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Abstract
Production planning is a crucial activity in manufacturing systems. However, the failure of production units in these systems is
inevitable and can disrupt the production processes. Implementing preventive maintenance and repair strategies can enhance
competitiveness in the market, reduce machines failures, and optimize production unit performance. The objective of this
article is to develop a reliability-centered maintenance and production control policy that minimizes the total cost of produc-
tion, perishable product, scrap, rework, and corrective and preventive maintenance in the long term. To achieve this, a simu-
lation of a multi-unit production system with multiple products is conducted, assuming the presence of perishable items, and
the performance indicators of the system are calculated. Then, the system is optimized using meta-heuristic coding methods
in ARENA software 14. The numerical examples demonstrate that the implementation of the control policy, along with the
reliability-centered maintenance, significantly reduces the costs and risks about 5% associated with system uncertainty.
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1. Introduction

The progress and complexity of production systems, along

with the presence of competitive environments, have made

managers and officials more aware of the importance of

optimizing production. Despite challenges like the entry of

foreign items, organizations now understand the need to

address production unit failure, as it disrupts the overall

production process.1 Implementing a structured mainte-

nance and repair plan is crucial to maintaining or upgrading

system performance and preventing failures that can halt

production. Therefore, industries must prioritize mainte-

nance planning and reduce costs, as neglecting this aspect

can lead to a decline in quality and profitability.2–5 Various

types of models have been developed to address uncer-

tainty in production systems. One such model is the failure-

prone production system, which falls under the category of

production planning models and flexible production sys-

tems. In these systems, production units are connected at

variable rates to meet customer demands.5,6 However, in

uncertain conditions, increasing production rates can lead

to excess inventory and higher production costs, as well as

increased failure rates and disruptions in the production

process. Therefore, it is crucial to establish regular mainte-

nance and repair programs and determine optimal produc-

tion rates in failure-prone production systems, taking into

account reliability and accessibility improvements.7

In order to reduce production costs and the final price

of the manufactured product, it is important to regularly

evaluate the maintenance process and performance
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indicators. This will help in planning and improving main-

tenance and repair activities, ultimately increasing the effi-

ciency of production systems.8 Reliability-centered

maintenance (RCM) is a technique used to maintain the

operational capability of production systems. It focuses on

asset management, cost reduction, and the implementation

of both preventive and corrective maintenance and repairs.

The RCM structure consists of three main stages: identify-

ing key components for inspection, analyzing potential

failure modes and their effects (FMEA), and determining

the optimal maintenance and repair strategy for all failure

modes. The selection of the optimal maintenance strategy

is the final step in the RCM structure. The chosen strate-

gies should aim to reduce costs while simultaneously

maintaining or enhancing system reliability.9 The Failure

Mode and Effect Analysis (FMEA) is a valuable tool in the

analysis of Reliability-Centered Maintenance (RCM).

It is designed to assess potential failure states in com-

ponents, with the primary goal of reducing or eliminating

causes of failure and prioritizing them according to spe-

cific criteria. The objective of this article is to develop an

optimal control policy and optimize a Reliability-Centered

Maintenance and repair program in multi-unit manufactur-

ing systems. These systems involve corrupt multi-product

production with time-dependent demand under uncertain

conditions. By providing a control policy and a mainte-

nance and repair plan, decision makers and industry man-

agers have the opportunity to adjust production rates based

on the system’s performance indicators. Ultimately, this

decision will result in reducing the total cost of produc-

tion, maintenance, perishable of items, reworking, scrap,

preventive and corrective maintenance and repairs, back-

log shortage, and lost sales.

2. Literature review
2.1. Failure-prone manufacturing system

Failure-prone production systems refer to those in which

the likelihood of equipment and machinery failures is high

due to factors such as wear and tear, improper usage, or

harsh operational conditions. Numerous studies have

investigated failure-prone production systems. For

instance, Sajadi et al.1 analyzed failure-prone manufactur-

ing systems that are characterized by flexible production

models with variable production rates to meet customer

demands, though they face challenges from unexpected

machine failures. These systems consist of multiple pro-

duction units, each with unique repair and failure times.

The goal is to determine production rates and policies that

minimize average inventory cost and long-term expenses.

A common control policy is the limiting point policy,

which is influenced by various factors, including buffer

inventory levels. Methodologies combining optimal con-

trol theory, discrete event simulation, test design, and

response level methodology are used to manage produc-

tion rates. These systems, often complex and costly, utilize

simulation-based optimization to strategically plan produc-

tion processes, particularly those prone to failures.10

Flexible manufacturing systems involve sophisticated

interconnections among components. For instance, contin-

uous inventory revision models account for perishable

items, volatile demand, linear restoration costs, and partial

shortages, considering costs such as maintenance, produc-

tion capacity, spoilage, opportunity costs, and rehabilita-

tion costs.11

An optimal control approach for single-machine, dual-

product systems incorporate stochastic failures and repairs,

using a Markov chain to represent machine capacity. This

approach aims to minimize inventory and warehouse costs

through a limiting point policy, adaptable for constant

demand rates and failure rates with exponential time distri-

butions.12 Extending this methodology to non-exponential

repair time distributions, simulation experiments and

response-level methodology showcase the policy’s broad

applicability. In single-machine, single-product systems

with constant demand, a limiting point policy is used to

minimize long-term maintenance and shelf-life costs,

leveraging a bi-section search algorithm based on simula-

tion and gradient samples.13 Evolutionary random optimi-

zation methods estimate optimal limiting points in multi-

product production systems with varying priorities, com-

paring Tabu Search algorithms, evolution strategies, and

adaptive strategies.14

A two-level limiting point policy for construction and

manufacturing systems accounts for factors like delay time

and additional capacity, utilizing a mathematical model to

minimize limiting point levels validated through numerical

experiments.15 Comparative strategies for preventive and

corrective maintenance in systems with parallel machines

highlight multi-criteria analysis to achieve cost efficiency,

considering independent and interactive periods of una-

vailability and production rates.16 Preventive maintenance

and inventory control in single-product, single-machine

systems experiencing stochastic failures combine limiting

point policy with intermittent maintenance, using

simulation-based methods to find optimal control para-

meters.17 Optimizing workshop production systems with

parallel machines under probable conditions employs

simulation optimization and the OptQuest tool for optimal

solutions.18 Integrated approaches to production-inventory

control and preventive maintenance policies use mathe-

matical models to determine optimal policies that mini-

mize costs associated with commissioning, maintenance,

repairs, inventory, and shortages.19 Inventory models con-

sidering defective items and manageable breakdown rates

focus on maximizing profit through optimal regeneration

and technology investment strategies.20

Integration of production and inventory management

with quality/process design in systems experiencing
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simultaneous breakdowns and Perishable involves a cost-

minimizing mathematical model validated by sensitivity

analysis.21 Optimization of marketing and inventory poli-

cies for breakdown-prone commodities employs an inven-

tory model influenced by advertising and sales prices.22

Perishable items inventory models with time-dependent

demand and variable maintenance costs aim to minimize

maintenance costs through numerical examples.23

Production planning in single-machine, single-product

failure scenarios use meta-heuristic integration and simula-

tion, comparing results with integer linear programming

techniques.24 Production planning under supply constraints

uses simulation-based optimization to determine control

parameters and minimize overall costs.25 Manufacturing

systems with capacity constraints propose production

schedules to manage system costs effectively.26

Production and maintenance control policies minimize

costs related to shortages, maintenance, and production in

defect-prone systems, using optimization approaches vali-

dated through simulation.27 Hybrid manufacturing systems

with failures aim to reduce joint production and mainte-

nance costs, providing mathematical models to achieve

this.28 Coordination of production, inspection, and mainte-

nance decisions in systems with stochastic failures focuses

on minimizing production, maintenance, defect, and repair

costs in single-unit production systems.29

In this part, we explain that how different production

systems respond to failures and how they differ:

� Continuous production systems: A failure in one

unit can halt the entire process (e.g., in the petro-

chemical industry).
� Discrete production systems: A machine failure

may only affect a specific stage (e.g., in the auto-

motive industry).
� Lean production systems: They rely heavily on pre-

cise scheduling, so failures can disrupt the entire

supply chain.

Most existing studies have focused solely on a single type

of production system and have not examined the effects of

failures in a generalized manner. The role of failures in

discrete production systems has been analyzed less exten-

sively compared to continuous production systems. The

direct impact of production failures on maintenance and

repair decision-making in real-world scenarios (such as

complex multi-stage systems) has been studied only to a

limited extent.

2.2. Corrective and preventive maintenance

Today, the preventive maintenance and repair of produc-

tion systems are crucial due to the need to increase

resource availability, quality, safety, and reduce produc-

tion and operational costs. Having a maintenance strategy

is therefore an essential decision-making activity.8 In addi-

tion to planning production by examining factors such as

production rate, required number of devices, and man-

power, industry managers should also address the issue of

sudden device failures, which can directly impact produc-

tion and the organization’s reputation.30 Industries have

adopted maintenance and repair strategies to prevent sud-

den equipment and machinery failures, increase reliability,

and maintain and expand their market share in a competi-

tive market.31 Maintenance refers to the technology and

processes that ensure the proper operation of equipment in

manufacturing systems.32

From the researchers’ point of view, there are different

divisions for maintenance strategies: from the Chopra’s33

point of view, among the strategies for maintenance and

repair are: Preventive From the researchers’ perspective,

maintenance strategies can be categorized into different

divisions. According to Chopra,33 these divisions include

preventive maintenance, maintenance and repair based on

machine failure or breakdown, and maintenance and repair

based on reliability. Zhao et al.34 also provide a figure that

outlines various types of maintenance and repair strategies,

such as preventive maintenance and repair.

There is an alternative perspective on the division of

maintenance and repairs in Erbiyik’s35 work. According to

this view, maintenance and repair can be categorized into

two main groups: corrective maintenance and preventive

maintenance. Corrective maintenance involves repairs and

changes made without a schedule, typically in response to

unforeseen breakdowns or failures. Preventive mainte-

nance, on the other hand, is proactive and includes antici-

pated repairs and changes aimed at preventing equipment

failures before they occur. Preventive maintenance is fur-

ther classified into several subgroups: planned mainte-

nance and repairs, which are scheduled based on time or

usage intervals; anticipated maintenance and repairs,

which are based on predictions and monitoring of equip-

ment conditions; reliability-centered maintenance, which

focuses on maintaining system reliability by prioritizing

critical components; and risk-centered maintenance, which

targets maintenance efforts based on the risk and impact of

potential failures. This structured approach to maintenance

and repairs ensures a balanced strategy that addresses both

immediate and future maintenance needs.

A notable contribution to the field is Kouedeu et al.’s36

paper, which examines the joint analysis of optimal pro-

duction and maintenance planning policies for deteriorat-

ing manufacturing systems. This work underscores the

importance of integrating production and maintenance

decisions to enhance overall system reliability and cost-

effectiveness. In addition, an article from the Journal of

Intelligent Manufacturing published in 2018 by Khatab

focuses on maintenance optimization in failure-prone sys-

tems under imperfect preventive maintenance.37 This

research revisits existing preventive maintenance models,
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emphasizing the need to consider breakdown and opera-

tional costs alongside maintenance actions. Khatab pro-

poses a new maintenance optimization model, presents a

solution method, and validates the approach through

numerical experiments, highlighting its practical applica-

tion and benefits.

2.3. Reliability-centered maintenance

Reliability-centered maintenance (RCM) is a process that

ensures equipment or systems operate under optimal con-

ditions. In simpler terms, RCM is a systematic method that

aims to maintain the Reliability Index at the desired level

by equationing an optimal maintenance strategy while

minimizing production costs.31 The objective of

Reliability-Centered Maintenance is to establish effective

maintenance and repair programs. This involves optimiz-

ing equipment performance, preventing premature break-

downs, and minimizing the impact of any breakdowns that

do occur.35

The optimal level of production and efficiency in pro-

duction systems prone to failure can be determined by con-

sidering the combination of maintenance and repair policy

and inventory control.38 Production planning and machine

reliability are key factors in the flexibility of production

systems, leading to reduced production costs and increased

efficiency.39 The increasing importance of maintenance

and repairs has resulted in the development and implemen-

tation of optimal strategies to improve machinery reliabil-

ity, minimize breakdowns, and reduce repair costs.32 One

approach is to implement a policy that includes preventive

repairs when a piece of equipment reaches a predeter-

mined level of failure rate or reliability, as well as correc-

tive repairs when failures occur. This policy ensures that

the system’s reliability remains at the desired level.33

Choosing the right maintenance strategy is a crucial

decision-making process in the industry. Reliability-cen-

tered maintenance (RCM) is an advanced strategy that

incorporates the benefits of traditional approaches. RCM

selects the most suitable maintenance strategy for all

equipment in the factory machinery process based on reli-

able parameters. It requires the collection and analysis of

device failure data.40 By analyzing risks and identifying

the causes of system failure, maintenance and repair activi-

ties can be implemented to enhance efficiency and

performance.

In studies exploring maintenance and production plan-

ning for manufacturing systems prone to failure, signifi-

cant research has been conducted. Kenné and

Nkeungoue41 investigated simultaneous control of produc-

tion rate, corrective and preventive maintenance, and

repairs to minimize production costs, reduce maintenance

and repair inventory, and address scrap shortages. Their

approach focused on modeling the relationship between

production unit age and failure rates, illustrating findings

through numerical examples. Dehayem et al.42 explored

strategies for managing production, repair/replacement,

and preventive maintenance in systems handling perish-

able items. Their goal was to optimize decision-making

processes by minimizing costs associated with repair/

replacement, preventive maintenance, maintenance, and

inventory shortages over extended planning horizons.

Their study underscored the sudden nature of production

unit breakdowns and proposed solutions using the semi-

Markov decision-making process and dynamic planning

methods, showing substantial cost reductions and extended

equipment lifespan.

Selvik and Aven43 introduced Reliability-Centered

Maintenance and repairs (RCM) as a method focusing on

reliability and failure consequence management. They

expanded on this with risk and reliability-centered mainte-

nance (RRCM), integrating risk considerations alongside

reliability to address uncertainties and potential events.

Case studies from the offshore oil and gas industry were

used to illustrate their approach. Yssaad and Abene44 opti-

mized Reliability-Centered Maintenance in power distri-

bution systems, criticizing limitations in using FMEA

analysis for repair optimization and proposing a compre-

hensive reliability study (RAMS) as an alternative, high-

lighting overlooked evaluation criteria in electrical

systems.

Vishnu and Regikumar40 proposed a reliability-focused

maintenance strategy for factory production processes,

emphasizing its role in enhancing availability, product

quality, safety, and operational efficiency. They utilized

hierarchical analysis processes (AHP) to tailor mainte-

nance strategies, validating their approach through mainte-

nance history data from a titanium dioxide production

plant, justifying the adoption of reliability-centered main-

tenance (RCM) despite current maintenance challenges.

Aghezzaf et al.45 addressed optimization challenges in

production planning and preventive maintenance for sys-

tems vulnerable to network failures, employing nonlinear

composite integer programming to manage unpredictable

system states and restore production units to optimal func-

tioning through preventive maintenance.

Rokhforoz and Fink46 focused on dynamic mainte-

nance, repair, and production scheduling in manufacturing

systems with multiple production units and varying capa-

cities. They proposed dynamic maintenance schedules to

mitigate challenges posed by fluctuating unit failure levels

and optimize system performance and cost efficiency.

Hajej et al.47 investigated preventive maintenance control

and production planning in non-definitive production sys-

tems, applying a random analytical model to minimize

costs in single-product production units through periodic

inspections and repair operations. Zhang et al.48 developed

an optimization model for preventive maintenance in

multi-product repairable systems, aiming to determine per-

formance thresholds and implement maintenance and
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repair strategies at the component level to enhance system

reliability and performance.

The importance of Reliability-Centered Maintenance

(RCM) compared to other maintenance strategies previ-

ously explored in the literature can be outlined as follows.

2.3.1. Focus on prevention instead of reaction. Unlike tradi-

tional strategies such as Reactive Maintenance or

Scheduled Maintenance, RCM is based on a detailed anal-

ysis of equipment reliability. This approach effectively

identifies potential failures and prevents them before they

occur.

2.3.2. Cost optimization. RCM emphasizes reducing main-

tenance costs by identifying essential activities and elimi-

nating unnecessary ones. While strategies like Preventive

Maintenance may include redundant repairs, RCM inter-

venes only when there is evidence of declining reliability.

2.3.3. Adaptability to the complexity of modern production
systems. In multi-stage and complex production systems,

the failure of a single component can disrupt the perfor-

mance of the entire system. RCM is better suited to man-

age such complexities by evaluating the criticality of each

component and its impact on overall system performance.

2.3.4. Focus on risk and failure consequences. RCM not only

considers the frequency of failures but also evaluates their

consequences. This strategy prioritizes failures that have a

greater impact on safety, quality, or productivity.

2.3.5. Data-driven decision-making. RCM leverage’s relia-

bility data and failure histories to design maintenance pro-

grams. This data-driven approach enhances decision-

making accuracy and minimizes the likelihood of unfore-

seen failures.

2.3.6. Enhancing safety and quality. One of the primary

goals of RCM is to improve safety and reduce the risks

associated with failures that could harm personnel, equip-

ment, or the environment. This is particularly critical in

sensitive industries such as aerospace, energy, and chemi-

cal manufacturing.

2.3.7. Comparison with other strategies.
� Reactive Maintenance: RCM prevents failures

from occurring, whereas reactive maintenance only

responds after failures have occurred.
� Preventive Maintenance: RCM optimizes mainte-

nance activities based on actual data and reliability,

while preventive maintenance operates on a fixed

schedule, often leading to unnecessary repairs.

� Predictive Maintenance: Although predictive

maintenance relies on advanced technologies for

condition monitoring, RCM serves as a comprehen-

sive framework that integrates predictive technolo-

gies with other strategies.

By offering a structured, comprehensive, and data-driven

approach, RCM improves equipment performance, reduces

costs, and enhances system reliability. These attributes

make RCM highly suitable for managing the complexities

and challenges of modern production systems compared to

other maintenance strategies.

2.4. Simulation-based optimization

Simulation optimization is the practice of combining a

simulation model with an optimization algorithm or tool to

determine the best values for the model parameters, with

the goal of maximizing the performance of the simulated

system.49 In simpler terms, simulation optimization is an

active area of research in random optimization that helps

make operational decisions.50

In this paper, we focus on systems that are susceptible

to failure in multi-machine, multi-product networks. We

assume the presence of perishable items and possible

demand, which leads to an increase in defective items due

to extended machine lifetimes in production units. This

system allows for both backlog and lost sales. It also

involves preventive and corrective maintenance and repair

operations. Through preventive maintenance and repairs,

machines are restored to their original state with zero life-

time. However, sudden breakdowns cause the lifetime of

machines in each production unit to increase by a certain

coefficient.

Table 1 provides a summary of related studies con-

ducted in this field, along with key points.

The first point examines the types of maintenance and

repair operations, including both corrective and preventive

measures. The second and third points address the produc-

tion strategy, which allows for inconclusive items and per-

mits backlog and lost sales. The fourth point focuses on

production control, which is often crucial in systems with

uncertainties. The fifth point considers the type of produc-

tion system, distinguishing between definitive and non-

definitive systems. The sixth point in the comparison table

compares the failure coefficient of the production unit,

which is related to the unit’s lifetime. The final point in

this table discusses the provision of Reliability-Centered

Maintenance policies.

2.5. Identifying the knowledge gap in the literature
review

2.5.1. Lack of comprehensive analysis of multiple key
factors. As shown in Table 1, most previous studies have

Tavan et al. 5
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focused on specific aspects such as maintenance type, pro-

duction strategies, or failure-prone manufacturing systems.

However, the simultaneous integration of ‘‘failure-prone

manufacturing systems modeling,’’ ‘‘risk analysis,’’

‘‘Reliability-Centered Maintenance (RCM),’’ and ‘‘simu-

lation-based optimization’’ has been rarely explored in

prior research.

2.5.2. Insufficient comparison of maintenance strategies.
While some studies, such as Amelian et al.7 and Dhouib

et al.,19 have analyzed maintenance strategies, a detailed

comparison between RCM and other maintenance

approaches and their impact on manufacturing system effi-

ciency remains underexplored.

2.5.3. Limited integration of simulation and optimization.
Some studies, such as Boschian et al.16 and Heydari

Dahoui et al.,5 have used simulation for system analysis.

However, the combination of simulation with mathemati-

cal optimization in the context of failure-prone manufac-

turing systems has received little attention.

2.5.4. Lack of comprehensive risk analysis in maintenance and
production decision-making. Although some studies, such as

Hatami-Marbini et al.6 and Kaddachi et al.,27 have dis-

cussed risk in manufacturing systems, the impact of risk

analysis on RCM strategies and its influence on manage-

rial decision-making in failure-prone manufacturing envir-

onments requires further investigation.

2.6. Conclusion on the knowledge gap

This study aims to bridge these knowledge gaps by intro-

ducing a comprehensive approach that integrates mathe-

matical modeling, simulation, and optimization for failure-

prone manufacturing systems while incorporating risk

analysis and RCM strategies.

3. Problem solving methodology

In this section, we will begin by discussing the problem

and its mathematical relationships. We will then proceed

to describe the model used in the ARENA simulation soft-

ware. The model will be simulated and calculated, taking

into consideration both preventive and corrective mainte-

nance policies, as well as their performance variables. The

Reliability-Centered Maintenance program will be opti-

mized using two meta-heuristic methods and the Scatter

search tool. The overall process for the system being stud-

ied in this article is shown in Figure 1.

Our methodology integrates Reliability-Centered

Maintenance (RCM) and risk analysis into the production

and maintenance planning framework. Specifically, RCM

is employed to identify critical equipment and schedule

preventive maintenance activities, optimizing resource

allocation to minimize production failures. Risk is mod-

eled as a dynamic metric, capturing the probability and

impact of failures, and is explicitly incorporated into the

production scheduling model as both a decision criterion

and a constraint. This novel approach ensures a multi-

dimensional analysis of the production system by linking

maintenance strategies with inventory management and

failure risk. For instance, RCM guides the prioritization of

repairs, while risk metrics determine the optimal produc-

tion and maintenance schedules under uncertainty. Such

integration distinguishes our methodology from previous

studies that typically address production and maintenance

separately.

4. Analysis of the current maintenance
procedure

The current maintenance system in the plant is predomi-

nantly reactive in nature, relying heavily on corrective

maintenance actions after equipment failure. Preventive

maintenance activities are minimal and not scheduled

based on the actual condition or performance of the equip-

ment. This approach has led to increased downtime, higher

maintenance costs, and a lower level of production reliabil-

ity. The existing maintenance records and failure logs were

analyzed to identify the average time between failures

(MTBF), mean time to repair (MTTR), and the frequency

of breakdowns for each production unit. It was observed

that the plant lacks a systematic method for prioritizing

maintenance activities or allocating resources effectively.

In addition, there is no integration of maintenance planning

with production scheduling, which results in suboptimal

operational efficiency. A gap analysis was conducted to

compare the current practice with industry standards and

best practices in reliability-centered maintenance (RCM).

The analysis revealed that the current system does not ade-

quately support decision-making regarding maintenance

interventions or provide sufficient data to prevent critical

failures. The proposed simulation model incorporates an

improved maintenance strategy based on condition moni-

toring and preventive scheduling, aligned with RCM prin-

ciples. This allows for better asset management, reduced

unscheduled downtime, and optimized maintenance costs.

The results of the simulation are compared against the

baseline performance of the existing maintenance strategy

to quantify improvements in key performance metrics such

as system availability, total cost, and production output.

This structured evaluation of the current maintenance

approach ensures that the improvements observed in the

simulation are not only meaningful but also directly attri-

butable to the enhanced maintenance planning and execu-

tion strategies introduced in the proposed model.

Tavan et al. 7



5. Problem statement

This article discusses a system, depicted in Figure 2, that is

susceptible to non-definitive network failure.

This system assumes the presence of non-stable or per-

ishable items, which are considered failures and result in

the failure of the production unit. The system consists of n

non-identical production units, each producing a specific

type of product at different stages of production. The prod-

uct produced at stage i, with a consumption coefficient

lij
� �

, is used in the production of the product at stage j.

When all production units are functioning properly, prod-

ucts are produced at a rate of ui tð Þ. These products undergo
qualitative inspection and are sent to the rework depart-

ment if necessary. Repairable products are sent for repairs,

while products deemed irreparable are considered scrap

Figure 1. Conceptual model for conducting the article process.

Figure 2. Network failure-prone manufacturing system.
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and removed from the system. The rate at which products

are returned to the reworking stage is directly linked to the

lifespan of the production unit. In other words, products

have a higher chance of being reworked if the production

unit remains functional for a longer period of time. After

each production unit, there is a warehouse where excess

inventory is stored to ensure that production does not halt

in the event of a failure in the previous production unit

(i� 1). The warehouse acts as a buffer between the failure

and the demand, meaning that when a failure occurs, the

current demand is met by retrieving products from the

warehouse to repair the failed unit and resume production.

The failure of the production unit is bound to happen.

To prevent sudden breakdowns, it is crucial to regularly

visit the production unit and plan preventive maintenance.

Occasionally, the production unit may fail unexpectedly,

causing production to halt. In such cases, implementing a

maintenance and repair program is necessary. This article

assumes that performing maintenance and repair extends

the lifespan of the production unit by a constant factor.

However, by conducting preventive maintenance and

repair, the lifespan of the production unit can be reset to

the factory’s initial state. Figure 3 provides an overview of

the performance of each production unit.

In failure-prone manufacturing systems, equipment

breakdowns can cause production delays, increased costs,

and reduced efficiency. One critical factor influencing fail-

ure rates is the presence of defective and unstable prod-

ucts, which deteriorate production quality and lead to

higher maintenance and repair demands. In such environ-

ments, implementing an efficient maintenance strategy

that can predict and control failures is essential. One of

the major challenges in these systems is the presence of

unstable or defective products, which increase the failure

rate of production units. In addition, traditional mainte-

nance and repair methods may not be efficient in reducing

costs and improving system reliability. Many previous

studies have analyzed failure-prone manufacturing sys-

tems, but the role of defective products in system failure

rates has been largely overlooked. Some studies have

investigated Reliability-Centered Maintenance (RCM)

strategies, but their comparison with other maintenance

strategies in multi-stage environments remains an open

research gap. Existing research has primarily examined

production control in static conditions, whereas optimiza-

tion and simulation approaches for dynamic production

control under uncertainty have received less attention.

However, previous studies have certain limitations:

� The role of defective products in system failure

rates has not been thoroughly investigated.
� The comparison of RCM with other maintenance

strategies in multi-stage systems is lacking.
� Limited research has focused on integrating produc-

tion control and inventory management in the pres-

ence of sudden failures.
� Multi-dimensional evaluations of system perfor-

mance (including quality, cost, and repair time)

have been insufficient.

This research aims to fill these gaps and pursue the follow-

ing objectives:

� Develop a new mathematical model to examine the

effect of defective products on system failure rates.
� Design and compare RCM with other maintenance

strategies to optimize system performance.

Figure 3. The overall performance of each production unit in the system studied.
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� Utilize simulation and optimization techniques to

enhance production control under uncertainty.
� Establish multi-dimensional performance metrics to

evaluate system efficiency.

This model will assist production managers in making

optimal decisions regarding maintenance and production

planning, thereby improving the efficiency of failure-prone

manufacturing systems.

5.1. Assumptions of the problem

The assumptions in this article can be summarized as

follows:

� The demand for intermediate products used in the

production of the next product is fixed and known,

while the demand for the final product varies over

time.
� The production rate is discrete.
� The model being studied is multi-product.
� The production process does not allow for back-

ward production.
� Intermediate production units will never experience

shortages of raw materials.
� A shortage of both scrap and lost sales is allowed

for the final product.
� If there is insufficient stock of the intermediate

stage I product (based on the consumption coeffi-

cient), the production of the next stage product will

be halted and the production rate will be zero.
� The failure and repair times of all machines in the

system are exponential.
� Perishable of items is allowed for the final produc-

tion stage product, and if the product is not con-

sumed by the desired date, it is considered corrupt.
� The defective commodity coefficient is dependent

on the lifespan of the production unit.
� If expired items are delivered to a customer and

there is a demand for expired items in the system,

priority will be given to the customer who received

the expired items to fulfill the demand.
� The production unit can be stopped and repaired

for two reasons: preventive repairs and emergency

repairs.
� The time required for repair varies depending on

the type of failure, the speed of the repairmen, and

other factors.
� Planning for preventive repairs also varies depend-

ing on the type of production unit and its failure

records.
� At the start of the study, all machines are in a safe

and operational state.

5.2. Symbols

The symbols used in the studied system modeling are

shown in Table 2.

Table 2. Signs and abbreviations.

Signs Description

Mi The production unit i, (i = 1, 2, :::, n)
Bi Warehouse for ith production unit
n Number of production units
d Demand rate for the finished product
lij Product consumption coefficient i used in the

production of product j by the production unit J.
ai The life of ith production unit
ui(t) Production rate of the ith unit, (i = 1, 2, :::, n)
umaxi Maximum production rate of the ith production

unit
umaxn Maximum production rate of the final

production unit
uRi Rework rate of the ith rework unit
Ri Return rate per unit of time
R The number of reworked products of the ith

production unit, (i = 1, 2, :::, n)
SC Scrap rate of products
ξ(t) Transition rate of the production unit
Q(t) State transition matrix of production unit
Z1i Control point of the level inventory of ith

warehouse for production with maximum
production rate

Z2i Level of ith warehouse threshold (ith warehouse
capacity)

Zpi Control point of inventory level of warehouse
for the implementation of preventive and
Corrective maintenance operations,
(i = 1, 2, :::, n)

Zti Control point of Time between two corrective
repairs for the implementation of preventive and
corrective maintenance operations,
(i = 1, 2, :::, n)

λi Average time of preventive maintenance of the
ith production unit, (i = 1, 2, :::, n)

μi Average time to production unitary out
preventive and corrective maintenance of the ith$
production unit, (i = 1, 2, :::, n)

Zb Control point of the final production unit
backlog

K Maximum allowable shortage for the final
production unit

‘�i tð Þ Number of lost sales per unit of time
hRi The rework cost of the ith production unit per

unit product (i = 1, 2, :::, n)
hsci The scrap cost of the ith production unit per unit

product (i = 1, 2, :::, n)
CMi The number of times of corrective maintenance

for the ith production unit (i = 1, 2, :::, n)
PMi. The number of times of preventive maintenance

for the ith production unit (i = 1, 2, :::, n)
S1i The corrective maintenance cost of the ith .

production unit

(continued)
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5.3. Equations
5.3.1. The state of production units. The symbols represent

the state of the production unit at time t, which follows a

semi-Markovian random process with possible values of

or i(t)= f1, 2, 3g. The Q(t) matrix also indicates how the

state of the production unit changes from each of the

defined states in ji (t).
51

ji tð Þ=
1 ith production unit is opertional

2 ith production unit is under repair

3 ith production unit is under preventive Maintenance

8<
:

ð1Þ

Q tð Þ=
�(q12i aið Þ+ q13i) q12iai q13i

q21i �q21i 0

q31i 0 �q31i

2
4

3
5 ð2Þ

As mentioned in the signs and abbreviations section, ai
represents the life of the ith production unit is opertional
production unit. The failure of the production unit is depen-

dent on its life, which increases as the unit ages. The failure

occurs at a rate of q12i aið Þ, which also increases with the

age of the unit. When a failure occurs, the unit undergoes

corrective repair and returns to operational mode.

Maintenance and repair operations are also necessary to

address bottlenecks, system decline, and restore the unit’s

life even when it is functioning properly. Preventive main-

tenance and repair bring the age of the unit back to zero.

The failure rate, q21i, indicates the transition from opera-

tional to production unit failure and is determined by the

age of the unit. Transitioning from operational mode to pre-

ventive maintenance and repair mode only occurs when the

system is operating, which means q23i = 0. Consequently,

after maintenance and preventive operations, it is not possi-

ble to transition to Mode 2, which involves unit failure and

corrective repair operations (q32i= 0).

5.3.2. Production rates equations. The production rate of

each production unit varies depending on whether it is

operational or under repair. The equations for calculating

the production rates are as follows:

ui tð Þ= 0 If ith production unit is under repair

0, Umax½ � If ith production unit is opertional

�
ð3Þ

5.3.3. Maximum rate of production. In this article, it is

stated in equation (4) that the production process does not

allow for forward and backward movement. When the pro-

duction unit undergoes repair, i.e., ui tð Þ= 0, production is

halted and the production rate becomes zero. However, if

the production unit is in good condition and there is a

demand for the desired product, as well as enough storage

capacity in the production unit’s warehouse, the produc-

tion rate will fluctuate between zero and the machine’s

maximum production capacity. Each production unit has a

defined maximum production rate, which is determined by

equations (5) and (6). These Equations establish the condi-

tions for system stability and the ability to meet the

demands of intermediate production units, as well as the

final production unit’s product demand.1

lij= 0 if j\ i ð4Þ

Table 2. Continued

Signs Description

S2i The preventive maintenance cost of the ith

production unit
hi The holding cost of the ith production unit per

unit product (i = 1, 2, :::, n)
π̂i The lost sale cost of the ith production unit per

unit product (i = 1, 2, :::, n)
‘̂i e backlog cost of the ith production unit per unit

product (i = n)
Cp The perishable cost of the ith production unit per

unit product (i = 1, 2, :::, n)
Ci The production cost of the ith production unit

per unit product (i = 1, 2, :::, n)
U tð Þ Maintenance and repair costs of the ith

production unit for each repair (i = 1, 2, :::, n)
xi tð Þ Inventory level of ith producon unit

(i = 1, 2, :::, n)
K tð Þ Maintenance and preventive repairs of the ith

production unit for each repair (i = 1, 2, :::, n)
PP Perishable Parts
UPC Unit Production Cost i
TPC Total Production Cost
UHC Unit Holding Cost
THC Total Holding Cost
TPrC Total Perishable Cost
UPC unit perishable cost
ULsC Unit Lost sale Cost
TLsC Total Lost sale Cost
UBC Unit Backlog Cost
TBC Total Backlog Cost
RC Rework cost
TRC Total Rework Cost
SC Scrap cost i
TSC Total Scrap Cost
UCMC unit Corrective maintenance cost
TCMC Total Corrective Maintenance Cost
NCM Number of Corrective Maintenance
UPMC unit Preventive maintenance cost
TPMC Total Preventive Maintenance Cost
NPM Number of Preventive Maintenance
ATC Average total cost
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umaxi (t).
X

liju
max
j ð5Þ

umaxn (t). d ð6Þ

5.3.4. Inventory level. Equations (7) and (8) define the

inventory level of the intermediate production unit’s prod-

ucts and the final production unit’s products, respectively.

In addition, equation (9) represents the inventory amount

that is returned to the reworking phase.

xi(t)=

ð
(ui tð Þ+ uRi

tð Þ

�
X
j. i

lijui(t)) dt, xi 0ð Þ= x0i , 14 i\ n,

xi tð Þ : integer

ð7Þ

xn(t)=

ð
un tð Þ+ uRn

tð Þ � d xn tð Þð Þ � P(t) ð8Þ

xR(t)=Ri � uRi
(t) ð9Þ

xi(t)ø 0 ð10Þ

d xn tð Þð Þ= d xn tð Þø � K

0 Otherwise

�
ð11Þ

The limitations of inventory levels for the intermediate

production units and the final production units product in

the warehouses are expressed in the following equations,

respectively.

� K4 xn tð Þ4 Z2n ð12Þ

04 xi tð Þ4 Z2i i 6¼ n ð13Þ

Equation (12) states that only the shortage of K units of

a specific type of scrap are allowed, and any excess

demand is treated as lost sales. However, this rule does

not apply to the middle warehouses.

The objective function of the problem described below

aims to minimize the mathematical expectation of the total

cost per unit time. This includes production costs, mainte-

nance costs, shortage costs (including lost sales and reten-

tion), repair costs (both corrective and preventive), costs of

reworking, and costs of items Perishable.

J a, u, x, pð Þ=

Min lim
T!‘

1

T
E

ðT
0

hi x
+
i tð Þ+ p̂i x

�
i tð Þ+ ‘̂i‘

�
i tð Þ

h8<
:

+Cp P tð Þ+
Xn
i

CiXi +
Xn
i

CMiS1i +
Xn
i

PMiS2i

+
Xn
i

hRi
Ri +

Xn
i

hsciSCi

#
dt j X 0ð Þ=X0, z 0ð Þ= 1

)

ð14Þ

x�i tð Þ=Max �xi tð Þ, 0ð Þ ð15Þ

‘�i tð Þ=Max(lost sale, 0) ð16Þ

5.3.5. Determining the age of the production unit. Within this

system, the age of the production unit is determined by the

level of production. As production increases, the age of the

production unit also increases based on a specific coeffi-

cient, indicated by equation (17).

ai(t)= kui(t) ð17Þ

5.3.6. Production control policy. Planning production systems

that are vulnerable to failure can be a highly intricate task.

Rishel52 has demonstrated that the optimal solution for

such systems lies in the paired solution of the Hamilton-

Jacoby Bellman equations. In cases where analytical solu-

tions are not available for complex systems, the limiting

point policy can be employed to minimize the objective

function of the problem. This policy is straightforward to

understand and execute. The control policy outlined in this

article is as follows:

ui 6¼n(t)=
0 xi(t). z2i
umaxi xi tð Þ+ umaxi \ z2i
z2i � xi(t)½ � Otherwise

8<
: ð18Þ

ui= n(t)=
0 xi � d. z2i
umaxi xi + umaxi + umaxrem � d\ z2i
z2i � xi � dð Þ Otherwise

8<
: ð19Þ

The production rate of each production unit is deter-

mined by z2i, which represents the inventory threshold

level of each warehouse. Therefore, z_2i is defined as the

decision variable.53

5.3.7. Decision variables. At each stage of production five

control points z1i, z2i, zpi, zti and zb we have. z1i means that

if the inventory level of the ith production unit reaches z1i,

the system produces with maximum production power. z2i
is the maximum warehouse capacity of the ith production

unit. zpi point control, maintenance and repairs, is that if

the level of inventory production unit ith to zpi reach and

the time between the two repairs revamped its production

unit also zti be reached preventive maintenance is that in

terms of logical z1i have the following zpi be. There is

another variable called zb, which is the control point of the

backlog shortages.

5.3.8. Objectives. The purpose of this article is to reduce

the average total cost of production through various strate-

gies such as maintenance, repair, preventive maintenance,

and the prevention of backlogs, lost sales, rework, scrap,

and Perishable of items. In previous studies, there has been
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a lack of consideration for selecting the best maintenance

policy that takes into account both reliability and optimi-

zation of production while also considering existing risks

such as unstable items, production unit failures, non-

definite network systems, and various restrictions such as

limited warehouse capacity and production capacity. This

article aims to fill that gap and provide new insights.

The mathematical formulation introduces a novel para-

meter, failure rates, which explicitly captures the probabil-

istic impact of defective products on the production failure

rate. Unlike previous studies that assume deterministic fail-

ure rates, our model incorporates dynamic interactions

between maintenance strategies and inventory levels. In

addition, the optimization framework employs a hybrid

approach, combining stochastic and deterministic methods

to enhance solution accuracy and computational efficiency.

Also, the mathematical formulation also incorporates a

novel parameter, Ri, which captures the probabilistic rate

of rework associated with defective products. This addition

highlights the dynamic relationship between the failure

rate and the rework process, addressing the iterative feed-

back loop between production quality and maintenance

strategies. Unlike previous studies that treat rework rates

as constant or negligible, our model accounts for how var-

iations in production conditions and maintenance efforts

influence rework rates over time. Combined with failure

rate this comprehensive approach enables a more accurate

depiction of the interplay between maintenance, inventory,

and production dynamics. The mathematical formulation

also integrates the principles of Reliability-Centered

Maintenance (RCM) into the optimization framework. By

incorporating failure rates and the model enables the eva-

luation of maintenance policies based on their ability to

minimize system failures and rework rates. Unlike conven-

tional maintenance strategies, which often apply uniform

or reactive approaches, RCM considers the criticality and

reliability of each production unit to prioritize preventive

and corrective actions. This allows the model to dynami-

cally adjust maintenance schedules and inventory levels,

optimizing the system’s overall performance. The hybrid

optimization approach further ensures that RCM policies

are evaluated in scenarios with varying levels of uncer-

tainty, enhancing both the practical applicability and

robustness of the proposed framework. Previous models

typically relied on fixed inventory levels or traditional

maintenance policies, whereas our model introduces

dynamic and adjustable variables. Many studies have

focused on a single aspect of the system, such as produc-

tion or maintenance. In contrast, our model considers the

multi-dimensional interaction between production, mainte-

nance, and inventory.

5.3.9. Total production cost. To calculate system costs, we

need to consider production costs, maintenance costs,

shortages (such as loss and lost sales), Perishable, rework,

scrap, and maintenance and repair costs. These costs

should be calculated separately for each occurrence of

maintenance, corrective repairs, and preventive repairs.

After calculating the individual costs for each category,

we can then determine the total cost for each. Finally, the

total cost of the system is determined based on the specific

problem objective.

The production cost is defined as the cost of producing

one unit of a product i, which is then included in the over-

all production cost of the product i. After that, the total

production costs are added together and the average is cal-

culated over time.

PCi =PCi +Ci ð20Þ

TPCi =
Xn
i= 1

(PCi) ð21Þ

5.3.10. Total holding cost. To calculate the total holding cost

for a product, follow these steps:

1. Multiply the maximum inventory in the warehouse

at any given time by the cost associated with main-

taining the product.

2. Add together the costs of maintaining the product

for each process.

3. Calculate the average cost during the simulation

period.

THC=
Xn
i= 1

hi 3MX (Xi tð Þ, 0)½ � ð22Þ

5.3.11. Perishable and shortage costs. The cost of perishable

and shortages, which includes the cost of shortages and

lost sales, is calculated in a similar manner as the mainte-

nance cost. These costs are expressed using the following

equations:

TPrC=
Xn
i= 1

UPC i 3MX (PP, 0)½ � ð23Þ

TBC=
Xn
i= 1

UBC i 3MX (backlog, 0)½ � ð24Þ

TLsC=
Xn
i= 1

ULsC i 3MX (lost sale, 0)½ � ð25Þ

5.3.12. Rework and scrap costs. The calculation of rework

costs and scrap costs is as follows: when a unit of product

i reaches the rework stage or is considered scrap, its cost

is included in the total rework and scrap cost. The total

Tavan et al. 13



rework and scrap costs are then added together separately,

and the time average is calculated.

RC i = RC i + URC i ð26Þ

TRC=
Xn
i= 1

(RC i) ð27Þ

SC i = SC i + USC i ð28Þ

TSC=
Xn
i= 1

(SC i) ð29Þ

5.3.13. Corrective and preventive maintenance costs. The cost

of maintenance and repair depends on how often both cor-

rective and preventive maintenance operations are per-

formed. Therefore, the cost of maintenance is calculated

for each instance when maintenance and repair are not pro-

duction unit out or when the production unit needs to be

stopped for preventive maintenance and repair. Finally, the

average time is used to calculate the total cost.

TCMC=
Xn
i= 1

UCMC i 3MX (NCM , 0)½ � ð30Þ

TPMC=
Xn
i= 1

UPMC i 3MX (NPM , 0)½ � ð31Þ

To calculate the total cost of the system, we need to

consider several factors. These include the data from the

static module, average production, maintenance costs,

shortages and perishable costs, rework and scrap, as well

as maintenance and repair costs. All of these costs are cal-

culated and combined over a certain period of time. The

overall cost of the system can be calculated using the equa-

tion provided in the ARENA software.

ATC = TTPCð Þ+ TBCð Þ+ THCð Þ+ TLsCð Þ
+ TPrCð Þ+(TRC)+ (TSC)+ (TCMC)

+ (TPMC)

ð32Þ

6. Simulation modeling

Simulation is an effective tool for solving complex prob-

lems related to failure-prone systems with uncertainty.

This article presents a simulation study of a hypothetical

system, conducted in three different sizes: small (with four

production units), medium (with six production units), and

large (with ten production units). The simulation was per-

formed using ARENA 14.0 software. The stages of the

simulation process for the network failure-prone system

are described in eight separate stages.

6.1. Defining variables and model parameters

During the initial stages of simulation modeling, the para-

meters and variables of the assumed model are established.

The values of variables, such as the decision of the five-

point control z1i, z2i, zpi, zti and zb, are defined and initia-

lized before the modeling process begins. Throughout the

simulation, these values are modified using the Tabu

search algorithm. Additional variables in the model,

including the total cost of inventory maintenance, the total

cost of production unit, the total cost of production, and

the Perishable of items, are also defined and their values

determined during the simulation.

The system parameters are universal parameters that

remain constant throughout the simulation, regardless of

the scenario. These parameters encompass various aspects

such as the demand rate for the finished product, the con-

sumption coefficient of the intermediate production unit,

maintenance costs, shortages, Perishable, production per

unit of the product in each period, and the initial inventory

of the warehouse.

The model simulation for each production unit con-

sists of three stages. These stages involve simulating the

production line, followed by simulating maintenance and

preventive repairs. Finally, maintenance and corrective

repairs are simulated for each production unit

individually.

Entry of parts. Each entity’s entry marks the start of a

production process during each simulation period. Parts

are introduced into the system, specifically into each pro-

duction unit, at a constant rate of umaxi , measured in min-

utes. Therefore, the time interval between two consecutive

entries is equal to 1
umax
i

.

Time Between Arrival=
1

umaxi

ð33Þ

6.2. Production of intermediate products

After setting up the institution and entering the necessary

parts, the model variables are defined. Then, the produc-

tion unit mode is examined. If the production unit is under-

going corrective or preventive repair, production is halted

and the part is removed from the system. If not, the avail-

ability of all materials (i.e., the amount of stage i products

required to produce a unit of product j is checked before

production begins. If there is insufficient stock on hand,

production stops. Otherwise, it continues. At this point,

three scenarios can occur based on the control policy

defined in equation (18):

1. If the inventory at Time t, (xi(t)), exceeds the ware-
house capacity z2i, production stops and no further

production takes place.
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2. If the relationship xi tð Þ+ umaxi \ z2i holds, pro-

duction is production unit out at maximum

capacity.

3. Otherwise, production occurs at the rate

z2i � xi(t)½ �.

Once the production process is completed, the production

unit obtains the necessary resources and releases them

after a delay in the production of items. The delay is con-

stant and its duration is equal to the reciprocal of the pro-

duction rate, measured in minutes. This represents the time

between the production of two items. After production, a

unit is added to the warehouse inventory. Figures 4–6 dis-

play the simulation model for the production process of

intermediate products.

6.3. Production of the final product

The process of producing the final product is similar to

producing intermediate products, with the exception that

the control policy used is calculated according to equation

(19). As a result, the following three scenarios may occur:

1. If the current inventory exceeds the warehouse

capacity (z2i) at the time t minus demand

(xi � d. z2i), no production will occur.

2. Production will be production unit out at maxi-

mum capacity if the relationship

xi + umaxi + umaxrem � d\ z2i is met.

3. Otherwise, the production process will continue at

a rate of z2i � xi � dð Þ½ �.

There is another difference between this stage of produc-

tion and the production of intermediate products, and it

relates to deterioration items. After the final product is

made, the time it enters the warehouse is recorded. When

a customer makes an order, the production unit is taken

from the warehouse to meet the demand. If the items that

are taken out have been stored in the warehouse for longer

than the specified period, they are considered expired and

Figure 4. Simulation modeling for the first production unit.

Figure 5. Simulation modeling for the second production unit.
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cannot be used anymore. Otherwise, the product is consid-

ered to be in good condition. The deteriorate item is then

checked. Figure 7 shows the process of producing the final

product.

6.4. Customer entry, demand, and shortage of
supply process

The system facilitates customer entry and the process of

fulfilling their demands. When a customer logs in, the

warehouse inventory is checked using two modes:

1. If the warehouse has inventory available, a signal

is sent to release the items for the final stage of

production. The customer then waits for the prod-

uct to be received and delivered. Upon receiving

the items, if they are in good condition, the cus-

tomer exits the system, and both the inventory of

healthy items and the inventory of the final product

are reduced. In case the delivered product is dam-

aged, the customer remains in the system, waiting

to receive a replacement.

2. If the warehouse does not have enough stock, cus-

tomers have to wait for the items to be produced

and received. If the number of customers in the

queue exceeds a certain limit (k), new customers

are not allowed to join the queue and are directed

to leave the system.

It is important to note that customers who receive expired

items are treated similarly to those who face a shortage of

items. Both types of customers wait in line for the items to

be produced. They then receive their items and exit the

system in order of priority.

For further details on the demand process, please refer

to Figure 8.

6.5. Implementation of maintenance and repair
policy

Implementation of maintenance and repair policy aims to

highlight the importance of planning for maintenance,

improve productivity, address bottlenecks caused by pro-

duction unit failures, and enhance operational and product/

service quality. In this system, the failure of a production

unit depends on its age and production rate. Over time, the

number of stochastic breakdowns increase, necessitating

more maintenance and repair work. When a production

Figure 7. Simulation modeling for the final production unit.

Figure 6. Simulation modeling for the third production unit.
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unit breaks down, production is halted and corrective

repair operations are initiated. Once maintenance and

repair are completed, the production unit is reintegrated

into the production process.

One of the objectives of this system is to schedule pre-

ventive maintenance at specific intervals. If a production

unit is undergoing maintenance and corrective repairs, it is

temporarily removed from the system. This means that pre-

ventive maintenance and repairs are not production unit out

during this time, unless the production unit has suffered sto-

chastic damage. However, if the desired production unit is

available and production is temporarily suspended, preven-

tive maintenance and repair operations will be executed,

and the next scheduled time will be awaited. By conducting

preventive maintenance and repairs, the lifespan of the pro-

duction unit is effectively reset to zero, restoring the

machine or production unit to its original factory state.

Figure 9 illustrates corrective and preventive maintenance.

7. Accuracy of the model

In this section of the article, we aim to assess the validity

and reliability of the model being studied, which is a

crucial aspect of modeling and simulation. The purpose of

this assessment is to compare the model with our mental

model through computer simulation, allowing us to deter-

mine its level of accuracy.

First, we examine whether the model is correctly defined

in the computer code. Second, we assess whether the com-

puter code accurately represents the logical structure of the

model and its input parameters. To address these questions,

we have created flow diagrams for each scenario. These dia-

grams outline all the necessary actions and steps, building

upon the information presented in the previous section. The

scenarios cover various aspects, including product production

during construction, final product production, production unit

failure, maintenance and preventive repairs, customer arrival,

and items Perishable that shown in Figures 10–14.

The model’s rationality is thoroughly examined by con-

sidering multiple input parameters and ensuring the direc-

tion of institutional movement. After the simulation, all

input parameters are production unit reviewed to prevent

any changes. Moreover, during the implementation of the

model, the Equations provided in this chapter, including

the evaluation of production rates, are utilized to ensure

institutions stay on the right track.

Figure 8. Simulation modeling for the demand of final production unit.

Figure 9. Simulation modeling for the maintenance and repair policy.
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8. Validation

The validity of a simulation model is crucial because it

directly impacts the decisions based on its results. To

determine the validity of a model, its simulated behavior is

compared to the actual behavior of the system. This pro-

cess involves continuously adjusting the model to accu-

rately reflect the real system. Various tests, both subjective

and objective, are used to compare the model to reality.

Subjective tests involve experts evaluating the system’s

input and output, while objective tests require data on the

system’s behavior and corresponding data from the model.

In the context of model validation, Naylor and Finger54

proposed a widely used three-step method.55 The proce-

dure is as follows.

8.1. Step 1—designing the visual model

The primary objective of a simulation model designer is to

ensure that the model is logical and understandable to its

users. Sensitivity analysis is employed for this purpose.

For example, if the customer login rate is changed, it is

expected to affect the queue length. The model can also be

used to analyze other sensitivities, such as the impact of

changing production unit consumption coefficients and

initial inventory on overall costs. Increasing the customer

entry rate visually shows a decrease in queue length. In

addition, changes in consumption coefficients have a sig-

nificant effect on overall costs.

8.2. Step 2—assessing model assumptions

Model assumptions can be categorized into two main

types: structural assumptions and data-related assump-

tions. Structural assumptions deal with issues related to

system performance and often involve simplifying and

abstracting reality. For example, in this model, it is

assumed that customers who receive defective items are

Figure 10. Flow diagram of product production in the manufacturing process.

Figure 11. Breakdown flow diagram of the production unit.
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given priority in the queue over customers with pending

orders, and they form a separate queue. This assumption is

based on practical observations of the organization’s poli-

cies. Assumptions about data should be based on reliable

data compilation and proper statistical analysis. If the data

being collected is from a real system, consulting with sys-

tem administrators and using objective statistical tests can

increase the reliability of the data. In the case of Arna-

assisted simulation, assumptions about production unit

failures and the creation of a shared queue for customers

using data and main modules are possible. In this article,

all the assumptions of the hypothetical system have been

translated from mathematical language into Arna simula-

tion language.

8.3. Step 3—assessing the accuracy of input-to-
output conversions

The final evaluation of the model, and essentially the only

objective evaluation, is to determine whether the model,

when provided with actual data as inputs and implementing

the designated policy, is able to predict the future behavior

of the real system. In this article, the simulation model’s

outputs are calculated manually using the specified inputs,

and the behavior of the simulated system is then examined

based on these outputs. The results demonstrate that the

obtained responses align with those of the simulated model.

8.4. Assessing model validity through statistical
analysis

To ensure the statistical validity of the proposed model,

three variables—maintenance time, permissible shortage,

and warehouse level—were analyzed. The objective was to

determine whether changes in these variables caused a sta-

tistically significant difference in total costs, as observed

through simulation results. A paired t-test, with a 95% con-

fidence level, was employed for this purpose. The simula-

tion results for each variable are presented in Table 3.

8.4.1. F-test for equal variances. Before performing the

paired t-tests, an F-test was conducted to confirm the

assumption of equal variances between the two groups in

each comparison. The hypotheses for the F-test are as

follows:

� Null hypothesis (H0): The variances of the two

groups are equal (s1 =s2).
� Alternative hypothesis (H1): The variances of the

two groups are not equal (s1 6¼ s2).

H0 : s1 =s2

H1 : s1 6¼ s2

�

Table 4 provides the F-test results comparing variances

between the base model and the model with increased

maintenance and preventive maintenance time. Since the

P-value (0.14) is greater than 0.05, the assumption of equal

variances is accepted. Thus, it is valid to proceed with the

paired t-test.

8.4.2. Paired t-test: increased maintenance time. To analyze

the effect of increasing maintenance and preventive main-

tenance time on total costs, a paired t-test was performed.

The hypotheses are:

� Null hypothesis (H0): The averages of the two

groups are equal (m1 =m2).
� Alternative hypothesis (H1): The averages of the

two groups are not equal (m1 6¼ m2).

H0 : m1 =m2

H1 : m1 6¼ m2

�

Figure 12. Preventive maintenance and repair procedures flow
diagram.
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The results are summarized in Table 5, showing a one-

tailed P-value of 0.04, which is less than 0.05. Therefore,

we reject the null hypothesis and conclude that increasing

maintenance time significantly impacts total costs com-

pared to the base model.

8.4.3. F-test and t-test: increased shortages. Similar analyses

were conducted for the scenario where shortages in the

final production unit were increased. Table 6 shows the F-

test results, where the P-value (0.24) is greater than 0.05,

confirming equal variances.

Figure 13. Customer login flow diagram.

Figure 14. The case of product perishable.
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H0 : s1 =s2

H1 : s1 6¼ s2

�

The paired t-test results in Table 7 indicate a significant

difference in total costs (P= 0:03). This suggests that

allowing for increased shortages significantly affects costs

compared to the base model.

8.4.4. F-test and t-test: increased warehouse levels. Finally,

the impact of increasing warehouse levels on total costs

was evaluated. Table 8 confirms equal variances between

the base model and the model with increased warehouse

levels, as the p-value (0.43) exceeds 0.05.

H0 : s1 =s2

H1 : s1 6¼ s2

�

Table 3. The results of the increase in each of the mentioned variables.

Number of
simulation
repetitions

Main
model

Model 1
(increased preventing
maintenance time)

Model 2
(increased
shortages)

Model 3
(increased
z2i)

1 1,154,691 1,267,731 1,196,910 1,203,789
2 1,154,147 1,269,136 1,294,329 1,291,648
3 1,258,450 1,269,589 1,283,882 1,276,763
4 1,207,160 1,213,304 1,365,332 1,235,900
5 1,211,025 1,251,920 1,231,195 1,296,444

Table 4. The F-test examines the equality of variances between
the production units with increased maintenance and repair time
and the base model.

Main
model

Model 1
(increased preventing
maintenance time)

Mean 1,197,095 1,254,336
Variance 1,925,603,250 580,137,108
Observations 5 5
df 4 4
F 3.32
P(F <= f) one-tail 0.14
F Critical one-tail 6.39

Table 5. Pair of t-tests conducted to analyze the discrepancy in
maintenance and repair time between the increased model and
the base model.

Main
model

Model 1
(increased preventing
maintenance time)

Mean 1,197,095 1,254,336
Variance 1,925,603,250 580,137,108
Observations 5 5
Pearson Correlation − 0.17
Hypothesized Mean
Difference

0.00

df 4.00
t Stat − 2.39
P(T <= t) one-tail 0.04
t Critical one-tail 2.13

Table 6. The F-test is used to determine if there is equality of
variances between the final production unit and the base model,
while allowing for an increase in the allowed shortages.

Main model Model 2
(increased backlog)

Mean 1,197,095 1,274,329
Variance 1,925,603,250 4,156,789,161
Observations 5 5
df 4 4
F 0.46
P(F <= f) one-tail 0.24
F Critical one-tail 0.16

Table 7. Paired t-test, which examines the discrepancy
between increasing the allowable shortage of the final
production unit and the base model.

Main
model

Model 2
(increased allowable
backlog)

Mean 1,197,095 1,274,329
Variance 1,925,603,250 4,156,789,161
Observations 5 5
Pearson Correlation 0.29
Hypothesized Mean
Difference

0

df 4
t Stat − 2.60
P(T <= t) one-tail 0.03
t Critical one-tail 2.13
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The paired t-test results in Table 9 show a p-value of

0.02, indicating a statistically significant difference in

costs. Therefore, increasing warehouse levels also has a

notable impact on total costs compared to the base model.

H0 : m1 =m2

H1 : m1 6¼ m2

�

These results validate the proposed model’s ability to

evaluate the cost implications of adjustments to mainte-

nance, shortages, and inventory levels effectively.

9. Case study

The production system is susceptible to failure in an

ambiguous network consisting of four production units as

shown in Figure 15.

This is done in order to ascertain the optimal production

rate and timing for preventive maintenance and repair. The

potential demand for final items is measured in units of items

per unit of time, and the maximum production rate per unit

of production is set according to the following criteria. It

should be noted that the production rates are determined

using the relationships outlined in equations (5) and (6).

� When the demand for the final product is equal to

1 unit of items per unit of time, the production rate

for the first to third production units (in units of

items per unit of time) is determined as follows:

umax1 = 180, umax2 = 60, umax3 = 20, umax4 = 5

� The production rate of the first to third production

units (units of items per unit of time) is determined

as follows if the demand for the final product is

equal to 3 units of items per unit of time:

umax1 = 270, umax2 = 84, umax3 = 26, umax4 = 8

� The production rate of the first to third produc-

tion units (measured in units of items per unit of

time) is determined based on the demand for the

final product, which is equal to 6 units per unit

of time.

Figure 15. Failure-prone manufacturing system with 4 production unit.

Table 9. Paired t-test, which examines the discrepancy
between different warehouse production levels and the base
model.

Main model Model 3
(increased Z2i)

Mean 1,197,095 1,260,909
Variance 1,925,603,250 1,586,805,378
Observations 5 5
Pearson Correlation 0/33
Hypothesized Mean Difference 0
df 4
t Stat − 2.94
P(T <= t) one-tail 0.02
t Critical one-tail 2.13

Table 8. The F-test results for comparing the variances among
different warehouse production levels and the base model.

Main model Model 3
(increased Z2i)

Mean 1,197,095 1,260,909
Variance 1,925,603,250 1,586,805,378
Observations 5 5
df 4 4
F 1.21
P(F <= f) one-tail 0.43
F Critical one-tail 6.39
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umax1 = 360, umax2 = 108, umax3 = 32, umax4 = 11

� If the demand for the final product is 10 units of

items per unit of time, the production rate of the

first three production units (measured in units of

items per unit of time) is determined as follows:

umax1 = 480, umax2 = 140, umax3 = 40, umax4 = 15

The maximum number of passport requests is k = 10

(units of items).

The consumption coefficients are defined as

l12 = 3, l13 = 3, l14 = 4, l23 = 7, l24 = 5 and l34 = 1

This means that to produce one unit of product on

Machine 4 (final product), 4 units of the product from

Machine 1 (l14 = 4), 5 units of the product from Machine

2 (l24 = 5), and 1 unit of the product from Machine 3

l34 = 1ð Þ, are required. Similarly, to produce one unit of

product on Machine 3, 3 units of the product from

Machine 1 (l13 = 3), and 7 units of the product from

Machine 2 (l23 = 7), are required. To produce one unit of

product on Machine 2, 3 units of the product from

Machine 1 (l12 = 3) are utilized. In addition, it is assumed

that at the initial time of the simulation, the inventories of

Machines 1, 2, and 3 have initial stock, while the inven-

tory of Machine 4 is empty. Accordingly, the initial inven-

tory levels for each product are defined as follows:

(x1 = 70, x2 = 50, x3 = 5, x4 = 0)

The capacity of each warehouse (z2) is also taken into

consideration in the following manner:

(Z21= 3000, Z22= 500, Z23 = 300, Z24 = 15)

The average duration of maintenance and preven-

tive repairs of the production unit is calculated using

the exponential distribution with parameters

m3 = 25,m2 = 20, m1 = 15 and m4 = 30 (in time

unit), This optimization of the decision variable is

crucial for achieving the objectives of the problem.

We also consider the average maintenance and repair

time, represented by l3 = 40, l2 = 30, l1 = 25 and

l4 = 60 (in time unit).

The cost of holding each product in the warehouse is

h3 = 20, h2 = 15, h1 = 10$ and h4 = 25 per unit time. It

has been observed that the cost of storing items increases

due to the increase in value added.

The cost of storing items has been observed to increase

due to the increase in value added. In addition, if items

remain in storage for 90 days, they become unusable. The

cost of shortage of fuel per unit of items is Cp = 60. The

cost of Perishable per unit of items is measured in units of

money. The cost of lost sales per unit of items is ‘̂= 90

units of money. The cost of a lost sales deficit, which

occurs when the organization’s credit is deducted, is

higher than the cost of a deficit. Furthermore, the cost of

producing each unit of product i per unit of time is

c1 = 10, c2 = 20, c3 = 30, and c4 = 40. The production

of defective items is influenced by the age of the produc-

tion unit. As the life of the production unit increases, the

likelihood of producing a defective product also increases.

However, preventive maintenance and repairs can reset

the age of the production unit back to zero, reducing the

chances of defect production.

A control point, referred to as, is defined to determine

the optimal timing for preventive maintenance and repairs.

When the inventory level reaches this point, preventive

maintenance and repairs will be production unit out.

The simulation lasts for 365 working days of 8 h. To

determine the number of repetitions for each scenario, we

use the equations (34)–(39). Assuming a relative confi-

dence interval of 23% and a probability of committing the

first type error of 0.05 (a= 0:05), the minimum required

repetitions are 5. This means that each scenario will be

repeated 5 times. In this particular example, the coefficient

of change is estimated to be approximately 12% based on

the number of repetitions. It is important to note that the

line balance is taken into consideration when determining

the system parameters in the above numerical example.

The simulation of this system utilizes 5 independent

and distributed IIDs to execute each scenario in the model.

This requires initializing both the system and the statistics.

Each iteration begins with an empty system at zero time

and ends after 365 days. The use of a random number gen-

erator ensures that the values generated are independent

and distributed across iterations. This information is

included in the model, and the simulation is then initiated

using the Arena software. Following the simulation, an

analysis of the inventory level and production rate charts,

as well as an analysis of the system costs, will be

conducted.

The parameters utilized in simulation of case study is

shown in Table 10:

9.1. Replications and duration of simulation

To perform analysis on the model outputs, it is important

to determine the appropriate number of replications and

the duration of execution. The number of simulation itera-

tions can be determined using a coefficient index of

changes, which indicates the ratio of the standard devia-

tion to the mean of the data. The coefficient of change can

be calculated using the following equation:

C:V =
s

m
ð34Þ

We use the following estimator to estimate the coeffi-

cient of change.
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C:V =
S

�X
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1 (xi � �X i)

2
=(n� 1)

q
Pn

i= 1 xi=n
ð35Þ

In this case, X represents the average total cost of the

system per unit of time per simulation. Meanwhile, n

denotes the number of performances. The estimated cost of

the system can be determined by considering the distance.

�X6ta
2
;n�1

Sffiffiffi
n

p ð36Þ

As n increases, the distance estimate becomes shorter

and approaches the point estimate. To reduce the length of

the distance estimate from a specific value, l, the number

of simulation runs is determined. In order to achieve this,

the following relationships are utilized:

2ta
2
;n�1

Sffiffiffi
n

p 4 l ð37Þ

The length of the distance estimation, l, is measured by

dividing the parties in the relationship and calculating the

ratio of the mean data.

2ta
2
;n�1

S

�X
ffiffiffi
n

p 4
l

�X
ð38Þ

IF l
�X
= L, we will have:

nø 2ta
2
;n�1

C:V

L

� �2
ð39Þ

Therefore, in order to establish the relationship men-

tioned above,1 the value of n must be selected accordingly.

If the relative confidence interval is 23% and the probabil-

ity of committing a type I error, a, is 0.05, a minimum of

5 repetitions is required. This means that each scenario

should be repeated 5 times. In this particular example, the

coefficient of change is estimated to be approximately

12% based on the number of repetitions. It is important to

note that in the numerical example provided, the line bal-

ance is taken into consideration when determining the sys-

tem parameters. Furthermore, the simulation of this system

utilizes 5 independent and identically distributed (IIDs)

scenarios, initializing both the system and the statistics. As

a result, each iteration begins with an empty system at time

zero and concludes after 365 days. The use of a random

number generator ensures that the generated values are

independent and distributed throughout the iterations.

9.2. Analysis of the inventory level and production
rate of intermediate production units

In this section of the article, we will analyze the charts of

the inventory level and the production rate based on the

Table 10. Parameters used in simulation of this case study.

Parameter Value

Duration of each simulation run 365
k 10
l12 3
l13 3
l14 4
l23 7
l24 5
l34 1
MPR1 180, 270, 360, 480
MPR2 60, 84, 108, 140
MPR3 20,26, 32, 40
MPR4 5, 8, 11, 15
Unit backlog cost 60
Unit Corrective maintenance cost 1 2
Unit Corrective maintenance cost 2 2.5
Unit Corrective maintenance cost 3 2
Unit Corrective maintenance cost 4 4
Unit deterioration cost 3
Unit holding cost 1 20
Unit holding cost 2 15
Unit holding cost 3 10
Unit holding cost 4 25
Unit lost sale cost 90
Unit Preventive maintenance cost 1 2
Unit Preventive maintenance cost 2 2
Unit Preventive maintenance cost 3 2
Unit Preventive maintenance cost 4 3
Unit Production Cost 1 10
Unit Production Cost 2 20
Unit Production Cost 3 30
Unit Production Cost 4 40
Unit Rework Cost 1 1
Unit Rework Cost 2 1
Unit Rework Cost 3 1
Unit Rework Cost 4 1
Unit Scrap Cost 1 1
Unit Scrap Cost 2 1
Unit Scrap Cost 3 1.5
Unit Scrap Cost 4 1
X1 70
X2 50
X3 5
X4 0
Z1 3000
Z2 500
Z3 300
Z4 15
zp1 350
zp2 250
zp3 150
zp4 7
μ1 15
μ2 20
μ3 25
μ4 30
λ1 25
λ2 30
λ3 40
λ4 60

24 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



level of control defined for the intermediate production

units in equation (18). As mentioned earlier, the simulation

executes each scenario using independent and distributed

iterations. This means that the system and statistics are

initialized in each iteration, causing the simulation to start

at zero time and end after 365 days. Figures 16 and 17

depict the graph of the inventory level and the graph of the

production rate specifically for the first production unit.

As illustrated in Figure 17, the system follows a specific

control policy (equation (18)) to ensure that production

continues until the inventory level reaches the warehouse

threshold. Once the inventory reaches this threshold, pro-

duction stops and the required number of units for produc-

tion is supplied from the warehouse. This leads to a

decrease in the warehouse inventory level. During this

time, the production rate is zero due to a production unit

failure. At the 10th moment, the warehouse inventory

reaches zero and the production unit starts producing at its

maximum capacity to meet the demand of the next produc-

tion units, preventing any disruption in the production pro-

cess. Moments like the range of 30-10 show that even

though the warehouse inventory level is not zero, the pro-

duction unit operates at its maximum power due to a pro-

duction unit failure. This leads to a decrease in warehouse

inventory and once the production unit is back in opera-

tion, the inventory level increases again. The inventory

level of this particular production unit fluctuates between 0

and 3000, ensuring that it never faces shortages, which is

an important assumption of the problem. The production

rate of the first production unit varies and increases during

times when the inventory is zero, as indicated in the pro-

duction rate chart.

Figures 18 and 19 depict the inventory level and pro-

duction rate of the second production unit at any given

moment.

As shown, the production rate of the second unit also

fluctuates between zero and the warehouse level of 235,

ensuring it does not experience shortages. At the moment

of 100-50, the warehouse inventory level reaches zero,

prompting the production unit to operate at maximum

capacity. Prior to this, the production unit had already

started operating at maximum power, indicating that the

relationship had been established. For instance, at the

100th moment, a production unit failure occurred and the

production rate dropped to zero, resulting in a decrease in

Figure 17. Chart of the production rate of the production unit 1.

Figure 19. Chart of the production rate of the production unit 2.

Figure 16. Chart of the inventory level of the production unit 1.

Figure 18. Chart of the inventory level of the production unit 2.
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warehouse inventory. Once the production unit is repaired

and resumes production, the inventory level increases

again.

Figures 20 and 21 depict the inventory level and pro-

duction rate of the third production unit.

The analysis of this unit is identical to that of the first

and second units. The production rate in this unit can range

from zero to 500, but should not exceed this limit. Similar

to the previous units, unauthorized shortages are observed

in this unit, with inventory levels fluctuating between zero

and the third warehouse level of 300. Once the inventory

level reaches the warehouse level, production ceases and

the production rate drop to zero. From time 200 to 150, a

failure in the production unit occurs, leading to a decrease

in inventory levels. Following repairs, production resumes.

9.3. Analysis inventory level and production rate of
the final production unit

Figures 22 and 23 depict the inventory level and produc-

tion rate of the final production unit.

As stated in the hypotheses presented in the first and

third chapters, shortages are allowed in this production

unit. The control level of the unit follows relationship (19).

Figure 23 confirms the hypothesis of shortages, as the

inventory fluctuates between the permissible shortage rate

(10-) and the warehouse level of 35. In addition, there is a

Perishable of items in this production unit, which further

reduces the inventory level in the warehouse. When the

production unit reaches 0-50, it is unable to produce, lead-

ing to a production rate of zero. Consequently, demand is

fulfilled from the warehouse inventory, causing a decrease

in its level until the system encounters a shortage of 10

units of items.

9.4. Simulation optimization

After simulating the system, as discussed in the previous

section, the system optimization is performed using the

Scatter Plot tool. Arena is a widely recognized and power-

ful discrete simulation software globally. It offers various

Figure 21. Chart of the production rate of the production
unit 3.

Figure 20. Chart of the inventory level of the production
unit 3. Figure 22. Chart of the inventory level of the production

unit 4.

Figure 23. Chart of the production rate of the production
unit 4.
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capabilities and tools that enable analysts to analyze data

and model outputs at each stage of the simulation imple-

mentation. One of these tools is the Scatter Plot tool. This

tool helps identify the best scenario among thousands of

specified scenarios based on constraints and the target

function. Within this tool, multiple objective functions of

maximization and minimization types can be defined.

Tabu Search and Scatter Search algorithms are utilized by

this tool to identify the optimal scenario. The purpose of

utilizing this tool is to determine the most suitable sce-

nario for minimizing total production costs, maintenance

costs, items Perishable, scrap, rework, as well as corrective

and preventive maintenance and repairs.

Once decision variables are defined as control vari-

ables, which include optimal shortages, optimal capacity

of first to fourth machine warehouses, time required for

implementing preventive maintenance and repairs for

machines, as well as specific inventory for preventive

maintenance and repairs, and target functions are estab-

lished, the search for the optimal solution commences. As

shown in Figure 24 the model implementation results

reveal that the best scenario was selected after 400th itera-

tions, and no further changes occurred, indicating that the

model reached a stable state.

The results are presented in the Table 11:

The table below displays the optimal values of the deci-

sion variables corresponding to the graph above. These

values have increased from 1,125,000 monetary units to

1,080,000 in the 400 m repeat by incorporating these vari-

ables into the cost model.

9.5. Optimization model with Tabu search algorithm

The simulation of the Tabu search algorithm in the Arna

software is shown in Figure 25.

In this problem, the neighborhood radius for decision

variables is defined as: the neighborhood radius of the

threshold level of the first and second production unit stor-

age Z2i620½ �, the neighborhood radius of the threshold

level of the third and fourth production unit storage

Z2i63½ �, the neighborhood radius of the number of defi-

ciencies in the form of ½K61�, the neighborhood radius of

the inventory minimum in order to production unis out

Figure 24. Chart on the total cost optimization.

Table 11. Optimization of decision variables in FPMS with 4
production units.

Control name First value Best value

K 10 10
Time of PM1 15 13
Time of PM2 20 18
Time of PM3 25 24
Time of PM4 32 32
Z21 825 795
Z22 235 219
Z23 25 23
Z24 30 27
Zp1 450 400
Zp2 110 98
Zp3 15 14
Zp4 10 10
Total cost 1,125,000 1,080,000
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preventive maintenance and repairs for the first and sec-

ond production units in the form of Zpi620
� 	

and for the

third and fourth production units in the form of Zpi63
� 	

is

considered. This is because decision variables are mean-

ingful at these intervals. In the meta-heuristic algorithm, if

the neighborhood radius is chosen too small, we may be

late to the optimal answer; as well as by choosing the large

neighborhood radius, we may be far from the optimal

answer. For this reason, the choice of the excavation area

is of great importance. In this article, by analyzing the sen-

sitivity on the neighboring radius, the area of exploration

is considered as mentioned. The Tabu list is a multi-array

variable with 15 rows and 13 columns, with the number

15 indicating the length of the list and the number 13 indi-

cating the number of decision variables examined in this

article.

The algorithm’s stop condition can be determined by

stopping the algorithm if the target function reaches the

predefined threshold value. So, the condition for stop-

ping the algorithm in this study is that if the average

total cost is reduced by more than 4%, the algorithm is

stopped.

With the complete implementation of the algorithm, it

is observed that in the 19th iteration (iteration of 95 to 100

simulation models), the average total cost decreases from

1,125,000 monetary units to 1,078,502 monetary units,

which has decreased by more than the expected value, i.e.,

about 5%, and the algorithm stops in this iteration.

Z�
21 = 764, Z�

22 = 369, Z�
23 = 36, Z�

24 = 34,

Z�
p1 = 731, Z�

p2 = 124, Z�
p3 = 17, Z�

p4 = 15,

K= 7

When comparing the results of the two optimization

methods, it is worth noting that the Tabu search meta-

heuristic algorithm, implemented in the arena software.

ui= 1(t)=

0 xi(t). z2i

umaxi xi tð Þ+ umaxi \ z2i

z2i � xi(t)½ � Otherwise

8><
>:

ui= 2(t)=

0 xi(t). z2i

umaxi xi tð Þ+ umaxi \ z2i

z2i � xi(t)½ � Otherwise

8><
>:

ui= 3(t)=

0 xi(t). z2i

umaxi xi tð Þ+ umaxi \ z2i

z2i � xi(t)½ � Otherwise

8><
>:

ui= 4(t)=
0 xi � d. z2i

umaxi xi + umaxi + umaxrem � d\ z2i
z2i � xi � dð Þ Otherwise

8<
:

As shown in Table 12 and Figure 26, the reduction in

intervals between preventive maintenance has significantly

Figure 25. Simulation of the Tabu search algorithm in the Arna software.

Table 12. Comparing the number of times corrective
maintenance with main model and optimized model.

The number of times
corrective maintenance

Main
model

Optimized
model

CM1 22 17
CM2 6 5
CM3 12 9
CM4 6 4
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decreased the occurrence of unforeseen failures. This helps

prevent system downtime, potential shortages, and loss of

organizational credibility. This reduction serves as a clear

indication of the model’s effectiveness.

In order to demonstrate the effectiveness of the model

presented, we utilized the optimal solution from the

previous problem involving 4 production units to model a

problem with 6 production units as Figure 27.

The optimal solutions were then calculated in the

same manner as before. Similarly, we used the optimal

solution from the problem with 6 production units to

tackle the larger problem involving 10 production units.

By examining the results obtained from these analyses,

it has been determined that this model is capable of

addressing complex problems, even when incorporating

additional assumptions that closely resemble real-world

scenarios.

The optimal solutions of the problem with 6 production

units and using the Tabu search algorithm coded in the

ARENA.14 software is shown in Table 13.

Finally, the simulation was conducted on a failure-

prone Manufacturing system of large size, consisting of 10

production units. The results of the simulations for the

small-sized system (4 production units) and the medium-

sized system (6 production units) were then analyzed in

the same manner. The investigation results demonstrate

that in this system, the total cost has decreased from

Figure 27. Simulation of manufacturing system with 6 production units.

Figure 26. The effect of reducing preventive maintenance
intervals on the number of failures.
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5974000 to 5256000. This indicates the model’s efficiency

in handling large problems.

9.6. Description with inputs, effectiveness metrics,
and RCM-risk integration

In order to evaluate the effectiveness of the production

system under different maintenance and operational sce-

narios, a set of Key Performance Indicators (KPIs) have

been used. These quantitative metrics provide a basis for

comparing system performance and assessing the impact

of maintenance strategies and production planning deci-

sions. In order to enhance the clarity and reproducibility

of the case study, this section as Table 14 presents the key

performance metrics used to evaluate the system, and the

adopted maintenance strategy, including RCM and risk

analysis.

The main KPIs considered in this study are as follows:

� Total System Cost: The aggregate of maintenance

costs, production costs, inventory holding costs,

shortage penalties, and cost of defective items. This

metric is the primary objective in the optimization

model.
� Availability: The proportion of time each produc-

tion unit is in an operational (non-failed) state rela-

tive to the total simulation time. This measures the

effectiveness of maintenance planning.
� Average Inventory Level: The mean inventory

level across all products over the simulation period.

It indicates the logistical efficiency and storage cost

implications.
� Mean Time to Failure (MTTF): The average time

between two consecutive failures of each produc-

tion unit, reflecting the reliability of the equipment.
� Number of Defective Items: The total number of

defective products generated during the simulation.

This serves as a quality control metric and is impacted

by equipment age and maintenance frequency.
� Service Level: The ratio of fulfilled demand to

total demand, indicating the system’s ability to

meet customer requirements.

These metrics were selected because they directly reflect

the operational, economic, and reliability aspects of the

system, and are commonly used in production and mainte-

nance optimization studies.

Availability is calculated by dividing the total opera-

tional time of each production unit by the sum of its opera-

tional and downtime periods. The formula used is:

Table 14. Key performance indicators (KPIs) for evaluating production system effectiveness.

KPI Description Unit Relevance to study

Total System Cost Total cost including production,
maintenance, inventory, shortage,
and waste

Currency units (e.g., $) Primary objective function for
optimization

Availability Ratio of uptime to total time for
each production unit

% Reflects equipment reliability
and maintenance effectiveness

Average Inventory Level Mean stock level for each product
throughout the simulation

Units Indicates storage efficiency and
related costs

Mean Time to Failure (MTTF) Average time between failures for
each production unit

Time units (e.g., hours) Measures equipment reliability

Number of Defective Items Total number of products failing
quality requirements

Units Represents production quality
and maintenance impact

Service Level Ratio of demand fulfilled to total
demand

% Reflects the ability to meet
customer demand and minimize
shortages

Table 13. Optimization of decision variables in FPMS with 6
production units.

Control name First value Best value

K 10 11
Time of PM1 13 9
Time of PM2 18 15
Time of PM3 24 20
Time of PM4 32 30
Time of PM5 45 38
Time of PM6 30 20
Z21 795 824
Z22 219 226
Z23 23 20
Z24 27 29
Z25 25 28
Z26 25 30
Zp1 400 415
Zp2 98 114
Zp3 14 10
Zp4 10 15
Zp5 20 23
Zp6 12 15
Total cost 2,358,400 2,249,000
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Availability=
Uptime

Uptime+Downtime

These values are extracted from the simulation logs,

which monitor the status of each machine over the 365

working days.

The plant currently uses a time-based preventive main-

tenance strategy, which was modeled in the simulation

using exponential failure and repair distributions. To

improve maintenance decision-making, a Reliability-

Centered Maintenance (RCM) approach was implemented:

� RCM Analysis: Functional failures were identified

for each unit, and a Failure Mode and Effects

Analysis (FMEA) was conducted to prioritize com-

ponents using Risk Priority Numbers

(RPN = Severity 3 Occurrence 3 Detectability).
� Risk Assessment: A risk matrix was used to quan-

tify operational risk, based on the probability of

failure, the severity of its impact on production and

cost, and detection time.
� High-risk components (e.g., units with high failure

frequency and cost impact) were selected for tar-

geted preventive maintenance planning.

This structured approach ensures a comprehensive evalua-

tion of the system’s performance and the effectiveness of

maintenance policies.

Table 15, presents a comparative risk analysis of the

production units before and after the implementation of

RCM.

As shown, the preventive and predictive maintenance

strategies significantly reduced the risk level, with an aver-

age reduction of over 65%. This improvement justifies the

cost and complexity of applying the RCM framework to

the current system.

10. Conclusion

This research focuses on studying a network failure-prone

system (NFPMS) that produces multiple products. The sys-

tem assumes that the products are unstable. Each stage of

production relies on the product from the previous stage,

with a specific consumption factor. The machines may fail

during production but are repaired and return to the pro-

duction process. In the final stage of the system, shortages

of backlog and lost sales are allowed. In addition, spoilage

of items is permitted, but it is time-dependent. If the final

product is not used within a certain timeframe, it becomes

unusable. The production process is strictly forward; going

back is not allowed. It is important to note that customers

who receive spoiled items are given priority over custom-

ers facing backlog shortages. The main objective of this

study is to determine the optimal production rate and main-

tenance schedule that minimizes the mathematical expecta-

tion of total costs, including production, maintenance,

rework, scrap, corrective and preventive repairs, shortage

losses, and product spoilage. Determining the optimal rate

of production and addressing shortage issues are consid-

ered sub-goals. The production control policy is based on

the limiting point policy (HPP), which considers produc-

tion and maintenance to meet demand and prevent

shortages. Given the uncertainty and complexity of these

systems, system simulation was conducted using ARENA

14.0 software. After completing the simulation model, the

Opt Quest tool was utilized to determine the optimal solu-

tion and optimize the system based on simulation. The

algorithm was then executed to determine the optimal pro-

duction rate. Then, the simulation is run for system with 6

and 10 production units. The use of the Tabu Search algo-

rithm to optimize the sequence of production steps leads to

a reduction in the total cost of production. This method,

with its ability to comprehensively search a large space,

can find the optimal sequence of production steps, which is

difficult to achieve with traditional optimization methods.

Therefore, the Tabu Search algorithm can be an effective

tool in production management and cost reduction. For the

successful implementation of RCM, managers must con-

sider key factors such as the costs of system implementa-

tion, the need for reliability data analysis, and resource

allocation strategies. For instance, in manufacturing indus-

tries, prioritizing maintenance for critical equipment can

significantly reduce failure costs. In addition, organiza-

tional resistance to change must be managed, requiring

training programs and cultural adaptation initiatives. This

approach ensures that managerial considerations are clearly

discussed within a practical context.

Table 15. Risk analysis of production units before and after RCM implementation.

Component Probability of
failure (l)

Severity
(cost impact
per failure)

Risk
(l× cost)

RCM
action

Residual
risk (after
RCM)

Risk
reduction
(%)

Unit 1 0.04 400 16 PM every 13 days 6 62.5%
Unit 2 0.05 600 30 PM every 18 days 10 66.7%
Unit 3 0.07 800 56 PM every 24 days 18 67.9%
Unit 4 0.06 1000 60 PM every 32 days 20 66.7%
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36. Kouedeu AF, Kenné JP, Dejax P, et al. Production and main-

tenance planning for a failure-prone deteriorating manufac-

turing system: a hierarchical control approach. Int J Adv

Manuf Technol 2015; 76: 1607–1619.

37. Khatab A. Maintenance optimization in failure-prone sys-

tems under imperfect preventive maintenance. J Intell Manuf

2018; 29: 707–717.

38. Van Jaarsveld W and Dekker R. Spare parts stock control

for redundant systems using reliability centered maintenance

data. Reliab Eng Syst Saf 2011; 96: 1576–1586.

39. Amelian SS, Sajadi SM, Navabakhsh M, et al. Multi-objec-

tive optimization of stochastic failure-prone manufacturing

system with consideration of energy consumption and job

sequences. Int J Environ Sci Technol 2019; 16: 3389–3402.

40. Vishnu CR and Regikumar V. Reliability based maintenance

strategy selection in process plants: a case study. Procedia

Technol 2016; 25: 1080–1087.
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