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A primary challenge in penaeid shrimp farming is suboptimal feed utilization, leading to inefficiencies in pro-
duction. Better insights into shrimp feeding behavior may provide pathways to address these inefficiencies.
While previous studies have highlighted the influence of feed dispersal and time of day on penaeid shrimp
behavior in controlled settings, comprehensive analyses of their behavior in production ponds remain limited.
The aim of this study was to understand shrimp group feeding behavior in ponds, and how this relates to feed
provision, location within the pond, and time of day. Three consecutive trials were performed in an experimental
aquaculture pond (28 m?) in Zhuhai, China, stocked with juvenile whiteleg shrimp Litopenaeus vannamei
(7.1 + 0.4 g, mean + S.E.) at 20 ind.m 2. Each trial comprised 7 days of acclimation followed by 6 days of
observation. Three underwater cameras were placed on the bottom of the pond at different locations, with feed
provided at different pond locations six times a day between 07:00 and 19:00. Shrimp within the field of view for
each camera were tracked using a combination of automated (YOLACT, You Only Look At CoefficienTs) and
manual techniques, allowing for calculation of key behavioral metrics associated with individual and group
behavior. Shrimp gathered in large numbers around the feeding area shortly after feed provision (i.e. 1 min after)
and a gradient in shrimp density was found 10 min after feed provision from high densities inside the feeding
area (89.8 + 5.5 ind.m~2) to low densities on the opposite edge of the pond (11.9 + 2.3 ind.m~2). Shrimp were
more evenly distributed across the pond at night compared to daytime. Although no schooling behavior was
observed, shrimp movements were on average twice as fast across the whole pond shortly after feed provision
compared to before feeding. Movements inside the feeding area were less polarized (i.e. reduced alignment in the
animals’ heading direction relative to that of the group) after feed provision. This study provides a first insight
into shrimp feeding behavior in aquaculture ponds, which could help with inefficiencies in production of this
species.

1. Introduction

In shrimp aquaculture, feed can comprise up to half of total pro-
duction costs (Silva et al., 2012; Engle et al., 2017). However, with little
known about penaeid shrimp feeding behavior in large scale aquacul-
ture ponds, key research questions remain, including how shrimp are
distributed in ponds and how they react towards feeders during feeding
(reviewed by Darodes de Tailly et al., 2021). Previous laboratory ob-
servations reported significant effects of feed dispersion and time of day
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on shrimp behavior. For example, Litopenaeus vannamei fed a commer-
cial ration three or four times a day showed greater food ingestion be-
tween 12:00 and 14:00 compared to feeding seven times a day (De Lima
et al., 1931), and substrate exploration in the search for food was most
intense in L. vannamei 7 h after the start of the light phase (Pontes et al.,
2006). Anecdotal observations from scuba dives in large Ecuadorian
shrimp ponds reported large scale changes in behavior in response to
feed provision and the potential for shrimp to form large swarms (or
troops) (McNeil, 2001). However, observations on swarm shape, size
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distribution, movements and triggers of such formations have not been
studied. In particular, how shrimp behave in unfed areas of ponds re-
mains largely unknown.

Although many shrimp farms still rely on manual hand feeding, an
increasing number use automated feeders where location of feeders and
distribution of food can have implications for animal welfare. The bot-
tom layer of ponds is susceptible to localized areas of hypoxia through
accumulation of unconsumed feed and feces (Zhang et al., 2006) and
high stocking densities can increase competition for access to feeding
areas (Sanchez et al., 2005). Changing feeder location within the pond
several times during the production cycle may potentially help alleviate
such issues. This is well documented in finfish aquaculture where
random distribution of feed across space and time allows more even
access and prevents monopolization by dominant fish (Kadri et al.,
1996). Observations in shrimp ponds in Ecuador reported that the
largest individuals accessed feed first (McNeil, 2001); whether shrimp
exhibit anticipatory behavior when feeders start spreading pellets as
seen in finfish aquaculture (Martins et al., 2012) is unknown. Observing
shrimp behavior under commercial conditions remains a challenge as
they are prone to substantial water turbidity (Lai et al., 2022).
Furthermore, penaeid shrimp are benthic feeders making assessment of
feeding activity from the surface impossible. To date, evaluation of feed
intake mostly relies on the observation of feeding trays after feed is
provided, often resulting in inaccurate estimates of feed consumption
and overfeeding (Smith and Tabrett, 2013; Ullman et al., 2017; Reis
et al., 2020, 2022). New techniques for real-time monitoring of shrimp
feeding behavior in ponds are required. Recent developments in passive
acoustic monitoring (PAM) can provide an accurate proxy of shrimp
feeding (Smith and Tabrett, 2013), and may be indicative of large-scale
behaviors but do not capture the behavioral detail provided by visual
observations.

Although largely dependent on underwater visibility, computer
vision represents a valuable approach for monitoring shrimp behavior
(Darodes de Tailly et al., 2021). Understanding shrimp feeding behav-
iour has traditionally relied on visual observation of feeding trays, which
is difficult to achieve in a pond setting. Within controlled environments,
the development of automated tracking software has reduced observer
bias and allowed behavioural tracking over longer periods of time
(Noldus et al., 2001). In finfish aquaculture, computer vision has proven
efficient in obtaining key metrics related to school cohesion and activity
(e.g. Xu et al., 2006; Sadoul et al., 2014; Zhou et al., 2017, 2018), which
are particularly relevant for assessing fish appetite (Zhou et al., 2017,
2018) and welfare (Israeli and Kimmel, 1996; Xu et al., 2006; Sadoul
et al., 2014; Pautsina et al., 2015). Traditionally, the use of computer
vision in tracking aquatic animals relied on techniques such as image
thresholding, based on the contrast between the observed animals
(foreground) and the bottom of the observation arena (background)
(Panadeiro et al., 2021). Such techniques are suitable in controlled en-
vironments such as indoor tanks (Yang et al., 2021), however pond
conditions, especially in shrimp farming, represent a challenge in terms
of contrast, visibility and illumination (Reis et al., 2022). Many of the
issues associated with these tracking tools can be solved by applying
deep learning-based object detection techniques (Martinez-Alpiste et al.,
2024). These deep learning algorithms based on neural networks such as
YOLO (You Only Look Once, Redmon et al., 2016) and YOLACT (You
Only Look At CoefficienTs), represent alternatives to traditional detec-
tion methods and have recently been used for the automatic recognition
and localization of aquatic animals in complex environments (e.g. Li
et al., 2016; Pedersen et al., 2019; Cao et al., 2020; Mahmood et al.,
2020; Lai et al., 2022). Deep learning algorithm methods have a good
detection accuracy with potential application in an industry-context.
The objective of the present study was to use computer vision tech-
niques to provide an insight into shrimp feeding behavior in an exper-
imental aquaculture pond. Specifically, the effects of three different
parameters on shrimp behavior were assessed: (i) provision of feed, (ii)
time of day, and (iii) displacement of the feeding area.
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2. Materials and methods
2.1. Pond preparation and shrimp acclimation

For each experiment trial (n = 3), shrimp (L. vannamei, 7.1 + 0.4 g,
mean + S.E) were stocked at a density of 20 individuals.m 2 in an
experimental observation pond (7 x4x0.5 m, length x width x water
depth) at Skretting’s research facilities in Zhuhai, China. The pond was
lined with HDPE (High Density PolyEthylene) black plastic sheet. Feed
(Shihai, Skretting China) was provided at a daily rate of 8 % of the
estimated pond biomass in equal portions six times a day. Meals were
provided at 7:30, 10:00, 12:00, 14:00, 16:00 and 19:00. At the onset of
each trial, three 1 kg batches of shrimp were weighed to determine the
shrimp count per kilogram. Pond biomass was estimated by employing
standard growth curves provided by the feed manufacturer, taking into
account 100 % survival rate over the short trial period. Water changes
were performed with fresh water when turbidity was considered too
high to allow visual observation of the animals (i.e. > 5 NTU, Nephe-
lometric Turbidity Units), with a maximum of 15 % of the total volume
of water being changed at any one time. 5 NTU was taken as the
threshold for this study based on preliminary analysis of camera footage.
Once stocked, shrimp were acclimated to the pond for 7 days before
observations started.

During trials, water quality was monitored daily; pH was maintained
at 8.2 + 0.1 (mean =+ S.E.), salinity at 4.3 + 0.5 g.L’l, and concentra-
tions of ammonia and nitrite were kept below the safe limits provided by
Lin and Chen (2001, 2003) (i.e. 0.3 + 0.1 mg.L ™" and 0.1 + 0.0 mg.L™?,
for Total Ammonia Nitrogen (TAN) and nitrites, respectively). Tem-
perature was 31.1 + 0.5 °C (trial 1; mean + S.E.), 30.2 + 0.3 °C (trial 2),
27.2 4 0.7 °C (trial 3). Dissolved oxygen was maintained above 5 mg.L ™!
through the use of four airstones and an air pump. The observation pond
was entirely covered with a semi-transparent tarpaulin, allowing for
better control of oxygen and pH parameters while avoiding the occur-
rence of phytoplankton blooms. Curbing algal growth helped maintain
turbidity levels at a low level inside the pond (i.e. 3.7 + 0.3 NTU, mean
+ S.E.), allowing behavioral observations with cameras.

2.2. Feeding protocol

The trial was repeated three times in the same pond from July to
October 2021 with unique groups of shrimp for each trial. Trials
comprised 6 days of observation, following the initial acclimation period
of 7 days. Three stereo cameras (ZED 2 from Stereolabs Inc., USA)
mounted on tripods 45 cm above the pond bottom were positioned
equidistant from each other inside waterproof Plexiglas casings (Fig. 1),
providing a top to bottom view of the pond. Four red underwater lights
(wavelength > 600 nm) were provided in conjunction with each camera,
secured to the tripod and directed towards the bottom of the pond, in the
middle of the field of view to facilitate observations of shrimp (see
below). The lights remained on continuously to maintain consistency
across all observations. Although it is possible that continuous red light
may have an effect on shrimp behavior, this is unlikely as decapod
crustaceans lack sensitivity to near-infrared wavelengths (Johnson et al.,
2002; Weiss et al., 2006). These lights can therefore be used to enhance
tracking results during cloudy days and at night. Cameras were placed
inside the pond before the acclimation period began, allowing the ani-
mals to become familiar with their presence. Feed was provided through
a PVC pipe below either camera 1 or 3 (with camera 2 in the middle,
Fig. 1). Feed was dispersed within a narrow spreading radius approxi-
mately 1 m in diameter allowing for accurate delimitation of the feeding
areas (Fig. 1), and taking less than 10 s to be delivered.

Each morning the position of the feeding area was alternated be-
tween cameras 1 and 3. A 20-min observation period was recorded from
each of the three cameras simultaneously, comprising 10 min before and
10 min after feeding. Cameras were connected to computers by a USB
3.0 cable and remotely controlled via ZED Explorer (Stereolabs Inc.,
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Fig. 1. Side view of the camera and feeding area layout inside the pond, with a diagram of the top view of the pond (lower-left corner). Each observation system
comprised a stereo camera (2 lenses) mounted on a tripod with red lights pointing towards the observed portion of the bottom. Created with BioRender.com.

USA). Every day, three feeding times (i.e. ‘Times of day’; 07:30, 12:00,
19:00) were filmed on all cameras. These three meals were chosen for
filming due to their proximity to sunrise, midday, and sunset where
changes in shrimp behavior were most expected. For each recording, 5 s
of footage was extracted 10 min before feeding, 1 min after the begin-
ning of feed dispersal (considered as ‘during feeding’ in later analyses)
and 10 min after feed distribution to calculate behavioral metrics
(Table 1). The first frame of every 5 s of footage was also extracted to

Table 1
Details of the metrics obtained from the footage extracts, adapted from Viscido
et al. (2004) and Somerton et al. (2017).

Metric Description

Density of individuals D = N/A Where D is the local density of
individuals (ind.m2), N the number of detected
individuals and A the pond bottom area covered by

the camera’s field of view.
Individual speed Si = /VZ;+V}; WheresS;is the mean velocity of
individual i (cm.s "), and Vy;, Vy; the individual
velocities in each dimension (as the difference in
coordinates between two consecutive frames of
footage divided by the elapsed time).
The average size (cm) of all observed individuals on a
randomly selected frame for each 5 s footage.
NND; = min(di1, di2,..., din) Where d;y is the
distance (cm) between the i individual and
individual number k, and n the number of
individuals available in the frame at a given time.
Angular deviation with the The mean of angular deviation (°) between the
direction of the feeding average shrimp heading direction and the direction
area of the feeding area on a randomly selected frame for
each 5 s sample. It is expressed in degrees from the
direction of the fed area set at 0° and is between
0 and 180°. The average shrimp heading direction
(o) is defined as:
o = atan2 ZL . sin(o;)  Where o; is the heading
direction of shrimp number i.
Group speed S, —
g

Individual size

Nearest neighbor distances
(NND)

U,2+U,2 Where S is the group speed
(em.s™Y), and Uy and Uy the group velocities for each
axis (defined as the difference in the mean positions
of all detected individuals between two consecutive
frames divided by the elapsed time).

Polarity 0= 1- > " p/(90+n) Whereo'
represents the average polarity (between 0 and 1, no
unit), p; the angular deviation (°) between the
heading direction of shrimp number i and the
average shrimp heading direction of the group ()
and n the number of detected shrimp.

allow for measurement of shrimp length and orientation using ImageJ
(Table 1).

2.3. Camera calibration

Intrinsic parameters of the cameras were calibrated using the camera
calibration toolbox on OpenCV for Python 3, taking into account
distortion effects from the various media the light travelled through (i.e.
water, plastic and air) before reaching the lenses. For each camera, lens
and resolution, calibration was performed on 50 images from a chess-
board pattern taken underwater at different angles. A 15 cm graduated
arrow on the pond bottom within the camera field of view was used to
calibrate distances and image orientation.

Recorded footage was analyzed for shrimp identification and
tracking at 5 FPS (frames per second) using a customized software based
on the image instantiation algorithm YOLACT (Bolya et al., 2019),
optimized for high density object segmentation and overlapping of ob-
jects. This deep neural network was previously trained with a compre-
hensive and manually labelled dataset. Initial training was performed on
a total of 330 frames from all three cameras in various lighting condi-
tions (i.e. different time of day, weather and turbidity conditions), with
varying numbers of shrimp. Training consisted of manually drawing
polygons around the shrimp using the DarkLabel utility program. Ani-
mal detection with YOLACT resulted in two sets of coordinates for each
detected individual in Microsoft Excel, as a single detection corresponds
to a bounding box on the frame (in this case, a rectangle, sets of co-
ordinates are given for two opposite corners of the bounding box). The
center position for the shrimp body was calculated as follows
(Hatton-Jones et al., 2021):

Central body position(x, y) = (Xmax + Xmin)/2,

(_ymax +_ymin)/2

Trajectory generation (i.e. for each frame, the association of the
detected animals to the tracked individuals; Panadeiro et al., 2021) was
performed manually using Microsoft Excel, and missing coordinates in
the tracking results were obtained using Microsoft Excel’s fill option for
linear series. Visual checks of the tracking outputs on all the videos were
performed to ensure accuracy of the results. When water conditions
were too challenging or the number of shrimp too high for the software
to reliably identify and track the animals (i.e. approximately 25 % of the
videos), shrimp coordinates were manually obtained through the animal
tracking software EthoVision XT V14s (Noldus et al., 2001) using the
manual tracking feature of the program. The chosen system of co-
ordinates was the one provided by EthoVision, where x =0 and y = 0
corresponds to the image center, and coordinates increase from left to
right and from bottom to top. Centimeters were chosen as the common
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unit for all coordinates. ImageJ software (Schneider et al., 2012) was
used to measure observed shrimp length and orientation. Different
computers were used to analyse videos with YOLACT (CPU: Intel Xeon
CPU E5-2630 @ 2.20 GHz (20 Cores), Memory: 32 GB Ram, GPU:
Nvidia GeForce GTX TITAN 12 GB RAM with 3072 CUDA cores),
EthoVision and ImageJ (Intel Core i7-10750H @ 2.6 GHz (1 core),
Memory: 8 GB Ram, GPU: Nvidia GeForce GTX 1660) which affected
processing time but not the accuracy of results provided.

2.4. Statistical analysis

All statistics were performed using R statistical software v. 4.0.5 (R
Core Team, 2023). The effects of camera location (i.e. fed, camera 2
(close to the feed) and unfed (far from the feed)) and feed distribution
(before, during and after) were assessed on behavioral metrics calcu-
lated as defined by Viscido et al. (2004) and Somerton et al. (2017)
(Table 1). Multivariate generalized mixed-effect models (GLMM) were
built for each behavioral metric with feed provision, camera location
and their interaction as fixed factors and camera ID nested within trial ID
as a random factor using the R package ‘lme4’ (Zuur et al., 2009; Bates
et al., 2022). Trial ID was included as a random factor to account for any
variation in physical parameters between trials (e.g. temperature,
dawn/dusk times). Although underwater visibility was controlled as
well as possible, observation sessions sometimes resulted in visually
challenging recordings, especially at night where shrimp could still be
spotted but accurate estimates of metrics related to their movements and
size could not be obtained. For some observations, only a few individuals
were present below the cameras, resulting in an observed number of
individuals of 0 or 1, but with no associated individual and/or group
behavioral metrics. Consequently, the density of individuals could be
observed in a wider range of conditions than the other metrics. There-
fore, Time of day (i.e. ‘Morning’ 07:30, ‘Noon’ 12:00 and ‘Evening’
19:00) and its interaction with the fixed factors mentioned above was
included as a fixed factor in models related to the density of individuals
(GLMM). Where significant effects were found, post-hoc comparisons
between treatments were conducted using the R package ‘multcomp’
(Hothorn et al., 2021) for main effects and ‘Ismeans’ for interactions
(Lenth, 2018). Density of individuals, angular deviation with the di-
rection of the feeding area and polarity data followed negative binomial
distributions. Individual and group speed as well as shrimp size data
followed Gamma distributions.

3. Results

A significant effect of feed provision was found on individual speed
(Table 2), with individuals moving faster during and after feed dispersal
than before (Fig. 2a). However, no effects of camera location and its
interaction with feed provision were found on individual speed
(Table 2). The size of shrimp was influenced by feed provision, camera
location and their interaction (Table 2). Observed individuals appearing
beneath camera 2 were larger after feed provision than before (Fig. 2b).

Nearest neighbor distances (NND) were affected by feed provision,
camera location and their interaction (Table 2). Individuals beneath the
fed camera moved closer to each other during and after feed provision
compared to before (Fig. 3a). No differences in NND were observed
between camera locations before feed provision (Fig. 3a). A significant
effect of camera location was also found on shrimp angular deviation
from the direction of the feeding area (Table 2) with individuals below
camera 2 showing an orientation angled more towards the feeding area
than individuals located under the unfed camera (Fig. 3b).

Camera location, feed provision and their interaction had a signifi-
cant effect on group polarity i.e. the average alignment in heading di-
rection of individuals relative to that of the group (Table 2; Fig. 4). At
each time relative to feed provision, there were no differences in polarity
between camera locations. Underneath both camera 2 and the unfed
camera, polarity did not change with time relative to feed provision,
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Table 2

GLMM of the effects of feed provision, camera location and their interaction on
key behavioral metrics and density of individuals for L. vannamei. Presented with
associated y> and p-values, with statistically significant results represented in
bold.

Metric Feed provision Camera location Interaction

x2 2 p-value X2 2) p-value X2 (&) p-value

Individual speed 23.06 < 0.001 1.61 0.446 4.54 0.338
(ecm.s™)
Size (cm) 7.93 0.019 6.41 0.041 9.72 0.046
Nearest 18.29 < 0.001 3221 <0.001 5273 <0.001
Neighbor
Distances
(NND) (cm)
Angular 0.16 0.924 4.22 0.040 0.67 0.715
deviation from
the direction of
the feeding
area (°)
Group speed 15.74
(em.s™1)
Polarity 2.94 0.230 8.49 0.014 15.58 0.004
Density of 7.47 0.024 10445 <0.001 90.37 <0.001
individuals
(ind.m™?)

< 0.001 1.63 0.441 5.17 0.270

however, polarity significantly decreased under the fed camera from
before feeding to after feeding (Fig. 4).

The observed density of individuals below the cameras was affected
by the time relative to feed provision, camera location and their inter-
action (Table 2; Fig. 5a). Time of day was included in models related to
density of individuals, and had a significant effect ()(2 (2) = 25.618,
p < 0.001; Fig. 5b). The number of shrimp under the fed camera
increased during and after feeding compared to pre-feeding (Fig. 5a) and
there were more individuals under the fed camera compared to the other
cameras during and after feed dispersal (Fig. 5a). There were no dif-
ferences in shrimp density below camera 2 between before, during and
after feeding (Fig. 5a). However, there were less individuals below the
unfed camera after feeding compared to before and during feeding
(Fig. 5a), and there were less observed individuals below the unfed
camera after feeding compared to the others (Fig. 5a). There were also
less shrimp observed in total in the evening than at noon and in the
morning (Fig. 5b).

4. Discussion

In the present study, higher activity occurred during and after feed
provision compared to before, with the average speed of individuals
increasing significantly. This is in line with previous scuba observations
in shrimp aquaculture ponds (McNeil, 2001), where fast movements
oriented towards feed occurred immediately after feed provision when it
fell within 10 m of the animals. The increased speed in the present study
did not depend on camera location, suggesting shrimp were affected
across the whole pond. Previous laboratory research found that feed
provision induced substrate exploration, with L. vannamei sampling the
bottom more after feed introduction (Pontes and Arruda, 2005). The
area of influence around shrimp feeding stations clearly goes beyond
that captured within laboratory studies and we can hypothesize that it is
likely to go beyond the size of the pond used here. As seen in Fig. 1, the
fed and unfed camera were 4 m apart, and yet the increased speed was
not affected by camera location. As the pond was only 7 m in length,
feed provision may induce changes in shrimp activity at greater dis-
tances, which further research within larger commercial ponds is needed
to confirm.

A previous laboratory study on L. vannamei found that dominant
individuals arrive first to the feeding area and then spend time
exploring, whereas subordinates spend more time within the feeding
area and less time exploring (Bardera et al., 2021). In the present study,
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Fig. 2. (a) Individual speeds (cm sH of shrimp observed under the cameras against time relative to feed provision. (b) Size (cm) of shrimp observed under the
cameras relative to both feed provision and camera location (b). Results are means + S.E., numbers of observations are indicated inside the bars. For panel (a)
significant differences (p < 0.05) in individual speeds are indicated by lowercase letters and in panel (b) significant differences (p < 0.05) in individual size between
feed provision within the same location are indicated by uppercase letters, where bars sharing a letter are not statistically different.

no variation in shrimp size below the fed camera was observed in
relation to feed provision but larger shrimp were observed under the
camera located between the fed and unfed areas 10 min after feed
provision, which may align with laboratory observations. In commercial
conditions, larger individuals were first to arrive to feeding trays
(McNeil, 2001), remaining on them for 15-20 min but information on
dominance hierarchy formation in penaeid shrimp aquaculture ponds is
lacking. In the present study, it is possible that low size variation at
stocking minimized size gradients between fed and unfed areas. In
commercial grow-out ponds, especially several weeks after stocking, size
variation can be large (e.g. 1.18 g in mass difference; Reis et al., 2020)
and size variation across different pond locations may become more
obvious.

A gradient in NND was observed shortly after feed provision, with
shrimp closer to each other when inside the feeding area. Shrimp were
more oriented towards the feeding area when under the middle camera
(camera 2) compared to individuals in the unfed area, however shrimp
close to the feeding area were not more aligned with each other than
those far from it. Polarity was defined as the average alignment in
heading direction of individuals relative to that of the group, taking
values ranging from O (completely disorganized) to 1 (perfectly
aligned). Individuals within the feeding area 10 min after feeding were
less polarized than those in the same area before feed was provided.
These observations combined with average individual speed and NND,
suggest that feed provision induced large scale shrimp movements, with
individuals moving faster across the whole pond but in a more disor-
ganized way once within the feeding area. Maximum polarity values
(0.52 £ 0.05) were seen underneath the middle camera during feed
provision but did not appear indicative of tightly organized groups.
Studies on polarity in fish have found values close to 1 for highly
organized schools, and values between 0.4 and 0.8 within small groups
of giant danios (Danio aequipinnatus) or vermilion snapper (Rhomboplites
aurorubens) (Viscido et al., 2004; Somerton et al.,, 2017). Previous

observations in aquaculture ponds (McNeil, 2001), reported large
schools of shrimp forming at sunrise, with a strong shoaling tendency
remaining throughout the day. Formation of shoals within aquaculture
ponds will likely affect the way shrimp interact with feeding stations in a
pond environment, and therefore is an important behavior to under-
stand in the context of feeding efficiencies. The experimental pond in the
present study may have been too small to observe these behavioral
patterns even though density was representative of commercial Ecua-
dorian ponds (i.e. 21 ind.m™2, Boyd et al., 2021). The limited pond size
reduced the number of individuals stocked, potentially preventing
shrimp from gathering in large formations. Whether or not shrimp
regularly form large shoals in commercial ponds warrants further
investigation.

Density of individuals depended on feed provision, camera location
and time of day. During feed provision and for the following 10 min,
density was highest under the camera in the fed area indicating an im-
mediate attraction effect. Previous studies using PAM in the laboratory
and aquaculture ponds, also reported intense feeding shortly after feed
provision, declining over a 25 min period (Smith and Shahriar, 2013;
Smith and Tabrett, 2013). Hamilton et al. (2023) observed that acoustic
activity occurred immediately after feed provision and lasted up to
10 min, suggesting shrimp quickly reached a state of satiation after
feeding. Visual observations in laboratory conditions also found a higher
feeding activity 30 min after feed was offered (Nunes et al., 1996; Pontes
and Arruda, 2005). The significant interaction effect of feed provision
and camera location on density indicates a gradient in shrimp density
established over time once feed was introduced. The highest density was
in the feeding area and the lowest under the unfed camera on the other
edge of the pond. This gradient did not last until the next feed with no
interaction between camera location and time of day, potentially indi-
cating a lack of anticipatory behavior.

Under all cameras the number of individuals was lowest in the eve-
ning. Morning observations (07:30) occurred between 1 h 10 min and



J.-B.D. de Tailly et al.

Applied Animal Behaviour Science 287 (2025) 106636

16 1 3 b b
14 -+ A b
—12 - b
§ 10 - B
(a)] 8 A a B
Z 6 A a
z , |
2 4
0 42|(141] |33 42| (36| |33 42134 (17
© o~ © © o © o o ©
L oo & L oo 2 L oo &
£ S £ > £ >
(T [0} T
(@) (@) &)
Before During After
120 -
= b
(]
22 100 - I
c e = a
O O @ 80 1 -
s c o
S 0o 60
> 5 n
8L
55 o 401
S o Q
@ < 20 -
< 122 99
0
Camera 2 Unfed

Fig. 3. (a) Nearest Neighbour Distances (NND) of shrimp observed under the cameras against time relative to feed provision and camera location. (b) Angular
deviation of shrimp observed under the cameras from the direction of the feeding area against camera location. Results are means + S.E., numbers of observations are
indicated inside the bars. For panel (a), significant differences in NND between times around feed provision events at the same location are indicated by uppercase
letters and significant differences at the same time around feed provision but at different locations are indicated by lowercase letters, where bars sharing a letter are
not statistically different. For panel (b), significant differences in angular deviation with the direction of the feeding area are indicated by lowercase letters, where

bars sharing a letter are not statistically different.

0.7 -
0.6 A
A
0.5 + +
Zo04 | { AB
£0. B
£
S 0.3 A
0.2 A
0.1 A
0 32 29 28 43 30 26 45 36 19
© o~ © © o~ © © (o] ©
& oo 2 & e 2 £ g £
£ > £ > £ >
(1] (T (1]
o Q o
Before During After

Fig. 4. Differences in average polarity of shrimp observed under the cameras against time relative to feed provision and location. Results are means + S.E., numbers
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where bars sharing a letter are not statistically different.

1 h 41 min after sunrise, and evening observations (19:00) between
14 min before and 58 min after sunset. Therefore, most evening obser-
vations occurred at night, but morning observations were all during
daylight hours. Previous studies under laboratory conditions reported
diel patterns of activity in penaeid shrimp (Pontes and Arruda, 2005;

Pontes et al., 2006; De Lima et al., 2009). Pontes et al. (2006) observed
that inactivity was predominant in the light phase for L. vannamei, but
food searching occurred both during day and night with the most intense
peak 7 h after lights were turned on. This corresponds to ~ 13:00 in the
present study. Similarly, De Lima et al. (2009) reported greater feed
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Fig. 5. (a) Shrimp density (ind.m~2) observed under the cameras against time relative to feed provision and camera location. (b) Shrimp density (ind.m~2) observed
under all cameras against time of day. Results are means + S.E., numbers of observations are indicated inside the bars. For panel (a), significant differences
(p < 0.05) in density between times around feed provision at the same location are indicated by uppercase letters, significant differences (p < 0.05) in density at the
same time around feed provision but at different locations are indicated by lowercase letters, where bars sharing a letter are not statistically different. For panel (b),
significant differences are indicated by lowercase letters, where bars sharing a letter are not statistically different.

ingestion between 12:00 and 14:00 for L. vannamei. Observed densities
in the morning and at noon below all cameras was more than twice the
theoretical stocking density of 20 ind.m~2, suggesting an uneven dis-
tribution during daytime. A previous study on the gut contents of
Penaeus subtilis in aquaculture ponds reported continuous feeding during
both day and night, with a peak observed soon after dusk, even when no
pellets were provided (Nunes et al., 1996). As shrimp are scavenging
opportunistic feeders (Tacon et al., 2013), it is possible that at night
when provision of artificial feed ceases, shrimp focus more on natural
food sources thereby scattering throughout the pond.

Overall, this study provided an insight into how shrimp organize
themselves in ponds, to help answer the key questions of when and
where feed should be provided. In commercial aquaculture settings, use
of PAM to monitor shrimp feeding is preferred since sound is not affected
by underwater visibility (Reis et al., 2022). However, the present study
demonstrates the potential for computer vision to further our under-
standing of shrimp behavior. Similar approaches are used to automate
assessment of fish feeding in aquaculture cages, tanks and ponds using
neural networks on video frames (e.g. Milgy et al., 2019; Zhou et al.,
2019; Ubina et al., 2021). In the present study, observations were made
in an experimental pond, under relatively controlled conditions, with
animals well matched in size. In shrimp aquaculture, a wide variety of
production systems and genetic lines exist, which could potentially
affect behavior. The average L. vannamei pond in Vietnam is 0.33 ha in
surface area, stocked at 55 ind.m 2, whereas in Ecuador ponds are often
6.59 ha in size and stocked at 21 ind.m > (Boyd et al., 2021). The pre-
sent study focused on L. vannamei, and although it represents more than
90 % of global penaeid aquaculture, the giant tiger prawn Penaeus
monodon is another important species (FIGIS, 2023) whose behavior is

still to be fully explored.
5. Conclusion

The present study demonstrated the potential of remote video ob-
servations to provide a better understanding of shrimp behavior, high-
lighting the influence of time of day, camera location and feed provision
on penaeid shrimp (L. vannamei) behavior in an experimental aquacul-
ture pond. Combination of computer vision techniques to observe
behavioral detail, with PAM monitoring of shrimp feeding through hy-
drophones could result in the adoption of smarter feeding practices in
penaeid aquaculture, relevant to the behavior of the animal. In the
present study, shrimp speed increased and more individuals were pre-
sent inside the feeding area after feed provision. The development of an
automated assessment of shrimp feeding may therefore be achievable
through computer vision, based on the observed number of individuals
and their velocity. More generally, computer vision could enhance
welfare monitoring through the early detection of unusual behaviors
indicating a stress response, as already observed in laboratory condi-
tions (Zhang et al., 2006). Future work should focus on trialing similar
approaches under commercial conditions, across a variety of production
models and species. Setting cameras in association with sonar-based
systems at different pond locations could help farmers better position
feeders by providing a more complete picture of areas where shrimp
congregate, as well as their preferred passage points in relation to depth
and distance from pond banks.
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