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Abstract

Laminar-turbulent boundary-layer transition over rough rotating disks is
addressed by means of linear-stability analysis. Computational data from two
frequently used roughness-modeling approaches are obtained as input data for
the stability analysis. It is demonstrated that the data arising from the two differ-
ent approaches are not compatible with each other. Nevertheless, the stability
analysis predicts postponed transition for both approaches. Two main conclu-
sions emerge. Firstly, a theoretical study is required to establish which partic-
ular characteristics of the input data set result in the linear-stability analysis
predicting postponed transition. Secondly, to guide future simulations an exper-
imental study is essential to determine which one of the roughness-modeling
approaches, if either, can produce data in agreement with measurements.
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1. Introduction

The current paper addresses issues associated with the effects of surface roughness on the
laminar-turbulent transition of the boundary-layer flow over a rotating disk. The disk is spin-
ning within an infinite, ambient fluid that is at rest far above the disk surface. This flow config-
uration was first analyzed theoretically by von Karman (1921) and it is now commonly referred
to as von Karman flow. Its associated boundary layer is representative of a class of bound-
ary layers widely encountered in connection with rotating components of machinery or the
flow over highly swept wings (see Wimmer 1988, Lingwood and Alfredsson 2015, Alfredsson
et al 2024).

Two roughness-modeling approaches have been used by ourselves (Cooper et al 2015,
Garrett et al 2016) and numerous authors (e.g. Alveroglu et al 2016, Algarni et al 2019,
Alveroglu 2020, 2021, Thomas et al 2020, 2023, Al-Malki et al 2022, Khan et al 2022a,
2022b, Igra et al 2024) in recent years to study the effects of simple geometric roughness pat-
terns on the laminar-turbulent transition of the von Karman boundary-layer. The first of these
two approaches models roughness in terms of prescribing partial slip on the disk surface. This
approach dates back as far as 1823 (Navier 1823). The partial-slip route appears to have been
first applied in the context of the von Kdrman boundary layer by Miklav¢i¢ and Wang (2004).
We first adopted the methodology in Cooper et al (2015). The alternative approach is to model
roughness directly by prescribing particular surface structures. That methodology was used
for the von Karman boundary layer by Yoon et al (2007) and we applied it for the first time in
Garrett et al (2016). In Cooper et al (2015) we introduced the abbreviations MW and YHP for,
respectively, the partial slip (Miklav¢i¢ and Wang 2004) and the direct approach Yoon et al
(2007), subsequent authors adopted the nomenclature (see Alveroglu ef al 2016, Alqarni et al
2019, Alveroglu 2020, 2021, Thomas et al 2020, 2023, Al-Malki et al 2022, Khan et al 2022a,
2022b, Iqra et al 2024).

Due to the different nature of the MW and the YHP approach, a meaningful comparison of
results produced with the two methodologies is not straightforward. That is, because both use
different, unrelated roughness-control parameters. In Cooper et al (2015), Garrett et al (2016)
we used the MW and the YHP approach to model the effects of roughness patterns of con-
centric grooves for the rotating-disk boundary layer. However, the data in Cooper et al (2015),
Garrett et al (2016) were not suitable for a direct comparison to one another. Nevertheless,
both approaches predicted postponed transition. Here we revisit the roughness patterns of con-
centric grooves but for particular simulation conditions that enable conclusions that were not
possible on the basis of the data in Cooper et al (2015), Garrett ef al (2016).

2. Rotating-disk flow

The three-dimensional flow structure of the boundary-layer flow over a rotating disk is illus-
trated in figure 1. For the theoretical analysis the disk is assumed to be of infinite radial extent
(see, for instance, von Karmén 1921, Owen and Rogers 1989). The three velocity components
are the azimuthal (G), radial (F) and axial (H) flow components. These velocity components
constitute an exact similarity solution to the Navier—Stokes equation (von Karmén 1921).
The nature of the azimuthal flow component arises from the requirement that no-slip has
to be satisfied on the surface of the rotating disk, while the fluid far above the disk is station-
ary. The radial component is a consequence of no-slip together with the action of the cent-
rifugal force on the fluid within the boundary layer and stationary fluid far above. Note that
this constellation necessitates the existence of an inflexion point on the radial flow profile at
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Figure 1. Boundary-layer velocity components of rotating-disk flow.
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some height above the disk surface. The radial flow is commonly referred to as the crossflow
component because it is aligned at a right angle to the azimuthal component. The axial flow
component arises in connection with the radial component. Mass-conservation necessitates its
existence to replace the liquid that is being transported radially outwards.

The transition of the rotating-disk boundary layer is associated with different stationary
and travelling instability modes (Lingwood and Alfredsson 2015, Alfredsson et al 2024). The
mode that has received most attention is the stationary Type I crossflow instability. That mode
arises as a consequence of the existence of the inflexion point on the profile of the radial flow-
velocity component (Lingwood and Alfredsson 2015, Alfredsson et al 2024). The existence of
the inflexion point on the crossflow component is a crucial aspect shared by all boundary layers
with such a crossflow component. The Type I mode is responsible for the laminar-turbulent
transition of the rotating-disk boundary layer and other boundary layers with a crossflow com-
ponent. It has been identified as giving rise to the characteristic spiral vortices, developing in
the transition zone over the disk (Mack 1985). These spiral vortices were first visually docu-
mented in Gregory et al (1955), together with corresponding vortices on swept wings.

The theoretical aspects associated with the derivation of the similarity solution for the
boundary-layer velocity profiles G, F and H, following von Karmén’s (1921) original publica-
tion, and the details of the linear-stability theory for these profiles are standard and have been
summarized numerous times in the past. Therefore, we will not reiterate the lengthy math-
ematical details here. We kindly ask readers to access the comprehensive literature available
(see Owen and Rogers 1989, Cooper et al 2015, Lingwood and Alfredsson 2015, Garrett et al
2016, Yapa 2023, Alfredsson et al 2024). Here only the most fundamental aspects required to
follow the current discussion are outlined.

For the mathematical description of the rotating-disk flow geometry it is natural to employ
a cylindrical polar coordinate system r, 6,z with respective steady-flow components v,,vg, v,.
The flow is assumed to be rotationally symmetric, such that there exists no #-dependence.

The characteristic length scale of the problem is given by the order of magnitude of the
boundary-layer thickness

d= v/, (1)
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where v is the kinematic viscosity of the fluid and €2 is the rotational velocity of the disk.
Therefore, the non-dimensional height above the disk is given by

o Z
= 2

The nondimensional velocity components are

Vy Vo vV,
F = -_— = -_— H =
0= Q=g HO= 5 )
and the Reynolds number is defined as
2
Re= /¥ @)
14

Substituting equation (1) into equation (4) yields Re = r/d. Thus, the Reynolds number cor-
responds to the nondimensional distance from the center of the disk.

The Reynolds number is related to the azimuthal disturbance wavenumber, 3, and the num-
ber of spiral vortices, n, developing in the rotating-disk boundary layer during transition by

= S)

3. Roughness models

The MW and the YHP approach proceed by initially finding the roughness-modified base-
flow profiles for F(¢),G(¢),H(¢) (see Cooper et al 2015, Garrett ef al 2016). To that end two
separate codes are used. These modified velocity profiles are then subjected to a linear-stability
analysis conducted by means of a third, separate code. For what lies ahead it is crucial to
appreciate that the linear-stability code represents a separate entity from the other two codes
used to produce the modified base profiles. That is, the linear-stability code does not know
whether any particular set of roughness-modified input velocity profiles originated from the
MW or the YHP approach.

Based on the roughness-modified input velocity profiles the linear-stability code yields
neutral-stability curves for the flow disturbances as a function of the Reynolds number. In
the context of the stability analysis note that we are considering stationary instability modes
only. For smooth disks our computational base-flow velocity profiles and the neutral-stability
curves produced by our neutral-stability code for the stationary modes agree with the well-
established results by, respectively, von Karman (1921) and Malik (1986).

For the MW approach (Cooper et al 2015) the roughness-control parameter is an ad-hoc
slip factor introduced to ensure that the flow speed on the disk surface is non zero. For the YHP
approach (Garrett et al 2016) surface undulations on the disk are prescribed with the no-slip
condition being satisfied on the disk surface. The roughness control parameter for the YHP
approach is the wavelength-to-pitch ratio. There exists no natural physical relation between
the slip factor and the wavelength-to-pitch ratio within the current mathematical framework
of the MW and the YHP methodology.

The MW and the YHP approach provide two options to make data comparable. These are
to either attempt making the roughness-modified mean base flow velocity profiles equal or to
adjust the two roughness-modeling parameters such that the volumetric flow rate through the
system is equal. It will be seen (cf discussion of figures 4-6) that making the three correspond-
ing flow velocity components equal is impossible. Therefore, the only option for a comparison
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is to adjust the roughness modeling parameters such that they result in the same volumetric
through flow. That constellation is evidently not ideal. Because, as will be seen, when the flow
rates match the corresponding velocity profiles differ. Nevertheless, the main conclusions that
will emerge are independent of that shortcoming.

The axial (downward) mass flow rate 7i1¢ at height ¢ is

r=ry 0=2m
ic= [ [ o) rares, ©)
0 0=0

where the upper limit »r = ry of the integral in equation (6) represents any particular radial
extent of the flow field to be considered. In practice, for the case of a finite disk, this would be
the disk radius. Using 3(c), and considering that one obtains the total inflow rate, #1;,, when
¢ — oo this gives

. min

m=-5 (7

The constant C in equation (7) is
C=mp? (W) @®)

and the notation 71 = H, is used as a reminder that it represents the total incoming mass-flow
rate. The cut off ( =20 was used to compute s from the data sets since the flow rate remains
invariant for larger ¢ values. Adjusting 7 to be equal for the YHP and the MW approach is the
criterion for which data will be compared.

The YHP approach assumes rotational symmetry. It can, therefore, only model roughness
in the radial direction. Undulations in the radial direction, under the condition of rotational
symmetry, implies that the simulations correspond to a disk with concentric grooves of a par-
ticular cross-sectional shape. The cross-sectional shape examined here, and in Garrett et al
(2016), is given by

s(ry=4dcos(2mr/y) , 9)

where ¢ is the undulation amplitude and -y is the pitch of the roughness. The roughness-control
parameter for the YHP approach is the amplitude-to-pitch ratio

a=46/v . (10)

The base-flow profile resulting from the YHP approach that is being submitted to the stability
analysis is then taken as a spatial, radial average over one period of roughness (see Garrett
et al 2016).

The MW approach can, in principle, model roughness in the radial as well as in the azi-
muthal direction by introducing separate slip factors for each of the two velocity components.
Results for various combinations of radial and azimuthal slip factors can be found in Cooper
et al (2015). To define a flow that corresponds to the concentric grooves of the YHP approach
only a slip factor for the radial velocity component must be used here as a control parameter
for the MW approach. The azimuthal flow velocity when using the MW approach remains to
satisfy the no-slip boundary condition.

Navier’s partial-slip approach (Navier 1823, Miklav¢i¢ and Wang 2004) assumes that the
velocity tangent to the surface is proportional to the wall shear stress. We follow the notation
of Miklavci¢ and Wang (2004) and introduce partial slip for the radial velocity component in
terms of a generalization of Navier’s partial slip condition as

ov,
07

Vrlemo = Npv (11

z=0
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Table 1. Data YHP appoach.

m a Re, n ¢r Fi F|

0.8845 0 286.3 222 1.82 0.132 —0.0754
09114 0.08 302.4 20.9 1.97 0.125 —0.0651
0.9413 0.12 327.7 20.2 2.14 0.118 —0.0556
0.9779 0.16 367.9 20.0 2.33 0.111 —0.0462
1.0178 0.20 422.3 20.2 2.52 0.104 —0.0378

Table 2. Data MW approach.

W A Re. n 9 Fi Fi

0.8845 0 286.3 222 1.82 0.133 —0.0754
0.9101 0.10 316.64 275 1.67 0.141 —0.0825
0.9386 0.23 371.05 35.9 1.53 0.152 —0.0916
0.9747 0.44 488.32 53.6 1.36 0.169 —0.1054
1.0146 0.77 7412 929 1.20 0.190 —0.1232

In equation (11) N is referred to as the slip coefficient. Note that dimensional homogeneity
requires the dimensions of N to be Length? x Time/Mass. The dimensionless roughness-
control parameter for the MW approach is then defined as

A=NpVvQ | 12)
Using these definitions yields
FO)=\F'(0) (13)

the prime denotes differentiation with respect to ¢.

4. Results

Tables 1 and 2 summarize, respectively, relevant data for the simulations with the YHP and
the MW approach. Included in the tables are the values of the two control parameters a = § /7
(YHP) and A (MW) that lead to equal mass-flow rate, 7.

To obtain sets of results for equal mass flow rate for both computational approaches the
value of either a or A was pre-selected. The corresponding set of data for the other approach
was then obtained by successive computational runs, changing the relevant control parameter
by small increments until the mass-flow rates for both approaches agreed to one another to
within an accuracy of less than one percent.

Also included in tables 1 and 2 are some values of quantities arising in the context of the
discussion further below. These are the critical Reynolds number Re, for the Type I instability
mode, the number n of spiral vortices developing above Re,, the height (; of the inflexion
point of the radial flow velocity profile over the disk, as well as the radial flow speed, F;, and
its ¢-derivative F;, in the inflexion point. These data will be referred to in the remainder where
relevant.
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Figure 2. The roughness parameters, a for the YHP approach and A\ for the MW
approach, as a function of the mass-flow rate .
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Figure 3. Roughness parameter a of the YHP approach as a function of the roughness
parameter A\ for the MW approach.

4.1. Roughness correspondence

Figure 2 displays a and A as a function of the mass-flow rate m. Recall that increasing i
represents increasing roughness. It can be seen that both parameters increase nonlinearly with
the mass-flow rate. An interesting feature being that a increases faster than linearly with 7,
while the opposite is the case for \.

Figure 3 depicts the slip factor A (MW) as a function of the amplitude-to-pitch ratio a
(YHP), under the condition that both produce the same mass-flow rates, m. While the data
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displayed only relate to the rotating-disk flow it is interesting to see the nonlinear relationship
between the two parameters. The data can be summarized in terms of a least-squares fit given
by A =34.4.a>3.

4.2. Velocity profiles

Figures 4-6 display, respectively, the radial, azimuthal and axial velocity component of the
flow over the rotating disk. In each of the three figures part (a) contains the results based on the
YHP approach while (b) shows the results for the MW approach. Recalling that all data were
obtained under the condition that roughness for both approaches results in equal mass-flow
rates through the system. The black dots superposed onto the velocity profiles in figures 4(a)
and (b) identify the location of the inflexion point on each of the radial velocity profiles. The
shift of the location of the inflexion point will be discussed in section 4.3.

Reference to figure 4(a) reveals that in the region ¢ < 1.8 the radial velocity for the YHP
approach decreases with increasing roughness, relative to the corresponding velocity for the
smooth disk. The opposite is the case for the MW approach in figure 4(b). It is, therefore,
impossible to adjust parameters such that the velocity profiles for the MW and the YHP
approach match. Corresponding comments apply to the azimuthal velocity component in
figure 5 and the axial velocity component in figure 6. Several similar examples of incompatible
scaling behaviour will be observed in the remainder.

4.3. Inflexion point

It was discussed in section 2 that laminar-turbulent transition of the von Karman boundary,
and other boundary-layers with a crossflow component, is due to the Type I instability mode
and that this mode arises from the inflexion point on the radial flow velocity F' (see Lingwood
and Alfredsson 2015, Alfredsson et al 2024). It is, therefore, interesting to investigate the
characteristics of the inflexion point under the condition that the YHP and the MW approach
result in equal mass-flow rates.

The location of the inflexion point on the radial flow-velocity component is identified in
figures 4(a) and (b) by the black dots superposed onto the velocity profiles. The associated
height (¢;) of the inflexion point above the disk surface and the radial velocity component (F;)
at that height are displayed in, respectively, figures 7(a) and (b) as a function of the mass-flow
rate (). In both figures the full, black circles are the results obtained from the YHP approach,
while the open squares represent the data for the MW approach. Since the mass-flow rate
increases for both approaches with the relevant roughness-control parameter (cf tables 1 and 2)
the data points for all data sets in figures 7(a) and (b) correspond to increasing roughness levels
from left to right.

Figure 7(a) reveals that for the YHP approach the location of the inflexion point moves away
from the disk surface for increasing roughness levels, while the opposite is the case for the MW
approach. Similarly figure 7(b) shows that the radial flow velocity component at the location of
the inflexion point decreases with increasing roughness level for the YHP approach, while the
trend is reversed for the MW approach. Moreover, while the data from the YHP approach for
(; in figure 7(a) lie above those for the MW approach the situation is reversed for the velocity
F; in figure 7(b). Thus, the location and velocity data for the inflexion point display entirely
opposing behaviour for both approaches.

Figures 8(a) and (b) display results for the {-derivative, F;, of the radial flow-velocity com-
ponent. In figure 8(a) the derivative is displayed as a function of the mass-flow rate m while
figure 8(b) shows it as a function of the associated velocity F; at the inflexion point. Similar

8
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Figure 4. Radial flow velocity, F, as a function of the nondimensional height, z, above
the disk surface. (a) YHP approach, (b) MW approach.

to figure 7 the velocity gradient F in figure 8(a) displays opposing trends under the YHP and
the MW approach.

Regarding the data for the gradient F; as a function of F; in figure 8(b) note that the two over-
lapping data points, just above F; = 0.13, represent the results for the smooth disk, obtained
from the two different computational codes for the YHP and the MW approach. Data for the
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Figure 5. Azimuthal flow velocity, G, as a function of the nondimensional height, (,
above the disk surface. (a) YHP approach, (b) MW approach.

YHP approach for successively decreasing F;-values, below F; ~ 0.13, correspond to increas-
ing roughness levels. For the MW approach successively increasing F;-values above F; ~ 0.13
correspond to increasing roughness level. Thus, again opposing trends are observed. While
increasing roughness in the YHP approach leads to an increased gradient F; the opposite is
the case for the MW approach. Nevertheless, it is interesting to note that the data of both indi-
vidual sets of results display a linear dependence of F| on Fj, and with only slightly different

gradients dF; /dF;.
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Figure 6. Axial flow velocity, H, as a function of the nondimensional height, ¢, above
the disk surface. (a) YHP approach, (b) MW approach.

4.4. Neutral stability curves

Figures 9(a) and (b) display the neutral stability curves for increasing roughness levels, for
the YHP and the MW approach, respectively. The figure shows the wavenumber, «,, of the
most unstable radial mode as a function of the Reynolds number Re. The o« — Re combina-
tions enclosed by the curves represent unstable conditions while combinations outside of the
enclosed regions represent stable conditions. As is well known, the top lobe on the neutral

1
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Figure 7. The (a) height of the inflexion point above the disk, {; and the (b) radial flow
velocity at the inflexion point, £, as a function of the mass-flow rate 7.

stability curves in figures 9(a) and (b) represents the Type I instability mode while the smaller
bottom lobe corresponds to the Type II mode.

Figure 9 reveals that, as in Cooper et al (2015), Garrett et al (2016), the Type I mode is
shifted towards higher Reynolds number by increasing roughness levels, for both the YHP
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Figure 8. The gradient, F/, of the radial velocity component in the inflexion point: (a)
as a function of the mass-flow rate 7, (b) as a function of the velocity F; at the inflexion

point.

and the MW approach. That expresses that roughness stabilizes the Type I mode under both
approaches.

The situation is more complex for the Type II mode. It can be seen in figure 9(a) that for
the YHP approach the Type II mode is destabilized with increasing roughness, whereas it is
stabilized for the MW approach in figure 9(b). Nevertheless, destabilization of Type II, for
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Figure 9. Neutral stability curves displaying the critical wavenumber o as a function
of the Reynolds number Re: (a) YHP approach, (b) MW approach.

the YHP approach, is not an issue of practical relevance. The growth rates of Type II are
substantially smaller than those of Type I (see Cooper et al 2015, Garrett et al 2016). It is well
established that it is the Type I mode that results in the laminar-turbulent transition, and that
mode is stabilized for both computational approaches in figure 9.

In section 4.3 it was found that the velocity and location of the inflexion point concur-
rently display entirely opposing behaviour for both modeling approaches. However, the data in

14
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Figure 10. The critical Reynolds number, Re., as a function of the roughness level,
represented by the mass-flow rate, .

figure 9 show stabilization of Type I, for both computational approaches. This implies, finally,
that it is not the characteristics of the inflexion point alone that lead to delayed transition for
increasing roughness levels in the two computational approaches. A corresponding comment
applies to all other investigated flow characteristics where opposing, or differing, scaling of
the data has been found.

The critical Reynolds number Re, is the lowest value of Re for which a certain disturbance
of wavenumber «,, in figure 9, first becomes unstable. Figure 10 displays the critical Reynolds
number, Re,, for the Type I mode as a function of the mass-flow rate m. The figure reveals that
Re, grows significantly faster with m for the MW approach than for the YHP approach. That s,
the slip factor A of the MW approach has a substantially larger effect on the stability behaviour
of the flow than the amplitude-to-pitch ratio, a, in the YHP approach.

4.5. Number of spiral vortices

Figure 11 depicts the predicted number, n, of spiral vortices along the neutral stability curves,
as a function of the Reynolds number, Re. Figure 11(a) reveals that the overall qualitative effect
of increasing roughness on the top lobe (Type I) is to shift the lobe toward higher Reynolds
numbers, while n decreases. For the MW approach in figure 11(b) it can be seen that the cor-
responding lobe also moves to higher Re while, in this case, the number of vortices increases.

Figure 12 shows the predicted number n. of spiral vortices at the critical value Reynolds
number, Re,., for the Type I mode as a function of the mass-flow rate 7iz. The figure reveals
that the number of vortices remains approximately constant at n, = 22 for the YHP approach
for all roughness levels. However, n, increases sharply with the roughness level for the MW
approach.
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Figure 11. The number of spiral vortices, n, along the neutral stability curves, as a func-
tion of the Reynolds number, Re. (a) YHP approach, (b) MW approach.

4.6. Velocity conditions at the disk surface

The value of the azimuthal and the axial velocity component vanish on the surface of the disk
under both approaches (cf figures 4-6), and so does the radial velocity component, in the case
of the YHP approach. However, with respect to the partial-slip, defined for the MW approach
in section 3, the radial velocity F(0) on the disk surface varies here with the roughness level.
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Figure 13. The radial flow velocity on the disk surface, F(0), as a function of the rough-
ness level, represented by the mass-flow rate, 7.

The non-vanishing radial velocity F(0) for the different roughness levels can be identified in
figure 4(b). The relevant numeric data for F(0) are summarized in the rightmost column of
table 3 and they are displayed in figure 13 as a function of the roughness level, as represented
by the mass-flow rate .

Table 3 also contains the numeric values of the derivatives F’(0),G'(0),H’(0) of the three
velocity components at the surface of the disk and these data are displayed in figures 14(a)—(c).
Figures 14(b) and (c) show, once again, that the behaviour for the YHP and the MW approach
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Table 3. Velocity derivatives F’(0), G'(0),H’ (0) at the surface of the disk for, the YHP
and the MW approach, and the velocity F(0) on the disk surface for the MW approach.

YHP YHP  YHP MW MW MW MW
) F'(0)  G'(0) H'(0) F'(0) G0 H'(0) F(0)

0.8845 0.5101 —0.6160
09114  0.4437 —0.5661
09413 03870 —0.5196
0.9779 03338 —0.4719
1.0178 0.2887  —0.4277

0.5102 —0.6159 0 0

04615 —0.6668 —0.0923  0.0461
0.4089 —0.7183  —0.1881  0.0941
03436 —0.7780 —0.3024  0.1512
0.2731 —0.8380 —0.4206 0.2103

S o oo O

is fundamentally different for the azimuthal and the axial flow component. However, for the
radial flow component, in figure 14(a), the data from the YHP and the MW approach do indeed
agree very closely with each other.

Figure 14(a) has shown that F'(0) decreases essentially linearly with 7z, while the relation
between A and i1, in figure 2, is also approximately linear. Therefore, F(0) = AF’(0) should
also scale approximately linearly with 7z, that is consistent with the data for F(0) for the MW
approach in figure 13.

The result from figure 14(a) that the data for the derivative F’(0) from both computational
approaches agree with each other represents the only case of the entire data comparison where
the YHP and the MW approach yielded data for flow characteristics that show the same overall
trend and with closely matching numeric values. Therefore, it appeared likely that the velocity
derivative on the disk surface (F’(0)) is potentially closely associated with the origin of the
postponed laminar-turbulent transition under both computational approaches.

To test the hypothesis whether the derivative F’(0) is a characteristic with major effects on
transition, we synthetically modified the data for F({) at { =0 and in the immediate region
above the disk to alter F’. The details of this process are summarized in section 6.4 of Yapa
(2023). The synthetically modified base-flow profiles were then subjected to the linear-stability
analysis. However, the results obtained were inconclusive. It has been found that the flow is
marginally stabilized when F’(0) decreases and marginally destabilized when F’(0) increases.
However, the effects were found to be rather weak.

5. Conclusion

Effects of surface roughness on the laminar-turbulent transition of von Kirman boundary-
layer flow were discussed. Roughness-modified mean base flow profiles were obtained for
the frequently used MW and YHP roughness modeling approaches. The two data sets were
obtained by the two codes previously used in the context of Cooper et al (2015), Garrett et al
(2016). Corresponding characteristics of the two sets of roughness-modified mean base flow
profiles were analyzed. The two sets of profiles were then subjected to a linear-stability analysis
using the same stability code as in Cooper et al (2015), Garrett et al (2016).

The results obtained for the type of roughness considered here have shown that it is
impossible to adjust the roughness-modeling parameters for the MW and the YHP approach
such that identical profiles for the three velocity components of the von Karman boundary-
layer are obtained. Thus, it was demonstrated that, in their current form and for the type of
roughness considered, the two approaches are not compatible. Nevertheless, for the data from
both approaches the linear-stability analysis predicts postponed transition. The only existing
option for a direct data comparison between results for the MW and the YHP approach was to
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Figure 14. Derivatives F'(0),G’(0),H’(0) of the flow-velocity components at disk sur-
face as a function of the mass-flow rate, .

consider systems as physically equivalent when the volumetric flow rate through the system
is equal. While that criterion is somewhat unsatisfactory the main conclusions emerging are
independent of it.
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The linear-stability code was unaware of which particular set of input modified mean pro-
files resulted from which one of the two roughness-modeling approaches. The intention was to
identify specific characteristics of the roughness-modified mean-flow profiles appearing in the
same form for the two sets of profiles. The analysis has shown that such shared data-scaling
characteristics do not exist for the most prominent flow-profile characteristics considered. Yet,
the final, overall prediction from both approaches is postponed transition.

In Cooper et al (2015) we applied partial slip to the base flow but no slip to the linear
perturbations. More recently Thomas et al (2023) revisited the problem first considered in
Cooper et al (2015). In this study the authors presented an argument for the adoption of the
partial-slip boundary conditions to be applied to the calculation of both the base flow and
perturbation quantities. The conclusion that periodic small amplitude roughness proves to be
a stabilizing feature remains the case when one considers isotropic roughness (a combination
of partial-slip in both the radial and azimuthal directions). However, the predicted boundary
layer stabilization was significantly reduced when compared to the findings of Cooper et al
(2015). Furthermore, in the presence of purely radial partial-slip, the type I mode is instead
predicted to be destabilized, a result opposed to the original findings of Garrett et al (2016).
Nevertheless, the result of Thomas et al (2023) do not affect the issue identified herein that
the MW and the YHP approach lead to roughness-modified mean base profiles that are not
compatible with each other.

Therefore, the main theoretical challenge arising from the current discussion regards the
question of which particular characteristics of the roughness-modified mean-flow profiles lead
or contribute to the postponed transition. To begin tackling that challenge one could, perhaps,
begin by applying methodologies similar to those summarized in Marquet et al (2008) which
investigates how base-flow modifications alter the stability properties of vortex shedding for
flow around cylinders. However, the approach in Marquet et al (2008) was developed for two-
dimensional flow, whereas the von Kdrman boundary layer is fully three-dimensional.

Nevertheless, from an experimentalists perspective the main conclusion is that, ultimately,
it is only a laboratory study that could resolve the issues identified by the results discussed
here. Experiments would shed light on the question regarding whether the MW or the YHP
approach, if either, predicts data for mean-flow profiles in agreement with measurements.
Clearly, the opposing data-scaling trends displayed in figures 4—14 imply that at least one of
the two approaches must produce results that cannot be in agreement with future experiments.

However, conducting a laboratory study requires a state-of-the-art experimental rotating-
disk facility with the associated measurement technology (i.e. hot-wire system). Such an infra-
structure is, unfortunately, currently not available to us, nor does it exist elsewhere in the UK.
It will require many years and substantial funds to develop such a facility.
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