 
presented a strategy segmentation technique that integrated TOPSIS with the Kraljic portfolio 
matrix and supplier relationship model. Kaya et al. (2023) innovated by integrating TOPSIS 
with Bayesian networks to handle incomplete expert knowledge, enhancing decision support 
in SS scenarios. SPOTIS focuses on achieving a stable and consistent ranking by comparing 
each alternative’s performance against an ideal solution, as in Martin (2024) where SPOTIS 
was utilized to ensure that supplier rankings remain consistent despite variations in decision-
maker preferences. CODAS, another distance-based method, measures the Euclidean and 
Taxicab distances of each alternative from the negative-ideal solution, providing a 
comprehensive assessment of alternatives, as applied in Pamucar et al. (2023).
Other methods such as VIKOR, MOORA, COPRAS and MARCOS focus on achieving a 

balanced solution that considers the trade-offs among different (conflicting) criteria (Haryono 
et al., 2024). The VIKOR method, which seeks a compromise solution by evaluating 
alternatives based on their proximity to the ideal and anti-ideal solutions, is applied in various 
studies (Opricovic and Tzeng, 2004). MOORA, on the other hand, optimizes SS by calculating 
a ratio to rank each alternative from the best to the worst while considering trade-offs between 
two or more conflicting criteria, as presented in Magableh (2024) and Nemati (2024). COPRAS 
evaluates alternatives based on their proportional significance, indicating how good or bad they
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are relative to the other options and calculates the overall utility directly, as applied in Erdebilli 
et al. (2023) and Masoomi et al. (2022). Similarly, MARCOS, a method that ranks suppliers by 
evaluating their performance against a compromise solution, is particularly useful in situations 
with conflicting criteria, as demonstrated in Mishra et al. (2023) where MARCOS was used to 
balance the trade-offs between environmental sustainability and supplier performance.
Furthermore, ELECTRE, PROMETHEE and TODIM are outranking methods well-suited 

for handling complex decision-making scenarios where conflicting preferences among 
stakeholders must be managed. They work based on the dominance of the alternatives on each 
other (Qu et al., 2020; Tong et al., 2022) and are particularly useful for handling conflicting 
preferences and priorities among stakeholders (Kokaraki et al., 2019). ELECTRE excels in 
overcoming uncertainty by considering varying preferences between criteria and eliminating 
alternatives that are less preferable compared to others, as demonstrated by Mohammed et al. 
(2019). The PROMETHEE method uses binary relations to compare alternatives, calculating 
both positive flow (how much an alternative outranks others) and negative flow (how much it 
is outranked), with the final ranking determined by the difference between these flows (Chai 
and Ngai, 2020), such as employed by Agrawal (2022). TODIM, which involves stakeholders 
directly in the decision-making process, ranks alternatives by considering both gains and 
losses in relation to a reference point and orders them based on their cumulative dominance 
scores, as demonstrated in Sun et al. (2024). It is particularly useful in scenarios where 
multiple criteria must be balanced against the subjective preferences of decision-makers (Sun 
et al., 2024); however, this method may require significant time and resources for stakeholder 
engagement, and the weights and preferences can potentially create bias or inconsistency 
(Haryono et al., 2024).
Finally, the GRA method is designed to rank alternatives based on their similarities and 

differences with a reference alternative, making it a powerful tool in contexts where data is 
uncertain or incomplete (Deng, 1989; Haryono et al., 2024), as developed by Haeri and Rezaei 
(2019) and Esangbedo et al. (2024).
2.1.2.4 Fuzzy approach in MCDM models. Incorporating fuzziness into MCDM models to

address the inherent uncertainties and complexities in decision-making processes has gained 
ground in recent years in SS ( �Stili�c and Pu�ska, 2023). Recent studies have introduced various
fuzzy-based models to enhance the reliability and precision of supplier evaluations.
Rabbani et al. (2019) and Nemati (2024) employed interval-valued fuzzy sets and interval 

type-2 fuzzy sets to manage complexities and uncertainties related to sustainable SS. 
Similarly, Moghaddam (2015) dealt with such situations in reverse logistics by using Monte 
Carlo simulation and fuzzy goal programming. Modibbo et al. (2022) adopted fuzzy TOPSIS 
in the pharmaceutical sector, providing evidence of the utility of fuzzy methods in 
environments characterized by multiple uncertain factors. Li et al. (2022) used generalized 
fuzzy numbers to model the uncertainty and imprecision in decision-makers’ preferences 
across multiple periods to reflect the influence of time and group dynamics in the supplier 
evaluation process. Masoomi et al. (2022) and Afrasiabi et al. (2022) are examples of 
fuzziness applied at the BWM to determine the importance weights of the selection criteria. 
Çakır and Taş (2023) introduced circular intuitionistic fuzzy sets, expanding the range of fuzzy 
approaches available for capturing uncertainties in decision-making processes. An extension 
of fuzzy sets recently applied in the literature are Pythagorean Fuzzy Sets (Meng et al., 2024; 
Mishra et al., 2023; Zhou and Chen, 2023) and hesitant fuzzy sets (Zhang et al., 2022). 
Similarly, due to the high uncertainty and incomplete information, Pamucar et al. (2023) used 
fuzzy rough numbers, an advanced form of fuzzy sets in the SS process.

2.2 Order allocation (OA)
OA is the process through which the needed order quantities are split among selected suppliers. 
OA embodies the objectives and policies set by a company for its supply chain. OA processes 
can be classified according to different points of view: (1) the number of considered suppliers
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(single/multiple sourcing), (2) the number of purchased product types (single/multiple product 
types) and (3) the time horizon of the OA itself (single/multiple periods).
As highlighted by Erdem and G€oçen (2012), the great majority of the studies in the 

literature are dedicated to the SS problem only. Following the SS, OA choices are made, which 
are typically performed using mathematical programming techniques for MCDM. Most of the 
research in the literature is only focused on the SS issue. Among the reviewed literature, a good 
example of a study completely dedicated to the resolution of the OA problem is represented by 
the work of Bohner and Minner (2017) who proposed multiple product types, multiple 
sourcing and single-period Mixed-Integer Linear Programming (MILP) model aimed to 
minimize the total purchasing cost. Similarly, Song et al. (2024) presented a MILP model to 
address the challenge of purchasing under disruption risks, which required balancing cost, 
purchase value and geographical segregation to mitigate geographically induced disruption 
risks. Another study by Che et al. (2022), proposed a robust optimization model considering 
two uncertainties – production and transportation reliability – emphasizing the necessity of 
controlling the effects of unpredictable factors in real-world OA. Chen (2009) developed a 
fuzzy-based decision support model for rebuy procurement, to account for multiple criteria 
and uncertain factors within the decision process. Moghaddam (2015) also applied fuzzy logic 
in reverse logistics by developing a fuzzy multi-objective model that considered supply and 
demand uncertainty, using Monte Carlo simulations to determine optimal OA solutions.
However, solving just the OA problem is quite restrictive as it represents a phase 

immediately following the SS without which it assumes just an order re-allocation meaning. 
That is, considering a real case where only the OA problem is solved, it means that the supplier 
pool remains the same whereas the order quantities change. Integrated models for SS and OA, 
instead, enable conducting the whole process, from the first identification of candidate 
suppliers to the final allocation of order quantities (Bodaghi et al., 2018).
Ho et al. (2010) claimed that the combined AHP–GP strategy for SS and OA is the most 

common method in an exhaustive analysis of the methodologies used in SS literature. The 
major reason for this is that both AHP and GP have distinct benefits. The AHP consistency 
verification procedure assures the DM’s fair consideration of primary and subsidiary criteria. 
The AHP findings offer uniform weightings of different suppliers; nevertheless, the DM must 
consider other factors such as the total budget, supply quality, time restrictions and production 
technology. When allocating the yearly supply allotment to its vendors the integrated 
AHP–GP method is regarded as the most advantageous technique for SS and OA since GP 
offers an appropriate model to analyse these constraints. Ghodsypour and O’Brien’s (1998) 
study was the first to explore an integrated AHP–LP model to pick the best supplier and 
allocate the optimal order amounts among them. Among the following, Çebi and Bayraktar
(2003) created an integrated approach to handle SS and OA problems by combining AHP and 
Lexicographic Goal Programming (LGP). Wang et al. (2004) combined AHP with Preemptive 
Goal Programming (PGP). Wang et al. (2005) expanded the prior study by developing a 
technique to calculate total supply chain efficiency based on product, supply item and supplier 
efficacy. Liu and Wu (2005) integrated AHP and DEA to help them make better SS judgments 
for OA. Apart from the above-mentioned major studies, there is a vast number of other studies 
focusing on the same topic, Yang and Chen (2006) used GRA in conjunction with the AHP 
approach to finding the best suppliers for collaboration. Bayazit (2006) offered a sensitivity 
analysis for optimization and an AHP-based vendor selection model. Jafari-Raddani et al. 
(2024) offered a hybrid method using fuzzy AHP, TOPSIS and LP-metric optimization to 
incorporate quality policies and demand forecasting into SS and OA. For dynamic demand 
allocation to providers, Liao and Rittscher (2007) presented a non-linear mixed-integer 
programming model that included the effects of carrier selection and lot sizing. Rezaei and 
Davoodi (2012) utilized GA for solving both SS and OA problems in the case of a multiple-
sourcing, multi-product and multiple-period time planning horizon. Similarly, Ayhan and 
Kilic (2015) exploited a multiple-sourcing, multi-product and single-period MILP for 
selecting the best suppliers and determining the OA among them.
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Although modelling studies for SS and OA have been conducted, advanced DSS 
implementations are rare. Because SS and OA choices are multi-criteria problems that need to 
be regularly updated, it is suggested the offered approaches be implemented into computer 
software and web-based tools (Lee et al., 2001; Pal and Kumar, 2008; Yang and Chen, 2006).

2.3 Research gaps
Despite the great commitment dedicated to this field of SCM, many aspects still require deeper 
inspection. In today’s fast-changing world, the demand for new, technologically advanced 
products and services keeps increasing, pushing companies to continuously search for new 
suppliers able to provide the products and services, in addition to the best trade-off possible 
between quality and cost. In such a continuously evolving market environment, along with the 
increased tendency of companies to outsource part of their production, the need for a 
framework enabling the comparison between new and historical suppliers is urgent, and efforts 
must be directed toward its development. Very few authors (e.g. Aditi et al., 2023; Acar Alagoz 
et al., 2022; Tavassoli and Ghandehari, 2023) focused on the topic of new task situations, 
which are the most critical ones considering the associated risks and the high uncertainty 
degree by which they are characterized.
When considering extraordinary situations, risk plays a pivotal role in the decision-making 

process as DMs do not often have enough information to evaluate suppliers and they need 
reliable assumptions to proceed with the evaluation (Li et al., 2022). Decisions are thus related 
to DM’s perception which becomes extremely important for the success of their evaluation 
(Sun et al., 2024). DMs are indeed characterized by a risk attitude that makes them evaluate 
circumstances differently.
Furthermore, as revealed in the analysis of the literature many MCDM models have been 

extensively studied over the years, making it impractical to identify a universally best method 
(Modibbo et al., 2022). It might seem straightforward, but selecting the most appropriate 
model for SS and OA depends on the specific context in which it is applied; the nature of the 
industry, the availability of data, the complexity of the decision, the decision-makers’ 
preferences and technical skills all influence the suitability of a particular method (Schramm 
et al., 2020). Moreover, there are differences between the methods used for SS and OA. While 
for addressing OA problems optimization algorithms constitute the most suitable (and the 
main adopted) solution, they become not so efficient when it comes to SS problems. Indeed, SS 
usually requires taking into consideration higher-level pieces of information, that might be 
impossible to translate into quantitative values, therefore making the problem too complex to 
be solved through optimization methods.
Despite the growing interest in integrating multiple techniques to address the complexity of 

SS and OA problems, many proposed methods can hardly find practical application due to 
their inherent complexity. The integration of multiple techniques may appear promising, 
however, combining techniques often leads to increased model complexity, making it hard to 
apply in real-world situations because the manual implementation of these models can be time-
intensive and complicated, requiring DMs to have specialized expertise (Bruno et al., 2012). 
Indeed, as emphasized by Schramm et al. (2020), further research is needed to develop models 
for SS and OA that are practical for most companies, even those without advanced 
computational capabilities. In real situations, no optimal solution is expected, but just a good 
and, above all, feasible one.

3. Model
Given the research gaps stated in the previous section, we propose an MCDM model for SS 
and OA of several suppliers. The model includes two crucial novelties: the comparison of new 
and historical suppliers using measurable and forecastable decision criteria and the 
combination, through a scenario planning approach, of decision makers’ different risk
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attitudes in evaluating suppliers’ performance. Moreover, other crucial elements of the 
proposed MCDM model include (1) the integration of both SS and OA problems; (2) the 
capacity to handle both qualitative and quantitative criteria, as this process often involves 
assessing non-quantifiable aspects; (3) adaptability to different contexts, including variations 
in industry types; and (4) usability in real-world situations, being easy to implement with 
minimal specialized expertise.
The choice of an MCDM method comes from the consideration that such methods can 

encompass many different aspects of the choice, through the associated criteria, thus adaptable 
and customizable to very complex situations. As regards the calculation of the weights to be 
assigned to selected criteria, a novel pairwise comparisons-based method, the BWM (Rezaei, 
2015, 2016), is employed. One of the greatest advantages of this method is the fact that it is less 
information-demanding than other pairwise comparison-based methods (e.g. AHP) and thus it 
better fits new task situations, which are, by nature, characterized by a lack of information 
(further details in Section 3.2.1).
A more advanced approach for both criteria weighting and supplier ranking could have 

been selected to enhance objectivity and reduce reliance on decision-makers’ evaluations. 
However, the choice of the proposed model prioritized reliable and effective methods that are 
widely applicable by most companies without specific computational capabilities. This led to 
the selection of simple aggregation methods for supplier ranking over more complex 
techniques like TOPSIS and TODIM. Similarly, BWM for criteria weighting was chosen for 
its balanced integration of expert insight and its ability to handle both qualitative and 
quantitative data in uncertain decision environments compared to methods like CRITIC and 
DEMATEL, which provide significant benefits in reducing subjectivity and modelling 
complex interdependencies but are heavily dependent on the availability of reliable numerical 
data and may not effectively capture qualitative aspects. From that, the decision was made to 
use linear BWM for SS, since it preserves, as stated by Rezaei (2016), the core philosophy of 
the original BWM model while ensuring a unique solution due to its linear formulation. 
Indeed, although multi-optimality may be desirable in some cases, in other cases, a unique 
solution is preferable in decision-making processes, which is why we propose a linear BWM. 
It constitutes – in the view of the authors – an acceptable trade-off between the goodness of 
results and the required computational effort, providing unique weights used consistently in 
the other steps of the SS process. Instead, the initial non-linear BWM model is retained in the 
sensitivity analysis to further validate the stability of weight allocations by deriving an optimal 
set of weights for the selected criteria.
The detailed structure, divided into steps, of the proposed model is reported in Figure 1. 

The SS, OA and sensitivity analysis are the three macro-areas covered by the model. The SS 
stage directly informs and influences the OA stage by providing a preference ranking of the 
suppliers. Each supplier is assigned a score based on the selected criteria, which reflects their 
overall performance and reliability. These scores are then used as key inputs in the OA process, 
ensuring that order quantities are distributed among suppliers in a way that the best performers 
will have a higher saturation of their supply and vice versa for the low-value suppliers. 
Additionally, a sensitivity analysis is proposed to verify the robustness of the solution. 
The unpredictability of some situations might change the expected outcomes, and, for this 
reason, it is important to evaluate the steadiness of the solution in changing conditions, especially 
when addressing strategic problems, characterized by risk and influenced by the company’s 
strategic focus needs.
The proposed model develops into six steps. Some activities can be run in parallel, hence 

they have been arranged in common steps. Black arrows represent the flow of information 
from Steps 1–6, i.e. the required information before starting an activity. Grey arrows in Step 1 
show that criteria should be selected after having identified DMs and potential suppliers. 
Dashed lines link the sensitivity analysis in Step 6 with previous steps, so determining parts of 
the SS and OA process to test for the robustness of the final solution.
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3.1 Step 1
The first step will identify the main variables of the proposed model. Before starting with the 
computational analysis, we need to select suppliers to compare, criteria for suppliers’ 
assessment and DMs for the evaluation. These three aspects are analysed in detail below.

3.1.1 Identification of DMs. The DM has a central role in an MCDM model. The 
identification of the most suitable suppliers depends on decision makers’ selection and 
evaluation of criteria and their risk attitude. Therefore, the set of DMs (m 5 1, . . ., M) chosen 
for the analysis needs to be critically discussed considering the specific SS problem.

3.1.2 Identification of criteria. Over the years many criteria have been taken into 
consideration to address the SS problem. The most adopted criteria have evolved, indeed, if 
once cost was widely considered the most important criterion in SS, quality has now got such 
primacy. Moreover, the tendency toward new production techniques (e.g. Just-In-Time) has 
made some criteria rise in importance, such as the supplier’s location. Researchers, such as 
Pramanik et al. (2017), Hru�ska et al. (2014) and Scott et al. (2015), in the last years, have spent 
time defining pre-set criteria to apply in decision-making analyses. However, this limits the 
applicability of models that can be just implemented in those contexts where the suggested 
criteria are applicable. In the Authors’ view, it is not worth selecting a pre-set list of criteria for

Figure 1. Complete structure of the proposed model. Note(s): Black arrows represent the flow of information 
from Steps 1–6; grey arrows in Step 1 show that criteria should be selected after having identified DMs and 
potential suppliers; dashed lines link the sensitivity analysis in Step 6 with previous steps. Source: Created by 
authors
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the SS. Criteria should be customized by evaluating priorities in each situation, such as the 
company’s focus and its field of interest. Based on the specific context of the application, we let 
DMs identify the most suitable set of criteria (k 5 1, . . ., K) for the addressed problem. 
Moreover, a set of heuristics can guide the selection of these criteria in SS processes, providing 
structured methods to assess and select the most suitable criteria. The heuristics proposed by 
De Boer (2017) focus on balancing the value and cost of each criterion. Their work presented 
three heuristics for designing the SS process in modified rebuy situations.

(1) Heuristic A is a basic model of procedural rationality applied to SS. It categorizes 
criteria based on their value-to-cost ratio, helping purchasers prioritize criteria that 
offer a favourable ratio. The main purpose is to facilitate a more conscious choice of SS 
criteria by “forcing” the purchaser to consider the value and cost of each criterion.

(2) Heuristic B builds on Heuristic A by offering a more systematic and precise method for 
evaluating the value and cost of each criterion, often using AHP models.

(3) Heuristic C uses a more formal operations research method to model satisficing 
behaviour, offering comprehensive guidance for selecting criteria, particularly when 
multiple criteria must be evaluated simultaneously. It allows for a precise balancing of 
value and cost and can account for precedence relations between criteria.

Finally, a peculiarity introduced by the proposed model consists of the division of the criteria 
into two major groups according to their nature: measurable criteria and forecastable criteria. 
The measurable criteria (e.g. cost and delivery time) refer to quantifiable performances that 
can be evaluated by analysing the bids submitted by suppliers. On the other hand, suppliers’ 
performance of forecastable criteria (e.g. quality, business integration and punctuality) cannot 
be simply extrapolated from submitted bids. Besides, a distinction is required between 
historical and new suppliers. As it regards historical suppliers, their performances about 
forecastable criteria can be measured by exploiting data contained in the company’s databases, 
drawing directly from suppliers’ history. When it comes to new suppliers, no historical data are 
available, so the performances of forecastable criteria are assessed by the DMs. This further 
strengthens the centrality of DMs; their background and risk attitude can lead to different 
estimations.

3.1.3 Identification of suppliers. Nowadays high competition and fast-changing markets 
have massively increased the number of suppliers. The SS problem becomes highly relevant. 
Although digitalization enables a fast gathering of information about a huge number of 
suppliers, resource and time constraints discourage DMs from evaluating all the potential 
suppliers. As a result, a shortlist of suppliers (n 5 1, . . ., N) is defined to proceed with the 
following analyses. The screening process requires identifying a set of criteria to evaluate all 
the identified suppliers and decide on the best candidates. In the context of this screening 
process, Hwang and Yoon (1981) introduced systematic methods such as conjunctive, 
disjunctive and lexicographical screening to guide decision-makers in the choice to narrow 
down the pool of suppliers, as detailed in Table 1. These methods are crucial in the initial 
screening phase, where suppliers are filtered based on their ability to meet specific criteria.

Table 1. Classification of screening processes according to Hwang and Yoon (1981)

Conjunctive screening A supplier can enter the shortlist if and only if it satisfies all the set requirements
Disjunctive screening A supplier can enter the shortlist if it satisfies at least one of the set requirements, 

even if they fall short on others
Lexicographical
screening

Requirements are ranked in order of importance, suppliers are first evaluated on the
most important and only those satisfying them, pass to the next evaluation stage and 
so on until a desired number of suppliers is obtained

Source(s): Created by authors
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The selection of an appropriate screening method is particularly important when industry-
specific criteria are involved; for example, when some requirements are non-negotiable, 
conjunctive screening can be a proper approach to select the initial pool of suppliers (Linkov 
et al., 2004; Rezaei et al., 2016). Moreover, De Boer et al. (1998) call attention to the point that 
two types of decision rules can applied in SS: compensatory and non-compensatory ones. The 
aforementioned screening process (Hwang and Yoon, 1981) aligns with the non-compensatory 
decision rules (Junior et al., 2013). Non-compensatory rules are based on the premise that 
inadequate performance on one criterion cannot be compensated by strong performance on 
another, making them particularly effective for the initial screening phase. During this phase, it 
is crucial to ensure that all shortlisted suppliers meet the minimum requirements for key 
criteria, and there should be no compensation for a supplier not meeting the minimum 
requirement in a particular criterion. Therefore, non-compensatory rules are most appropriate 
at this stage, while, when comparing qualified suppliers in the final selection phase, 
compensatory rules may be more suitable, as all suppliers at that stage would have already met 
the minimum criteria (De Boer et al., 1998; Rezaei et al., 2014).

3.2 Step 2
Step 2 covers two independent procedures that can be run in parallel. In particular, the weight is 
assigned to each of the selected criteria and the score for each criterion is assigned to every
supplier.

3.2.1 Criteria weights. Once we have identified the criteria for the SS analysis, we need to
assign a weight (w 1 , . . ., w k ) to each of them.
The Best-Worst Method (BWM), before mentioned in the literature review, is applied 

(Rezaei, 2015, 2016). It offers a structured way to conduct pairwise comparisons; it requires 
less information compared to the full pairwise comparison approach that perfectly fits with 
new task situations usually characterized by scarcity of available data on some/all suppliers. A 
few advantages are reported below.
Firstly, we need to select a priori, before conducting the pairwise comparisons, the best and 

the worst criteria. DMs have a clear understanding of how to evaluate criteria that imply more 
consistent pairwise comparisons. Secondly, the use of two opposite references (best and worst) 
to determine the two pairwise comparison vectors reduces possible anchoring biases during 
DMs’ pairwise comparison process. Thirdly, BWM stands in the middle between methods that 
use a single vector (e.g. Swing and SMART family) and those that use a full matrix (e.g. AHP). 
By using pairwise comparisons, we can check the consistency of DM’s evaluations, which 
instead is not possible with one-vector methods. At the same time, it is data (and time)-efficient 
as it does not require a full-matrix evaluation. Asking too many and not independent questions 
might produce confusion and inconsistency in DMs’ answers. The steps of the BWM (Rezaei, 
2015, 2016) for criteria weighting are below described.

Step 1

Once the criteria are defined, every DM has to determine the best (most desirable, most 
important) and the worst (least desirable, least important) criteria.

Step 2

The Best-to-Others (BO) vector determines the preference of the best criterion over all the 
other criteria, using a number between 1 and 9. The resulting Best-to-Others (BO) vector is 
BO ¼ ða B1 ; a B2 ; . . . ; a BK Þ; where a Bj indicates the preference of the best criterion B over 
criterion j.

Step 3

The Others-to-Worst (OW) vector determines the preference of all the criteria over the worst 
criterion, using a number between 1 and 9. The resulting OW vector is
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OW ¼ ð a 1W ; a 2W ; . . . ; a KW Þ; where a jW indicates the preference of criterion j over the worst
criterion W.
Once the BO and OW vectors are determined, the consistency of the DM’s preferences can

be assessed through the recent method identified by Liang et al. (2020), i.e. the Input-based
Consistency Ratio (CR I ):

CR I ¼ max k CR Ik

where:

CRI
k ¼

8 
<

:

a Bk 3 a kW � a BW

a Bk 3 a Bk �a Bk 
; if a Bk > 1

0; if a Bk ¼ 1
(1)

The consistency thresholds for CR I were defined by Liang et al. (2020), which consider the 
number of criteria (from 3 to 9) and the scale, i.e. the value assumed by a BW (from 3 to 9). In 
case of significant inconsistencies, the analyst could aid the DM in revising the pairwise 
comparison systems (local inconsistencies can be used for guiding the revision process; see 
Liang et al. (2020)).

Step 4

The aim of the final step is to determine the optimal weights for each criterion k so that the

maximum absolute differences 
� 
�
� 
�

w B
w k 

− a Bk

�
�
�
� and 

� 
� 
� 
�

w k
w W 

− a kW

�
�
�
� for all k is minimized. This translates

into a min-max problem as follows:

min max k
�� 
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�
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w k

� a Bk

� 
� 
� 
� ;

�
�
�
�
w k
w W

� a kW

�
�
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subject to:
X 

k
w k ¼ 1

w k ≥ 0; for all k (2)

This is equivalent to the following problem (3):
min ξ
subject to:

�
�
�
�
w B
w k

� a Bk

� 
� 
� 
� ≤ ξ; for all k

�
�
�
�
w k
w W

� a kW

� 
� 
� 
� ≤ ξ; for all k

X 

k
w k ¼ 1

w k ≥ 0; for all k (3)
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Solving model (3), the optimal weights w 1 ; w 2 ; . . . ; w K and ξ * are obtained.
Model (3) might result in multiple optimal solutions for problems with more than three 

criteria. It is possible to linearize the original nonlinear problem, which results in a unique 
solution (Rezaei, 2016):
min ξ L
subject to:

jw B � a Bk w k j ≤ ξ L ; for all k

jw k � a kW w W j ≤ ξ L ; for all k
X

k
w k ¼ 1

w k ≥ 0; for all k (4)

The optimal weights (w *1 ; w *2 ; . . . ; w *k) and ξ 
L * are obtained.

The linear BWM (4) constitutes a very good trade-off between the goodness of results and 
the required computational effort. It can be simply implemented in widely available software 
such as Microsoft Excel, thus enhancing the possibilities for a practical application.
The linear model of BWM (4) will be applied at this step of the model development. 

Instead, the non-linear model of BWM (3) will be utilized for the sensitivity analysis (see 
Section 3.6.1).

Consistency ratio

The Consistency Ratio (5), subsequently called the Output-based Consistency Ratio (CRO) by 
Liang et al. (2020), shows the extent to which the provided pairwise comparison system is 
consistent. The lower the consistency ratio the higher the consistency of the pairwise 
comparison system. Consistency Ratio ∈½0; 1�, values close to 0 show more consistency, while 
values close to 1 show less consistency.

CR O ¼
ξ *

Consistency index
(5)

Table 2 shows the maximum possible ξ, i.e. the consistency index, for different values 
of a BW ∈ f1; 2; . . . ; 9g.

As seen above for the CR I , the consistency thresholds for CR O were determined by 
considering the number of criteria (from 3 to 9) and the scale, i.e. the value assumed by a BW 

(from 3 to 9) (Liang et al., 2020).
3.2.2 Supplier score. Concerning the performances of the selected criteria, each supplier is 

assigned a score (S nk ), where n and k are respectively the supplier and the criterion indexes, 
representing how well it performs about each criterion. The main novelty introduced by the 
proposed model is the distinction between measurable and forecastable criteria, which gives

Table 2. Consistency index

a BW 1 2 3 4 5 6 7 8 9

CI 0 0.44 1 1.63 2.3 3 3.73 4.47 5.23 
Source(s): Rezaei (2015)
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the possibility to completely evaluate also new suppliers by means of two different scoring 
processes depending on the considered criterion, i.e. benefit and cost criteria below detailed 
(Figure 2).
3.2.2.1 Scoring for measurable criteria. As performances related to measurable criteria (v nk ) 

can be directly extrapolated from submitted bids, suppliers’ scores can be obtained using a 
simple normalization. The normalization process will be different according to the nature of 
the criterion under consideration.
A direct normalization is used for benefit criteria (Equation (6)):

S nk ¼ 
v nk

P 

k
v nk

(6)

while for cost criteria an inverse normalization must be adopted (Equation (7)):

S nk ¼

1
v nkP 

k

1
v nk

(7)

3.2.2.2 Scoring for forecastable criteria. As it comes to the evaluation of new suppliers for 
forecastable criteria, things become challenging. Forecastable criteria can be also quantitative 
or qualitative. Quantitative criteria refer to values directly linked to the performances 
(e.g. punctuality can be measured in terms of the average delay of the supply). Qualitative 
criteria are expressed in Likert scales (e.g. business integration capability measured on a scale 
from 1 to 10). Then, independently of the considered criterion, values associated with 
suppliers’ performances are normalized, by using Equations (6) and (7), equal to measurable 
criteria. Such intangible criteria might lead to discrepancies in the evaluation of the 
performances of different companies.
When dealing with historical suppliers, the values representing performances related to 

quantitative and qualitative forecastable criteria can be directly extrapolated from the 
company’s databases, hence the evaluation is objectively detached from DMs’ evaluations. As 
it regards new suppliers, we need instead to leverage the expertise of DMs who refer to existing 
available data and forecasts. Similarities with existing/historical suppliers can support the 
assessment of the performance of new ones. A scenario-based approach is applied to make data 
more consistent and reduce DMs’ biases.
3.2.2.3 Scenario-based approach – new suppliers. The scenario-based approach sets some 

scenarios to represent possible future situations and integrates the risk attitude of the DMs into 
the decision process. The number of scenarios is set equal to five (s 5 1, . . ., 5) and they are

Figure 2. Framework of the suppliers’ scoring processes. Source: Created by authors
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named: optimistic, medium-optimistic, expected, medium-pessimistic and pessimistic. The
expected scenario takes as a reference the “average performances” of historical suppliers, i.e. in 
this scenario new suppliers are expected to behave as the historical ones, while the other 
scenarios capture best-case, worst-case and intermediate conditions to better cover the spectrum 
of possible supplier performances, ensuring a balanced assessment of different risk levels.
Each DM must assign a probability of occurrence (po s ) to each scenario and define a value 

characterizing the supplier under analysis in the different scenarios (v s ), i.e. the normalized 
values of the supplier’s performances in each scenario. Then, each DM (m) evaluates the score 
of each supplier (n) for a considered criterion (k) (S nkm ) by applying first Equation (8) and then 
Equations (9) or (10):

v nkm ¼ 
X 

s 
po nskm $v nskm (8)

S nkm ¼ 
v nkm

P 

k
v nkm

ðdirect normalizationÞ (9)

S nkm ¼

1
v nkmP 

k

1
v nkm

ðinverse normalizationÞ (10)

3.3 Step 3
Defining S nk and S nkm (only for forecastable criteria of new suppliers), we got an evaluation by 
every DM of criteria associated with suppliers. Now we want to gather these evaluations and 
obtain the Total Score (TS nm ) of the n-th supplier given by the m-th DM. It is obtained as a 
weighted average of the scores of a considered supplier on a selected criterion (S nk or S nkm ) and 
the criteria weights (w k ) (Equation (11)):

TS nm ¼ 
X 

k 
w k $S nk þ 

X 

k 
w k $S nkm (11)

3.4 Step 4
Once the Total Score (TS nm ) of each supplier has been obtained for each DM, the Total Score 
(TS n ) for each supplier n, considering DM’s opinions, is calculated by aggregating values 
through a geometric mean (Equation (12)):

TS n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Y

m
TS nmm

r 
(12)

[Note: steps 3 and 4 become the same when there are no forecastable criteria and/or new 
suppliers].

3.5 Step 5
The previous step closed the analysis for SS and we obtained a preference ranking of the 
suppliers. From this step, the OA problem is explored by assigning to each supplier the order 
quantities considering its performance. It implies that the best performers will have a higher 
saturation of their supply and vice versa for the low-value suppliers.
We used a two-stage LP to solve an optimization problem, as clarified in Figure 3. Linear

equations (c 1 , c 2 , . . ., c C ) address different aspects of the OA problem by including constraints
and policies of the company and the suppliers. They take into account physical constraints (e.g. 
suppliers’ capacities, company’s inventory capacity) as well as supplier-buyer relationship 
policies, from the company’s side (e.g. not assigning more than a fraction of the whole supply
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to a single supplier, setting a lower bound for starting a commercial relationship) and from 
suppliers’ side (e.g. setting a lower bound for starting a commercial relationship, not selling 
more than a certain fraction of the total production capacity to a single buyer).

3.5.1 First stage. In the first stage, a minimization linear problem is formulated, aimed at 
minimizing the Total Purchasing Cost (TPC) without considering the suppliers’ ranking. The 
quantity to be purchased (Q tot ) is split among suppliers by undergoing constraints and policies 
of the company and the suppliers. At this stage, the order quantities are assigned not 
considering the best suppliers, therefore this minimization problem might cause a violation of 
the suppliers’ ranking. Indeed, it may be the case when the cheapest suppliers do not 
correspond to the best suppliers according to the suppliers’ ranking.

3.5.2 Second stage. Nonetheless, the suppliers’ ranking cannot be ignored, and this second 
stage enables the integration in the OA problem of the suppliers’ prioritization according to 
their Total Score (TS n ). The objective function represents the prioritization of suppliers by 
solving a maximization linear problem. The suppliers’ Total Scores (TS n ) constitute the base
for the prioritization of suppliers in being assigned order quantities (x 1 , . . ., x n ). As before, the
problem is subject to constraints and policies of the company and the suppliers. A new 
constraint is now considered; not minimizing the TPC at this stage, we decided to introduce a 
constraint related to the maximum TPC a company can afford. Depending on how compelling 
this constraint is, we might observe variations from the initial maximization linear problem, 
which does not consider this new budget constraint and keeps unchanged the constraints of the 
first stage.
By increasing the budget step by step considering the calculated minimum TPC (e.g. 1 by 

1%), it is possible to map the solution space by identifying the boundaries among different 
possibilities to allocate order quantities. DMs will thus acquire knowledge on possible 
scenarios of OA among suppliers, given the normal variation of the company’s budget and

Figure 3. Two-stage linear programming problem. Source: Created by authors
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performance. This empowers DMs to select a preferred solution, for a variety of reasons, 
among comparable alternatives.

3.6 Step 6
When addressing strategic problems characterized by risk, as SS and OA problems are, it is not 
sufficient to simply propose a solution, rather it is necessary to verify the robustness of the 
found solution. The unpredictability of some situations might change the expected outcomes, 
and, for this reason, it is important to evaluate the steadiness of the solution in changing 
conditions. It is not just a matter of risk; the company’s strategic focus needs to be considered 
too. Different strategies may lead to diverse suppliers’ evaluations and modified rankings in 
the SS problem.
We will handle the sensitivity analysis by studying the possible variation of two parameters 

defined in Step 2 of the proposed model: the criteria weights (w k ) assigned through the BWM 
(Section 3.6.1), the probabilities of occurrence (po s ) assigned by DMs for scenarios of 
forecastable criteria of new suppliers (Section 3.6.2).

3.6.1 Weights of criteria. The sensitivity analysis regarding the criteria weights is 
performed by solving the non-linear BWM. The outcome of a non-linear BWM is a set of 
optimal weights for selected criteria. A range of optimal weights is obtained for each 
criterion by running the non-linear BWM 100 times. Each run corresponds to one feasible 
solution, and we can select one optimal-weight vector depending on the sensitivity analysis 
we want to perform. This sensitivity analysis enables assessing the robustness of the 
selected solution according to the company’s focus and determining to what extent criteria 
can be prioritized over the others. We can indeed investigate the effects on the final OA 
solution, with respect to the linear BWM solution, by increasing the weight of a criterion. 
Hence, the optimal weights for each run are identified through the non-linear BWM, as 
formulated above in Equation (3).

3.6.2 Weights of scenarios. In evaluating new suppliers against forecastable criteria, as 
explained in Section 3.2.2.2, the DMs are required to define a set of probabilities of occurrence 
(po s ) and assign the suppliers a score (v s ). Changing po s might affect the goodness of the final 
solution. To understand the influence of DMs’ risk attitude, it is indeed possible to increase or 
decrease the probabilities of occurrence (po s ). Increasing the po s in the optimistic zone puts a 
DM in a more risk-taker position, thus rewarding the most promising suppliers; on the 
contrary, increasing the po s in the pessimistic zone determines a more risk-averse perspective.

4. Real-world case study and discussion
We now move to the application of the proposed model in a real industrial context. A case 
study of a leading Italian company in the field of radiators and Controlled Mechanical 
Ventilation (CMV) production was chosen. The reference case has specific contours, 
typical of the engineering industry, which, in turn, represents a characteristic environment, 
led by fierce competitiveness, high stress on quality and continuous improvement. 
Moreover, the adopted Just-In-Time (JIT) production philosophy remarks the need of 
searching for suppliers able to supply required materials in short times and to be flexible in 
terms of purchased quantities and delivery times. The specific case under consideration 
regards the purchasing of steel tubes used for radiators’ production, which constitutes a 
leveraged item for the company, destined for large European retailers. The tubes have high-
quality standards because they are welded with radiator heads to compose the elements 
constituting the radiator, thus defective tubes can cause significant problems during the 
production process. The case study will follow step-by-step the proposed model in the 
previous section. Finally, Section 4.7 will provide an in-depth discussion of the overall 
implications of the study, focusing on how the proposed MCDM model for SS and OA 
bridges theory and practice, based on insights from the case study.
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4.1 Step 1
4.1.1 Identification of DMs. The roles of the DM are played by the purchasing manager and by
the quality assurance manager, two main voices in the procurement process of the company.

4.1.2 Identification of criteria. The DMs, after an accurate analysis by De Boer (2017), 
have identified five criteria: price, quality, delivery time, punctuality and flexibility. Except for
price and quality, which are the most used criteria in SS problems, identified criteria are aimed 
at evaluating the suppliers from the point of view of their compliance with production pace, 
being able to apply variation to order quantities and delivery date when necessary. The 
identified criteria, according to their nature, have been divided by the DMs into measurable 
and forecastable criteria, as reported in Table 3.

4.1.3 Identification of suppliers. The company adopts a two-stage SS process, constituted 
by the screening and evaluation phases. During the screening phase, the revenue and financial 
stability of potential suppliers are assessed, moreover, according to the company’s policies, 
only large companies (þ200 workers) are considered potential suppliers. The conjunctive 
screening process was adopted, i.e. a supplier must satisfy all basic requirements to enter the 
shortlist. The evaluation process is applied only to the candidates grouped in the shortlist, 
obtained downstream of the screening phase. Two historical suppliers (Supplier 1, Supplier 2) 
and one new supplier (Supplier 3) compose the current supplier pool. Supplier 1 is an Italian 
historical company active at all levels of steel production. Supplier 2 is a Serbian steel 
producer. Supplier 3 is a specialized company in the production of steel rods and formed steel, 
which has expanded its business from North-East Italy to Central Europe.
As regards the historical suppliers, it should be noted that, despite many advantages 

characterizing Supplier 1, Supplier 2 must be involved in the supply of the steel tubes because 
it is a steel supplier for the company, and it acts as a logistic partner for the transportation of 
semi-finished radiators from Italy to the European plants. The total demand of tubes of the 
company is evaluated in 22 shipments per month, currently assigned as follows (Table 4).
Supplier 3, by its side, can offer almost the same delivery time as that guaranteed by 

Supplier 1 and the same can be said for punctuality. As regards flexibility, the production 
capacity and storing space of Supplier 3 are quite lower than Supplier 1, thus the flexibility will 
be lower too. The following application of the model aims at defining a redistribution of order 
quantities, including Supplier 3 as it is thought that it can partially substitute Supplier 2 and 
also get a portion of the order quantities required by Supplier 1.

Table 3. Criteria classification for the real-world case

Criterion Type

Price Measurable
Quality Measurable
Delivery time Measurable
Punctuality Forecastable
Flexibility Forecastable
Source(s): Created by authors

Table 4. Current supply

Supplier Materials

Supplier 1 85%
Supplier 2 15%
Source(s): Created by authors
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4.2 Step 2
4.2.1 Criteria weights. Once criteria have been identified (Section 4.1.2), their relative weights 
need to be determined. The calculation of optimal weights is performed by exploiting the linear 
BWM, according to the procedure explained in Section 3.2.1. Judgements given by the two 
DMs, each working on its own to avoid any sort of influence, are reported in Table 5.
DM1 set price as the most important criterion (best) whereas DM2 selected the quality 

criterion. Both identified flexibility as the least important criterion (worst). This fact can be 
associated with the great market stability reached over the years, i.e. a small number of clients 
accounts for most of the production. This, in turn, means that very few variations usually occur 
to the sales forecast, thus suppliers’ flexibility is not considered that important, yet relevant.
It is worth noticing that both the purchasing manager and the quality assurance manager 

gave almost the same importance to the criteria of delivery time and punctuality, which indeed 
represent the basis for the JIT production philosophy in the company’s culture.
We have checked the consistency of the criteria and all the CR I are below the consistency 

threshold (Liang et al., 2020), as explained in Section 3.2.1.
Then, applying the linear BWM, we obtained the unique weights (w 1 , w 2 , w 3 , w 4 , w 5 ) 

reported in Table 6.
The CR O for each DM is below the threshold, thus both the DMs were consistent in their 

evaluations. The application of the linear BWM has determined unique weights that are now 
applied in the following steps. Instead, weights determined with the non-linear BWM will be 
introduced for the sensitivity analysis (Section 4.6).

4.2.2 Supplier score. The next step concerns the calculation of suppliers’ scores on selected 
criteria. Different procedures were set depending on the nature of the considered criterion (i.e. 
measurable or forecastable).
4.2.2.1 Scoring for measurable criteria. From the company’s interviews, we gathered all the 

required and useful information to assess measurable criteria. It follows that (historical and 
new) suppliers’ scores for the measurable criteria can be directly calculated, taking advantage

Table 5. Judgements of DM1 and DM2

DM1 DM2

Criterion
BO
(Price)

OW
(Flexibility)

CR Ik
CR I max 5 0.2306

BO
(Quality)

OW
(Flexibility)

CR Ik
CR I max 5 0.2958

Price 1 5 0 2 6 0.0714
Quality 2 4 0.15 1 8 0
Del. time 2 4 0.15 3 4 0.0714
Punctuality 3 3 0.2 3 5 0.125
Flexibility 5 1 0 8 1 0
Source(s): Created by authors

Table 6. Criteria weights

Criterion DM1 DM2

Price 0.371795 0.234783
Quality 0.211538 0.408696
Del. time 0.211538 0.156522
Punctuality 0.141026 0.156522
Flexibility 0.064103 0.043478
Ksi* 0.051282 0.060870
CR O 0.022297 0.013617
CR Omax 0.3019 0.4029
Source(s): Created by authors
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of a simple normalization technique, by using Equations (6) and (7) (Section 3.2.2.1). The 
suppliers’ scores (S nk ) for measurable criteria are reported in Table 7.
4.2.2.2 Scoring for forecastable criteria. The calculation of suppliers’ scores for 

forecastable criteria is different for historical and new suppliers.
For historical suppliers, performances can be directly extracted from company databases 

(Table 8).
In contrast, for the new supplier, the calculation of the scores for the two forecastable criteria 

is performed by exploiting a scenario-based approach from every single DM (Table 9 and 10).
As it can be easily inferred by looking at the resulting scores for the new supplier, a general 

optimism characterizes the perception of DMs on the new supplier. As regards punctuality 
according to DM1’s opinion, Supplier 3 is expected to work better than Supplier 1 and at least

Table 7. Suppliers’ scores on measurable criteria

Supplier Price [V/ton] Price score Quality [%] Quality score Del. time [days] Del. time score

Supplier 1 750 0.33701 99 0.33446 2 0.41667
Supplier 2 760 0.33258 97 0.32770 5 0.16667
Supplier 3 765 0.33041 100 0.33784 2 0.41667
Source(s): Created by authors

Table 8. Data about forecastable criteria for historical suppliers

Supplier Punctuality [%] Flexibility [%]

Supplier 1 98 97
Supplier 2 99 95
Source(s): Created by authors

Table 9. Data of DM1 about forecastable criteria for the new supplier

Punctuality Prob Val_scen Flexibility Prob Val_scen

P 0.1 96% P 0.05 95%
MP 0.1 97% MP 0.1 96%
E 0.2 97.5% E 0.3 97%
MO 0.4 98.5% MO 0.3 98%
O 0.2 99.5% O 0.25 99%
Value 98.1% Value 97.6%
Note(s): P: pessimistic; MP: medium-pessimistic; E: expected; MO: medium-optimistic; O: optimistic 
Source(s): Created by authors

Table 10. Data of DM2 about forecastable criteria for the new supplier

Punctuality Prob Val_scen Flexibility Prob Val_scen

P 0.15 95% P 0.1 94%
MP 0.15 97% MP 0.1 96%
E 0.25 97.5% E 0.4 97%
MO 0.3 98% MO 0.2 98%
O 0.15 99% O 0.2 99%
Value 97.4% Value 97.2%
Note(s): P: pessimistic; MP: medium-pessimistic; E: expected; MO: medium-optimistic; O: optimistic 
Source(s): Created by authors
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comparably to Supplier 2, and even DM2 is confident that the new supplier is expected to work 
at least comparably to Suppliers 1 and 2. About the flexibility forecast, we can notice that both 
DMs assigned the new supplier an expected value (97%) higher than the average between 
historical suppliers (97 and 95%).
Having obtained the values of the criteria associated with each supplier, applying 

Equation (8), it is possible to obtain the suppliers’ scores (S nkm ) for forecastable criteria 
(Equation (9)), which will be different for the two DMs (Tables 11 and 12).

4.3 Step 3
Once all the criteria weights and suppliers’ scores for each criterion have been calculated, by 
using Equation (11), we can calculate the Total Score of each supplier according to each DM’s 
opinion (TS nm ) (Table 13).

4.4 Step 4
The Total Score (TS n ) for each supplier is obtained with Equation (12) (Table 14) by 
aggregating the values of the two DMs through the geometric mean. Looking at the resulting 
suppliers’ ranking, it can be inferred that Supplier 3 will probably get part of the orders 
currently assigned to Supplier 2.

4.5 Step 5
Once the suppliers’ ranking has been obtained, the OA problem is tackled to define the 
distribution of order quantities among the three suppliers. The OA problem is strongly 
characterized by the specific situation it relates to, thus great attention must be paid to the 
correct definition of the company’s policies and other constraints. Table 15 reports the

Table 11. Scores for DM1 (S nkm )

Supplier Punctuality Flexibility

Supplier 1 0.33209 0.33494
Supplier 2 0.33548 0.32804
Supplier 3 0.33243 0.33702
Source(s): Created by authors

Table 12. Scores for DM2 (S nkm )

Supplier Punctuality Flexibility

Supplier 1 0.33288 0.33541
Supplier 2 0.33628 0.32849
Supplier 3 0.33084 0.33610
Source(s): Created by authors

Table 13. Total score of each supplier for DM1 and DM2 (TS nm )

Supplier DM 1 DM 2

Supplier 1 0.352496 0.347720
Supplier 2 0.296569 0.305018
Supplier 3 0.350937 0.347263
Source(s): Created by authors
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nomenclature used in the following OA analysis. Table 16 provides all the necessary data 
(constraints and requirements) for the development of the OA problem.
The OA problem is solved according to the two-stage LP introduced in the previous section 

(Section 3).
4.5.1 First stage. In the first stage, a minimization linear problem is formulated, aimed at 

minimizing the TPC without considering the suppliers’ ranking.
min TPC ¼ 

P 3
n¼1 ½xðnÞcðnÞ�

subject to:
xð1Þ ≤ 18 ðiÞ

xð2Þ ≤ 4 ðiiÞ

xð3Þ ≤ 11 ðiiiÞ

xð1Þ þ xð2Þ þ xð3Þ ¼ 22 ðivÞ

xð1Þ ≥ 0 ðvÞ

xð2Þ ≥ 2 ðviÞ

xð3Þ ≥ 0 ðviiÞ (14)

The constraints (i), (ii) and (iii) regard the maximum quantities assignable to suppliers, which, 
considering the total supply, must be no more than 81.8% for Supplier 1, 18.2% for Supplier 2 
and 50% for Supplier 3. As a result, we guarantee at least two suppliers and avoid assigning all 
the orders just to one supplier. The constraint (iv) establishes the total supply required per 
month. The constraint (vi) refers to the minimum quantity to be assigned to Supplier 2 (as there 
is a minimum order quantity for the reasons explained at the beginning of this section). The 
results of the first stage are reported in Table 17.

Table 15. Nomenclature for the OA analysis

Notations Description

n Index of supplier
TSðnÞ Total score of suppliers n
xðnÞ Quantity to be allocated to suppliers n
cðnÞ Total procurement cost of suppliers n
Min xðnÞ Min quantity to be assigned to Supplier n
Max xðnÞ Max quantity to be assigned to Supplier n
TPC Total purchasing costs
TPC max Maximum budget available
Source(s): Created by authors

Table 14. Total score of each supplier (TS n )

Supplier Total score

Supplier 1 0.350100
Supplier 2 0.300764
Supplier 3 0.349095
Source(s): Created by authors
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At the end of this stage, no order quantities are assigned to the new supplier. It was expected since, 
just by looking at the prices offered by the three suppliers, Supplier 3 was the most expensive one.

4.5.2 Second stage. However, the suppliers’ ranking cannot be ignored, and this second 
stage enables the integration in the OA problem of the suppliers’ prioritization according to 
their Total Score (TS n ) defined in Step 4 (Section 4.4).
max 

P 3
n¼1 ½xðnÞTSðnÞ�

subject to:
xð1Þ ≤ 18 ðiÞ

xð2Þ ≤ 4 ðiiÞ

xð3Þ ≤ 11 ðiiiÞ

xð1Þ þ xð2Þ þ xð3Þ ¼ 22 ðivÞ

xð1Þ ≥ 0 ðvÞ

xð2Þ ≥ 2 ðviÞ

xð3Þ ≥ 0 ðviiÞ

X 3

n¼1
½xðnÞcðnÞ� ≤ TPC max ðviiiÞ (15)

Table 17. Results of the 1st stage

Variable Value

TPC [V] 16,540
xð1Þ [supplies] 18
xð2Þ [supplies] 4
xð3Þ [supplies] 0
Source(s): Created by authors

Table 16. Data to set the OA problem

Parameters Value

TS1 0.350100
TS2 0.300764
TS3 0.349095
c1 [V/ton] 750
c2 [V/ton] 760
c3 [V/ton] 765
Max x(1) [supplies] 18
Max x(2) [supplies] 4
Max x(3) [supplies] 11
Min x(1) [supplies] 0
Min x(2) [supplies] 2
Min x(2) [supplies] 0
Tot. supply 22
Source(s): Created by authors
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The constraints (i–vii) are the same as identified for the first stage; in addition, constraint (viii) 
is used to account for the maximum budget available for the OA problem. Therefore, the 
available budget must be greater than the minimum TPC calculated in the 1st stage, otherwise, 
the solution space would become empty. This maximization linear problem can be first solved 
without the budget constraint (viii) to see the value resulting from TPC, by just maximizing the 
suppliers’ score and not considering the cost of the solution. If the obtained TPC is lower than 
the maximum TPC available, this first solution to the maximization linear problem will not be 
affected by the introduction of the new constraint on the budget. Therefore, the budget 
constraint results in a non-discriminating factor. Whereas a resulting TPC higher than the 
maximum TPC will change the solution space by reallocating supplies to comply with the
requirement.
The available budget was set to 16,600V. The optimal solution is first obtained without the

budget constraint (i.e. keeping the same constraint of the 1st stage). In Table 18, the optimal
solution is finally reported.
The resulting TPC (i.e. 16,550V) is lower than the available budget, then, in this case, it is

needless to introduce the budget constraint. In Figure 4, a graphical representation of the OA
solution range is presented. It is worth noting that the optimal solution to the OA problem is
unique even considering budget increments. This means that the found solution is an optimal
solution independent of the allocated budget.

4.5.3 Discussion. Analysing the OA solution, part of the order quantities currently assigned
to Supplier 2 are allocated to Supplier 3. Not all the initial quantities of Supplier 2 have been
relocated due to the constraint required for Supplier 2, at least two supplies per month to
maintain the commercial relationship with European plants.
Looking at Supplier 3 and considering its willingness to establish a long-lasting 

relationship with the company, it could be a great solution to start testing it with small order

Table 18. Optimal solution to the OA problem

Variable Value

TPC [V] 16,550
x1 [supplies] 18
x2 [supplies] 2
x3 [supplies] 2
Source(s): Created by authors
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Figure 4. Graphical representation of the OA range of solutions. Source: Created by authors
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quantities, and then, increase them at the expense of Supplier 1, by leveraging on synergies that 
might arise between the company and Supplier 3, which is deeply rooted in the territory of 
North-East Italy. Furthermore, Supplier 3 is the best one in terms of quality, which is a very 
important feature for the considered company. Therefore, starting a long-lasting collaboration 
with Supplier 3 might also lead to continuous improvement in radiators’ quality, which would 
become a significant strategic advantage to competitors. As a final consideration, Supplier 1 is 
assigned a high fraction of the total requirement, i.e. more than 80% of the monthly supplies, 
which is equal to the initial constraint set. Supplier 1 is indeed the main player in steel 
production worldwide.

4.6 Step 6
The sensitivity analysis is a crucial step from the point of view of the operations and logistics 
strategy because it enables evaluating the steadiness of the obtained optimal solution if 
variables’ values change. A weak solution, which is not sufficiently resilient to maintain its 
optimality even under slight perturbations, may result in a great loss, in economic and 
reputation terms. As explained in the previous section (Section 3.6), two types of sensitivity 
analysis are applicable by varying weights of criteria and scenarios. One example below shows 
the sensitivity analysis performed on the criteria weights by using the non-linear BWM.

4.6.1 Criteria weights. We focused our attention on Supplier 3 comparing its performances 
with those of Supplier 1. Looking at the suppliers’ scores, we can notice that Supplier 3 
performs better than Supplier 1 in one measurable criterion, that is quality (0.33784 of Supplier 
3 versus 0.33446 of Supplier 1; Table 7). We wanted to test a feasible solution with greater 
weights for the quality criterion with respect to the resulting ones from the linear BWM 
(Section 4.2.1) to see whether the score of Supplier 3 would have exceeded Supplier 1. 
Therefore, we ran the non-linear BWM 100 times to get a range of optimal weights, and then, 
selected the vector with the maximum weight for the quality criterion. The task was repeated 
for DM1 and DM2’s weights.
We investigated the “boundary” condition by analysing the effects on the obtained results 

when we selected greater, but still feasible, weights for the quality criterion of Supplier 3. 
Following this idea, the criteria weights obtained for each DM are reported in Table 19.
The new Total Scores (TS n ) for each supplier, resulting from Equation (12), are reported in 

Table 20.
4.6.2 Discussion. The Total Score of Supplier 3 is still lower than Supplier 1, which means 

that the OAwill not change. This is a good point since it means that the found solution is robust 
enough to keep its optimality even under the effect of slight perturbations of the internal and 
external environments.
The robustness of the found solution is anchored on the price guaranteed by Supplier 1, 

lower by about 15 V/ton, i.e. almost 2%, than Supplier 3. Figure 5 reports the behaviour of 
Supplier 1 when varying their price per ton of Supplier 3. If Supplier 3 guarantees a price equal

Table 19. Criteria weights for DM1 and DM2

Criterion
Weight 
for DM1

Weight 
for DM2

Price 0.307947 0.129314
Quality 0.280168 0.422902
Del. time 0.212537 0.181645
Punctuality 0.137759 0.213277
Flexibility 0.061589 0.052862
Ksi* 0.000012 0.000026
Source(s): Created by authors
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to 757.5 V/ton, instead of the current 765 V/ton, its Total Score becomes equal to that 
characterizing Supplier 1. This kind of analysis is very useful to the company that can use it as a 
means of negotiation with the new supplier, by promising the purchase of greater quantities in 
exchange for a discount on the purchasing price. Starting from this point, it is quite easy to 
solve again the OA problem and find the most appropriate allocation of order quantities and the 
required budget for the new solution.
As another sensitivity analysis, we also played by varying the constraint of the maximum 

quantity assignable to Supplier 1 and keeping the others unchanged, including the budget 
constraint. The results of the maximization linear problem are shown in Table 21. Quantities 
assigned to the suppliers, TPC and the maximized objective function are displayed. Figures 6 
and 7 are graphical representations of the values in Table 21. It is worth noting that reducing the 
maximum quantity assignable to Supplier 1 increases the TPC up to the budget constraint (i.e. 
16,600). Falling below 14 units, as the maximum quantity assignable to Supplier 1, will get the 
total required supply not fulfilled. Hence, the feasible range of such constraint, while keeping 
the rest unchanged, is between 20 and 14.

4.7 Overall implications: connecting theory and practice
The proposed MCDM model for SS and OA in uncertain environments was tested through a 
case study at a leading Italian company in the industry of radiators and CMV production. The 
evaluation considered the procurement of steel tubes for two historical suppliers (Supplier 1, 
Supplier 2) and one new supplier (Supplier 3). The goal was to determine whether Supplier 3 
should be added to the supply base and how order quantities might have been redistributed 
among the suppliers.
Supplier 3 was supposed to partially replace Supplier 2 and, over time, even absorb some of 

Supplier 1’s order share, as Supplier 3’s performance was nearly equivalent to that of Supplier

Table 20. Total score of each supplier

Supplier Total score

Supplier 1 0.350926
Supplier 2 0.298501
Supplier 3 0.350561
Source(s): Created by authors
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Figure 5. Behaviour of Supplier 1 when varying the price per ton of Supplier 3. Note(s): Considered the 
optimal solution found by the linear BWM. Source: Created by authors
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1. The SS and OA solution confirmed the inclusion of Supplier 3, showing the introduction of 
the new supplier in the supply base. At the end of the fourth step, the final scores of Suppliers 1 
and 3 were close with a short advantage for Supplier 1 based on its pricing power as a major 
global steel supplier. Supplier 2, meanwhile, maintained only the minimum order quantity as 
required by the OA constraints, and we can guess that – without this constraint – Supplier 2 
would have been removed from the supply base.

Table 21. Changes in the maximization linear problem when varying the constraint of the maximum quantity 
assignable to Supplier 1

x(1) ≤ 20 19 18 17 16 15 14 13 12

x(1) 20 19 18 17 16 15 14 13 12
x(2) 2 2 2 2 2 2 4 4 4
x(3) 0 1 2 3 4 5 4 4.98 5.96
Tot. supply 22 22 22 22 22 22 22 21.98 21.96
TPC 16,520 16,535 16,550 16,565 16,580 16,595 16,600 16,600 16,600P 

n xðnÞTSðnÞ 7.60352 7.60252 7.60152 7.60051 7.59951 7.59850 7.50084 7.49299 7.48514
Note(s): Considered the optimal solution found by the linear BWM 
Source(s): Created by authors
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Figure 6. Supplies when varying the constraint of the maximum quantity assignable to Supplier 1. Note(s): 
Considered the optimal solution found by the linear BWM. Source: Created by authors
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Figure 7. Total purchasing cost when varying the constraint of the maximum quantity assignable to Supplier 1. 
Note(s): Considered the optimal solution found by the linear BWM. Source: Created by authors
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The findings from this application highlight, besides the model’s strengths in evaluating 
suppliers and performing sensitivity analysis, its key advantages over existing approaches. As 
described, this model enables comparing new and historical suppliers by relying on multiple 
DMs; this represents a significant step forward over current research. Existing models, 
according to Li et al. (2022) and Sun et al. (2024), are inadequate in comparing new and 
historical suppliers, particularly in high-risk, new task situations, where low reliable data are 
available and DMs’ perceptions and attitudes toward risk make the difference in SS and OA 
choices. The proposed MCDM model addresses this gap by leveraging the expertise of DMs 
who in the absence of historical data through a scenario-based approach evaluate new 
suppliers by comparing them with the performance of existing/historical suppliers, as was 
done with Supplier 3 in the case study. This approach also reduces evaluation biases linked to 
the DMs’ varying risk attitudes and perceptions, as illustrated in the case study by 
incorporating the perspectives of both the purchasing manager and the quality assurance 
manager, the two key voices in the procurement process.
Another main advantage of this model is its accessibility to companies without advanced 

computational capabilities. Targeting more complex problems by integrating multiple 
techniques may seem appealing but raises the question of whether these approaches are 
actually useful, given that they are more concerned with sounding sophisticated than with 
delivering tangible, impactful results (Bruno et al., 2012). These complex models can also be 
time-intensive and require specific expertise, making them impractical for many companies 
(Bruno et al., 2012; Schramm et al., 2020). The simplicity of the steps of the proposed MCDM 
model, as demonstrated in the case study, allows for straightforward implementation with 
minimal computational resources. This is guaranteed by using BWM for criteria weighting, 
over methods like CRITIC and DEMATEL, and simple aggregation methods for supplier 
ranking, instead of more complex techniques like TOPSIS and TODIM.

5. Conclusions
The main aim of this work is to formulate an approach to mitigate risks coming from the 
procurement process. SS and OA tasks, especially in extraordinary situations such as modified 
rebuy and new task situations, become critical if we consider the associated risks and the high 
uncertainty degree by which they are characterized. In several circumstances, not enough 
information is available to the DMs, thus reasonable assumptions are needed to proceed with 
the evaluation of suppliers. Decisions are thus related to DMs’ perceptions and their risk 
attitude, which become pivotal in their evaluation. Models in the literature considering these 
major aspects are still limited and are necessary, in particular when we deal with historical and 
new suppliers in highly uncertain situations. In this work, we propose an MCDM model for SS 
and OA that enables DMs to effectively compare new and historical suppliers and to make 
informed decisions when renovating the suppliers’ list. The limited knowledge of the new 
suppliers is mitigated by using a combination of measurable and forecastable decision criteria 
through a scenario planning approach that considers DMs’ different risk attitudes in evaluating 
suppliers’ performance. The BWM for the SS problem and the two-stage LP model for the OA 
problem have been selected for the purpose. Moreover, this MCDM model enables sensitivity 
analyses that help in testing the robustness of the solutions. When we deal with unpredictable 
situations, the steadiness of the solution is indeed crucial.
This work provides relevant theoretical (5.1) and managerial (5.2) contributions, while also 

recognizing certain limitations (5.3) that, in turn, pave the way for future research.

5.1 Theoretical contributions
This work contributes to the theoretical understanding of integrated MCDM models for SS and 
OA processes under uncertainty, addressing significant gaps in existing literature. Firstly, it 
proposes a model that adequately considers uncertainty in SS and OA problems in new task
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situations, particularly when comparing historical and new suppliers – a critical aspect in SS 
often overlooked in previous research. By filling this gap, this work introduces a scenario-
based approach based on DMs’ evaluation to assess the supplier score when forecastable 
criteria are considered, bypassing the scarcity of information and forecasts available on new 
suppliers. Secondly, this work includes, as often stated as a limitation in previous studies in the 
literature, the variability in DMs’ risk attitudes and utilizes a scenario-based approach to weigh 
forecastable criteria, handling both qualitative and quantitative criteria. This inherent bias is 
mitigated by incorporating five (optimistic, medium-optimistic, expected, medium-
pessimistic and pessimistic) scenarios and DMs assign a probability of occurrence to each 
scenario, considering as a reference the “average performances” of historical suppliers. 
Thirdly, a novel pairwise comparisons-based method, the BWM (Rezaei, 2015, 2016), is 
employed, which offers advantages over traditional methods like the AHP by requiring less 
information, making it particularly suitable for new task situations characterized by lack of 
information. Overall, despite the growing complexity of techniques to address SS and OA 
problems, the literature has emphasized (Bruno et al., 2012; Schramm et al., 2020) that further 
research is needed to develop models for SS and OA that are practical for most companies 
without advanced computational capabilities, thus not requiring DMs to have specialized 
expertise. More complex methods like TOPSIS (e.g. Jafari-Raddani et al. (2024) and 
Mohammed et al. (2019)) or VIKOR (e.g. Opricovic and Tzeng (2004)), while powerful, 
which involve more complex procedures such as determining distances from an ideal solution 
or compromise solutions, may not always be necessary or desirable, particularly when time 
and resource constraints are significant considerations. In this regard, the proposed MCDM 
model operates on less computational effort, which makes it suitable for a wide range of 
companies.

5.2 Managerial contributions
This work has also strong managerial implications in line with previous theoretical 
contributions, offering an MCDM model for SS and OA processes designed to be adaptable 
– easy to use and flexible – across various procurement contexts. Its usability and flexibility 
would facilitate efficient decision-making, empowering DMs to make informed choices. In this 
regard, the proposed MCDM model enables strategic supplier management and takes into 
account the different risk attitudes of DMs, hence reducing the bias given by the subjectivity of 
their judgements. Managers would gain a valuable model that could support them in their 
decision-making process, enabling the evaluation of historical and new suppliers by leveraging 
the expertise of internal or external DMs, to anticipate and address potential risks inherent in SS 
and OA decisions. This enables companies to proactively identify and leverage supplier 
capabilities, enhancing supply chain resilience and agility in dynamic market environments. 
Moreover, this model does not require advanced mathematical or programming knowledge or 
extensive IT infrastructure; therefore, companies of all sizes dealing with SS and OA processes 
could use this model by just applying simple language programming and software tools. The 
model’s practical strength is further highlighted by its capacity to perform sensitivity analyses, 
as illustrated in the case study in Section 4. Specifically, the analysis investigated the impact of 
variations in the price offered by Supplier 3 and the maximum quantity assignable to Supplier 1 
on the overall solution. Therefore, this sensitivity analysis enables DMs to evaluate the 
robustness of their decisions and make more informed and adaptable choices in dynamic 
procurement scenarios. Additionally, such analyses are highly beneficial for companies that can 
use them as a means of negotiation with their suppliers, e.g. as presented in the case study, by 
promising increased order quantities in exchange for a discounted price.

5.3 Limitations and future research
This work, being somehow a pioneer in the field, leaves much room for improvement. 
The proposed model, although satisfactory, can be refined to enhance its applicability in
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real-world scenarios. It still requires comprehensive testing across various procurement 
contexts and industries to validate its feasibility and effectiveness beyond the case study 
presented here.
Potential improvements include incorporating fuzzy logic to better address uncertainties in 

criteria weights, such as through fuzzy BWM or fuzzy AHP. Additionally, integrating more 
objective weighting methods, like the CRITIC method, could further reduce subjective biases 
and improve the model’s accuracy. Future research should also consider how to better 
incorporate forecastable criteria into the decision-making process. Alternative approaches, 
such as those for assessing the scores of new suppliers based on forecastable criteria, could also 
be investigated beyond the scenario-based method proposed here. Other supplier ranking 
methods, such as TOPSIS, COPRAS and TODIM, could provide valuable insights into 
alternative approaches. For instance, applying TODIM can help capture the behavioural aspect 
in the decision-making process, better aligning with human behaviour in uncertain conditions. 
TOPSIS, one of the most widely used methods, selects suppliers closest to an ideal benchmark 
solution across all criteria, and similarly, COPRAS, which balances positive and negative 
attributes to achieve a well-rounded solution, could be particularly advantageous in complex 
and conflicting procurement environments. Enhancing the two-stage LP model for OA, 
especially in defining the TPC, could be another key issue for optimizing resource allocation 
and achieving cost efficiency.
It must be acknowledged, as already said before, that while more sophisticated and versatile 

models could better address the complexities and uncertainties of modern procurement 
environments, their implementation in real-world situations remains challenging, and often 
not feasible in companies due to limited resources or expertise. Therefore, practicality and ease 
of implementation should be always taken into consideration when developing new MCDM 
models for SS and OA.
Overall, the authors hope that the proposed model, with its pivotal characteristics of 

mitigating risks under uncertain situations, will encourage companies to adopt it in their 
operations, as well as academics to consider it as a reference for their research.
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