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A B S T R A C T

A primary challenge in penaeid shrimp farming is suboptimal feed utilization, leading to inefficiencies in pro
duction. Better insights into shrimp feeding behavior may provide pathways to address these inefficiencies. 
While previous studies have highlighted the influence of feed dispersal and time of day on penaeid shrimp 
behavior in controlled settings, comprehensive analyses of their behavior in production ponds remain limited. 
The aim of this study was to understand shrimp group feeding behavior in ponds, and how this relates to feed 
provision, location within the pond, and time of day. Three consecutive trials were performed in an experimental 
aquaculture pond (28 m2) in Zhuhai, China, stocked with juvenile whiteleg shrimp Litopenaeus vannamei 
(7.1 ± 0.4 g, mean ± S.E.) at 20 ind.m− 2. Each trial comprised 7 days of acclimation followed by 6 days of 
observation. Three underwater cameras were placed on the bottom of the pond at different locations, with feed 
provided at different pond locations six times a day between 07:00 and 19:00. Shrimp within the field of view for 
each camera were tracked using a combination of automated (YOLACT, You Only Look At CoefficienTs) and 
manual techniques, allowing for calculation of key behavioral metrics associated with individual and group 
behavior. Shrimp gathered in large numbers around the feeding area shortly after feed provision (i.e. 1 min after) 
and a gradient in shrimp density was found 10 min after feed provision from high densities inside the feeding 
area (89.8 ± 5.5 ind.m− 2) to low densities on the opposite edge of the pond (11.9 ± 2.3 ind.m− 2). Shrimp were 
more evenly distributed across the pond at night compared to daytime. Although no schooling behavior was 
observed, shrimp movements were on average twice as fast across the whole pond shortly after feed provision 
compared to before feeding. Movements inside the feeding area were less polarized (i.e. reduced alignment in the 
animals’ heading direction relative to that of the group) after feed provision. This study provides a first insight 
into shrimp feeding behavior in aquaculture ponds, which could help with inefficiencies in production of this 
species.

1. Introduction

In shrimp aquaculture, feed can comprise up to half of total pro
duction costs (Silva et al., 2012; Engle et al., 2017). However, with little 
known about penaeid shrimp feeding behavior in large scale aquacul
ture ponds, key research questions remain, including how shrimp are 
distributed in ponds and how they react towards feeders during feeding 
(reviewed by Darodes de Tailly et al., 2021). Previous laboratory ob
servations reported significant effects of feed dispersion and time of day 

on shrimp behavior. For example, Litopenaeus vannamei fed a commer
cial ration three or four times a day showed greater food ingestion be
tween 12:00 and 14:00 compared to feeding seven times a day (De Lima 
et al., 1931), and substrate exploration in the search for food was most 
intense in L. vannamei 7 h after the start of the light phase (Pontes et al., 
2006). Anecdotal observations from scuba dives in large Ecuadorian 
shrimp ponds reported large scale changes in behavior in response to 
feed provision and the potential for shrimp to form large swarms (or 
troops) (McNeil, 2001). However, observations on swarm shape, size 
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distribution, movements and triggers of such formations have not been 
studied. In particular, how shrimp behave in unfed areas of ponds re
mains largely unknown.

Although many shrimp farms still rely on manual hand feeding, an 
increasing number use automated feeders where location of feeders and 
distribution of food can have implications for animal welfare. The bot
tom layer of ponds is susceptible to localized areas of hypoxia through 
accumulation of unconsumed feed and feces (Zhang et al., 2006) and 
high stocking densities can increase competition for access to feeding 
areas (Sanchez et al., 2005). Changing feeder location within the pond 
several times during the production cycle may potentially help alleviate 
such issues. This is well documented in finfish aquaculture where 
random distribution of feed across space and time allows more even 
access and prevents monopolization by dominant fish (Kadri et al., 
1996). Observations in shrimp ponds in Ecuador reported that the 
largest individuals accessed feed first (McNeil, 2001); whether shrimp 
exhibit anticipatory behavior when feeders start spreading pellets as 
seen in finfish aquaculture (Martins et al., 2012) is unknown. Observing 
shrimp behavior under commercial conditions remains a challenge as 
they are prone to substantial water turbidity (Lai et al., 2022). 
Furthermore, penaeid shrimp are benthic feeders making assessment of 
feeding activity from the surface impossible. To date, evaluation of feed 
intake mostly relies on the observation of feeding trays after feed is 
provided, often resulting in inaccurate estimates of feed consumption 
and overfeeding (Smith and Tabrett, 2013; Ullman et al., 2017; Reis 
et al., 2020, 2022). New techniques for real-time monitoring of shrimp 
feeding behavior in ponds are required. Recent developments in passive 
acoustic monitoring (PAM) can provide an accurate proxy of shrimp 
feeding (Smith and Tabrett, 2013), and may be indicative of large-scale 
behaviors but do not capture the behavioral detail provided by visual 
observations.

Although largely dependent on underwater visibility, computer 
vision represents a valuable approach for monitoring shrimp behavior 
(Darodes de Tailly et al., 2021). Understanding shrimp feeding behav
iour has traditionally relied on visual observation of feeding trays, which 
is difficult to achieve in a pond setting. Within controlled environments, 
the development of automated tracking software has reduced observer 
bias and allowed behavioural tracking over longer periods of time 
(Noldus et al., 2001). In finfish aquaculture, computer vision has proven 
efficient in obtaining key metrics related to school cohesion and activity 
(e.g. Xu et al., 2006; Sadoul et al., 2014; Zhou et al., 2017, 2018), which 
are particularly relevant for assessing fish appetite (Zhou et al., 2017, 
2018) and welfare (Israeli and Kimmel, 1996; Xu et al., 2006; Sadoul 
et al., 2014; Pautsina et al., 2015). Traditionally, the use of computer 
vision in tracking aquatic animals relied on techniques such as image 
thresholding, based on the contrast between the observed animals 
(foreground) and the bottom of the observation arena (background) 
(Panadeiro et al., 2021). Such techniques are suitable in controlled en
vironments such as indoor tanks (Yang et al., 2021), however pond 
conditions, especially in shrimp farming, represent a challenge in terms 
of contrast, visibility and illumination (Reis et al., 2022). Many of the 
issues associated with these tracking tools can be solved by applying 
deep learning-based object detection techniques (Martinez-Alpiste et al., 
2024). These deep learning algorithms based on neural networks such as 
YOLO (You Only Look Once, Redmon et al., 2016) and YOLACT (You 
Only Look At CoefficienTs), represent alternatives to traditional detec
tion methods and have recently been used for the automatic recognition 
and localization of aquatic animals in complex environments (e.g. Li 
et al., 2016; Pedersen et al., 2019; Cao et al., 2020; Mahmood et al., 
2020; Lai et al., 2022). Deep learning algorithm methods have a good 
detection accuracy with potential application in an industry-context. 
The objective of the present study was to use computer vision tech
niques to provide an insight into shrimp feeding behavior in an exper
imental aquaculture pond. Specifically, the effects of three different 
parameters on shrimp behavior were assessed: (i) provision of feed, (ii) 
time of day, and (iii) displacement of the feeding area.

2. Materials and methods

2.1. Pond preparation and shrimp acclimation

For each experiment trial (n = 3), shrimp (L. vannamei, 7.1 ± 0.4 g, 
mean ± S.E) were stocked at a density of 20 individuals.m− 2 in an 
experimental observation pond (7 ×4×0.5 m, length x width x water 
depth) at Skretting’s research facilities in Zhuhai, China. The pond was 
lined with HDPE (High Density PolyEthylene) black plastic sheet. Feed 
(Shihai, Skretting China) was provided at a daily rate of 8 % of the 
estimated pond biomass in equal portions six times a day. Meals were 
provided at 7:30, 10:00, 12:00, 14:00, 16:00 and 19:00. At the onset of 
each trial, three 1 kg batches of shrimp were weighed to determine the 
shrimp count per kilogram. Pond biomass was estimated by employing 
standard growth curves provided by the feed manufacturer, taking into 
account 100 % survival rate over the short trial period. Water changes 
were performed with fresh water when turbidity was considered too 
high to allow visual observation of the animals (i.e. > 5 NTU, Nephe
lometric Turbidity Units), with a maximum of 15 % of the total volume 
of water being changed at any one time. 5 NTU was taken as the 
threshold for this study based on preliminary analysis of camera footage. 
Once stocked, shrimp were acclimated to the pond for 7 days before 
observations started.

During trials, water quality was monitored daily; pH was maintained 
at 8.2 ± 0.1 (mean ± S.E.), salinity at 4.3 ± 0.5 g.L− 1, and concentra
tions of ammonia and nitrite were kept below the safe limits provided by 
Lin and Chen (2001, 2003) (i.e. 0.3 ± 0.1 mg.L− 1 and 0.1 ± 0.0 mg.L− 1, 
for Total Ammonia Nitrogen (TAN) and nitrites, respectively). Tem
perature was 31.1 ± 0.5 ºC (trial 1; mean ± S.E.), 30.2 ± 0.3 ºC (trial 2), 
27.2 ± 0.7 ºC (trial 3). Dissolved oxygen was maintained above 5 mg.L− 1 

through the use of four airstones and an air pump. The observation pond 
was entirely covered with a semi-transparent tarpaulin, allowing for 
better control of oxygen and pH parameters while avoiding the occur
rence of phytoplankton blooms. Curbing algal growth helped maintain 
turbidity levels at a low level inside the pond (i.e. 3.7 ± 0.3 NTU, mean 
± S.E.), allowing behavioral observations with cameras.

2.2. Feeding protocol

The trial was repeated three times in the same pond from July to 
October 2021 with unique groups of shrimp for each trial. Trials 
comprised 6 days of observation, following the initial acclimation period 
of 7 days. Three stereo cameras (ZED 2 from Stereolabs Inc., USA) 
mounted on tripods 45 cm above the pond bottom were positioned 
equidistant from each other inside waterproof Plexiglas casings (Fig. 1), 
providing a top to bottom view of the pond. Four red underwater lights 
(wavelength > 600 nm) were provided in conjunction with each camera, 
secured to the tripod and directed towards the bottom of the pond, in the 
middle of the field of view to facilitate observations of shrimp (see 
below). The lights remained on continuously to maintain consistency 
across all observations. Although it is possible that continuous red light 
may have an effect on shrimp behavior, this is unlikely as decapod 
crustaceans lack sensitivity to near-infrared wavelengths (Johnson et al., 
2002; Weiss et al., 2006). These lights can therefore be used to enhance 
tracking results during cloudy days and at night. Cameras were placed 
inside the pond before the acclimation period began, allowing the ani
mals to become familiar with their presence. Feed was provided through 
a PVC pipe below either camera 1 or 3 (with camera 2 in the middle, 
Fig. 1). Feed was dispersed within a narrow spreading radius approxi
mately 1 m in diameter allowing for accurate delimitation of the feeding 
areas (Fig. 1), and taking less than 10 s to be delivered.

Each morning the position of the feeding area was alternated be
tween cameras 1 and 3. A 20-min observation period was recorded from 
each of the three cameras simultaneously, comprising 10 min before and 
10 min after feeding. Cameras were connected to computers by a USB 
3.0 cable and remotely controlled via ZED Explorer (Stereolabs Inc., 
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USA). Every day, three feeding times (i.e. ‘Times of day’; 07:30, 12:00, 
19:00) were filmed on all cameras. These three meals were chosen for 
filming due to their proximity to sunrise, midday, and sunset where 
changes in shrimp behavior were most expected. For each recording, 5 s 
of footage was extracted 10 min before feeding, 1 min after the begin
ning of feed dispersal (considered as ‘during feeding’ in later analyses) 
and 10 min after feed distribution to calculate behavioral metrics 
(Table 1). The first frame of every 5 s of footage was also extracted to 

allow for measurement of shrimp length and orientation using ImageJ 
(Table 1).

2.3. Camera calibration

Intrinsic parameters of the cameras were calibrated using the camera 
calibration toolbox on OpenCV for Python 3, taking into account 
distortion effects from the various media the light travelled through (i.e. 
water, plastic and air) before reaching the lenses. For each camera, lens 
and resolution, calibration was performed on 50 images from a chess
board pattern taken underwater at different angles. A 15 cm graduated 
arrow on the pond bottom within the camera field of view was used to 
calibrate distances and image orientation.

Recorded footage was analyzed for shrimp identification and 
tracking at 5 FPS (frames per second) using a customized software based 
on the image instantiation algorithm YOLACT (Bolya et al., 2019), 
optimized for high density object segmentation and overlapping of ob
jects. This deep neural network was previously trained with a compre
hensive and manually labelled dataset. Initial training was performed on 
a total of 330 frames from all three cameras in various lighting condi
tions (i.e. different time of day, weather and turbidity conditions), with 
varying numbers of shrimp. Training consisted of manually drawing 
polygons around the shrimp using the DarkLabel utility program. Ani
mal detection with YOLACT resulted in two sets of coordinates for each 
detected individual in Microsoft Excel, as a single detection corresponds 
to a bounding box on the frame (in this case, a rectangle, sets of co
ordinates are given for two opposite corners of the bounding box). The 
center position for the shrimp body was calculated as follows 
(Hatton-Jones et al., 2021): 

Central body position(x, y) = (xmax + xmin)/2, (ymax + ymin)/2 

Trajectory generation (i.e. for each frame, the association of the 
detected animals to the tracked individuals; Panadeiro et al., 2021) was 
performed manually using Microsoft Excel, and missing coordinates in 
the tracking results were obtained using Microsoft Excel’s fill option for 
linear series. Visual checks of the tracking outputs on all the videos were 
performed to ensure accuracy of the results. When water conditions 
were too challenging or the number of shrimp too high for the software 
to reliably identify and track the animals (i.e. approximately 25 % of the 
videos), shrimp coordinates were manually obtained through the animal 
tracking software EthoVision XT V14s (Noldus et al., 2001) using the 
manual tracking feature of the program. The chosen system of co
ordinates was the one provided by EthoVision, where x = 0 and y = 0 
corresponds to the image center, and coordinates increase from left to 
right and from bottom to top. Centimeters were chosen as the common 

Fig. 1. Side view of the camera and feeding area layout inside the pond, with a diagram of the top view of the pond (lower-left corner). Each observation system 
comprised a stereo camera (2 lenses) mounted on a tripod with red lights pointing towards the observed portion of the bottom. Created with BioRender.com.

Table 1 
Details of the metrics obtained from the footage extracts, adapted from Viscido 
et al. (2004) and Somerton et al. (2017).

Metric Description

Density of individuals D = N/A Where D is the local density of 
individuals (ind.m− 2), N the number of detected 
individuals and A the pond bottom area covered by 
the camera’s field of view.

Individual speed Si =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V2

x,i + V2
y,i

√
Where Si is the mean velocity of 

individual i (cm.s− 1), and Vx,i, Vy,i the individual 
velocities in each dimension (as the difference in 
coordinates between two consecutive frames of 
footage divided by the elapsed time).

Individual size The average size (cm) of all observed individuals on a 
randomly selected frame for each 5 s footage.

Nearest neighbor distances 
(NND)

NNDi = min(di,1, di,2 ,…, di,n) Where di,k is the 
distance (cm) between the ith individual and 
individual number k, and n the number of 
individuals available in the frame at a given time.

Angular deviation with the 
direction of the feeding 
area

The mean of angular deviation (◦) between the 
average shrimp heading direction and the direction 
of the feeding area on a randomly selected frame for 
each 5 s sample. It is expressed in degrees from the 
direction of the fed area set at 0◦ and is between 
0 and 180◦. The average shrimp heading direction 
(α) is defined as: 
α = atan2

∑n
i=1

sin(αi) Where αi is the heading 
direction of shrimp number i.

Group speed Sg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ux
2+Uy

2
√

Where Sg is the group speed 
(cm.s− 1), and Ux and Uy the group velocities for each 
axis (defined as the difference in the mean positions 
of all detected individuals between two consecutive 
frames divided by the elapsed time).

Polarity θ∗ = 1 −
∑n

i=1
βi/(90 ∗ n) Where θ∗

represents the average polarity (between 0 and 1, no 
unit), βi the angular deviation (◦) between the 
heading direction of shrimp number i and the 
average shrimp heading direction of the group (α) 
and n the number of detected shrimp.
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unit for all coordinates. ImageJ software (Schneider et al., 2012) was 
used to measure observed shrimp length and orientation. Different 
computers were used to analyse videos with YOLACT (CPU: Intel Xeon 
CPU E5–2630 @ 2.20 GHz (20 Cores), Memory: 32 GB Ram, GPU: 
Nvidia GeForce GTX TITAN 12 GB RAM with 3072 CUDA cores), 
EthoVision and ImageJ (Intel Core i7–10750H @ 2.6 GHz (1 core), 
Memory: 8 GB Ram, GPU: Nvidia GeForce GTX 1660) which affected 
processing time but not the accuracy of results provided.

2.4. Statistical analysis

All statistics were performed using R statistical software v. 4.0.5 (R 
Core Team, 2023). The effects of camera location (i.e. fed, camera 2 
(close to the feed) and unfed (far from the feed)) and feed distribution 
(before, during and after) were assessed on behavioral metrics calcu
lated as defined by Viscido et al. (2004) and Somerton et al. (2017)
(Table 1). Multivariate generalized mixed-effect models (GLMM) were 
built for each behavioral metric with feed provision, camera location 
and their interaction as fixed factors and camera ID nested within trial ID 
as a random factor using the R package ‘lme4’ (Zuur et al., 2009; Bates 
et al., 2022). Trial ID was included as a random factor to account for any 
variation in physical parameters between trials (e.g. temperature, 
dawn/dusk times). Although underwater visibility was controlled as 
well as possible, observation sessions sometimes resulted in visually 
challenging recordings, especially at night where shrimp could still be 
spotted but accurate estimates of metrics related to their movements and 
size could not be obtained. For some observations, only a few individuals 
were present below the cameras, resulting in an observed number of 
individuals of 0 or 1, but with no associated individual and/or group 
behavioral metrics. Consequently, the density of individuals could be 
observed in a wider range of conditions than the other metrics. There
fore, Time of day (i.e. ‘Morning’ 07:30, ‘Noon’ 12:00 and ‘Evening’ 
19:00) and its interaction with the fixed factors mentioned above was 
included as a fixed factor in models related to the density of individuals 
(GLMM). Where significant effects were found, post-hoc comparisons 
between treatments were conducted using the R package ‘multcomp’ 
(Hothorn et al., 2021) for main effects and ‘lsmeans’ for interactions 
(Lenth, 2018). Density of individuals, angular deviation with the di
rection of the feeding area and polarity data followed negative binomial 
distributions. Individual and group speed as well as shrimp size data 
followed Gamma distributions.

3. Results

A significant effect of feed provision was found on individual speed 
(Table 2), with individuals moving faster during and after feed dispersal 
than before (Fig. 2a). However, no effects of camera location and its 
interaction with feed provision were found on individual speed 
(Table 2). The size of shrimp was influenced by feed provision, camera 
location and their interaction (Table 2). Observed individuals appearing 
beneath camera 2 were larger after feed provision than before (Fig. 2b).

Nearest neighbor distances (NND) were affected by feed provision, 
camera location and their interaction (Table 2). Individuals beneath the 
fed camera moved closer to each other during and after feed provision 
compared to before (Fig. 3a). No differences in NND were observed 
between camera locations before feed provision (Fig. 3a). A significant 
effect of camera location was also found on shrimp angular deviation 
from the direction of the feeding area (Table 2) with individuals below 
camera 2 showing an orientation angled more towards the feeding area 
than individuals located under the unfed camera (Fig. 3b).

Camera location, feed provision and their interaction had a signifi
cant effect on group polarity i.e. the average alignment in heading di
rection of individuals relative to that of the group (Table 2; Fig. 4). At 
each time relative to feed provision, there were no differences in polarity 
between camera locations. Underneath both camera 2 and the unfed 
camera, polarity did not change with time relative to feed provision, 

however, polarity significantly decreased under the fed camera from 
before feeding to after feeding (Fig. 4).

The observed density of individuals below the cameras was affected 
by the time relative to feed provision, camera location and their inter
action (Table 2; Fig. 5a). Time of day was included in models related to 
density of individuals, and had a significant effect (χ2 (2) = 25.618, 
p < 0.001; Fig. 5b). The number of shrimp under the fed camera 
increased during and after feeding compared to pre-feeding (Fig. 5a) and 
there were more individuals under the fed camera compared to the other 
cameras during and after feed dispersal (Fig. 5a). There were no dif
ferences in shrimp density below camera 2 between before, during and 
after feeding (Fig. 5a). However, there were less individuals below the 
unfed camera after feeding compared to before and during feeding 
(Fig. 5a), and there were less observed individuals below the unfed 
camera after feeding compared to the others (Fig. 5a). There were also 
less shrimp observed in total in the evening than at noon and in the 
morning (Fig. 5b).

4. Discussion

In the present study, higher activity occurred during and after feed 
provision compared to before, with the average speed of individuals 
increasing significantly. This is in line with previous scuba observations 
in shrimp aquaculture ponds (McNeil, 2001), where fast movements 
oriented towards feed occurred immediately after feed provision when it 
fell within 10 m of the animals. The increased speed in the present study 
did not depend on camera location, suggesting shrimp were affected 
across the whole pond. Previous laboratory research found that feed 
provision induced substrate exploration, with L. vannamei sampling the 
bottom more after feed introduction (Pontes and Arruda, 2005). The 
area of influence around shrimp feeding stations clearly goes beyond 
that captured within laboratory studies and we can hypothesize that it is 
likely to go beyond the size of the pond used here. As seen in Fig. 1, the 
fed and unfed camera were 4 m apart, and yet the increased speed was 
not affected by camera location. As the pond was only 7 m in length, 
feed provision may induce changes in shrimp activity at greater dis
tances, which further research within larger commercial ponds is needed 
to confirm.

A previous laboratory study on L. vannamei found that dominant 
individuals arrive first to the feeding area and then spend time 
exploring, whereas subordinates spend more time within the feeding 
area and less time exploring (Bardera et al., 2021). In the present study, 

Table 2 
GLMM of the effects of feed provision, camera location and their interaction on 
key behavioral metrics and density of individuals for L. vannamei. Presented with 
associated χ2 and p-values, with statistically significant results represented in 
bold.

Metric Feed provision Camera location Interaction

χ2 (2) p-value χ2 (2) p-value χ2 (4) p-value

Individual speed 
(cm.s− 1)

23.06 < 0.001 1.61 0.446 4.54 0.338

Size (cm) 7.93 0.019 6.41 0.041 9.72 0.046
Nearest 

Neighbor 
Distances 
(NND) (cm)

18.29 < 0.001 32.21 < 0.001 52.73 < 0.001

Angular 
deviation from 
the direction of 
the feeding 
area (◦)

0.16 0.924 4.22 0.040 0.67 0.715

Group speed 
(cm.s− 1)

15.74 < 0.001 1.63 0.441 5.17 0.270

Polarity 2.94 0.230 8.49 0.014 15.58 0.004
Density of 

individuals 
(ind.m− 2)

7.47 0.024 104.45 < 0.001 90.37 < 0.001
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no variation in shrimp size below the fed camera was observed in 
relation to feed provision but larger shrimp were observed under the 
camera located between the fed and unfed areas 10 min after feed 
provision, which may align with laboratory observations. In commercial 
conditions, larger individuals were first to arrive to feeding trays 
(McNeil, 2001), remaining on them for 15–20 min but information on 
dominance hierarchy formation in penaeid shrimp aquaculture ponds is 
lacking. In the present study, it is possible that low size variation at 
stocking minimized size gradients between fed and unfed areas. In 
commercial grow-out ponds, especially several weeks after stocking, size 
variation can be large (e.g. 1.18 g in mass difference; Reis et al., 2020) 
and size variation across different pond locations may become more 
obvious.

A gradient in NND was observed shortly after feed provision, with 
shrimp closer to each other when inside the feeding area. Shrimp were 
more oriented towards the feeding area when under the middle camera 
(camera 2) compared to individuals in the unfed area, however shrimp 
close to the feeding area were not more aligned with each other than 
those far from it. Polarity was defined as the average alignment in 
heading direction of individuals relative to that of the group, taking 
values ranging from 0 (completely disorganized) to 1 (perfectly 
aligned). Individuals within the feeding area 10 min after feeding were 
less polarized than those in the same area before feed was provided. 
These observations combined with average individual speed and NND, 
suggest that feed provision induced large scale shrimp movements, with 
individuals moving faster across the whole pond but in a more disor
ganized way once within the feeding area. Maximum polarity values 
(0.52 ± 0.05) were seen underneath the middle camera during feed 
provision but did not appear indicative of tightly organized groups. 
Studies on polarity in fish have found values close to 1 for highly 
organized schools, and values between 0.4 and 0.8 within small groups 
of giant danios (Danio aequipinnatus) or vermilion snapper (Rhomboplites 
aurorubens) (Viscido et al., 2004; Somerton et al., 2017). Previous 

observations in aquaculture ponds (McNeil, 2001), reported large 
schools of shrimp forming at sunrise, with a strong shoaling tendency 
remaining throughout the day. Formation of shoals within aquaculture 
ponds will likely affect the way shrimp interact with feeding stations in a 
pond environment, and therefore is an important behavior to under
stand in the context of feeding efficiencies. The experimental pond in the 
present study may have been too small to observe these behavioral 
patterns even though density was representative of commercial Ecua
dorian ponds (i.e. 21 ind.m− 2, Boyd et al., 2021). The limited pond size 
reduced the number of individuals stocked, potentially preventing 
shrimp from gathering in large formations. Whether or not shrimp 
regularly form large shoals in commercial ponds warrants further 
investigation.

Density of individuals depended on feed provision, camera location 
and time of day. During feed provision and for the following 10 min, 
density was highest under the camera in the fed area indicating an im
mediate attraction effect. Previous studies using PAM in the laboratory 
and aquaculture ponds, also reported intense feeding shortly after feed 
provision, declining over a 25 min period (Smith and Shahriar, 2013; 
Smith and Tabrett, 2013). Hamilton et al. (2023) observed that acoustic 
activity occurred immediately after feed provision and lasted up to 
10 min, suggesting shrimp quickly reached a state of satiation after 
feeding. Visual observations in laboratory conditions also found a higher 
feeding activity 30 min after feed was offered (Nunes et al., 1996; Pontes 
and Arruda, 2005). The significant interaction effect of feed provision 
and camera location on density indicates a gradient in shrimp density 
established over time once feed was introduced. The highest density was 
in the feeding area and the lowest under the unfed camera on the other 
edge of the pond. This gradient did not last until the next feed with no 
interaction between camera location and time of day, potentially indi
cating a lack of anticipatory behavior.

Under all cameras the number of individuals was lowest in the eve
ning. Morning observations (07:30) occurred between 1 h 10 min and 

Fig. 2. (a) Individual speeds (cm s− 1) of shrimp observed under the cameras against time relative to feed provision. (b) Size (cm) of shrimp observed under the 
cameras relative to both feed provision and camera location (b). Results are means ± S.E., numbers of observations are indicated inside the bars. For panel (a) 
significant differences (p < 0.05) in individual speeds are indicated by lowercase letters and in panel (b) significant differences (p < 0.05) in individual size between 
feed provision within the same location are indicated by uppercase letters, where bars sharing a letter are not statistically different.
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1 h 41 min after sunrise, and evening observations (19:00) between 
14 min before and 58 min after sunset. Therefore, most evening obser
vations occurred at night, but morning observations were all during 
daylight hours. Previous studies under laboratory conditions reported 
diel patterns of activity in penaeid shrimp (Pontes and Arruda, 2005; 

Pontes et al., 2006; De Lima et al., 2009). Pontes et al. (2006) observed 
that inactivity was predominant in the light phase for L. vannamei, but 
food searching occurred both during day and night with the most intense 
peak 7 h after lights were turned on. This corresponds to ~ 13:00 in the 
present study. Similarly, De Lima et al. (2009) reported greater feed 

Fig. 3. (a) Nearest Neighbour Distances (NND) of shrimp observed under the cameras against time relative to feed provision and camera location. (b) Angular 
deviation of shrimp observed under the cameras from the direction of the feeding area against camera location. Results are means ± S.E., numbers of observations are 
indicated inside the bars. For panel (a), significant differences in NND between times around feed provision events at the same location are indicated by uppercase 
letters and significant differences at the same time around feed provision but at different locations are indicated by lowercase letters, where bars sharing a letter are 
not statistically different. For panel (b), significant differences in angular deviation with the direction of the feeding area are indicated by lowercase letters, where 
bars sharing a letter are not statistically different.

Fig. 4. Differences in average polarity of shrimp observed under the cameras against time relative to feed provision and location. Results are means ± S.E., numbers 
of observations are indicated inside the bars. Significant differences between times around feed provision at the same location are indicated by uppercase letters 
where bars sharing a letter are not statistically different.
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ingestion between 12:00 and 14:00 for L. vannamei. Observed densities 
in the morning and at noon below all cameras was more than twice the 
theoretical stocking density of 20 ind.m− 2, suggesting an uneven dis
tribution during daytime. A previous study on the gut contents of 
Penaeus subtilis in aquaculture ponds reported continuous feeding during 
both day and night, with a peak observed soon after dusk, even when no 
pellets were provided (Nunes et al., 1996). As shrimp are scavenging 
opportunistic feeders (Tacon et al., 2013), it is possible that at night 
when provision of artificial feed ceases, shrimp focus more on natural 
food sources thereby scattering throughout the pond.

Overall, this study provided an insight into how shrimp organize 
themselves in ponds, to help answer the key questions of when and 
where feed should be provided. In commercial aquaculture settings, use 
of PAM to monitor shrimp feeding is preferred since sound is not affected 
by underwater visibility (Reis et al., 2022). However, the present study 
demonstrates the potential for computer vision to further our under
standing of shrimp behavior. Similar approaches are used to automate 
assessment of fish feeding in aquaculture cages, tanks and ponds using 
neural networks on video frames (e.g. Måløy et al., 2019; Zhou et al., 
2019; Ubina et al., 2021). In the present study, observations were made 
in an experimental pond, under relatively controlled conditions, with 
animals well matched in size. In shrimp aquaculture, a wide variety of 
production systems and genetic lines exist, which could potentially 
affect behavior. The average L. vannamei pond in Vietnam is 0.33 ha in 
surface area, stocked at 55 ind.m− 2, whereas in Ecuador ponds are often 
6.59 ha in size and stocked at 21 ind.m− 2 (Boyd et al., 2021). The pre
sent study focused on L. vannamei, and although it represents more than 
90 % of global penaeid aquaculture, the giant tiger prawn Penaeus 
monodon is another important species (FIGIS, 2023) whose behavior is 

still to be fully explored.

5. Conclusion

The present study demonstrated the potential of remote video ob
servations to provide a better understanding of shrimp behavior, high
lighting the influence of time of day, camera location and feed provision 
on penaeid shrimp (L. vannamei) behavior in an experimental aquacul
ture pond. Combination of computer vision techniques to observe 
behavioral detail, with PAM monitoring of shrimp feeding through hy
drophones could result in the adoption of smarter feeding practices in 
penaeid aquaculture, relevant to the behavior of the animal. In the 
present study, shrimp speed increased and more individuals were pre
sent inside the feeding area after feed provision. The development of an 
automated assessment of shrimp feeding may therefore be achievable 
through computer vision, based on the observed number of individuals 
and their velocity. More generally, computer vision could enhance 
welfare monitoring through the early detection of unusual behaviors 
indicating a stress response, as already observed in laboratory condi
tions (Zhang et al., 2006). Future work should focus on trialing similar 
approaches under commercial conditions, across a variety of production 
models and species. Setting cameras in association with sonar-based 
systems at different pond locations could help farmers better position 
feeders by providing a more complete picture of areas where shrimp 
congregate, as well as their preferred passage points in relation to depth 
and distance from pond banks.

Fig. 5. (a) Shrimp density (ind.m− 2) observed under the cameras against time relative to feed provision and camera location. (b) Shrimp density (ind.m− 2) observed 
under all cameras against time of day. Results are means ± S.E., numbers of observations are indicated inside the bars. For panel (a), significant differences 
(p < 0.05) in density between times around feed provision at the same location are indicated by uppercase letters, significant differences (p < 0.05) in density at the 
same time around feed provision but at different locations are indicated by lowercase letters, where bars sharing a letter are not statistically different. For panel (b), 
significant differences are indicated by lowercase letters, where bars sharing a letter are not statistically different.
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