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Introduction: The aging process profoundly influences not only the health and
visual appearance of the skin, but also the composition of the microbial
communities residing on its surface.
Methods: To investigate these microbial changes, we employed a
comprehensive, multi-scale approach that probes community composition,
species interactions, and predicted metabolic function of the skin microbiome
of the face and forearm in young and old age individuals from theUnited Kingdom
using 16S rRNA gene sequencing.
Results: Our findings revealed significant and site-specific age-related shifts in
the microbiome involving diversity, interpersonal heterogeneity, network
connectivity, and metabolic potential, suggesting loss of microbiome
robustness and a shift towards a hyperdiversified, fragile microbial community
in old age. Furthermore, we applied Dirichlet Multinomial Mixtures to uncover
novel age-driven microbiome profiles unique across each skin site, highlighting
Cutibacterium acnes, Staphylococcus hominis, and microbial community
diversity as key differentiating biomarkers of the skin microbiome across
the lifespan.
Discussion: Overall, through examining the aging skin microbiome from a
systems perspective, our study reinforces and enhances the findings from
previous aging microbiome studies and underscores the importance of site-
specific differences in skin microbiome dynamics with age. These insights
suggest that microbial interventions could mitigate age-related changes,
enhancing skin health and wellbeing throughout life.
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Introduction

The human skin microbiome is the collection of microorganisms that inhabits the skin
and carries out beneficial and necessary processes to support skin health (Byrd et al., 2018).
Starting at birth, the skin microbiota play a critical role in the development and homeostatic
maintenance of the immune system and skin physiology over one’s lifetime. For example,
they influence key skin functions that include acidification, antimicrobial defense, lipid
synthesis, and barrier integrity (Byrd et al., 2018; Almoughrabie et al., 2023; Zheng et al.,
2022; Liu et al., 2023). Balance of the skin microbiome is crucial; an imbalance, or dysbiosis,
can disrupt these functions and is associated with various conditions including atopic
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dermatitis and acne vulgaris (Nakatsuji and Gallo, 2018; Huang
et al., 2023). Therefore, supporting the host-microbiome
interactions at the skin surface is critical for maintaining the
delicate balance between health and dermatological conditions.

Aging is a time-dependent process characterized by a decline in
functional capacity that affects nearly all living organisms (López-
Otín et al., 2013; Guo et al., 2022). It involves not only a decline in
tissue and cellular function, but also broader deterioration of
physiological processes, which can lead to increased
inflammation and visible alterations in appearance, particularly in
the skin (López-Otín et al., 2023; Tobin, 2017). The skin experiences
significant transformations during aging due to intrinsic factors like
reduced epidermal thickness, slower cell turnover, decreased
collagen production, and changes in immune function, as well as
extrinsic factors such as sun exposure, pollutants, and smoking
(Farage et al., 2008). These factors collectively alter the physiological
properties of the skin, leading to variations in pH, lipid and amino
acid composition, and reduced sweat and sebum production (Choi,
2019; Schreiner et al., 2000; Waller and Maibach, 2006). Such
differences affect the skin microbiota, which rely on the skin as a
microbial niche and function to support a healthy skin barrier.

Aging skin undergoes significant alterations in its microbiome
compared to that of younger individuals, with the skin microbiome
reported to be an accurate predictor of chronological age, more so
than the gut or oral microbiomes (Huang et al., 2020). With age,
there is a notable rise in alpha diversity, which often coincides with a
reduction in Cutibacterium (Shibagaki et al., 2017; Jugé et al., 2018;
Howard et al., 2022; Ying et al., 2015; Kim et al., 2022; Larson et al.,
2022). This shift is further marked by a rise in Corynebacterium and
Streptococcus populations (Shibagaki et al., 2017; Jugé et al., 2018;
Howard et al., 2022). The specific bacteria at the species level that
differentiate young and aged skin can vary significantly from study
to study, reflecting the substantial impact of population
demographics, environmental factors, and methodological
differences on the identification of age-related species of interest
(Kim et al., 2022; Larson et al., 2022; Myers et al., 2023; Garlet et al.,
2024). Despite this variability, numerous studies consistently
identify Cutibacterium acnes and Corynebacterium kroppenstedtii
as key markers of age-related microbiome changes (Larson et al.,
2022; Garlet et al., 2024; Dimitriu et al., 2019; Zhou et al., 2023). C.
acnes tends to decrease with age, while C. kroppenstedtii increases,
underscoring their roles as key indicators of microbiome shifts that
could influence skin health and the aging process. Furthermore, the
skin microbiome is generally stable and resilient to environmental
exposures during adulthood (Oh et al., 2016). However, in old age,
there is an observed increase in interpersonal variation in the skin
microbiome, indicating decline of microbiome stability and
robustness (Jugé et al., 2018; Howard et al., 2022; Ying et al.,
2015; Larson et al., 2022; Garlet et al., 2024).

While many studies have thoroughly evaluated the microbiome
of the face as it ages (Huang et al., 2020; Shibagaki et al., 2017; Jugé
et al., 2018; Howard et al., 2022; Kim et al., 2022; Larson et al., 2022;
Myers et al., 2023; Garlet et al., 2024; Dimitriu et al., 2019; Zhou
et al., 2023), there is a gap in comprehensive understanding of the
aging microbiome of non-facial skin sites. Characterizing the aging
skin microbiome across the body is crucial for uncovering insights
into susceptibility to infections, skin conditions, and overall skin
health. Moreover, as consumer interest in the “skinification” of

beauty and personal care products grows, there is a demand for
targeted solutions that address diverse aspects of skin health,
including anti-aging treatments and personalized care. As the
skin microbiome is a pivotal component of skin health,
evaluating the microbiome variations with age across different
body sites is essential. This broader understanding presents a
unique opportunity for developing innovative interventions and
products that can enhance skin vitality and wellbeing across the
lifespan. Expanding this research not only contributes to a more
holistic understanding of aging and skin health but also underscores
the potential for microbiome-focused interventions to mitigate age-
related skin changes.

In this study, we characterized the skin microbiome of the face
and forearm in young and old aged individuals from a UK-based
population using 16S rRNA gene sequencing. The objective of our
study was to evaluate the differences in composition, species
interactions, and predicted metabolic function of the bacterial
community with age across two distinct skin sites. By focusing
on a UK-based population, we aimed to provide insights into aging-
related skin microbiome differences of this geographical region,
which is relatively understudied compared to North America- and
Asia-based populations. We employed comprehensive techniques
including differential abundance testing, microbial association
network analysis, microbiome clustering, and functional
prediction to identify age-related patterns in the skin microbiome
and to enhance our understanding of the skin microbiome’s
interplay with the aging process.

Results

A total of 59 participants from Birmingham, United Kingdom
were enrolled in the study, including thirty young age (YA) (26.7 ±
4.45 years) and twenty-nine old age (OA) (72.3 ± 4.04 years)
individuals (Supplementary Table S1). The gender distribution
was similar for both age groups (YA: n = 12 male and n =
18 female; OA: n = 12 male and n = 17 female). Other
participant demographics and clinical characteristics are
summarized in Supplementary Table S1. Skin microbiome
samples were collected from the antecubital fossa (arm) and
cheek (face) of the participants and were sequenced using V1-V3
16S rRNA gene sequencing, yielding a median of 105,646 high-
quality sequences per sample across both sites.

Microbiome diversity and composition vary
by age and skin site

Alpha diversity metrics Shannon diversity and Pielou evenness
were significantly higher in the old age group compared to the young
age group on the face (p = 0.043 and p = 0.023, respectively), with no
significant differences in richness (number of observed amplicon
sequence variants (ASVs)) (Figure 1). This indicates that the
increase in diversity is due to a more even microbial community
rather than a greater number of taxa. In contrast, no significant
differences in richness, evenness, or Shannon diversity were
observed on the arm with age (Figure 1), highlighting that the
general pattern of increased alpha diversity of the skin microbiome
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FIGURE 1
Increased alpha diversity in the face microbiome with age. Alpha diversity metrics were calculated and compared between the old age (OA) group
and young age (YA) group for the face and arm. Calculations were performed on the ASV feature table and include: (A) Observed ASVs, (B) Pielou
evenness, and (C) Shannon diversity. YA (blue) represents the young age group, and OA (red) represents the old age group. Points represent data outliers.
Statistical significance was calculated using the Wilcoxon rank sum test (* p-value <0.05).

FIGURE 2
Significant differences in microbial community composition with age in the face and arm microbiome. Microbial community composition
shows significant variation between young age (YA) and old age (OA) groups in both the face and arm. (A,D) Bray-Curtis dissimilarities between
individuals within the same and different age groups for the face and arm, respectively. Statistical significance was calculated using the Wilcoxon
rank sum test (**** p-value <0.0001, ns = not significant). (B,E) NMDS ordination of the Bray-Curtis dissimilarity matrix for the face and arm,
respectively. (C,F) NMDS ordination of the unweighted UniFrac distance matrix for the face and arm, respectively. Statistical significance for
compositional differences was calculated using PERMANOVA, with the p-value indicated within each ordination plot. Ellipses represent a 95%
confidence interval for each age group. Blue circles represent the young age (YA) group and red triangles represent the old age (OA) group.
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with age may be skin site-specific. Indeed, the majority of skin
microbiome studies reporting significant increases in alpha diversity
with age observed these differences on the face (Shibagaki et al.,
2017; Jugé et al., 2018; Kim et al., 2022; Myers et al., 2023; Garlet
et al., 2024; Li et al., 2020; Sun et al., 2024; Kim et al., 2019). We also
assessed differences in alpha diversity attributed to gender. For the
arm, there were no significant age-related differences for either
gender, similar to the findings for the overall cohort (Supplementary
Figures S1A–C). Conversely, for the face, only female participants
exhibited a significant increase in Shannon diversity and Pielous
evenness, indicating that gender may be a driving factor for the
observed facial microbial diversity increase with age.

In assessing beta diversity, microbial community composition
differed significantly between age groups for both the face and the
arm using Bray-Curtis dissimilarity and unweighted UniFrac (p <
0.05), with notably higher interpersonal variation in the old age
group compared to the young age group (Bray-Curtis, p < 0.001)
(Figure 2). Weighted UniFrac exhibited significant differences in
community composition for the face but not the arm between age
groups (Supplementary Figures S2A, B). These findings suggest

that differences in microbial communities between age groups for
the face may be driven by variations in species abundances and
evolutionary relationships among abundant taxa, as well as the
presence/absence of low-abundance, phylogenetically distinct taxa.
In contrast, for the arm, the compositional differences may be
primarily due to shifts in the abundances of closely related taxa and
the presence/absence of specific, phylogenetically unique taxa.
When examining community composition across all samples,
significant differences in Bray-Curtis dissimilarity were observed
between the face and arm (p = 0.001, R2 = 0.0679) as well as
between young age and old age (p = 0.001, R2 = 0.0287), with skin
site having a larger impact on community composition differences
than age group (Supplementary Figure S2C). Furthermore,
evaluation of microbial community composition by gender
revealed significant differences in Bray-Curtis dissimilarity for
female participants across both the face and arm, however no
significant differences were observed for male participants
(Supplementary Figures S1D–G), suggesting that gender plays
an important role in driving skin microbial community
differences with age.

FIGURE 3
Genus- and species-level variation of abundant skin taxa between age groups. Significant differences are observed between age groups for
abundant genera and species on the skin. (A) Relative proportions of the top twenty genera are presented as stacked bar plots for each sample within each
age group and skin site, with samples ordered byCutibacterium abundance from highest to lowest. Genera not includedwithin the top twenty genera are
grouped into “Other”. (B) Relative abundance differences between Cutibacterium, Staphylococcus, and Corynebacterium within each age group
and skin site. Genera are colored according to the legend in (A). (C) Relative abundance differences for species of interest for the (C) face and (D) arm.
Statistical significance was calculated using the Wilcoxon rank sum test * p-value <0.05, ** p-value <0.01. YA = young age group, OA = old age group.
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Age-related taxonomic shifts across
skin sites

At the phylum level, the face demonstrated a significant decrease
with age in Actinobacteriota (Actinobacteria) alongside a significant
increase in Pseodomonadota (Proteobacteria) and taxa outside of
the Actinobacteriota, Pseudomonadota, and Bacillota (Firmicutes)
phyla (Supplementary Figure S3). The arm did not exhibit
significant age-related phylum-level differences. At the genus
level, microbial community composition exhibited high
interpersonal variation (Figure 3A). Among the top three most
abundant genera on the skin, Cutibacterium, Staphylococcus, and
Corynebacterium, both skin sites showed a significant decrease in
Cutibacterium in the old age group (Face p = 0.033, Arm p = 0.007),
with minimal differences in Staphylococcus and Corynebacterium
abundances (Figure 3B). Interestingly, this pattern was gender-
dependent; only female participants exhibited a significant
decrease in C. acnes with age for both skin sites, in addition to a
significant decrease in Staphylococcus on the face
(Supplementary Figure S4).

Differential abundance testing identified 4 ASVs that were
differentially abundant between age groups on the face: C.
kroppenstedtii, Phocaicola vulgatus, Streptococcus sp., and
Streptococcus thermophilus (q < 0.05) (Supplementary Figure
S5A). On the arm, 19 ASVs were differentially abundant:
Corynebacterium amycolatum, Corynebacterium dentalis, five
Cutibacterium acnes ASVs, one Lawsonella ASV, Moraxella
cinereus, three Staphylococcus capitis ASVs, four Staphylococcus
hominis ASVs, two Staphylococcus ASVs, and a Weeksellaceae
ASV (q < 0.05) (Supplementary Figure S5B).

All ASVs assigned to C. acnes, C. kroppenstedtii, S. hominis, and
S. capitis, which were selected based on their differential abundance
results as well as relevance to skin health, were aggregated to the
species level for further analysis. C. acnes has been previously
reported to decrease with age, attributed to a decrease in sebum
present on the skin (Larson et al., 2022; Garlet et al., 2024; Zhou
et al., 2023). We observed that C. acnes is significantly reduced both
on the face and the arm (−16.1% and −11.4% relative abundance,
respectively) in the old age group compared to the young age group
(Face p = 0.024, Arm p = 0.0078) (Figures 3C,D). Similarly, C.
kroppenstedtii has also been previously found to increase on the
skin with age and has been reported to be associated with rosacea
(Garlet et al., 2024; Dimitriu et al., 2019; Zhou et al., 2023; Rainer
et al., 2020). On the face, C. kroppenstedtii was significantly
increased in the old age compared to the young age group (p =
0.022, +3.51% mean relative abundance) (Figure 3C). Lastly, we
examined levels of S. capitis and S. hominis, as several ASVs
assigned to these species were differentially abundant between
age groups on the arm (Supplementary Figure S5B). S. capitis
showed a significant decrease in old age compared to young age
(p = 0.026, −2.12% mean relative abundance), while S. hominis
trended towards an increase in old age (p = 0.15, +9.03% mean
relative abundance) (Figure 3D). Assessing differences by gender
revealed that the significant decrease with age observed for C. acnes
on the face and arm and S. capitis on the arm is largely driven by
the female participants (Supplementary Figures S4B, C). However,
S. hominis shows an increase in old age for both genders,
suggesting a gender-independent mechanism. Overall,

numerous taxa demonstrate age-specific changes, which notably
are distinct between skin sites.

Loss of microbial community network
structure in old age

To evaluate the impact of age and skin site on microbial
interactions and the overall microbial community network, we
employed the statistical method SPIEC-EASI to infer microbial
associations between skin microbiome members of the different
age groups and skin sites. We selected features found in at least 30%
of all face or arm samples, with a feature in this instance referring to
ASVs agglomerated to the species level or retained at their original
taxonomic level if a species-level assignment was unavailable. This
resulted in 194 features for the face and 144 features for the arm
being included in the analysis.

For both skin sites, the microbial networks in old age had fewer
nodes and edges compared to the young age networks, indicating
fewer associating taxa within the network with age (Figures
4A–C,F–H). In addition, the old age networks showed reduced
degree assortativity and transitivity [a measure of the preference for
a node to attach to other nodes with similar degree count and the
overall probability for the network to have adjacent nodes
interconnected, respectively (Röttjers and Faust, 2018)], increased
modularity [a measure of the strength of division of a network into
modules (Röttjers and Faust, 2018)], and a lower frequency of high-
degree nodes compared to the young age group (Figures 4C,D,H–I).
Both old age networks had significantly reduced node degrees
compared to the young age networks (p < 0.001) (Figures 4E,J).
The face network in young age showed particularly high
connectivity, with all 194 features (nodes) having at least one
association with other features. In contrast, the old age network
for the face exhibited a less dense structure, with only 171 associating
features. Similarly, the arm network in old age showed a marked
shift from the young-age network, presenting a highly sparse
network composed of numerous modules with limited
connectivity (121 vs. 75 associating features in young versus old
age, respectively). This reduction in connectivity could indicate a
microbial community in old age that exhibits reduced interaction
and cooperation among microbial members. Interestingly,
differentially-abundant and skin health-related taxa that showed
significant differences with age (Figure 3; Supplementary Figure S5)
also were more prevalent and connected within the network in
young age compared to old age for both skin sites. For example, C.
acnes associated with numerous other taxa within the young age
networks, but only formed a single association in the old age
networks. Overall, these findings suggest that in old age, the
microbial communities of the face and arm become less robust,
less stable, and more fragile.

DMM clustering reveals age-related
microbiome profiles

To explore the relationship between microbial community
composition and age, we performed mathematical modeling of
ASV frequencies using Dirichlet multinomial mixtures (DMM) to
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uncover potential age-related microbiome structures across
participants. DMM clustering separated the face samples into two
community types with significantly different microbial community
compositions (Bray-Curtis dissimilarity, PERMANOVA p = 1E-04)
(Figure 5A). Community Type 1 exhibited high Shannon diversity,
with C. acnes and Staphylococcus epidermidis being the primary
drivers of this community type (Figures 5B,C; Supplementary Figure
S6A). In contrast, Community Type 2 was significantly less diverse
than Community Type 1 (p < 0.001) and was dominated by C. acnes
(Supplementary Figure S6B). Community Type 2 had a
predominance of young age group individuals (66.7%) compared
to 33.3% from the old age group, whereas Community Type 1 was
more balanced with 41.2% from the young age group and 58.8%
from the old age group (Figure 5D). When comparing facial
community type distribution by gender for both Community

Type 1 and Community Type 2, female participants mirrored the
overall cohort’s age group distribution, while the male participants
had a relatively equal age group distribution (Supplementary Figure
S7A), suggesting that gender is an important driving factor in face
microbiome shifts with age.

For the arm, DMM identified three distinct community types,
which exhibited significant differences in microbial community
composition (Bray-Curtis dissimilarity, PERMANOVA p = 1E-
04) (Figure 5E). Community Type 1 exhibited high Shannon
diversity and was predominantly driven by C. acnes, S. hominis,
and S. epidermidis, appearing in 68% of samples from the old age
group (Figures 5F–H; Supplementary Figure S6C). Community
Type 2 demonstrated similar diversity to Community Type 1,
however was largely driven by C. acnes alone (Supplementary
Figure S6D). Notably, all but one sample assigned to Community

FIGURE 4
Microbial association networks show increased sparsity and reduced connectivity with age. The SPIEC-EASI statistical method was used to identify
microbial associations between skin microbiomemembers for each age group and skin site. Networks for the face in the (A) young age group and (B) old
age group are shown, alongside (C) network statistics (number of nodes, number of edges, degree assortativity, transitivity, and modularity), (D) degree
frequency distributions, and (E) degrees per node comparison for the face. Similarly, networks for the arm in the (F) young age group and (G) old age
group are presented, with corresponding (H) network statistics, (I) degree frequency distributions, and (J) degrees per node comparison for the arm.
Nodes represent microbial features (ASVs agglomerated to the species level or ASVs retained at their original taxonomy level if a species-level assignment
was unavailable), which are colored by their phylum assignment and sized by their mean relative abundancewithin the skin site and age group collectively.
Edges represent associations identified between features. Only features with at least one association are included in the networks. Nodes representing
taxa of interest or differentially abundant taxa are indicated in black text. Statistical significance was calculated using the Wilcoxon rank sum test (****
p-value <0.0001). YA = young age group, OA = old age group.
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Type 2 was from the young age group. Lastly, Community Type 3,
dominated by S. hominis, showed significantly reduced Shannon
diversity compared to the other community types (p < 0.001), with
83.3% of samples from the old age group (Supplementary Figure
S6E). When comparing by gender, the age distribution patterns for
both male and female participants mirrored the overall distribution,
with Community Types 1 and 3 being old age-dominant and
Community Type 2 being young-age dominant (Supplementary
Figure S7B). This suggests that for the arm, age-related microbial
community shifts are gender-independent.

The face microbiome exhibits a shift in
predicted functional potential with age

PICRUSt2 was utilized to assess the functional potential of the
face and arm samples across age groups, predicting MetaCyc
metabolic pathways based on ASV-level data. For the face, there
was a significant shift in the predicted functional profile between
young age and old age (p = 0.006), and numerous metabolic
pathways were found to be more abundant in old age compared
to young age (q < 0.05) (Figure 6A). These include functions related
to aromatic hydrocarbon and pollutant degradation (aerobic toluene
degradation III via p-cresol, superpathway of salicylate degradation,

protocatechuate degradation II, aerobic benzoyl-CoA degradation I,
and 4-methylcatechol degradation), amino acid degradation
(L-tyrosine and L-histidine), and lipopolysaccharide biosynthesis
(ADP-L-glycero-β-D-manno-heptose biosynthesis) (Figure 6B). In
contrast, there was not an observed shift in predicted metabolic
function of the microbial communities between age groups for the
arm (Figure 6C). Two pathways, coenzyme M biosynthesis and
chitin derivatives degradation, were significantly more abundant in
old age compared to young age (q < 0.05), although the relative
abundances of these pathways were very low (Figure 6D).

Discussion

The aging process directly impacts skin appearance and
function, resulting in distinct changes that range from visible
signs of aging, such as fine lines and wrinkles, to increased
susceptibility to skin conditions and infections (Tobin, 2017).
These physiological changes are accompanied by shifts in the
microbial populations that inhabit our skin, necessitating a better
understanding of the consequences that these altered microbial
communities have on skin health, particularly across different
body sites. In our study, we find that the skin microbiome of the
face and arm undergo significant yet distinct shifts with age,

FIGURE 5
Dirichlet multinomial mixtures (DMM) clustering identifies age-specificmicrobiome profiles for the face and arm. (A,E)NMDS ordination of the Bray-
Curtis dissimilarity matrix for the face and arm, respectively. Points are colored and shaped by their DMM community type. Ellipses represent a 95%
confidence interval for each age group. (B,F) Stacked bar plot representing the genus-level microbiome community composition of each community
type as determined through Dirichlet multinomial mixtures (DMM) in the face and arm samples, respectively. Taxa not within the top twenty most
abundant genera are grouped into “Other”. (C,G) Shannon diversity for the community types in face and arm samples, respectively. Statistical significance
was calculated using theWilcoxon rank sum test (**** p-value <0.0001). (D,H)Number of samples that are assigned to each community type, colored by
age group, in the face and arm samples, respectively. YA (blue) = young age, OA (red) = old age.
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highlighting the site-specific variation in microbiome dynamics that
are impacted by the aging process.

The face is a highly exposed skin region that is chronically
exposed to external factors such as UV radiation and air pollution,
both of which significantly contribute to signs of skin aging
(Krutmann et al., 2017). We observed strong shifts in the
microbiome of the face between young and old age groups,
including increased alpha diversity, significant microbiome
community composition shifts characterized by a large reduction
in C. acnes, altered network topology, and predicted functional
changes. The arm, while being a less exposed skin site than the
face (Bulliard et al., 2007), also exhibited significant changes in the
microbiome between age groups, albeit less pronounced. These
included shifts in microbiome community composition
characterized by a decrease in C. acnes and shifted Staphylococcus
populations, as well as an altered network structure. Thus, skin sites
with differential exposure to environmental aggressors show distinct
skin microbiome shifts, suggesting that these differences could be
driven in part by differences in intrinsic versus extrinsic skin aging
factors. Indeed, differential exposure to polycyclic aromatic
hydrocarbons (PAH), a class of organic pollutants in ambient air,
has been shown to impact the skin microbiome, metabolome, and
clinical skin parameters, with high exposure to PAH associated with
biodegrading skin bacteria, dry skin, and hyperpigmentation (Leung
et al., 2023; Leung et al., 2020; Misra et al., 2021). Similarly, exposure
to UVA and UVB radiation, which have profound impacts on skin

aging (Krutmann et al., 2017), has been observed to immediately
alter microbiome composition (Burns et al., 2019). Therefore, the
interplay between the skin, its microbiome, and aging are likely to be
multi-faceted and dynamic, influenced by a combination of genetic
factors, environmental exposures, and lifestyle choices.

A notable reduction in C. acnes was observed in old age for both
skin sites (Figures 3C,D), supporting previous studies that similarly
found this species to be a biomarker negatively associated with aging
(Larson et al., 2022; Garlet et al., 2024; Zhou et al., 2023). Reduced
sebum availability likely leads to a decrease in C. acnes, which plays a
key role in maintaining skin pH through production of free fatty
acids from sebum metabolism, contributing to the skin’s acidic
nature and its protective resistance against unwanted
microorganisms (Swaney and Kalan, 2021). While often
associated as an etiological contributor to acne, C. acnes is a
ubiquitous skin commensal that has key roles in
immunomodulation, epithelial barrier regulation, lipid synthesis,
and protection against pathogens (Almoughrabie et al., 2023;
Claesen et al., 2020; Nagy et al., 2006; Agak et al., 2018;
Nakamura et al., 2020; Sanford et al., 2016). As a result,
depletion of C. acnes is likely to lead to hyperdiversification as a
result of increased niche availability and reduced colonization
resistance. This can provide rationale for the observed increase in
interpersonal variation seen on the face with old age; diminished
colonization resistance could allow for an increase in presence and
abundance of non-specific taxa, particularly those that are transient

FIGURE 6
Differences in predicted microbial functional potential are more prominent in the face than the arm in old age. (A,C) NMDS ordination of the Bray-
Curtis dissimilarity matrix computed on MetaCyc pathway relative abundances for the face and arm samples, respectively. Density plots within the plot
margins represent the density of points along the x and y-axes for each age group. (B,D) Relative abundances of MetaCyc pathways determined to be
differentially abundant between young age (YA) and old age (OA) groups for the face and arm, respectively. All pathways shown are statistically
significant with q-value <0.05. YA (blue) = young age, OA (red) = old age. Statistical significance for pathway compositional differences was calculated
using PERMANOVA, with the p-value indicated within each ordination plot.
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and environmental, leading to high interpersonal variability of the
microbiome. Indeed, predictive functional analysis of the face
microbiome revealed increased abundances of functions involved
in aromatic hydrocarbon/pollutant degradation (Figure 6),
functions that are distributed among environmental
microorganisms due to the widespread presence of these
compounds in nature (Fuchs et al., 2011; Ke et al., 2023; Porter
and Young, 2014; Parales et al., 2008). Increased abundance of
bacteria with biodegradation capabilities has also been associated
with high-level PAH exposure (Leung et al., 2023), providing a
possible link in the present study between pollution exposure, the
skin microbiome, and aging.

Our study also revealed gender-specific differences in how the
microbiome differs with aging across different body sites. For the
face, the microbiome changes observed in female participants largely
mirrored the trends seen in the overall cohort results, characterized
by a significant shift in community composition and diversity with
age (Supplementary Figure S1). This may be attributed to the
hormonal shifts experienced by women during menopause,
which lead to a notable reduction in sebum production
(Zouboulis and Boschnakow, 2001). Given that sebum availability
influences growth of the skin microbiota (Swaney et al., 2023), these
physiological changes are likely important drivers of the pronounced
differences observed in the female microbiome with age. Conversely,
the typically higher and more stable sebum production in males
(Townsend and Kalan, 2023; Pochi et al., 1979) may provide a more
consistent and robust microbial niche on the face. This could buffer
against the age-relatedmicrobial changes seen in females, potentially
explaining the more limited age-related differences observed in the
male facial microbiome. However, on the arm, the aging-related
microbial changes were similar across genders, suggesting that the
less sebaceous environment of the arm is less influenced by gender-
specific physiological factors. These findings underscore the
importance of considering both skin site and gender in future
studies on the skin microbiome and aging.

Our clustering analysis revealed the existence of age-driven
microbiome profiles for both the face and arm. In particular, two
facial microbiome types were identified using DMM, with high
diversity/low C. acnes more frequent in old age and low diversity/
high C. acnes more prevalent in young age (Figures 5A–D). These
findings support previous efforts to assign facial skin microbiomes
to cutotypes by applying Partitioning Around Medoids (PAM)
clustering, which similarly identified a Cutibacterium-cutotype
that exhibited low Shannon diversity and whose proportion
declined with age across individuals (Sun et al., 2024). Therefore,
C. acnes may play a significant role in maintaining a core, balanced
microbial community in younger individuals, with its decline
contributing to increased diversification and susceptibility to
perturbation and dysbiosis with age (Larson et al., 2022).
Interestingly, we observed two distinct old age-associated
microbiome types for the arm; their compositional profiles were
both characterized by a predominance of S. hominis, but differed in
respect to their overall community diversity (Figures 5E–H). This
divergence suggests that aging may not only shift the dominant taxa,
but may also influence ecological stability and resilience of these
communities. Indeed, microbial association analysis revealed a stark
shift in structure of the microbial networks between young and old
age for both skin sites (Figure 4), highlighting a less robust and more

fragile microbiome with age. This has been observed in previous
studies, which have similarly observed diminished microbial
community stability and resilience in older populations (Kim
et al., 2022; Kim et al., 2019). Overall, these findings suggest that
aging not only disrupts the core, C. acnes-dominant microbiome,
but also promotes a less predictable and more perturbation-
susceptible microbial community that notably is skin-site specific.

Our findings highlight the potential role of S. capitis and S.
hominis as key differentiating species between young and old age on
the arm, with S. capitis more abundant in young age and S. hominis
more abundant in old age (Figure 3D; Supplementary Figure S6). S.
capitis, similar to C. acnes, thrives in lipid-rich skin regions (Chong
et al., 2022), which may explain the observed decrease in abundance
of this species with age. S. hominis is the second most frequently
isolated coagulase-negative staphylococci from healthy human skin
and is known for its ability to produce antimicrobial peptides as well
as thioalcohol from apocrine gland secretions, contributing to body
odor (Severn et al., 2022; Rudden et al., 2020). Interestingly, old-age
individuals have a characteristic body odor (Mitro et al., 2012),
suggesting a link between elevated levels of this bacterial species in
old age and dermal body odor. While the effect of a S. capitis-to-S.
hominis shift on skin health is unknown, it suggests that S. hominis
may opportunistically colonize the skin in response to decreased
competition and altered ecological niches resulting from aging,
potentially exerting influence on microbial homeostasis and the
skin’s local immune response. In support of this notion, S. hominis
was previously found to be inversely correlated with sebum content
and positively correlated with staphylococcal alpha diversity (Ahle
et al., 2022), highlighting the potential importance of skin
physiology and microbial community context in S. hominis
expansion. S. hominis has also shown to have inhibitory
properties against C. acnes (Ahle et al., 2022), suggesting
interspecies competition may also play a role. Our study was
limited to species-level interrogation of these bacteria, however,
high strain heterogeneity and intra-species diversity has been well-
documented for S. capitis, S. hominis, and C. acnes (Joglekar et al.,
2023; Conwill et al., 2022), warranting future investigation into the
role of strain diversity in the microbiome and aging.

Aging has been shown to impact not only the skin microbiome,
but also the microbiome of other body sites such as the oral cavity
and gastrointestinal tract (Larson et al., 2022; Huang et al., 2020;
Sarafidou et al., 2024; Ghosh et al., 2022). As a part of this study, we
also concurrently collected saliva samples for microbiome analysis
from the same cohort (manuscript in progress). Characterizing the
microbiota of these two distinct body sites will allow for even more
in-depth insight into the impact of aging on the humanmicrobiome,
notably within the same population. Furthermore, this will provide
the unique opportunity to integrate microbial data across body sites
to investigate relationships between the skin and oral microbiota,
particularly given the observation that oral bacteria have previously
been associated with skin microbiome diversification in aging
(Shibagaki et al., 2017).

While our study provided a detailed overview of how aging may
modulate the bacterial members of the skin microbiome, it was
limited by the use of 16S rRNA gene sequencing, which excludes
non-bacterial microorganisms and does not provide strain-level
resolution. Future efforts should employ metagenomic
sequencing and additional techniques such as
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metatranscriptomics and metabolomics to gain a greater depth of
understanding into the mechanisms of microbial function and strain
specificity in skin aging. Furthermore, our study did not measure
parameters of skin health such as moisture levels, elasticity, and the
presence of visible signs of aging. Inclusion of these metrics may
provide more defined relationships between microbiome shifts and
aging. For example, relationships have been identified between the
skin microbiota and clinical signs of aging such as grade of Crow’s feet
wrinkles (Myers et al., 2023; Garlet et al., 2024) and dark spot area
(Shibagaki et al., 2017; Li et al., 2020), as well as skin characteristics
including sebum content, sebaceous gland area, transepidermal water
loss (TEWL), natural moisturizing factor (NMF), antimicrobial
peptides (AMPs), and lipids (Howard et al., 2022; Kim et al., 2022;
Sun et al., 2024; Kim et al., 2019). An additional limitation of the study
is the potential influence of confounding variables that we did not
control for, which include lifestyle factors (e.g., cosmetic use, timing of
last wash) and health-related factors (e.g., underlying health
conditions, medication). Lastly, our study was limited by collection
of the microbiome at a single time point. Future efforts should employ
longitudinal studies to better understand temporal dynamics of the
microbiome during the aging process, which may help to elucidate
how changes in the skin microbial communities correlate with the
progression of skin aging.

In summary, these findings provide comprehensive insights into
the microbiome of aging skin in a UK-based population,
highlighting the shift from a core, stable community driven by C.
acnes in young individuals, to a more variable and less robust
community in older individuals. This work also supports and
complements previous studies of the aging skin microbiome
carried out on North America- and Asia-based populations,
highlighting the connection between the skin microbiota and the
physiology of skin aging across ethnicities and geography. By
comparing the microbiome of distinct skin sites, our study also
underscores the importance of considering skin site specificity when
studying the impact of aging on skin microbiome dynamics, with
both intrinsic and extrinsic factors of aging likely playing significant
roles. We also demonstrate the potential of microbiome typing
techniques to unravel complex microbial interactions and
microbiome profiles associated with age, emphasizing the
opportunity for advanced techniques such as machine learning in
generating more personalized and precision interventions tailored to
the needs of an individual’s aging skin. Expanding these advanced
methods to include other omics data, skin health parameters, and
longitudinal studies has the potential to further our understanding
of the intricate interplay between the skin microbiota, skin health,
and the aging process. Ultimately, our findings highlight a
significant opportunity for developing innovative and targeted
next-generation anti-aging solutions, such as prebiotic or
postbiotics treatments, to restore a more youthful, stable skin
microbiome and thereby enhance overall skin health.

Methods

Study design

Ethical approval for the study was granted by Aston University’s
College of Health and Life Sciences ethics committee (reference

number HLS21008). Participants were recruited via advertisement
through the Aston Research Centre for Health in Ageing (ARCHA),
Aston University, and online social media channels. All participants
gave informed written consent prior to sample collection. Initial
participant screening was performed using a survey hosted on
Qualtrics, during which basic demographic information was
collected including age, gender, ethnicity, and postcode.
Participants were required to speak and understand written
English and were required to be aged between 20 and 40 or
60–80 years old. Participants who did not meet these criteria or
who were pregnant were excluded. The specified age groups were
selected to create distinct contrast between young and old
populations and minimize the potential confounding effects of
variables that might be present in a more heterogeneous middle-
aged cohort, such as significant lifestyle changes and hormonal shifts
(e.g., perimenopause). Additional metadata was collected at the time
of sampling that included health, lifestyle, and geographical
information, however this information was not used for study
inclusion or exclusion. In total, 59 participants from
Birmingham, United Kingdom were included in the study. Thirty
participants were included in the young age (YA) group, and
29 participants were included in the old age (OA) group.

Sample collection

Sample collection and processing was performed at Aston
University (Birmingham, United Kingdom). Participants
continued their normal daily health and hygiene routine and did
not follow any washout guidelines before sampling, reflecting a non-
controlled, more representative microbiome state. A sampling
solution was made using phosphate buffered saline modified with
Tween® 20 to a final concentration of 0.1% (v/v). Sampling templates
with a 5 cm × 5 cm area were made from SILASTIC™ RTV-4136-M
Liquid Silicone Rubber (Dow, Midland, Michigan). The sampling
solution and templates were sterilized by autoclaving at 121 °C for
15 min prior to use.

Microbiome samples were collected from the right cheek and
from the right antecubital fossa (interior of the inner elbow). For
each area a sterile viscose swab (Scientific Laboratory Supplies,
Nottingham, United Kingdom, catalog number: SWA3112) was
soaked in 2 mL of sampling solution and used to swab the
participants skin within the sample area in a constant “zigzag”
pattern. The swab head was then stored inside the 2 mL sampling
solution for storage at 2–8 °C prior to processing. Blank control
swabs were collected by soaking the swab in sampling solution and
processed in a manner identical to the skin swabs.

Preservation and processing of samples

Initial processing of samples occurred within 24 h of sampling.
DNA extraction was performed on the samples using Qiagen
DNeasy PowerSoil Pro Kit (QIAGEN, Hilden, Germany, catalog
number: 47014) following the manufacturer’s protocol. DNA
concentration was measured using a NanoDrop
1000 spectrophotometer (Thermo Fisher, United Kingdom),
following storage of the DNA extracts at −80 °C. For transit prior
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to sequencing the DNA extracts were dried using an Eppendorf
Concentrator plus at 30 °C for 45 min.

16S rRNA gene sequencing

Sequencing of the V1-V3 hypervariable region of the 16S rRNA
gene was carried out by the Rutgers University Genomic Center. The
V1-V3 region was amplified using NEB HiFidelity DNA polymerase
(New England Biolabs) with the 28F (5′
GAGTTTGATCNTGGCTCAG) and 519R primers (5′
GTNTTACNGCGGCKGCTG). Barcoding was performed using
Nextera XT dual index primers (Illumina) and NEB HiFidelity
DNA polymerase (New England Biolabs). Libraries were
sequenced on an Illumina MiSeq 2 x 300 flow cell.

Microbiome data analysis

Sequence processing
Raw FASTQ sequencing data was imported into QIIME2

(version 2024.2.0) (Bolyen et al., 2019). Quality assessment
identified primers and low-quality regions within the forward
and reverse reads, therefore quality trimming was applied as
follows: forward reads were trimmed 19 bp and truncated at
291 bp, and reverse reads were trimmed 18 bp and truncated at
261 bp, providing 22 bp of read overlap between forward and reverse
reads. The DADA2 plugin within the QIIME2 environment was
used to generate an ASV feature table with 23,004 ASVs (Callahan
et al., 2016). Four samples with read counts below 10,000 were
removed following quality processing, resulting in 114 total
microbiome samples with an initial median read count of
114,226 per sample for downstream filtering.

Taxonomic classification
To achieve improved species-level resolution with taxonomic

assignment, a custom Naive Bayes classifier was trained on the
extracted V1-V3 region of the Greengenes2 16S database
(McDonald et al., 2024). Briefly, the V1-V3 region was extracted
from the preformatted Greengenes2 backbone sequences
(2022.10.backbone.full-length.fna.qza) using the 28F forward
(GAGTTTGATCNTGGCTCAG) and 519R reverse
(GTNTTACNGCGGCKGCTG) primers, with a 400 bp minimum
length and 550 bp maximum length required for the extracted
sequences (qiime feature-classifier extract-reads) (McDonald et al.,
2024). Extracted sequences were then dereplicated using the “uniq”
method from the RESCRIPT QIIME2 plugin (qiime rescript
dereplicate). A Naive Bayes classifier was trained on this set of
dereplicated V1-V3 sequences (qiime rescript evaluate-fit-classifier)
(Robeson et al., 2021), followed by taxonomic assignment of ASVs
using the classifier (qiime feature-classifier classify-sklearn).

Decontamination
To ensure a high-quality, robust dataset, decontamination of the

samples was performed. Because the Greengenes2 2022.10 backbone
taxonomy does not explicitly represent mitochondria and
chloroplast, a prefiltering step was required to eliminate these
contaminant ASVs. Here, ASVs were classified using a V1-V3

Naive Bayes classifier trained on the Silva 138 SSURef NR99 full-
length database (Quast et al., 2013). This step identified 190 ASVs
classified as chloroplast or mitochondria, which were then removed
from the Greengenes2-classified ASV table. Subsequently, manual
filtering was applied to remove ASVs unassigned at the domain level,
ASVs assigned as Archaea or Eukaryota, and ASVs assigned as
Pelomonas or Bradyrhizobium–common contaminants, especially in
low biomass samples (Salter et al., 2014; Eisenhofer et al.,
2019) – which collectively accounted for 3,964 ASVs removed. A
final decontamination step using the combined frequency- and
prevalence-based approach within decontam (v1.22.0) eliminated
71 more contaminant ASVs (Davis et al., 2018). In total,
4,035 unique ASVs were identified as contaminants and
removed, resulting in 18,969 unique ASVs and a final median
read count of 105,646 per sample for downstream analysis.

Diversity analysis
A phylogenetic tree was constructed from the decontaminated

ASV sequences using MAFFT and FastTree within the
QIIME2 environment (qiime phylogeny align-to-tree-mafft-
fasttree) to use for phylogenetic-based diversity analysis (Katoh
and Standley, 2013; Price et al., 2010). Using the R phyloseq
package (v1.46.0), samples were then subjected to repeated
rarefaction (n = 100) without replacement to a depth of
13,074 counts (the minimum library size among all samples) for
alpha diversity comparisons (rarefy_even_depth) (McMurdie and
Holmes, 2013). For beta diversity comparisons, raw count data were
normalized to relative abundances. Beta diversity indices were then
computed using Bray-Curtis and Jaccard dissimilarities (via the
vegan v2.6–6.1 R package (Oksanen et al., 2024)) and weighted
and unweighted UniFrac distances (via phyloseq v1.46.0). The
resulting dissimilarity matrices were ordinated using nonmetric
multidimensional scaling (NMDS). Statistical differences were
assessed using PERMANOVA (adonis2 function from the vegan
package). Finally, the top ASVs with abundances correlated to the
NMDS coordinates were identified using Spearman correlation.

Taxonomic and differential abundance
testing analysis

Differential abundance (DA) testing was performed on a filtered
ASV feature table (raw counts as input), excluding ASVs present in
fewer than 10% of samples or with fewer than 100 counts per sample.
This filtering was performed to manage the burden of multiple-test
correction and reduce tool-specific variation across multiple DA test
methods (Nearing et al., 2022). This resulted in 4,823 ASVs as input.
To ensure robust results, multiple methods were employed for DA
testing, including Maaslin2 (v1.16.0, normalization = “TSS”,
transform = “AST”) (Nearing et al., 2022; Mallick et al., 2021),
DESeq2 (v1.42.1, default parameters) (Love et al., 2014), ANCOM-
BC2 (v2.4.0, default parameters) (Lin and Peddada, 2024), and
ALDEx2 (v1.34.0, default parameters) (Fernandes et al., 2013).
ASVs identified as statistically significant (q < 0.05) by at least
two methods were considered differentially abundant between age
groups. For additional taxonomic comparisons of taxa of interest,
the ASV feature table was converted to relative abundances and
collapsed to the specified taxonomic level (species, genus, phylum).
Statistical comparisons between age groups were conducted using
the non-parametric Wilcoxon rank sum test. Hierarchical clustering
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(method = “ward.D2″) was performed on the Bray-Curtis
dissimilarity matrix to explore the relationship between age and
microbiome composition. Microbiome types based on microbiome
composition at the ASV level were identified using Dirichlet
multinomial mixtures (DMM), as implemented in the
DirichletMultinomial R package (v1.44.0) (Holmes et al., 2012).
The ASV feature table was first filtered to exclude ASVs present
in <30% of samples and those with <100 counts. This stringent filter
was applied to eliminate noise from rare taxa and focus on the core,
defining members of the community. The lowest Laplace
approximation was used to calculate model fit and determine the
optimal number of microbiome types per skin site.

SPIEC-EASI microbial network inference
The statistical method SPIEC-EASI, implemented in the SpiecEasi

R package (v1.0.7) (Kurtz et al., 2015), was used to identify
associations between microbial species within each skin site and
age group. Briefly, the ASV feature table was collapsed to the
species level, retaining ASVs without species-level assignment to
minimize data loss. Within each skin site, features present in more
than 30% of samples were included in the network analysis, resulting
in 194 features for the face (148, 42, and 4 assigned at the species,
genus, or family level, respectively) and 144 features for the arm (133,
25, and 6 assigned at the species, genus, or family level, respectively).
This filtering step was performed to reduce noise and computational
burden, as including too many rare ASVs can yield uninterpretable
networks. This prevalence-based approach is consistent with other
studies employing SPIEC-EASI (Kurtz et al., 2015; Tipton et al., 2018;
Swaney et al., 2022). SPIEC-EASI (method = “mb”,
lambda.min.ratio = 1e-2, nlambda = 20) was run on samples
grouped by skin site and age group, generating two networks
(younger and older age) for each skin site. Network visualization
and calculation of topological properties were conducted using the R
package igraph (v2.0.3) (Csardi and Nepusz, 2005).

Microbial function prediction
To predict microbial community function, the standalone

version of PICRUSt2 (v2.5.2) (Douglas et al., 2020) was used to
generate MetaCyc pathway abundances (Caspi et al., 2014).
Predicted pathways were normalized by relative abundance,
followed by calculation of Bray-Curtis dissimilarities and
ordination using NMDS. Statistically significant differences were
computed using PERMANOVA (vegan adonis2). Differential
abundance testing of the pathways by age group and skin site
was performed using multiple DA methods to ensure robustness
of the identified pathways. The following methods were used from
the ggpicrust2 R package (v1.7.3) using default parameters: DESeq2,
edgeR (Robinson et al., 2010), Maaslin2, limma voom (Ritchie et al.,
2015), metagenomeSeq (Paulson et al., 2013), and LinDA (Zhou
et al., 2022). Of the methods that produced significant results, only
the pathways that were identified by all methods were considered
differentially abundant.
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SUPPLEMENTARY FIGURE S1
Alpha and beta diversity age group and skin site comparisons by
gender. Alpha diversity metrics were calculated and compared
between the old age (OA) group and young age (YA) group for the
face and arm, split by gender. Calculations were performed on the ASV
feature table and include: (A) Observed ASVs, (B) Pielou evenness,
and (C) Shannon diversity. YA (blue) represents the young age group,
and OA (red) represents the old age group. Points represent data
outliers. Statistical significance for alpha diversity metrics was
calculated using the Wilcoxon rank sum test (* p-value <0.05). NMDS
ordination of the Bray-Curtis dissimilarity matrix for the face of (D)
female and (E) male participants and for the arm of (F) female and (G)
male participants. Statistical significance for compositional
differences between age groups was calculated using PERMANOVA,
with the p-value indicated within each ordination plot. Ellipses
represent a 95% confidence interval for each age group. Blue circles
represent the young age (YA) group and red triangles represent the old
age (OA) group.

SUPPLEMENTARY FIGURE S2
Weighted UniFrac and Bray-Curtis NMDS ordination of face and arm
samples. NMDS ordination of the weighted UniFrac distance matrix for the
(A) face and (B) arm. (C) NMDS ordination of the Bray-Curtis dissimilarity
matrix for all samples. Statistical significance for composition differences was
calculated using PERMANOVA, with the p-value indicated within each
ordination plot. Ellipses represent a 95% confidence interval for each age
group. One old age sample from the face was excluded from the weighted
UniFrac calculation due to a Pseudomonas-dominant microbial community
profile that highly skewed the ordination.

SUPPLEMENTARY FIGURE S3
Relative abundances of the top four phyla present by skin site and age
group. Phyla not includedwithin the top four phyla are grouped into “Other”.
Statistical significance was calculated using the Wilcoxon rank sum test (*
p-value <0.05). YA = young age group, OA = old age group.

SUPPLEMENTARY FIGURE S4
Genus- and species-level variation of abundant skin taxa between gender
and age groups. (A) Relative abundance differences betweenCutibacterium,
Staphylococcus, and Corynebacterium within each age group, skin site,
and gender. Relative abundance differences for species of interest for the (B)
face and (C) arm, split by gender and age group. Statistical significance was
calculated using the Wilcoxon rank sum test * p-value <0.05, **
p-value <0.01. YA = young age group, OA = old age group.

SUPPLEMENTARY FIGURE S5
Differentially abundant taxa between skin sites and age groups. Shown are all
differentially abundant ASVs identified for the (A) face and (B) arm across age
groups that were identified by at least two differential abundance testing
methods. The horizontal line indicates the mean relative abundance value of
each ASV. Multiple ASVs assigned to the same taxon are distinguished with
sequential numbering starting from 1. YA = young age group, OA = old
age group.

SUPPLEMENTARY FIGURE S6
Top driving ASVs of DMM community types. ASVs identified as the top drivers
of Dirichlet multinomial mixtures (DMM) community types are indicated for
(A) face community type 1, (B) face community type 2, (C) arm community
type 1, (D) arm community type 2, and (E) arm community type 3. The top
drivers are defined as the top 5% of ASVs that contribute the highest absolute
weight within each model of community type.

SUPPLEMENTARY FIGURE S7
Age group distribution of Dirichlet multinomial mixtures (DMM) cluster
profiles by gender. Number of samples that are assigned to each community
type in Figure 5, colored by age group and split by gender, for the (A) face
and (B) arm. YA (blue) = young age, OA (red) = old age.

References

Agak, G. W., Kao, S., Ouyang, K., Qin, M., Moon, D., Butt, A., et al. (2018). Phenotype
and antimicrobial activity of Th17 cells induced by Propionibacterium acnes strains
associated with healthy and acne skin. J. Invest Dermatol 138 (2), 316–324. doi:10.1016/
j.jid.2017.07.842

Ahle, C. M., Stødkilde, K., Poehlein, A., Bömeke, M., Streit, W. R., Wenck, H., et al.
(2022). Interference and co-existence of staphylococci and Cutibacterium acnes within
the healthy human skin microbiome. Commun. Biol. 5 (1), 923. doi:10.1038/s42003-
022-03897-6

Almoughrabie, S., Cau, L., Cavagnero, K., O’Neill, A. M., Li, F., Roso-Mares, A., et al.
(2023). Commensal Cutibacterium acnes induce epidermal lipid synthesis important
for skin barrier function. Sci. Adv. 9, eadg6262. doi:10.1126/sciadv.adg6262

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G.
A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data
science using QIIME 2. Nat. Biotechnol. 37 (8), 852–857. doi:10.1038/s41587-019-
0209-9

Bulliard, J. L., De Weck, D., Fisch, T., Bordoni, A., and Levi, F. (2007). Detailed site
distribution of melanoma and sunlight exposure: aetiological patterns from a Swiss
series. Ann. Oncol. 18 (4), 789–794. doi:10.1093/annonc/mdl490

Burns, E. M., Ahmed, H., Isedeh, P. N., Kohli, I., Van Der Pol, W., Shaheen, A., et al.
(2019). Ultraviolet radiation, both UVA and UVB, influences the composition of the
skin microbiome. Exp. Dermatol. 28 (2), 136–141. doi:10.1111/exd.13854

Byrd, A. L., Belkaid, Y., and Segre, J. A. (2018). The human skin microbiome.Nat. Rev.
Microbiol. 16 (3), 143–155. doi:10.1038/nrmicro.2017.157

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and
Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina
amplicon data. Nat. Methods 13 (7), 581–583. doi:10.1038/nmeth.3869

Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., et al.
(2014). The MetaCyc database of metabolic pathways and enzymes and the BioCyc
collection of Pathway/Genome Databases. Nucleic Acids Res. 42 (Database issue),
D459–D471. doi:10.1093/nar/gkt1103

Choi, E. H. (2019). Aging of the skin barrier. Clin. Dermatology 37 (4), 336–345.
doi:10.1016/j.clindermatol.2019.04.009

Chong, C. E., Bengtsson, R. J., and Horsburgh, M. J. (2022). Comparative genomics of
Staphylococcus capitis reveals species determinants. Front. Microbiol. 13, 1005949.
doi:10.3389/fmicb.2022.1005949

Claesen, J., Spagnolo, J. B., Ramos, S. F., Kurita, K. L., Byrd, A. L., Aksenov, A. A., et al.
(2020). A Cutibacterium acnes antibiotic modulates human skin microbiota
composition in hair follicles. Sci. Transl. Med. 12, eaay5445. doi:10.1126/
scitranslmed.aay5445

Conwill, A., Kuan, A. C., Damerla, R., Poret, A. J., Baker, J. S., Tripp, A. D., et al.
(2022). Anatomy promotes neutral coexistence of strains in the human skin
microbiome. Cell Host Microbe 30 (2), 171–82.e7. doi:10.1016/j.chom.2021.
12.007

Csardi, G., and Nepusz, T. (2006). The igraph software package for complex
network research. InterJournal. Complex Syst. 1695, 1-9. Available online at: http://
igraph.org.

Frontiers in Aging frontiersin.org13

Swaney et al. 10.3389/fragi.2025.1644012

https://www.frontiersin.org/articles/10.3389/fragi.2025.1644012/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fragi.2025.1644012/full#supplementary-material
https://doi.org/10.1016/j.jid.2017.07.842
https://doi.org/10.1016/j.jid.2017.07.842
https://doi.org/10.1038/s42003-022-03897-6
https://doi.org/10.1038/s42003-022-03897-6
https://doi.org/10.1126/sciadv.adg6262
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1093/annonc/mdl490
https://doi.org/10.1111/exd.13854
https://doi.org/10.1038/nrmicro.2017.157
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1093/nar/gkt1103
https://doi.org/10.1016/j.clindermatol.2019.04.009
https://doi.org/10.3389/fmicb.2022.1005949
https://doi.org/10.1126/scitranslmed.aay5445
https://doi.org/10.1126/scitranslmed.aay5445
https://doi.org/10.1016/j.chom.2021.12.007
https://doi.org/10.1016/j.chom.2021.12.007
http://igraph.org.
http://igraph.org.
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2025.1644012


Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., and Callahan, B. J. (2018).
Simple statistical identification and removal of contaminant sequences in marker-gene
and metagenomics data. Microbiome 6 (1), 226. doi:10.1186/s40168-018-0605-2

Dimitriu, P. A., Iker, B., Malik, K., Leung, H., Mohn, W. W., and Hillebrand, G. G.
(2019). New insights into the intrinsic and extrinsic factors that shape the human skin
microbiome. MBio 10 (4), e00839-19. doi:10.1128/mBio.00839-19

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M.,
et al. (2020). PICRUSt2 for prediction of metagenome functions.Nat. Biotechnol. 38 (6),
685–688. doi:10.1038/s41587-020-0548-6

Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R., and Weyrich, L. S.
(2019). Contamination in low microbial biomass microbiome studies: issues and
recommendations. Trends Microbiol. 27 (2), 105–117. doi:10.1016/j.tim.2018.11.003

Farage, M. A., Miller, K. W., Elsner, P., and Maibach, H. I. (2008). Intrinsic and
extrinsic factors in skin ageing: a review. Int. J. Cosmet. Sci. 30 (2), 87–95. doi:10.1111/j.
1468-2494.2007.00415.x

Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G., and Gloor, G. B. (2013).
ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq.
PLoS One 8 (7), e67019. doi:10.1371/journal.pone.0067019

Fuchs, G., Boll, M., and Heider, J. (2011). Microbial degradation of aromatic
compounds - from one strategy to four. Nat. Rev. Microbiol. 9 (11), 803–816.
doi:10.1038/nrmicro2652

Garlet, A., Andre-Frei, V., Del Bene, N., Cameron, H. J., Samuga, A., Rawat, V., et al.
(2024). Facial skin microbiome composition and functional shift with aging.
Microorganisms 12 (5), 1021. doi:10.3390/microorganisms12051021

Ghosh, T. S., Shanahan, F., and O’Toole, P. W. (2022). The gut microbiome as a
modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19 (9), 565–584. doi:10.
1038/s41575-022-00605-x

Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., et al. (2022). Aging and
aging-related diseases: from molecular mechanisms to interventions and treatments.
Signal Transduct. Target. Ther. 7 (1), 391–40. doi:10.1038/s41392-022-01251-0

Holmes, I., Harris, K., and Quince, C. (2012). Dirichlet multinomial mixtures:
generative models for microbial metagenomics. PLoS One 7 (2), e30126. doi:10.
1371/journal.pone.0030126

Howard, B., Bascom, C. C., Hu, P., Binder, R. L., Fadayel, G., Huggins, T. G., et al.
(2022). Aging-associated changes in the adult human skin microbiome and the host
factors that affect skin microbiome composition. J. Invest Dermatol. 142 (7),
1934–1946.e21. doi:10.1016/j.jid.2021.11.029

Huang, S., Haiminen, N., Carrieri, A. P., Hu, R., Jiang, L., Parida, L., et al. (2020).
Human skin, oral, and gut microbiomes predict chronological age. mSystems 5 (1),
e00630-19. doi:10.1128/msystems.00630-19

Huang, C., Zhuo, F., Han, B., Li,W., Jiang, B., Zhang, K., et al. (2023). The updates and
implications of cutaneous microbiota in acne. Cell and Biosci. 13 (1), 113–118. doi:10.
1186/s13578-023-01072-w

Joglekar, P., Conlan, S., Lee-Lin, S. Q., Deming, C., Kashaf, S. S., NISC
Comparative Sequencing Program, et al. (2023). Integrated genomic and
functional analyses of human skin-associated Staphylococcus reveal extensive inter-
and intra-species diversity. Proc. Natl. Acad. Sci. U. S. A. 120 (47), e2310585120. doi:10.
1073/pnas.2310585120

Jugé, R., Rouaud-Tinguely, P., Breugnot, J., Servaes, K., Grimaldi, C., Roth, M. P., et al.
(2018). Shift in skin microbiota of Western European women across aging. J. Appl.
Microbiol. 125 (3), 907–916. doi:10.1111/jam.13929

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software
version 7: improvements in performance and usability.Mol. Biol. Evol. 30 (4), 772–780.
doi:10.1093/molbev/mst010

Ke, Z., Zhu, Q., Zhang, M., Gao, S., Jiang, M., Zhou, Y., et al. (2023). Unveiling the
regulatory mechanisms of salicylate degradation gene cluster cehGHIR4 in Rhizobium
sp. strain X9. Appl. Environ. Microbiol. 89 (10), e0080223. doi:10.1128/aem.00802-23

Kim, H. J., Kim, J. J., Myeong, N. R., Kim, T., Kim, D., An, S., et al. (2019). Segregation
of age-related skin microbiome characteristics by functionality. Sci. Rep. 9 (1), 16748.
doi:10.1038/s41598-019-53266-3

Kim, H. J., Oh, H. N., Park, T., Kim, H., Lee, H. G., An, S., et al. (2022). Aged related
human skin microbiome and mycobiome in Korean women. Sci. Rep. 12 (1), 2351.
doi:10.1038/s41598-022-06189-5

Krutmann, J., Bouloc, A., Sore, G., Bernard, B. A., and Passeron, T. (2017). The skin
aging exposome. J. Dermatological Sci. 85 (3), 152–161. doi:10.1016/j.jdermsci.2016.
09.015

Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., and Bonneau, R.
A. (2015). Sparse and compositionally robust inference of microbial ecological
networks. PLoS Comput. Biol. 11 (5), e1004226. doi:10.1371/journal.pcbi.1004226

Larson, P. J., Zhou,W., Santiago, A., Driscoll, S., Fleming, E., Voigt, A. Y., et al. (2022).
Associations of the skin, oral and gut microbiome with aging, frailty and infection risk
reservoirs in older adults. Nat. Aging 2 (10), 941–955. doi:10.1038/s43587-022-00287-9

Leung, M. H. Y., Tong, X., Bastien, P., Guinot, F., Tenenhaus, A., Appenzeller, B. M.
R., et al. (2020). Changes of the human skin microbiota upon chronic exposure to

polycyclic aromatic hydrocarbon pollutants. Microbiome 8 (1), 100–117. doi:10.1186/
s40168-020-00874-1

Leung, M. H. Y., Tong, X., Shen, Z., Du, S., Bastien, P., Appenzeller, B. M. R., et al.
(2023). Skin microbiome differentiates into distinct cutotypes with unique metabolic
functions upon exposure to polycyclic aromatic hydrocarbons. Microbiome 11 (1),
124–14. doi:10.1186/s40168-023-01564-4

Li, Z., Bai, X., Peng, T., Yi, X., Luo, L., Yang, J., et al. (2020). New insights into the skin
microbial communities and skin aging. Front. Microbiol. 11, 565549. doi:10.3389/fmicb.
2020.565549

Lin, H., and Peddada, S. D. (2024). Multigroup analysis of compositions of
microbiomes with covariate adjustments and repeated measures. Nat. Methods 21
(1), 83–91. doi:10.1038/s41592-023-02092-7

Liu, Q., Ranallo, R., Rios, C., Grice, E. A., Moon, K., and Gallo, R. L. (2023). Crosstalk
between skin microbiota and immune system in health and disease. Nat. Immunol. 24
(6), 895–898. doi:10.1038/s41590-023-01500-6

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The
hallmarks of aging. Cell 153 (6), 1194–1217. doi:10.1016/j.cell.2013.05.039

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2023).
Hallmarks of aging: an expanding universe. Cell 186 (2), 243–278. doi:10.1016/j.cell.
2022.11.001

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550. doi:10.1186/
s13059-014-0550-8

Mallick, H., Rahnavard, A., McIver, L. J., Ma, S., Zhang, Y., Nguyen, L. H., et al.
(2021). Multivariable association discovery in population-scale meta-omics studies.
PLoS Comput. Biol. 17 (11), e1009442. doi:10.1371/journal.pcbi.1009442

McDonald, D., Jiang, Y., Balaban, M., Cantrell, K., Zhu, Q., Gonzalez, A., et al. (2024).
Greengenes2 unifies microbial data in a single reference tree. Nat. Biotechnol. 42 (5),
715–718. doi:10.1038/s41587-023-01845-1

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PLoS One 8 (4), e61217.
doi:10.1371/journal.pone.0061217

Misra, N., Clavaud, C., Guinot, F., Bourokba, N., Nouveau, S., Mezzache, S., et al.
(2021). Multi-omics analysis to decipher the molecular link between chronic exposure
to pollution and human skin dysfunction. Sci. Rep. 11 (1), 18302. doi:10.1038/s41598-
021-97572-1

Mitro, S., Gordon, A. R., Olsson, M. J., and Lundström, J. N. (2012). The smell of age:
perception and discrimination of body odors of different ages. PLoS One 7 (5), e38110.
doi:10.1371/journal.pone.0038110

Myers, T., Bouslimani, A., Huang, S., Hansen, S. T., Clavaud, C., Azouaoui, A., et al.
(2023). A multi-study analysis enables identification of potential microbial features
associated with skin aging signs. Front. Aging. 4, 1304705. doi:10.3389/fragi.2023.
1304705

Nagy, I., Pivarcsi, A., Kis, K., Koreck, A., Bodai, L., McDowell, A., et al. (2006).
Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial
peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes
Infect. 8 (8), 2195–2205. doi:10.1016/j.micinf.2006.04.001

Nakamura, K., O’Neill, A. M., Williams, M. R., Cau, L., Nakatsuji, T., Horswill, A. R.,
et al. (2020). Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm
formation by Staphylococcus epidermidis. Sci. Rep. 10 (1), 21237. doi:10.1038/s41598-
020-77790-9

Nakatsuji, T., and Gallo, R. L. (2018). The role of the skin microbiome in atopic
dermatitis. Ann. allergy, asthma and Immunol. official Publ. Am. Coll. Allergy, Asthma,
and Immunol. 122 (3), 263–269. doi:10.1016/j.anai.2018.12.003

Nearing, J. T., Douglas, G. M., Hayes, M. G., MacDonald, J., Desai, D. K., Allward,
N., et al. (2022). Microbiome differential abundance methods produce different
results across 38 datasets. Nat. Commun. 13 (1), 342. doi:10.1038/s41467-022-
28034-z

Oh, J., Byrd, A. L., Park, M., Kong, H. H., and Segre, J. A. (2016). Temporal stability of
the human skin microbiome. Cell 165 (4), 854–866. doi:10.1016/j.cell.2016.04.008

Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., et al.
(2024). Vegan: community ecology package.

Parales, R. E., Parales, J. V., Pelletier, D. A., and Ditty, J. L. (2008). Diversity of
microbial toluene degradation pathways. Adv. Appl. Microbiol. 64 (1–73), 1–73. doi:10.
1016/S0065-2164(08)00401-2

Paulson, J. N., Stine, O. C., Bravo, H. C., and Pop, M. (2013). Differential abundance
analysis for microbial marker-gene surveys. Nat. Methods 10 (12), 1200–1202. doi:10.
1038/nmeth.2658

Pochi, P. E., Strauss, J. S., and Downing, D. T. (1979). Age-related changes in
sebaceous gland activity. J. Invest Dermatol. 73 (1), 108–111. doi:10.1111/1523-1747.
ep12532792

Porter, A. W., and Young, L. Y. (2014). Benzoyl-CoA, a universal biomarker for
anaerobic degradation of aromatic compounds. Adv. Appl. Microbiol. 88, 167–203.
doi:10.1016/B978-0-12-800260-5.00005-X

Frontiers in Aging frontiersin.org14

Swaney et al. 10.3389/fragi.2025.1644012

https://doi.org/10.1186/s40168-018-0605-2
https://doi.org/10.1128/mBio.00839-19
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1016/j.tim.2018.11.003
https://doi.org/10.1111/j.1468-2494.2007.00415.x
https://doi.org/10.1111/j.1468-2494.2007.00415.x
https://doi.org/10.1371/journal.pone.0067019
https://doi.org/10.1038/nrmicro2652
https://doi.org/10.3390/microorganisms12051021
https://doi.org/10.1038/s41575-022-00605-x
https://doi.org/10.1038/s41575-022-00605-x
https://doi.org/10.1038/s41392-022-01251-0
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1016/j.jid.2021.11.029
https://doi.org/10.1128/msystems.00630-19
https://doi.org/10.1186/s13578-023-01072-w
https://doi.org/10.1186/s13578-023-01072-w
https://doi.org/10.1073/pnas.2310585120
https://doi.org/10.1073/pnas.2310585120
https://doi.org/10.1111/jam.13929
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1128/aem.00802-23
https://doi.org/10.1038/s41598-019-53266-3
https://doi.org/10.1038/s41598-022-06189-5
https://doi.org/10.1016/j.jdermsci.2016.09.015
https://doi.org/10.1016/j.jdermsci.2016.09.015
https://doi.org/10.1371/journal.pcbi.1004226
https://doi.org/10.1038/s43587-022-00287-9
https://doi.org/10.1186/s40168-020-00874-1
https://doi.org/10.1186/s40168-020-00874-1
https://doi.org/10.1186/s40168-023-01564-4
https://doi.org/10.3389/fmicb.2020.565549
https://doi.org/10.3389/fmicb.2020.565549
https://doi.org/10.1038/s41592-023-02092-7
https://doi.org/10.1038/s41590-023-01500-6
https://doi.org/10.1016/j.cell.2013.05.039
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1371/journal.pcbi.1009442
https://doi.org/10.1038/s41587-023-01845-1
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1038/s41598-021-97572-1
https://doi.org/10.1038/s41598-021-97572-1
https://doi.org/10.1371/journal.pone.0038110
https://doi.org/10.3389/fragi.2023.1304705
https://doi.org/10.3389/fragi.2023.1304705
https://doi.org/10.1016/j.micinf.2006.04.001
https://doi.org/10.1038/s41598-020-77790-9
https://doi.org/10.1038/s41598-020-77790-9
https://doi.org/10.1016/j.anai.2018.12.003
https://doi.org/10.1038/s41467-022-28034-z
https://doi.org/10.1038/s41467-022-28034-z
https://doi.org/10.1016/j.cell.2016.04.008
https://doi.org/10.1016/S0065-2164(08)00401-2
https://doi.org/10.1016/S0065-2164(08)00401-2
https://doi.org/10.1038/nmeth.2658
https://doi.org/10.1038/nmeth.2658
https://doi.org/10.1111/1523-1747.ep12532792
https://doi.org/10.1111/1523-1747.ep12532792
https://doi.org/10.1016/B978-0-12-800260-5.00005-X
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2025.1644012


Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2--approximately
maximum-likelihood trees for large alignments. PLoS One 5 (3), e9490. doi:10.1371/
journal.pone.0009490

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The
SILVA ribosomal RNA gene database project: improved data processing and web-based
tools. Nucleic Acids Res. 41 (Database issue), D590–D596. doi:10.1093/nar/gks1219

Rainer, B. M., Thompson, K. G., Antonescu, C., Florea, L., Mongodin, E. F., Bui, J.,
et al. (2020). Characterization and analysis of the skin microbiota in rosacea: a
Case–control study. Am. J. Clin. dermatology 21 (1), 139–147. doi:10.1007/s40257-
019-00471-5

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Robeson, M. S., O’Rourke, D. R., Kaehler, B. D., Ziemski, M., Dillon, M. R., Foster,
J. T., et al. (2021). RESCRIPt: reproducible sequence taxonomy reference database
management. PLoS Comput. Biol. 17 (11), e1009581. doi:10.1371/journal.pcbi.1009581

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26 (1), 139–140. doi:10.1093/bioinformatics/btp616

Röttjers, L., and Faust, K. (2018). From hairballs to hypotheses-biological insights
from microbial networks. FEMS Microbiol. Rev. 42 (6), 761–780. doi:10.1093/femsre/
fuy030

Rudden, M., Herman, R., Rose, M., Bawdon, D., Cox, D. S., Dodson, E., et al. (2020).
The molecular basis of thioalcohol production in human body odour. Sci. Rep. 10 (1),
12500. doi:10.1038/s41598-020-68860-z

Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., et al.
(2014). Reagent and laboratory contamination can critically impact sequence-based
microbiome analyses. BMC Biol. 12, 87. doi:10.1186/s12915-014-0087-z

Sanford, J. A., Zhang, L. J., Williams, M. R., Gangoiti, J. A., Huang, C.M., and Gallo, R.
L. (2016). Inhibition of HDAC8 and HDAC9 bymicrobial short-chain fatty acids breaks
immune tolerance of the epidermis to TLR ligands. Sci. Immunol. 1 (4), eaah4609.
doi:10.1126/sciimmunol.aah4609

Sarafidou, K., Alexakou, E., Talioti, E., Bakopoulou, A., and Anastassiadou, V. (2024).
The oral microbiome in older adults –a state-of-the-art review. Archives Gerontology
Geriatrics Plus 1 (4), 100061. doi:10.1016/j.aggp.2024.100061

Schreiner, V., Gooris, G. S., Pfeiffer, S., Lanzendörfer, G., Wenck, H., Diembeck, W.,
et al. (2000). Barrier characteristics of different human skin types investigated with
X-ray Diffraction, lipid analysis, and electron microscopy imaging. J. Investigative
Dermatology 114 (4), 654–660. doi:10.1046/j.1523-1747.2000.00941.x

Severn, M. M., Williams, M. R., Shahbandi, A., Bunch, Z. L., Lyon, L. M., Nguyen, A.,
et al. (2022). The ubiquitous human skin commensal Staphylococcus hominis protects
against opportunistic pathogens. MBio 13 (3), e0093022. doi:10.1128/mbio.00930-22

Shibagaki, N., Suda, W., Clavaud, C., Bastien, P., Takayasu, L., Iioka, E., et al. (2017).
Aging-related changes in the diversity of women’s skin microbiomes associated with
oral bacteria. Sci. Rep. 7 (1), 10567. doi:10.1038/s41598-017-10834-9

Sun, C., Hu, G., Yi, L., Ge, W., Yang, Q., Yang, X., et al. (2024). Integrated analysis of
facial microbiome and skin physio-optical properties unveils cutotype-dependent aging
effects. Microbiome 12 (1), 163–19. doi:10.1186/s40168-024-01891-0

Swaney, M. H., and Kalan, L. R. (2021). Living in your skin: microbes, molecules, and
mechanisms. Infect. Immun. 89, e00695-20. doi:10.1128/iai.00695-20

Swaney, M. H., Sandstrom, S., and Kalan, L. R. (2022). Cobamide sharing is predicted
in the human skin microbiome. mSystems 7 (5), e0067722. doi:10.1128/msystems.
00677-22

Swaney, M. H., Nelsen, A., Sandstrom, S., and Kalan, L. R. (2023). Sweat and sebum
preferences of the human skin Microbiota. Microbiol. Spectr. 11 (1), e0418022. doi:10.
1128/spectrum.04180-22

Tipton, L., Müller, C. L., Kurtz, Z. D., Huang, L., Kleerup, E., Morris, A., et al. (2018).
Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome 6
(1), 12. doi:10.1186/s40168-017-0393-0

Tobin, D. J. (2017). Introduction to skin aging. J. Tissue Viability 26 (1), 37–46. doi:10.
1016/j.jtv.2016.03.002

Townsend, E. C., and Kalan, L. R. (2023). The dynamic balance of the skin
microbiome across the lifespan. Biochem. Soc. Trans. 51 (1), 71–86. doi:10.1042/
BST20220216

Waller, J. M., and Maibach, H. I. (2006). Age and skin structure and function, a
quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and
structure. Skin Res. Technol. 12 (3), 145–154. doi:10.1111/j.0909-752X.2006.00146.x

Ying, S., Zeng, D. N., Chi, L., Tan, Y., Galzote, C., Cardona, C., et al. (2015). The
influence of age and gender on skin-associated microbial communities in urban and
rural human populations. PLOS ONE 10 (10), e0141842. doi:10.1371/journal.pone.
0141842

Zheng, Y., Hunt, R. L., Villaruz, A. E., Fisher, E. L., Liu, R., Liu, Q., et al. (2022).
Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by
generating protective ceramides. Cell host and microbe 30 (3), 301–313.e9. doi:10.1016/j.
chom.2022.01.004

Zhou, H., He, K., Chen, J., and Zhang, X. (2022). LinDA: linear models for differential
abundance analysis of microbiome compositional data. Genome Biol. 23 (1), 95. doi:10.
1186/s13059-022-02655-5

Zhou, W., Fleming, E., Legendre, G., Roux, L., Latreille, J., Gendronneau, G., et al.
(2023). Skin microbiome attributes associate with biophysical skin ageing.
Exp. Dermatol 32 (9), 1546–1556. doi:10.1111/exd.14863

Zouboulis, C. C., and Boschnakow, A. (2001). Chronological ageing and photoageing
of the human sebaceous gland. Clin. Exp. Dermatol 26 (7), 600–607. doi:10.1046/j.1365-
2230.2001.00894.x

Frontiers in Aging frontiersin.org15

Swaney et al. 10.3389/fragi.2025.1644012

https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1007/s40257-019-00471-5
https://doi.org/10.1007/s40257-019-00471-5
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1371/journal.pcbi.1009581
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/femsre/fuy030
https://doi.org/10.1093/femsre/fuy030
https://doi.org/10.1038/s41598-020-68860-z
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1126/sciimmunol.aah4609
https://doi.org/10.1016/j.aggp.2024.100061
https://doi.org/10.1046/j.1523-1747.2000.00941.x
https://doi.org/10.1128/mbio.00930-22
https://doi.org/10.1038/s41598-017-10834-9
https://doi.org/10.1186/s40168-024-01891-0
https://doi.org/10.1128/iai.00695-20
https://doi.org/10.1128/msystems.00677-22
https://doi.org/10.1128/msystems.00677-22
https://doi.org/10.1128/spectrum.04180-22
https://doi.org/10.1128/spectrum.04180-22
https://doi.org/10.1186/s40168-017-0393-0
https://doi.org/10.1016/j.jtv.2016.03.002
https://doi.org/10.1016/j.jtv.2016.03.002
https://doi.org/10.1042/BST20220216
https://doi.org/10.1042/BST20220216
https://doi.org/10.1111/j.0909-752X.2006.00146.x
https://doi.org/10.1371/journal.pone.0141842
https://doi.org/10.1371/journal.pone.0141842
https://doi.org/10.1016/j.chom.2022.01.004
https://doi.org/10.1016/j.chom.2022.01.004
https://doi.org/10.1186/s13059-022-02655-5
https://doi.org/10.1186/s13059-022-02655-5
https://doi.org/10.1111/exd.14863
https://doi.org/10.1046/j.1365-2230.2001.00894.x
https://doi.org/10.1046/j.1365-2230.2001.00894.x
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2025.1644012

	Aging-dependent skin microbiome alterations across body sites in a United Kingdom cohort
	Introduction
	Results
	Microbiome diversity and composition vary by age and skin site
	Age-related taxonomic shifts across skin sites
	Loss of microbial community network structure in old age
	DMM clustering reveals age-related microbiome profiles
	The face microbiome exhibits a shift in predicted functional potential with age

	Discussion
	Methods
	Study design
	Sample collection
	Preservation and processing of samples
	16S rRNA gene sequencing
	Microbiome data analysis
	Sequence processing
	Taxonomic classification
	Decontamination
	Diversity analysis
	Taxonomic and differential abundance testing analysis
	SPIEC-EASI microbial network inference
	Microbial function prediction


	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


